AD-A206 040

R

RADC-TR-88- 168 VoI II (of two)
Final Technical Report
August 1988

A DESIGNERS’ GUIDE TO RELIABLE
DISTRIBUTED SYSTEMS An Example
Design

Honeywell

Anand R. Tripathi, Jonathan Silverman, William T. Wood, Elaine N. Frankowskl, %
Pong-Sheng Wang, Shiva Azadegan, Shiv Seth, Rita WU, Helmut K. Berg L SRR

-

ROME AIR DEVELOPMENT CENTER
Air Force Systems Command
Griffiss Air Force Base, NY 13441-5700

8o 4 03 094

]

This report has been reviewed by the RADC Public Affairs Division (PA)
and 1s releasable to the National Technical Information Service (NTIS). At
NTIS it will be releasable to the general public, including foreign nationms.

RADC-TR~-88-168, Vol II (of two) has been reviewed and is approved for
publication.

- APPROVED: %’%j ///é/////%’v | -

THOMAS F. LAWRENCE
Project Engineer

'”- APPROVED: % "w’dé ﬂ %gé;—; \

RAYMOND P. URTZ, JR.
Technical Director
Directorate of Command and Control

FOR THE COMMANDER: % Q‘ W

JOHN A, RITZ
Directorate of Plans & Programs

If your address has changed or if you wish to be removed from the RADC mailing
l1ist, or if the addressee is no longer employed by your organization, please
notify RADC (COTD) Griffiss AFB NY 13441-5700. This will assist us in main-
taining a current mailing list. , e
Do not return copies of this report unless contractual obligations or notice
on a specific document requires that it be returned.

R E P Py

$lad

| ki mz e L anddai e i

UNCLASSLFIED GD,QQ G 4/0
SECTRITY CLASSIFICATION OF TS SAGE 0 O i

Form Approved
REPORT DOCUMENTATION PAGE OMBNo.p0704-0780
'a. REPORT SECURITY CLASSIFICATION 6. RESTRICTIVE MARKIL GS
UNCLASSIFIED N/A
23. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION / AVAILABILITY OF REPORT
NJ/A Approved for public release; distribution
2b. DECLASSIFICATION / DOWNGRADING SCHEOULE unlimited.
N/A
4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)
N/A RADC-TR~88-168, Vol II (of two)
6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
(If applicable)
Honeywell Rome Air Development Center (COTD)
6c. ADDRESS (City, State, and 2/P Code) 7b. ADORESS (City, State, and ZIP Code)

Computer Science Center
10701 Lyndale Ave (South)
Bloomington MN 55420

Griffiss AFB NY 13441-5700

8a. NAME OF FUNDING / SPONSQRING 8b. OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable) F30602-~82-C-0154
Rome Air Development Center COTD TReTLT
8c ADORESS (City, State, and ZIP Codle} 10. SOURCE OF FUNDING NUMBERS .
PROGRAM PROJECT TASK WORK UNIT
Griffiss AFB NY 13441-5700 ELEMENT NO NO. NO ACCESSION NO
63728F 2530 0l 17

11, TITLE (Include Sacurrty Classification)
A DESIGNERS' GUIDE TO RELIABLE DISTRIBUTED SYSTEMS An Example Design

12. PERSONAL AUTHOR(S) anand R. Tripathi, Jonmathan Silverman, William T. Wood,

Elajne N, Frapkowski, Pong-Sheng Wan Shiva Azadegan, Shiv Seth, Rita Wu, Helmut K. Ber
13a. TYPE OF REPQRT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) |15. PAGE COUNT
Final FROM Sen 82 7O Aug 84 August 1988 300
16. SUPPLEMENTARY NOTATION Subcontractors: Information Research Associates - Authors: James C.

Browne, James Dutton, Vincent Fernandes, Annette Palmer, Raj Kumar Velpuri
The University of Texas at Aystin - Authors: Donald I, Good, Michael K. Smith (See Reversed

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by dlock number)
FIELD GROUP SUB-GROUP Distributed Systems Reliable Systems
12 07 Performance Evaluation Reliability Evaluation
Recovery Mechanisms Atomic Action (See Reverse)

19. ABSTRACT (Continue on reverse if necessary and identify by block number)
‘This report describes an effort to develop a system designers guidebook for designing

reliable distributed command and control systems. The guidebook contains a synthesis of
reliable system design principles and methods to evaluate distributed system designs for
performance, reliability and functional correctness. The approach to developing the
system designers guidebook in this effort is example driver. We develop a detailed

design of a reliable distributed operating systgg and evaluate its performance.

et
IR - - ‘ . /- . - 7
. C. ' AL Co : : Do
, gt)
e . P 4
P {
20 O!STRIBUTION/ AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION
@ uncLassisieDunuMITED [SAME AS RPT] oTic USERS UNCLASSIFIED
22a NAME OF RESPCNSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) | 22¢c OFFICE SYMBOL
Thomas F. Lawrence (315) 330-2158 RADC (COTD)
00 form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

UNCLASSIFIED

Block 16 SUPPLEMENTARY NOTATION (Continued).

Richard M. Cohen, Lawrence Smith, Lawrence Akers, William Bevier, Miren Carranza,
Ann Siebert

Block 18 SUBJECT TERMS (Continued).

Fault-Tolerant Systems Volidation
Verification Replication
Commit Protocol Design Methods
Object-Oriented Systems Formal Specification
“Aeccoolon For
ERN R
poTT T
‘ v o d
R —
‘—‘___________,._————t
=
\ Lc.‘ "1 .‘?Lf ‘[I—“>_.4
pa* "1\1 ity Codes
\ T Avarll .ad/or
Dist Spcoial

./

UNCLASSIFIED

VOLUME 2

TABLE OF CONTENTS

Page

—
]

ZEUS ARCHITECTURE AND FUNCTIONAL DEFINITION . . « ¢ « ¢ & « « « &
1.1 INTRODUCTION « « . . s 4 e s e s s s e e e e e e .
1.2 ZEUS QVERVIEW e o o o 8 o o o o s 4 o 8 o o
1.3 FUNCTIONAL DEFINITION OF ZEUS . ¢ « ¢ « ¢ o o« & « & . o .

1.3.1Zeus Kernel . . . ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o « & e o e o o o
1.3.1.1 Kernel Functions e e e e s s e

1.1 The Remote Procedure Call « .

1.2 Object Storage Management

1.3 Unique Identifier Generation

tructure of Zeus Kernel « ¢« ¢« ¢« ¢« « ¢« &

—h d weh od o ek
| L L D T |

.1.
|
1

N e
Ne o
— —
[|

u
1 Zeus Kernel Resource Management
2 Operation Switch ¢ . ¢ .« ..
3 Unique Identifier Generation
4 Network Handler « ¢« « v ¢ ¢ ¢ « « &
1.3.2 User Visible Functions . . . ¢« &« ¢ ¢ ¢ ¢ o o o « o &
. 1.3.2.1 Type-Type Manager « . o« o o o e
1.3.2.1.1 Organization of Type/Type Manager
1.3.2.2 Process/Transaction Manager « « .
1.3.2.2.1 Process Manager Functions
1.3.2.3 Principal and Authentication Manager
1.3.2.3.1 User_Visible Authentication Functions . . . 1-15
1.3.2.4 Symbolic Name Manager « « « « ¢« + « « » 1-18

—
I

—
]

1.
1.
1.
1.3.1.
1.3.1.
1.3.1
1.3.1

-—
]

2.
2.
2.
2.

muwww wwu
[}
VOO0 UNTUIWNEEWWRNDND = e

— —h ah b
111

3

.

.

.

-
]

]
—
=

1.3.2.4.1 Symbolic Name Contexts 1-19
1.3.2.4.2 User's Viewof the SNM 1-20
1.3.2.4.3 SNM Functions . . . « « « ¢ ¢« o ¢« « « & .« 1-20
1.3.2.5 Program Type Manager . . . « « « « ¢ o« « o o« « & 1-21
1.3.2.5.1 Program Object Functfons 1-21
1.3.2.6 Message Type Manager . . . « « « o o o o« « o o &« 1-23
1.3.2.6.1 Reliability of Message Objects 1-23
1.3.2.6.2 Scope of Inter-process Communication . . . 1-2U
1.3.2.6.3 Message Operations from the User's 1-24
Viewpoint . ¢ ¢ ¢ ¢ ¢ ¢« ¢ ¢ o ¢ ¢ ¢ ¢ o o o ¢ o« @
1.3.2.6.4Send Msg v ¢ o ¢ ¢ 0 oo 00 . 1-24
1.3.2.6.5 Receive MSE . ¢ . i e e e e e e e e e .. 1225
1.3.2.6.6 Msg Status 1-26
1.4 OVERVIEW OF THE DETAILED DESIGNS . . . « « . . . e o oe e oo 1227
1.4.1 Zeus System Design ¢« ¢ « ¢ ¢« ¢ 4 ¢« 0 o o o o 1227
1.2 Kernel DeSigN . v ¢ ¢ ¢ o o o o o o ¢ o o o o s & o o 1227
1.4.2.1 UID Generation Protocol « « o . . 1-28
1.3.2.6.6.1 The Time Constant t e e e e e e e s 1-30
1.3.2.6.6.2 Introducing a New Largestepper to the 1-31
Network« . . ¢ ¢ .. . “ s e e e e e
1.4.2.1.1 Reliability Issues in UID Generation e . 1e3
1.4.3 Process Manager Design « « 1232
1.4.3.1 Command Processor . . . « « « « + & o & « e« . 1-34

1.4.3.2 Process Manager Database: e .. . 1=-35

1.4.4 Type Manager Design e e e e e e e
1.4.5 Symbolic Name Manager Design e e e e
1.4.6 Message type manager Design e e e e e
KERNEL DESIGN . ¢ & & v 4 ¢ ¢ 6 e ¢ o o ¢ o o o o s o o o o . .
2.1 INTRODUCTION . . . & ¢ ¢ ¢ ¢« ¢ o ¢ o o o o o o ¢ o & . e
2.1.1 Kernel Interface . . . ¢« ¢ ¢ ¢« ¢ ¢ ¢ ¢ ¢« ¢« ¢« o o o «
2.1.2 The Kernel Structure« . «
2.2 THE REMOTE PROCEDURE CALL STRUCTURE . . . « ¢ ¢ ¢ « & o .
2.2.1 The Components of the RPC Function
2.2.2 Comparison to Another Effort
2.2.3 Externally Visible RPC Procedure Calls of the Kernel
2.2.4 The Utility Structures Within the Kernel
2.2.4.1 Mapping to Call Handlers
2.2.4.2 The Message Storage Manager e
2.2.5 The RPC Protocol« o« o s o o
2.2.5.1 State Information Required to Support the RPC
POLOCOL & . v 4 ¢t et e e e s e e s e e e e e e e
2.2.5.2 Packages to Support Call State Information
Management e s o o s o o e o e e s s a e .
2.2.6 The Call Handler . « « v ¢ « o« « o o « o« o o o o o .
2.2.7 The Kernel Functions for bhe RPFC
2.2.8 Tasks Within a Type Manager to Receive Calls and
Responses « . . © s e e s o 4 e o s e e s
2.2.9 The Network Handler . . . « ¢« ¢« ¢« ¢« ¢ ¢« ¢« ¢« o ¢ o o @
2.2.9.1 The Network Handler Architecture
2.2.9.2 Data Handled by the Network Handler
2.2.9.3 Data Handled by the Network Handler .
2.2.10 The Net Tranceiver Task . « « v « ¢ ¢« &« « « « & « .
2.2.10.1 The Network Receive and Send Tasks
2.2.10.1.1 The Send Task . « « o « & « « « « & & . .
2.2.10.1.2 The Recedve Task « . ¢« + v ¢ « ¢« ¢« o« o & .

2.3 OBJECT STORAGE AND RETRIEVAL . . + « v v ¢ ¢ &« & « .
2.3.1 The Kernel Interface for Object Management . .

2.3.2 The Architecture of Storage« o e
2.3.2.1 The Simple Directory . « . ¢« ¢« ¢ ¢ ¢ ¢« ¢« « o « &
2 3.2.1.1 The Request Handlers e e e o .
2.3.2 1 2 The Mapping Manager « . . « « & &
2.3.2.1.3 The Directory Task . « v ¢« ¢ ¢ v v o © « &
2.3.2.2 The Stable Directory . « « ¢« « « o ¢« « « . . o .
2.3.2.3 Consistency of Objects . . « “ e e e e
2.3.3 The Support Packages . . . e e e e e e e e e . e
2.3.3.1 The type_mgr_map Package
2.3.3.2 The free storage Package« 4 e e o
2.3.4 The stable_ free Package o« e e e e
2.3.5 The Request Handler Tasks . « « « « « & o « « . .
2.3.5.1 The Simple Directory Request Handlers . .
2.3.5.1.1 The Function smp_put

2.3.5.2 The Stable Directory Request Handlers
2.3.5.2.1 The Stable Put Operation ..
2.3.6 The Directory Package . . « « « « « . « . . .

ii

NNNI'\)NNNN
[V) I S % RN

- ad s DO ONON
NN - O

[)8)
]

—t

w

_A-D—AQ.O(D

PROCESS MANAGER DESIGN

3.1

3.2

MACHINES DICTIONARY

3.1.1 Process Manager

Process e o o o .

1.
3.1.
3.1.
3.1.6 Create Processor

1.7 PM Database Manager
3.1.8 Port Multiplexer

1 End_Transaction Processor . .
0 Abort Processor

9
1
11 Commit Processor . .
1
1
1

1
.1

.1
1
1

2 Rollback Processor .

.14 DRP Processor . . .
PES DICTIONARY
UID_Type Definition . .
Type definitions for Process

3 ERP Processor

Y
2.
2.
.2.
.2.4 PM Database Interface Types .
2.
2.6 PM TO UIDgen Interface . . .
2.7 PM TO MM Interface
.2.8 PM TO OS Interface
.2.9 PM TO Router Interface . . .
.2.10 PM TO Timer Interface . . .
11 Router TO Process Interface
12 Command Processor Interface
.13 Definition of abstract data
nipulation e e e e v e 4 e e e
.14 Definition of abstract data

.15 Definition of abstract data

3.
3
3.
3
3
3
3.
3
3
3
3
3.
3.
3.

;\)Ng NNN

iii

6.1 Some Basic Types e e
.6.2 The package specification
The Directory Task
.7,
.T.
.T.

3.1.2 Router ¢ .0 .. .
3.

3

4 Timer e e e e e e
5 Delete Processor
6
7
8

1
2
3 PM To Process Interface
4
5

ooooooooooo

1 The Interface of the Simple Directory Task . .

2 The Simple Directory Task Body . « « o« « « « + &
3 The Stable Directory Task Interface ..
The Storage Controllers . . .
rnel Procedures
E NUMBER GENERATION
entifying Objects in ZEUS . .« e e .

.1 The Unique Identifier (uid)

.2 The Extended Unique Identifier (xtnded_uid)

.3 The Visible Types
e Kernel Procedures
e Architecture
4.3.1 The get_uid Function . .
.4.3.2 The uid monitor Task . .

ooooooooooo

Manager s database .

. . e . . . * e @& o & o

PM to SS Interface To OS Interface . . . « « o o «

oooooooo

Types . . . « . ¢« . .

type for Small Mallbox
type for Large_Malxbox .

2-50
2-51
2-51
2-52
2-53
2-55
2-56
2-57
2-57
2-57
2-58
2-58
2-59
2-59
2-59
2-60
2-60

VUM EWWMND N — o

]
— = \0 CO0 00~ O©

[oN e}

uwwc.'»ww

.16 Definition of abstract data type
.17 Definition of abstract data type
.18 Definition of abstract data type
.19 Definition of abstract data type
OCEDURES DICTIONARY
Procedure Get_Modified ObJects
Procedure Get Children
Procedure Delete From_PMDB
Procedure Add_To PMDB
Procedure Get LRP
Discard_RP .
Procedure Request New Process
Procedure Request_ “New CP
Procedure Create Process _Record
.10 Procedure Create_Pc_Rec .
Procedure Create_PCB . . .
Procedure Set_Timer
Procedure Broadcast
Procedure Create_RP_Data_Record
Procedure Assign_ “Label .
Procedure Get Memory Addr
Procedure Remove_Proc_Machine
Procedure
Procedure
Procedure
Procedure
Procedure
Procedure

for

L]
OO0 EWN —

. *
WWww
. .
NN_A_A_.—A._._A_.—.—A_.\D
W2 OWBRITON EWN —

cccccc
. « e o o

Get_PM_UID
Terminate_Command_Processor
Check_Children_Status
All _Complete .
Write_To_SS .
Procedure Receive_Acks .
Procedure Get_Parent Child_Info
Get_All_Descendent
Procedure Update_Transaction_Status
Procedure Clear_Database
Procedure Signal .
ZATION DICTIONARY
1 Router_Machine . .
2 Process
3 Timer
y
5

oooooooo

L]
cCrRoNNODODOOND
~HO OO0 &=

* s e e * o . . . L] .

Machine Delete_Processor
.4.1 Procedure Delete _Remote_ Process
.4.2 Procedure Delete Local Process .
Machine Create Processor « @ o s o
.5.1 Procedure Create _Remote_Process
.5.2 Procedure Create Local Process .
Machine PM_Database Manager . e e
Machine Port Multiplexer
Machine End Trans Processor
.8.1 Procedure Commit
Machine Abort_Processor . .
.9.1 Procedure Abort

.9.2 Procedure Remote_Abort

2 Machine Rollback_ “Processor .

iv

Get_ All Modlfied _Objects

for Port Msg . .
for Qutport

Inport . . .

for Port . . .

oooooooo

oooooooo

e ® o e e

oooooooo

Procedure Commit _Protocol _Terminator .

| 1 1 1
NN
VI3 OOV & SWwWiw

wwuwwtfawwwwwu

3.4.12.1 Procedure Rollback ¢ ¢« « « ¢« « o & 3-59
3.4.13 Machine ERP_Processor 3-62
3.4.13.1 Procedure_Establish RP e e e e« . . 3-62
3.4.14 Machine DRP_Processor « o« . B A
3.4.14.1 Discard RP ¢« s e e o + o 3-65
3.5 SYSTEM Process Manager . . « . « « « « « « o « + & .« « . 3-66
3.5.1 Procedure Extend Router Mbx 3-67
3.5.2 Delete_Router_be 3-67
3.5.3 Procedure Invoke . . « « ¢ ¢ ¢« ¢« ¢ o o s s 3-68
3.5.4 Procedure Extend Mbx 3-68
3.5.5 Procedure Create New_Machine e e e . 3-69
3.5.6 Procedure Create Command _Processor 3-71
3.5.7 Procedure Create Appl SErVEr v v« e e e e e e e . . 3-72
3.5.8 Procedure Create Remote Appl Server 3-74
3.5.9 Procedure Destroy Command Processor . . « « « « « « . 3-76
3.5.10 CONTROLLER e e 4 s e s m e e v e e e e e 3-77
TYPE MANAGER DESICN e o o o o s o & o s s e o o o 4-1
4.1 MACHINE DICTIONARY e e e s s e o & s e e o o 4-1
4.2 TYPES DICTIONARY 4=2
4.2.1 Definition of abstract data type for Complete TCL .. U423
4.2.2 Definition of 2bstract data type for Queue 4.4
4.2.3 Definition of abstract data type for Set_of Objects . 4-4
4.3 PROCEDURE DICTIONARY e e e e e e s . e 4 e e e s 4-10
4.2.3.1 PROCEDURE Invoke Proc « « . « + « « & 4-10
4.2.3.2 PROCEDURE Lock Grant « ¢« « ¢ ¢ o o . . 4-10
4.2.3.3 PROCEDURE Prepare Proc « « ¢« ¢« ¢« o o o o o @ . . 413
4.2.3.4 PROCEDURE Completed Proec « 4-15
4.2.3.5 PROCEDURE Time Qut_Proc 417
4.2.3.6 PROCEDURE Commit PrOC v o v o o o o o o o » . . U418
4.2.3.7 PROCEDURE Rollback_Proc 4.20
4.2.3.8 PROCEDURE Abort Proc . . . « « v v ¢« ¢ o ¢ o & & 4-22
4.2.3.9 PROCEDURE Generate _Complete TCL 4-24
4.2.3.10 PROCEDURE Queue Reaquest 424
4.4 REALIZATION DICTIONARY . . v &« ¢ & ¢ o o o o o o o s o o o 4-25
4.4,1 SYSTEM Type_Manager . . « « « « « « ¢ ¢ o ¢ o o o « & 4.25
U, 4,2 CONTROLLER & v ¢ v ¢ ¢ o ¢ o o o o o s o o o o« o . . U226
SYMBOLIC NAME MANAGER DESIGN . . & ¢ ¢ ¢ o o o o o o o o« o o s 5-1
5.1 SNTM_Interface Packge Specification 5-1
5.2 SNTH Interface Package Body . . « ¢« « ¢« o « ¢ ¢ « o . . 5=2
5.3 STNM Specification . . v v ¢ o« o ¢ v o o o o o o« o o o o & 5-4
5.4 Controller Task Specification 5-5
5.5 SNTM Package Body . . « « « ¢ ¢ ¢ v ¢ o ¢ o o o o o & . . 5-7
MESSAGE TYPE MANAGER DESIGN . v & v ¢ v« v v o v v v v e o v o o« . b=1
6.1 INTRODUCTION . . . e e e e e e e e e ... B

O\O\
WN

CONSISTENCY AND RELIABILITY MECHANISMS FOR MESSAGES
HIGH-LEVEL DESCRIPTION OF MTM MODULES « « « « o .
6 3.1 Send_Msg Procedure ¢ v v v 0 0 00 .
6.3.2 Receive Msg Procedure “ e e e e
6.3.3 Msg_Status Procedure ‘e e
6.3.4 Message Operations Task « . « . v v ¢ ¢ o ¢ o o o .« .
6.3.5 MTM Controller Task « . ¢« ¢ ¢ ¢« o v o o o & .
£.3.6 Send TasK . « v v « o ¢ o ¢ ¢ o o o o o o 4 e o 4 o .
6.3.7 Recedve Task . . « v ¢ ¢ o o o o o « & e e e e e e
6.3.8 Msg Status Task . . . « « ¢ ¢ o 4 o 0 0 .. e e e .
6.3.9 Supporter Task . « « « « « « « . e e e e e e e e
6.3.10 Waker Task e e e e e e e s e e e e . .
6.3.11 Remote_Receive_Call and Remote Receive _Response
Tasks . ¢ & ¢ ¢ ¢ 4 ¢ e e e e e e e e s e e e e e e e e
6.3.12 Process_Message Queue Task e e
6.3.13 Message Object Task e e e e e e e e

vi

ZEUS ARCHITECTURE AND FUNCTIONAL DEFINITION

CHAPTER 1

ZEUS ARCHITECTURE AND FUNCTIONAL DEFINITION

1.1 INTRODUCTION

Zeus is an object oriented distributed operating system designed to study
integration of recovery mechanisms into the designs of distributed command and
control systems. The primary goal of the Zeus design is to define reliable
object management functions for distributed command and control systems and to
evaluate the performance and the correctness of the recovery mechanisms for
these functions. Therefore, no implemenation of this design currently exists.
The user provided functions support definition of object types, creation of
cbjects, and updating of distributed objects using atomic transactions. the
goal of this design is to study the performance characteristics of this design
using simulation models and to prove the correctness cf the recovery
mechanisms using formal methods based on Gypsy language, events and state
transition based models , and simulation models. To achieve these goals we
have refined the Zeus design to a significantly detailed level. To date we
have explored this design only from the viewpoint of these goals. This
chapter presents an overview and gives the functicnal definition of Zeus.

1.2 ZEUS OVERVIEW

Zeus is an example of an object oriented distributed system.
Conceptually, therefore, Zeus is a collection of type managers each of which
ensures the integrity of some abstract data type. Each type manager is
distributed on a number of hosts in the system and the individual instances of
the abstract data type (or object instances) may be distributed. A
description of Zeus 1is, therefore, a description of the type managers in the
system and a definition of the underlying execution environment for the type
managers. The copy of a type manager at a given site enforces part of a
global integrity mechanism for that type. The goal of this project is to
evaluate integrity mechanisms. Thus, the design of Zeus must be a framework
onto which different integrity mechanisms can easily fit. This section
provides that framework.

Each type manager has an internal structure that 1is common to type
managers. This includes mechanisms for protection and integrity. There are
some types which are necessary to support a user_oriented distributed
computing environment in the system. These types are specified in some detail
in section 1.2.2. They include symbolic names, principals and authentication,
programs, messages, processes and transactions, and unique identifiers.

1-1

As a distributed operating svstem Zeus is designed to be implemented zn a
variety of configurations. Logically Z2us :consists of a number of tyre
managers. FEach type manager contains one or more objects of its type. The
invocation of type functions against tnese objects is the means by which
computation is achieved in the system. fach type manager in Zeus executes on
a virtual machine that is defined by some hardware configuration and by a
software kernel. The software kernel allocates resources to the type
managers. These include the CPU, volatile and non-volatile storage, and
access to the interconnecticn network that supports remote invocations on type
managers.

1.3 FUNCTIONAL DEFINITION CF ZEUS

Zeus consists essentially of a collection of Type Managers (TMs):
typically, many different type managers coexist on a host node. The core zr
the operating system consists of a set of type managers that support
capabilities for aefining new types and object instances in the system, for
authenticating of wusers, for creating naming environment for eacn user, and
for reliably managing processes and transactions. These system-defined type
managers reside at every node in the system.

The lowest level of operating system at each node is called the kernel:
the kernel virtualizes the resources at the host so that each type manager can
be viewed as having its own virtual processor. The kernel supports
interprocess communication, primary storage management, processor scheduling,
interfaces to secondary storage devices, and UID generation. As shown in
Figure 1-1, all type managers at a node execute over the abstract machine
interface provided by the kernel. The kernel multiplexes the processcr
between the type managers; it also handles all interrupts due to storage
devices and the communication devices.

1.3.17 Zeus Kernel

The Zeus kernel provides low level services to the type managers of the
system. These services include interprocess communication, storage management
and unique identifier (UID) generation. The UID generation in turn depends on
the failure detection and recovery of hosts in the Zeus system. The kernel
assumes that it is executing on a host that belongs to a cluster. The cluster
is assumed to consist of a number of hosts connected by a CSMA/CD (Carrier
Sense Multiple Access/Collision Detection) network with the added property of
reliable broadcast.

Interprocess communication (s achieved by the mechanism of remote
procedure call (RPC) which consists of four messages interchanged between
caller and callee. These are call, call acknowledge, response and respcnse
acknowledge. For each call that is made from or to a type manager the status
of the call parameters and status must be stored. To do this each type
manager has a call handler to perform this function. The synchronous nature

1-2

ZEUS ARCHITECTURE AND FUNCTIONAL DEFINITION

of the RPC 1is achieved by the type managers who will first issue a call and
then on getting the response will inform the caller of it.

The storage functions of the kernel are performed at the object level.
Thus calls to the kernel can retrieve, store and delete cobjects. Further
stable storage operations can be executed by the kernel, where stable storage
is implemented using the Lampson scheme [LAMP81].

UID generation is a function used by the RPC and by the type managers so
that calls and objects can be uniquely identified. This function must
continue despite failure and recovery of hosts. To achieve this the hosts
participate in a distributed computation to keep track of active hests and tc
let new cr recovered hosts join in the UID generation function.

Since communication over the network occurs via packets there must be a
message packetization and re-assembly function underlying the RPC function.
Below this packet level protocol there is a driver which interfaces with the
network controller.

1.3.1.1 Kernel Functions

The kernel interface consists of three parts; remote procedure calls,
object storage management and unique identifier generation. Each part has a
set of procedures that can be invoked from the type managers or by user
processes.

1.3.1.1.1 The Remote Procedure Call

The Remote Procedure Call functions provide the call invoker with the
facilities to initiate a call, receive the response to a call and to inquire
about a call's status. Similarly, the recipient of a call has the facility to
receive a call, make a response to a call, and inquire about a response's
status. Functions also exist to cancel a call or retain a call. Each cail is
identified uniquely in the system by a unique identifier. A request for a
call or a response will return to the caller any call or response that is
waiting for the caller; it is then the caller's responsibility to deliver the
call or response to the correct process. The kernel interface procedures are
specified belcw:

1. procedure make_call (type of caller, source of call,
destination of call, call contents, call options, call
unique identifer, call status)

The call contents include the operation to be invoked
and the parameters of that operation.

2. procedure get _resp (type of caller, call unique
identifier, call s response)

The call unique identifer and response and output by the
kernel, Thus the invoker cannot make a request for a
particular response.

3. procedure c_status (type of caller, call identifier,

1-3

call status)
The call status is returned and will tell the invoker of
the current status of the call, i.e., whether it has
been delivered, whether the response to the call has
been received or whether the call has failed.

4. procedure make _resp (type of caller, source of call,
destination of call, call identifier, response
options, response status)

The make_resp procedure has very similar parameters to
the make_call procedure.

5. procedure get call (type of caller, call identifier,
call contents)

6. procedure v_status (type of caller, call identifier,
response status)

7. procedure kill call (type of caller, call 1dentifier,
call status)

8. procedure keep_call (type of caller, call identifier,
call status)

The kill_call and keep call procedures are used to
update the local tables for a call.

1.3.1.1.2 Object Storage Management

The Object Storage Management functions permit type managers to store,
retrieve and delete objects. Objects can be stored on simple or stable
devices; thus the interface has two sets of calls.

The procedure definitions for the storage management functions are:

1. procedure get obj (type of object to be retrieved,
identifier of object to be retrieved, object contents,
operation status)

This is for simple object retrieval.

2. procedure put_obj (type of object to be stored,
identifier of object to be stored, object contents,
operation status)

3. procedure del obj (type of object to be deleted,
identifier of object to be deleted, operation
status)

4. procedure stabl get

This has identical parameters to get_obj.

5. procedure stabl put

This has identical parameters to put_obj.
6. procedure stabl del
This has identical parameters to del_obj.

1.3.1.1.3 Unique Identifier Generation
This part of the interface permits an invoker to obtain a new unique
identifier, construct an extended unique identifier, obtain the host hint of

an otject and change the host hint of the object.
The functions for UID generation are:

1-4

ZEUS ARCHITECTURE AND FUNCTIONAL DEFINITION

—a
.

Function get_UID returns UID.

2. Function build_xt (host hint, object type UID,
object instance UID, object version UID)
returns extended UID

3. Function give_host_hint (object extended UID)
returns object host hint

4. Function change hint (object extended UID, new host

hint) returns modified cbject extended UID.

1.3.1.2 Structure of Zeus Kernel

The Zeus kernal consists of five major components which are: Dispatcher,
Operation Switch, Network Handler, Storage Handler and Unique Identifier
Generation. Section 1.3.1.2.1 briefly explains the kernal Resource Management
wnich includes Dispatcher, Storage Handler and Kernal initiator. Section
1.3.1.2.2 presents the Operation Switch. Section 1.3.1.2.3 discusses the
Unique Identfier Generation and its two components: Small Stepper and Large
Stepper and Section 1.3.1.2.4 presents the Network Handler.

1.3.1.2.1 Zeus Kernel Resource Management

The task dispatcher schedules the different type managers and handles their
requests for resources. The storage handler manages both volatile and
non-volatile memory. Storage management in the kernel is minimal. Storage is
available in fixed sized blocks and the type managers request one or more of
these blocks at any time. A type manager is solely responsible for the data
he writes to the blocks of storage. The kernel keeps track of the ownership
of blocks of storage. The kernel initiator has two functions. The first
function is to restart a host when it recovers from a failure. The second is
to initiate a task. Both tasks require a certain amount of housekeeping.
Host recovery implies the setting up of tables for the dispatcher of the
kernel, using the 1log for the Type-Type Manager to create, delete, or modify
the type managers on the host, and obtaining a new incarnation number and the
Small Stepper sequence number. After the above actions are successfully
completed, the initiator can hand control to the task dispatcher.

1.3.1.2.2 Operation Switch

The processing of remote procedure calls is the major function of the
kernel. Each call 1is an operation invoked against an object that is held by
some type manager. The Zeus design stipulates that each object in the system
has a unique identifier. This unique identifier consists of a host hint to
speed up object location, a unique type identifier and a unique identifier for
a type instance. The composite identifier specified above is called the
extended UID of the object. The type and instance components are unique to
Zeus and are generated using a component of the kernel called the
smallstepper.

The two functions performed to support the RPC mechanism are the
generation of the unique numbers by the smallstepper, and the location of
objects by the operation switch.

The function of the Operation Switch 1is to forward an invocation request
to the appropriate type manager at the local or a remote node. These calls
may be from a type manager or from the network driver. Each call contains the
following information:

The extended UID of the object against which the call is invoked.

The extended UID of the process invoking the operation.

The extended UID of the principal on whose behalf the operation is
being invoked.

4., The operation and a set of parameters.

w N —
« s e

The Operation Switch uses the host hint field of the target object's
extended UID to determine whether the object is on the host or not. If it is,
it uses the type unique number of the object to direct the call to the proper
type manager. If the object is on another host, the Operation Switch
instructs the Network Handler to send the call to the other host.

1.3.1.2.3 Unique Identifier Generation

Unique identifiers generation in Zeus is an integral part of the system.
It is the only information that is generated in a distributed manner. The
type, instance and version flelds of an extended UID are unique identifiers.
Each of these unique identifiers consists of three fields: the host
identifier of the host at which they were generated, the incarnation number,
and the sequence number within an incarnation.

In a system where no failures can occur, each host will generate a
monotonically increasing sequence of unique identifiers. If we permit
failures, but stipulate that every host in the system has stable storage, then
each host will store the next incarnation number and as soon as it starts it
will retrieve this number and write to stable storage the next incarnation
number, thus even though some part of a range of sequence numbers may not be
generated, the hosts will generate a monotonically increasing sequence of
unique numbers.

If we remove the assumption of stable storage on all hosts in the systen,
then hosts in the system can be divided into two classes: those that possess
stable storage and those that do not. Each host in the system has a process
called the smallstepper which issues unique identifiers for a given
incarnation number. Each host with stable storage in addition to the
smallstepper has a process called the largestepper which together with the
other largesteppers in the system generates new incarnation numbers. The
algorithm used to do this is specified in section 1.4.2.1.

1.3.1.2.4 Network Handler

This component provides a simple datagram level of transport mechanism
between different kernels. It interfaces with the Operation Switch. The
invocation requests for remote nodes are handed over by the Operation Switch
to the Network Handler, wi.ich has the responsibility for delivering it to the
Operation Switch at the destination host. Similarly the response messages are
returned from the server to the invoker by the network handler via the
Operation Switch.

ZEUS ARCHITECTURE AND FUNCTIONAL DEFINITICN

1.3.2 User Visible Functions

As mentioned previously, Zeus is a set of type managers whose members may
potentially change dynamically as type managers are created, deleted, and
modified. There is, however, a subset of type managers called the System type
manager which perform the essential services provided by the kernel of a
conventional operating system. In this section, the type managers for these
system types are defined. The following are the System type managers w“hich
axist at each node in the system.

(1) Type-type manager

{2) Process/Transaction Manager

(3) Principal and Authentication Manager
(4) Symbolic Name Manager

(5) Program Manager

(6) Message Manager

The functions provided by these type managers along with their structures are
described below. Fach of these type managers is considered as an object of
distributed type; an instance of each of these type managers resides at every
node. The distributed type managers for a given type function cooperatively
Lo provide the abstraction of a single system-wide type manager.

1.3.2.1 Type-Type Manager

The definitions of new type managers are introduced in the system by
using the mechanisms supported by a system-wide object called the Type-type
manager; thus, the Type-Type manager implements functions to create, alter,
delete and replicate Type Managers. The definition of the Type-Type object
given here is an adaptation and extension of the Type-Type concepts
originating in the HYDRA [WULF81] operating system. The facilities provided
Dy the Type-type manager include an explicit command on where to locate copies
of a type manager.

1.3.2.1.1 Organization of Type/Type Manager

The basic operations of create, modify and delete are summarized below:
1. Create-type : Creates a new type manager on a set of

hosts.
2. Install-type : Makes a copy of an existing type manager

on a set of hosts.

Create-Type

The Create-Type operation creates a new type definition and installs it
on a set of hosts. In order to create a type, the creator of the type must
supply a set of extended UIDs for program objects. These are the data
structure and operation specifications of the new type. In addition, the user

1-7

may supply extended UIDs of programs that will implement consistency control,
concurrency control and other components of the infrastructure of the type
manager.

The Create-Type call has the following structure:
create-type (numprog : in integer; programs : in template;
numhosts : in integer; hostnames : 1in hostspec;
typUID : out extUID; status : out result);
where
numprog - number of component programs the user
has supplied.
programs - an array of extended UIDs of the
programs. This could be a more
sophisticated structure, like a
template with slots for special
functions. :
numhosts - number of hosts on which the type
manager must be installed.
hostnames - the names of the hosts on which the
new type manager must be installed.
typUID - is the UID of the new type.
status - the result of the call.

Install-Tvpe

The install operation is the initiation of a new Ltype manager on one or
more hosts in the system, therefore, its invocation should logically follow
the create-type operation. The Type/Type manager copy who processes the call
will obtain a data base record of the type and then send it to each of the
hosts specified. Those hosts will install the type manager provided they do
not have it. The call to install-type is

install-type (typeUID : in extendedUID; numhosts : in integer;
hostnames : in hostspec; status : out result);
where
typeUID - UID of the type
numhosts - count of hosts on which the new type
manager is installed

hostnames - the names of the hosts
status - the result of the call

1.3.2.2 Process/Transaction Manager

Processes and transactions are active objects in the system through which
a user carries out operations in the systen. Transactions are atomic
processes, i.e. they have an "all or nothing" property. The transaction
facility with its atomic property provides a powerful mechanism for reliable
operations. A transaction either commits or aborts on termination, and if it
aborts then no trace of 1its execution 1is left. On the commitment of a
transaction, all updates made by it are permanent.

1-8

ZEUS ARCHITECTURE AND FUNCTIONAL DEFINITION

We require that a process must Invoke a transaction in order to modify
permanent shared objects in the system. The changes to an object are recorded
as new versions of the object. New versions of the object are committed to
becoming permanent at the end of a successful completion of the commit
protocol among the invoked transaction, the invoking process, and the type
managers of the modified objects. Uncommitted versions are discarded on
explicit abort commands issued by the transaction process or on timecut due to
inactivity.

Processes and transactions can establish recovery points by checkpointing.
Such points are used for the purpose of rollback and restart of a process aor
transaction. Checkpointing is the selective saving of versions of process or
transaction objects. Note that with the above scheme for checkpointing, oniy
the state of the process (or transaction) object is saved; the states of
objects modified by that process are not saved in the checkpoint. This
approach may create problems for error recovery since not all state changes of
the process are recorded with the checkpoint. However, one must remember that
all updates made within a transaction to permanent objects via their type
managers are saved on the stable storage as uncommitted versions.

The Process/Transaction Manager also supports nesting of transactions;
such nested transactions can execute concurrently with the parent
transactions. The nested transaction facility provides the users mechanisms
to introduce concurrency within a transaction. The commitment of a nested
transaction is dependent on the commitment of the parent transaction.

1.3.2.2.1 Process Manager Functions

This section describes those functions of the Process/Transaction Manager
which are designed from the point of view of recovery. This section is
divided into two parts. The first part (numbers 1-7) introduces the allowable
operations from this subset of functions on process type objects and the
second part (numbers 8-12) introduces those on transaction type objects.

1. Create_Process (Program_UID, ([list of Data_UID, host_ID,
Expected_Time]): Returns Process UID

The Create_Process operation requires at least a program UID. It creates a
process, assigns it a UID of process_UID type and starts running the process.
The process will be aborted if it does not terminate within the period of time
specified by the Expected Time Parameter. If this parameter is not given,
then unlimited time is assigned to the process. The Receive_msg operation
(described in communication management) can be invoked to check whether a DONE
message, which indicates the termination of a process or transacticn, has been
received or not. The purpose of this operation is to wait for the DONE
message in the block wait state. Then the status of the process can be
acquired by initiating the Process_Status function (discussed later).

Parameter Description:
Program_UID: The UID of the object which contains the program.

1-9

List of Data_UID: None, one or more UID(s) of the object(s) which
contains the required Data.

Host_ID: The ID of the host where the new created process is to reside.
This parameter is not required if the created process is to be on
the same host as its parent process.

Expected _Time: The maximum period of time that is expected for the
created process to terminate. Unlimited amount of time is assigned
to the process if no value is given for this parameter.

Value Returned:
Process_UID --> Indicates the success of the operation.
NULL_UID --> Indicates the failure of the operation.

2. Delete_Process ([Process_UID |Transaction_UID]):Returns (0,1)

The Delete Process operation deletes the specified process or transaction
object regardless of its current status.

Parameter Description:
Erocess_UID ITransaction_UID: The UID of a process or transacticn,
requested to be deleted. This parameter 1is not required Iif a
process or transaction wants to delete itself.

Value Returned:
1-->Indicates the success of the operation.
0-->Indicates the failure of the operation.

3. Process_Status (Process_UID ITransaction_UID):
Returns (Non_existent, Running, Aborted,
Time_Out, Completed, Suspended, Crashed)

The Process_Status operation returns the current state of the process
having Process _UID or of the process which executes the transaction
having the Transaction_UID.

Parameter Description:

(Process |Transaction) UID: The UID of the process whose current
status 1is requested; OR the UID of the transaction whose
executing process current status is requested.

Value Returned:

Non_existent --> Indicates a process or transaction
UID which does not exist.

Running --> Indicates the process is in the Running state.

Time_Out --> Indicates the Time_Qut occurs before the
process terminates.

Aborted --> Indicates the process has been aborted.

Completed --> Indicates the process is completed.

Suspended --> Indicates the process is in the

1-10

ZEUS ARCHITECTURE AND FUNCTIONAL DEFINITION

suspended state.
Crashed --> Indicates that the host where the process resides
has crashed.

4. Establish_Recovery Point ([ERP]): Returns (0,1)

The ERP operation saves the current state of the process or transaction object
in stable storage. Successive calls to this function increments the RP_Num by
one and stores the state of the process or transaction at the time of call in
stable storage. The updated RP_Num indicates the la:.est recovery point number
within the context in which it is called. The first recovery point for each
process or transaction has the value of =zero and it 1is established
automatically when a process or transaction starts its execution.

Value Returned:
1 --> Indicates the success of the operation.
0 --> Indicates the failure of the operation.

5. Discard_Recovery_Point ({Process_UID, RP_NUM1, RP_NUM2]):
Returns: (successful, non-existent RP,
access_control_violation, non-existent_ UID)

The DRP operation discards all recovery points whose RP_num is equal to
and includes specified recovery points between. If just one recovery
point 1s to be discarded the RP_Num2 is not required, and the last
recovery point 1s discarded if none of the RP_Nums is specified.

Parameter Description:

Process_UID: The UID of process whose recovery point(s) are
discarded. If a process object wants to discard any of its own
recovery points, then this parameter is not required.

RP_NUM1: The RP_NUM1 specifies the recovery point to be discarded.
If more than one recovery point is to be discarded, the RP_NUM1
indicates the starting recovery point number.

RP_NUM2: This parameter is needed if more than one recovery point
is to be discarded. It gives the recovery point number of the
last recovery point to be discarded.

Value Returned:
Successful-->Indicates the success of the operation

Non_existent RP-->Given recovery point(s) is out of range or does
not exist.

Access_violation-->Indicates the process is not authorized to

discard the recovery point of the process given by the
Process_UID.

-1

Non_existent UID-->The process with the given UID does not exist.

6. Rollback ([RP_NUM]): Returns: (0,1)

The Rollback operation within a process restores the state of all the local
objects to their values which they possessed at the time the RP_num was
established. The changes on global objects, which have been made by
transactions within that process, remain permanent 1if the transactions
performing those are committed; otherwise., they are restored to their values
that they possessed at the time the RP_num was established.

The Rollback operation within a transaction restores the state of all the
local and global objects to their values that they had at the time the RP_num
was established.

Parameter Description:

RP_NUM: It specifies the recovery point number to which the transaction
or process state 1is being rolled back. If the parameter is not
specified, the process or transaction rolls back *to its last
recovery point.

Value_Returned
1-->Indicates the success of the operation.
0-->Indicates the failure of the operation.

7. Last_Recovery_Point ([ProcessiTransaction) UID]): 1
Returns: RP_NUM

The Last_Recovery Point operation is invcoked to find the recovery point numbter
of the last recovery point of process or transaction identified by the process
or transaction UID.

Parameter Description:
(Process|Transaction) UID: The UID of the process whose last recovery
point is requested.

Value Returned:
RP_NUM > Q --> Specifies the last recovery point.
RP_NUM < 0 --> Indicates the failure of the operations,
that can be due to access violation or invalid
Process_UID.

Following is the description of user visible functions for transaction type
objects which are designed in detail.

8. Begin_Transaction ([T])

The Begin_Transaction command creates a new transaction and by executing this
statement system establishes the first recovery point (RP_NUM=0) and generates

a UID of Transaction UID type for that transaction. If parameter T is given,
then it contains the Transaction_UID, after this statement is executed.

1-12

ZEUS ARCHITECTURE AND FUNCTIONAL DEFINITION

9. End_Transaction

The END_Transaction operation is the commit point for the transaction; thus,
for an outermost transaction, execution of the End_Transaction statement means
permanence of all updates made within this transaction.

10. Create_Transaction (Program_UID, [list of Data_UID/,
host _ID, Expected Timel):

Returns: Transaction_UID

The create_Transaction operation requires at least a program UID. [t creates
a transaction, assigns it a UID of transaction UID type, and starts running
the transaction. The transaction will be aborted if it does not terminate
within the period of time specified by the Expected_Time parameter. The user
can acquire the status of the transaction by initiating a Transaction_status
operation (discussed later).

Parameter Description:
Program_UID: The UID of the object contains the progranm.

list of Data_UID: None, one or more UID(s) for the objects(s) contains
the required Data.

host_ID: The 1ID for the host where the new created Ctransaction is to
reside. This parameter is not required if created transaction is to
be on the same host as its parent transaction.

Expected Time: The maximum period of time that is expected for the
transaction to terminate. Unlimited time is given to the
transaction if this parameter is not specified.

Value Returned:
Transaction_UID-~>Indicates the success of the operation
NULL_UID-->Indicates the failure of the operation

11. Commit_Transaction ([Transaction_UID, ERP]):
Return (Non_existent UID, Environment _Violation,
Successful, Unsuccessful)

The Commit Transaction operation makes all the updates which have been
performed by a transaction permanent. This function can be called only by a
non-transaction process that has created some concurrent transaction (by
executing the Create_Transaction function). Therefore, no nested transaction
is committed by calling this function; the commitment of a nested transaction
occurs when its parent transaction executes its End_Transaction command. The
execution of this command for a nested transaction is still valid; however,
such an invocation of this command will not commit a nested transaction.

Parameter Description:

1-13

Transaction _UID: The UID of the transaction to be committed.

ERP: If this parameter is true, then the execution of this command
establishes a recovery point and stores the state of all local
variables and global objects at commit time.

Value Returned:

Successful --> Indicates the success of operation.

Non_existent_UID --> Indicates the transaction with
given UID does not exist.

Environment_violation --> Indicates the transaction has
attempted to commit a transaction which is not
within its execution context.

Unsuccessful --> Indicates the transaction is not in a
state that can commit.

12. Abort ([Process_UID !Transaction UID]):
Returns (Non_existent, access_control_violation, successful)

The Abort operation terminates the execution of the current block and restores
the state of the local variables and global objects to their values before the
beginning of transaction and continues execution with the statement
immediately following the End_Transaction statement of the aported
transaction. I[f Abort command is used within a process, it terminates the
process.

Parameter Description:

(Process|Transaction)_UID: The UID of process or transaction that is to
be aborted. If no value is given for this parameter the process or
transaction is aborted itself.

Value Returned:
Non_existent --> Indicates an invalid UID which does not exist.

Access_control_violation --> The process (transaction) is not
authorized to abort the given process or transaction.

Successful --> Indicates the success of the operation.

Establish_Recovery Point, Discard_Recovery_Point, Last_Recovery_Point are
exactly the same as those for processes. For deleting a transaction,
Delete_Process can be used by giving Transaction_UID.

1.3.2.3 Principal and Authentication Manager

The object protection system in Zeus depends con the ability of the
individual type managers to identify any process which requests an operation
be performed. In addition, the Type Managers need to be able to determine the

1-14

ZEUS ARCHITECTURE AND FUNCTICONAL DEFINITION

ultimate initiator of the action which resulted in such an invocation request.
We call these initiators of actions principals. Principals are permanent
objects in Zeus and they are the only objects which carry the authority to
perform computations involving other objects. When a new process is created,
it is "owned" by a single principal and it retains this principal association
throughout its lifetime.

The two fundamental problems of the protecticn system, authentication and
authorization, both involve principal objects and the asscociation of processes
to principals. The problem of authorization, that is determining on wnhose
behalf a given process is currently working, is a fairly simple matter since
each process is always working for a single principal only. When a process
invokes an operation on a type manager, the information regarding its JID and
principal association is transported onto the virtual machine >f the target
type manager. In this way, the principal w#hich cwns a particular process (s
always known by any type manager on which it makes invocation requests. In
addition, since process identifiers are transported to and from type manager
machines by system code, a process is unable to forge its own principal
association to gain access to objects that the process' real principal is act
authorized to access.

During login, a wuser is first asked to identify himself by giving his
unique principal symbolic name. The 1login process (also called the
Authentication Manager) tries to find a principal object containing the same
symbolic name. The principal object contains all the pertinent information
about that user. The user's password 1is stored with the principal ocbject,
allowing the Authentication Manager- to perform necessary authentication
checks. Two other pieces of information regarding the user are maintained
within the principal data object. One is the unique identifier (UID) of the
user's symbolic name context, which is described in the next section. The
other is the UID of the command inte~preter or shell program of the lcgged-in
principal.

Since the autnentication manager must find a principal sbject given 2nly
its symbeolic name, it follows that this name must be unique. In order to make
it convenient for unique names to be assigned to principals, Zleus has ‘the
concept of a working group (WG). Working groups are used to form a stric
hierarchy of principal names. This hierarchy of names is similar to that used
in the Multics system. They contain members which may be either principals or
other working groups. The root working group has a null name and is called
the null working group. The unique name of a principal or working group is
formed by concatenating the name of the principal or WG with the names of all
of its containing working groups. This hierarchical structure also forms the
basis for other symbolic names in the system.

1.3.2.3.1 User_Visible Authentication Functions

A full definition of the principal object data structure is as follows:
TYPE principal IS

RECORD
name : principal-name; -- Unique user name
passWw : password; -- Login password

1-15

cntxt : context; -- User's name context

shell : program; -- User's shell program
plist : process-list; -- Active process list
END RECORD;
The principal type manager defines the following functions on principal
objects:
1. create (nm : 1in principal-name; pw : in password;
shell : in program; cntxt : in context)

--> (return-code)
Creates a new instance of a principal object and
initializes its data fields with the principal name,
password, shell program, and context given as
parameters. The possible return codes are (1) new
principal UID or (2) error in creating new principal.

2. delete (pid : 1in principal-UID) --> (return-code)
Destroys a principal object given its UID. The
possible return codes are (1) operation successful or
(2) principal-not-found.

3. get-context (pid : in principal-UID) --> (return-code)
Returns the context UID for a principal or principal-
not-found error code.

4. lookup (nm : in principal-name) --> (return-code)
Finds the UID of a principal given its unique symbolic
name. The possible return codes are (1) the

F principal UID or (2) principal-not-found error code.

5. authenticate (pid : in principal-UID; pw : in password)
--> (return-code)
Returns true if the given password matches the one
stored in the principal object and returns false otherwise.

6. get-pw (pid : in principal-UID) --> (return-code)
Returns the password associated with a given
principal. The use of this function should, of course,
be administratively limited.

7. new-pw (pid : in principal-UID; pw : in password)
--> (return-code)
Replaces the password associated with a given
principal. Again, access to this function should oe
controlled.

8. get-shell (pid : in principal-UID)
--> (return-code)
Returns the UID of the user's shell program.

9. new-shell (pid : 1in principal-UID; shell : in program)
--> (return-code)
Replaces the principal's shell program.

1-16

ZEUS ARCHITECTURE AND FUNCTIONAL DEFINITION

10. attach (pid : in principal-UID; proc : in process-UID)
Adds the UID of a process to the active process list
stored in the given principal.

11. detach (pid : in principal-UID; proc : in process)
Deletes the UID of a process from the active list
stored in the given principal.

12. get-procs (pid : in principal-UID) --> (return-code)
Return a list of currently active processes
working on behalf of the given principal.

Since the authentication manager must find a principal object given anly
its symbolic name, it follows that this name must be unique. However, it is
usually convenient for a user to use his own name as his principal name and,
obviously, this does not always identify him uniquely (i.e., John Smitn). In
order to make it somewhat more convenient for unique names to be assigned to
principals, Zeus has the concept of a working group. Working group aobjects
are maintained by the working group manager. Working groups are used to forn
a strict hierarchy of principal names. They contain members which may be
either principals or other working groups. The root working group has a null
name and is called the null working group. The unique name of a principal or
working group is formed by concatenating the name of the principal or WG with
the names of all of its containing working groups.

The data structure of a working group object is as follows:
TYPE working-group IS

RECORD
nm : wWg-name; -- Symbolic name
pid-list : principal-list; -- Member principals
wgid-list : wg-list; -- Member WGs

END RECORD;

The operations defined for working group objects are the following:

1. add-principal (nm : in principal-name; pWw : in password;
shell: in program; cntxt: in context) --> (return-code)
Create a new principal object (by calling the principal
type manager) and install this principal as a new
member of the working group indicated by part of the
given principal symbolic name. Initialize the data
fields of the principal object with the given
parameters.

2. add-working-group (nm : 1in working-group-name) --> (return-code)
Create a new working group object and install it as a
new member of the working group indicated by part of
the given symbolic name.

3. delete (wgid : in working-group-UID) --> (return-code)

Delete the given working group object only if it
currently contains no members. The possible return

1-17

codes are (1) operation successful, (2) working group
not found, or (3) working group not empty.

4, princ-membs (wgid : in working-group-UID) --> (return-code)
Return a list of principal members of the given working
group.

5. wg-membs (wgid : in working-group-UID) --> (return-code)
Return a list of the working members of the given
working group.

6. lookup (nm : in working-group-name) --> (return-code)
Lookup a working group by its symbolic name. The
possible return codes are (1) the working group UID or
(2) working group not found error.

In some circumstances, it will be desirable to create abritrary,
non-hierarchical groups of users. For example, a group of users may agree to
share access to some set of objects. To accomplish this, the principal
identifier of each of the group members could be added to the access list of
each of the shared objects. A more flexible and efficient solution would be
to define a group object or ‘"security group" as a 1ist of member principals
and to place the single UID of this group on the objects' access lists. This
would shorten the access lists in addition to allowing member principals to be
added and deleted easily. Security groups are not implemented as separate
composite objects in Zeus. Instead, the ATTACH and DETACH operaticons defined
for principals are used to obtain the desired result of allowing arbitrary
user associations to be formed. Normally, the only user authorized to perrform
the ATTACH operation on a given principal is the system principal and the
log-in process. However, certain principals, called aggregate principals, may
contain many other users on the access list of the ATTACH operation. These
users are called "members" of the aggregate principal and they are allowed to
create and ATTACH processes to the aggregate. Such an association of users
thus functions as a security group but, since aggregates appear as ordinary
principals to the individual type managers, the Zeus design is both more
uniform and more efficient.

1.3.2.4 Symbolic Name Manager

The symbolic name manager (SNM) is one of the autonomous, distributed
processes which comprise the Zeus operating system design. This type manager
is solely responsible for the creation, deletion, modification, and management
of instances of the symbolic name context type. The structure of these
objects are not known outside the symbolic name type manager (SNM), storage is
not allocated for them outside the SNM, and their values may not be assigned
or checked for equality by any process other than the SNM. In short, all
access to symbolic name contexts is completely controlled by the SNM.

1-18

ZEUS ARCHITECTURE AND FUNCTIONAL DEFINITICN

1.3.2.4.1 Symbolic Name Contexts

Symbolic name contexts are the only supplied means within Zeus for a user
to define and use symbolic (non-numeric) names for other system objects.
Fundamentally, a context 1is a single- valued functional mapping from
user-supplied symbolic names to system defined unique idencifiers (UIDs). 4s
such, the context plays a very important role for the user/principal since the
system itself deals only with the bit string UID which 1is decidedly
non-mnemonic but nonetheless efficient as a system name.

Each principal which has permission to logon to Zeus is asscciated with
at least one context cbject which contains his own private names for cojects
with which he may interact. This arrangement allows a relative svmbolic name
space for principals in the sense that different users will, in general, have
different symbolic names for identical system objects (that is, objects with
the same UID). Such a relative scheme is very efficient in a distributed
environment such as Zeus since names must remain unique only within a single
context. This -eliminates the need for a central (and therefore vulnerabiz)
naming authority or a complicated hierarchical scheme as in other distributed
systems. The primary shortcoming of this relative naming scheme {s that it
makes it difficult for two or more principals to become aware of a common
shared object by passing its symbolic name. The principals are likely to have
different names for the shared object and thus will be unable to find "commen
ground' on which to agree on a single name.

This type of object sharing by different user processes appears to te
rather rare so that the overhead and added complexity of a hierarchical system
may not be necessary. Instead, Zeus provides the required "common ground" by
providing an aboslute symbolic naming scheme for the principals themselves.
Each object will then have at least one non-ambiguous name with which
principals may refer to it. This name is obtained by concatenating the
principal's system unique name with that principal's relative name far the
object to be shared.

Context objects may also be used to implement the aboslute naming scheme
for principal objects. This is done by providing 4 single additional context
cbject which contains the name => UID mappings for all the principals
currently authorized to use the systen. The symbolic name of this context
(contexts may have symbolic names just like any other object) should be well
known throughout the system. This can be accomplished by initializing each of
the principal's contexts with the symbolic name of the unique user name
context.

Due to the essential nature of a principal's symbolic name context, it
will be desirable to provide the capability to define highly reliable contexts
which are 1likely to survive or perhaps continue to be available in the
presence of certain types of errors. The standard mechanism in Zeus for
providing such reliable objects is object replication. Context objects are
the first significant example of object replication which have been

1-19

Despite the requirement to provide distributed, replicated context
oObjects in Zeus, the consistency requirements of the operations which will te
defined for contexts are relatively simple. Straightforward read/write
consistency control will be used in the SNM since the five operations defined
therein appear semantically identical to four write operations and one read
operation. In general, of course, some object types may have more complicated
semantics for their operations such that two or more update operations %turn
out to be compatible since they modify mutually exclusive parts of an object
instance. This, however, is not the case with symbolic name contexts.

1.3.2.4.2 User's View of the SNM

For user processes in the Zeus system, the SNM (and in fact all other
type managers as well) appears as a single autonomous server process which
defines an abstract data object type and a set-cf operations which access
and/or modify instances of that type. The actual structure of the defined
data type, as previously mentioned, is not known by the user process. In
addition, the physical host boundaries (indeed most pnysical characteristics
of the system) are hidden from the user process so that the physical network
of hosts appears as a logical netwcrk of connected wuser and tvpe nanager
processes.

The user-visible features of a type manager are completely defined by the
set of operations which it provides. The symbolic name type manager prcvides
five such operations on context objects; CREATE context, DELETE context, ADD
name, REMOVE name, and LOOKUP name. The operations have the obvious
semantics. CREATE and DELETE operate on whole contexts while ADD, REMOVE, and
LOOKUP modify and access the individual name/UID pairs in an existing context
object. The LOOKUP operation is the only read- only operation while the
others all cause at least part of the context object to be modified in some
way. The reason that ADD and REMOVE are considered to be modifying the entire
context object rather than only a single entry in it is that the most likely
implementation of context is as a hash table. This means that any
modification of the pointer structure within a hash container to insert or
remove a name/UID pair would cause the pointers to become temoorarily
inconsistent thus requiring that the entire table be made unavailable.

1.3.2.4.3 SNM Functions

The Symbolic Name Manager provides functions to create, maintain, and
destroy contexts and symbolic name to UID entries within contexts. The
following are operations that affect the whole of some context object.

create () --> (context-id, return-code)
Creates a context object with the denoted access
list. The possible return-codes are (1) true and
(2) false.

delete (context-id : in out context) --> (return-code)
Deletes a context object. The possible return-
codes are (1) deleted and (2) non-existent
context.

1-20

ZEUS ARCHITECTURE AND FUNCTIONAL DEFINITION

The three operations, ADD, REMCVE, and LOOKUP are provided to maintain
the symbolic names to object UID mapping. Of these three, only the LOOKUP
operation is read-only while the other two cause a name to UID mapping within
the context to be modified.

add (name : 1in symbolic-name; object-id : 1in UID;
context-id *+ in context) --> (return-code)

Create a symbolic-name / object UID entry in the
given context. The possible return codes are (1)
successful and (2) non-existent context.

lookup (name : in symbolic-name; context-id : in context;

name-id : out UID) --> (return-code)

Find the symbolic-name in the given context and
return the object UID associated with that name.
The possible return codes are (1) successful, (2)
non-existent context and (3) name is not found.

remove (name : in symbolic-name; context-id : in context)
--> (return-code)
Delete the symbolic-name / object UID entry from
the specified context. The possible return-codes
are (1) successful and (2) non-existent context.

1.3.2.5 Program Type Manager

The Program Type Manager 1is the repository of both program text and
object code. Program text is defined to be a text object that compiles
correctly; thus, the creation of a program object requires the user to supply
the Program Manager with a correct program or a separately compilable unit of
a progran. The Program type manager, in addition to its function as a
repository, acts as a builder of programs; thus, a user can call upon the
program type manager to build a new program from some specified components.
This linking function of the Program Type Manager is useful to the system to
build new user types. A program object is defined to be a collection of
versions of a single program. The criteria for retaining program versions in
the system are defined by the users.

1.3.2.5.1 Program Object Functions

There are four functions that are necessary for program objects. These
are create, delete, construct, and gettext. The function construct is the
linker that builds a composite program object from a set of components. The
other functions are those necessar; to maintain the program repository. Some
of the functions may require auxiliary functions which will be described at
the end.

1. Create
Create is invoked when a new program object or a new version of a program
object is to be installed in the program manager. This function is supplied

with the text file for the new program by the user. The function compiles the
text file and installs the text file as a program unit provided the

1-21

compilation was successful. The function installs the program unit with a
unique versicn number which it returns to the caller. It must be noted here
that a user cannot create a new program version in place by taking an existing
version, modifying it within the Program Type Manager and then creating a new
program unit. Instead, the user must first get the program text, modify it
using some function and then use the create function to install it as a
program unit. A call to the create function is

create (textobj : in text: progname : in out ext UID;
listing : out text; status : out result)
wnere

textobj - program text

progname - .is null if the text object is to be installed as
a new progranm
.has a null version field if this is a new
version of an existing program object

listing - a text that lists the compiled text and errors

status - returns the result of the operation and can be
.successful
.no entry in the directory
.cannot be installed in the directory

The function does not return a value in progname if the compilation is

not successful.

2. Delete

The delete function 1is invoked to delete a program object or a specific
version of the program object. The deletion of a version of a program implies
that its empty slot in the array is filled by moving the other versions (if
any) to fill the slot.

delete (progname : in extUID; status : out result);
where

progname - is the extended UID of the program. If the
version unique number is not present then the
delete will delete the program while the presence
of a version unique number deletes a single
version.

status - is the return code from the delete f{unction.

3. Construct

The construct function is used to build a program object from a set of
program objects. Like the create function, it can be used to create a new
program cbject or a new program version. This function can be used to build
new type managers. The construct function will use the function getcode to
obtain the code of each of the compcnents and it will use a linker to build
the new program object version. The new version or extended UID will be
returned to the caller. The call to construct is:

construct (prog_count : in integer; type_name : in template;

status : out result; progname : in out extUID;
listing : out text);

1-22

ZEUS ARCHITECTURE AND FUNCTIONAL DEFINITION

where

prog_count - number of program extended UIDs in the array
type_name

type_name - array of program object extended UIDs. These
are the components of the new program object.

status -~ return flag from the routine.

progname - if null a new program object is created and its
extended UID is returned; if the version field
is null then a new version is created.

listing - a listing of the results of the operation.

4., Gettext
This function copies into a user parameter the text of a program unit. The

text is for the version specified or for the latest version. This function
may be used to copy a program to an editor and then modify it. The call for

gettext is
gettext (progname : in extUID; textobj : out text; status :
out result);
where

progname - extended UID of the program object
textobj - text of the program object
status - result of the operation

1.3.2.6 Message Type Manager

Within the Zeus Operating System, the Message Type Manager (MTM) provides
messages as a means of inter-process communication in either a synchronous or
an asynchronous fashion. A message that is transferred from one process to
another is viewed as an object upon which operations are performed to effect
this inter- process communicaticn. The operations are send_msg, receive_msg
and msg_status. The send operation creates a message object and initiates the
transfer of the object from the sender to the intended receiver. The receive
operation completes the transfer when the object's message content is returned
to the receiver. The sender or receiver can determine the status of a message
object by performing a msg_status operation.

1.3.2.6.1 Reliability of Message Objects

At the time a message is created, the sender can specify the reliability
class for that message. The reliability class of a message reflects its
availability to the receiver 1in the face of one or more host failures in the
network. At the 1low end of reliability there are volatile message objects
that disappear upon host failure (if the object resides on the failed host).
At the high end of reliability stable message objects have a replication
factor of n wheren 1is the number of hosts in the network. The four
reliability classes are volatile, non- volatile, resilient and stable.

1-23

1.3.2.6.2 Scope of Inter-process Communicaticn

Inter-process message communication may occur between processes that are
local to a host, or remote. In either case the send and receive operations
are performed on the MTM local to the host of the calling process. Any remote
communication that might be performed to effect the respective operation is
carried out between MIMs and 1is unseen by the caller. Figures 1-2 and 1-3
depict the flow of information in local and remote inter- process
communication respectively.

1.3.2.6.3 Message Operations from the User's Viewpoint

The messages are sent by invoking a send_msg operation with the
specification of the message content, the list of - receivers, the reliability
class of the message, and whether or not the message operation is to be
performed synchronously or asynchronously. If the send is a synchronous send,
the sender is delayed for the shorter of the sender timeout value or for the
time it takes to route all of the copies of the message to any remote hosts.
The routing is a function of the reliability class and the receiver list.
When a send is asynchronous, the sender is blocked only the time it takes to
create the message and notify the receivers of its existence. As a result of
the send operation, the message unique identifier is returned. If the message
status 1s determined at a later point by the sender, it is this unique
identifier that is passed as a part of the msg_status call.

In order to receive a message, the receiver invokes a receive msg
operation and specifies which processes to receive a message from, and whether
or not the operation is asynchronous or synchronous. This means no wait if
there 1s no message available in the asynchronous case and a wait in the
synchronous case until a message is available or until a timeout occurs. Aan
additional parameter allows the user to further qualify which message is
received. The qualification may indicate that either the most recent message
be received, or the oldest, or the first since a host failure.

The msg_status operation returns to the caller the current status of the
message relative to its receipt by each of the intended receivers of the
message. Possible statuses are received, not_received, unavailable and
message non_existent.

Following the descriptions of the MTM_Interface components Send Msg,
Receive_Msg, Msg_Status, and Message Operations.

1.3.2.6.4 Send Msg

The user interface to perform message manipulations is a procedural one.
Calls are made to routines named send_msg, receive_msg and msg_status that are
part of a Message_Interface package within the process space of the user. The
following are the procedural interfaces between the user process and the
Message Interface routines.

ZEUS ARCHITECTURE AND FUNCTIONAL DEFINITION

PROCEDURE send_msg (msg_vars: [N MTM_type.parm_list;
send_to_list: IN MTM_type.xid_list;
option: IN MTM_type. wait _no walt
timeout: IN POSITIVE;
reliability class: IN MIM_type.rel classes;
msg_id: OUT kernel.xtnded uid;
return_status: CUT MIM_type.msg_opn_return);

Parm_list is a record that describes the variables that compose a
message. Some convention will be made between the compiler(s) of a host
machine and the send_msg procedure as to the actual record description of
parm_list.

The send_to_list is a linked Llist of the intended receivers of the
message. A broadcast of a message is indicated when the send_to_list is
composed of a single star, "*".

The process has the option of waiting for acknowledgements that the
message has been sent to every receiver or not waiting for cthe
acknowledgements. This is specified by "wait" or "no_wait" as the value of
the option If the option is wait, a timeout value must be specified which is
the maximum time that the sender is willing to wait for the acknowledgements.

The reliability class for a message object may be volatile, non-volatile,
resilient, or stable. A volatile message object 1is one with the least
likelihood of being available if some failure occurs because it 1is a single
copy object in memory. A stable message object has the greatest likelihood of
being available because a copy of the message exists on each host, and is thus
a replicated object. Non_volatile and resilient message objects are more
reliable than volatile objects and less reliable than stable objects. The
number of message copies created during a send operation and their storage
medium will be varied during performance analysis to determine what
combinations provide the maximum amount of reliability and efficiency. One
major difference between non_volatile and resilient Is that non_volatile
cbjects have no recovery operations performed for them upon failure, but
resilient objects do.

The msg_id is a unique identifier for the message that is returned after
the message is sent. This identifier may be used in a msg_status call to
determine the state of the message regarding its receipt.

The return_status contains the result of the send operation and may be
completed or timed out. The not_completed status will at a later time be

expanded into a group of possible error return values according to the fault
that caused the operation to fail.

1.3.2.6.5 Receive Msg

The complement to send_msg operation is the receive_msg operation that a
process invoked to receive a message that is available.

1-25

PROCEDURE receive_msg (msg_vars: IN MTM_type.parm_list;
receive from list: IN MTM_type.xid_list;
wait_option: IN MTM ™ _type. wait _no wait
which_msg option: IN receive option;
timeout: IN POSITIVE;
msg_id: OUT kernel.xtnded_uid;
sender_1id: OUT kernel.xtnded uid;
return_status: OUT MTM_type.msg_opn_return);

Msg_vars are the variables into which a received message is placed.

The receive_from_list indicates which process the receiver is willing to
receive from. It may be a linked list of process extended uids, or a star (*)
which indicates a willingness to receive from any process.

The wait_option may have the values of either wait or no_wait where wait will
cause the receiver to wait a finite amount of time for "a message to arrive,
the wait time being indicated by timeout.

The which_msg_option may be either most_recent, oldest, or
first_after_failure. This gives the receiver flexibility in receiving
messages.

The msg_id contains the extended uid of the just received message.
The sender_id contains the extended uid of the process that sent the message.
The return_status may be completed or timed out.

1.3.2.6.6 Msg_Status

The current status of any particular send message operation may be determined
with the msg_status operation.

PROCEDURE msg_status (msg_id: IN kernel.xtnded uid;
return_statuses: OUT MTM_type.msg_opn_return_list);

The msg_id is the extended uid of the message for which a status query is
being made.

The return_status record is a linked list of process_id/status pairs., That
is, one status 1is returned for each intended receiver process. The possible
return statuses are received, not_received, unavailable (i.e., status not
known), and non_existent.

In order to receive a message, the receiver invokes a receive_msg operation
and specifies which processes to receive a message from, and whether or not
the operation is asynchronous or synchronous. This means no wait if there is
no message available in the asynchronous case and a wait in the synchronous
case until a message is available or until a timeout occurs. An additional
parameter allows the user to further qualify which message is received. The

1-26

ZEUS ARCHITECTURE AND FUNCTIONAL DEFINITION

qualificaticn may indicate that either the most recent message be received, or
the cldest, or the first since a host failure.

The msg_status operation returns to the caller the current status of the
message relative to 1its receipt by each of the intended receivers of the
message. Possible statuses are received, not_received, unavailable and
message non_existent.

1.4 OVERVIEW OF THE DETAILED DESIGNS
1.4.1 Zeus System Design

The design of the Zeus system is basically the design of the kernel and
system type manager functions described in Section 1.3. A detailed design of
each system type manager is presented in this part of the guidebock. 4an
important part of the Zeus design is the design of a generic object manager;
this design defines the protocols executed by an object manager with the
Process/Transaction Manager to ensure reliable operations and recovery in the
system. The detailed designs presented here were carried out in CSDL and Ada.
It is suggested that an interested reader should refer to the Concurrent
System Definition Language (CSDL) manual to understand the CSDL designs. The
designs of the Process/Transaction Manager and the generic Type Manager are
presented in CSDL. The detailed designs of the Kernel and two system type
mangers, namely, the Symbolic Name Manager and the Message Type Manager, are
presented in Ada. The following sections of this chapter present an overview
of these designs. During this effort we have not designed the Authenticaticn
Manager and the Program Type Manager in detail.

1.4.2 Kernel Design

The overall structure of the kernel functions is given in Figures 1-4,
1-5, 1-6. The structure of each function 1is described next. Each remote
procedure can, as was pointed out earlier, be broken up 1into four messages.
Each message must be packetized at its source and re-assembled at its sink.
There are four levels in the RPC mechanism. The first is a set of kernel
procedures that form the kernel interface for the RPC mechanism. These
procedures are invoked to send calls and obtain responses. In addition they
differentiate between local and remote objects thus performing the function of
the operation switch.

The next level consists of one call handler per object type and is the
repository of the state of all outgoing and incoming calls. Each zall handler
is invoked by the kernel procedures from the level above it and the network
handler processes from the level below. The network handler consists of three
processes, the send driver, the receive driver and the network tranceiver.
Together the send and receive drivers implement the link level protocol. This
includes the processing of acknowledgements (positive and negative) at the
packet level. The send and receive drivers interact with the network

1-27

tranceiver <to send and receive data packets to and from the network. The
network tranceiver interacts with the UID generation task and the net
controller in addition to the send and receive drivers.

Object storage and retrieval has a very simple structure. Each object
type has a simple object directory and a stable object directory. Associated
with each directory are sets of tasks, one set for each operation to be
performed. These tasks are called request handlers. The kernel interface
prccedures first ask ‘+the directory to cerform some operation. The directory
initiates the task and returns to the kernel grocedure a gointer o the
request handler assigned =to the task. The kernel procedure then asks the
request handler for the result. The directories contain pocinters to all
objects of a given type. The directories always reside in main memory and
directory storage and retrieval has not been considered in the design.
Storage of the directories wculd involve setting up a directcry structure.
Request handlers are allocated to each directory based on the designer's
estimate of how often operations on a particular object type will be invoked
and how leong those operations will take. Secondary device space is allocated
on an object basis and simple and stable stcrage have free storage managers.
The two Kinds of storage are managed separately since they will be kert on
separate devices.

1.4.2.1 UID Generation Protocol

The third major function of the kernel is to generate unique identifiers
for objects. A unique identifier consists of a host field, an instance field
and a sequence field. The instance field is generated collectively by all the
hosts to the system. For each value of the instance fisld the UID monitor
process will generate a range of UIDs whose cardinality equals that of the
sequence field. The generation of a new instance number Is accomplished by
the UID generation process of the kernel. Additionally, the UID generaticn
process participates in a roll call computation to keep track of active hosts,
and a host restart computation to permit a new or restarting host to join the
set of active hosts.

All the UID generation processes on the active hosts in a cluster
participate in the generation of a new instance field. The algorithm for UID
generaticn is based on the principle that all the active hosts in a cluster
have a dynamically maintained linear order at all times. When ail the active
hosts in the cluster have received a new instance number request from one of
their members they each set a timer in the process UID timer and wait. If a
host's timer expires before that host receives a response to the request it
will broadcast a response to the request. This message contains the new
instance field value and the responding host's position in the linear order.
When a host receives a response to a request (either its own or that of a host
with a lower position in the linear order) it accepts the new instance value
and subtracts the responding hosts position in the linear order from its own.
Thus each active host receives the new instance number. Further, if some hcst
in the linear order has failed, the other hosts ranked lower than it will have
their position moved higher in the order. This will over time result in
reliable hosts reaching the highest positions in the linear order.

ZEUS ARCHITECTURE AND FUNCTICONAL DEFINITION

In Zeus, the system processes for UID generation belong to a set of
smallsteppers S or a set of largesteppers L. These processes reside on hests
which are interconnected by a broadcast network that uses a contention
protocol. All hosts (i=zl..n) must possess an instance si 6 S. Some hosts
(j=1..m), called stable storage hosts, possess an instance 1j 6 L. The union
S UL forms the set of processes.

The object of the system is to generate unique identifiers (UIDs) on
request from other processes in the systen. Requests for a new UID on host |
are directed to si. Each si has a limited range of UIDs it can supply. si
obtains ranges of UIDs from a specially denoted 1j which is called the elector
(le). Each range 1is called an incarnation. A single largestepper must
respond to a request for a new incarnation. The new incarnation is adopted by
all the processes si and l1j active in the systen.

The algorithm to obtain new incarnations must be resilient enough to:
1) Recover from host failures which result in the le pro
cess becoming unavailable.
2) Recover from host failures which result in some li
process becoming unavailable.
3) Insure that the incarnation numbers are generated in a
menotonically increasing sequence.

The algorithm assumes the following about the underlying system:

1) An errorless, loss-free transmission medium.
2) Delivery of messages in a FIFO manner.
3) Continuous availability of the broadcast medium.

Among the sets S and L the following assumptions hold:

1) An elector holds his position from the instance of his
nomination until the host on which he resides fails.

2) A smallstepper si is considered to be idle if it has
sent out an incarnation request and is awaiting a reply.

3) At any time the active largesteppers li 6 L possess a
unique priority number pi from O...Li-1. At any time
the active largestepper with pi equal to zero is by
default the elector.

4) There is a global constant t possessed by each
largestepper. This constant t is the maximum time taken
by any largestepper to receive and broadcast a message.

The algorithm requires the following messages:

1) A request message which is sent by some si which
regquests a new incarnation number.

2) A reply message which is sent by the elector le to give
the new incarnation numbeb. This message also holds the
priority number of the largestepper who generated the
message.

The algorithm {s based on the notion of a priority ordering. Upon the
receipt of a request message broadcast by some smallstepper si each
largestepper will wait for a time period equal to pi times t for a reply
message.

If it receives no reply message in that time, the largestepper broadcasts
the reply message with the new incarnation number and reduces its priority
number pi to zero.

If the largestepper receives a reply message before the ¢time period
expires, it STOPS its timer, installs the new incarnation number and subtracts
the vaiue of the priority number in the message from its own priority number.
The smallsteppers si receive the reply message, too; thus their incarnation
number is updated.

The largestepper with pi = 0 will, if active, time-out immediately and
send out the reply message; thus, the largestepper with pi = 0 is the elector
at any time.

If the largestepper with pi = 0 is inactive then the largestepper with pi
= 1 will time-out, send the reply message and then become the largestepper
with pi = 0.

Thus, the first reply message with priority number k implies that all
largesteppers with priority numbers from Q0 to k-1 are inactive. The remaining
largesteppers on receiving the reply message decreme their priority number by
k and reset their timers.

The above statements will insure that the incarnation number «will be
generated as quickly as possible provided there is an active largestepper.
However, if two or more smallsteppers request an incarnation number
simultaneously, then multiple incarnation numbers will be generated.

1.3.2.6.6.1 The Time Constant t

A crucial element of this algorithm is the value of the time-out constant
t. This constant must be large enough to insure that the largestepper process
with priority pi can be scheduled on its host and broadcast its message on the
network before the largestepper with priority pi+!1 can time-out and broadcast
its message.

We are assuming that this time is variable but bounded and that t is the
least upper bound. This assumption is trivially true in the case of token
passing networks. For CSMA networks (e.g., Ethernet) this time may not be
bounded due to network contention and multiple collisions. However,
boundedness could be arranged in a CSMA network by giving priority to the
largestepper's reply by reducing its retransmission interval below that for
ather network traffic.

Within the host careful specification of process priorities can help

insure an upper bound on the processing time required to handle a inca~nation
number or priority request.

130

ZEUS ARCHITECTURE AND FUNCTICNAL DEFINITION
'.3.2.6.6.2 Introducing a New Largestepper to the Network

The new largesteppgr must be given the current incarnation number and a
priority number. We define active largesteppers to be those that possess the
current incarnation number and a priority number. While incarnation numbers
#ill be 1identical on all the active largesteppers, the priority numbers may
not be continuous because of failures in largestepper processes. One of the
aims 2f ‘the algorithm below is to make all the priority numbers continuous,
i.e., pil equal to 0..j when j+1 hosts are active. This is important because
the values of pi must lie between 0 and m-1.

The algorithm to do this is:

1) The new largestepper broadcasts a priority request
message {(which contains its id) and waits for t times
L.

2) Each largestepper that was active on receipt of this
message sets some variable newp to zero and sets a timer
to t times pi.

3) While waiting for the timer to lapse, each active large stepper will
receive priority reply messages whose value to pi is 1less than its own. For
gach of these messages, it will increment its value of newp. It will also
ignore any other priority requests it receives during this time.

4) On the receipt of a message with a value of pi one less than its own or if
the timer expires, the largestepper will broadcast a message with its
incarnation number, its current value of pi and the id of the largestepper
whose request it is serving. It will then set its value of pi to be the value
of its wvariable newp. This ends the active largesteppers role 1in the
algorithm,

5) If the largestepper that broadcasted a priority request receives priority
reply messages that contain a host id other than its own, it will broadcast
another priority request message after its time expires. Otherwise, given its
large time constant, the new largestepper's time period will expire after all
other largestepper time periods. At that timY KQwill simply set pi to be the
count of messages it has received.

The above algorithm insures that the introduction of a new largestepper
will set the priority numbers of the active largesteppers correctly. Further,
multiple largesteppers that request a priority number simultaneously, will be
given priority numbers correctly.

1.4.2.1.1 Reliability Issues in UID Generation

The above name generation scheme is not totally immune to failure. For
example, let a Host A which contains a largestepper process be the last host
to go down. Then this host contains the latest incarnation number. If the

1-31

system is now restarted with some other host B, then the incarnation numbers
generated may be duplicates of those generated by host A before it crashed.

The above has the following implications:

1) For the names generated to be unique, some largestepper

host must be active at all times.

2) If all the largestepper hosts crash then all of thenm

must be brought up simultaneously.

It appears to us that the first restriction is reasonable enough. If all
the largestepper hosts go down, then the new order for largesteppers could be
obtained by selecting the largestepper with the largest incarnation number and
priority equal to zero to be the new elector.

To periodically check for the active hosts the active hosts execute a
roll call protocol. To do this they set the RECALL REMINDER process timer to
be equal to some time delay plus a delay proportional to the host's position
in the 1linear order. The first host whose RECALL REMINDER timer expires
starts the roll call computation by sending out a start roll call computation
message. The roll call computation proceeds with each active host setting two
timers, rank timer and full timer, in the process rcall timer. The rank timer
is proportional to the host's position in the linear order while the full
timer is proportional to the maximum number of hosts in the cluster. When the
rank timer expires, the host recalculates its cwn position in the linear order
based on the number of messages it has received from hosts higher in the
order. It then broadcasts its own 'I'm here' message on the network. In
effect, the roll call computation is a periodic poll of active hosts.

Hosts that fail rejoin the system by initiating a distributed computaticn
among the active hosts UID generation process. This computation is identical
to the host roll call computation described earlier. This computation
pre-empts the host roll call or UID generation computations. Thus the host
restart computation is a poll of active hosts triggered by a new active host.

The messages sent by UID generation process take precedence over the
remote procedure call messages. The UID generation monitor process when the
latter exhausts the number's in the previous instance field's range. The UID
monitor is invoked by the get_UID kernel procedure which in turn is invoked by
the kernel users.

1.4.3 Process Manager Design

This section provides an informal overview of the design of the
Process/Transaction Manager in the Zeus system. The formal definition of this
architecture is given in Chapter 3. The presentation in this section is based
on the fundamental notions in CSDL such as machines, sub-machines, and
interfaces. In CSDL, a machine can communicate with its environment or with
its submachines by using interface objects which are its public objects.
Public objects are the objects visible to the outside world. The Process
Manager is treated as a machine which has as its components some submachines.
This machine contains application processes and some command processors as its
submachines. This architecture {s shown in Figure 1-7. The Process Manager
machine interacts with the external world via some interface objects which are
public objects for this machine. These interface objects include interfaces

1-32

ZEUS ARCHITECTURE AND FUNCTIONAL DEFINITION

to the secondary storage, memory manager, UID generator, and the Operation
Switch.

This Process Manager machine has as its components some static as well as
dynamic submachines. A machine is dynamically created from a POOL of the
desired type of machine. Static submachines are those which are retained
throughout the lifetime of Process Manager and dynamic cnes are those which
are created and destroyed dynamically. The static submachines of Prccess
Manager are Timer, Router, and the PM_Database_Manager, wnereas dynamic
submachines are the application processes and the various command processers.
The application processes are created from a pool of PROCESS machines. Each
of the static and dynamic machines is connected to the parent machine Process
Manager. The connections between Process Manager and static submachines are
made in the beginning of PM Realization dictionary. PM is connected to Timer
through a pair of mailboxes PM_TO _Timer and Timer_TO_PM. Similarly
UID_GENERATCR is connected to PM through mailboxes PM_TO _UIDgen and
UIDgen TO PM. The function of the router machine is to multiplex and
de-multiplex the messages to (from) the Operation Switch from (to) various
application processes and the command processors. The Router <connects =o M
via two connection paths. One path is reserved for application commands and
responses between the PM and the Router, and the other path is reserved for
control commands and responses between the PM and the Router. In addition,
the PM connects to each process which are dynamic submachines via two paths.
One path is reserved for application commands and responses, and the other Is
for control commands and responses. In CSDL, the dynamic machines can be
declared as a pool of one type of machine and INDEX statement associates a
name with each new machine created. This acts similar to the subscript of an
array.

In response to application commands or requests from remote Process
Managers, command processors are created. A command processor interfaces with
the Process Manager's controller, and the PM_Database_ Manager. A4n array of
mailboxes called Command Proc_Iface supports communication between the command
processors and the PM controller. Interfaces are also provided to the
secondary storage and the primary memory manager by connecting the command
processors to the shared ports called SS_Port and MM_Port. These shared port
abstractions are supported by a machine type called Port _Multiplexer. Each
command processor directly interfaces with the Router machine that in turn
provides communication path to the Operation Switch.

Besides connecting the PM machine to it submachines, we need to connect
it to other independent machines to which it wants to talk to. Figure 1-7
shows three machines namely Stable Storage Manager, Memory Manager and
Operation Switch to which the PM may communicate. The function of the
Operation Switch is that of communication medium among different type
managers. The PM sends or receives remote requests through the Operation
Switch. These requests go through the Router machine which formats the
messages in a proper way. Since a submachine cannot talk directly to an
outside machine, the requests from the Router to the 0S go through a pair of
mailboxes namely Router TO OS and PM_TO_OS which are "bound" together to give
the effect of just one mailbox. The other independent machines are connected
to the PM as shown in Figure 1-7.

1-33

In addition to connecting PM machines to their submachines and other
machines, some of the submachines of PM are connected to each other. The
PROCESS submachines are connected to Router through a LIST of mailboxes, cne
for each PROCESS. This indirectly estblishes connections among each process
and to the 0S.

One other component of a machine is the CONTROLLER. This component
processes the information gathered through public objects, local objects, etc.
It acts as a driver for the machine. It generally consists 3f executable
statements and procedures. In the PM, the PM Controller is a program which is
inside a non-terminating loop. Similarly, the Router Controller s aliso a
non-terminating loop which controls and executes functions of the Router. It
is assumed that there are controllers in other submachines of the PM and
independent machines ocutside PM, but they are not shown explicitly in the
picture.

To support the dynamic creation/destruction of mailboxes for PRCCESS
machines in PM and Router, we declare the mailboxes as a LIST of reccrds.

Each record in the LIST consists of two fields: one of mailbcx_type and the
other of process UID type. In order to refer to any mailbox for a specific
process, we use process_UID as the index. Since the PROCESS machines are

dynamic, they are declared as a PCOL of PROCESS machines to which a PROCESS
machine can be added or deleted. The index to a PROCESS is associated with
its PROCESS UID to refer to that machine. A similar scheme is used to store
the index of a command processor in its mailbox interface to the PM
controller.

1.4.3.1 Command Processor

A command processor is created in response to either an Application
request message or a request from another command processor. The general
architecture of a command processor is illustrated in Figure 1-8.

There are eight different types of command processors. A command
processor is dynamically created from a POOL of desired type. As shown in
Figure 1-8, a command processor contains a static timer machine which
generates the time out interrupts, also a command processor interfaces with
the following machines:

Process_Manager Through Command_Proc_Iface
PM_Database_Manager Through PMDB_Iface
Operation_Switch Through 0S_Iface
Stable_Storage Through SS_Iface
Memory_Manager Through MM_Iface

Parent Process Through Parent_Iface
Child_Process(es) Through Descendent_Iface.

Since a command processor is a submachine within the PM it can not
communicate directly to the independent machines outside the PM, namely Stable
Storage, Memory Manager and Operation Switch. So the connections are provided
through the SS Multiplexer MM Multiplexer and Router respectively.

1-34

ZEUS ARCHITECTURE AND FUNCTIONAL DEFINITION

If a command processor is created as a response to an application request
the parent_Iface is to be bound to the PM_TO_Process mailbox of the applicant
in the PM Controller; otherwise the parent Iface is to be connected to one of
the Descendent_Iface mailbox of the requester which itself is a command
processor. In Chapter 3 two procedures Create_Command Processor and
Create_Appl_Server, are defined for creating the command processors The
procedure Create Appl Server 1is used for creating a command processor in
response to a command invocation by an application process. 1In this case the
PM_TO_Process mailbox for the caller process is bound to the Parent_iface of
the command processor. The second procedure, the Create_Command Processor, is
used to create a command processcr in response toc some command invocation by
another command processor. In this case the Parent Iface of the new command
processor is connected to one of the Descendent _ [faces of the invoker command
processcr.

1.4,3.2 Process Manager Database:

The PM database is the set of objects in the PM machine which contains
necessary information about the ACTIVE processes at a local node. This
database is also essential for PM to carry out its functions reliably. In
other words, the database of Process Manager is a snapshot of the state of a
local node of a particular instance of time. The PM database consists of the
following LISTs:

1. LIST of Active_Process_Records: An Active_process_record may correspond
to a process or a transaction. 4 transaction record is the same as a
process_record except for an additional field called transacticn_status.
A process_record contains the information about the UID, the LIST of
prccesses that can access this process, priority of the process,
process_state and time_out period. In CSDL, an Active_process_record is
defined as discriminated union (variant record) of the process_record and
transaction_record. The active_process_LIST is then declared as the LIST
of Active_process_records.

2. LIST of Parent_Child_Info: This 1list records for each process cor
transaction the UID of its parent process. The Map Field indicates its
execution mode with respect to the parent process. The execution mode can
be either sequential or concurrent. A transaction can be created as
either a sequential or a concurrent process with respect to its parent.
The Location field in this record indicates whether the parent is remote
or local. The field Top_Level in this record is set true if the parent of
a transaction oprocess 1is a non-transaction process. A table called
Descendent _Table records the UIDs of all of its children processes or
transactions. Associated with each child 1is the 1list of the all
descendent processes of that child and the UIDs of the objects modified by
that child and its descendents. The RP_Child Map field is wused to find
all descendents created after establlshlng a recovery paint.

3. Directly Modified Object List: This is a LIST of directly (in contrast to
the objects modified by its children and grand-children) modified objects
for each process and transaction. Each record in the LIST contains
process/transaction UID along with an array of modified objects. This

1-35

LIST 1is used for deleting versions of an object in case of an abort.
rollback, or commit.

Current Operation_List is maintained in the PMDB for recovery in case of
system crash in the middle of some critical operation such as Rollback or
Establish_Recovery Point. This LIST contains records for each critical
operation performed. Each record consists of a process_UID, operation
name and its parameters.

PMDB_log_buffer is the LIST of all the modification done to PMDB. Zzach
record of this LIST contains the operation performed which are ADD,
DELETE, MODIFY and the information involved in these operations, for
example, the record added or the record deleted, etc. This
PMDB_log_buffer is periodically appended to a differential file on stable
sotrage for recovery.

1.4.4 Type Manager Design

The Zeus system is a collection of object managers. Each manages an
object of a specific type. Figure 1-9 depicts the architecture of a
generic object manager which will be particularized at its creation time.
This design has been developed independently but it can be easily
integrated into the PM design presented in the Process/Transaction
Management document. In general the function of an object manager is t©o
perform operations on objects in response to operation invocation messages
from client processes or teransactions. It enforces locking protocols and
participates in commit protocols with PMs to ensure the atomicity of
transaction. As shown in Figure 1-9 the object manager communicates with
the PM and the Router through the TM_TO_PM and the TM_TO_Router interfaces
respectively. The object manager contains a timer machine which is
created when the object manager comes to existance and it is connected to
that through TM_TO Timer and Connection_TO_Timer. It also contains a POOL
of servers. A server is a dynamic submachine of the object manager whose
function 1is to perform the requested operation on an object. It is
created in response to a request from a process/transaction and it is
deleted after the operation is completed. These servers are functionally
very similar to the command processors in the PM machine and they can
communicate with the PM via the Servers_To_PM and the Servers_To_PM_PS.

The object manager database consist of the followings:

1) Objects: which is the set of objects and contains neccessary
information about all the objects at that node and also the
information about the transactions which are performing some
operation on those objects. This information is essential for
the object manager to carry out the commit protocol reliably and
to preserve object consistency.

2) Queue : which maintains a list of all the requests that can
not be processed immidately due the unavailability of the
object (e.g., the object is locked in some incompatible mode.)
The object manager must ensure that adding the request to the
queue does not cause any deadlock.

1-36

ZEUS ARCHITECTURE AND FUNCTIONAL DEFINITION

The other component of the object manager machine is the CONTRCLLER.
This component is a program which is inside a non_terminating loop and
processes the information which is gathered through TM_To_Router and the
TM_To_Timer. This information can be either the rquests from the
processes/transactions, received through TM_To_Router, or the timer
interrupts.

1.4.5 Symbolic Name Manager Design

Symbolic name contexts are the only supplied means within Zeus for a
user to define and use symbolic (non-numeric) names for other system
objects. Fundamentally, a context is a single- valued functional mapping
from user-supplied symbolic names to system defined unique identifiers
(UIDs). As such, the context plays a very important role for the
user/principal since the system itself deals only with the bit string UID
which 1is decidedly non-mnemonic but nonetheless efficient as a system
name.

Due to the essential nature of symbolic name contexts, it will be
desirable to provide the capability to define highly reliable contexts
which are likely to survive or perhaps continue to be available 1in the
presence of certain types of errors. The standard mechanism in Zeus for
providing such reliable objects is object replication; thus, the symbolic
name manager must support relicated context objects.

The user-visible features of a type manager are completely defined by
the set of operations which it provides. The symbolic name type manager
provides five such operation on context objects; CREATE context, DELETE
context, ADD name, REMOVE name, and LOOKUP name (see Figure 1-10). The
operations have the obvious semantics. CREATE and DELETE operate on whole
contexts while ADD, REMOVE, and LOOKUP modify and access the individual
name/uid pair would cause the pointers to become temporarily inconsistent
thus requiring that the entire table be made unavailable.

Internally, the symbolic name type manager consists of four major
sections; the interface, the controller process, the operation processes,
and the call handler. Figure 1-11 shows these four parts and indicates
their relationship to one another.

The SNM interface 1is a collection of simple procedures, one per SNM
operation, which runs as part of a user process and serves to interface it
to the SNM proper. The interface is included by a user process which
requires the services of the SNM and is found within the code library for
the SNM. The interface knows about the parameters and protocols required
by the type manager and it serves to hide these by providing the through
the operation switch. This allows for a very consistent interface to the
SNM in that all requests, local and remote, are handled in exactly the
same way.

The remaining three parts of the symbolic name type manager together

constitute the type manager proper. The first of these, the SNM
controller, is respons‘ble for fielding requests for operations on context

1-37

instances and then "spawning" operation processes to actually perform
these operations. In order to do this, the controller contains within it
a set of process queues, one per operation type, from which it schedules
the process to be activated. Upon receiving and processing a request for
an operation from a user process, the controller returns the identifier of
the subordinate process. Subsequent dealings between the user and the
operation process performing the work is handled by the user making calls
directly to the operation processes thus bypassing the controller for
efficiency.

The processes which the controller schedules to actually do the work
for the operation requested by the user have a simple unifcrm struccure.
Each such process, upon initially awakening, accepts a call from the
controller which starts the operation process running and also gives it 2
number which enables the controller to subsequently identify it. After
accepting the intialization call, the operatiqn process =nters a1 .30p in
which it first accepts a "start" call to get all the required input
parameters. The process then does whatever is neccessary to perform the
requested operation. After the operation is completed, (or an errcr is
detected), the operation process accepts a "done" call in which all the
output parameters for the call are returned directly to the user process
(actually his SNM interface). Finally, the operation prccess :alils the
controller to notify him that it has completed and that it may once again
be added to the available process queue and eventually reassigned .

Since receiving a local or remote procedure call from a user requires
a synchronous call to a kernel procedure, it would be undesirable to have
the controller of the SNM make this call and thus be blocked until it
completed. In addition, it is required that the controller present only a
single interface to both local users and remote users. In order to
facilitate this and to relieve the controller from having to do pericdic
calls to the kernel to poll for remote requests, a separate process called
handler process is defined.

The call handler process simply calls the kernel to request the next
remote procedure call and then blocks until this call is satisfied. Upen
receiving a remote request, the call handler then "spawns" another small
task which acts as the remote user's surrogate within the present host.
The call handler then immediately calls the kernel to request more work.
This surrogate user process takes care of packing and unpacking parameters
and passing them to the kernel procedures and it uses the local controller
interface in exactly the same way, as a local user would.

1.4.6 Message type manager Design

The MTM is replicated on hosts in the network wherever inter-process
communication by messages is desired. The instances of the MTM are
identical The composition of an MTM and its interface to the user is shown
in Figure 1-12. User operation requests are made to the controller of the
MTM which takes the appropriate action. A task to perform the requested
operation is scheduled by the MIM Controller from a pool of SEND, RECEIVE
and MSG_STATUS tasks. (In the subsequent text, all capitalized words will
refer to tasks of the MTM).

1-38

ZEUS ARCHITECTURE AND FUNCTIONAL DEFINITION

In sending a message, SEND calls the creation operation of MESSAGE
OBJECT, which returns a message object, routes copies of the message
object to remote hosts (as determined by the reliability class), and sends
notices of availability to the intended receivers. A notice becomes an
entry in the message queue for a receiver process. If the call is
asynchronous, the message identifier is then returned to the sender. If
the call 1is synchronous, SEND terminates but the sender remains blocked
until SUPPORTER determines that some event has occurred and causes the
sender to proceed (i.e., after a timeout or after all acknowledgements of
copies sent are returned). When a sender is to be unblocked, the
SUPPORTER schedules a WAKER task to bundle and route the apprcoriate
response to the sender.

RECEIVE determines from PROCESS MESSAGE QUEUE (PMQ) whether 2r nct a
message is available that meets the specifications of the receiver. The
PMQ manages all message queues for the processes of that host. It
maintains the queues in stable storage. If there is a message available,
it is returned to the receiver and RECEIVE terminates. If there is no
message available and the call 1is asynchronous RECEIVE terminates and the
receive continues without having received a message. In a synchronous
call the sender remains blocked while SEND terminates and SUPPORTER
performs the detection of the event to resume the receiver (either a
timeout or an appropriate message arriving for the receiver). A WAKER
task bundles a response and routes it to a waiting receiver.

The MSG_STATUS task returns the status of a message that is retrieved
from a local copy of the message (if there 1is one), otherwise the status
is returned from a remote copy.

One facet of the MTM not depicted in Figure 1-12 concerns the routine
acknowledgement of events between MIMs regarding the routing of message
copies. This is MTM_Controller to MTM Controller communication via Kernel
remote calls and responses. Some of the communicationc cause interactions
with SUPPORTER (i.e. such an acknowledgement for a message copy sent to a
remote host). Another interaction occurs when the PMQ is notified by its
MTM_Controller of incoming notices of message availability for receivers
on that host. When a copy of a message 1is required on a host where no
such copy exists a request is made to a remote host that has a copy which
causes a message copy to be routed to the requesting host. Such
interactions occur between MIM Controllers and are necessary for the
smooth functioning of the operations of the MTM.

[-1 34nby4
ISOH snaz e jo ainjonuig

S321N0S3Y BlempIen

Q1 JENE]S) Jajpuen Yyoumg 13|pueyy 18yojedsiqg
an abeiolg voljesadp MIOMJON yse|
}) ,
1 1 Y
W Jabeuepy © 060 0 o N Jabeuepy 0 0 ¢ o | Jobeuepy
adAy adAy adAy

1-40

uonjeslunwwo) abessayy ajoway g-j anbiy4

1 |
Adon 3 3 Ado)p
ua N N ua
En—.z -~ U m m e ¢ ¢ o o o o P m - U w 2..—-2
. 3 WIOM}aN 3
m) N .
AdoD | sbessapy abessapy
obessaly | aMa03Y puss

19A1999Y

191900y

uojedunwwo) ebessayy j|eoo] °Z-| enbi4

109lg0 -
abessoy - WAW

»

abessapy
puag

abessapy

aA1903Y

1-41

RPC Major Components and Data Structures
They Interchange

Kernel Procedures

T .
| Cails & Cail !
i Responses r cEe—>
e e -—]
Service
Call Handlers < Packages
(one for each type) ‘
ﬁ
T er—
essages
: Message Acks ,L ==
e -l
Network Handler - h T
A
e = = e = 1
: Packets & e -
| Packet Acks r
b e e -
Network Hardware Data Flow Q

Control Flow sem———————t-

Major Components and Data Structures of RPC
FIGURE -4

1-42

=

type per operation)

A

Simple Object Stable Object
Kernel Procedures Kernel Procedures A
[}
e r—- A ﬁ " - -y i
IR N g | I N I | R, 1 P S S 1
Objects & Type UID | Objects 3
Xtencedg_UID "l Directory "‘ -p Xtnced_uUlD
L._.___._l e e = = — L_.___J
+ @ Utility Pkgs. kw
) 4 > .
Simple Directory 1. Type Manager |, Stable Directory
(one per type) > Map L‘ (one per type)
f r———-—- = [P 2 Free Simple F T e 4
Objects | : bjects.
' thdelgf_Ule | PJ Storage : Xtngea_U10s |
lt=! Sec Storage 1 - Sec. Store L.
| Adar | 3. Free Stable ' Adar i
b ——— Storage —_
l L 4. Device to &
el Controller Map
Sets of Request ‘ i Sets of Request
Handlers (one set per 5 A Handlers (one set per

type per operation)

9y

3

Caretul Careful
r—-——=—° 7 Get Put
| Obrect Sec i f f
== = =l Store Adar oo aljedlecca -
oo B ot | -gl
L -
K. Y v

Secondary Storage Device Controllers

Figure 1-5
Object Storage and Retrieval:
Data and Control Flow

1-43

'..im.de.d—.u.'o..!
Kernel Procedures
r } r ------ ﬁ
e v = uiD '
L ------ J
UlD_Monitor
Task
F ----- -’
H uio b

UID_Generation Task
 OD"y {Recall 1 [Recall "
cJimer_ § t Timer ! { Reminder ;

U Packet
o an e
Lol __J

Net Tranceiver Task

r -------- ‘
! Packet -

Ethernet Controller

UID Generation and Site Recovery Architecture

FIGURE 1-6

/-1 94nbyy

(sg)
Youmg uonesadg
Irri
Wd01-50
N
“ xngéém
) |
L —
T /,// “UMMPWU
/ I ' >y -1419-Wd-0]- 13m0
, \ R — B OWD-141D-Wd-0L-somnoy
{ S1055330)4-puewiwe) | dJ-01-10)n0y e H
10jes8ua9 . \ 19 oog / - Wd-01-19In0Y
ain m \ $532014-01 - 19)n0Y
uabIn-o}-Wd N 7
~ —— g
B—J 1K
mis h o (e s
1abeuey > U 10553204 | 105833014
hrows| taxadniy o o0
"1 waorww WA ___._.MEM puewwo) o
} , U gee !
‘ $532014 * | ssedny aWI- 1819
_ T L] -1910Y-0] - Wd
99e)|-3014-pUetuuio) I.a 191n04-01-Wd
(ss) 1axgidiniy Atﬁa I_ — e e e - $582014-0} - Wd
abiesoig m = u S5 = oseaete B | “
aves $S-01-Wd e)-$$ gowd | *-S0) | 19NPAYIS-105532014-0)-Wd m”m Jounl-Wd
“ o) -Wd] owi}-0}-Wd a
| 1
| ! Qlllllu
b e e — — —J enue)

JYNLIILHIYY HIIVNVIN SSII0Ud

1-45

82ej1-WN

39e)j-SS

g-1 94nbiy

g Bd

V saponuog |
I Jossadoy
I puewwoy , o%e)
! -Juapueaseq

ot -

105592014-PUEWIWO0)

Ry 82¢)|-jused
oae-ow =4 resoy E

im |
jdnuguy UlllL

I M

302))-90Wd 39e)|-19)10U0T-Wd

H0SS3004d ONVINW0I

1-46

Type Manager Architecture

T™M_To_PM
| =

O———Q T™M_To_Timer
Timer
H——Q8 Cannection_To_Timer
/2 \
™ [TM_Databass |
CONTROLLER \ Queus, Objects |
N\ J
2 \
{ Pool of Servers \I
1
| O
) o wm |
TM_To_Router

Servers_To_PM

Servers_To_PfA_PS

Figure 1-9

USER
PROCESS

CREATE

DELETE

ADD

REMOVE

LOOKUP

Symbolic
Name
Manager

CREATE — Create a new context object
DELETE — Delete an existing context object
ADD — Add anew name = > UID mapping
REMOVE — Remove an existing name - > UID mapping
LOOKUP — Return the UID associated with a name

Figure 1-10. User Logical View

Local Host

User SNM Controtler

Process 1
Operation SNM

SNM Processes Call

Interface Handlier
Host Kernel f
Operation Switch

A
I
To Remote
Hosts

Figure 1-11. SNM Architecture

1-48

User

MTM__Interface

Operation
Request
\ Operation

Y Results
MTM__Controller

Operations
Results
After Wait

l
—— N —

Send Receive MSG__Status

Message

Process
Supporter Message o
* Queue

Figure 1-12. Components of Message Management

1-49

Chapter 2

KERNEL DESIGN

2.1 [INTRODUCTION

This document presents the design of the ZEUS kernel. It describes the
mechanisms necessary to implement the kernel interface of section 1.2.1.1 of
the guidebook. It also is an elaboration of the system design overview of
section 1.3.2 of the guidebook. ’

The environment consists of a cluster of hosts connected by a CSMA/CD
network with reliable broadcast. A host may possess secondary storage.

The kernel 1is accessed by the type managers on a host. To ensure type
transparency, all objects or calls passed as parameters to the kernel are
converted to bit strings. It is assumed that the type managers import
interface packages that will convert objects into bit strings and vice versa.
The kernel has some data types that are accessible to type managers. Chiefl
among these are the unique identifier, the extended unique identifier, and, as
mentioned before, the message and object string types.

The goals of the kernel are:
1. Quick execution of kernel procedures.

2. Transparency to permit easy integration of new type
managers.

3. Flexibility to permit replacement of storage management
strategies and communication protocols.

4, Simplicity to permit easy modeling.

2.1.1 Kernel Interface

This section provides the reader of this document an overview of the
kernel. The kernel provides three services that are easily separable for
reasons of manageability. To ensure that the reader does not lose sight of
the big picture, this document presents each one of these three services
individually. This section outlines the entire kernel and the reader is
encouraged to turn back to this section as often as is necessary.

Each of the three functions (RPC, storage, and UID generation) have a set
of procedures in the kernel interface. These procedures are invoked by the

2-1

type managers. The kernel functions have a set of utility packages which they
may share with each other. The kernel functions are accomplished by a set of
ADA tasks.

The kernel interface describes the visible portion of the kernel and
consists of kernel visible functions and data types. The kernel interface is
separated into the three sets of procedures, one for each of the kernel
functions. The kernel interface is described informally in section 1.2.1.1 of
the guidebook. The kernel interface is graphically presented in Figure 2-1.
The following pseudo ADA code details the sections in this document where
descriptions of the interface may be found.

PACKAGE kernel IS

--RPC functions, section 2.2.1
PROCEDURE make call; PROCEDURE make resp;
PROCEDURE kill call PROCEDURE keep_: “call;
PROCEDURE get_ call; PROCEDURE get _resp;
PROCEDURE ¢ status PROCEDURE r status,

--RPC data types, section 2.2.1
--visible types
TYPE host_id; TYPE xtnded_uid;
TYPE message TYPE call statu5°
TYPE resp_status; TYPE del_option;
TYPE kill status; TYPE uid;
--private types
TYPE incrnge; TYPE segrnge;
TYPE uid;

--Object Management functions, section 2.3.1
PROCEDURE get_obj; PROCEDURE put_obj;
PROCEDURE del obj; PROCEDURE stable _get;
PROCEDURE stable _put; PROCEDURE stabl_del;

--Ob ject Management data types, section 2.3.1
--visible types

TYPE simpl_status; TYPE stabl_status;

TYPE obj_ string;

--UID generation functions, section 2.4.2
FUNCTION get uid; FUNCITON build_xt;
FUNCTION give host_hint; FUNCTION change_hint;

--UID generation data types, section 2.2.1
--defined were uid, xtnded_uid, host_id.

END PACKAGE kernel

2-2

KERNEL DESIGN

2.1.2 The Kernel Structure

The kernel consists of a task structure, some of which is shared by the
different kernel functions. The kernel body outline presented here points out
the major components and indicates the relevant sections of this document
where they can be found. An overview of the kernel structure can be found in
section __ of the guidebook.

PACKAGE BODY kernel IS

~~the bodies of the RPC, object management and UID
~-generation procedures.
~-RPC, section 2.2.5
--0Object Management, section 2.3.8
-~-UID generation, section 2.4.3.1
~~internal types within the kernel.
--RPC, section 2.2.7.2; UID generation, section 2.4.3.3
TYPE pkt-resp; TYPE pkt class;
TYPE pkt_info; TYPE ballast;
TYPE packet; TYPE nt_state;
~--object management, section 2.3.4.1
TYPE secst_addr; TYPE smp_dir_entry;
TYPE stb dlr _entry; TYPE d_state;

--utility packages in the kernel
PACKAGE type mgr map; --sections 2.2.2.1, 2.3.3.1
PACKAGE message storage, --section 2.2.2.2
GENERIC PACKAGE the_buffer; --section 2.2.7.3
PACKAGE packet_mgr; -~-section 2.2.7.4.1
PACKAGE rec_pkt mgr; --section 2.2.7.4.2
PACKAGE free_storage; --section 2.3.3.2
PACKAGE stabl free; --section 2.3.3.3
GENERIC PACKAGE the_map; --section 2. 3 4.2
GENERIC PACKAGE the_set; --section 2.4.3.3

--task types used
--RPC
TASK BODY call_handler, --section 2.2.4
PACKAGE send_call; --section 2.2.3.2
PACKAGE recelve_call; --section 2.2.3.2
END
TYPE ch_ptr IS ACCESS call_handler;
--storage management
--request handlers, section 2.3.4
TASK TYPE smp_get; TYPE smp_get ptr;
TASK TYPE smp_put; TYPE smp_put ptr;
TASK TYPE smp_del; TYPE smp_del ptr;
TASK TYPE stb_get; TYPE stb_get ptr;
TASK TYPE stb_put; TYPE stb_put_ptr;
TASK TYPE stb_del; TYPE stb_del ptr;

2-3

--directory, sections 2.3.6.1, 2.3.6.2, 2.3.6.3;
TASK TYPE smp_dir; TYPE smd_ptr;
TASK TYPE sbd_dir; TYPE sbd_ptr;

~--device controllers
TASK TYPE d_ctl; TYPE d_ctl_ptr;

--task definitions
TASK net_tranceiver; --sections 2.2.7.3, 2.4.3.3
TASK send_driver; --section 2.2.7.4.1
TASK receive_driver; --section 2.2.7.4.2
TASK uid_monitor; --section 2.4.3.2
TASK uid_generation; --

END PACKAGE BODY kernel;

The above definitions are not syntactically correct ADA, but the purpose
is to give the reader a central point from which to connect all the parts of

the kernel.

Some of the modules above contain other packages that are defined inside
them. Typically, these are the task types whose instances need to manage data
separately.

The figures 2-3, 2-4 and 2-5 give a graphic overview of RPC, object
storage, and uid generation functions, respectively.

2.2 THE REMOTE PROCEDURE CALL STRUCTURE

Object invocations are made from one type manager to another. The source
type manager may or may not be on the same host as the destination type
manager. The kernel's responsibility is to deliver the call and the response
to the call from the source to the destination and vice versa, respectively.
This does not preclude the invocation of a type operation at the same type
manager on the same host from passing through that host's kernel. Thus, the
definition of Remote Procedure Call (RPC) includes the notion of the
information of type operations on the same host.

A remote procedure call is accomplished as follows:

1. The source type manager executes a 'make call' operation
at the kernel interface. The kernel returns a unique
identifier for the call.

2. The kernels of the source and destination machines use
their internal structure to deliver the call to the
destination machine kernel.

3. The kernel of the destination machine returns an ack for
the call to the kernel on the source machine after the
destination type manager issues a 'get_call' operation
at the kernel interface.

2-4

KERNEL DESIGN

4. On completion of the type operation, the destination
type manager issues a 'make_resp' operation at the
kernel interface.

5. The kernels of the source and destination machines use
their internal structure to deliver the call to the
source machine kernel.

6. The kernel of the source machine returns an ack for the
call to the kernel of the destination machine after the
source type manager issues a 'get_resp’ operation at the
kernel interface.

Figure 2-2 is a graphical picture of the messages exchanged for the RPC.

A design constraint imposed on the kernel is that it must know nothing
about the structure or operations of the type managers. To achieve this. one
must accomplish control independence and data independence. Control
independence is achieved by permitting calls to be made from the type managers
to the kernel only. This forces the use of four calls so that the kernels and
type managers at the source and destinations are blocked for as little time as
possible. Of course, this differs from strict procedure call semantics. To
achieve data independence, all callers of a type manager import an interface
to pack calls to that type manager into bit strings, and to unpack responses
from that type manager from bit strings into proper values. Similarly, a type
manager has an interface that converts bit strings into type operation calls
and response into bit strings.

2.2.1 The Components of the RPC Function

The RPC function interfaces to the type manager via a set of kernel
procedures. Within the kernel these procedures make entry calls to tasks
called call handlers. At a given kernel there exists one call handler for
each object type manager on that host. Each call handler monitors all the
outstanding calls from and to its type manager.

The kernel procedures detect local calls and directly pass information to
both the source and destination type manager call handlers. In effect the
kernel procedures simulate the network. Thus for local calls;

1. The make_call procedure would deliver the call to the
source call handler and then deliver the call to the
destination call handler.

2. The make_resp procedure would deliver the response to
the destination call handler and then to the source call
handler.

3. The give_call procedure would get the call from the

destination call handler and then give a call ack to the
source call handler.

2-5

4. The give resp procedure would get the response from the
source call handler and then give a response ack to the
destination call handler.

For remote calls, the call handlers are polled by the network handler for
calls, call acks, responses, and response acks. The network handler also
re-assembles calls, call acks, responses, and response acks, and delivers them
to the appropriate call handler. The network handler consists of a send
driver and receive driver to handle packetizing and reassembly of messages.
The actual network interface is a task called the net_tranceiver which handles
packets from and to the ethernet controller. This task also sends and
receives packets to and from the uid_generation task.

2.2.2 Comparison to Another Effort

Birrell and Nelson have implemented RPC .[1] at Xerox PARC. They use a
stub in the caller and callee. Thus, a type manager or process would have %o
import a stub for each type manager it accesses. In addition, the ‘type
manager would have a stub to handle calls made to it.

The stubs together comprise the call handler and the send and receive
driver in the ZEUS design. The interfaces pass their addresses to each other
so that the kernel can directly call them. All this makes for a faster
implementation, but it is not as general as ZEUS.

2.2.3 Externally Visible RPC Procedure Calls of the Kernel

The externally visible parts of the kernel that relate to the RPC are
declared here. These will include the types visible and the procedures
visible to the type manager.

PACKAGE kernel IS
-~define uids, extended uids which are used by the type
--managers to identify objects and remote calls
TYPE uid IS LIMITED PRIVATE;
TYPE host_id IS RANGE 0..1023;
TYPE xtnded uid IS
RECORD
host_hint; host_id;
typeuid, instanceuid, versionuid; uid;

END
--a message 1s an array of bits
TYPE message IS ARRAY (RANGE < >) OF BOOLEAN; .

--define the status values that are returned by
--calls to the kernel. There i{s a different status
--type for calls and responses to calls.

--call status can be

--not_dlvred - the status of a call that has not

-- reached the destination type manager

--dlvred - call reached destination type manager
--resp_here - call's response has arrived

2-6

KERNEL DESIGN

--does_not_exist - object ‘addressed does not exist

--revr_ “failed - the destination host is down

--wait buffer full - no space locally; hold call

TYPE call status IS (not_dlvred, dlvred, resp_here,
does_not_ex1st. revr_failed,
wait_buffer_full);

--resp_status is the status of a response to a call

--not_reached - response not reached source type manager

--reached - response reached source type manager

--accepted - response accepted by source

--sndr_failed - the source host is down

--wait buffer full - no space locally; hold response

TYPE resp status IS (not _reached, reached, accepted,
sndr_failed); ‘

--del option permits a type manager to specify

--damage containment should the source or

--destination host of a call failed. The opticns are:

--failure_revoke - the call must be cancelled if

-- the source or destination fails

--failure_continue - the call must continue despite failure

--failure_inform - the caller or callee's type manager

-- must be informed of the failure

TYPE del option IS (failure_revoke, failure_continue,
failure_inform);

--kill status returns the status of a call

--whose deletion the type has requested

--dead_all over - call deleted

--not_dead_yet - call still not deleted

--does _not_exist - no call exists

TYPE kill-status IS (dead_all over, not_dead_yet,
doer_not_exist);

--®##%pyt in the types for object storage and
--%#%#%yid generation over here.

--here start the visible functions of the kernel
--each function is described along with its parameters
--calls to these functions may be delayed because
--the kernel may be busy.

--make _call is invoked in order Lo make a remote

--procedure call. Its parameters are:

--typ_uid - uid of the type manager making the call
--source, destination - xtnded uids of the caller and callee
--the_call - a call as a string of bits. This will

contain encoded in it the process

xtnded uid, the principal xtnded_uid

the call and the parameters of the call

--call _option - the del option for this call

2-7

--call _uid - the uid assigned to this call
--the_status - the status of the call
PROCEDURE make_call (typ_uid : IN uid;
source, destination : IN extnded_uid;
the_call : IN message; call_option : IN del option;
call_uid : OUT uid; the_status : OUT call_status);

--make_resp is invoked by the callee in order to
--return a response to a call. Responses must be
--returned so that a caller knows when the

-=-callee has terminated. The parameters are

--type_uid - uid of the type manager making the response
--the_resp - a2 message that contains in it the response
-- to the call

--resp_option - the del option for the response
--the_status - the response status

PROCEDURE make resp (type_uid : IN uid; the_resp : IN
message; source, destination : IN xtended_uid;
call uid : IN uid, resp_option : |IN del_option;
the_status : OUT resp_status);

--kill _call is invoked by the caller or the callee
--to delete a call. It may be invoked independently
--or when the del option is failure inform and

--the type manager is informed of a call failure.
--The parameters are:

--call _uid - is the uid of the call

--type_uid - is the uid of the type manager
--the_status - is the kill_status of the call.

PROCEDURE kill_call (call_uid; typ_uid : in uid;
the_status : out kill_status);

--keep _call lets the type manager tell the kernel to
--preserve the call in spite of failure. The
--parameters are:

-~the _uid - call identifier

--typ_uid - type manager uid

--the_status - status of the call

PROCEDURE keep_call (call_uid, type_uid : IN uid;
the_status : OUT kill_status);

--get_call and get_response get calls directed
--to the type manager and responses to calls
--made to the type manager respectively.

--The parameters for get_call are:

--the _uid - call identifier

--type_uid - type manager uid

--the_call - call text

--source - caller's identity

--destination - destination's identity

2-8

KERNEL DESIGN

--The parameters for get_resp are:
--the_uid - call identifier
--type_uid - type manager uid
--the_resp - response to call
PROCEDURE get_call (typ_uid : IN uid, the_uid : OUT uid;
the_call : OUT message; source, destination : OUT
xtnded uid);

PROCEDURE get_resp (type_uid : IN uid; the_uid : OUT uid;
the_resp : OUT message);

--c_status and r_status return the status

--of a call or a response message to the caller
--and the callee type managers. The parameters are:
--the_call - call identifier ‘

--typ_uid ~ type manager uid

--the_status - call_status and resp_status for

-- c_status and r_status respectively.

PROCEDURE c_status (the_call, typ_uid : IN uid;
the status : OUT call_status);

PROCEDURE r_status (the_call, typ uid : IN uid,
the_status : OUT resp_status);

~--*%%here follow the procedure headers for
--*#%%3ccess to object storage and uid
~--##%generation.

PRIVATE

~-here follow the declarations of the limited private
--types uid and xtnded uid.

TYPE incrnge IS RANGE 0O..(2%%32-1);
TYPE seqrnge IS RANGE 0..(2%%22-1);

TYPE uid IS
RECORD
origin_host : host_id;
incarnation : incrnge;
sequence : seqrnge;

END RECORD;
--##% here are declared other private types.
END PACKAGE kernel;

2.2.4 The Utility Structures Within the Kernel
2.2.4.1 Mapping to Call Handlers
The next part of the RPC design is to describe the means of transfer of

information inside the kernel. The kernel, as was mentioned earlier, consists

2-9

of one call handler for each type manager and a network handler. The mapping
between type manager and call handler is achieved by a package that maps
(type) uids to access variables of the call handler task type. This package
is called the type_mgr_map.

PACKAGE type _mgr map IS
function get_chlr (typ_uid : IN uid) returns
ch_ptr;

--This returns a pointer to the call handler task

PROCEDURE instl _chlr (typ_uid : IN uid: th _chlr: IN
ch_ptr);

--sets up an entry in the map for the céll
--handler. The package insures that only one
--insertion is occurring at a time.

PROCEDURE delete_chlr (typ_uid : IN uid);

--deletes an entry from the map. This call
--must exclude other calls.

--The package will internally use a task
--to ensure mutual exclusion between

--the different calls.

--*Insert the calls that give access to storage
directory tasks.

END PACKAGE type mgr_map;
2.2.4.2 The Message Storage Manager

The next set of structures that need to be defined are the tables that
store calls and responses to calls as well as tiue state information related to
calls. There are a number of options possible. Ideally, storage of calls
should be centralized so that storage devoted to calls and software to
manipulate them would be minimized.

This design chooses to do the following:
1. Store the messages in a separate structure.

2. Store call and response to call state information in the
call handlers.

3. The message storage structure would provide pointers to
the messages that are stored along with the message
state information. Externally the pointer is a limited
private type, but internally it is an integer subtype.
Thus access to a message is rapid.

2-10

KERNEL DESIGN

The visible part of message storage is given below:

PACKAGE message_storage IS

TYPE msg_access IS LIMITED PRIVATE;

FUNCTION put_msg (the msg : IN message;
the_id : IN uid) RETURNS
msg_access;

FUNCTION get_msg (the_ptr : IN msg access call_uid :
IN uid) returns message;

PROCEDURE del_msg (the_ptr : IN msg_access call_uid :

IN uid);

--the purpose of the above routines is obvious.
--the install and delete functions exclude
-=-all other functions. '

END PACKAGE message_storage;
2.2.5 The RPC Protocol

The state information of calls to and from a type manager is presented
next. A call consists of a number of stages and it is best to break it up
into these stages and analyze each stage for its information requirement.
Calls from a type manager are considered first.

1. The call is delivered to the call handler.

2. The network handler sends the message and delivers the

callee type manager's acknowledgement to the call

handler.

3. The network handler receives a response to the call and
delivers it to the call handler.

4. The type manager accepts the response and the call
handler acknowledges the response to the network handler
and thus the callee's type manager.

Calls to a type manager have the following sequence.

1. The network handler receives a call and passes it to the
call handler.

2. When the type manager accepts the call, the call handler
sends an acknowledgement to the caller.

3. The type manager delivers a response to the call, to the
call handler.

4, The network handler takes the response, delivers it to
the caller, and receives an acknowledgement of the
response.

2.2.5.1 State Information Required to Support the RPC Protocol

For the outgoing calls the information requirements for each state are as
follows: _

State 1: Call Delivery

i) Call uid.
ii) Call text (the pointer is stored in the call handler).
iii) Source and destination extended uid.
iv) Status of call (initially not delivered or receiver
failed; finally delivered or object does not exist).
v) Delete option specified for the call.

Stage 2: Call in progress

i) Call uid.
ii) Source and destination extended uid.
iii) Status of call (initially delivered, finally either
receiver failed or response here).
iv) Delete option specified for the call.

Stage 3: Call completed

i) Call uid.

ii) Response message (pointer).

iii) Source and destination extended uid.

iv) Status of call (stays at response here).
v) Delete optinn specified for the call.

A status of receive failed or object does not exist, may result in the
call being aborted by the caller.

The information requirements for each stage of call handling are as
follows:

Stage 1: Call reception

1) Call uid.
ii) Call text (pointer to the text).
iii) Source and destination extended uids.
iv) Status of response (initially as not reached but may
change to sndr_failed).
v) Delete option for the call.

Stage 2: Call in progress
i) Call uid.

ii) Source and destination extended uids.

2-12

KERNEL DESIGN

iii) Status of response (not reached, sndr_failed).
iv) Delete option for the call.

Stage 3: Response Dispatch

1) Call uid.
ii) Response text.
iii) Source and destination extended uids.
iv) Status of response (initially not reached or sndrfailed,
finally reached).
v) Delete option of response.

2.2.5.2 Packages to Support Call State Information Management

From the above analysis it is clear that two packages are necessary in
each call handler: one for calls sent, the other for calls received. Each
package will have a set of specialized functions that install calls, jelete
calls, and update the status of the call.

PACKAGE send_call IS

--iastall sets up a call, its parameters are

-=-1. Call uid

--2. Call text pointer

-=-3,. Source and destination extended uid

--4, Delete option

--The status of an installed call is not delivered.

procedure install (the_uid : in uid; the_call: in
msg_access; source, dest : in xtnded uid;
the_opt : delete_option):

--call_dlvred updates the call table for a
--call that has been accepted by the
--destination's type manager parameters are:
--Call uid

-- A side effect is that the msg access
--pointer is deleted.

PROCEDURE call dlvred (the_uid : IN uid);

--call_answered installs a pointer to a
--response for a call. It also updates
--the call status to response_here.
--Parameters are:

--1. Call uid.

--2. Response text pointer.

PROCEDURE call_answered (the uid : IN uid;
the_answer : IN msg_access);

2-13

--select_next. selects the next call whose size is
--less than or equal to cr_'nd to be sent. In
--effect this is the dispatcher of calls.

--The parameters are:

--1. Bound on call size.

--2. Call uid.

--3. Call text pointer.

--4. Call source and destination.

--5. Call delete option.

~--Note: this procedure will not select a local call.

PROCEDURE select next (cr_bnd : IN INTEGER the_uid :
OUT uid; the_call : OUT msg_access; source,
destination : OUT xtnded_uid; the_opt : OUT
del option);

--host_failed is part of damage containment at

--the kernel level. It is invoked when a

--host fails. It processes all the calls

--made to the failed host and deletes

--those calls with a delete option

--equal to failure_revoke.

PROCEDURE host_failed (the_host : IN host_id);

--remove_call. Removes a call entry from the
--call table. This routine is invoked by the
--type manager either to remove a call that
--has been responded to or to remove

--a call whose callee host has failed.

--The parameters are:

--1. Call uid.

--2. Call text pointer.

--3. Response text pointer.

PROCEDURE remove_call (the_uid : IN uid;
c_ptr, r_ptr : OUT msg_access);

--give status returns the status of a call

FUNCTION give_status (the_uid : IN uid)
RETURNS call_status;

--give_response returns response to some call
--it selects responses by some algorithm.

PROCEDURE give_response (the_uid : OUT uid; the_call :
OUT msg_access);

--the package internally requires no
--mutual exclusion on invocations since
--all its routines are invoked in the
--call handler.

KERNEL DESIGN

--give_ack returns the uids of a response that
--has been received

PROCEDURE give ack (the_uid : OUT uid; the_clr,
the_cle : OUT xtnded_uid);

END PACKAGE send_call;

The second package handles calls received. It has similar functions to
the package send_call. The response status in this package for a call will be
not_reached until the response is 1issued and delivered to the caller's type
manager.

PACKAGE receive_call IS

--put_call installs a call in the table.

PROCEDURE put_call (the_uid : IN uid; the_call : IN
msg_access; source, destination: in xtnded uid)

--call_dlvred removes the call from the table.
~--The uid, source and destination are left in and
--the status become dlvred.

PROCEDURE call_dlvred (the_uid : OUT uid; the_call;
OUT msg_access; source, destination : OUT
xtnded_uid);

--response_given puts the response text pointer
--into the table.

FUNCTION response_given (the uid : IN uid;
the_answer : IN msg_access; resp_option :
IN del_option) RETURNS resp_status;

--select_next releases a remote response provided it
--is less than the value of cr_bnd.

PROCEDURE salect_next (cr_bnd : IN integer; the_uid :
OUT uid; the_txt : OUT msg_access;
source, destination : out xtnded_uid;
the_opt : OUT del_option);

--host_failed has the same function as in
--package send_call.

PROCEDURE host_failed (the_host : IN hostid);

--response_acked changes the status of the
--call entry to accepted.

PROCEDURE response_acked (the_call : IN uid);
--response_state returns the status of the response.

FUNCTION response_state (the_call : IN uid)
RETURNS resp_status;

--selects next remote call to be acknowledged.

PROCEDURE give call_ack (the_call : OUT uid;
the_clr, the cle : OUT xtnded_uid);

END PACKAGE receive_call;

2.2.6 The Call Handler

The call handler is a task type that 1is declared within the kernel.
Each call handler contains an instance of send_call and receive_call. An
instance of this type is generated for each type manager. Some of the entry
points of this task are accessed by the visible procedures of the kernel,
others are 1invoked by the network handler. Each of the entry points of the
call handler, when invoked, will call some procedures in the call handler's
send_call and receive_call packages to manipulate the state lnformatlon about
the call. This interaction is summarized in Figure 2-3. In additicn, Figures
2-4 and 2-5 present this information in more detail.

The entry points in the call handler are similar in function to the entry
points of the kernel. The exceptions are the entry calls for the network
handler which give and receive calls.

TYPE ch_ptr IS ACCESS call_handler;
TASK TYPE call_handler is
ENTRY mc (c_uid : IN uid; c_data : IN msg_access;
c_from, c_to : IN xtnded_uid;
c_opt : 1IN del _option; c_ “stat : OUT call_status);

--mc receives an entry for the send_call
--table of this call handler.

ENTRY mr (c_uid : IN uid; v_data : IN msg_access;
c_from, c_ “to : IN xtnded u1d'
r_ppt : 1IN del _option; r stat : OUT resp_status);
--mr enters as response to a call.
--it uses the receive call package of
--the call handler.

ENTRY klc (c_uid : IN uid; c_stat : OUT
kill_status; c_ptr, r_ptr : OUT msg_access);

--klec kills a call issued by this type manager.

ENTRY kpc (c_uid : IN uid; c_stat : OUT kill status);

2-16

KERNEL DESIGN

--kpc instructs the call handler to

--keep a call despite failure at the

--receiver host.

ENTRY rs (c_uid : 1IN uid; c_stat : OUT resp_status);
--response status,

ENTRY cs (c_uid : IN uid; c¢_stat : OUT call_status);

--call_status
ENTRY tr (c_uid : OUT uid; r_text : OUT msg_access);

--returns a response to calls to the type mgr.

ENTRY tc (c_uid : OUT c_text : OUT msg_access;
c_from, c_t: : OUT xtnded uid);

--returns a call to the type manager

ENTRY gter (c_uid : IN uid; cr_text : IN msg_access;
c_from, c_to : IN xtnded_uid);

--gives a call or response to this call handler.

ENTRY gtack (cr_ack : IN uid; c_from, c_to :
IN xtnded_uid);

--gives an acknowledgement for a call or
--response message from this call handler.

ENTRY 1lc (c_uid : IN uid; cr_text : IN msg_access;
c_form, c_to : IN xtnded_uid);

--local call to destination call handler.

ENTRY 1r (c_uid : IN uid; cr_text : IN msg_access;
c_from, c_to : IN xtnded uid);

--local response to source call handler.

ENTRY lcack (c_uid : IN uid; c_from, c_to : IN xtnded_uid);
--local call ack to source call handler.

ENTRY lrack (c_uid : IN uid; c_from, c_to : IN xtnded_uid);
--local response ack to destination call handler.

ENTRY gver (cr_bnd : IN integer; OUT uid; cr_text :

OUT msg_access; cr_from, cr_to : OUT xtnded uid;
c_opt : OUT del option);

2-17

--gives a call or a response to the
~--network handler.

ENTRY gvack (cr_ack : OUT uid; c_from, c_to : OUT
xtnded_uid);

--returns an acknowledgement to a host.
ENTRY host_down (the_host : IN host_id);

--tells of a failed host. used for damage
--containment.

END TASK call_handler;
TASK BODY call_handler IS

--count of calls and responses to be delivered
--to the type manager.

ready_calls, ready_resp : INTEGER := 0;

--calls and responses to be aéked.
not_acked_calls, not_acked resp : INTEGER := O;
--count of calls and responses to be sent out

out_calls, out_resp;

out who : boolean := true;
failed_id : host_id := 0;
BEGIN
LOOP --endless loop
SELECT

--calls made by this type manager
ACCEPT mc(c_uid, c_data, c_from, c_to, copt, c_stat) DO
send call.install (c_uid, c_data, c_from,
c_to, c_opt, c_stat)
out_calls : out_calls + 1;
END;
OR
--accept responses to calls.
ACCEPT mr (c_uid, r_data, c_from, c_to, r_opt,
r_stat) DO
r_stat := receive_call.response_given
(c_uid, r_data, r_opt);
IF r_stat := not_reached THEN
out_resp := out_resp + 1;
ENDIF
END
OR
--accept kill call entry.
ACCEPT klec (c_uid, c_stat, c_ptr, r_ptr) do

2-18

KERNEL DESIGN

send_call.remove_call (c_uid, c_ptr, r_ptr);
IF (call _ptr = O AND resp_ptr = 0) THEN
~-message deleted but no response.
c_stat := not_dead_yet.
ELSE c_stat := dead_all over;
ENDIF
END
OR
--accept keep call entry.
ACCEPT kpc (c_uid, c_stat) DO
IF send_call.give_status (c_uid) /= does_not_exist
THEN c_stat := not_dead_yet
ELSE c_stat := does_not_exist
ENDIF
END
OR
--response status
ACCEPT rs (c_uid, c_stat) DO
c_stat := receive_call.response_state(c_uid);
END
OR
-=-call status
ACCEPT cs (c_uid, c_stat) DO
c_stat ::z send_call. give_status (c_uid);
END™
OR
--accept requests for responses from type mgr.
WHEN ready resp >0 ==>
ACCEPT tr (c_uid, r_text) DO
send_call.give_response (c_uid, r_text);
ready_resp := ready_resp - 1;
not_acked_resp := not_acked resp + 1;
END
send_call.remove_call (c_uid, r_text);
END
CR
--accept request for calls from type mgr
WHEN ready_calls >0 ==z>
ACCEPT tc (c_uid, cr_text, c_from, c_to) DO
receive call call dlvred (c _uid, er _text,
c_from, ¢_to);
ready_call := ready_call - 1;
not_acked call := not_acked call + 1,
end;
OR
--accept a new call or response from network handler.
ACCEPT gter (c_uid, cr_text, c_from, c_to) DO
IF c_uid. origin _host = this _host THEN
--this 1Is a response
send_call.call_answered (c_uid, cr_text);
ready_resp := ready resp + 1;
ELSE

--this is a call.
receive_call.put_call (c_uid, cr_text, c_from,
c_to);
ready_calls := ready_calls + 1;
ENDIF;
END;
OR
--accept an acknowledgement.
ACCEPT gtack (cr_ack, c_from, c_to) do
[F c_ack.origin_host = this host THEN
--this is a call acknowledgement
send_call.call_dlvred (cr_ack);

ELSE
--this is a response acknowledgement
receive_call.response_acked (cr_ack);

ENDIF;

END;
OR

--accept a local call.

ACCEPT lc (c_uid, cr_text, c_from, c_to) DO
receive call put _ call (c u1d, er text. c_from, c_to);
ready_calls HE ready calls + 1;

END;

OR

--accept a local response.

ACCEPT 1r (c_uid,cr_text, c_from, c_to) DO
send_call. call _answered (c _uid, cr _text);

ready_resp := ready_resp + 1;
END
OR
--accept a local call acknowledgement.
ACCEPT lcack (c_uid, c_from, c_to) DO
receive_call dlvred (e uld),
END
OR
--accept a local response acknowledgement.
ACCEPT lrack (c_uid, c_from, c_to) DO
receive_call _response_acked (c_uid);
END
OR
--accept a local response acknowledgement.
ACCEPT lrack (c_uid, c_from, c_to) DO
receive_call.response_acked (c_uid);
END;
OR
--accept a request to give out a call or response.
--out_who decides which of calls or responses it's
--turn it is.
WHEN out_calls + out_resp >0 ==>
ACCEPT gver (cv_bnd, c¢_uid, cr_text, cr_from, cr_to,
¢ opt) DO
IF (out_who AND out calls > 0) OR

2-20

KERNEL DESIGN

(NOT out_who AND out_resp = 0) THEN
send call select_next (cr_bnd, c_uid, cr_text,
cr from cr_ to, c_opt);
out calls :z out _calls - 1; out_who := FALSE;
ELSEIF (NOT out who AND out_resp >0) + OR
(out_who AND out _call = 0) THEN
receive _call. select next (cr. bnd, c_uid, cr_text,
er_from, cr_to, c_opt);
out_resp := out_resp - 1; out_who := TRUE;
ENDIF;
END;
OR
--accept a request to give out an ack.
WHEN (not_acked_calls + not _acked_resp > 0) ==>
ACCEPT gvack (cr _ack, c_from, cto) DO
IF not_acked resp >Q THEN
send_call. give_ack (cr_ack, c_from, c_to)

not_acked _resp := not_acked resp - 1;
ELSE
receive_call.give_call_ack (cr_ack, c_fronm,
c_to)”
not_acked_call iz not_acked_call - 1;
ENDIF
END;

OR
--host failure
ACCEPT host_down (the_host) DO

failed_id := the_host;

END;

END select;

IF failed_id /= O THEN
send call host_failed (failed_id),
receive _call. host _failed (failed _id);

ENDIF

failed_id := 0

END LOOP;
END; TASK call_handler;

The call_handler task 1is the end_to_end protocol handler for the ZEUS
system. Other than gtcr, gtack, gver, gvack, and host_down, the call handler
entry points are accessed by the kernel interface functions described earlier.
In addition to the entry calls, these functions access some of the other
packages. It must be mentioned here that more than one activation of a kernel
function can exist simultaneously.

2.2.7 The Kernel Functions for the RPC

Code outlines for each kernel function is presented next after which the
type manager interface tasks to receive calls and responses are presented.
Following that the network handler design and implementation is presented.

2-21

PROCEDURE make_call (typ_uid : IN uid; source, destination :
IN xtnded u1d the call : IN message;
call option : IN del _option; call _uid : OUT uid;
the_status : OUT call status);
the_hndir : ch_ptr, --call handler pointer
the ptr : msg_access; --message pointer
begin
--get uid for the call
call uid := get_uid;
--put message .nto message database
--first check chat destination is up.
IF rec_pack.host_up (destination.host_hint) THEN
the_status := NOT dlvred;
the_ptr := message_storage.put_msg (the_call,
call_uid);
--put the message into the call_handler.
IF the_ptr > O THEN
the_hndler := type_mgr _map.get chlr (typ_uid);
the_hndler.mc (call_uid, the_ptr, source,
destination, call option, the_status);
ELSE the_status := wait_buffer_full;
ENDIF
--check for local call
IF source.host_hint = destination.host_hint THEN
the_hndler :z= type_mgr_map.get_chlr (destination.typeuid);
the_hndlr.lc (call_uid, the ptr, source, destination);
ENDIF
ELSE
the_status := rcur_failed;
ENDIF;
END make call;

The above routine uses a procedure host_up and a function get_seq. The
former is part of a package that the kernel uses to

detect host failures while the latter is part of a package the kernel uses to
get sequence numbers. Both these packages are specified later.

procedure make resp (typ_uid : IN uid; the_resp : |IN
message; source, destination : IN xtnded_uid;
call uid : |IN uid; resp_option : IN del_option;
the_status : OUT resp_status) IS
the ch : ch_ptr; --call handler
the_ptr : msg_access; --message pointer.
BEGIN
--put response in database.
IF rec_pack.host_up (source.host_hint) THEN

the_status := not_reached;
the_ptr ::= message_storage.put _msg (the_resp,
call uid);

IF the_ptr > O THEN
--insert response into call_handler

2-22

KERNEL DESIGN

the ch := type mgr_map.get_chlr (typ_uid);

the ch my (call uid, the ptr, source,
destination, resp_option, the_status);

--check for local response

IF source.host_hint = destination.host_hint THEN
the_ch := type _mgr _map.get_chlr (source. type_uid);
the ch lr (call _uid, the_ptr, source, destination);

ENDIF
ELSE the_status := wait_buffer full;
ENDIF;
ELSE
the_status := sndr_failed;
ENDIF

END make_resp;

The make_resp and make_call routines are very similar and use similar
packages. The mapping of type uid to call handler may be bypassed by making
the call handler points a limited private type visible from the kernel.

PROCEDURE kill call (call_uid, typ uid : IN uid;
the status : OUT kill _status) is
the_ch : ch_ptr;
in_msg, out_msg : msg_access;
BEGIN
--get call handler and kill call
the_ch := type_mgr_map.get_chlr (typ_uid);
the_. “ch.kle (call _uid, the_ctatus, in_r3g, out_msg);
--delete messages from message storage
IF in_msg /= O THEN
message_storage.del msg (in_msg, call_uid);
ENDIF;
IF out_msg /= O THEN
message_storage.del msg (out _msg, call_uid);

ENDIF;
END kill call;

In the above procedure it can be ensured that only one message is deleted
by removing a call or a response once it is accepted by the type manager.

PROCEDURE keep_call (call_uid, typ_uid : IN uid;
the_status : OUT kill_status);
the_ch : ch _ptr;

BEGIN
--get call handler
the_ch := type_mgr_map.get_chlr (typ uid);
the_ch.kpc (call_uid, the_status);

END keep_call;

The next two kernel interface routines get_call and get _resp are similar.
They remove messages directed to the type manager.

2-23

PROCEDURE get_call (typ_uid : IN uid; the_uid : OUT uid;
the_call : OUT message; source, destination : OUT
xtnded_uid) is

the_ch : ch_ptr;

in_msg : msg_access;

BEGIN

the ch := type_mgr_map.get_chlr (typ_uid);

the ch.tc (the_uid, in_msg, source, destination);

--get the message.

the _call := message_storage.get_msg (in_msg, the_uid);

--cneck if local call.

IF source.host_hint = destination.host_hint THEN
the_ch := tjp _mgr_map.get_chlr (source. typeuid);
the ch.lcack (the uid, source, destination);

ENDIF

--delete the message.

message_storage.del_msg (in_msg, the_uid);

END get_call;

PROCEDURE get resp (typ_uid : IN uid; the_uid : OUT uid;

the_resp : OUT message) is

the_ch : ch_ptr;

out_msg : msg_access;
BEGIN

--get call handier.
the ch := type_mgr_map.get_chlr (typ_uid);
the ch tr (the uid, out msg),
--get the response and delete the message.
the resp := message_storage.get msg (out_msg, the_uid);
message_storage.del msg (out_msg, the_uid);
--check if local call.
IF source.host_hint = destina“ion.nhost_hint THEN
the_ch := type_mgr_map.get_chlr (destination.typeuid);
the _ch.lrack (the_uid, source, destination);
ENDIF
END get_resp;
The procedure bodies of c_status and r_status are similar because they
query the call handler about the call or response status.

PROCEDURE c_status (the_call, typ _uid : IN uid;
the_status : OUT call_status) IS
the_ch : ch_ptr ; --call handler
BEGIN
--get call handler.
the_ch := typ_mgr_map.get chlr (typ_uid);
the_ch.cs (the_call, the status);
END c_status;

PROCEDURE r_status (the_call, typ uid : IN uid;
the_status : OUT resp_status) IS
the ch : ch_ptr; --call handler;

BEGIN
--get cal!l handler

2-24

KERNEL DESIGN

the_ch := typ mgr _map.get_chlr (typ_uid);
the _ch.rs (the_call, the_status);
END r_status.

2.2.8 Tasks Within a Type Manager to Receive Calls and Responses

Asynchronously

As mentioned earlier, the type managers should set up tasks so that they
can receive calls and responses in an asynchroncus manner instead of waiting
for them. These tasks are declared inside the type manager, and will deliver
calls and responses to the main task of the type manager.

The get call task, for instance, performs the following loop. It first
makes a kernel get call invocation. When the task receives a call it makes an
entry call to the type manager. It waits until the type manager accepts the
new call. When the call has been accepted the get_call task repeats the above
sequence. The get response task obtains responses to calls in a similar
manner.

TASK gc_tsk IS
--no entries
TASK BODY gc_tsk IS
the_typ, the_uid : uid; the_call : message;

svc, dest : xtnded uid;
BEGIN
the_typ :- <type uid>;
LOoP
kernel.get call (the_type, the_uid, the_call, src,
dest);
tm.put_call (the_uid, the_call, src, dest);
END LOOP;
END gc_tsk;

2.2.9 The Network Handler

The networ'. handler sends and receives calls and packets for the kernel.
Its functions are to:

1. Poll each handler for calls, responses, or
acknowledgements to be sent. On receiving one of these,
the network handler packetizes it and sends it off
packet by packet over the ethernet controller. For
simplicity we assume that one message is being sent at
any given time. Timeouts are used to detect failures of
packet transmission.

2-25

2. Receive and assemble packets into calls and responses to
calls. Once a call or response is re_assembled the
message is delivered to the proper type manager.

3. Receive and send packets that are signals to start
distributed uid incarnation field generation and host
recovery computations.

2.2.9.1 The Network Handler Architecture

The architecture of the network handler 1is a collection of tasks each of
which has a different function. The basic task 1is one which receives and
transmits packets. At any time, it interacts solely with one of the following
sets of tasks.

1) Send driver for packets.
2) Receive driver for packets.
3) UID generation task.

The packet tranceiving task has two 1interrupts from the ethernet
controller which are rdy_to_snd and rdy _to_rec. The former takes a packet to
send on the ether, while the latter delivers a packet that arrived on the
ether. The packet tranceiving task waits on the entry points of these two
interrupts as well as on its entry points for the sequence generation and
recovery protocol tasks that handle outward going packets.

A rendezvous at the rdy_to_rec entry point will result in a rendezvous at
the entry point in the packet tranceiving task that accept entry calls to
transfer packets to the receive task.

Sequence number generation, restart, and roll call protocols are
described in the sequence generation section.

A number of figures describe the interactions among the different network
handler components. Figure 2-6 describes the sequence of events to send
messages and packets, while Figure 2-7 describes the sequence of events to
receive messages and packets. Figure 2-8 allows quick reference to the
net_tranceiver tasks' entry points. Finally, Figure 2-9 is a timing diagram
of how packets are delivered over the network. The reader should refer to
these figures often in order to understand the ADA code.

2.2.9.2 Data Handled by the Network Handler

The first step here is to describe the types of packets that will be sent
and received over the network. These will include data packets (dtp),
acknowledgements for data packets (adtp), new incarnation packet (nip), host
restart packet (hrp), first host answer packet (fhap), start roll call packet
(srcp), and response roll call packet (rrcp).

2-26

KERNEL DESIGN

TYPE pkt_resp IS (no_ack, ack, badata, nobuff, toobig);

TYPE pkt_class IS (dtp, adtp, nip, nir, hrp, fhap, srcp, rrep);
--dtp data packet

--adtp data acknowledgement packet

--nip new incarnation packet

--nir new incarnation response

--hrp host restart packet

--fhap first host answer packet

--srcp start roll call packet

--rrcp response roll call packet

TYPE pkt_info IS
RECORD
the_id : wuid;
the_pos, the_tot : integer;
the resp: pkt_resp;
END

TYPE ballast IS ARRAY (<range>) OF BOOLEAN;
TYPE packet (class : pkt_class) IS
2.2.9.3 Data Handled by the Network Handler

The first step here is to describe the types of packets that will Dbe sent
and received over the network. These will include data packets (dtp),
acknowledgements for data packets (adtp), new incarnation packet (nip), host
restart packet (hrp), first host answer packet (fhap), start roll call packet
(srcp), and response roll call packet (rrcp).

TYPE pkt_resp IS (no_ack, ack, badata, nobuff, toobig);

TYPE pkt_class IS (dtp, adtp, nip, nir, hrp, fhap, srcp, rrcp);
--dtp data packet

--adtp data acknowledgement packet

--nip new incarnation packet

~--nir new incarnation response

--hrp host restart packet

--fhap first host answer packet

--srcp start roll call packet

--rrcp response roll call packet

TYPE pkt info IS

RECORD
the_id : uid;
the_pos, the_tot : integer;
the_resp: pkt_resp;

END

TYPE ballast IS ARRAY (<range>) OF BOOLEAN;

2-27

TYPE packet (class : pkt_class) IS

RECORD
host_addr : RANGE 0..2047;
--host address can either be from 1 - to 1023
--for point to point or broadcast communication or
--from 1024 to 2047 for multipoint communication.

CASE class IS

WHEN dtp =>
pkt_info, --packet data
aknk_info : pkt_info; --piggback ack/nack
pkt_ data : ballast;

WHEN adtp =>
aknk_info : pkt_info;
ack_packing : ballast;
--null .
--put in package definitions for incarnation request,
--roll calland host restart computations.

END CASE
END RECORD packet;

2.2.10 The Net Tranceiver Task

Having described the data that will be transferred in the network
handler, the next step is to define the interfaces of the tasks that comprise
the network handler. The packet tranceiver task is described first. As
mentioned before, this task has two entry points that represent ethernet
controller interrupts. In addition to these, it has entry points to give or
receive packets to the other tasks in the network handler. Each of these is
specified below.

TASK net_tranceiver IS

ENTRY rdy_to_snd;
FOR rdy_to_snd USE AT 8#...#;
--entry for sending packets
ENTRY rdy_to_rec;
FOR rdy_to_rec USE AT 8#...#;
--entry for receiv1ng packets.
ENTRY snd_data (the_pkt : IN packet);
--entry to send data and data acknowledge packets
ENTRY get_data (the_pkt : OUT packet);
--entry to receive data and data acknowledge packets
ENTRY put_acks (the_aknk : IN pkt_info);
--acks/naks from receiver task
ENTRY get_ack (the_aknk : OUT pkt_info);
--pkt info of packets acked
ENTRY give_ack (the_aknk : OUT pkt_info);
--pkt info of packet received (packets to be acked)

--entries for uid generation in section 4.3.3

2-28

KERNEL DESIGN

END TASK net_tranceiver;

The tranceiver controls traffic to and from a host. Under normal
operation the tranceiver will receive and send data packets and data
acknowledgement packets. However, the receiving of a host restart, new
incarnation, or start roll call packets will result in the tranceiver entering
a special mode to cater especially tc the incarnmation request, restart, cr
roll call computaticns. In this mode, the tranceiver will refuse to send or
receive packets other than those for the incarnation request, restart, or roll
call computation. This will ensure that timing constraints can be imposed on
these computations.

Buffering of packets and acknowledgements is also of a concern here.
Buffers are needed for incoming and outgoing packets and incoming and aJutgoing
acks or naks. The handling of packets or the sending side is as follows:

1. The net_tranceiver receives a packet from the
send_driver task and places it, if possible, in the
data_out buffer.

2. The net_tranceiver, when it receives a request to send a
packet from the ethernet controller, will dispatch the
packet.

3. Packet information from the acks_in buffer is delivered
to the send_driver task. This allows packets that were
sent earlier to be acknowledged.

The handling of packets on the receiver side is more complex.

1. The net_tranceiver receives a data packet from the
ethernet controller. If there is space in the data in
buffer it places it there. If there is no space it
rejects the packet and places a nack for the packet in
the acks_out buffer. If this buffer has no space then
the packet can be deemed lost.

2. Packets in the data_in buffer are given to the
receive_driver task when it requests them.

3. The receive_driver returns acks or nacks to the
net_tranceiver if there is space in the acks_out buffer
(condition for the rendezvous).

4. The net_tranceiver then gives acks/nacks from the buffer
acks_out to the send_driver. The send_driver then sends
these acks/nacks either as separate packets or as
piggybacked acks/nacks depending on the line control
protocol.

2-29

The handling of acks/nacks received by the net_tranceiver is as follows:

1. Acks or nacks are received either separately or
piggybacked on a data packet. If there is space in the
acks_in buffer they are put into that buffer.
Otherwise, they are lost.

2. When the send_driver requests for acks/nacks of packets
sent from this host they are delivered to it from the
acks_in buffer.

With all these buffers, specifying them explicitly in the net_tranceiver
task would be cumbersome. To alleviate this, a generic package “called the
buffer is declared with the buffer size and buffer element as parameters.
Each buffer then is an instantiation of this generic package, thus permitting
a simple specification of the systen. _

GENERIC
size : POSITIVE
TYPE elem IS PRIVATE;
PACKAGE the_buffer IS
FUNCTION is_full RETURNS BOOLEAN;
FUNCTION is empty RETURNS BOOLEAN
PROCEDURE add_elem (e : IN elem),
FUNCTION get_ elem RETURNS elem;
--add_elem and get_elem must be called only
--after NOT is empty and NOT is_full return
--true
END PACKAGE the_buffer;

This generic package will allow the various buffers in the system to be
specified and used easily.

TASK BODY net_tranceiver IS
out_dt_size : [INTEGER CONSTANT :=
in dat _size : INTEGER CONSTANT :
out ack _size : INTEGER CONSTANT
int ack _size : [INTEGER CONSTANT :
--the buffer sizes for outgoing data, incoming data,
--outgoing acks/naks and incoming acks/naks
--respectively.
data_out IS NEW the_buffer (out_dt_size, packet);
data in IS NEW the buffer (in_ data size packet);
acks out IS NEW the _buffer (out_ ack _size, pkt_info);
acks_ “in IS NEW the buffer (int ack size pkt_ info);
--the buffers are instantiated.
out_hard, in_hard : packet
FOR out _hard “USE AT 8#...

FOR in_hard USE AT 8#..

--hardware buffers.

TYPE nt_state IS (rpc_alg, uid_alg, rlc_alg, hrp_alg,
start_up);

2-30

KERNEL DESIGN

--state of the net_tranceiver task
the_state: nt_state := start_up;
the_hdr; the_aknk : pkt_info;
the buf : packet;
--temporary storage.
BEGIN
--put in code for start-up state here
--specified in section 2.4.3.3
LOQP --infinite loop
WHILE the_state = rpc_alg LOQP
~--normal operation
SELECT
WHEN (NOT data_out.is_empty OR (E'snd_seq > 0)) ==>
~--prefer uid generatlon packets over RPC packets
ACCEPT rdy_to_snd DO
SELECT
ACCEPT snd_seq (the_pkt : IN packet);
out_hard := the_pkt;
END
ELSE
out_hard := data_out.get_elem;
END select;
END
OR
ACCEPT ready_to_rec DO
the.buf := in_hard;
END
CASE the_buf.class IS
--handle data packets
WHEN dtp =>
the_hdr :z= the_buf.pkt_info;
the_aknk := the_buf_aknk_info;
[F data_in.is_ full then
the hdr the” _resp := no_buff;
IF NOT acks _out.is _full THEN
acks_out.add_elem (the _hdr);
ENDIF;
--send nak for buffer full
ELSE
data_in.add_elem (the_buf);
ENDIF;
IF the _aknk.the_resp /= no_ack THEN
IF NOT acks_in.is_full THEN
acks_in.add_elem (the_ aknk);
ENDIF
--put ack away
ENDIF;
WHEN adtp =>
--handle acks
IF NOT acks_in.is_full THEN
acks_in.add_elem (the_buf.aknk_info);
ENDIF;

2-31

--put in handling for the other packet types from
--section 2.4.3.3.
END case;
OR
WHEN NOT data_out.is_full =>
ACCEPT snd_data (the_pkt) DO
data_out.add_elem (the_pkt)
END
OR
WHEN NOT (data_in.is_empty) =>
ACCEPT get_data (the_pkt) DO
data_in.get_elem (the_pkt);
END;
OR
WHEN NOT acks _out.is_full =>
ACCEPT put_acks (the_aknk) DO
acks_out.add_elem (the_aknk);
END;
OR
WHEN NOT acks_in.is_empty =>
ACCEPT get_ack (the_aknk) DO
the_aknk := acks_in.get elem;
END;
OR
WHEN NOT acks_out.is_empty =>
ACCEPT give_ack (the_aknk) DO
the_aknk := acks_out.get_elenm;
END;
END select;
END loop;
--the specification of the handling of packets to
--generate incarnation numbers, roll call protocols
--and host restart is given in section 2.4.3.
END loop;
END net_tranceiver;

2.2.10.1 The Network Receive and Send Tasks

The network receive and send tasks are together equivalent to the
transport and line control protocol of a traditional computer network. They
interface with the call handler tasks on the one hand and the net_tranceiver
task on the other.

On the call handler side these tasks deal with two types of data
entities: messages (calls, responses) and message acks (call acks, response
acks). The send task breaks these data entities into packets and gives them
to the net_tranceiver. The receive task obtains packets from the
net_tranceiver, re-assembles them into messages or message acks, and then
delivers them to the appropriate call handler.

The send and receive tasks handle the send and receive functions of a

line control protocol, too. The architecture of the send and receive tasks is
of two tasks, the send driver and the receive driver, along with two packages

2-32

KERNEL DESIGN

to manage packets that have been sent and received. These abstractions handle
all the line control, packetization, and re-assembly details.

A pcssible simpler design would be to have a kernel have a single call
being broadcasted at any time. This will permit upper bounds to be placed on
the storage requirements of calls being sent or received.

2.2.10.1.1 The Send Task

The send task 1is divided into two parts. The first is a packet manager
that handles the packetization of messages (calls, responses to calls) and of
acknowledgements for those messages. The packet manager buffers a few calls
at a time and this is done by letting the send task only obtain calls that
will fit into the currently available buffer space. The send driver is the
task that feeds the packet manager with messages, message acknowledgements,
and packet acknowledgements.

PACKAGE packet_mgr IS
TYPE msg_type IS (data, msg_ack);
--allows send_driver to force the message size to be
--less than some upper bound.
PROCEDURE how_many_free (numpkts, numbits : out integer);
--returns how many packet blocks and
--message bits (data) are available.
PROCEDURE how_many used (num_pkts, numbits : out integer);
--returns how many packet blocks and message
--bits (data) are used.
PROCEDURE msg_acked (the_id : IN uid; fronm,
to: IN xtnded_uid);
--gives an ack for a message
PROCEDURE add_msg (the_len : IN INTEGER;
the_id : IN uid; from, to : IN xtnded_uid);
the_txt : IN msg_access; the_type : IN msg_type);
--gives a new message to the packet
--manager to packetize.
FUNCTION pkt_to_send (the_pkt : OUT packet);
RETURNS BOOLEAN;
PROCEDURE packet_acked (the_uid : IN uid;
the_pos, the_tot : IN INTEGER);
--gives the id of a packet that has been ackd.
PROC&LDURE ack_this pkt (the_uid : IN uid;
the_pos, the_tot : [N INTEGER);
--requests a packet acknowledgement
END PACKAGE packet _mgr;

The send driver task has no entry points. It makes conditional entry
calls on the call handlers for calls and responses to calls provided the
packet _mgr has space. The packet mgr has a small buffer to store message
acknowledgements and these are sent on a priority basis. Thus the packet _mgr
imposes no constraints on message acknowledgements. The send_driver,
therefore, delivers all message acknowledgements to the packet _mgr.

2-33

The send driver also makes conditional entry calls to the net_tranceiver
task. It delivers packets to this task and obtains packet acknowledgements,
and packet acknowledgements it must send from this task.

TASK BODY send_driver IS
ack_flag, msg_flag : BOOLEAN := false;
--if true implies call handler gave message or ack.
the_hndlr : ch_ptr;
--holds current call handlr.
the_bitbnd : INTEGER; -- upper bound on bits
the_pkbnd : INTEGER; --upper bound on packets
--call information
the_uid : uid;
the_txt : msg_access ; --pointer to message
the _src, the_dst : xtnded_uid;
--ack information for messages
ack_uid : uid;
ack_from; ack_to : xtnded_uid;
--packet information
pkt_there : BOOLEAN := FALSE ; --packet to send
the_pkt : PACKET ; --packet to send
--packet acknowledgement information
to_ack_flag, pkt_ack_flag : BOOLEAN := FALSE
packet_uid : uid;
packet_pos, packet_tot : INTEGER;
BEGIN
the_hndlr := typ_mgr_map.get_ first;
LOoCP
--1. Find space for messages packet_mgr
packet_mgr.how_many_ free (the_pkbnd, the_bitbnd);
IF NOT msg_ flag THEN
SELECT
the_handlr.gver (the_bitbnd, the_uid, the_txt,
the _src, the_dst, the opt),
IF the _bitbnd >0 THEN msg_flag := TRUE ENDIF;
ELSE
msg_flag := FALSE;
END select;
ENDIF;
--2. Find out if ack exists.
[F NOT ack_flag THEN
SELECT
the_hndler.gvack (ack_uid, ack_from, ack _to);
ack flag := true;
ELSE
ack_flag := false;
END SELECT;
ENDIF;
--3. Act on messages or acks received.
IF msg_flag THEN
packet_mgr.add_msg (the_bitbnd, the_uid, the_txt,
the _src, the_dst, the_opt);
ENDIF;

2-34

packets into messages.
details of the packet manager are unspecified.
the entries of the net
acks/nacks from the receive driver.

outgoing packets.

KERNEL DESIGN

IF ack_flag THEN
packet _mgr.msg_acked (ack_uid, ack_from, ack_to);
ENDIF;
--4. Try to send a packet.
IF NOT pkt.there THEN
pkt_there := packet_mgr.pkt_to_send (the_pkt);
THEN
IF pkt_there THEN
SELECT
net_tranceiver.snd_data (the_pkt);
pkt_there := false;
ELSE
null;
END SELECT;
ENDIF;
--5. Find out about packets acked or received.
SELECT
net_tranceiver.get_ack (packet_uid, packet_pos,

packet tot);
pkt_ack.flag := TRUE;
ELSE
pkt_ack_flag := FALSE;

END select;
IF pkt_ack_flag THEN
packet_mgr.packet acked (packet_uid, packet_pos,
packet _tot);
ENDIF;
SELECT
net_tranceiver.give_ack (packet_uid, packet_pos,
packet _tot);
to_act flag := TRUE;
ELSE
to-ack_flag :z FALSE;
END SELECT;
IF to_ack_flag THEN
packet mgr.ack_this_pkt (packet_uid, packet_pos,
packet _tot);
ENDIF;

END LOOP;
END send_driver;

2.2.10.1.2 The Receive Task

The receive task has a packet manager that performs re- assembly of
It also generates acks or naks for

packets based on

correctness and the amount of packets buffer space available. The

2-35

The receive driver task polls
tranceiver task that give out packets and accepts
_ As mentioned earlier, the net tranceiver
then forwards these responses to the send task which encapsulates then into
The advantage of Lleaving the packet manager unspecified is
to let the link level protocol decisions be made within it.

PACKAGE rec_pkt mgr IS
FUNCTION give_packet (the_pkt : IN packet) RETURNS
pkt_info;
--the manager receives a packet and returns an
--ack or a nak.
FUNCTION get_msg (the _ptr : OUT msg_access;
the uid : OUT uid; the_svc, the_dest : OUT
xtnded_uid; :
the_hndlr : OUT chptr) RETURNS BOOLEAN;
--returns a true if message is available
FUNCTION get_ack (the_uid : OUT uid; the-src, the_dest :
OUT xtnded_uid; the_hndlr : OUT ch_ptr)
RETURNS BOOLEAN;
--returns a null ack
--else returns a uid.
END PACKAGE rec_pkt mgr.

The receive driver (rec_driver) task is very similar to the send_driver
task. The driver will not receive a packet from the net_tranceiver 1iIf its
buffer pkt_answers is full. This buffer is an instantiation of the_buffer, a
generic declaration.

TASK receive_uriver IS
--no entry points inere.

END receive_driver;

TASK BODY receive_driver IS
num_answers : [NTEGER CONSTANT :=
pkt_answers IS NEW the_buffer (num_answers, pkt_info);
the_pkt : packet;
the_aknk, to_go_aknk : pkt_info;
--packet and packet information buffers.
rdy_aknk : BOOLEAN := faise;
ack_flg : BOOLEAN := FALSE;
ack_uid : uid;
ack_src, ack _dst : xtnded_uid;
ack_hndlr : ch_ptr;

msg_uid : uid;

msg_src, msg_dst : xtnded_uid;

msg_hndler : ch_ptr;

msg_data : msg_access;

msg_flg : BOOLEAN := false;
BEGIN

LOOP

IF NOT (pkt_answers.is empty OR rdy_aknk) THEN
to_go_aknk := pkt_answers.get_elem;
rdy_aknk := TRUE
ENDIF
IF NOT pkt_answers.is_full THEN
SELECT
net_tranceiver.get data (the_pkt);
the_aknk := rec_pkt mgr.give_packet
(the_pkt);

2-36

This finishes the description of the RPC mechanism. It is not clear yet
how call timeouts will be handled. At the present time, the notion of a
roli_call computation is attractive. This will be described later in the

design.

2.3 OBJECT STORAGE AND RETRIEVAL

There are two classes of object management: simple object management anc
stable object management (in the Lampson sense). Each class has different
requirements and, therefore, must be treated on a different basis. The
differences start at the kernel interface. This section first describes the
interface for storage and retrieval. Next, the architectures of the simple
storage is described, followed by the architecture of stable storage.

2.3.1 The Kernel Interface for Object Management

The kernel interface needs operations to read, write, and delete objects.
Each of these operations is needed for simple and stable storage. Each of the
operations returns a status to the user. The status for simple storage will
differ from that for stable storage; this is the first visible difference to
“he user.

PACKAGE kernel IS

--*put in all the type definitions and procedure
--*specifications for the RPC interface as here.

TYPE simpl_status IS

(ready, not _available, does _not_exist, no_storage);
--ready ==> operatlon completed successfully
--not_available - ==> that the data has become
--unavailable due to storage error.
--does_not_exist ==> that there is no record of
-~the obJect on storage.
--no_storage ==> no secondary storage

TYPE stabl_status IS

{ready, may be_old, does_not_exist, no_storage);
--ready =z> operation successful.
--may_be_old ==> one copy readable.
--does_not_exist ==> no record of object.
--no_storage ==> no free space.

TYPE obj_string IS ARRAY (RANGE <>) OF BOOLEAN,
--a bit string that contains the object's data.
--here follows the declarations of the procedures
--at the kernel interface.

--again the type uid must be supplied

--in order to map to the type directory.

2-38

KERNEL DESIGN

pkt_answers.add_elem (the_aknk);
ELSE
NULL;
END SELECT
ENDIF
IF rdy_aknk THEN
SELECT
net_tranceiver.put_acks (to_go_aknk);
rdy_aknk := false;
ELSE
NULL;
END SELECT;
ENDIF;
IF NOT msg_flg THEN
msg_flg := rec_pkt_mgr.get_msg (msg_data,
msg_uid, msg_src, msg_dest, msg_hndlr)
ENDIF
IF NOT ack_flg THEN
ack_flg := rec_pkt_mgr.get_ack (ack_uid,
ack_src, ack_dest, ack_hndlr);
ENDIF
--try to get the two call handlers
IF msg_flg THEN
SELECT
msg_hndlr.gter (msg_uid, msg_data,
msg_src, msg_dest);
msg_flag := false;
ELSE
NULL;
END SELECT;
ENDIF;
IF ack_flg THEN
SELECT
ack_hndlr.gtack (ack_uid, ack_svc,
ack_dest);
ELSE
NULL;
END SELECT;
ENDIF;
END LOOP;
END receive_driver;

The packet_mgr and the pkt rec_mgr handle all the internals of the line
control protocols. These include buffer management, data checking, timing out
of packets, retransmission of packets, sequencing, etc. This is a good
approach because specifications of the line protocol can be done based on the
designer's choice.

The number of rendezvous for an ack/nak to be sent to an incoming packet
may seem excessive. It has been done this way to ensure that alternating
layers in the kernel have either some entry point or no entry points. This
technique prevents deadlock.

2-37

This finishes the description of the RPC mechanism. It is not clear yet
how call timeouts will be handled. At the present time, the notion of a
roll _call computation is attractive. This will be described later in the
design.

2.3 OBJECT STORAGE AND RETRIEVAL

There are two classes of object management: simple object management and
stable object management (in the Lampson sense). Each class has different
requirements and, therefore, must be treated on a different basis. The
differences start at the kernel interface. This section first describes the
interface for storage and retrieval. Next, the architectures of the simple
storage is described, followed by the architecture of stable storage.

2.3.1 The Kernel Interface for Object Management

The kernel interface needs operations to read, write, and delete objects.
Each of these operations is needed for simple and stable storage. Each of the
operations returns a status to the user. The status for simple storage will
differ from that for stable storage; this is the first visible difference to
the user.

PACKAGE kernel IS

--*put in all the type definitions and procedure
--*specifications for the RPC interface as here.

TYPE simpl_status IS

(ready, not_available, does_not_exist, no_storage);
--ready ==> operation completed successfully
--not_available - ==> that the data has become
--unavailable due to storage error.
--does_not_exist ==> that there is no record of
--the object on storage.
--no_storage ==> no secondary storage

TYPE stabl_status IS

(ready, may_be old, does_not_exist, no_storage);
--ready ==> operation successful.
--may_be_old ==> one copy readable.
--does_not_exist ==> no record of object.
--no_storage ==> no free space.

TYPE obj_string IS ARRAY (RANGE <>) OF BOOLEAN;
--a bit string that contains the object's data.
--here follows the declarations of the procedures
--at the kernel interface.

--again the type uid must be supplied

--in order to map to the type directory.

2-38

KERNEL DESIGN

PROCEDURE get obj (the_type: IN uid;
the_id: IN xtnded u1d the_obj: OUT obj_string;
the status. ouT 51mpl_status),

PROCEDURE put_obj (the_type: IN uid;
the_id: IN xtnded uid;the _obj: IN obj_string;
the status ouT 51mpl_status),

PROCEDURE del_obj (the_typ: 1IN uid;
the_id: IN xtnded u1d the status. ouT
simpl status);

-~the above procedures define simple
-~-object storage and retrieval.

PROCEDURE stabl_get (the_typ: IN uid;
the_id: IN xtnded_uid; the_obj: OUT obj_string;
the_status: OUT stabl_status);

PROCEDURE stabl_put (the_typ: IN uid;
the_id: IN xtnded_uid; the_obj: IN obj_string;
the status: OUT stabl_status);

PROCEDURE stabl_del (the_uid: IN uid;
the_id: xtnded_uid; the_status: OUT stabl_status);

--the above procedures define stable object
-~-storage and retrieval.

END PACKAGE kernel;
2.3.2 The Architecture of Storage

The above kernel calls are synchronous. Thus, a kernel procedure will
not return until the operation has been completed. This presents the
following problem. An entry call to a task in ADA does not achieve a
rendezvous based on its parameters. Rather, the underlying scheduler will
choose one of the calls waiting on the entry point in an arbitrary fashion.
Thus, there needs to be a bond between the procedure instantiation of a
request and the storage manager.

To achieve this, and to increase the parallelism in the Kkernel, the
following architecture for the storage manager is suggested.

1. Each type will have two directories: one for simple
storage and the other for stable storage. This
separation will ensure that simple storage operations do
not incur the penalty of performance that stable storage
operations suffer.

2. Each directory will have associated with it sets of task
instances. One each for a different object operation.

2-39

Thus, the cardinality of each set imposes a bound on the
number of operations of each type for one object type at
any given time. The pointer to an element of this set
is returned to each call accepted. This element will be
the task which asynchronously performs the operation and
returns to the caller the result of the operation.

3. Each directory maps the extended uid of an object to one
or more disc addresses. It is assumed here that the map
is entirely in primary storage because reading in a part
of a map from store is an overhead that can be modeled
if desired. It must be remembered that stable
directories must have two disc addresses per object or
object version,

Figure 2-10 describes the sequence of actions in the kernel in response
to a get_obj call at the kernel interface.

The next step is to describe the architecture of the simple and stable
directories.

2.3.2.1 The Simple Directory

The simple directory is a manager of a set of objects of a given type.
At the initiation of a type manager this directory is allocated a space on
some disc so that a copy can be maintained on secondary storage.

The simple directory consists of the simple directory task and a mapping
function. The 1latter maps extended wuids of existing objects to disc
addresses.

Associated with the directory are three sets of request_handlers: one
each for the read, write and delete functions. The motivation behind a set of
request handlers for each operation is to ensure that reads and deletes can go
on even if writes are blocked due to a lack of disc space.

2.3.2.1.1 The Request Handlers

The request handler tasks are similar to the operation tasks used by tvpe
managers. They are allocated by the directory task and then exist as long as
the directory tasks.

The request handlers first get a request from the directory, perform the
request, and finally return the result to the kernel operation that made the
request. After this they return to the directory for the next request.

2.3.2.1.2 The Mapping Manager

The mapping manager is an ADA package within the directory. Its primary
function is to store the mapping of object extended uids to disc addresses.
The mapping manager also maintains a table of the mapping from extended uid to
disc addresses of new objects stored on secondary storage. Periodically the
directory task will call the mapping manager and clear out the table of new
entries.

KERNEL DESIGN

The mapping manager at any time contains the entries for all object
instances of a ‘type. Thus, we are not concerning ourselves with the
allocation of secondary storage to manage disc storage. However, a periodic
writing of new entries to storage can ensure that the load of writing the
directory entries is represented.

2.3.2.1.3 The Directory Task

The directory task is the main task in the simple directory. It receives
requests, allocates them to request handler tasks, updates the map if needs
be, and writes out the map to secondary storage.

2.3.2.2 The Stable Directory

The stable directory 1is very similar ‘in architecture to the simple
directory. The directory implements what Lampson calls a stable set. A
stable storage of objects means that the directory that stores such objects
must be stable. Thus, the storage of the map also must be to stable storage.

2.3.2.3 Consistency of Objects

The design, as outlined above, does not consider the consistency of
objects. For example, if one is not careful, an object could be read and
deleted simultaneously. The philosophy of ZEUS required that all access to
objects occurs through its type manager. Further, the type uid is used to map
to the directory. Thus, the access pointer is available to callers who supply
the proper type uid.

In effect, the design leaves the responsibility of ensuring correct
concurrency of access to the type manager. Errors in the type manager code
may result in damage to the objects.

2.3.3 The Support Packages

There are two major support packages. The first of these is type_mgr_map
which was described earlier. The second is the free_storage package which
keeps track of free space on secondary storage.
2.3.3.1 The type_mgr _map Package

As in the case of call handlers, the type_mgr_map package must map type
uids to simple directories and stable directories. This implies get, install,

and put functions for each directory type.

Internally the package will have three tasks so that maximum parallelism
can be obtained.

PACKAGE type_mgr _map IS

--*Insert the calls that give access to call handler tasks.

2-41

FUNCTION get_smd_ptr (type_uid: IN uid) RETURNS
smd_ptr;

PROCEDURE install_smd_ptr (typ_uid: IN uid;
the ptr: IN smd_ptr);

PROCEDURE delete_smd _ptr (typ_uid: IN uid);

--the above routines handle the simple directories

--the pointer to a simple directory is

--smd_ptr.

FUNCTION get _sbd_ptr (typ_uid: 1IN uid) RETURNS sbd_ptr;

PROCEDURE install_sbd ptr (typ_uid: IN uid;
the_ptr: IN sbd_ptr); -

PROCEDURE delete_sbd_ptr (typ_uid: IN uid);
--the above routines handle the stable directories.

--the pointer to a stable directory is
--sbd_ptr.

END PACKAGE type_mgr_map;
2.3.3.2 The free_storage Package

The free_storage package keeps track of secondary storage for simple
objects. The calls to this package free or reserve storage blocks of
arbitrary size. The users of this package request or release the starting
address on secondary storage and the length of the block.

The package checks to ensure that the storage block being reserved or
released is not in use, or in use respectively, at the time of the request.

PACKAGE free_storage IS

type_stor_status IS (free_success, reserve_success,
free fail, reserve fall)

FUNCTION free_block (the_addr: IN secst_addr;
the_length: IN INTEGER) RETURNS stor_status;

FUNCTION get_block (the_addr: OUT secst_addr;
the_length IN INTEGER) RETURNS stor_status;

PROCEDURE bad_block (the_addr: IN secst_addr;
the_length: IN INTEGER);

--the secst.addr type is an address on
--secondary storage.

END PACKAGE free_storage;

2-U42

KERNEL DESIGN

2.3.4 The stable_free Package

The stable_free package keeps track of secondary storage for stable
objects. Calls to this package free or reserve storage blocks of arbitrary
size. The users of this package free or reserve twin blocks of secondary
storage of arbitrary size on different units.

If one of the blocks at which an object 1is stored decays then both blocks
are returned and new ones, if available, are obtained from this package.

PACKAGE stable_free IS

TYPE stbl_avail IS (freed, reserved, freed_fail,
reserved _failed);

FUNCTION free_block (the_addri1, the_addr2: IN secst_addr;
the length: IN INTEGER) RETURNS stbl_availj;

FUNCTION get_block (the_addr1, the_addr2: OUT secst_addr;
the length: IN integer) RETURNS stbl_avail;

PROCEDURE bad_block (the_addr!, the_addr2: I[N secst_addr;
the_length: IN integer);

END PACKAGE stable_free;
A generic package can be used to specify both types of free storage.
2.3.5 The Request Handler Tasks

The request handler tasks are specified as task types. Each type
performs different operations for the directory task. The organization of
this section is as follows. In section 2.3.4.1, the specifications of the
task types for the simple directory are given. This is followed in section
2.3.4.1.1 by the task body specification of the put simple object function as
an example of the interactions between the task and the rest of the system.
In section 2.3.4.2, the specifications of the task types for the stable
directory are given. Again the specification of the put stable object is
specified as an example in section 2.3.4.2.1.

The request handlers make a number of entry calls to the directory. Each
handler has two entry points. The first is used by the directory to
initialize the request handler. The second is used by the kernel procedure to
obtain the result of the operation it requested.

The request handler types are given names whose first phrase specifies
the type of directory it works with, and whose second phrase describes the
type of function it will perform. Access pointers to these types have type
names suffixed by 'ptr'.

2-43

2.3.5.1 The Simple Directory Request Handlers
The simple directory request handlers belong to one or more of these task

types: smp_get, smp_put and smp_del. Each of these types have the entry
points get_init and get_result for initialization and for function result.

TYPE smp_get;
TYPE smp_get_ptr IS ACCESS smp_get;
TASK TYPE smp_get IS

ENTRY get_init (myself: IN smp_get_ ptr;
the_dir: IN smd_ptr);

--the task contains a self_referential pointer
--so that it can pass it to the directory
--when it requests a function. The smd_ptr

--gives the task instance the pointer to
--the directory it is connected to.

ENTRY get_result (the_object: OUT obj_string;
the_status: OUT simpl_status);

--this gives the requesting kernel procedure
--the object it requires.

END TASK smp_get;

The smp_get task performs the get simple object Ffunction. While a self
referential pointer may not be exactly kosher, it is wuseful in that the
directory task does not need a mapping from some other identifier to the
pointer of the task.

TYPE smp_put;

TYPE smp_put_ptr IS ACCESS smp_put;

TASK TYPE smp_put IS

ENTRY get_init (myself: IN smp_put_ptr;
the_dir: IN smd_ptr);

ENTRY get _result (the_status: OUT simpl_status);
--the object will be passed when the

--task makes its entry call to the

--directory.

END TASK smp_put;

2-44

KERNEL DESICN
The smp_put task performs the put simple object function.
specification is very similar to the smp_get task.

The smp_del task performs the delete simple object function.
specification follows.

TYPE smp_del;
TYPE smp_del ptr IS ACROSS smp_del;
TASK TYPE smp_del IS

ENTRY get_init (myself: IN smp_del ptr;
the_dir: IN smd_ptr);

ENTRY get_result (the_status: OUT simpl_status);

END TASK smp_del;

2.3.5.1.1 The Function smp_put

Its

Its

The smp_put task performs the following sequence of actions after

initialization. A graphic for the actions can be seen in Figure 2-11.

1. Obtains the object to be written along with its
secondary storage address, if this is a replacement.

2. If the object is not being replaced, the task calls the
free_storage package to get a secondary storage address
for the object.

3. It uses the secondary storage address to obtain the
pointer to the disc controller task.

4. It initiates a write operation and, on completion of this
operation, it calls the directory to pass back the new
secondary storage address, if necessary.

5. Returns the status of the operation back to the kernel
procedure.

TASK BODY smp_put IS

self ptr: smp_put ptr;
dir ptr: smd_ptr;

--pointers to self and directory.

the obj_id: xtnded_uid;
the_obj: obj_string;

2-45

--object string and identifier.

the_addr: secst_addr;

--secondary storage address.

buf_status: free_storage.stor_status;

--secondary storage status.

op_status: simpl_status;

--operation status;

log_device: d_ctl ptr;

--pointer to the device controller
BEGIN

ACCEPT get_init (myself_ IN smp_put_ptr;
the dir: IN smd_ptr) DO
self ptr:= myself;
dir_ptr:= the_dir;
END

LOOP
--get operation to be performed.
dir_ptr.heres _put (self ptr, the_obj_id, the_obj,
the_addr, the length),
op_ status := ready,
IF the_addr.secst_dev_ptr = nil THEN
--get a block of storage.
the_length := obj_length (the_obj),
buf_status := free_storage.get_block (the_addr,
the_length);
IF buf status = rccerve_fail THEN
--no operation possible full secondary storage.
op_status := no_storage;
ENDIF;
ENDIF;

IF op_status = ready THEN
log_device := device_map.get_dev (the_addr.secst_dev);
log_device.write (the addr.dev _addr,
the_obj, the_length, d_state);
--perform the i/0
IF d_state /= complete THEN
op_ “status := not _available;
free _storage.bad_block (the_addr, the_length);
--tell free_storage about bad sectors.
ENDIF;
ENDIF;

2-46

KERNEL DESIGN

[F op_status = ready THEN
dir_ptr.put_dir (the_obj_id, the_addr, the_length);
--set up the directory entry for the object.

ENDIF

--give result back to the caller.

ACCEPT get_result (the_status: OUT simpl_status) DO
the_status := op_status;

END;

END LOOP;
END TASK smp_put;

This task will return a not_available status to its caller if the actual
write to secondary storage did not complete. This 1is in keeping with the
pnilosophy of the simple put operation.

2.3.5.2 The Stable Directory Request Handlers

The stable directory request handlers belong to one or more of these fask
types: stb_get, stb_put, and stb_del. Again each of these types have the
entry points get_init and get_result for initialization and fcr function
result. The tasks are specified below.

TYPE stb_get;

TYPE stb_get_ptr IS ACCESS stb_get;

TASK TYPE stb_get IS

ENTRY get_init (myself: I[N stb_get _ptr:
the_dir: IN sbd_ptr);

ENTRY get_result (the_object: OUT obj_string;
the_status: OUT stabl_status);
END TASK stb_get;

This task type performs the stable get function as defined by Lampscn.
Again the result returns the object and the status of the object.

TYPE stb_put;
TYPE stb_put_ptr IS ACCESS stb put;
TASK TYPE stb_put IS

ENTRY get_init (myself: IN stb_put_ptr;
the_dir: [N sbd_ptr);

ENTRY get_result (the_status: OUT stabl_status);
END TASK stb_put;

This routine handles the stable put operation for objects.

2-47

TYPE stb_del;
TYPE stb_del_ptr IS ACCESS stb_del;
TASK TYPE stb_del IS

ENTRY get_init (myself: IN sbt_del ptr;
the dir: IN sbd_ptr);

ENTRY get result (the_status: OUT stabl_status);
END TASK stb_del;
This routine handles stable delete operations.
2.3.5.2.1 The Stable Put Operation

The stable_put operation is derived from Lampson's stable_put operation.
In effect, it is a combination of the insert and replace operations in rthe
stable set of Lampson.

The operation has the following sequence.

1. The object, its id, and the two secondary storage
address (if the object already exists) are obtained.

2. The careful puts to each address must be done one after
the other.

3. The directory is passed back the secondary storage
address.

4. The kernel procedure is returned the status of the
operation.

The careful put is specified as a function that attempts to write to an
address a fixed number of times. If it fails, it returns a failure mode back
to the stable put. This failure of the careful put results in invocations >f
free storage to return the block and to obtain a new block. If no block is
available, the failure mode is returned to the kernel procedure.

TASK BODY stb_put IS
self ptr: stb_put ptr;
dir_ptr: sbd_ptr;
--pointers to self and directory.
the_obj_id: xtnded_uid;
the_obj: obj_string;
--object string and identifier;
the_addr1, the_addr2: secst_addr;
--secondary storage

2-48

KERNEL DESIGN

buf_status: stable_free.stbl_avail;
op_ status: stabl status,
--secondary storage and operation status

care_put_count: INTEGER CONSTANT := 10;
cpl, cp2: BOOLEAN;

--careful put tries to write at most
~--care_put_count times

--cpl, cp2 are flags to indicate success
-=-of careful _put operations.

BEGIN

ACCEPT get_init (myself: IN stb_put_ptr;
the_dir: IN sbd_ptr) DO '
self ptr := myself;
dir_ptr := the_dir;
END;
Loop
--get operation to be done
dir_ptr.heres_sput (self _ptr, the_obj_id, the obj,
the_addr!, the_addr2, the_length);
op_status := ready;
IF the_addrl.secst_dev_ptr = nil THEN
~-get a block of storage.
the_length := obj_length (the obj);
buf_status := stable_free.get block (the_addri,
the_addr2, the_length);
IF buf_status = reserved_failed THEN
--no operation possible
op_status := no_storage;
ENDIF;
ENDIF;

--try to perform the stable put operation
cp! := FALSE; cp2 := false;

WHILE (NOT (cp! AND cp2) and op_status := ready) LOOP
cpl := false; cp2 := false;
cpl := careful put (the_obj, the_length,
the_addr1, care_put_count);
cp2 := careful _put (the _obj, the length
the_addr2, care_put_count);

[F NOT (cp! and cp2) THEN

--return the bad blocks

stable.free_bad_block (the_addr1, the_addr2,
the_length);

--get new blocks

buf _status := stable_free.get block (the_addr1!,

2-49

the_addr2, the_length);
IF buf_status = reserve_failed THEN
op_status := no_storage;
ENDIF;
ENDIF;
END LOOP;
IF op_status = ready THEN
dir_ptr _put_dir (the_obj_id, the_addr1?,
the_addr2, the length);
ENDIF;
--return status to caller
ACCEPT get_result (the_status: OUT stabl_status) DO
the_status := op_status;
END;
END LOOP;
END TASK stb_put;

One possible flaw in the code is that bad blocks are reported befcore new
blocks are obtained. However, a failure here will occur before a directory
change and, thus, the good copy may be recovered. The smp_put routine could
be modified to do a repeated put, if so desired. Finally, an upper limit of
attempts to write to secondary storage could be used to report bad secondary
storage.

2.3.6 The Directory Package

The directory packages store information about the mapping from
xtnded_uid to secondary storage address. Thus, they must have operations to
enter, access, and delete mappings. In addition, the package should have a
function to obtain blocks of map entries from secondary storage. In this
design, however, we assume that the full directory mapping is constructed at
host start-up time and is updated in memory during the system operation. This
approach may not be realistic but it makes the design simpler.

There is one generic package specification and two instances of it. One
of them is contained in the simple directory task body and is called smp_nmap,
while the other 1is contained in the stable directory task body and is called
the stb_map. But before this generic package is specified, the types
secst_addr, smp_dir_entry, and stb_dir_entry are defined.

2.3.6.1 Some Basic Types

The type secst_addr has been used in preceding sections. It specifies a
secondary storage address and consists of two parts: a device address and the
address on that device.

TYPE secst_addr IS
RECORD
secst_dev: device_name;
dev_addr: device_location;
END record;

2-50

KERNEL DESIGN

The types device name and device location are assumed to have been
specified.

The types smp_dir_entry and stb_dir_entry differ only in the number of
secondary storage addresses that are provided.

TYPE smp_dir_entry IS
RECORD
the_addr: secst_addr;
the_length: INTEGER;
END;
TYPE stb_dir_entry IS
RECORD
the_addr!, the_addr2: secst_addr;

the_length: INTEGER
END

2.3.6.2 The package specification
generic
TYPE key IS LIMITED private;
TYPE direntry IS LIMITED private;
package the_map IS
FUNCTION get_entry (the_key: 1IN key) RETURNS
direntry;
--returns null for absent keys.
PROCEDURE put_entry (the_key: IN key; the_entry: IN
direntry);
--replaces new entry.
FUNCTION del_entry (the_key: IN key) returns

direntry;
--access, enter and deletes entries

END PACKAGE the_map;
2.3.7 The Directory Task

The directory tasks for both simple and stable directories have the same
functions. These functions are:

1. To initialize the get, put, and delete request handlers.

2. To service kernel procedure requests and to form these
requests to the appropriate request handlers.

3. To handle requests to the directory map data structures.

2-51

To accomplish this, the directory task has a number of entry points. The
two major sets of entry points are for the reception of kernel calls and the
reception of directory map calls. To 1link up the kernel procedure that makes
a request and a request handler, the directory task has a third set of entries
for available directory tasks. The entry points of the directory task and
their interactions are graphically illustrated in Figure 2-12.

In effect, the directory acts as a monitor that schedules requests to
secondary storage and protects the directory.

2.3.7.1 The Interface of the Simple Directory Task

TYPE smp_dir;

TYPE smd_ptr IS ACCESS smp_dir;
TASK TYPE smp_dir IS

ENTRY get_obj (the_obj_id: IN xtnded_uid; get_hndlr: OUT
smp_get ptv);

ENTRY put_obj (the obj_id: IN xtnded_uid; out_obj: IN
obj_sring; put_hndlr: OUT smp_put ptr);

ENTRY del obj (the_obj_id: IN xtnded_uid; del _hndlr:
OUT smp_del ptr);

--the above entries handle kernel procedures.

ENTRY get_dir (the_obj_id: IN xtnded_uid; the_addr: OUT
secst_addr; the_length: OUT INTEGER);

ENTRY put_dir (the _obj_id: IN xtnded_uid; the_addr: |IN
secst.addr; the length: 1IN INTEGER) ;

ENTRY del dir (the_obj_id: IN xtnded_uid);

--the above entries allow calls to the directory
--data structure.

ENTRY heres.get (the_id: IN smp_get_ptr; obj_uid: OUT
xtnded_uid; the_addr: OUT serst_addr; the_length: OUT
INTEGER) ;

ENTRY heres_put (the_id: IN smp_put_ptr; obj_uid: OUT
xtnded uid; the _obj: OUT cbj_string;
the_addr: OUT secst_addr; the_length: OUT INTEGER);

ENTRY heres_del (the_id: IN smp_del ptr; obj_uid: OUT
xtnded_uid; the_addr: OUT secst_addr;
the_length: OUT INTEGER);

--the above are entry points by which the
--request handlers make themselves
--available. the_obj_id parameters is superflous.
ENTRY get_init (the_id: I[N smd_ptr;

get_count, put_count, del count: IN INTEGER);

2-52

KERNEL DESIGN

--thru this entry point the directory is initialized
--it obtains its own identity, and the count
--of the number of request handlers it can start.

END TASK smp_dir
2.3.7.2 The Simple Directory Task Body

The simple directory task schedules requests from the kernel procedures.
However, the simple directory task cannot accept a procedure request until a
request handler of the corresponding request is available. Thus, for example,
a get_obj entry call is accepted only when the number of entry calls at the
heres_get entry point is greater than zero.

TASK BODY smp_dir IS

the_id: xtnded uid;

the_obj: obj strlng,

the_addr: secst_addr;

the_length: INTEGER;

--object being transferred and its attributes

num_gets, num_puts, num_dels: INTEGCER;
--number of request handlers

this_dir: smd_ptr; --self reference

the_get: smp_get ptr;

the_put: smp_put ptr;

the_del: smp_del ptr;

--pointers to the request handlers (temporary)

smp_map IS NEW the _map (xtnded_uid, smp_dir_entry);
--instantiate the mapping package

blk_data: smp_dir_entry;
--directory map

BEGIN
--get initialized
ACCEPT get_init (the_id: IN smd_ptr; get_count,
put_ count, del count: IN INTEGER) DO

this_dir :z the_id;

num_gets := get_count;

num_puts := put_count;

num_dels := del_count;
END;

-=-start up request handlers
FOR i IN 1..numgets LOOP

the _get := new smp_get;

the_get.get init (the _get, this dir);
END

2-53

FOR i IN 1..num_puts LOOP
the_put := new smp_put;
the_put.get_init (the_put, this_dir);
END

FOR I IN 1..num_dels LOOP

the_del := new smp_del;

the del get_init (the del, this_dir);
END

LOOP --loop forever

SELECT
--handle kernel entries

WHEN E'heres_get > O :
ACCEPT get_obj (the_obj_id: IN xtnded_uid;
get . hndlr: OUT smp_get_ptr) DO
blk data := smp_map.get_entry (the_obj_id);
--the directory entry may contain a
--null address and zero length
ACCEPT heres_get (the_id: IN smp_get_ptr;
obj_uid: IN xtended uid the addr: OUT
secst _addr; the length OUT INTEGER) DO
get | “hndlr := the id;
obj_ “uid := the id,
the_addr := blk data.the_addr;
the length := blk _data. the _length;
END;
END;

OR
WHEN E' heres_put > 0
ACCEPT put_obj (the_obj_id: IN xtnded_uid;
out_obj: IN obj_string; put_hndlr: OUT
smp_put_ptr) DO
blk_data := smp_map.get_entry (the_obj_id);
ACCEPT heres put (the_ id: IN smp_put ptr;
obj_uid: OUT xtnded_uid; the _obj: OUT
obj_string; the_addr OUT secst_addr;
the_length: OUT INTEGER) DO
put hndlr :z the_id;
the obj := out obj,
obj_uid := the_obj_id;
the addr := blk data the_addr;
the 1ength := blk _data. the _length;
END;
END;

OR
WHEN E' heres.del > 0
ACCEPT del obj (the_obj_id: IN xtnded_uid;
del hndlr- OUT smp_del ptr) DO

2-54

KERNEL DESIGN

blk_data := smp_map.get_entry (the_obj_id)

ACCEPT heres_del (the_id: IN smp_del ptr;
obj_uid: ouT xtnded uid; the addr. ouT
secst_addr; the _length: OUT INTEGER) DO
del_hndlr := the_id;
obj_uid := the_obj_id;
the_addr := blk_data.the_addr;
the_length := blk_data.the_length;

END;

END;

OR

ACCEPT get_dir (the_obj_id: IN xtnded_uid;
the_addr: OUT secst_addr, the_length: OUT
INTEGER) DO
blk data := smp_map.get_entry (the_obj_id);
the addr iz blk data the_addr;
the length := blk_data.the_length;

END;

OR

ACCEPT put_dir (the_obj_id: IN xtnded_uid;
the_addr: IN secst_addr; the_length: IN
INTEGER) DO
blk_data.the_addr := the_addr;
blk _data. the” _length := the _length;
smp_map.put_entry (the _obj_id; blk_data);

END;

OR
ACCEPT del dir (the_obj_id : IN xtnded_uid) DO
blk_data := smp_map.dle_entry (the ObJ id);
END;
END SELECT;
END LOOP;
END TASK smp_dir;

2.3.7.3 The Stable Directory Task Interface

The stable directory task is specified here. The body of the task is
identical in structure and spirit to the simple directory task and, therefore,
is not defined.

TYPE sbd_dir;

TYPE sbd_ptr IS ACCESS sbd_dir;

TASK TYPE sbd_dir IS

ENTRY get_obj (the_obj_id: IN xtnded_uid;
get_hndir: OUT stb_get ptr);

2-55

ENTRY put_obj (the obj_id: IN xtnded uid;
out_obj: IN obj strlng, out_hndlr: OUT
stb_put_ptr);

ENTRY del obj (the obj_id: IN xtnded uid;
del _hndIr: OUT stb_del_ptr);

--the above entries handle kernel procedures.

ENTRY get_dir (the_obj_id: IN xtnded uid;
the_addr!, the_addr2: OUT secst_addr; the_length:
ouT~ Lnteger),

ENTRY put_dir (the_obj_id: IN xtnded_uid;
the_addr1, the addr2: IN secst_addr; the_length:

IN INTEGER);
ENTRY del_dir (the_obj_id: IN xtnded_uid);

--these entries allow calls to the directory.

ENTRY heres_get (the_id: IN stb_get ptr; obj_uid: OUT
xtnded uld' the obj OUT obj_string; the addr1
the addr' OUT secst_addr; the_length: oUT LNTEGER),

ENTRY heres _del (the_id: IN stb_ “del _ptr; obj_uid: OUT
xtnded_uid; the_addr1, the _addr2: OUT secst_addr;
the length' ouT INTEGER),

--request handler service points.

ENTRY get_init (the_id: IN sbd_ptr;
get_count, put _count, del count: IN INTEGER);

END TASK sbd_dir;
2.3.8 The Storage Controllers

The storage controllers consist of a set of tasks each of which manages a
secondary storage device. To map from device addresses which are device
specific to the controllers, there is a controller_map package. This
controller_map package is an instance of the generic package, the_map, with
the types device_name as the key and d_ctl ptr (device contro.ler pointer) as
the entry.

The specification of the device controller task is as follows:

TYPE d_state IS (complete, failed, bad_surface);

TYPE d_ctl;

TYPE d_ctl_ptr IS ACCESS d_ctl;

TYPE d_ctl IS

2-56

KERNEL DESIGN

ENTRY read (the_addr: IN device_location;
the_length: [N INTEGER; the_obj: OUT obj_string,
the_stale: OUT d_state);

ENTRY write (the_addr: IN device_location;
the_length: IN INTEGER; the_obj: IN obj_string;
the_state: OUT d_state);

ENTRY done;

FOR done USE AT 8#---%;
--interrupt

END TASK d_ctl;
2.3.9 Kernel Procedures

The kernel procedures are very simple. They first obtain a pointer to
the proper type directory. Then they request the directory to perform the
function. The directory returns to them the request handler assigned to their

request. Finally, the procedure asks the request handler for the result. On
getting the result the procedure terminates.

2.4 SEQUENCE NUMBER GENERATION

Sequence number generation has to do with the generation of unique
identifiers and extended unique identifiers for the ZEUS systen. The
functions provided by this part of the kernel include:

1. New uid generation.

2. Formation of an extended uid.

3. Giving out components of an extended uid.

In an earlier section of this document, the type definitions uid and
xtnded_uid were specified. Here, we first describe each of these types and

the motivation for the fields inside them. Then, the architecture required to
service the kernel procedures is specified.

2.4.1 Identifying Objects in ZEUS

The unique identifier is a name for an object in the ZEUS system. The
object may be temporary such as a call, it may be semi-permanent such as an
instance of a type, or it may be permanent such as a type manager or type/type
manager.

Only temporary objects can be identified solely by a unique identifier,
all other objects must have an extended unique identifier.

2-57

2.4.1.1 The Unique Identifier (uid)

The unique identifier in ZEUS consists of three fields. The first is a
host field which identifies the host at which the uid was generated. The
second field is an incarnation field, while the third is the sequence field.
The incarnation field 1is generated in a distributed fashion by the set of
hosts in the ZEUS system. The algorithms in this section describe the process
of generation. The sequence field allows a range of uids to be generated for
each value of the incarnation field.

To recapitulate the uid is defined as

TYPE incrnge IS RANGE 0..(2%¥%32-1);
TYPE seqrnge IS RANGE 0..(2%%#22-1);
TYPE host_id IS RANGE 0..1023;

--definitions for the host identifiers, ihcarnation
--and sequence flelds of the uid.

TYPE uid IS
RECORD
origin_host: host_id;
incarnation: incrnge;

sequence: seqrnge;
END RECORD;

2.4.1.2 The Extended Unique Identifier (xtnded_uid)

The extended uid allows an object to be placed in its proper perspective.
An object in ZEUS has a type associated with it. Thus, it is an instance of a
type. A type name must be unique and, therefore, each type name is a uid.
The instance of an object type has to be unique within that type. It is
simpler, and more efficient, to use the kernel to generate a unique instance
name as a uid, rather than to have the type managers generate unique
identifiers. Within an instance of an object there may be more than one
version. Thus, the extended uid has a version uid field. Again, the same
reasoning justifies the usage of a uid instead of a special unique number.

Thus the xtnded_uid type is defined as

TYPE xtnded_uid IS
RECORD
host_hint: host_id;
typeuid, instanceuid, versionuid: uid;
END RECORD;

The previous discussion did not describs the host hint field. This field
1s a guess at where an object is currently located. This field is changed
when the object moves from one host to another. When an object that
references a moved object discovers its new location it updates the host hint
in the xtnded_uid.

2-58

KERNEL DESIGN

2.4.1.3 The Visible Types

The uid and xtnded_uid types are already visible. The host_id type must
be visible outside the kernel, too. This is to allow the host hint field in
the xtnded_uid to be modified.

2.4.2 The Kernel Procedures
There are two types of kernel procedures. The first builds uids and
xtnded uids, the second provides access to the components of an extended uid.

The procedures are defined as part of the kernel specification which is
continued here.

PACKAGE kernel IS

--put in the RPC and storage kernel calls
--and type definitions.

TYPE host_id IS limited private;

FUNCTION get uid RETURNS uid;

FUNCTION build xt (the_host: 1IN host_id;
the type, the instance, the version) RETURNS
xtnded_uid

FUNCTION give_host_hint (the_in: IN xtnded_uid)
RETURNS host_id;

FUNCTION change_hint (the_id: IN xtnded_uid;
new_hint: IN host_id) RETURNS xtnded_uid;

--get _uid is the unique number generation
--function.

--build xt constructs an extended uid given
--all of its components.

--give_host_hint returns the host hint of the
--extended uid.

~--change_hint modifies the host_hint
--as directed.

END PACKAGE kernel;
2.4.3 The Architecture
The architecture to generate sequence numbers is very simple. Its kernel

procedures, other than get uid, do not need to wait. This is because they are
all operations on limited private types that are defined inside the kernel.

2-59

Other than the kernel procedures, there are two tasks. The first is a
monitor that allocates the incarnation and sequence fields for the current
incarnation number value. This task calls the second task when it needs a new
incarnation number.

The second task accesses the net tranceiver task to obtain new
incarnation numbers, and to handle the starting up of failed hosts in the ZEUS
system. These hosts need to be allocated the current incarnation number and 3
priority number. The priority numbers order the active hosts in the system.
This is done to ensure that generation of incarnation numbers is resilient.
The interaction between the uid_monitor and the uid_generation tasks is shcwn
in Figure 2-13.

The kernel function, get uid, is specified first, follewed Ly the two
tasks, uid_monitor and uid_generation. The other kernel procedures aire not
specified. To place the uid generation task -in its proper perspective. -ne
portion of the net_tranceiver task that handles the wuid generaticn &
described here.

2.4.3.1 The get_uid Function
The get_uid function makes available the next uid for the requestor.

FUNCTION get_uid RETURN uid IS
this_uid: uid;

begin
uid_monitor.get_uid (this_uid);

RETURN this_uid;

END get _uid;
2.4.3.2 The uid_monitor Task

The uid_monitor task has two loops. The outer loop does not terminate,
and first obtains a new incarnation number. It then enters the inner looD.
This loop issues uids for the range of the current incarnation number and then
exits back to the outer loop to get the next incarnation number. It is
possible that the uid_generation task may have passed a new incarnation number

to the uid_monitor before the previous range terminated. The uid_monitor has
two entry points get_uid and get_inc.

TASK uid_monitor IS

ENTRY get_uid (the_uid: OUT uid);
ENTRY get_inc (the_ind: IN incrnge);

END TASK uid_monitor;

TASK BODY uid_monitor IS

2-60

LERNEL DESIGN

seq_bnd: seqrnge CONSTANT ::z 2%#22 -1;
cur_seq: seqrnge;
--sequence number bounds.

cur_inc: incrnge;
--current incarnation number;

this_host: host_id CONSTANT ::= ;
BEGIN
LOOP

--request for a new incarnation number
uid_generation.start _uid_req (cur_inc);

ACCEPT get_inc (the_inc: IN incrnge) D0
cur_ind := the_inc;

END;

cur_seq := 03

WHILE (cur_seq < seq_bnd) OR (E'get_inc > Q) LOOP
--new incarnations get priocrity over uids
SELECT

--new incarnation from uid_generation task

ACCEPT get_inc (the_inc: IN incrnge) DO
cur_inc :: the_inc;

END;

cur_seq := 0;

OR
--uid request from kernel procedure.
WHEY E'get_inc = Q ==>
ACCEPT get_uid (the_uid: OUT uid) DO

the_uid.origin host := this_host;
the_uid.incarnation :z cur_inc;
the_uid.sequence := cur_seq;

2-61

*

MAKE_CALL
MAKE_RESP
KILL_CALL
KEEP_CALL
GET_CALL
GET_RESP
C_STATUS
R_STATUS

UID (P)
XTENDED_UID
MESSAGE
| CALL_STATUS
RESP_STATUS
DEL_OPTION

END PACKAGE

- ws W ww W W G am wr wn wm w W e e

STORAGE FUNCTIONS
T GET_08Y
GET_STABL_0BJ
PUT_O0BJ '
PUT_STABL_0BJ

DEL_0BJ

DEL_STABL_0BJ

- ar e wm e wm e wm w e m e e o

XTENDED_UID
0BJ_STRING
0BJ_STATUS

KERNEL:;

S in eENERRTION

UID GENERATION

TTGET_UID
BUILD_XT

ﬁ\ GIVE_HOST_HINT

CHANGE _HINT

XTENDED_UID
HOST_HINT

Figure

2-1

Kerneli Interface

.
-
Pale e

CALLER CALLER CALLEE CALLEE
™ KERNEL KERNEL ™
MAKE.CALL
--------------)
{
i
|
= CALL
= [>
>
—
2 GIVE CALL
[D
(@)
= \
: CALL ACK : £
B I e Rt i ' g
] t ::
: : By
a ! MAKE_RESP
<4 Ju == - e m e - - —-——
> |
%]]
n :
| RESPONSE :
- - < ——————————————— O
(&S] [
[~ 4 =
23] @]
e o] =4
{ 23
(<9 [4
7 |
3] B
GIVE_RESP 2
............. > ;
]
RESPONSE ACK !
:
&
=3
&
[¢3]
Q
@]
T

Figure 2-2

Messages Exchanged

2-63

for the RPC Protocol

FUNCTION

¢ERBEESEZIITIZTETXS

SEND_CALL

ExSTsSTETI====:3

—————————————

P e e
- e s o wenan o an =

- en an e s op -

- - - o - -
- e A n w wm > ap > wm -

Figure

2--3

INVOKED PER ENTRY

TCALL HANDLER TASK|
ENTRY POINTS
TNVOKED Bv KERNEL
PROCEDURES
"""""" MR | —
T T .
T TR T —
B
B
"""""" Tl —
T T
“Iwvoked Y T | | =2
WORK HANDLER e
e R
| emack
______ VR |7
...... GVACK __ |——%>
| ___HOSTDOWN |—
|
/
.......... . !
ONLY ONE ROUTINE /

+*

RECEIVE_CALL

- D s s s D s ww-
- - o e en o - -
-—ean W S o w - -

HOST_FAILED

L 4

Call Handler Component Interaction

2-h4

ENTRY| CALLED BY PURPQOSE IMPACT ON COMPONENTS
NAME SEND_CALL | RECEIVE_CALL
MC MAKE_CALL SEND CALL INSTALL
MR MAKE_RESP | SEND RESPONSE RESPCNSE_GIVEN
KLC | KILL_CALL | DELETE CALL REMOVE_CALL
KPC | KEEP_CALL | RETAIN CALL
RS R_STATUS |RESPONSE STATUS RESPONSE_STATUS
CS C_STATUS CALL STATUS GIVE_STATUS
TC GET_CALL OBTAIN CALL CALL_DLVRED
TR GET_RESP GET RESPONSE GIYE_RESP
LC MAKE_CALL | LOCAL CALL PUT_CALL
LR MAKE_RESP | LOCAL RESPONSE| CALL_
ANSWERED
LCACK}| GET_CALL LOCAL CALL ACK| CALL
DLVRED
LRACK| GET_RESP LOCAL RESP ACK RESPONSE_ACKED
Figure 244 Entry Points to the Call Handler

Invoked by Kernel Procedures

2R3

- - -

CALLED BY

RECEIVE_ORIVER
RECEIVE_DRIVER
SEND_DRIVER

SEND_DRIVER

PURPUSE

DELIVER MESSAGE

DELIVER ACK

DISPATCH MESSAGE

DISPATCH ACK

DAMAGE
CONTAINMENT

CALL_ANSWERED
CALL_DLVRED
SELECT_NEXT
GIVE_ACK

HOST_FAILED

IMPACT ON COMPONENTS

LR R R R R Y

PUT_CALL
RESPONSE_ACKED

SELECT_NEXT

GIVE_CALL_ACK

HOST_FAILED

Figure 2-5

Entry Points to the Call Handler

Invoked by the Network Handler

2-66

L

PACKET_MGR

MSG_ACKED

R 4

NOTES:

SEND_DRIVER ONLY
ONLY MAKES ENTRY
CALLS
EY 3
PKT_THERE =Truef{------- >
=== EV 2 | ----- 5
DT/AK/NK
EV 1
PKT_ACK_FLAG =rrye------ >
===y EV 2 ¢-=-
AK/NK
EV 1
TO_ACK_FLAG Trye------ >
=== EV 2 [X
AK/NK «
EV 1
MSG_FLAG =True|---=--- >
Co=m
MS
EV 1
ACK_FLAG =Truel~------ >
EV 2 <---
MA

MS. MA = MESSAGE, MESSAGE ACK

Figure

2-6 .

to Send Messages and Packets

2-67

-
NET_TRANCEIVER
ENTRY POINTS

- > - - -

GIVE_ACK
-~

41’_
CALL_HANDLER
ENTRY POINTS

EV I = EVENT 1; EV 1 MUST PRECEDE EV 1-1
CH INDICATES CALL HANDLER

NT INDICATES NET TRANCEIVER
OT. AK. NK = DATA., ACK AND NAK PACKERS

Interaction.of Network Handler Components

*

L d

+*

*

REC_PKT_M®R

- - -

GET_ACK

Figure 2-7

L

-—e=>

==

EV 3

*

RECEIVE DRIVER
ONLY ENTRY CALLS

PKT_ANSWER.
IS_FULL = F
Ev

- - - W e e e -

-y e s wp s w ww w

i

- e Wy wws e ww

ACK_FLG = T
Ev 2

+

o7

--e=>

EV 2

.-=>

AK/NK

-———->

Ev 2

-—->

MS

-—--)

EV 3

c-=>

—~e=>

EV 3

*

*

+

_ﬂ,
NET_TRANCEIVER
ENTRY PQINTS

PUT_ACKS

¢

CALL HANDLER
ENTRY POINTS

Interaction of Network Handler Components

to Receive Messages and Packets

2-A8

*

+

+

PURPOSE

PACKET TYPE
EXCHANGED

READY FOR NEXT PACKET

- wn . - D D > s A .- on w -

- oy . - -y o - an -

GET ID OF.ACCEPTED/
REJECTED PACKETS

- - . D D D D A s wn . -

D - A e S Gy D - w . - -

DELIVER ID OF AKED/
NAKED PACKETS

DELIVER ID OF PACKETS
TO BE ACKED/NAKED

ANY TYPE

ENTRY CALLER
ROY_TO_SEND| NETWORK
RDY_TO_REC | NETWORK
GET_DATA RECEIVE

DRIVER
PUT_ACKS RECEIVE
ORIVER
SND_DATA SEND_DRIVER
GET_ACK SEND_DRIVER
GIVE_ACK SEND_DRIVER
Figure 2-8

Net Tranceiver Entry Points

2-69

for RPC

*

ACK/NAK Transmission

2=-70

SOURCE | DEST INAT LON
PACKET SEND REC REC_PKT NET ~ NET REC REC_PKT SEND. PACKE’
MR DRIVER ORIVER MGR TRAN | TRAN DRIVER MGR [DRIVER MGR

DATA | |
------ > DATA . '
,
paTA |
7| pata |
N |
) ACK/NAK |

! ackimak|

(o ACK/NAK
; --------------------- ’ ACK/ NAK
| ACK/NAX
. ackimak) 1

| S s e
ACK/NAK
ACK/NAK T
o N R ;
SR
Figure 2-9 Timing Diagram of Data Packet and

READ

C

DEVICE
ONTROLLER

DEVICE

5

R = RENDEZVOUS FOR ENTRY CALLS WITH DASHED

KERNEL TYPE REQUEST
PROCEDURE DIRECTORY HANDLER
GET_08J
--- >
{
| ; HERES.GET
| : < -
x |
] H . X
Qe o . Q
-; . - o
oo : H -
: : (.\:" ?
! +=-> >]| A==
_.,.. < R
;J —
l
|
|
|
{
{
|
%
GET_RESULT g
- - >l
! . m
[} . [}
] -)
) ® I
| M !
|]
x : |
U L] '
Q . {
] H 1
? 5 é/ii
l L]
-."- < QQ
NOTE:
i.
ARROWS.
5. FOR STABLE I/O ADD CAREFUL GET TO RIGHT OF

REQUEST HANDLER,

Figure

2-10

Kernel Actions to Perform Object
Storage and Retrieval

2-71

REQUEST
HANDLER
* \I\‘ e M evmcwnnecwme-
DIRECTORY |=-=-=--~- > GET_INIT
Ev 1
--------------------- . —
HERES_PUT j<=---- DEVICE CONTROL
EV 2
«--->|PUT_08BJ -=-=> WRITE
EV 3 EV 4
- - e ww - -- + /Z/—
PUT_DIR |<=----
EV S
«-==>]GET_RESULT
. e lev 6f----------
KERNEL
PROCEDURE
+----| PUT_OBJ |-+

* *

1. THE STRUCTURE AND SEQUENCE OF CALLS FOR ALL
REQUEST HANDLERS IS SIMILAR.

2. THE REQUEST HANDLER'S SEQUENCE CAN BE EXPRESSED
AS EV 1 (EV 2 EV 3 EV 4 EV S EV 6)°
WHERE * = KLEENE STAR

Figure 2.11 Request Handler Sequence for Put Cbj
2-72

cxzar | _sssaae

KERNEL PROC

GET_08] ||------ >
PUT_0BT |{------ >
peEL_08F | |-==-"-- >

sxzas -ﬂ”\',‘ szu=+

esZ sz RRTETIRBTRAIRS S-=aed

REQUEST
+-=>
HANDLERS
SMP_GET -]-}-=>
FE E EEENREERE. NN/ _ _ -->
SMP_PUT
SMP_DEL -e=l-=>

TEEEEEERENEERE R B B I

Figure 2-12

P T EXZAXTXTITZTETIS

DIRECTORY

.........

.........

.........

GET_INIT

2-73

PFE"EEREERERRE N J

Directory Entries and Calls

Il

DIRECTORY:

*

& e——————— * + *

FUNCTION UID_MONITOR SOME UID_GENERATION
GET_UID ENTRY POINTS ENTRY POINTS

--->| GET_UID --->| START_UID_REQ

GET_INC <==--

INTERACTIONS
1. GET_UID CAUSES START_UID_REQ WHEN INCARNATION.

2. A START_UID_REQ IS ALWAYS RESPONDED TO
BY A GET_INC.

3. A GET_INC MAY BE RECEIVED IF SOME OTHER HOST
INCREMENTED THE INCARNATION NUMBER.

Figure 2-13 UID Monitor and UID Generation

3]
}
-~
IS

< *

UID_GENERATION
ENTRIES

----------- . UID_DELAY

UID_TIME |---->

----------- . RANK_TIMER

RCALL _ e e bty

TIMER ---->| FULL_TIMER

----------- . START_ROLL

ECALL ==-->

REMINDER | |-zz-z-=-=---=- $ocacommeen- .

----------- . COMP_REQEUST |<----] NET i

COMP_RESPONSE |<----| TRANCEIVER
COHMP_ABORT <==---
START_HOST
Figure 2-18 - UID Generation Task Interactions

~
|

~4

(o))

uID uID uiD NET
TIME MONITOR GENERATICN TRANCETVER
(WAIT_ALG)
STQT UID REO
— =T e e SN L R
THIS KOST | | Jeem=eemmmmmeme- >
INITIATES ROY_TU_SND
(START_ (NIP)
uIL) Cmmommmmemm-
ROY_TO_REC
) (NIPY
CCHP REQUEST(NIP)
GET_INIT /
cTTTyTTT = =
I [P SR RSP S
UID_| DELAY
THIS HOST SND_SEQ (NIR)
rReseonDs | emmmemem e e >
(EXEC_UID) RDY_TO_SND
(NIR)
PR e R
COMP_RESPUNSE
(NIR) | <========---
---------------- RDY TQ REC
FIN_ALG (NIRT
----------------)
GET INC
— = =1 "= "— [~ " "~ " T[ROYJOREC
(NIRT
(...........
COMP RESPONSE
IR)
(rmorrcocrmeccoeee=—-
OTHER HOST FIN_ALG
RESPONDS | | feeeeeeeTmemeeeee- >
(EXEC_UID) HORK DONE
GET_INC
(eoeecrecmcnmca=
Figure 2-15 UID Generation Sequence

2-7h

RCALL uID NET
TIMER GENERATION TRANCEIVER
START_HOST _ BEGIN_HOST
SND_SEQ_(HRP)
""""""""" RDY_TO_SND(HRP)
RB?-fé'éééfﬁéﬁi"-
SNO_SEQ_(HRP))
JSELT)
—_] e —_ —_— —_—] —_— e % e .
RDY_TO_REC(FHAP)
cop_RESPONSE
RANK_TIMER
------------ "|sno _SEQ(FHAP)
--------- ROY_TO_SND(FHAP)
I PSS DU
N RDY_TO_REC(FHAP)
l COMP RESPONSE|
(FFAP)
PRAP)
FULL_TIMER N
-------------- | FINALG
............ ,

. MEANS SEQUENCE IN RANGE IS EXECUTED
AT LEAST ONCE

Figure 2-16 Host Restart Sequence

2-77

RECALL RCALL
REMINDER TIMER GENE
START_ROLL
.......... - - -T-- o>
GET INIT
'I
RANK _ TIMER
A\
:[
FULL TIMER
HORK DONE
———————— r--—---_---

!

Figure 2-17

uib
RATION

SND_SEQ
(SRCP)

COMP_RESPONSE | <
(RRCP)

COMP_RESPONSE
(RRCP)

NET
TRANCEIVER

ROY_TO_SND
(SRCP)

{emmm e w-

RDY TO_RE
(SRCP)

(@]

ROY_TQ REC
(RRCP)

RDY TQ_SND
(RRCP)

1RDY TOREC —

(RRCP)

MEANS THAT SEQUENCE OF MESSAGE IN THAT RANGE
MAY BE REPEATED ZERO OR MORE TIMES

2-78

Roll Call Sequence

Chapter 3

PROCESS MANAGER DESIGN

This chapter presents a formal definition of the detailed designs of the
Process/Transaction Manager in the Zeus distributed operating system, using
CSDL.

Section 3.1, Machines Dictionary, describes the interfaces and behavior of
various machines used Iin the design definiton of the Process Manager system.
These machine defintions do not contain the details of the internal structure
of the machines.Section 3.2 contains the type definitions for the various
object types used in the entire design definition. For the sake of reader
convenience this section has been divided into various sections depending on
the type definitions related to some specific interfaces or sub-machines such
as secondary storage, application processes, Operation Switch, database
manager etc. Section 3.3 defines various procedures that are used by several
machines in the design definitions. The details of the machine architectures
are given in section 3.4 titled Realization Dictionary. These detailed design
definitions include the architectures of the command processors used by the
Process Manager machine. In each machine descripton, in addition to the CSDL
definitions, we have also included informal algorithmic descriptions of the
protocols used by that machine. These algorithmic descriptions are given in
the BEHAVIOR parts of the machines and the procedures. Section 3.7, SYSTEM
Process_Manager, defines the architecture of Process/Transaction Manager.

3.1 MACHINES DICTIONARY

3.1.1 Process Manager

SYSTEM Process_Manager

PUBLIC
PM_TO_0S: Small Mailbox (OS_PM_Msg, PM_0S Msg)
PM_TO_ MM : Small_Mailbox(MM_PM_Msg,PM_MM_Msg)
PM_TO_SS : Small Mailbox(SS PM_Msg,PM SS _Msg)
PM TO UIDgen : Small Maxlbox(UIDgen PM _Msg,PM_UlDgen_
Msg)
CP_TO_SS: LIST(Large_Mailbox(SS_PM_Msg,PM_SS Msg))
CP_TO MM: LIST(Large Mailbox{(MM_PM Msg,PM MM Msg))
BEHAVIOR

Process_Manager machine contains several static machines as well as dynamic
machines.The static machines, which are Router, Timer, MM_Port, SS_Port and
PM_Database_Manager,are created at the same time as the PM_Manager whereas the
dynamic machines, namely Processes and Command Processors, are created in
response to a request. PM Manager also interfaces with the Stable Storage,
Memory Manager, Operation Switch, and UID_Generator.

END {Process Manager}

3.1.2 Router

Router IS

PUBLIC
Router_TO_PM_CTRL_CMD:Small Mailbox(PM_Router CTRL Msg ,
- Router_PM_CTRL Msg)
Router_TO_PM:Small_Mailbox(PM_Router Msg ,
Router PM Msg)
Router_TO_Process:LIST(Large-Mailbox(Proc_Router_Msg,
Proc_Router Msg))
Router_TO_0S : Small_Mailbox(0S_PM Msg,PM 0s _Msg)
Router_TO CP: LIST(Small Mallbox(PM Router_Msg,
Router PM_Msg))
Router_To_PMDB : Small Mailbox(Invoke_ Msg_Type,
Invoke_Msg_Type)

BEHAVIOR

The Router machine is created when Process_Manager comes into existence.This
machine provides communication path between submachines inside the PM and
operation switch. Since Router is itself a submachine within PM ,it can not
talk to any machine outside the PM directly; thus at Router's creation time
the Router_To_OS mailbox is bound to PM_To_OS (a Public object of PM) through
which Router will be able to communicate with OS.

END {Router}

3.1.3 Process

Process IS
PUBLIC

Process_To_PM:Small_Mailbox(Response_Msg,
Appl_Req_Msg)
Process_to_PM_PSCMD:Small_Mailbox(Response Msg,
Processor_Scheduler Req_Msg)
Process_TO_Router:Small_Mailbox(Router_Proc_Msg,
Proc_Router Msg)

BEHAVIOR

3-2

PROCESS MANAGER DESIGN

The Process Machine is created from the Process PCOL in-response to either an
application request message or a request from a command processor. A Process
at its creation time will be connected to the Router, through the
Process_To_Router mailbox, and to the PM, through both Process_To_PM and
Process To PM PSCMD. Process machine executes the program as per the
Process Control Block and alsc it executes the processor scheduler commands.

END {Process}

3.1.4 Timer

Timer IS
PUBLIC

Timer Command_Iface : Small Mailbox(Timer_Command,
Timer_Response)

Interrupt : Event_Rec OQUTLET

END {Timer}
3.1.5 Delete Processor

Delete_Processor (My_Process_ID:Process_UID_Type,
Remote: BOOLEAN
Requester:Process_UID Type,
Work_Request:Appl_ “Req Msg)

PUBLIC
PMDB_Iface:Small_Mailbox(PMDB_Response_Type, PMDB_Request_Type)
Parent Iface: Large Mallbox((Appl _Req_Msg, Response _Msg)
PM Controller Iface:Small Mallbox(Controller to_CP,CP_to_Controller)
OS [face: Large Mailbox(Invoke _Msg_Type, Invoke Msg Type)
SS_Iface: Port(SS PM_Msg,PM_SS Msg)
MH Iface: Port(MM PM_Msg,PM_MM Msg)
Descendent Iface:LIST(Large Mallbox(Response Msg, Appl_Req Msg)

BEHAVIOR

The Delete Processor machine comes into existence in response to either an
application request command 'Delete Process' or a request from another
command_processor. PM upon receiving a request for delete process creates
this machine and passes the following parameters to the newly created machine:

My Process_ID: UID for created machine.
Remote: Indicates whether the request is from a remote site or not.
Requester: UID of the process which invoked the operation.
Work_Request: The requested operation and its parameter. For
this machine the work request is: OP='Delete_Process'
Param=Process_UID_Type.

3-3

The Delete_Processor Machine to carry out the Delete operation executes one of
the following procedures (based on the location of the process to be created).

Delete_Remote_Process (Proc_ID: Process_UID_Type,
My_Process_ID: Process_UID Type)
Delete_Local_Process (Proc_UID: Process UID Type)

Proc_UID is the UID of the process to be deleted.

END {Delete_Processor}

3.1.6 Create Processor

Create_Processor (My_Process_ID:Process_UID_Type,
Remote:BOOLEAN,
Requester:Process_UID_Type,

Work Request:Appl Req Msg)

PUBLIC
PMDB_Iface:Port (PMDB_Response_Type, PMDB_Request_Type)
Parent Iface:Large Mailbox((Appl _Req_Msg, Response_Msg)
PM Controller Iface:Small Mailbox(Controller to_CP, JCP to _Controller)
OS Iface:Small Mailbox(Invoke _Msg_Type, Invoke Msg_Type)
SS_Iface:Port(SS_PM_Msg,PM_SS “Msg)
MM Iface:Port(MM_PM Msg,PM MM Msg)
Descendent Iface:LIST(Large_Mailbox((Response_Msg, Appl_Req Msg)
UID_Gen_ Iface:Port(UIDgen PM | _Msg, PM_UIDgen | Msg)

BEHAVIOR

The create_processor machine is created in response to either the application
request command 'Create Process' or a request from another Command_Processor.

Following Parameters will be passed to the Create_Processor at the time of
creation:

My _Process_ID: UID of the created command processor machine
Remote: Indicates whether the request is from a remote site or not.
Requester: UID of the process which invoked the operation
Work _request: The requested operation and its parameter.
For this machine the Work_Request is:
OP = 'Create_Process'
Params=Program_UID, Data_UID, host_ID, Time_Out

Following procedures are executed on Create_Processor machine:
Create_Remote_Process (Param: Create_Param,
My_Process_ID: Host_ID_Type)

Create_Local _Process (Params: Create Param)
Create Param is the parameters needed to create the new process.

3-4

PROCESS MANAGER DESIGN

END {Create_Process}

3.1.7 PM Database Manager

PM_Database_Manager

PUBLIC
SS_Iface:Port(SS_PM_Msg,PM_SS_Msg)
Database Port:Small mallbox(Port _Msg(PMDB_Request_Type),
Port_Msg(PMDB_Response_Type))
0S_Iface : Small _Mailbox(Invoke Msg Type, Invoke Msg_Type)
BEHAVIOR

The PM_Database Manager machine comes into existence when Process_Manager is
created. This machine contains a set of objects from which information about
the active processes can be acquired. Also, this information is essential for
PM to carry out its functions reliably.

END {PM_Database Manager}

3.1.8 Port Multiplexer

Port Multiplexer(T1 : TYPE , T2 : TYPE)

PUBLIC
Device_Iface : Small_Mailbox(Port Msg(T1),Port_Msg(T2))
Iface : Small Mallbox(Port Msg(TZ) Port Msg(T1))

BEHAVIOR

The Port Multiplexer machines are created when Process_Manager comes into
existence. These machines provide communication path between submachines
inside the PM and independent machines outside the PM namely Stable_Storage,
Primary Memory and UID_Generation. The proper message types for the
communication ports must be passed to these machines at their creation time.

END {Port Multiplexer}
3.1.9 End_Transaction Processor

End_Trans_Processor(My _Process_ID:Process_UID_Type,
ERP : BOOLEAN,
Requester:Process_UID_Type,
Work_Request:Appl_Req_Msg)

PUBLIC

PMDB_Iface:Small Mailbox(PMDB_Response_ Type, PMDB_Request_Type)
Parent_Iface:Large Mailbox((Appl _Req_Msg, Response Msg)

PM Controller _Iface:Small Mailbox(Controller to_CP,CP_to_Controller)
Descendent Iface:LIST(Large Mallbox((Response Msg, Appl Req _Msg)

BEHAVIOR

The End_Tran_Processor machine is created in response to either an applciation
request “command 'End _Transaction' or a request from another command processor.
Following parameters “must be passed to the End_Trans_Processor at the time of
creation:

My Process_ID: UID of created machine.
ERP : Indicates whether the requester wants to establish a recovery
point or not.
Requester: UID of the process which invoked -the operation or not.
Work Request: The requested operation and its parameters. For
this machine the work request is:
OP='End_Transaction'
Param=NULL.

The End_Transaction operation is the commit point for the Transaction. Thus,
the Commit procedure is executed to carry out this operation. The
END_Transaction operation is the commit point for the transaction. Thus, for
an outermost transaction, execution of the End_Transaction statement means
permanence of all updates made within this transaction.

END {End_Trans_Processor}

3.1.10 Abort Processor

Abort_Processor(My_Process_ID:Process_UID_Type,
Remote: BOOLEAN,
Requester:Process_UID Type,
TUID:Transaction_UID Type)

PUBLIC

PMDB_Iface:Small Mailbox(PMDB_Response _Type, PMDB_Request_Type)
Parent_Iface:Large Mallbox((Appl Req_Msg, Response Msg)

PM Controller Iface:Small Mallbox(Controller to_CP, ,CP to _Controller)
OS Iface: Large Mailbox(Invoke _Msg_Type, Invoke Msg Type)

Descendent Iface:LIST(Large Mallbox((Response _Msg, Appl_Req Msg)

BEHAVIOR
The Abort_Processor machine comes into existence in response to either the

application request command 'Abort' or a request from another command
processor. Following param are passed to this machine at its creation time:

3-6

PROCESS MANAGER DESIGN

My Process_ID: UID of created machine
Remote: Indicates whether the request is from a remote site or not.
Requester: UID of process which invoked the operation.
Work_Request: The requested operation and its parameter. For this
machine tne work request is
OP = 'Abort'
Param = NULL or Process_UID.

The Abort operation for Transactions terminates the execution of the current
block and restores the state of the local variables and global objects to
their values before the beginning of transaction. If Abort command is used
within a process it terminates the process. Procedure Abort in this machine
perform Abort operation.

END {Abort_Processor}

3.1.11 Commit Processor

Commit_Processor{My_Process_ID:Process_UID_Type,
Remote :BOOLEAN,
Requester:Process_UID_Type,
TUID: Transaction_UID_Type)

PUBLIC

PMDB_Iface:Small_Mailbox(PMDB_Response_Type, PMDB_Request Type)
Parent _Iface: Large Mailbox((Appl _Req_Msg, Response_Msg)

PM Controller Iface:Small Mailbox(Controller to_CP,CP_to_Controller)
OS Iface: Large Mailbox(Invoke _Msg_Type, Invoke Msg Type)
Descendent_Iface LIST(Large_Mallbox((Response_Msg, Appl_Req_Msg)

BEHAVIOR The Commit_Processor machine is created in response to either the
application request command 'Commit' or a request from another command
processor. Following are the parameters which must be passed to this machine
at its creation time.

My _Process_ID: UID of created machine.

Remote: Indicates whether the request is from a remote site or not.
Requester: The UID for the process which invoke the operation.
TUID: The UID of transaction to be committed.

The Commit_Processor executes the Commit_Protocol_Terminator to carry out the
commit operation. The Commit Transaction operatlon makes all the updates
which have been performed by a transaction permanent. This function can be
called only by a non-transaction process that has created some concurrent
transaction (by executing the Create_Transaction function). Therefore, no
nested transaction is committed by calling this function; the commitment of a
nested transaction occurs when its parent transaction executes its
End_Transaction command. The execution of this command for a nested
transaction is still valid; however, such an invocation of this command will
not commit a nested transaction.

3-7

END {Ccmmit_Processor}

3.1.12 Rollback Processor

Rollback_Processor(My_Process_ID:Process_UID_Type,
TUID: Transaction UID _1ype,
RP_Number: INTEGER)™

PUBLIC

PMDB_Iface:Small_Mailbox(PMDB_Response_Type, PMDB_Request_Type)
Parent Iface: Large Mailbox{(Appl _Req_Msg, Response Msg)

PM Controller Iface:Small Mallbox(Controller to_CP, JCP to _Controller)
OS Iface: Large Mailbox(Invoke _Msg_Type, Invoke Msg Type)
Descendent Iface:LIST(Large Mallbox((Response Msg, Appl_Req_Msg)

BEHAVIOR

The Rollback_Processor machine is created in response to either the
application request command 'Rollback' or a request from another command
processor. Following are the parameters which must be passed to this machine
at its creation time.

My _Process_ID: UID of created machine.

TUID: The UID of transaction to be rolled back.

RP_Num : the recovery point number where the process or transaction
is to be rolled back to.

The Rollback operation within a process restores the state of all the local
objects to their values which they possessed at the time the RP_num was
established. The changes on global objects, which have been made by
transactions within that process, remain permanent if the transactions
performing those are committed.

The Rollback operation within a transaction restores the state of all the
local and global objects to their values that they had at the time the RP_num
was established.

END {Rollback_Processor}

3.1.13 ERP Processor

ERP_Processor (My_Process_ID:Process_UID_Type,
Requester T Process UID Type,
Work Request:Appl_ Req Msg)

PUBLIC
PMDB_Iface:Small_Mailbox(PMDB_Response_Type, PMDB_Request_Type)
Parent Iface:Large Mailbox((Appl Req_Msg, Response _Msg)
PM Controller Iface:Small Mailbox(Controller to_CpP, CP to_Controller)

3-8

PROCESS MANAGER DESIGN

0S_Iface:Large_Mailbox(Invoke Msg Type, Invoke Msg_Type)
SS Iface: Port(SS PM _Msg,PM_SS Msg)
MM Iface: Port(MM PM_Msg,PM_MM Msg)

BEHAVIOR

The ERP_Processor machine is created in response to either the application
request command ‘'Establish_Recovery Point' or a request from another command
processor. Following are the parameters which must be passed to this machine
at its creation time.

My Process ID: UID of created machine.
Requester “The UID for the process which invoke the operation.
Work_Request : The requested operation & its parameters.

The ERP operation saves the current state of the process or Transaction object
in stable storage. Successive calls to this function increments the RP_Num by
one. The updated RP_Num indicates the latest recovery point number witnin the
ontext in which it Is called. the first recovery point for each process or
transaction has the value of zero and it is established automatically hen a
process or transaction starts its execution.

END {ERP_Processor}

3.1.14 DRP Processor

DRP_Processor (My_Process_ID:Process_UID_Type,
Remote : BOOLEAN'
Requester : Process_UID_Type,
Work Request:Appl_Req_Msg)

PUBLIC
PMDB_Iface:Small_Mailbox(PMDB_Response_Type, PMDB_Request_Type)
Parent_Iface:Large_Mailbox((Appl Req Msg, Response _Msg)
SS_Iface: Port(SS_PM_Msg,PM_SS Msg)

BEHAVIOR

The DRP_Processor machine 1is created in response to either the application
request command 'Discard_Recovery Point' or a request from another command
processor. Following are the parameters which must be passed to this machine
at its creation time.

My _Process_ID: UID of created machine.

Remote: Indicates whether the request is from a remote site or not.
Requester: The UID for the process which invoke the operation.
TUID: The UID of transaction to be committed.

3-9

The DRP operation discards all recovery points the whose RP_num

and

END

END

3.2

3.2.

includes specified recovery points between.

{DRP_Processor}
(Machine Dictionary}

TYPES DICTIONARY

1 UID_Type Definition

Host_ID_Type IS (0..((2%**10)-1))

Unique_Number Type IS (Large_step_No:(0..((2%%¥22)-1)),
Seq_No :(0..((2%%#32)-1)),
Host_ID :(0..((2%%10)-1))

)
Type_Name IS Unique_Number_Type
UID_Type IS (Object_ID:Unique_Number _Type,
Type_ID: Unique_Number_Type
)

Extended UID _Type IS (UID : UID_Type,

Host_Hint : Host_ID Type)

Type_Type_Manager UID Type IS

MODEL UID _Type

LET TTM-UID: Type_Type_Manager UID_Type

INVARIANT
TTM_UID.Object_ID.Large_Step No := 1 AND
TTM_UID.Object_ID.Seq No := O AND
TTM_UID.Object_ID.Host_ID := O AND

TTM_UID.Type_nique_No.Large_Step No := 0 AND

TT™M UID. Type_nique_ “No. Seq_No := 0
END {Type_Type_Manager UID Type}

Process_Manager UID Type IS

MODEL UID _Type

LET PM_UID: Process_Manager UID_Type

INVARIANT
PM_UID.Object_ID.Large Step No := 1 AND
PM UID Object ID.Seq_ No := 0 AND
PM_UID. Object_ID Host_ID := 0 AND

PH~UID Type_Unique No.Large_Step No := O AND

PM UID. Type Unique “No. Seq No := 1
END {Process_Manager UID Typel

3-10

is equal to

3.2.2 T

PROCESS MANAGER DESIGN

Process UID_Type IS

MODEL Extended _UID_Type

LET Proc_UID: Process UID_Type

INVARIANT
Proc_UID.UID.Unique_Number Type.Large_Step_No=0 AND
(Proc_ “UID.UID. Type_ Unique_No.Seq_No=1 “OR
Proc UID UID.Type_Unique_ “No. Seq_. “No=2)

END {Process_UID_Type}

Transaction_UID_Type IS

MODEL Extended _UID_Type

LET TR_UID: Transactlon UID_Type

INVARIANT
Trans_UID.UID.Type_Unique_No. Large _Step_No=0 AND
Trans_ “UID.UID.Type _Unique_ “No. Seq_ No=2

END {Transaction_UID_Type}
ype definitions for Process Manager's database

Register IS INTEGER \
Base_Bound IS (Base,Bound:Register)

Set_of Rights IS (Owner,Abort,Suspend,Update_Priority,Restart,
Start,Terminate,Destroy)

Process_Status_Type IS (Non-Existent,Running,Aborted,Suspended,
Completed,Crashed)

Transaction_status_Type IS (Non_Existent,Uncommitted,Commit-
Pending,Committed,Completed,Crashed,
Aborted)

Process_Access_Record IS (User_ID:UID_Type,
Access_Rights:Set_of_Rights

)

Process_Record IS (PUID:Process_UID_Type,
Access Control Lxst Process_Access_Record,
Priority INTEGER '
Proc_State: Process _Status_Type,
Time-Out: INTEGER
LRP: INTEGER,
Creation_Time:INTEGER

)

Transaction_Record IS

(PUID:Transaction_UID Type,

Access_Control Llst Process_Access_Record,
Priorlty INTEGER,
Proc_State:Process_Status_Type,
Time_Out:INTEGER,

Trans _State:Transaction_Status_Type,

LRP : INTEGER,

Creation_Time:INTEGER

)

Active_Process_Record IS

(Transaction:Transaction_Record|
Process:Process-Record
JUNION

Process_Control Block IS

(PUID:UID_ Type,
Process_Status_Registers:Register ARRAY,
Process Base Bound Base_bound,

Data Base Bound: Base_ Bound
RP Num INTEGER
)

Descendent_Record IS (Child_ID:Process_UID_Type,

Grand Chlldren Process _UID_Type ARRAY,
Indirectly Modified Obj Extended _UID ARRAY)

RP_Child_Relation IS (RP_Number:INTEGER,

Parent_Child_Info IS

Desendent _Table Indx.INTEGER

{This index indicates that all transactions
and processes that were created after

the recovery point RP_Number are stored

in the Descendent_Table starting with index
Descendent_Table_Indx+1}

)

(Process_ID:UID_Type,

Parent UID UID Type,

Root UID Transaction _UID,

Top_Level BOOLEAN {True if the process specified
by the Proc_ID field is a transaction
whose parent is a non-transaction
process}

Map_Field:(Sequential, Concurrent) {with respect

the parent process/transaction}

Location:(Local , Remote)

Descendent_Table:Descendent_Record ARRAY,

RP_Child_Map:RP_Child_Relation ARRAY

)

3-12

PROCESS MANAGER DESIGN

Directly Modified_Objects IS
(PUID:Process _UID_Type,
Modified Objects Extended_UID_Type ARRAY

)

{NULL is of Type ARRAY with no element in it}
NULL IS INTEGER ARRAY

RP_Num IS INTEGER

{RP_Number is an array which may have 0,1 or more element}
RP Number IS RP-Num ARRAY

Operation Type IS [ERP , (OP : (Establish_Recovery_Point,
End_Transaction)
Param : NULL
) i
Commit_Transaction , UID_Type [
Rollback , RP_Number] UNION

Current_Operation_Info IS

(PUID:Process_UID_Type,
OP:Operation_Type
)

Time_Stamp IS INTEGER

RP Data Record IS (local_var: ABSTRACT,
PCB:Process _Control _Block,
TS:Time_Stamp)

Memory Allocation IS (Starting_Addr:INTEGER,Length: INTEGER)

3.2.3 PM To Process Interface

PUID IS UID_Type
DUID IS UID Type
P IS [Program UID, PUID |
Data UID, DUID [
Host ID, Host_ID_Typel
Expected Time, INTEGER] UNION
Create_Param is P ARRAY

{Suspend_Param is defined as an array which may contain up to 2 elements}

S IS [Process_UID, Process _UID_Type [
Delay_Time, INTEGER] UNION

3-13

{DRP_Param is an array which may contain up to 3 elements}
DRP IS [Process_UID : Process_UID _Type |
RPnums,RP_Number] UNION

Appl_Req_Operations IS (Create_Process,Delete_Process,
Process_Status,Suspend,
Resume,Establish_Recovery_ Point,
Discard_Recovery_Point,Rollback,
Last_Recovery_Point,Begin_Transaction,
End_Transaction,Create_Transaction,
Transaction_Status,Commit_transaction,
Abort
)

{T1 operations are: Create_Process, Create_Transaction.:
T1 IS (OP : Appl_Req Operations,
Param : Create_Param)

{T2 operations are: Delete _Process, Restart, Last_Recovery Point,
Abort.}
T2 IS (OP : Appl_Req Operations,)

Param : UID_Type ARRAY)

{T3 operations are: Process _Status, Resume, Transaction_Status,
Commit Transaction.}
T3 IS (OP : Appl_Req Operations,

Param : UID_Type)

{T4 operations are: Establish_Recovery_Point, Begin_Transaction,
End_Transaction & all other operations whose responses are NULL.:
T4 IS (OP : Appl_Req Operations,

Param : NULL)

{TS operations are: Begin_Transaction, Create_Transaction.}
TS IS (OP : Appl_Req Operations ,
Param : Transaction_UID_Type)

{T6 operations are: Last _Recovery Point, Establish_Recovery_ Point.}
T6 IS (OP : Appl Req_Operatlons,
Param : RP_Num)

{Message Type for Application functions}

Appl_Req Msg IS ([Create , T1 (
Array UID Param , T2 |
UID Param , T3 [
NULL Param , T4 [
Suspend , S ARRAY [
Discard_Recovery Point , DRP ARRAY [
Rollback , RP_Number] UNION

{Application commands response from PM to process}

ACK IS (Failure , Success)

3-14

PROCESS MANAGER DESIGN

Appl_Resp Msg IS [NULL_Resp , TU
Tr_UID_Resp , T5 |
RP Num Resp , T6 1
Create Process , Process_UID_Type 1
Process_Status , Process_Status_Type 0
Transaction_Status , Transaction_Status_type] UNION

{Message request Type for Processor Scheduler Commands}

Processor_Scheduler_Cmds IS (Get_PCB, Load_PCB
Run_Process,Stop_Process)

T8 IS (OP : Processor_Scheduler_Cmds,
Param : NULL .
)

T9 IS (OP : Processor_Scheduler_Cmds,
Param : PCB_Type
)

Processor_Scheduler REQ Msg IS [NULL_Param , T8 1
PCB Param , T9] UNION

{PS Commands response Type from PM to Process}
Processor_Scheduler _Resp_Msg IS [NULL_Resp , T8 |
PCB Resp , T9] UNION

Error_Condition Code IS (Non_Existent_Transaction,
Access_Control_Violation,
Non_Existent_Process,
Host_Inaccessible,
Time_Out,
Undefined _Error
Illegal Command)

PM_Proc_Resp_Msg IS (Appl,Appl_Resp_Msgl
PS,Processor_Scheduler_Resp_ Msg] UNION

Response_Msg IS [Success,PM_Proc_Resp_Msgl
Failure,Error_Condition_Code] UNION

Search_Rec IS [Success,TYPE[
Fail, NULL] UNION

Suspended _Caller_Rec IS (UID : Process_UID_Type,
Operation : Appl_Req Msg)

Machine_Index_Type IS [Application, Process INDEX[
Delete, Delete_Processor INDEX(
Commit, Commit _Processor INDEX]
Create, Create Processor INDEX]

3-15

Rollback, Rollback_Processor INDEX]
ERP, ERP_Processor TINDEX]

Abort Abort Processor INDEX]

End , End_Trans_Processor] UNION

3.2.4 PM Database Interface Types

All Rec_Type IS [APR,Active_Process_Record]
PCI,Parent Child_Infol
LMO,List_of Modified Object]
COI,Current Operation_Info] UNION

Add_Modify Param IS (OP : (Add , Modify),
Param : All_Rec_Type ARRAY)

PMDB_Modify Operations IS (Add_Modify , Add_Modify_Parami
Delete , UID Type] UNION

Database_Query Type IS (Process_Status_Record,
Modified_Object,
Parent_Child_Info,
Get_UID)

PMDB_Request_Type IS (Update, PMDB_Modify_Operationsﬂ

Query, (UID:Process_UID_Type,
Request:Database Query_Type)] UNION

PMDB_Response_Type IS [Update, ACK |
Query, All_Rec_Type] UNION

3.2.5 PM to SS Interface To OS Interface

{Request_Message type definition for request message from
process Manager to Stable Storage.}

RP_Label _Type IS (UID: UID_Type,
RPnum: RP Num)
Address : INTEGER
RW_Param IS (Label: RP_Label Type,
Starting_. Addr: Address,
Len: INTEGER)
PMDB_Log Buffer: LIST(PMDB Modify Operations)

Append_Param IS (List_of Rec: LIST(TYPE),
Stable_Storage_Filename: CHAR ARRAY)

{The Append operation will append the given list of record
to the specified file on stable storage which has to be

3-16

PROCESS MANAGER DESIGN

the file of same record type. The special case is
appending PMDB_Log Buffer to the Differential file on

stable storage.}

{Message type definition for Process Manager & Stable Storage
Communication.}
PM_SS Msg IS [Read_Write, (OP : (Read, Write),

Param : RW_Param) |

Append, Append_Paranm |
Find_Length, RP_Label_Type] UNION

{Response Message type definition for Stable Storage to Process

Manager }

SS_PM_Msg IS [ACK_Resp , (OP : (Read, Write, Append),
Param : ACK) [

Find_Length,INTEGER] UNION

3.2.6 PM TO UIDgen Interface

{Message Type definition for PM & UID generator communicaticn.}

PM_UIDgen Msg IS Type_Name

{Response Message Type definition for PM & UID generator
Communication. }

UIDgen_PM_Msg IS UID_Type

3.2.7 PM TO MM Interface
{Type definition for Process Manager &
Main Memory Communication}

PM_MM_Msg:ABSTRACT {Request}
MM_PM_Msg:ABSTRACT {Response}

3.2.8 PM TO 0OS Interface

{type definition for Process Manager
& Operation Switch Communication}

Other_Msg Type: ABSTRACT

General_Msg Type IS [Appl_Cmds,Appl_Req Msgl
Response,Response_Msg|
Other_Msg,Other_Msg_Type] UNION

3-17

Invoke_Msg Type IS (Sender : Extended_UID_Type,
Operation : General Msg Type,
Reciever : Extended_UID_Type,

)

PM_0S_Msg IS Invoke Msg_Type
OS PM Msg IS Invoke_Msg Type

3.2.9 PM TO Router Interface
Router_PM Msg IS Invoke Msg Type
PM_ Router _Msg IS Invoke_Msg_Type
Router_PM_CTRL Msg IS ACK
PM_ Router CTRL _Msg IS (OP : (Create_Mbx, Delete_Mbx,

Create CP _Mbx, Delete_CP_Mbx)
Param : Process_UID Type)

3.2.10 PM TO Timer Interface

{Type definition for PM To Timer communication.}
Event_Rec IS (Caller_UID : Process_UID_Type,
Operation : Appl_ Req _Msg,
Action : [Retry , INTEGER]
Time Out, Null] UNION
Time_Delay : INTEGER
)

Timer_Command IS [Set , Event_Rec]
Clear, Process UID] UNION

Timer_Response IS ACK

3.2.11 Router TQ Process Interface

Router_Proc_Msg IS ABSTRACT
Proc_Router Msg IS ABSTRACT

3.2.12 Command Processor Interface Types

Command_Machine_Type IS (Delete, Create, Commit, Abort,End_Trans,DRP,
Rollback, ERP)

Action_Type IS (New_Process, Delete_Process,Run_Process,.......)

Action_Param_Type IS [tagl, PCB_Type [
tag2, UID Type] UNION

3-18

PROCESS MANAGER DESIGN

CP_To_Controller IS [Create, (Machine_Type : Command_Machine_Type,
Descendent_Mbx_Indx : INTEGER,
Caller_Type:Command_Machine_Type,
Work_Request : Appl_Req_Msg) |

destroy, Command_Machine_Type |
Service_Call, (Action: Action_Type,
Param : Action_Param_Type)] UNION

Controller_To CP IS (t1, ACK |
t2, UID_Type] UNION

3.2.13 Definition of abstract data type for List manipulation

LIST (T:TYPE) IS

MODEL [T ARRAY]

Let ZL:LIST (T)(%L)

{T must have a field containing UID.}

INVARIANT
INIT #L.dom = O

OFUN Add(V:T)

PRE TRUE

POST 4L'.Hib = FL.Hib +1
AND %L'.High = v

OFUN Delete (V:UID_Type) RETURNS BOOLEAN

PRE TRUE
POST %ZL.Hib = #L.Hib-1 AND Delete' = TRUE
IFF exists

IF not (i (v=24L[i].UID)) Then
Delete' = FALSE

VFUN Search (V:UID_type)_ RETURNS Search_Rec

PRE TRUE

POST IF (There exist i:4L.lob<i<%L.hib AND (v=%L[{1i].UID)) Then
Search_Rec.FLag = TRUE
Search_Rec.x.value = #L(1]
Search_Rec.x.tag = Success

and

IF not (There exist i:%L.Lob<i<%L.hib (v=%L(1].UID)) Then
Search_Rec.FLAG = FALSE
Search_Rec.x.tag = Fail

VFUN Is_Empty RETURNS BOOLEAN

PRE TRUE
POST %L.dom>o=> Is_Empty = TRUE

3-19

NOT (%L.DOM>0_=> Is_Empty = FALSE

BEHAVIOR
{This function indicates whether the list is
empty or not.}

VFUN Hi_Bound RETURNS INTEGER

PRE TRUE :

POST Hi_Bound' = %L.hib

BEHAVIOR
{This function returns the largest index of
the list.}

YFUN Element(i:INTEGER) RETURNS T
PRE TRUE

POST Element:=%L(1)

BEHAVIOR

{This function RETURNS the element of LIST
LIST referenced by index i.}

VFUN Get_iList_Indx}i(Proc_UID:Process_UID_Type) RETURNS INTEGER
PRE TRUE
POST 4L(Get_List_Indx(Proc_UID)].UID=Proc_UID
BEHAVIOR
{This function returns the index of element
whose id number is Proc_UID.}

OFUN Hi_Extend RETURNS INTEGER
PRE TRUE
POST %L'.hib = %4L.hib + 1

END {LIST}

3.2.14 Definition of abstract data type for Small_Mailbox.

ACTIVE Small Mailbox (T1:TYPE,T2:TYPE) IS
MODEL [Request:T1 INLET,Response: T2 OUTLET]
LET %M1,%ZM2: Small Mailbox

%M3: Large Mailbox

%P : Port

COMPLEMENTS %M1.Request,?%M2.Response;
%M2.Request,%M1.Response;
4M1.Request,%M3.Response;
4M3.Request,%M1.Response;
4M1.Request,%P.Qut;
%M1.Response,%P.In

PROCESS MANAGER DESIGN

OFUN Get RETURNS T1
PRE TRUE
POST Get' = %M1.Request.Window &
%ZM1.Request.Flag = TRUE

OFUN Put (x:T2)
PRE TRUE

POST %2M1.Response.Window = x &

%4M1.Response.Flag = FALSE

VFUN Went RETURNS BOOLEAN
PRE TRUE
POST Went' = %ZM1.Response.Flag
VFUN Came RETURNS BOOLEAN
PRE TRUE
POST Came' = %M1.Request.Flag
VFUN Send (Msg:T2)RETURNS BOOLEAN

PRE %M1.Response.Flag=TRUE
{to make sure previous message has been read. }

POST Send=TRUE IFF %M1.Response.Windowz=Msg &
2M1.Response.Flag=TRUE

BEHAVIOR
%M1 .Response.Window:=Msg
%#M1.Response.Flag:=FALSE
WHEN
4M1.Response.Flag --> Send:=TRUE

END
END {Small Mailbox}

3.2.15 Definition of abstract data type for Large_Mailbox

ACTIVE Large Mailbox (T1:Type, T2:Type) IS
MODEL [Request:T1 INLET, Response:T2 OUTLET,
UID: Process_UID_type,Indx:Machine_Index_Type]

LET %M1,%M2: Large_Mailbox,

%M3: Small Mailbox,
4P : Port

3-21

COMPLEMENTS: %M1.Request,%M2.Response;
#Mc .Request , %M1 .Response;
¥#M1.Request,%M3.Response;
%#M3.Request,¥M1.Response;
%M1.Request,%P.0ut;
%M1.Response,%P.In

OFUN Get RETURNS T1
PRE TRUE
POST Get = %M1. Request.Window &
#M1.Request.Flag = TRUE

OFUN Put(%Msg:T2)
PRE TRUE
POST #M1.Response.Window = Msg &
%M1.Response.Flag = FALSE

VFUN Went RETURNS BOOLEAN
PRE TRUE
POST Went = %M1.Response.Flag

VFUN Came RETURNS BOOLEAN
PRE TRUE
POST Came' = #%M1.Request.Flag

OFUN Assign_UID (PUID: Process_UID_type)
PRE TRUE
POST %M1.UID = PUID
OFUN Assign_Index (Process_name:Machine_Index_Type)

PRE TRUE
POST #M1.Indx = Process_name

VFUN Send (Msg:T2)RETURNS BOOLEAN

PRE %M1.Response.Flag=TRUE
{to make sure previous message has been read.}

POST Send=TRUE IFF %M1.Response.Window=Msg &
%M1 Response.Flag=TRUE

BEHAVIOR
%4M1.Response.Window::=Msg
%M1.Response.Flag:=FALSE
WHEN
%M1.Response.Flag --> Send:=TRUE

END

3-22

PROCESS MANAGER DESIGN

VFUN Get UID RETURNS Process_UID_Type
PRE TRUE
POST Get_UID'=%M1.UID
BEHAVIOR

{This function rturns the UID stored in the
given mailbox}

VFUN Get_Index RETURNS Machine_Index_Type
PRE TRUE
POST Get_Index' = %M1.Indx
BEHAVIOR

{This function RETURNS the process name stored
the given mailbox.}

END {Large Mailbox}
3.2.16 Definition of abstract data type for Port_Msg

Port _Msg(S : TYPE) IS
Model [ID : UID_Type, Msg : s]
LET %Pm : Port_Msg (s)

VFUN Get_Msg RETURNS S
PRE TRUE
POST Get Msg' := %PM.Msg

BEHAVIOR
{This function returns the msg part of
the given Port Msg.}

VFUN Get UID RETURNS UID_Type
PRE TRUE
POST Get_UID' := %PM.ID
BEHAVIOR
{This function returns the ID part of
the given Port Msg.}
END Port Msg
3.2.17 Definition of abstract data type for Outport
ACTIVE OQutport(T : TYPE) IS

MODEL ([window : Port Msg(T) , flag : BOOLEAN]
LET %0P : Outport(T) (%OP)

3-23

END OQutport

2.2.18 Definition of abstract data type for Inport

ACTIVE Inport(T : TYPE) IS
MODEL [window : Port Msg(T), flag : BOOLEAN]
LET %IP : Inport(T)(%IP)

END Inport

3.2.19 Definition of abstract data type for Port

ACTIVE Port(T1 : Port_Msg, T2 : Port_Msg) IS
MODEL [In : Inport(T1) , Out : OQutport(T2)]
LET %P : Port

%SM : Small_Mailbox

%LM : Large_Mailbox

COMPLEMENTS %P.In, %SM.Response;
4P.Out, %SM.Request;
4P.In, %LM.Response;
%P.Out, %LM.Request

OFUN Send(x : T2)
PRE TRUE

POST %P'.Out.window := x &

ZP'.Out.flag := FALSE

{We want flag = FALSE to indicate that information has been
sent but not picked up yet by the matching INLET}
BEHAVIOR

1- A call to send blocks until the flag indicate that a
'get' has been done on its complements inlet.

2- Then the send may proceed. Note that this send may
proceed or another send may proceed.

3- while the send is blocked it has no effect on the
window or the flag.

END Send
OFUN Receive(ID : UID_typ<) RETURNS T1
PRE TRUE
POST Receive'.ID = %P.In.window.Msg &
%P.In.flag = TRUE

{flag = FALSE indicates that information has been
received from the inport.}

BEHAVIOR

3-24

PROCESS MANAGER DESIGN

A call to receive blocks until a message with
window.ID = ID arrives. Then receive proceeds
to read that message.

END Receive

END Port
END {TYPES DICTIONARY}

3.3 PROCEDURES DICTIONARY
3.3.1 Procedure Get_Modified Objects

Get_Directly Modified_Objects(Proc_UID : Process_UID_Type)
RETURNS PMDB_Response_Type

BEHAVIOR
{ This procedure sends a request to PMDB_Manager on PMDB_Iface
to get the uid of all the objects which were modified by the
given process or transaction .}

VARIABLES
To_PMDB : PMDB_Request_Type

TEXT
To_PMDB.UID := Proc_UID
To_PMDB.Request := Modified Object

WHEN
PMDB_Iface.Send(To_PMDB) -->
WHEN
PMDB_Iface.Came -->
Get_Modified_Object:= PMDB_Iface.Get
END
END

END Get_Modified_Object

3.3.2 Procedure Get_Children

Get_Children(Proc_UID : Process_UID_Type) RETURNS PMDB_Response_Type
BEHAIVIOR

{This procedure sends a request to PMDB Manager to get

the UIDs of all the children for given Proc_UID.}

VARIABLES
To_PMDB : PMDB_Request_Type

3-25

TEXT
{Get UIDs of the children transactions and processes}
To_PMDB.Request := Parent_Children_Info

WHEN
PMDB_Iface.Send(To_PMDB) -->
WHEN
PMDB_Iface.Came -->
Get_Children := PMDB_Iface.Get
END
END

END Get_Children

3.3.3 Procedure Delete_From_PMDB

Delete_From_PMDB(Proc_UID : Process_UID_Type) RETURNS PMDB-Response_Type

BEHAIVOR
{This procedure sends a request on PMDB_Iface to PMDB
Manager to remove all the information about the given
Proc_UID from the database.}

VARIABLE
To_PMDB : PMDB_Request_Type

TEXT
To_PMDB.val.val := Proc_UID
WHEN
PMDB_I[face.Send(To_PMDB) -->
WHEN '
PMDB_Iface.Came -->
Delete_From PMDB := PMDB_Iface.Get
END
END

END Delete From_PMDB
3.3.4 Procedure Add_To_PMDB

Add_To_PMDB(Rec : All_Rec_Type ARRAY) RETURNS PMDB_Response_Type

BEHAVIOR
{This procedure sends a request to PMDB Manager
to add the given record(s) to the database.
Upon receiving of this request, PMDB Manager
updates the database and Force it on the stable
storage.}

VARIABLES

To_PMDB :

TEXT

PROCESS MANAGER DESIGN

PMDB_Request_Type

To_PMDB.val.val.Op :=z Add
To PMDB.val.val.Param := Rec

WHEN

PMDB_Iface.Send(To_PMDB) -->

WHEN

PMDB_Iface.Came -->
Add_To_PMDB := PMDB_Iface.Get

END
END

END Add_To_PMDB

3.3.5 Procedure Get LRP

Get LRP(PUID :

BEHAVIOR

Process_UiD_Type) RETURNS RP_Num

{This procedure sends a request to the PMDB Manager
on PMDB_Iface to get the last recovery point for
the given UID.}

VARIABLES

To_PMDB :
TEXT

PMDB_Request_Type

To_PMDB.val.UID := PUID
To_PMDB.val.Request := Get_LRP

WHEN
PMDB_I
WHEN

face.Send (To_PMDB) -->

PMDB_Iface.Came -->
Get_LRP := PMDB_Iface.Get

END
END

END Get LRP

3.3.6 Discard_RP

Discard_RP(PUID

: Process_UID_Type,

RP1,RP2 : RP_Num)

RETURNS ACK

BEHAVIOR

{This procedure sends a request on SS_Iface to
Stable Storage Manager to discards all recovery

3-27

points between and including RP1 & RP2 for the
given procees. !}
END Discard_RP

3.3.7 Procedure Request_New_Process

Request_New _Process RETURNS Controller_To CP

TEXT
WHEN
PM_Controller_Iface.Send(Action := New_Process) -->
WHEN
PM_Controller_Iface.Came -->
Request New_ Process := PM _Controller_Iface.Get
END
END

END Request New_Process
3.3.8 Procedure Request_New CP

Request New CP (CP : Command_Machine Type,
Index : INTEGER,
Work_Request : Appl Req_Msg)
RETURNS Controller To CP

VARIABLES
To_Controller : CP_To_Controller

TEXT
To_Controller.Machine_Type := CP
To Controller Descendent_Mbx_Indx := Index
To Controller Caller Type HE My Machine_Type
To Controller Work_Request := Work_Request

WHEN
PM_Controller_Iface.Send(To_Controller)
WHEN
PM_Controller_Iface.Came -->
Request New_ Process := Pm _Controller_Iface.Get
END
END

END Request New_CP

3-28

PROCESS MANAGER DESIGN
3.3.9 Procedure Create_Process_Record

Create_Process_Record(PUID : Process_UID_Type)
RETURNS Active_Process_Record

BEHAVIOR
{This procedure creates an active process record
for the process with the given UID.}

END

3.3.10 Procedure Create_Pc_Rec
Create_Pc_Rec(Parameter_list)
RETURNS Parent Child_Info
BEHAVIOR
{This procedure creates the parent child info

record for the given process. The parameter
list must contain all the required information.}

END

3.3.11 Procedure Create_PCB

Create_PCB(Params : Create_Param)

RETURNS PCB_Type

BEHAVIOR
{This procedure loads the program & data (if any)
into the main memory and create the process

control block for the given process.}
END

3.3.12 Procedure Set_Timer

Set_Timer(Time:INTEGER, TimerPort:Timer_Iface_Type)
TEXT
WHEN
TimerPort.Send([My_Process_ID, [], NULL, Time]) -->
END

END {of Set_Timer}

3-29

3.3.13 Procedure Broadcast

Broadcast(M:General_Msg Type, Destination: Extended _UID_Array,
OutPort: 0S_Iface_Type, My_ID: Process UID _Type)

{This procedure broadcasts the message M to the object mangers of
the objects given by the parameter Destination.}

VARIABLES i:INTEGER
TEXT
i:=Destination.lob

DO (j:Destination.lob..Destination.hib) and (i=j) -->
WHEN
Outport.Send(<val:=(My_ID, Obj Manager(Destination(j),M>] --> SKIP
{The function Obj_| Manager returns the UID of the object manager
of the object specified by the parameter UID}
END
{:zi+
oD

END {of Broadcast}

3.3.14 Procedure Create_RP_Data_Record

Create_RP_Data_Record(Proc_UID : Process_UID_Type,LRP: RP_Num)
RETURNS CHAR ARRAY

BEHAVIOR
{This Procedure Creates the recovery point data
Record (it contains the PCB and state of all the
local variables of the process) and returns the
name of the segment under which the record is
stored. }}

END

3.3.15 Procedure Assign_Label

Assign_Label(Proc_UID : Process_UID Type, LRP : RP_Num)
RETURNS Label Type

BEHAVIOR

{this procedure concatinates the given uid and
lrp and returns a label under which the

3-30

PROCESS MANAGER DESIGN

RP_Data_Record is to be stored.}
END

3.3.16 Procedure Get_Memory_Addr

Get_Memory_Addr (RP_Data : CHAR ARRAY)
RETURNS Memory _ Allocation

BEHAVIOR
{This procedure returns the memory address &
the length of the segment for the given
name. }
END

3.3.17 Procedure Remove_Proc_Machine

Remove_Proc_Machine(UID : Process_UID_Type)

3.3.18 Procedure Get_All Modified_Objects

BEHAVIOR
{This procedure send a request on PM_Controller_Iface,
to remove the process machine identified by Proc _Uuip
from the Process POOL.}

END Remove_Proc_Machine

Get_All Modified Objects(UID : Transaction_UID_Type)

RETURNS PMDB _Response_Type

BEHAVIOR
{This procedure send a request on PMDB_Iface to
get the UID of all objects which were modified
either directly or indirectly by given Transaction.}
END Get_All Modified Objects
3.3.19 Procedure Get_PM_UID
Get _PM_UID (Host_ID : Host_ID_Type)
RETURNS Process Manager uID _Type
BEHAVIOR
{This procedure returns the UID of Process_Manager

of given host.}

END Get PM_UID

3-3

3.3.20 Procedure Terminate_Command_Processor

Terminate_Command_Processor

BEHAVIOR
{This procedure sends a request on PM_Controller_Iface
to terminate the command processor on which it is

running.}
END Terminate_Command_Processor
3.3.21 Procedure Check Children_Status

Check_Children_Status(Children UID : Process_UID ARRAY
RETURNS ACK

VARIABLES
Children_Status : Transaction_Status_Type ARRAY
i : INTEGER

TEXT

Children_Status := Find_Children_Status(Children_UID)
IF All_Complete(Children_UID) --> SKIP

0 OTHERWISE -->
Set_Timer(Timeout_Period, Timer_Iface)
WHEN
Interrupt.Came -->
Check Children_Status(Children_UID)
END
FI

END Check_Children_Status

3.3.22 Procedure All Complete

All_Complete(Children_Stat : Transaction_status_Type ARRAY)
RETURNS BOOLEAN

VARIABLES
i : INTEGER
Flag : BOOLEAN

TEXT
Flag := TRUE
iz=1
DO (i..Children_Stat(dom))
Children_Stat(i) <> completed AND Flag -->

3-32

PROCESS MANAGER DESIGN

Flag := FALSE
All Completed := FALSE
oD
END All _Completed

3.3.23 Procedure Write _To_SS

Write To SS(L : Label_Type, Mem_info : Memory_Allocation)
RETURNS SS_PM_Msg

VARIABLES
To_SS : PM_SS Msg

TEXT
To_SS.0P := Write
To_SS.Param.Label := L
To_SS.Param.Starting_Addr := Mem_Info.Starting_Addr
To_SS.Param.Len := Mem_Info.Length

WHEN
SS_Iface.Send(To_SS) -->
WHEN
SS_Iface.Came -->
Write_To_SS := SS_Iface.Get
END
END

3.3.24 Procedure Receive_Acks

END Write_To_SS
Receive_Acks(UIDs : Process_UID_Type ARRAY,
Timeout : INTEGER) RETURNS BOOLEAN

BEHAVIOR
{This procedure receives either READY or ABORT messages from the object
managers of the objects of given UIDs. This procedure either times out
or returns when all object managers have responded.
IF any of the messages is ABORT or Timeout then it returns TRUE,
otherwise it returns FALSE.

END Receive_Acks

3.3.25 Procedure Get_ Parent_Child_Info

Get_Parent_Child_Record(UID : Process_UID_Type)
RETURNS Parent_Child_Info

3-33

BEHAVIOR
{This procedure searchs the Parent Child_Info List for
the given UID and returns the record for that process.
END Get_Parent_Child_Record
3.3.26 Get_All Descendent
Get_All Descendents(UID : Process_UID_Type)
RETURNS Process_UID Type ARRAY
BEHAVIOR
{This procedure returns the UID of the
descendents for given process/transaction.
} .
END Get_All_Descendents
3.3.27 Procedure Update_Transaction_Status
Update_Transaction_Status(UID : Transaction_UID_Type,

Status : Transaction _Status_Type,
Force : BOOLEAN) RETURNS ACK

BEHAVIOR
{This procedure sends a update request on PMDB_Iface to
update the status of the given transaction and the updated
database is forced on the stable storage if Force is TRUE.

}
END Update_Transaction_Status

3.3.28 Procedure Clear_Database

Clear_Database(UID : Process_UID_Type) RETURNS ACK

3.3.29 Procedure Signal

BEHAVIOR
{This procedure sends a clear request on PMDB_Iface to
remove all the information about the given UID from
the database.
}

END Clear_Database

Signal(Parent :Process_UID Type,Msg : General_Msg_Type)

BEHAVIOR
This nracedure sends a status message on the PMDB_Iface
if the parent process is local then the status change is
recorded locally in the parent's Parent_Child_Record
otherwise a status update message is sent by the database

3-34

PROCESS MANAGER DESIGN
manager to the remote database manager where the parent
is residing.

END Signal

3-35

3.4 REALIZATION DICTIONARY
3.4.1 Router_Machine

PUBLIC
Router_TO_PM_Control CMD: Small Mailbox(PM_Router CTRL_
Msg,Router_PM_CTRL Msg);
Router_To_PM: Smalli Mailbox(PM_Router_ Msg,
Router PM Msg);
Router_TO_Process: LIST(Large Mailbox(Proc_Router_ Msg
,Router_Proc_Msg)
Router_TO_OS : Small Mailbox(OS_PM_Msg , PM_0S Msg)
Router_To_PMDB : Small Mailbox(OS_PM Msg, PM_0OS Msg)
OBJECTS
{ ===}

END {Router_Machine}
3.4.2 Process

PUBLIC
Process_To_PM: Small_Mailbox(Response_Msg,
Appl_Req_Msg)
Process_TO_PM_PSCMD: Small_ Mailbox(Response Msg,
Processor_Scheduler Req_Msg)

Process_TO_Router: Small Mailbox(Router Proc_Msg,
Proc_Router_Msg)

OBJECTS
PCB : PCB_Type
CONTROLLER

{Executes the program code as per the Process Control Block
and also executes the processor scheduler commands}

END {Process}

3-36

PROCESS MANAGER DESIGN
3.4.3 Timer

PUBLIC

Timer _Command_Iface: Small _Mailbox(Timer_Command, Timer _Response)
Interrupt : Event _Rec OUTLET

OBJECTS
{ -}

END {Timer}
3.4.4 Machine Delete_Processor

Delete_Processor(My_Process_ID:Process_UID_Type,
Remote:BOOLEAN,
Requester:Process_UID_Type,
Work_Request:Appl_ “Req “Msg)

PUBLIC
PMDB_Iface:Port(PMDB_Response_Type, PMDB_Request_ Type)

Parent Iface:large Mallbox((Appl Req_Msg, Response_Msg)

PM_ Controller Iface:Small Mallbox(Controller to_CpP, JCP to _Controller)
OS Iface: Large Mailbox(Invoke _Msg Type, Invoke Msg Type)

SS_Iface: Port(Port Msg(SS_PM_Msg),Port_Msg(PM_ SS_Msg))
MM_Iface:Port(Port “Msg(MM_PM Msg) (Port Msg(PM MM_Msg))
Descendent_Iface: LIST(Large Mailbox ((Response _Msg, Appl_Req_Msg)

OBJECTS

Timer_Interrupt : Event_Rec INLET
Timer_ “Iface:Small Mallbox(Timer _Response,
Timer Command)
Local_Timer:Timer:=(Timer_ Iface TO Timer _Command_Iface,
Timer Interrupt TO Interrupt)

Response : Response Msg
3.4.4.1 Procedure Delete_Remote_Process

Delete_Remote Process (Work Request : Appl_Req_Msg,
My_Process_ID : Process_UID_Type)

RETURNS Response_Msg
BEHAVIOR
{This Procedure invokes a remote operation by sending

3-37

a request to Operation Switch, to delete a remote
process. It waits until either it times out or gets

a response back from remote host regarding to the result
of the operation.

VARIABLES
To_Router:General Msg_Type
Resp : Response_Msg
Timeout_Period : INTEGER
Receiver : Process_Manager_UID_Type

TEXT

{Set the parameters for Invoke operation & send a message to
Operation Switch thru Router to invoke this operation on the
requested host.}

TO_Router.val := Work Request

Receiver :=Get PM_UID(Work_Request.val.Param.Host_ID)
Resp: -Invoke(My Process ID,Receiver, To _Router, oS _Iface)
Set_Timer(Timeout Period, Timer_ Iface)
IF Resp tag = Success -->
WHEN
Timer_Interrupt.Came -->
Delete _Remote_Process.val:=Time-Out

 0S_Iface.came -->
Delete_Remote_Process:=(0S_Iface.Get).Operation.val
END

| Resp.tag = Failure -->
Delete_Remote_Process.val := Undefined_Error
FI

END {Delete_Remote_Process}
3.4.4.2 Procedure Delete_Local Process

Delete_Local_Process(Proc_UId:Process_UID_Type) RETURNS Response_Msg
Algorithmic Description:

1. Suspend(PUID).

2. Get_list _Of Modified_Objects(PUID)---> Set_Of_Object UIDS

3. For Set_Of _Object UIDS Do

3.1 Delete_Object Versions(UID)---> {Successful,Unsuccessful}
4. Get_List Of Children(PUID)---> Set_Of Children_UIDS

5. For Set _Of_ Children UIDS do

5.1 Delete Process(UID)

6. Discard_Recovery_Points_On_SS(PUID)

3-38

PROCESS MANAGER DESIGN

BEHAVIOR
{This procedure deletes the specified process or transaction
and all its descendents regardless of thier status. It also
broadcasts a message to all modified objects to discard all
the changes which were made by this process.}

VARIABL.S

To_Controller : CP_TO_Controller
k,1 : INTEGER

Resp : ACK

Response : Response_Msg

Modified Obj : PMDB_Response_Type
Children : PMDB_Response_Type

TEXT

{Destroys the Process}
WHEN
PM_Controller_Iface.Send(Process_UID Type) -->
{The PM Controller removes all connections to the above process}
WHEN
PM_Controller_Iface.Came -->
Resp:=PM_Controller_Iface.Cet
END
END

{Get the UIDs of all modified objects}
Modified Obj := Get_All Modified_Object(Proc_UID)

IF
Modified Obj.val.Modified_Objects(dom) > Q0 -->
Broadcast(<Other_Msg,['Delete Version',0]>,Modified_Obj.Objects,
0S_Iface,My Process_ID)
{This procedure broadcasts to all modified objects request to-
delete the object versions created by the process Pr_name}

] OTHERWISE --> SKIP
FI

Children_List := Get_Children(Proc_UID)

IF
Children_List.val.Children(dom) > 0 -->
No_of Children := Children_List.val.Children(dom)
f:21
DO (i <= No_of_Children) -->
PUID := Children _List.Children(1i)
k := Extend be(Descendent Iface)
To Controller Machine Tvpe := Delete

3-39

To_Controller.Descendent_Mbx_Indx := k
To_Controller.Work Request OP := Delete_Process
To_Controller.Work Request.Param := Proc_UID
WHEN
PM_Controller_Iface.Send(To_Controller)-->
WHEN
PM_Controller_Iface.Came -->
Response 1= PM _Controller_Iface.Get
END
END
1:=1+1
oD

{Update PM database.}

PMDB_Response := Delete_From_DB(Proc_UID)

{Discard all recover points on stable storage for
deleted process}

Last_RP:=Get_LRP(Proc_UID)
Discard RPs(Proc UlD,0,Last _RP)

END. {Delete_Local_Process}
CONTROLLER

IF Work_Request.tagfDelete_Process -->
Response val:=zIllegal_| Command
0 OTHERWISE -->
IF Work_Request.val.Param.Host_ID#ZMy_Host_ID -->
Response :=Delete _Remote Process(Work Request My Process_ID)

0 OTHERWISE -->
Response :=Delete_Local_Process(Work_Request.val.Param)

FI
FI

IF Remote -->
0S_Iface.Send(Response)
0 OTHERWISE -->
Parent_Iface.Send(Response)
FI
Terminate_Command_Processor {this procedure destroys the cp.}

END Delete_Processor Machine

PROCESS MANAGER DESIGN

3.4.5 Machine Create_Processor

Create_Processor(My_Process_ID:Process_UID Type,
Remote:BOOLEAN,
Requester: Process_UID_Type,
Work_Request:Appl_Req_Msg)

PUBLIC
PMDB_Iface:Port(PMDB_Response Type, PMDB Re. 'est_Type)
Parent Iface:Large Mallbox((Appl Req Msg, Response _Msg)
PM Controller Iface:Small Mallbox(Controller to_CP, LCP to _Controller)
OS Iface:Small Mallbox(Invoke _Msg Type, Invoke Msg Type\
SS Iface:Port(Port _Msg(SS_PM Msg) Port Msg(PM_ SS Msg))
MM Iface:Port(Port Msg(MM_PM Msg),(Port Msg(PM MM Msg))
Descendent Iface: LIST(Large Mailbox ((Response _Msg, Appl_Req_Msg)

OBJECTS

Timer_Interrupt : Event_Rec INLET
Timer Iface:Small Mallbox(Tlmer _Response,
Timer Command)
Local _Timer:Timer:=(Timer_Iface “TO Timer Command _Iface,
Timer Interrupt TO Interrupt)

3.4.5.1 Procedure Create_Remote_Process

Create Remote_Process (Work Request : Appl_Msg Type,
My Process_ID : Process_UID_T;ge)
RETURNS Response _Msg
BEHAVIOR
{This proedure invokes a remote operation by sending
a request to the Operation Switch to create a process
on a remote host. Then it waits until it either times
out or gets the result of operation back from the
remote host.}

VARIABLES
To_Router:General Msg Type
Respounse:R2sponse_Msg
Resp : ACK
Receiver : Process_Manager UID_Type

TEXT
{Set the parameters for Invoke operation & send a message to
Operation Switch thru Router to invoke this cperation on the

requested host.}
TO_Router.val := Work_Request

3-41

Receiver := Get_PM UID(Work_Request.val.Param.Host_ID)
Resp:=Invoke(My_ Process ID, Receiver,To_Router, OS Iface)
Set_Timer(Timeout_Period, Tlmer_Iface)
IF Resp.tag = Success -->
WHEN
Timer_Interrupt.came -->
Create_Remote_Process.val:=Time-Out

] 0s Iface.came -->
Create Remote Process:=(0S_Iface.Get).Operation.val
{Create Remote Process Msg type}

END

] Resp.tag = Failure -->
Create_Remote_Process.val := Undefined Error
FI .

END {Create_Remote_Process}

3.4.5.2 Procedure Create_Local_Process

Create_Local Process(Work_Request : Appl_Req_Msg)
RETURNS Response_Msg

Algorithmic Description:

Assign UID ---> TUID

Create_PCR (TUID) ---> PCR_record

Insert PCR (PCR_record) --=> {successful, unsuccessful}

Create PCB (TUID, Prog, [Data]) ---> PCB_record

Insert to_Parent_child_table (TUID) ---> “{successful, unsuccessful!
Set Map field (TUID, 0) ---> {successful, unsuccessful}
Establish_Recovery Point (TUID) ---> RP_Num

Run_PCB (PcCB record) ---> {successful, unsuccessful}

Return (status).

BEHAVIOR
{This procedure creates either a new process in response to
'Create_Process' or a new transaction in response to
'Create_Transaction' or 'Begin_Transaction'.
It also creates all the records which are needed to be kept
in PM_Database for the newly created process or transaction.
And after it establishes the first recovery point, it sends
a request to PM controller to start running the process.!

.

\OmNO\U\.‘:wl\)—a

VARIABLES
Pr_Rec:Active_Process_Record
PC_Rec: Parent_Child_Info
Proc_UID : Process UID _Type
PCB : PCB_Type

3-42

PROCESS MANAGER DESIGN

Controller_Resp : Controller_To_CP
PMDB_Resp : PMDB_Response_Type
Temp_Rec : All_Rec_Type ARRAY
Response : Response_Msg
To_Controller : CP_To_Controller
To_Farent : Response_Msg

TEXT

{Send request to the controller to create a new process, connect it to the
appropriate mailboxes, and then return its UID}
Controller Resp := Request_New_Process
IF Controler _Resp.tag = t2 -->
Proc_UID :=Controller_Resp.val

IF Work_Request.val.OP = Create Process -->
{Create active Process record}
Pr_Rec:=Create_Process_Record (Proc_UID)

] OTHERWISE -->
{Create active transaction record}
Pr_Rec := Create_Transactin_Record(Proc_UID)
FI

{Create parent_child_info record
Pc Rec.-Create _Pc Rec(Params)

IF Work_Request.val.QOP = Create_Process OR
Work_Request.val.OP = Create_Transaction -->
{Create process control block}

PCB := Create_PCB(Paranms)

| OTHERWISE --> SKIP
FI

{Establish the 1st recovery point for the new process}
Work Request.OP:=Establish_Recovery_ Point

Work Request.Param := Proc UID

J:=Descendent Iface.Hi Extend

Controller Resp:zRequest New CP(ERP,J,Work_Request)

WHEN
Descendent_Iface.Element(J).came -->
Response:=Descendent_Iface.Element(J).Cet
END

IF Response.tag = Success -->
{Send request message to the Database_Iface; wait for the response!

3-43

Temp_Rec(1).val := Pr_Rec
Temp_Rec(2).val := Pc_Rec
PMDB_Resp := Add_To_PMDB(Temp_Rec)

IF PMDB_Resp.val = Success -->
{start running the process}
To_Controller.Action := Run_Process
To Controller Param := PCB

WHEN
PM_Controller_Iface.Send(To_Controller)-->
WHEN
PM_Controller_Iface.Came -->
Controller _Resp := PM_Controller_Iface.Get
END
END

[F Controller_Resp.val = Failure -->
Remove_Proc_Machine(Proc_UID)
Create_Local Process.val := Undifined_Error

| OTHERWISE -->

To_Parent..val := Work_Request
WHEN

Parent_Iface.Send(To_Parent) --> SKIP
END

FI

0 OTHERWISE -->
Create_Local_Process.val := Undefined_Error
Discard_RP(proc_UID,0,0)
Remove_Rroc_Machlne(Proc_UID)
FI

0 OTHERWISE -->

Create_Local_Process.val := Undefined_Error
FI
END {Create_Local_Process}

CONTROLLER

IF Work_ Request.tagZCreate_Process -->
Response.val: =[llegal _ Command
0 OTHERWISE -->
IF Work_Request.val.Param.Host Hint#My Host_ID -->
Response =Create_Remote Process(Work Request My Process_ID)

{ OTHERWISE -->
Response:=Create_Local_Process(Work_Request)
FI

FI

3-44

PROCESS MANAGER DESIGN

[F Remote -->
0S_Iface.Send(Response)

0 OTHERWISE -->
Parent_Iface.Send(Response)
FI

Terminate_Command_Processor

END Create_Processor Machine

3.4.6 Machine PM_Database_Manager

PUBLIC
SS_Iface:Port(Port_Msg(SS_PM_Msg),(Port Msg(PM_SS _Msg))

Database _Port: Small mallbox(Port Msg(PMDB Request Type),
Port_Msg(PMDB Response Type))
0S_Iface : Small Mailbox(Invoke _Msg_Trpe, Invoke_msg_Type)

OBJECTS
{PM Database:!}

Active_Process_List: LIST (Active_Process_Record)

Parent Chlld Info _List: LIST (Parent Child Info)

Directly Modified Object List: LIST (Directly Modified_Objects)
Current Operation List: TIST (Current _Operation_Info)

PMDB_Log Buffer: LIST (PMDB _Modify Operatlons)

CONTROLLER

{Receives request messages from the Database_Port. The request messages
are either querries or updates. The request messages also bear the
Process UID of the caller. The controller sends the responses to the
Database_Port, which are then received by the process that originated
the request This machine also interfaces with both the secondary memory
port, in order to periodically save the database on the stable storage,
and the Operation Switch, in order to inform the remote hosts of the
changes that affect thier databases.}

END PM_Database_Manager Machine

3.4.7 Machine Port Multiplexer

Port Multiplexer(T1 : TYPE , T2 : TYPE)

3-45

PUBLIC
Device_Iface : Small Mailbox(Port Msg(T1),Port Msg(T2))

Iface : Small Mailbox(Port Msg(T2),Port_Msg(T1))

OBJECTS
UID : Process_UID_Type
Response : Port Msg(T1)

Procedure Attach_UID(UID : Process_UID_Type,
Msg : T1) RETURNS Port _Msg

BEHAVIOR
{This procedure attachs the UID of the requester

to the recieved msg.}
END Attach_UID
CONTROLLER

WHENEVER
Iface.Came -->
UID := Iface.Get.Get_UID
Device_Iface.Send(Iface.Get.Get_Msg)

{ Device_Iface.Came -->
Response := Attach_UID(UID, Device_Iface.Get)
Iface.Send(Response)
END

END Port Multiplexer
3.4.8 Machine End_Trans_Processor

End_Trans_Processo~/My_Process_ID:Process_UID_Type,
ERP : BOOLEAN,
Requestor:Process_UID_Type,
Work_Request:Appl_Req_Msg)

PUBLIC

PMIB_Iface:Small _Mailbox(PMDB_Response_Type, PMDB_Request _Type)
Parent Iface:Large Mailbox((Appl Req_Msg, Response _Msg)

PM Controller Iface:Small Mallbox(Controller to_CpP, JCP to _Controller)
OS Iface: Large Mailbox(Invoke _Msg Type, Invoke Msg Type)

Descendent Iface:LIST(Large Mailbox((Response _Msg, Appl_Req_Msg)

OBJECTS

Timer_Interrupt IS Event_Rec INLET
Timer Iface:Small Mailbox(Timer _Response,

3-46

PROCESS MANAGER DESIGN

Timer_Command)
Local Timer:Timer:=(Timer_Iface TO Timer_Command_Iface,
Timer_Interrupt TO Interrupt)

3.4.8.1 Procedure Commit

Commit(TUID :Transaction_UID_Type)

BEHAVIOR

The execution of the End_Transaction command is the commit point for the
transaction. For an outermost transaction, execution of the End_Transaction
command means permanence of all updates made within this transaction and
releasing of the 1locks on the updated objects. For a nested transaction,
execution of the End_Transaction command means only a conditional commitment
that is dependent upon the commitment of its enclosing transaction.

Description of the End_Transaction Protocol:

In this design we will make the following assumptions:
1) All update operations on remote or local objects follow the two-phase

commit protocol.

2) All nested transactions follow the one-phase commit protocol.

3) Every transaction maintains a list of all object that have been
directly or indirectly modified by it. An object is said to be indirectly
modified by a transaction when it is modified only within one of its
nested transactions. Any object that is updated within a transaction by

invoking a local or remote procedure call is said to be directly modified
by the transaction.

4) We use the presumed-abort protocol if no information is present about
the transaction status in the Process Manager's datauvase.

End_Transaction protocol:

{abort}.

3) If all responses are ACKs then execute the following protocol:

3.1) Pecord this operation in the Current_Operation_List;

3.2) If ERP option then establish recovery point for the parent process;
4) if the transactior is

top~level and sequential -->
(a) Force write the COMMIT status record in the database;

3-47

(b) Send COMMIT messages to all Object Managers of modified objects;
(c) Resume the parent process;
(d) Receive ACKs for the commit messages from the Object Managers;
(e) When all ACKs ars received, delete all information about

the transaction from the database; }

top-level and concurrent -->
(a) Force write COMPLETED status for the transaction;
(b) Send COMPLETED messages to all Object Managers of modified objects;
(c) Send DONE signal to the parent transaction;

{ Background activity executed by the Commit/Abort command processor:

Wait for the COMMIT/ABORT from the parent process;

If

COMMIT command -->
Force write COMMIT record in the database;
Send COMMIT messages to all Object Managers of the
modified objects;

ABORT command -->
Send ABORT messages to all Object Managers;
Delete all information for the transaction from
the database;

£i;

Wait for the ACKs for the COMMIT messages;

if

all ACKs received -->
Delete all information for the transaction from
the database;

fi; }

Nested and Sequential -->

(a) Send COMPLETED message to all modified objects;

(b) Force write COMPLETED record in the database;

(c) Append the list of the modified objects to the parent transaction;
(d) Append the 1list of the descendent transactions to the parent's
list;

(e) Resume the parent process;

{ Background activity executed by the Commit/Abort command processor:
Wait for the COMMIT/ABCORT command from the parent;
When such a command is received, delete all
information about the transaction from the database;
Send an ACK for the COMMIT command; }

nested and concurrent -->

(a) Force write COMPLETED record in the database;

(b) Send COMPLETED message to all Object Managers of the modified
objects;

(c) Append the list of the modified objects to the parent transaction;

3-48

PROCESS MANAGER DESIGN

(d) Append the list of the descendent transactions to the parent's
list;
(e) Send DONE signal to the parent transaction;

{ Background activity executed by the Commit/Abort command processor:
Wait for the COMMIT/ABORT command from the parent;
Delete all information for the transaction from the database;
Send ACK for the COMMIT command; }
fi

5) EXIT
6) Invoke the ABORT command;

VARIABLES

Current_Op_Rec: Current Operation_Info

Modified Obj UIDS : PMDB _Response_Msg

msg: Invoke Msg Type

Parent:Process_UID_Type

PC_Rec:Parent_Child_Info

Response : Response Msg

Abort_Signal : BCOLEAN

All Modified Obj : PMDB_Response_Msg

Descendant _Transaction : PMDB_Response_Msg
TEXT

{Delete the transaction process. The infcrmation about this transacticn
in the PM database, and its recovery points are still intact}

PM_Controller_Iface.Send(<Service_Call, {Action:=Delete_Process,
Param:= <tag2, TUID>]
>)

{add (TUID,END TRANSACTION) to current_operation_table}

Current_Op_Rec.PUID :=TUID
Current_Op_Rec.op:=zEnd_Transaction

PMDB_Iface.Send(<Update, <Add_Modify,
[OPT=Add, Param:=(COI,Current Op_Rec)]

>

>)

{If ERP option then establish a recovery point for the parent process}

If ERP Option then {establish recovery point for the parent process by
creating an ERP_Processor via the PM Controller};

{Get list of objects directly modified by TUID}
Modified Obj UIDS:=Get_Directly Modified_Objects(TUID)

{Cet list of all objects (directly or indirectly) by TUID ;
All Modified Obj:=Get_ All Modified_Obj(TUID)

Descendent_Transactions:=Get_All Descendent(TUID)

{Send PREPARE message to the object managers ofdirectly modified objects:
Broadcast('PREPARE', Modified Obj UIDS.Modified_Object,
0S_Iface, My_Process_ID)

{wait to receive READY/ABORT messages}
Abort Signal:=Receive_Acks(Modified Obj_UIDS.Modified_Object, Timeout_Period)

[F Abort_Signal -->
K:=Extend(Descendent_Iface)
WHEN
PM_Controller_Iface.Send(<Create,
(Machine_Type:=Abort,
Descendent_Iface_Indx:=K,
Caller Type =End Trans,
Work Request.-<UID param,
(OP:=Abort, Param:=TUID]>
1>)

-

WHEN
PM Controller-Iface.Came -->

WHEN
Descendent_Iface.Element(K).Receive(Response) -->
WHEN

Parent_Iface.Send(Response)

END

END

END
END

] OTHERWISE {Abort_Signal is set to false} -->

{Search parent _child_info_LIST to get Map-field}
PC_Rec:=Get_ Parent Child Record(TUID)

Parent:=PC_Rec.Parent_UID

[F (PC_Rec.Top_Level) AND (PC_Rec.Map_Field=Sequential) -->
{Top-level and Sequential Transaction}

Force := TRUE
Update_Transaction_Status(TUID, Committed, Force)

3-50

PROCESS MANAGER DESIGN

{Resume the parent process by sending the command message to the controlle
PM_Controller_Iface.Send(<Service Call, [Action:=Run_Process,

Param:z <tag2, Parent>]

>)

Broadcast('COMMITTED',All Modified Obj.Modified_Object,
0S_Iface My Process _ID)

Broadcast(' COMMITTED' Descendent _Transactions.Children,
0S_Iface, My_Process_ID)

Set_Timer(timeout_period, Timer_Iface)

{Wait to receive ACKs from all modified objects when all ACKs have
been received delete all information about this transaction
from the database.:

DO (All_Modified Obj.Modified Object.dom <>0) OR
(Descendent_Transactions.Children.dom<>Q) -->
WHEN OS_Iface.Came --> msg:=0S_Iface.Get
IF msg.Operation.val.responsez'ACK' -->
IF It_Is_Transaction(msg.Operation.val.Obj) -->
Delete(msg. Operation.val.Obj, Descendent Transacticn
| OTERHWISE -->
Delete(msg.Operation.val.Obj,
All_Modified Obj.Modified Object)
FI
] Timer_Interrupt.Came -->
Broadcast('COMMITTED',A11 Modified Obj.Modified_Object,
0S_Iface,My Process_ID)
Broadcast('COMMITTED' Descendent _Transaction,
0S_Iface My Process ID)
Set_Timer(timeout period, Timer Iface)
END
oD

Clear_Database(TUID)
0 (PC_Rec.Top_Level) and (PC_Rec.Map_Field=Concurrent) -->
{Top-level and Councurrent}

Force := TRUE
Update_Transaction_Status(TUID, Completed, Force)

Signal(Parent, DONE)

{A Commit_Processor will be created in response to a COMMIT command
from the parent process}

§ (not PC_Rec.Top_Level) and (PC_Rec.Map Field=Sequential) -->
{Nested and Sequential transaction}

3-51

Force := TRUE
Update_Transaction_Status(TUID, Completed, Force)

{Send COMPLETED message to all modified objects}
Broadcast('COMPLETED',All Modified Obj.Modified Object,
0S_Iface, My_Process_ID)

{Append the list of modified objects to the parent transaction, and
append the list of the descendent transactions to the parent's database;
Append Modified Obj_List(All Modified Obj.Modified_Object, Parent)
Append_ “Descendent Llst(Descendent Transactions.Children, Parent)

{Resume the parent process by sending the command message to the controlle
PM_Controller_Iface.Send(<Service_Call, [Action:=Run_Process,
Param:= <tag2, Parent>]

>) .

1 (not PC_Rec.Top_Level) and (PC_Rec.Map _Field=Concurrent) -->
{it is a nested concurrent transaction}

Force := TRUE
Update_Transaction_Status(TUID, Completed, Force)

{Send COMPLETED message to all object managers}
Broadcast('COMPLETED', All Modified Obj.Modified Object,
0S_Iface, My_Process_ID)

{Append the list of modified objects to the parent transaction, and
append the list of the descendent transactions to the parent's list}

Append Modified Obj_List(All Modified Obj.Modified Object, Parent)
Append_Descendent Llst(Descendent Transactions.Children, Farent)

FI
Clear_Current_Op_Table(TUID)

END {of Commit procedure}
CONTROLLER
TUID :=Work_Request.val.Param
Commit (TUID)

Terminate_Command_Processor

END {of END_TRANSACTION}

3-52

PROCESS MANAGER DESIGN
3.4.9 Machine Abort_Processor

Abort_Processor(My_Process_ID:Process_UID_Type,
Remote: BOOLEAN,
Requester:Process_UID_Type,
Work_Request : Appl_Req_Msg

PUBLIC

PMDB_Iface:Small_Mailbox(PMDB_Response_Type, PMDB_Request_Type)
Parent Iface:Large Mailbox((Appl _Req_Msg, Response_Msg)

M Controller Iface:Small Mallbox(Controller to_CP,CP_to_Controller)
0S_Iface: Large _ Mailbox (Invoke Msg_Type, Invoke Msg_ Type)

Descendent Iface:LIST(Large Mallbox((Response _Msg, Appl_Req_Msg)

OBJECTS

Timer_Interrupt IS Event_Rec INLET
Timer [face:Small Mallbox(Tlmer _Response,
Timer_Command)
Local Timer:Timer:=(Timer_Iface TO Timer_Command_Iface,
Timer_Interrupt TO Interrupt)
Request:Process_UID _Type

3.4.9.1 Procedure Abort

Abort
BEHAVIOR

The Abort operation terminates the execution of the current block and
restores the state of the 1local variables and global objects to their
values before the beginning of Transaction and continues execution with
the statement immediately following the End_Transaction statement of the
aborted transaction. If Abort command is used within a process, it
terminates the process.

This procedure executes the following steps to carry out the Abort
operation:

I) Transaction wants to abort itself
1 Delete the process.
2 Restore the parent.
3 Change the status of the transaction or process to be aborted.
u Send an Abort message to all the modified objects and its
descendents.

I1) Transaction wants to abort another transaction
1_ Delete the process.

3-53

VARIABLES

Current Op_Rec: current_operation_Info
Modified Obj_UIDS : PMDB_Response_Msg
msg:Invoke Msg_Type

Parent:Process_UID_Type
PC_Rec:Parent_Child_Record
Transaction_Descendents : PMDB_Response_Msg

TEXT

Search parent_child_info _LIST to get Map-field}

PC Rec::=Get Parent Chlld Record(TUID)

Modified ObJ List:=Get All _Modified Obj(TUID)
Descendent _Transactions ::z Get All Descendent(TUID)
Parent:=PC_Rec.Parent_UID

IF Requester=TUID -~->
{A transaction wants to abort itself}

PM_Controller_Iface.Send(<Service Call, [Action:zDelete Process,
Param:=<tag2,TUID>]
>)

Restore(Parent) {This procedure will restore the status of all
local state varriables of the parent process}

{Restart the parent process}
PM_Controller_Iface.Send(<Service_Call, [Action:=Run_Process,
Param:=<tag2,Parent>]
>)

0 OTHERWISE {requestor wants to abort some transaction} -->

IF Status(TUID)<>COMPLETED -->
PM_Controller_Iface.Send(<Service_Call, [Action:=Delete_Process,
Param:=<tag2,TUID>]
>)
FI
FI

Update_Transaction_Status(TUID, 'ABORTED')

Broadcast('ABORTED' All Modified _Obj.Modified Object,
0S_Iface,My_ Process ID)

Broadcast('ABORTED' ,Descendent” _Transaction,
0S_Iface,My Process ID)

Clear Database(TUID

END Abort

3-54

Broadcast('ABORTED',Descendent_Transactions,
0S_Iface,My_Process_ID)

Clear_Database(TUID)
END Remote_Abort

3.4.10 Machine Commit_ Processor

Commit _Processor(My_Process_ID:Process_UID_Type,
Remote :BOOLEAN,
Requester :Process_UID_Type,
Work_Request : Appl Req Msg

PUBLIC

PMDB_Iface:Small_Mailbox(PMDB_Response Type, PMDB_Request_Type)
Parent Iface: Large Mallbox((Appl _Req_Msg, Response Msg)

PM Controller Iface:Small Mailbox(Controller to_CP,CP_to _Controller)
OS_Iface Large_Mailbox(Invoke_Msg_Type, Invoke_Msg_Type)
Descendent_Iface:LIST(Large Mailbox((Response_Msg, Appl _Req Msg)

OBJECTS

Timer_Interrupt IS Event_Rec INLET
Timer_Iface:Small Mailbox(Timer_Response,
Timer_Command)
Local_Timer:Timer:=(Timer_Iface TO Timer_Command_Iface,
Timer_Interrupt TO Interrupt)
Request:Process_UID Type

3.4.11 Procedure Commit_Protocol_Terminator

Commit Protocol_Terminator(TUID :Transaction_UID_Type)

BEHAVIOR

The Commit operation makes all the updates which have been
performed by a transaction permanent.

The followings are the steps which are executed by Commit_
Protocol_Terminator :

I) Top level concurrent transaction AND command=Commit:

1_ Change the transaction status to Committed and Force
the updated database on stable storage.

2_ Broadcast Commit message to all the modified objects
and transaction's descendents.

3_ Wait to receive ACK back from all the descendents and
modified objects.

4_ Clear the database.

3-56

PROCESS MANAGER DESIGN

CONTROLLER
TUID := Work_Request.val.Param
IF TUID <> My Host_ID --->
Response:= Remote_Abort(Work_Request, My Process_ID)

(] OTHERWISE
Abort
FI

Terminate_Command_Processor
END {of Abort_Processor}

3.4.9.2 Procedure Remote_Abcrt

Remote_Abort
Algorithmic Description:
Remote_Abort follows following steps:

1. Signal completion to the parent process/transaction.

2. Send ABORT messages to type managers of all modified objects.

3. Send ABORT messages to Process Managers of the nested transactions.
4, Clear from PMDB all info related to the transaction UID.

BEHAVIOR
The Remote Abort terminates the execution of the transaction given

by TUID. It Eends_abort messages to the type managers of all

modified objects and to the Process Managers of the nested
transactions. It signals completion to the parent process/transaction.
It clears from PMDB all info related to TUID.

VARIABLES

Modified Obj_List: PMDB_Response Msg
Parent: Process_UID Type

PC_Rec: Parent_Child_Record
Transaction_Descendents: PMDB_Response Msg

TEXT

PC_Rec:= Get_Parent_Child_Record(TUID)
Modified_Obj List:z Get_AIl Modified Obj(TUID)
Descendent_Transactions:z Get_All_Descendent(TUID)
Parent:z PC _Rec.Parent UID
Update Transaction Status(TUID 'COMPLETED')
Broadcast('ABORTED",Modified Obj List,

0S_Iface, Hy_Process_ID)

3-55

PROCESS MANAGER DESIGN

II) Nested sequential or concurrent transaction AND command=Commit:
1_ Send ACK message to the parent.
2 Clear the database.

VARIABLES

Current Op_Rec: current_operation_Info
Modified Obj_UIDS: UID_type ARRAY

msg: Invoke Msg Type

Parent :Process_UID_Type

PC_Rec:Parent Chlld _Record

TEXT
{add (TUID,Commit) tc Current Operation_Table}

Current_Op_Rec.PUID :=TUID;
Current_Op_Rec.op:=Commit;

PMDB_Iface.Send(<Update, <Add_Modify,
(OP:zAdd, Param:=(COI,Current Op_Rec)]
>

>)

Search parent child_info LIST to get Map-field}
PC_Rec:=Get_Parent Child Record(TUID)
Modified_ObJ_List:=Get AIl Modified_Obj(TUID)
Descendent Transaction{TUID)

Parent:=PC_Rec. Parent_UID

IF (PC_Rec.Top_Level) AND (PC_Rec.Map_Field=Concurrent) -->
{Top-level and Concurrent Transaction}
IF Command=COMMIT -->
Force := TRUE
Update_Transaction_Status(TUID, Committed, Force)

0S_Iface.Send({Sender:=My_Process_ID,
Receiver: -Requester
Operation:=<Other_Msg, [Response:='ACK',
Obj:=TUID]
>

1)

Broadcast('COMMITTED',All Modified Obj.Modified Object
,0S Iface My Process_ID)

Broadcast('COMMITTED' Descendent _Transactions.Children,
0S_Iface My Process ID)

Set_Timer(timeout per1od Timer Iface)

3-57

{Wait to receive ACKs from all modified objects when all ACKs have
been received delete all information about this transaction
from the database.}

DO (All_Modified Obj.Modified Object.dom <>Q) OR
(Descendent _Transactions. Children.dom<>Q) -->
WHEN
0S_Iface.Came --> msg:=0S_Iface.Get
F msg.Operation.val. response='ACK' -->
IF It_Is_Transaction(msg.Operation.val.Obj) -->
Delete(msg.Operation.val.Obj, Descendent _Transaction)
0 OTERHWISE -->
Delete(msg.Operation.val.Obj,
All Modified Obj.Modified Object)
FI
| Timer_Interrupt.Came --> :
Broadcast('COMMITTED',All Modified Obj.Modified _Object,
0S_Iface ,My Process _ID)
Broadcast('COMMITTED' Descendent Transaction
,0S Iface My Process ID)
Set Timer(tlmeout _period, Timer _Iface)
END
oD

Clear_Database(TUID) {Clear all information about TUID from the
database}

FI

] (not PC_Rec.Top_Level) -->
{Nested and sequential/concurrent transaction}

IF Command=COMMIT -->
{Send ACK and clear the database}
0S_Iface.Send([Sender:=My _Process_ID,
Receiver:=Requester
Operation:=<Other_Msg, (Response:='ACK',

Obj:=TUID]
>
1)
FI
Clear_Database(TUID) {Clear all information about TUID from the
database}

] Clear_Database(TUID)
FI

END Commit Protocol_Terminator

3-58

PROCESS MANAGER DESIGN

CONTROLLER
TUID := Work_Request.val.Param
Commit_Protocol_Termainator(TUID)
Terminate_Command_Processor;

END Commit_Processor
3.4.12 Machine Rollback_ Processor

Rollback_Processor(My_Process_ID:Process_UID_Type,
TUID : Process UID Type,
RP_Number : INTEGER)

PUBLIC

PMDB_Iface:Small Mailbox(PMDB_Response Type, PMDB_Request_Type)
Parenn Iface: Large Mailbox((Appl _Req_Msg, Response _Msg)

PM Controller Iface:Small Mallbox(Controller to_CP, TCP to _Controller)
0S_ “Iface: Large Mailbox(Invoke _Msg_Type, Invoke Hsg Type)
Descendent_Iface LIST(Large_Mailbox((Response_Msg, “Appl_Req_Msg)

OBJECTS

Timer_Interrupt IS Event_Rec INLET
Timer Iface:Small Mallbox(szer _Response,
Timer Command)
Local_Timer:Timer:=(Timer_Iface “TO Timer _Command_Iface,
Timer Interrupt TO Interrupt)

3.4.12.1 Procedure Rollback

Rollback

BEHAVIOR

The Rollback operation within a process restores the state of all the
local objects to their values which they possessed at the time the RP_num
was established. The changes on global objects, which have been made by
transactions within that process, remain permanent if the transactions
performing those are committed; otherwise, they are resotred to their values
that they possessed at the time the RP_num was established.

The Rollback operation within a transaction restores the state of all the
local and global objects to their values that they had at the time the
RP_num w7as established.
The following outlines the steps which must be taken to perform the Rollback
operation:
I) Transaction Type:
1_ Add the operation to the current operation info.
2 Get the Time_stamp for the time the recovery point was established.

3-59

3_ Broadcast a message to all the modefied objects to delete
all the versions which were created after the that time.

4_ Broadcast an Abort message to the all the children which were created
after that time.

5_ Wait to rceieve ACK from all modified objects and children.

6_ Restore the recovery point data .

7_ Update the the last recovery point number.

I1) Process Type:
1_ Add the operation to the current operation info.
2_ Restore the recovery point data.

VARIABLES
Current_Op_Rec : Current_Operation_Info
Ts : INTEGER :

Modified Obj : PMDB_Response Msg
New Children : PMDB_Response Msg
Timeout Period : INTEGER

PCB_Rec : PCB_Type

LRP : RP_Number

TEXT
Current_Op_Rec.PUID :=Proc_UID
Current Op Rec.op:=Rollback

PMDB_Iface.Send(<Update, <Add_Modify,
(OP:=Add, Param:=(1,Current_Op_Rec)]
>

>)

TS:=Time_stamp(RP_Number, Proc_UID) {This procedure returns the time-stamp
of the recovery point number RP_Number

for Proc_UID}

IF It_Is_Transaction(Proc_UID) -->
Modified _Obj:=GCet | Modified _Obj(Proc_UID) {All directly modified objects;
New Chlldren.-Get New_Children(RP_Number, Proc_UID)
{This procedure returns the children transactions created

by Proc_UID after establishing the recovery point!

IF Modified Obj.dom<>0 -->
Broadcast(<Other_Msg, {'Delete Version', TS]>,
Modifled_QbJ, OS_Iface, My_Process_ID)
FI

IF New _Children.dom<>Q -->
Broadcast('ABORT', New_Children, 0S_Iface, My_Process_ID)
FI

Set_Timer(timeout_period, Timer_Iface)

3-60

PROCESS MANAGER DESICN

{Wait to receive ACKs from all modified objects, and the children
transactions that are to be aborted.}

DO (Modified Obj.dom <>0) OR (New_Children.dom<>Q) -->
WHEN 0S_Iface.Came --> msg:=0S_Iface.Get
IF msg.Operation.val. response='ACK' -->
[F It_Is_Transaction(msg.Operation.val.Obj) -->
Delete(msg Operation.val.Obj, New_Children)
{This procedure removes the UID of the ob ject
that sent this ACK}
| OTHERWISE -->
Delete(msg.Operation.val.Obj,Modified 0Obj)
{This procedure removes the UID of the object
that sent this ACK}
FI
| Timer_Interrupt.Came -->
Broadcast(<Other _Msg, ['Delete Version', TS]>,
Modified Obj, OS Iface, My Process_ID)
Broadcast('ABORT',New Children,0S Iface ,My_Process_ID)
Set, Tlmer(tlmeout perlod Timer Iface)
END
oD

0 OTHERWISE {non-transaction process} --> SKIP
FI
PCB_Rec:= Restore_Recovery_Point(Proc_ UID RP_Number)

{This procedure loads the recovery point data in the primary
memory, prepares the process control block and returns
this as the result}

LRP:=Last_Recovery_Point(Proc_UID)
IF RP_Number<>LRP -->
Discard_Recovery_Point(Proc_UID, RP_Number, LRP)
FI
PM_Controller_Iface.Send(<Service_Call, [Action=Run_Process,,
Param:=PCB_Rec]
>)

Clear_Current_Op_Table(Proc_UID)

END {of Rollback }
CONTROLLER

Rollback
Terminate_Command Processor

3-61

END { Abort Processor '}
3.4.13 Machine ERP_Processor

ERP (My_Process_ID:Process_UID_Type,
Requester T Process UID _Type
Work_Request:Appl Req Msg)

PUBLIC
PMDB_Iface:Small_Mailbox(PMDB_Response_Type, PMDB_Request_Type)
Parent Iface:lLarge Mallbox((Appl _Req_Msg, Response Msg)
PM Controller Iface:Small Mallbox(Controller to_CP, JCP to _Controller)
OS Iface: Large Mailbox(Invoke _Msg_Type, Invoke Msg Type)
SS Iface:Port(SS_PM Msg,PM_SS “Msg) -
MM Iface:Port(MM_ “PM _Msg, PM) _MM Msg)

OBJECTS

Timer_Interrupt IS Event_Rec INLET
Timer Iface:Small Mallbox(Tlmer _Response,
Timer Command)
PM_Timer:Timer: =(Timer_Iface TO “Timer Command Iface,
Timer Interrupt TO Interrupt)

Response : Response_ Msg

3.4.13.1 Procedure_Establish_RP

Establish_RP(Proc_UID :Process_UID_Type)
RETURNS Response Msg

Algorithmic Description:

0 UID <wwe-- Get_Invoker UID;
.0 PCB <ewww- Get PCB (UID)

O LRP <e=ce- Get LRP (UID),
0 LRP <-=--- LRP + 1:

{The value for the LRP in the Process Manager Database will be
changed after the operation is done successfully. The above LRP is
just a temporary variable.}

0 Label <-=--- Assign _Label (UID, LRP);

.0 (Starting_addr, Len) <e=-== Create_RP_Data_Rec (Data, PCB);
0 Write (Label, Starting _addr, len);

0 LRP <ee-=e- Update_LRP (UID) -Log;

{'Log' indicates that the changes to the Process_Manager_Database are

to be recorded on the PMDB_Log_ Buffer (maintained in PM database)
9.0 Append (PMDB_Log Buffer, Differential File);

3-62

PROCESS MANAGER DESIGN

10.0 Resume the invoker

VARIABLES
PCB:PCB_Type
LRP:RP_Num
L:Label_Type
RP_Data:CHAR ARRAY
MM_Info:Memory_Allocation
Param:RW_Param
Controller_Resp : Controller_To_CP
SS_Resp : SS_PM_Msg
Children_List : PMDB_Resp Msg

TEXT
{Chck the status of children to make sure all are in completed state.;
Children List := Get_Children(Proc_UID)
IF Children List.Children(dom) <> Q -->
Check Children_Status(Children_List.Children)

0 OTHERWISE --> SKIP
FI

{Get a copy of PCB from the PRocess}
WHEN
CP_To_Controller.Send(Action := Get_PCB) -->
WHEN
CP_To_Controller.Came -~>
Controller_Resp := CP_To_Controller.Get
END
END
IF Controller Resp.tag = t3 -->
PCB := Controller_ Resp.val
{G?t last Recovery point in order to generate lable for new
RR

LRP:=Get_LRP(Proc_UID)
LRP:=LRP+1
L:=Assign_Label(Proc_UID,LRP)

{CreateRP_Data_Record!
RP_Data:=Create_RP_Data_Record(Proc_UID,PCB)

{Get memory address & length of the segment for created RP_Data.}
MM_Info:=Get_memory_addr(RP_Data)

{Write the record on Stable Storage}
SS_Resp := Write_To_SS(L , MM_Info)

IF SS_Resp = ACK_Resp -->

{update PM Data base}
PMDB_Resp:= Modify DB(Proc_UID, LRP)

3-63

Establish_Recovery Point.val.OP:=zERP
Establish_Recovery_ “Point.val.Param := LRP

] OTHERWISE -->
Establish_Recovery Point.val := Undifined_Error

FI
] OTHERWISE -->

Establish_Recovery Point.val := Undefined Error
FI

END Establish_Recovery_Point

CONTROLLER

IF Work_Request.tag#Establish_Recovery_Point -->
Response.val:=Illegal Command
| OTHERWISE -->
Response:=Establish_Recovery_Point(Work_Request.val.Param)
FI
Parent_Iface.Send(Response)
Terminate_Command_Processor

END Establish_Recovery Point
3.4.14 Machine DRP_Processor

DRP (My_Process_ID:Process_UID_Type,
Work Request Appl_Req Msg)

PUBLIC
PMDB_Iface:Small Mailbox(PMDB_Response_Type, PMDB_Request_Type)
Parent Iface:Large Mallbox((Appl _Req_Msg, Response _Msg)
SS_Iface:Port(SS_PM_Msg,PM_SS_Msg)

OBJECTS
Timer_Interrupt IS Event_Rec INLET
Timer Iface:Small Mallbox(Timer _Response,
Timer Command)
PM_Timer:Timer:=(Timer_Iface TO “Timer Command _Iface,
Timer Interrupt TO Interrupt)

Response : Response Msg

3-64

PROCESS MANAGER DESIGN
3.4.14.1 Discard_RP

Discard_RP(Proc_UID : Process_UID_Type,RPnumt, RPnum2 : RP_Num)
RETURNS ACK

VARIABLES
i : RP_Num
L : Label_Type ARRAY
Jj ¢+ INTEGER
Resp : SS_PM Msg

TEXT
i RPnum
1
<= RPnum2 -->
(J) := Assign_Label(Proc_UID , i)
2z i+1
1= j+1

i
J
DO

Cse P = 1 U

o
o

WHEN
SS_Iface.Send(<DRP, [Labels := s := L]>) -->
WHEN

SS_Iface.Came -->
Resp := SS_Iface.Cet

END

END

IF Resp.val.Param = Success -->
Discard_RP.QP := Discard_Recovery_Point
Discard_RP.Param := NULL

END Discard_RP

CONTROLLER

[F Work_Request.tag#DRP -->
Response.val:=Illegal_Command
1 OTHERWISE -->
Response:=Discard_RP(Work Request.val.Param)
FI
Parent_Iface.Send(Response)
Terminate_Command_Processor

END

END {Realization Dictionary}

3-65

3.5 SYSTEM Process_Manager

PUBLIC

PM_TO_OS: Small_Mailbox (OS_PM _Msg,PM_0S_Msg)
PM TO “MM: Small Mallbox (MM PM_Msg,PM MM Msg)
PM TO SS Small Mallbox (SS PM_Msg,PM SS Msg)
PM TO UIDgen Small _Mailbox (UIDgen PM Msg,

PM UIDgen _Msg)

PM_TO_SS: Large_Mailbox(SS_PM_Msg,PM_SS_Msg)
PM_TO MM: Large Mailbox(MM_PM Msg,PM_MM_Msg)

OBJECTS

PM_TO_Timer IS Event_Rec INLET
Connectlon to_Timer: Small Mallbox(Tlmer _Response,

Timer Command3
PM_Timer:Timer:=(Connection_to_Timer “TO Timer _Command_Iface,
PM_TO_ Timer TO Interrupt)

SS_Port:Port Multlplexer(SS PM Msg, PM_SS Msg)
MM Port Port Multlplexer(MM PM Msg, PM MM Msg)

PMDB:PM_Database_Manager:=(SS_Iface TO SS_Port.Iface,
OS Iface TO Router _To_PMDB)
PM_TO Process: LIST(Large_ Mailbox (Appl _Req Msg,Response Msg))
PM TO Processor _Scheduler: LIST(Large Mailbox(
Processor Scheduler _Req_Msg,Response_Msg))
PM_TO Router:Small Mailbox (Router_ PM _Msg,PM_ Router _Msg)
PM TO Router Control _CMD: Small Mailbox (Router PM CTRL
Msg,PM Router,CTRL Msg)
Router: Router Machine: = (Router_To_PM Control _CMD
TO PM TO Router Control _CMD,
Router TO PM TO PM TO Router,
Router TO_0S:= PM_TO_0S)

Database_Iface: LIST (Large_Mailbox(PMDB_Request_Type,
PMDB_Response_Type))

Command_Proc_Iface: LIST(Large_Mailbox(CP_to_Controller,
Controller_to_CP))

Appl_Process_Pool: Process POOL
New_Proc_Indx: Process INDEX

{Command Processors Pool}
Delete_Command_Proc:Delete Processor POOL
Delete CP:Delete Processor INDEX

Commit_Command_Proc:Commit_Processor POOL
Commit CP:Commit_Processor INDEX

3-66

PROCESS MANAGER DESIGN

Abort_Command_Proc:Abort Processor POOL

Abort CP Abort Processor INDEX

Rollback Command _Proc:Rollback_Processor POOL
Rollback CP Rollback Processor INDEX

ERP Command _Proc:ERP Processor POOL

ERF CP ERP_ Processor INDEX

Create Command _Proc:Create_Processor PCOL
Create CP Create Processor INDEX

DRP_ Command Proc:DRP _Processor POOL

DRP CP DRP Processor INDEX

End Trans Command _Proc:End_Trans_Prccessor PQOL
End Trans CP End Trans Processor INDEX

3.5.1 Procedure Extend Router Mbx

Extend_Router Mbx(kind:(Appl,Cmnd)) RETURNS INTEGER

VARIABLES
To_Router:PM_Router CTRL_CMD_Msg

TEXT

‘Send a request to router to create a new mailbox.}
[F kind=Appl --> To_Router.tag:=Create_Appl_Mailbox
kind=Cmnd --> To_Router.tag::=Create PM_Mbx

FI
To_Router.val:=Proc_UID
WHEN
PM_TO_Router_CTRL_CMD.Send(To_Router) -->
WHEN
PM_TO_Router CTRL_CMD.Came -->
Extend_Router Mbx := PM_TO Router CTRL_CMD.Cet
END
END

{end of Extend_Router Mbx)
3.5.2 Delete_Router_ Mbx

Delete_Router_ Mbx(kind:(Appl, Cmnd),
Proc_ID:Process_UID_Type)
RETURNS ACK

VARIABLES
To_Router:PM_Router CTRL_CMD Msg

TEXT

3-67

{Send a request to router to create a new mailbox.}
IF kind=Appl --> To_Router.tag:zDelete_Appl Mailbox
kind=Cmnd --> To_Router.tag::Delete PM_Mbx
FI
To_Router.val:=Proc_UID

WHEN
PM_TO_Router_CTRL_CMD.Send(To_Router) =-->
WHEN
PM_TO_Router CTRL_CMD.Came -->
Extend_Router _Mbx := PM_TO_Router CTRL_CMD.Get
END
END

{end of Extend_Router Mbx)
3.5.3 Procedure Invoke

Invoke(Invoker, Receiver:Process UID_Type,
Request :General Msg Type
MBX: Invoke Iface) RETURNS ACK

VARIABLE
To_Router:Invoke Msg Type
TEXT

To_Router.Object _UID :=Receiver
To_ “Router.Caller UID :=Invoker
To Router Operation:=Request

{Send the message to Router}

WHEN
MBX.Send(To_Router)-->
WHEN
#HBX.came --> Invoke:=MBX.Get
END
END

{end of Invoke}

3.5.4 Procedure Extend_Mbx

Extend_Mbx(Mbx_Array:LIST(T))
RETURNS INTEGER

{This procedure extends the array representation of the LIST parameter
and returns the hi-bound of the array}

3-68

TEXT

i:=Extend_Mbx(Command_Proc_Iface) {Extends the mailbox array and return
the high bound of the array:

k:zExtend_Router Mbx(Cmnd) {Extends Router_TO_PM mailbox listt

Proc_ID:=Get_UID(process)

Remote := FALSE

IF CP=Delete -->
Delete CP:=Delete_Command_Proc.create((Proc_ID, Remote,
Caller_UID, Work Request),
Parent Iface TO Invoker _Iface,
PM Controller Iface TO Command _Proc_Iface(i),
PMDB Iface TO PMDB.Database Port,
0s_ Iface TO Router _TO PM(k),
SS I[face TO SS Port Iface,
MM Iface TO MM_ _Port.Iface).

{store the index Delete CP with the following mailboxes:
Command_Proc_Iface, Router TO_PM, CP_TO_SS, CP_TO_MM}

CP=Abort -->
Abort CF:.=Abort_Command_Proc.create((Proc_ID, Remote,

Caller _UID, Work Request)

Parent Iface TO Invoker _Iface,

PM_ Controller Iface TO Command _Proc_Iface(i),
PMDB Iface TO PMDB.Database Port,

0s_ Iface TO Router _T0 PM(k),

SS Iface TO SS_ Port.Iface,

MM Iface TO MM Port Iface)

{store the index Abort_CP with the following mailboxes:
Command_Proc_Iface, Router TO_PM, CP_TO_SS, CP_TO_MM!

CP=Commit -->
Commit CP:=Commit_Command_Proc. create((Proc_ID, Remote,
Caller_UID, Work Request)
rarent Iface TC Invoker _Iface,
PM_Controller_Iface TO Command_Proc_Iface(i),

3-69

PMDB [face TO PMDB.Database Port,
0S_ Iface TO Router _TO PM(k).

SS Iface TO SS Port Iface,

MM Iface TO MM Port Iface)

{store the index Commit_CP with the following mailboxes:
Command_Proc_Iface, Router_TO_PM, CP_TO_SS, CP_TO_MM!}

CP=Create -->
Create_CP:=Create_Command_Proc.create((Proc_ID, Remote,
Caller UID, Work Request)
Parent [face TO Invoker _Iface,
PM Controller Iface TO Command _Proc_Iface(i),
PMDB Iface TO PMDB.Database Port,
0S_ Iface TO Router _TO PM(k),
SS Iface TO SS Port Iface,.
MH Iface TO MM _Port.Iface)

{store the index Create CP with the following mailboxes:
Command_Proc_Iface, Router_TO PM, CP_TO_SS, CP_TO_MM!}

CP=ERP -->
ERP_CP:=ERP_Command_Proc.create(Proc_ID(, Remote,
Caller UID, Work _Request),
Parent_ Iface TO Invoker_Iface,
PM Controller _Iface TO Command _Proc_Iface(i),
PMDB Iface TO PMDB.Database Port,
0S_ Iface TO Router _T0 PM(k),
SS Iface TO SS Port Iface,
MM Iface TO MM Port I[face)

{store the index ERP_CP with the following mailboxes:
Command _Proc_Iface, Router_TO_PM, CP_TO_SS, CP_TO_ MM}

CP=Rollback ~->
Rollback_CP:=Rollback_Command Proc.create((Proc_ID, Remote,
Caller_UID, Work _Request),
Parent Iface TO Invoker _Iface,
PM Controller _Iface TO Command -Proc _Iface(i),
PMDB Iface TO PMDB.Database Port,
0S_ Iface TO Router _T0 PM(k),
SS Iface TO SS Port Iface,
MM Iface TO MM _Port.Iface)

{store the index Rollback _CP with the following mailboxes:
Command_Proc_Iface, Router_TO _PM, CP_TO_SS, CP_TO_MM}

CPzEnd_Trans -->
End _Trans_C.':=End_Trans_Command_Proc.create((Proc_ID, Remote,
Caller UID Work Request),
Parent Iface TO Invoker _I[face,
PM Controller Iface TO Command _Proc_Iface(i),
PMDB Iface TO PMDB. Database_ Port

3-70

PROCESS MANAGER DESIGN

0S_Iface TO Router TO_PM(k),
SS Iface TO SS Port Iface,
MM_Iface TO MM_Port.Iface)

{store the index End_Trans CP with the following mailboxes:
Command_Proc_Iface, Router _TO_PM, CP_TO_SS, CP_TO_MM}

CP=DRP_Command_Proc -->
DRP_CP:=DRP_Command _Proc.create((Proc_ID, Remote,
Caller UID Work Request),
Parent Iface TO Invoker _Iface,
PM Controller Iface TO Command _Proc Iface(l)
PMDB Iface TO PMDB.Database Port,
0S_ Iface TO Router _TO PM(k),
SS Iface TC SS_ Port.Iface, -
MM Iface TO MM _ _Port.Iface)

{store the index DRP_CP with the following mailboxes:
Command_Proc_Iface, Router TO_PM, CP_TO_SS, CP_TO_MM}

END {of Create_New_Machine}

3.5.6 Procedure Create_Command_Processor

Create_Command_Processor(New_Machine_Type:Command_Machine_Type,
Work Request:Appl_Req_Msg,
New_Slot:Integer,
Invoker_Machine Type:Command_Machine_Type,
Indx:Machine_Index_Type {for the Invoker machine:

TEXT

I[F Invoker Machine Type=zDelete -->
Create _New Machlne(New Machine_Type,
Delete Processor(Indx) Descendent _Iface(New_Slot),
Work_Request)

Invoker Machine_Type=zAbort -->
Create_New_Machine(New_Machine_Type,
Abort_Processor(Indx).Descendent_Iface(New_Slot),
Work Request)

Invoker_Machine_Type=Create -->
Create_New_Machine(New_Machine_Type,
Create_Processor(Indx).Descendent_Iface(New_Slot),
Work_Request)

3-T

Invoker Machine_TypezRollback -->
Create _New Machlne(New Machine_Type,
Rollback Processor(Indx) Descendent_Iface(New S..c),

Work Request)

Invoker_Machine TypezCommit -->
Create New Machine(New Machine_Type,
Commit Processor(Indx) Descendent_Iface(New_Slot),
Work_Request)

Invoker Machine_TypezERP -->
Create _New Machine(New Machine_Type,
ERP Processor(Indx) Descendent_Iface(New_Slot),
Work_Request)

Invoker_Machine_Type=DRP -->
Create _New Machlne(New Machine Type,
DRP Processor(Indx) Descendent _Iface(New_Slot),

Work_Request)

Invoker Machine_TypezEnd_Trans -->
Create _New Machlne(New Machine_Type,
End Trans Processor(Indx) Descendent _Iface(New_Slot),

Work_Request)
FI

END {of Create_Command_Processor}

3.5.7 Procedure Create_Appl_Server

Create_Appl_Server(CP:Command_Machine_Type,
OBJ Invoker_Iface: Large Mallbox(Response _Msg,
Appl_Req Msg),
Work_Request:Appl_Req_Msg)

VARIABLES i, j,k,1,m:INTEGER
Proc_ID:Process_UID_Type

TEXT

i:sExtend_Mbx(Command Proc_Iface) {Extends the mailbox array and return

the high bound of the array;
k:sExtend_Router_Mbx(Cmnd) {Extends Router TO_PM mailbox list}
Proc_ID:=Get_UID(process)

IF CP=Delete -->
Delete CP:=Delete_Command_Proc.create(Proc_ID, Work_Request,

3-72

PROCESS MANAGER DESIGN

Parent_Iface := Invoker_Iface,

PM_ Controller Iface TO Command _Proc_Iface(i),
PMDB Iface TO PMDB.Database Port,

0S_ Iface TO Router _T0 PM(k),

SS Iface TO SS Port Iface,

MM Iface TO MM Port.Iface)

{store the index Delete CP with the following mailboxes:
Command_Proc_Iface, Router_TO_PM, CP_TO_SS, CP_TO MM}

CP=Abort -->
Abort_CP:=zAbort_Command_Proc.create(Proc_ID, Work_Request,
Parent_Iface := Invoker_Iface,

PM Controller _Iface TO Command _Proc_Iface(i),
PMDB Iface TO PMDB.Database Port,

0S_Iface TO Router_TO_PM(k),

SS_Iface TQ SS_Port.Iface,

MM_Iface TO MM_Port.Iface)

{store the index Abort_CP with the following mailboxes:
Command_Proc_Iface, Router_TO_PM, CP_TO_SS, CP_TO_ MM}

CP=Commit --> ¢
Commit CP:=Commit_Command_Proc.create(Proc_ID, Work Request,
Parent Iface := Invoker _Iface,

PM Controller Iface TO Command _Proc_Iface(i),
PMDB Iface TO PMDB. Database_ Port

0S_ Iface TO Router _TO PM(k),

SS_ “Iface TO SS Port Iface,

MM Iface TO MM _Port.Iface)

{store the index Commit CP with the following mailboxes:
Command_Proc_Iface, Router_TO_PM, CP_TO_SS, CP_TO_MM!

CP=Create -->
Create_CP:=Create_Command_Proc.create(Proc_ID, Work_Request,
Parent_Iface := Invoker_Iface,

PM Controller _Iface TO Command _Proc_Iface(i),
PMDB Iface TO PMDB.Database Port,

0S_ Iface TO Router _TO PM(k),

SS_ “Iface TO SS_ Port.Iface,

MM Iface TO MM Port Iface)

{store the index Create _CP with the following mailboxes:
Command_Proc_Iface, Router TO_PM, CP_TO_SS, CP_TO_MM}

CP=ERP -->
ERP_CP:=ERP_Command_Proc.create(Proc_ID, Work_Request,
Parent Iface := Invoker _Iface,
PM Controller Iface TO Command _Proc_Iface(i),
PMDB Iface TO PMDB. Database_ Port
0S_ Iface TO Router _To PM(k),

3-73

SS_Iface TO SS_Port.Iface,
MM Iface TO MM Port Iface)

{store the index ERP_CP with the following mailboxes:
Command _Proc_Iface, Router_TO_PM, CP_TO_SS, CP_TO_MM}

CP=Rollback -->
Rollback _CP:=Rollback_Command Proc.create(Proc_ID, Work Request

Parent_ “Iface := Invoker Iface,

PM Controller _Iface TO Command _Proc_Iface(i),
PMDB Iface TO PMDB.Database Port,

0s_ Iface TO Router _TO PM(k),

SS Iface TO SS Port Iface,

MM Iface TO MM _Port.Iface)

{store the index Rollback_CP with the -following mailboxes:
Command Proc_Iface, Router_TO_PM, CP_TO_SS, CP_TO MM}

CP=End_Trans -->
End_Trans_CP:=End_Trans _Command Proc.create(Proc_ID, Work Reques

Parent_Iface := Invoker _Iface,

PM Controller _Iface TO Command _Proc_Iface(i),
PMDB Iface TO PMDB.Database Port

0s_ Iface TO Router _To PM(k),

SS Iface TO SS Port Iface,

MM Iface TO MM_ _Port.Iface)

{store the index End_Trans _CP with the following mailboxes:
Command_Proc_Iface, Router_TO_PM, CP_TO_SS, CP_TO_MM}

CPz=End_Trans -->
DRP _CP:=DRP_Command_Proc.create(Proc_ID, Work Request,

Parent Iface := Invoker _Iface,

PM Controller Iface TO Command _Proc_Iface(i),
PMDB Iface TO PMDB.Database Port,

0s_ Iface TO Router _TO _PM(k),

SS Iface TO SS Port Iface,

MM Iface TO MM _Port.Iface)

{store the index DRP_CP with the following mailboxes:
Command_Proc_Iface, Router_TO_PM, CP_TO_SS, CP_TO MM}

END {of Create_Appl_Server}

3.5.8 Procedure Create_Remote_Appl_Server

Create_Remote_Appl_Server(CP:Command_Machine _Type,
Work Request Appl_Req Msg)

VARIABLES i, j,k,1,m:INTECER
Proc_ID:Process_UID_Type

3-74

PROCESS MANAGER DESIGN

TEXT

i:-Extend_Mbx(Command_Proc_Iface) {Extends the mailbox array and return

the high bound of the array}
k:zExtend_Router Mbx(Cmnd) {Extends Router_TO_PM mailbox list}
Proc_ID:=Get_UID(process)

IF CP=Delete -->
Delete CP:=Delete_Command_Proc.create(Proc_ID, Work_Request,

PM Controller Iface TO Command _Proc Iface(l).
PMDB Iface TO PMDB. Database_ Port,

0S_ Iface TO Router _TO PM(k),

SS Iface TO SS Port Iface,

MM Iface TO MM_ “Port.Iface)

{store the index Delete CP with the following mailboxes:
Command_Proc_Iface, Router_TO_PM, CP_TO_SS, CP_TO_MM}

CP=Abort -->
Abort_CP:=Abort_Command_Proc.create(Proc_ID, Work_Request,

PM_Controller Iface TO Command_Proc Iface(i), -
PMDB Iface TO PMDB.Database °ort

0s_ Iface TO Router_TO PM(k),

SS Iface TO SS Port Iface,

MM Iface TO MM Port Iface)

{store the indes Abort CP with the following mailboxes:
Command_Proc_Iface, Router_TO_PM, CP_TO_SS, CP_TO_MM}

CP=Commit -->
Commit CP:=Commit Command Proc.create(Proc_ID, Work_Request,

PM Controller Iface TO Command _Proc Iface(l),
PMDB Iface TO PMDB.Database Port

0S_ Iface TO Router _T0 PM(k)

SS Iface TO SS_ Port.Iface,

MM Iface TO MM Port.Iface)

{store the index Commit CP with the following mailboxes:
Command_Proc_Iface, Router_TO_PM, CP_TO_SS, CP_TO_MM}

CP=Create -->
Create _CP:=Create_Command_Proc.create(Proc_ID, Work_Request,

PM_Controller_ Iface TO Command Proc Iface(l),
PMDB Iface TO PMDB.Database Port,

0S_Iface TO Router TO PM(k),

SS Iface TO SS_ Port.Iface,

MM Iface TO MM_ _Port.Iface)

{store the index Create_CP with the following mailboxes:
Command_Proc_Iface, Router_TO_PM, CP_TO_SS, CP_TO_MM}

3-75

CP=ERP -->
ERP_CP:=ERP_Command_Proc.create(Proc_ID, Work_ Request,

PM Controller Iface TO Command _ Proc Iface(l),
PMDB Iface TO PMDB.Database Port,

0S_ Iface TO Router _TO PM(k),

SS Iface TO SS_ Port.Iface,

MH Iface TO MM Port Iface)

{store the index ERP_CP with the following mailboxes:
Command_Proc_Iface, Router_TO_PM, CP_TO_SS, CP_TO_MM}

CP=Rollback -->
Rollback_CP:=Rollback_Command _Proc.create(Proc_ID, Work_Request

PM Controller Iface TO Command Proc Iface(l),
PMDB Iface TO PMDB. Database_ Port,

0S_ Iface TO Router _TO PM(k)

SS Iface TO SS Port Iface,

MM Iface TO MM_ “Port.Iface)

{store the index Rollback CP with the following mailboxes:
Command_Proc_Iface, Router _TO_PM, CP_TO_SS, CP_TO_MM}

CP=End_Trans -->
End _Trans CP:=zEnd_Trans_Command_Proc. create(Proc ID, Work Reques

PM Controller Iface TO Command _Proc Iface(l),
PMDB Iface TO PMDB. Database_ Port

0S_ Iface TO Router _TO PM(k),

SS [face TO SS_ Port.Iface,

MM Iface TO MM Port Iface)

{store the index End_Trans_CP with the following mailboxes:
Command_Proc_Iface, Router_TO_PM, CP_TO_SS, CP_TO_MM}

CPzEnd_Trans -->
DRP _CP:=DRP_Command_Proc.create(Proc_ID, Work Request,

PM Controller Iface TO Command _ Proc Iface(l),
PMDB Iface TO PMDB.Database Port

0s_ Iface TO Router _TO PM(k),

SS Iface TO SS Port Iface,

MM Iface TO MM Port Iface)

{store the index DRP_CP with the following mailboxes:
Command_Proc_Iface, Router_TO_PM, CP_TO_SS, CP_TO_MM}

END {of Create_Appl_Server}
3.5.9 Procedure Destroy_Command_Processor

Destroy_Command_Proc(Command_Proc:Command_Machine_Type,
Indx:Machine_Index_Type,
Proc_UID :Process_UID_Type)

3-76

PROCESS MANAGER DESIGN

TEXT

{This procedure destroys the designated command processor machine. All of
its mailbox connections are destroyed and the storage space occupied
by these mailboxes is released}

3.5.10 CONTROLLER

VARIABLES
Msg : Appl_Req Msg
Caller _UID : Process_UID_Type
Response : Response_Msg
TO_Process : Response_Msg
Resp : ACK
i,j : INTEGER

WHENEVER

{check the application command mailboxes to see if there is any message:
(1:0..PM_To_Process.Hi_Bound) PM_TO_Process.Element(i).came -->

Msg:=PM_TO_Process.Element(i).Get
Caller UID :=PM_TO Process.Element(i).Get_UID
{check the msg type}
IF (Msg.val.OP=Create_Process) OR (Msg.val.QP=Create_Transaction) OR
(Msg.val.OP=Begin_Transaction) -->
Create_Appl_Server(Create, PM_TO_Process.Element(i), Msg)

0 Msg.val.OPzDelete Process -->
Create_Appl Server(Delete, PM_TO_Process.Element(i), Msg)

§ Msg.val.OP = Establish_Recovery_Point OR ERP -->
Create_Appl _. Server(ERP, PM _TO_ Process.Element(i), Msg)

0 Msg.val.OP = Rollback -->
Create_Appl_Server(Rollback, PM_TO_Process.Element(i), Msg)

0 Msg.val.OP=Discard Recovery Point -->
Create_Appl_ Server(DRP, PM_ "TO_Process.Element(i), Msg)

| Msg.val.OP = End Transaction -->
Create_Appl _. Server(End _Trans, PM_TO_Process.Element(i), Msg)

0 Msg.val.OP = Commit -->
Create_Appl_Server(Commit, PM_TO_Process.Element(i), Msg)

0 Msg.val.OP = Status Query -->
PM_TO_Database.Send(0S_Msg)
WHEN
PM_TO_Database.Came --> Response:=PM_TO_Database.Get

3-77

PM_TO_Process.Element(i).Send(Response)
END

FI

{Check the Command Processor Interfaces for any request message:
0 (i:Command_Proc_Iface.lob..Command _Proc_Iface.hib)
Command Proc Iface.Element(i).Came -->

Rqt:=Command Proc Iface.Element(i).Get

Caller Machlne Indx:=Command _Proc_Iface.Element(i).Get_Index

IF Rqt.tag=Create -->
Create_Command_Processor(th.val.Machine_Type,
Rqt.val.Work Request, Rqt.val.Descendent Mbx_Indx,
Rqt.val.Caller Machine_Type, Caller_Machine_Indx)

Rqt.tag=Destroy -->
Destroy_Command_Processor(Caller_Machine_Type, Caller_Machine_Index,

Proc_UID)
Rqt.tag=Service_Call -->

IF Rqt.val.Action=New_Process -->
{Create a 1ew process and return its UID to the caller!}

J:zExtend_Router Mbx(Appl)
K.-Extend(PM TO Process) {Returns the index of the new element

L:=Extend(PM_TO Process _Scheduler)
Proc_UID :=Get_UID(Process)

New_Proc_Indx:=Appl_Process Pool.Create
(Process TO_PM TO PM _TO Process(K),
Process TO Scheduler TO PM _TO_Process_Scheduler(L),
Process TO Router TO Router TO Process(J))

{Store this index and the Process UID in appropriate
Large Mailboxes}

Command_Proc_Iface.Element(i).Send(Proc_UID)
0 Rqt.val.Action=Destroy Process -->

Process_Indx:=Find Process _indx(Rqt.val.UID))

Appl_ Process _Pool. Destroy(Process Indx)

{This will also release all connections to the destroyed proces
Command_Proc_Iface.Element(i).Send(Success)
0 Rqt.val.Action=Run_Process -->

PCB:=Rqt.val.Paran,
K:=PM_TO_Proc_Scheduler.Get_Index(PCB.PUID)

3-78

WHEN
PM_TO_Database.Came --> Response::zPM_TO_Database.Get
PM _TO_0S.Send(Receiver:=Caller UID “Sender: =PM_UID,
Operation:=Response])
END
FI

FI

FI

END {Process Manager}

3-80

PROCESS MANAGER DESIGN

WHEN
PM_TO_Proc_Scheduler.Element(K).Send(QOP:=Run_Process,

~ Param:=PCB) --> SKIP

END
Command_Proc_Iface.Element(i).Send(Success)

 Rqt.val.Action=Stop_Process -->
Proc_UID :=Rqt.val.Param
K:=PM_TO_Proc_Scheduler.Get_Index(Proc_UID)
WHEN
PM_TO_Proc_Scheduler.Element(K).Send(OP:=Stop_Process)
---> WHEN
PM_TO_Proc_Scheduler.Element(K).Came -->
PCB:=PM_TO Proc _Scheduler.Element(K).Get.Param
END
END

Command_Proc_Iface(i).Send(PCB)

FI

{Check the Operation Switch interface for request/response messages;
] PM_TO_OS.Came -->

0S_Msg:=PM_TO_0S.Get

Caller_UID :=0S_Msg.Sender

Remote := TRUE

[F OS_Msg.Operation.tag=Appl_Req Msg -->
IF (0s _Msg.Operation.val. OP=Create _Process) OR
(0S8~ _Msg.Operation.val.OP=Create Transactlon) OR
(0S_Msg.Operation.val.OP=Begin Transaction) -->
Create_Remote_Appl_Server(Create,Remote, Caller UID, Msg)

| 0S_Msg.Operation.val.OP:=Delete Process -->
Create Remote_Appl _ Server(Delete, Remote, Caller UID, Msg)

| 0S_Msg.Operation.val.OP = Establish_Recovery Point OR ERP -->
Create_Remote_Appl_Server(ERP, Remote, Caller_UID, Msg)

] Os_Msg.Operation.val.OP = Rollback -->
Create_Remote_Appl Server(Rollback, Remote, Caller UID, Msg)

0 0S_Msg.Operation.val.OP=Discard_Recovery Point -->
Create_Remote Appl Server(DRP, Remote, Caller UID, Msg)

] OS_Msg.Operation.val.OP = Commit -->
Create_Remote_Appl_Server(Commit, Remote, Caller_UID, Msg)

] Os_Msg.Operation.val.OP = Status_Query -->
PM_TO_Database.Send(0S_Msg)

3-79

TYPE MANAGER DESIGN

CHAPTER 4

TYPE MANAGER DESIGN

This chapter presents the design of the generic object manager in the Ze
system in CSDL.

Section U4.1, Machines Dictionary, describes the interfaces and behavior
various machines used in the design definiton of the Type Manager syste
These machine defintions do not contain the details of the internal structu
of the machines.Section 4.2 contains the type definitions for the vario
object types used in the entire design definition. Section 4.3 defin
various procedures that are used by several machines in the desi
definitions. The details of the SYSTEM Type Manager architectures is given
section 4.4 titled Realization Dictionary.

4.1 MACHINE DICTIONARY

SYSTEM Type_Manager(T:TYPE)
PUBLIC

TM_To_PM:Small_Mailbox(PM_TM_Msg TM_PM_Msg)
™ To _Router: Small Mailbox(Router ™ _Msg,TM_Router_Msg)
Servers _To_PM: List(small Mailbox(PM Server Msg,
Server_TM Msg))
Servers_To_PM_PS:List(Small_Mailbox(PM_Server_ PS Msg,
Server _PM_PS_Msg))

BEHAVIOR
{ This machine accepts operation request from the
TM_To_Router; Participate in commit protocols
with PMs through TM_To_Router. }

END Type_Manager

Timer
{The machine is imported from Proc/Trans management (Page 4-17)}

4.2 TYPES DICTIONARY

Imported from Process/Transaction manager:
1) Small_Mailbox
2) List
3) NULL
4) Transaction_Status_Type
5) UID_Type

Lock_Mode_Type IS (Read, Update, Unlock)
Object_Status IS (Uncommitted, Commit_Pending, Committed, Aborted)
Transaction_Context List IS Transaction_UID_Type ARRAY

Object Version_Type(T:TYPE) IS

MODEL [Obj_Version_No:INTEGER,
Version Status Object_ Status,
Creator ID:Transaction_Context_List,
Time_Stamp:INTEGER,
Previous Version: Object_Version_Type,
Object:T]

Let %20bj_Version:0bject_Version_Type
End Object_Version Type
Operation_Name IS ABSTRACT

{Each Type has specific operation set. A typical
operation set could be defined as follow.}
Operation_Type IS [Opt, [op operation name,
(Read,Update),
Param Parameters] 0
OP2, ceocevecansnne .] UNION

{ This type is the union of several types.}
TM_To_Router_Msg Type IS ABSTRACT

Invoke_Param_Type IS (Object_UID:UID_Type,
Client_UID:Transaction_Context List,
Inftial _Access: BOOLEAN,
Time Stamp INTEGER,
Operation_Info:Operation_Type]

Msg_Type IS (PREPARE, COMMIT, ABORT, COMPLETED)

Msg_Param_Type IS [Obj_ID : UID_Type,
Client_ID : Transaction_Context_List]

Rollback_Param_Type IS [Obj_ID : UID_Type,
Transaction : Transaction_Context List,

§-2

R R T ——

TYPE MANAGER DESIGCN

Children : UID_Type ARRAY,
Time_Stamp : INTEGER]

Abort_Param_Type IS [Obj_ID : UID_Type,
" Transaction : Transaction_Context List,
Children : UID_Type ARRAY]

Request_Type IS [Invoke, Invoke Param_Type |
, [Op : Msg_Type,
Params : Msg_Param_Type] |
Rollback, Rollback Param_Type |
Abort Abort _Param_Type] UNION

Invoke_Response_Msg IS (Done, Abort, Queued)

De_Q_Msg IS [Exist,Invoke Param_Type |
Not_Exist, NULL] UNION

Info_Rec IS [Flag : BOOLEAN,
UID : Transaction_Context List]

Object_Header(T : TYPE) IS [object_UID:UID_Type,
IS Waiting BOOLEAN,
Current_Version: Object Version_Type(T),
0bj_. Status: Object_. Status,
Lock _Mode:Lock_Mode_Type,
Current_Client_ID:Complete_TCL ARRAY)

4.2.1 Definition of abstract data type for Complete TCL

Complete_TCL IS

MODEL [ID : Transactin_Context List,
Mode : Lock Mode_Type,
Converted : BOOLEAN,

Let ATCL:Complete_TCL

OFUN Remove_Leaf Transaction
PRE TRUE

POST 4TCL'.dom = %TCL.dom - 1

BEHAVIOR
{This function removes the leaf transaction from
the transaction context list on which this function
is applied.}

END Complete_TCL

4-3

4.2.2 Definition of abstract data type for Queue

Queue_Type IS
MODEL [Invoke_Param_Type ARRAY]
LET %Q: Queue_Type

OFUN Enqueue (Req:Invoke_Param_Type)
PRE TRUE
POST %Q.high = Req
BEHAVIOR
{It adds the request to the queue}

OFUN Dequeue (Object_UID : UID Type,
Mode : Lock_Mode) RETURNS De_Q Msg
BEHAVIOR
{It removes the request, which is waiting for the
object with the given uid and mode, from the queue.}

END Queue_Type
4.2.3 Definition of abstract data type for Set_of Objects
Set_of Objects (T:TYPE) IS
MODEL [[Header:0bject_Header(T),
Version:Object_Version_Type (T) ARRAY] ARRAY]
LET %0bjects:Set_of_Objects

OFUN Assign_Header (H:0bject_Header)

PRE TRUE

POST %0bjects.high.Header = H

BEHAVIOR
{1t ad?s the Header of new created objects to the object
list.

OFUN Attach_New_Version(Obj_ID:UID_Type,
V:0Object Version_Type)

PRE TRUE
POST %0bjects' (1i).Version.high=V
Where 1:40bjects.lob < i < %0bjects.hib
AND %Objects (1).Header.Object_UID=0bj_ID)

BEHAVIOR
{This function adds the new version of the object
with given obj-ID to the end of the version list.}

OFUN Force_Header (Obj_ID:UID_Type)RETURNS BOOLEAN
PRE TRUE

POST

BEHAVIOR

§-y

TYPE MANAGER DESIGN

{This function sends a request to Stable Storage manager
to write out the header of the object with given obj_ID
on stable storage.}

OFUN Force Version (Obj_ID:UID_Type) RETURNS BOOLEAN

PRE TRUE

POST

BEHAVIOR
¢This function sends a request to stable storage manager
to write out the latest version of the object with
given obj_ID on stable storage.}

VFUN Get_Lock Mode (Obj_ID:UID-Type)
RETURNS Lock _Mode_Type

PRE TRUE
POST Get_Lock Mode =%Objects (i).Header.Lock_ Mode
Where i:%0bjects.lob< i < %0bject_ID = Obj.1ID

BEHAVIOR
{It returns the lock mode for the
requested object.}

OFUN Add_Client(Obj_ID:UID_Type,
Client_TCL:Complete_TCL)

PRE TRUE
POST %0bjects (i).Header.Current Client_ID(hib) = Client_Tch
Where i :%0bjects.lob<i<%0bjects.hib
AND %0Objects (i).Header.object_ID=0bj_ID

BEHAVIOR
{It adds a new client to the set of current
clients of given object.}

VFUN Obj_Status (Obj_ID:UID_Type)
RETURNS Object_Status

BEHAVIOR
{It returns the object status of the specified
object.}

OFUN Converted(Obj_ID : UID_Type,
Client_ID : Transaction_Context_List)
RETURNS BOOLEAN
BEHAVIOR
{This function returns TRUE if the lock held by
given client was converted from the update lock
of its ancestor.}

4-5

OFUN Change_Status (Obj_ID:UID_Type,
Obj_Status:Object_Status)

PRE TRUE
POST %0bjects(i).Header.Obj_Status = Obj_Status
Where i: %0Objects.lob<i<%0bjects.hib
AND %0bjects(i).Header.Object_ID=0Obj_ID

BEHAVIOR
{This function modifies the Status of
Given function.}

OFUN Change_Lock_Mode (Obj_ID:UID_Type,
LM:Lock_Mode:Type)

PRE TRUE
POST %Objects (i).Header.Lock_Mode= LM
Where 1i:%0bjects.lob<i<%0bjects.Hib
AND %0bjects(i).Header.Object_ID=0Obj_ID

BEHAVIOR
{This function changes the lock mode of
specified object to given mode. In order to
release the lock, we should change the mode
to unloc}

VFUN Is_Locked_By_Ancestor(Obj_ID : UID_Type,
Client_ID : Transaction_Context_ List)
RETURNS Info_Rec
BEHAVIOR
{ This function checks to see whether any
ancestor of the given client's holds a
lock on the specified object or not. }

VFUN Is_Lock_Holder(Obj_ID : UID_Type,
Client_UID : Transaction_Context List)
RETURNS BOOLEAN

BEHAVIOR
{ This function checks whether the specified client
is currently holding a lock on the given object
or not.}

VFUN More_Readers(Obj_ID : UID_Type,
Client_ID : Transaction_Context _List)
RETURNS BOOLEAN

BEHAVIOR
{ This function returns true if there is more than
one transaction holding a read lock on the given
object.}

4-6

TYPE MANAGER DESIGN

VFUN Deadlock Prev_Alg(Obj_ID : UID_Type,
Param : Transaction_Context_List)
RETURNS BOOLEAN

BEHAVIOR
{ This function performs a deadlock prevention
algorithm, namely "Wound_Wait" algorithm, in
order to determine whether the transactin
to be aborted or queued.}

OFUN Delete Version (Obj_ID : UID_Type,
IDs : Transaction UID Type ARRAY,
Time_Stamp : INTEGER)
BEHAVIOR
{ This function deletes all the object versions created
after specified Time_Stamp by the given transaction(s).
Also it modifies the current version field in object
header to point to the correct copy.}

OFUN Create_New_Version (Obj_ID : UID_Type,
Creator : Transaction_Context_List,
Status : Object_Status)
RETURNS Object_Version_Type

BEHAVIOR
{ This function creates a new version of the given
object and adds it to its object version list.
The given status is the status of newly created
version. }

OFUN Change_Waiting(Obj_ID : UID_Type)
PRE TRUE
POST %Objects'(i).Header.Is_Waiting := NOT (%Objects(i).Header.Is _Waitin
Where i:40bjects.lob<i<%0bjects.Hib
AND %0bjects(i).Header.Object_ID=Obj_ID
BEHAVIOR
{This function negates the value of the Is_Waiting
field (which indicates whether any transaction is
waiting to acquire a lock on that object or not)
in object header. }

OFUN Is Waiting (Obj_ID : UID_Type)
RETURNS BOOLEAN
PRE TRUE

POST Is_Waiting := %Objects(i).Header. Waiting
BEHAVIOR

{This function returns the value of the Is_Waiting
field of the object header.}

OFUN Change_Client_Mode(Obj_ID : UID_Type,
Mode : Lock_Mode Type)

4-7

PRE TRUE
POST %Objects(i).Header.Current_Client_ID.high.Mode = Mode

OFUN Release_Lock(Obj_ID : UID_Type,
Client_ID : Transaction_Context List)
BEHAVIOR
{ This function releases the lock which is held
by the leaf transaction of given client and
returns the lock to its parent.
This function consist of the following steps:
- Lock for the client ID in the current client
list of the object header.
- Check whether the TCL of the client transaction's
parent exists in the Current_Client_List
- If it does, determine what mode the parent
inherits the object in and modify the parent's
mode if neccessary and remove the client_ID
from the current client list.
- If the parent TCL does not exist, simply remove
the leaf transaction from the client's TCL and
leave the new TCL in current client list.

The locking Mode which the parent inherits the
object in is determined by the following table:

Lock released Lock previously Lock currently
by child held by parent held by parent
Read Read Read
Read Update Update
Read None Read
Update Read Update
Update Update Update
Update None Update

OFUN Check_Path(Obj_ID : UID_Type,
Client_ID : Transaction_Context_List)

RETURNS BOOLEAN

BEHAVIOR
{This function returns True if no transaction on the
path from the current lock holder to the successor of
the least common upper bound of the holder and given
client has inherited an update lock.}

OFUN Check_Dependency(Obj_ID : UID_Type,
UIDs : Transaction_UID_Type ARRAY)
RETURNS BOOLEAN
BEHAVIOR
{This function returns True if there exist a version
of the given object in commit_Pending state, created

4-8

END

TYPE MANAGER DESIGN

after the object was modified by any of the transactions
in the given UID list and the creator of the version
is not among those in the list.}

OFUN Convert_Lock(Obj_ID : UID_Type,
Client_ID : Transaction_Context_List)
BEHAVIOR
{This function changes the lock mode of the object
header and the given Client to update mode.
This function is used whenever a transaction which
already holds a read lock requests for an update lock.}

OFUN Commit_Prev_Version(Obj_ID : UID_Type,
Client_ID : Transasction_Context_List)
BEHAVIOR
{ This function commits the previous Commit Pending

version of given object which was created either

by the transaction itself or by any of its children.

This function is usually applied to those objects

which are in uncommitted or aborted state and a

Commit message is addressed to them.}

OFUN Restore_Prev_Version(Obj_ID : UID_Type)
BEHAVIOR

{ This function restore the previocus Committed version
of the given object.}

OFUN Apply (Obj_ID:UID_Type,
OP_name:Operation_Type)

BEHAVIOR
{For the time being, it is assummed that
this function performs the requested
operation on the latest version of the
object with given Obj_ID. A possible
implementation is a pool of servers.}

END Set_of_Objects

TYPES DICTIONARY

4-9

4.3 PROCEDURE DICTIONARY

4.2.3.1 PROCEDURE Invoke Proc

PROCEDURE Invoke Proc (Params:Invoke_Param_Type)

BEHAVIOR
{ This procedure will invoke Lock_Grant procedure
to perform lock granting algorithm before it
performs the requested operation. Then, depends
on the result of the lock granting algorithm
it will do the corresponding actions.}

VARIABLES
Resp: Invoke Response_Msg
Response:TM_To_Router_Msg_type

TEXT
Resp:zLock_Grant (Params)

IF Resp=Grant-->
Objects.Apply (Params.Obj_ID,Params.Op.name)
Response.val.Msg:=Done
Response.val.Param:=Parans.
TM_To_Router.Send (Response)

§ Resp=Abort -->
Response.val.Msg:=Abort
Response.val.Param:=Params
TM_To_Router.Send (Response)

[OTHERWISE --> SKIP {when a request has been queued}

FI
END {Invoke_Proc}
4.2.3.2 PROCEDURE Lock_Grant
PROCEDURE Lock_Grant (Params:Invoke_ Params_Type)

RETURNS Invoke_Response_Msg

BEHAVIOR
{ This procedure is executed whenever an object is
accessed to carry out the lock granting algorithm.
The following is the list of all possible lock modes

TYPE MANAGER DESIGN

which an object can be in and thier corresponding

actions.}
CONDITION Requested lock ACTION
Initial Access:
1)0bject unlock Read/Update Grant
2)Read lock by T granted Read No action
by OM Update Grant if no more readers
Queue otherwise
3)Read lock by ancestor of T Read Grant if Rulei
converted from Update lock Update Grant if Rule?2
of its ancestor Queue otherwise
U4)Read lock by ancestor of T Read Grant
granted by OM Update Grant if no more readers

Grant otherwise
5)Update lock by ancestor of T Read/Update Grant

6)Read lock by non_ancestor of Read Grant
T granted by OM Update Queue
T)Read lock by non_ancestor of
T converted from update lock Read/Update Queue
of its ancestor
8)Update lock by non_ancestor Read/Update Queue
of T
Subsequent request:
1)0bject unlock Read/Update Abert
2)Object not locked by T . Read/Update Abort
3)Read lock by T granted by OM Read No action
Update Grant if no more reader
Queue otherwise
4)Read lock by T converted from Read No action
update lock of its ancestor Update Grant
5)Update lock by T Read/Update No action

Rule! : No transaction on the path from the current lock holder to the
successor of the least common upper bound of the holder and
requester has inherited an update lock

Rule2 : Rulel and no other transaction is currently holding a read lock

VARIABLES
Lock_Mode:Lock Mode_Type
Ancestor : Info_Rec
OK:BOOLEAN
Lock_Holder:BOOLEAN
More_Readers:BOOLEAN
Requested Lock : Lock_Mode_Type
CTCL : Complete_TCL

TEXT

4-11

{check the Lock Mode of the object.}
Lock_Mode:=0Objects.Get_Lock Mode (Params.Obj_ID)
Requested Lock := Params. Operation Info.val.Ty
Ancestor := Objects.Is_Locked_by_. Ancestor(Parans. Obj_ID,
Params.Client_ID)
IF Params.Initial_Access -->
IF Lock Mode = Unlock -->
{grant the requested lock & update the object.}
CTCL := Generate_Complete_TCL(Params.Client_ID,
Requested Lock FFALSE)
Objects.Update_Object(Params.Obj_ID, CTCL)
Lock_Grant:=Grant

0 IF (Lock_Holder) AND (Lock_Mode = Read) -->
IF Requested Mode = Update -->
IF NOT Objects More_Readers -->
Objects.Convert Lock(Params.Obj_ID)
Lock Grant :-= Grant

| OTHERWISE --> {More readers }
Queue_Request (Paranm)
FI

0 OTHERWISE --> SKIP
FI
0 Ancestor.Flag -->
IF Requested_Lock = Read -->
IF Objects Converted(Params.Obj_ID,
Ancestor.UID) -->
IF Objects.Check_Path -->
CTCL := Generate _Complete TCL(Params.Client ID,
Requested_ Lock, TRUE)
Objects.Update Object(Param.Obj_ID, CTCL)
Lock_Grant := Grant
0 OTHERWISE --> Queue_Request(Params)
FI
0 OTHERWISE -->
IF (Requested_Lock = Read) OR
((Requested Lock=Update) AND
(NOT Objects.More _Readers)) -->
CTCL := Generate Complete TCL(Params.Client_ID,
Requested_Lock, TRUE)
ObJects.Update_Object(Param.Obj_ID, CTCL)
Lock_Grant := Grant
| OTHERWISE --> Queue_Request(Paranms)
FI
] OTHERWISE --> { lock_mode = update }
CTCL := Generate Complete TCL(Params.Client ID,
Requested_Lock, TRUE)
Objects.Update_Object(Param.Obj_ID, CTCL)
Lock_Grant := Grant
FI
| OTHERWISE --> { locked by non ancestor }

4-12

TYPE MANAGER DESIGN

IF (NOT Objects.Converted(Param.Obj_ID)
AND Requested Mode = Read) -->
CTCL := Generate _Complete_TCL(Params.Client_ID,
Requested | Lock, TRUE)
Objects.Update_Object(Param.Obj_ID, CTCL)
Lock_Grant := Grant
| OTHERWISE --> Queue_Request(Params)
FI
FI
| OTHERWISE --> {It is not an initial access.}
Lock_holder := IS_Lock_holder (Params.Obj_ID,
Params.Client UID)

IF (Lock_Holder) AND (Lock_Mode = Read) AND
(Params.Operation_Info.val.Ty=Update) -->
More_Reads:= Objects.More Readers (Params.Obj_ID,

Params. Cllent ID)
IF More Readers -->
{There are other Transactions which are holding Read
lock on this object}
OK:=Deadlock_Prev_Alg (Params.Obj_ID, Params.Client_ID
IF 0K --> {enqueue the request}
IF Objects.Is_Waiting(Param.Obj_ID) --> SKIP

0 OTHERWISE -->
Objects.Change_Waiting(Param.Obj_ID)

FI
queue.Enqueue (Params)

0 OTHERWISE -->
Lock_Grant:=Abort

FI

0 OTHERWISE --> {convert the Lock_Mode}

Convert_Lock (Params)
Lock_Grant:=Grant

FI
0 (NOT (lock_Holder) OR Lock_Mode = Unlock) -->
Lock_Grant :=Abort
0 OTHERWISE --> SKIP
FI
F1

END Lock_Grant

4.2.3.3 PROCEDURE Prepare_Proc

PROCEDURE Prepare_Proc (Param:Msg_Param_Type)

4-13

BEHAVIOR
{ Upon recieving a PREPARE message, Object Manager will
invoke this procedure to perform the corresponding
actions according to the following table.

CONDITION ACTION
1) Read lock by T and status Send READY msg
is Committed Unlock the object
2) Update lock by T and
a) Status = Uncommitted Change status to Commit Pending

Force object on SS
Send READY msg

b) Status = Commi_Pending Send READY msg

¢) Status = Committed No action

3) All other conditions Send ABORT msg
VARIABLES

Lock_Holder:BOOLEAN
Mode:0bject_Mode_Type
Status:0bject_Status

TEXT

Mode:=0bject.Get_Object_Mode (Param.Obj_ID)
Lock_Holder:=Objects.Is_Lock Holder (Param.Obj_ID,Param.Client_ID)
Status:=0Objects.Obj_Status (Param.Obj_ID)
Response.val.Param := Param
IF Lock_Holder --> {The transaction is currently holding a lock}
IF Mode = READ -->
IF Status = Committed -->
Objects.Release_Lock (Param.Obj_ID, Param.Client_ID
Response.val.Msg := READY
TM_To_Router.Send (Response)
0 OTHERWISE -->
Response.val.Msg:= ABORT
TM_To_Router.Send (Response)
FI
| Mode = Update -->
IF Status = Uncommitted -->
Objects.Change_Status (Param.Obj_ID, Commit Pending)
Objects.Force_Version (Param.Obj_ID)
Response.val. Hsg := READY
TM_To_Router.Send (Response)
0 Status = Commit Pending -->
Response.val.Msg := READY
TM_To_Router.Send (Response)
0 Status = Abort -->
Objects.Restore_Prev_Version (Param.Obj_ID)
Objects.Release Lock (Paranm. Obj_ID, Param.Client _ID)

4-14

TYPE MANAGER DESIGCN

Response.val.Msg := ABORT
TM_To_Router.Send (Response)
| OTHERWISE --> Skip {Status = Committed}
FI
FI
0 OTHERWISE --> {does not hold any lock}
Response.val.Msg := ABORT
TM_To_Router.Send (Response)

END Prepare_Proc

4.2.3.4 PROCEDURE Completed_Proc

PROCEDURE Completed Proc (Param:Msg_Param_Type)

BEHAVIOR
{ This procedure is invoked when a COMPLETED message
is received from PM. Depends on the status of the
object, proper actions will be taken.
In the following table all the possible conditions
are listed.}

CONDITIONS ACTIONS
1) object is locked by T or a
descendents of T in Read
mode & status=Committed Unlock the object &
send an ACK message
2) object is locked by T or a
descendents of T in Update

mnode &

a) status = Committed Unlock the object &
send an ACK message

b) status = Commit_Pending same as condition 2a plus
change status to Committed &
force the object on SS

¢) status = Aborted or Restore previos version &

Uncommitted unlock the object &
send an ACK message
3) object 1s locked by a stranger send an ACK message

* The conditions which are not listed in the above table
are those which should never arise in a reliable system.

VARIABLES
Lock_Holder: BOOLEAN
Mode:Object Mode_Type
Status:0bject_Status

4-15

Response:TM_To_Router_Msg_Type
Descendent: “BOOLEAN

TEXT

Mode:=0bjects.Get_Object_Mode(Param.Obj_ID)
Lock_Holder:-Objects.Is_Lock_Holder(Param.Obj_ID,
Param.Client_ID)
Status:=Objects.Obj_Status (Param.Obj_ID)
Response.val.Msg:=ACK
Response.val.Param:=Param
Descendent:=0bjects.Is_Lock_by Descendent (Param.Obj_ID,
Param.Client_ID)
IF Mode = Unlock -->
TM_To_Router.Send (Response)

] Mode = Read --> ’
IF (Lock_Holder OR Descendent) AND Status = Committed -->
Objects.Release_Lock (Param.Obj_ID, Param.Client_ID)
TM_To_Router.Send (Response)

0 OTHERWISE -->
TM_To_Router.Send (Response)

FI

I Mode = Update -->
IF (lock_Holder OR Descendent) -->
IF Status = Committed
Objects.Release_Lock (Param.Obj_ID, Param.Client_ID)
TM_To_Router. Send (Response)

0 status = Commit_Pending -->
Objects.Change Status (Param.Obj_ID,
Param.Client_ID)
Object.Force_Version (Param.Obj_ID)
TM_To_Router.Send (Response)

0 (Status = Uncommitted OR Status = Aborted)-->
Objects.Restore_Prev_Version (Param.Obj_ID)
ObJjects.Force_Header (Param.Obj_ID)
Objects.Release Lock (Param.Obj_ID,Param.Client_ID)
TM_To_Router.Send (Response)

FI

0 OTHERWISE -->
TM_To_Router.Send (Response)

FI

FI

4-16

TYPE MANAGER DESIGN
END Completed Proc
4.2.3.5 PROCEDURE Time_Out_Proc
PROCEDURE Time_Cut Prcc (Param: Time Out_Param_Type)

BEHAVIOR
{ This procedure is executed whenever a timeout
interrupt is received from Timer.
In the following table all the possible conditions
and the actions needed to be taken are listed.

CONDITIONS ACTIONS
1)Object is locked in unlock the object
Read mode

2)Object is locked in
Update mode &
a)status = Uncommitted/ Restore the previous
Aborted Committed version
unlock the object
Force the object on SS
b)status = Commit_Pending Send a query to the PM regarding
the status of Client transaction,
if transaction is non existant then
abort the version and restore the
previous committed version of the
object otherwise set the timer
again,

VARIABLES
Mode:0Object_Mode_Type
Status: Object_Status
Response:TM_To_Router Msg Type
Resp: Transaction _Status_Type
TEXT

Mode:=0Objects.Get_Object_Mode(Param.Obj_ID, Param.Client_ ID)
Status:=0bjects. Obj Status (Param. Obj_ ID)

IF Mode = Read -->
IF Status = Committed -->
Objects.Release_Lock (Param.Obj_ID, Param. Client_ID)

| OTHERWISE --> SKIP
FI

4-17

| Mode = Update -->
IF (Status = Uncommitted OR Status = Aborted) -->
Objects.Restore_Prev_Version (Param.Obj_ID)
Objects.Force_Header (Param.Obj_ID)
Objects.Release_Lock (Param.Obj_ID,Param.Client_ID)

| Status = Commit_Pending -->
{send status query for client-Transaction
and wait until you get a response back

IF Resp = Non_Existent

THEN
Objects.Release_Lock (Param.Obj_ID, Param.Client_ID)
Objects.Restore Prev _Version (Param Obj_ID)

ELSE

} set the timer.

| OTHERWISE --> SKIP
FI

FI

END Time_Out_Proc
4.2.3.6 PROCEDURE Commit Proc

PROCEDURE Commit_Proc (Param:Msg_Param_Type)

BEHAVIOR
{Upon recieving a Commit message from PM
Object manager perfoems the corresponding
actions according to the lock mode and
status of the object.
The following is the list of all possible
conditions and thier corresponding actions.}

CONDITIONS ACTIONS
1) Object is locked by T Unlock the object
in Read mode & Force the object header
Status = Committed Send an ACK message
2) Object is locked by T in Unlock the object
Update mode & Change status to committed
Status=Commit_Pending Force Object header

Send an ACK message

3) Object is locked by some
descendent of T &
a) Status = Commit_Pending/ The same as condition 2
Committed

TYPE MANAGER DESIGN

b) Status = Uncommitted/ Commit the previous
Aborted Commit_Pending version
Unlock the object
Send an ACK message
4) Object is unlocked or
locked by some stranger Send ACK message

* The conditions which are not listed in the above table
are those which should never arise in a reliable system.

VARIABLES

Lock_Holder: BOOLEAN
Mode:0bject Mode_Type
Status:0bject_Status
Response:T™M To _Router _Msg _Type
Ancestor : BOOLEAN

TEXT

Mode:=0bjects.Get_Object Mode (Param.Obj_ID)
Lock_Holder:=Object.Is_Lock Holder (Paranm. Obj_ID,

Param. Client_ID)
Status:=0Objects.Obj_Status(Param.Obj_ID)
Ancestor:=Objects.Is_Lock_by_Ancestor (Param.Obj_ID,

Param.Client_ID)

Response.val .Msg:=ACK
Response.val.Param:=Param

IF Lock_Holder -->
IF (Mode = Read AND Status = Committed) -->
Objects.Release_Lock (Param.Obj_ID, Param.Client_ID)
TM_To_Router. Send (Response)

0 (Mode = Update AND Status = Commit_Pending) -->
ObJjects.Change Status (Param. Object_ID,
Committed)

Object.Force_Version (Param.Object_ID)
Objects.Release_Lock (Param.Obj_ ID, Param. Client _ID)
TM_To_Router.Send (Response)

0 OTHERWISE --> SKIP

FI

I OTHERWISE --> {the transaction does not hold any lock
itself}

IF Objects.Is_Lock_by_Descendent (Param.Obj_ID,
Param.Client_ID) -->
IF (Mode = Read AND Status = Committed) -->
Objects.Release_Lock (Param.Obj_ID, Param.Client_ID)
TM_To_Router.Send (Response)

] OTHERWISE --> SKIP
FI

| Mode = Update -->
IF STATUS = Commit_Pending -->
Objects.Change Status (Param.Obj_ID,
Committed)

Objects.Force_Version (Param.Obj_ID)
Objects.Release_Lock (Param.Obj_ ID, Param.Client_ID)
TM_To_Router.Send (Response)

0 (Status = Uncommitted OR
Status = Aborted) -->
Objects.Commit_Prev_Version(Param.Obj_ID, Param.Client_ID)
Objects.Release_Lock(Param.Obj_ID,Param.Client ID)
Objects.Force_Version(Param.Obj_ID)

Objects.Force_Header(Param.Obj_ID)
TM_To_Router.Send(Response)

| (Status = Committed) -->
Objects.Release_Lock (Param.Obj_ID,Param.Client_ID)
Objects.Force_Header(Param.Obj_ID)
TM_To_Router.Send (Respcnse)
FI

0 OTHERWISE --> {Since there is no info about this transaction in
OM database. Just send an ACK back.}

TM_To_Router.Send (Response)
FI
FI

END Commit_Proc.
4.2.3.7 PROCEDURE Rollback_Proc

PROCEDURE Rollback_Proc(Param : Rollback_Param_Type)

4-20

TYPE MANAGER DESIGN

BEHAVIOR
{ This procedure checks whether the given transaction
is currently holding an update lock on the object,
if it does then this procedure discards all the versions
created by that transaction with time stamp larger than
the time stamp of the recovery point. Also, if any of the
transaction children have updated the object, then it
discards all the versions created by those transactions.
The following is the list of all possible conditions and
thier corresponding actions:

CONDITIONS ACTIONS
1) Object is unlock Send an Abort message.
2) Object is locked by Send an Abort message.

a stranger.
3) Object is locked by T Send an ACK message
in Read mode

4) Object is locked by Delete all versions created
T in Update mode by the transaction children.

Delete all versions created
by the transaction with
TS > recovery point TS.
Force modified object header
on stable storage.
Send an ACK message

® The conditions which are not listed in the above table
are those which should never arise in a reliable system.

VARIABLES
Mode : Lock Mode_Type
Descendent : BOOLEAN
Lock_Holder : BOOLEAN
Response : TM_To_Router_Msg_Type

TEXT
Mode ::= Object.Get Lock_Mode(Param.Obj_ID)
Lock_Holder := Objects.Is_LOck_Holder(Param.Obj _ID,
Param.Transaction)
IF NOT Lock_Holder -->
Descendent := Object.Is_Locked_ By Descendent(Param.Obj_ID,
Param.Transaction)
(0 OTHERWISE --> SKIP
FI
Response.val.Param := Param

4-21

IF Mode = Unlock -->
Response.val.Msg := Abort
TM_To_Router.Send(Response)

| OTHERWISE --> {The object is lock }
IF (NOT Lock_Holder) AND (NOT Descendent) -->
Response.val.Msg := Abort
TM_To_Router.Send(Response)

] OTHERWISE --> { The object is lock either by the
client or one of its children.}
IF Mode = Read -->
Objects.Release_Lock(Param.0bj_ID, Param.Transaction)
{Return the lock to its parent.}
Objects.Force_Header(Param.Obj_ID)
Response.val.Msg := ACK
TM_To_Router.Send(Response)

| Mode = Update -->
Objects.Delete_Version(Param.Obj_ID, Param.Children, -1)
Objects.Delete Version(Param Obj_ID, Param.Transaction,

Param.Time Stamp)

Objects.Release_Lock(Param.Obj_ID, Param.Transaction)
{Return to the parent.}
Objects.Force_Header(Param.Obj_ID)

FI

FI
FI

END Rollback_Proc
4.2.3.8 PROCEDURE Abort_Proc

PROCEDURE Abort_Proc (Param : Abort Param_Type)

BEHAVIOR
{This procedure is executed whenever an Abort message
is received from PM .
In the following table all the possible conditions
and the actions needed to be taken are listed .}

CONDITIONS ACTIONS
1)Object is unlocked Send an ACK message
2)Object is locked by T in
Read mode &
Object_Status=Committed Unlock the object &

give it to its parent

Force the object header

Send an ACK message
3)Object is locked by T in

4-22

TYPE MANAGER DESIGN

Update mode &
a)Object_Status=Committed Send an ACK message

b)Object_Status=Uncommitted/ IF Rulel then Send an NACK message
Commit _Pending OTHERWISE:
Delete all the versions
created by this transaction
and its children
Unlock the object & give it
to its parent
Force object header
Send an ACK message

4)Object is locked by some other Send an ACK message
transaction except T

Rulet: If there exist a version of the given object in
commit_Pending state, created after the object
was modified by elther the client transaction or
any of the transactions in its attached list,
and the creator of the version is not among those.

* conditions which are not listed in the above table
are those which should never arise in a reliable system.

VARIABLES
Lock_Holder : BOOLEAN
Mode : Object_Mode Type
Status : Object_Status
Response : TM_To_Router_Msg Type

TEXT
Mode := Objects.Get_Object_Mode(Param.Obj_ID)
Lock_Holder ::= objects.Is_Lock_Holder(Param.Obj_ID,

Param. Transaction)

Status := Objects.Obj_Status(Param.Obj_ID)
Response.val.Msg := ACK
Response.val.Param := Param

IF (Mode = Unlock) OR (NOT Lock_Holder) -->
TM_To_Router.Send (Response)

| OTHERWISE --> {object is locked by T}
IF ModezRead -->

IF Status = Committed -->
Objects.Release_Lock(Param.Obj_ID, Param.Transaction)
Objects.Force_Header(Param.Obj_ ID)
TM_To_Router. Send(Response)

0 OTHERWISE --> SKIP

{This condition must never arise.}

FI

| OTHERWISE --> {Object is locked in Update mode}

4-23

IF ((Status = Uncommitted) OR
(Status = Commit_Pending)) -->
IF (NOT Objects.Check_Dependency(Param.Obj_ID,
Param.Children)) -->

Objects.Delete_Version(Param.Obj_ID,Param.Transaction)
Objects.Delete_Version(Param.Obj_ID,Param.Children)
Objects.Release_Lock(Param.Obj_ID,Param.Transaction)
Objects.Change_Status(Param.Obj_ID,Committed)

Objects.Force_Header(Param.Obj_ID)
TM_To_Router.Send(Response)

| OTHERWISE --> {Because of dependency the abort
request should be refused.}

Response.val.Msg := NACK
TM_To_Router.Send(Response)
FI

0 OTHERWISE --> { Status = Committed}
TM_To_Router.Send(Response)
FI

END Abort_Proc
4.2.3.9 PROCEDURE Generate_Complete_TCL

PROCEDURE Generate_Complete TCL(TCL : Transaction_Context List,
LM : Lock_Mode_Type,
Converted : BOOLEAN)

RETURNS Complete_ TCL

BEHAVIOR
{This procedure receives a transaction context list
ythe lock mode in which the object is to be locked
and a boolean variable which indicates whether the
lock was converted from an update lock of its ancestor
or not, and returns a complete TCL which contains all
these information.}

END Generate_Complete_TCL
4.2.3.10 PROCEDURE Queue_Reaquest
PROCEDURE Queue_Request(Params : Invoke_ Param_Type)

VARIABLES
OK : BOOLEAN

4-24

TYPE MANAGER DESIGN

TEXT
{queue the request if it is older}
OK:=Deadlock_Prev_Alg (Params.Object_ID,
Params.client TCL)
IF OK --> {engueue the request}
IF Objects.Is_Waiting(Param.Obj_ID) --> SKIP

| OTHERWISE -->
Objects.Change Waiting(Param.Obj_ID)
FI
queue.Enqueue (Params)
0 OTHERWISE -->
Lock_Grant:=Abort
FI

END Queue_Request

4.4 REALIZATION DICTIONARY

4.4.1 SYSTEM Type_Manager

SYSTEM Type_Manager(T:Type)
PUBLIC
TM_To_PM:Small Mailbox(PM_TM_Msg,TM_PM_Msg)
™ To Router:Small Mailbox(Router TM_Msg,Tm_Router_Msg)
Servers _To_PM: Llst(Small Mailbox (PM To Servers,
Servers_To _PM))
Servers_To_PM_PS:List(Small_Mailbox(PM_Servers PS Msg,
Servers_PM PS Msg))

BEHAVIOR

{The Type_Manager communicates with PM and Router thru
TM_To_PM and TM_To_Router interfaces respectively.
It accepts operation requests through TM _To_Router
interface and participates in commit protocols with
PMs through TM_To_Router.}

OBJECTS

Objects:Set_Of Objects(T)

Queue:Queue Type

TM_To_Timer IS Event_Rec INLET

Connection_To_Timer Small-Mailbox(Timer_Response,
Timer_Command)

Local_Timer:Timer:=(Connection_To_Timer TO

4-25

Timer_Command_Iface,
TM_To_Timer TO Interrupt)
Server_Process:Process POOL
Server_Index:Process INDEX
Req : Request_Type

4.4.2 CONTROLLER

CONTROLLER

WHENEVER
TM_To_Router.Came -->
Req:=TM_To_Router.Get
IF Req.tag = Invoke --> Invoke_Proc(Req.val)
| Req.tag = T1 -->
IF Req.val.Op = Prepare --> Prepare_Proc(Req.val.Param)
0 Req.val.Op = Commit --> Commit Proc(Req.val.Param)
| Req.val.Qp = Completed --> Completed Proc(Req.val.Param)
| OTHERWISE --> Error

FI
] Req.tag = Abort --> Abort_Proc(Req.val)
| Req.tag = Rollback --> Rollback_proc(Req.val)

| OTHERWISE --> Error
F1

0TM_To_Timer.Came -->
Req := TM_To_Timer.Get
IF Req.tag = Time _Out --> Time_Out_Proc(Req.val)
| OTHERWISE --> SKIP
FI
END

END Type_Manager.

u-26

Chapter 5

SYMBOLIC NAME MANAGER DESIGN

This chapter presents a formal definition of the detailed design of
Symbolic Name Manager written in the Department of Defense' ADA larnguage.

S.1 SNTM_Interface Packge Specification

PACKAGE SNTM_interface IS

-~ Create a brand new context object and return its uid in

-- context_id. The rel_class is a pre-defined set which

-~ determines on which host or hosts copies of the object are

-- to be created.

PROCEDURE create_context (rel_class: IN reliability class;
status: OUT ret_stat);

-- Delete a context object
PROCEDURE delete_context (context_id: IN kernel.xtided_uid;
status: OUT ret_status);

~-- Add a name-uid pair to an existing context object
PROCEDURE add_name (context_id: IN kernel.xtnded uid;
name: IN symb_name;
name_id: IN kernel.xtnded_uid;
status: OUT ret_stat);

-- Remove a symbolic name from a context object
PROCEDURE remove_name (context_id: IN kernel.xtnded uid;
name: IN symb_name;
status: OUT ret_stat);

-~ Find a symbolic name in a context and return its associated
-- uid in name_id.
PROCEDURE lookup (context_id: IN kernel.xtnded uid;
name: IN symb_name;
name_id: OUT kernel.xtnded uid;
status: OUT ret_stat);

END SNTM_interface;

5.2 SNTM_Interface Package Body

PACKAGE BODY SNTM_interface IS

-- Create a brand new context object and return its uid in
-- context_id. The rel class is a pre-defined set which
-- determines on which host or hosts copies of the -object are
-- to be created.
PROCEDURE create_context (rel_class: I[N reliability class;
status: OUT ret_stat) IS
packed _parms : bit_string;

BEGIN

-- Pack the IN parameters for the kernel
support.pack.create(rel_class, packed _parms);

-- Call the kernel to transmit the request
kernel.make_call(packed_parms);
. =-- Call the kernel again to wait for the response
kernel.get_response(packed_parms);

-- Now unpack the result parameter(s)
support.unpack.create(packed_parms, status);

END create_context;

-- Delete a context object
PROCEDURE delete_context (context_id: IN kernel.xtnded_uid;
status: OUT ret_stat) IS
packed_parms : bit_string;

BEGIN

-- Pack the IN parameters for the kernel
support.pack.delete(ccntext_id, packed_parms);

-- Call the kernel to transmit the request
kernel.make call(packed_parms);

-- Call the kernel again to wait for the response
kernel.get_response(packed_parms);

-- Now unpack the result parameter(s)

support .unpack.delete(packed_parms, status);

END delete_context;

-- Add a name-uid pair to an existing context object

5-2

SYMBOLIC NAME MANAGER DESIGN

PROCEDURE add_name (context_id: IN kernel.xtnded_uid;
name: IN symb_name;
name_id: IN kernel.xtnded_uid;
status: OUT ret_stat) IS
packed_parms : bit_string;

BEGIN

-- Pack the IN parameters for the kernel
support.pack.add(context_id, name, name_id, packed_parms);
-- Call the kernel to transmit the request

kernel.make _call(packed_parms);

-- Call the kernel again to wait for the response
kernel.get response(packed_parms);

-- Now unpack the result parameter(s)
support.unpack.add(packed_parms, status);

END add_name;

-- Remove a symbolic name from a context object
PROCEDURE remove_name (context_id: IN kernel.xtnded_uid;
name: IN symb_name;
status: OUT ret_stat) IS
packed _parms : bit_string;

BEGIN

-~ Pack the IN parameters for the kernel
support.pack.remove(context_id, name, packed parms);
-- Call the kernel to transmit the request
kernel.make_call(packed_parms);

-- Call the kernel again to wait for the responsa
kernel.get_response(packed_parms);

-- Now unpack the result parameter(s)
support.unpack.remove(packed parms, status);

END remove_name;

-- Find a symbolic name in a context and return its associated
-- uid in name_id.
PROCEDURE lookup (context_id: IN kernel.xtnded_uid;
name: IN symb_name;
name_id: OUT kernel.xtnded_uid;
status: OUT ret_stat) IS

packed parms : bit_string;

BEGIN
-~ Pack the IN parameters for the kernel

5-3

support.pack.lookup(context_id, name, packed_parms);
-- Call the kernel to transmit the request
kernel.make_call(packed_parms);

-- Call the kernel again to wait for the response
kernel.get _response(packed_parms);

-- Now unpack the result parameter(s)
support.unpack.lookup(packed_parms, name_id, status);

END lookup;

END SNTM_interface;

5.3 STNM Specification

PACKAGE SNTM IS

WITH kernel;
WITH TRANMGR;

-- Declare the access pointer types to the operation tasks
TYPE create_task IS LIMITED PRIVATE;
TYPE delete_task IS LIMITED PRIVATE;
TYPE add_task IS LIMITED PRIVATE;
TYPE remove_task IS LIMITED PRIVATE;
TYPE lookup_task IS LIMITED PRIVATE;

-- Declare the reliability class type
TYPE reliability_class IS PRIVATE;

-- Declare the return status type
TYPE ret_stat IS (OK, LOCKED, NOT_FOUND, ERROR);

-- Declare a symbolic name type
TYPE symb_name IS STRING (1..max_name_len);

-- Declare the operation type and task number used for
-~ identifying the operation tasks

TYPE op_type IS (CREATE, DELETE, ADD, REMOVE, LOOKUP);
TYPE op_task _num IS PRIVATE;

SYMBOLIC NAME MANAGER DESIGN

5.4 Controller Task Specification

-~ Declare the type manager controller task. This task accepts
-~ all incoming calls and allocates an operation task to

-- perform the actual operation.

TASK controller IS

ENTRY create (rel_class: IN reliability_class;
context_id: IN kernel.xtnded uid;
orig: IN BOOLEAN;
task_id: OUT create_task);

ENTRY delete (context_id: IN kernel.xtnded_uid;
orig: IN BOOLEAN;
task_id: OUT delete_task);

ENTRY add (context_id: IN kernel.xtnded_uid;
name: IN symb_name;
name_id: IN kernel.xtnded_uid;
orig: IN BOOLEAN;
task_id: OUT add_task);

ENTRY remove (context_id: IN kernel.xtnded_uid;
name: IN symb_name;
orig: IN BOOLEAN;
task_id: OUT remove_task);

ENTRY lookup (context_id: IN kernel.xtnded_uid;
name: IN symb_name;
orig: IN BOOLEAN;
task_id: OUT lookup_task);

~- This entry is used by the operation tasks to notify the
~- controller that the operation is complete
ENTRY op_done (operation: op_type;

op_num: op_task_num);

END controller;

PRIVATE -- Private declarations for the SNTM package

SUBTYPE reliability class IS INTEGER RANGE 1..num_rel_class;
SUBTYPE op_task num IS INTEGER RANGE 1..num_tasks;

---------------- OPERATION TASK SPECIFICATIONS -ceee-ce—eceea--
-- Declare task types for each of the operation tasks so the

5-5

-- controller can actually create an array of each from which
-- he will allocate tasks to actually perform the operations
TASK TYPE create_cntxt IS
-- This entry is used by the controller to initialize the
-- operation task and to pass it its unique task number
ENTRY init (my_num: IN op_task num);

-- This entry is called by the controller to startup the
-- operation task and pass it the required parameters
ENTRY start (rel_class: IN reliability_class;
context_id: IN kernel.xtnded_uid;
orig: IN BOOLEAN);

-- This entry is called by the user's interface package to
-- obtain the return values of the operation or the error
-- status if it was unsuccessful
ENTRY done (context_id: OUT kernel.xtnded_uid;
status: OUT ret_stat);
END create_cntxt;
TASK TYPE delete_cntxt IS
ENTRY init (my_num: IN op_task_num);
ENTRY start (context_id: IN kernel.xtnded_uid;
orig: IN BOOLEAN);
ENTRY done (status: OUT ret_stat);
END delete_cntxt;
TASK TYPE add_name IS
ENTRY init (my_num: IN op_task _num);
ENTRY start (context_id: IN kernel.xtnded_uid;
name: IN symb_name;
name_id: IN kernel.xtnded_uid;
orig: IN BOOLEAN);
ENTRY done (status: OUT ret_stat);
END add_name;
TASK TYPE remove_name IS
ENTRY init (my_num: IN op_task_num);
ENTRY start (context_id: IN kernel.xtnded_uid;
name: IN symb_name;
orig: IN BOOLEAN);
ENTRY done (status: OUT ret_stat);
END remove_name;
TASK TYPE lookup_name IS
ENTRY init (my_num: IN op_task_num);
ENTRY start (context_id: IN kernel.xtnded_uid;
name: IN symb name;
orig: IN BOOLEAN);
ENTRY done (name_id: JUT kernel.xtnded_uid;
status: OUT ret_stat);
END lookup_name;

5-6

SYMBOLIC NAME MANAGER DESIGN

------------ ACCESS VARIABLES TO OPERATION TASKS --=e-ceccea-a-
-- Declare access pointers to each of the operation tasks

TYPE create_task IS ACCESS create_cntxt;

TYPE delete _task IS ACCESS delete cntxt,

TYPE add_ task IS ACCESS add_name;

TYPE remove task IS ACCESS remove _name;

TYPE lookup task IS ACCESS lcokup _name;

-------------------- REPLICATION DATA RECORD -c=---ceccceccaaa-
-~ Declare a replication data record which contains all the

-- data necessary to distribute the copies or representatives
-- of a new context object

TYPE rep data IS

RECORD
n: NATURAL; -- Number of votes for this copy
w: NATURAL; -- Write quorun
r: NATURAL; -~ Read quorum
v: NATURAL; -- Version (not used in rel. classes)
h: ARRAY (POSITIVE RANGE <>) OF -- Host list
RECORD
id: kernel.xtnded uid; -- Host uid
votes: NATURAL; -~ # of votes
END RECORD;
END RECORD;

------------------- CONTEXT OBJECT TYPE DECLARATION ----v-v----
-- Define the types of locks on a context object

TYPE lock_type IS (READ, WRITE, NONE);

-- Define the internal structure of a context type object

TYPE context IS

RECORD
header: rep_data; -- Object's replication data
lock: lock_type; -- Type of lock pen'iing

data: big_hash_table; -- Name->UID mappings
END RECORD;

END SNTM; -- End of type manager package specification

5.5 SNTM Package Body

PACKAGE BODY SNTM IS

----------------- CONTROLLER TASK BODY -c~ccccmmcccccccccccaaa
TASK BODY controller IS

5-7

-~ Declare the allocation list for each of the operation
-~ task types.
create_pool: ARRAY (1..num_tasks) OF
RECORD
free: BOOLEAN; -~ Is this task available?
task: create_task; -- Access pointer to the task
END RECORD;
delete pool: ARRAY (1..num_tasks) OF
RECORD
free: BOOLEAN;
task: delete_task;
END RECORD;
add_pool: ARRAY (1..num_tasks) OF
RECORD
free: BOOLEAN;
task: add_task;
END RECORD;
remove_pool: ARRAY (1..num_tasks) OF
RECORD
free: BOOLEAN;
task: remove_task;
END RECORD;
lookup_pool: ARRAY (1..num_tasks) OF
RECORD
free: BOOLEAN;
task: lookup_task;
END RECORD;

--------------- ALLOCATION LIST FUNCTIONS --cccecacccccacca-
-- These functions handle the allocation lists defined above
-~ They are used only within the controller and thus are

-~ defined within its body and are totally private

FUNCTION get_task(op: IN op_type) RETURN op_task_num IS
BEGIN
-- Find a free task for the given operation
-- Mark its allocation list to show it is now busy
~- Return the number of the task used
END get_task;

PROCEDURE free_task(op: IN op_type;
num: IN op_task_num) IS

BEGIN
~- Mark the task numbered num in the given allocation

-- list as being free again
END free_task;

5-8

SYMBOLIC NAME MANAGER DESIGN

BEGIN -- Controller body code

Create the new operation tasks and initialize the

allocation lists with their access pointers. Then
mark the appropriate entry in the list to show the
-- new task is free and call its initialization entry
FOR i IN 1..num_tasks LOOP

create_pool(i).task := NEW create_cntxt; -- Create task
create_pool(i).free := TRUE; -- Show it is free
create pool(i).task.init(i); -- Its number is i

delete_pool(i).task := NEW delete cntxt;
delete_pool(i).free := TRUE;
delete_pool(i).task.init(i);
add_pool(i).task := NEW add_name;
add_pool(i).free := TRUE;
add_pool(i).task.init(i);
remove_pool(i).task := NEW remove_name;
remove_pool(i).free := TRUE;
remove_pool(1i).task. 1nit(i);
lookup_pool(i).task := NEW lockup_name;
lookup_pool(i).free := TRUE;
lookup pOOl(l) task. 1n1t(i),

END LQOP;

-- Now loop waiting for operation requests and done calls
-- from the completed operation tasks
LOOP SELECT
ACCEPT create (rel_class: IN reliability_class;
context_id: IN kernel.xtnded_uid;
orig: IN BOOLEAN;
task_id: OUT create_task) DO

task_id := get_task(CREATE); -~ Allocate a task
task_id.start(rel_class, orig); -- Start it up
END create;

OR
ACCEPT delete (context_id: IN kernel.xtnded_uid;
orig: IN BOOLEAN;
task_id: OUT delete_task) DO
task_id := get_ task(DELETE);
task_id.start(context_id, orig);
END delete;
OR
ACCEPT add (context_id: IN kernel.xtnded_uid;
name: IN symb _name;
name_id: IN kernel.xtnded_uid;
orig: IN BOOLEAN;
task_id: OUT add_task) DO
task_id := get_ task(ADD);
task id. start(context id, name, name_id, orig);
END add‘
OR
ACCEPT remove (context_id: IN kernel.xtnded uid;
name: IN symb_name;

5-9

orig: IN BOOLEAN
task_id: OUT remove_task) DO
task_id := get_ task (REMOVE) ;
task_ “id. start(context id, name, orig);
END remove;
OR
ACCEPT lookup (context_id: IN kernel.xtnded_uid;
name: IN symb_name;
orig: IN BOOLEAN;
task_id: OUT lookup_task) DO
task_id := get_task(LOOKUP);
task id. start(context id, name, orig);
END lookup,
OR
ACCEPT op_done (operation: IN op_type;
op_num: IN op_task_num) DO
free task(operatlon op_ num); -- Free the task
END op_done;

END SELECT;
END LOOP;

END controller; -~ End of controller body

--------------------- CREATE_CNTXT TASK BODY --cecemeccacaccaax
TASK BODY create_cntxt IS
my _num: op_task_num; -~ Our task # in the controller
host: kernel.xtnded _uid; -- Storage for host id
new_context: kernel. xtnded _uid; -~ New context UID
status: ret_stat; -- Operation status

-- The reliability classes in this array are presumed to
be pre-defined when the type manager is installed so

-- that a user creating a new context need only select one
-- of the available choices of configuration of copies

-~ for the object

rep_class: ARRAY (reliability_class) OF rep_data;

-~ Define a local function to create a context instance
-- on the local host
FUNCTION local_create RETURN ret_stat IS
BEGIN

-- Call the kernel to allocate storage for a local

-- copy of a context object instance

-- Return status of OK if successful or ERROR if not
END local_create;
-- Define a local function to send a create request to a
-~ remote host and get his response

5-10

SYMBOLIC NAME MANAGER DESIGN

FUNCTION remote create(which_host: IN kernel.xtnded_uid)
RETURN ret_stat;

BEGIN
-~ Call a support package to pack the new context UID
- and the other parameters
-- Call the kernel to send the call to the host ident-
- ified in the which_host parameter
-- Wait for the response from the remote host
-~ Return the status received from the remote call
END remote_create;

END remote_create;

BEGIN ~-- Create operation task body
-- Accept the initialization call from the controller
-- and remember our task number in my_num
ACCEPT init (my_num: IN op_task_num) DO
END init;

LOOP -- One operation at a time forever
-- Accept the startup call from the controller and get
-- the input parameters for the call
ACCEPT start (rel_class: IN reliability_ class;
context_id: IN kernel.xtnded uid;
orig: IN BOOLEAN) DO
END Start; -- Release the controller from the rendevouz

-~ If this is the original call, we must act as

-~ collector for the replication algorithm

IF orig THEN
-- Get a fresh UID from the kernel for this context
kernel.get uid(context, new_context);

-- Start a transaction so we can be sure that ALL of
-- the copies get created or NONE of them do
TRANMGR.begin_transaction;

-- Loop through the host list of the given reliability
-- class and do a remote call to each of those hosts
host ::= support.next_host(rep_class(rel_class));
LOOP
IF host = my_host THEN -- If our host is on list
status := local create; -- Create a local copy
ELSE -- For each remote host
status := remote_create(host); -- Send it out
END IF;
host := support.next host(rel_class); -- Next host

-- Exit loop when list is exhausted or the local
-- or a remote invocation fails fer some reason

5-11

EXIT WHEN (host = NULL_UID) OR (status /= OK);
END LOOP;

-- The create operation is a special one because it

-- requires that ALL the requested copies be success-
-- fully created (not just a write quorum). Therefore
-- the transaction is aborted if any of the subordi-
-- nates failed.

IF status /= OK THEN TRANMGR.Abort_ transaction;

-- End the transaction (either commit or abort)
TRANMGR.end_transaction;

ELSE -- If this is a subordinate call, just do it
new_context := context_id;
status := local_create;

END IF;

-~ Accept the done call from the user task and give

-~ him the output parameters he wants

ACCEPT done (new_context: OUT kernel.xtnded_uid;
status: OUT ret_status) DO

END done; -- Release the user from the rendevouz

-~ Notify the controller that we are finished so he
-~ can put us back on his free list of available tasks

controller.op_done(CREATE, my num);

END LCOP;
END create_cntxt; -- End create operation task body
--------------------- DELETE_CNTXT TASK BODY -==vce-e-eceecece---a
TASK BODY delete_cntxt IS

my_num: op_task_num; -~ Qur task # in the controller

status: ret_stat; -- Operation status

tally: NATURAL; -- Vote accumulator

Storage for host ids
Local storage for our context
Headers returned from remotes

host: kernel.xtnded uid;-
loc_copy: context; -
ret_header: rep_data;
-- Define a local function to delete a context
-- on the local host

FUNCTION local_delete RETURN ret_stat IS

BEGIN

Copy the local context's header into ret_header
-~ Call the kernel to return the object's storage
Return status of ERROR if the kernel balks

5-12

SYMBOLIC NAME MANAGER DESIGN

-- Else return OK.
END local_delete;

-- Define a local function to send a delete request to
-- a remote host and get his response
FUNCTION remote_delete(context_id: IN kernel.xtnded_uid;
orig: IN BOOLEAN;
which_host: IN kernel.xtnded_uid) IS
BEGIN
-- Call the support package to pack the context_id and
other parameters
-- Call the kernel to send the request to the host
identified in the which_host parameter
Wait for the respconse from the remote host
Unpack the return data and put into ret_header
Return the status received from the remote call
END remote_delete;

BEGIN -- Delete operation task body
-- Accept the initialization call from the controller
-- and remember our task number in my_num
ACCEPT init (my_num: IN op_task_num) DO
END init;

LooP -- One operation at a time forever
-- Accept the startup call from the controller and get
-- the input parameters for the call
ACCEPT start (context_id: IN kernel.xtnded_uid;
orig: IN BOOLEAN) DO
END start;

-- If this is the original call, we must act as
-- collector for the replication algorithm
IF orig THEN

-- Start a transaction so we can be sure that a
-- write quorum of the object copies get deleted
TRANMGR.begin_transaction;

-- Get the local copy into our memory space
support.get_object(context_id, loc_copy);

-- Perform the operation on each copy and tally the
-- votes returned in the headers
tally := 0
LooP
-- Get the next host from the list in the
-- local copy's header. Exit when no more hosts
host :z support.next_host(loc_copy.header);
EXIT WHEN host = NULL_UID;

5-13

-- Perform a local or remote delete depending
-- upon the next host id
IF host = my_host THEN

status := local_delete;
ELSE

status :=

remote_delete(context_id, FALSE, host);

END IF;

-- If the operation was successful, the votes
-- for this copy are counted ONLY if it has the
-~ the most recent version number
IF status = OK THEN
IF ret_header.v = loc_copy.header.v THEN
tally := tally + ret_header.n;
ELSEIF ret_header.v > loc_copy.header.v THEN
loc_copy.header.v := ret_header.v;
tally := ret_header.n;
END IF;
END IF;

END LOOP;

-- If the total number of votes accumulated from
-- up-to-date copies is not at least equal to the
-- write quorum for the object, abort the xaction
IF tally < loc_copy.header.w THEN
TRANMGR.abort_transaction;
status := ERROR;
ELSE
status := 0K;
END IF;

-- End the transaction and either abort or commit
TRANMGR.end_transaction;

END IF;
-- If this is a subordinate call, just do it
ELSE
status := local_delete;
END IF;
-~ Accept the done call from the user task and give
-- him the output parameters he wants
ACCEPT done (status: OUT ret_status) DO
END done;

-- Notify the controller that we are finished
controller.op_done(DELETE, my_num);

5-14

SYMBOLIC NAME MANAGER DESIGN

END LOOP;
END delete_cntxt; -- End delete operation task body
--------------------- ADD_NAME TASK BODY ===cc-eeomecm—cecaco—m-
TASK BODY add_name IS

my_num: op_task_num; -- Qur task # in the controller

status: ret_stat; ~-- Operation status

tally: NATURAL; ~-- Vote accumulator

host: kernel.xtnded uid;-- Storage for host ids

loc_copy: context; -~ Local storage for our context

ret_header: rep_data; -- Headers returned from remotes

-- Define a local function to add a name/uid pair to
-- a context on the local host
FUNCTION local_add RETURN ret_stat IS
BEGIN

-~ Copy the local context's header into ret_header

-~ Call the hash package to add the name/uid pair

- to the context

-~ Return status of ERROR if the name is already in the

-~ context or if the hash package returns error

-~ Else return OK
END local_add;
-- Define a local function to send a add request to
-- a remote host and get his response
FUNCTION remote_add(context_id: IN kernel.xtnded_uid;

name: IN symb_name;
name_id: IN kernel.xtnded_uid;
orig: IN BOOLEAN;
which_host: IN kernel.xtnded uid) IS

BEGIN

-- Call the support package to pack the context_id and

other parameters

Call the kernel to send the request to the host
-~ identified in the which_host parameter
Wait for the response from the remote host
Unpack the return data and put into ret_header
Return the status received from the remote call
END remote_add;

BEGIN -~ Add operation task body
-- Accept the initialization call from the controller
-- and remember our task number in my num
ACCEPT init (my_num: IN op_task num) DO
END init;

LOOP -~ One operation at a time forever
-- Accept the startup call from the controller and get
-- the input parameters for the call
ACCEPT start (context_id: IN kernel.xtnded_uid;
name: IN symb _name;
name_id: IN kernel.xtnded_uid;
orig: IN BOOLEAN) DO
END start;

-~ If this is the original call, we must act as
-~ collector for the replication algorithm
IF orig THEN

-- Start a transaction so we can be sure that a
-- write quorum of the object copies get updated
TRANMGR.begin_transaction;

-- Get the local copy into our memory space
support.get_object(context_id, loc_copy);

-- Perform the operation on each copy and tally the
-- votes returned in the headers
tally := 0;
LooP
-- Get the next host from the list in the
-- local copy's header. Exit when no more hosts
host := support.next_host(loc_copy.header);
EXIT WHEN host = NULL_UID;

-- Perform a local or remote add depending
-- upon the next host id
IF host = my_host THEN

status := local_add;

ELSE .
status :=
remote_add(context_id,
name,
name_id,
FALSE,
host);
END IF;

If the operation was successful, the votes

for this copy are counted ONLY if it has the

the most recent version number

IF status = OK THEN

IF ret_header.v = loc_copy.header.v THEN
tally := tally + ret_header.n;

ELSEIF ret_header.v > loc_copy.header.v THEN

loc_copy.header.v := ret_header.v;
tally := ret_header.n;
END IF;
END IF;

SYMBOLIC NAME MANAGER DESICN

END LOOP;

-- If the total number of votes accumulated from
-- up-to-date copies is not at least equal to the
-- write quorum for the object, abort the xaction
IF tally < loc_copy.header.w THEN
TRANMGR.abort_transaction;
status := ERROR;
ELSE
status := OK;
END IF;

-- End the transaction and either abort or commit
TRANMGR.end_transaction;

END IF;
-- If this is a subordinate call, just do it
ELSE

status := local_add;
END IF;

-- Accept the done call from the user task and give
-- him the output parameters he wants

ACCEPT done (status: OUT ret_status) DO

END done;

-- Notify the controller that we are finished
controller.op_done(ADD, my_num);

END LOOP;
END add_name; -- End add operation task body
--------------------- REMOVE_NAME TASK BODY -----==--<-c=c-=---=
TASK BODY remove_name IS

my_num: op_task_num; -- Our task # in the controller

status: ret_stat; -- Operation status

tally: NATURAL; -- Vote accumulator

host: kernel.xtnded uid;-- Storage for host ids

loc_copy: context; -- Local storage for our context

ret_header: rep_data; -- Headers returned from remotes

-- Define a local function to remove a name/uid pair
-- from a context on the local host
FUNCTION local_remove RETURN ret_stat IS

5-17

BEGIN
-- Copy the local context's header into ret_header
-- Call the hash package to remove the pair from
-- the context
Return status of ERROR if the name is not found
-- Else return OK
END local_remove;
-- Define a local function to send a remove request to
-- a remote host and get his response
FUNCTION remote_delete(cortext_id: IN kernel.xtnded_uid;
name: IN symb_name;
orig: IN BOOLEAN;
which_host: IN kernel.xtnded_uid) IS

BEGIN

Call the support package to pack the context_id and
other parameters

Call the kernel to send the request to the host
identified in the which_host parameter

-- Wait for the response from the remote host

Unpack the return data and put into ret_header
-- Return the status received from the remote call

END remote_remove;

BEGIN -- Remove operation task body

-- Accept the initialization call from the controller
-- and remember our task number in my_num

ACCEPT init (my_num: IN op_task_num) DO

END init;

LOOP -~ One operation at a time forever
-- Accept the startup call from the controller and get
-- the input parameters for the call
ACCEPT start (context_id: IN kernel.xtnded uid;
name: IN symb_name;
orig: IN BOOLEAN) DO
END start;

-- If this is the original call, we must act as
-- collector for the replication algorithm
IF orig THEN

-- Start a transaction so we can be sure that a
-- write quorum of the object copies get updated
TRANMGR.begin_transaction;

-- Get the local copy into our memory space
support.get_object(context_id, loc_copy);

-- Perform the operation on each copy and tally the
-- votes returned in the headers
tally := 0;

SYMBOLIC NAME MANAGER DESIGN

LOOP
-- Get the next host from the list in the

-- local copy's header. Exit when no more hosts
host := support.next_host(loc_copy.header);
EXIT WHEN host = NULL_UID;

-- Perform a local or remote remove depending
-- upon the next host id
IF host = my_host THEN

status := local_remove;

ELSE
status :=
remote_remove(context_id,
name,
FALSE,
host);
END IF;

-- If the operation was successful, the votes
for this copy are counted ONLY if it has the
-- the most recent version number
IF status = OK THEN
IF ret_header.v = loc_copy.header.v THEN
tally := tally + ret_header.n;
ELSEIF ret_header.v > loc_copy.header.v THEN

loc_copy.header.v := ret_header.v;
tally := ret_header.n;
END IF;
END IF;
END LOOP;

-- If the total number of votes accumulated from
-- up-to-date copies is not at least equal to the
-- write quorum for the object, abort the xaction
[F tally < loc_copy.header.w THEN
TRANMGR.abort_transaction;
status := ERROR;
ELSE
status := 0OK;
END IF;

-- End the transaction and either abort or commit
TRANMGR.end_transaction;

END IF;
-- If this is a subordinate call, just do it
ELSE

status := local_remove;

END IF,

5-19

END remove_name;

~-- Accept the done call from the user task and give
-- him the output parameters he wants
ACCEPT done (status: OUT ret_stat) DC
END done;

-- Notify the controller that we are finished
controller.op_done(REMOVE, my_num);

END LOOP;

my_num: op_task_num; -
status: ret_stat; --
tally: NATURAL; --
host: kernel.xtnded_uid;--
loc_copy: context;

ret_header: rep_data;

name_uid: kernel.xtnded_uid;
ret_uid: kernel.xtnded_uid;

-- Define a local function

-- End remove operation task body

LOOKUP_NAME TASK BODY
TASK BODY lookup_name IS

Our task # in the controller
Operation status

Vote accumulator

Storage for host ids

Local storage for our context
Headers returned from remotes
-~ UID associated with name
-~ UID returned by remotes

to lookup a name/uid pair

-=- in a context on the local host
FUNCTION local_lookup RETURN ret_stat IS

BEGIN

Else return OK
END local_lookup;

-- Define a local function

Copy the local context's header into ret_header
Call the hash package to find the name in context
Put the associated UID in ret_uid

Return status of ERROR if name was not found

to send a lockup request to

-- a remote host and get his response
FUNCTION remote_lookup(context_id: IN kernel.xtnded_uid;

which_host:

BEGIN

-

other parameters

Put the returned UID

name: IN symb_name;
orig: IN BOOLEAN;
IN kernel.xtnded_uid) IS

Call the support package to pack the context_id and

Call the kernel to send the request to the host
identified in the which_host parameter

Wait for the response from the remote host

Unpack the return header and put into ret_header

in ret_uid

5-20

SYMBOLIC NAME MANAGER DESIGN

-- Return the status received from the remote call
END remote_lookup;

BEGIN -- Lookup operation task body
-- Accept the initialization call from the controller
-- and remember our task number in my_num
ACCEPT init (my_num: IN op_task_num) DO
END init;

LOOP -- One operation at a time forever
-- Accept the startup call from the controller and get
-- the input parameters for the call
ACCEPT start (context_id: IN kernel.xtnded uid;
name: IN symb_name;)
orig: IN BOOLEAN) DO
END start;

-- If this is the original call, we must act as
-- collector for the replication algorithm
IF orig THEN

-- Start a transaction so we can be sure that a
-~ read quorum of the object copies get examined
TRANMGR.begin_transaction;

-- Get the local copy into our memory space
support.get_object(context_id, loc_copy);

-- Perform the operation on each copy and tally the
-- votes returned in the headers
tally := 0O;
Loop
-- Get the next host from the list in the
-- local copy's header. Exit when no more hosts
host := support.next_host(loc_copy.header);
EXIT WHEN host = NULL_UID;

-- Perform a local or remote lookup depending
-~ upon the next host id
IF host = my_host THEN

status := local_lookup;
ELSE
status :=
remote_lookup(context_id,
name,
FALSE,
host);
END IF;

-- If the operation was successful, the votes
-- for this copy are counted

5-21

-- The returned UID of the copy with the highest
-- version number is retained
IF status = OK THEN

tally := tally + ret_header.n;

IF ret_header.v >z loc_copy.header.v THEN
loc_copy.header.v := ret_header.v;
name_uid := ret_uid;

END IF;

END IF;

END LOOP;

-- If the total number of votes accumulated from
-- up-to-date copies is not at least equal to the
-- read quorum for the object, abort the xaction
IF tally < loc_copy.header.r THEN
TRANMGR.abort_transaction;
status := ERROR;
ELSE
status := 0K;
END IF;

-- End the transaction and either abort or commit
TRANMCR.2nd_transaction;

END IF;
-- If this is a subordinate call, just do it

ELSE
status := local_lookup;

END IF;

-- Accept the done call from the user task and give

-- him the output parameters he wants

ACCEPT done (name_uid: OUT kernel.xtnded_uid;
status: OUT ret_stat) DO

END done;

-- Notify the controller that we are finished
controller.op_done(LOOKUP, my_num);

END LOOP;

END lookup_name; -- End lookup operation task body

-------------------- CALL HANDLER BODY ==-=---ecemeccccoaoaax
TASK BODY rem_call IS

5-22

SYMBOLIC NAME MANAGER DESIGN

TASK TYPE wait_create IS -- Example wait task definition
ENTRY init (my_num);
ENTRY start (...);

END wait_task;

TASK BODY wait_create IS

BEGIN
ACCEPT init(my_num) DO -- Remember our task number
END init;
LOOP
ACCEPT start (...) DO -- Fire up and get parameters
END start;

-- Call controller to do the operation
controller.create_cntxt(..., create_task);

-- Wait for the create task to complete
create_task.done(...);

-- Call the kernel to send the response over the RPC
-- Call remote call handler to tell him we're done
END LOOP;
END wait_create;
-- Define arrays of wait tasks
BEGIN -- Remote call handler body

LooP
~- Call the kernel to get a remote call

-- Schedule a wait task and call its start entry
passing the parameters from the RPC

-- Return the wait task to the queue when its finished
END LOOP;

END rem_call; -- End of remote call handler body

END SNTM; -- End of type manager package body

5-23

Chapter 6

MESSAGE TYPE MANAGER DESIGN

6.1 INTRODUCTION

The Message Type Manager (MTM) 1is replicated on hosts in the network
wherever inter-process communication by messages is desired. The instances of
the MTM are identical. The composition of a MIM and its interface to the user
is shown in Figure 6-1. User operation requests are made to the controller of
the MTM which takes the appropriate action. A task to perform the requested
operation is scheduled by the MTM _Controller from a pool of SEND, RECEIVE and
MSG_STATUS tasks. (In the suusequent text, all capitalized words will refer
to tasks of the MTM).

In sending a message, SEND calls the creation operation of MESSAGE
OBJECT, which returns a message object, routes copies of the message object to
remote hosts (as determined by the reliability class), and sends notices of
availability to the intended receivers. A notice becomes an entry in the
message queue for a receiver process. If the call is asynchronous, the
message identifier 1is then returned to the sender. If the call is
synchronous, SEND terminates but the sender remains blocked until SUPPORTER
determines that some event has occurred and causes the sender to proceed (i.e.
after a timeout or after all acknowledgements of copies sent are returned).
When a sender is to be unblocked, the SUPPORTER schedules a WAKER task to
bundle and route the appropriate response to the sender.

RECEIVE determines from PROCESS MESSAGE QUEUE (PMQ) whether or nct a
message is available that meets the specifications of the receiver. The PMQ
manages all message queues for the processes of that host. It maintains the
queues in stable storage. If there is a message available, it is returned to
the receiver and RECEIVE terminates. If there is no message available and the
call 1is asynchronous RECEIVE terminates and the receive continues without
having received a message. In a synchronous call the sender remains blocked
while SEND terminates and SUPPORTER performs the detection of the event to
resume the receiver (either a timeout or an appropriate message arriving for
the receiver). A WAKER task bundles a response and routes it to a waiting
receiver.

The MSG_STATUS task returns the status of a message that is retrieved
from a local copy of the message (if there is one), otherwise the status is
returned from a remote copy.

One facet of the MTM not depicted in Figure 6-1 concerns the routine
acknowledgement of events between MTMs regarding the routing of message
copies. This is MTM_Controller to MTM_Controller communication via Kernel
remote calls and responses. Some of the communications cause interactions
with SUPPORTER (i.e. such an acknowledgement for a message copy sent to a

6-1

remote host). Another interaction occurs when the PMQ is notified by its
MIM_Controller of incoming notices of message availability for receivers cn
that host. When a copy of a message 1is required on a host where no such copy
exists a request 1is made to a remote host that has a copy which causes a
message copy to be routed to the requesting host. Such interactions occur
between MTM_Controllers and are necessary for the smooth functioning of the
operations of the MTM.

6.2 CONSISTENCY AND RELIABILITY MECHANISMS FOR MESSAGES

Messages provide reliable inter-process communication in either a
synchronous or an asynchronous fashion within the ZEUS Operating System. To
increase both the reliability and the accessibility of a message object, the
message object may be a multiple copy object with copies existing on different
hosts (preferably on hosts where it will be received). Since the message is
basically an immutable object, there is no "primary" copy - any copy of the
object may be received by an authorized process (one on the message receive
list). A reliable underlying communication system is assumed.

It is desirable that the state of a message object remain consistent for
as much of the time as is possible. This is because the state of the entire
network is reflected in the messages that exist 1in the system at any given
moment. The consistency of a message object is reflected in how it appears to
the intended receivers of the message. At the highest degree of consistency,
the state of the object appears the same at any instant. The state of the
object (i.e., each of its copies) is either available for receipt to all
intended receivers or not available for receipt. It is impossible to-achieve
this highest level of consistency since the simultanecus message creation and
availability to all intended receivers in the network is not possible. The
next best thing is to make as small as possible the period in which the state
of the message object is inconsistent, and to have the means to render a
message object consistent from an inconsistent state due to failure.

Message object consistency is maintained in an error free environment by
protocols or conventions that are obeyed by each MTM with regard to the
maintenance of multiple copy message objects. These conventions will te
discussed in the context of the message operations. In an environment in
which a failure has occurred, such as the crash of a host, efforts on behalf
of alive hosts can render an inconsistent message object consistent.

This chapter discusses (1) how message object consistency 1is ensured by
the message operations of an MIM in an error free environment and (2) how
consistency is maintained in the event of host failure(s).

Locking at each operation in turn, the send operation invoked by a
process causes a message object to be created and one or more copies of the
object are distributed on hosts in the network. A copy consists of a count cf
the number of copies and the receiver list for the message. Obviously, the
more copies that are made of a message, the more reliable the message since
more copies increase the likelihood that it will be available if a failure
occurs. The least reliable is a one copy message since a host failure of the
copy host results in the unavailability of the message until the host rejoins

6-2

MESSAGE TYPE MANAGER DESIGN

the network {which is not a probiem if all intended receivers also exist on
that host).

The message copies may be maintained on either volatile or non-volatile
storage, the determination of which is made depending on the reliability class
of the message object. The four reliability classes for an object as defined
in Chapter 2 of Volume 1 of the guidebook are (1) volatile, (2) non-volatile,
(3) resilient and (4) stable. Resilient objects require recovery mechanisms
and are described below. Message creation can include "object reliability
class" as a parameter. The characteristics of the message objects relative to
the four classes is discussed.

Volatile objects are guaranteed to be consistent only in the absence of
failures. In the context of message objects, this is analogous =
single-copied message objects that are stored on volatile storage. The
failure of the host will render the object inconsistent - in fact, it will nc
longer exist. These objects have the "non-guaranteed delivery" property.

A non-volatile object is one that has multiple volatile copies or a
single non-volatile copy of the message object. If the object was consistent
before a failure then it is guaranteed to be consistent after that failure.
No recovery actions are taken for non-volatile objects.

Resilient objects have recovery operations performed to change any object
rendered inconsistent due to failure to a consistent state after recovery.
The object 1is returned to the most previous consistent state which for
messages means the message object will be backed out when the object state is
inconsistent due to a failure during the send operation. In this case, the
send operation is considered to be incomplete. The send operation is the only
inconsistent state producing message operation.

Stable message objects continue to be "accessible and consistent even
while the failure is being repaired." This is supported by requiring that one
copy of the message be put on every host so that a copy of the message is
always available even in the event of failures that result in the availability
of only one host in the network. Consistency of stable objects is maintained
in the same fashion as for resilient objects.

The send operation causes a message object to be created and one or more
copies of the object to be distributed across the network. The number of
copies to be distributed is determined by a parameter at the message interface
level between the calling process and the MTM. The message queue of each
intended receiver is updated to include the message id of the available
message and the message copies are distributed to various hosts depending on
the reliability class of the message object.

It is possible for the state of a message object to be rendered
inconsistent when the send operation is not completed due to failure. In this
case, the send operation is incomplete. The inconsistent state might be that
not all copies of the message are distributed, or that only some but not all
of the process message queues have been updated to reflect the availability of

6-3

the message. Some recovery action must be taken by the alive hosts to make
such a message state is consistent, or to back out the message.

Given the types of inconsistencies that can occur due to the interruption
of a send operation, the failure and recovery process will be viewed in light
of (1) error detection, (2) damage retention, (3) error recovery, and (4)
error correction. In its simplest form, error detection occurs when some
kernel detects a host failure and broadcasts this information to the network.

When a failure occurs, these are the possible states characterizing a
message being sent:
o The message queues of the receiver processes reflect the message id and
all copies of the message have been distributed.

This is a consistent state. No recovery action is necessary.

o Not all message queues of the receiver processes reflect the message id
of the last message sent: This 1is an inconsistent state and the message
will be Dbacked out, i.e. the message queues with the message 14 will
have that message id removed.

o The message id of the last message sent is in the message queue of each
available process, and one or more copies of the message are distributed.

Any remaining copies to be distributed will not be distributed. But as
long as one copy is available it can be received by any receiver.

o If there is no copy available because the only copy is on the downed
host, then the message is unavailable to any receivers on the remaining
hosts.

No recovery action can be taken and the message cannot be received
because no copy is available. It cannot be backed out because it is
possible that the message has been received on the downed host.

Each message operation is performed as a transaction. Because of this.,
the operation either executes to completion or 1is backed out by the
Transaction Manager so that no inconsistent state is produced.

The receive operation is most sensitive at the point of receipt since it
is desirable that te recipt of he message be made apparent on the message copy
which is received at the moment it is received. When the receive process has
received the message and returned it to the process invoking the receive, the
message copy that was received is updated to reflect the receipt of the
message.

The message status operation 1is a read only operation and does not
require any type of recovery operation since it never causes an inconsistency
in a message object.

6-4

MESSAGE TYPE MANAGER DESIGN

6.3 HIGH-LEVEL DESCRIPTION OF MTM MODULES

The Zeus Operating System is being designed with the purpose of using and
analyzing reliability and recovery mechanisms for distributed sysftems as the
basis for the preparation of a guidebook oriented towards the designer's of
reliable distributed systems. As an object-oriented system, Zeus allows the
specification of reliability on an object by object basis, so that some
objects may have a high reliability and others a lower reliability by option.
The Message Type Manager (MTM) manages objects of type message and is
responsible for performing the operations send, receive, and message_status
for a message object. Messages are a means of communicating between
processes. For a particular message object, the MTM ensures that its
reliability class is maintained according to the specifications of its
creator.

The MTM is a replicated object because there are multiple MTMs existing
in the network with at most one MTM on any given host. There may be fewer
MTMs than there are hosts in the sys- tem, in which case it is proposed that a
"stub" MTM exists on any host that does not have a MTM. A stub MTM would
route the message operation invocations from the processes on that host to
other MTMs to perform the operations, and to transfer the results of the
operation to the process that invoked the operation. Currently, only a MTM is
designed. A stub MTM would be a subset of the MIM. The complete MTM is
discussed in this chapter.

As seen by a user process, the operations on a message object are send,
receive, and get the message status. The send operation causes a message to
be created and sent to another process. Like other objects in the Zeus
system, a message object is given a unique identifier when it is created. The
receive operation is the means by which a process reads a message which it nas
been sent. It can only read a message once. The msg_status operation returns
the status of a particular message, which may be received, not received,
unavailable, or non- existent.

The components of message management are depicted in Figure 6-1. The
user process shown at top contains a MTM interface for operation invocaticn
and for the receipt of the results. The large box below the user encloses the
components of the Message Type Manager. Invocations are made from the
MTM_Interface to the MTM_Controller which hands off the request to one of the
send, receive, or the msg_status processes. When the operation is being
performed, the services of the Process_Message Queue and the Message_Object,
respectively, provide information about the messages outstanding for a process
and also the location and characteristics of a message object. When the
operation is completed a result is returned to the MTM_Interface.

Functionally, the synchronous and asynchronous send and receive message
operations are quite similar. A synchronous send means "send and wait until
received" and a receive means ''wait until there is a message to be received.”
An asynchronous call has neither of these waits. The Supporter and Waker
processes are key in the achievement of synchronicity. The Supporter is
notified of events and determines when synchronization has occurred or,
alternatively, a timeout. A Waker task returns a result to a waiting process.

6-5

The three directed arrows in Figure 6-1 between the MTM_Interface and the
Message Type Manager are expanded in Figure 6-2 into a series of routines and
pathways that express at a greater level of detail the interface between the
user and the MTM. In this chapter, each of these components is described
beginning with the user interface routines and the task of the MTM_Interface
shown in Figure 6-2 and followed by the components of the Message Type Manager
shown in Figure 6-1.

When a user invokes a message operation, a procedure call is made to one
of the send, receive, or mnsg_status procedures within the MTM_ Interface
Figure 6-2 shows these routines. From these procedures an entry call {labeled
(1)] 1is made to the Message Operations task which is responsible for the
protocol between the MTM_Interface and the MTM. From this task, an entry call
at (2) is made to the MTM_Controller that causes one of the send, receive, or
msg_status processes of Figure 6-1 to become active. When the operation
completes, a result is sent from one of the send, receive, msg_status, or
waker nrocesses to the Message Operations task where its receipt causes the
user to become unblocked with the results of the operation.

The following sections numbered 6.3.1 through 6.3.4 are (respectively)
the descriptions of the MTM_Interface components Send Msg, Receive Msg,
Msg_Status, and Message Operations.

6.3.1 Send_Msg Procedure

The user interface to perform message manipulations is a procedural one.
Calls are made to routines named send_msg, receive_msg and msg_status that are
part of a Message_Interface package within the process space of the user. The
following are the procedural Interfaces between the user process and the
Message_Interface routines.

PROCEDURE send_msg (msg_vars: IN MTM_type.parm_list;
send_to_ “list: IN MTM _type.xid llst
option: IN MTM _type. wait _no_wait;
timeout: IN POSITTVE;
reliability_class: IN MTM_type.rel_classes;
msg_id: OUT kernel.xtnded uid;
return_status: OUT MTM_type. msg_opn_reuqrn);

Parm_list 1is a record that describes the variables that compose a
message. Some convention will be made between the compiler(s) of a host
machine and the send_msg procedure as to the actual record description of
parm_list.

The send_to_list is a linked 1list of the intended receivers of the
message. A broadcast of a message is indicated when the send_to_list is
composed of a single star, "*",

The process has the option of waiting for acknowledgements that the
message has been sent to every receiver or not waiting for the
acknowledgements. This is specified by "wait" or "no_wait" as the value of
the option.

6-6

MESSAGE TYPE MANAGER DESIGN

If the option is wait, a timeout value must be specified which is the
maximum time that the sender is willing to wait for the acknowledgements.

The reliability class for a message object may be volatile, non-volatile,
resilient, or stable. A volatile message object is one with the least
likelihood of being available if some failure occurs because it 1is a single
copy object in memory. A stable message object has the greatest likelihood of
being availaple because a copy of the message exists on each host, and is thus
a replicated object. Non_volatile and resilient message objects are more
reliable than volatile objects and less reliable than stable objects. The
number of message copies created during a send operation and their storage
medium will be varied during performance analysis to determine what
combinations provide the maximum amount of reliability and efficiency. Cne
major difference between non_volatile and resilient 1is that non_volatile
objects have no recovery operations performed for them upon failure, but
resilient objects do.

The msg_id is a unique identifier for thz message that is returned after
the message is sent. This identifier may be used in a msg_status call to
determnine the state of the message regarding its receipt.

The return_status contains the result of the send operation and may be
completed or timed out. The not_completed status will at a later time be
expanded into a group of possible error return values according to the fault
that caused the operation to fail.

6.3.2 Receive_Msg Procedure

The complement to send_msg operation is the receive_msg operation that a
process invoked to receive a message that is available.

PROCEDURE receive _msg (msg_vars: IN MTM_type.parm_list;
receive from_list: IN MTM_type.xid_list;
wait_option: IN MTM_type.wait_no_wait;
which_msg_option: IN receive_option;
timeout: IN POSITIVE;
msg_id: OUT kernel.xtnded uid;
sender_id: OUT kernel.xtnded_uid;
return_status: OUT MTM_type.msg_opn_return};

Msg_vars are the variables into which a received message is placed.

The receive_from_list indicates which process the receiver is willing to
receive from. It may be a linked list of prccess extended uids, or a star (%*)
which indicates a willingness to receive from any process.

The wait_option may have the values of either wait or no_wait where wait

will cause the receiver to wait a finite amount of time for a message to
arrive, the wait time being indicated by timeout.

6-7

The which_msg option may be either most _recent, oldest, or
first_after_failure. This gives the receiver flexibility in receiving
messages.

The msg_id contains the extended uid of the just received message.

Tho sender_id contains the extended uid of the process that sent the
message.

The return_status may be completed or timed_out.
6.3.3 Msg_Status Procedure

The current status of any particular send message operation mnay be
determined with the msg_status operation.

PROCEDURE msg_status (msg_id: IN kernel.xtnded_uid;
return_statuses: OUT MTM_type.msg opn_return_list);

The msg_id is the extended uid of the message for which a status query is
being made.

The return_status record is a linked list of process_id/status pairs.
That 1is, one status is returned for each intended receiver process. The
possible return statuses are received, not_received, unavailable (i.e., status
not known), and non_existent.

This completes the discussion of the procedural interface to the message
operations.

6.3.4 Message Operations Task

The three procedures (send_msg, receive _msg, and msg_status) make entry
calls: to a Message Operations task that is the Message Interface of the
calling process to the Message Type Manager of that host. There 1is one
Messaqe Operations task for each user process that is part of the
Message_Interface.

The Message Operations task 1is very simple and accepts one of the entry
calls route_send _msg, route_receive msg, or route_msg_status. Once the
entry_call is accepted, the Message Operations task makes an entry call to the
MTM_controller that effectively requests that the message operation be
performed. After making the request, the Message Operations task waits to
accept an entry call containing the result.

TASK message_operations IS

ENTRY route_send msg (text: IN kernel.message;
process_list: IN MTM _type.xid_list;
reliability class: IN MTM_type.rel_classes;
option: IN MTM_type.wait no_wait;
timeout: IN POSITIVE;

6-8

MESSAGE TYPE MANAGER DESIGN

msg_id: OUT kernel.xtnded_uid;
return_status: OUT MTM_type.msg_opn_return);

ENTRY send_return (msg_id: IN kernel.xtnded_uid;
return status IN MTM_type.msg_opn_return);

ENTRY route_receive_msg (process_list: IN MTM_type.xid_list;
wait _option: IN MIM_type. walt no walt
which_msg option: 1IN MTM _type. receive optlon,

timeout: IN POSITIVE;
msg_id: OUT kernel.xtnded_uid;

sender_id: OUT kernel.xtnded_uid;

text: OUT kernel.message;
return_status: OUT MTM_type.msg_opn_return);

ENTRY receive_return (msg_id: IN kernel.xtnded_uid;
sender_id: IN kernel.xtnded_uid;
text: IN kernel.message;
return_status: IN MTM_type.mse_opn_return);

ENTRY route_msg_status (msg_id: 1IN kernel.xtnded_uid
return_status: OUT MTM_type.msg_opn_return_list);

ENTRY msg_status_return (return_statuses: IN MTM_type.msg_opn_return_
list);

END message_operations;

One might ask whether or not it would be simpler and/or more efficient to
make the entry call to the MTM_Controller directly from the Message_Interface
procedures and avoid having the Message Operations task altogether. However,
a call to perform a message operation is a synchronous call such that the
calling process 1is blocked until some result is returned (the semantics are
the same as for a procedural call). So if the calling process makes an entry
call into the MIM Controller, the MTM_Controller would effectively have to
wait for the operatlon toc be completed to keep the calling procedure blocked
and to return a result via the initial entry call. This effectively causes
all message operations for that host to be performed in a sequential fashion
which is not a viable alternative.

Additionally, and perhaps most importantly, the result to an operation
may be returned from either one of the operation tasks (send, receive, or
msg_status) or the waker task (which may return the result when an operaticn
is performed with the wait option). A diagram containing these tasks and the
entry calls they make in Message Operations {is given in Figure 6-3. When the
initial operation invocation 1is made, it is not known from what task the
result will come, so the interface task performs an ACCEPT for the result
which allows the result to come from any task. An ACCEPT can only be
performed from a task which is a main motivation for making Message Operations
a task, rather than limiting the interface to the three previously described
proce- dures.

6.3.5 MTM_Controller Task

The MTM_Controller accepts requests for the message opera- tions to be
performed and also handles MTM intercommunication. The body of the
MTM_Controller is a loop in which it accepts entry calls to perform some
action. Figure 6-4 groups the entries by class and associates with each entry
the task scheduled by a rendezvous at that entry. The Message Operations
Class are those entries associated with the invocation or opera- tions. The
Acks Class of entries are acknowledgements of opera- tion completion. Routing
Copies are used in message object movement between hosts. Finally, the
Message Queue Class of entries is related to the management for processes of
the message queue of message cbject identifiers.

TASK MTM_controller IS
ENTRY failure _notice ();

ENTRY send_msg (sender: IN kernel.xtnded_uid;
text: IN kernel.message;
process_list: [IN MTM_type.xid_list;
reliability class: IN MTM_type.rel classes,
option: IN MTM_type. Wait _no_wait;
which_msg option: [N MTM_type. receive optlon,
timeout: IN POSITIVE;
call_uid: IN kernel. uld)

ENTRY receive_msg (receiver: IN kernel.xtnded uid;
process_list: IN MTM type.xid_list;
text: IN kernel.message;
wait_option: IN MTM_type.wait_no_wait;
which_msg option: IN MTM _type. receive optlon,
timeout: IN POSITIVE;
call uid: IN kernel. uld);

ENTRY msg_status (requestor: 1IN kernel.xtnded uid;
msg_id: IN kernel.xtnded_uid;
call _uid: IN kernel.uid);

ENTRY get_send_parms (sender: IN kernel.xtnded_uid;
text: IN kernel.message;
sender_list: IN MTM_type.xid_list;
reliability class: IN MTM_type.rel_classes;
option: IN MTM_type.wait_no_wait;
timeout: IN POSITIVE;
call _uid: IN kernel.uid);

ENTRY get receive_parms (receiver: IN kernel.xtnded_uid;
text: IN kernel.message;
receive_list: IN MTM_type.xid_list;
wait_option: IN MTM_type.wait_no_wait;
which_msg option: IN receive_option;
timeout: OQUT POSITIVE;
call uid: IN kernel.uid);

6-10

MESSAGE TYPE MANAGER DESIGN

ENTRY get_msg_status_parms (requester: IN kernel.xtnded_ uid;
msg_id: IN kernel.xtnded uid;
call _uid: IN kernel.uid);

ENTRY nmessage_copy_for_receiver (msg_id: 1IN ‘‘ernel.xtnded_uid;
msg_object: IN MTM_type.object);

ENTRY msg_received (msg_id: IN kernel.xtnded_uid;
receiver: IN kernel.xtnded uid);

ENTRY request copy (msg_id: IN kernel.xtnded uid;
MTM_requestor_id: IN kernel.xtnded_uid;
call uid: IN kernel.uid);

ENTRY send_copy (msg_object: IN MTM_type.object;
storage _medium: IN MTM_type.storage_type;
call_uid: IN kernel.uid);

ENTRY send _copy_ack (msg_id: IN kernel.xtnded_uid;
sender: IN kernel.xtnded_uid);

ENTRY send_notice (msg_id: IN kernel.xtnded uid;
notice_group: IN MTM_type.xid_ list;
call uid: IN kernel.uid); END MTM_controller;

The relationship between entries of the MTM_Controller and tasks which
call those entries is given in Figure 6-5.

The failure_notice is the means by which the MTM Controller is informed
of restart after a failure. Because the operations of the MTM are performed
as transactions, the recovery actions required for operations is managed by
the Transaction Manager. The process message queues of the MIM nust e
"recovered" however, so the failure notice causes the process_message_jueue
task to be appropriately notified.

Operations are invoked by entry calls from Message Operations (the MTM
interface task to the user) to the MTM _Controller in the form of send_msg,
receive_msg, and msg_status. The MTM_Controller schedules the appropriate
process to perform the operation and passes the parameters to the process by
get_send parms, get_receive_parms, or get_msg_status_parms, respectively.

The message_copy_for_receiver is the entry by which a message instance is
passed to this host as the result of a request from this host for the message
instance. This is an instance that is sent "on demand", and occurs only when
a message available for receipt is not on the same host as one of its intended
receivers.,

The msg_received entry is an acknowledgement that a particular message
instance was received by a receiver on a remote host.

When a message instance ‘s "demanded", the request_copy entry is made
which causes a message instance to be routed to the
"message_copy_for_receiver" entry of the demanding host.

A send process may route instances of a message object for storage on
other hosts in the network. A copy is sent to the send_copy entry of a remote
host.

The send_copy_ack is the acknowledgement that a message instance sent by
a SEND process has been stored on the remote host.

One or more process message queues on a host are updated as a result cof
send notices from a send process.

The code is designed with efficiency in mind so that message operations
may be scheduled and executed in parallel.

The following sections, 6.3.6 through 6.3.13, are descrip- tions of the
tasks that are the component tasks of Figure 6-1. These tasks are also listed
in the table of Figure 6-6. The tasks Remote_Receive_Call and
Remote_Receive_Response listed in

Figure 6-6 are the interface tasks to the kernel network interface.

6.3.6 Send Task

A send task begins executing by getting the parameters from the
MTM_Controller for that particular instance of the operation. A kernel call
is made to get a unique identifier for the message that is to be created.
Given the reliability class of the message being created, and also the
send_to_list, a determination is made of the hosts to be sent a copy of the
message, as well as the storage medium for the message. During performance
analysis, the determination of copy_hosts will vary in order to study the
effects of message copy distribution and availability.

The message object is created, and a notice of message availability is
sent *to each MTM, so that the appropriate process message queues may be
updated to reflect the message availability. Following this is the sending cf
the message copy to the "copy_hosts" previously mentioned. At this point, if
the option on the call is no_wait, a return status is routed to the sender by
an entry call into the Message Operations task of the sender.

If the option is wait, then an entry call is made to the supporter task
that requests the sender be awakened when either the timeout on the call
occurs, or each message copy sent to other hosts have arrived at their
targeted hosts. Acknowledgements are sent to the supporter task from the
MTM _Controllers that receive a message copy.

6.3.7 Receive Task
Like the send task, a receive task begins execution by getting the

parameters for that receive operation from the MTM_Controller. The receiver's
message queue is checked to determine if a message is available for that

6-12

MESSAGE TYPE MANAGER DESIGN

process. If a message is not available, and the option on the call specifies
that a wait should be made, then the supporter task is notified that the
receiver process is waiting for a message. The supporter task will awaken the
receiver when either the timeout occurs or a message is received (whichever
occurs first). If the option is no_wait, and there is no message, then that
status is returned to the receiver.

When a message is available and a copy of the message is on the same host
as the receiver, it is routed to the receiver through an entry call to the
Message Operations task of the receiver process. The term "directed receive"
is used to describe the receipt of a message object that is on the same host
as the receiver. A message object may not be on the same host as each
intended receiver since the reliability class of a message object might not
require that each receiving host have a copy of the message. Figure 6-7 shcws
the entry calls made to achieve a directed receive.

If the message is not available on that host, the host hint in the
message id from the receiver's available message id queue is used to determine
where to get a copy of the message. The action of getting a copy of a message
object from another host is termed "receive on demand" in this chapter, and
the sequence of actions between the sender, the receiver, and their respective
MTM Controllers is shown in Figure 6-8. If that host is down, or for scme
reason that host's message copy 1is destroyed, a broadcast is made ¢tc the
MTM Controllers on all hosts requesting a copy. A copy, if it exists, will be
sent to that host.

An important factor in the efficiency of the receive operations is
message copy distribution. For the resilient class of message object, it is
planned initially to have a volatile copy of the message object on each host
of the receiver. This concurs with the most traditional view of messages.
This will be varied during performance modeling.

6.3.8 Msg _Status Task

The msg_status task determines the status c¢f a particular message by
getting the statuses from each of the respective message copies and merging
the statuses so that there is one status for each receiver which may be
received, not_received, or unavailable.

TASK TYPE msg_status IS

ENTRY msg_status_request_.eturn (return_statuses: IN MIM_type.msg_opn
_return_list);

END msg_status_task;

This task is the means by which remote statuses are returned to this
task.

In the event that not all message copies are available, the msg_task will
return to the invoker an "unavailable" status for any receivers whose status

6-13

is not known. It is important to note that the msg_status task will nct wait
forever if one or more copy statuses are not available.

6.3.9 Supporter Task

The supporter task detects the occurrence of a finite set of events, and
causes any process that is blocked and waiting on the occurrence of this event
to be "awakened". This task performs event detection for senders that are
waiting for message copies to be routed to particular hosts, and causes the
sender to become unblocked when either the sender times out on that call or
when all acknowledgements are received for a message copy Dbeing routed to
other hosts.

For a receiver, this task detects when a message s available or when nhis
time out has occurred. In the case where a message is available (where
available means the message queue of the receiver has a msg_id {rom a sender.,
but a copy 1is not on the host, a copy will be routed to the receiver's host
and the receiver will receive it if it is routed before his time out occurs.

There is one supporter task active for a given MTM. It handles event
detection for all senders and receivers on that host that specify the wait
option on their call with the excep- tion of receivers who specify the wait
option but do not wait because a message is available on that host for
receipt. Figure 6.11 is a diagram of the tasks that interact with the
Supporter task along with the reason for the communication.

TASK supporter

ENTRY gather_receipts_for (sender: IN kernel.xtnded uid;
msg_id: IN kernel.xtnded_uid;
timeout: IN POSITIVE;
call_uid: 1IN kernel.uid);

ENTRY wait_on_available_message (receiver: IN kernel.xtnded_uid;
receive_from_list: IN kernel.xtnded uid_list;
timecut: IN POSITIVE):

ENTRY wait_on_msg_copy (receiver: IN Kernel.xtnded_uid;
msg_id: IN kernel.xtnded_uid;
timeout: IN POSITIVE);

ENTRY wake _up_status (process_id: IN kernel.xtnded_uid;
response: IN MTM_type.msg_opn_return); END

supporter;
6.3.10 Waker Task

The supporter task does not directly cause a sender or receiver to be
"awakened". When the supporter detects the occurrence of an event to awaken a
particular process a waker task is scheduled that returns the result to the
Message Operations task of the sender or receiver which causes the respective
sender or receiver to be "awakened" (unblocked) with the results of the
original call. This is the end of the syichronous call for that process.

6-14

MESSAGE TYPE MANAGER DESIGN

6.3.11 Remote_Receive_Call and Remote_ Receive Response Tasks

They are part of the interface to the kernel, and as indi- cated by their
names, they are responsible for accepting incoming remote calls to the MTM and
the incoming responses to remote calls made by the MTM. The word "accepting"
in the previous sentence is used loosely because there are no entries into
these tasks, rather the tasks invoke procedures in the kernel {(get call and
get _resp) that return a call invoked on this MTM or a response to a call made
by the MTM, respectively. Figures 6-10 and 6-11 are diagrams of the calls
from the Message Type Manager to the kernel routines that interrace with the
network.

The call or response is unpacked (because it is passed as a bit string
from the kernel) and an entry call is made from the resgective

Remote Receive Call (or Response) task to the appropriate task of the MTM,
namely the task for which the call or response is intended.

TASK remote_receive_call IS

--This task makes entry calls into various other tasks, but
--it contains no ACCEPTs.

END remote_receive_call;
and,
TASK remote_receive_response IS

--This task makes entry calls into various other tasks, but
--contains no ACCEPTs.

END remote_receive_response;
6.3.12 Process_Message Queue Task

This task manages a set of message queues for processes that reside 2zn
this host. There is one message queue for each process that performs message
operations. The message queue (hereafter called pmq) is manipulated thrcugh
entry calls to insert and delete msg_ids. (These operations are invoked by
the send, receive and waker tasks as shown in Figure 6-12).

ENTRY delete_msg_id (msg_id: 1IN kernel.xtnded_uid;
receiver: IN kernel.xtnded_uid);

ENTRY insert_msg_id (msg_id: IN kernel.xtnded_uid;
sender: IN kernel.xtnded_uid;
receiver: IN kernel.xtnded_uid);

Additionally, there is a "read only" call that returns a msg_id that
meets the parameter specifications in the call.

-15

O

ENTRY check_message available (receiver: IN kernel.xtnded uid;
receive_from_list: IN MTM_type.xid_list;
which_msg_option: IN MTM_type.receive _option;
msg_id: OUT kernel.xtnded uid;
who_from: IN kernel.xtnded uid;
available: IN BOOLEAN);

The receive and waker tasks use this entry to get a msg_id for a message
that is available for a receiver. The message indicated by the msg_id will
(ultimately) be received by the receiver.

After recovery from a failure, the MTM Controller notifies this task
causing several actions.

ENTRY restart_after failure ();

A database that maintains the pmqs for processes on this host is opened.
Once message activity begins, pmqs are moved to memory and accessed. They are
moved into memory as they are needed. Maintaining a data base of pmgs is for
the integrity and the reliability of the message system. When a pmg in memory
is updated, its copy in the data base is updated as well, so that a failure
will not render any pmg inconsistent relative to the messages received and the
messages waiting to be received.

6.3.13 Message Object Task

This task performs manipulations of a message object, including creaticn
of the message and accessing parts of the object. These entries are called by
the send, receive, waker, and msg_status tasks and the MTM_Controller as is
shown in Figure 6-13. As can be shown from Figure 6-13, the Message Object
task manages the volatile message instances on a host, and modifies any
incoming message objects to reflect their new residency.

ENTRY create (msg_id: IN kernel.xtnded uid;
send_to 115t IN MTM_type.xid_list;
rellabillty class: IN MTM_type.rel classes;
number of copies: IN POSITIVE;
text: IN kernel.message;
message_instance: OUT MTM_type.object);

The task is passed the information that will compose a message object and
assignments are made to the fields of the message object and the object is
returned.

ENTRY get_msg_status (msg_id: IN kernel.xtnded uid;
number _of copies: OUT POSITIVE;
return_statuses OUT MTM_type.msg_opn_return list;
done: OUT BOOLEAN);

The message object 1is retrieved from storage if it 1is on this host, and
the number of copies and the return_statuses are assigned the return_statuses
that exist in the message object. Done r turns the boolean value true if the
operation completes successfully; otherwise, false is returned.

6-16

MESSAGE TYPE MANAGER DESICN

ENTRY get_instance (msg_id: IN kernel.xtnded_uid;
message_instance: OUT MTM_type.object;
done: OUT BOOLEAN);

Thnis entry gets a message object from memory through calls to the kernel.

ENTRY put_instance (msg_id: IN kernel.xtnded_uid;
message_instance: IN kernel.xtnded_uid;
medium: IN MTM type.storage
done: QUT BOOLEAN);

This entry causes a message object to be put into memory through calls to
the kernel.

ENTRY update_receipt (msg_id: IN kernel.xtnded_uid;
receiver: IN kernel.xtnded_uid);

This causes a message object with msg_id to be updated to reflect that
the indicated receiver has received the message. [f the message cocy Is
local, a change is made locally to reflect the status of the receiver. If the
message copy is remote, a call 1Is broadcast to remote MTM_controllers (fo tne
msg_received entry) which causes any existing copies to be updated.

This concludes the discussion of the user interface to the MTM, the tasks
of the MTM and the means by which incoming remote calls and responses are
received from the kernel. One point of importance, with regard t2 the
operations, 1is that the operations of the send, receive, and msg_status
processes are performed as transactions. Because of this, message cperaticns
have well- defined properties and the consistency of message cbjects is
maintained. To the user, the operations will be perceived as having a
particular effect if they succeed and no effect if they do not succeed.

- w W W W W m W W W W W W W W W W WP W G ®m e e W @ B W W W e @ W e W W WS S w T -

//”’/a OPERIATION
REQUEST
R FESSWEE TR ERANR NG ER[T
OPERATILON
| RESULTS
|MTH CONTROLLER]
OPERATIONS ¢/<I\\‘
RESULTS
AFTER| WAIT (ﬂ~—-_____/kg —
SEND RECEIVE MSG_STATUS
= - rzj -
WAKER
SUPPORTER PROCESS MESSAGE
MESSAGE ' 0BJIECT
QUEUE

Figure 6-1 Components ot Message Management

6-18

“sen0 1 1 RECELVE | | MSG_STATUS
PRUCEDURE PROCEDURE PROCEDURE
"""" A A
(1) (4) (1) (4) (1) (4)
v v
| MESSAGE OPERATIONS TASK |
A | A
(2) (3) (2) (3) (2) (3)
M £E § S A G E T Y P Et
M A NAGER CONTROLLER

(1) REQUEST OPERATION
(2) ROUTE REQUEST

(3)., (4) RETURN RESULT

Figure (-2 The Sequence of Events Between the User's
MTM_Interface and the MTM_Controller

6-19

_ReCecIVE

_RESPONS <=«
| <=--- RECEIVE
<--(Hs6_sTATuS)

. CONTAINED WITHIN THE MTM_INTERFACE

TO THE USER

Figure 6-3
Entry Call/Task Relationships for the Message.Operations Task

6-20

MESSAGE _
OQPERATIONS

REMQOTE

_RECEIVE
_RESPONSE

- .-

¢ -=>

FALLURE
_HOTICE

REisReE_CoRT
_FOR_RECEIVER

MSG_STATUS
_BRUOADCAST
_REQUEST

-

<--¢

REMOTE
_RECEIVE

Figure 6.5 Entry Call/Task Relationships for the MTM-Controller

h=22

“

Figure g-4

- - B W e w e e - -

i 9
3 P
S £
S R
A A
G T
3 1
Q0
N
S
A
C
K
S
R C
0 0
U P
T I
I E
N S
G
y Q
E U
S E
S U
A E
6
£

SEND_MSE
RECEIVE_MSG
MSG6_STATUS

MSG6_RECEIVED
SEND_COPY_ACK

MESSAGE_COPY_
FOR_RECEIVER
SEND_COPY
REQUEST_COPY

- W e e e ® e e oW e.w - -

SEND
‘RECEIVE
MSE_STATUS

MESSAGE_OBJECT
WAIT_QUEUE

PROCESS_MESSAGE _
CUEUE

@ A S W W W W W @ W B W G W W G @ W D D W W W W W W WD G B G W WGP TS e WP

6-21

MTM_Controller Entries and the Tasks Effected by the Entry

MESSAGE _
--==>
OPERATIONS

REMOTE

_RECEIVE
_RESPONSE

- -)

FALLURE
_NOTICE

MESSAGE_CUPY
_FOR_RECEIVER

MSG_STATUS
_BRUOADCAST
_REQUEST

oo

€ = = ¢

' REMOTE
<--t---{_RECEIVE

C==% =

C==«
= @ =« = o

— e —— — — — -— -—— w— — —— — — —— — — — T ——— ——

Figure §-5 Entry Call/Task Relationships for the MTM.Controller

6-22

- e P B @ W W W M W W B T W G W W W W W s W W W AP W W W W e W W W W o W W S w o= =

MESSAGE 08JECT
OPERATIONS

- S S W @ W w e W W s ® e oweo-

MSG_STATUS

RECEIVE

SEND

SUPPORTER

WAKER

MESSAGE_OBJECT

PROCESS_MESSAGE
_QUEUE

- W e e e W™ e W e e e e -

REMOTE_RECEIVE
_CALL |
REMUOTE_RECEIVE
_RESPUNSE

MTH_
CUNTROLLER

W G A W W W @ W B WP @ W W W W W W WD W L W G E G P W D W E W S o W W W N W e o W =

Figure 6-6 Tasks of the Message Type Manager

6-23

HTH_CO?TROLLER MTH_CONTRULLER

Q OF
SENDER SENDER RECELVER RECEIVER
SEND|MSG
--------- >
SEND|{COPY
.............. >

SEND COPY|ACK

Figure 6-7 Directed Receive

6-24

MTH_C%?TROLLER HTH_CU?TROLLER
0
SENDER SENUER RECELVER RECEIVER
SEND|MSG
-------- >
SEND[NOTICE
.............. >
RECELVE | MSG
@ @ @ v o= === ---
REQUEST |COPY
€ = @ o o= ve- e -
MSG COPY FORJRECEIVER
.............. >
MSG|RECEILVED
= v @ = @ @ ¢ = = w e

Figure 6-8 Receive on Demand

6-25

MTH_
-->
CUNTROLLER
*-=-=>

@) -

- -

- - e W W W w @ oW w> W >

MARK_SENDER_
COPY_COUNT

- o W w @ B > @ e e W w e -

WALT_UN

_AVAILABLE
_MESSAGE

WAIT_ON
_MESSAGE
COPY

WAKE_UP
_STATUS

—-—— o iy a—

SEND WITH
AALT OPTION

FOR A WAILITING
SENDER

RECELVE WITH
WALT OPTION

DITTO, AND
MESSAGE CoOPY
ON ANOTHER

DENOTES WHETHER
OR NOT THE
PROCESS IS

AWAKENED

PERFORMS OETECTION QF EVENTS

. CAUSES WAKER TO UN_BLOCK WALTING USER

PROCESSES

Figure 6.9

6-26

Entry Call/Task Relationships for the Supporter Task

MTH_
CONTROLLER

SEND_COP
SEND
SENDL
NOTICE
SEINOD_
colpy
WAKER
REQUIEST
corly
REQUEST
Msle colpY
RECEJIVED
\' 4 \'4 \ 4 4 N 4 % v
| KERNEL.HAKE_CALL |

. CALLS TO REMOTE HOSTS ARE HADE VIA
KERNEL.MAKE_CALL

. THERE MAY UR HMAY NOT HBE A RESPONSE TU A Calt

Figure 6-10 Calls From the Message T/pe Manager to Kernel.Make_l:>.

6-27

FH_ @se_smrus}

CUNTROLLER
MESISAGE ’ MSG6_S{TATUS
copry RETURH
<SEND) (WAKER)
SEIND S EN[D
RE/TURN RETURN
RE[CEIVYE
RE|JTURN
\'4 v v \' 4 v

. RESPONSES BY THESE TASKS ARE SENT TO
REMOTE HOSTS VIA KERNEL.MAKE_RESP

Figure 6-11 Calls From the Message Type Manager to Kernel.Make_Resp

f-28

MTH

. MAINTAINS MSG_ID QUEUES.

P et i

CHECK_MESSAGE
_AVAILABLE

- - W B e W e = w m wm W A . =

— —— — ey = - -—— — v —

ONE

PROCESS ON THE HOST

— — T S e — — — ———— —

DETERAINES LF
MESSAGE
AVAILAGLE

| REMIVES MSG_
ID FROH

QUEUE OF
AVAILABLE
[INSERTS H3G6_
ID INTU QUEUE

OF AVALILABLE

- s W W W W aw 4 W W > & = o -

FOR EACH

THE MSG_ID IS IW A QUEUE WHEN THAT
MESSAGE IS AVAILABLE FOR A PROCESS

Figure 6-12

Entry Call/Task Relationships for the

Process-Message.Queue Task

6-29

|

-------- GaaE T @D
GET_ <---
¢ == ===1~
*=-> INSTANCE <=
PUT_ l
- ATH_
RECEIVE -t- INSTANCE <-1-1- .-'CC)N‘TR(]
.............. LL‘J
LR 4
*+->| UPDATE_ C--=-e

— - o — i ——— — — e - — ——— a— —

MANAGES INSTANCES OF VOLATILE MESSAGES
ON A HOST

. MODIFIES A MESSAGE O0BJECT 4HEN IT
1S RECEIVED

Figure 6-13 Entry Call/Task Relationships for the
Message_Object Task

=30

K AN KA A A HAF LS

MISSION
of

Rome Air Development Center

RADC plans und executes research, development, test und selected
acquisition programs in support of Command, Control, Communications
and Intelligence (1) activities. Technical and engineering suppor within
areas of competence is provided to ESD Program Offices (POs) and other
ESD elements to perform effective ucquisition of oldi svstems. The areas
of technical competence include communications, command and control,
battle management, information processing, surveillunce sensors,
intelligence data collection and handling, solid state sciences,
electromagnetics, and propagation, and electronic, maintainability, and
compatibility.

K X L5 9SS 9SS I SF 9SS R AF K AF LI A AF I (S D
CAF X 1S 2 LS I SAF 9SS IS 9SS HAS o S 2 5 R SF 2 SF 9

!

e
a

I O O K KO D O F N F K

