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SECTION I
INTRODUCTION

A. OBJECTIVES

The objective of this research is to develop basic theories that
can be used to predict rutting in rtlexible pavements with granular
layers. The approach taken in this research is to treat the granular
material as particulate in nature and in this way provide a more
rational model than conventional theory that treats the particulate
material as a continuum. It takes a premise that the major reason for
the inability of conventional elastic or elasto-plastic theories to
model granular soil behavior is the fact that these soils consist of
randomly-arranged, irregularly-shaped discrete particles that are free
to displace relative to each other. It assumes that the mechanism
responsible for the deformation of the material subject to induced
loading is not caused so much by deformation of individual particles as
by relative movements of the more mobile particles forming a denser
state.

In linear and nonlinear continuum theory an equation ensuring the
existence of the second derivatives of strains throughout the media is
introduced. This equation, through constitutive relations, is combined
with the equilibrium equations for stresses to provide problem solution.
One inaccuracy in using this theory to model the behavior of granular
material is the inappropriateness of this strain requirement. This
requirement inevitably results in the prediction of horizontal tensile
stresses when the granular media is subjected to inclined loads. It
will also predict stresses if the granular media is subjected to purely
horizontal surface loads, an unrealistic condition since cohesionless
material will provide no resistance to these 1oads. This is the reason
why the continuing development of sophisticated nonlinear empirical
equations to model the experimentally-observed stress-strain relations
of the soil does not greatly improve the continuum mechanics prediction.
Khedr (1985) observed that even finite element methods using elasto-




plastic theory predicts wunrealistic radial pressure because they
characterize the granular layer as a continuum,

In the particulate tneory developed here the requirement for the
existence of the second derivatives of strains in the granular media is
replaced by a stress continuity equation that guarantees stress transfer
bDetween particles through their contacts. This continuity equation is
derived from two points of view, namely: (1) from the assumption that
deformation is caused by particle movements rather than particle
compression; and (2) that in the definition of stress and strain, any
representative element of soil must be composed of particles and voids.
In this way, the elemental volume of soil cannot be made to approach
zero but must, instead, approach a finite minimal volume with enough
particles such that the particle movements produce strain. The
combination of this continuity equation with the equilibrium equation
allows the determination of all the components of stress. In addition,
the particulate theory results in a stress-strain response model unique
for granutar soils.

The specific objectives of this research are to:

(1) Develop a particulate theory to predict stress transfer
through granular material subjected to inclined loads,

(2) Extend the particulate theory to predict the stress-strain
response under static loading;

(3) Use the particulate theory to predict strain accumulation
under repeated loading: and

(4) Combine the results of objectives (1), (2), and (3) to
predict rutting in multilayered, flexible pavements with a granular

layer.

8. BACKGROUND

Flexible pavement design requires the ability to predict pavement
performance. One of the major indicators of pavement performance is the
distress caused by rutting. This rutting is the accumulation of
permanent settlement with traffic application, and for flexible




pavements it co¢ccurs in all inelastic components of the pavement.
Rutting will eventually result in a reduction of pavement serviceability
due 1o lcss in riding comfort and may also ltead to hydroplaning and
icing due to the collection of the water in the deformations. As a
result, any rational method of predicting rutting in flexible pavement
must Ce aple to model both the stress transfer mechanism and the stress-
strain cnaracteristics of eaczh layer. It must also be able to combine
the behavior of each layer “n the wdy that it contributes to the overall
performance of the pavement.

It 1s common practice in pavement design tO assume stress
distribution using the muitiple elastic layers theory because of the
relative ease at whica solutions may be obtained (Monismith and Finn,
1977; Monismith, Finn, and Epps, 1986). The derived stresses which are
based on linear stress-strain relationships that acknowledge no strain
accumulation are next used with empirical or elasto-plastic nonlinear
stress-strain relationships to predict strain and strain accumulation
with repeated 1loading. However, experimental data show that the
response of soil, and especially granular materials, depends strongly on
the state of stress. Therefore, it is essential to know the correct
stress conditions in the flexible pavements before strain accumulation
can be rationally predicted. Most of the research in the last decade
has concentrated on developing Stress prediction thdat includes the
nonlinearity of the stress-strain relationship of granular material.
This usually takes the form of empirically relating the resilient
modulus, defined as the ratio of the repeated deviator stress to the
recoverable strain, to the sum of the principal stresses. Besides
requiring complex finite element solutions, this model has serious
limitations. More complex and sophisticated models giving better
descriptions of resilient response do not greatly improve the prediction
(Uzan, 1985; Brown and Pappin, 1981).

It is very difficult to accurately predict rutting in flexible
pavement because the granular layer is the most important load-carrying
component of the pavement. To adequately design flexible pavements, an
accurate understanding of the pehavior of granular material s




necessary. This 1is more essential now than ever since existing
pavements and future pavements are expected to accommodate heavier and
neavier loads. This material consists of discrete particles, and it
deforms as the result of particle movements rather than particle
deformation. Experimental evidence abounds (Haggarty, 1963; Morgan and
Gerrarcd, 1971) for the inab.lity of classical elastic or inelastic
continuum mechanice to predict granultar materials behavior under ioad.
Tne main reason Tor this 15 tnat even the most sophisticated of these
$0tutions reJuires the second derivatives of strairs to exist at alil
50ints in tne granutar media. This requirement is unrealistic as voids
atways exist in the material, and tne deformations are the result of
discrete particle displacements.

An alternative approacn to stress distribution 1in granular
materials can also be found in the literature (Golden, 1984, 1986; Harr,
1977; Hill and Harr, 1982;: Endley and Peyrot, 1977: Chikwendu and
Alimba, 1979; Sergeev, 1969). This approach considers the discrete
nature of the soil and assumes that when a normal point force is applied
on the surface of an infinite half-space, the influence of this force
travels from particle to particle in a fashion analogous to a random
walk or continuous Markov process. The resulting equation is the
diffusion equation for vertical stresses. This approach ignores the
requirement for the existence -f the second derivatives of strains and
requires knowledge of the diffusion coefficient, a material property.
The results of this approach show that it provides a better qualitative
fit to observed stress distributions in granular media and can be used
to predict the stresses in layered media if the diffusion coefficients
of the layers are known (Harr, 1977; Golden, 1984). The limitations of
this theory at this point are the description of the diffusion
coefficient and the role the constitutive nature of the material plays
in the stress diffusion.

Even from a conceptual viewpoint, any particulate theory is an
improvement over continuum models. As granular soils are particulate in
nature, stresses are transmitted at particle contacts, and strains are
the result of particle movements rather than particle compression. The




vertical stress distribution predicted by the stochastic theory for a
point load on the surface agrees with experimental results which show a
more bell-shaped stress distribution than the elastic prediction (Harr,
1977). Any particulate theory based on stress diffusion from a source
should give a bell-shaped distribution as this is the solution of the
diffusion equation for a point source. Further, with the reguirement
for tne specification of a material property in the form of the
diffusion coefficient, the stochastic theory shows that stress trausfer
is dependent on particle sizes, shapes, packing, load history, etc.
This is in opposition to the elastic theory which predicts the same

vertical stress at a given point in sand as it does in steel.

c. SCOPE

This report presents a new approach to the prediction of rutting
in flexible pavements. [t recognizes the prominent role played by the
granular layer in the stress distribution and strain accumulation in
flexible pavements and diverts from the conventional continuum approach
to modeling stresses in the layer. The methodology of the new approach
is as follows:

(1) The requirement for the existence of the second derivatives
of strains in the granular Jlayer conventionally wused 1in the
determination of stress 1is relaxed. It is replaced by a stress
continuity equation that provides for stress transfer between particles
through these contacts. This is developed assuming that deformation is
due primarily to particle movements;

(2) [t is shown that the development of the stress continuity
equation is based on a nonlinear stress-strain relationship unique for
granular material. This relationship is derived by the particuiate
approach and reduces to the hyperbolic model for soils that do not
exnibit a distinct peak Stress;

(3) Knowledge of the nature of stress transfer and stress-strain
response in granular media is next incorporated into a theory for strain
accumulation with repetitive l1oading; and




(4) In order to evaluate the rutting in a flexible pavement, the
particulate theory of stress transfer is extended to predict stresses in
multi-layered systems consisting of granular and elastic layers. In
this way., more accurate predictions of the stresses in the layers will

lead to more accurate predictions of rutting.

0. ORGANIZATION OF TECHNICAL REPQORT

This technical report is divided into eight sections and an
appendix. Section I is the introduction which ocutlines the objectives,
background and scope of the research. Section Il investigates the
stress transfer mechanism in granular media. After a look at the
traditional methods, a new particulate approach to stress transfer is
introduced. Section III presents a particulate theory for stress-strain
response in granular materials. It addresses both the stress-strain
response due to static loading and permanent strain accumulation under
repeated loading. Secticn IV presents the validation of the theories
developed in Sections Il and III wusing information found in the
fiterature. Methods of determining the experimental constants
identified in the theories of Sections Il and IIl are presented in
Section V. Section VI presents a method for predicting rutting in
flexible pavements with granular layers. Section VII presents the
Conclusion and Recommendations, and Section VIII is the List of
References. Finally, a paper published from this work is presented in

an appendix.




SECTION I1
STRESS TRANSFER IN GRANULAR MATERIALS UNDER INCLINED LQADS

A. INTROODUCTION

Granular soils generally c.onsist of vrandomly arranged,
irregularly-shaped, discrete particles that are free to displace
relative to each other. The deformation of this material under load is
not caused so much by deformaticn of individual particles as by relative
movement of the more mobile particles forming a denser state. As a
result, experiments have shown that deformation predicted by the theory
of elasticity is incorrect in magnitude and distribution (Turnbull,
Maxwell, and Ahlvin, 1961; Morgan and Gerrard, 1981). Really obvious
discrepancies between experiments and elastic predictions are that
horizontal tensile stresses are predicted under inclined loads and
stresses are predicted under purely horizontal surface loads. In
actuality, tensile stresses cannot exist in cohesionless materials and
cohesionless materials will provide no resistance to purely horizontal
surface loads.

The main reason for the elastic theory's prediction of tensile
stresses in granular materials under inclined loads and the prediction
of stress transmission in granular material under purely horizontal
surface loading is the requirement for the second derivatives of strains
to exist at all peoints in the material. In elastic predictions, using
lTinear stress-strain relationships, this condition is combined with the
equilibrium equations to give the stresses in the media. Traditional
methods of improving the predictions of stresses in granular methods
introduce more realistic nonlinear stress-strain behavior. However, the
requirement for the existence of the second derivatives of strains at
all points in the media is still imposed. It seems unlikely that these
methods of improving the prediction of stresses in granular material can
avoid the condition of predicting tensile horizontal stresses under
inclined load or the transmission of stresses under purely horizontal
Toads.
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An alternative approach to stress distribution in granular media
that does not require the existence of the second derivatives of strains
at all points but on stress transfer through particle contacts can be
found in References 10 and 13. Their approach assumes that the
influence of a surface force travels from particle to particle in a
fashion analogous to a continuous Markov process. The resulting
equation is the diffusion equation for vertical stresses. However,
there 1S no constitutive relationship identified in the stochastic
approach (Reference 10).

In this section, the stress transfer mechanism for an inclined
1oad on a granular material is developed by recognizing that particles
are of finite size and that stress and strain cannot be defined at a
point in granular material but only with respect to some finite volume.
It is shown that this approach, although entirely deterministic, leads
to the diffusion equation of the stochastic approach. More importantly,
it shows that there is a built-in nonlinear stress-strain relationship.
The approach avoids the requirement for the existence of the second
derivatives of strains and avoids the prediction of tensile stresses in
granular soils and the prediction of stresses under purely horizontal

surface loads.

B. TRADITIONAL APPROACH TO STRESS DISTRIBUTION IN GRANULAR MEDIA

The solution of stresses in any body is obtained by solving the
equations of equilibrium. In two dimensions, neglecting the weight of
the soil, these equilibrium equations are

%;Lff’_%‘_:o (1)
06y dtxz
ot 3= 0 (2)
and
™z = Tzx (3)
8




where o, and oyx are the normal stresses on the element in the vertical
and horizontal directions, respectively; and 1x; and 1,45 are the
vertical and horizontal shear stresses. Since these are only three
equations for the four unknown stresses, 3 fourth equation is necessary
for the solution of the stresses. Traditionally, this fourth equation
is supplied by assuming the existence of the second derivatives of
strains at all points in the granular media. This requirement results
in the compatibility equation (Timoshenko, 1951)

d2¢ex . 3282 _ 92y
ax2  gz2  Oxdz

(4)

where gx and ez are axial strains and y is the shear strain. The
stresses and strains are then related by an appropriate constitutive
relationship. For the special case of linear elastic assumption,
closed-form solutions for the stresses are available. These, however,
fail to appropriately model the observed conditions in granular media
(Morgan and Gerrard, 1981). With the use of empirical stress-strain
models, such as the hyperboiic model, intense numerical modeling is
necessary. The compliexity of solution and the assumption of the
existence of the second derivatives of strains at all points in the
media are the limitations of the approach.

C. NEW APPROACH TO STRESS DISTRIBUTION IN GRANULAR MEDIA

The new approach considers any representative element of soil of
volume dxdydz tc be composed of particles and must satisfy the
equilibrium equations. However, rather than assuming the existence of
the second derivatives of strains to exist at all points in the granular
media, the particulate nature of soil deformation is examined to develop
the additional equations necessary for solution of the stresses.

Since any representative element of soil must be composed of
particies and voids, its volume dxdydz cannot be made to approach zerc
but must approach a finite 1imiting volume, say ijh, with enough




particles so that the relative movements of particles in ijh caused by
forces on these particles produce strain. I[f w is the average change in
vartical displacement of particles in the element, then the vertical

strain in the element is

g, = 1im w/dz = w/h
dz—h (5)

Also, if F is the vertical component of force on a horizontal plane
through the element, then the vertical stress is

6z = lim F/(dxdy) = F/(ij) (6)
dx—i

dy—j

This is analogous to the continuum definition where ijh approaches a
point of zero volume on a macroscopic scale but is composed of discrete
atoms at a microscopic level.

For simplicity, a microscopic stiffness coefficient k is
introduced to represent the average resistance of particles to movement
in the z direction such that the vertical component of force on a
particle in ijh is kw. The magnitude of k depends on the packing, the
roughness of the particles, and the confining pressure. The vertical
force in ijh is F = Nkw, where N is the number of particles in ijh. The

vertical stress in ijh is

_ Nkw Nkh €,
Sz = (337~ D) (7)

Since ijh is the smallest possibie volume of so0il that can be used for
the definition of stress and strain, it serves as a control volume
analogous to a point in a continuum and particles enter and leave ijh as
deformation takes place. This means that N varies with deformation, and
Equation (7) is nonlinear. This can easily be seen as N = ijh/[Vp(l+e)),
where Vp is the average volume of a particle and e is the void ratio;

10




and by definition, the volumetric strain is related to the void ratio as
€y = (eo - e)/(l+ep), where egis the initial void ratio. Therefore

) i
NS T T e (T &1 (8)

Consider two elements of soil adjacent to each other but separated
by a surface dydz in the yz plane as shown in Figure 1. Element 1 with
center at location x has particles with average change in vertical
displacement w, and the element with center at x+dx has average change

‘n vertical displacement w+(dwidx)dx. The vertical force at the right
face of element 1 is F; = Nikw, and the vertical force at the left face

of element 2 is F2 = N2 k [w+(dw/dx)dx] where Np is the number of
particles at the right face of element 1 and N2 1is the number of

particies at the left face of element 2. The vertical shear stress at
the interface between the elements is (F; - F2)/(dydz), or

[(Nl - Np) Kkw - Nzikg—:]

Txz = om (9)
From Equation (7), the derivative is

M. (Ho) (10)
The substitution of Equations (7) and (10) into Equation (9) gives

1xz = boz - D%%% (1)
where

b'NI&NZ%'NZ%%(ﬁb (12)
and




Figure 1. Adjacent Soil Elements.
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D = -2 (13)

It can be noted at once that in the case of a normal load changes
of i, j, and N with x can be assumed small; hence N; = N2 and Equation
(12) gives b = 0. However, if there is an x component of the load,
lateral changes of N with x may not be neglected.

1. Two Dimensions

The substitution of Equation (1l1) into Equation (2) gives
the diffusion equation

(05 - a-a;(bcz) (14)

Equation (14) is identical to that of References 9 and 11,
however, here the diffusion coefficient is derived from the relationship
of stress to particle displacement. Equation (14) is nonlinear as D is
a variable that depends on the size ijh of the representative element of
soil; and tnis, in turn, depends on the magnitude of the particle
displacements or stress intensity. For smal) particle displacements, a
small volume of soil ijh may be used to adequately define stress and
strain while for large particle movements, a larger volume of soil is
needed to make these definitions. If the horizontal displacements are
small compared to the vertical, then ij can be treated as a constant and
h is seen to be decreasing away from the loaded area. In this case, D
increases with z and the absolute value of x. This is apparently the
same type of diffusion that occurs in elastic material, for it can
easily be shown by back substitution that with D = (x2 + 2z2)/(2z) and
b = q(b/(2 + qix) where q; is the ratio of horizontal to vertical
component of the load, Equation (14) gives the elastic solution for a
1ine load at the origin of coordinates.

If D and b are known, then with known boundary conditions
Equation (14) can be solved for the vertical stresses. The substitution
of Equation (11) into Equation (1) gives the normal horizontal stress as

13




ox = & (06y) +J°°-§Z-(bcz)dx (15)
X
The boundary conditions ox = 67 = 0 at x = -e gives
g% J_: bozdx = 0, which is satisfied only if b is a constant. Also

from Equation (11) at x = 0 and z =0 it is known that dc,/dx = 0,
Oz = the vertical load, and Txz = the horizontal load: hence b = q1.

Therefore, Equations (11) and (15) become

Txz = Q162 ~ D%G;Z' (16)
and
cx=g%(Dcz)+qltxz (17)
2. Three Dimensions

In three dimensions, the equilibrium equations are

doy 0Ty x 9tz x

> S v i T 0 (18)
dtxy oG otz

—L J _
x t t =0 (19)
atxz ot z acz
S +-—'z—ay +-aT'— 0 (20)
Txy =Tyx, Tyz =sz. Txz =Tzx (21)

Development similar to that in the derivation of Equation (11) says that
changes in vertical particle displacement across the xz plane produce

14




aO'z
Txz = bxz0z - szs;' (22)

and changes 1in vertical particle displacement across the yz plane

produce

0c
T}’Z = byzcz - Dyz'g"y‘g' (23)

In Vike manner, the shear stress txy 1S created by changes in particle

displacement in the y direction across the xy plane which leads to

Gz
Txy = nyGZ - Dx‘ygy— (24)

The subscripts on b and D refer to b and D in the respective planes.
[f the inclined load has X and Z components only, then
bxz = d1. byz = 0, and bxy = 0. Substituting this into Equation (20)

gives the three-dimensional diffusion equation
oz 9 a0; b} ao; d6;
37 " 3% (sz-a—x-) + ~a—y- (DYZE)T) - q; FrE (25)

Hence, in theory, Equations (18) through (25) can be solved for all of

the stresses.

0. SOLUTION FOR STRESSES UNDER INCLINED LOADS

1. Two Dimensignal

The nature of D in Equation (13) is unknown; however, as
stated above, for the two dimensional case D is a function of i and h
where i and h are the horizontal and vertical components of the
representative element of soil. The magnitudes of i and h depend on the
magnitudes of the particle displacements in the x and z directions,
respectively. Oirectly under the center of the load i and h vary with
depth only. This means that in the region under the load D can be
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approximated by D(z), a function of z only. In this case, one can make

the transformation

W(z) =.fz D(2)dz (26)
[8)

and the solution of Equation (14) for a line load with vertical
component Pand horizontal component qiP is

2
- P ~ (x-gy2)
Sz = Tamwiz) 2 &*P ( W) J (27)

The shear stress can then be found from Equation (16) as

(x-q;2)0(2)
L ) o2 (28)

T =(q1 * T 2W(2)

The horizontal stress can also be solved from Equation (17) as

2
_dne,y . DXy DX2) [ ] 2q1w(z)]
. {D W T g, LW T TR@ [ Y

where

aD(z)
32 (30)

D' (z) =

One remarkable property noted by Golden (1984) is that, although
nonrealistic horizontal tensile stresses are predicted by elastic theory
if horizontal forces are present, they can be avoided by this theory if
D(z) is such that D'(z) > D2(z)/2W(z). Another observation is that for
a purely horizontal force the elastic theory predicts stresses in
granular material, while in these equations predict zero stresses.
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2. Three Dimensions
In three dimensions with Dy, = Dy, = 0, the solution of

Equation (25) for a point load with vertical component Qand horizontal
component Qq; in the x direction 1is

{ . 2 2
__Q ) [(x qz)% +y :]}
Sz = Tam(z) °XP i W) (31)

[t can also be shown (Golden, 1586) that withcut knowledge
of Dxy, the other stresses can be described in terms of oz by the

fellowing equations

Txz = QjiCz D% (32)
Tyz = -D%G;Z- (33)
Txy [ w0 & oza—fg—y]cz (34)
ox = [qf - 2q,0 %+ D' + D éf—;;} oz (35)
and
oy =[D' + 02 —‘332-] o2 (36)
ay

where D' is described in Equation (30).
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SECTION III
STRAIN ACCUMULATION IN GRANULAR MATERIALS
UNDER STATIC AND REPEATED LOADS

A, INTRODUCTION

The stress-strain behavior of granular soils is created primarily
b: individual particle movements to form a denser matrix rather than
elastic compression of the particles. As a result, the experimental
curve is always nonlinear and depends on the loading conditions. In
general, the shape of the stress-strain curve is concave towards the
strain axis in triaxial compression, and concave towards the stress axis
in one dimensional (uniaxial strain) and isotropic compression.
Further, it is noted that in triaxial conditions some sands show a
distinct peak stress while others do not. As a result, it is difficult
to model the behavior of this material by conventional elasto-plastic
theories, and recourse is usually taken to empirical methods like the
hyperbolic model for matching triaxial test results with no distinct
peak stress (Desai and Siriwardane, 1984) or numerical curve fitting
techniques (Desai, 1971),

In this section, traditional approaches to stress-strain modeling
in granular media is identified and a new, more rational, approach is
introduced. This new approach is particulate and is in agreement with
the stress transmission theory of the previous section. That is, the
deformation is considered to be the result of particle movement rather
than deformation of particles. The result is a general model that
derives the stress-strain response for one dimensional, isotropic, and
triaxial loading conditions as special cases.

8. TRADITIONAL APPROACH TO STRESS-STRAIN MODELING OF GRANULAR
MATERIAL

The experimentally-observed stress-strain curves of granular soils
are always nonlinear. The shape of the curve also differs based on the
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boundary conditions imposed in the radial directions.
traditional elastic and elasto-plastic theories

curves obtained under specific conditions.
Of primary importance in settlement calculations

stress, a modification of the Ramberg-0sgood empirical

pecomes & hyperbola. One other approach suggested

usually taken as linear functions of the octahedral

stresses (Nelson and Barron, 1971).

linear method. Here, the nonlinear experimental curve

using a french curve (Desai, 1871). These also

and not scattered as observed experimentally.
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As a result,
failed to
adequately model the behavior of this material. So far, no general
model exists that accounts for all imposed boundary conditions and

traditional methods consist of applying curve-fitting techniques to

is the need to
model the triaxial compression condition. One simple empirical method
p-~oposed by Konder and Zelasko (1963) is the widely-used hyperbolic
mocel. This model appears to be a natural fit to soils that do not
exnibit a distinct peak stress. For soils that exhibit a distinct peak
model used for
dynamic loading 1s proposed for static conditions
Siriwardane, 1984). This is based on fitting a curve to the
tangent modulus, the mocdulus of the plastic zone, the yield stress, and
a parameter defining the order of the curve. For order one, this curve
is to treat the
tangent shear modulus and tangent bulk modulus as variables. These are

and shear

The difficulty in modeling the noniinear stress-strain behavior of
sand under load has led many investigators to propose numerical curve-
fitting techniques. One of the most popular of these is the piecewise
is divided
pieces of linear elastic sections for numerical analysis. Very often
thnese are the incremental Hooke's law or the hypoelastic law (Desai and
Wu, 1976). Another numerical method is the use of spline functions to
fit experimentally-observed curves. These are functions that use the

data to provide an analytic curve similar to the graphical process of

numerical procedures, and the data must be presented in a smooth form




aa = e

2 S G & aE a2 e

C. NEW APPROACH TO STRESS-STRAIN MODELING OF GRANULAR MATERIAL

1. General Theory

Granular media 1is composed of voids and particles.
Deformation is caused primarily by particle movements. As the particle
movements are discrete, their derivative at a point does not exist, and
the strain in this media cannot be defined at a point. Strain can only
be defined with respect to an elemental volume of soil with enough
particles so that the relative movements of the particles in the
etemental volume can produce deformation. Like the strain, the stress
in granular soils does not exist in a void and should not be described
at a point. The stress corresponding to the strain in the elemental
volume is the result of forces on the particles in the elemental volume
and, like the strain, can only be defined with respect to the elemental
volume. These definitions of strain and stress are given analytically
as Equations (5) and (6) of Section 1I.

The substitution of Equation (5) into Equation (6) gave the
stress-strain relationship of Equation (7). Referring to the z
direction as the axial direction and letting subscript “a" refer to the
axial direction, the stress-strain relationship in the axial direction

as obtained from Equation (7) is

_ Nkh €3

T3 = (13) (37)

where N is a function of the volumetric strain as shown in Equation (8).
The substitution of Equation (8) into Equation (37) gives the stress-
strain relationship in the axial direction as

_ Ep e
CGa = TTTEEJT (38)

where
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~ h?
fo = [vp (lveq) ] (39)

Here, B = l/ey1 and ey) 1s the maximum value obtainable by ey. This
latter term was added since gy = 1 is unattainable under conventional
loads.

The derivative of Equation (38) gives the slope of the
stress-strain curve as

dey
ﬁ'= (1'B€v) E0 + EoBi’:a dEa (40)
dea (1-Bey)?

[t is apparent from this that at ez = ey, = 0, the slope is Eg.
Therefore, Eg is the initial tangent modulus of the soil, and knowledge
of h and k is not necessary if Eq can be measured.

2. Application To One Dimensional And Isotropic Loading
Conditions

In one dimensional compression of soils no lateral strains

are allowed, and the volumetric strain is equal to the axial strain.
That is ey = €3 and &y] = g3, where gz is the asymptotic axial strain.

Therefore, in this case, Equation (38) becomes

Eo ea
€a

1- —

€al

(41)

Gy =

In isotropic 1loading conditions, the strains are equal in all
directions. Hence, &y = 3ea and ey = 3eaL, and Equation (41) also

applies for this case.
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It should be noted that Equation (41) can be written as

2
Ea
- F—_— 4
Ca fo) (Ea Eal ) (42)
and
ealL E
20 [exp2 ealeay - D - 1] = Eo (e + ealeal + ...) (43)

Therefore Tletting a; = 2/e4y and C = Eyo/a; gives the alternate

expression

oa = C exployea) - C (44)

Equation (44) is the same as that derived by the hypoelastic analysis
for these loading conditions (Desai and Siriwardane, 1984).
3. Application To Triaxial Loading Conditions

In elastic material under triaxial compression the radial
strain, €r, is proportional to the axial strain, and the proportional
constant, Poisson's ratio, is determined empirically. In effect, if vt
= -der/dea and vs = -€r/€3., then in elastic material vt = vs. However,
in triaxial compression of sands, the relationship of radial strain to
axial strain is acnlinear. To represent this nonlinear condition one
can let vg - vt = D2, where D2is an empirical constant representing the
average difference between vs and vt. [f D2 = 0 the relationship is
linear, and the nonlinearity increases as the magnitude of D2 increases.
The definition vs = -er/€a gives

dvg 2 Dy
EE; = (g *+ €3 Vt/g,) = - 7y (45)
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Also since ey = gat2er then yg = (g5 - €y)/(2e3), which shows that

dvS _ d(Ev/Ea)

Equating Equaticrs (45) and (46) gives d{(Ev/€a)/d€a = 2D2/8a, which has

solution

ey = Bpea + 20Dgealne; (47)

where Bp is an integration constant. It should be noted that xlnx

approaches zero as x approaches zero. For example, (0.001)1n0.001 = -
0.007 and (0.0001)1In0.0001 = -0.0009.
The substitution of Equation (47) into Equation (38) yields

Eo €3
(1 - BBoea - 2BD2ealney)

Ga = (48)

Letting 6a = oy and €3 = gy at maximum stress, Equation (48) gives
BBy = 1/ey - Eo/oy - 2B02iney. Also setting doa/dey = 0 at maximum stress
given 28Dy = -1/gy. The substitution of these into Equation (48) yields

the general relationship

a [a + a(ea/ey)lneg + bea]

] (49)

where a = 1/Eg and b = 1l/oy - (l+1lngy)/(Eqgey). In soils with no distinct
peak stress such as l1oose sands and sands under high pressure, gy
approaches infinity, therefore, Equation (49) reduces to the hyperbolic
model

€a

= -(—am- (50)

Ja

where a3 = 1/E; and b = 1l/0y.
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The constants By and Dy in Equation (47) can also be evaluated in
terms of the values at maximum volumetric strain. If g3 = g at
dey/dey = 0, then By = -2D2(l+lngg). Also, since at e = eg the
volumetric strain ey = eyp, the maximum volumetric strain, Equation (47)

becomes

Ey = €a(€vm/€o) [1 + 1n (eg/eg)] (51)

This equation shows that ey = 0 at the two points g3 = 0 and g5 = €;.
The value of g is obtained from Equation (51) as g = 2.718gy, Further,
comparison of these values of Bz and Dpwith those found in
Equation (48) gives B = eq/(gyeym) and gy satisfying Eqey - aulnley/eo).

D. PERMANENT AXTAL STRAIN ACCUMULATION IN GRANULAR MATERIALS

1. Static Loading
Equation (49) gives the axial stress-strain relationship
under triaxial conditions. In this equation, €5 is the total strain

accumulated under the static stress increment oz. Upon removal of the
Joad, the soil rebounds. The amount of rebound is the elastic portion
of the total strain and can be written as

& - (52)

where E. is the resitient modulus of the soil. The permanent strain

accumulated due to one application of oz is

e = s - &y = -g:h(ca) : ‘EIT“a (53)

where h(oy) is obtained from Equation (49) by solving for g5 in terms of
G6a. For the hyperbolic case it is obtained from Equation (50) as
h(ca) = aca/(l-bey). Equation (33) may be written in the more compact

form:
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p_ L
€, B f(oa) (54)

where

f(O'a) = h(O'a) - klO'a (55)

and ky = Eq/Ep.

2. Repeated Loading

At every load application there is some readjustment of the
grains in a soil sample. This rearrangement becomes less pronounced as
the number of load applications increases because the soil becomes more
packed. Therefore, the rate of change of initial stiffness at any load
application depends on the particle arrangement (or on the stiffness) at
that load application and decreases with increasing load applications.
The simplest way to represent this behavior is by a power function

dEoj
di

= KiE ] (56)

where Eoi is the initial target modulus at the ith cycle of loading, Ki

is a proportional constant, and n is a parameter reflecting the
dependence of the rate of change of Eoi on Eoi. The solution of

Equation (56) gives

n+l
Eoi

-m+ A (57)

. n
Kii =I EgidEoi =

where Ay is an integration constant. Solving for Eoj gives
. m
Eoi = [Ai + B] (58)

where
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A= (n+1)Ky, B = -A(n+l), m = (59)

L
n+l

The permanent strain due cycle i is then obtained from
Equation (54) as

P

eai = T fi(0a) (60)

01

where fi(oz) is the relation defined by Equation (55) for the ith Toad

application.
The permanent strain accumulated in N cycles is then

ey = JN fi(oa) [Ai + 81 M di (61)
0

For soils where the hyperbolic model presents a good fit, it can be
shown that fi(oa) = floa) 1if a3 is constant, that is, it is independent

of load cycle. This is because for these soils, the assymptotic stress
oy and the ratio ky = Eo/Er are fairly constant during load
applications. For this case, fi(ca) can be taken out of the integral,
and the result of the integration of Equation (61) depends on whether m
is equal to one or not.

a. Case Wherem =1
n

In this case, = 0 or the change of Eqij where load

application is constant. In this case, Equation (6él) becomes
P i floa)
Ean = f(ca)JNﬁE=+[ln(N+%) : ln%] (62
0

From Equation (59) for n = 0, it is seen that B/A = -A;/K;, and from

It

Equation (57) for i =1 and i 2, one finds K; = Eg2 - Eg; and

Ay = Egp - 2Ep;. This means that
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(63)

in general, Ega is greater than Egp; hence B/A is small compared to N.

This means that as an approximation, the permanent axial strain
accumulated is obtained from Equation (62) as

P
Eay = a1 + by In N (64)

Where by = f(oa)/A and ay = (1/A)f(oa)In(B/A) are constants. It is also
seen from Equation (64) that ay = e§1 as defined in Equation (60).
Equation (64) is that proposed by Lentz and Baladi (1981) based on its
goodness of fit to their experimental data.
b. Case Where m # 1 '
In this case, Equation (61) becomes

1

-m
P N -, m .. A floa) Byl M syl M
Ew‘fWQJ [Ai + 8] m"-Tm—‘{[”T] '(K) }(%)
0

Again from Equation (59) it is seen that B/A = -A;/K;., and from
Equation (57), that (n+1)K1 = EJFl- £9Fland (n+lyar = Q51 - 2 effl.

From this, B/A is obtained as

n+l n+l
2Eo1 - Eg2

= —T—=T (66)
Eol b E02

> |

Since Eo2 is greater than Eo1, it is seen that B/A is
small compared to N, and Equation (65) can be approximated by

— =g, N" (67)
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where By = Al-Mf(gy)/(1-m). This equation is the same as that suggested

by Khedr (1986) and Diyaljee and Raymond (1982) based on their

experimental work. It should also be noted that from Equation (67)
By = qfl as defined in Equation (60).

£. PERMANENT RADIAL STRAIN ACCUMULATION IN GRANULAR MATERIALS

The total radial strain during static loading is er = (egy - €3)/2
where ey is given by Equation (51). The elastic radial strain is

e e v
€ = “VE; = "= 0 (68)
r a £, “8
where vis the elastic Poisson ratio during unloading. This means that
the permanent radial strain is

eg = gr &g (69)

The cumulative radial strain for N cycles of loading is then
p N fevm €ai v )
EpN = §E; €ai [ 1- ln(eo/eai)] T + E:? Gy ¢ di (70)
0

where

€31 =E-15-1_-h(ca) (71)

and Eqi 1s given by Equation (58). The integration presented by

Equation (70) is clumsy. An approximate more sStraightforward estimate
can be evaluated using the formula presented by Chang and Whitman
(1988). In their evaluation, they found that
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p

Ey 2 -q2

— - M (72)

ED n

Y

p_ P P . ; : P _ P__P

where e, =g, + 2 g, is the permanent volumetric strain, e, = 2/3( ea-er)
is the permanent shear strain. Also, M is the ratio of mean and

deviatoric stress at €3 = €g. that is at minimum volumetric strain, and
n is the ratio of mean and deviatoric stress at g = 0, or at the start
of loading. The mean stress is (oa + 207)/3, and the deviatoric stress
is 63 - oOp. From Equation (72), the permanent radial strairn can be

solved in terms of the permanent axial Sstrain as

P_oM-n 3 0 (73)
tr M2-1-12+61'1£a

The permanent radial strain accumulated after N cycles is

P _ M -m - 3n » (74)
ErN M2 - m2 + 67 EaN

whereegN is the permanent axial strain accumulated after N cycles as

given in Equation (64) or (67).
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SECTION IV
VALIDATION OF PARTIULATE THEQRY FOR GRANULAR MATERIAL

A, INTRODUCTION

In this chapter, the assumptions made in the theory leading up to
the stress continuity equation of particulate media (Equation 11), the
constitutive equation of particulate media (Equation 38), and the strain
growth equation of particulate media (Equation 61) is verified. The
method of validation 1is by the comparison of these analytical
expressions with experimental observations found in the literature.

To validate the stress continuity concept for granular media, the
stresses predicted by the particulate theory developed in Section II is
evaluated against measured stresses in particulate media. The results
are further compared with the predictions of the linear elastic theory.
The stress-strain theory for granular media developed in Section III is
also compared with measured stress-strain data on granular media.
First, the stress-strain responses under static isotropic and static
triaxial compression are examined. Next, the theory on permanent strain
accumulation in granular material under repeated loading is compared
with experimental observations using different load magnitudes.

B. VALIDATION OF PARTICULATE THEORY OF STRESS TRANSFER

It was already shown in Section II that the particulate theory of
stress transfer in granular media does not predict horizontal tensile
stresses for inclined loads and predicts no stress transfer for purely
horizontal loads. These two phenomena are unique to granular material
and cannot be avoided by any theory that imposes the requirement for the
existence of the second derivatives of strains in the media. In this
section, the comparison of the theory for the prediction of vertical
stresses under a loaded area with observed experimental results will be

made.
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Morgan and Gerrard (1981) prescnted experimental results of
several investigators on the stress distribution in sands under load.
Fairly complete information was obtainable from their report on the
results of the Waterways Experiment Station (WES) tests and the tests at
Melbourne University (M1 and M2). These tests were performed using
uniform vertical lcads (q) over circular areas of radius "a" and the
results included the distribution of vertical stress with depth directly
under the center of the areas as shown in Figure 2.

Directly under the center of a circular area of radius "a", the
elastic solution predicts from a vertical uniform load q

gz

=+ - 1-[ a2+ 1] (75)

This is shown as the dashed line of Figure 2.

For a vertical uniform distributed load of intensity q over a
circular area of radius "a", with coordinate origin taken at the center
of the loaded area, Equation (31) gives

- _Qq (emfa [ RS - ]
N 4nw(2)4f foexD TW(s) (M% * p° -2rpcosB) | rdrde(76)
0

where p2 = x2 + y2,  That is, in Equation (31) let q; = 0, replace Q by

qrdrdf, and employ the law of cosines (Figure 3). Directly under the
center of the area, p = 0, and the integration of Equation (76) gives

_@‘q_z= 1-exp { -a2/[aW(2)1} v

Reference 11 showed that the assumption that D(z) is a linear
function of 2z satisfies all granular soil requirements. From
tquation (26), this means that W(z) can be expressed as

“i;’ -a+ 4 (L) (78)
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Figure 3. Location Of A Point P From Circular Loaded Area Of Radius A.
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The substitution of Equation (78) into Equation (77) gives the

transformed equation

- (a/2)% a
ITnil-a,7q) a1 % di’-(?) (79)

This equation is suitable for Tinear regression on the data of Figure 2.
This linear regression produced the solid lines in Figure 2. For each
soil the fit is remarkable, indicating that the form of Equation (78) is

appropriate for this type of loading. The regression revealed that
d;y = 0.078, dp = 0.217 for the Ml data, d; = 0.032, dp = 0.157 for the

M, data, and d; = 0.101, dp = 0.057 for the WES data.

Figure 2 can also give an indication of the relative lateral
spread of the distribution. To do this, the approximate method of
analysis for vertical stress directly below the loaded area is
employed. This says for p =0

2
o; = ~ Q(ma“) (80)
n (a + ztan a)?

Where tan o is a measure of the magnitude lateral spread with depth. A
value of o = 30 degrees estimated from the theory of elasticity, is
usually assumed (Dunn, Anderson, and Kiefer, 1980). From Equation (80),
it is found that

tan o = (81)

The best fit value for the angle a from the data of Figure 2 is
a = 26.01 degrees for MI, a = 19.33 degrees for MII, a = 23.81 degrees
for WES and a = 29.31 degrees for the elastic prediction. The larger
angle of o for the elastic prediction indicates that the elastic
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solution predicts a wider lateral spread of the vertical pressure
distribution. The method of compaction is seen to be a determining
factor in the spread, as the MI sand was identical to the MII sand
except that the former was compacted by & vibrating plate and the latter

by pluvial compaction.
C. VALIDATION OF PARTICULATE THEOQORY OF STRESS-STRAIN RESPONSE

It was shown in Section IIl that Equation (38) is a general
expression for the relationship of axial stress to axjal strain. For
the special conditions of one dimensional and isotropic compression,
this equation reduced to Equation (41) and, for the case of isotropic
compression, to Equation (49).

The validation of Equation (41) was made using data for isotropic
loading conditions on two sampies of McCormic Ranch sand presented by
Desai and Siriwardane (1984, pg. 193) and shown in Figure 4. In both
cases, the regression of Equation (41) on the data revealed 99.9 percent
correlation. The regression curve is shown as the dashed lines in
Figure 4.

The validation of Equation (49) was also made on data for a medium
dense sand presented by Desai and Siriwardane (1984, pg 177). The
measured stress-strain response of this sand at two different confining
pressures (o3) are shown in Figure 5. Again, the fit of the equation
was excellent and a regression of Equation (49) on the data revealed
correlation coefficients of 99.8 percent. The predicted curves are
shown as the dashed line in Figure 5.

Equation (49) is based on the nonlinear relationship of the
volumetric strain to the axial strain derived in Equation (47). This
equation was also evaluated using the volumetric versus axial strain
measurements of the sand in Figure 5 taken at the two confining
pressures. This data is shown in Figure 6. The regression of
Equation (47) on this data is shown as the dashed line in the figure.
The correlation coefficient was 99 percent for each case.
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Figure 4. Stress-Strain Behavior For Isotropic Loading
(Data From Reference 6, pl93, 1 psi = 6.895 kPa).
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Figure 5. Stress-Strain Behavior For Triaxial Compression
(Data From Reference 6, pl77).
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0. VALIDATION OF THE PARTICULATE THEORY QOF STRAIN ACCUMULATION UNDER
REPEATED LOADING

The nature of strain accumulation in granular material 1is
presented in the general form of Equation (6l). This equation is a
function of a parameter m that reflects not only the nature of the
material put also the magnitude of the applied load. To see this,

Fquation (39) can be written as

£, = h2k(1-ng) (87)
——

where ng = eqo/(l+eg) is the initial porosity of the soil. For small
loads, the soil compacts in fairly equal increments, and changes in the
porosity are of equal increments. From Equation (82), this means that
for small loads, the initial tangent modulus increases linearly with the
number of load applications. In this case, Equation (58) says that m is
close to unity and Equation (61) gives the semi-log relationship of
Equation (64). For large 1loads, the soil compacts in more uneven
increments with larger increments occurring at the early cycles of
loading. This reveals the m in Equation (58) should be less than unity,
and €quation (61) becomes the log-log expression of Equation (67).

To validate Equations (64) and (67), data on permanent axial
strain accumulation with number of cycles of loading for five load
magnitudes on a Dolomite Ballast presented by Diyaljee and Raymond
(1982) were used. These experimental results are plotted on a log-log
plot in Figure 7. In each case, Equation (67) represented a perfect
fit, with m = 0.87 for the four smaller loads and m = 0.80 for the
largest load.

The logic behind Equation (64) can also be tested using the data
of Figure 7. To do this, the data are also plotted on a semi-log scale
as shown in Figure 8. The data with m closest to unity should plot more
linear than those with values of m furthest from unity. This is seen in
Figure 8 where the data with m = 0.87 also plotted a straight line on
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this semi-l0g scale. However, the case of the heaviest load, with
m = 0.80, shows a distinct non-linear plot on the semi-log scale.
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SECTION V
EVALUATION OF MATEZRIAL PARAMETERS IN PARTICULATE THEORY

AL INTRCOUCTION

In the deveiopment of the stress distribution theory of Section [1
and the sctress-strain and strain accumutation theories of Section III,
several material parameters were identified. These parameters are
material specific and, like Young's modulus and Poisson's ratio of the
theory of elasticity, are best evaluated from experimental observations.
However, it must first Dbe determined if these parameters are also
Tunctions of geometry and load. If they are, their dependence on these
gquantities should be identified such that experimental procedures can be
scaled to observe only the material characteristics of the parameters.

In this section, the material parameters arising in the stress
distribution theory, the stress-strain theory, and the strain
accumulation theory are examined and methods of determining them are
discussed. In particular, their relationship to other parameters such
as depth in the soil, confining pressure and load intensity are
identified.

B. MATERIAL CONSTANTS IN PARTICULATE THEORY OF STRESS TRANSFER

The theory of stress transfer in granular material presented in
Equation (14) depends on two constants D and b. It is shown in
Section II that b = 41, the ratio of the horizontal component to the
vertical component of the applied load. The parameter D is the
diffusion coefficient of the soil. In Equation (13) N2 is a fraction of
N: therefore D is dependent only cn the size of the elemental volume ijh
needed to adequately define stress and strain in the material. In
particular, D is proportional to the square of the horizontal component,
12, and inversely proportional to the vertical component h. For small
particle dicsplacement, a small volume ijk of soil may be used to

adequately define stress and strain, while for large particle
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cisplacements, 3 lirger olune o1 soi: 1 needed to make these
gerinitions. AS 3 resuit, thé magnitudes or 1. J, and n at a given
location are c2pendent on wne stress ie¢vel 1L that location. It is

shown in Secticn IV that r¢r & vertical lcad on a circular foungation of

racias "a", tne ccerricient D Cdn De approximatea by a linear function

0T Zepth z 3s

Co= Zd1z v 2 (83)

ahers oy anc gn are materii. parameters to Dbe determined from

gxperiments. Tne linear relationsnhip of O to z is also observed by
Goicen (1986; and dAill and harr (1971). Zquation (83) indicates that
ad9 S a term reriecting the poundary condition at z = 0, and d; is a

parameter retlecting the iateral spreaa of the vertical stress
distripution.

As shown in Section [V, both d; and dp are dependent on the method
of compaction of the granular scil. However, an accurate determination
of the stresses below the loaded area can be made if d; and dg are
determined for that soil. Since both d; and dy are material parameters,
this can be determined by laboratory tests for small-scale loads. The

linear nature of Equation (76) in terms of loads indicates that the
valtues of d; and dpobtained in the laboratory can be used for field

pregicticns. The determination of dy and dy in the laboratory requires
the measurement oT vertical Dressure with depth directly below the

center of the loadea area as illustrated by Morgan and Gerrard (1981).
The values of d; and dp 4are then evaluated by regression of

fquation (79) on tne data.
C. MATERIAL CONSTANTS IN PARTICULATE THEORY OF STRESS-STRAIN RESPONSE
The general stress-strain response of particular media is given by

Fquation (38). For one dimensional and isotropic loading, this reduces
to Equation (41) and for triaxial loading to Equation (49). Since the

triaxial condition 15 applicable directly to the rutting problem, the




fature T Tne  lonsTtants  Tn fguatien (49) is examined here.
Tguation (49) Can pe rewrizten &s
£Q€a
Ga = = , (84)
Lo+ (eyiges - \Ea/Eu)l:]” (eg/ey) - 1]

wnere gs = oy/ty is the strain predicted at maximum stress if the
material was elastic and g, 1S the strain observed at maximum stress.
This equation is hyperbolic if g, is infinite and is linear if e = gy
and finite as in the elastic case. The three material parameters Eq,

€e, and gy will be examined separately in this section.

The initial soil modulus is developed in Equation (39) as a
function of the particle size, initial void ratio, the height h of the
minimal volume of granular s0il necessary te determine stress and
strain, and a parameter k representing the average resistance of a
particie to movement in the z direction. The parameters h and k are not
gasily determined. Fortunately, the initial modulus can be obtained
from the regression of Equations (49) or (84) on measured stress-strain
data. As the magnitude of k depends on the roughness of the particles,
the packing, and the confining pressure, the dependence of the initial
s0il modulus on the confining pressure is apparent from Equation (39).
This dependence as observed experimentally is usually expressed as
(Seed, et al, 1986: Richart, Hall and Woods, 1970)

Eo = C1 05> (85)

where C; is a constant and o3 is the confining pressure. Figure 9 shows

that the relationship holds for the medium dense sand presented by Desai
and Siriwardane (1984).

Figure 9 shows that ee and g, are also proportional to the square
root of the confining pressure. Since the confining pressure insitu is

the product of the coefficient of earth pressure at rest, the effective
unit weight and the depth, the proportional relationships of Ey, oy, and

ey L0 the square root of the confining pressure allow extrapolation and
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‘nterpolation using the experimental results of only one confining

pressure.
o MATERIAL CONSTANTS IN PARTICULATE THEQRY CF STRAIN ACCUMULATION

The zccumuiation of rcermanent stress after N cycles ¢f load
gopiications is given by Ecuation (67), wnich for small values of n can
e agpreximated oy cguation (€4).  In Loth equations, the constant can
e ¢otained Dy regression OT The equations on experimental data.
cnfortunately, tnese constants are rtunctions of the magnitude of the
appliea lcaa. In Egquation (67) the constant By is the permanent strain
accumulated after the first application of the load and 1-m is the slope

tne log-log transtormation of the equation. In Equation (64), the

J
c tant a; is tne permanent strain accumulated after the first

f
on

w

application of the 1load, a&and b; is the slope of the semi-log

relationship.
The permanent strain accumulated after the first application of

the load is given in Eguation (53). However, in the deviation of
fquation (67), it was seen that By = A' " ™f(ga)/(1-m) where from
Equation (59) m = 1/(n+l) and A = (n+1)K,, and from Equation (57) it is

seen that (n+l)K; = ES?I- EBT} These developments show that m satisfies

the relationship
1/m 1/m/m _
(EOZ - £ ) =1 -nm (86)

The value of a; in Equation (64) is given by Equation (53). Also in the
deviation of Equation (64) it was seen that a; = (1/A)f(oa)In(B/A) where

B/A is defined in Equation (63). This means that Egi(1/A)In(B/A) =1 or
by = floa)/A becomes

by = MCEY (87)
! £ 2Egr - Ep2
o n(Eoz - E01)
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In Egquations (86) &nd (37) tna viiues CT fyp depends on the magnitude of

tne applied 10dd as iU GsT L& evaluateqg :rter the removal of the first

Altnougn Tnis section JoTines the Jspenagence of the parameters of
tugations (67) and (64) on the load, 't may bLe more expedient to
getermine By anac m tor Eguaticn (67) or &) and by tor Equation (64) from
experimental observations on repeated '0adaings. In this case, the
experiment must De made using tne vertical and confining stress expected
in the field. The vertical stress is predictable from stress transfer
theory as shown in Equation (76), and the confining pressure is the
oroduct of the coefficient of earth pressure at rest, the effective unit

welignt, and tre depth.
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SECTION VI
RUTTING MODEL FOR MULTILAYERED PAVEMENTS WITH PARTICULATE MATERIAL

AL INTROOUCTION

The Zesigns against ruit.ng are currently either empirical or
quasi-elastic. Tne empirical methoa selects pavement thicknesses based
cn correlations o¢T excessive deformations tc subgrade strength or to
satisty an allgwaple value ¢f the vertical subgrade strain. The
subgrade Sstrength is usually taken as 1ts California Bearing Ratio (CBR)
value or more recently recommended is its resilient modulus (Thompson,
1984) . These methods cannot be used to predict the amount of
deformation present atter load apptications. The quasi-elastic method
is more direct and has the capability of obtaining cumulative
deformations. This approach uses elastic theory, either linear or
nonlinear, to predict the expected stress state within the pavement.
The approach is termed "quasi-elastic" since it uses this predicted
elastic stress state to design laboratory tests to measure the
relationship of permanent strains to naumber of repeated load
applications.

In linear elastic analysis the pavement is assumed to be composed
of homogeneous, isotropic linear elastic layers that are infinite in the
horizontal extent. The loading is vertical and uniformly distributed on
a8 circular base with no surface shear. It is also assumed that there is
full continuity between the layers and within the lYayers. The main
limitation of this approach is that the aggregate base of the pavement
is not Tlinear elastic. [n nonlinear elastic analysis, the same
assumptions are made except that the elastic modulus of the granular
layer is described as a function of the stress state based on an
empirical curve that fits experimental results. This approach requires
complex numerical modeling, and, through its requirement for full
continuity between the Tlayers and among the aggregate and voids,
violates the no tensile stress requirement of the aggregate.
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Designs based primarily on the stress transfer of layered linear
or nonlirear elastic theory fail to evaluate the benefits of properly
graded and compacted granular material. In general, the method of
compaction and gradaticn of the granular material affects the nature of
the stress distribution in the material and if properly controlled can
be used to increase the carrying capacity of the pavement by spreading
the loaa, thereby reducing stresses in the lower layers and decreasing
the stress concentration that causes rutting. It was already shown in
Section Il that the particulate theory of stress transfer includes a
diffusion coefficient that is a function of the method of compaction and
gradation of the granular material. It is shown in this section how
this metncd of stress transter can pe modified te predict stresses in
‘ayerea cavements with particuiate and elastic layers. The strain
accumulation theory of Section IIl is also extended to multiple layers
in order to predict rutting in the pavement.

B. STRESS TRANSFER IN MULTILAYERED MEDIA

Flexible pavements generally consist of a 2- to 8-inch asphalt
surface over g 12- to 36-inch granular base or subgrade. Therefore, it
is a three-layer system, with each layer transmitting stress in a
different manner due to the difference in the type of material. In this
section, the particulate stress transfer theory of Section Il will be
modified to represent the condition of stress transfer through pavement
layers of varying properties.

The general expression for the vertical stress induced by an
inclined point load of vertical component Q and horizontal component qiQ

in the X direction is given by Equation (31) and can be rewritten as

2 -2qpx + gl -

W) i (88)

c e |2
Sz = Tr(z) °XP

where p2 = x2 + y2,
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To determine the vertical ctress under an inclined uniform load g
on a circular area OFf radius "a", tquation (88) can be modified by
replacing Q by qrdra®, p by r? + p - Zrpcosy ana x by x - r cos (&+8)

[

where £ = tan~!(y/x). The tinal eguation is

Gz <

242 N o~ \ 2,2
q “on(a {{ +p<-2rp cosh-2q x+2qreos(0+E)+q°z l
I ) J J exp e { rdrae  (89)

0 Jo

For the special case of a vertical load (q;=0), this equation can

De integrated over r to give

LD
(@]
~

2
2 . -3~ paC0SH
q -p 2n |1 - [ ]
Oz = g €xp (—J_)J } EXp[4w<z> T (2] pd0
0 1 - p? cos?0/HW(z)

For known values of "a" and W(z), tnhis latter equation can be
easily integrated numerically at any value of p. Directly under the
center of the vertically loaded area (p=0), Equation (380) gives

oy = {1 - exp [—i-]} (91)
z =9 TW(Z)

i

Equations (89), (90), and (91) present progressively simpler
cases. However, in each of these equations, all of the geometric and
material properties are contained in the function W(z). Therefore, the
determination of the stress distribution in layered media requires only
a modification of W(z) in that layer. Directly below the center of a
vertically-loaded circular area of radius "a" on granular material it
was shown in Section IV that W(z) = Wg(2), where Wg(z) refers to

granular layer and is given by

Wg(z) = d 2% + dpaz (92)
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“ere dp ana ¢y are materizi-scecific censtants rerlecting the particle
sizes, nacking, ana previous .oading. An eguivalent function, W(z), can

also be rfound Tor materials that transmit stress ¢lose to that predicted

Dy eilastic tneory. In tnis c¢ase, setting Equation (77) equal to
Eguation (72) gives §(z) = Wa(z), wnere
.2
e d
Ne(Z) = (93)

In order to determine thne modification of W(z) in a multilayered
pavement, the method presented by Golden (1984) is wused. In this
method, Wi(z) represents the function W(z) for stress distribution in a
media composec only of the material in the ith layer, and the function
W(z) in Equation (89), (90), or (91) is taken as

Witz) for z £ hy
W(z) = 4 Wo(z) - UWalhy) + WiChy) for hy £z < hy + hp (94)
W3(z) - Walhpthg) + Wa(hitha) - Wolhp) + WiChy) for z 2> hp+hs

where hjis the thickness of the ith layer.

The stress distribution in the asphalt layer is elastic in nature.
Therefore, the value of Wi(z) for flexible pavements 1is given by

Fquation (93). The second layer of the pavement is the granular layer,
and the value of Wa(z) is given by Equation (90). The third layer is

the subgrade. For cohesive subgrade it was observed that due to its

cohesive nature the elastic prediction of stresses is acceptable (Morgan
and Gerrard, 1981). In this case, Equation (93) gives W3(z). For sand

subgrade, the elastic solution is not acceptable (Morgan and Gerrard,
1981), and Wi(z) is of the form of Equation (92). The vertical stress

on the subgrade (z = h; + hp) directly below the center of the loaded

area is found from Equation (91), where from Equation (94)
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Wiz) = d (hé + 2hihy) + dp ahoy (95)

The roie played by tne layer thicknesses and material constants on
gistributing the stress to the weaker subgrade layer s apparent from

this equation. rfrom Equation (89) & larger W(z) translates into smaller
vertical stresses. Tneretore, increases in all quantities hy, hp, dj,

and dp decrease the stress transterred to the weaker subgrade. However,
since parameters d; and dp are functions of the gradation and compaction
of the granular layer, Equation (95) can De used to evaluate the
benefits of increased layer thicknesses versuS inCreased compaction and
gradation,

C. RUTTING PREDICTION MODEL

The majority of research on subgrade and granular materials has
shown a log-log relationship of the permanent strain to the number of
load applications (Yoder and Witczak, 1974). This log-log relationship
was also derived theoretically for asphalt materials (Khedr, 1988) and
observed experimentally (Majidzadeh, Khedr, and El-Mojarrish, 1979).
This relationship is identical to Equation (67) derived for granular
media with m not equal to one.

For granular material, 1t was also observed that for values of m
approaching one, Equation (R4) becomes the more appropriate model. The
parameter, Bt in Equation (67) (and a1 in Equation (64)) is the
permanent deformation after the first cycle of loading and for granular
material is given by Equation (54). In this sense, Bi1is an explicit
function of the vertical stress at the point in gquestion in the media.
The parameter m is also a function of the stress level, as shown in
Section V. Therefore, it is imperative that in the evaluation of B; and

m that the correct stress be used.
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The tneoretical resuit of Section IIl and those of Khedr (1986)
indicate tnat at any depth z under the loaded area the accumulated
permanent strain arter N cycles is given Dy

P aloz)

Eéﬁ) = B(OZ)N (96)

The zarameters B{(o;) and m{(ocz) are Tunctions of the vertical

stress and material characteristics. [f subscripts a, g, and s refer to
the asphait layer, granuiar layer, and subgrade, then the permanent
depressicn in the Tiexible pavement artter N cycles is

*hi ma(oy) *hi+h2 mg{cy) " oo ms(cz)
3 =J 367) 8 ° ¢ dz+J 8q(0z) N 77 dz+J Bs(Gz) N ° Zdz  (97)

0 ny hi+h3

Equation (87) 1is the general prediction model. Although it is possible
to express the B{(oz) parameters as continuous known functions of z, this

is not possible for the m(o;) parameters. This is illustrated in

Section V for the granular layer and in Khedr (1986) for the asphait
layer. As a result, the integrals of Equation (97) must be replaced by
summations, and the pavement divided into discrete sections of magnitude
Az. The values of B(oz) and m(oz) are then evaluated using the stress

expected in the center of each section. Further, although it is shown
in Section VL oLnat it it pocsiile to express Bloz) and m(ez) in terms of

[g8]

other material parameters, it is more efficient to determine these
parameters directly from repeated load tests using linear regression on
the log-1og transformation of the measured values of qﬁ1 and N. This
method concentrates on the evaluation of only two parameters B and m per
laboratory test. However, it 1is 1imperative that the stress state
expected in the field be used to perform the laboratory test. As an
improvement over the use of stresses determined from elastic theory, the
values of B(o;) and m(s;) should be evaluated using the stress predicted
by the multilayered theory described above. A simple closed-form
description of the vertical stress to be applied to the laboratory

54




sampla 15 sroviged by the cocmbination oT Eguations (91) and (94) where
Wpv2) oand wz{z)  are gescrigced Ly tguatiorn (91) and Wp(z) by

i

quation (92),
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SECTION VII
CONCLUSIONS AND RECOMMENDATIONS

CONCLUSIONS

p<s

The report's objective 1is [0 present the results of research
investigating rutting in Tlexible pavements rtrom a perspective whereby
the granuilar layer is treated as particulate rather than a continuum,
[t snows that tne stress transfer in the granular layer can be derived
without the assumption of the existence of the second derivation of
strains. This assumption 1is generally wused for both linear and
nontinear elastic stress analiysis. However, in the granular layer, the
narticles are aiscrete and deformation is the result of discrete
narticle motion rather than continuous particie compression.

From the results of the report, the following conclusions can be
drawn:

. A particulate definition of stress and strain in granular
media is necessary in order to adequately model the behavior of the
granular layer in flexible pavements. This definition is necessary
since stresses are transferred only at particle contacts and not through
the voids in the material, and strains are the result of particle
movements rather than particle compression.

° The particulate definition of stress and strain allows the
development of a stress continuity relationship which when combined with
the equilibrium equation gives the stresses in the material. This
development has three major advantages over conventional linear and
nonlinear continuum analyses. First, the assumption that the second
derivatives of strains exist at all points is not unrealistically
imposed on the discrete medium; secondly, the observed stress-strain
behavior of the material is built into the stress continuity
relationship; and thirdly, the stresses are expressed in terms of a
material term W(z) that is a function of the gradation and method of
compaction of the medium.
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. 2 CirTilusate theory pregiction of stress and strain
ontorms . T ExCeriTmentai observations and ail material constants can
e eyaluatel olLN Tne use oFf conventional experimental methods.

] ‘ne partiZuiate theory of stress distribution reduces to the
2lastic czge with The appropriate choice of W(z), and the evaluation of

stress transrter tnrougn multilayered media 1S easily determined with g
systematic representation of W(z) in terms of the thicknesses and
materials cocmposing the layers.,

o The particulate approach to modeling granular behavior

i

confirms tne 109-tog relationship between accumulated permanent strain
and number oT cycles of loading. However, 1t magnifies the fact that
parameters in this reiationsnip are highly dependent on the stress state
at tne ncirnt wnere zhe strain is evaluated.

. The particulate theory of stress distribution through
multilayerea media can be used to predict the stress state to be used
for evaluation of the material constants in the permanent strain
accumulation versus number of cycles of loading. This is an improvement
gver conventional linear and nonlinear elastic analysis due to 1ts
simplicity and the rationality of the particulate approach to stress
distribution in granuiar media.

B. RECOMMENDATIONS

The evaluation of rutting in flexible pavements presented in this
report is based on a new, more rational definition of stress and strain
in particulate media. This definition assumes that deformation is the
result of particle movement rather than particle compression and that
stress is transferred only at particle contacts. It is gratifying that
this definition very simply leads to models that adequately represent
observed stress-strain behavior for granular soils under one
dimensional, isctropic, triaxial, and shear loading conditions (see
Appendix A). It also easily illustrates the diffusive nature of stress
transfer in granular material under inclined loading. Therefore, it is
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2onn3t o octner oonlewms o concerc=l it the transmission of
STress wnd o for3in o grinular mediz Le ioprgached with this new

Seviedirion. Incladed Imong trese dre ne Tolicwing:

. ¥Moaeling tne cearrormance o7 sanag grids under loads. Sand
sl oare el Tncreasingly Tor expedaitionary aictields and their design

¢ greatly dimprovea 7 the mecnznism of their bpehavior s
~377cnaily modelea. Tnis approach 1s igeal Tor such investigation.

° Developing improved methoas ¢T interpreting the information
cotaineg Trom nondestructive testing of Tiexiple pavement using devices
suacn 3s tre talling weignt cetiectometer. Tihis new approacn will allow
Tor the evaluation 0T more characteristic pavement properties rather
Tnan the resilient moaulus currently measured.

. investigatiag the mechanics or the nonlinear nature of
sTress wave transmission in granulac <oils, thereby 1improving the
«nderstanaing of Dblast &na earthquake effects on structures and
cotentially liguefiable soil.
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A GENERAL ZTRESS-STRAIN

MODEL FOR GRANULAR <OILS3

¥ingsiev Harrop-williams

The B3DM Corp.,

ABSTRACT
Y general stress-strain model is
ierived for zranular soils based on the
cremise that :the deformation in these
s01ls 1s not caused so much by the
ieformation orf iadividual particles as by
-he relative movements of the more mobile
sarticles. The model is general and
speciiic relationsnips are obtained for
iifferent loading conditions. For one
dimensional and isotropic loading
conditions a stress-strain curve concave
towards the stress axis is derived, and
for triaxial and shear loading conditions
the derivea stress-strain curve 1is concave
towards the strain axis. In particular
soils that show a distinct peak stress are
well modeled, and the model reduces to the
hyperbolic model for soils exhibiting no
distinct peak stress. All cases show
excellent fit to experimental data.

INTRODUCTION

The stress-strain behavior of granular
soills 1s created primarily by individual
particle movements to form a denser matrix
rather than elastic compression of the
particles. As a result the experimental
curve is alwavs nonlinear.In general it is
concave towards the strain axis under
triaxial and shear loading, and concave
towards the stress axis in one dimensional
and isotropic loading conditions. To
adequately predict the settlement under a
load one needs to be able to model this
nonlinear behavior.

Of primary importance in settlement
calculations is the need to model the
triaxial compression condition. One simple
empirical method proposed by Konder and
Zelasko (4) is the widely used hyperbolic
model. This model appears to be a natural
fit for soils that do not exhibit a
distinct peak stress. Another empirical
model proposed is a modification of the
Ramberg-Osgood model used for dynamic
loading for static conditions (2). This is
based on fitting a curve to the initial
tangent msesulus, the modulus of the
s5lastic zone, the vield stress and a
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parameter defining the order of the curve.
For order one this curve becomes a
ayperbola. One other approacn suggested is
to treat the tangent shear modulus and
rangent bulk modulus as variables (5).
These are usually taken as linear
functions of the octahedral normal and
shear stresses.

The difficulty in modelling the
nonlinear stress-strain behavior of sand
under load has led many investigators to
propose numerical curve fitting
techniques. One of the most popular of
these is the piecewise linear method. Here
the nonlinear experimental curve is
divided into pieces of linear elastic
sections for numerical analysis. Very
often these are the incremental Hooke's
law or the hypoelastic law (2). Another
numerical method is the use of spline
functions to fit experimentally observed
curves, These are functions that uses the
data to provide an analytic curve similar
to the graphical process of using a French
curve (1). These also require intense
numerical procedures, and the data must be
presented in a smooth form and not
scattered as observed experimentally.

In this paper a general stress-strain
model is derived from basic principles.
This model is shown to apply to one
dimensional, isotropic, triaxial, and
shear loading conditions as special cases
based on the boundary conditions they
impose.

STRESS AND STRAIN IN GRANULAR SOILS

In the determinztion of stresses and
strains in granular soils any
representative element of the soil with
volume dxdydz must be composed of
particles and voids. The element must also
consist of enough particles such that the
relative movements of the particles as a
result of forces on these particles
produce strains, This means that in the
limit the volume dxdvdz cannot be made to
approach zero but must instead approach
some minimal finite volume ijh. This
minimal volume of fixed dimensions i, j
and h in the x, y and z directions,
respectively, is the smallest volume of
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ind _e2ave the minimal element, 1f «w i3 the
iverage relative displacement ot a
carticle ia the element 2 the
iirection, then the normal strain i1n the
alement ian the z direction IS
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2= w/h (1)

“or simpiicitly we ilatroduce a mM1Croscopilc
stiffness coefficient X, to represent the
average resistance of a particle to
aovement in the z direction such that the
Zorce on a particle in the minimal element
:n the z direction is k,w. T"he magnitude
> k, iepends on the roughness of the
sarticles and the confining pressure. The
force in the element in the z direction is
¥, = Nkzw, where N is the number of
particles in the element. The normal
stress in the element ia the z direction
is then F,/(ij)

Gg.= Nkpw/(ij) (2)

In this equation N = ijh/[Vy(l+e)], where
Vo is the average volume of a particle and
e is the void ratio, By definition the
volumetric strain is related to the void
ratio as €v= (e,-e)/(l+e,), where e, is
the initial void ratie. Therefore,

N o= ijh/[Vp(l+e,)(1-€y)] (3)
The substitution of equations (1) and (2)
into equation (2) and taking the z
iirection as the axial direction give the

zeneral relationship of axial stress to
axial strain as

Jy= E,€a/((1l-8€y) (4)

where

-
13

hik, /[ Ve (l4ey) ] (5)

o

ind -he parameter 3 was added since the
~ondition €+ = 1 is unattainable nnder
conventional loads. From equation (4), the
derivactive of Ca with respect to €aat

£, = fa= 0 is E,. Therefore, E, is the
tnitial tangent modulus of the soil.

Tno look at shear stresses in granular
soils consider two minimal elements ¢t
so1l adjacent to each other but separated
by a surface dxdy in the xy plane. Let
element 1 be at location z with average
particle displacement u in the x
direction, and element 2 be at location
z+dz with average relative particle
iisplacement u+(3u/3z)dz in the x
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jirectxon., ilso let Xk, represent the
iverage resistance of a particle to
1ovement .a the X direction. ‘hereiore,
~he force in the x direction in the lower
half of element | is F¢3 = N kyu, and the
force in the x direction in the upper half
of element 2 is F,; = Nakyg[u+(3u/az)dz].
Here N; 1s the number of particles in the
lower nalf of element ! and N2 is the
number of particles in the upper half of
element 2. We assume that N does not
change much with z as compared with
changes in u, therefore, Y% = Ny = N/2,
The snear stress 1n the x direction at the
interface between the two elements 1s
(F-T¢2)/(dxdy), or since dxdydz apprcaches
ijh in the limit the snear stress 1is

T = (Nkeh/(2i3)](5u/32) (6)
ONE DIMENSIONAL AND ISOTROPIC COMPRESSION

In one dimensional compression of soils
€y = €a , and in isotropic compression we
have €y= 3€a. From equation (4) these two
conditions can be represented by the
single equation

Oa= Eg€a/(1l-nEy) (7

where N is the reciprocal of the
assymptotic strain observed at large
stress. Figure (1) shows the excellent fit
of equation (7) to data for isotropic
loading conditions on two samples of
McCormic Ranch sand obtained from
reference (2, pg. 193).

G,ps1

1200? {/
] Zquation (7)) A/ /

Z,= 30,000 ps1
n= -34.50

800{ L /\l
@ Data points / '<

{ for >ampie 48
// Equation (7)
Eo= 44,248 pa)
n= -56.19

% Data poines
wi /,

: >
/s

4001

e o= Regression Curves

99.9% correlation
Al A o v A.

0.02 1€,

J D.0C1

Fig. 1. Stress-Strain in Isotropic Loading
(1 psi = 6.895 KPa)

One should also note that equation (7)
can be written as Oq = Eo( €a +NEg+ . . )
and by series expansion we have that
[exp(2N€a)-1]/(2N) = €a+Ned+ . . .
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Therefore, letting a = 2N and & = Z,/Q,
;.ves the alternate expression

Ca= Aexp(QA€a)-a {8)

Zquation (2) is the same as that derived
by the nypoelastic analysis Ior these
loading conditions (2, pg 139).

TRIAXIAL COMPRESSION

In triaxial compression of elastic
material the radial strain,e,, 1is
oroportional zo the axial strain, and the
proportional constant is the empirical
Poisson's ratio. In effect, if V:= - d€r/dEa
and Vs = - £-/€a, then in elastic material
v.= vs . However, in triaxial compression
of sands the relationship of radial strain
to axial strain is nonlinear (2). To
represent this nonlinear condition one can
let vs=v. = D, where D is an empirical
constant representing the average
difference between vy andVv.. If£ D = 0 the
relationship is linear, and the
nonlinearity increases with the magnitude

of D. The definition Ys= - £r/€a gives
dve/d€a = (Er+€aV.)/e; = - D/Ea, also
since the volumetric strain Zv = &, + 2&r
we have Vs = ( €, -2,)/(2€a;, which shows
that dv,/d€s = -0.5d(e, /€,)/de,. Equating
the expressions for dv,/d€, gives the
expression d(ev/€a)/d€a = 2D/€s, which has
solution

€y = BEsa + 2DEsln€a (9)

where B is an integration constant. It
should be noted that xlnx approaches zero
as X approaches zero.

The relationship of volumetric strain
to axial strain under triaxial compression
for a medium dense sand at two different
confining pressures as obtained from
reference (2, pg. 177) is shown in Figure
(2a). The regression of equation (9) on
the data in thi- figure is shown as the
dashed lines. An excellent fit is observed
for each case.

The substitution of equation (9) into

equation (4) vields

Cg = Eo €Ea/(1-3BEa -28DEpline,) (10)

Letting 04 = Upand €s = €p at maximum stress,
we get BB = 1/& - E»/0y, - 28D1ln€,. Also,
setting d0s/d€s = 0 at maximum stress
gives 28D = -1/€p. The substitution of
these into equation (10) gives the
relationship

Op = €Eq /(af(€a) + bEs] (11)
where a = 1/E,, b = 1/0p, and
f(€a) = 1 + (€a/gy){1ln(€alEy) - 1) (12)

In soils with no distinct peak stress such
as loose sands and sands under high
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pressure €p approaches infinity. In this
case equation (12) gives f(€a) = 1, and

equation (11) reduces to the hyperbolic

model

Ga= €a/(a + bey) (13)

The excellent fit of equation (11) to the
stress-strain responses of a medium dense
sand at two different confining pressures
is shown in Figure (2b).

SHEAR LOADING

The shear strain in the element of
soil during shear loading is Y = 3u/3z.
Therefore, the substitution of equation
(3) into equation (6) gives

T=GoY/(1-B€g,) (14)




w“here
So = ATk /[2Vo(ltes )] (15)

ind the parameter 3 was added since the

tonaition € = 1 1s unattainable under
tonventional loads. Zvaluating dT/dY at
Y = € = O shows tnat G, is the initial

zangent shear modulus.

In elastic material under shear loading
he volumetric strain is proportional to
~he shear strain. This means that in
-lastic material dev/dY = €,/Y. In
zranular soils, nowever, this linear
relaction does not hold (6), To represent
“he nonlinear relationship between g, andy
p tat d€,,/dY - €¢/Y = C, where C is an
mpirical constant representing the
erage difference between the values
v/dY and &J/Y., This expression savs that

= vi{dev.,dy)-Cl.

w3
8 o

m <

£, Differentiating both
si1des o° this with respect to Y gives
i-e,, dY"~ C/Y, wnich has solution

Sv= B.Y + LYInY (16)
wnere 3+ 1s an integration constant,
Substituting equation (16) into
2quation (14) and letting T =Ttyand Y =Yp
at peak stress gives the first constant as

3B;= 1/Yp - Go/Tp - BClnYp. Further,
setting d7/dY = 0 at peak stress gives the
constant 8C = - 1/Y,. The substitution of

these i1nto equation (l4) gives the
eaxpression

T= Y/[af(Y) + bY] (17)
where a = 1/Go, b = 1/Tp, and
(Y)Y = 1+ (Y/Y¥)[1n(Y/Yp) - 1] (18)

“or soils with no distinct peak stress we
Jave the condition Yp = and equation (18)
gives £(Y) = 1. In this case equation (17)
reduces to the hyperbolic model.

The direct shear experimental data for
the change in sample thickness, t, with
respect to shearing displacement, s, for a
sand in a loose and a dense state as
presented by Sutton (6, pg. 99), are shown
in Figure (3a). The corresponding shesar
stress versus displacement data for this
sand is shown in Figure (3b). The sand was
tested under drained conditions and a
constant normal stress of 150 kN/m?2 was
applied by the piston in both tests. In
the direct shear test the change in sample
thickness t is proportional to the
volumetric strain €, and the shearing
displacement s is proportional to the
shear strain Y. Therefore, the
relationship of t to 8 is of the same form
as equation (16). That is

= = Bys + Cyslns (19)
~here 3. and C; are constants. Also, the
relationsnip of T to s is of the same form
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Fig. 3. Direct Shear loading
as equations (17) and (18), or
T = s/laf(s) + bys] (20)
and
£(s) = 1 + (s/sp)[1ln(s/sp) - 1] (21)

where s, is the displacement at peak
stress, and a, and b, are constants.

The regression of equation (19) on the
data of Figure (3a) are shown as the
dashed lizes of the figure. Also the
regression of equation (20) on the data of
Figure (3b) are shown as the dashed lines

on that figure. In each case the fit is
excellent,




SUMMARY

Based on the assumption that the
stress-strain behavior of granular media
is controlled by the displacements of
individual particles rather than particle
compression a general stress-strain model
for granular material is derived. This
model says that for both axial and shear
loading the stress is proportional to
"strain/(1-8€) ], where the proportional
constant 1s the initial modulus of the
soil and 8 is a constant. For one
iimensional and isotropic loading
conditions the volumetric strain €, is
proportional to the axial strain. For
triaxial and shear loading conditions
nonlinear relationships of €vto the axial
strain and & to the shear strain are
developed. It is shown that the model can
be used for soils that show distinct peak
stresses wnen under triaxial and shear
oading, and that it reduces to the
dyperbolic model for soils that shows no
distinct peak stress.
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