
A1"D-A206 040

RADC-TR-88-1 68, Vol 11 (of two)
Final Technical Report
August 1988

A DESIGNERS' GUIDE TO RELIABLE
DISTRIBUTED SYSTEMS An Example.
Design

Honeywell

Arland R. Tripathi, Jonathan Silverman, William T. Wood, Elaine N. Frankowski,7
Pong-Sheng Wang, Shiva Azadegan, Shiv Seth, Rita WU, Helmut K. Berg

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. 1JTI C-
~4APR 18ET

ROME AIR DEVELOPMENT CENTER
Air Force Systems Command

Griff iss Air Force Base, NY 13441 -5700

~ 94 03 0 94

This report has been reviewed by the RADC Public Affairs Division (PA)
and is releasable to the National Technical Information Service (NTIS). At
NTIS it will be releasable to the general public, including foreign nations.

RADC-TR-88-168, Vol II (of two) has been reviewed and is approved for
publication.

/7
APPROVED: /f

THOMAS F. LAWRENCE
Project Engineer

APPROVED:

RAYMOND P. URTZ, JR.
Technical Director
Directorate of Command and Control

FOR THE COMANDER:

JOHN A. RITZ

Directorate of Plans & Programs

If your address has changed or if you wish to be removed from the RADC mailing

list, or if the addressee is no longer employed by your organization, please
notify RADC (COTD) Griffiss AFB NY 13441-5700. This will assist us in main-
taining a current mailing list. "

Do not return copies of this report unless contractual obligations or notice
on a specific document requires that it be returned.

UNCLASS IFIED
SECURITY CLASSiFiCATION OF T IS PAGE

Form AppIrovedl

REPORT DOCUMENTATION PAGE oMB o. 0704-0o88

'a REPORT SECURITY CLASSiFiCATION b. RESTRICTIVE MARKIW GS

LNCLASSIFIED N/A

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT
N/A Approved for public release; distribution

2b. DECLASSIFICATION / DOWNGRADING SCHEDULE unlimited.

4. PERFORMING ORGANIZATiON REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

N/A RADC-TR-88-168, Vol II (of two)

6a NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION(If applicable)

Honeywell i Rome Air Development Center (COTD)

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State. and ZIP Code)

Computer Science Center
10701 Lyndale Ave (South) Griffiss AFB NY 13441-5700
Bloomington MN 55420

8a NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION N','MBER
ORGANIZATION (If applicable) F30602-82-C-0154

Rome Air Development Center COTD
St. ADDRESS (City, State, and ZIP Code) 70. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT
Griffiss AFB NY 13441-5700 ELEMENT NO NO. NO ACCESSION NO

63728F 2530 01 17
11, TITLE (Include SocurVv Classfication)

A DESIGNERS' GUIDE TO RELIABLE DISTRIBUTED SYSTEMS An Example Design

12, PERSONAL AUTHOR(S) Anand R. Tripathi, Jonathan Silverman, William T. Wood,

Elaine N. Frankowski. Pona-Sheng Wang, Shiva Azade an, Shiv Seth, Rita Wu. Helmut K. Berg
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT

Final I FROM ;p ?TO A _L August 1988 300
16. SUPPLEMENTARY NOTATION Subcontractors: Information Research Associates - Authors: James C.
Browne, James Dutton, Vincent Fernandes, Annette Palmer, Raj Kumar Velpuri
The University of Texas at AAuthors! Donald I. Good- Michael K. Smith (See Re s
17. COSATI CODES Ia. SUBJECT TERMS (Continue on reverse if necessalry and identify by block number)

FIELD GROUP SUB-GROUP Distributed Systems Reliable Systems
E 12 07 Performance Evaluation Reliability Evaluation

,Recovery Mechanisms Atomic Action (See Reveirse)
1I9. ABSTRACT (Continue on revere if necessary and identify by block number)"

-This report describes an effort to develop a system designers guidebook for designing
reliable distributed command and control systems. The guidebook contains a synthesis of
reliable system design principles and methods to evaluate distributed system designs for
performance, reliability and functional correctness. The approach to developing the
system designers guidebook in this effort is example driver. We develop a detailed
design of a reliable distributed operating system and evaluate its performance.

//

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION
(UNCLASSIFIED/UNLIMITED " SAME AS RPT E3 OTIC USERS UNCLASSIFIED

22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (include Area Code) 22c OFFICE SYMBOL
Thomas F. Lawrence (315) 330-2158 RADC (COTD)

00 Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE
UNCLASSIFIED

UNCLASSIFIED

Block 16 SUPPLEMENTARY NOTATION (Continued).

Richard M. Cohen, Lawrence Smith, Lawrence Akers, William Bevier, Miren Carranza,
Ann Siebert

Block 18 SUBJECT TERMS (Continued).

Fault-Tolerant Systems Volidation

Verification Replication
Commit Protocol Design Methods
Object-Oriented Systems Formal Specification

A2~CO'For

- i. *.-E

\ itj Codes---A'.a ' .qd/or

UDistASFE

UNCLASSIFIED

VOLUME 2

TABLE OF CONTENTS

Page

ZEUS ARCHITECTURE AND FUNCTIONAL DEFINITION 1-1
1.1 INTRODUCTIONI..... 1-1
1.2 ZEUS OVERVIEW 1-1
1.3 FUNCTIONAL DEFINITION OF ZEUS 1-2

1.3.1 Zeus Kernel -2
1.3.1.1 Kernel Functions 1-3

1.3.1.1.1 The Remote Procedure Call. 1......... -3
1.3.1.1.2 Object Storage Management 1-4
1.3.1.1.3 Unique Identifier Generation 1-4

1.3.1.2 Structure of Zeus Kernel 1-5
1.3.1.2.1 Zeus Kernel Resource Management 1-5
1.3.1.2.2 Operation Switch 1-5
1.3.1.2.3 Unique Identifier Generation 1-6
1.3.1.2.4 Network Handler 1-6

1.3.2 User Visible Functions 1-7
1.3.2.1 Type-Type Manager 1-7

1.3.2.1.1 Organization of Type/Type Manager 1-7
1.3.2.2 Process/Transaction Manager 1-8

1.3.2.2.1 Process Manager Functions 1-9
1.3.2.3 Principal and Authentication Manager 1-14

1.3.2.3.1 User Visible Authentication Functions . . 1-15
1.3.2.4 Symbolic Name Manager 1-18

1.3.2.4.1 Symbolic Name Contexts 1-19
1.3.2.4.2 User's View of the SNM 1-20
1.3.2.4.3 SNM Functions 1-20

1.3.2.5 Program Type Manager 1-21
1.3.2.5.1 Program Object Functions 1-21

1.3.2.6 Message Type Manager 1-23
1.3.2.6.1 Reliability of Message Objects 1-23
1.3.2.6.2 Scope of Inter-process Communication . . . 1-24
1.3.2.6.3 Message Operations from the User's 1-24
Viewpoint

1.3.2.6.4 SendMsg 1-24
1.3.2.6.5 Receive Msg 1-25
1.3.2.6.6 Msg Status 1-26

1.4 OVERVIEW OF THE DETAILED DESIGNS 1-27
1.4.1 Zeus System Design 1-27
1.4.2 Kernel Design1-27

1.4.2.1 UID Generation Protocol 1-28
1.3.2.6.6.1 The Time Constant t 1-30
1.3.2.6.6.2 Introducing a New Largestepper to the 1-31
Network
1.4.2.1.1 Reliability Issues in UID Generation . . .1-31

1.4.3 Process Manager Design 1-32
1.4.3.1 Command Processor1-34
1.4.3.2 Process Manager Database: 1-35

1.4.4 Type Manager Design 1-36
1.4.5 Symbolic Name Manager Design 1-37
1.4.6 Message type manager Design 1-38

KERNEL DESIGN . . * 2-1
2.1 INTRODUCTION 2-1

2.1.1 Kernel Interface 2-1
2.1.2 The Kernel Structure 2-3

2.2 THE REMOTE PROCEDURE CALL STRUCTURE 2-4
2.2.1 The Components of the RPC Function 2-5
2.2.2 Comparison to Another Effort 2-6
2.2.3 Externally Visible RPC Procedure Calls of the Kernel 2-6
2.2.4 The Utility Structures Within the Kernel 2-9

2.2.4.1 Mapping to Call Handlers 2-9
2.2.4.2 The Message Storage Manager 2-10

2.2.5 The RPC Protocol 2-11
2.2.5.1 State Information Required to Support the RPC 2-12
Protocol

2.2.5.2 Packages to Support Call State Information 2-13
Management.......

2.2.6 The Call Handler 2-16
2.2.7 The Kernel Functions for the RPC. 2-21
2.2.8 Tasks Within a Type Manager to Receive Calls and 2-25
Responses

2.2.9 The Network Handler 2-25
2.2.9.1 The Network Handler Architecture....... 2-26
2.2.9.2 Data Handled by the Network Handler. 2-26
2.2.9.3 Data Handled by the Network Handler 2-27

2.2.10 The Net Tranceiver Task 2-28
2.2.10.1 The Network Receive and Send Tasks 2-32

2.2.10.1.1 The Send Task 2-33
2.2.10.1.2 The Receive Task 2-35

2.3 OBJECT STORAGE AND RETRIEVAL 2-38
2.3.1 The Kernel Interface for Object Management 2-38
2.3.2 The Architecture of Storage 2-39

2.3.2.1 The Simple Directory 2-40
2.3.2.1.1 The Request Handlers 2-40
2.3.2.1.2 The Mapping Manager 2-40
2.3.2.1.3 The Directory Task 2-41

2.3.2.2 The Stable Directory 2-41
2.3.2.3 Consistency of Objects 2-41

2.3.3 The Support Packages 2-41
2.3.3.1 The typemgr map Package 2-41
2.3.3.2 The free storage Package 2-42

2.3.4 The stable free Package 2-43
2.3.5 The Request Handler Tasks -43

2.3.5.1 The Simple Directory Request Handlers 2-43
2.3.5.1.1 The Function stp_put 2-45

2.3.5.2 The Stable Directory Request Handlers 2-47
2.3.5.2.1 The Stable Put Operation 2-48

2.3.6 The Directory Package 2-50

ii

2.3.6.1 Some Basic Types 2-50
2.3.6.2 The package specification 2-51

2.3.7 The Directory Task 2-51
2.3.7.1 The Interface of the Simple Directory Task . . . 2-52
2.3.7.2 The Simple Directory Task Body 2-53
2.3.7.3 The Stable Directory Task Interface 2-55

2.3.8 The Storage Controllers 2-56
2.3.9 Kernel Procedures 2-57

2.4 SEQUENCE NUMBER GENERATION 2-57
2.4.1 Identifying Objects in ZEUS 2-57

2.4.1.1 The Unique Identifier (uid). ". 2-58
2.4.1.2 The Extended Unique Identifier (xtnded _uid) . 2-58
2.4.1.3 The Visible Types 2-59

2.4.2 The Kernel Procedures 2-59
2.4.3 The Architecture 2-59

2.4.3.1 The get uid Function 2-60
2.4.3.2 The uid monitor Task 2-60

PROCESS MANAGER DESIGN 3-1
3.1 MACHINES DICTIONARY 3-1

3..11 Process Manager 3-1
3.1.2 Router 3-2
3.1.3 Process 3-2
3.1.4 Timer 3-3
3.1.5 Delete Processor 3-3
3.1.6 Create Processor3-4
3.1.7 PM Database Manager 3-5
3.1.8 Port Multiplexer 3-5
3.1.9 End Transaction Processor 3-5
3.1.10 Abort Processor 3-6
3.1.11 Commit Processor 3-7
3.1.12 Rollback Processor 3-8
3.1.13 ERP Processor 3-8
3.1.14 DRP Processor 3-9

3.2 TYPES DICTIONARY 3-10
3.2.1 UID.Type Definition 3-10
3.2.2 Type definitions for Process Manager's database . . . 3-11
3.2.3 PM To Process Interface 3-13
3.2.4 PM Database Interface Types 3-16
3.2.5 PM to SS Interface To OS Interface 3-16
3.2.6 PM TO UIDgen Interface 3-17
3.2.7 PM TO MM Interface 3-17
3.2.8 PM TO OS Interface 3-17
3.2.9 PM TO Router Interface 3-18
3.2.10 PM TO Timer Interface 3-18
3.2.11 Router TO Process Interface 3-18
3.2.12 Command Processor Interface Types 3-18
3.2.13 Definition of abstract data type for List 3-19
manipulation

3.2.14 Definition of abstract data type for Small Mailbox. 3-20
3.2.15 Definition of abstract data type for Large-Mailbox . 3-21

iii

3.2.16 Definition of abstract data type for PortMsg . . . 3-23
3.2.17 Definition of abstract data type for Outport 3-23
3.2.18 Definition of abstract data type for Inport 3-24
3.2.19 Definition of abstract data type for Port 3-24

3.3 PROCEDURES DICTIONARY 3-25
3.3.1 Procedure GetModified Objects. 3-25
3.3.2 Procedure GetChildren 3-25
3.3.3 Procedure Delete From PMDB 3-26
3.3.4 Procedure Add To PMDB 3-26
3.3.5 Procedure Get LRP 3-27
3.3.6 Discard RP 3-27
3.3.7 Procedure Request New Process 3-28
3.3.8 Procedure RequestNewCP 3-28
3.3.9 Procedure Create Process Record 3-29
3.3.10 Procedure Create Pc Rec 3-29
3.3.11 Procedure Create PCB. 3-29
3.3.12 Procedure Set Timer 3-29
3.3.13 Procedure Broadcast 3-30
3.3.14 Procedure Create RP Data Record. 3-30
3.3.15 Procedure Assign Label 3-30
3.3.16 Procedure Get Memory_Addr 3-31
3.3.17 Procedure Remove Proc Machine 3-31
3.3.18 Procedure GetAll Modified Objects 3-31
3.3.19 Procedure Get PM UID 3-31
3.3.20 Procedure Terminate Command Processor 3-32
3.3.21 Procedure Check Children Status 3-32
3.3.22 Procedure All Complete 3-32
3.3.23 Procedure Write To SS 3-33
3.3.24 Procedure Receive Acks 3-33
3.3.25 Procedure Get Parent Child Info 3-33
3.3.26 GetAll Descedent........... 3-34
3.3.27 Procedure Update TransactionStatus 3-34
3.3.28 Procedure Clear Database 3-34
3.3.29 Procedure Signal 3-34

3.4 REALIZATION DICTIONARY 3-36
3.4.1 Router Machine 3-36
3.4.2 Process 3-36
3.4.3 Timer 3-37
3.4.4 Machine Delete Processor 3-37

3.4.4.1 Procedure Delete Remote Process 3-37
3.4.4.2 Procedure Delete Local Process 3-38

3.4.5 Machine Create Processor................. . 3-41
3.4.5.1 Procedure Create Remote Process 3-41
3.4.5.2 Procedure Create Local Process 3-42

3.4.6 Machine PM Database Manager 3-45
3.4.7 Machine Port Multiplexer 3-45
3.4.8 Machine End Trans Processor 3-46

3.4.8.1 Procedure Commit 3-47
3.4.9 Machine Abort Processor 3-53

3.4.9.1 Procedure Abort 3-53
3.4.9.2 Procedure Remote Abort 3-55

3.4.10 Machine Commit Processor 3-56
3.4.11 Procedure Commit Protocol Terminator 3-56
3.4.12 Machine Rollback-Processor 3-59

iv

3.4.12.1 Procedure Rollback 3-59
3.4.13 Machine ERP Processor 3-62

3.4.13.1 Procedure Establish RP 3-62
3.4.14 Machine DRP Processor 3-64

3.4.14.1 Discard RP 3-65
3.5 SYSTEM Process Manager 3-66

3.5.1 Procedure Extend Router Mbx 3-67
3.5.2 Delete RouterMbx 3-67
3.5.3 Procedure Invoke 3-68
3.5.4 Procedure Extend Mbx 3-68
3.5.5 Procedure Create New Machine 3-69
3.5.6 Procedure Create-CommandProcessor 3-71
3.5.7 Procedure CreateAppl Server 3-72
3.5.8 Procedure CreateRemote_Appl Server 3-74
3.5.9 Procedure DestroyCommandProcessor 3-76
3.5.10 CONTROLLER 3-77

TYPE MANAGER DESIGN 4-1
4.1 MACHINE DICTIONARY 4-1
4.2 TYPES DICTIONARY 4-2

4.2.1 Definition of abstract data type for Complete TCL . . 4-3
4.2.2 Definition of abstract data type for Queue 4-4
4.2.3 Definition of abstract data type for Set-of_Objects 4-4

4.3 PROCEDURE DICTIONARY 4-10
4.2.3.1 PROCEDURE Invoke Proc 4-10

4.2.3.2 PROCEDURE Lock Grant 4-10
4.2.3.3 PROCEDURE PrepareProc 4-13
4.2.3.4 PROCEDURE Completed Proc. 4-15
4.2.3.5 PROCEDURE Time Out Proc 4-17
4.2.3.6 PROCEDURE Commit Proc 4-18
4.2.3.7 PROCEDURE Rollback Proc 4-20
4.2.3.8 PROCEDURE Abort Proc 4-22
4.2.3.9 PROCEDURE Generate Complete_TCL 4-24
4.2.3.10 PROCEDURE Queue Reaquest 4-24

4.4 REALIZATION DICTIONARY 4-25
4.4.1 SYSTEM Type-Manager 4-25
4.4.2 CONTROLLER 4-26

SYMBOLIC NAME MANAGER DESIGN 5-1
5.1 SNTM Interface Packge Specification 5-1
5.2 SNTM-Interface Package Body 5-2
5.3 STNM Specification 5-4
5.4 Controller Task Specification 5-5
5.5 SNTM Package Body 5-7

MESSAGE TYPE MANAGER DESIGN 6-1
6.1 INTRODUCTION 6-i

V

6.2 CONSISTENCY AND RELIABILITY MECHANISMS FOR MESSAGES . . . 6-2
6.3 HIGH-LEVEL DESCRIPTION OF MTM MODULES 6-5

6.3.1 Send Msg Procedure 6-6
6.3.2 Receive Msg Procedure 6-7
6.3.3 MsgStatus Procedure 6-8
6.3.4 Message Operations Task 6-8
6.3.5 MTM Controller Task 6-10
6.3.6 Send Task 6-12
6.3.7 Receive Task 6-12
6.3.8 MsgStatus Task6-13
6.3.9 Supporter Task 6-14
6.3.10 Waker Task 6-14
6.3.11 Remote Receive Call and Remote ReceiveResponse 6-15
Tasks

6.3.12 Process Message Queue Task 6-15
6.3.13 Message_-Object Task o.................... 6-16

vi

ZEUS ARCHITECTURE AND FUNCTIONAL DEFINITION

CHAPTER 1

ZEUS ARCHITECTURE AND FUNCTIONAL DEFINITION

1.1 INTRODUCTION

Zeus is an object oriented distributed operating system designed to study
integration of recovery mechanisms into the designs of distributed command and
control systems. The primary goal of the Zeus design is to define reliable
object management functions for distributed command and control systems and to
evaluate the performance and the correctness of the recovery mechanisms for
these functions. Therefore, no implemenation of this design currently exists.
The user provided functions support definition of object types, creation of
objects, and updating of distributed objects using atomic transactions. the
goal of this design is to study the performance characteristics of this design
using simulation models and to prove the correctness of the recovery
mechanisms using formal methods based on Gypsy language, events and state
transition based models , and simulation models. To achieve these goals we
have refined the Zeus design to a significantly detailed level. To date we
have explored this design only from the viewpoint of these goals. This
chapter presents an overview and gives the functional definition of Zeus.

1.2 ZEUS OVERVIEW

Zeus is an example of an object oriented distributed system.
Conceptually, therefore, Zeus is a collection of type managers each of which
ensures the integrity of some abstract data type. Each type manager is
distributed on a number of hosts in the system and the individual instances of
the abstract data type (or object instances) may be distributed. A
description of Zeus is, therefore, a description of the type managers in the
system and a definition of the underlying execution environment for the type
managers. The copy of a type manager at a given site enforces part of a
global integrity mechanism for that type. The goal of this project is to
evaluate integrity mechanisms. Thus, the design of Zeus must be a framework
onto which different integrity mechanisms can easily fit. This section
provides that framework.

Each type manager has an internal structure that is common to type
managers. This includes mechanisms for protection and integrity. There are
some types which are necessary to support a useroriented distributed
computing environment in the system. These types are specified in some detail
in section 1.2.2. They include symbolic names, principals and authentication,
programs, messages, processes and transactions, and unique identifiers.

1-I

As a distributed operating system Zeus is designed to be implemented cn a
variety of configurations. Logically Zeus oonsists of a number of type
managers. Each type manager contains one or more objects of its type. The
invocation of type functions against tnese objects is the means by which
computation is achieved in the system. Each type manager in Zeus executes on
a virtual machine that is defined by some hardware configuration and by a
software kernel. The software kernel allocates resources to the type
managers. These include the CPU, volatile and non-volatile storage, and
access to the interconnecticn network that supports remote invocations on type
managers.

1.3 FUNCTIONAL DEFINITION OF ZEUS

Zeus consists essentially of a collection of Type Managers (TMs):
typically, many different type managers coexist on a host node. The core of
the operating system consists of a set of type managers that support
capabilities for zefining new types and object instances in the system, for
authenticating of users, for creating naming environment for eacn user, and
for reliably managing processes and transactions. These system-defined type
managers reside at every node in the system.

The lowest level of operating system at each node is called the kernel:
the kernel virtualizes the resources at the host so that each type manager can
be viewed as having its own virtual processor. The kernel supports
interprocess communication, primary storage management, processor scheduling,
interfaces to secondary storage devices, and UID generation. As shown in
Figure 1-1, all type managers at a node execute over the abstract machine
interface provided by the kernel. The kernel multiplexes the processor
between the type managers; it also handles all interrupts due to storage
devices and the communication devices.

1.3.1 Zeus Kernel

The Zeus kernel provides low level services to the type managers of the
system. These services include interprocess communication, storage management
and unique identifier (UID) generation. The UID generation in turn depends on
the failure detection and recovery of hosts in the Zeus system. The kernel
assumes that it is executing on a host that belongs to a cluster. The cluster
is assumed to consist of a number of hosts connected by a CSMA/CD (Carrier
Sense Multiple Access/Collision Detection) network with the added property of
reliable broadcast.

Interprocess communication is achieved by the mechanism of remote
procedure call (RPC) which consists of four messages interchanged between
caller and callee. These are call, call acknowledge, response and response
acknowledge. For each call that is made from or to a type manager the status
of the call parameters and status must be stored. To do this each type
manager has a call handler to perform this function. The synchronous nature

1-2

ZEUS ARCHITECTURE AND FUNCTIONAL DEFINITION

of the RPC is achieved by the type managers who will first issue a call and
-hen on getting the response will inform the caller of it.

The storage functions of the kernel are performed at the object level.
Thus calls to the kernel can retrieve, store and delete objects. Further
stable storage operations can be executed by the kernel, where stable storage
is implemented using the Lampson scheme ;LAMP81].

UID generation is a function used by the RPC and by the type managers so
that calls and objects can be uniquely identified. This function must
continue despite failure and recovery of hosts. To achieve this he hosts
participate in a distributed computation to keep track of active hosts and to
let new or recovered hosts join in the UID generation function.

Since communication over the network occurs via packets there must be a
message packetization and re-assembly function underlying the RPC function.
Below this packet level protocol there is a driver which interfaces with the
network controller.

1.3.1.1 Kernel Functions

The kernel interface consists of three parts; remote procedure calls,
object storage management and unique identifier generation. Each part has a
set of procedures that can be invoked from the type managers or by user
processes.

1.3.1.1.1 The Remote Procedure Call

The Remote Procedure Call functions provide the call invoker with the
facilities to initiate a call, receive the response to a call and to inquire
about a call's status. Similarly, the recipient of a call has the facility to
receive a call, make a response to a call, and inquire about a response's
status. Functions also exist to cancel a call or retain a call. Each call is
identified uniquely in the system by a unique identifier. A request for a
call or a response will return to the caller any call or response that is
waiting for the caller; it is then the caller's responsibility to deliver the
call or response to the correct process. The kernel interface procedures are
specified below:

1. procedure make call (type of caller, source of call,
destination of call, call contents, call options, call

unique identifer, call status)
The call contents include the operation to be invoked
and the parameters of that operation.

2. procedure get_resp (type of caller, call unique
identifier, call s response)

The call unique identifer and response and output by the
kernel. Thus the tnvoker cannot make a request for a
particular response.

3. procedure c status (type of caller, call identifier,

1-3

call status)
The call status is returned and will tell the invoker of
the current status of the call, i.e., whether it has
been delivered, whether the response to the call has
been received or whether the call has failed.

4. procedure make resp (type of caller, source of call,
destination of call, call identifier, response
options, response status)

The make rest procedure has very similar parameters to
the make call procedure.

5. procedure get call (type of caller, call identifier,
call contents)

6. procedure v status (type of caller, call identifier,
response status)

7. procedure kill call (type of caller, call identifier,
call status)

8. procedure keepcall (type of caller, call identifier,
call status)

The kill call and keep call procedures are used to
update the local tables for a call.

1.3.1.1.2 Object Storage Management

The Object Storage Management functions permit type managers to store,
retrieve and delete objects. Objects can be stored on simple or stable
devices; thus the interface has two sets of calls.

The procedure definitions for the storage management functions are:

1. procedure getobj (type of object to be retrieved,
identifier of object to be retrieved, object contents,
operation status)

This is for simple object retrieval.
2. procedure putobj (type of object to be stored,

identifier of object to be stored, object contents,
operation status)

3. procedure delobj (type of object to be deleted,
identifier of object to be deleted, operation
status)

4. procedure stabl_get
This has identical parameters to getobj.

5. procedure stabl_put
This has identical parameters to putobj.

6. procedure stabl del
This has identical parameters to del-obj.

1.3.1.1.3 Unique Identifier Generation

This part of the interface permits an invoker to obtain a new unique
identifier, construct an extended unique identifier, obtain the host hint of
an object and change the host hint of the object.

The functions for UID generation are:

1-4

ZEUS ARCHITECTURE AND FUNCTIONAL DEFINITION

1. Function get_UID returns UID.
2. Fmnrtion build xt (host hint, object type UID,

object instance UID, object version UID)
returns extended UID

3. Function give_host hint (object extended UID)
returns object host hint

4. Function changehint (object extended UID, new host
hint) returns modified object extended UID.

1.3.1.2 Structure of Zeus Kernel

The Zeus kernal consists of five major components which are: Dispatcher.
Operation Switch, Network Handler, Storage Handler and Unique Identifier
Oeneration. Section 1.3.1.2.1 briefly explains the kernalResource Managemen.
which includes Dispatcher, Storage Handler and Kernal initiator. Section
1.3.1.2.2 presents the Operation Switch. Section 1.3.1.2.3 discusses the
Unique Identfier Generation and its two components: Small Stepper and Large
Stepper and Section 1.3.1.2.4 presents the Network Handler.

1.3.1.2.1 Zeus KernelResource Management

The task dispatcher schedules the different type managers and handles their
requests for resources. The storage handler manages both volatile and
non-volatile memory. Storage management in the kernel is minimal. Storage is
available in fixed sized blocks and the type managers request one or more of
these blocks at any time. A type manager is solely responsible for the data
he writes to the blocks of storage. The kernel keeps track of the ownership
of blocks of storage. The kernel initiator has two functions. The first
function is to restart a host when it recovers from a failure. The second is
to initiate a task. Both tasks require a certain amount of housekeeping.
Host recovery implies the setting up of tables for the dispatcher of the
kernel, using the log for the Type-Type Manager to create, delete, or modify
the type managers on the host, and obtaining a new incarnation number and the
Small Stepper sequence number. After the above actions are successfully
completed, the initiator can hand control to the task dispatcher.

1.3.1.2.2 Operation Switch

The processing of remote procedure calls is the major function of the
kernel. Each call is an operation invoked against an object that is held by
some type manager. The Zeus design stipulates that each object in the system
has a unique identifier. This unique identifier consists of a host hint to
speed up object location, a unique type identifier and a unique identifier for
a type instance. The composite identifier specified above is called the
extended UID of the object. The type and instance components are unique to
Zeus and are generated using a component of the kernel called the
smallstepper.

The two functions performed to support the RPC mechanism are the
generation of the unique numbers by the smallstepper, and the location of
objects by the operation switch.

1-5

The function of the Operation Switch is to forward an invocation request
to the appropriate type manager at the local or a remote node. These calls
may be from a type manager or from the network driver. Each call contains the
following information:

1. The extended UID of the object against which the call is invoked.
2. The extended UID of the process invoking the operation.
3. The extended UID of the principal on whose behalf the operation is

being invoked.
4. The operation and a set of parameters.

The Operation Switch uses the host hint field of the target object's
extended UID to determine whether the object is on the host or not. If it is,
it uses the type unique number of the object to direct the call to the proper
type manager. If the object is on another host, the Operation Switch
instructs the Network Handler to send the call to the other host.

1.3.1.2.3 Unique Identifier Generation

Unique identifiers generation in Zeus is an integral part of the system.
it is the only information that is generated in a distributed manner. The
type, instance and version fields of an extended UID are unique identifiers.

Each of these unique identifiers consists of three fields: the host
identifier of the host at which they were generated, the incarnation number.
and the sequence number within an incarnation.

In a system where no failures can occur, each host will generate a
monotonically increasing sequence of unique identifiers. If we permit
failures, but stipulate that every host in the system has stable storage, then
each host will store the next incarnation number and as soon as it starts it
will retrieve this number and write to stable storage the next incarnation
number, thus even though some part of a range of sequence numbers may not be
generated, the hosts will generate a monotonically increasing sequence of
unique numbers.

If we remove the assumption of stable storage on all hosts in the system,
then hosts in the system can be divided into two classes: those that possess
stable storage and those that do not. Each host in the system has a process
called the smallstepper which issues unique identifiers for a given
incarnation number. Each host with stable storage in addition to the
smallstepper has a process called the largestepper which together with the
other largesteppers in the system generates new incarnation numbers. The
algorithm used to do this is specified in section 1.4.2.1.

1.3.1.2.4 Network Handler

This component provides a simple datagram level of transport mechanism
between different kernels. It interfaces with the Operation Switch. The
invocation requests for -emote nodes are handed over by the Operation Switch
to the Network Handler, wi-ich has the responsibility for delivering it to the
Operation Switch at the destination host. Similarly the response messages are
returned from the server to the invoker by the network handler via the
Operation Switch.

1-6

ZEUS ARCHITECTURE AND FUNCTIONAL DEFINITION

1.3.2 User Visible Functions

As mentioned previously, Zeus is a set of type managers whose members may
potentially change dynamically as type managers are created, deleted, and
modified. There is, however, a subset of type managers called the System type
manager which perform the essential services provided by the kernel of a
conventional operating system. In this section, the type managers for these
system types are defined. The following are the System type managers which
exist at each node in the system.

(1) Type-type manager
(2) Process/Transaction Manager
(3) Principal and Authentication Manager
(4) Symbolic Name Manager
(5) Program Manager
(6) Message Manager

The functions provided by these type managers along with their structures are
described below. Each of these type managers is considered as an object of
distributed type; an instance of each of these type managers resides at every
node. The distributed type managers for a given type function cooperatively
to provide the abstraction of a single system-wide type manager.

1.3.2.1 Type-Type Manager

The definitions of new type managers are introduced in the system by
using the mechanisms supported by a system-wide object called the Type-type
manager; thus, the Type-Type manager implements functions to create, alter,
delete and replicate Type Managers. The definition of the Type-Type object
given here is an adaptation and extension of the Type-Type concepts
originating in the HYDRA [WULF811 operating system. The facilities provided
by the Type-type manager include an explicit command on where to locate copies
of a type manager.

1.3.2.1.1 Organization of Type/Type Manager

The basic operations of create, modify and delete are summarized below:
1. Create-type Creates a new type manager on a set of

hosts.
2. Install-type Makes a copy of an existing type manager

on a set of hosts.

Create-Type

The Create-Type operation creates a new type definition and installs it
on a set of hosts. In order to create a type, the creator of the type must
supply a set of extended UIDs for program objects. These are the data
structure and operation specifications of the new type. In addition, the user

1-7

may supply extended UIDs of programs that will implement consistency control,
concurrency control and other components of the infrastructure of the type
manager.

The Create-Type call has the following structure:
create-type (numprog : in integer; programs : in template;

numhosts : in integer; hostnames : in hostspec;
typUID : out extUID; status : out result);

where
numprog - number of component programs the user

has supplied.
programs - an array of extended UIDs of the

programs. This could be a more
sophisticated structure, like a
template with slots for special
functions.

numhosts - number of hosts on which the type
manager must be installed.

hostnames - the names of the hosts on which the
new type manager must be installed.

typUID - is the UID of the new type.
status - the result of the call.

Install-Type

The install operation is the initiation of a new type manager on one or
more hosts in the system, therefore, its invocation should logically follow
the create-type operation. The Type/Type manager copy who processes the call
will obtain a data base record of the type and then send it to each of the
hosts specified. Those hosts will install the type manager provided they do
not have it. The call to install-type is

install-type (typeUID : in extendedUID; numhosts : in integer;
hostnames : in hostspec; status : out result);

where
typeUID - UID of the type
numhosts - count of hosts on which the new type

manager is installed

hostnames - the names of the hosts
status - the result of the call

1.3.2.2 Process/Transaction Manager

Processes and transactions are active objects in the system through which
a user carries out operations in the system. Transactions are atomic
processes, i.e. they have an "all or nothing" property. The transaction
facility with its atomic property provides a powerful mechanism for reliable
operations. A transaction either commits or aborts on termination, and if it
aborts then no trace of its execution is left. On the commitment of a
transaction, all updates made by it are permanent.

1-8

ZEUS ARCHITECTURE AND FUNCTIONAL DEFINITION

We require that a process must invoke a transaction in order to modify
permanent shared objects in the system. The changes to an object are recorded
as new versions of the object. New versions of the object are committed to
becoming permanent at the end of a successful completion of the commit
protocol among the invoked transaction, the invoking process, and the type
managers of the modified objects. Uncommitted versions are discarded on
explicit abort commands issued by the transaction process or on timeout due to
inactivity.

Processes and transactions can establish recovery points by checkpointing.
Such points are used for the purpose of rollback and restart of a process or
transaction. Checkpointing is the selective saving of versions of process or
transaction objects. Note that with the above scheme for creckpointing, only
the state of the process (or transaction) object is saved; the states of
objects modified by that process are not saved in the oheckpoint. This
approach may create problems for error recovery since not all state changes of
the process are recorded with the checkpoint. However, one must remember that
all updates made within a transaction to permanent objects via their type
managers are saved on the stable storage as uncommitted versions.

The Process/Transaction Manager also supports nesting of transactions;
such nested transactions can execute concurrently with the parent
transactions. The nested transaction facility provides the users mechanisms
to introduce concurrency within a transaction. The commitment of a nested
transaction is dependent on the commitment of the parent transaction.

1.3.2.2.1 Process Manager Functions

This section describes those functions of the Process/Transaction Manager
which are designed from the point of view of recovery. This section is
divided into two parts. The first part (numbers 1-7) introduces the allowable
operations from this subset of functions on process type objects and the
second part (numbers 8-12) introduces those on transaction type objects.

1. Create-Process (ProgramUID, [list of Data UID, host ID,
ExpectedTime]): Returns-Process_UID

The Create Process operation requires at least a program UID. It creates a
process, assigns it a UID of process_UID type and starts running the process.
The process will be aborted if it does not terminate within the period of time
specified by the ExpectedTime Parameter. If this parameter is not given,
then unlimited time is assigned to the process. The Receivemsg operation
(described in communication management) can be invoked to check whether a DONE
message, which indicates the termination of a process or transaction, has been
received or not. The purpose of this operation is to wait for the DONE
message in the block wait state. Then the status of the process can be
acquired by initiating the ProcessStatus function (discussed later).

Parameter Description:
Program UID: The UID of the object which contains the program.

1-9

List of Data UID: None, one or more UID(s) of the object(s) which
contains the required Data.

Host ID: The ID of the host where the new created process is to reside.

This parameter is not required if the created process is to be on

the same host as its parent process.

ExpectedTime: The maximum period of time that is expected for the
created process to terminate. Unlimited amount of time is assigned

to the process if no value is given for this parameter.

Value Returned:
Process UID --> Indicates the success of the operation.

NULLUID --> Indicates the failure of the operation.

2. Delete-Process ([ProcessUID ITransactionUIDD):Returns (0,1)

The Delete Process operation deletes the specified process or transaction
object regardless of its current status.

Parameter Description:
Frocess UID ITransaction UID: The UID of a process or transaction,

requested to be deleted. This parameter is not required if a
process or transaction wants to delete itself.

Value Returned:
1-->Indicates the success of the operation.

0-->Indicates the failure of the operation.

3. Process Status (Process UID ITransaction UID):
Returns-(Mon existent, Running, Aborted,

TimeOut, Completed, Suspended, Crashed)

The Process Status operation returns the current state of the process
having Process UID or of the process which executes the transaction
having the TransactionUID.

Parameter Description:

(Process ITransaction) UID: The UID of the process whose current
status is requested; OR the UID of the transaction whose
executing process current status is requested.

Value Returned:
Non-existent --> Indicates a process or transaction

UID which does not exist.
Running --> Indicates the process is in the Running state.
TimeOut --> Indicates the TimeOut occurs before the

process terminates.
Aborted --> Indicates the process has been aborted.
Completed --> Indicates the process is completed.
Suspended --> Indicates the process is in the

1-10

ZEUS ARCHITECTURE AND FUNCTIONAL DEFINITION

suspended state.
Crashed --> Indicates that the host where the process resides

has crashed.

4. EstablishRecoveryPoint (EERP]): Returns (0,1)

The ERP operation saves the current state of the process or transaction object
in stable storage. Successive calls to this function increments the RP Num by
one and stores the state of the process or transaction at the time of call in
stable storage. The updated RP Num indicates the la:est recovery point number
within the context in which it is called. The first recovery point for each
process or transaction has the value of zero and it is established
automatically when a process or transaction starts its execution.

Value Returned:
1 -- Indicates the success of the operation.
0 -- Indicates the failure of the operation.

5. DiscardRecoveryPoint ([ProcessUID, RP_NUM1, RP_NUM2]):
Returns: (successful, non-existent_RP,

accesscontrol violation, non-existentUID)

The DRP operation discards all recovery points whose RP num is equal to
and includes specified recovery points between. If just one recovery
point is to he discarded the RP_- Num2 is not required, and the last
recovery point is discarded if none of the RPNums is specified.

Parameter Description:

Process UID: The UID of process whose recovery point(s) are
discarded. If a process object wants to discard any of its own
recovery points, then this parameter is not required.

RPNUM1: The RP_ NUM1 specifies the recovery point to be discarded.
If more than one recovery point is to be discarded, the RPNUM1
indicates the starting recovery point number.

RP_NUM2: This parameter is needed if more than one recovery point
is to be discarded. It gives the recovery point number of the
last recovery point to be discarded.

Value Returned:
Successful-->Indicates the success of the operation

Nonexistent RP-->Given recovery point(s) is out of range or does
not exist.

Access violation-->lndicates the process is not authorized to
discard the recovery point of the process given by the
ProcessUID.

1-11

NonexistentUID-->The process with the given UID does not exist.

6. Rollback ([RP NUM]): Returns: (0,1)
The Rollback operation within a process restores the state of all the local
objects to their values which they possessed at the time the RP num was
established. The changes on global objects, which have been made by
transactions within that process, remain permanent if the transactions
performing those are committed; otherwise, they are restored to their values
that they possessed at the time the RP num was established.

The Rollback operation within a transaction restores the state of all the
local and global objects to their values that they had at the time the RP num
was established.

Parameter Description:
RPNUM: It specifies the recovery point number to which the transaction

or process state is being rolled back. If the parameter is not
specified, the process or transaction rolls back to its last
recovery point.

Value Returned
1-->Indicates the success of the operation.
0-->Indicates the failure of the operation.

7. LastRecoveryPoint ([ProcessiTransaction)_UID]):
Returns: RPNUM

The LastRecoveryPoint operation is invoked to find the recovery point number
of the last recovery point of process or transaction identified by the process
or transaction UID.

Parameter Description:
(ProcesslTransaction)_UID: The UID of the process whose last recovery

point is requested.

Value Returned:
RP NUM > 0 --> Specifies the last recovery point.
RP-NUM < 0 --> Indicates the failure of the operations,

that can be due to access violation or invalid
ProcessUID.

Following is the description of user visible functions for transaction type

objects which are designed in detail.

8. BeginTransaction ([T])

The Begin Transaction command creates a new transaction and by executing this
statement system establishes the first recovery point (RPNUM=O) and generates
a UID of Transaction UID type for that transaction. If parameter T is given,
then it contains the TransactionUID, after this statement is executed.

1-12

ZEUS ARCHITECTURE AND FUNCTIONAL DEFINITION

9. End Transaction

The END Transaction operation is the commit point for the transaction; thus,

for an outermost transaction, execution of the End Transaction statement means

permanence of all updates made within this transaction.

10. Create Transaction (Program_UID, [list of Data UIDI,

host_ID, ExpectedTime]):

Returns: Transaction UID

The create Transaction operation requires at least a program UID. It creates
a transaction, assigns it a UID of transactionUID type, and starts running
the transaction. The transaction will be aborted if it does not terminate
within the period of time specified by the Expected Time parameter. The user

can acquire the status of the transaction by initiating a Transaction-status
operation (discussed later).

Parameter Description:
Program_UID: The UID of the object contains the program.

list of Data UID: None, one or more UID(s) for the objects(s) contains
the required Data.

host ID: The ID for the host where the new created transaction is to

reside. This parameter is not required if created transaction is to
be on the same host as its parent transaction.

Expected Time: The maximum period of time that is expected for the
transaction to terminate. Unlimited time is given to the
transaction if this parameter is not specified.

Value Returned:
Transaction UID-->Indicates the success of the operation
NULLUID-->ndicates the failure of the operation

11. Commit Transaction ([Transaction UID, ERP]):
Return (Non existent UID, EnvironmentViolation,

Successful, Unsuccessful)

The Commit Transaction operation makes all the updates which have been
performed by a transaction permanent. This function can be called only by a
non-transaction process that has created some concurrent transaction (by
executing the Create Transaction function). Therefore, no nested transaction
is committed by calling this function; the commitment of a nested transaction
occurs when its parent transaction executes its End Transaction command. The
execution of this command for a nested transaction is still valid; however,
such an invocation of this command will not commit a nested transaction.

Parameter Description:

1-13

Transaction UID: The UID of the transaction to be committed.

ERP: If this parameter is true, then the execution of this command
establishes a recovery point and stores the state of all local
variables and global objects at commit time.

Value Returned:
Successful --> Indicates the success of operation.
Non existentUID --> Indicates the transaction with

given UID does not exist.
Environment violation --> Indicates the transaction has

attempted to commit a transaction which is not
within its execution context.

Unsuccessful --> Indicates the transaction is not in a
state that can commit.

12. Abort ([Process UID ITransaction UID]):
Returns (Non-existent, access control violation, successful)

The Abort operation terminates the execution of the current block and restores
the state of the local variables and global objects to their values before the
beginning of transaction and continues execution with the statement
immediately following the End Transaction statement of the aoorted
transaction. If Abort command is used within a process, it terminates the
process.

Parameter Description:
(ProcessiTransaction) UID: The UID of process or transaction that is to

be aborted. If no value is given for this parameter the process or
transaction is aborted itself.

Value Returned:

Non existent --> Indicates an invalid UID which does not exist.

Accesscontrol violation --> The process (transaction) is not
authorized to abort the given process or transaction.

Successful --> Indicates the success of the operation.

EstablishRecoveryPoint, Discard RecoveryPoint, LastRecoveryPoint are
exactly the same as those for processes. For deleting a transaction,
DeleteProcess can be used by giving TransactionUID.

1.3.2.3 Principal and Authentication Manager

The object protection system in Zeus depends on the ability of the
individual type managers to identify any process which requests an operation
be performed. In addition, the Type Managers need to be able to determine the

1-14

ZEUS ARCHITECTURE AND FUNCTIONAL DEFINITION

ultimate initiator of the action which resulted in such an invocation request.

We call these initiators of actions principals. Principals are permanent
objects in Zeus and they are the only objects which carry the authority to

perform computations involving other objects. When a new process is created,
it is "owned" by a single principal and it retains this principal association
throughout its lifetime.

The two fundamental problems of the protection system, authentication and
authorization, both involve principal objects and the association of processes
to principals. The problem of authorization, that is determining on Wnose
behalf a given process is currently working, is a fairly simple matter since
each process is always working for a single principal only. When a process
invokes an operation on a type manager, the information regarding its UID and
principal association is transported onto the virtual machine of the target

type manager. In this way, the principal which owns a particular process is
always known by any type manager on which it makes invocation requests. in
addition, since process identifiers are transported to and from type manager
machines by system code, a process is unable to forge its own principal
association to gain access to objects that the process' real principal is not
authorized to access.

During login, a user is first asked to identify himself by giving his
unique principal symbolic name. The login process (also called the
Authentication Manager) tries to find a principal object containing the same
symbolic name. The principal object contains all the pertinent information
about that user. The user's password is stored with the principal object,
allowing the Authentication Manager to perform necessary authentication
checks. Two other pieces of information regarding the user are maintained
within the principal data object. One is the unique identifier (UID) of the
user's symbolic name context, which is described in the next section. The
other is the UID of the command inte-preter or shell program of the logged-in
principal.

Since the authentication manager must find a principal object given only
its symbolic name, it follows that this name must be unique. In order to nake
it convenient for unique names to be assigned to principals, Zeus has the
concept of a working group (WG). Working groups are used to form a strict
hierarchy of principal names. This hierarchy of names is similar to that used
in the Multics system. They contain members which may be either principals or
other working groups. The root working group has a null name and is called
the null working group. The unique name of a principal or working group is
formed by concatenating the name of the principal or WG with the names of all
of its containing working groups. This hierarchical structure also forms the
basis for other symbolic names in the system.

1.3.2.3.1 User Visible Authentication Functions

A full definition of the principal object data structure is as follows:
TYPE principal IS

RECORD
name principal-name; -- Unique user name
passw : password; -- Login password

1-15

cntxt : context; -- User's name context
shell program: -- User's shell program
plist process-list; -- Active process list

END RECORD;
The principal type manager defines the following functions on principal

objects:

1. create (nm in principal-name; pw : in password;
shell : in program; cntxt : in context)
--> (return-code)

Creates a new instance of a principal object and
initializes its data fields with the principal name,
password, shell program, and context given as
parameters. The possible return codes are (1) new
principal UID or (2) error in creating new principal.

2. delete (pid : in principal-UID) --> (return-code)
Destroys a principal object given its UID. The
possible return codes are (1) operation successful or
(2) principal-not-found.

3. get-context (pid : in principal-UID) --> (return-code)
Returns the context UID for a principal or principal-
not-found error code.

4. lookup (nm : in principal-name) --> (return-code)
Finds the UID of a principal given its unique symbolic
name. The possible return codes are (1) the
principal UID or (2) principal-not-found error code.

5. authenticate (pid : in principal-UID; pw in password)
--> (return-code)

Returns true if the given password matches the one
stored in the principal object and returns false otherwise.

6. get-pw (pid : in principal-UID) --> (return-code)
Returns the password associated with a given
principal. The use of this function should, of course,
be administratively limited.

7. new-pw (pid : in principal-UID; pw : in password)
-- > (return-code)

Replaces the password associated with a given
principal. Again, access to this function should be
controlled.

8. get-shell (pid : in principal-UID)
--> (return-code)

Returns the UID of the user's shell program.

9. new-shell (pid : in principal-UID; shell : in program)
--> (return-code)

Replaces the principal's shell program.

1-16

LZEUS ARCHITECTURE AND FUNCTIONAL DEFINITION

10. attach (pid in principal-UID; proc : in process-UID)
Adds the UID of a process to the active process list
stored in the given principal.

11. detach (pid : in principal-UID; proc in process)
Deletes the UID of a process from the active list
stored in the given principal.

12. get-procs (pid : in principal-UID) --> (return-code)
Return a list of currently active processes
working on behalf of the given principal.

Since the authentication manager must find a principal object given only
its symbolic name, it follows that this name must be unique. However, it is
usually convenient for a user to use his own name as his principal name and,
obviously, this does not always identify him uniquely (i.e., John Smith). In
order to make it somewhat more convenient for unique names to be assigned to
principals, Zeus has the concept of a working group. Working group objects
are maintained by the working group manager. Working groups are used to form
a strict hierarchy of principal names. They contain members which may be
either principals or other working groups. The root working group has a null
name and is called the null working group. The unique name of a principal or
working group is formed by concatenating the name of the principal or WG with
the names of all of its containing working groups.

The data structure of a working group object is as follows:
TYPE working-group IS

RECORD
nm : wg-name; -- Symbolic name
pid-list : principal-list; -- Member principals
wgid-list : wg-list; -- Member WGs

END RECORD;

The operations defined for working group objects are the following:

1. add-principal (nm : in principal-name; pw : in password;
shell: in program; cntxt: in context) --> (return-code)

Create a new principal object (by calling the principal
type manager) and install this principal as a new
member of the working group indicated by part of the
given principal symbolic name. Initialize the data
fields of the principal object with the given
parameters.

2. add-working-group (nm: in working-group-name) --> (return-code)
Create a new working group object and install it as a
new member of the working group indicated by part of
the given symbolic name.

3. delete (wgid : in working-group-UID) --> (return-code)
Delete the given working group object only if it
currently contains no members. The possible return

1-17

codes are (1) operation successful, (2) working group
not found, or (3) working group not empty.

4. princ-membs (wgid : in working-group-UID) --> (return-code)
Return a list of principal members of the given working
group.

5. wg-membs (wgid in working-group-UID) --> (return-code)
Return a list of the working members of the given
working group.

6. lookup (nm: in working-group-name) --> (return-code)
Lookup a working group by its symbolic name. The
possible return codes are (1) the working group UID or
(2) working group not found error.

In some circumstances, it will be desirable to create abritrary,
non-hierarchical groups of users. For example, a group of users may agree to
share access to some set of objects. To accomplish this, the principal
identifier of each of the group members could be added to the access list of
each of the shared objects. A more flexible and efficient solution would be
to define a group object or "security group" as a list of member principals
and to place the single UID of this group on the objects' access lists. This
would shorten the access lists in addition to allowing member principals to be

added and deleted easily. Security groups are not implemented as separate
composite objects in Zeus. Instead, the ATTACH and DETACH operations defined
for principals are used to obtain the desired result of allowing arbitrary
user associations to be formed. Normally, the only user authorized to perform
the ATTACH operation on a given principal is the system principal and the
log-in process. However, certain principals, called aggregate principals, may
contain many other users on the access list of the ATTACH operation. These
users are called "members" of the aggregate principal and they are allowed to
create and ATTACH processes to the aggregate. Such an association of users
thus functions as a security group but, since aggregates appear as ordinary
principals to the individual type managers, the Zeus design is both more
uniform and more efficient.

1.3.2.4 Symbolic Name Manager

The symbolic name manager (SNM) is one of the autonomous, distributed
processes which comprise the Zeus operating system design. This type manager
is solely responsible for the creation, deletion, modification, and management
of instances of the symbolic name context type. The structure of these
objects are not known outside the symbolic name type manager (SNM), storage is
not allocated for them outside the SNM, and their values may not be assigned
or checked for equality by any process other than the SNM. In short, all
access to symbolic name contexts is completely controlled by the SNM.

1-18

ZEUS ARCHITECTURE AND FUNCTIONAL DEFINITION

1.3.2.4.1 Symbolic game Contexts

Symbolic name contexts are the only supplied means within Zeus for a user
to define and use symbolic (non-numeric) names for other system objects.
Fundamentally, a context is a single- valued functional mapping from
user-supplied symbolic names to system defined unique identifiers (UIDs). As
such, the context plays a very important role for the user/principal since "he
system itself deals only with the bit string UID which is decidedly
non-mnemonic but nonetheless efficient as a system name.

Each principal which has permission to logon to Zeus is associated with
at least one context object which contains his own private names for oljects
with which he may interact. This arrangement allows a relative symoolic name
space for principals in the sense that different users will, in general, have
different symbolic names for identical system objects (that is, objects with
the same UID). Such a relative scheme is very efficient in a distributed
environment such as Zeus since names must remain unique only within a single
context. This eliminates the need for a central (and therefore vulnerable)
naming authority or a complicated hierarchical scheme as in other distributed
systems. The primary shortcoming of this relative naming scheme is that it
makes it difficult for two or more principals to become aware of a common
shared object by passing its symbolic name. The principals are likely to have
different names for the shared object and thus will be unable to find "common
ground" on which to agree on a single name.

This type of object sharing by different user processes appears to be
rather rare so that the overhead and added complexity of a hierarchical system
may not be necessary. Instead, Zeus provides the required "common ground" by
providing an aboslute symbolic naming scheme for the principals themselves.
Each object will then have at least one non-ambiguous name with which
principals may refer to it. This name is obtained by concatenating the
principal's system unique name with that principal's relative name for the
object to be shared.

Context objects may also be used to implement the aboslute naming scheme
for principal objects. This is done by providing d single additional context
object which contains the name => UID mappings for all the principals
currently authorized to use the system. The symbolic name of this context
(contexts may have symbolic names just like any other object) should be well
known throughout the system. This can be accomplished by initializing each of
the principal's contexts with the symbolic name of the unique user name
context.

Due to the essential nature of a principal's symbolic name context, it
will be desirable to provide the capability to define highly reliable contexts
which are likely to survive or perhaps continue to be available in .he
presence of certain types of errors. The standard mechanism in Zeus for
providing such reliable objects is object replication. Context objects are
the first significant example of object replication which have been
encountered in the detailed design.

1-19

Despite the requirement to provide distributed, replicated context
objects in Zeus, the 2onsistency requirements of the operations which will be
defined for contexts are relatively simple. Straightforward read/write
consistency control will be used in the SNM since the five operations defined
therein appear semantically identical to four write operations and one read
operation. In general, of course, some object types may have more complicated
semantics for their operations zuch that two or more update operations turn
out to be compatible since they modify mutually exclusive parts of an object
instance. This, however, is not the case with symbolic name contexts.

1.3.2.4.2 User's View of the SNM

For user processes in the Zeus system, the SNM (and in fact all other
type managers as well) appears as a single autonomous server process which
defines an abstract data object type and a set of operations which access
and/or modify instances of that type. The actual structure of the defined
data type, as previously mentioned, is not known by the user process. 7n
addition, the physical host boundaries (indeed most physical characteristics
of the system) are hidden from the user process so that the physical network
of hosts appears as a logical network of connected user and type manager
processes.

The user-visible features of a type manager are completely defined by the
set of operations which it provides. The symbolic name type manager provides
five such operations on context objects; CREATE context, DELETE context, ADD
name, REMOVE name, and LOOKUP name. The operations have the obvious
semantics. CREATE and DELETE operate on whole contexts while ADD, REMOVE, and
LOOKUP modify and access the individual name/UID pairs in an existing context
object. The LOOKUP operation is the only read- only operation while the
others all cause at least part of the context object to be modified in some
way. The reason that ADD and REMOVE are considered to be modifying the entire
context object rather than only a single entry in it is that the most likely
implementation of context is as a hash table. This means that any
modification of the pointer structure within a hash container to insert or
remove a name/UID pair would cause the pointers to become temoorarily
inconsistent thus requiring that the entire table be made unavailable.

1.3.2.4.3 SNM Functions

The Symbolic Name Manager provides functions to create, maintain, and
destroy contexts and symbolic name to UID entries within contexts. The
following are operations that affect the whole of some context object.

create () --> (context-id, return-code)
Creates a context object with the denoted access
list. The possible return-codes are (1) true and
(2) false.

delete (context-id in out context) --> (return-code)
Deletes a context object. The possible return-
codes are (1) deleted and (2) non-existent
context.

1-20

ZEUS ARCHITECTURE AND FUNCTIONAL DEFINITION

The three operations, ADD, REMOVE, and LOOKUP are provided to maintain

the symbolic names to object UID mapping. Of these three, only the LOOKUP

operation is read-only while the other two cause a name to UID mapping within

the context to be modified.

add (name : in symbolic-name; object-id : in UID;
context-id * in context) --> (return-code)

Create a symbolic-name / object UID entry in the
given context. The possible return codes are (1)
successful and (2) non-existent context.

lookup (name : in symbolic-name; context-id : in context;

name-id : out UID) --> (return-code)
Find the symbolic-name in the given context and
return the object UID associated with that name.
The possible return codes are (1) successful, (2)
non-existent context and (3) name is not found.

remove (name in symbolic-name; context-id in context)
--> (return-code)
Delete the symbolic-name / object UID entry from
the specified context. The possible return-codes
are (1) successful and (2) non-existent context.

1.3.2.5 Program Type Manager

The Program Type Manager is the repository of both program text and
object code. Program text is defined to be a text object that compiles
correctly; thus, the creation of a program object requires the user to supply
the Program Manager with a correct program or a separately compilable unit of

a program. The Program type manager, in addition to its function as a
repository, acts as a builder of programs; thus, a user can call upon the
program type manager to build a new program from some specified components.
This linking function of the Program Type Manager is useful to the system to

build new user types. A program object is defined to be a collection of
versions of a single program. The criteria for retaining program versions in
the system are defined by the users.

1.3.2.5.1 Program Object Functions

There are four functions that are necessary for program objects. These

are create, delete, construct, and gettext. The function construct is the
linker that builds a composite program object from a set of components. The
other functions are those necessar; to maintain the program repository. Some
of the functions may require auxiliary functions which will be described at
the end.

1. Create

Create is invoked when a new program object or a new version of a program
object is to be installed in the program manager. This function is supplied
with the text file for the new program by the user. The function compiles the
text file and installs the text file as a program unit provided the

1-21

compilation was successful. The function installs the program unit with a
unique version number which it returns to the caller. It must be noted here
that a user cannot create a new program version in place by taking an existing

version, modifying it within the Program Type Manager and then creating a new
program unit. Instead, the user must first get the program text, modify it
using some function and then use the create function to install it as a

program unit. A call to the create function is

create (textobj : in text; progname in out ext UID;
listing : out text; status : out result)

wnere
textobj - program text
progname - .is null if the text object is to be installed as

a new program
.has a null version field if this is a new
version of an existing program object

listing - a text that lists the compiled text and errors
status - returns the result of the operation and can be

.successful

.no entry in the directory

.cannot be installed in the directory
The function does not return a value in progname if the compilation is

not successful.

2. Delete

The delete function is invoked to delete a program object or a specific
version of the program object. The deletion of a version of a program implies
that its empty slot in the array is filled by moving the other versions (if
any) to fill the slot.

delete (progname : in extUID; status out result);
where

progname - is the extended UID of the program. If the
version unique number is not present then the
delete will delete the program while the presence
of a version unique number deletes a single
version.

status - is the return code from the delete function.

3. Construct

The construct function is used to build a program object from a set of
program objects. Like the create function, it can be used to create a new
program object or a new program version. This function can be used to build
new type managers. The construct function will use the function getcode to
obtain the code of each of the compcnents and it will use a linker to build
the new program object version. The new version or extended UID will be
returned to the caller. The call to construct is:

construct (progcount : in integer; typename in template;
status : out result; progname : in out extUID;
listing : out text);

1-22

ZEUS ARCHITECTURE AND FUNCTIONAL DEFINITION

where
progcount - number of program extended UIDs in the array

typename
type-name - array of program object extended UIDs. These

are the components of the new program object.
status - return flag from the routine.
progname - if null a new program object is created and its

extended UID is returned; if the version field
is null then a new version is created.

listing - a listing of the results of the operation.

4. Gettext

This function copies into a user parameter the text of a program unit. The
text is for the version specified or for the latest version. This function
may be used to copy a program to an editor and then modify it. The call for
gettext is

gettext (progname in extUID; textobj out text; status
out result);

where

progname - extended UID of the program object
textobj - text of the program object
status - result of the operation

1.3.2.6 Message Type Manager

Within the Zeus Operating System, the Message Type Manager (MTM) provides
messages as a means of inter-process communication in either a synchronous or
an asynchronous fashion. A message that is transferred from one process to
another is viewed as an object upon which operations are performed to effect
this inter- process communication. The operations are sendmsg, receive_msg
and msgstatus. The send operation creates a message object and initiates the
transfer of the object from the sender to the intended receiver. The receive
operation completes the transfer when the object's message content is returned
to the receiver. The sender or receiver can determine the status of a message
object by performing a msg_status operation.

1.3.2.6.1 Reliability of Message Objects

At the time a message is created, the sender can specify the reliability
class for that message. The reliability class of a message reflects its
availability to the receiver in the face of one or more host failures in the
network. At the low end of reliability there are volatile message objects
that disappear upon host failure (if the object resides on the failed host).
At the high end of reliability stable message objects have a replication
factor of n where n is the number of hosts in the network. The four
reliability classes are volatile, non- volatile, resilient and stable.

1-23

1.3.2.6.2 Scope of Inter-process Communication

Inter-process message communication may occur between processes that are
local to a host, or remote. In either case the send and receive operations
are performed on the MTM local to the host of the calling process. Any remote
communication that might be performed to effect the respective operation is
carried out between MTMs and is unseen by the caller. Figures 1-2 and 1-3
depict the flow of information in local and remote inter- process
communication respectively.

1.3.2.6.3 Message Operations from the User's Viewpoint

The messages are sent by invoking a send_msg operation with the
specification of the message content, the list of- receivers, the reliability
class of the message, and whether or not the message operation is to be
performed synchronously or asynchronously. If the send is a synchronous send,
the sender is delayed for the shorter of the sender timeout value or for the
time it takes to route all of the copies of the message to any remote hosts.
The routing is a function of the reliability class and the receiver list.
When a send is asynchronous, the sender is blocked only the time it takes to
create the message and notify the receivers of its existence. As a result of
the send operation, the message unique identifier is returned. If the message
status is determined at a later point by the sender, it is this unique
identifier that is passed as a part of the msgstatus call.

In order to receive a message, the receiver invokes a receivemsg
operation and specifies which processes to receive a message from, and whether
or not the operation is asynchronous or synchronous. This means no wait if
there is no message available in the asynchronous case and a wait in the
synchronous case until a message is available or until a timeout occurs. An
additional parameter allows the user to further qualify which message is
received. The qualification may indicate that either the most recent message
be received, or the oldest, or the first since a host failure.

The msgstatus operation returns to the caller the current status of the
message relative to its receipt by each of the intended receivers of the
message. Possible statuses are received, not-received, unavailable and
message non-existent.

Following the descriptions of the MTM Interface components SendMsg,
ReceiveMsg, Msg_Status, and Message-Operations.

1.3.2.6.4 SendMsg

The user interface to perform message manipulations is a procedural one.
Calls are made to routines named send msg, receivemsg and msgstatus that are
part of a MessageInterface package within the process space of the user. The
following are the procedural interfaces between the user process and the
Message_Interface routines.

1-24

ZEUS ARCHITECTURE AND FUNCTIONAL DEFINITION

PROCEDURE send msg (msg_vars: IN MTM type.parm list;
send-to list: IN MTM type.xidlist;

option: IN MTM type.wait_nowait;
timeout: IN POSITIVE;

reliabilityclass: IN MTM type.relclasses;
msg_id: OUT kernel.xtndeduid;

returnstatus: OUT MTM_type.msgopnreturn);

Parm-list is a record that describes the variables that compose a
message. Some convention will be made between the compiler(s) of a host
machine and the sendmsg procedure as to the actual record description of
parm list.

The send to list is a linked list of the intended receivers of the
message. A broadcast of a message is indicated when the send to list is
composed of a single star, "*".

The process has the option of waiting for acknowledgements that the
message has been sent to every receiver or not waiting for the
acknowledgements. This is specified by "wait" or "no wait" as the value of
the option If the option is wait, a timeout value must be specified which is
the maximum time that the sender is willing to wait for the acknowledgements.

The reliabilityclass for a message object may be volatile, non-volatile,
resilient, or stable. A volatile message object is one with the least
likelihood of being available if some failure occurs because it is a single
copy object in memory. A stable message object has the greatest likelihood of
being available because a copy of the message exists on each host, and is thus
a replicated object. Non volatile and resilient message objects are more
reliable than volatile objects and less reliable than stable objects. The
number of message copies created during a send operation and their storage
iaedium will be varied during performance analysis to determine what
combinations provide the maximum amount of reliability and efficiency. One
major difference between non volatile and resilient is that non volatile
objects have no recovery operations performed for them upon failure, but
resilient objects do.

The msg_id is a unique identifier for the message that is returned after
the message is sent. This identifier may be used in a msgstatus call to
determine the state of the message regarding its receipt.

The return status contains the result of the send operation and may be
completed or timed out. The notcompleted status will at a later time be
expanded into a group of possible error return values according to the fault
that caused the operation to fail.

1.3.2.6.5 ReceiveMsg

The complement to send msg operation is the receivemsg operation that a
process invoked to receive a message that is available.

1-25

PROCEDURE receive msg (msgvars: IN MTMtype.parm-list;
receive from list: IN MTMtype.xidlist;

waitoption: IN MTMtype.wait no wait;
whichmsgoption: IN receiveoption;

timeout: IN POSITIVE;
msgid: OUT kernel.xtnded uid;

sender id: OUT kernel.xtnded uid;
returnstatus: OUT MTMtype.msg opn_return);

Msg_vars are the variables into which a received message is placed.

The receive from list indicates which process the receiver is willing to
receive from. It may be a linked list of process extended uids, or a star (*)
which indicates a willingness to receive from any process.

The wait option may have the values of either wait or nowait where wait will
cause the receiver to wait a finite amount of time for a message to arrive,
the wait time being indicated by timeout.

The whichmsgoption may be either most recent, oldest, or
first after failure. This gives the receiver flexibility in receiving
messages.

The msgid contains the extended uid of the just received message.

The sender id contains the extended uid of the process that sent the message.

The return-status may be completed or timed-out.

1.3.2.6.6 Msg_Status

The current status of any particular send message operation may be determined
with the msgstatus operation.

PROCEDURE msgstatus (msg_id: IN kernel.xtnded_uid;
return-statuses: OUT MTM_type.msg_opn_return_list);

The msgid is the extended uid of the message for which a status query is
being made.

The return status record is a linked list of process_id/status pairs., That
is, one status is returned for each intended receiver process. The possible
return statuses are received, not-received, unavailable (i.e., status not
known), and non-existent.

In order to receive a message, the receiver invokes a receivemsg operation
and specifies which processes to receive a message from, and whether or not
the operation is asynchronous or synchronous. This means no wait if there is
no message available in the asynchronous case and a wait in the synchronous
case until a message is available or until a timeout occurs. An additional
parameter allows the user to further qualify which message is received. The

1-26

ZEUS ARCHITECTURE AND FUNCTIONAL DEFINITION

qualification may indicate that either the most recent message be received, or
the oldest, or the first since a host failure.

The msg status operation returns to the caller the current status of the
message relative to its receipt by each of the intended receivers of the
message. Possible statuses are received, not received, unavailable and
message non-existent.

1.4 OVERVIEW OF THE DETAILED DESIGNS

1.4.1 Zeus System Design

The design of the Zeus system is basically the desiSn of the kernel and
system type manager functions described in Section 1.3. A detailed design of
each system type manager is presented in this part of the guidebook. An
important part of the Zeus design is the design of a generic object manager:
this design defines the protocols executed by an object manager with the
Process/Transaction Manager to ensure reliable operations and recovery in the
system. The detailed designs presented here were carried out in CSDL and Ada.
it is suggested that an interested reader should refer to the Concurrent
System Definition Language (CSDL) manual to understand the CSDL designs. The
designs of the Process/Transaction Manager and the generic Type Manager are
presented in CSDL. The detailed designs of the Kernel and two system type
mangers, namely, the Symbolic Name Manager and the Message Type Manager, are
presented in Ada. The following sections of this chapter present an overview
of these designs. During this effort we have not designed the Authentication
Manager and the Program Type Manager in detail.

1.4.2 Kernel Design

The overall structure of the kernel functions is given in Figures 1-4,
1-5, 1-6. The structure of each function is described next. Each remote
procedure can, as was pointed out earlier, be broken up into four messages.
Each message must be packetized at its source and re-assembled at its sink.
There are four levels in the RPC mechanism. The first is a set of kernel
procedures that form the kernel interface for the RPC mechanism. These
procedures are invoked to send calls and obtain responses. In addition they
differentiate between local and remote objects thus performing the function of
the operation switch.

The next level consists of one call handler per object type and is the
repository of the state of all outgoing and incoming calls. Each call handler
is invoked by the kernel procedures from the level above it and the network
handler processes from the level below. The network handler consists of three
processes, the send driver, the receive driver and the network tranceiver.
Together the send and receive drivers implement the link level protocol. This
includes the processing of acknowledgements (positive and negative) at the
packet level. The send and receive drivers interact with the networK

7-27

tranceiver to send and receive data packets to and from the network. The
networkz ranceiver interacts with the UID generation task and the net
controller in addition to the send and receive drivers.

Object storage and retrieval has a very simple structure. Each object
type has a simple object directory and a stable object directory. Associated
with each directory are sets of tasks, one set for each operation to be
performed. These tasks are called request handlers. The kernel interface
procedures first ask the directory to perform some operation. The directory
initiates the task and returns to the kernel procedure a pointer :o the
request handler assigned to the task. The kernel procedure then asks the
request handler for the result. The directories contain pointers to all
objects of a given type. The directories always reside in main memory and
directory storage and retrieval has not been considered in the design.
Storage of the directories would involve setting up a directory structure.
Request handlers are allocated to each directory based on the designer's
estimate of how often operations on a particular object type will be invoked
and how long those operations will take. Secondary device space is allocated
on an object basis and simple and stable storage have free storage managers.
The two kinds of storage are managed separately since they will be kept on
separate devices.

1.4.2.1 UID Generation Protocol

The third major function of the kernel is to generate unique identifiers
for objects. A unique identifier consists of a host field, an instance field
and a sequence field. The instance field is generated collectively by all the
hosts to the system. For each value of the instance field the UID monitor
process will generate a range of UIDs whose cardinality equals that of the
sequence field. The generation of a new instance number is accomplished by
the UID generation process of the kernel. Additionally, the UID generation
process participates in a roll call computation to keep track of active hosts,
and a host restart computation to permit a new or restarting host to join the
set of active hosts.

All the UID generation processes on the active hosts in a cluster
participate in the generation of a new instance field. The algorithm for UID
generation is based on the principle that all the active hosts in a cluster
have a dynamically maintained linear order at all times. When ail the active
hosts in the cluster have received a new instance number request from one of
their members they each set a timer in the process UID timer and wait. If a
host's timer expires before that host receives a response to the request it
will broadcast a response to the request. This message contains the new
instance field value and the responding host's position in the linear order.
When a host receives a response to a request (either its own or that of a host
with a lower position in the linear order) it accepts the new instance value
and subtracts the responding hosts position in the linear order from its own.
Thus each active host receives the new instance number. Further, if some host
in the linear order has failed, the other hosts ranked lower than it will have
their position moved higher in the order. This will over time result in
reliable hosts reaching the highest positions in the linear order.

'-28

:EUS ARCHITECTURE AND FUNCTIONAL DEFINITION

In :eus, he system processes for UID generation belong to a set of
smallsteppers S or a set of largesteppers L. These processes reside on hosts
which are interconnected by a broadcast network that uses a contention
protocol. All hosts (i=l..n) must possess an instance si 9 S. Some hosts
(J=l..m), called stable storage hosts, possess an instance 1j 9 L. The union
S U L forms the set of processes.

The object of the system is to generate unique identifiers (UIDs) on
request from other processes in the system. Requests for a new UID on host i
are directed to si. Each si has a limited range of UIDs it can supply. si
obtains ranges of UIDs from a specially denoted lj which is called the elector
(le). Each range is called an incarnation. A single largestepper must
respond to a request for a new incarnation. The new incarnation is adopted by
all the processes si and Lj active in the system.

The algorithm to obtain new incarnations must be resilient enough to:
1) Recover from host failures which result in the le pro

cess becoming unavailable.
2) Recover from host failures which result in some 1i

process becoming unavailable.
3) Insure that the incarnation numbers are generated in a

monotonically increasing sequence.

The algorithm assumes the following about the underlying system:

i) An errorless, loss-free transmission medium.
2) Delivery of messages in a FIFO manner.
3) Continuous availability of the broadcast medium.

Among the sets S and L the following assumptions hold:

1) An elector holds his position from the instance of his
nomination until the host on which he resides fails.

2) A smallstepper si is considered to be idle if it has
sent out an incarnation request and is awaiting a reply.

3) At any time the active largesteppers li G L possess a
unique priority number pi from 0..:Li-i. At any time
the active largestepper with pi equal to zero is by
default the elector.

4) There is a global constant t possessed by each
largestepper. This constant t is the maximum time taken
by any largestepper to receive and broadcast a message.

The algorithm requires the following messages:
1) A request message which is sent by some si which

requests a new incarnation number.
2) A reply message which is sent by the elector le to give

the new incarnation numbeb. This message also holds the
priority number of the largestepper who generated the
message.

1-29

The algorithm is based on the notion of a priority ordering. Upon the
receipt of a request message broadcast by some smallstepper si each
largestepper will qait for a time period equal to pi times t for a reply
message.

If it receives no reply message in that time, the largestepper broadcasts
the reply message with the new incarnation number and reduces its priority
number pi to zero.

If the largestepper receives a reply message before the time period
expires, it STOPS its timer, installs the new incarnation number and subtracts
the value of the priority number in the message from its own priority number.
The smallsteppers si receive the reply message, too; thus their incarnation
number is updated.

The largestepper with pi = 0 will, if active, time-out immediately and
send out the reply message; thus, the largestepper with pi = 0 is the elector
at any time.

If the largestepper with pi = 0 is inactive then the largestepper with pi
1 will time-out, send the reply message and then become the largestepper

with pi = 0.

Thus, the first reply message with priority number k implies that all
largesteppers with priority numbers from 0 to k-1 are inactive. The remaining
largesteppers on receiving the reply message decreme their priority number by
k and reset their timers.

The above statements will insure that the incarnation number will be
generated as quickly as possible provided there is an active largestepper.
However, if two or more smallsteppers request an incarnation number
simultaneously, then multiple incarnation numbers will be generated.

1.3.2.6.6.1 The Time Constant t

A crucial element of this algorithm is the value of the time-out constant
t. This constant must be large enough to insure that the largestepper process
with priority pi can be scheduled on its host and broadcast its message on the
network before the largestepper with priority pi+1 can time-out and broadcast
its message.

We are assuming that this time is variable but bounded and that t is the
least upper bound. This assumption is trivially true in the case of token
passing networks. For CSMA networks (e.g., Ethernet) this time may not be
bounded due to network contention and multiple collisions. However,
boundedness could be arranged in a CSMA network by giving priority to the
largestepper's reply by reducing its retransmission interval below that for
other network traffic.

Within the host careful specification of process priorities can help
insure an upper bound on the processing time required to handle a inca-nation
number or priority request.

1-30

ZEUS ARCHITECTURE AND FUNCTIONAL DEFINITION

'.3.2.6.6.2 Introducing a New Largestepper to the Network

The new largesteppgr must be given the current incarnation number and a
priority number. We define active largesteppers to be those that possess the
current incarnation number and a priority number. While incarnation numbers
will be identical on all the active largesteppers, the priority numbers may
not be continuous because of failures in largestepper processes. One of the
aims of the algorithm below is to make all the priority numbers continuous.
i.e., pi equal to O..j when j+1 hosts are active. This is important because
the values of pi must lie between 0 and m-1.

The algorithm to do this is:

1) The new largestepper broadcasts a priority request
message (which contains its id) and waits for t times
L;.

2) Each largestepper that was active on receipt of this
message sets some variable newp to zero and sets a timer
to t times pi.

3) While waiting for the timer to lapse, each active large stepper will
receive priority reply messages whose value to pi is Less than its own. For
each of these messages, it will increment its value of newp. It will also
ignore any other priority requests it receives during this time.

4) On the receipt of a message with a value of pi one less than its own or if
the timer expires, the largestepper will broadcast a message with its
incarnation number, its current value of pi and the id of the largestepper
whose request it is serving. It will then set its value of pi to be the value
of its variable newp. This ends the active largesteppers role in the
algorithm.

5) If the largestepper that broadcasted a priority request receives priority
reply messages that contain a host id other than its own, it will broadcast
another priority request message after its time expires. Otherwise, given its
large time constant, the new largestepper's time period will expire after all
other largestepper time periods. At that timY KQwill simply set pi to be the
count of messages it has received.

The above algorithm insures that the introduction of a new largestepper
will set the priority numbers of the active largesteppers correctly. Further,
multiple largesteppers that request a priority number simultaneously, will be
given priority numbers correctly.

1.4.2.1.1 Reliability Issues in UID Generation

The above name generation scheme is not totally immune to failure. For
example, let a Host A which contains a largestepper process be the last host
to go down. Then this host contains the latest incarnation number. If the

1-31

system is now restarted with some other host B, then the incarnation numbers

generated may be duplicates of those generated by host A before it crashed.
The above has the following implications:
1) For the names generated to be unique, some largestepper

host must be active at all times.
2) If all the largestepper hosts crash then all of them

must be brought up simultaneously.
It appears to us that the first restriction is reasonable enough. If all

the largestepper hosts go down, then the new order for largesteppers could be
obtained by selecting the largestepper with the largest incarnation number and
priority equal to zero to be the new elector.

To periodically check for the active hosts the active hosts execute a
roll call protocol. To do this they set the RECALL REMINDER process timer to

be equal to some time delay plus a delay proportional to the host's position
in the linear order. The first host whose RECALL REMINDER timer expires
starts the roll call computation by sending out a start roll call computation
message. The roll call computation proceeds with each active host setting two
timers, rank timer and full timer, in the process rcall timer. The rank timer
is proportional to the host's position in the linear order while the full
timer is proportional to the maximum number of hosts in the cluster. Then the

rank timer expires, the host recalculates its own position in the linear order
based on the number of messages it has received from hosts higher in the
order. It then broadcasts its own 'I'm here' message on the network. In
effect, the roll call computation is a periodic poll of active hosts.

Hosts that fail rejoin the system by initiating a distributed computation
among the active hosts UID generation process. This computation is identical
to the host roll call computation described earlier. This computation
pre-empts the host roll call or UID generation computations. Thus the host
restart computation is a poll of active hosts triggered by a new active host.

The messages sent by UID generation process take precedence over the
remote procedure call messages. The UID generation monitor process when the
latter exhausts the number's in the previous instance field's range. The UID
monitor is invoked by the getUID kernel procedure which in turn is invoked by
the kernel users.

1.4.3 Process Manager Design

This section provides an informal overview of the design of the
Process/Transaction Manager in the Zeus system. The formal definition of this
architecture is given in Chapter 3. The presentation in this section is based
on the fundamental notions in CSDL such as machines, sub-machines, and
interfaces. In CSDL, a machine can communicate with its environment or with
its submachines by using interface objects which are its public objects.
Public objects are the objects visible to the outside world. The Process
Manager is treated as a machine which has as its components some submachines.
This machine contains application processes and some command processors as its
submachines. This architecture is shown in Figure 1-7. The Process Manager
machine interacts with the external world via some interface objects which are
public objects for this machine. These interface objects include interfaces

1-32

ZEUS ARCHITECTURE AND FUNCTIONAL DEFINITION

to the secondary storage, memory manager, UID generator, and "he Operation
Switch.

This Process Manager machine has as its components some static as well as
dynamic submachines. A machine is dynamically created from a POOL of the
desired type of machine. Static submachines are those which are retained
throughout the lifetime of Process Manager and dynamic ones are those which
are created and destroyed dynamically. The static submachines of Prccess
Manager are Timer, Router, and the PMDatabaseManager, whereas dynamic
submachines are the application processes and the various command processors.
The application processes are created from a pool of PROCESS machines. Each
of the static and dynamic machines is connected to the parent machine Process
Manager. The connections between Process Manager and static submachines are
made in the beginning of PM Realization dictionary. PM is connected to Timer
through a pair of mailboxes PM TO Timer and Timer TO PM. Similarly
UIDGENERATOR is connected to PM through mailboxes PM TOUIDgen and
UIDgen TO PM. The function of the router machine is to multiplex and
de-multiplex the messages to (from) the Operation Switch from (to) various
application processes and the command processors. The Router connects :o PM
via two connection paths. One path is reserved for application commands and
responses between the PM and the Router, and the other pach is reserved for
control commands and responses between the PM and the Router. In addition,
the PM connects to each process which are dynamic submachines via two paths.
One path is reserved for application commands and responses, and the other is
for control commands and responses. In CSDL, the dynamic machines can be
declared as a pool of one type of machine and INDEX statement associates a
name with each new machine created. This acts similar to the subscript of an
array.

In response to application commands or requests from remote Process
Managers, command processors are created. A command processor interfaces with
the Process Manager's controller, and the PM Database Manager. An array of
mailboxes called Command Proc Iface supports communication between the command
processors and the PM controller. Interfaces are also provided to the
secondary storage and the primary memory manager by connecting the command
processors to the shared ports called SS Port and MM Port. These shared por.
abstractions are supported by a machine type called PortMultiplexer. Each
command processor directly interfaces with the Router machine that in turn
provides communication path to the Operation Switch.

Besides connecting the PM machine to it submachines, we need to connect
it to other independent machines to which it wants to talk to. Figure 1-7
shows three machines namely Stable Storage Manager, Memory Manager and
Operation Switch to which the PM may communicate. The function of the
Operation Switch is that of communication medium among different type
managers. The PM sends or receives remote requests through the Operation
Switch. These requests go through the Router machine which formats the
messages in a proper way. Since a submachine cannot talk directly to an
outside machine, the requests from the Router to the OS go through a pair of
mailboxes namely Router TO OS and PM TO OS which are "bound" together to give
the effect of just one mailbox. The other independent machines are connected
to the PM as shown in Figure 1-7.

1-33

in addition to connecting PM machines to their submachines and other

machines, some of the submachines of PM are connected to each other. The

PROCESS submachines are connected to Router through a LIST of mailboxes, one
for each PROCESS. This indirectly estblishes connections among each process
and to the OS.

One other component of a mach4ir-e is the CONTROLLER. This component
processes the information gathered through public objects, local objects, etc.
It acts as a driver for the machine. It generally consists of executable
statements and procedures. in the PM, the PM Controller is a program which is
inside a non-terminating loop. Similarly, the Router Controller is also a
non-terminating loop which controls and executes functions of the Router. it

is assumed that there are controllers in other submachines of the PM and
independent machines outside PM, but they are not shown explicitly in the
picture.

To support the dynamic creation/destruction of mailboxes for PROCESS
machines in PM and Router, we declare the mailboxes as a LIST of records.
Each record in the LIST consists of two fields: one of mailbox type and the
other of process_UID_type. In order to refer to any mailbox for a specific
process, we use processUID as the index. Since the PROCESS machines are
dynamic, they are declared as a POOL of PROCESS machines to which a PROCESS
machine can be added or deleted. The index to a PROCESS is associated with
its PROCESS UID to refer to that machine. A similar scheme is used to store
the index of a command processor in its mailbox interface to the PM
controller.

1.4.3.1 Command Processor

A command processor is created in response to either an Application

request message or a request from another command processor. The general
architecture of a command processor is illustrated in Figure 1-8.

There are eight different types of command processors. A command
processor is dynamically created from a POOL of desired type. As shown in
Figure 1-8, a command processor contains a static timer machine which

generates the time out interrupts, also a command processor interfaces with
the following machines:

ProcessManager Through Command ProcIface
PM DatabaseManager Through PMDB Iface

Operation Switch Through OS Iface
StableStorage Through SS Iface
MemoryManager Through MM Iface

Parent Process Through Parent Iface
Child_Process(es) Through DescendentIface.

Since a command processor is a submachine within the PM it can not
communicate directly to the independent machines outside the PM, namely Stable
Storage, Memory Manager and Operation Switch. So the connections are provided
through the SSMultiplexer MMMultiplexer and Router respectively.

1-34

ZEUS ARCHITECTURE AND FUNCTIONAL DEFINITION

If a command processor is created as a response to an application request
the parent Iface is to be bound to the PM TO Process mailbox of the applicant
in the PM Controller; otherwise the parent Iface is to be connected to one of
the Descendent Iface mailbox of the requester which itself is a command
processor. In Chapter 3 two procedures Create Command Processor and
CreateAppl_Server, are defined for creating the command processors. The
procedure Create ApplServer is used for creating a command processor in
response to a command invocation by an application process. In this case the
PM TO Process mailbox for the caller process is bound to the Parent [face of
the command processor. The second procedure, the Create Command Processor, is
used to create a command processor in response to some command invocation by
another command processor. In this case the Parent Iface of the new command
processor is connected to one of the DescendentIfaces of the invoker command
processor.

1.4.3.2 Process Manager Database:

The PM database is the set of objects in the PM machine which contains
necessary information about the ACTIVE processes at a local node. This
Jatabase is also essential for PM to carry out its functions reliably. In
other words, the database of Process Manager is a snapshot of the state of a
local node of a particular instance of time. The PM database consists of the
following LISTs:

1. LIST of Active Process Records: An Active process record may correspond
to a process or a transaction. A transaction record is the same as a
process record except for an additional field called transaction status.
A processrecord contains the information about the UID, the LIST of
prccesses that can access this process, priority of the process,
process state and time out period. In CSDL, an Activeprocessrecord is
defined as discriminated union (variant record) of the process record and
transaction record. The activeprocessLIST is then declared as the LIST
of Active_processrecords.

2. LIST of Parent Child Info: This list records for each process or
transaction the UID of its parent process. The MapField indicates its
execution mode with respect to the parent process. The execution mode can
be either sequential or concurrent. A transaction can be created as
either a sequential or a concurrent process with respect to its parent.
The Location field in this record indicates whether the parent is remote
or local. The field Top_Level in this record is set true if the parent of
a transaction process is a non-transaction process. A table called
Descendent Table records the UIDs of all of its children processes or
transactions. Associated with each child is the list of the all
descendent processes of that child and the UIDs of the objects modified by
that child and its descendents. The RP ChildMap field is used to find
all descendents created after establishing a recovery point.

3. DirectlyModified ObjectList: This is a LIST of directly (in contrast to
the objects modified by its children and grand-children) modified objects
for each process and transaction. Each record in the LIST contains
process/transactionUID along with an array of modified objects. This

1-35

LIST is used for deleting versions of an object in case of an abort,
rollback, or commit.

4. CurrentOperation List is maintained in the PMDB for recovery in case of
system crash in the middle of some critical operation such as Rollback or
Establish RecoveryPoint. This LIST contains records for each critical
operation performed. Each record consists of a processUID, operation
name and its parameters.

5. PMDBlog_buffer is the LIST of all the modification done to PMDB. Each
record of this LIST contains the operation performed which are ADD,

DELETE, MODIFY and the information involved in these operations, for
example, the record added or the record deleted, etc. This
PMDBlog_buffer is periodically appended to a differential file on stable
sotrage for recovery.

1.4.4 Type Manager Design

The Zeus system is a collection of object managers. Each manages an
object of a specific type. Figure 1-9 depicts the architecture of a
generic object manager which will be particularized at its creation time.
This design has been developed independently but it can be easily

integrated into the PM design presented in the Process/Transaction
Management document. In general the function of an object manager is to
perform operations on objects in response to operation invocation messages
from client processes or teransactions. It enforces locking protocols and

participates in commit protocols with PMs to ensure the atomicity of
transaction. As shown in Figure 1-9 the object manager communicates with
the PM and the Router through the TM TO PM and the TM TO Router interfaces
respectively. The object manager contains a timer machine which is

created when the object manager comes to existance and it is connected to
that through TM TO Timer and Connection TOTimer. It also contains a POOL

of servers. A server is a dynamic submachine of the object manager whose
function is to perform the requested operation on an object. it is

created in response to a request from a process/transaction and it is
deleted after the operation is completed. These servers are functionally
very similar to the command processors in the PM machine and they can
communicate with the PM via the Servers ToPM and the ServersToPM PS.

The object manager database consist of the followings:

1) Objects: which is the set of objects and contains neccessary
information about all the objects at that node and also the
information about the transactions which are performing some
operation on those objects. This information is essential for
the object manager to carry out the commit protocol reliably and
to preserve object consistency.

2) Queue : which maintains a list of all the requests that can
not be processed immidately due the unavailability of the

object (e.g., the object is locked in some incompatible mode.)
The object manager must ensure that adding the request to the
queue does not cause any deadlock.

1-36

ZEUS ARCHITECTURE AND FUNCTIONAL DEFINITION

The other component of the object manager machine is the CONTROLLER.
This component is a program which is inside a non terminating loop and
processes the information which is gathered through TM To Router and the
TM To Timer. This information can be either the rquests from the
processes/transactions, received through TMToRouter, or the timer
interrupts.

1.4.5 Symbolic Name Manager Design

Symbolic name contexts are the only supplied means within Zeus for a
user to define and use symbolic (non-numeric) names for other system
objects. Fundamentally, a context is a single- valued functional mapping
from user-supplied symbolic names to system defined unique identifiers
(UIDs). As such, the context plays a very important role for the
user/principal since the system itself deals only with the bit string UID
which is decidedly non-mnemonic but nonetheless efficient as a system
name.

Due to the essential nature of symbolic name contexts, it will be
desirable to provide the capability to define highly reliable contexts
which are likely to survive or perhaps continue to be available in the
presence of certain types of errors. The standard mechanism in Zeus for
providing such reliable objects is object replication; thus, the symbolic
name manager must support relicated context objects.

The user-visible features of a type manager are completely defined by
the set of operations which it provides. The symbolic name type manager
provides five such operation on context objects; CREATE context, DELETE
context, ADD name, REMOVE name, and LOOKUP name (see Figure 1-10). The
operations have the obvious semantics. CREATE and DELETE operate on whole
contexts while ADD, REMOVE, and LOOKUP modify and access the individual
name/uid pair would cause the pointers to become temporarily inconsistent
thus requiring that the entire table be made unavailable.

Internally, the symbolic name type manager consists of four major
sections; the interface, the controller process, the operation processes,
and the call handler. Figure 1-11 shows these four parts and indicates
their relationship to one another.

The SUM interface is a collection of simple procedures, one per SNM
operation, which runs as part of a user process and serves to interface it
to the SNM proper. The interface is included by a user process which
requires the services of the SNM and is found within the code library for
the SNM. The interface knows about the parameters and protocols required
by the type manager and it serves to hide these by providing the through
the operation switch. This allows for a very consistent interface to the
SNM in that all requests, local and remote, are handled in exactly the
same way.

The remaining three parts of the symbolic name type manager together
constitute the type manager proper. The first of these, the SUM
controller, is responsible for fielding requests for operations on context

1-37

instances and then "spawning" operation processes to actually perform
these operations. In order to do this, the controller contains within it
a set of process queues, one per operation type, from which it schedules
the process to be activated. Upon receiving and processing a request for
an operation from a user process, the controller returns the identifier of
the subordinate process. Subsequent dealings between the user and the
operation process performing the work is handled by the user making calls
directly to the operation processes thus bypassing the controller for
efficiency.

The processes which the controller schedules to actually do the work
for the operation requested by the user have a simple uniform structure.
Each such process, upon initially awakening, accepts a call from zhe
controller which starts the operation process running and also gives it a
number which enables the controller to subsequently identify it. After
accepting the intialization call, the operation process enters a lcoo Ln
which it first accepts a "start" call to get all the required input
parameters. The process then does whatever is neccessary to perform the
requested operation. After the operation is completed, (or an error is
detected), the operation process accepts a "done" call in which all the
output parameters for the call are returned directly to the user process
(actually his SNM interface). Finally, the operation process :ails I.e
controller to notify him that it has completed and that it may once again
be added to the available process queue and eventually reassigned .

Since receiving a local or remote procedure call from a user requires
a synchronous call to a kernel procedure, it would be undesirable to have
the controller of the SNM make this call and thus be blocked until it
completed. In addition, it is required that the controller present only a
single interface to both local users and remote users. In order to
facilitate this and to relieve the controller from having to do periodic
calls to the kernel to poll for remote requests, a separate process called
handler process is defined.

The call handler process simply calls the kernel to request the next
remote procedure call and then blocks until this call is satisfied. Upon
receiving a remote request, the call handler then "spawns" another small
task which acts as the remote user's surrogate within the present host.
The call handler then immediately calls the kernel to request more work.
This surrogate user process takes care of packing and unpacking parameters
and passing them to the kernel procedures and it uses the local controller
interface in exactly the same way, as a local user would.

1.4.6 Message type manager Design

The MTM is replicated on hosts in the network wherever inter-process
communication by messages is desired. The instances of the MTM are
identical The composition of an MTM and its interface to the user is shown
in Figure 1-12. User operation requests are made to the controller of the
MTM which takes the appropriate action. A task to perform the requested
operation is scheduled by the MTM Controller from a pool of SEND, RECEIVE
and MSG STATUS tasks. (In the subsequent text, all capitalized words will
refer to tasks of the HTM).

1-38

ZEUS ARCHITECTURE AND FUNCTIONAL DEFINITION

In sending a message, SEND calls the creation operation of MESSAGE
OBJECT, which returns a message object, routes copies of the message
object to remote hosts (as determined by the reliability class), and sends
notices of availability to the intended receivers. A notice becomes an
entry in the message queue for a receiver process. If the call is
asynchronous, the message identifier is then returned to the sender. If
the call is synchronous, SEND terminates but the sender remains blocked
until SUPPORTER determines that some event has occurred and causes the
sender to proceed (i.e., after a timeout or after all acknowledgements of
copies sent are returned). When a sender is to be unblocked. the
SUPPORTER schedules a WAKER task to bundle and route the appropriate
response to the sender.

RECEIVE determines from PROCESS MESSAGE QUEUE (PMQ) whether or ncc a
message is available that meets the specifications of the receiver. The
PMQ manages all message queues for the processes of that host. It
maintains the queues in stable storage. If there is a message available,
it is returned to the receiver and RECEIVE terminates. If there is no
message available and the call is asynchronous RECEIVE terminates and the
receive continues without having received a message. In a synchronous
call the sender remains blocked while SEND terminates and SUPPORTER
performs the detection of the event to resume the receiver (either a
timeout or an appropriate message arriving for the receiver). A WAKER
task bundles a response and routes it to a waiting receiver.

The MSG STATUS task returns the status of a message that is retrieved
from a local copy of the message (if there is one), otherwise the status
is returned from a remote copy.

One facet of the MTM not depicted in Figure 1-12 concerns the routine
acknowledgement of events between MTMs regarding the routing of message
copies. This is MTM Controller to MTM Controller communication via Kernel
remote calls and responses. Some of the communicationz cause interactions
with SUPPORTER (i.e. such an acknowledgement for a message copy sent to a
remote host). Another interaction occurs when the PMQ is notified by its
MTM Controller of incoming notices of message availability for receivers
on that host. When a copy of a message is required on a host where no
such copy exists a request is made to a remote host that has a copy which
causes a message copy to be routed to the requesting host. Such
interactions occur between MTM Controllers and are necessary for the
smooth functioning of the operations of the MTM.

1-39

CIO

0 C

.20

00

0-6

IC c

1-40

..... .. .

an

C.,C

cc Z

Q 2n

on 0
0) 0 m

EU h.. w (Ui

0. UC)) 0 A

o . 2
z ow

0E

h.

co Q) 0

O

1-41

RPC Major Components and Data Structures
They Interchange

Kernel Procedures I_ . _

I Calls & Call I
I Responses OB.
L_

Call Handlers Service
(one for each type) Packages

r!
Messages &

Message AcksL..

Network Handler

Packets &
Packet Acks

Network Hardware Data Flow "

Control Flow

Major Components and Data Structures of RPC

FIGURE 1-4

1-42

Simple Object Stable Object
Kernel Procedures Kernel Procedures

Objects& Type UID - Objects
XtendeaUIO I Directory XmIeaUIDL - J 1 L

Utility Pkgs.

SimpleDirectory 1. Type Manager Stable Directory
(one per type) Map (one per type)

r 2. Free Simple r - -- ------ "I
Objects I Storage Objects. I

-ncedUtDs Xtnded._UlDs

Sec Storageddr 3. Free Stable I Addr

JStorage - --

4. Device to

Controller Map
Sets of Request - - Sets of Request

Handlers (one set per Handlers (one set per
type per operation) type per operation)

t I
aeuCaretul Caeu

r - Get Put
I Ob!ect Sec I

Store Addr -------
efu

I,, Secondary Storage Device Controllers

Figure 1-5
Object Storage and Retrieval:

Data and Control Flow

1-43

,L...

UDMonitor

U I D.,Generat ion Task

Tie Recalla
L---- Tjimer ''L Ere L Reminder

Net Tranceiver Task

Ethernet Controller

UID Generation and Site Recovery Architecture

FIGURE 1-6

1-44

a -r
JR Ch

m- E- M

41 43 2L -

z JE

C06a

4 3 /

463

I i I - I--w

3 lp

- It

4 In
C.) -

CLL

44n
=o

433

L9L

CL.o

1-4

w IS

0 ~ CL, u

co a -
0j c

= S-

0L
'IL

e 1

1-46

Type Manager Architecture

TM-TO-PI

C--CTM-To-imer

Tm E ConnoofonTo-imer Servers-oPM

TM TM-Databass
COTOLE Oueue, Oboocs IServerso-PrA-PS

Poad of Servrs

TMIA-ToRouter

Figure 1-9

1-47

CREATE

USER-DELETE
Symbolic

PROCESS----------------- ADD Name
REMOVE Manager

LOOKUP

CREATE - Create a new context object
DELETE - Delete an existing context object
ADD - Add a new name = > UID mapping
REMOVE - Remove an existing name - > UID mapping
LOOKUP - Return the UID associated with a name

Figure 1.10. User Logical View

Local Host

Use SNM ControllerUser".

Process

; N Operation SNM Cl

Interface Processes Handler

Host Kernel n

Operation Switch

To Remote
Hosts

Figure 1-11. SNM Architecture

1-48

. User

MTM-Interface,

Operation
Request

Operations Operation
Results Results

After Wait .MTM.Controller

Send Receive MSG-Status

' kr
Supporter Process Message

Message Object
SQueue

Figure 1.12. Components of Message Management

1-49

Chapter 2

KERNEL DESIGN

2.1 INTRODUCTION

This document presents the design of the ZEUS kernel. It describes the
mechanisms necessary to implement the kernel interface of section 1.2.1.1 of
the guidebook. It also is an elaboration of the system design overview of
section 1.3.2 of the guidebook.

The environment consists of a cluster of hosts connected by a CSMA/CD
network with reliable broadcast. A host may possess secondary storage.

The kernel is accessed by the type managers on a host. To ensure type
transparency, all objects or calls passed as parameters to the kernel are
converted to bit strings. It is assumed that the type managers import
interface packages that will convert objects into bit strings and vice versa.
The kernel has some data types that are accessible to type managers. Chief
among these are the unique identifier, the extended unique identifier, and, as
mentioned before, the message and object string types.

The goals of the kernel are:

1. Quick execution of kernel procedures.

2. Transparency to permit easy integration of new type
managers.

3. Flexibility to permit replacement of storage management

strategies and communication protocols.

4. Simplicity to permit easy modeling.

2.1.1 Kernel Interface

This section provides the reader of this document an overview of the
kernel. The kernel provides three services that are easily separable for
reasons of manageability. To ensure that the reader does not lose sight of
the big picture, this document presents each one of these three services
individually. This section outlines the entire kernel and the reader is
encouraged to turn back to this section as often as is necessary.

Each of the three functions (RPC, storage, and UID generation) have a set
of procedures in the kernel interface. These procedures are invoked by the

2-1

type managers. The kernel functions have a set of utility packages which they

may share with each other. The kernel functions are accomplished by a set of

ADA tasks.

The kernel interface describes the visible portion of the kernel and
consists of kernel visible functions and data types. The kernel interface is

separated into the three sets of procedures, one for each of the kernel
functions. The kernel interface is described informally in section 1.2.1.1 of
the guidebook. The kernel interface is graphically presented in Figure 2-1.
The following pseudo ADA code details the sections in this document where
descriptions of the interface may be found.

PACKAGE kernel IS

--RPC functions, section 2.2.1
PROCEDURE make call; PROCEDURE make resp;
PROCEDURE killcall; PROCEDURE keep-call;
PROCEDURE get_call; PROCEDURE getresp;
PROCEDURE c status; PROCEDURE r status;

--RPC data types, section 2.2.1
--visible types

TYPE hostid; TYPE xtnded uid;
TYPE message; TYPE call status;
TYPE resp status; TYPE deloption;
TYPE killstatus; TYPE uid;

--private types
TYPE incrnge; TYPE seqrnge;
TYPE uid;

--Object Management functions, section 2.3.1
PROCEDURE get_obj; PROCEDURE put_obj;
PROCEDURE delobj; PROCEDURE stable get;
PROCEDURE stableput; PROCEDURE stabl_del;

--Object Management data types, section 2.3.1
--visible types

TYPE simpl_status; TYPE stablstatus;
TYPE objstring;

--UID generation functions, section 2.4.2
FUNCTION get_uid; FUNCITON buildxt;
FUNCTION givehost_hint; FUNCTION change_hint;

--UID generation data types, section 2.2.1
--defined were uid, xtndeduid, host_id.

END PACKAGE kernel

2-2

KERNEL DESIGN

2.1.2 The Kernel Structure

The kernel consists of a task structure, some of which is shared by the
different kernel functions. The kernel body outline presented here points out
the major components and indicates the relevant sections of this document
where they can be found. An overview of the kernel structure can be found in
section __ of the guidebook.

PACKAGE BODY kernel IS

--the bodies of the RPC, object management and UID
--generation procedures.
--RPC, section 2.2.5
--Object Management, section 2.3.8
--UID generation, section 2.4.3.1
--internal types within the kernel.
--RPC, section 2.2.7.2; UID generation, section 2.4.3.3

TYPE pkt-resp; TYPE pktclass;
TYPE pktinfo; TYPE ballast;
TYPE packet; TYPE nt state;

--object management, section 2.3.4.1
TYPE secst addr; TYPE smpdirentry;
TYPE stb dir_entry; TYPE dstate;

--utility packages in the kernel
PACKAGE type_mgrmap; --sections 2.2.2.1, 2.3.3.1
PACKAGE message_storage; --section 2.2.2.2
GENERIC PACKAGE thebuffer; --section 2.2.7.3
PACKAGE packet_mgr; --section 2.2.7.4.1
PACKAGE rec_pktmgr; --section 2.2.7.4.2
PACKAGE free storage; --section 2.3.3.2
PACKAGE stabl free; --section 2.3.3.3
GENERIC PACKAGE themap; --section 2.3.4.2
GENERIC PACKAGE the_set; --section 2.4.3.3

--task types used
--RPC

TASK BODY call handler, --section 2.2.4
PACKAGE send call; --section 2.2.3.2
PACKAGE receivecall; --section 2.2.3.2

END
TYPE ch_ptr IS ACCESS call handler;

--storage management
--request handlers, section 2.3.4

TASK TYPE smp_get; TYPE smpgetptr;
TASK TYPE smpput; TYPE smpput_ptr;
TASK TYPE smp_del; TYPE smpjdelptr;
TASK TYPE stbget; TYPE stb_get_ptr;
TASK TYPE stbput; TYPE stbput_ptr;
TASK TYPE stbdel; TYPE stbdel_ptr;

2-3

--directory, sections 2.3.6.1, 2.3.6.2, 2.3.6.3;
TASK TYPE smpdir; TYPE smdptr;
TASK TYPE sbd dir; TYPE sbdptr;

--device controllers

TASK TYPE dctl; TYPE dctl ptr;

--task definitions
TASK net tranceiver; --sections 2.2.7.3, 2.4.3.3
TASK send driver; --section 2.2.7.4.1
TASK receive driver; --section 2.2.7.4.2
TASK uid monitor; --section 2.4.3.2
TASK uidgeneration; --

END PACKAGE BODY kernel;

The above definitions are not syntactically correct ADA, but the purpose
is to give the reader a central point from which to connect all the parts of
the kernel.

Some of the modules above contain other packages that are defined inside
them. Typically, these are the task types whose instances need to manage data
separately.

The figures 2-3, 2-4 and 2-5 give a graphic overview of RPC, object
storage, and uid generation functions, respectively.

2.2 THE REMOTE PROCEDURE CALL STRUCTURE

Object invocations are made from one type %anager to another. The source
type manager may or may not be on the same host as the destination type
manager. The kernel's responsibility is to deliver the call and the response
to the call from the source to the destination and vice versa, respectively.
This does not preclude the invocation of a type operation at the same type
manager on the same host from passing through that host's kernel. Thus, the
definition of Remote Procedure Call (RPC) includes the notion of the
information of type operations on the same host.

A remote procedure call is accomplished as follows:

1. The source type manager executes a 'make call' operation
at the kernel interface. The kernel returns a unique
identifier for the call.

2. The kernels of the source and destination machines use
their internal structure to deliver the call to the
destination machine kernel.

3. The kernel of the destination machine returns an ack for
the call to the kernel on the source machine after the
destination type manager issues a 'getcall' operation
at the kernel interface.

2-4

KERNEL DESIGN

4. On completion of the type operation, the destination
type manager issues a Imake_resp' operation at the
kernel interface.

5. The kernels of the source and destination machines use
their internal structure to deliver the call to the
source machine kernel.

6. The kernel of the source machine returns an ack for the
call to the kernel of the destination machine after the
source type manager issues a 'getresp' operation at the
kernel interface.

Figure 2-2 is a graphical picture of the messages exchanged for the RPC.

A design constraint imposed on the kernel is that it must know nothing
about the structure or operations of the type managers. To achieve this. one
must accomplish control independence and data independence. Control
independence is achieved by permitting calls to be made from the type managers
to the kernel only. This forces the use of four calls so that the kernels and
type managers at the source and destinations are blocked for as little time as
possible. Of course, this differs from strict procedure call semantics. To
achieve data independence, all callers of a type manager import an interface
to pack calls to that type manager into bit strings, and to unpack responses
from that type manager from bit strings into proper values. Similarly, a type
manager has an interface that converts bit strings into type operation calls
and response into bit strings.

2.2.1 The Components of the RPC Function

The RPC function interfaces to the type manager via a set of kernel
procedures. Within the kernel these procedures make entry calls to tasks
called call handlers. At a given kernel there exists one call handler for
each object type manager on that host. Each call handler monitors all the
outstanding calls from and to its type manager.

The kernel procedures detect local calls and directly pass information to
both the source and destination type manager call handlers. In effect the
kernel procedures simulate the network. Thus for local calls;

1. The make call procedure would deliver the call to the
source call handler and then deliver the call to the
destination call handler.

2. The makeresp procedure would deliver the response to
the destination call handler and then to the source call
handler.

3. The givecall procedure would get the call from the
destination call handler and then give a call ack to the
source call handler.

2-5

4. The give resp procedure would get the response from the
source call handler and then give a response ack to the
destination call handler.

For remote calls, the call handlers are polled by the network handler for
calls, call acks, responses, and response acks. The network handler also
re-assembles calls, call acks, responses, and response acks, and delivers them
to the appropriate call handler. The network handler consists of a send
driver and receive driver to handle packetizing and reassembly of messages.
The actual network interface is a task called the net tranceiver which handles
packets from and to the ethernet controller. Tis task also sends and
receives packets to and from the uidgeneration task.

2.2.2 Comparison to Another Effort

Birrell and Nelson have implemented RPC .[1] at Xerox PARC. They use a
stub in the caller and callee. Thus, a type manager or process would have to
import a stub for each type manager it accesses. In addition, the type
manager would have a stub to handle calls made to it.

The stubs together comprise the call handler and the send and receive
driver in the ZEUS design. The interfaces pass their addresses to each other
so that the kernel can directly call them. All this makes for a faster
implementation, but it is not as general as ZEUS.

2.2.3 Externally Visible RPC Procedure Calls of the Kernel

The externally visible parts of the kernel that relate to the RPC are
declared here. These will include the types visible and the procedures
visible to the type manager.

PACKAGE kernel IS
--define uids, extended uids which are used by the type
--managers to identify objects and remote calls
TYPE uid IS LIMITED PRIVATE;
TYPE host id IS RANGE 0..1023;
TYPE xtnded uid IS

RECORD
host hint; host id;
typeuid, instanceuid, versionuid; uid;

END
--a message is an array of bits
TYPE message IS ARRAY (RANGE < >) OF BOOLEAN;

--define the status values that are returned by
--calls to the kernel. There is a different status
--type for calls and responses to calls.
--call status can be
--not dlvred - the status of a call that has not
-- reached the destination type manager
--dlvred - call reached destination type manager
--resp_here - call's response has arrived

2-6

KERNEL DESIGN

--does not exist - object'addressed does not exist
--rcvr failed - the destination host is down
--wait buffer full - no space locally; hold call
TYPE callstatus IS (not dlvred, dlvred, resphere,

does not exist, rcvr failed,
wait-buffer full);

--respstatus is the status of a response to a call
--not reached - response not reached source type manager
--reached - response reached source type manager
--accepted - response accepted by source
--sndr failed - the source host is down
--wait-buffer full - no space locally; hold response
TYPE respstatus IS (not reached, reached, accepted,

sndr failed);

--del_option permits a type manager to specify
--damage containment should the source or
--destination host of a call failed. The options are:
--failure revoke - the call must be cancelled if
-- the source or destination fails
--failure continue - the call must continue despite failure
--failure inform - the caller or callee's type manager
-- must be informed of the failure
TYPE deloption IS (failure revoke, failure continue,

failure-inform);

--kill status returns the status of a call
--whose deletion the type has requested
--dead all over - call deleted
--not dead yet - call still not deleted
--does not exist - no call exists
TYPE kill-status IS (deadallover, not_deadyet,

doer not exist);

--****put in the types for object storage and
--****uid generation over here.

--here start the visible functions of the kernel
--each function is described along with its parameters
--calls to these functions may be delayed because
--the kernel may be busy.

--make call is invoked in order to make a remote
--procedure call. Its parameters are:
--typ_uld - uid of the type manager making the call
--source, destination - xtnded uids of the caller and callee
--thecall - a call as a string of bits. This will
-- contain encoded in it the process
-- xtnded uid, the principal xtnded uid
-- the call and the parameters of the call
--call option - the del_option for this call

2-7

--iall uid - the uid assigned to this call
--the status - the status of the call

PROCEDURE make call (typ_uid : IN uid;
source, destination : IN extnded uid;
the call : IN message; call option : IN deloption;
call uid : OUT uid; the status : OUT call status);

--makeresp is invoked by the callee in order to
--return a response to a call. Responses must be
--returned so that a caller knows when the
--callee has terminated. The parameters are
--type_uid - uid of the type manager making the response
--theresp - a message that contains in it the response
-- to the call
--respoption - the deloption for the response
--the status - the response status

PROCEDURE makeresp (type_uid : IN uid; the_resp IN
message; source, destination : IN xtendeduid;
call uid : IN uid, respoption IN del_option;
the-status : OUT respstatus);

--kill call is invoked by the caller or the callee
--to delete a call. It may be invoked independently
--or when the deloption is failure inform and
--the type manager is informed of a call failure.
--The parameters are:
--call uld - is the uid of the call
--type uid - is the uid of the type manager
--the status - is the kill status of the call.

PROCEDURE kill call (call uid; typ_uid : in uid;
the-status : out kill-status);

--keep_call lets the type manager tell the kernel to
--preserve the call in spite of failure. The
--parameters are:
--the uid - call identifier
--typuid - type manager uid
--the status - status of the call

PROCEDURE keep_call (call uid, typeuid : IN uid;
the-status : OUT kill-status);

--getcall and getresponse get calls directed
--to the type manager and responses to calls
--made to the type manager respectively.
--The parameters for getcall are:
--the uid - call identifier
--type_uid - type manager uid
--the call - call text
--source - caller's identity
--destination - destination's identity

2-8

KERNEL DESIGN

--The parameters for getresp are:
--the uid - call identifier
--typeuid - type manager uid
--the resp - response to call

PROCEDURE getcall (typuid : IN uid, the uid : OUT uid;
the call : OUT message; source, destination : OUT
xtnded uid);

PROCEDURE get_resp (typeuid : IN uid; the uid : OUT uid;
the resp : OUT message);

--c status and r status return the status
--of a call or a-response message to the caller
--and the callee type managers. The parameters are:
--the call - call identifier
--typuid - type manager uid
--the status - call status and resp_status for
-- c status and r status respectively.

PROCEDURE c status (the call, typuid : IN uid;
the staTus : OUT call_status);

PROCEDURE r status (the call, typuid : IN uid,
thestatus : OUT resp_status);

--***here follow the procedure headers for
--***access to object storage and uid
--***generation.

PRIVATE

--here follow the declarations of the limited private
--types uid and xtnded uid.

TYPE incrnge IS RANGE 0..(2**32-1);
TYPE seqrnge IS RANGE 0..(2**22-1);
TYPE uid IS

RECORD
origin host : hostid;
incarnation : incrnge;
sequence seqrnge;

END RECORD;
--*** here are declared other private types.
END PACKAGE kernel;

2.2.4 The Utility Structures Within the Kernel

2.2.4.1 Mapping to Call Handlers

The next part of the RPC design is to describe the means of transfer of
information inside the kernel. The kernel, as was mentioned earlier, consists

2-9

of one call handler for each type manager and a network handler. The mapping
between type manager and call handler is achieved by a package that maps
(type) uids to access variables of the call handler task type. This package
is called the type_mgr_map.

PACKAGE type_mgr map IS
function getchlr (typ uid : IN uid) returns
chptr;

--This returns a pointer to the call handler task

PROCEDURE instlchlr (typ_uid IN uid: thchlr: IN
ch_ptr);

--sets up an entry in the map for the call
--handler. The package insures that only one
--insertion is occurring at a time.

PROCEDURE delete chlr (typ uid : IN uid);

--deletes an entry from the map. This call
--must exclude other calls.
--The package will internally use a task
--to ensure mutual exclusion between
--the different calls.

--*Insert the calls that give access to storage
directory tasks.

END PACKAGE typemgrmap;

2.2.4.2 The Message Storage Manager

The next set of structures that need to be defined are the tables that
store calls and responses to calls as well as tae state information related to
calls. There are a number of options possible. Ideally, storage of calls
should be centralized so that storage devoted to calls and software to
manipulate them would be minimized.

This design chooses to do the following:

1. Store the messages in a separate structure.

2. Store call and response to call state information in the
call handlers.

3. The message storage structure would provide pointers to
the messages that are stored along with the message
state information. Externally the pointer is a limited
private type, but internally it is an integer subtype.
Thus access to a message is rapid.

2-10

KERNEL DESIGN

The visible part of message storage is given below:

PACKAGE messagestorage IS
TYPE msgaccess IS LIMITED PRIVATE;
FUNCTION putmsg (the msg : IN message;

the id IN uid) RETURNS
msgaccess;

FUNCTION get_msg (the_ptr : IN msgaccess call uid
IN uid) returns message;

PROCEDURE delmsg (theptr : IN msg access call uid
IN uid);

--the purpose of the above routines is obvious.
--the install and delete functions exclude
--all other functions.

END PACKAGE message_storage;

2.2.5 The RPC Protocol

The state information of calls to and from a type manager is presented
next. A call consists of a number of stages and it is best to break it up
into these stages and analyze each stage for its information requirement.
Calls from a type manager are considered first.

1. The call is delivered to the call handler.

2. The network handler sends the message and delivers the
callee type manager's acknowledgement to the call
handler.

3. The network handler receives a response to the call and
delivers it to the call handler.

4. The type manager accepts the response and the call
handler acknowledges the response to the network handler
and thus the callee's type manager.

Calls to a type manager have the following sequence.

1. The network handler receives a call and passes it to the
call handler.

2. When the type manager accepts the call, the call handler
sends an acknowledgement to the caller.

3. The type manager delivers a response to the call, to the

call handler.

2-11

4. The network handler takes the response, delivers it to
the caller, and receives an acknowledgement of the
response.

2.2.5.1 State Information Required to Support the RPC Protocol

For the outgoing calls the information requirements for each state are as
follows:

State 1: Call Delivery

i) Call uid.
ii) Call text (the pointer is stored in the call handler).

iii) Source and destination extended uid.
iv) Status of call (initially not delivered or receiver

failed; finally delivered or object does not exist).
v) Delete option specified for the call.

Stage 2: Call in progress

i) Call uid.
ii) Source and destination extended uid.

iii) Status of call (initially delivered, finally either
receiver failed or response here).

iv) Delete option specified for the call.

Stage 3: Call completed

i) Call uid.
ii) Response message (pointer).

iii) Source and destination extended uid.
iv) Status of call (stays at response here).
v) Delete option specified for the call.

A status of receive failed or object does not exist, may result in the
call being aborted by the caller.

The information requirements for each stage of call handling are as

follows:

Stage 1: Call reception

i) Call uid.
ii) Call text (pointer to the text).

iii) Source and destination extended uids.
iv) Status of response (initially as not reached but may

change to sndr failed).
v) Delete option for the call.

Stage 2: Call in progress

i) Call uid.
ii) Source and destination extended ulds.

2-12

KERNEL DESIGN

iii) Status of response (not reached, sndr failed).
iv) Delete option for the call.

Stage 3: Response Dispatch

i) Call uid.
ii) Response text.

iii) Source and destination extended uids.
iv) Status of response (initially not reached or sndrfailed,

finally reached).
v) Delete option of response.

2.2.5.2 Packages to Support Call State Information Management

From the above analysis it is clear that two packages are necessary in
each call handler: one for calls sent, the other for calls received. Each
package will have a set of specialized functions that install calls, delete
calls, and update the status of the call.

PACKAGE send-call IS

--iastall sets up a call, its parameters are
-- I. Call uid
--2. Call text pointer
--3. Source and destination extended uid
--.4. Delete option

--The status of an installed call is not delivered.

procedure install (the uid : in uid; the-call: in
msgaccess; source, dest : in xtndeduid;
the_opt : deleteoption):

--call dlvred updates the call table for a
--call that has been accepted by the
--destination's type manager parameters are:
--Call uid
-- A side effect is that the msg access
--pointer is deleted.

PROCEDURE call dlvred (the uid : IN uid);

--call answered installs a pointer to a
--response for a call. It also updates
--the call status to response-here.
--Parameters are:
--1. Call uid.
--2. Response text pointer.

PROCEDURE call answered (the uid : IN uid;
theanswer : IN msg_access);

2-13

--select next. selects the next call whose size is
--less than or equal to cr 'nd to be sent. In
--effect this is the dispatcher of calls.
--The parameters are:
--1. Bound on call size.
--2. Call uid.
--3. Call text pointer.
--4. Call source and destination.
--5. Call delete option.
--Note: this procedure will not select a local call.

PROCEDURE select next (cr bnd : IN INTEGER the uid
OUT uid; thecall : OUT msgaccess; source,
destination : OUT xtndeduid; theopt : OUT
deloption);

--host failed is part of damage containment at
--the kernel level. It is invoked when a
--host fails. It processes all the calls
--made to the failed host and deletes
--those calls with a delete option
--equal to failurerevoke.

PROCEDURE host-failed (the host : IN host id);

--remove call. Removes a call entry from the
--call table. This routine is invoked by the
--type manager either to remove a call that
--has been responded to or to remove
--a call whose callee host has failed.
--The parameters are:
--1. Call uid.
--2. Call text pointer.
--3. Response text pointer.

PROCEDURE remove call (the uid : IN uid;

c_ptr, rptr : OUT msgaccess);

--give status returns the status of a call

FUNCTION givestatus (theuid IN uid)
RETURNS callstatus;

--give_response returns response to some call
--it selects responses by some algorithm.

PROCEDURE give_response (the uid : OUT uid; the-call
OUT msg_access);

--the package internally requires no
--mutual exclusion on invocations since
--all its routines are invoked in the
--call handler.

2-14

KERNEL DESIGN

--giveack returns the uids of a response that
--has been received

PROCEDURE give_ack (the uid : OUT uid; the clr,
thecle : OUT xtnded-uid);

END PACKAGE sendcall;

The second package handles calls received. It has similar functions to
the package send call. The response status in this package for a call will be
not-reached until the response is issued and delivered to the caller's type
manager.

PACKAGE receive call IS

--put_call installs a call in the table.

PROCEDURE put call (the uid : IN uid; thecall IN
msgaccess; source, destination: in xtndeduid)

--call dlvred removes the call from the table.
--The uid, source and destination are left in and
--the status become dlvred.

PROCEDURE call dlvred (the uid : OUT uid; thecall;
OUT msgaccess; source, destination : OUT
xtndeduid);

--responsegiven puts the response text pointer
--into the table.

FUNCTION responsegiven (the uid IN uid;
the answer : IN msg_access; resp_option
IN deloption) RETURNS resp_status;

--select next releases a remote response provided it
--is less than the value of cr bnd.

PROCEDURE salect next (crbnd : IN integer; the uid
OUT uid; the txt : OUT msg_access;
source, destination : out xtnded uid;
the_opt : OUT del_option);

--host failed has the same function as in
--package send call.

PROCEDURE hostfailed (thehost IN hostid);

--responseacked changes the status of the
--call entry to accepted.

2-15

PROCEDURE response_acked (the-call IN uid);

--response state returns the status of the response.

FUNCTION responsestate (the-call : IN uid)
RETURNS resp_status;

--selects next remote call to be acknowledged.

PROCEDURE give_callack (the call : OUT uid;
the clr, the cle OUT xtnded uid);

END PACKAGE receive call;

2.2.6 The Call Handler

The call handler is a task type that is declared within the kernel.
Each call handler contains an instance of send-call and receive call. An
instance of this type is generated for each type manager. Some of the entry
points of this task are accessed by the visible procedures of the kernel,
others are invoked by the network handler. Each of the entry points of the
call handler, when invoked, will call some procedures in the call handler's
send call and receive call packages to manipulate the state information about
the call. This interaction is summarized in Figure 2-3. In addition, Figures
2-4 and 2-5 present this information in more detail.

The entry points in the call handler are similar in function to the entry
points of the kernel. The exceptions are the entry calls for the network
handler which give and receive calls.

TYPE ch_ptr IS ACCESS callhandler;
TASK TYPE call handler is

ENTRY mc (c uid IN uid; c data IN msg_access;
cfrom, c to IN xtndeduid;
c_opt : IN deloption; cstat OUT call-status);

--mc receives an entry for the sendcall
--table of this call handler.

ENTRY mr (cuid : IN uid; v data IN msgaccess;
c_from, c to IN xtnded uid;
r_opt : IN del-option; r-stat OUT resp_status);

--mr enters as response to a call.
--it uses the receive call package of
--the call handler.

ENTRY klc (c uid : IN uid; c stat : OUT
killstatus; c_ptr, rptr : OUT msgaccess);

--klc kills a call issued by this type manager.

ENTRY kpc (c uid : IN uid; cstat : OUT kill-status);

2-16

KERNEL DESIGN

--kpc instructs the call handler to
--keep a call despite failure at the
--receiver host.

ENTRY rs (c uid : IN uid; cstat : OUT resp_status);

--response status.

ENTRY cs (c uid : IN uid; c stat : OUT call-status);

--call status
ENTRY Tr (c-uid : OUT uid; r text : OUT msg_access);

--returns a response to calls to the type mgr.

ENTRY tc (c uid : OUT c text : OUT msgaccess;

c from, c-t: : OUT xtnded_uid);

--returns a call to the type manager

ENTRY gtcr (c uid : IN uid; cr text IN msg_access;
c from, cto : IN xtnded uid);

--gives a call or response to this call handler.

ENTRY gtack (cr ack IN uid; cfrom, cto
IN xtndeduid);

--gives an acknowledgement for a call or
--response message from this call handler.

ENTRY lc (c uid : IN uid; cr text : IN msg_access;
c form, cto : IN xtnded_uid);

--local call to destination call handler.
ENTRY lr (c uid : IN uid; cr text : IN msg_access;

c_from, c to : IN xtnded_uid);

--local response to source call handler.

ENTRY icack (c_uid : IN uid; cfrom, cto : IN xtnded-uid);

--local call ack to source call handler.

ENTRY lrack (c_uid : IN uid; c_from, c-to : IN xtnded uid);

--local response ack to destination call handler.

ENTRY gvcr (crbnd : IN integer; OUT uid; cr text
OUT msg_access; crfrom, cr to : OUT xtnded uid;
c_opt OUT deloption);

2-17

--gives a call or a response to the
--network handler.

ENTRY gvack (cr ack : OUT uid; c_from, cnto : OUT

xtnded uid);

--returns an acknowledgement to a host.

ENTRY host-down (the host IN host id);

--tells of a failed host. used for damage
--containment.

END TASK call-handler;

TASK BODY call-handler IS

--count of calls and responses to be delivered
--to the type manager.

ready_calls, readyresp INTEGER := 0;

--calls and responses to be acked.

not ackedcalls, notackedresp : INTEGER := 0;

--count of calls and responses to be sent out

out calls, out_resp;
out-who : boolean := true;
failed id : host id := 0;
BEGIN

LOOP --endless loop
SELECT
--calls made by this type manager
ACCEPT mc(c-uid, c data, cfrom, c_to, copt, cstat) DO

send call.install (c uid, cdata, cfrom,
c to, c opt, c stat)

out calls out-calls + 1;
END;

OR
--accept responses to calls.
ACCEPT mr (c uid, r data, cfrom, cto, r_opt,

r stat) DO
r sEat := receive call.response_given

(c uid, rdata, ropt);
IF r stat not reached THEN
outresp out_resp + 1;

ENDIF
END

OR
--accept kill call entry.
ACCEPT klc (c-uid, cstat, cptr, r ptr) do

2-18

KERNEL DESIGN

send call.remove call (c uid, c ptr, rptr);
IF (call-ptr = 0 AND resp_ptr = 0) THEN
--message deleted but no response.
c stat := notdead yet.

ELSE c stat := dead all over;
ENDIF

END
OR
--accept keep call entry.
ACCEPT kpc (c uid, c_stat) DO

IF send call.givestatus (c-uid) I= does not exist
THEN c stat not deadyet
ELSE c-stat : does not exist

ENDIF
END

OR
-- response status
ACCEPT rs (cuid, c_stat) DO
cstat := receive call.responsestate(c uid);

END
OR
--call status
ACCEPT Cs (cuid, c stat) DO
cstat := send-call.givestatus (cuid);

END
OR
--accept requests for responses from type mgr.
WHEN ready resp >0 ==>

ACCEPT tr (c uid, r_text) DO
sendcall.give_response (cwuid, rtext);
readyresp :z ready resp - 1;
notacked-resp := notacked resp + 1;

END
send call.removecall (c_uid, rtext);

END
OR
--accept request for calls from type mgr
WHEN readycalls >0 =z>

ACCEPT tc (c uid, cr text, c from, c to) DO
receive call.call dlvred (c_uid, crtext,
c from, c to);

ready_call - readycall - 1;
not acked call := not acked call + 1;

end;
OR
--accept a new call or response from network handler.
ACCEPT gtcr (c_uid, ortext, cfrom, c to) DO
IF c uid. originhost = this host THEN
--this is a response
send call.call answered (cuid, or text);
readyresp :r ready resp + 1;

ELSE

2-19

--this is a call.
receive-call.putcall (c-uid, cr text, cfrom,

c-to);
ready_calls := readycalls + 1;

ENDIF;
END;

OR
--accept an acknowledgement.
ACCEPT gtack (crack, c from, c to) do

IF c ack.origin host = this-host THEN
--this is a call acknowledgement.
send call.call dlvred (crack);

ELSE
--this is a response acknowledgement
receive-call.responseacked (cr-ack);

ENDIF;
END;

OR
--accept a local call.
ACCEPT lc (cuid, cr text, c_from, c to) DO

receive call.putcall (cuid, cr text, c-from, c_to);
ready_calls := ready calls + 1;

END;
OR

--accept a local response.
ACCEPT lr (c uid,cr_text, c from, c to) DO

send call.call answered (c_uid, cr text);

ready_resp := ready_resp + 1;
END

OR
--accept a local call acknowledgement.
ACCEPT icack (cuid, c from, cto) DO
receivecalldlvred (c uid);

END
OR

--accept a local response acknowledgement.

ACCEPT lrack (cuid, c from, c to) DO
receivecallresponse acked (c_uid);

END
OR

--accept a local response acknowledgement.
ACCEPT lrack (cuid, c from, c to) DO

receive call.responseacked (c_uid);
END;

OR
--accept a request to give out a call or response.
--out who decides which of calls or responses it's
--turn it is.
WHEN out calls + outresp >0 ::>

ACCEPT gvcr (cv_bnd, c_uid, cr_text, crfrom, cr to,
c opt) DO

IF Tout-who AND outcalls > 0) OR

2-20

KERNEL DESIGN

(NOT out who AND outresp = 0) THEN
send call.select next (cr bnd, c uid, cr text,

cr -from, cr_to, copt);
out calls := out calls - 1; out who := FALSE;

ELSEIF (NOT out who AND outresp 0 0) + OR
(out who AND out call = 0) THEN
receive call.select next (cr.bnd, c-uid, cr-text,

cr from, cr_to, c opt);
out resp := out_resp - 1; out-who := TRUE;

ENDIF;
END;

OR
--accept a request to give out an ack.
WHEN (not acked calls + not acked_resp > 0) ::>

ACCEPT gvack (cr_ack, c_from, cto) DO
IF notackedresp >0 THEN

send call.giveack (crack, c_from, c_to)
not acked_resp := notacked_resp - 1;
ELSE
receive_call.givecall ack (cr-ack, cfrom,
c to)

not acked call := not acked call - 1;
ENDIF

END;
OR
--host failure
ACCEPT host down (the host) DO

failed id := thehost;
END;

END select;
IF failed id /z 0 THEN

send call.host failed (failed id),
receive call.host failed (failed_id);

ENDIF
failed id := 0

END LOOP;
END; TASK call handler;

The call handler task is the end to end protocol handler for the ZEUS
system. Other than gtcr, gtack, gvcr, gvack, and host_down, the call handler
entry points are accessed by the kernel interface functions described earlier.
In addition to the entry calls, these functions access some of the other
packages. It must be mentioned here that more than one activation of a kernel
function can exist simultaneously.

2.2.7 The Kernel Functions for the RPC

Code outlines for each kernel function is presented next after which the
type manager interface tasks to receive calls and responses are presented.
Following that the network handler design and implementation is presented.

2-21

PROCEDURE make call (typuid IN uid; source, destination
IN xtnded uid; the call IN message;
calloption IN del option; call uid : OUT uid;
the status OUT call status);

the hndlr ch_ptr, --call handler pointer
the ptr msgaccess; --message pointer

begin
--get uid for the call

call uid := get_uid;
--put message :nto message database
--first check Lhat destination is up.
IF rec_pack.hostup (destination.hosthint) THEN

the status := NOT dlvred;
the ptr := message_storage.put_msg (thecall,

call uid);
--put the message into the callhandler.
IF theptr > 0 THEN

the hndler := type_mgrmap.get_chlr (typuid);
the-hndler.mc (calluid, theptr, source,
destination, calloption, the status);

ELSE the status := wait bufferfull;
ENDIF

--check for local call
IF source.host hint = destination.host hint THEN

the hndler := type_mgr_map.getchlr (destination.typeuid);
the-hndlr.lc (calluid, the ptr, source, destination);

ENDIF
ELSE

the status := rcur failed;
ENDIF;

END make call;

The above routine uses a procedure host up and a function get_seq. The
former is part of a package that the kernel uses to

detect host failures while the latter is part of a package the kernel uses to
get sequence numbers. Both these packages are specified later.

procedure make_resp (typ_uid : IN uid; the_resp IN
message; source, destination IN xtnded uid;
call uid : IN uid; resp_option : IN deloption;
the status : OUT resp_status) IS
the ch : ch_ptr; --call handler
the ptr : msg_access; --message pointer.

BEGIN
--put response in database.
IF recpack.hostup (source.host hint) THEN

the status := not reached;
the ptr := message storage.putmsg (the_resp,
call uid);
IF the-ptr > 0 THEN
--insert response into call handler

2-22

KERNEL DESIGN

the ch := typemgrmap.getchlr (typuid);
the ch.my (call uid, the_ptr, source,
destination, respoption, the-status);

--check for local response
IF source.host hint = destination.host hint THEN

the ch :: type_mgrmap.get_chlr (source.typeuid);
the -ch.lr (calluid, theptr, source, destination);

ENDIF
ELSE thestatus :z wait bufferfull;
ENDIF;

ELSE
the status := sndr failed;

ENDIF
END makeresp;

The make resp and make call routines ar(very similar and use similar
packages. The mapping of type uid to call handler may be bypassed by making
the call handler points a limited private type visible from the kernel.

PROCEDURE kill call (call uid, typuid IN uid;
the status-: OUT kill-status) is

the-ch : ch_ptr;
in_msg, outmsg msg_access;

BEGIN
-get call handler and kill call
the ch := typemgrmap.get_chlr (typ_uid);
the ch.klc (calluid, the_ztatus, inPg, outmsg);
--delete messages from message storage
IF inmsg /= 0 THEN
messagestorage.delmsg (inmsg, call_uid);

ENDIF;
IF outmsg /= 0 THEN
messagestorage.delmsg (out_msg, call_uid);

ENDIF;
END kill call;

In the above procedure it can be ensured that only one message is deleted
by removing a call or a response once it is accepted by the type manager.

PROCEDURE keep_call (call uid, typuid IN uid;
the status : OUT kill-status);
thech ch_ptr;

BEGIN
--get call handler
the ch := type mgrmap.getchlr (typ_uid);
the ch.kpc (calluid, the status);

END keepcall;

The next two kernel interface routines getcall and getresp are similar.
They remove messages directed to the type manager.

2-23

PROCEDURE getcall (typ_uid : IN uid; the uid : OUT uid;
the call : OUT message; source, destination : OUT

xtnded uid) is
the-ch : chptr;
inmsg : msgaccess;

BEGIN
the ch := typemgr_map.getchlr (typ_uid);
the -ch.tc (the_uid, inmsg, source, destination);

--get the message.
the call := message_storage.get_nsg (inmsg, the uid);
--check if local call.
IF source.host hint = destination.host hint THEN
thech := typ_mgr_map.getchlr (source.typeuid);
the ch.lcack (the uid, source, destination);

ENDIF
--delete the message.
message_storage.delmsg (in_msg, theuid);

END get_call;

PROCEDURE get_resp (typuid : IN uid; the uid OUT uid;
tneresp OUT message) is
thech chptr;
outmsg : msg_access;

BEGIN
--get call handier.
the ch := type_mgr_map.getchlr (typ_uid);
the -ch.tr (theuid, out_msg);
--get the response and delete the message.
the_resp := messagestorage.get_msg (outmsg, theuid);
message_storage.del_msg (out_msg, theuid);
--check if local call.
IF source.host hint = destina'ion.host hint THEN

the ch := type_mgr_map.get chlr (destination.typeuid);
the-ch.lrack (the uid, source, destination);

ENDIF
END getresp;
The procedure bodies of c status and rstatus are similar because they

query the call handler about the call or response status.

PROCEDURE c status (thecall, typuid IN uid;
the status : OUT call status) IS

the ch: ch_ptr ; --call handler
BEGIN

--get call handler.
the ch := typmgrmap.get_chlr (typuid);
the ch.cs (the call, thestatus);

END c status;

PROCEDURE r status (the_call, typuid : IN uid;
the status : OUT respstatus) IS
the -ch : chptr; --call handler;

BEGIN
--get ca)l handler

2-24

KERNEL DESIGN

the ch := typmgrmap.get_chlr (typuid);
the-ch.rs (the call, the status);

END r status.

2.2.8 Tasks Within a Type Manager to Receive Calls and Responses

Asynchronously

As mentioned earlier, the type managers should set up tasks so that they
can receive calls and responses in an asynchroncus manner instead of waiting
for them. These tasks are declared inside the type manager, and will deliver
calls and responses to the main task of the type manager.

The get call task, for instance, performs the following loop. It first
makes a kernel getcall invocation. When the task receives a call it makes an
entry call to the type manager. It waits until the type manager accepts the
new call. When the call has been accepted the getcall task repeats the above
sequence. The get_response task obtains responses to calls in a similar
manner.

TASK gc_tsk IS

--no entries
TASK BODY gc_tsk IS
thetyp, the uid uid; the-call message;
svc, dest xtnded_uid;

BEGIN
the typ :- <type uid>;
LOOP
kernel.getcall (thetype, the uid, thecall, src,

dest);
tm.put call (theuid, thecall, src, dest);

END LOOP;
END gc_tsk;

2.2.9 The Network Handler

The networ'. handler sends and receives calls and packets for the kernel.
Its functions are to:

1. Poll each handler for calls, responses, or
acknowledgements to be sent. On receiving one of these,
the network handler packetizes it and sends it off
packet by packet over the ethernet controller. For
simplicity we assume that one message is being sent at
any given time. Timeouts are used to detect failures of
packet transmission.

2-25

2. Receive and assemble packets into calls and responses to
calls. Once a call or response is re assembled the
message is delivered to the proper type manager.

3. Receive and send packets that are signals to start
distributed uid incarnation field generation and host
recovery computations.

2.2.9.1 The Network Handler Architecture

The architecture of the network handler is a collection of tasks each of
which has a different function. The basic task is one which receives and
transmits packets. At any time, it interacts solely with one of the following
sets of tasks.

1) Send driver for packets.

2) Receive driver for packets.

3) UID generation task.

The packet tranceiving task has two interrupts from the ethernet
controller which are rdytosnd and rdy_torec. The former takes a packet to
send on the ether, while the latter delivers a packet that arrived on the
ether. The packet tranceiving task waits on the entry points of these two
interrupts as well as on its entry points for the sequence generation and
recovery protocol tasks that handle outward going packets.

A rendezvous at the rdytorec entry point will result in a rendezvous at
the entry point in the packet tranceiving task that accept entry calls to
transfer packets to the receive task.

Sequence number generation, restart, and roll call protocols are
described in the sequence generation section.

A number of figures describe the interactions among the different network
handler components. Figure 2-6 describes the sequence of events to send
messages and packets, while Figure 2-7 describes the sequence of events to
receive messages and packets. Figure 2-8 allows quick reference to the
net tranceiver tasks' entry points. Finally, Figure 2-9 is a timing diagram
of how packets are delivered over the network. The reader should refer to
these figures often in order to understand the ADA code.

2.2.9.2 Data Handled by the Network Handler

The first step here is to describe the types of packets that will be sent
and received over the network. These will include data packets (dtp),
acknowledgements for data packets (adtp), new incarnation packet (nip), host
restart packet (hrp), first host answer packet (fhap), start roll call packet
(srcp), and response roll call packet (rrcp).

2-26

KERNEL DESIGN

TYPE pktresp IS (no ack, ack, badata, nobuff, toobig);

TYPE pkt_class IS (dtp, adtp, nip, nir, hrp, fhap, srcp, rrcp);
--dtp data packet
--adtp data acknowledgement packet
--nip new incarnation packet
--nir new incarnation response
--hrp host restart packet
--fhap first host answer packet
--srcp start roll call packet
--rrcp response roll call packet

TYPE pkt_info IS
RECORD

the id uid;
the_pos, the tot integer;
the resp: pkt resp;

END

TYPE ballast IS ARRAY (<range>) OF BOOLEAN;

TYPE packet (class pkt_class) IS

2.2.9.3 Data Handled by the Network Handler

The first step here is to describe the types of packets that will be sent

and received over the network. These will include data packets (dtp),

acknowledgements for data packets (adtp), new incarnation packet (nip), host

restart packet (hrp), first host answer packet (fhap), start roll call packet

(srcp), and response roll call packet (rrcp).

TYPE pkt_resp IS (no ack, ack, badata, nobuff, toobig);

TYPE pkt_class IS (dtp, adtp, nip, nir, hrp, fhap, srcp, rrcp);
--dtp data packet
--adtp data acknowledgement packet
--nip new incarnation packet
--nir new incarnation response
--hrp host restart packet
--fhap first host answer packet
--srcp start roll call packet
--rrcp response roll call packet

TYPE pktinfo IS
RECORD

the id uid;
thepos, thetot integer;
the resp: pktresp;

END

TYPE ballast IS ARRAY (<range>) OF BOOLEAN;

2-27

TYPE packet (class pkt_class) IS
RECORD

host addr RANGE 0..2047;
--host address can either be from 1 - to 1023
--for point to point or broadcast communication or
--from 1024 to 2047 for multipoint communication.

CASE class IS
WHEN dtp =>
pktinfo, --packet data
aknk info : pktinfo; --piggback ack/nack
pkt_data ballast;

WHEN adtp =>
aknk info : pkt info;
ack packing ballast;
--null
--put in package definitions for incarnation request,
--roll calland host restart computations.

END CASE

END RECORD packet;

2.2.10 The Net Tranceiver Task

Having described the data that will be transferred in the network
handler, the next step is to define the interfaces of the tasks that comprise
the network handler. The packet tranceiver task is described first. As
mentioned before, this task has two entry points that represent ethernet
controller interrupts. In addition to these, it has entry points to give or
receive packets to the other tasks in the network handler. Each of these is
specified below.

TASK net tranceiver IS

ENTRY rdy to_snd;
FOR rdy tosnd USE AT 8# ...1;

--entry for sending packets
ENTRY rdy torec;

FOR rdy torec USE AT 8#.. .#;
--entry for receiving packets.
ENTRY snd data (the pkt : IN packet);
--entry to send data and data acknowledge packets
ENTRY get data (the_pkt : OUT packet);
--entry to receive data and data acknowledge packets
ENTRY put acks (the aknk : IN pkt_info);
--acks/naks from receiver task
ENTRY get ack (the aknk : OUT pktinfo);
--pkt info of packets acked
ENTRY giveack (the aknk : OUT pktinfo);
--pkt info of packet received (packets to be acked)

--entries for uid generation in section 4.3.3

2-28

KERNEL DESIGN

END TASK net tranceiver;

The tranceiver controls traffic to and from a host. Under normal

operation the tranceiver will receive and send data packets and data

acknowledgement packets. However, the receiving of a host restart, new

incarnation, or start roll call packets will result in the tranceiver entering
a special mode to cater especially to the incarnation request, restart, or

roll call computations. In this mode, the tranceiver will refuse to send or

receive packets other than those for the incarnation request, restart, or roll

call computation. This will ensure that timing constraints can be imposed on

these computations.

Buffering of packets and acknowledgements is also of a concern here.

Buffers are needed for incoming and outgoing packets and incoming and outgoing

acks or naks. The handling of packets or the sending side is as follows:

1. The net tranceiver receives a packet from the

send driver task and places it, if possible, in the
data out buffer.

2. The net tranceiver, when it receives a request to send a

packet from the ethernet controller, will dispatch the
packet.

3. Packet information from the acks in buffer is delivered
to the send driver task. This allows packets that were
sent earlier to be acknowledged.

The handling of packets on the receiver side is more complex.

1. The net tranceiver receives a data packet from the

ethernet controller. If there is space in the data in
buffer it places it there. If there is no space it
rejects the packet and places a nack for the packet in
the acks out buffer. If this buffer has no space then
the packet can be deemed lost.

2. Packets in the data in buffer are given to the

receive driver task-when it requests them.

3. The receive driver returns acks or nacks to the
net tranceiver if there is space in the acksout buffer
(condition for the rendezvous).

4. The net tranceiver then gives acks/nacks from the buffer

acks out to the send driver. The send-driver then sends
these acks/nacks either as separate packets or as
piggybacked acks/nacks depending on the line control
protocol.

2-29

The handling of acks/nacks received by the net tranceiver is as follows:

1. Acks or hacks are received either separately or
piggybacked on a data packet. If there is space in the

acks in buffer they are put into that buffer.
Otherwise, they are lost.

2. When the send driver requests for acks/nacks of packets
sent from this host they are delivered to it from the
acks in buffer.

With all these buffers, specifying them explicitly in the net tranceiver

task would be cumbersome. To alleviate this, a generic package called the

buffer is declared with the buffer size and buffer element as parameters.

Each buffer then is an instantiation of this generic package, thus permitting
a simple specification of the system.

GENERIC
size POSITIVE
TYPE elem IS PRIVATE;

PACKAGE the buffer IS
FUNCTION is-full RETURNS BOOLEAN;
FUNCTION isempty RETURNS BOOLEAN;
PROCEDURE add elem (e : IN elem);
FUNCTION getelem RETURNS elem;
--add elem and get elem must be called only
--after NOT is-empty and NOT isfull return
--true

END PACKAGE thebuffer;

This generic package will allow the various buffers in the system to be

specified and used easily.

TASK BODY net tranceiver IS
out dt size : INTEGER CONSTANT :=

in dat size : INTEGER CONSTANT
out ack size : INTEGER CONSTANT :=
int ack size : INTEGER CONSTANT
--the buffer sizes for outgoing data, incoming data,
--outgoing acks/naks and incoming acks/naks
--respectively.
data out IS NEW the buffer (out dt size, packet);
data in IS NEW the buffer (in data-size, packet);
acks -out IS NEW the buffer (out ack size, pkt info);
acks-in IS NEW the buffer (int ack size, pktInfo);
--the buffers are instantiated.
out hard, in hard : packet;
FOR out hard USE AT 8#...#;
FOR in hard USE AT 8#...1;
--hardware buffers.

TYPE nt state IS (rpcalg, uidalg, rlc_alg, hrpalg,
startup);

2-30

KERNEL DESIGN

--state of the net tranceiver task
the state: nt state := start up;
the hdr; the aknk : pkt_info;
the-buf : packet;
--temporary storage.

BEGIN
--put in code for start-up state here
--specified in section 2.4.3.3
LOOP --infinite loop
WHILE the state = rpc_alg LOOP
--normal operation
SELECT

WHEN (NOT data out.is_empty OR (E'sndseq > 0)) ==>
--prefer uidgeneration packets over RPC packets

ACCEPT rdy to snd DO
SELECT

ACCEPT snd_seq (the pkt IN packet);
out hard := the_pkt;

END
ELSE

out hard := data out.get elem;
END select;

END
OR

ACCEPT readyto rec DO
the.buf := in-hard;

END
CASE the buf.class IS
--handle data packets
WHEN dtp =>

the hdr := the-buf.pktinfo;
the-aknk := the buf aknkinfo;
IF data in.is full Ehen
the hdr.the-resp := no buff;
IF NOT acks out.is full THEN
acks out.addelem (thehdr);

ENDIF;
--send nak for buffer full

ELSE
data in.add elem (the buf);

ENDIF;
IF the aknk.the-resp /= no ack THEN
IF NOT acks in.is full THEN

acks in.add elem (the aknk);
ENDIF
--put ack away

ENDIF;
WHEN adtp =>
--handle acks
IF NOT acks in.is full THEN
ackslin.add elem (the buf.aknkinfo);

ENDIF;

2-31

--put in handling for the other packet types from
--section 2.4.3.3.

END case;
OR

WHEN NOT data out.is full =>
ACCEPT snd data (thepkt) DO

data out.addelem (the-pkt)
END

OR
WHEN NOT (data in.is_empty) =>

ACCEPT getdata (the_pkt) DO
data in.getelem (thepkt);

END;
OR

WHEN NOT acks out.is full =>
ACCEPT put_acks (the aknk) DO

acks out.add elem (the aknk);
END;

OR
WHEN NOT acks in.isempty =>

ACCEPT get ack (the aknk) DO
the aknk := acksln.getelem;

END;
OR

WHEN NOT acks out.is_empty =>
ACCEPT give ack (the aknk) DO

the aknk := acksout.getelem;
END;

END select;
END loop;
--the specification of the handling of packets to
--generate incarnation numbers, roll call protocols
--and host restart is given in section 2.4.3.

END loop;
END net tranceiver;

2.2.10.1 The Network Receive and Send Tasks

The network receive and send tasks are together equivalent to the
transport and line control protocol of a traditional computer network. They
interface with the call handler tasks on the one hand and the net tranceiver
task on the other.

On the call handler side these tasks deal with two types of data
entities: messages (calls, responses) and message acks (call acks, response
acks). The send task breaks these data entities into packets and gives them
to the net tranceiver. The receive task obtains packets from the
net tranceiver, re-assembles them into messages or message acks, and then
delivers them to the appropriate call handler.

The send and receive tasks handle the send and receive functions of a
line control protocol, too. The architecture of the send and receive tasks is
of two tasks, the send driver and the receive driver, along with two packages

2-32

KERNEL DESIGN

to manage packets that have been sent and received. These abstractions handle
all the line control, packetization, and re-assembly details.

A possible simpler design would be to have a kernel have a single call
being broadcasted at any time. This will permit upper bounds to be placed on
the storage requirements of calls being sent or received.

2.2.10.1.1 The Send Task

The send task is divided into two parts. The first is a packet manager
that handles the packetization of messages (calls, responses to calls) and of
acknowledgements for those messages. The packet manager buffers a few calls
at a time and this is done by letting the send task only obtain calls that
will fit into the currently available buffer space. The send driver is the
task that feeds the packet manager with messages, message acknowledgements,
and packet acknowledgements.

PACKAGE packet_mgr IS
TYPE msgtype IS (data, msgack);
--allows send driver to force the message size to be
--less than some upper bound.
PROCEDURE howmanyfree (numpkts, numbits : out integer);
--returns how many packet blocks and
--message bits (data) are available.
PROCEDURE how imanyused (numpkts, numbits : out integer);
--returns how many packet blocks and message
--bits (data) are used.
PROCEDURE msg_acked (the id IN uid; from,

to: IN xtnded uid);
--gives an ack for a message
PROCEDURE addmsg (the len : IN INTEGER;

the id : IN uid; from, to : IN xtndeduid);
the txt IN msgaccess; the_type IN msgtype);

--gives a new message to the packet
--manager to packetize.
FUNCTION pkttosend (the_pkt : OUT packet);

RETURNS BOOLEAN;
PROCEDURE packetacked (the uid : IN uid;

the pos, thetot : IN INTEGER);
--gives the id of a packet that has been ackd.
PROCE'.DURE ack thispkt (the uid : IN uid;

the pos, the tot : IN INTEGER);
--requests a packet acknowledgement

END PACKAGE packetmgr;

The send driver task has no entry points. It makes conditional entry
calls on the call handlers for calls and responses to calls provided the
packet_mgr has space. The packet_mgr has a small buffer to store message
acknowledgements and these are sent on a priority basis. Thus the packet_mgr
imposes no constraints on message acknowledgements. The send-driver,
therefore, delivers all message acknowledgements to the packetmgr.

2-33

The send driver also makes conditional entry calls to the net tranceiver

task. It delivers packets to this task and obtains packet acknowledgements,
and packet acknowledgements it must send from this task.

TASK BODY send driver IS
ackflag, msg_flag : BOOLEAN := false;
--if true implies call handler gave message or ack.
the hndlr : chptr;
--holds current call handlr.
the bitbnd INTEGER; -- upper bound on bits
the pkbnd INTEGER; --upper bound on packets
--call information
the uid : uid;
the txt : msgaccess ; --pointer to message
the-src, the dst : xtndeduid;
--ack information for messages
ack uid : uid;
ackfrom; ack to : xtnded uid;
--packet information
pktthere BOOLEAN := FALSE ; --packet to send
thepkt : PACKET ; --packet to send
--packet acknowledgement information
toack flag, pkt_ack_flag BOOLEAN := FALSE
packet_uid uid;
packet_pos, packettot INTEGER;

BEGIN
the hndlr :: typ_mgrmap.get_first;
LOOP
--1. Find space for messages packet_mgr
packetmgr.how manyfree (thepkbnd, thebitbnd);
IF NOT msg_flag THEN
SELECT

the handlr.gvcr (the bitbnd, the uid, the txt,
the src, the_dst, theopt);

IF the bitbnd >0 THEN msgflag := TRUE ENDIF;
ELSE
msgflag := FALSE;

END select;
ENDIF;
--2. Find out if ack exists.
IF NOT ack_flag THEN
SELECT

the hndler.gvack (ackuid, dck_from, ack_to);
ack flag true;

ELSE
ack flag false;

END SELECT;
ENDIF;
--3. Act on messages or acks received.
IF msgflag THEN
packetmgr.add_msg (the_bitbnd, theuid, the_txt,
thesrc, thedst, theopt);

ENDIF;

2-34

KERNEL DESIGN

IF ack flag THEN
packetmgr.msgacked (ackuid, ackfrom, ack to);

ENDIF;
--4. Try to send a packet.
IF NOT pkt.there THEN
pktthere := packetmgr.pkttosend (thepkt);

THEN
IF pktthere THEN
SELECT

net tranceiver.snd data (the pkt);
pkt there := false;
ELSE

null;
END SELECT;

ENDIF;
--5. Find out about packets acked or received.
SELECT

net tranceiver.getack (packet_uid, packet_pos,
packet_tot);

pktack.flag TRUE;
ELSE

pkt_ack flag FALSE;
END select;
IF pkt-ack_flag THEN
packetmgr.packetacked (packetuid, packetpos,
packettot);

ENDIF;
SELECT

net tranceiver.give-ack (packet_uid, packetpos,
packettot);

to acl flag TRUE;
ELSE

to-ack flag FALSE;
END SELECT;
IF toack_flag THEN
packetmgr.ack_this_pkt (packet_uid, packet_pos,
packet_tot);

ENDIF;
END LOOP;
END send-driver;

2.2.10.1.2 The Receive Task

The receive task has a packet manager that performs re- assembly of
packets into messages. It also generates acks or naks for packets based on
their correctness and the amount of packets buffer space available. The
details of the packet manager are unspecified. The receive driver task polls
the entries of the net tranceiver task that give out packets and accepts
acks/nacks from the receive driver. As mentioned earlier, the net tranceiver
then forwards these responses to the send task which encapsulates then into
outgoing packets. The advantage of leaving the packet manager unspecified is
to let the link level protocol decisions be made within it.

2-35

PACKAGE rec pktmgr IS
FUNCTION givepacket (thepkt IN packet) RETURNS
pktinfo;

--the manager receives a packet and returns an
--ack or a nak.
FUNCTION getmsg (theptr : OUT msg_access;

the uid : OUT uid; the_svc, the_dest OUT
xtnded uid;

the hndlr : OUT chptr) RETURNS BOOLEAN;
--returns a true if message is available
FUNCTION get ack (the uid : OUT uid; the-src, thedest
OUT xtnded uid; the hndlr : OUT chptr)
RETURNS BOOLEAN;

--returns a null ack
--else returns a uid.

END PACKAGE recpktmgr.

The receive driver (rec driver) task is very similar to the send-driver
task. The driver will not receive a packet from the net tranceiver if its
buffer pkt answers is full. This buffer is an instantiation of the-buffer, a
generic declaration.

TASK receiveuriver' TS
--no entry points here.

END receive driver;
TASK BODY receive driver IS

num answers : INTEGER CONSTANT :=
pkt answers IS NEW thebuffer (numanswers, pkt info);
the_pkt : packet;
the aknk, to_goaknk pktinfo;
--packet and packet information buffers.
rdyaknk BOOLEAN := false;
ack_flg BOOLEAN FALSE;
ack uid uid;
ack src, ack dst xtnded uid;
ack hndlr ch ptr;
msg uid : uid;
msg_src, msg_dst xtndeduid;
msg hndler chptr;
msgdata msgaccess;
msg_flg BOOLEAN := false;

BEGIN
LOOP

IF NOT (pkt answers.is_empty OR rdy_aknk) THEN
to_goaknk := pkt answers.get-elem;

rdy aknk TRUE
ENDIF
IF NOT pktanswers.isfull THEN
SELECT

nettranceiver.get_data (thepkt);
the aknk := rec_pkt_mgr.givepacket

(Ehe_pkt);

2-36

This finishes the description of the RPC mechanism. It is not clear yet
how call timeouts will be handled. At the present time, the notion of a
roli call computation is attractive. This will be described later in the
design.

2.3 OBJECT STORAGE AND RETRIEVAL

There are two classes of object management: simple object management anc
stable object management (in the Lampson sense). Each class has different
requirements and, therefore, must be treated on a different basis. The
differences start at the kernel interface. This section first describes the
interface for storage and retrieval. Next, the architectures of the simple
storage is described, followed by the architecture of stable storage.

2.3.1 The Kernel Interface for Object Management

The kernel interface needs operations to read, write, and delete objects.
Each of these operations is needed for simple and stable storage. Each of the
operations returns a status to the user. The status for simple storage will
differ from that for stable storage; this is the first visible difference to
the user.

PACKAGE kernel IS

--*put in all the type definitions and procedure

--*specifications for the RPC interface as here.

TYPE simpl status IS
(ready, not available, does not exist, nostorage);

--ready ==> operation completed successfully
--not available - ==> that the data has become
--unavailable due to storage error.
--does not exist ==> that there is no record of
--the object on storage.
--no storage ==> no secondary storage

TYPE stabl status IS
(ready, may_beold, does not exist, nostorage);

--ready ==> operation successful.
--may be-old ==> one copy readable.
--does not exist ==> no record of object.
--no storage ==> no free space.

TYPE objstring IS ARRAY (RANGE <>) OF BOOLEAN;
--a bit string that contains the object's data.
--here follows the declarations of the procedures
--at the kernel interface.
--again the type uid must be supplied
--in order to map to the type directory.

2-38

KERNEL DESIGN

pkt answers.add elem (the aknk);
ELSE

NULL;
END SELECT

ENDIF
IF rdyaknk THEN
SELECT

net tranceiver.putacks (togo-aknk);
rdyaknk := false;

ELSE
NULL;

END SELECT;
ENDIF;
IF NOT msg_flg THEN
msg_flg := rec_pkt_mgr.getmsg (msg'data,

msg_uid, msgsrc, msg_dest, msg-hndlr)
ENDIF
IF NOT ack_flg THEN
ack flg := recpktmgr.get ack (ack uid,
acksrc, ackdest, ackhndlr);

ENDIF
--try to get the two call handlers
IF msg_flg THEN
SELECT
msghndlr.gtcr (msg_uid, msg_data,

msg_src, msg_dest);
msg_flag := false;

ELSE
NULL;

END SELECT;
ENDIF;
IF ack_flg THEN
SELECT

ack hndlr.gtack (ackuid, acksvc,
ack dest);

ELSE
NULL;

END SELECT;
ENDIF;

END LOOP;
END receivedriver;

The packetmgr and the pkt_rec_mgr handle all the internals of the line
control protocols. These include buffer management, data checking, timing out
of packets, retransmission of packets, sequencing, etc. This is a good
approach because specifications of the line protocol can be done based on the
designer's choice.

The number of rendezvous for an ack/nak to be sent to an incoming packet
may seem excessive. It has been done this way to ensure that alternating
layers in the kernel have either some entry point or no entry points. This
technique prevents deadlock.

2-37

This finishes the description of the RPC mechanism. It is not clear yet
how call timeouts will be handled. At the present time, the notion of a
roll call computation is attractive. This will be described later in the
design.

2.3 OBJECT STORAGE AND RETRIEVAL

There are two classes of object management: simple object management and
stable object management (in the Lampson sense). Each class has different
requirements and, therefore, must be treated on a different basis. The
differences start at the kernel interface. This section first describes the
interface for storage and retrieval. Next, the architectures of the simple
storage is described, followed by the architecture of stable storage.

2.3.1 The Kernel Interface for Object Management

The kernel interface needs operations to read, write, and delete objects.
Each of these operations is needed for simple and stable storage. Each of the
operations returns a status to the user. The status for simple storage will
differ from that for stable storage; this is the first visible difference to
the user.

PACKAGE kernel IS

--*put in all the type definitions and procedure

-- *specifications for the RPC interface as here.

TYPE simpl_status IS
(ready, notavailable, doesnotexist, nostorage);

--ready :=> operation completed successfully
--not available - ==> that the data has become
--unavailable due to storage error.
--does not exist ::> that there is no record of
--the object on storage.
--nostorage :=> no secondary storage

TYPE stabl status IS
(ready, maybeold, does_not exist, nostorage);

--ready ==> operation successful.
--maybeold ==> one copy readable.
--does not exist ==> no record of object.-- no storage == no free space.

TYPE objstring IS ARRAY (RANGE <>) OF BOOLEAN;
--a bit string that contains the object's data.
--here follows the declarations of the procedures
--at the kernel interface.
--again the type uid must be supplied
--in order to map to the type directory.

2-38

KERNEL DESIGN

PROCEDURE get_obj (thetype: IN uid;
the id: IN xtnded_uid; theobJ: OUT obj_string;
the-status: OUT simpl_status);

PROCEDURE put_obj (the_type: IN uid;
the id: IN xtndeduid;the_obj: IN objstring;
the-status: OUT simpl_status);

PROCEDURE delobj (thetyp: IN uld;
theid: IN xtnded uid; the-status: OUT
simplstatus);

--the above procedures define simple
--object storage and retrieval.

PROCEDURE stabl_get (the_typ: IN uld;
the id: IN xtnded uid; theobJ: OUT objstring;
the-status: OUT stablstatus);

PROCEDURE stabl_put (thetyp: IN uid;
the Id: IN xtnded uid; the obj: IN obj string;
the-status: OUT stablstatus);

PROCEDURE stabl del (the uid: IN uid;
the id: xtnded_uid; thestatus: OUT stablstatus);

--the above procedures define stable object
--storage and retrieval.

END PACKAGE kernel;

2.3.2 The Architecture of Storage

The above kernel calls are synchronous. Thus, a kernel procedure will
not return until the operation has been completed. This presents the
following problem. An entry call to a task in ADA does not achieve a
rendezvous based on its parameters. Rather, the underlying scheduler will
choose one of the calls waiting on the entry point in an arbitrary fashion.
Thus, there needs to be a bond between the procedure instantiation of a
request and the storage manager.

To achieve this, and to increase the parallelism in the kernel, the
following architecture for the storage manager is suggested.

1. Each type will have two directories: one for simple
storage and the other for stable storage. This
separation will ensure that simple storage operations do
not incur the penalty of performance that stable storage
operations suffer.

2. Each directory will have associated with it sets of task
instances. One each for a different object operation.

2-39

Thus, the cardinality of each set imposes a bound on the
number of operations of each type for one object type at
any given time. The pointer to an element of this set
is returned to each call accepted. This element will be
the task which asynchronously performs the operation and
returns to the caller the result of the operation.

3. Each directory maps the extended uid of an object to one
or more disc addresses. It is assumed here that the map
is entirely in primary storage because reading in a part
of a map from store is an overhead that can be modeled
if desired. It must be remembered that stable
directories must have two disc addresses per object or
object version.

Figure 2-10 describes the sequence of actions in the kernel in response
to a get_obj call at the kernel interface.

The next step is to describe the architecture of the simple and stable
directories.

2.3.2.1 The Simple Directory

The simple directory is a manager of a set of objects of a given type.
At the initiation of a type manager this directory is allocated a space on
some disc so that a copy can be maintained on secondary storage.

The simple directory consists of the simple directory task and a mapping
function. The latter maps extended uids of existing objects to disc
addresses.

Associated with the directory are three sets of request handlers: one
each for the read, write and delete functions. The motivation behind a set of
request handlers for each operation is to ensure that reads and deletes can go
on even if writes are blocked due to a lack of disc space.

2.3.2.1.1 The Request Handlers

The request handler tasks are similar to the operation tasks used by type
managers. They are allocated by the directory task and then exist as long as
the directory tasks.

The request handlers first get a request from the directory, perform the
request, and finally return the result to the kernel operation that made the
request. After this they return to the directory for the next request.

2.3.2.1.2 The Mapping Manager

The mapping manager is an ADA package within the directory. Its primary
function is to store the mapping of object extended uids to disc addresses.
The mapping manager also maintains a table of the mapping from extended uid to
disc addresses of new objects stored on secondary storage. Periodically the
directory task will call the mapping manager and clear out the table of new
entries.

2-40

KERNEL DESIGN

The mapping manager at any time contains the entries for all object
instances of a type. Thus, we are not concerning ourselves with the
allocation of secondary storage to manage disc storage. However, a periodic
writing of new entries to storage can ensure that the load of writing the
directory entries is represented.

2.3.2.1.3 The Directory Task

The directory task is the main task in the simple directory. It receives
requests, allocates them to request handler tasks, updates the map if needs
be, and writes out the map to secondary storage.

2.3.2.2 The Stable Directory

The stable directory is very similar in architecture to the simple
directory. The directory implements what Lampson calls a stable set. A
stable storage of objects means that the directory that stores such objects
must be stable. Thus, the storage of the map also must be to stable storage.

2.3.2.3 Consistency of Objects

The design, as outlined above, does not consider the consistency of
objects. For example, if one is not careful, an object could be read and
deleted simultaneously. The philosophy of ZEUS required that all access to
objects occurs through its type manager. Further, the type uid is used to map
to the directory. Thus, the access pointer is available to callers who supply
the proper type uid.

In effect, the design leaves the responsibility of ensuring correct
concurrency of access to the type manager. Errors in the type manager code
may result in damage to the objects.

2.3.3 The Support Packages

There are two major support packages. The first of these is type_mgrmap
which was described earlier. The second is the free-storage package which
keeps track of free space on secondary storage.

2.3.3.1 The type_mgr_map Package

As in the case of call handlers, the typemgr_map package must map type
uids to simple directories and stable directories. This implies get, install,
and put functions for each directory type.

Internally the package will have three tasks so that maximum parallelism
can be obtained.

PACKAGE type_mgr_map IS

--*Insert the calls that give access to call handler tasks.

2-41

FUNCTION get_smd_ptr (type_uid: IN uid) RETURNS
smd_ptr;

PROCEDURE install smd_ptr (typuid: IN uid;
the_ptr: IN smd_ptr);

PROCEDURE delete_smd_ptr (typ_uid: IN uid);

--the above routines handle the simple directories
--the pointer to a simple directory is
--smd_ptr.

FUNCTION get_sbd_ptr (typuid: IN uid) RETURNS sbdptr;

PROCEDURE installsbdptr (typuid: IN uid;
theptr: IN sbdptr);

PROCEDURE delete sbdptr (typ uid: IN uid);
--the above routines handle the stable directories.

--the pointer to a stable directory is

--sbdptr.

END PACKAGE type_mgr_map;

2.3.3.2 The free_storage Package

The freestorage package keeps track of secondary storage for simple
objects. The calls to this package free or reserve storage blocks of
arbitrary size. The users of this package request or release the starting
address on secondary storage and the length of the block.

The package checks to ensure that the storage block being reserved or
released is not in use, or in use respectively, at the time of the request.

PACKAGE free_storage IS

typestor status IS (free success, reserve-success,
free-fail, reservefail);

FUNCTION free block (the addr: IN secst-addr;
thelength: IN INTEGER) RETURNS storstatus;

FUNCTION getblock (the addr: OUT secst addr;
thelength IN INTEGER) RETURNS storstatus;

PROCEDURE bad block (the addr: IN secstaddr;
the_length: IN INTEGER);

--the secst.addr type is an address on
--secondary storage.

END PACKAGE freestorage;

2-42

KERNEL DESIGN

2.3-4 The stable-free Package

The stable_free package keeps track of secondary storage for stable
objects. Calls to this package free or reserve storage blocks of arbitrary
size. The users of this package free or reserve twin blocks of secondary
storage of arbitrary size on different units.

If one of the blocks at which an object is stored decays then both blocks

are returned and new ones, if available, are obtained from this package.

PACKAGE stable-free IS

TYPE stbl avail IS (freed, reserved, freed fail,
reserved failed);

FUNCTION free block (the addrl, the addr2: IN secst-addr;
the length: IN INTEGER) RETURNS stbl avail;

FUNCTION get_block (the addrl, theaddr2: OUT secstaddr;
thelength: IN integer) RETURNS stbl-avail;

PROCEDURE bad block (the addrl, the addr2: IN secst addr;
thelength: IN integer);

END PACKAGE stable-free;

A generic package can be used to specify both types of free storage.

2.3.5 The Request Handler Tasks

The request handler tasks are specified as task types. Each type
performs different operations for the directory task. The organization of
this section is as follows. In section 2.3.4.1, the specifications of the
task types for the simple directory are given. This is followed in section
2.3.4.1.1 by the task body specification of the put simple object function as
an example of the interactions between the task and the rest of the system.
In section 2.3.4.2, the specifications of the task types for the stable
directory are given. Again the specification of the put stable object is
specified as an example in section 2.3.4.2.1.

The request handlers make a number of entry calls to the directory. Each
handler has two entry points. The first is used by the directory to
initialize the request handler. The second is used by the kernel procedure to
obtain the result of the operation it requested.

The request handler types are given names whose first phrase specifies
the type of directory it works with, and whose second phrase describes the
type of function it will perform. Access pointers to these types have type
names suffixed by 'ptr'.

2-43

2.3.5.1 The Simple Directory Request Handlers

The simple directory request handlers belong to one or more of these task
types: smp_get, smp_put and smp_del. Each of these types have the entry
points get_init and get result for initialization and for function result.

TYPE smp_get;

TYPE smp_getptr IS ACCESS smp_get;

TASK TYPE smpget IS

ENTRY get_init (myself: IN smp get_ptr;
the dir: IN smdptr);

--the task contains a self referential pointer
--so that it can pass it to the directory
--when it requests a function. The smd_ptr

--gives the task instance the pointer to
--the directory it is connected to.

ENTRY get result (the_object: OUT objstring;
the status: OUT simplstatus);

--this gives the requesting kernel procedure
--the object it requires.

END TASK smp_get;

The smp_get task performs the get simple object function. While a self
referential pointer may not be exactly kosher, it is useful in that the
directory task does not need a mapping from some other identifier to the
pointer of the task.

TYPE smp_put;

TYPE smp_put_ptr IS ACCESS smpput;

TASK TYPE smp_put IS

ENTRY get_init (myself: IN smpputptr;
thedir: IN smd_ptr);

ENTRY getresult (the-status: OUT simplstatus);

--the object will be passed when the
--task makes its entry call to the
--directory.

END TASK smp_put;

2-44

KERNEL DESIGN

The smpput task performs the put simple object function. Its
specification is very similar to the smpget task.

The smpdel task performs the delete simple object function. Its
specification follows.

TYPE smpdel;

TYPE smpdelptr IS ACROSS smpdel;

TASK TYPE smp_del IS

ENTRY get init (myself: IN smpdel_ptr;
the dir: IN smdptr);

ENTRY getresult (the-status: OUT simplstatus);

END TASK smp_del;

2.3.5.1.1 The Function smp_put

The smp_put task performs the following sequence of actions after
initialization. A graphic for the actions can be seen in Figure 2-11.

1. Obtains the object to be written along with its
secondary storage address, if this is a replacement.

2. If the object is not being replaced, the task calls the
free storage package to get a secondary storage address
for the object.

3. It uses the secondary storage address to obtain the
pointer to the disc controller task.

4. It initiates a write operation and, on completion of this
operation, it calls the directory to pass back the new
secondary storage address, if necessary.

5. Returns the status of the operation back to the kernel
procedure.

TASK BODY smp_put IS

selfptr: smp_put_ptr;
dir_ptr: smd_ptr;

--pointers to self and directory.

theobjid: xtndeduid;
the_obj: objstring;

2-45

--object string and identifier.

the addr: secst addr;

--secondary storage address.

buf-status: free storage.storstatus;

--secondary storage status.

opstatus: simpl_status;

--operation status;

log_device: d-ctl-ptr;

--pointer to the device controller

BEGIN

ACCEPT get_init (myself IN smpput_ptr;
the dir: IN smd_ptr) DO

self_ptr:= myself;
dir_ptr:= the dir;

END

LOOP
--get operation to be performed.
dirptr.heresput (selfptr, theobj_id, theobj,

the addr, the-length);
opstatus := ready;
IF theaddr.secst devptr = nil THEN
--get a block of storage.
thelength := objlength (the_obj),
buf status free_storage.get_block (the addr,

the_length);
IF buf status = rccerve fail THEN
--no operation possible, full secondary storage.
opstatus := no storage;

ENDIF;
ENDIF;

IF opstatus ready THEN
logdevice :: device map.get dev (the addr.secst dev);

logdevice.write (the addr.dev addr,
the obj, thelength, dstate);

--perform the i/o
IF d state /= complete THEN
op status := not available;
free_storage.bad block (the addr, the_length);
--tell free-storage about bad sectors.

ENDIF;
ENDIF;

2-46

KERNEL DESIGN

IF opstatus = ready THEN
dir-ptr.putdir (theobj_id, the addr, the_length);
--set up the directory entry for the object.

ENDIF
--give result back to the caller.
ACCEPT get_result (the status: OUT simpl status) DO

the status := opstatus;
END;

END LOOP;
END TASK smp_put;

This task will return a not available status to its caller it' the actual
write to secondary storage did not complete. This is in keeping with the
philosophy of the simple put operation.

2.3.5.2 The Stable Directory Request Handlers

The stable directory request handlers belong to one or more of these task
types: stb get, stbput, and stbdel. Again each of these types have the

entry points get_init and getresult for initialization and for function
result. The tasks are specified below.

TYPE stbget;

TYPE stbgetptr IS ACCESS stbget;

TASK TYPE stb_get IS

ENTRY get init (myself: IN stb_getptr:
the dir: IN sbdptr);

ENTRY getresult (the_object: OUT objstring;
the status: OUT stabl status);

END TASK stbget;

This task type performs the stable get function as defined by Lampscn.
Again the result returns the object and the status of the object.

TYPE stbput;

TYPE stb putptr IS ACCESS stb put;

TASK TYPE stb-put IS

ENTRY get_init (myself: IN stb_putptr;
the dir: IN sbdptr);

ENTRY getresult (thestatus: OUT stabl status);

END TASK stbput;

This routine handles the stable put operation for objects.

2-47

TYPE stbdel;

TYPE stb-del_ptr iS ACCESS stbdel;

TASK TYPE stb del IS

ENTRY get_init (myself: IN sbt_del_ptr;
the dir: IN sbdptr);

ENTRY get result (the-status: OUT stabl_status);

END TASK stb_del;

This routine handles stable delete operations.

2.3.5.2.1 The Stable Put Operation

The stableput operation is derived from Lampson's stable put operation.
In effect, it is a combination of the insert and replace operations in the
stable set of Lampson.

The operation has the following sequence.

1. The object, its id, and the two secondary storage
address (if the object already exists) are obtained.

2. The careful puts to each address must be done one after
the other.

3. The directory is passed back the secondary storage
address.

4. The kernel procedure is returned the status of the

operation.

The careful_put is specified as a function that attempts to write to an
address a fixed number of times. If it fails, it returns a failure mode back
to the stable put. This failure of the careful put results in invocations .f
free storage to return the block and to obtain a new block. If no block is
available, the failure mode is returned to the kernel procedure.

TASK BODY stb_put IS

selfptr: stbputyptr;
dir ptr: sbd_ptr;
--pointers to self and directory.

the_obj_id: xtnded uid;
theobj: obj string;
--object string and identifier;

the addrl, the addr2: secst addr;
--secondary storage

2-48

KERNEL DESIGN

buf status: stable free.stbl avail;
op_status: stabl status;
--secondary storage and operation status

care put count: INTEGER CONSTANT := 10;
cpl, cp2: BOOLEAN;
--careful put tries to write at most
--care_put_count times
--cpl, cp2 are flags to indicate success
--of careful_put operations.

BEGIN

ACCEPT get_init (myself: IN stbputptr;
the dir: IN sbdptr) DO
selfptr := myself;
dir_ptr := thedir;

END;
LOOP
--get operation to be done
dir_ptr.heres_sput (selfptr, the objid, theobj,

the addrl, the addr2, the length);
op status := ready;
IF the addrl.secst_dev_ptr = nil THEN
--geE a block of storage.
thelength := objlength (the_obj);
buf status := stable free.get_block (the addrl,

the addr2, thelength);
IF buf status = reserved failed THEN
--no operation possible
op_status :: no-storage;

ENDIF;
ENDIF;

--try to perform the stable put operation

cpl := FALSE; cp2 := false;

WHILE (NOT (cpl AND cp2) and op_status :: ready) LOOP
cpl := false; cp2 := false;
cpl := carefulput (the_obj, the_length,

the addrl, careputcount);
cp2 := careful put (the_obj, thelength,

theaddr2, care_put_count);

IF NOT (cpl and cp2) THEN

--return the bad blocks
stable.free bad block (the addrl, theaddr2,
thelength);

--get new blocks
bufstatus := stable free.getblock (the addrl,

2-49

the addr2, thelength);
IF buf status = reserve failed THEN
op_status := no-storage;

ENDIF;
ENDIF;

END LOOP;
IF opstatus = ready THEN
dirptr_put_dir (theobj_id, theaddrl,

the addr2, thelength);
ENDIF;
--return status to caller
ACCEPT get_result (thestatus: OUT stablstatus) DO

the status := op_status;
END;

END LOOP;
END TASK stb put;

One possible flaw in the code is that bad blocks are reported before new
blocks are obtained. However, a failure here will occur before a directory
change and, thus, the good copy may be recovered. The smpput routine could
be modified to do a repeated put, if so desired. Finally, an upper limit of
attempts to write to secondary storage could be used to report bad secondary
storage.

2.3.6 The Directory Package

The directory packages store information about the mapping from
xtnded uid to secondary storage address. Thus, they must have operations to
enter, access, and delete mappings. In addition, the package should have a
function to obtain blocks of map entries from secondary storage. In this
design, however, we assume that the full directory mapping is constructed at
host start-up time and is updated in memory during the system operation. This
approach may not be realistic but it makes the design simpler.

There is one generic package specification and two instances of it. One
of them is contained in the simple directory task body and is called smp_map,
while the other is contained in the stable directory task body and is called
the stbmap. But before this generic package is specified, the types
secst-addr, smpdirentry, and stbdir_entry are defined.

2.3.6.1 Some Basic Types

The type secst addr has been used in preceding sections. It specifies a
secondary storage address and consists of two parts: a device address and the
address on that device.

TYPE secst addr IS
RECORD
secst dev: device name;
dev addr: device-location;

END record;

2-50

KERNEL DESIGN

The types device-name and device location are assumed to have been
specified.

The types smp_dir_entry and stb dir entry differ only in the number of
secondary storage addresses that are provided.

TYPE smp_dir_entry IS
RECORD

the addr: secst addr;
the length: INTEGER;

END;

TYPE stb direntry IS
RECORD

theaddrl, the addr2: secst addr;
thelength: INTEGER

END

2.3.6.2 The package specification

generic

TYPE key IS LIMITED private;

TYPE direntry IS LIMITED private;

package themap IS

FUNCTION getentry (thekey: IN key) RETURNS
direntry;

--returns null for absent keys.
PROCEDURE putentry (the key: IN key; the_entry: IN

direntry);
--replaces new entry.
FUNCTION delentry (the-key: IN key) returns

direntry;
--access, enter and deletes entries

END PACKAGE the-map;

2.3.7 The Directory Task

The directory tasks for both simple and stable directories have the same
functions. These functions are:

1. To initialize the get, put, and delete request handlers.

2. To service kernel procedure requests and to form these
requests to the appropriate request handlers.

3. To handle requests to the directory map data structures.

2-51

To accomplish this, the directory task has a number of entry points. The
two major sets of entry points are for the reception of kernel calls and the
reception of directory map calls. To link up the kernel procedure that makes
a request and a request handler, the directory task has a third set of entries
for available directory tasks. The entry points of the directory task and
their interactions are graphically illustrated in Figure 2-12.

In effect, the directory acts as a monitor that schedules requests to
secondary storage and protects the directory.

2.3.7.1 The Interface of the Simple Directory Task

TYPE smp_dir;

TYPE smdptr IS ACCESS smp_dir;
TASK TYPE smp_dir IS

ENTRY getobj (theobj_id: IN xtnded-uid; get_hndlr: OUT
smp_get_ptv);

ENTRY putobj (theobjid: IN xtnded uid; outobj: IN
objsring; put_hndlr: OUT smp_put_ptr);

ENTRY del obj (theobjid: IN xtndeduid; del_hndlr:
OUT smp del_ptr);

--the above entries handle kernel procedures.
ENTRY get dir (theobjid: IN xtndeduid; the addr: OUT

secst addr; thelength: OUT INTEGER);
ENTRY put dir (the objid: IN xtnded uid; theaddr: IN

secst.addr; the length: IN INTEGER);
ENTRY del dir (theobj_id: IN xtnded_uid);

--the above entries allow calls to the directory
--data structure.

ENTRY heres.get (the id: IN smp_getptr; objuid: OUT
xtnded uid; the_addr: OUT serstaddr; the_length: OUT
INTEGER);

ENTRY heres_put (the id: IN smp_putptr; obj_uid: OUT
xtnded uid; theobj: OUT objstring;
the addr: OUT secst addr; the_length: OUT INTEGER);

ENTRY heres del (the id: IN smp_del_ptr; objuid: OUT
xtndeduid; the addr: OUT secst-addr;
thelength: OUT INTEGER);

--the above are entry points by which the
--request handlers make themselves
--available. the-objid parameters is superflous.

ENTRY getinit (the id: IN smd_ptr;
getcount, put_count, delcount: IN INTEGER);

2-52

KERNEL DESIGN

--thru this entry point the directory is initialized
--it obtains its own identity, and the count
--of the number of request handlers it can start.

END TASK smpdir

2.3.7.2 The Simple Directory Task Body

The simple directory task schedules requests from the kernel procedures.
However, the simple directory task cannot accept a procedure request until a
request handler of the corresponding request is available. Thus, for example,
a getobj entry call is accepted only when the number of entry '!1ls at the
heresget entry point is greater than zero.

TASK BODY smp_dir IS

the id: xtndeQ uid;
the -obj: obj_string;
the addr: secst-addr;
the length: INTEGER;
--object being transferred and its attributes

numgets, num_puts, num dels: INTEGER;
--number of request handlers

this dir: smd_ptr; --self reference
the_get: smp-getptr;
the_put: smpputptr;
the del: smp delptr;
--pointers to the request handlers (temporary)

smp_map IS NEW themap (xtndeduid, smp_direntry);
--instantiate the mapping package

blk data: smp_direntry;
--directory map

BEGIN
--get initialized
ACCEPT getinit (the id: IN smd ptr; getcount,

put count, del count: IN INTEGER) DO
this dir :: the id;
num_gets := get_count;
num puts := put_count;
num dels := del count;

END;

--start up request handlers
FOR i IN 1..numgets LOOP
theget :: new smp_get;
theget.get_init (theget, this dir);

END

2-53

FOR i IN 1..numputs LOOP
the_put := new smp_put;
theput.get_init (theput, thisdir);

END

FOR I IN 1..num dels LOOP
the del :: new smp_del;
the del.get_init (the-del, this dir);

END

LOOP --loop forever

SELECT
--handle kernel entries

WHEN E'heresget > 0
ACCEPT getobj (theobj_id: IN xtndeduid;
gethndlr: OUT smp_getptr) DO
blk data := smpnap.getentry (the_objid);
--the directory entry may contain a
--null address and zero length
ACCEPT heresget (theid: IN smp_getptr;
obj uid: IN xtended-uid; the addr: OUT
secst addr; thelength: OUT INTEGER) DO

get hndlr := theid;
obj_uid : theid;
the addr := blk data.the addr;
the-length := blk data.thelength;

END;
END;

OR
WHEN E' heresput > 0
ACCEPT putobj (theobj id: IN xtnded uid;
outobJ: IN objstring; puthndlr: OUT
smp_putptr) DO
blk data := smp_map.getentry (theobjid);
ACCEPT heres_put (the id: IN smp_putptr;
obJ_uid: OUT xtnded uid; the_obj: OUT
objstring; the addr: OUT secstaddr;
the_length: OUT INTEGER) DO
put.hndlr := theid;
theobj := outobj;
objuid := the objid;
the addr := blk data.the addr;
the length := blk-data.thelength;

END;
END;

OR
WHEN E' heres.del > 0

ACCEPT delobj (theobj id: IN xtnded uid;
del hndlr: OUT smp_delptr) DO

2-54

KERNEL DESIGN

bik data := snip map-get entry (the_obj_id)
ACCEPT heres del (the id: IN snip el ptr;

obj uid: OUT xtnded uld; the addr: OUT
secst -addr; the length: OUT YNTEGER) DO
del hndlr := the id;
objuid the obj id;
the addr bik-data.the-addr;
the length :=bik-data.the length;

END;
END;

OR
ACCEPT get dir (the -objid: IN xtnded uid;

the addr: OUT secst-addr, the length: OUT
INTEGER) DO
blk -data ~snip map.get_entry (the_obj_id);
the addr ::blk-data.the-addr;
the length := bik data. the length;

END;

OR
ACCEPT put -dir (the -obj_id: IN xtnded-uid;

the addr: IN secst-addr; the_length: IN
INTEGER) DO
bik data.the addr := the addr;
bik -data.the-length := the-length;
snip-map.put entry (the_obj id; blk-data);

END;

OR
ACCEPT del -dir (the -objid IN xtnded uid) DO

blk -data := snip map.dle_entry (the obj id);
END;

END SELECT;
END LOOP;

END TASK snip dir;

2.3.7.3 The Stable Directory Task Interface

The stable directory task is specified here. The body of the task is
identical in structure and spirit to the simple directory task and, therefore,
is not defined.

TYPE sbd-dir;

TYPE sbdptr IS ACCESS sbd dir;

TASK TYPE sbd dir IS

ENTRY get obj (the objid: IN xtnded-uid;

get_hndlr: OUT stb get_ptr);

2-55

ENTRY putobj (theobj_id: IN xtnded uid;
outobj: IN obj_string; out hndlr: OUT
stb_put_ptr);

ENTRY del_obj (the_obj_id: IN xtnded uid;
delhndlr: OUT stbdel ptr);

--the above entries handle kernel procedures.

ENTRY get dir (the objid: IN xtnded uid;
the addrl, the addr2: OUT secstaddr; thelength:
OUT integer);

ENTRY put dir (the objid: IN xtnded uid;
the addrl, the addr2: IN secstaddr; thelength:
IN INTEGER);

ENTRY del dir (the objid: IN xtnded_uld);

--these entries allow calls to the directory.

ENTRY heresget (the id: IN stb_getptr; obj_uid: OUT
xtnded uid; theobj: OUT obJstring; the addrl,
the addr: OUT secst addr; the_length: OUT INTEGER);

ENTRY heres del (the id: IN stbdelptr; obj_uid: OUT
xtnded-uid; the addrl, the addr2: OUT secst-addr;
thelength: OUT INTEGER);

--request handler service points.

ENTRY getinit (the id: IN sbdptr;
get_count, put count, del_count: IN INTEGER);

END TASK sbd dir;

2.3.8 The Storage Controllers

The storage controllers consist of a set of tasks each of which manages a
secondary storage device. To map from device addresses which are device
specific to the controllers, there is a controllermap package. This
controllermap package is an instance of the generic package, themap, with
the types devicename as the key and dctlptr (device controA.er pointer) as
the entry.

The specification of the device controller task is as follows:

TYPE d-state IS (complete, failed, bad_surface);

TYPE d ctl;

TYPE d-ctl-ptr IS ACCESS d ctl;

TYPE d ctl IS

2-56

KERNEL DESIGN

ENTRY read (the addr: IN levice location;
the length: IN INTEGER; the_obj: OUT obj string,
the stale: OUT d state);

ENTRY write (the addr: IN device-location;
the length: IN INTEGER; the_obj: IN objstring;
the-state: OUT d state);

ENTRY done;

FOR done USE AT 8#---#;
--interrupt

END TASK d ctl;

2.3.9 Kernel Procedures

The kernel procedures are very simple. They first obtain a pointer to
the proper type directory. Then they request the directory to perform the
function. The directory returns to them the request handler assigned to their
request. Finally, the procedure asks the request handler for the result. 3n
getting the result the procedure terminates.

2.4 SEQUENCE NUMBER GENERATION

Sequence number generation has to do with the generation of unique
identifiers and extended unique identifiers for the ZEUS system. The
functions provided by this part of the kernel include:

1. New uid generation.

2. Formation of an extended uid.

3. Giving out components of an extended uid.

In an earlier section of this document, the type definitions uid and
xtnded uid were specified. Here, we first describe each of these types and
the moTivation for the fields inside them. Then, the architecture required to
service the kernel procedures is specified.

2.4.1 Identifying Objects in ZEUS

The unique identifier is a name for an object in the ZEUS system. The
object may be temporary such as a call, it may be semi-permanent such as an
instance of a type, or it may be permanent such as a type manager or type/type
manager.

Only temporary objects can be identified solely by a unique identifier,
all other objects must have an extended unique identifier.

2-57

2.4.1.1 The Unique Identifier (uid)

The unique identifier in ZEUS consists of three fields. The first is a
host field which identifies the host at which the uid was generated. The
second field is an incarnation field, while the third is the sequence field.
The incarnation field is generated in a distributed fashion by the set of
hosts in the ZEUS system. The algorithms in this section describe the process
of generation. The sequence field allows a range of uids to be generated for
each value of the incarnation field.

To recapitulate the uid is defined as

TYPE incrnge IS RANGE 0..(2**32-1);
TYPE seqrnge IS RANGE 0..(2**22-1);
TYPE host id IS RANGE 0..1023;

--definitions for the host identifiers, incarnation
--and seqiience fields of the uid.

TYPE uid IS
RECORD

origin host: hostid;
incarnation: incrnge;

sequence: seqrnge;
END RECORD;

2.4.1.2 The Extended Unique Identifier (xtnded uid)

The extended uid allows an object to be placed in its proper perspective.
An object in ZEUS has a type associated with it. Thus, it is an instance of a
type. A type name must be unique and, therefore, each type name is a uid.
The instance of an object type has to be unique within that type. It is
simpler, and more efficient, to use the kernel to generate a unique instance
name as a uid, rather than to have the type managers generate unique
identifiers. Within an instance of an object there may be more than one
version. Thus, the extended uid has a version uid field. Again, the same
reasoning justifies the usage of a uid instead of a special unique number.

Thus the xtnded uid type is defined as

TYPE xtnded uid IS
RECORD
host-hint: host id;
typeuid, instanceuid, versionuid: uid;

END RECORD;

The previous discussion did not describe the host hint field. This field
is a guess at where an object is currently located. This field is changed
when the object moves from one host to another. When an object that
references a moved object discovers its new location it updates the host hint
in the xtnded uid.

2-58

KERNEL DESIGN

2.4.1.3 The Visible Types

The uid and xtnded uid types are already visible. The hostid type must
be visible outside the kernel, too. This is to allow the host-hint field in
the xtnded uid to be modified.

2.4.2 The Kernel Procedures

There are two types of kernel procedures. The first builds uids and
xtnded uids, the second provides access to the components of an extended uid.
The procedures are defined as part of the kernel specification which is
continued here.

PACKAGE kernel IS

--put in the RPC and storage kernel calls
--and type definitions.

TYPE host id IS limited private;

FUNCTION get_uid RETURNS uid;

FUNCTION build xt (the host: IN host id;
the_type, theinstance, theversion) RETURNS
xtnded uid;

FUNCTION givehost hint (the in: IN xtnded uid)
RETURNS host_id;-

FUNCTION changehint (the id: IN xtnded_uid;
newhint: IN host id) RETURNS xtndeduid;

--get_uid is the unique number generation
--function.

--build xt constructs an extended uid given
--all of its components.

--give_hosthint returns the host hint of the
--extended uid.

--change_hint modifies the hosthint
--as directed.

END PACKAGE kernel;

2.4.3 The Architecture

The architecture to generate sequence numbers is very simple. Its kernel
procedures, other than getuid, do not need to wait. This is because they are
all operations on limited private types that are defined inside the kernel.

2-59

Other than the kernel procedures, there are two tasks. The first is a
monitor that allocates the incarnation and sequence fields for the current
incarnation number value. This task calls the second task when it needs a new
incarnation number.

The second task accesses the net tranceiver task to obtain new
incarnation numbers, and to handle the starting up of failed hosts in the ZEUS
system. These hosts need to be allocated the current incarnation number and a
priority number. The priority numbers order the active hosts in the system.
This is done to ensure that generation of incarnation numbers is resilient.
The interaction between the uidmonitor and the uidgeneration tasks is shcwn
in Figure 2-13.

The kernel function, getuid, is specified first, followed by the two
tasks, uid monitor and uid_generation. The other kernel procedures 3re not
specified. To place the uid generation task -in its proper perspective. :ne
portion of the nettranceiver task that handles the uid generation is
described here.

2.4.3.1 The getuid Function

The get_uid function makes available the next uid for the requestor.

FUNCTION get uid RETURN uid IS
this uid: uid;

begin
uidmonitor.getuid (thisuid);

RETURN this uid;
END get_uid;

2.4.3.2 The uid monitor Task

The uid monitor task has two loops. The outer loop does not terminate,
and first obtains a new incarnation number. It then enters the inner loop.
This loop issues uids for the range of the current incarnation number and then
exits back to the outer loop to get the next incarnation number. It is
possible that the uid_generation task may have passed a new incarnation number
to the uid monitor before the previous range terminated. The uid monitor has
two entry points getuid and get_inc.

TASK uid monitor IS

ENTRY get uid (the uid: OUT uid);

ENTRY get inc (theind: IN incrnge);

END TASK uid-monitor;

TASK BODY uld monitor IS

2-60

KERNEL DESIGN

seqbnd: seqrnge CONSTANT :z 2*422 -1;
curseq: seqrnge;
--sequence number bounds.

cur inc: incrnge;

--current incarnation number;

this host: hostid CONSTANT ::

BEGIN

LOOP
--request for a new incarnation number
uid_generation.start uid req (cur_inc);
ACCEPT getinc Vtheinc: :N incrnge) DO

cur ind := the_inc;
END;
zur seq := 0;

WHILE (cur_seq < seq_bnd) OR (E'get inc > 0) LOOP
--new incarnations get priority over uids
SELECT
--new incarnation from uid_generation task
ACCEPT getinc (the inc: IN incrnge) DO

cur inc :: the_inc;
END;
curseq := 0;

OR
--uid request from kernel procedure.
WHEIJ E'get inc = 0 ::>
ACCEPT get uid (the uid: OUT uid) DO

the uid.originhost :: this host;
the uid.incarnation cur nc;
the uid.sequence := curseq;

2-61

PACKAGE KERNEL IS

RPC FUNCTIONS STORAGE FUNCTIONS UID GENERATION

MAKECALL GET_08J GETUID

MAKERESP GETSTABLOBJ BUILDXT

KILL _CALL PUTOBJ GIVEHOSTHINT

KEEPCALL PUTSTABL_08J CHANGEHINT

GETCALL DELOBJ

GETRESP DELSTABLOBJ

CSTATUS

R _STATUS

VISIBLE TYPES VISIBLE TYPES VISIBLE TYPES

UID (P) XTENDED_UID UID

XTENDEDUID OBJ_STRING XTENDEO_UID

MESSAGE OBJSTATUS HOSTHINT

CALLSTATUS

RESPSTATUS

DELOPTION
---------------------- ----------++-------*---------- ----------------

E.N PA _C . KERNEL;

Figure 2-1 Kernei Interface

2-62

CALLER CALLER CALLEE CALLEE

TM KERNEL KERNEL TM

MAKE .CALL
-- - - - - ->

CALL--- ---- -- -- --- -- --

GIVE..CALL

E- - - - - - -

< - - -

:MAKE _RESP

> 1

RESPONSE
<- - - -

U

GIVERESP T->

RESPONSE ACK
-------------------- >

U
U

Figure 2-2 messages Exchanged for the P.PC Protoco-

2-63

SEND_GQALL CALLHANDLER TASK RECEIVE_CQALL

ENTRY POINTS

PROCEDURES

INSTALL i- MC MR -p RESPONSE_-GIVEN

REMOVE_-CALL ~ - KLC RS -~ RESPONSESTATE

KPC TC - ~ CALLDLVRED

GIVE_ STATUS ~-- CS

GIVERESPONSE ~ - TR
---------- -------- --------

LR LC------------ --------
LCACK LRACK

CALL__ANSW4ERED INVOKED BY NET- PUT_CALL
--------------------- ---------------

CALLDLVRED WORK HANDLER RESPONSEACKED

-- ---- GTCR

I GTACK
---------- JI -----------------------

SELECTNEXT GVCR SELECTNEXT
/----------------\ --------

GIVEACK -,GVACK -~-> GIVECALLACK

HOSTFAILED 4HOSTDOWN -h HOSTFAILED
---------------. *------------------------- +

ONLYONEROUTINE -0/

INVOKED PER ENTRY

Figure 2-3 Call Handler component Interactionl

2 -6 1,

ENTRY CALLED BY PURPOSE IIPACT ON COMPONENTS

NAME SEND_CALL I RECEIVECALL

MC MAKECALL SEND CALL INSTALL

MR MAKERESP SEND RESPONSE RESPONSEGIVEN

KLC KILLCALL DELETE CALL REMOVECALL

KPC KEEPCALL RETAIN CALL

RS RSTATUS RESPONSE STATUS RESPONSESTATUS

CS C_STATUS CALL STATUS GIVESTATUS

TC GETCALL OBTAIN CALL CALL_DLVRED

TR GETRESP GET RESPONSE GIVERESP

LC MAKE-CALL LOCAL CALL PUT_CALL

- --

LR MAKERESP LOCAL RESPONSE CALL
ANSWERED

LCACK GETCALL LOCAL CALL ACK CALL

DLVRED

LRACK GETRESP LOCAL RESP ACK RESPONSEACKED

Figure 2-4 Entry Points to the Call Handier
Invoked by Kernel Procedures

ENTRY CALLED BY I PURPOSE IMPACT ON COMPONENTS

NAME1 SENDCALL 1 RECEIVECALL

GTCR RECEIVEDRIVER DELIVER MESSAGE CALLANSWERED PUTCALL

GTACK RECEIVEDRIVER DELIVER ACK CALLDLVRED RESPONSEACKED

GVCR SENDDRIVER DISPATCH MESSAGE SELECTNEXT SELECTNEXT

GVACK SENDDRIVER DISPATCH ACK GIVEACK GIVE__CALLACK

HOST- DAMAGE HOSTFAILED HOSTFAILED

DOWN CONTAINMENT

Figure 2-5 Entry Points to the Call Handler
Invoked by the Network Handler

2-66

PACKETMGR SENDDRIVER ONLY INETTRANGEIVENI

O1NLY MAKES ENTRY ENTRY POINTS

CALLS

EV I EV 3
PKTToSEND---------- PKTTHERE -Tru---------- > SND DATA

OTIAKINK -=EV 2 --- >
DT/AK/NK

EV 3 EV I
PACKETACKED-<--------PKTACKFLAG -. re e------ > GET_AC;K

< ---- == EV 2 <--
AK/NK AKINK

ACKTHS-KT<-EV -3 TOAKFA fv -EV 1 GV-C
ACLG<r --- V2 <--->GVC

ACKTISP----- -----O_ --------

CALLHANDLER

ENTRY POINTS

EV 3 EV I -------
ADO_MSG 4C-----------MSGFLAG -True-------->

-- < --- GVCR

MS MS

EV I
MSGACKED EV 3 ACKFLAG -True------------GYACK

< ------- EV 2 <- -
< --- MA

MA

NOTES: 1. EV i - EVENT i; EV i MUST PRECEDE EV iI1

2. CH INDICATES CALL HANDLER

3. NT INDICATES NET TRANCEIVER

4. OT. AK. NK - DATA. ACK AND NAK PACKERS

5. MS. MA - MESSAGE, MESSAGE ACK

Figure 2-6 . Interactionof Network Handier Components
to Send Messages and Packets

2-67

IRECPKTMGR RECEIVE DRIVER NETTRANCEIVER

ONLY ENTRY CALLS ENTRY POINTS
---------- ---------------------------------

<-- -- >PKTANSWER.
D

GIVEPACKET DT Fs AK/NK 1SFULL - F ---- > GETDATA
< ------- EV I EV 2

EV 3- - - - - - - -

RDYAKNK - T AK/NK PUTACKS,
EV I ---- >

EV 2-

CALA.NDLER

ENTRY POINTS

GETMSG MS MSGFLG - T MS GTCR
< -- ----- EV 2 ---- >

EV 2 EV 3
nnnnnnnnnnnnnnnnnnnnnnnnnnnn

GETACK MA ACKFLG EV 2 MA GTACK

EV 1 EV 3

Figure 2-7 Interaction of Network Handler Components
to Receive Messages and Packets

2-68

ENTRY CALLER PURPOSE PACKET TYPE

I I EXCHANGED
RDY_TO_SEND NETWORK READY FOR NEXT PACKET ANY TYPE

ROY_TOREC NETWORK PACKET ARRIVED ANY TYPE

GETDATA RECEIVE DELIVER DATA PACKET DTP
DRIVERT

PUTACKS RECEIVE GET ID OF. ACCEPTED/
DRIVER REJECTED PACKETS

SNODATA SEND_DRIVER GET PACKET TO SEND DTP. ADTP

GETACK SENDDRIVER DELIVER ID OF AKED/ ADTP
NAKED PACKETS

GIVEACK SENDDRIVER DELIVER ID OF PACKETS ADTP
TO BE ACKEDINAKED

Figure 2-8 Net Tranceiver Entry Points for RPC

2-69

SOURCE jDESTINATION

PACKET SEND REC REC-PKT NET NET REC RECPKT SEND. PAC KZ

MGR DRIVER DRIVER MGR TRAN .TRAN DRIVER MGR DRIVER XIG

DATA
------ >DATA

------ --------->

DATI~

DATA

DATA

ACKINAK

* ACK/NAK
I ACK/ NAK

ACK/ A K
I >1

j ACK/NAK

ACK/NAK

ACKINAK

ACKINAKj
------------ ------

ACK/NAK
< II

Figure 2-9 Timing Diagram of Data Packet and

ACK/NAK Transmission

. 2...0

KERNEL TYPE REQUEST DEVICE DEVICE

PROCEDURE DIRECTORY HANDLER CONTROLLER

GET_OBJ
I>

HERES.GET

C• U
0

>> ---

SREAD
'i' >

= DONE

GET RESULT U
00

< R

NOTE:

1. R - RENDEZVOUS FOR ENTRY CALLS WITH DASHED

ARROWS.

2. FOR STABLE I/O ADD CAREFUL GET TO RIGHT OF

REQUEST HANDLER.

Figure 2-10 Kernel Actions to Perform Object

Storage and Retrieval

2-71

REQUEST

HANDLER

DIRECTORY ----- > GETINIT
EV 1

HERESPUT - DEVICE CONTROL
EV 2

>--- PUTOBJ ---> WRITE
EV 3 EV 4

PUTDIR <
EV 5

*---> GETRESULT

* * EV 6

KERNEL

PROCEDURE

PUTOBJ -•

1. THE STRUCTURE AND SEQUENCE OF CALLS FOR ALL

REQUEST HANDLERS IS SIMILAR.

2. THE REQUEST HANDLER'S SEQUENCE CAN BE EXPRESSED

AS EV 1 (EV 2 EV 3 EV 4 EV 5 EV 6)0

WHERE 0 - KLEENE STAR

Figure 2-11 Request Handler Sequence for Put Obj

2-72

KERNEL PROC DIRECTORY DIRECTORY

TAS K MAP

GETOBJ ---- > GET-OBJ---->

I GET-_ENTRY~
PUTOB 083-- PUT_085 -

DEL-B 08--- > DEL_085 -

332 GET_DIR -

PUT-IR ---- >PUT-_ENTRY

REQUEST - - - - - - - -

HANDLERS DELDIR-------- > DEL-_ENTRY

SMPGET - >HERES..GET

- - -- HERES..YUT
SlIP_PUT

HER ESPT

SlIPDEL
HERESDEL

GET_INIT

Figure 2-12 Directory Entries and Calls

2-73

FUNCTION UID_ MONITOR SOME UIDGENERATION

GET_UID ENTRY POINTS ENTRY POINTS
----------- ------------ -------------------

> GET_UIO --- > STARTUTOREQ

GETINC

INTERACTIONS

1. GET_UTO CA-USES STARTUIDREQ WHEN INCARNATION.

2. A STARTUIO_REQ IS ALWAYS RESPONDED TO

BY A GETINC.

3. A GETINC MAY BE RECEIVED IF SOME OTHER HOST

INCREMENTED THE INCARNATION NUMBER.

Figure 2- 13 UID Monitor and EJID Generation

2-74

UJOGENERATION

ENTRIES
- - - - - - - - - - - - -

IUID _MONITORI ---- > STRT_UID_REQ

---------------- UIDDELAY

IUIO_TIME >-

-- -- -- -- -- ---- RANKTIMER
RCALL- >--

TIMER >-- FULL_TIMER
*----------------- - -- - -- -

----- ----- STARTROLL
RECALL>
REMINDER - - - - - - - - - - - -

-------------- COMPREQEUST < ---- NET
---------- --------
COMP_7RESPONSE < ---- TACIE
------ ---------

COKABORT

STARTHOST

F'igure 2-14 UID Generation Task Interactions

2-75

UID UID UID NET
TIME MONITOR GENERATION TRANCETVER

(WAITALG)
STRT_UIDREQ

. SN SEQ (NIP) -

THIS HOST >
INITIATES ROY TU SNO
(START_ (NIP)
UIO) < ------

RDY TO REC
(1IPT

CCKP_REQUEST(NIP)

GETINIT
(-------- -------

UID DELAY

THIS HOST SNDSEQ (NIR)
RESPONDS -
(EXECUID) RDY TO SND

-~_(IRT
COP RESPONSE

(RIR) -
< - -RDY TO REC

FINALG (NIRT

GET_INC

-.- - RDY-TO REr'
(NIRT

COMP RESPONSE
(NIR)

OTHER HOST FINALG
RESPONDS ->
(EXEC_UID) WORKDONE

GET_INC

Figure 2-15 UID Generation Sequence
2-7F

RCALL UIO NET
TIMER GENERATION TRANCEIVER

START_- HOST BEGIN HOST
-)(--------------- ------ ----------

SNO_ SEQ (H-RP)

ROY_TO_SND(HRP)

ROY_TOREC(HRP)

SNDSEQ (HRP)

GETIN IT

ROYTOREC(FHAP)

COMPRESPONSE

RANKTIMER-> _IN(HP -

ROYTO...RE(FHAP)

COMP RESPONSE
(FFIAP)

FULLTIMER--

MEANS SEQUENCE IN RANGE IS EXECUTED4 Ar LEAST ONCE

Figure 2-16 Host Restart Sequence

2-77

RECALL RCALL UID NET
REMINDER TIMER GENERATION TRANCEIVER

STARTROLL
--- --------- >

SND SEQ
(SRCP)

ROY TO SND
(V T

COMPREQUEST <-----------
< -ROY TO REC

GETINIT (.RCI)

COMP RESPONSE <-----------
(RRCP) ROY TO REC< ---------

RANKTIMER

SNOSEQ(RRCP)

ROY TO SND(ffRC7)

- - - - -- - R-O-EC-
I (ITRCF)

<-------------------------
COMP RESPONSE

(RRCP)

FULL_TIMER

FIN _ALG

WORKDONE
< ---- ----------

, 4 MEANS THAT SEQUENCE OF MESSAGE IN THAT RANGE
MAY BE REPEATED ZERO OR MORE TIMES

Figure 2-17 Roll Call Sequence

2-78

Chapter 3

PROCESS MANAGER DESIGN

This chapter presents a formal definition of the detailed designs of the
Process/Transaction Manager in the Zeus distributed operating system, using
CSDL.

Section 3.1, Machines Dictionary, describes the interfaces and behavior of
various machines used in the design definiton of the Process Manager system.
These machine defintions do not contain the details of the internal structure
of the machines.Section 3.2 contains the type definitions for the various
object types used in the entire design definition. For the sake of reader
convenience this section has been divided into various sections depending on
the type definitions related to some specific interfaces or sub-machines such
as secondary storage, application processes, Operation Switch, database
manager etc. Section 3.3 defines various procedures that are used by several
machines in the design definitions. The details of the machine architectures
are given in section 3.4 titled Realization Dictionary. These detailed design
definitions include the architectures of the command processors used by the
Process Manager machine. In each machine descripton, in addition to the CSDL
definitions, we have also included informal algorithmic descriptions of the
protocols used by that machine. These algorithmic descriptions are given in
the BEHAVIOR parts of the machines and the procedures. Section 3.7, SYSTEM
ProcessManager, defines the architecture of Process/Transaction Manager.

3.1 MACHINES DICTIONARY

3.1.1 Process Manager

SYSTEM Process-Manager

PUBLIC

PM TO OS: Small Mailbox (OS PM Msg, PMOSMsg)
PM -TO -MM : SmallMailbox(MM PMMsg,PM_MM_Msg)
PM TO SS : Small Mailbox(SSPMMsg,PMSS_Msg)
PMTOUIDgen : SmallMailbox(UIDgen PM_Msg,PMUIDgen_

Msg)
CP TOSS: LIST(LargeMailbox(SSPMMsg,PMSSMsg))
CPTOMM: LIST(LargeMailbox(MMPMMsg,PMMMMsg))

BEHAVIOR

3-1

Process_Manager machine contains several static machines as well as dynamic
machines.The static machines, which are Router, Timer, MM Port, SS Port and
PM DatabaseManager,are created at the same time as the PM Manager whereas the
dynamic machines, namely Processes and Command Processors, are created in
response to a request. PMManager also interfaces with the Stable Storage,
MemoryManager, Operation Switch, and UIDGenerator.

END {Process Manager}

3.1.2 Router

Router IS

PUBLIC
Router TO PM CTRLCMD:SmallMailbox(PM RouterCTRLMsg

. Router PMCTRLMsg)
RouterTOPM:SmallMailbox(PMRouterMsg

RouterPMMsg)
RouterTOProcess:LIST(Large-Mailbox(ProcRouterMsg,

Proc RouterMsg))
Router TO OS : Small Mailbox(OSPMMsg,PM OSMsg)
Router-TO-CP:LIST(Small Mailbox(PMRouterMsg,

Router PMMsg))
RouterToPMDB : SmallMailbox(InvokeMsgType,

InvokeMsgType)

BEHAVIOR

The Router machine is created when Process Manager comes into existence.This
machine provides communication path between submachines inside the PM and
operation switch. Since Router is itself a submachine within PM ,it can not
talk to any machine outside the PM directly; thus at Router's creation time
the RouterToOS mailbox is bound to PMTo OS (a Public object of PM) through
which Router will be able to communicate with OS.
END {Router}

3.1.3 Process

Process IS

PUBLIC

Process To PM:Small Mailbox(Response Msg,
Appl_Req_Msg)

Process toPMPSCMD:SmallMailbox(ResponseMsg,
Processor SchedulerReqMsg)

Process TO Router:Small Mailbox(Router ProcMsg,
ProcRouterMsg)

BEHAVIOR

3-2

PROCESS MANAGER DESIGN

The Process Machine is created from the Process POOL in-response to either an
application request message or a request from a command processor. A Process
at its creation time will be connected to the Router, through the
Process To Router mailbox, and to the PM, through both Process To PM and
Process To PM PSCMD. Process machine executes the program as per the
Process Control Block and also it executes the processor scheduler commands.
END - Process}

3.1.4 Timer

Timer IS

PUBLIC

TimerCommand Iface : SmallMailbox(TimerCommand,
TimerResponse)

Interrupt : EventRec OUTLET

END (Timer!

3.1.5 Delete Processor

Delete-Processor (My_ProcessID:ProcessUIDType,
Remote:BOOLEAN,
Requester:Process UID_Type,
Work_Request:ApplReq_Msg)

PUBLIC
PMDB Iface:Small Mailbox(PMDB ResponseType, PMDB_RequestType)
Parent Iface:LargeMailbox((Appl_Req_Msg, ResponseMsg)
PM Controller Iface:Small Mailbox(ControllertoCP,CPtoController)
OSIface:LargeMailbox(InvokeMsgType, InvokeMsgType)
SS Iface:Port(SS PM Msg,PM_SSMsg)
MM -Iface:Port(MMPMMsg,PM_MM_Msg)
DescendentIface:LIST(Large_Mailbox(ResponseMsg, ApplReqMsg)

BEHAVIOR

The Delete Processor machine comes into existence in response to either an
application request command 'Delete Process' or a request from another
commandprocessor. PM upon receiving a request for delete process creates
this machine and passes the following parameters to the newly created machine:

My_Process ID: UID for created machine.
Remote: Indicates whether the request is from a remote site or not.
Requester: UID of the process which invoked the operation.
WorkRequest: The requested operation and its parameter. For

this machine the work request is: OP='Delete Process'
Param=Process_UID_Type.

3-3

The Delete Processor Machine to carry out the Delete operation executes one of
the following procedures (based on the location of the process to be created).

Delete Remote Process (Proc ID: Process UIDType,
MyP rocess ID: Process UID Type)

DeleteLocalProcess (ProcUID: Process UIDType)

ProcUID is the UID of the process to be deleted.

END {DeleteProcessor}

3.1.6 Create Processor

Create-Processor (MyProcess ID:ProcessUIDType,
Remote:BOOLEAN,
Requester:Process UID Type,
WorkRequest:ApplReqMsg)

PUBLIC
PMDB Iface:Port(PMDBResponseType, PMDB_RequestType)
Parent Iface:Large Mailbox((Appl_ReqMsg, ResponseMsg)
PM Controller Iface:Small Mailbox(ControllertoCP,CP to Controller)
OS-Iface:Small Mailbox(Invoke Msg Type, InvokeMsgType)
SSlIface:Port(gSPMMsg,PMSS-Msg)
MM I face: Port (MM PMMsg, PMMM Msg)
DescendentIface:LIST(Large Mailbox((ResponseMsg, Appl_Req_Msg)
UIDGenIface:Port(UIDgenPMMsg, PMUIDgenMsg)

BEHAVIOR

The createprocessor machine is created in response to either the application
request command 'Create Process' or a request from another Command Processor.

Following Parameters will be passed to the Create Processor at the time of
creation:

My Process ID: UID of the created command processor machine
Remote: Indicates whether the request is from a remote site or not.
Requester: UID of the process which invoked the operation
Workrequest: The requested operation and its parameter.

For this machine the Work Request is:
OP = 'Create Process'
Params:Program_UID, DataUID, hostID, Time Out

Following procedures are executed on Create Processor machine:

CreateRemoteProcess (Param: CreateParam,
MyProcess ID: HostIDType)

Create Local Process (Params: Create Param)
CreateParam is-the parameters needed to create the new process.

3-4

PROCESS MANAGER DESIGN

END (CreateProcessl

3.1.7 PM Database Manager

PM DatabaseManager

PUBLIC
SS Iface:Port(SSPMMsg,PMSS_Msg)
DatabasePort:Small mailbox(Port Msg(PMDBRequestType),

PortMsg(PMDBResponse_Type))
OSIface : SmallMailbox(Invoke_Msg_Type, Invoke_Msg_Type)

BEHAVIOR

The PM Database-Manager machine comes into existence when ProcessManager is
created. This machine contains a set of objects from which information about
the active processes can be acquired. Also, this information is essential for
PM to carry out its functions reliably.

END (PMDatabaseManager}

3.1.8 Port Multiplexer

PortMultiplexer(TI : TYPE , T2 : TYPE)

PUBLIC
Device Iface : Small Mailbox(Port_Msg(T1),Port_Msg(T2))
Iface SmallMailbox(Port_Msg(T2),PortMsg(T1))

BEHAVIOR

The PortMultiplexer machines are created when ProcessManager comes into
existence. These machines provide communication path between submachines
inside the PM and independent machines outside the PM namely Stable-Storage,
Primary_Memory and UID Generation. The proper message types for the
communication ports must be passed to these machines at their creation time.

END {PortMultiplexerl

3.1.9 End Transaction Processor

EndTrans-Processor(My-Process-ID:Process-UID-Type,
ERP : BOOLEAN,
Requester:ProcessUIDType,
WorkRequest:Appl_Req_Msg)

PUBLIC

3-5

PMDB Iface:Small Mailbox(PMDB ResponseType, PMDB_RequestType)
Parent Iface:Large Mailbox((ApplReqMsg, ResponseMsg)
PM Controller Iface:SmallMailbox(Controller toCP,CP toController)
Descendent Iface:LIST(LargeMailbox((ResponseMsg, Appl_ReqMsg)

BEHAVIOR

The End Tran Processor machine is created in response to either an applciation
request command 'EndTransaction' or a request from another command processor.
Following parameters must be passed to the EndTransProcessor at the time of
creation:

My_Process ID: UID of created machine.
ERP : Indicates whether the requester wants to establish a recovery

point or not.
Requester: UID of the process which invoked-the operation or not.
WorkRequest: The requested operation and its parameters. For

this machine the work request is:
OP='End Transaction'
Param=NULL.

The End Transaction operation is the commit point for the Transaction. Thus,
the Commit procedure is executed to carry out this operation. The
END Transaction operation is the commit point for the transaction. Thus, for
an outermost transaction, execution of the End Transaction statement means
permanence of all updates made within this transaction.

END [EndTransProcessor}

3.1.10 Abort Processor

AbortProcessor(My_ProcessID:Process_UIDType,
Remote:BOOLEAN,
Requester:ProcessUID_Type,
TUID:TransactionUIDType)

PUBLIC

PMDB Iface:Small Mailbox(PMDB ResponseType, PMDB Request Type)
Parent Iface:LargeMailbox((ApplReqMsg, ResponseMsg)
PM Controller Iface:Small Mailbox(Controller to CP,CPtoController)
OS-Iface:Large Mailbox(Invoke Msg Type, Invoke Msg Type)
Descendent Iface:LIST(Large_Mailbox((Response_Msg, ApplReq_Msg)

BEHAVIOR

The Abort Processor machine comes into existence in response to either the
application request command 'Abort' or a request from another command
processor. Following param are passed to this machine at its creation time:

3-6

PROCESS MANAGER DESIGN

My_Process ID: U[D of created machine
Remote: Indicates whether the request is from a remote site or not.
Requester: UID of process which invoked the operation.
WorkRequest: The requested operation and its parameter. For this

machine the work request is
OP = 'Abort'
Param = NULL or ProcessUID.

The Abort operation for Transactions terminates the execution of the current
block and restores the state of the local variables and global objects to
their values before the beginning of transaction. If Abort command is used
within a process it terminates the process. Procedure Abort in this machine
perform Abort operation.

END iAbort Processor}

3.1.11 Commit Processor

Commit Processor(MyProcessID:ProcessUID_Type,
Remote:BOOLEAN,
Requester:Process UID_Type,
TUID: TransactionUIDType)

PUBLIC

PMDB Iface:Small Mailbox(PMDBResponseType, PMDB_RequestType)
Parent Iface:Large Mailbox((ApplReq_Msg, ResponseMsg)
PM ConTroller Iface:Small Mailbox(Controller to CP,CP_toController)
OS-Iface:Large_Mailbox(InvokeMsgType, InvokeMsgType)
DescendentIface:LIST(Large_Mailbox((ResponseMsg, Appl_ReqMsg)

BEHAVIOR The CommitProcessor machine is created in response to either the
application request command 'Commit' or a request from another command
processor. Following are the parameters which must be passed to this machine
at its creation time.

My Process ID: UID of created machine.
Remote: Indicates whether the request is from a remote site or not.
Requester: The UID for the process which invoke the operation.
TUID: The UID of transaction to be committed.

The Commit Processor executes the Commit Protocol Terminator to carry out the
commit operation. The Commit Transaction operation makes all the updates
which have been performed by a transaction permanent. This function can be
called only by a non-transaction process that has created some concurrent
transaction (by executing the Create Transaction function). Therefore, no
nested transaction is committed by calling this function; the commitment of a
nested transaction occurs when its parent transaction executes its
End Transaction command. The execution of this command for a nested
transaction is still valid; however, such an invocation of this command will
not commit a nested transaction.

3-7

END [CcmmitProcessor}

3.1.12 Rollback Processor

RollbackProcessor(My_ProcessID:ProcessUID_Type,
TUID: Transauti.onUIDiype,
RPNumber:INTEGER)

PUBLIC

PMDB Iface:Small Mailbox(PMDBResponse_Type, PMDB_Request_Type)
Parent Iface:LargeMailbox((Appl_Req_Msg, Response_Msg)
PM Controller Iface:Small Mailbox(ControllertoCP,CP to Controller)
OSlIface:Large_Mailbox(InvokeMsg_Type, InvokeMsg_Type)
DescendentIface:LIST(Large_Mailbox((Response_Msg, AppiReq_Msg)

BEHAVIOR

The Rollback Processor machine is created in response to either the
application request command 'Rollback' or a request from another command
processor. Following are the parameters which must be passed to this machine
at its creation time.

My ProcessID: UID of created machine.
TUID: The UID of transaction to be rolled back.
RP Num : the recovery point number where the process or transaction

is to be rolled back to.

The Rollback operation within a process restores the state of all the local
objects to their values which they possessed at the time the RP num was
established. The changes on global objects, which have been made by
transactions within that process, remain permanent if the transactions
performing those are committed.

The Rollback operation within a transaction restores the state of all the
local and global objects to their values that they had at the time the RP-num
was established.

END [RollbackProcessor}

3.1.13 ERP Processor

ERPProcessor (MyProcessID:ProcessUID.Type,
Requester : Process UID Type,
WorkRequest:Appl_Req Msg)

PUBLIC
PMDB Iface:SmallMailbox(PMDB_ResponseType, PMDBRequestType)
Parent Iface:Large Mailbox((ApplReqMsg, ResponseMsg)
PMControllerIface:SmallMailbox(ControllertoCP,CPtoController)

3-8

PROCESS MANAGER DESIGN

OSIface:LargeMailbox(InvokeMsgType, InvokeMsg_Type)
SSIface:Port(SSPMMsg,PM_SS_Msg)
MMIface:Port(MMPMMsg,PMMMMsg)

BEHAVIOR

The ERP Processor machine is created in response to either the application
request command 'Establish RecoveryPoint' or a request from another command
processor. Following are the parameters which must be passed to this machine
at its creation time.

MyProcessID: UID of created machine.
Requester: The UID for the process which invoke the operation.
Work_Request : The requested operation & its parameters.

The ERP operation saves the current state of the process or Transaction object
in stable storage. Successive calls to this function increments the RP Num by
one. The updated RP Num indicates the latest recovery point number within the
ontext in which it is called, the first recovery point for each process or
transaction has the value of zero and it is established automatically hen a
process or transaction starts its execution.

END [ERPProcessor}

3.1.14 DRP Processor

DRPProcessor (My_ProcessID:Process_UIDType,
Remote : BOOLEAN'
Requester : Process _UID Type,
WorkRequest:Appl_Req_Msg)

PUBLIC
PMDB Iface:Small Mailbox(PMDBResponse_Type, PMDBRequest_Type)
ParentIface:LargeMailbox((ApplReq_Msg, Response_Msg)
SSIface:Port(SSPMMsg,PMSS_Msg)

BEHAVIOR

The DRP Processor machine is created in response to either the application
request command 'DiscardRecovery Point' or a request from another command
processor. Following are the parameters which must be passed to this machine
at its creation time.

MyProcessID: UID of created machine.
Remote: Indicates whether the request is from a remote site or not.
Requester: The UID for the process which invoke the operation.
TUID: The UID of transaction to be committed.

3-9

The DRP operation discards all recovery points the whose RP-num is equal to
and includes specified recovery points between.

END [IDRP Processorl

END ('Machine Dictionaryl

3.2 TYPES DICTIONARY

3.2.1 UID_Type Definition

HostIDType IS (O..((2**1O)-1))

UniqueNumberType IS (Large_stepNo: (0..((2**22)-l)),
SeqNo :0.(*3)1)
Host rD :(O..((2**1O)-fl))

TypeName IS UniqueNumberType

UID Type IS (ObjectID:UniqueNumberType,
TypeID: Uinique NumberType

Extended LJID Type IS (UID : UTO Type,
HostHint :HostID-Type)

Type TypeManager tJID Type IS
MODEL iID_Type
LET TTM-tJID: Type Type ManagerUID_Type
I NVAR IANT

TTM -UID.Object_ID.Large_StepNo :=1 AND
TTM -UID.ObjectID.Seq_No ::0 AND
TTM -JID.ObjectID.Host ID ::0 AND
TTM -UID.TypeniqueNo.LargeStepNo := 0 AND
TTM UID.Typenique_No.Seq-No :=0

END f Type_Type_ManagerUIDType)

Process Manager UID Type IS
MODEL UID Type
LET PM QID: Process Manager_UIlDType
INVARIANT

PM UID.ObjectID.LargeStepNo :=1 AND
PM -UID.ObjectID.SeqNo ;:0 AND
PM -UID.Object -ID.Host ID :=0 AND
PM -UID.TypeUniqueNo.Large Step_No := 0 AND
PM UID.TypetiniqueNo.Seq No :=1

END f Process ManagerUID TypeT

3-10

PROCESS MANAGER DESIGN

ProcessUIDType IS
MODEL Extended_-UIDType
LET Proc-UID:ProcessUID_Type
INVARIANT

ProcUID.UID.Unique_NumberType.Large_Step_No=O AND
(Proc -UID.UID.TypeUnique_lo.Seq_No~1 OR
ProcUID.UID.TypeUniqueNo.SeqNo=2)

END (Process UID Type I

TransactionUIDType IS
MODEL ExtendedUIDType
LET TR UID:TransactionUID Type
INVARIINT

Trans UID.UID.TypeUniqueNo.LargeStep_!No=O AND
Trans UID.UID.TypeUniqueNo .SeqNo=2

END {TransactionUIDType I

3.2.2 Type definitions for Process Manager's database

Register IS INTEGER

Base-Bound IS (Base,Bound:Register)

Set of Rights IS (Owner,Abort,Suspend,Update_Priority,Restart,
Start, Terminate ,Destroy)

Process StatusType IS (Non-Existent,Running,Aborted,Suspended,
Completed ,Crashed)

Transaction-status_Type IS (Non Existent,Uncommitted,Commit-
Pending,Committed,Completed ,Crashed,
Aborted)

ProcessAccess Record IS (User ID:UID Type,
AccessRights :Set ofRights

Process-Record IS (PUID: Process UIDType,
Access ControlList:ProcessAccessRecord,
Priority: INTEGER,
Proc -State:Process_-Status-Type,
Time-Out: INTEGER
LRP: INTEGER,
Creation-Time: INTEGER

Transaction-Record IS

3-1 1

(PUID:Transaction_UID_Type,
Access Control List:Process AccessRecord,
Priority:INTEGER,
Proc State:ProcessStatusType,
Time Out:INTEGER,
Trans State:Transaction_StatusType,
LRP : INTEGER,
Creation Time:INTEGER

)

ActiveProcess Record IS

[Transaction:Transaction Record0
Process:Process-Record

]UNION

Process ControlBlock IS

(PUID:UID Type,
Process StatusRegisters:Register ARRAY,
Process Base Bound:Base bound,
Data Base Bound:Base Bound
RP Num:INTEGER)

DescendentRecord IS (Child ID:Process_UID_Type,
Grand Children:Process UIDType ARRAY,
IndirectlyModifiedObj:ExtendedUID ARRAY)

RPChildRelation IS (RPNumber:INTEGER,
Desendent TableIndx:INTEGER
[This index indicates that all transactions
and processes that were created after
the recovery point RP Number are stored
in the Descendent Table starting with index
Descendent Table Indx+1})

Parent Child Info IS

(Process ID:UID Type,
Parent UID:UIDType,
Root UID:Transaction UID,
Top-Level:BOOLEAN (True if the process specified

by the Proc ID field is a transaction
whose parent is a non-transaction
process}

Map Field:(Sequential, Concurrent) [with respect
the parent process/transaction}

Location:(Local , Remote)
DescendentTable:DescendentRecord ARRAY,
RP ChildMap:RPChildRelation ARRAY
)

3-12

PROCESS MANAGER DESIGN

DirectlyModified Objects IS
(PUID:Process UID Type,
Modified Objects:ExtendedUID_Type ARRAY

)

(NULL is of Type ARRAY with no element in it}
NULL IS INTEGER ARRAY

RP Num IS INTEGER

[RPNumber is an array which may have 0,1 or more elementi
RPNumber IS RP-Num ARRAY

Operation_Type IS [ERP , (OP :(EstablishRecoveryPoint,
End Transaction)

Param : NULL) 3

Commit Transaction , UIDType 3
Rollback , RP_Number] UNION

Current OperationInfo IS

(PUID:Process UID Type,
OP:Operation Type)

TimeStamp IS INTEGER

RPDataRecord IS (localvar:ABSTRACT,
PCB:Process ControlBlock,
TS:TimeStamp)

MemoryAllocation IS (StartingAddr:INTEGER,Length: INTEGER)

3.2.3 PM To Process Interface

PUID IS UID Type
DUID IS UID Type
P IS [Program UID, PUID

Data UID, DUID 0
HostID, HostIDTypeg
Expected_Time, INTEGER] UNION

CreateParam is P ARRAY

[SuspendParam is defined as an array which may contain up to 2 elementsi
S IS [Process UID, Process UID Type

DelayTime, INTEGER 7 UNION

3-13

(DRP Param is an array which may contain up to 3 elements}
DRP IS [Process UID : Process UIDType 0

RPnums,RPNumber] UNION

ApplReqOperations IS (CreateProcess,DeleteProcess,
Process Status,Suspend,
Resume,EstablishRecoveryPoint,
Discard RecoveryPoint,Rollback,
Last RecoveryPoint,Begin Transaction,
End Transaction,CreateTransaction,
TransactionStatus,Commit transaction,
Abort)

(Ti operations are: Create Process, Create Transaction.)
Ti IS (OP : Appl_ReqOperations,

Param : CreateParam)

[T2 operations are: Delete-Process, Restart, Last_Recovery_Point,
Abort.}
T2 IS (OP : Appl_Req_Operations,)

Param : UIDType ARRAY)

(T3 operations are: Process-Status, Resume, Transaction-Status,
Commit Transaction.I
T3 IS TOP : Appl_Req_Operations,

Param : UID Type)

{T4 operations are: EstablishRecovery_Point, Begin_Transaction,
End Transaction & all other operations whose responses are NULL.'}
T4 IS (OP : Appl_Req_Operations,

Param : NULL)

[T5 operations are: BeginTransaction, CreateTransaction.}
T5 IS (OP : Appl_ReqOperations ,

Param : TransactionUIDType)

[T6 operations are: LastRecoveryPoint, EstablishRecoveryPoint.1
T6 IS (OP : Appl Req_Operations,

Param : RPNum)

(Message Type for Application functions}
ApplReqMsg IS (Create , TI 0

ArrayUID Param , T2 0
UID Param , T3 U
NULL Param , T4 a
Suspend , S ARRAY 0
Discard RecoveryPoint , DRP ARRAY
Rollback , RPNumber I UNION

(Application commands response from PM to process}

ACK IS (Failure , Success)

3-14

PROCESS MANAGER DESIGN

Appl_RespMsg IS [NULLResp , T4 0
TrUIDResp , T5
RPNum_Resp , T6
CreateProcess , ProcessUIDType
Process Status , ProcessStatusType 0
Transaction-Status , TransactionStatus_type] UNION

(Message request Type for Processor Scheduler Commands}

Processor Scheduler Cmds IS (GetPCB, LoadPCB
RunProcess,StopProcess)

T8 IS (OP : Processor SchedulerCmds,
Param : NULL

)
T9 IS (OP : ProcessorSchedulerCmds,

Param : PCBType
)

ProcessorSchedulerREQMsg IS [NULL Param , T8 I
PCBParam , T91 UNION

(PS Commands response Type from PM to Process}
ProcessorScheduler_RespMsg IS [NULL_Resp , T8

PCB_Resp , T9 I UNION

ErrorConditionCode IS (NonExistentTransaction,
Access-ControlViolation,
Non ExistentProcess,
Host Inaccessible,
TimeOut,
Undefined Error
Illegal_Command)

PMProcRespMsg IS [Appl,Appl.RespMsg0
PS,ProcessorScheduler_RespMsg] UNION

ResponseMsg IS [Success,PMProcResp_Msgg
Failure,ErrorConditionCode] UNION

Search Rec IS [Success,TYPEO
Fail, NULL] UNION

SuspendedCallerRec IS (UID : Process_UIDType,
Operation : Appl_Req_Msg)

MachineIndexType IS [Application, Process INDEXO
Delete, Delete Processor INDEX0
Commit, CommitProcessor INDEX0
Create, Create-Processor INDEXO

3-15

Rollback, Rollback Processor INDEX9
ERP, ERPProcessor INDEX0
Abort, AbortProcessor INDEXO
End , EndTransProcessor] UNION

3.2.4 PM Database Interface Types

All Rec Type IS [APR,Active ProcessRecorda
PCI, Parent Child Info 0
LMO,List -of_-Modified Object3
COI,Current_OperationInfo] UNION

Add-ModifyParam IS (OP : (Add , Modify),
Param :AllRecType ARRAY)

PMDB ModifyOperations IS [AddModify ,Add ModifyParami
Delete , UIDType] UNION

DatabaseQuery_Type IS (ProcessStatusRecord,
Modified-Object,
Parent ChildInfo,
Get-UID)

PMDBRequest_Type IS [Update, PMDBModify_Operationsg
Query, (UID:Process_-UID_-Type,

Request:Database QueryType)] UNION

PMDB ResponseType IS [Update, ACK 0
Query, All_Rec_Type] UNION

3.2.5 PM to SS Interface To OS Interface

[Request_Message type definition for request message from
process Manager to Stable Storage.}

RP Label-Type IS (UID: UIDType,
RPnum: RPNum)

Address : INTEGER
RW-Param IS (Label: RPLabelType,

StartingAddr: Address,
Len: INTECER)

PMDB LogBuffer: LIST(PMDB Modify Operations)

AppendParam IS (List of Rec: LIST(TYPE),
Stable StorageFilename; CHAR ARRAY)

[The Append operation will append the given list of record
to the specified file on stable storage which has to be

3-16

PROCESS MANAGER DESIGN

the file of same record type. The special case is
appending PMDB LogBuffer to the Differential file on
stable storage.}

[Message type definition for Process Manager & Stable Storage
Communication.}

PMSS_Msg IS [ReadWrite, (OP : (Read, Write),
Param : RWParam)

Append, Append Param 0
Find_Length, RPLabelType) UNION

[Response Message type definition for Stable Storage to Process
Manager}

SSPMMsg IS [ACKResp , (OP : (Read, Write, Append),
Param : ACK) 0

Find_Length,INTEGER] UNION

3.2.6 PM TO UIDgen Interface

{Message Type definition for PM & UID generator communicaticn.}

PMUIDgenMsg IS Type_Name

[Response Message Type definition for PM & UID generator
Communication.1

UIDgenPMMsg IS UIDType

3.2.7 PM TO MM Interface

[Type definition for Process Manager &
Main Memory Communicationi

PMMMMsg:ABSTRACT {Requesti
MMPMMsg:ABSTRACT [Response}

3.2.8 PM TO OS Interface

[type definition for Process Manager
& Operation Switch Communication}

Other Msg_Type: ABSTRACT
GeneralMsgType IS [Appl Cmds,ApplReqMsgO

Response,ResponseMsgg
OtherMsg,OtherMsgType UNION

3-17

InvokeMsgType IS (Sender : ExtendedUIDType,
Operation : GeneralMsgType,
Reciever ExtendedUIDType,

PM ..OS Msg IS InvokeMsgType
OSPMMsg IS Invoke_Msg_Type

3.2.9 PM TO Router Interface

Router PMMsg IS Invoke_Msg_Type
PMRouter_Msg IS InvokeMsg_Type

RouterPMCTRLMsg IS ACK
PMRouterCTRLMsg IS (OP : (CreateMbx, Delete Mbx,

CreateCP _bx, Delete CP Mbx)
Param : ProcessUIDType)

3.2.10 PM TO Timer Interface

[Type definition for PM To Timer communication.}

Event Rec IS (Caller UID : ProcessUID_Type,
Operation : Appl Req Msg,
Action : [Retry , INTEGER0

Time Out, Null] UNION
Time_Delay : INTEGER)

Timer Command IS [Set , Event Rec9
Clear, Process-UIDJ UNION

Timer-Response IS ACK

3.2.11 Router TO Process Interface

RouterProcMsg IS ABSTRACT

ProcRouterMsg IS ABSTRACT

3.2.12 Command Processor Interface Types

CommandMachineType IS (Delete, Create, Commit, Abort,EndTrans,DRP,

Rollback, ERP)

Action-Type IS (NewProcess, DeleteProcess,RunProcess)

ActionParamType IS [tagl, PCBType 0
tag2, UID Type] UNION

3-18

PROCESS MANAGER DESIGN

CPToController IS [Create, (MachineType : CommandMachineType,
Descendent Mbx Indx : INTEGER,
CallerType:CommandMachineType,
Work Request : Appl Req Msg) D

destroy, CommandHachineType -
ServiceCall, (Action: ActionType,

Param : ActionParamType)] UNION

Controller To CP IS [tl, ACK 0
t2, UIDType] UNION

3.2.13 Definition of abstract data type for List manipulation

LIST (T:TYPE) IS
MODEL [T ARRAY]
Let %L:LIST (T)(%L)
(T must have a field containing UID.}

INVARIANT
INIT %L.dom = 0

OFUN Add(V:T)
PRE TRUE
POST %L'.Hib = %L.Hib +1

AND %L'.High = v

OFUN Delete (V:UIDType) RETURNS BOOLEAN
PRE TRUE
POST %L.Hib = %L.Hib-1 AND Delete' TRUE

IFF exists
IF not (i (v=%L[i].UID)) Then
Delete' = FALSE

VFUN Search (V:UIDtype)_RETURNS SearchRec
PRE TRUE
POST IF (There exist i:%L.lob<i<%L.hib AND (v=%L[i].UID)) Then

Search-Rec.FLag = TRUE
Search Rec.x.value = %L[i]
SearchRec.x.tag = Success

and

IF not (There exist i:%L.Lob<i<%L.hib (v=%L[i].UID)) Then
Search Rec.FLAG : FALSE
Search-Rec.x.tag = Fail

VFUN Is Empty RETURNS BOOLEAN
PRE TRUE
POST %L.dom>o=> IsEmpty = TRUE

3-19

NOT (%L.DOM>O_=> Is-Empty = FALSE
BEHAVIOR

[This function indicates whether the list is
empty or not.}

VFUN Hi Bound RETURNS INTEGER
PRE TRUE
POST Hi Bound' = %L.hib
BEHAVIOR

(This function returns the largest index of
the list.}

VFUN Element(i:INTEGER) RETURNS T
PRE TRUE
POST Element:=%L(i)
BEHAVIOR

[This function RETURNS the element of LIST
LIST referenced by index i.}

VFUN Get List Indx}i(ProcUID:Process_UIDType) RETURNS INTEGER
PRE TRUE
POST %L[GetListIndx(ProcUID)I.UID=ProcUID
BEHAVIOR

[This function returns the index of element
whose id number is Proc UID.}

OFUN Hi Extend RETURNS INTEGER
PRE TRUE
POST %L'.hib = %L.hib + 1

END (LISTI

3.2.14 Definition of abstract data type for Small-Mailbox.

ACTIVE Small Mailbox (T1:TYPE,T2:TYPE) IS
MODEL [Request:T1 INLET,Response: T2 OUTLET]
LET %M1,%M2: Small Mailbox

%M3: Large-Mailbox
%P : Port

COMPLEMENTS %MN.Request,%M2.Response;
%M2.Request,%Ml.Response;
%M1.Request,%M3.Response;
%M3.Request,%M1.Response;
%MI.Request,%P.Out;
%M1.Response,%P.In

3-20

PROCESS MANAGER DESIGN

OFUN Get RETURNS Ti
PRE TRUE
POST Get' = %Ml.Request.Window &

%MI.Request.Flag = TRUE

OFUN Put (x:T2)
PRE TRUE
POST %M.Response.Window = x &

%Ml.Response.Flag = FALSE

VFUN Went RETURNS BOOLEAN
PRE TRUE
POST Went' = %M.Response.Flag

VFUN Came RETURNS BOOLEAN
PRE TRUE
POST Came' = %Ml.Request.Flag

VFUN Send (Msg:T2)RETURNS BOOLEAN

PRE %Ml.Response.Flag=TRUE
{Io make sure previous message has been read.}

POST Send=TRUE 1FF %MI.Response.Window=Msg &
%M1.Response.Flag=TRUE

BEHAVIOR

%M1.Response.Window:=Msg
%M1.Response.Flag:=FALSE
WHEN

%M1.Response.Flag --> Send:=TRUE

END

END fSmallMailbox}

3.2.15 Definition of abstract data type for Large_Mailbox

ACTIVE LargeMailbox (T1:Type, T2:Type) IS
MODEL [Request:T1 INLET, Response:T2 OUTLET,

UID: ProcessUID_type,Indx:MachineIndexType]

LET %M1,%M2: Large-Mailbox,
%M3: SmallMailbox,
%P : Port

3-21

COMPLEMENTS: %M1 .Request,%M2..Response;
%M2 .Request ,%Ml1. Response;
%Ml1. Request, %m3 .Response;
%m3.Request, %M .Response;
%M1 .Request,%P.Out;
%M1 .Response,%P. In

OFUN Get RETURNS Ti
PRE TRUE
POST Get =%Ml. Request.Window &

%M1.Request.Flag =TRUE

OFUN Put(%Msg:T2)
PRE TRUE
POST %M1.Response.Window =Msg &

%M1.Response.Flag = FALSE

VFUN Went RETURNS BOOLEAN
PRE TRUE
POST Went =%Ml.Response.Flag

VFUN Came RETURNS BOOLEAN
PRE TRUE
POST Came' = %M.Request.Flag

OFUN Assign_UID (PUID: Process-UID_type)
PRE TRUE
POST %M1.UID =PUID

OFUN Assign_Index (Process-name:MachineIndex_Type)
PRE TRUE
POST %M1.Indx =Process-name

VFUN Send (Msg:T2)RETURNS BOOLEAN

PRE %M1 .Response.Flag=TRUE
[to make sure previous message has been read.1

POST Send=TRUE 1FF %M1.Response.Window=Msg &
%M 1 Response. Flag=TRUE

BEHAVIOR

%M . Response. Window: :Msg
%M1 .Response.Flag: =FALSE
WHEN

%M1.Response.Flag -- > Send:=TRUE

END

3-22

PROCESS MANAGER DESIGN

VFUN GetUID RETURNS ProcessUID Type
PRE TRUE
POST GetUID'=%M1.UID
BEHAVIOR

(This function rturns the UID stored in the
given mailbox }

VFUN Get Index RETURNS MachineIndexType
PRE TRUE
POST GetIndex' = %M1.Indx
BEHAVIOR

[This function RETURNS the process name stored
the given mailbox.1

END [LargeMailbox }

3.2.16 Definition of abstract data type for PortMsg

Port Msg(S TYPE) IS
Model E ID UIDType, Msg : s]
LET %Pm : PortMsg (s)

VFUN GetMsg RETURNS S
PRE TRUE
POST GetMsg' := %PM.Msg

BEHAV IOR
(This function returns the msg part of
the given PortMsg.}

VFUN Get UID RETURNS UIDType
PRE TRUE
POST Get UID' := %PM.ID

BEHAVIOR
[This function returns the ID part of
the given Port_Msg.}

END Port_Msg

3.2.17 Definition of abstract data type for Outport

ACTIVE Outport(T : TYPE) IS
MODEL [window : Port Msg(T) , flag : BOOLEAN]
LET %OP : Outport(T) (%OP)

3-23

END Outport

1.2.18 Definition of abstract data type for Inport

ACTIVE Inport(T : TYPE) IS
MODEL [window Port Msg(T), flag : BOOLEAN]
LET %IP : Inport(T)(%IP)

END Inport

3.2.19 Definition of abstract data type for Port

ACTIVE Port(T1 : PortMsg, T2 : PortMsg) IS
MODEL [In : Inport(T1) , Out : Outport(T2)
LET %P Port

%SM Small Mailbox
%LM : Large-Mailbox

COMPLEMENTS %P.In, %SM.Response;
%P.Out, %SM.Request;
%P.In, %LM.Response;
%P.Out, %LM.Request

OFUN Send(x : T2)
PRE TRUE
POST %P'.Out.window := x &

%P'.Out.flag :='FALSE

(We want flag = FALSE to indicate that information has been
sent but not picked up yet by the matching INLET}

BEHAVIOR

1- A call to send blocks until the flag indicate that a
'get' has been done on its complements inlet.

2- Then the send may proceed. Note that this send may
proceed or another send may proceed.

3- while the send is blocked it has no effect on the
window or the flag.

END Send

OFUN Receive(ID : UIDtypc) RETURNS Ti
PRE TRUE
POST Receive'.ID = %P.In.window.Msg &

%P.In.flag = TRUE

[flag z FALSE indicates that information has been
received from the inport.}

BEHAVIOR

3-24

PROCESS MANAGER DESIGN

A call to receive blocks until a message with
window.ID = ID arrives. Then receive proceeds
to read that message.

END Receive

END Port

END {TYPES DICTIONARY}

3.3 PROCEDURES DICTIONARY

3.3.1 Procedure GetModifiedObjects

Get Directly_ModifiedObjects(Proc UID : ProcessUIDType)
RETURNS PMDBResponseType

BEHAVIOR
This procedure sends a request to PDB_Manager on PMDB Iface
to get the uid of all the objects which were modified by the
given process or transaction .}

VARIABLES
To_PMDB : PMDB_RequestType

TEXT
To PMDB.UID :: Proc UID
To PMDB.Request := ModifiedObject
WHEN

PMDB Iface.Send(ToPMDB) --

WHEN
PMDB Iface.Came --
Get ModifiedObject:: PMDBIface.Get

END
END

END GetModified Object

3.3.2 Procedure Get Children

GetChildren(ProctUID : ProcessUIDType) RETURNS PMDB_ResponseType

BEHAIVIOR
tThis procedure sends a request to PMDB Manager to get
the UIDs of all the children for given ProcUID.}

VARIABLES
ToPMDB : PMDB_RequestType

3-25

TEXT
(Get UIDs of the children transactions and processes}
To PMDB.Request := Parent Children Info
WHEN

PMDBIface.Send(ToPMDB) -- >

WHEN
PMDB Iface.Came -- >
Get Children := PMDB Iface.Get

END
END

END Get Children

3.3.3 Procedure Delete FromPMDB

DeleteFromPMDB(ProcUID : Process UID Type) RETURNS PMDB-ResponseType

BEHAIVOR
{This procedure sends a request on PMDB Iface to PMDB
Manager to remove all the information about the given
Proc UID from the database.}

VARIABLE
ToPMDB : PMDBRequest_Type

TEXT
To PMDB.val.val := ProcUID
WHEN

PMDBtface.Send(ToPMDB) -- >

WHEN
PMDB Iface.Came -- >

Delete From PMDB PMDB Iface.Get
END

END

END DeleteFromPKDB

3.3.4 Procedure Add To PMDB

AddToPMDB(Rec : AllRecType ARRAY) RETURNS PMDBResponse_Type

BEHAVIOR
[This procedure sends a request to PMDB Manager
to add the given record(s) to the database.
Upon receiving of this request, PMDB Manager
updates the database and Force it on the stable
storage.}

VARIABLES

3-26

PROCESS MANAGER DESIGN

ToPMDB : PMDBRequestType

TEXT
To PMDB.val.val.Op := Add
To PMDB.val.val.Param := Rec
WHEN

PMDB Iface.Send(ToPHDB) -- >
WHEN

PMDB Iface.Came --

AddToPMDB := PMDB Iface.Get
END

END

END Add To PMDB

3.3.5 Procedure Get LRP

Get LRP(PUID : ProcessU:D_Type) RETURNS RPNum

BEHAVIOR
fThis procedure sends a request to the PMDB Manager
on PMDB Iface to get the last recovery point for
the given UID.}

VARIABLES

ToPMDB : PMDBRequestType
TEXT

To PMDB.val.UID := PUID
To PMDB.val.Request :: GetLRP
WHEN

PMDB Iface.Send (ToPMDB)
WHEN

PMDB Iface.Came
Get LRP := PMDB Iface.Get

END
END

END Get LRP

3.3.6 DiscardRP

DiscardRP(PUID : Process_UID_Type,
RP1,RP2 : RPNum)

RETURNS ACK

BEHAVIOR
(This procedure sends a request on SS Iface to
Stable Storage Manager to discards all recovery

3-27

points between and including RP1 & RP2 for the
given procees.}

END DiscardRP

3.3.7 Procedure Request_NewProcess

RequestNewProcess RETURNS ControllerToCP

TEXT

WHEN
PM Controller Iface.Send(Action := New-Process) --

WHEN
PM Controller Iface.Came --

RequestNewProcess := PMControllerIface.Get
END

END

END Request_NewProcess

3.3.8 Procedure Request_NewCP

RequestNewCP (CP : CommandMachine Type,
Index : INTEGER,
WorkRequest : Appl_Req_Msg)
RETURNS ControllerToCP

VARIABLES

To Controller : CPToController

TEXT
ToController.MachineType := CP
ToController.Descendent MbxlIndx := Index
To Controller.CallerType :-My Machine Type
ToController.WorkRequest WorkRequest

WHEN
PM Controller Iface.Send(To Controller)
WHEN

PM Controller Iface.Came --

RequestNew_Process :: PmControllerIface.Get
END

END

END RequestNew_CP

3-28

PROCESS MANAGER DESIGN

3.3.9 Procedure CreateProcess Record

CreateProcess Record(PUID : ProcessUIDType)
RETURNS ActiveProcess Record

BEHAVIOR
(This procedure creates an active process record
for the process with the given UID.}

END

3.3.10 Procedure CreatePcRec

Create Pc Rec(Parameter list)
RETURNS Parent ChildInFo

BEHAVIOR
(This procedure creates the parent child info
record for the given process. The parameter
list must contain all the required information.}

END

3.3.11 Procedure CreatePCB

Create PCB(Params : CreateParam)
RETURNS PCBType

BEHAVIOR
(This procedure loads the program & data (if any)
into the main memory and create the process
control block for the given process.}

END

3.3.12 Procedure Set Timer

Set Timer(Time:INTEGER, TimerPort:TimerIfaceType)

TEXT

WHEN
TimerPort.Send([My_ProcessID, [], NULL, Time]) -- >

END

END (of Set Timer}

3-29

3.3.13 Procedure Broadcast

Broadcast(M:GeneralMsg_Type, Destination: Extended UID_Array,
OutPort:OSIfaceType, My_ID:ProcessUIDType)

(This procedure broadcasts the message M to the object mangers of
the objects given by the parameter Destination.}

VARIABLES i:INTEGER

TEXT

i:=Destination.lob

DO (j:Destination.lob..Destination.hib) and (i=j) -- >

WHEN
Outport.Send(<val:=:[MyID, ObJManager(Destination(j),M>] --> SKIP
[The function Obj_Manager returns the UID of the object manager
of the object specified by the parameter UID}

END

OD

END [of Broadcast}

3.3.14 Procedure CreateRPData Record

CreateRPData Record(ProcUID : ProcessUIDType,LRP: RPNum)
RETURNS CHAR ARRAY

BEHAVIOR
[This Procedure Creates the recovery point data
Record (it contains the PCB and state of all the
local variables of the process) and returns the
name of the segment under which the record is
stored.}}

END

3.3.15 Procedure AssignLabel

Assign Label(Proc UID : Process UIDType, LRP : RPNum)
RETURNS LabelType

BEHAV IOR
Ithis procedure concatinates the given uid and

lrp and returns a label under which the

3-30

PROCESS MANAGER DESIGN

RPData Record is to be stored.1
END

3.3.16 Procedure GetMemoryAddr

Get MemoryAddr (RP Data : CHAR ARRAY)
RETURNS MemoryAllocation

BEHAVIOR
{This procedure returns the memory address &
the length of the segment for the given

name.}
END

3.3.17 Procedure RemoveProcMachine

RemoveProcMachine(UID : ProcessUIDType)

3.3.18 Procedure GetAllModifiedObjects

BEHAVIOR
[This procedure send a request on PM Controller Iface,
to remove the process machine identified by ProcUID
from the Process POOL.}

END RemoVeProcMachine
Get All Modified Objects(UID : TransactionUIDType)
RETURNS PMDBResponseType

BEHAVIOR
[This procedure send a request on PMDBIface to
get the UID of all objects which were modified
either directly or indirectly by given Transaction.}

END GetAllModifiedObjects

3.3.19 Procedure Get PM UID

Get PM UID (Host ID : Host_IDType)
RETURNS ProcessManager_UIDType

BEHAVIOR
[This procedure returns the UID of ProcessManager
of given host.}

END Get PM UID

3-31

3.3.20 Procedure TerminateCommandProcessor

TerminateCommand Processor

BEHAVIOR
[This procedure sends a request on PM Controller Iface
to terminate the command processor on which it is
running.]

END TerminateCommandProcessor

3.3.21 Procedure Check Children Status

Check Children Status(ChildrenUID : Process_UID ARRAY
RETURNS ACK

VARIABLES
Children Status : TransactionStatus_Type ARRAY
i : INTEGER

TEXT
Children Status := Find ChildrenStatus(ChildrenUID)
IF All_Complete(ChildrenUID) --> SKIP

D OTHERWISE -->
Set Timer(TimeoutPeriod, TimerIface)
WHEN

Interrupt.Came -- >

CheckChildrenStatus(ChildrenUID)
END

F1

END CheckChildren Status

3.3.22 Procedure All-Complete

All Complete(ChildrenStat : Transactionstatus_Type ARRAY)
RETURNS BOOLEAN

VARIABLES
i : INTEGER
Flag : BOOLEAN

TEXT
Flag :: TRUE
i :: 1
DO (i..Children Stat(dom))
ChildrenStati) <> completed AND Flag -- >

3-32

PROCESS MANAGER DESIGN

Flag := FALSE
AllCompleted := FALSE

OD
END AllCompleted

3.3.23 Procedure WriteToSS

Write To SS(L : LabelType, Meminfo Memory_Allocation)
RETURNS SS_PMMsg

VARIABLES
ToSS PMSSMsg

TEXT
ToSS.OP Write
ToSS.Param.Label := L
To SS.Param.StartingAddr := Mem Info.StartingAddr
ToSS.Param.Len := Mem_Info.Length

WHEN
SS Iface.Send(ToSS) -- >

WHEN
SS Iface.Came -- >
Write To SS := SS trace.Get

END
END

3.3.24 Procedure ReceiveAcks

END Write To SS
ReceiveAcks(UIDs : ProcessUIDType ARRAY,

Timeout : INTEGER) RETURNS BOOLEAN

BEHAVIOR
{This procedure receives either READY or ABORT messages from the object
managers of the objects of gi'en UIDs. This procedure either times out
or returns when all object managers have responded.
IF any of the messages is ABORT or Timeout then it returns TRUE,
otherwise it returns FALSE.

END ReceiveAcks

3.3.25 Procedure Get Parent Child Info

Get Parent Child Record(UID : Process_UIDType)
RETURNS ParentChildInfo

3-33

BEHAVIOR
[This procedure searchs the Parent Child Info List for
the given UID and returns the record for that process.
I

END GetParentChild Record

3.3.26 GetAllDescendent

Get All Descendents(UID : ProcessUIDType)
RETURNS Process_UIDType ARRAY

BEHAVIOR
[This procedure returns the UID of the
descendents for given process/transaction.}

END Get All Descendents

3.3.27 Procedure UpdateTransactionStatus

UpdateTransactionStatus(UID : TransactionUID_Type,
Status Transaction StatusType,
Force BOOLEAN) RETURNS ACK

BEHAVIOR
[This procedure sends a update request on PMDB Iface to
update the status of the given transaction and the updated
database is forced on the stable storage if Force is TRUE.
I

END UpdateTransactionStatus

3.3.28 Procedure ClearDatabase

ClearDatabase(UID : Process_UIDType) RETURNS ACK

3.3.29 Procedure Signal

BEHAVIOR
[This procedure sends a clear request on PMDB Iface to
remove all the information about the given UID from
the database.

}
END Clear Database
Signal(Parent :ProcessUIDType,Msg : GeneralMsg_Type)

BEHAVIOR
This nrnn~di,e sends a status message on the PMDB Iface
if the parent process is local then the status change is
recorded locally in the parent's Parent Child Record
otherwise a status update message is sent by the database

3-34

PROCESS MANAGER DESIGN

manager to the remote database manager where the parent

is residing.

END Signal

3-35

3.4 REALIZATION DICTIONARY

3.4.1 RouterMachine

PUBLIC
RouterTOPMControlCMD: Small Mailbox(PM Router CTRL-

Msg,Router PMCTRLMsg);
RouterToPM: Small_-Mailbox(PM Router ?4sg,

RouterPM Msg);
Router TO Process: LIST(LargeMailbox (Proc Router_Msg

,RouterProc_Msg)
Router-TO-OS : Small Mailbox(OSPMMsg , PMOSMsg)

RouterToPMDB : Small Mailbox(OSPMMsg, PMOS_Msg)

OBJECTS

END (Router Machine}

3.4.2 Process

PUBLIC

ProcessTo PM: Small Mailbox (ResponseMsg,
Appl_Req_Msg)

ProcessTO PM PSCMD: Small Mailbox(Response-Msg,
Processor Scheduler_Req_Msg)

ProcessTO-Router: Small Mailbox(RouterProc_Msg,
Proc Router_Msg)

OBJECTS

PCB : PCBType

CONTROLLER

(Executes the program code as per the Process Control Block
and also executes the processor scheduler commands}

END (Process}

3-36

PROCESS MANAGER DESIGN

3.4.3 Timer

PUBLIC

Timer Command Iface: Small Mailbox(TimerCommand, Timer_Response)
Interrupt : EventRec OUTLET

OBJECTS

END {Timer}

3.4.4 Machine Delete-Processor

DeleteProcessor(My_ProcessID:ProcessUIDType,
Remote:BOOLEAN,
Requester:ProcessUIDType,
Work_Request:Appl_Req_Msg)

PUBLIC
PMDB Iface:Port(PMDBResponse_Type, PMDBRequestType)
Parent Iface:Large Mailbox((Appl_Req_Msg, ResponseMsg)
PH Controller_Iface:SmallMailbox(Controllerto_CP,CP_to_Controller)
OSIface:LargeMailbox(Invoke_Msg_Type, InvokeMsgType)
SSIface:Port(PortMsg(SS_PMMsg),Port_Msg(PMSS_Msg))
MM Iface:Port(PortMsg(MM_PMMsg),(Port_Msg(PMMMMsg))
DescendentIface:LIST(Large_Mailbox((ResponseMsg, ApplReqMsg)

OBJECTS

Timer Interrupt : Event Rec INLET
Timer Iface:SmallMailbox(TimerResponse,

TimerCommand)
LocalTimer:Timer:=(TimerIface TO TimerCommandIface,

TimerInterrupt TO Interrupt)

Response : Response_Msg

3.4.4.1 Procedure DeleteRemoteProcess

DeleteRemoteProcess (WorkRequest : Appl_Req_Msg,
My_Process ID : Process_UIDType)

RETURNS ResponseMsg

BEHAVIOR
(This Procedure invokes a remote operation by sending

3-37

a request to Operation Switch, to delete a remote
process. It waits until either it times out or gets
a response back from remote host regarding to the result
of the operation.

VARIABLES
To_-Router:GeneralMsg_Type
Resp :Response_Msg
Timeout Period : INTEGER
Receiver : ProcessManagerUIDType

TEXT

(Set the parameters for Invoke operation &send a message to
Operation Switch thru Router to invoke this operation on the
requested host.}
TORouter.val :=Work_Request

Receiver :=Get_-PM_-UID(Work_Request.val.Param.Host ID)
Resp: :Invoke(My_Process_ID,Receiver, ToRouter, OSrIface)
Set Timer(Timeout Period, TimerIface)
IF Resp.tag =Success--

WHEN
TimerInterrupt.Came--
Delete Remote Process. val: :Time-Out

11OSIface.came -- >
DeleteRemoteProcess:=(OS.Iface.Get) .Operation.val

END

0Resp.tag =Failure--
DeleteRemoteProcess.val := Undefined-Error

F T

END t Delete Remote Process I

3.14.4.2 Procedure DeleteLocalProcess

DeleteLocalProcess(ProcUld:ProcessUlDType) RETURNS Response_Msg

Algorithmic Description:

1. Suspend(PUID).
2. Get -listOfModified Objects(PUID) --- > SetOfObjectUIDS
3. For Set O f O bject_UIDS Do
3.1 Delete ObjectVersions(UID) --- > Successful,Unsuccessful I
4. Get -List Of Children(PUID)---> SetOfChildrenUIDS
5. For SetOfChildren UIDS do
5. 1 Delete Process(UID)
6. Discard RecoveryPointsOnSS(PUID)

3-38

PROCESS MANAGER DESIGN

BEHAVIOR
tThis procedure deletes the specified process or transaction
and all its descendents regardless of thier status. It also
broadcasts a message to all modified objects to discard all
the changes which were made by this process.}

VARIABL.aS

To Controller : CP TO Controller
k,1 INTEGER
Resp ACK
Response : ResponseMsg
Modified Obj : PMDBResponse_Type
Children : PMDBResponseType

TEXT

(Destroys the Process}
WHEN

PM Controller Iface.Send(Process_UID_Type) -- >
[The PM Controller removes all connections to the above processi
WHEN

PM ControllerIface.Came --

Resp:=PMControllerIface.Get
END

END

(Get the UIDs of all modified objects}

Modified Obj := Get_AllModifiedObject(ProcUID)

IF
Modified Obj.val.Modified Objects(dom) >0 --

Broadcast(<OtherMsg,['Delete Version',O]>,ModifiedObj.Objects,
OSIface,MyProcess ID)

{This procedure broadcasts to all modified objects request to
delete the object versions created by the process Pr_name}

J OTHERWISE --> SKIP
FI

Children-List := GetChildren(ProcUID)

IF
Children List.val.Children(dom) >0 --

No of Children := ChildrenList.val.Children(dom)
i::1
DO (i <= No of Children) -->

PUID : Children List.Children(i)
k := Extend Mbx(DescendentIface)
ToController.MachineType := Delete

3-39

To Controller.Descendent Mbx Indx :=k
ToController.Work_-Request.OP : Delete_-Process
To Controller.Work-Request.Para : ProcUID
WHEN

PM Controller-tface.Send(ToController)-->
WHEN

PM -ControllerIface.Came -- >

Response :=PMController Itace.Get
END

END
i := i + 1

OD

~Update PM database.}

PMDB Response :=Delete From DB(Proc UID)

(Discard all recover points on stable storage for
deleted process}

Last -RP:=GetLRP(ProcUID)
DiscardRPs(ProcUID ,O ,Last-RP)

END (DeleteLocalProcess}

CONTROLLER

IF Work_Request.tagiDelete -Process -- >'
Response. val z IllegalCommand
0OTHERWISE -- >
IF Work_-Request.val.Param.Host_IDiMyHost ID -- >

Response :=DeleteRemoteProcess(Work_Request, MyProcessID)

0OTHERWISE -- >
Response :=DeleteLocalProcess(WorkRequest.val.Param)

FI

FI

IF Remote -- >
OS Iface .Send(Response)
0OTH1ERWISE -- >
Parent I face. Send (Response)

FI
TerminateCommandProcessor (this procedure destroys the cp.1

END Delete-Processor Machine

PROCESS MANAGER DESIGN

3.4.5 Machine CreateProcessor

Create Processor (MyProcess ID: ProcessUID Type,
Remote :BOOLEAN,
Requester:Process_-UID_-Type,
WorkRequest:ApplReq_Msg)

PUBLIC
PMDB -Iface:Port(PMDBResponseType, PMDBRc,,,estType)
ParentIface:Large Mailbox ((Appi ReqMsg, ResponseMsg)
PM -ControllerIface:Small Mailbox(Controller to CP,CP-toController)
OS_-Iface:Small Mailbox(InvokeMsgType, InvokeMsg_Type)l
SSIface:Port(ort Msg(SSPMMsg),Port sg(PMSSMsg))
KM Iface:Port(PortSMsg(MM_PMMsg),(Port_Msg(PMM_Msg))
Descendent Iface:LIST(LargeMailbox((Response_Msg, Appi Req_Msg)

OBJECTS

Timer -Interrupt :Event -Rec INLET
TimerIface:Small Mailbox(TimerResponse,

Timer Command)
Local Timer:Timer:=(TimerIface TO Timer CommandIface,

TimerInterrupt TO Interrupt)

3.J4.5.1 Procedure CrepteRemoteProcess

CreateRemote Process (WorkRequest Appl_Msg_Type,
MyProcess -ID ProcesUID-Tjfe)
RETURNS Response_Msg

BEHAVIOR
iThis proedure invokes a remote operation by sending
a request to the Operation Switch to credite a process
on a remote host. Then it waits until it either times
out or gets the result of operation back from the
remote host.1

VARIABLES
To_-Router:General_Msg_Type
Respcmnse : R sponseMsg
Resp :ACK
Receiver :ProcessManager_UID_Type

TEXT

(Set the parameters focr Invoke operation & send a message to
Operation Switch thru Router to invoke this operation on the
requested host.1
TO-Router.val :=WorkRequest

3-241

Receiver := Get PM UID(Work_Request.val.Param.Host ID)
Resp:=Invoke(My Process ID, Receiver,To Router, OSIface)
Set Timer(Timeout Period, Timer Iface)
IF Resp.tag = Success -- >

WHEN
Timer_Interrupt.came -- >

CreateRemoteProcess.val:=Time-Out

OS Iface.came
CreateRemoteProcess:=(OS Iface.Get).Operation.val

[CreateRemoteProcessMsg typei
END

Resp.tag = Failure -- >

Create RemoteProcess.val := Undefined Error
FI

END [CreateRemoteProcess}

3.4.5.2 Procedure CreateLocalProcess

Create Local Process(Work_Request : Appl_ReqMsg)

RETURNS Response_Msg

Algorithmic Description:

1. AssignUID ---> TUID
2. Create PCR (TUID) ---> PCR record
3. Insert PCR (PCR record) ---> [successful, unsuccessfull
4. Create PCB (TUID, Prog, [Data]) ---> PCB record

5. Insert-to Parent child table (TUID) --- >[successful, unsuccessful!
6. Set_Map_field (TUID, O ---> [successful, unsuccessfull

7. Establish RecoveryPoint (TUID) ---> RP Num
8. RunPCB (PCB record) ---> [successful, unsuccessfull
9. Return (status).
BEHAVIOR

[This procedure creates either a new process in response to
'Create Process' or a new transaction in response to
'create Transaction' or 'Begin_Transaction'.
It also creates all the records which are needed to be kept
in PM Database for the newly created process or transaction.
And after it establishes the first recovery point, it sends
a request to PM controller to start running the process.}

VARIABLES
Pr Rec:Active Process Record
PC Rec: ParentChildInfo
Proc UID : Process_UID_Type
PCB : PCBType

3-42

PROCESS MANAGER DESIGN

ControllerResp : ControllerTo CP
PMDBResp PMDBResponseType
TempRec AllRecType ARRAY
Response Response_Msg
To Controller : CP To Controller
To-Parent : Response_Msg

TEXT

[Send request to the controller to create a new process, connect it to the
appropriate mailboxes, and then return its UIDI
Controller Resp := Request New Process
IF Controler Resp.tag = t2 -->

ProcUID :=Controller_Resp.val

IF Work Request.val.OP = Create Process -- >

[Create active Process recordT
PrRec:=CreateProcessRecord (Proc UID)

OTHERWISE -->
{Create active transaction recordi
Pr Rec := CreateTransactin Record(ProcUID)

FI

(Create parent child info record
PcRec:=CreatePcRec(Params)

IF WorkRequest.val.OP = Create Process OR
WorkRequest.val.OP = CreateTransaction -- >

[Create process control blocki
PCB := Create PCB(Params)

0 OTHERWISE --> SKIP
FI

{Establish the 1st recovery point for the new processi
Work_Request.OP:=Establish Recovery_Point
Work_Request.Param := Proc UID
J:=Descendent Iface.HiExtend
ControllerResp:=Request_NewCP(ERP,J,Work_Request)

WHEN
Descendent Iface.Element(J).came -- >

Response:=DescendentIface.Element(J).Get
END

IF Response.tag = Success -- >

[Send request message to the DatabaseIface; wait for the response!

3-43

Temp_Rec(1).val Pr_-Rec
TempRec(2).val Pc Rec
PMDBResp :=AddToPMDB(TempRec)

IF PMDB_Resp.val = Success -->
fstart running the process i
To Controller.Action :=Run_-Process
To Controller.Param,: PCB
WHEN

PM Controller Iface.Send(ToController)-->
WHEN

PMControllerIface.Came -- >
Controller Resp := PM Controller Iface.Get

END
END
IF Controller-Resp.val =Failure -- >

Remove Proc Machine(ProcUID)
CreateLocalProcess.val-: UndifinedError

SOTHERWISE -- >

ToParent.val :=WorkRequest
WHEN

Parent Iface.Send(To Parent) -- > SKIP
END

FI

0OTHERWISE -- >
CreateLocal Process.val :=UndefinedError
Discard RP(procUID,O ,O)
Remove Rroc Machine (ProcUID)

FI

0OTHERWISE -- >
Create Local Process.val :=UndefinedError

FI
END [Create Local Process}

CONTROLLER

IF Work_Request.tagiCreate -Process -- >
Response. val:=IllegalCommand
0OTHERWISE -- >
IF WorkRequest. val .Param.Host -HintiMy_HostID -->

Response: :Create Remote Process(WorkRequest, MyProcess-ID)

0OTHERWISE -- >
Response: =Create Local Process(Work Request)

FI

Fl

3-±44

PROCESS MANAGER DESIGN

IF Remote -- >

OSIface.Send(Response)

0 OTHERWISE -->
ParentIface.Send(Response)

FI

TerminateCommandProcessor

END CreateProcessor Machine

3.4.6 Machine PMDatabaseManager

PUBLIC
SS Iface:Port(Port_Msg(SS_PMMsg),(PortMsg(PMSSMsg))
Database Port:Small mailbox(PortMsg(PMDB_Request_Type),

PortMsg(PMDBResponse Type))
OSIface : SmallMailbox(Invoke_Msg_Type, InvokemsgType)

OBJECTS

[PM Database:}

Active Process List: LIST (Active Process Record)
Parent-Child InfoList: LIST (ParentChildInfo)
Directly_ModifiedObject List: LIST (Directly_ModifiedObjects)
CurrentOperationList: LIST (Current-OperationInfo)
PMDBLog_Buffer:LIST (PMDBModifyOperations)

CONTROLLER

{Receives request messages from the DatabasePort. The request messages
are either querries or updates. The request messages also bear the
Process UID of the caller. The controller sends the responses to the
Database Port, which are then received by the process that originated
the request. This machine also interfaces with both the secondary memory
port, in order to periodically save the database on the stable storage,
and the Operation Switch, in order to inform the remote hosts of the
changes that affect thier databases.

END PMDatabaseManager Machine

3.4.7 Machine Port Multiplexer

PortMultiplexer(TI : TYPE , T2 : TYPE)

3-45

PUBLIC
Device Iface :Small -Mailbox(Port Msg(T1),PortMsg(T2))
Iface SmallMailbox(PortMsg(T2Y,Port_Msg(Tl))

OBJECTS
UID ProcessUIDType
Response :PortMsg(Tl)

Procedure Attach UID(UID :ProcessUID Type,
Msg :Ti) RETURNS Port_Msg

BEHAV IOR
(This procedure attachs the UID of the requester
to the recieved msg.1

END Attach UID

CONTROLLER

WHENEVER
Iface.Came--
UID :=Iface.Get.GetUID
Device Iface.Send(Iface.Get.Get-Msg)

0Device Iface.Came -- >
Response :=Attach_-UID(UID, DeviceIface.Get)
Iface .Send(Response)

END

END Port-Multiplexer

3.4.8 Machine EndTransProcessor

End TransProcesso'(1yProcessID:ProcessUID_Type,
ERP:BOOLEAN,
Requestor:ProcessUIDType,
WorkRequest:ApplReq_Msg)

PUBLIC

P"'B -Iface:Small Mailbox(PMDBResponseType, P14DBRequest_Type)
Parent Iface:Large Mailbox((ApplReq Msg, ResponseMsg)
PM ControllerIface:Small Mailbox(Controller toCP,CP to Controller)
OS -Iface:LargeMailbox(InvokeMsg_Type, Invoke Msg_Type)-
Descendent Iface :L IST(Large_Mailbox((ResponseMsg, Appl_Req_Msg)

OBJECTS

Timer -Interrupt IS Event -Rec INLET

Timer Iface :Small Mailbox (Timer_Response,

3-146

PROCESS MANAGER DESIGN

Timer Command)
LocalTimer:Timer::(Timer Iface-TO Timer Command Iface,

TimerInterrupt TO Interrupt)

3.4.8.1 Procedure Commit

Commit(TUID :Transaction_UID_Type)

BEHAVIOR

The execution of the End Transaction command is the commit point for the
transaction. For an outermost transaction, execution of the End Transaction
command means permanence of all updates made within this transaction and
releasing of the locks on the updated objects. For a nested transaction,
execution of the EndTransaction command means only a conditional commitment
that is dependent upon the commitment of its enclosing transaction.

Description of the End Transaction Protocol:

In this design we will make the following assumptions:
1) All update operations on remote or local objects follow the two-phase
commit protocol.

2) All nested transactions follow the one-phase commit protocol.

3) Every transaction maintains a list of all object that have been
directly or indirectly modified by it. An object is said to be indirectly
modified by a transaction when it is modified only within one of its
nested transactions. Any object that is updated within a transaction by
invoking a local or remote procedure call is said to be directly modified
by the transaction.

4) We use the presumed-abort protocol if no information is present about

the transaction status in the Process Manager's datawase.

End-Transaction protocol:

fabort}.

3) If all responses are ACKs then execute the following protocol:

3.1) Pecord this operation in the CurrentOperationList;

3.2) If ERP option then establish recovery point for the parent process;

4) if the transactior. is
top-level and sequential -- >

(a) Force write the COMMIT status record in the database;

3-47

(b) Send COMMIT messages to all Object Managers of modified objects;
(c) Resume the parent process;
(d) Receive ACKs for the commit messages from the Object Managers;
(e) When all ACKs are received, delete all information about

the transaction from the database; }

top-level and concurrent -->
(a) Force write COMPLETED status for the transaction;
(b) Send COMPLETED messages to all Object Managers of modified objects;
(c) Send DONE signal to the parent transaction;

{ Background activity executed by the Commit/Abort command processor:
Wait for the COMMIT/ABORT from the parent process;
If
COMMIT command -- >

Force write COMMIT record in the database;
Send COMMIT messages to all Object Managers of the
modified objects;

ABORT command -->
Send ABORT messages to all Object Managers;
Delete all information for the transaction from
the database;

fi;

Wait for the ACKs for the COMMIT messages;
if
all ACKs received --

Delete all information for the transaction from
the database;

fi; I

Nested and Sequential --

(a) Send COMPLETED message to all modified objects;
(b) Force write COMPLETED record in the database;
(c) Append the list of the modified objects to the parent transaction;
(d) Append the list of the descendent transactions to the parent's
list;
(e) Resume the parent process;

{ Background activity executed by the Commit/Abort command processor:
Wait for the COMMIT/ABORT command from the parent;
When such a command is received, delete all
information about the transaction from the database;
Send an ACK for the COMMIT command; }

nested and concurrent -->

(a) Force write COMPLETED record in the database;
(b) Send COMPLETED message to all Object Managers of the modified
objects;
(c) Append the list of the modified objects to the parent transaction;

3-48

PROCESS MANAGER DESIGN

(d) Append the list of the descendent transactions to the parent's
list;
(e) Send DONE signal to the parent transaction;

Background activity executed by the Commit/Abort command processor:
Wait for the COMMIT/ABORT command from the parent;
Delete all information for the transaction from the database;
Send ACK for the COMMIT command;

fi

5) EXIT
6) Invoke the ABORT command;

VARIABLES

CurrentOpRec: CurrentOperation Info
ModifiedObjUIDS : PMDBResponseMsg
msg:InvokeMsg_Type
Parent:Process_UID_Type
PC Rec:Parent ChildInfo
Response : Response Msg
Abort Signal : BOOLEAN
AllModifiedObj : PMDB_Response_Msg
Descendant-Transaction : PMDBResponseMsg

TEXT

(Delete the transaction process. The infcrmation about this transaction
in the PM database, and its recovery points are still intactl

PMController Iface.Send(<Service Call, [Action:=DeleteProcess,
Param:= <tag2, TUID>]

fadd (TUID,ENDTRANSACTION) to current_operation tablel

CurrentOp_Rec.PUID :=TUID
CurrentOpRec.op:=EndTransaction

PMDBIface.Send(<Update, <Add_Modify,
[OP:=Add, Param:=(COI,CurrentOp_Rec)]

[If ERP option then establish a recovery point for the parent process}

If ERPOption then {establish recovery point for the parent process by
creating an ERPProcessor via the PM Controlleri;

3-49

f.Get list of' objects directly modified by TUIDI
Modified ObjUIDS: =Get Direc tlyModifiedObjects(TUID)

fGet list of all objects (directly or indirectly) by TUID
AllModifiedObj:=GetAllModified Obj(TUID)

Descendent Transactions: :GetAllDescendent(TUID)

(Send PREPARE message to the object managers ofdirectly modified objects,.
Broadcast('PREPARE', ModifiedObj_UIDS.ModifiedObject,

OSIface, My_Process ID)

[wait to receive READY/ABORT messages}
AbortSignal:=ReceiveAcks(Modified ObjUIDS.ModifiedObject, Timeout Period)

IF Abort Signal--
K: =ExTend(DescendentlIface)
WHEN
PMController-tface.Send(<Create,

[Machine_-Type:=Abort,
DescendentIfaceIndx:=K,
CallerType: zEndTrans,
Work-Request: z<UID param,

IOP:=Abort, Param:=TUID>

WHEN
PMController-Iface.Came--
WHEN

DescendentIt'ace.Element(K) .Receive(Response) -~

WHEN
ParentIf'ace.Send(Response)

END
END

END
END

I OTHERWISE [Abort-Signal is set to false} -

{Search parent -child info LIST to get Map-fieldl

PC Rec:=Get Parent ChildRecord(TUID)

Parent:=PC Rec.ParentUID

IF (PCRec.TopLevel) AND (PCRec.MapField=Sequential) -

[Top-level and Sequential Transactioni
Force :=TRUE
UpdateTransactionStatus(TUID, Committed, Force)

3-5O

PROCESS MANAGER DESIGN

fResume the parent process by sending the command message to the controlle
PMControllerIt'ace.Send(<ServiceCall, [Action:=RunProcess,

Param:z <tag2, Parent>]

Broadcast('COMMITTED' ,All -ModifiedObj.ModifiedObject,
OS Iface ,MyProcess ID)

Broadcast('COMMITTED' ,Descendent Transactions.Children,
OS_-Iface,My_Process ID1)

SetTimer(timeout_period, Timer Iface)

fWait to receive ACKs from all modified objects when all ACKs have
been received delete all information about this transaction
from the database.1

DO (All -Modified Obj.Modified Object.dom <>0) OR
(Descendent Transactions. Children .dom<z>O) -

WHEN OS Iface.Came -- > msg:=OSIface.Get
IF msg.Operation.val.response: 'ACKI -

IF ItIsTransaction(msg.Operation.val.Obj) -

Delete(msg.Operation.val.Obj, DescendentTransaction
0OTER.HWISE->

Delete(msg.Operation.val.Obj,
All ModifiedObj.ModifiedObject)

FI
0Timer Interrupt.Came -- >

Broadcast('COMMITTED' ,All _Modified_-Obj.ModifiedObject,
OSIface,My_ProcessID)

Broadcast('COMMITTED' ,Descendent Transaction,
OSl- face,My_ProcessID1)

SetTimer(timeout_period, Timer-Iface)
END

OD

ClearDatabase(TUID)

0(PCRec.Top_ Level) and (PC Rec.MapField=Concurrent) -

(Top-level and CociurrentT-

Force :=TRUE
Update TransactionStatus(TUID, Completed, Force)

Signal(Parent, DONE)

(A Commit -Processor will be created in response to a COMMIT command

from the parent process I

0(not PCRec.TopLevel) and (PCRec.Map_Field=Sequential)--
(Nested and Sequential transactioni

3-51

Force :=TRUE
Update Transaction Status(TUID, Completed, Force)

iSend COMPLETED message to all modified objects}
Broadcast('COMPLETED' ,All_Modified Obj.Modified Object,

OSlIface, My_ProcessID)

(Append the list of modified objects to the-parent transaction, and
append the list of the descendent transactions to the parent's database;'
Append_Modified_-ObjList(All ModifiedObj.ModifiedObject, Parent)
AppendDescendent List (Descendent Transactions. Children, Parent)

fResume the parent process by sending the command message to the controlle
PM ControllerIface.Send(<ServiceCall, [Action:=RunProcess,

Param:= <tag2, Parent>]

S(not PC_-Rec.TopLevel) and (PCRec.Map_-Field=Concurrent) -

(it is a nested concurrent transaction}

Force :=TRUE
UpdateTransactionStatus(TUID, Completed, Force)

[Send COMPLETED message to all object managers}
Broadcast('COMPLETED', All_Modified_-Obj.ModifiedObject,

OSIface, MyProcessID)

[Append the list of modified objects to the parent transaction, and
append the list of the descendent transactions to the parent's list}

Append_Modified -ObjList(AllModifiedObj.ModifiedObject, Parent)
AppendDescendent List(Descendent Transactions.Children, Parent)

F1

ClearCurrentOp_Table(TUID)

END [of Commit procedure}

CONTROLLER

TUID : :WorkRequest. val .Param
Commit(TUID)
TerminateCommand Processor

END [of END TRANSACTIONI

3-52

PROCESS MANAGER DESIGN

3.4.9 Machine Abort Processor

AbortProcessor(MyProcessID:Process UIDType,
Remote:BOOLEAN,
Requester:Process_UIDType,
WorkRequest : Appl_Req_Msg

PUBLIC

PMDB Iface:SmallMailbox(PMDBResponse_Type, PMDB_Request_Type)
Parent Iface:LargeMailbox((Appl_ReqMsg, Response_Msg)
PM Con~roller Iface:Small Mailbox(Controller toCP,CP_toController)
OSIfaoe:LargeMailbox(Invoke_MsgType, Invoke_Msg_Type)
DescendentIface:LIST(Large_Mailbox((Response_Msg, Appl_Req_Msg)

OBJECTS

TimerInterrupt IS Event Rec INLET
TimerIface:Small Mailbox(TimerResponse,

Timer Command)
Local Timer:Timer:=(TimerIface TO TimerCommandIface,

TimerInterrupt TO Interrupt)
Request:ProcessUIDType

3.4.9.1 Procedure Abort

Abort

BEHAVIOR

The Abort operation terminates the execution of the current block and
restores the state of the local variables and global objects to their
values before the beginning of Transaction and continues execution with
the statement immediately following the End Transaction statement of the
aborted transaction. If Abort command is used within a process, it
terminates the process.

This procedure executes the following steps to carry out the Abort
operation:

I) Transaction wants to abort itself
1 Delete the process.
2 Restore the parent.
3- Change the status of the transaction or process to be aborted.
4 Send an Abort message to all the modified objects and its

descendents.

II) Transaction wants to abort another transaction
1 Delete the process.

3-53

VARIABLES

Current OpRec: current operation Info
Modified Obj_UIDS : PMDB_Response Msg
msg:Invoke_Msg_Type
Parent: Process UID Type
PC_-Rec:Parent C hildRecord
TransactionDescendents : PMDBResponse Msg

TEXT

Search parent -child infoLIST to get Map-field I
PCRec:=Get Parent-Ehild Record(TUID)
Modified -ObjList: =Get_-All_-Modified Obj(TUID)
Descendent_-Transactions := GetAllDescendent(TUID)
Parent:=PC Rec.ParentUID

IF Requester=TUID -

IA transaction wants to abort itself}

PM ControllerIface.Send(czService Call, [Action:=DeleteProcess,
Param: =<tag2 ,TUID>I

Restore(Parent) fThis procedure will restore the status of all
local state varriables of the parent process i

(Restart the parent processl
PMControllerIface.Send(<Service Call, [Action:=RunProcess,

Param: z<tag2 ,Parent>1

0 OTHERWISE frequestor wants to abort some transaction I -->

IF Status(ThID)<>COMPLETED -- >
PM ControllerIface.Send(<Service Call, [Action:=DeleteProcess,

Parau:=< tag2 ,TUID>]

Ft
FI

UpdateTransaction Status(TUID, 'ABORTED')
Broadcast('ABORTED' ,All_Modified Obj.ModifiedObject,

OS_Iface,MyProcessID)
Broadcast('ABORTED' ,Descendent Transaction,

OS_Iface,My_ProcessID)
ClearDatabase(TUID)

END Abort

3-54

Broadcast('ABORTED',Descendent Transactions,Os_Iface,MyProcessID)

ClearDatabase(TUID)

END Remote Abort

3.4.10 Machine Commit Processor

Commit Processor(MyProcessID:ProcessUIDType,
Remote:BOOLEAN,
Requester :ProcessUID Type,
Work-Request : AppiReq Msg

PUBLIC

PMDB Iface:SmallMailbox(PMDBResponseType, PMDBRequestType)
Parent Iface:Large_Mailbox((Appl_Req_Msg, Response_Msg)
PM ControllerIface:Smallailbox(Controller toCP,CP_toController)
OS-Iface:LargeMailbox(InvokeMsgType, Invoke_Msg_Type)
DescendentIface:LIST(LargeMailbox((ResponseMsg, Appl_Req_Msg)

OBJECTS

Timer Interrupt IS Event Rec INLET
TimerIface:SmallMailbox(Timer_Response,

Timer Command)
Local Timer:Timer::(Timer Iface TO Timer Command Iface,

TimerInterrupt TO Interrupt)
Request:ProcessUIDType

3.4.11 Procedure Commit Protocol Terminator

CommitProtocolTerminator(TUID :TransactionUIDType)

BEHAVIOR
The Commit operation makes all the updates which have been

performed by a transaction permanent.
The followings are the steps which are executed by Commit

Protocol Terminator :

I) Top level concurrent transaction AND command=Commit:
1 Change the transaction status to Committed and Force

the updated database on stable storage.
2_ Broadcast Commit message to all the modified objects

and transaction's descendents.
3 Wait to receive ACK back from all the descendents and

modified objects.
4 Clear the database.

3-56

PROCESS MANAGER DESIGN

CONTROLLER
TUID := Work_Request.val.Param
IF TUID <> MyHost ID --->

Response:= RemoteAbort(WorkRequest, My_ProcessID)

L] OTHERWISE
Abort

FI

Terminate Command Processor

END (of Abort Processorl

3 .4.9 .2 Procedure Remote Abcrt

Remote Abort

Algorithmic Description:

RemoteAbort follows following steps:

1. Signal completion to the parent process/transaction.
2. Send ABORT messages to type managers of all modified objects.
3. Send ABORT messages to Process Managers of the nested transactions.
4. Clear from PMDB all info related to the transaction UID.

BEHAVIOR
The Remote Abort terminates the execution of the transaction given

by TUID. It sends abort messages to the type managers of all
modified objects and to the Process Managers of the nested
transactions. It signals completion to the parent process/transaction.
It clears from PMDB all info related to TUID.

VARIABLES

Modified ObjList: PMDB_ResponseMsg
Parent: Process UID Type
PC Rec: ParentChildRecord
Transaction Descendents: PMDBResponseMsg

TEXT

PC Rec:= Get ParentChild Record(TUID)
Modified Obj List:= Get All Modified Obj(TUID)
Descendent Transactions.: GetAllDescendent(TUID)
Parent:= PC Rec.Parent UID
UpdateTransaction Status(TUID,'COMPLETED')
Broadcast('ABORTED,ModifiedObjList,

OSIface,MyProcessID)

3-55

PROCESS MANAGER DESIGN

II) Nested sequential or concurrent transaction AND commnand=Commit:
I1 Send ACK message to the parent.
2- Clear the database.

VARIABLES

CurrentOp_Rec: current operation Info
ModifiedObjUIDS: UID type ARRAY-
msg: Invoke_MsgType
Parent: ProcessUIDType
PC Rec:Parent Child Record

TEXT

!iadd (TJID,Commit) to Cu.rrentOperation-Table'}

CurrentOp_Rec.PUID :=TUID;
CurrentOp_Rec.op:=Conmit;

PMDB Iface.Send(<Update, <AddModify,
[OP:=Adi, Param:=(COI,Current_Op_Rec)]

Search parent -child info LIST to get Map-tield}
PCRec:=Get ParentChild Record(TUID)
Modified_-Obj_List:=Get AIll Modified 0jTUD
Descendent Transaction(TUID) -b(UD

Parent: :PCRec.Parent-UlD

IF (PC_-Rec.TopLevel) AND (PCRec.*Map -Field=Concurrent)->
(Top-level and Concurrent Transaction}

IF Command=COMMIT -- >

Force :=TRUE
Update TransactionStatus(TUID, Committed, Force)

OS-Iface.Send(£Sender: =My. ProcessID,
Receiver: :Requester
Operation::c<Other-Msg, LResponse:: 'ACK',

ObJ:=TUID]

Broadcast('COMMITTED' ,All_-Modified -Obj.Modified Object
,OSlface,My_Process_-ID)

Broadcast('COMMITTED' ,Descendent Transactions .Children,
OS -face,My_Process ID1)

SetTimer(timeout_period, TimerIface)

3-57

tWait to receive ACKs from all modified objects when all ACKs have
been received delete all information about this transaction
f'rom the database.}

DO (All_-Modified -Obj.Modified Object.dom <>0) OR
(DescendentTransactions .Children. dom<>O) -- >

WHEN
OS Iface.Came -- > msg:=OS_Iface.Get

TF msg.Operation.val.response='ACK' I
IF ItIs Transaction(msg.Operation.val.Obj)

Delete(msg.Operation.val.Obj, Descendent-Transaction)
0OTERHW'ISE->
Delete(msg.Operation. val.Obj,

AllModified Obj.ModifiedObject)
Fl

oTimer]nterrupt.Came--
Broadcast('COMMITTED' ,AllFModified Obj.ModifiedObject,

OS Iface ,MyProcessID)
Broadcast('COMM4ITTED' ,DescendentTransaction

,OSIface,My_Process IDf)
SetTimer(timeout period, TimerIface)

END
OD

Clear Database(TUID) [Clear all information about TUID from the
database }

FI

0(not PC -Rec.Top_Level) -

(Nested and sequential/concurrent transactionj

IF Command=COMMIT -- >

[Send ACK and clear the database I
OSlIface.Send([Sender:=My_ProcessID,

Receiver : Requester
Operation:=<Other-Msg, EResponse:='ACKI,

ObJ:=TUID]

1)
FT
Clear Database(TUID) [Clear all information about TUID from the

database I

0Clear Database (TUT D)
FI

END Commit Protocol Terminator

3-58

PROCESS MANAGER DESIGN

CONTROLLER
TUID := WorkRequest.val.Param
Commit Protocol Termainator(TUID)
TerminateCommandProcessor;

END Commit-Processor

3.4.12 Machine RollbackProcessor

Rollback Processor(MyProcessID:Process UIDType,
TUID : ProcessUID Type,
RPNumber:INTEGER)

PUBLIC

PMDB Iface:Small Mailbox(PMDB_ResponseType, PMDBRequest_Type)
Parent Iface:LargeMailbox((ApplReqMsg, ResponseMsg)
PM Controller Iface:Small Mailbox(Controller to CP,CPtoController)
OS-Iface:LargeMailbox(InvokeMsg_Type, Invoke_Msg_Type)
DescendentIface:LIST(LargeMailbox((ResponseMsg, Appl_Req_Msg)

OBJECTS

TimerInterrupt IS Event Rec INLET
TimerIface:SmallMailbox(TimerResponse,

Timer Command)
LocalTimer:Timer::(TimerIface TO Timer Command_Iface,

TimerInterrupt TO Interrupt)

3.4.12.1 Procedure Rollback

Rollback

BEHAVIOR
The Rollback operation within a process restores the state of all the

local objects to their values which they possessed at the time the RP num
was established. The changes on global objects, which have been made by
transactions within that process, remain permanent if the transactions
performing those are committed; otherwise, they are resotred to their values
that they possessed at the time the RPnum was established.

The Rollback operation within a transaction restores the state of all the
local and global objects to their values that they had at the time the
RP num was established.
The following outlines the steps which must be taken to perform the Rollback
operation:
I) Transaction Type:

1 Add the oneration to the current operation info.
2_ Get the Time-stamp for the time the recovery point was established.

3-59

3- Broadcast a message to all the modefied objects to delete
all the versions which were created after the that time.

4_ Broadcast an Abort message to the all the children which were created
after that time.

5 Wait to rceieve ACK from all modified objects and children.
6- Restore the recovery point data .
7_ Update the the last recovery point number.

II) Process Type:
1 Add the operation to the current operation info.
2_ Restore the recovery point data.

VARIABLES
CurrentOp_Rec : CurrentOperationInfo
Ts : INTEGER
Modified Obj : PMDB_ResponseMsg
New Children : PMDB_ResponseMsg
Timeout Period : INTEGER
PCBRec : PCB Type
LRP : RPNumber

TEXT
CurrentOpRec.PUID :=Proc UID
Current_Op_Rec.op:=Rollback

PMDB Iface.Send(<Update, <Add Modify,
[OP:=Add, Param:=(1,Current Op_Rec)]

TS:=Time stamp(RPNumber, Proc_UID) {This procedure returns the time-stamp
of the recovery point number RPNumber
for Proc UID}

IF ItIs Transaction(Proc UID) -->
Modified Obj:=Get_Modified Obj(Proc UID) [All directly modified objects;
New Children:=Get New Children(RP Number, ProcUID)

[This procedure returns the children transactions created
by ProcUID after establishing the recovery pointl

IF Modified Obj.dom<>O -->
Broadcast(<OtherMsg, ['Delete Version', TS>,

ModifiedObj, OS_Iface, MyProcessID)
FI

IF New Children.dom<>O
Broadcast('ABORT', NewChildren, OS_Iface, MyProcessID)

FI

SetTimer(timeout period, Timer Iface)

3-60

PROCESS MANAGER DESIGN

[Wait to receive ACKs from all modified objects, and the children
transactions that are to be aborted.1

DO (Modified Obj.dom <>0) OR (NewChildren.dom<>O) -- >
WHEN OS Iface.Came -- > msg:=OSIface.Get

IF msg.Operation.val.response='ACK' -- >
IF It Is Transaction(msg.Operation.val.Obj) -

delete(msg.Operation.val.Obj, NewChildren)
iThis procedure removes the ULD of the object
that sent this ACKI

0 OTHERWISE -- >
Delete(msg.Operation.val.Obj ,Modified Obj)
iThis procedure removes the UID of the object
that sent this ACKI

FI
0TimerInterrupt.Came -- >

Broadcast(<Other-Msg, ('Delete -Version', TSI>,
Modified Obj, OS_Iface, My_ProcessID)

Broadcast('ABORT' ,NewChildren,OS Iface,My ProcessID)
SetTimer(timeout peid, Timer Iface)

END
OD

0OTHERWISE [non-transaction process) -- SKIP

Fl

PCBRec:= RestoreRecoveryPoint(ProcUID, RPNumber)
(This procedure loads the recovery point data in the primary
memory, prepares the process control block and returns
this as the result)

LRP:=LastRecovery_Point(ProcUID)

IF RPNumber<>LRP->
DiscardRecovery_Point(ProcUID, RPNumber, LRP)

FI

PM Controller Iface.Send(<Service Call, [Action=RunProcess,,
Param:=PCB Rec]

Clear Current OpTable(ProcUID)

END (of Rollback

CONTROLLER

Rollback

TerminateCommand Processor

3-6 1

END f Abort Processor }

3.4.13 Machine ERPProcessor

ERP (My_Process ID:ProcessUIDType,
Requester : Process_UID_Type
WorkRequest:Appl_Req_Msg)

PUBLIC
PMDB Iface:Small Mailbox(PMDBResponse_Type, PMDB_Request_Type)
Parent Iface:LargeMailbox((Appl_Req_Msg, ResponseMsg)
PM Controller Iface:Small Mailbox(Controller toCP,CP toController)

OS-Iface:Large Mailbox(Invoke_Msg_Type, Invoke_Msg_Type)
SS-Iface:Pcrt(SS PM Msg,PMSSMsg)
MMlIface:Port(MM_PM_Msg,PMMMMsg)

OBJECTS

TimerInterrupt IS Event Rec INLET
TimerIface:SmallMailbox(TimerResponse,

Timer Command)

PM Timer:Timer:=(Timer Iface TO Timer Command Iface,
TimerInterrupt TO Interrupt)

Response : Response_Msg

3.4.13.1 Procedure EstablishRP

Establish RP(Proc UID :ProcessUIDType)

RETURNS ResponseMsg

Algorithmic Description:

1.0 UID < ----- Get Invoker UID;
2.0 PCB < ----- Get PCB (UID);
3.0 LRP < ----- GetLRP (UID);
4.0 LRP < ----- LRP + 1:

[The value for the LRP in the Process Manager Database will be
changed after the operation is done successfully. The above LRP is
just a temporary variable.}

5.0 Label < ----- AssignLabel (UID, LRP);
6.0 (Startingaddr, Len) <----- CreateRPDataRec (Data, PCB);
7.0 Write (Label, Starting addr, len);
8.0 LRP < ----- UpdateLRP (UID) -Log;

t'Log' indicates that the changes to the ProcessManagerDatabase are
to be recorded on the PMDB LogBuffer (maintained in PM_database).$

9.0 Append (PMDBLog_Buffer, Differential-File);

3-62

PROCESS MANAGER DESIGN

10.0 Resume the invoker
VARIABLES

PCB: PCBType
LRP:RPNui
L :LabelType
RP Data:CHAR ARRAY
MMNInfo:MemoryAllocation
Param:RW Param
Controller Resp :ControllerToCP
SSResp : SSPMMsg
ChildrenList :PMDB-RespMsg

TEXT
(Chck the status of children to make sure all are in completed state.!,
Children List :=Get Children(Proc UID)
IF Children List.Children(dom) c> 0 -- >

Check ChildrenStabus(Children List.Children)

SOTHERWISE -- > SKIP
FI

(Get a copy of PCB from the PRocess}
WHEN

C? To Controller.Send(Action :=Get PCB)->
WHEN

CP ToController.Came
Controller Resp :=CP_ToController.Get

END
END
IF ControllerResp.tag tQ--

PCB :=Controller Resp.val
tGet last Recovery point in order to generate lable for new
RR I

LRP:=Get -LRP(ProcUID)
LRP: :LRP+l
L:=Assign Label(Proc-UID,LRP)

[CreateRPDataRecordi
RP Data:=Create_-RPDataRecord(ProcUID,PCB)

(Get memory address & length of the segment for created RPData.}
MMInfo: :Get memory addr (RP-Data)

[Write the record on Stable Storagel
SS_Resp := WriteToSS(L , MMInfo)

IF SS Resp =ACKResp -- >

f update PM Data-base I
PMDB_Resp:= ModifyDB(Proc_UID, LRP)

3-63

Establish_-ReccveryPoint.val.OP:=ERP
EstablishRecovery_Point.val.Param :=LRP

jOTHERWISE -- >

EstablishRecoveryPoint.val :=UndifinedError
F1

SOTHERWISE--
Establish RecoveryPoint.val :=Undefined-Error

F1

END EstablishRecoveryPoint

CONTROLLER

IF Work_-Request.tagiEstablishRecoveryPoint--
Response .val:=Illegal._Command
0OTHERWISE -- >

Response:=Establish RecoveryPoint(WorkRequest.val.Param)
FI
Parent_-Iface.Send(Response)
TerminateCommand Processor

END Establish RecoveryPoint

3.4.14 Machine DRP Processor

DRP (MyProcess_-ID: Process -UIDType,
WorkRequest:Appl_ReqMsg)

PUBLIC
PMDB -Iface :SmallMailbox (PMDB_ResponseType, PMDB_RequestType)
Parent -Iface:LargeMailbox((Appl_Req_Msg, Response_Msg)
SS-tface:Port(SSPMMsg,PM_SS_Msg)

OBJECTS

TimerInterrupt IS Event Rec INLET
TimerIface:SmallMailbox (Timer-Response,

Timer-Command)
PM Timer:Timer:=(Timer If'ace TO Timer CommandIface,

Timer-Interrupt TO Interrupt)

Response :ResponseMsg

3-64

PROCESS MANAGER DESIGN

3.4I.14.1 Discard RP

Discard -RP(Proc UID :Process UID Type,RPnuml, RPnum2 :RP Num)
RETURNS ACK -

VARIABLES
i :RP Mum
L : LabelType ARRAY

j:INTEGER
Resp :SS_PM_Msg

TEXT
i ::RPnuml

DO i <= RPnum2 -

L(j) :=Assign Label(Proc UID ,i)

i i+1
j j+1

OD

WHEN
SS Iface.Send(<DRP, [Labels ::s 1.>) -

WHEN
SSIface.Came
Resp :=SSIf'ace.Get

END
END
IF Resp.val.Param Success >

Discard_-R.P.OP Discard -Recovery_Point
DiscardRP.Param :=NULL

END Discard-RF

CONTROLLER

IF Work -Request.tagiDRP
Response. val:=Illegal_Command

SOTHERWISE -- >

Response: :Discard RP(WorkRequest. val .Param)
F1

Parent -Iface .Send(Response)
Terminate Command-Processor

END

END [Realization Dictionary}

3-65

3.5 SYSTEM Process-Manager

PUBLIC
PMTO OS: Small Mailbox (OSPMMsg,PMOSMsg)
PM TO -MM: Small -Mailbox (MMPMMsg,PMMMMsg)
PM TO SS: Small -Mailbox (SSPM Msg,PMSSMsg)
PMTOUIDgen: Small Mailbox (UIDgen_PM_Msg,

PMUIDgenMsg)
PM TO SS: LargeMailbox(SS PM Msg,PMSSMsg)
PMTOMM: LargeMailbox(MMPMMsg,PMMMMsg)

OBJECTS

PM TO Timer IS Event Rec INLET
Connection toTimer:SmallMailbox(TimerResponse,

Timer Command)
PMTimer:Timer:=(Connection toTimer TO TimerCommandIface,

PM TO Timer TO Interrupt)
SS Port:Port Multiplexer(SSPMMsg, PMSSMsg)
MM-Port:PortMultiplexer(MMPMMsg, PM_MM_Msg)

PMDB:PMDatabaseManager:=(SSIface TO SSPort.Iface,
OS-Iface TO RouterToPMDB)

PMTOProcess: LIST(LargeMailbox (Appl_Req_MsgResponseMsg))
PMTOProcessorScheduler:LIST(LargeMailbox(

Processor Scheduler_Req_Msg,Response_Msg))
PM TO Router:Small Mailbox (RouterPMMsg,PMRouter Msg)
PM-TO-RouterControlCMD: Small Mailbox (RouterPMCTRL

.Msg,PM_Router,CTRL_Msg)
Router: Router Machine: = (Router To PM Control CMD

TO PM TO Router Control CMD,
RouterTOPM TO PM TO Router,
Router TO OS:= PMTOOS)

DatabaseIface: LIST (LargeMailbox(PMDB_RequestType,
PMDBResponseType))

CommandProcIface: LIST(Large_Mailbox(CP toController,
ControllertoCP))

ApplProcess Pool: Process POOL

NewProc Indx: Process INDEX

[Command Processors Pooll

Delete Command Proc:Delete Processor POOL
Delete-CP:Delete Processor-INDEX
Commit -CommandProc:Commit Processor POOL
Commit-CP:Commit Processor INDEX

3-66

PROCESS MANAGER DESIGN

AbortCommand Proc:A bort Processor POOL
Abort CP:Abo rtProcessor INDEX
Rollback Command Proc:RollbackProcessor POOL
Rollback C': Rollback Processor-INDEX
ERP Command Proc:ERPProcessor POOL
ERE CP:ERP Processor INDEX
Create Command Proc:Create Processor POOL
Create -CP:CreateProcessor INDEX
DR? CommandProc:DRP Processor POOL
DR? CP:DRP Processor INDEX
End -Trans C ommand Proc:End Trans Processor POOL
End Trans CP:End TransProcessor INDEX

33.5.1 Procedure Extend RouterMbx

Extend RouterMbx(kind: (Appl,Cmnd)) RETURNS INTEGER

VARIABLES
To Router: PM-Router-CTRL-CMDMsg

TEXT

.Send a request to router to create a new mailbox.
IF kind=Appl To ToRouter.tag:zCreate_Appl_Mailbox

kind=Cmnd -- To Router.tag:tCreate PM Mbx
FI
ToRouter. val: :Proc-UID

WHEN
PMTORouterCTRL CMD.Send(To Router) -

WHEN
PM TO Router CTRL CMD.Came--
Extend RouterMbx-: PM TO RouterCTRLCMD.Get

END
END

tend of Extend Router Mbx)

3.5.2 Delete RouterMbx

DeleteRouter Mbx(kind: (Appl, Cnrnd),
Proc ID:Pro cess UID Type)

RETURNS ACK

VARIABLES
To Router: PM Router CTRL CMD-Msg

TEXT

3-67

iSend a request to router to create a new mailbox.}
IF kind=Appl - To -Router.tag:zDelete_Appi_Mailbox

kind=Cmnd -'To Router.tag:Delete-PM-Mbx
FI
To Router val: :Proc-UID

WHEN
PM TO RouterCTRLCMD.Send(To Router)->
WHEN -

PMTO RouterCTRLCMD.Came--
Extend Router -Mbx-: PMT-otrCR-M.e

END
END

fLend of Extend Router Mbx)

3.5.3 Procedure Invoke

Invoke(Invoker, Receiver:ProcessUIDType,
Request:General_MsgType
MBX:tnvoke Iface) RETURNS ACK

VARIABLE
To_-Router:InvokeMsg_Type

TEXT

To -Router.ObjectUID :=Receiver
To_-Router.Caller-UID :=Invoker
ToRouter .Operat ion: zRequest

[Send the message to Router}
WHEN
MBX.Send(To Router)-->
WHEN

HBX.came -- > Invoke:=MBX.Get
END

END
[end of' Invokel

3.5.4~ Procedure Extend Mbx

Extend Mbx(Mbx-Array:LIST(T))
RETURNS INTEGER

(This procedure extends the array representation of the LIST parameter
and returns the hi-bound of' the array I

3-68

TEXT

i:=Extend Mbx(Command Proc Iface) (Extends the mailbox array arnd retu~rn
the high bound of the array;

k:=Extend Router Mbx(Cmnd) [Extends Router TO PM mailbox listi
Proc ID: :Get UID(process)
Remote := FALSE

IF CP=Delete -- >
Delete -CP:=Delete-CommandProc.create((ProcID, Remote,
Caller_UID, Work_Request),
Parent Iface TO InvokerIface,
PMController Iface TO Command Proc Iface(i),
PMDBIface TO PMDB.DatabasePort,
OS Iface TO RouterTOPM(k),
SSlIface TO SS_-Port.Iface,
MMlIface TO MMPort.Iface).

(store the index Delete_-C? with the following mailboxes:
Command Proc Iface, RouterTO_PM, CP-TOSS, C?_TOM

CP=Abort->
Abort CF ::AbortCommandProc.create((ProcID, Remote,
CallerUID, Work_Request),
Parent Iface TO Invoker Iface,
PM ControllerIface TO Command Proc Iface(i),
PMDB Iface TO PMDB.DatabasePort,
OS Iface TO Router TO PM(k),
SSlIface TO SS -Port.Iface,
MMlIface TO MM-Port.Iface)

(store the index AbortC? with the following mailboxes:
CommandProcIface, Router TOPM, CP_TOSS, C?_TOMM1,

CP:Commit >
Commit -CP:=Commit CommandProc.create((ProcID, Remote,

Caller (lID, Work Request),
Parent Iface TO InvokerIface,
PMControllerIface TO Command Proc Iface(i),

3-69

PMDBIface TO PMDB.Database Port,
OSlIface TO RouterTOPM(k),
SS Iface TO SS Port.It'ace,
MMlIface TO MM-Port.Iface)

(store the Index CommitCP with the following mailboxes:
Command ProcIf'ace, Router-TO-PM, C? TO SS, C?_TOMN}

CP=Create -- >
Create -CP:=Create CommandProc.create((Proc ID, Remote,

Caller_-UID, WorkRequest),
Parent Iface TO InvokerIface,
PM Controller Iface TO CommandProcIface(i),
PM5BIface TO PMDB.Database Port,
OSlface TO RouterTOPM(k),
SS Iface TO SS Port.Iface,.
MM Iface TO MM-Port.Iface)

[store the index Create-CP with the following mailboxes:
CommandProcIface, Router TOPM, C?_TO_SS, CP_TO_MM}

CP:ERP -- >

ERP C?:=ERP Command Proc..create(Proc_ID(, Remote,
Caller -UI5, WorkRequest),
Parent Iface TO InvokerIface,
PM ControllerIface TO CommandProcIface(i),
PMDB Iface TO PMDB.DatabasePort,
OS Iface TO Router TO PM(k),
SS Iface TO SSPort. Iface,
M race TO MN Port.Iface)

fstore the index ER? C? with the following mailboxes:
Command Proc Iface, Router TOPM, C?_TO_SS, CP_TO_M4}

CP=Rollback->
Rollback CP: :Rollback Command Proc.create((ProcID, Remote,
CallerUID, WorkRequest),
Parent Iface TO Invoker_Iface,
PM Controller Iface TO CommandProcIface(i),
PMDBIface TO PMDB.Database Port,
OS Iface TO Router TOPM(k),
SS Iface TO SS -Port.Iface,
MMIface TO MM-Port.Iface)

(store the index Rollback C? with the following mailboxes:
Command Proc I face, RouTer TO PM, C? TO 53, C? TO MMN

CP=End Trans -- >
End Trans C.i::EndTransCommand Proc.create((Proc_ID, Remote,

Caller UID, Work_Request),
Parent Iface TO InvokerIface,
PM Controller Iface TO Command ProcIface(i),
PMDB-Iface TO PMDB.Database Port

3-70

PROCESS MANAGER DESIGN

OS Iface TO Router TOPM(k),
SSlIface TO SS Port.Iface,
MMlIface TO MM-Port.Iface)

(store the index End Trans C? with the following mailboxes:
CommandProcIface, Router_TO_PM, C?_TO-SS, C?_TO_?*t}

CP=DRPCommand Proc -- >

DRP CP:=DRPCommand Proc.create((ProcID, Remote,
Caller -UID, Work-Request),
Parent Iface TO Invoker Iface,
PM Controller Iface TO CommandProcIface(i),
PMDB Iface TO PMDB.Database Port,
OS Iface TO RouterTO PM(k),
SSlIface TC SS -PorT.Iface,-
MMlIface TO MM-Port.Iface)

(store the index DRP -CP with the following mailboxes:
Command Proc Iface, RouterTOPM, CPTO_55, C? TO MM}

END f of Create New Machinel

3.5.6 Procedure CreateCommand Processor

CreateCommand Processor(NewMachine_Type:Command-Machine Type,
Work Request: ApplReq_Msg,
New Slot:Integer,
InvokerMachineType:Command MachineType,
1ndx:MachineIndex_Type Ufor the Invoker machine,-)

TEXT

IF Invoker MachineType=Delete--
Create NwM-hieNwMchn-ye

DeleteProcessor(Indx) .DescendentIface(NewSlot),
Work_Request)

Invoker -MachineType=Abort -- >'
CreateNewMachine (New Machine Type,

AbortProcessor(Indx) .Descendent Iface(New Slot),
Work_Request)

Invoker_-Machine_Type=Create -- >

Create New Mach ine(New Machine Type,
Create Processor(Indx) .DescendentIface(New Slot),
WorkRequest)

3-71

Invoker_-Machine Type=Rollback -- >

Create_New_Machine(New Machi ne-Type,
Rollback -Processor(Indx) .Descendent Iface(New $S,)
Work_Request)

Invoker_-MachineType=Commit -- >
CreateNewMachine(New Machine Type,

ConimitProcessor(Indx) .Descendent Iface(New Slot),
WorkRequest)

Invoker -MachineType=ERP -- >
Create_NewMachine(NewMachineType,

ERP-Processor(Indx) .Descendent Iface(NewSlot),
Work_Request)

Invoker MachineType=DRP--
CreateNewMachine(New Machine Type,

DRP Processor(Imdx) .DescendentIface(New Slot),
Work_Request)

Invoker -MachineType=End Trans -- >
Create_NewMachine(New MachineType,

EndTransProcessor(Indx) .Descendent I face(NJewSlot),
Work_Request)

FI

END [of' Create Command Processorf

3.5.7 Procedure CreateAppl Server

CreateApplServer (CP:Command Machine Type,
OBJ Invoker If'ace: Large_Mailbox(Response_Msg,

Appl_Req_,Msg),
WorkRequest: Appi_ReqMsg)

VARIABLES i,j,k,l,m:INTEGER
Proc ID:ProcessUID Type

TEXT

i:=Extend-Mbx(Command-ProclIface) [Extends the mailbox array and return
the high bound of' the arrayj

k:=Extend Router Mbx(Cmnd) [Extends RouterTOPM mailbox listi
Proc ID: :Get UID(process)

IF CP=Delete -- >
Delete CP:=Delete CommandProc .create(ProcID, WorkRequest,

3-72

PROCESS MANAGER DESIGN

Parent Iface :=InvokerIface,
PM Controller Iface TO Command ProcIface(i),
PM5B Iface TO PMDB.Database Port,
OSIFace TO Router TO PM(k),
SSlface TO SS -Port.Iface,
Nil Iface TO MMPort.Iface)

[store the index Delete -CP with the following mailboxes:
CommandProcIface, Router TOPM, CPTOSS, CP_TO_MM}

CP:Abort -- >
Abort -CP: zAbort Command_-Proc.create(ProcID, WorkRequest,

Parent Iface InvokerIface,
PM Controller Iface TO Command Proc Iface(i),
PMDB Iface TO PMDB.Databasd Port,
OS Iface TO Router TO PM(k),
SS - face TO SSPort.IlFace,
KM-lface TO MMPort.Iface)

[store the index Abort-CP with the following mailboxes:
CommandProcIface, Router_TO_PM, CPTO_SS, C? TO MYJ

CP=Commit -- >
Commit -CP:=Commit -Command -Proc.create(ProcID, Work_ Request,

Parent Iface :=InvokerIface,
PM ControllerIface TO CommandProcIface(i),
PHDB iTace TO PMDB.Database Port,
OS Iface TO Router TO PM(k),
SSlIface TO SS -Port.IFace,
MMIface TO MMPort.Iface)

(store the index CommitCP with the following mailboxes:
CommandProcIface, RouterTOPM, CPTO_SS, C?_TOM

CP=Create -- >

Create_-CP:=Create_-Command -Proc.create(ProcID, WorkRequest,
ParentIface := InvokerIface,
PM Controller Iface TO Command Proc Iface(i),
PMDB Iface TO PMDB.Database Port,
OSIface TO Router TO PM(k),
SS Iface TO SS_-Port.Iface,
MM Iface TO MM-Port.Iface)

[store the index Create -CP with the following mailboxes:
CommandProcIface, RouterTO_PM, CPTOSS, C?_TOMll

CP=ERP -- >

ERP -CP:=ERP -Command Proc.create(Proc ID, WorkRequest,
Parent Iface := Invoker Iface,
PM ControllerIface TO CommandProc tface(i),
PMDB Iface TO PMDB. DatabasePort,
OSlIFace TO Router TOPM(k),

3-73

SSIface TO SS -Port.Iface,
MM Iface TO MMNPort.Iface)

[store the index ERP -CP with the following mailboxes:
CommandProcIface, Router TO PM, C?_TO_SS, CPTOMM}

CP=Rollback -- >
Rollback -CP: :Rollback Command Proc.create(ProcID, Work_Request

Parent Iface :=InvokerIf'ace,
PH Controller Iface TO Command Proc Iface(i),
PM5BIface TO PMDB.Database-Port,
OSIface TO Router TO PM(k),
SS Iface TO SS -Port.Iface,
MN Iface TO MM-Port.Iface)

[store the index Rollback CP with the -following mailboxes:
Command Proc Iface, RouterTOPM, CPTOS3, C? TO MM1

CP=EndTrans -- >
End TransCP:=End Trans Command Proc.create(ProcID, WorkRecues

Parent Iface :7 InvokerIface',
PM Controller Iface TO CommandProc Iface(i),
PMfB Iface TO PMDB.Database Port
OS Iface TO RouterTOPM(k),
SS Iface TO SS -Port.Iface,
MM Iface TO MMNPort.Iface)

[store the index End -Trans_-CP with the following mailboxes:
CommandProcIface, Router TO_PM, C?_TO_SS, CP_TO_MN}

CP:End Trans -- >
DRP CP:=DRPCommandProc.create(ProcID, WorkRequest,

Parent Iface := InvokerIface,
PM Controller Iface TO Command ProcIface(i),
PMDB Iface TO PMDB.Database Port,
OS Iface TO Router TOPM(k),
SS Iface TO SS Port.Iface,
MM Iface TO MMNPort.Iface)

[store the index DRP -CP with the following mailboxes:
Command Proc Iface, RouterTO PM, C?_TO_SS, CP_TO_MM}

END [of CreateAppl Server}

3.5.8 Procedure Create RemoteApplServer

CreateRemo te_AppI_-Server(CP:Command -Machine-Type,
Work_Request:Appl_ReqMsg)

VARIABLES i,j,k,l,m:INTECER
Proc ID:ProcessUID Type

3-74

PROCESS MANAGER DESIGN

TEXT

i:=Extend-Mbx(Command-ProclIface) (Extends the mailbox array and return
the high bound of the array}I

k:=Extend RouterMbx(Cmnd) (Extends RouterTOPM mailbox listi
Proc ID: :Get UID(process)

IF CP=Delete -- >

Delete -CP:=Delete Command Proc.create(Proc_ID, Work_Request,
PM Controller Iface TO CommandProcIface(i),
PMDB Iface TO PMDB.Database-Port,
OSIface TO RouterTOPM(k),
SS Iface TO SS Port.Iface,
MM-Iface TO MPort.Iface)'

[store the index Delete_-CP with the following mailboxes:
Command Proc Iface, Router TOPM, CPTOSS, CP_TOMM}

CP=Abort -- >
Abort CP:=Abort CommandProc.create(ProcID, WorkRequest,

PM Controller Iface TO CommandProcIface(i),
PMDBIface TO PMDB.DatabasePort,
OS Iface TO Router TO PM(k),
SSlIface TO 55_Port.Iface,
MMlIface TO MMPort.Iface)

[store the index- Abort CP with the following mailboxes:
CommandProcIface, Router TO_PM, CP_TOSS, CPTOMMI

CP:Commit -- >
Commit -CP:=Commit Command Proc.create(Proc_tD, Work_Request,

PM Controller Iface TO Command Proc Iface(i),
PM5B Iface TO PMDB.Database-Port,
OSIface TO Router TOPM(k),
SS Iface TO SSPort.Iface,
MMlIface TO MMPort.Iface)

[store the index Commit -CP with the following mailboxes:
CommandProcIface, Router TO_PM, CP_TO-SS, CP_TO_MM}

CP=Create --. >
Create -CP:=Create Command Proc.create(ProcID, WorkRequest,

PM Controller Iface TO CommandProcIface(i),
P14DB Iface TO PMDB.Database-Port,
OSlface TO Router TO P14(k),
SSlIface TO SS -Port.Iface,
MMlIface TO MM-Port.Iface)

(store the index Create_-C? with the following mailboxes:
CommandProcIface, Router_TOPM, C? TO SS, C?_TO_MM}

3-75

CP=ERP -- >
ERPCP:=ERP CommandProc.create(Proc ID, WorkRequest,

PM Controller Iface TO CommandProc_Iface(i),
PMDB Iface TO PMDB.Database-Port,
OS Iface TO Router TOP14(k),
SSlIface TO SS -Port.Iface,
MMlIface TO MM-Port.Iface)

[store the index ERP CP with the following mailboxes:
Command Proc Iface, Router_TO_PM, CPTOSS, CP-TO-MM}

CP=Rollback -

RollbackCP:=RollbackCommand Proc.create(Proc ID, WorkRequest
PM ControllerIface TO CommandProcIface(i),
PMDB Iface TO PMDB.Database Port,
OS Iface TO RouterTO PM(k},
SSlIface TO SS -Port.Iface,
MMlIface TO MM-Port.Iface)

[store the index Rollback CP with the following mailboxes:
CommandProcIface, Router TOPM, C? TOSS, CPTO M14}

CP=EndTrans -- >

End Trans CP:=End TransCommand Proc.create(Proc_ID, Work Reques
FMConTroller Iface TO CommandProcIface(i),
PMDB Iface TO PMDB.Database Port
OSIface TO Router TOPM(k),
SS Iface TO SS -Port.Iface,
MMlIface TO MM-Port.Iface)

[store the index End Trans CP with the following mailboxes:
CommandProcIface, RouterTO_PM, C?_TO_SS, C?_TOM4}

CP=End Trans -- >

DRP CP:=DRPCommand Proc.create(Proc ID, WorkRequest,
FM Controller Iface TO Command Proc Iface(i),
PMDB Iface TO PM4DB.DatabasePort,
OSlIface TO Router TO P14(k),
SSIface TO SSPort.Iface,
MMlIface TO MM-Port.Iface)

(store the index DRPC? with the following mailboxes:
CommandProcIface, RouterTO-PM, C?_TOSS, C?_TO_M414

END [of Create_Appl_Server}

3.5.9 Procedure Destroy_ Command Processor

Des troy _Command Proc (Command Proc :Command-Machine-Type,
Indx: Machine-IndexType,
Proc-UID :Process UID Type)

3-76

PROCESS MANAGER DESIGN

TEXT

f This procedure destroys the designated command processor machine. All of
its mailbox connections are destroyed and the storage space occupied
by these mailboxes is released I

3.5.10 CONTROLLER

VARIABLES
Msg :Appi ReqMsg
Caller -UID :ProcessUID_Type
Response :Response_Msg
TO -Process :Response Hsg
Resp ACK
i,j INTEGER

WHENEVER

(check the application command mailboxes to see if there is any messagei
(i:0. .PMToProcess.Hi Bound) PMTOProcess.Element(i).came -

Msg:=PM TO Process.Element(i) .Get
Caller_-UID :=PM TO Process.Element(i).Get-UID
(check the msg type I
IF (Msg.val.OP=Create Process) OR (Msg.val.OP=Create Transaction) OR

(Msg.val.OPzBegin_-transaction) -- >

Create_AppiServer(Create, PMTOProcess.Element(i), Msg)

oMsg.val.OP=Delete_-Process -- >
CreateAppIServer(Delete, PM_TO_Process.Element(i), Msg)

0Msg.val.OP = EstablishRecoveryPoint OR ERP -- >
Create_ApplServer(ERP, PM-TOProcess.Element(i), Msg)

0Msg.val.OP =Rollback -- >
Create_AppiServer(Roilback, PM_TOProcess.Element(i), Msg)

OMsg.val.OP=DiscardFRecoveryPoint -- >
Create_Appi_Server(DRP, PM-TOProcess.Element(i), Msg)

OMsg.val.OP =End_-Transaction -- >
Create_AppiServer(EndTrans, PMTOProcess.Element(i), Msg)

O sg.val.OP =Commit -- >
CreateAppi Server(Commit, PMTOProcess.Element(i), Msg)

oMsg.val.OP =Status Query -- >
PM TO Database. Send (OS Msg)
WHEN
PMTODatabase.Came -- > Response:=PMTODatabase.Get

3-77

PMTOProcess.Element(i) .Send(Response)
END

F1

(Check the Command Processor Interfaces for any request message",
9 (i :Command Proc Iface.lob. .Commuand Proc Iface.hib)
Command Proc Iface.Element(i) .Came -- :>

Rqt:=Command_-Proc Iface.Element(i) .Get
Caller MachineIndx:=Command Proc-Iface.Element(i).Get Index

IF Rqt.tag=Create--
CreateCommandProcessor(Rqt.val .MachineType,

Rqt val.Work Request, Rqt.val.DescendentIMbxlIndx,
Rqt.val.Caller-Machine Type, CallerMachine-Yndx)

Rqt.tag=Destroy -- >

Destroy_Command Processor (Caller MachineType, CallerMachine Index,
Proc UID)

Rqt.tag:ServiceCall -

IF Rqt.val.Action=New_-Process -

[Create a iew process and return its UID to the callers
J: zEx tend Router Mbx (Appl)
K:=Extend(PMTOProcess) (Returns the index of the new elemnt
La:=Extend(PMTOProcessScheduler)
ProcUID :=Get_UID(Process)

New Proc Indx::ApplProcess Pool.Create
(Process TOPM TO PM_-TOProcess(K),
Process-TO -Scheduler TO PM_-TOProcessScheduier(L),
Process TORouter TO RouterTOProcess(J))

[Store this index and the Process UID in appropriate
Large Mailboxes}

CommandProcIface.Element(i) .Send(Proc-UID)

oRqt.val.Action=DestroyProcess -- >
Process_-Indx:=Find Process-indx(Rqt.val.UID))
Appi ProcessPool.Destroy(ProcesslIndx)

(This will also release all connections to the destroyed proces

CommandProcIface.Element(i) .Send(Success)

oRqt.val.Action=Run Process -

PCB:=Rqt.val.Param,
K: :PM TO Proc Scheduler .Get Index (PCB.PUID)

3-78

WHEN
PM TO Database.Came -- > Response:=PMTODatabase.Get

-TOOS.Send(Receiver:=Caller -UID, Sender:=PMUID,
Operation: =Response D

END
FI

FI

FI

END (Process Hanagerl

3-80

PROCESS MANAGER DESIGN

WHEN
PM TO -Proc -Scheduler .Element(K) .Send(OP: =RunProcess,

Param:zPCB) -- > SKIP
END
Command ProcIface.Element(i) .Send(Success)

0Rqt.val.Action=StopProcess--
Proc UID :=Rqt.val.Param
K:zPRP-_TO_-Proc Scheduler. Get Index (Proc UID)
WHEN
PMTOProcScheduler.Element(K) .Send(OP:=Stop-Process)

- > WHEN
PM TO Proc Scheduler .Elemerit(K) .Came -

PCB:=PMTOProcScheduler.E- lement,(K) .Get.Param
END

END

CommandProc Iface(i) .Send(PCB)

FI

[Check the Operation Switch interface for request/response messages}
3PMTOOS.Came->

OS Msg:=PM_TOOS.Get
Caller -UID :=6 :OMsg.Sender
Remote := TRUE

IF OS Msg.Operation.tag=Appl_Req_Msg--
IF (OS Msg .Operation. val.OP:Create Process) OR

(OS Msg.Operation.val.OP=CreateTransaction) OR
(OS Msg.Operation.val.OP=BeginTransaction) -- >

CreateRemoteAppi Server(Create,Remote, CallerUID, Msg)

3OS -Msg.Operation.val.OP=DeleteProcess -- >

CreateRemote_Appi_Server(Delete, Remote, Caller_UID, Msg)

0OS -sg.Operation.val.OP =EstablishRecovery-Point OR ERP-'
Create RemoteAppI Server(ERP, Remote, CallerUID, Msg)

OOS -Msg.Operation.val.OP =Rollback -- >
Create Remo teAppl Server (Rollback, Remote, Caller-U ID, Msg)

0OS_-Msg.Operation.val.OP=Discard Recovery_Point -- >
Create Remote ApplServer(DRP, Remote, Caller_UID, Msg)

0OS FMsg.Operation.val.OP =Commit -- >
Create RemoteAppI Server(Commit, Remote, CallerUID, Msg)

0OS Msg.Operation.val.OP =Status-Query -

PM-TO Database. Send (OSMsg)

3-79

TYPE MANAGER DESIGN

CHAPTER 4

TYPE MANAGER DESIGN

This chapter presents the design of the generic object manager in the Ze
system in CSDL.

Section 4.1, Machines Dictionary, describes the interfaces and behavior
various machines used in the design definiton of the Type Manager syste
These machine defintions do not contain the details of the internal structu
of the machines.Section 4.2 contains the type definitions for the vario
object types used in the entire design definition. Section 4.3 defin
various procedures that are used by several machines in the desi
definitions. The details of the SYSTEM Type_Manager architectures is given
section 4.4 titled Realization Dictionary.

4.1 MACHINE DICTIONARY

SYSTEM TypeManager(T:TYPE)

PUBLIC

TMTo PM:Small Mailbox(PMTMMsgTMPM Msg)
TMTo FRouter:Small Mailbox(RouterTMMsg,TM_Router_Msg)
ServersToPM:ListsmallMailbox(PServerMsg,

Server TMMsg))
Servers To PM PS:List(Small Mailbox(PM ServerPSMsg,

ServerPMPSMsg))

BEHAVIOR
f This machine accepts operation request from the

TMTo Router; Participate in commit protocols
with PHs through TM To Router. }

END Type_Manager

Timer
[The machine is imported from Proc/Trans management (Page 4-17)1

4-1

4.2 TYPES DICTIONARY

Imported from Process/Transaction manager:
1) Small Mailbox
2) List
3) NULL
4) Transaction StatusType
5) UIDType

LockModeType IS (Read, Update, Unlock)

Object-Status IS (Uncommitted, Commit_Pending, Committed, Aborted)

TransactionContextList IS TransactionUIDType ARRAY

Object Version Type(T:TYPE) IS
MODEL rObjVersionNo:INTEGER,

Version_ Status:Object Status,
Creator ID:Transaction Context List,
Time Stamp: INTEGER,
Previous Version :ObjectVersionType,
Object :TT

Let %ObjVersion:ObjectVersionType

End ObjectVersionType

Operation-Name IS ABSTRACT

LEach Type has specific operation set. A typical
operation set could be defined as follow.)
OperationType IS [Opl, [op:operation name,

Ty: (Read,Update),
Param:Parameters] 0

Op2.] UNION

f This type is the union of several types.)
TMTo_RouterMsgType IS ABSTRACT

InvokeParaType IS (ObjectUID:UIDType,
Client UID: Transaction Context-List,
Initial Access:BOOLEAN,
TimeStamp: INTEGER,
OperationInfo :OperationType]

MsgType IS (PREPARE, COMMIT, ABORT, COMPLETED)

Msg ParamType IS [ObjID : UIDType,
ClientID : TransactionContextList]

RollbackParamType IS (ObjID : UIDType,
Transaction : TransactionContextList,

4-2

TYPE MANAGER DESIGN

Children : UID Type ARRAY,
TimeStamp : INTEGER]

AbortParamType IS [ObjID : UIDType,
Transaction : Transaction ContextList,
Children : UID Type ARRAYT

RequestType IS [Invoke, Invoke ParamType D
Ti, [Op : Msg_Type,

Params : Msg_Param Type] I
Rollback, Rollback Param Type f
Abort , Abort_Param_Type UNION

Invoke_ResponseMsg IS (Done, Abort, Queued)

DeQ_Msg IS [Exist,Invoke Param Type 0
NotExist, NULL] UNION

Info_Rec IS [Flag : BOOLEAN,
UID : TransactionContext List]

Object_Header(T : TYPE) IS (objectUID:UIDType,
ISWaiting:BOOLEAN,
Current Version:ObjectVersion Type(T),
Obj Status:Object Status,
Lock Mode:Lock ModeType,
Current ClientID:CompleteTCL ARRAY]

4.2.1 Definition of abstract data type for Complete TCL

CompleteTCL IS
MODEL [ID : TransactinContextList,

Mode : LockMode_Type,
Converted : BOOLEAN,

Let %TCL:CompleteTCL

OFUN Remove LeafTransaction

PRE TRUE
POST %TCL'.dom = %TCL.dom - 1

BEHAVIOR
(This function removes the leaf transaction from
the transaction context list on which this function
is applied.1

END Complete TCL

4-3

4.2.2 Definition of abstract data type for Queue

Queue Type IS
MODEL [InvokeParam Type ARRAY]
LET %Q: Queue-Type

OFUN Enqueue (Req:InvokeParamType)
PRE TRUE
POST %Q.high = Req
BEHAVIOR

(It adds the request to the queue}

OFUN Dequeue (ObjectUID : UID Type,
Mode : LockMode) RETURNS DeQMsg

BEHAVIOR
[It removes the request, which is waiting for the
object with the given uid and mode, from the queue.)

END Queue-Type

4.2.3 Definition of abstract data type for Set ofObjects

Set of Objects (T:TYPE) IS
MODEL r[Header:ObjectHeader(T),

Version:Object VersionType (T) ARRAY I ARRAY]

LET %Objects:Set ofObjects

OFUN AssignHeader (H:ObjectHeader)
PRE TRUE
POST %Objects.high.Header = H
BEHAVIOR

[It adds the Header of new created objects to the object
list.)

OFUN Attach NewVersion(Obj ID: UIDType,
V :Object VersionType)

PRE TRUE
POST %Objects' (i).Version.high=V

Where i:%Objects.lob < i < %Objects.hib
AND %Objects (i) .Header.Object.UID=ObjID)

BEHAVIOR
[This function adds the new version of the object
with given obj-ID to the end of the version list.)

OFUN Force Header (ObjID:UIDType) RETURNS BOOLEAN
PRE TRUE
POST
BEHAVIOR

4-4

TYPE MANAGER DESIGN

(This function sends a request to Stable Storage manager
to write out the header of the object with given obj_ID
on stable storage.1

OFUN ForceVersion (ObjID:UIDType) RETURNS BOOLEAN
PRE TRUE
POST
BEHAVIOR

[This function sends a request to stable storage manager
to write out the latest version of the object with
given objID on stable storage.}

VFUN Get Lock Mode (ObjID:UID-Type)
RETURNS LockModeType

PRE TRUE
POST Get Lock Mode =%Objects (i).Header.Lock Mode

Where i:%Objects.lob< i < %ObjectID = Obj.ID

BEHAVIOR
(It returns the lock mode for the
requested object. }

OFUN Add Client (ObjID: UID Type,
Client TCL:CompleteTCL)

PRE TRUE
POST %Objects (i).Header.Current ClientID(hib) = ClientTch

Where i :%Objects.lob<i<%Objects.hib
AND %Objects (i).Header.objectID:Obj_ID

BEHAVIOR
[It adds a new client to the set of current
clients of given object.}

VFUN Obj.Status (ObjID:UID Type)
RETURNS Object Status

BEHAVIOR
(It returns the object status of the specified
object. }

OFUN Converted(ObjID : UIDType,
Client ID : TransactionContext List)

RETURNS BOOLEAN
BEHAVIOR

[This function returns TRUE if the lock held by
given client was converted from the update lock
of its ancestor.}

4-5

OFUN Change-Status (ObjID:UIDType,
ObjStatus:*ObjectStatus)

PRE TRUE
POST %Objects(i).Header.ObjStatus = ObJ Status

Where i: %Objects.lob<i<%Objects.hib
AND %Objects(i).Header.ObectID=ObjID

BEHAVIOR
[This function modifies the Status of
Given function.}

OFUN ChangeLockMode (ObjID:UIDType,
LM:LockMode:Type)

PRE TRUE
POST %Objects (i).Header.Lock Mode: LM

Where i:%Objects.lob<i<%Objects.Hib
AND %Objects(i).Header.Object_ID=ObjID

BEHAVIOR
[This function changes the lock mode of
specified object to given mode. In order to
release the lock, we should change the mode
to unloc}

VFUN IsLockedByAncestor(ObjID : UID Type,
ClientID : TransactionContextList)

RETURNS Info Rec
BEHAVIOR

f This function checks to see whether any
ancestor of the given client's holds a
lock on the specified object or not. }

VFUN IsLockHolder(ObjID : UID-Type,
Client UID : Transaction Context List)

RETURNS BOOLEAN

BEHAVIOR
I This function checks whether the specified client

is currently holding a lock on the given object
or not.)

VFUN More Readers(Obj ID : UID Type,
ClientID : Transaction ContextList)

RETURNS BOOLEAN

BEHAVIOR
I This function returns true if there is more than
one transaction holding a read lock on the given
object.}

4-6

TYPE MANAGER DESIGN

VFUN DeadlockPrev_Alg(Obj_ID UIDType,
Param Transaction Context List)

RETURNS BOOLEAN

BEHAVIOR
f This function performs a deadlock prevention
algorithm, namely "Wound Wait" algorithm, in
order to determine whether the transactin
to be aborted or queued.1

OFUN Delete-Version (ObjID : UIDType,
IDs : TransactionUIDType ARRAY,
Time-Stamp : INTEGER)

BEHAVIOR
This function deletes all the object versions created
after specified Time Stamp by the given transaction(s).
Also it modifies the current version field in object
header to point to the correct copy.}

OFUN CreateNewVersion (ObjID : UIDType,
Creator : TransactionContext-List,
Status : Object-Status)

RETURNS ObjectVersionType

BEHAVIOR
J This function creates a new version of the given
object and adds it to its object version list.
The given status is the status of newly created
version.}

OFUN ChangeWaiting(ObjID : UID Type)
PRE TRUE
POST %ObJects'(i).Header.IsWaiting :: NOT (%Objects(i).Header.IsWaitin

Where i:%Objects.lob<i<%Objects.Hib
AND %Objects(i).Header.ObjectID:ObjID

BEHAVIOR
[This function negates the value of the Is Waiting
field (which indicates whether any transaction is
waiting to acquire a lock on that object or not)
in object header. I

OFUN Is Waiting (ObJID : UIDType)
RETURNS BOOLEAN

PRE TRUE
POST Is Waiting :: %Objects(i).Header._Waiting
BEHAVIOR

[This function returns the value of the Is-Waiting
field of the object header.}

OFUN Change ClientMode(ObjID : UIDType,
Mode : LockMode Type)

4-7

PRE TRUE
POST %Objects(i).Header.CurrentClientID.high.Mode = Mode

OFUN ReleaseLock(Obj_ID : UID Type,
ClientID : TransactionContextList)

BEHAVIOR
f This function releases the lock which is held
by the leaf transaction of given client and
returns the lock to its parent.
This function consist of the following steps:
- Lock for the client ID in the current client

list of the object header.
- Check whether the TCL of the client transaction's

parent exists in the Current ClientList
- If it does, determine what mode the parent

inherits the object in and modify the parent's
mode if neccessary and remove the client ID
from the current client list.

- If the parent TCL does not exist, simply remove
the leaf transaction from the client's TCL and
leave the new TCL in current client list.

The locking Mode which the parent inherits the
object in is determined by the following table:

Lock released Lock previously Lock currently
by child held by parent held by parent

Read Read Read
Read Update Update
Read None Read
Update Read Update
Update Update Update
Update None Update

OFUN CheckPath(Obj ID ; UID Type,
Client_ID : TransactionContextList)

RETURNS BOOLEAN
BEHAVIOR

[This function returns True if no transaction on the
path from the current lock holder to the successor of
the least common upper bound of the holder and given
client has inherited an update lock.}

OFUN CheckDependency(ObjID : UIDType,
UIDs : TransactionUIDType ARRAY)

RETURNS BOOLEAN
BEHAVIOR

[This function returns True if there exist a version
of the given object in commit-Pending state, created

4-8

TYPE MANAGER DESIGN

after the object was modified by any of the transactions
in the given UID list and the creator of the version
is not among those in the list.]

OFUN ConvertLock(ObjID : UID Type,
ClientID : TransactionContextList)

BEHAVIOR
(This function changes the lock mode of the object
header and the given Client to update mode.
This function is used whenever a transaction which
already holds a read lock requests for an update lock.}

OFUN Commit_PrevVersion(ObjID : UIDType,
Client ID : Transasction ContextList)

BEHAVIOR
{ This function commits the previous Commit Pending
version of given object which was created either
by the transaction itself or by any of its children.
This function is usually applied to those objects
which are in uncommitted or aborted state and a
Commit message is addressed to them.}

OFUN RestorePrevVersion(ObJID : UIDType)
BEHAVIOR

I This function restore the previous Committed version
of the given object.}

OFUN Apply (ObJID:UIDType,
OPname:OperationType)

BEHAVIOR
(For the time being, it is assummed that
this function performs the requested
operation on the latest version of the
object with given Obj ID. A possible
implementation is a pool of servers.}

END Set ofObjects

END TYPES DICTIONARY

4-9

4.3 PROCEDURE DICTIONARY

4.2.3.1 PROCEDURE InvokeProc

PROCEDURE InvokeProc (Params:InvokeParamType)

BEHAVIOR
SThis procedure will invoke Lock Grant procedure
to perform lock granting algorithm before it
performs the requested operation. Then, depends
on the result of the lock granting algorithm
it will do the corresponding actions.}

VARIABLES
Resp:InvokeResponseMsg
Response:TM ToRouterMsg_type

TEXT
Resp:=LockGrant (Params)

IF Resp=Grant-->
Objects.Apply (Params.ObjID,Params.Op.name)
Response. val. Msg: =Done
Response. val. Param: =Params.
TMToRouter.Send (Response)

0 Resp=Abort -->
Response.val.Msg:=Abort
Response.val.Param:=Params
TMToRouter.Send (Response)

0 OTHERWISE --> SKIP [when a request has been queued}

FI

END {InvokeProc}

4.2.3.2 PROCEDURE Lock Grant

PROCEDURE Lock Grant (Params:InvokeParamsType)
RETURNS Invoke ResponseMsg

BEHAVIOR
[This procedure is executed whenever an object is
accessed to carry out the lock granting algorithm.
The following is the list of all possible lock modes

4-10

TYPE MANAGER DESIGN

which an object can be in and thier corresponding
actions.}

CONDITION Requested lock ACTION

Initial Access:
1)Object unlock Read/Update Grant
2)Read lock by T granted Read No action

by OM Update Grant if no more readers
Queue otherwise

3)Read lock by ancestor of T Read Grant if Rulel
converted from Update lock Update Grant if Rule2
of its ancestor Queue otherwise

4)Read lock by ancestor of T Read Grant
granted by OM Update Grant if no more readers

Grant otherwise
5)Update lock by ancestor of T Read/Update Grant
6)Read lock by non ancestor of Read Grant
T granted by OM Update Queue

7)Read lock by non ancestor of
T converted from update lock Read/Update Queue
of its ancestor

8)Update lock by non-ancestor Read/Update Queue
of T

Subsequent request:
1)Object unlock Read/Update Abort
2)Object not locked by T Read/Update Abort
3)Read lock by T granted by OM Read No action

Update Grant if no more reader
Queue otherwise

4)Read lock by T converted from Read No action
update lock of its ancestor Update Grant

5)Update lock by T Read/Update No action

Rulel : No transaction on the path from the current lock holder to the
successor of the least common upper bound of the holder and
requester has inherited an update lock

Rule2 : Rulel and no other transaction is currently holding a read lock

VARIABLES
Lock Mode:Lock Mode Type
Ancestor : Info Rec
OK:BOOLEAN
Lock Holder:BOOLEAN
More Readers:BOOLEAN
Requested-Lock : Lock ModeType
CTCL : CompleteTCL

TEXT

4-11

[check the Lock Mode of' the object.)
Lock_-Mode:=Objects.Get_-Lock_-Mode (Parains.ObjID)
Requested -Lock :=Params .Operat ion Info. val .Ty
Ancestor .= Objects.Is Locked-by_Ancestor(Params.Obj_ID,

Params.ClientID)
IF Params.InitialAccess->

IF Lock Mode =Unlock--
[grant the requested lock & update the object.}
CTCL := Generate CompleteTCL(Params.ClientID,

Requested Lock FFALSE)
Objects.Update -Object(Parats.Obj_ID, CTCL)
Lock Grant : Grant

DIF (Lock Holder) AND (Lock Mode = Read) -

IF Requested Mode =Update -- >
IF NOT Objects.MoreReaders--

Objects. Convert L ock(Params .ObjID)
Lock-Grant Grant

0 OTHERWISE [-'fMore readers
Queue-Request (Param)

FI

IOTHERWISE -- > SKIP
FI

0Ancestor.Flag
IF Requested-Lock =Read -

IF Objects.Converted(CParams .ObjID,
Ancestor.UID)--

IF Objects.Check_-Path -- >

CTCL := GenerateCompleteTCL(Parans.Client_ID,
Requested Lock, TRUE)

Objects.Update Object(Param.ObjID, CTCL)
Lock Grant Grant
o OTHERWISE ->Queue_Request(Params)

FI
0OTHERWISE--
IF (Requested Lock =Read) OR

((Requested Lock:Update) AND
(NOT Objects.More -Readers))--
CTCL := Generate Complete_TCL(Params.Client_ID,

RequestedLock, TRUE)
Object3.Update Object(Param.ObjID, CTCL)
Lock Grant :: rant

0 OTHERWISE ->QueueRequest(Parans)

FI
0 OTHERWISE -- flock mode =update

CTCL := Generate Complete TCL(Params .ClientID,
Requested Lock, TRUE)

Objects.Update Object(Param.ObjID, CTCL)
Lock-Grant G= rant

FI
0OTHERWISE -- flocked by non ancestor

k4-12

TYPE MANAGER DESIGN

IF (NOT Objects.Converted(Param.ObjID)
AND Requested-Mode = Read) -->
CTCL :: GenerateCompleteTCL(Params.Client_ID,

Requested_Lock, TRUE)
Objects.UpdateObject(Param.ObjID, CTCL)
Lock Grant :: Grant

a OTHERWISE --> QueueRequest(Params)
FI

FI
OTHERWISE --> (It is not an initial access.1

Lock holder := IS Lock holder (Params.ObjID,
Params.ClientUID)

IF (Lock Holder) AND (Lock Mode = Read) AND
(Params.OperationInfo.val.Ty=Update) -->
MoreReads:= Objects.More Readers (Params.Obj_ID,

Params.ClientID)
IF More Readers -->

{There are other Transactions which are holding Read
lock on this object}
OK:=DeadlockPrev_Alg (Params.ObjID, Params.ClientID
IF OK --> fenqueue the request}

IF Objects.IsWaiting(Param.Obj_ID) --> SKIP

OTHERWISE -->
Objects.Change Waiting(Param.Obj_ID)

FI
queue.Enqueue (Params)

OTHERWISE -->
LockGrant::Abort

FI
9 OTHERWISE --> {convert the LockModel

Convert Lock (Params)
LockGrant::Grant

FI
o (NOT (lock Holder) OR Lock-Mode Unlock) -- >

Lock Grant :=Abort
OTHERWISE --> SKIP

FI

FI

END Lock Grant

4.2.3.3 PROCEDURE PrepareProc

PROCEDURE PrepareProc (Param:MsgParamType)

4-13

BEHAVIOR
fUpon recieving a PREPARE message, Object Manager will
invoke this procedure to perform the corresponding
actions according to the following table.

CONDITION ACTION

1) Read lock by T and status Send READY msg
is Committed Unlock the object

2) Update lock by T and
a) Status = Uncommitted Change status to Commit-Pending

Force object on SS
Send READY msg

b) Status = Commi Pending Send READY msg
c) Status = CommiTted No action

3) All other conditions Send ABORT msg

VARIABLES

Lock Holder:BOOLEAN
Mode :Object -Mode_-Type
Status :Ob ject Status

TEXT

Mode:=Object.Get -ObjectMode (Param.ObjID)
Lock -Holder:=Objects.IsLockHolder (Param.Obj_ID,Param.ClientID)
Status:=Objects.ObjStatus (Param.Obj_ID)
Response.val.Param :=Param

IF Lock_-Holder [->The transaction is currently holding a lock}
IF Mode =READ -- >

IF Status = Committed -

Objects.Release_-Lock (Param.Obj_ID, Param.ClientID
Response.val.Msg :=READY
TM ToRouter.Send (Response)
0OTHERWISE -- >
Response.val.Msg:= ABORT
TMh-To -Router .Send (Response)

FI
0 Mode =Update-)

IF Status =Uncommitted -

Objects.Change_-Status (Param.ObjID, CommitPending)
Objects.ForceVersion (Param.Obj ID)
Response.val.Msg := READY
TM ToRouter.Send (Response)

0Status = Commit_-Pending -- >
Response.val.Msg := READY
TM To Router.Send (Response)
0Status = Abort -- >
Objects .Restore PrevVersion (Param.Obj ID)
Objects.Release Lock (Param.Obj_ID, Param.ClientID)

4-14

TYPE MANAGER DESIGN

Response.val.Msg := ABORT
TM To Router.Send (Response)
OTHERWISE --> Skip (Status z Committed}

FI
FI
0 OTHERWISE --> [does not hold any lock)

Response.val.Msg := ABORT
TMTo Router.Send (Response)

END Prepare_Proc

4.2.3.4 PROCEDURE CompletedProc

PROCEDURE CompletedProc (Param:Msg_ParamType)

BEHAVIOR
f This procedure is invoked when a COMPLETED message

is received from PM. Depends on the status of the
object, proper actions will be taken.
In the following table all the possible conditions
are listed.}

CONDITIONS ACTIONS

1) object is locked by T or a
descendents of T in Read
mode & status=Committed Unlock the object &

send an ACK message
2) object is locked by T or a

descendents of T in Update
mode &
a) status = Committed Unlock the object &

send an ACK message
b) status = Commit-Pending same as condition 2a plus

change status to Committed &
force the object on SS

c) status = Aborted or Restore previos version &
Uncommitted unlock the object &

send an ACK message
3) object is locked by a stranger send an ACK message

* The conditions which are not listed in the above table
are those which should never arise in a reliable system.

VARIABLES
Lock Holder: BOOLEAN
Mode:Object ModeType
Status:Object Status

4-15

Response:TM -To Router_MsgType

Descendent: BOOLEAN

TEXT

Mode: =Objects.Get -ObjectMode(Param.Obj -ID)
Lock Holder: -Objects. Is Lock Holder(Param.ObjID,

Param.Client ID)
Status: :Objects .ObjStatus (Param .ObjID)
Response. val .Msg: :ACK
Response. val .Param:=Param
Descendent: =Objects. Is Lock byDescendent (Param.ObjID,

Param .Client ID)
IF Mode =Unlock->

Th-To Router. Send (Response)

aMode = Read -- >
IF (Lock-Holder OR Descendent) AND Status =Committed -

Objects.Release Lock (Param.ObjID, Param .ClientID)
Th-To-Router.Send (Response)

0 OTHERWISE -- >
Th-To Router. Send (Response)

FI

0 Mode =Update -

IF (lock Holder OR Descendent)--
IF Status = Committed

Objects.Release Lock (Param.ObjID, Param.ClientID)
Th-To Router. Send (Response)

0Status = Commit-Pending -- >
Objects. Change Status (Param .ObjID,

Param.Client ID)
Object.Force Version (Param.ObjID)
ThToRouter.Send (Response)

0(Status = Uncommitted OR Status =Aborted)-->
Objects. Restore -Prey Version (Paramn. ObjID)
Objects. Force -Header (Paramn. ObjID)
Objects.Release Lock (Paraiu.ObjID,Param .Client ID)
TMhTo Router .Send (Response)

FI

0 OTHERWISE -- >
TM To Router .Send (Response)

FI

FI

4I-16

TYPE MANAGER DESIGN

END Completed_Proc

4.2.3.5 PROCEDURE TimeOut Proc

PROCEDURE TimeCut Proc (Param: Time OutParamType)

BEHAVIOR
{ This procedure is executed whenever a timeout

interrupt is received from Timer.
In the following table all the possible conditions
and the actions needed to be taken are listed.

CONDITIONS ACTIONS

1)Object is locked in unlock the object
Read mode

2)Object is locked in
Update mode &
a)status = Uncommitted/ Restore the previous

Aborted Committed version
unlock the object
Force the object on SS

b)status = Commit-Pending Send a query to the PM regarding
the status of Client transaction,

if transaction is non existant then
abort the version and restore the
previous committed version of the
object otherwise set the timer
again.

VARIABLES
Mode:Object_ModeType
Status: ObjectStatus
Response:Th ToRouterMsg.Type
Resp:TransactionStatus Type

TEXT

Mode:=Objects.Get Object Mode(Param.Obj-ID, Param.ClientID)
Status:=Objects.Obj Status (Param.ObjID)

IF Mode z Read -->
IF Status = Committed -- >

Objects.ReleaseLock (Param.ObjID, Param. ClientID)

0 OTHERWISE --> SKIP
FI

4-17

Mode = Update -- >

IF (Status = Uncommitted OR Status = Aborted) -- >

Objects.Restore Prey Version (Param.ObjID)
Objects.ForceHeader (Param.ObjID)
Objects.ReleaseLock (Param.ObjID,Param.ClientID)

Status = CommitPending -->
[send status query for client-Transaction
and wait until you get a response back
IF Resp = NonExistent
THEN

Objects.Release Lock (Param.ObjID, Param.ClientID)
Objects.Restore PrevVersion (Param.ObjID)

ELSE
set the timer.}

O OTHERWISE --> SKIP

FI

FI

END Time Out Proc

4.2.3.6 PROCEDURE Commit Proc

PROCEDURE CommitProc (Param:MsgParam Type)

BEHAVIOR
{Upon recieving a Commit message from PM
Object manager perfoems the corresponding
actions according to the lock mode and
status of the object.
The following is the list of all possible
conditions and thier corresponding actions.)

CONDITIONS ACTIONS

1) Object is locked by T Unlock the object
in Read mode & Force the object header
Status = Committed Send an ACK message

2) Object is locked by T in Unlock the object
Update mode & Change status to committed
Status=CommitPending Force Object header

Send an ACK message

3) Object is locked by some
descendent of T &
a) Status = Commit Pending/ The same as condition 2

Committed

4-18

TYPE MANAGER DESIGN

b) Status = Uncommitted/ Commit the previous
Aborted Commit-Pending version

Unlock the object
Send an ACK message

4) Object is unlocked or
locked by some stranger Send ACK message

* The conditions which are not listed in the above table

are those which should never arise in a reliable system.

VARIABLES

Lock Holder: BOOLEAN
Mode :ObjectModeType
Status:Object Status
Response:TM To RouterMsgType
Ancestor : BOOLEAN

TEXT

Mode::Objects.Get Object-Mode (Param.ObjID)
LockHolder:=Object.IsLockHolder (Param.ObjID,

Param.ClientID)
Status:=Objects.Obj_Status(Param.ObjID)
Ancestor:=Objects.IsLock byAncestor (Param.ObjID,

Param.ClientID)

Response.val.Msg:=ACK
Response.val.Param:=Param

IF Lock Holder -->
IF (Mode = Read AND Status = Committed) -- >

Objects.Release Lock (Param.ObjID, Param.ClientID)
TMToRouter.Send (Response)

a (Mode = Update AND Status = Commit-Pending) -- >

Objects.ChangeStatus (Param.ObjectID,
Committed)

Object.ForceVersion (Param.ObjectID)
Objects.Release Lock (Param.ObjID, Param. ClientID)
TMTo.Router.Send (Response)

0 OTHERWISE --> SKIP

FI

OTHERWISE --> [the transaction does not hold any lock
itself}

4-19

IF Objects.IsLock_byDescendent (Param.Obj_ID,
Parazn.Client ID)->

IF (Mode =Read AND Status =Committed) -- >

Objects.ReleaseLock (Param.ObjID, Param.ClientID)
Th-To Router .Send (Response)

oOTHERWISE -- > SKIP
FI

0Mode Update--
IF STATUS =Commit-Pending->

Objects.ChangeStatus (Param.ObjID,
Commit ted)

Objects .Force -Version (Param.ObjID)
Objects.Release Lock (Parain.Obj ID, Param.Client ID)
TMNTo Router .Send (Response)

0 (Status Uncommitted OR
Status Aborted) -- >

Objects.Comzit Prev Version(Param.ObjID, Param.Client ID)
Objects. Release_-Lock(Paran.ObjID, Param.ClientID)
Objects .Force_-Version(Param.ObjID)
Objects.ForceHeader(Param.ObjID)
TM-To Router. Send (Response)

0(Status =Committed) -- >

Objects. Release_-Lock (Param.ObjID ,Param.Client ID)
Objects. ForceHeader (Paramn. ObjID)
TMToRouter.Send (Response)

FI

0OTHERWISE --> [Since there is no info about this transaction in
ON database. Just send an ACK back.}

TM To Router. Send (Response)

FI

FI

END Commit-Proc.

4.2.3.7 PROCEDURE Rollback Proc

PROCEDURE Rollback Proc(Param : Rollback-Param-Type)

4-20

TYPE MANAGER DESIGN

BEHAVIOR
{ This procedure checks whethEr the given transaction
is currently holding an update lock on the object,
if it does then this procedure discards all the versions
created by that transaction with time stamp larger than
the time stamp of the recovery point. Also, if any of the
transaction children have updated the object, then it
discards all the versions created by those transactions.
The following is the list of all possible conditions and
thier corresponding actions:

CONDITIONS ACTIONS
1) Object is unlock Send an Abort message.
2) Object is locked by Send an Abort message.

a stranger.
3) Object is locked by T Send an ACK message

in Read mode

4) Object is locked by Delete all versions created
T in Update mode by the transaction children.

Delete all versions created
by the transaction with
TS > recovery point TS.
Force modified object header
on stable storage.
Send an ACK message

* The conditions which are not listed in the above table
are those which should never arise in a reliable system.

VARIABLES
Mode : LockMode Type
Descendent : BOOLEAN
Lock Holder : BOOLEAN
Response : TMToRouterMsgType

TEXT
Mode := Object.GetLockMode(Param.ObjID)
LockHolder := Objects. Is LOckHolder(Param.ObjID,

Param.Transaction)
IF NOT Lock Holder -->

Descendent :: Object. Is LockedByDescendent(Param.Obj_ID,
Param.Transaction)

0 OTHERWISE -- > SKIP
FI
Response.val.Param :: Param

4-21

IF Mode = Unlock -->
Response.val.Msg :: Abort
TMTo Router.Send(Response)

0 OTHERWISE --> [The object is lock }
IF (NOT Lock Holder) AND (NOT Descendent) -- >

Response.val.Msg := Abort
TM ToRouter.Send(Response)

OTHERWISE -- > f The object is lock either by the
client or one of its children.}

IF Mode = Read -->

Objects.Release Lock(Param.Obj ID, Param.Transaction)
[Return the lock to its parent.}
Objects.ForceHeader(Param.Obj_ID)
Response.val.Msg := ACK
TM ToRouter.Send(Response)

Mode = Update -->
Objects.DeleteVersion(Param.Obj_ID, Param.Children, -1)
Objects.DeleteVersion(Param.ObjID, Param.Transaction,

Param.TimeStamp)
Objects.ReleaseLock(Param.ObjID, Param.Transaction)
[Return to the parent.}
Objects.ForceHeader(Param.Obj_ID)

FI
FI

FI

END RollbackProc

4.2.3.8 PROCEDURE Abort Proc

PROCEDURE AbortProc (Param : Abort ParamType)

BEHAVIOR
[This procedure is executed whenever an Abort message
is received from PM .
In the following table all the possible conditions
and the actions needed to be taken are listed .1

CONDITIONS ACTIONS

1)Object is unlocked Send an ACK message
2)Object is locked by T in

Read mode &
ObjectStatus:Comumitted Unlock the object &

give it to its parent
Force the object header
Send an ACK message

3)Object is locked by T in

4-22

TYPE MANAGER DESIGN

Update mode &
a)ObjectStatus:Committed Send an ACK message

b)ObjectStatus:Uncommitted/ IF Rulel then Send an NACK message
Commit Pending OTHERWISE:

Delete all the versions
created by this transaction
and its children
Unlock the object & give it
to its parent
Force object header
Send an ACK message

4)Object is locked by some other Send an ACK message
transaction except T

Rulel: If there exist a version of the given object in
commit Pending state, created after the object
was modified by either the client transaction or
any of the transactions in its attached list,
and the creator of the version is not among those.

* conditions which are not listed in the above table
are those which should never arise in a reliable system.

VARIABLES
Lock Holder : BOOLEAN
Mode : Object ModeType
Status : ObjectStatus
Response : TMToRouter_Msg_Type

TEXT Mode := Objects.Get Object Mode(Param.ObjID)

Lock-Holder :: objects.Is LockHolder(Param.Obj_ID,
Param.Transaction)

Status := Objects.ObjStatus(Param.ObjID)
Response.val.Msg := ACK
Response.val.Param :: Param

IF (Mode = Unlock) OR (NOT LockHolder) -- >

TMToRouter.Send (Response)

0 OTHERWISE --> [object is locked by T)
IF Mode:Read -->

IF Status = Committed -- >
Objects.ReleaseLock(Param.Obj_ID, Param.Transaction)
Objects.Force Header(Param.ObjID)
TM To Router.Send(Response)

0 OTHERWISE --> SKIP
[This condition must never arise.}

F1
OTHERWISE --> [Object is locked in Update model

4-23

IF ((Status Uncommitted) OR
(Status Commit_Pending)) -- >

IF (NOT Objects.CheckDependency(Param.Obj_ID,
Param.Children)) --

Objects.DeleteVersion(Param.ObjID,Param.Transaction)
Objects.DeleteVersion(Param.ObjID,Param.Children)
Objects.ReleaseLock(Param.ObjID,Param.Transaction)
Objects.Change_Status(Param.ObjID,Committed)
Objects.Force Header(Param.ObjID)
TM ToRouter.Send(Response)

I OTHERWISE --> {Because of dependency the abort
request should be refused.1

Response.val.Msg := NACK
TM To Router.Send(Response)

FI

0 OTHERWISE -- > f Status = Committed}
TMToRouter.Send(Response)

FI

END Abort Proc

4.2.3.9 PROCEDURE GenerateComplete TCL

PROCEDURE G=terate.Complete.TCL(TCL : TransactionContextList,
LM : Lock Mode Type,
Converted : BOOLEAN)

RETURNS CompleteTCL

BEHAVIOR
[This procedure receives a transaction context list
,the lock mode in which the object is to be locked
and a boolean variable which indicates whether the
lock was converted from an update lock of its ancestor
or not, and returns a complete TCL which contains all
these information.}

END Generate CompleteTCL

4.2.3.10 PROCEDURE QueueReaquest

PROCEDURE QueueRequest(Params : InvokeParam Type)

VARIABLES
OK : BOOLEAN

4-24

TYPE MANAGER DESIGN

TEXT
[queue the request if' it is olderl
OK:=DeadlockPrevAig (Params.Object_ID,

Params.clientTCL)
IF OK -- fengueue the request}

IF Objects.Is-Wait ing(Param.ObjID) -- > SKIP

fOTHERWISE -- >
Objects.ChangeWaiting(Param.Obj_ID)

Fl
queue. Enqueue (Par ams)
0OTHERWISE -- >
Lock Grant: =Abort

FI

END QueueRequest

4.4 REALIZATION DICTIONARY

4.4.1 SYSTEM Type-Manager

SYSTEM TypeManager (T :Type)
PUBLIC

TM ToPM:Small-Mailbox(PMTM Msg,TMPMMsg)
TM-ToRauter:Small Mailbox(Router TMMsg,Tm_Router_Msg)
ServersToPM:List(Small Mailbox (PM To Servers,

Servers ToPM))
ServersToPM PS:List(SmallMailbox(PMServers PS Msg,

ServersPMPSMsg))

BEHAVIOR

[The Type -Manager communicates with PM and Router thru
TM To PM and TM_To_Router interfaces respectively.*
It accepts operation requests through TM To Router
interface and participates in commit protocols with
PMs through TMToRouter.}

OBJECTS

Objects:Set-Of-Objects(T)
Queue:Queue Type
TM To Timer IS Event Rec INLET
Connection ToTimer: Small-Mailbox (Timer_Response,

Timer Command)
LocalTimer:Timer:=(ConnectionToTimer TO

4-25

TimerCommandIrace,
TMh-To Timer TO Interrupt)

Server Process: Process POOL
Server Index:Process INDEX
Req : RequestType

4.14.2 CONTROLLER

CONTROLLER

WHENEVER
Th-To,-Router.Came -

Req: :Th To Router. Get
IF Req.tag =Invoke -- > Invoke Proc(Req.val)
oReq.tag =Ti -
IF Req.val.Op =Prepare ->PrepareProc(Req.val.Param)

0Req.val.Op =Commit ->CommitProc(Req.val.Param)

0Req.val.Op =Completed -- > Completed Proe(Req.val.Param)
0OTHERWISE -- > Error

FI
oReq.tag =Abort -- > AbortProc(Req.val)
oReq.tag =Rollback ->Rollbackyproc(Req.val)

HOTHERWISE -- > Error
FI

0TMToTimer.Came -

Req := TM-To-Timer.Get
IF Req.tag =TimeOut -- TimeOutProc(Req.val)

o OTHERWISE -- > SKIP
FI

END

END TypeManager.

4-26

Chapter 5

SYMBOLIC NAME MANAGER DESIGN

This chapter presents a formal definition of the detailed design of
Symbolic Name Manager written in the Department of Defense' ADA language.

5.1 SNTMInterface Packge Specification

PACKAGE SNTM interface IS

-- Create a brand new context object and return its uid in
-- context id. The rel class is a pre-defined set which
-- determines on which host or hosts copies of the object are
-- to be created.
PROCEDURE create context (rel class: IN reliability_class;

status: OUT ret stat);

-- Delete a context object
PROCEDURE delete context (context id: IN kernel.xtided uid;

status: OUT ret status);

-- Add a name-uid pair to an existing context object
PROCEDURE add name (context id: IN kernel.xtnded uid;

name: IN symb_name;
name id: IN kernel.xtnded uid;
status: OUT ret_stat);

-- Remove a symbolic name from a context object
PROCEDURE remove-name (context id: IN kernel.xtnded uid;

name: IN symbname;
status: OUT ret stat);

-- Find a symbolic name in a context and return its associated
-- uid in name id.
PROCEDURE lookup (context id: IN kernel.xtnded uid;

name: IN symbname;
name id: OUT kernel.xtnded uid;
staEus: OUT ret stat);

5-I

END SNTM interface;

5.2 SNTMInterface Package Body

PACKAGE BODY SNTM interface IS

-- Create a brand new context object and return its uid in
-- context id. The rel class is a pre-defined set which
-- determines on which host or hosts copies of the object are
-- to be created.
PROCEDURE create-context (rel class: IN reliability_class;

status: OUT ret stat) IS
packedparms : bitstring;

BEGIN
-- Pack the IN parameters for the kernel
support.pack.create(rel class, packed parms);
-- Call the kernel to transmit the request
kernel.makecall(packedparms);
-- Call the kernel again to wait for the response
kernel.get_response(packedparms);
-- Now unpack the result parameter(s)
support.unpack.create(packedparms, status);

END create-context;

-- Delete a context object
PROCEDURE delete-context (context id: IN kernel.xtnded uid;

status: OUT retstat) IS
packedparms : bit_string;

BEGIN
-- Pack the IN parameters for the kernel
support.pack.delete(context id, packed_parms);
-- Call the kernel to transmit the request
kernel.make call(packedparms);
-- Call the kernel again to wait for the response
kernel.getresponse(packedparms);
-- Now unpack the result parameter(s)
support.unpack.delete(packedparms, status);

END deletecontext;

-- Add a name-uid pair to an existing context object

5-2

SYMBOLIC NAME MANAGER DESIGN

PROCEDURE add name (context id: IN kernel.xtnded uid;
name: IN symb name;

name id: IN kernel.xtnded uid;
status: OUT ret stat) IS-

packedparms : bitstring;

BEGIN
-- Pack the IN parameters for the kernel
support.pack.add(context id, name, nameid, packedparms);
-- Call the kernel to transmit the request
kernel.make call(packedparms);
-- Call the kernel again to wait for the response
kernel.getresponse(packed_parms);
-- Now unpack the result parameter(s)
support.unpack.add(packedparms, status);

END add-name;

-- Remove a symbolic name from a context object
PROCEDURE remove name (context id: IN kernel.xtnded uid;

name: IN symbname;
status: OUT ret stat) IS

packed_parms : bitstring;

BEGIN
-- Pack the IN parameters for the kernel
support.pack.remove(context id, name, packed_parms);
-- Call the kernel to transmit the request
kernel.make call(packedparms);
-- Call the kernel again to wait for the response
kernel.getresponse(packedparms);
-- Now unpack the result parameter(s)
support.unpack.remove(packed_parms, status);

END remove_name;

-- Find a symbolic name in a context and return its associated
-- uid in name Id.
PROCEDURE lookup (context id: IN kernel.xtnded uid;

name: IN symb name;
name id: OUT kernel.xtnded uid;
status: OUT retstat) IS

packedparms : bit_string;

BEGIN
-- Pack the IN parameters for the kernel

5-3

support.pack.lookup(context id, name, packedparms);
-- Call the kernel to transmit the request
kernel.makecall(packed_parms);
-- Call the kernel again to wait for the response
kernel.getresponse(packed.parms);
-- Now unpack the result parameter(s)
support.unpack.lookup(packed_parms, nameid, status);

END lookup;

END SNTMinterface;

5.3 STNM Specification

PACKAGE SNTM IS

WITH kernel;
WITH TRANMGR;

-- Declare the access pointer types to the operation tasks
TYPE create task IS LIMITED PRIVATE;
TYPE delete task IS LIMITED PRIVATE;
TYPE add task IS LIMITED PRIVATE;
TYPE remove task IS LIMITED PRIVATE;
TYPE lookuptask IS LIMITED PRIVATE;

-- Declare the reliability class type
TYPE reliabilityclass IS PRIVATE;

-- Declare the return status type
TYPE ret stat IS (OK, LOCKED, NOTFOUND, ERROR);

-- Declare a symbolic name type
TYPE symb name IS STRING (1..max name len);

-- Declare the operation type and task number used for
-- identifying the operation tasks
TYPE optype IS (CREATE, DELETE, ADD, REMOVE, LOOKUP);
TYPE op tasknum IS PRIVATE;

5-4

SYMBOLIC NAME MANAGER DESIGN

5.4 Controller Task Specification

-- Declare the type manager controller task. This task accepts
-- all incoming calls and allocates an operation task to
-- perform the actual operation.
TASK controller IS

ENTRY create (rel class: IN reliabilityclass;
context id: IN kernel.xtnded uid;

orig: IN BOOLEAN;
taskid: OUT create_task);

ENTRY delete (context id: IN kernel.xtnded uid;
orig: IN BOOLEAN;

taskid: OUT deletetask);

ENTRY add (context id: IN kernel.xtnded uid;
name: IN symbname;

name id: IN kernel.xtnded uid;
orig: IN BOOLEAN;

taskid: OUT addtask);

ENTRY remove (contextid: IN kernel.xtnded_uid;
name: IN symb name;
orig: IN BOOLEAN;

taskid: OUT remove-task);

ENTRY lookup (context id: IN kernel.xtnded uid;
name: IN symb_name;
orig: IN BOOLEAN;

taskid: OUT lookup_task);

-- This entry is used by the operation tasks to notify the
-- controller that the operation is complete
ENTRY op_done (operation: optype;

op_num: optasknum);

END controller;

PRIVATE -- Private declarations for the SNTA package

SUBTYPE reliability_class IS INTEGER RANGE 1..num rel class;
SUBTYPE op_tasknum IS INTEGER RANGE 1..numtasks;

---------------- OPERATION TASK SPECIFICATIONS---------------
-- Declare task types for each of the operation tasks so the

5-5

-- controller can actually create an array of each from which
-- he will allocate tasks to actually perform the operations

TASK TYPE create cntxt IS
-- This entry is used by the controller to initialize the
-- operation task and to pass it its unique task number
ENTRY init (mynum: IN op_task_num);

-- This entry is called by the controller to startup the
-- operation task and pass it the required parameters
ENTRY start (rel class: IN reliability_class;

context id: IN kernel.xtnded uid;
orig: IN BOOLEAN);

-- This entry is called by the user's interface package to
-- obtain the return values of the operation or the error
-- status if it was unsuccessful
ENTRY done (context id: OUT kernel.xtnded uid;

status: OUT ret stat);
END create cntxt;

TASK TYPE delete cntxt IS
ENTRY init (mynum: IN op_task_num);
ENTRY start (context id: IN kernel.xtndeduid;

orig: IN BOOLEAN);
ENTRY done (status: OUT retstat);

END deletecntxt;

TASK TYPE add name IS
ENTRY init (mynum: IN op_tasknum);
ENTRY start (context id: IN kernel.xtndeduid;

name: IN symbname;
name id: IN kernel.xtnded uid;

orig: IN BOOLEAN);
ENTRY done (status: OUT ret_stat);

END addname;

TASK TYPE remove name IS
ENTRY init (my num: IN op_tasknum);
ENTRY start (context id: IN kernel.xtndeduid;

name: IN symb_name;
orig: IN BOOLEAN);

ENTRY done (status: OUT ret_stat);
END removename;

TASK TYPE lookupname IS
ENTRY init (my num: IN optasknum);
ENTRY start (context id: IN kernel.xtndeduid;

name: IN symb_name;
orig: IN BOOLEAN);

ENTRY done (name id: OUT kernel.xtnded uid;
status: OUT ret stat);

END lookup_name;

5-6

SYMBOLIC NAME MANAGER DESIGN

------------ ACCESS VARIABLES TO OPERATION TASKS-------------
-- Declare access pointers to each of the operation tasks
TYPE create task IS ACCESS create cntxt;
TYPE delete task IS ACCESS delete cntxt;
TYPE add task IS ACCESS addname;
TYPE removetask IS ACCESS remove-name;
TYPE lookup-task IS ACCESS lookup name;

-------------------- REPLICATION DATA RECORD----------------
-- Declare a replication data record which contains all the
-- data necessary to distribute the copies or representatives
-- of a new context object
TYPE repdata IS

RECORD
n: NATURAL; -- Number of votes for this copy
w: NATURAL; -- Write quorum
r: NATURAL; -- Read quorum
v: NATURAL; -- Version (not used in rel. classes)
h: ARRAY (POSITIVE RANGE <>) OF -- Host list

RECORD
id: kernel.xtnded uid; -- Host uid

votes: NATURAL; -- # of votes
END RECORD;

END RECORD;

------------------- CONTEXT OBJECT TYPE DECLARATION----------
-- Define the types of locks on a context object
TYPE locktype IS (READ, WRITE, NONE);
-- Define the internal structure of a context type object
TYPE context IS

RECORD
header: repdata; -- Object's replication data

lock: locktype; -- Type of lock pen-lIng
data: bighashtable; -- Name->UID mappings

END RECORD;

END SNTM; -- End of type manager package specification

5.5 SNTM Package Body

PACKAGE BODY SNTM IS

------- CONTROLLER TASK BODY----------------------
TASK BODY controller IS

5-7

-- Declare the allocation list for each of the operation
-- task types.

create pool: ARRAY (1..num tasks) OF
RECORD

free: BOOLEAN; -- Is this task available?
task: create-task; -- Access pointer to the task

END RECORD;

delete pool: ARRAY (1..numtasks) OF
RECORD

free: BOOLEAN;
task: delete-task;

END RECORD;

addpool: ARRAY (1..numntasks) OF
RECORD

free: BOOLEAN;
task: addtask;

END RECORD;

remove pool: ARRAY (1..numtasks) OF
RECORD

free: BOOLEAN;
task: remove task;

END RECORD;

lookup-pool: ARRAY (1..num tasks) OF
RECORD

free: BOOLEAN;
task: lookup_task;

END RECORD;

-------------- ALLOCATION LIST FUNCTIONS-----------------
-- These functions handle the allocation lists defined above
-- They are used only within the controller and thus are
-- defined within its body and are totally private

FUNCTION get task(op: IN optype) RETURN optask_num IS
BEGIN

-- Find a free task for the given operation
-- Mark its allocation list to show it is now busy
-- Return the number of the task used

END get task;

PROCEDURE free task(op: IN op_type;
nun: IN op task num) IS

BEGIN
-- Mark the task numbered num in the given allocation
-- list as being free again

END free-task;

5-8

SYMBOLIC NAME MANAGER DESIGN

BEGIN -- Controller body code
-- Create the new operation tasks and initialize the
-- allocation lists with their access pointers. Then
-- mark the appropriate entry in the list to show the
-- new task is free and call its initialization entry
FOR i IN 1..num tasks LOOP

createpool(i).task NEW create_cntxt; -- Create task
create_pool(i).free := TRUE; -- Show it is free
createpool(i).task.init(i); -- Its number i i
delete_pool(i).task NEW delete_cntxt;
delete_pool(i).free :: TRUE;
delete_pool(i).task.init(i);
addpool(i).task NEW addname;
addpool(i).free TRUE;
add_pool(i).task.init(i);
removepool(i).task :: NEW remove_name;
remove_pool(i).free := TRUE;
removeypool(i).task.init(i);
lookup_pool(i).task := NEW lookup_name;
lookuppool(i).free := TRUE;
lookup_pool(i).task.init(i);

END LOOP;

-- Now loop waiting for operation requests and done calls
-- from the completed operation tasks
LOOP SELECT

ACCEPT create (rel class: IN reliabilityclass;
context id: IN kernel.xtnded uid;

orig: IN BOOLEAN;
task id: OUT create task) DO

task id := get_task(CREATE); -_ Allocate a task
task id.start(relclass, orig); -- Start it up

END create;
OR

ACCEPT delete (context id: IN kernel.xtnded uid;
orig: IN BOOLEAN;

task id: OUT delete task) DO
taskid := gettask(DELETE);
task id.start(context id, orig);

END delete;
OR

ACCEPT add (context id: IN kernel.xtndeduid;
name: IN symb name;

name id: IN kernel.xtnded uid;
orig: IN BOOLEAN;

task id: OUT add-task) DO
task id := gettask(ADD);
task id.start(contextid, name, nameid, orig);

END add;
OR

ACCEPT remove (context id: IN kernel.xtndeduid;
name: IN symbname;

5-9

orig: IN BOOLEAN
task id: OUT removetask) DO

task id :: gettask(REMOVE);
task id.start(context_id, name, orig);

END remove;
OR

ACCEPT lookup (contextid: IN kernel.xtnded_uid;
name: IN symb name;
orig: IN BOOLEAN;

task id: OUT lookuptask) DO
task id := gettaskTLOOKUP);
task id.start(context_id, name, orig);

END lookup;
OR

ACCEPT opdone (operation: IN op type;
opnum: IN optask num) DO

free task(operation, opnum); -- Free the task
END op done;

END SELECT;
END LOOP;

END controller; -- End of controller body

--------------------- CREATE CNTXT TASK BODY-----------------
TASK BODY create cntxt IS

my_num: op_task num; -- Our task # in the controller
host: kernel.xtnded uid; -- Storage for host id
new context: kernel.xtndeduld; -- New context UID
status: retstat; -- Operation status

-- The reliability classes in this array are presumed to
-- be pre-defined when the type manager is installed so
-- that a user creating a new context need only select one
-- of the available choices of uonfiguration of copies
-- for the object
rep-class: ARRAY (reliabilityclass) OF repdata;

-- Define a local function to create a context instance
-- on the local host
FUNCTION local-create RETURN ret stat IS
BEGIN

-- Call the kernel to allocate storage for a local
-- copy of a context object instance
-- Return status of OK if successful or ERROR if not

END local create;

-- Define a local function to send a create request to a
-- remote host and get his response

5-10

SYMBOLIC NAME MANAGER DESIGN

FUNCTION remotecreate(which host: IN kernel.xtnded uid)
RETURN ret_stat;

BEGIN
-- Call a support package to pack the new context UID
-- and the other parameters
-- Call the kernel to send the call to the host ident-
-- ified in the which host parameter
-- Wait for the response from the remote host
-- Return the status received from the remote call

END remote-create;

END remote-create;

BEGIN -- Create operation task body
-- Accept the initialization call from the controller
-- and remember our task number in my_num
ACCEPT init (my_num: IN optasknum) DO
END init;

LOOP -- One operation at a time forever
-- Accept the startup call from the controller and get
-- the input parameters for the call
ACCEPT start (rel class: IN reliabilityclass;

context id: IN kernel.xtndeduid;
orig: IN BOOLEAN) DO

END Start; -- Release the controller from the rendevouz

-- If this is the original call, we must act as
-- collector for the replication algorithm
IF orig THEN

-- Get a fresh UID from the kernel for this context
kernel.getuid(context, newcontext);

-- Start a transaction so we can be sure that ALL of
-- the copies get created or NONE of them do
TRANMGR.begintransaction;

-- Loop through the host list of the given reliability
-- class and do a remote call to each of those hosts
host := support.nexthost(rep_class(relclass));
LOOP

IF host = myhost THEN -- If our host is on list
status := localcreate; -- Create a local copy

ELSE -- For each remote host
status := remote create(host); -- Send it out

END IF;
host := support.next host(rel class); -- Next host

-- Exit loop when list is exhausted or the local
-- or a remote invocation fails for some reason

5-11

EXIT WHEN (host = NULL UID) OR (status /= OK);
END LOOP;

-- The create operation is a special one because it
-- requires that ALL the requested copies be success-
-- fully created (not just a write quorum). Therefore
-- the transaction is aborted if any of the subordi-
-- nates failed.
IF status /= OK THEN TRANMGR.Aborttransaction;

-- End the transaction (either commit or abort)
TRANMGR.end transaction;

ELSE -- If this is a subordinate call, just do it
new context :: contextid;
status := localcreate;

END IF;

-- Accept the done call from the user task and give
-- him the output parameters he wants
ACCEPT done (new-context: OUT kernel.xtnded uid;

status: OUT ret status) DO
END done; -- Release the user from the rendevouz

-- Notify the controller that we are finished so he
-- can put us back on his free list of available tasks
controller.op_done(CREATE, mynum);

END LOOP;

END createcntxt; -- End create operation task body

--------------------- DELETE CNTXT TASK BODY-----------------
TASK BODY delete cntxt IS

mynum: optasknum; -- Our task # in the controller
status: ret stat; -- Operation status
tally: NATURAL; -- Vote accumulator
host: kernel.xtnded uid;-- Storage for host ids
loc copy: context; -- Local storage for our context
ret header: rep data; -- Headers returned from remotes

-- Define a local function to delete a context
-- on the local host
FUNCTION local delete RETURN ret stat IS
BEGIN

-- Copy the local context's header into ret header
-- Call the kernel to return the object's storage
-- Return status of ERROR if the kernel balks

5-12

SYMBOLIC NAME MANAGER DESIGN

-- Else return OK
END local delete;

-- Define a local function to send a delete request to
-- a remote host and get his response
FUNCTION remote delete(context id: IN kernel.xtnded_uid;

orig: IN BOOLEAN;
which host: IN kernel.xtnded uid) IS

BEGIN
-- Call the support package to pack the context id and
-- other parameters
-- Call the kernel to send the request to the host
-- identified in the which host parameter
-- Wait for the response from the remote host
-- Unpack the return data and put into ret header
-- Return the status received from the remote call

END remote-delete;

BEGIN -- Delete operation task body
-- Accept the initialization call from the controller
-- and remember our task number in mynum
ACCEPT init (my_num: IN op_task_num) DO
END init;

LOOP -- One operation at a time forever
-- Accept the startup pall from the controller and get
-- the input parameters for the call
ACCEPT start (context id: IN kernel.xtnded uid;

orig: IN BOOLEAN) DO
END start;

-- If this is the original call, we must act as
-- collector for the replication algorithm
IF orig THEN

-- Start a transaction so we can be sure that a
-- write quorum of the object copies get deleted
TRANMGR.begin transaction;

-- Get the local copy into our memory space
support.getobject(contextid, loc_copy);

-- Perform the operation on each copy and tally the
-- votes returned in the headers
tally := 0;
LOOP

-- Get the next host from the list in the
-- local copy's header. Exit when no more hosts
host := support.next host(loc copy.header);
EXIT WHEN host = NULLUID;

5-13

-- Perform a local or remote delete depending
-- upon the next host id
IF host = my host THEN

status local delete;
ELSE

status :=
remote-delete(context_id, FALSE, host);

END IF;

-- If the operation was successful, the votes
-- for this copy are counted ONLY if it has the
-- the most recent version number
IF status = OK THEN

IF ret header.v = loccopy.header.v THEN
tally := tally + ret header.n;

ELSEIF ret header.v > loc copy.header.v THEN
foc copy.header.v := ret header.v;
tally := ret header.n;

END IF;
END IF;

END LOOP;

-- If the total number of votes accumulated from
-- up-to-date copies is not at least equal to the
-- write quorum for the object, abort the xaction
IF tally < loccopy.header.w THEN

TRANMGR.abort transaction;
status :: ERROR;

ELSE
status :: OK;

END IF;

-- End the transaction and either abort or commit
TRANMGR.end-transaction;

END IF;

-- If this is a subordinate call, just do it
ELSE

status :: local-delete;

END IF;

-- Accept the done call from the user task and give
-- him the output parameters he wants
ACCEPT done (status: OUT ret status) DO
END done;

-- Notify the controller that we are finished
controller.opdone(DELETE, my num);

5-14

SYMBOLIC NAME MANAGER DESIGN

END LOOP;

END deletecntxt; -- End delete operation task body

--------------------- ADDNAME TASK BODY--------------------
TASK BODY add-name IS

my_num: op tasknum; -- Our task # in the controller
status: ret stat; -- Operation status
tally: NATURAL; -- Vote accumulator
host: kernel.xtnded uid;-- Storage for host ids
loc_copy: context; -- Local storage for our context
ret header: repdata; -- Headers returned from remotes

-- Define a local function to add a name/uid pair to
-- a context on the local host
FUNCTION local add RETURN ret stat IS
BEGIN

-- Copy the local context's header into ret header
-- Call the hash package to add the name/uid pair
-- to the context
-- Return status of ERROR if the name is already in the
-- context or if the hash package returns error
-- Else return OK

END local-add;

-- Define a local function to send a add request to
-- a remote host and get his response
FUNCTION remote add(context id: IN kernel.xtnded uid;

name: IN symbname;
name id: IN kernel.xtnded uid;

orig: IN BOOLEAN;
which-host: IN kernel.xtnded uid) IS

BEGIN
-- Call the support package to pack the context id and
-- other parameters
-- Call the kernel to send the request to the host
-- identified in the which host parameter
-- Wait for the response from the remote host
-- Unpack the return data and put into ret header
-- Return the status received from the remote call

END remote-add;

BEGIN -- Add operation task body
-- Accept the initialization call from the controller
-- and remember our task number in my num
ACCEPT init (my_num: IN op_task_num) DO
END init;

5-15

LOOP -- One operation at a time forever
-- Accept the startup call from the controller and get
-- the input parameters for the call
ACCEPT start (context id: IN kernel.xtnded uid;

name: IN symbname;
name id: IN kernel.xtnded uid;

orig: IN BOOLEAN) DO
END start;

-- If this is the original call, we must act as
-- collector for the replication algorithm
IF orig THEN

-- Start a transaction so we can be sure that a
-- write quorum of the object copies get updated
TRANMGR.begin_transaction;

-- Get the local copy into our memory space
support.get_object(context_id, loc_copy);

-- Perform the operation on each copy and tally the
-- votes returned in the headers
tally := 0;
LOOP

-- Get the next host from the list in the
-- local copy's header. Exit when no more hosts
host := support.next host(loc-copy.header);
EXIT WHEN host = NULLUID;

-- Perform a local or remote add depending
-- upon the next host id
IF host = my host THEN

status := local-add;
ELSE

status
remoteadd(context_id,

name,
nameid,

FALSE,
host);

END IF;

-- If the operation was successful, the votes
-- for this copy are counted ONLY if it has the
-- the most recent version number
IF status = OK THEN

IF ret header.v = loccopy.header.v THEN
tally := tally + ret header.n;

ELSEIF ret header.v > loc_copy.header.v THEN
loc_copy.header.v := ret header.v;
tally := ret header.n;

END IF;
END IF;

5-16

SYMBOLIC NAME MANAGER DESIGN

END LOOP;

-- If the total number of votes accumulated from
-- up-to-date copies is not at least equal to the
-- write quorum for the object, abort the xaction

IF tally < loccopy.header.w THEN
TRANMGR.abort transaction;
status ERROR;

ELSE
status :: OK;

END IF;

-- End the transaction and either abort or commit
TRANMGR.end transaction;

END IF;

-- If this is a subordinate call, just do it
ELSE

status := local-add;

END IF;

-- Accept the done call from the user task and give
-- him the output parameters he wants
ACCEPT done (status: OUT ret status) DO
END done;

-- Notify the controller that we are finished
controller.opdone(ADD, my num);

END LOOP;

END add name; -- End add operation task body

--------------------- REMOVENAME TASK BODY-----------------
TASK BODY remove name IS

mynum: optasknum; -- Our task # in the controller

status: retstat; -- Operation status
tally: NATURAL; -- Vote accumulator
host: kernel.xtnded uid;-- Storage for host ids
loc copy: context; -- Local storage for our context

ret header: rep data; -- Headers returned from remotes

-- Define a local function to remove a name/uid pair

-- from a context on the local host
FUNCTION local remove RETURN ret stat IS

5-17

BEGIN
-- Copy the local context's header into ret header
-- Call the hash package to remove the pair from
-- the context
-- Return status of ERROR if the name is not found
-- Else return OK

END local remove;

-- Define a local function to send a remove request to
-- a remote host and get his response
FUNCTION remotedelete(cotrtextid: IN kernel.xtnded uid;

name: IN symb_name;
orig: IN BOOLEAN;

which-host: IN kernel.xtnded uid) IS
BEGIN

-- Call the support package to pack the contextid and
-- other parameters
-- Call the kernel to send the request to the host
-- identified in the which host parameter
-- Wait for the response from the remote host
-- Unpack the return data and put into ret header
-- Return the status received from the remote call

END remoteremove;

BEGIN -- Remove operation task body
-- Accept the initialization call from the controller
-- and remember our task number in mynum
ACCEPT init (my_num: IN op_task_num) DO
END init;

LOOP -- One operation at a time forever
-- Accept the startup call from the controller and get
-- the input parameters for the call
ACCEPT start (context id: IN kernel.xtndeduid;

name: IN symb_name;
orig: IN BOOLEAN) DO

END start;

-- If this is the original call, we must act as
-- collector for the replication algorithm
IF orig THEN

-- Start a transaction so we can be sure that a
-- write quorum of the object copies get updated
TRANMGR.begintransaction;

-- Get the local copy into our memory space
support.getobject(context_id, loc_copy);

-- Perform the operation on each copy and tally the
-- votes returned in the headers
tally := 0;

5-18

SYMBOLIC NAME MANAGER DESIGN

LOOP
-- Get the next host from the list in the
-- local copy's header. Exit when no more hosts
host := support.next host(loccopy.header);
EXIT WHEN host = NULL_UID;

-- Perform a local or remote remove depending
-- upon the next host id
IF host = myhost THEN

status localremove;
ELSE

status
remoteremove(context_id,

name,
FALSE,
host);

END IF;

-- If the operation was successful, the votes
-- for this copy are counted ONLY if it has the
-- the most recent version number
IF status = OK THEN

IF ret header.v = ioc_copy.header.v THEN
tally := tally + ret header.n;

ELSEIF retheader.v > loc_copy.header.v THEN
loc copy.header.v := ret header.v;
tally := retheader.n;

END IF;
END IF;

END LOOP;

-- If the total number of votes accumulated from
-- up-to-date copies is not at least equal to the
-- write quorum for the object, abort the xaction
IF tally < loccopy.header.w THEN

TRANMGR.aborttransaction;
status ERROR;

ELSE
status OK;

END IF;

-- End the transaction and either abort or commit
TRANMGR.end transaction;

END IF;

-- If this is a subordinate call, just do it
ELSE

status := local-remove;

END IF;

5-19

-- Accept the done call from the user task and give
-- him the output parameters he wants
ACCEPT done (status: OUT ret stat) DO
END done;

-- Notify the controller that we are finished
controller.opdone(REMOVE, mynum);

END LOOP;

END removename; -- End remove operation task body

--------------------- LOOKUPNAME TASK BODY------------------
TASK BODY lookup name IS

mynum: optasknum; -- Our task # in the controller
status: ret stat; -- Operation status
tally: NATURAL; -- Vote accumulator
host: kernel.xtnded uid;-- Storage for host ids
c -copy: context; -- Local storage for our context

retheader: repdata; -- Headers returned from remotes
nameuid: kernel.xtndeduid; -- UID associated with name
retuid: kernel.xtnded uid; -- UID returned by remotes

-- Define a local function to lookup a name/uid pair
-- in a context on the local host
FUNCTION local_lookup RETURN retstat IS
BEGIN

-- Copy the local context's header into ret header
-- Call the hash package to find the name in context
-- Put the associated UID in ret uid
-- Return status of ERROR if name was not found
-- Else return OK

END local lookup;

-- Define a local function to send a lookup request to
-- a remote host and get his response
FUNCTION remotelookup(context id: IN kernel.xtndeduid;

name: IN symbname;
orig: IN BOOLEAN;

whichhost: IN kernel.xtndeduid) 'S
BEGIN

-- Call the support package to pack the contextid and
-- other parameters
-- Call the kernel to send the request to the host
-- identified in the which host parameter
-- Wait for the response from the remote host
-- Unpack the return header and put into retheader
-- Put the returned UID in ret uid

5-20

SYMBOLIC NAME MANAGER DESIGN

-- Return the status received from the remote call
END remotelookup;

BEGIN -- Lookup operation task body
-- Accept the initialization call from the controller
-- and remember our task number in mynum
ACCEPT init (mynum: IN op_tasknum) DO
END init;

LOOP -- One operation at a time forever
-- Accept the startup call from the controller and get
-- the input parameters for the call
ACCEPT start (context id: IN kernel.xtnded uid;

name: IN symbname;
orig: IN BOOLEAN) DO

END start;

-- If this is the original call, we must act as
-- collector for the replication algorithm
IF orig THEN

-- Start a transaction so we can be sure that a
-- read quorum of the object copies get examined
TRANMGR.begintransaction;

-- Get the local copy into our memory space
support.getobject(context_id, loc_copy);

-- Perform the operation on each copy and tally the
-- votes returned in the headers
tally := 0;
LOOP

-- Get the next host from the list in the
-- local copy's header. Exit when no more hosts
host := support.nexthost(loccopy.header);
EXIT WHFN host = NULLUID;

-- Perform a local or remote lookup depending
-- upon the next host id
IF host = my host THEN

status :: local-lookup;
ELSE

status
remote lookup(context_id,

name,
FALSE,
host);

END IF;

-- If the operation was successful, the votes
-- for this copy are counted

5-21

-- The returned UID of the copy with the highest
-- version number is retained
IF status : OK THEN

tally :: tally + ret header.n;
IF ret header.v >= loc_copy.header.v THEN

loc copy.header.v := ret header.v;
name uid :: ret uid;

END IF;
END IF;

END LOOP;

-- If the total number of votes accumulated from
-- up-to-date copies is not at least equal to the
-- read quorum for the object, abort the xaction
IF tally < loc_copy.header.r THEN

TRANMGR.abort transaction;
status.:" ERROR;

ELSE
status :: OK;

END IF;

-- End the transaction and either abort or commit

TRANMCR. end transaction;

END IF;

-- If this is a subordinate call, just do it
ELSE

status := local-lookup;

END IF;

-- Accept the done call from the user task and give
-- him the output parameters he wants
ACCEPT done (name uid: OUT kernel.xtndeduid;

status: OUT ret stat) DO
END done;

-- Notify the controller that we are finished

controller.opdone(LOOKUP, my_num);

END LOOP;

END lookupname; -- End lookup operation task body

-------------------- CALL HANDLER BODY--------------------
TASK BODY rem call IS

5-22

SYMBOLIC NAME MANAGER DESIGN

TASK TYPE wait create IS -- Example wait task definition
ENTRY init my_num);
ENTRY start (...);

END wait_task;

TASK BODY wait create IS
BEGIN

ACCEPT init(my_num) DO -- Remember our task number
END init;

LOOP
ACCEPT start (...) DO -- Fire up and get parameters
END start;

-- Call controller to do the operation
controller.create cntxt(..., create task);

-- Wait for the create task to complete
create task.done(...);

-- Call the kernel to send the response over the RPC

-- Call remote call handler to tell him we're done

END LOOP;

END waitcreate;

-- Define arrays of wait tasks

BEGIN -- Remote call handler body

LOOP
-- Call the kernel to get a remote call

-- Schedule a wait task and call its start entry
passing the parameters from the RPC

-- Return the wait task to the queue when its finished

END LOOP;

END rem-call; -- End of remote call handler body

END SNTM; -- End of type manager package body

5-23

Chapter 6

MESSAGE TYPE MANAGER DESIGN

6.1 INTRODUCTION

The Message Type Manager (MTM) is replicated on hosts in the network
wherever inter-process communication by messages is desired. The instances of
the MTM are identical. The composition of a MTM and its interface to the user
is shown in Figure 6-1. User operation requests are made to the controller of
the MTM which takes the appropriate action. A task to perform the requested
operation is scheduled by the MTM Controller from a pool of SEND, RECEIVE and
MSG STATUS tasks. (In the suusequent text, all capitalized words will refer
to tasks of the MTM).

In sending a message, SEND calls the creation operation of MESSAGE
OBJECT, which returns a message object, routes copies of the message object to
remote hosts (as determined by the reliability class), and sends notices of
availability to the intended receivers. A notice becomes an entry in the
message queue for a receiver process. If the call is asynchronous, the
message identifier is then returned to the sender. If the call is
synchronous, SEND terminates but the sender remains blocked until SUPPORTER
determines that some event has occurred and causes the sender to proceed (i.e.
after a timeout or after all acknowledgements of copies sent are returned).
When a sender is to be unblocked, the SUPPORTER schedules a WAKER task to
bundle and route the appropriate response to the sender.

RECEIVE determines from PROCESS MESSAGE QUEUE (PMQ) whether or not a
message is available that meets the specifications of the receiver. The PMQ
manages all message queues for the processes of that host. It maintains the
queues in stable storage. If there is a message available, it is returned to
the receiver and RECEIVE terminates. If there is no message available and the
call is asynchronous RECEIVE terminates and the receive continues without
having received a message. In a synchronous call the sender remains blocked
while SEND terminates and SUPPORTER performs the detection of the event to
resume the receiver (either a timeout or an appropriate message arriving for
the receiver). A WAKER task bundles a response and routes it to a waiting
receiver.

The MSG STATUS task returns the status of a message that is retrieved
from a local copy of the message (if there is one), otherwise the status is
returned from a remote copy.

One facet of the MTM not depicted in Figure 6-1 concerns the routine
acknowledgement of events between MTMs regarding the routing of message
copies. This is MTM Controller to MTM Controller communication via Kernel
remote calls and responses. Some of the communications cause inter'actions
with SUPPORTER (i.e. such an acknowledgement for a message copy sent to a

6-1

remote host). Another interaction occurs when the PMQ is notified by its
MTM Controller of incoming notices of message availability for receivers on
that host. When a copy of a message is required on a host where no such copy
exists a request is made to a remote host that has a copy which causes a
message copy to be routed to the requesting host. Such interactions occur
between MTM Controllers and are necessary for the smooth functioning of the
operations of the MTM.

6.2 CONSISTENCY AND RELIABILITY MECHANISMS FOR MESSAGES

Messages provide reliable inter-process communication in either a
synchronous or an asynchronous fashion within the ZEUS Operating System. To
increase both the reliability and the accessibility of a message object, the
message object may be a multiple copy object with copies existing on different
hosts (preferably on hosts where it will be received). Since the message is
basically an immutable object, there is no "primary" copy - any copy of the
object may be received by an authorized process (one on the message receive
list). A reliable underlying communication system is assumed.

It is desirable that the state of a message object remain consistent for
as much of the time as is possible. This is because the state of the entire
network is reflected in the messages that exist in the system at any given
moment. The consistency of a message object is reflected in how it appears to
the intended receivers of the message. At the highest degree of consistency,
the state of the object appears the same at any instant. The state of the
object (i.e., each of its copies) is either available for receipt to all
intended receivers or not available for receipt. It is impossible to-achieve
this highest level of consistency since the simultaneous message creation and
availability to all intended receivers in the network is not possible. The
next best thing is to make as small as possible the period in which the state
of the message object is inconsistent, and to have the means to render a
message object consistent from an inconsistent state due to failure.

Message object consistency is maintained in an error free environment by
protocols or conventions that are obeyed by each MTM with regard to the
maintenance of multiple copy message objects. These conventions will be
discussed in the context of the message operations. In an environment in
which a failure has occurred, such as the crash of a host, efforts on behalf
of alive hosts can render an inconsistent message object consistent.

This chapter discusses (1) how message object consistency is ensured by
the message operations of an MTM in an error free environment and (2) how
consistency is maintained in the event of host failure(s).

Looking at each operation in turn, the send operation invoked by a
process causes a message object to be created and one or more copies of the
object are distributed on hosts in the network. A copy consists of a count of
the number of copies and the receiver list for the message. Obviously, the
more copies that are made of a message, the more reliable the message since
more copies increase the likelihood that it will be available if a failure
occurs. The least reliable is a one copy message since a host failure of the
copy host results in the unavailability of the message until the host rejoins

6-2

MESSAGE TYPE MANAGER DESIGN

the network (which is not a problem if all intended receivers also exist on
that host).

The message copies may be maintained on either volatile or non-volatile
storage, the determination of which is made depending on the reliability class
of the message object. The four reliability classes for an object as defined
in Chapter 2 of Volume 1 of the guidebook are (1) volatile, (2) non-volatile,
(3) resilient and (4) stable. Resilient objects require recovery mechanisms
and are described below. Message creation can include "object reliability
class" as a parameter. The characteristics of the message objects relative to
the four classes is discussed.

Volatile objects are guaranteed to be consistent only in the absence of
failures. In the context of message objects, this is analogous c
single-copied message objects that are stored on volatile storage. The
failure of the host will render the object inconsistent - in fact, it will nc
longer exist. These objects have the "non-guaranteed delivery" property.

A non-volatile object is one that has multiple volatile copies or a
single non-volatile copy of the message object. If the object was consistent
before a failure then it is guaranteed to be consistent after that failure.
No recovery actions are taken for non-volatile objects.

Resilient objects have recovery operations performed to change any object
rendered inconsistent due to failure to a consistent state after recovery.
The object is returned to the most previous consistent state which for
messages means the message object will be backed out when the object state is
inconsistent due to a failure during the send operation. In this case, the
send operation is considered to be incomplete. The send operation is the only
inconsistent state producing message operation.

Stable message objects continue to be "accessible and consistent even
while the failure is being repaired." This is supported by requiring that one
copy of the message be put on every host so that a copy of the message is
always available even in the event of failures that result in the availability
of only one host in the network. Consistency of stable objects is maintained
in the same fashion as for resilient objects.

The send operation causes a message object to be created and one or more
copies of the object to be distributed across the network. The number of
copies to be distributed is determined by a parameter at the message interface
level between the calling process and the MTM. The message queue of each
intended receiver is updated to include the message id of the available
message and the message copies are distributed to various hosts depending on
the reliability class of the message object.

It is possible for the state of a message object to be rendered
inconsistent when the send operation is not completed due to failure. In this
case, the send operation is incomplete. The inconsistent state might be that
not all copies of the message are distributed, or that only some but not all
of the process message queues have been updated to reflect the availability of

6-3

the message. Some recovery action must be taken by the alive hosts to make
such a message state is consistent, or to back out the message.

Given the types of inconsistencies that can occur due to the interruption
of a send operation, the failure and recovery process will be viewed in light
of (1) error detection, (2) damage retention, (3) error recovery, and (4)
error correction. In its simplest form, error detection occurs when some
kernel detects a host failure and broadcasts this information to the network.

When a failure occurs, these are the possible states characterizing a
message being sent:

o The message queues of the receiver processes reflect the message id and
all copies of the message have been distributed.

This is a consistent state. No recovery action is necessary.

o Not all message queues of the receiver processes reflect the message id
of the last message sent: This is an inconsistent state and the message
will be backed out, i.e. the message queues with the message id will
have that message id removed.

o The message id of the last message sent is in the message queue of each
available process, and one or more copies of the message are distributed.

Any remaining copies to be distributed will not be distributed. But as
long as one copy is available it can be received by any receiver.

o If there is no copy available because the only copy is on the downed
host, then the message is unavailable to any receivers on the remaining
hosts.

No recovery action can be taken and the message cannot be received
because no copy is available. It cannot be backed out because it is
possible that the message has been received on the downed host.

Each message operation is performed as a transaction. Because of this,
the operation either executes to completion or is backed out by the
Transaction Manager so that no inconsistent state is produced.

The receive operation is most sensitive at the point of receipt since it
is desirable that te recipt of he message be made apparent on the message copy
which is received at the moment it is received. When the receive process has
received the message and returned it to the process invoking the receive, the
message copy that was received is updated to reflect the receipt of the
message.

The message status operation is a read only operation and does not
require any type of recovery operation since it never causes an inconsistency
in a message object.

6-4

MESSAGE TYPE MANAGER DESIGN

6.3 HIGH-LEVEL DESCRIPTION OF MTM MODULES

The Zeus Operating System is being designed with the purpose of using and
analyzing reliability and recovery mechanisms for distributed systems as the
basis for the preparation of a guidebook oriented towards the designer's of
reliable distributed systems. As an object-oriented system, Zeus allows the
specification of reliability on an object by object basis, so that some
objects may have a high reliability and others a lower reliability by option.
The Message Type Manager (MTM) manages objects of type message and is
responsible for performing the operations send, receive, and messagestatus
for a message object. Messages are a means of communicating between
processes. For a particular message object, the MTM ensures that its
reliability class is maintained according to the specifications of its
creator.

The MTM is a replicated object because there are multiple MTMs existing
in the network with at most one MTM on any given host. There may be fewer
MTMs than there are hosts in the sys- tem, in which case it is proposed that a
"stub" MTM exists on any host that does not have a MTM. A stub MTM would
route the message operation invocations from the processes on that host to
other MTMs to perform the operations, and to transfer the results of the
operation to the process that invoked the operation. Currently, only a MTM is
designed. A stub MTM would be a subset of the MTM. The complete MTM is
discussed in this chapter.

As seen by a user process, the operations on a message object are send,
receive, and get the message status. The send operation causes a message to
be created and sent to another process. Like other objects in the Zeus
system, a message object is given a unique identifier when it is created. The
receive operation is the means by which a process reads a message which it has
been sent. It can only read a message once. The msg_status operation returns
the status of a particular message, which may be received, not received,
unavailable, or non- existent.

The components of message management are depicted in Figure 6-1. The
user process shown at top contains a MTM interface for operation invocation
and for the receipt of the results. The large box below the user encloses the
components of the Message Type Manager. Invocations are made from the
MTM Interface to the MTM Controller which hands off the request to one of the
send, receive, or the -msg_status processes. When the operation is being
performed, the services of the ProcessMessageQueue and the MessageObject,
respectively, provide information about the messages outstanding for a process
and also the location and characteristics of a message object. When the
operation is completed a result is returned to the MTM Interface.

Functionally, the synchronous and asynchronous send and receive message
operations are quite similar. A synchronous send means "send and wait until
received" and a receive means "wait until there is a message to be received."
An asynchronous call has neither of these waits. The Supporter and Waker
processes are key in the achievement of synchronicity. The Supporter is
notified of events and determines when synchronization has occurred or,
alternatively, a timeout. A Waker task returns a result to a waiting process.

6-5

The three directed arrows in Figure 6-1 between the MTM Interface and the
Message Type Manager are expanded in Figure 6-2 into a series of routines and
pathways that express at a greater level of detail the interface between the
user and the MTM. In this chapter, each of these components is described
beginning with the user interface routines and the task of the MTMInterface
shown in Figure 6-2 and followed by the components of the Message Type Manager
shown in Figure 6-1.

When a user invokes a message operation, a procedure call is made to one
of the send, receive, or msgstatus procedures within the MTM Interface.
Figure 6-2 shows these routines. From these procedures an entry call [labeled
(1)] is made to the Message Operations task which is responsible for the
protocol between the MTM Interface and the MTM. From this task, an entry call
at (2) is made to the MTh Controller that causes one of the send, receive, or
msg_status processes of Figure 6-1 to become active. When the operation
completes, a result is sent from one of the send, receive, msg_status, or
waker irocesses to the MessageOperations task where its receipt causes the
user to become unblocked with the results of the operation.

The following sections numbered 6.3.1 through 6.3.4 are (respectively)
the descriptions of the MTM Interface components Send_Msg, ReceiveMsg,
Msg_Status, and Message-Operations.

6.3.1 Send_Msg Procedure

The user interface to perform message manipulations is a procedural one.
Calls are made to routines named sendmsg, receivemsg and msgstatus that are
part of a Message_Interface package within the process space of the user. The
following are the procedural interfaces between the user process and the
Message_Interface routines.

PROCEDURE send msg (msgvars: IN MTM_type.parmlist;
send to list: IN MTMtype.xid list;

option: IN MThtype.waitnowait;
timeout: IN POSITTVE;

reliability class: IN MTM_type.rel classes;
msgid: OUT kernel.xtnded uid;

returnstatus: OUT MTMhtype.msg_opn_return);

Parmlist is a record that describes the variables that compose a
message. Some convention will be made between the compiler(s) of a host
machine and the send msg procedure as to the actual record description of
parm.list.

The send to list is a linked list of the intended receivers of the
message. A broadcast of a message is indicated when the send to list is
composed of a single star, "*".

The process has the option of waiting for acknowledgements that the
message has been sent to every receiver or not waiting for the
acknowledgements. This is specified by "wait" or "no-wait" as the value of
the option.

6-6

MESSAGE TYPE MANAGER DESIGN

If the option is wait, a timeout value must be specified which is the
maximum time that the sender is willing to wait for the acknowledgements.

The reliabilityclass for a message object may be volatile, non-volatile,
resilient, or stable. A volatile message object is one with the least
likelihood of being available if some failure occurs because it is a single
copy object in memory. A stable message object has the greatest likelihood of
being availaole because a copy of the message exists on each host, and is thus
a replicated object. Non volatile and resilient message objects are more
reliable than volatile objects and less reliable than stable objects. The
number of message copies created during a send operation and their storage
medium will be varied during performance analysis to determine what
combinations provide the maximum amount of reliability and efficiency. One
major difference between non volatile and resilient is that non volatile
objects have no recovery operations performed for them upon failure, but
resilient objects do.

The msgid is a unique identifier for tha message that is returned after
the message is sent. This identifier may be used in a msg_status call to
determine the state of the message regarding its receipt.

The return status contains the result of the send operation and may be
completed or timedout. The notcompleted status will at a later time be
expanded into a group of possible error return values according to the fault
that caused the operation to fail.

6.3.2 ReceiveMsg Procedure

The complement to sendmsg operation is the receivemsg operation that a
process invoked to receive a message that is available.

PROCEDURE receive_msg (msg_vars: IN MTM type.parmlist;
receive from list: IN MTMtype.xid list;

waitoption: IN MTM_type.wait no wait;
whichmsg_option: IN receive_option;

timeout: IN POSITIVE;
msgid: OUT kernel.xtnded uid;

sender id: OUT kernel.xtnded-uid;
returnstatus: OUT MTM type.msg_opnreturn);

Msgvars are the variables into which a received message is placed.

The receive from list indicates which process the receiver is willing to
receive from. It may-be a linked list of prccess extended uids, or a star (*)
which indicates a willingness to receive from any process.

The wait option may have the values of either wait or no wait where wait
will cause the receiver to wait a finite amount of time for a message to
arrive, the wait time being indicated by timeout.

6-7

The which_msg_option may be either most recent, oldest, or
first after failure. This gives the receiver flexibility in receiving
messages.

The msgid contains the extended uid of the just received message.

Tho sender id contains the extended uid of the process that sent the
message.

The return status may be completed or timed out.

6.3.3 MsgStatus Procedure

The current status of any particular send message operation may be
determined with the msg_status operation.

PROCEDURE msgstatus (msg_id: IN kernel.xtnded uid;
returnstatuses: OUT MTM_type.msg_opn_return-list);

The msgid is the extended uid of the message for which a status query is
being made.

The return status record is a linked list of process_id/status pairs.
That is, one status is returned for each intended receiver process. The
possible return statuses are received, notreceived, unavailable (i.e., status
not known), and non-existent.

This completes the discussion of the procedural interface to the message
operations.

6.3.4 MessageOperations Task

The three procedures (send msg, receivemsg, and msg_status) make entry
calls: to a Message-Operations task that is the MessageInterface of the
calling process to the Message Type Manager of that host. There is one
Message Operations task for each user process that is part of the
Message-Interface.

The Message Operations task is very simple and accepts one of the entry
calls route send_msg, route receive_msg, or route_msg_status. Once the
entry_call is accepted, the Message Operations task makes an entry call to the
MTM controller that effectively requests that the message operation be
performed. After making the request, the Message Operations task waits to
accept an entry call containing the result.

TASK messageoperations IS

ENTRY routesendmsg (text: IN kernel.message;
processlist: IN MTM_type.xidlist;

reliabilityclass: IN MTMtype.rel classes;
option: IN MTM type.waitnowait;
timeuut: IN POSITIVE;

6-8

MESSAGE TYPE MANAGER DESIGN

msgid: OUT kernel.xtnded uid;

return status: OUT MTM_type.msgopn_return);

ENTRY send-return (msg id: IN kernel.xtnded-uid;
returnstatus: IN MTM_type.msgopnreturn);

ENTRY route receivemsg (process-list: IN MTM_type.xid list;
wait_option: IN MTM_type.wait no-wait;

whichmsgoption: IN MTM_type.receive_option;
timeout: IN POSITIVE;
msgid: OUT kernel.xtnded_uid;

sender id: OUT kernel.xtndeduid;
text: OUT kernel.message;

returnstatus: OUT MTMtype.msg_opn_return);

ENTRY receive-return (msg_id: IN kernel.xtnded uid;
sender id: IN kernel.xtnded uid;

text: IN kernel.message;
returnstatus: IN MTM_type.msg_opn_return);

ENTRY route-msg_status (msg_id: IN kernel.xtnded uid
return status: OUT MTM type.msg opnreturnlist);

ENTRY msg_statusreturn (returnstatuses: IN MTM_type.msg_opnreturn_

list);

END message_operations;

One might ask whether or not it would be simpler and/or more efficient to

make the entry call to the MTM Controller directly from the MessageInterface
procedures and avoid having the MessageOperations task altogether. However,

a call to perform a message operation is a synchronous call such that the

calling process is blocked until some result is returned (the semantics are

the same as for a procedural call). So if the calling process makes an entry

call into the MTM Controller, the MTM Controller would effectively have to
wait for the operation to be completed to keep the calling procedure blocked

and to return a result via the initial entry call. This effectively causes
all message operations for that host to be performed in a sequential fashion
which is not a viable alternative.

Additionally, and perhaps most importantly, the result to an operation
may be returned from either one of the operation tasks (send, receive, or
msg status) or the waker task (which may return the result when an operation
is performed with the wait option). A diagram containing these tasks and the
entry calls they make in MessageOperations is given in Figure 6-3. When the
initial operation invocation is made, it is not known from what task the
result will come, so the interface task performs an ACCEPT for the result
which allows the result to come from any task. An ACCEPT can only be
performed from a task which is a main motivation for making Message Operations
a task, rather than limiting the interface to the three previously described
proce- dures.

6-9

6.3.5 MTM Controller Task

The MTM Controller accepts requests for the message opera- tions to be
performed and also handles MTM intercommunication. The body of the
MTM Controller is a loop in which it accepts entry calls to perform some
action. Figure 6-4 groups the entries by class and associates with each entry
the task scheduled by a rendezvous at that entry. The Message Operations
Class are those entries associated with the invocation of opera- tions. The
Acks Class of entries are acknowledgements of opera- tion completion. Routing
Copies are used in message object movement between hosts. Finally, the
Message Queue Class of entries is related to the management for processes of
the message queue of message object identifiers.

TASK MTM controller IS

ENTRY failure-notice ();

ENTRY send msg (sender: IN kernel.xtndeduid;
text: IN kernel.message;

process-list: IN MTM-type.xidlist;
reliabilityclass: IN MTM type.rel_classes;

option: IN MTM type.waitno wait;
whichrmsgoption: IN MTM type.receiveoption;

timeout: IN POSITIVE;
call uid: IN kernel.uid);

ENTRY receive msg (receiver: IN kernel.xtnded uid;
process_list: IN MTM_type.xid list;

text: IN kernel.message;
waitoption: IN MTMtype.wait no wait;

which_msg_option: IN MTM_type.receiveoption;
timeout: IN POSITIVE;

call uid: IN kernel.uid);

ENTRY msg_status (requestor: IN kernel.xtnded uid;
msgid: IN kernel.xtnded uid;

call uid: IN kernel.uid);

ENTRY get_send_parms (sender: IN kernel.xtndeduid;
text: IN kernel.message;

sender list: IN MTNtype.xid_list;
reliability_class: IN MTMtype.rel classes;

option: IN MTM_type.wait no wait;
timeout: IN POSITIVE;

call uid: IN kernel.uid);

ENTRY getreceive_parms (receiver: IN kernel.xtnded uid;
text: IN kernel.message;

receive list: IN MTM-type.xidlist;
wait_option: IN MTM type.wait_no wait;

which msgoption: IN receiveoption;
timeout: OUT POSITIVE;

call uid: IN kernel.uid);

6-10

MESSAGE TYPE MANAGER DESIGN

ENTRY get_msg_statusparms (requester: IN kernel.xtnded uid;
msgid: IN kernel.xtnded uid;

call uid: IN kernel.uid);

ENTRY messagecopy_for receiver (msgid: IN :-ernel.xtndeduid;
msgobject: IN MTMtype.object);

ENTRY msg_received (msgid: IN kernel.xtnded uid;
receiver: IN kernel.xtnded-uid);

ENTRY requestcopy (msgid: IN kernel.xtnded_uid;
MTMrequestor id: IN kernel.xtnded uid;

call-uid: IN kernel.uid);

ENTRY sendcopy (msg_object: IN MTMtype.object;
storage_medium: IN MTMtype.storagetype;

call uid: IN kernel.uid);

ENTRY sendcopyack (msgid: IN kernel.xtnded uid;
sender: IN kernel.xtnded uid);

ENTRY sendnotice (msg id: IN kernel.xtndeduid;
noticegroup: IN MTM_type.xid list;

call uid: IN kernel.uid); END MTM controller;

The relationship between entries of the MTM Controller and tasks which
call those entries is given in Figure 6-5.

The failure notice is the means by which the MTM Controller is informed
of restart after a failure. Because the operations of the MTM are performed
as transactions, the recovery actions required for operations is managed by
the Transaction Manager. The process message queues of the MTM must be
"recovered" however, so the failurenotice causes the process_messagequeue
task to be appropriately notified.

Operations are invoked by entry calls from MessageOperations (the MTM
interface task to the user) to the MTMController in the form of sendmsg,
receive_msg, and msgstatus. The MTMController schedules the appropriate
process to perform the operation and passes the parameters to the process by
getsendparms, get_receiveparms, or get_msg_statusparms, respectively.

The message_copy_for receiver is the entry by which a message instance is
passed to this host as the result of a request from this host for the message
instance. This is an instance that is sent "on demand", and occurs only when
a message available for receipt is not on the same host as one of its intended
receivers.

The msg_received entry is an acknowledgement that a particular message
instance was received by a receiver on a remote host.

6-11

When a message instance s "demanded", the requestcopy entry is made
which causes a message instance to be routed to :he

"message_copy_for receiver" entry of the demanding host.

A send process may route instances of a message object for storage on
other hosts in the network. A copy is sent to the send-copy entry of a remote
host.

The sendcopy ack is the acknowledgement that a message instance sent by
a SEND process has been stored on the remote host.

One or more process message queues on a host are updated as a result of

send notices from a send process.

The code is designed with efficiency in mind so that message operations
may be scheduled and executed in parallel.

The following sections, 6.3.6 through 6.3.13, are descrip- tions of the
tasks that are the component tasks of Figure 6-1. These tasks are also listed
in the table of Figure 6-6. The tasks RemoteReceiveCall and
RemoteReceiveResponse listed in

Figure 6-6 are the interface tasks to the kernel network interface.

6.3.6 Send Task

A send task begins executing by getting the parameters from the
MTM Controller for that particular instance of the operation. A kernel call
is made to get a unique identifier for the message that is to be created.
Given the reliability class of the message being created, and also the
send to list, a determination is made of the hosts to be sent a copy of the
message, as well as the storage medium for the message. During performance
analysis, the determination of copy_hosts will vary in order to study the
effects of message copy distribution and availability.

The message object is created, and a notice of message availability is
sent to each MTM, so that the appropriate process message queues may be
updated to reflect the message availability. Following this is the sending of
the message copy to the "copy_hosts" previously mentioned. At this point, if
the option on the call is nowait, a return status is routed to the sender by
an entry call into the Message-Operations task of the sender.

If the option is wait, then an entry call is made to the supporter task
that requests the sender be awakened when either the timeout on the call
occurs, or each message copy sent to other hosts have arrived at their
targeted hosts. Acknowledgements are sent to the supporter task from the
MTNControllers that receive a message copy.

6.3.7 Receive Task

Like the send task, a receive task begins execution by getting the

parameters for that receive operation from the MTMController. The receiver's
message queue is checked to determine if a message is available for that

6-12

MESSAGE TYPE MANAGER DESIGN

process. If a message is not available, and the option on the call specifies
that a wait should be made, then the supporter task is notified that the

receiver process is waiting for a message. The supporter task will awaken the
receiver when either the timeout occurs or a message is received (whichever
occurs first). If the option is no_wait, and there is no message, then that
status is returned to the receiver.

When a message is available and a copy of the message is on the same host
as the receiver, it is routed to the receiver through an entry call to the
MessageOperations task of the receiver process. The term "directed receive"
is used to describe the receipt of a message object that is on the same host
as the receiver. A message object may not be on the same host as each
intended receiver since the reliability class of a message object might no
require that each receiving host have a copy of the message. Figure 6-7 shows
the entry calls made to achieve a directed receive.

If the message is not available on that host, the host hint in the
message id from the receiver's available message id queue is used to determine
where to get a copy of the message. The action of getting a copy of a message
object from another host is termed "receive on demand" in this chapter, and
the sequence of actions between the sender, the receiver, and their respective
MTM Controllers is shown in Figure 6-8. If that host is down, or for some
reason that host's message copy is destroyed, a broadcast is made to the
MTM Controllers on all hosts requesting a copy. A copy, if it exists, will be
sent to that host.

An important factor in the efficiency of the receive operations is
message copy distribution. For the resilient class of message object, it is
planned initially to have a volatile copy of the message object on each host
of the receiver. This concurs with the most traditional view of messages.
This will be varied during performance modeling.

6.3.8 MsgStatus Task

The msg_status task determines the status of a particular message by
getting the statuses from each of the respective message copies and merging
the statuses so that there is one status for each receiver which may be
received, notreceived, or unavailable.

TASK TYPE msgstatus IS

ENTRY msgstatusrequest_*eturn (returnstatuses: IN MTM_type.msgopn
return-list);

END msgstatus_task;

This task is the means by which remote statuses are returned to this
task.

In the event that not all message copies are available, the msgtask will
return to the invoker an "unavailable" status for any receivers whose status

6-13

is not known. it is important to note that the msg_status task will nct wait

forever if one or more copy statuses are not available.

6.3.9 Supporter Task

The supporter task detects the occurrence of a finite set of events, and
causes any process that is blocked and waiting on the occurrence of this event
to be "awakened". This task performs event detection for senders that are
waiting for message copies to be routed to particular hosts, and causes the
sender to become unblocked when either the sender times out on that call or
when all acknowledgements are received for a message copy being routed to
other hosts.

For a receiver, this task detects when a message is available or when his
time out has occurred. In the case where a message is available (where
available means the message queue of the receiver has a msgid from a sender),
but a copy is not on the host, a copy will be routed to the receiver's host
and the receiver will receive it if it is routed before his time out occurs.

There is one supporter task active for a given MTM. It handles event
detection for all senders and receivers on that host that specify the wait
option on their call with the excep- tion of receivers who specify the wait
option but do not wait because a message is available on that host fcr
receipt. Figure 6.11 is a diagram of the tasks that interact with the
Supporter task along with the reason for the communication.

TASK supporter

ENTRY gather_receipts_for (sender: IN kernel.xtnded uid;
msgid: IN kernel.xtnded-uid;
timeout: IN POSITIVE;

call uid: IN kernel.uid);

ENTRY wait on availablemessage (receiver: IN kernel.xtnded uid;
receive from list: IN kernel.xtnded-uid list;

timeout: IN POSITIVE):

ENTRY wait on msg_copy (receiver: IN kernel.xtnded uid;
msgid: IN kernel.xtnded uid;
timeout: IN POSITIVE);

ENTRY wakeupstatus (process id: IN kernel.xtnded uid;
response: IN MTM_type.msg_opn_return); END

supporter;

6.3.10 Waker Task

The supporter task does not directly cause a sender or receiver to be
"awakened". When the supporter detects the occurrence of an event to awaken a
particular process a waker task is scheduled that returns the result to the
MessageOperations task of the sender or receiver which causes the respective
sender or receiver to be "awakened" (unblocked) with the results of the
original call. This is the end of the syichronous call for that process.

6-14

MESSAGE TYPE MANAGER DESIGN

6.3.11 Remote ReceiveCall and Remote Receive_Response Tasks

They are part of the interface to the kernel, and as indi- cated by their
names, they are responsible for accepting incoming remote calls to the MTM and
the incoming responses to remote calls made by the MTM. The word "accepting"
in the previous sentence is used loosely because there are no entries into
these tasks, rather the tasks invoke procedures in the kernel (getcall and
getresp) that return a call invoked on this MTM or a response to a call made
by the MTM, respectively. Figures 6-10 and 6-11 are diagrams of the calls
from the Message Type Manager to the kernel routines that interface with the
network.

The call or response is unpacked (because it is passed as a bit string
from the kernel) and an entry call is made from the respective
RemoteReceiveCall (or Response) task to the appropriate task of the MTM,
namely the task for which the call or response is intended.

TASK remote receive call IS

--This task makes entry calls into various other tasks, but
--it contains no ACCEPTs.

END remote receivecall;

and,

TASK remotereceiveresponse IS

--This task makes entry calls into various other tasks, but
--contains no ACCEPTs.

END remotereceiveresponse;

6.3.12 ProcessMessageQueue Task

This task manages a set of message queues for processes that reside on
this host. There is one message queue for each process that performs message
operations. The message queue (hereafter called pmq) is manipulated thrcugh
entry calls to insert and delete msg_ids. (These operations are invoked by
the send, receive and waker tasks as shown in Figure 6-12).

ENTRY delete_msgid (msg_id: IN kernel.xtnded uid;
receiver: IN kernel.xtnded uid);

ENTRY insert_msg_id (msg_id: IN kernel.xtnded uid;
sender: IN kernel.xtnded uid;

receiver: IN kernel.xtnded uid);

Additionally, there is a "read only" call that returns a msg_id that
meets the parameter specifications in the call.

6-15

ENTRY check-messageavailable (receiver: IN kernel.xtnded uid;
receive from list: IN MTM type.xidfist;
whichmsg_option: IN MTM-type.receive_option;

msg_id: OUT kernel.xtnded uid;
who from: IN kernel.xtndeduid;

available: IN BOOLEAN);

The receive and waker tasks use this entry to get a msg_id for a message
that is available for a receiver. The message indicated by the msg_id will
(ultimately) be received by the receiver.

After recovery from a failure, the MTMController notifies this task
causing several actions.

ENTRY restart after failure ();

A database that maintains the pmqs for processes on this host is opened.
Once message activity begins, pmqs are moved to memory and accessed. They are
moved into memory as they are needed. Maintaining a data base of pmqs is for
the integrity and the reliability of the message system. When a pmq in memory
is updated, its copy in the data base is updated as well, so that a failure
will not render any pmq inconsistent relative to the messages received and the
messages waiting to be received.

6.3.13 MessageObject Task

This task performs manipulations of a message object, including creation
of the message and accessing parts of the object. These entries are called by
the send, receive, waker, and msgstatus tasks and the MTM Controller as is
shown in Figure 6-13. As can be shown from Figure 6-13, the MessageObject
task manages the volatile message instances on a host, and modifies any
incoming message objects to reflect their new residency.

ENTRY create (msg_id: IN kernel.xtnded uid;
send to list: IN MTM type.xid_!ist;

reliabilityclass: IN MTMtype.relclasses;
number of copies: IN POSITIVE;

text: IN kernel.message;
message-instance: OUT MTM-type.object);

The task is passed the information that will compose a message object and
assignments are made to the fields of the message object and the object is
returned.

ENTRY get_msg_status (msg_id: IN kernel.xtnded uid;
number of copies: OUT POSITIVE;
returnstatuses: OUT MTMtype.msg_opnreturn list;

done: OUT BOOLEAN);

The message object is retrieved from storage if it is on this host, and
the number of copies and the return statuses are assigned the return statuses
that exist in the message object. Done r turns the boolean value true if the
operation completes successfully; otherwise, false is returned.

6-16

MESSAGE TYPE MANAGER DESIGN

ENTRY get-instance (msg_id: IN kernel.xtnded uid;
messageinstance: OUT MTMtype.object;

done: OUT BOOLEAN);

This entry gets a message object from memory through calls to the kernel.

ENTRY put-instance (msg_id: IN kernel.xtnded uid;
messageinstance: IN kernel.xtnded uid;

medium: IN MTMtype.storage
done: OUT BOOLEAN);

This entry causes a message object to be put into memory through calls to
the kernel.

ENTRY updatereceipt (msgid: IN kernel.xtnded_uid;
receiver: IN kernel.xtnded uid);

This causes a message object with msg id to be updated to reflect that
the indicated receiver has received the message. If the message copy is
local, a change is made locally to reflect the status of the receiver. -f the
message copy is remote, a call is broadcast to remote MTM controllers "to the
msgreceived entry) which causes any existing copies to be updated.

This concludes the discussion of the user interface to the MTM, the tasks
of the MTM and the means by which incoming remote calls and responses are
received from the kernel. One point of importance, with regard to the
operations, is that the operations of the send, receive, and msgstatus
processes are performed as transactions. Because of this, message operations
have well- defined properties and the consistency of message objects is
maintained. To the user, the operations will be perceived as having a
particular effect if they succeed and no effect if they do not succeed.

6-17

USER I

MESS AGE TYPE ANA ER

OPERATION

RESULTS

ITMICONTROLLER I

OPERATIONS
RESULTR

AFTER WAIT

WAKER

I-- - c1 7 I

SUPPORTER PROCESS MESSAGE

MESSAGE OBJECT

QUEUE

--

Figure 6-1 Components of Message Management

6-18

- - -

- -- - - - --- - -- - - - - - -

SE1ND RCIEMSG _ STATUS

PRUCEOURE PROCEDURE PROCEDURE

------- -- - - - - -------------

()((1) (4)

--- ---------- --------- 4

----------ESSAGE OP R TIm TASK--- -- - -- -

23(2){ (3) (2) f /N

[1 E S S A G E T Y P E

M A N AGER CO0N T ROL LE R
--- 4

(1) REQUEST OPERATION

(2) ROUTE REQUEST

(3). (4) RETURN RESULT

Figure 6-2 The Sequence of Events Between the User's
M1TM interfacte Aind the MTM Controller

6-19

- - 4

REHOTE --- > SEND-_RETUR~N <-- -- (E)

_ ECEIVE -

_RESPONS RECEIVE RETURN -*

--- - --

MSG-- TATUS- -- (T-TYH
RETURN

ENTRIES OF THE

MESSAGE OPERATIONS TASK

CONTAINED WITHIN rHE HTMINTERFACE

TO THE USER

Figure 6-3

Entry Call/Task Relationships for the Message-Operations Task

6-20

- ---

5 E ND _MSG

- - -- --- --- -- R E HO r E
MESSAGE > RECEIVE -11MSGRE IV

OPERATIONS ~S TTS <I-
-MSG-_RECEIVED

-- SEND-_COPY _ACK

MESSAGE-COPY

FOR _RECEIVER

REMOTE MSG-_STATUS <-

-RECEIVE -BROADCAST

-RESPONSE -REQUEST

SEND _C.OPY '

REQUEST _COPY <- -

SEND _NOTICE

E14TRIES UF THE MIM CONTROLLER

Figure 6-5 Entry Call/Task Relationships for the MTM-Controller

6-22

- --

EN T RY C L ASS E NT R IES TASKS SCHBEfUL ED

E P S E H -MS S END0
S E
S R R ECE I VE -_ PIS G -RE CE I VE
A A
G T MSG-_STATUS MS _ STATUS
E I

N

A
o M SG _ RE CE I VED0 M ES SA GE _ OBJ EC T
K
S SENOCOPY _ACK WAIT-_QUEUE

R G
o o M ESSAGE-_COPY- M ES SAG E _ O81ECT
U P
T I FOR _RECEIVER
I E-----
N S SEND-_COPY

REQUEST _COPY-----

tM Q
E U SEND _NOTICE PROCESS-_MESSAGE _

S E
S U Q QUEU E
A E F A IL UR E
G NO0T I CE
E

Figure 6-4 MTNL.Controller Entries and the Tasks Effected by the Entry

6-21

- ---

FAiLURE

NO(3T IC E

SEND-MSG
- - -- --- --- -- R E itH 0r E

M ES SAGE > - RECEIVE _ MSGREEE

OPERATIONS

MSG _STATUS-

->MSG _RECEIVED

- SEND-COPY _ACK

MESSAGE _COPY

FOR _RECEIVER

REMIOTE MSG-STATUS <- -

RECEIVE -BROADCAST

-RESPONSE -REQUEST

REQUEST-..COPY <- -

SEND _NOTICE

ENTjRIES !jF THEj nTMCONTROLLER

Figure 6-5 Entry Call/Task Relationships for the MTMController

6-22

- - -

MESSAGE OBJECT KERNEL J TASK

OPERAT IONS IINTERFACE ISCHECULING

M1SG-_STATUS REtIOTE _RECEIVE IIM

-CALL GONTROLLER

RECEIVE REMOUTE _RECEIVE

SEND RESPONSE

SUPPORTER

W A E 0B3

PR OCES S MIESSA GE

QUEUE

Figure 6-6 Tasks of the Message Type MIanager

6-23

M'TM _CONTROLLER ilTil CONTRuLLER
O F O F

SENDER SENDER RECEIVER RECEIVER

SEND MSG
----->

SEND COPY

SEND COPY ACK

RECEIVE MSG

Figure 6-7 Directed Receive

6- 24

lTH-_CONTROLLER HT_11 CONTROLLER
OF OF

SENDER SENDER RECEIVER RECEIVER

SEND II SG
>

SEND NOTICE

RECEIVE MSG

REQUEST COPY

MSG COPY FOR RECEIVER

tiSG RECEIVED

Figure 6-8 Receive on Demand

6-25

- - 4-

GATHER-.RECEIPTS SEND WITH

--FOR -- - - - - -~4AIT -OPTION

14ARK SENDER FOR A WAITING
~11TM -- COPY _COUINT SENDER

CONTROLL- - - -- - - - -- - - -- - - -

WAIT _UN RECEIVE WITH

AVAILABLE WAIT OPTION

MESSAGE
> - -- - - -- -- --+- - -

WAIT-ON DITTO. AND

MESSAGE MESSAGE COPY

-COPY ON ANOTHER

WAKE-UP DENO[ES WHETHER

G D --- >-STATUS OR NOT THE

PiROCESS IS

----------------- *----------------------------

ENTIES OF THE OPERATION

au[~a~rE TASK STATE

*PERFORMS DETECTION OF EVENTS

*CAUSES WAKER TO UN-_BLOCK 4AITING USER

PR~OCES SE S

Figure 6-9 Entry call/Task Relationships for the supporter Taisk

6-26

TH _

CONTROLLER

S EN _ COPY _ ACK

S E N U

S EN 0 S G T3
NOTICEBRO 0CAST

NO0T I CE R0 0CAS

SEND R E UES T

'WAKER RECEIVE
COPY

REREEUEST

MSG COPYRECEIVED 4OPY

KERNEL.HAKECALL

*CALLS TO REMOTE HUSTS ARE MADE VIA

KERNEL .1AKE-CALL

THERE :AY UR MAY NUT 8E A RESPONSE Tj A .

Figure 6-10 Calls From the Message Type Manager to Kernel.ake-

6-27

M E S A6 E G _S T AT U S

CO0P Y R E T U RUA

1SEND
WAKER

SE NO SE ND

R E TU RN R ET UR N

R EC E IVE

R ET UR N

*--------------------------------------- -- -- ------ I -- -- -- -- ---------

KERtNEL.MAKE _RESP

RESPONSES BY THESE TASKS ARE SENT TO

REMOTE HOSTS VIA KERNEL.MAKE _RESP

Figure 6-11 calls From the message Type Manager to Kernel.Make-Resp

6- 28

RECIV GHEC;K.mESSAGE OETERILINES IFj

AVAILLAB LE mESSAGE

AVAILAdLE

IREtIOVES 16G _

DELETE...MSG-ID I FROM

- - - -- >QUEUE OF

IAVA ILAB LE
---------------------- --------------

INSERTS M1SG_.
INSERT.MSGIO.L I1. INT'J QUEUE

MTM_ UF AVAILABLE

CONTROLLER ------------------------------

" MAINTAINS MSG _ 0 QUEUES. ONE FOR EACH

PROCESS ON THE HOST

" THE MSG-10 IS IN A QUEUE WHEN THAT

MESSAGE IS AVAILA8LE FOR A PROCESS

Figure 6-12 Entry Call/Task Relationships for the

Process..Messae..Queue Task

6-29

E ND -------- > C RE T , E A -- E

GET _ <
. --. > (- -... ,

INSTANCE

PUT _ 1T T _

N U TACOE

•~~~~~~~~~ TOIFE H ESG BET"HN

~EIVE--CONTROLLER'

- - - -- - - - - - - .

UPDATE-'-4

ri $ G RECEIPT

ENTRIES FOR THE

MESSAiE OJECT TASK

*MANAGES INSTANCES OF VOLATILE MESSAGES

ON A HOST

*MODIFIES A MESSAGE O8JECT -4HEN IT

1S RECEIVED

Figure 6-13 Entry Call/Task Relationships for the

Message-Object Task

b- 30

A'fISSI ON
Of

~ Rome Air Developmenzt Center

RADC plans and executes research, development, test and selected

acquisition programs in support of Command, Control. Communications

and Intelligence (C3I) activities. Technical and engineering support within

Sareas of competence is provided to ESD Program Offices (POs) and other

ESD elements to perform effective acquisition of C3i systems. The areas

of technical competence include communications, command ad control.

Sbattle management, information processing, surveillance sensors,

intelligence data collection and handling, solid state sciences,

electromagnetics, and propagation. and electronic, maintainability, and

compatibility.

