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PREFACE

This report was prepared by The BDM Corporation, 7915 Jones Branch
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Air Force Office of Scientific Research, Boiling Air Force Base,
Washington. D. C. 20332-6448.
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February 15, 1989. AFOSR Program Manager was Major Steven Boyce, USAF.

This report has been reviewed by the Public Affairs Office (PA) and
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nationals.
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ISECTION I

!NTRODUCTIONI
A. OBJECTIVES

The objective of this research is to develop basic theories that

can be used to predict rutting in flexible pavements with granular

layers. The approach taken in this research is to treat the granular

material as particulate in nature and in this way provide a more

rational model than conventional theory that treats the particulate

material as a continuum. It takes a premise that the major reason for

the inability of conventional elastic or elasto-plastic theories to

model granular soil behavior is the fact that these soils consist of

3 randomly-arranged, irregularly-shaped discrete particles that are free

to displace relative to each other. It assumes that the mechanism

responsible for the deformation of the material subject to induced

loading is not caused so much by deformation of individual particles as

by relative movements of the more mobile particles forming a denser

state.

In linear and nonlinear continuum theory an equation ensuring the

3existence of the second derivatives of strains throughout the media is

introduced. This equation, through constitutive relations, is combined

3with the equilibrium equations for stresses to provide problem solution.

One inaccuracy in using this theory to model the behavior of granular

material is the inappropriateness of this strain requirement. This

requirement inevitably results in the prediction of horizontal tensile

stresses when the granular media is subjected to inclined loads. It

will also predict stresses if the granular media is subjected to purely

horizontal surface loads, an unrealistic condition since cohesionless

Smaterial will provide no resistance to these loads. This is the reason

why the continuing development of sophisticated nonlinear empirical

3 equations to model the experimentally-observed stress-strain relations

of the soil does not greatly improve the continuum mechanics prediction.

3Khedr (1985) observed that even finite element methods using elasto-

I
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I plastic theory predicts unrealistic radial pressure because they

characterize the granular layer as a continuum.

f In the particulate theory developed here the requirement for the

existence of the second derivatives of strains in the granular media is

replaced by a stress continuity equation that guarantees stress transfer

between particles through their contacts. This continuity equation is

derived from two points of view, namely: (1) from the assumption that

deformation is caused by particle movements rather than particle

compression; and (2) that in the definition of stress and strain, any

representative element of soil must be composed of particles and voids.

In this way, the elemental volume of soil cannot be made to approach

3 zero but must, instead, approach a finite minimal volume with enough

particles such that the particle movements produce strain. The

combination of this continuity equation with the equilibrium equation

allows the determination of all the components of stress. In addition,

the particulate theory results in a stress-strain response model unique

for granular soils.

The specific objectives of this research are to:

3 (1) Develop a particulate theory to predict stress transfer

through granular material subjected to inclined loads,

3 (2) Extend the particulate theory to predict the stress-strain

response under static loading;

(3) Use the particulate theory to predict strain accumulation

under repeated loading: and

(4) Combine the results of objectives (1), (2), and (3) to

predict rutting in multilayered, flexible pavements with a granular

I layer.

B. BACKGROUND

Flexible pavement design requires the ability to predict pavement

3 performance. One of the major indicators of pavement performance is the

distress caused by rutting. This rutting is the accumulation of

permanent settlement with traffic application, and for flexible

32
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pavements it occurs in all inelastic components of the pavement.

Rutting will eventually result in a reauction of pavement serviceability

3 due to loss in riding comfort and may also lead to nydroplaning and

icing due to the collection of the water in the deformations. As a

3 result. any rational methoo of predicting rutting in flexible pavement

must De aoie to model coth the stress transfer mechanism and the stress-

strain characteristics of eacn layer. It must also be able to combine

the behavior of each layer 'n the way that it contributes to the overall

performance of the pavement.

It is common practice in pavement design to assume stress

distribution using the multiple elastic layers theory because of the

relative ease at whic1 solutions may be obtained (Monismith and Finn,

1977; Monismith, Finn. and Epps, 1986). The derived stresses which are

based on linear stress-strain relationships that acknowledge no strain

accumulation are next used with empirical or elasto-plastic nonlinear

stress-strain relationships to predict strain and strain accumulation

with repeated loading. However, experimental data show that the

response of soil, and especially granular materials, depends strongly on

3 the state of stress. Therefore, it is essential to know the correct

stress conditions in the flexible pavements before strain accumulation

3 can be rationally predicted. Most of the research in the last decade

has concentrated on developing stress prediction that includes the

nonlinearity of the stress-strain relationship of granular material.

This usually takes the form of empirically relating the resilient

modulus, defined as the ratio of the repeated deviator stress to theII
recoverable strain, to the sum of the principal stresses. Besides

requiring complex finite element solutions, this model has serious

limitations. More complex and sophisticated models giving better

descriptions of resilient response do not greatly improve the prediction

3 (Uzan, 1985; Brown and Pappin. 1981).

It is very difficult to accurately predict rutting in flexible

3 pavement because the granular layer is the most important load-carrying

component of the pavement. To adequately design flexible pavements, an

3 accurate understanding of the behavior of granular material is

1 3I
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I necessary. This is more essential now than ever since existing

pavements and future pavements are expected to accommodate heavier and

heavier loads. This material consists of discrete particles, and it

deforms as the result of particle movements rather than particle

aeformation. Experimental evidence aDounds (Haggarty, 1963; Morgan and

Gerrard, 1971) for the inaDlity of classical elastic or inelastic

g continuum mecnanicc to precict granular materials behavior under load.

Tne main reason for this is tnat even the most sophisticated of these

soluQ tions requires the secona aerivatives of strains to exist at all

points in the granular media. This requirement is unrealistic as voids

always exist in the material. and the aeformations are the result of

I discrete particle displacements.

An alternative approach to stress distribution in granular

3 materials can also be found in the literature (Golden, 1984, 1986; Harr,

1977; Hill and Harr, 1982; Endley and Peyrot, 1977; Chikwendu and

U Alimba, 1979; Sergeev, 1969). This approach considers the discrete

nature of the soil and assumes that when a normal point force is applied

on the surface of an infinite half-space, the influence of this force

travels from particle to particle in a fashion analogous to a random

walk or continuous Markov process. The resulting equation is the

diffusion equation for vertical stresses. This approach ignores the

requirement for the existence ;f the second derivatives of strains and

3 requires knowledge of the diffusion coefficient, a material property.

The results of this approach show that it provides a better qualitative

fit to observed stress distributions in granular media and can be used

to predict the stresses in layered media if the diffusion coefficients

of the layers are known (Harr, 1977; Golden. 1984). The limitations of

this theory at this point are the description of the diffusion

coefficient and the role the constitutive nature of the material plays

1 in the stress diffusion.

Even from a conceptual viewpoint, any particulate theory is an

Simprovement over continuum models. As qranular soils are particulate in

nature, stresses are transmitted at particle contacts, and strains are

3 the result of particle movements rather than particle compression. The

I 4I
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I vertical stress distribution predicted by the stochastic theory for a

point load on the surface agrees with experimental results which show a

3 more bell-shaped stress distribution than the elastic prediction (Harr,

1977). Any particulate theory based on stress diffusion from a source

3 should give a bell-shaped distribution as this is the solution of the

diffusion equation for a point source. Further, with the requirement

for the specification of a material property in the form of the

diffusion coefficient, the stochastic theory shows that stress traisfer

is dependent on particle sizes, shapes, packing, load history. etc.

This is in opposition to the elastic theory which predicts the same

vertical stress at a given point in sand as it does in steel.U
C. SCOPE

This report presents a new approach to the prediction of rutting

in flexible pavements. It recognizes the prominent role played by the

granular layer in the stress distribution and strain accumulation in

flexible pavements and diverts from the conventional continuum approach

to modeling stresses in the layer. The methodology of the new approach

is as follows:

3 (1) The requirement for the existence of the second derivatives

of strains in the granular layer conventionally used in the

3 determination of stress is relaxed. It is replaced by a stress

continuity equation that provides for stress transfer between particles

through these contacts. This is developed assuming that deformation is

due primarily to particle movements;

(2) It is shown that the development of the stress continuity

equation is based on a nonlinear stress-strain relationship unique for

granular material. This relationship is derived by the particulate

5 approach and reduces to the hyperbolic model for soils that do not

exhibit a distinct peak stress;

1 (3) Knowledge of the nature of stress transfer and stress-strain

response in granular media is next incorporated into a theory for strain

3 accumulation with repetitive loading; and

35
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3 (4) In order to evaluate the ritting in a flexible pavement, the

particulate theory of stress transfer is extended to predict stresses in

5 multi-layered systems consisting of granular and elastic layers. In

this way. more accurate predictions of the stresses in the layers will

3 lead to more accurate predictions of rutting.

0. ORGANIZATION OF TECHNICAL REPORT

This technical report is divided into eight sections and an

3appendix. Section I is the introduction which outlines the objectives.

background and scope of the research. Section II investigates the

3 stress transfer mechanism in granular media. After a look at the

traditional methods, a new particulate approach to stress transfer is

introduced. Section III presents a particulate theory for stress-strain

response in granular materials. It addresses both the stress-strain

response due to static loading and permanent strain accumulation under

repeated loading. Section IV presents the validation of the theories

developed in Sections II and III using information found in the

l literature. Methods of determining the experimental constants

identified in the theories of Sections II and III are presented in

3 Section V. Section VI presents a method for predicting rutting in

flexible pavements with granular, layers. Section VII presents the

Conclusion and Recommendations, and Section VIII is the List ofII
References. Finally, a paper published from this work is presented in
an appendix.

16
I



I SECTION II

STRESS TRANSFER IN GRANULAR MATERIALS UNDER INCLINED LOADS

A. INTRODUCTION

5 Granular soils generally consist of randomly arranged.

irregularly-shaped, discrete particles that are free to displace

3 relative to each other. The deformation of this material under load is

not caused so much by deformation of individual particles as by relative

movement of the more mobile particles forming a denser state. As a

result, experiments have shown that deformation predicted by the theory

of elasticity is incorrect in magnitude and distribution (Turnbull,

Maxwell. and Ahlvin, 1961; Morgan and Gerrard, 1981). Really obvious

discrepancies between experiments and elastic predictions are that

horizontal tensile stresses are predicted under inclined loads and

stresses are predicted under purely horizontal surface loads. In

3actuality, tensile stresses cannot exist in cohesionless materials and

cohesionless materials will provide no resistance to purely horizontal

surface loads.

The main reason for the elastic theory's prediction of tensile

stresses in granular materials under inclined loads and the prediction

of stress transmission in granular material under purely horizontal

surface loading is the requirement for the second derivatives of strains

£ to exist at all points in the material. In elastic predictions, using

linear stress-strain relationships, this condition is combined with the

3 equilibrium equations to give the stresses in the media. Traditional

methods of improving the predictions of stresses in granular methods

introduce more realistic nonlinear stress-strain behavior. However, the

requirement for the existence of the second derivatives of strains at

all points in the media is still imposed. It seems unlikely that these

methods of improving the prediction of stresses in granular material can

avoid the condition of predicting tensile horizontal stresses under

3inclined load or the transmission of stresses under purely horizontal

loads.

7I
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3 An alternative approach to stress distribution in granular media

that does not require the existence of the second derijatives of strains

3 at all points but on stress transfer through particle contacts can be

found in References 10 and 13. Their approach assumes that the

influence of a surface force travels from particle to particle in a

fashion analogous to a continuous Markov process. The resulting

equation is the diffusion equation for vertical stresses. However,

there is no constitutive relationship identified in the stochastic

approach (Reference 10).

3 In this section, the stress transfer mechanism for an inclined

load on a granular material is developed by recognizing that particles

* are of finite size and that stress and strain cannot be defined at a

point in granular material but only with respect to some finite volume.

It is shown that this approach, although entirely deterministic, leads

to the diffusion equation of the stochastic approach. More importantly,

it shows that there is a built-in nonlinear stress-strain relationship.

The approach avoids the requirement for the existence of the second

derivatives of strains and avoids the prediction of tensile stresses in

3 granular soils and the prediction of stresses under purely horizontal

surface loads.

B. TRADITIONAL APPROACH TO STRESS DISTRIBUTION IN GRANULAR MEDIA

* The solution of stresses in any body is obtained by solving the

equations of equilibrium. In two dimensions, neglecting the weight of

3 the soil, these equilibrium equations are

aaX a~zx
- + - = 0 (I)iax az

aaz ax z
a+ n = 0 (2)

I and

Txz = Tzx (3)

8
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where az and ox are the normal stresses on the element in the vertical

and horizontal directions, respectively; and rxz and rzx are the

3 vertical and horizontal shear stresses. Since these are only three

equations for tne four unknown stresses, a fourth equation is necessary

3 for tne solution of the stresses. Traditionally, this fourth equation

is supplied by assuming the existence of the second derivatives of

strains at all points in the granular media. This requirement results

in the compatibility equation (Timoshenko, 1951)

3 a2 2z a2y (4)

ax z2 ' axz

where ex and ez are axial strains and y is the shear strain. The

stresses and strains are then related by an appropriate constitutive

relationship. For the special case of linear elastic assumption.

closed-form solutions for the stresses are available. These, however,

fail to appropriately model the observed conditions in granular media

(Morgan and Gerrard, 1981). With the use of empirical stress-strain

5 models, such as the hyperbolic model, intense numerical modeling is

necessary. The complexity of solution and the assumption of the

3 existence of the second derivatives of strains at all points in the

media are the limitations of the approach.

B C. NEW APPROACH TO STRESS DISTRIBUTION IN GRANULAR MEDIA

* The new approach considers any representative element of soil of

volume dxdydz to be composed of particles and must satisfy the

3 equilibrium equations. However, rather than assuming the existence of

the second derivatives of strains to exist at all points in the granular

3 media, the particulate nature of soil deformation is examined to develop

the additional equations necessary for solution of the stresses.

Since any representative element of soil must be composed of

particles and voids, its volume dxdydz cannot be made to approach zero

but must approach a finite limiting volume, say ijh. with enough

I
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particles so that the relative movements of particles in ijh caused by

forces on these particles produce strain. If w is the average change in

3 rtical displacement of particles in the element, then the vertical

strain in the element is

I z = lim w/dz = w/h

dZ1h 
(5)

Also, if F is the vertical component of force on a horizontal plane

I through the element, then the vertical stress is

az = lim F/(dxdy) = F/(ij) (6)

dy-4j

3 This is analogous to the continuum definition where ijh approaches a

point of zero volume on a macroscopic scale but is composed of discrete

* atoms at a microscopic level.

For simplicity, a microscopic stiffness coefficient k is

3 introduced to represent the average resistance of particles to movement

in the z direction such that the vertical component of force on a

particle in ijh is kw. The magnitude of k depends on the packing, the

roughness of the particles, and the confining pressure. The vertical

force in ijh is F = Nkw, where N is the number of particles in ijh. The

I vertical stress in ijh is

Nkw Nkh z
z :Z(j'-- (ij) (7)

3 Since ijh is the smallest possible volume of soil that can be used for

the definition of stress and strain, it serves as a control volume

3 analogous to a point in a continuum and particles enter and leave ijh as

deformation takes place. This means that N varies with deformation, and

Equation (7) is nonlinear. This can easily be seen as N = ijh/[Vp(l+e)],

where Vp is the average volume of a particle and e is the void ratio;

1
3 10
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I and by definition, the volumetric strain is related to the void ratio as

Ev = (eo - e)/(1+eo), where eois the initial void ratio. Therefore

N ijh(8

[Vp (1 + eo) (I -jh (8)

Consider two elements of soil adjacent to each other but separated

3 by a surface dydz in the yz plane as shown in Figure 1. Element 1 with

center at location x has particles with average change in vertical

3 displacement w, and the element with center at x+dx has average change

,n vertical displacement w+(@w/Ix)dx. The vertical force at the right

face of element 1 is F1 = Nlkw, and the vertical force at the left face

of element 2 is F2 = N2 k [w+(aw/ax)dx] where Ni is the number of

particles at the right face of element 1 and N2 is the number of

particles at the left face of element 2. The vertical shear stress at

the interface between the elements is (FI F2)/(dydz), or

[(NI - N2 ) kw N2ik] W

3xz I (jh) (9)

3 From Equation (7), the derivative is

aw = a oz (10ax ax Nk

3 The substitution of Equations (7) and (10) into Equation (9) gives

aaz

t xz = baz - (11)

i where

b = N1 - N2 i , 2 k _a (2-)_12
i b = N h N2jh 3x ( N(2

i and

1 11
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(1) (2)

Idy

'lz
£

I
I x+dx

I

Figure 1. Adjacent Soil Elements.
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1 N2i2D = -- (13)

It can be noted at once that in the case of a normal load changes

3 of i. j, and N with x can be assumed small; hence N1 = N2 and Equation

(12) gives b = 0. However, if there is an x component of the load,

3 lateral changes of N with x may not be neglected.

1. Two Dimensions

The substitution of Equation (11) into Equation (2) gives

the diffusion equation

I aaZ ( a z -(bz) (14)

U Equation (14) is identical to that of References 9 and 11,

however, here the diffusion coefficient is derived from the relationship

of stress to particle displacement. Equation (14) is nonlinear as D is

a variable that depends on the size ijh of the representative element of

3 soil; and this, in turn, depends on the magnitude of the particle

displacements or stress intensity. For small particle displacements, a

3 small volume of soil ijh may be used to adequately define stress and

strain while for large particle movements, a larger volume of soil is

needed to make these definitions. If the horizontal displacements are

small compared to the vertical, then ij can be treated as a constant and

h is seen to be decreasing away from the loaded area. In this case. 0

*increases with z and the absolute value of x. This is apparently the

same type of diffusion that occurs in elastic material, for it can

easily be shown by back substitution that with D = (x2 + z2)/(2z) and

b = qlD/(2 + qjx) where q1 is the ratio of horizontal to vertical

3 component of the load, Equation (14) gives the elastic solution for a

line load at the origin of coordinates.

If D and b are known, then with known boundary conditions

Equation (14) can be solved for the vertical stresses. The substitution

of Equation (11) into Equation (1) gives the normal horizontal stress as

3 13
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ax =x "(Daz) + (baz)dx (15)
x

I The boundary conditions ax = az = 0 at x = - gives

_ f -0 bazdx = 0. which is satisfied only if b is a constant. Also

3 from Equation (11) at x = 0 and z = 0 it is known that az/ax -0.

Oz = the vertical load, and txz = the horizontal load: hence b = qj.

5 Therefore, Equations (11) and (15) become

~az

xz= qlaz - D-" (16)

I and

O ax =-(Daz) + q1 Ix (17)

2. Three Dimensions

In three dimensions, the equilibrium equations are

a + 0 0 (18)
ax Dy az

-- +  y =0 (19)
ax ay a

I kxz + yz + ay 0 (20)ax ay az

Txy =,Tyx. Tyz = zy, Txz = rzx (21)

I Development similar to that in the derivation of Equation (11) says that

changes in vertical particle displacement across the xz plane produce

1
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TxZ =  bxz5z - Oxz ax (22)

I and changes in vertical particle displacement across the yz plane

i produce

tyz = byzaz - DyZ (23)

In like manner, the shear stress -Ty is created by changes in particle

displacement in the y direction across the xy plane which leads to

I oz
Txy Dxyaz - Dxya" (24)

3 The subscripts on b and D refer to b and D in the respective planes.

If the inclined load has X and Z components only, then3bxz q1 , byz = 0. and bxy = 0. Substituting this into Equation (20)

gives the three-dimensional diffusion equation

aaz_ ( aa Z'\a 3a
I DXz + a (Dz - q1 a (25)

I
Hence, in theory, Equations (18) through (25) can be solved for all of

3 the stresses.

I 0. SOLUTION FOR STRESSES UNDER INCLINED LOADS

1. Two Dimensional

The nature of D in Equation (13) is unknown; however, as

stated above, for the two dimensional case D is a function of i and h5 where i and h are the horizontal and vertical components of the

representative element of soil. The magnitudes of i and h depend on the

3 magnitudes of the particle displacements in the x and z directions,

respectively. Directly under the center of the load i and h vary with

3 depth only. This means that in the region under the load D can be
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approximated by D(z), a function of z only. In this case, one can make

the transformationU
W(z) = Z D(z)dz (26)

and the solution of Equation (14) for a line load with vertical

component Pand horizontal component qjP is

oz = [4iW(z)]' 2 exp 4W(z) 2 (27)

I The shear stress can then be found from Equation (16) as

STzx (x-qlz)D(z) (28)
zx=lq + 2W(z-) c z  (8

The horizontal stress can also be solved from Equation (17) as

ax = {0(z) D2(z) + D2 (z) x -qlz + 2qW(z) 2} (29)

2W(z) 4W2 (z) D(z)

3 where

O'(z) = a(z) (30)

One remarkable property noted by Golden (1984) is that, although

nonrealistic horizontal tensile stresses are predicted by elastic theory

if horizontal forces are present, they can be avoided by this theory if

I D(z) is such that D'(z) > D2(z)/2W(z). Another observation is that for

a purely horizontal force the elastic theory predicts stresses in

* granular material, while in these equations predict zero stresses.

1
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3 2. Three Dimensions

In three dimensions with Dz = Dyz = 0, the solution of

Equation (25) for a point load witn vertical component Qand horizontal

component Qqj in the x direction is

(Tz a[x-qlz) 2 +Y 2] (31
4QWz exp {- L~z i1(31)

z 4W(z) ex4W(z)

I
It can also be shown (Golden, 1986) that without knowledge

3 of Dxy, the other stresses can be described in terms of az by the

following equations

Txz = q az - D- (32)

I aaz

tyz = -D-- (33)

txy = q, D a + D2 a Z (34)

=1 aa (34)ax : q 2  - 2qD x'+  D' + D2 z (35)

3 and

F, 2 a21y [D+ D2 _ (Y

I D'= ;' 2 (36)

3 where D' is described in Equation (30).

I
I
I
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USECTION III

STRAIN ACCUMULATION IN GRANULAR MATERIALS

UNDER STATIC AND REPEATED LOADS

A, INTRODUCTION

The stress-strain behavior of granular soils is created primarily

b. individual particle movements to form a denser matrix rather than

elastic compression of the particles. As a result, the experimental

curve is always nonlinear and depends on the loading conditions. In

general, the shape of the stress-strain curve is concave towards the

3strain axis in triaxial compression, and concave towards the stress axis

in one dimensional (uniaxial strain) and isotropic compression.

Further, it is noted that in triaxial conditions some sands show a
distinct peak stress while others do not. As a result, it is difficult

to model the behavior of this material by conventional elasto-plastic

theories, and recourse is usually taken to empirical methods like the

hyperbolic model for matching triaxial test results with no distinct

peak stress (Desai and Siriwardane. 1984) or numerical curve fitting

techniques (Desdi, 1971).

In this section. traditional approaches to stress-strain modeling

in granular media is identified and a new, more rational, approach is

3 introduced. This new approach is particulate and is in agreement with

the stress transmission theory of the previous section. That is, the

deformation is considered to be the result of particle movement rather

than deformation of particles. The result is a general model that

derives the stress-strain response for one dimensional, isotropic, and

3triaxial loading conditions as special cases.

B. TRADITIONAL APPROACH TO STRESS-STRAIN MODELING OF GRANULAR
MATERIAL

I The experimentally-observed stress-strain curves of granular soils

are always nonlinear. The shape of the curve also differs based on the
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I boundary conditions imposed in the radial directions. As a result,

traditional elastic and elasto-plastic theories have failed to

adequately model the behavior of this material. So far, no general

model exists that accounts for all imposed boundary conditions and

3 traditional methods consist of applying curve-fitting techniques to

curves obtained under specific conditions.

Of primary importance in settlement calculations is the need to

model the triaxial compression condition. One simple empirical method

p-oposed by Konder and Zelasko (1963) is the widely-used hyperbolic

mooel. This model appears to be a natural fit to soils that do not

exnibi4t a distinct peak stress. For soils that exhibit a distinct peak

3 stress, a modification of the Ramberg-Osgood empirical model used for

dynamic loading is proposed for static conditions (Desai and

Siriwardane, 1984). This is based on fitting a curve to the initial

tangent modulus, the modulus of the plastic zone, the yield stress, and

I a parameter defining the order of the curve. For order one, this curve

Decomes a hyperbola. One other approach suggested is to treat the

tangent shear modulus and tangent bulk modulus as variables. These are

usually taken as linear functions of the octahedral normal and shear

stresses (Nelson and Barron, 1971).

The difficulty in modeling the nonlinear stress-strain behavior of

sand under load has led many investigators to propose numerical curve-

3 fitting techniques. One of the most popular of these is the piecewise

linear method. Here, the nonlinear, experimental curve is divided into

3 pieces of linear elastic sections for numerical analysis. Very often

these are the incremental Hooke's law or the hypoelastic law (Desai and

Wu, 1976). Another numerical method is the use of spline functions to

fit experimentally-observed curves. These are functions that use the

data to provide an analytic curve similar to the graphical process of

using a French curve (Desai, 1971). These also require intense

numerical procedures, and the data must be presented in a smooth form

3 and not scattered as observed experimentally.

I
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C. NEW APPROACH TO STRESS-STRAIN MODELING OF GRANULAR MATERIAL

1. General Theory

Granular media is composed of voids and particles.

Deformation is caused primarily by particle movements. As the particle

movements are discrete, their derivative at a point does not exist, and

the strain in this media cannot be defined at a point. Strain can only

be defined with respect to an elemental volume of soil with enough

particles so that the relative movements of the particles in the

elemental volume can produce deformation. Like the strain, the stress

in granular soils does not exist in a void and should not be described

at a point. The stress corresponding to the strain in the elemental

volume is the result of forces on the particles in the elemental volume

and, like the strain, can only be defined with respect to the elemental

volume. These definitions of strain and stress are given analytically

as Equations (5) and (6) of Section 11.

The substitution of Equation (5) into Equation (6) gave the

stress-strain relationship of Equation (7). Referring to the z
direction as the axial direction and letting subscript "a" refer to the

axial direction, the stress-strain relationship in the axial direction

as obtained from Equation (7) is

Nkh ea (37)

(ij)

where N is a function of the volumetric strain as shown in Equation (8).

The substitution of Equation (8) into Equation (37) gives the stress-

3strain relationship in the axial direction as

E0 ea 
38I a= (-~1 Ev) (38)

3where

1
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I h2 k (39)
[Vp (1+e,)]I

Here, 3 = i/evj and Lvi is the maximum value obtainable by ev. This

latter term was added since ev = I is unattainable under conventional

loads.

The derivative of Equation (38) gives the slope of the

stress-strain curve as

a a ( 1-i 3 v ) E 0  + E o5 F a d v

(ivEd=a (40)aca (l _pev)2

It is apparent from this that at La = Lv = 0. the slope is E0 .

Therefore, E0 is the initial tangent modulus of the soil, and knowledge

i of h and k is not necessary if E0 can be measured.

2. Application To One Dimensional And Isotropic Loading
Conditions

In one dimensional compression of soils no lateral strains

are allowed, and the volumetric strain is equal to the axial strain.

That is Lv = La and Lvl = LaL. where LaL is the asymptotic axial strain.

i Therefore, in this case, Equation (38) becomes

Ea Laiaa = ____ (41)

I EaL

I In isotropic loading conditions, the strains are equal in all

directions, Hence. ev = 3La and Lvj = 3EaL, and Equation (41) also

5 applies for this case.

I
I
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I It should be noted that Equation (41) can be written as

E 2La

aa = E0 (ea + - + .. (42)CaL

I
and

I eaL E0  2

2 [exp(2 Ea/EaL - 1) - i] = E0 (Ea + Ea/FaL + ) (43)

Therefore letting a = 2 /EaL and C = Eo/a, gives the alternate

expression

aa = C exp(aiEa) - C (44)

Equation (44) is the same as that derived by the hypoelastic analysis

for these loading conditions (Desai and Siriwardane. 1984).

3. Application To Triaxial Loading Conditions

In elastic material under triaxial compression the radial

strain, er, is proportional to the axial strain, and the proportional

3 constant, Poisson's ratio, is determined empirically. In effect, if vt

= -der/dea and vs = -Cr/Ca, then in elastic material vt = vs. However,

3 in triaxial compression of sands, the relationship of radial strain to

axial strain is nGnlinear. To represent this nonlinear condition one

can let v s -vt = D2. where D2is an empirical constant representing the

average difference between vs and vt. If D2 = 0 the relationship is

linear, and the nonlinearity increases as the magnitude of 02 increases.

The definition vs - -er/ea gives

dvs 2 02I" - (Er + Ea Vt/Ca) = (45)
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i Also since ev = ea+ 2er then Vs = (La - Ev)/( 2ca). which shows that

dvs d(ev/ea )
de= 0.5 a (46)

I Equating Equatic-s (45) and (46) gives d(Ev/Ea)/dPa = 2D2/ea. which has
i solution

Ev = B2ea + 2D2 alnea 
(47)

I where B2 is an integration constant. It should be noted that xlnx

approaches zero as x approaches zero. For example, (0.001)lnO.001 -

0.007 and (0.0001)lnO.0001 = -0.0009.

The substitution of Equation (47) into Equation (38) yields

Eo ea
aa = (1 - JB2Ea - 2 PD2aln~a) (48)

Letting aa = au and Ca = eu at maximum stress, Equation (48) gives

I3B2 = i/cu Eo/au - 23O21neu. Also setting daa/dea = 0 at maximum stress

given 23D2 = -1/eu. The substitution of these into Equation (48) yields

I the general relationship

(Ta = Ea(49)

la + a(ca/cu)lnea + bea

where a = 1/Eo and b = 1/au - (l+lneu)/(Eoeu). In soils with no distinct

peak stress such as loose sands and sands under high pressure. Eu

approaches infinity, therefore. Equation (49) reduces to the hyperbolic

model

a= (a +bea) (50)

where a = 1/Eo and b = /au.
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I The constants 82 and 02 in Equation (47) can also be evaluated in

terms of the values at maximum volumetric strain. If ea = F0 at

dev/dea = 0, then 62 = -2D2(1+inea). Also, since at ea = eo the

volumetric strain ev - evm, the maximum volumetric strain, Equation (47)

I becomes

iv = Ea(Lvm/Eo) [1 + In (Eo/La)] (51)

This equation shows that ev = 0 at the two points ea = 0 and ea el.

3 The value of el is obtained from Equation (51) as el = 2.718o. Further,

comparison of these values of B2 and D2 with those found in

3 Equation (48) gives P = EoI(euevm) and Lu satisfying Eo~u - Ouln(eu/o).

D. PERMANENT AXIAL STRAIN ACCUMULATION IN GRANULAR MATERIALS

1. Static Loading

Equation (49) gives the axial stress-strain relationship

under triaxial conditions. In this equation. ea is the total strain

I accumulated under the static stress increment Ca. Upon removal of the

load, the soil rebounds. The amount of rebound is the elastic portion

I of the total strain and can be written as

e 1 (52)I a =Er -a

3 where Er is the resilient modulus of the soil. The permanent strain

accumulated due to one application of 0 a is

P e 1_ <a 1

3 P - ea = 0 = Eoaa - ra (53)

where h(Oa) is obtained from Equation (49) by solving for La in terms of

1a8 . For the hyperbolic case it is obtained from Equation (50) as

h(aa) = aaa/(1-baa). Equation (33) may be written in the more compact

form:
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i Ip i-- f(Ca )  (54)

a Eo

where

f(aa) = h(Ca) klaa (55)

I and k, = Eo/Er.

2. Repeated Loading

At every load application there is some readjustment of the

grains in a soil sample. This rearrangement becomes less pronounced as

* the number of load applications increases because the soil becomes more

packed. Therefore, the rate of change of initial stiffness at any load

5 application depends on the particle arrangement (or on the stiffness) at

that load application and decreases with increasing load applications.

3 The simplest way to represent this behavior is by a power function

dEoi -
di - =  KEoi (56)

3 where Eoi is the initial target modulus at the ith cycle of loading, KI

is a proportional constant, and n is a parameter reflecting the

3 dependence of the rate of change of Eoi on Eoi. The solution of

Equation (56) gives

n+ln EoiK1 i = J EidEOi = + Aj (57)

where Aj is an integration constant. Solving for Eoi gives*
Eoi = [Ai + B]m  (58)I

where

I
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A= (n+l)Kl, B = -Al(n+1), m =(59)
n+I

The permanent strain due cycle i is then obtained from

Equation (54) as

P i

ai = Eoi fi(aa) (60)

where fi(aa) is the relation defined by Equation (55) for the ith load

application.

The permanent strain accumulated in N cycles is then

5aN = JN fi(aa) [Ai + B]-m di (61)

For soils where the hyperbolic model presents a good fit, it can be

shown that fi(aa) = f((a) if aa is constant, that is. it is independent

3 of load cycle. This is because for these soils, the assymptotic stress

au and the ratio k, = Eo/Er are fairly constant during load

applications. For this case, fi(aa) can be taken out of the integral,

and the result of the integration of Equation (61) depends on whether m

is equal to one or not.

a. Case Where m = I

In this case, n = 0 or the change of Eoi where load

application is constant. In this case. Equation (61) becomes

aP {N di f(aa)F-aN = f(aa) A-T - =  In N + In ( 2

I From Equation (59) for n = 0. it is seen that B/A = -A1 /Kl. and from

Equation (57) for i = 1 and i = 2, one finds K1 = E02 - E01 and

Al = E0 - 2Eo. This means that

I
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I 2Eo1  Eo

A Eo2 - E0 2 (63)

i In general, E02 is greater than E0 1; hence B/A is small compared to N.

This means that as an approximation, the permanent axial strain

accumulated is obtained from Equation (62) as

P
EaN = al + b, in N (64)

Where bj = f(aa)/A and al = (1/A)f(aa)ln(B/A) are constants. It is also

seen from Equation (64) that al = cal as defined in Equation (60).

I Equation (64) is that proposed by Lentz and Baladi (1981) based on its

goodness of fit to their experimental data.

I b. Case Where m * 1

In this case. Equation (61) becomes

iN _ _ Al m f(aa) lmB 6l

5 aN = f(aa){ [Ai + B]-m di = 1m A] (65)

Again from Equation (59) it is seen that B/A = -A1 /Kl. and from

Equation (57), that (n+l)K1 = En I - Enland (n+l)AI En 1 - 2 Et I

From this. B/A is obtained as

B _n+1- E n+1 (66)

I Since E02 is greater than E01, it is seen that B/A is

i small compared to N, and Equation (65) can be approximated by

P
eaN- = B1 N m  

(67)

I
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3 where B1 = Al-mf(aa)/(l-m). This equation is the same as that suggested

by Khedr (1986) and Diyaljee and Raymond (1982) based on their

3 experimental work. It should also be noted that from Equation (67)

B1 = Eal as defined in Equation (60).

1 E. PERMANENT RADIAL STRAIN ACCUMULATION IN GRANULAR MATERIALS

The total radial strain during static loading is Er = (Ev - a)/2

where ev is given by Equation (51). The elastic radial strain is

e e v
er VEa -E aa (68)

where vis the elastic Poisson ratio during unloading. This means that

I the permanent radial strain is

Er "F r - Er (69)

i The cumulative radial strain for N cycles of loading is then

I N = fN ev 1 n /a) ai v }

ErN e ai [1- n(e/e ) I E 2-+-aa di (70)

I whereI1
Eai = 1- h(Ga) (71)

U and Eoi is given by Equation (58). The integration presented by

Equation (70) is clumsy. An approximate more straightforward estimate

can be evaluated using the formula presented by Chang and Whitman

(1988). In their evaluation, they found that

2
I
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M2 M2 ,1 
(72)eP 2T1

where aP + 2 r is the permanent volumetric strain, y= 2 / 3 (a-er

w a r I ar

is the permanent shear strain. Also, M is the ratio of mean and

deviatoric stress at Ea = Eo. that is at minimum volumetric strain, and

il is the ratio of mean and deviatoric stress at Ea = 0. or at the start

of loading. The mean stress is (Ca 2ar)/3, and the deviatoric stress

3 is (a - Tr. From Equation (72), the permanent radial strain can be

solved in terms of the permanent axial strain as

Ip =M2 - 1 - 371 P (3

r M2 - 12 + 61(73)I
The permanent radial strain accumulated after N cycles is

p M2- - l3I pNI ErN = M2 - 12 + 61(

where LaNP is the permanent axial strain accumulated after N cycles as

given in Equation (64) or (67).

I
I
I
I
I
I
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I SECTION IV

VALIDATION OF PARTIULATE THEORY FOR GRANULAR MATERIALI
A. INTRODUCTION

In this chapter, the assumptions made in the theory leading up to

the stress continuity equation of particulate media (Equation 11). the

constitutive equation of particulate media (Equation 38). and the strain

growth equation of particulate media (Equation 61) is verified. The

method of validation is by the comparison of these analytical

expressions with experimental observations found in the literature.

To validate the stress continuity concept for granular media, the

stresses predicted by the particulate theory developed in Section II is

3 evaluated against measured stresses in particulate media. The results

are further compared with the predictions of the linear elastic theory.

The stress-strain theory for granular media developed in Section III is

also compared with measured stress-strain data on granular media.

First, the stress-strain responses under static isotropic and static

triaxial compression are examined. Next, the theory on permanent strain

accumulation in granular material under repeated loading is compared

3 with experimental observations using different load magnitudes.

B. VALIDATION OF PARTICULATE THEORY OF STRESS TRANSFER

It was already shown in Section II that the particulate theory of

stress transfer in granular media does not predict horizontal tensile

stresses for inclined loads and predicts no stress transfer for purely

horizontal loads. These two phenomena are unique to granular material

and cannot be avoided by any theory that imposes the requirement for the

3 existence of the second derivatives of strains in the media. In this

section, the comparison of the theory for the prediction of vertical

* stresses under a loaded area with observed experimental results will be

made.

3
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Morgan and Gerrard (1981) presented experimental results of

several investigators on the stress distribution in sands under load.

5 Fairly complete information was obtainable from their report on the

results of the Waterways Experiment Station (WES) tests and the tests at

Melbourne University (MI and M2). These tests were performed using

uniform vertical loads (q) over circular areas of radius "a" and the

results included the distribution of vertical stress with depth directly

I under the center of the areas as shown in Figure 2.

Directly under the center of a circular area of radius "a". the

elastic solution predicts from a vertical uniform load q

Iz l= .[(a/z)2 + (]
-

75)

This is shown as the dashed line of Figure 2.

For a vertical uniform distributed load of intensity q over a

3 circular area of radius "a", with coordinate origin taken at the center

of the loaded area, Equation (31) gives

IZ a{ex [ (r2 + p2 -2rpcose) ] rdrdO(76)az~ ~~ = ()o E " 4W(z)

I
where p2 = x2 + y2. That is, in Equation (31) let q, = 0, replace 0 by

I qrdrdO, and employ the law of cosines (Figure 3). Directly under the

center of the area, p = 0, and the integration of Equation (76) gives

I z I.-exp { .a2/[4W(z)] } (77)
q

I Reference 11 showed that the assumption that D(z) is a linear

function of z satisfies all granular soil requirements. From

Equation (26), this means that W(z) can be expressed as

3 W(z) d + d2 ( ) (78)

I
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-- Elastic Prediction
-Regression of Equation (77)0, i (dl = 0.078, d2 = 0.217, r= 1.0)

2.5 x fill (dl = 0.032. d2 = 0.157, r= 0.99)
A WES (dI = 0.101, d2 = 0.057, r= 0.98)
r= Correlation Coefficient

3 z/a 3.0

I
I
I

Figure 2. Vertical Stress Below The Center Of A Uniformly-
Loaded Circular Area (Data From Reference 22).
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3 Figure 3. Location Of A Point P From Circular Loaded Area Of Radius A.
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The substitution of Equation (78) into Equation (77) gives the

3 transformed equation

- (a/z)2  d (a) (79)
41n(1-oz/q) = dz +

3 This equation is suitable for linear regression on the data of Figure 2.

This linear regression produced the solid lines in Figure 2. For each

3 soil the fit is remarkable, indicating that the form of Equation (78) is

appropriate for this type of loading. The regression revealed that

dl = 0.078, d2 = 0.217 for the M1 data, d, = 0.032, d2 = 0.157 for the

M2 data, and d, = 0.101, d2 = 0.057 for the WES data.

Figure 2 can also give an indication of the relative lateral

spread of the distribution. To do this, the approximate method of

analysis for vertical stress directly below the loaded area is

3 employed. This says for p = 0

az - q(na2) (80)
7 (a + ztan X)2

3 Where tan a is a measure of the magnitude lateral spread with depth. A

value of a = 30 degrees estimated from the theory of elasticity, is

3 usually assumed (Dunn. Anderson. and Kiefer, 1980). From Equation (80).

it is found that

I tan a Z(81)

3 The best fit value for the angle a from the data of Figure 2 is

a = 26.01 degrees for MI. a = 19.33 degrees for M11. a = 23.81 degrees

3 for WES and a = 29.31 degrees for the elastic prediction. The larger

angle of a for the elastic prediction indicates that the elastic

I
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i solution predicts a wider lateral spread of the vertical pressure

distribution. The method of compaction is seen to be a determining

5 factor in the spread, as the MI sand was identical to the il sand

except that the former was compacted by a vibrating plate and the latter

3 by pluvial compaction.

C. VALIDATION OF PARTICULATE THEORY OF STRESS-STRAIN RESPONSE

It was shown in Section III that Equation (38) is a general

expression for the relationship of axial stress to axial strain. For

the special conditions of one dimensional and isotropic compression,

3 this equation reduced to Equation (41) and, for the case of isotropic

compression, to Equation (49).

The validation of Equation (41) was made using data for isotropic

loading conditions on two samples of McCormic Ranch sand presented by

Desai and Siriwardane (1984, pg. 193) and shown in Figure 4. In both

cases, the regression of Equation (41) on the data revealed 99.9 percent

correlation. The regression curve is shown as the dashed lines in

I Figure 4.

The validation of Equation (49) was also made on data for a medium

3 dense sand presented by Desai and Siriwardane (1984. pg 177). The

measured stress-strain response of this sand at two different confining

3 pressures (a3) are shown in Figure 5. Again, the fit of the equation

was excellent and a regression of Equation (49) on the data revealed

correlation coefficients of 99.8 percent. The predicted curves are

shown as the dashed line in Figure 5.

Equation (49) is based on the nonlinear relationship of the

5 volumetric strain to the axial strain derived in Equation (47). This

equation was also evaluated using the volumetric versus axial strain

5 measurements of the sand in Figure 5 taken at the two confining

pressures. This data is shown in Figure 6. The regression of

Equation (47) on this data is shown as the dashed line in the figure.

The correlation coefficient was 99 percent for each case.

3
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? Equation (41)
E= 50,000 psi/

CaL = 0.0118 psi /

3800 4
Equation (41)

E0 44,248 psi
400,A faL = 0.0178

'040104 GData Points For Sample 48
-X Data Points For Sample 44
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Figure 4. Stress-Strain Behavior For Isotropic Loading

(Data From Reference 6, p193, I psi = 6.895 kPa).
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Figure 5. Stress-Strain Behavior For Triaxial Compression

(Data From Reference 6, p177).
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Figure 6. Relationship Of Volumetric And Axial Strains
(Data From Reference 6, p177).
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I
D. VALIDATION OF THE PARTICULATE THEORY OF STRAIN ACCUMULATION UNDER

REPEATED LOADING

3 The nature of strain accumulation in granular material is

presented in the general form of Equation (61). This equation is a

3 function of a parameter m that reflects not only the nature of the

material but also the magnitude of the applied load. To see this,

3 Equation (39) can be written as

h2k( 1-n0)
I Eo = Vpk - (82)

wnere no = eo/(1+eo) is the initial porosity of the soil. For small

loads, the soil compacts in fairly equal increments, and changes in the

porosity are of equal increments. From Equation (82). this means that

for small loads, the initial tangent modulus increases linearly with the

number of load applications. In this case, Equation (58) says that m is

close to unity and Equation (61) gives the semi-log relationship of

Equation (64). For large loads, the soil compacts in more uneven

5increments with larger increments occurring at the early cycles of

loading. This reveals the m in Equation (58) should be less than unity,

and Equation (61) becomes the log-log expression of Equation (67).

To validate Equations (64) and (67), data on permanent axial

strain accumulation with number of cycles of loading for five load

magnitudes on a Dolomite Ballast presented by Diyaljee and Raymond

(1982) were used. These experimental results are plotted on a log-log

I plot in Figure 7. In each case, Equation (67) represented a perfect

fit, with m = 0.87 for the four smaller loads and m = 0.80 for the

I largest load.

The logic behind Equation (64) can also be tested using the data

of Figure 7. To do this, the data are also plotted on a semi-log scale

as shown in Figure 8. The data with m closest to unity should plot more

linear than those with values of m furthest from unity. This is seen in

Figure 8 where the data with m = 0.87 also plotted a straight line on

I
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Figure 8. Semi-Log Plot Of Permanent Axial Strain Versus
Number Of Load Cycles (Data From Reference 7).
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i this semi-log scale. However, the case of the heaviest load, with

l m = 0.80. shows a distinct non-linear plot on the semi-log scale.

I
I
I
I
I
I
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I SECTION V

EVALUATI 1N OF MATERIAL PARAMETERS IN PARTICULATE THEORY

A. INTRODUCTION

In tce development of the stress distribution theory of Section II

aria t:e stress-strain and strain accumulation theories of Section III,

several material parameters were identified. These parameters are

5 material specific and, like Young's modulus and Poisson's ratio of the

theory of elasticity, are best evaluated from experimental observations.

However, it must first be determined if these parameters are also

functions of geometry and load. If they are, their dependence on these

quantities should be identified such that experimental procedures can be

scaled to observe only the material characteristics of the parameters.

In this section, the material parameters arising in the stress

I distribution theory, the stress-strain theory, and the strain

accumulation theory are examined and methods of determining them are

I discussed. In particular, their relationship to other parameters such

as depth in the soil, confining pressure and load intensity are

i identified.

B. MATERIAL CONSTANTS IN PARTICULATE THEORY OF STRESS TRANSFER

The theory of stress transfer in granular material presented in

3 Equation (14) depends on two constants 0 and b. It is shown in

Section II that b = ql, the ratio of the horizontal component to the

vertical component of the applied load. The parameter D is the

diffusion coefficient of the soil. In Equation (13) N2 is a fraction of

N; therefore D is dependent only cn the size of the elemental volume ijh

needed to adequately define stress and strain in the material. In

particular, D is proportional to the square of the horizontal component,

i 2 ,  and inversely proportional to the vertical component h. For small

particle displacement, a small volume ijk of soil may be used to

I adequately define stress and strain, while for large particle
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I
dispIacements , lr sme OT £ :eedea to make these

definitions. ;s a r'esu;:, :ne magnituoes J , ana h at a given

loca3tion are ce~erioet or ar.e stress veI a t r at location. It is

snown in Section IV anat .cf a vertical !oaa on a circular founoation of

r'adis "a" are coefficient D can De approximated by a linear function

of etn z as

I= IZ a' (83)

I ,re re 1 arc a2 are r:aten~a parameter s to be determined from

exper'imenas. Te inear reIationsnp f D to z is also observed by

I oI-e, K, 986 n and ill and hrarr .1971). Equation (83) indicates that

a2 is a tern reflecting tre counoary condition at z = 0, and d, is a

3 arameter rteflecting the ,ateral sorea o f the vertical stress

distribution.

I As shown in Section IV, both al and d2 are dependent on the method

of compaction of the granular soil. However', an accurate determination

of the stresses below the loaded area can be made if d, and d2 are

determined for that soil. Since both dI and d2 are material parameters,

this can be determined by laboratory tests for small-scale loads. The

linear nature of Equation (76) in terms of loads indicates that the

values of d, and dobtained in the laboratory can be used for field

I predictions. The determination of d, arnd 02 in the laboratory requires

the measurement of vertical pressure with depth directly below the

center of the loaded area as illustrated by Morgan and Gerrard (1981).

The values of d, and d2  are then evaluated by regression of

i Equation (79) on tne data.

C. MATERIAL CONSTANTS IN PARTICULATE THEORY OF STRESS-STRAIN RESPONSE

The general stress-strain response of particular media is given by

Equation (38). For one dimensional and isotropic loading, this reduces

to Equation (41) and for triaxial loading to Equation (49). Since the

triaxial condition is applicable directly to the rutting problem, the

I44
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, at re ,i :ne ctris s !r, a uation (49) is examined here.
I q'ati on <49) 'n C e r e,,',ri e n aS

£oeaIa = l ca/; n (e./cu (84)

1.vnere a = a/E is the strain Predicted at maximum stress if the

material was elastic and e, is tne strain observed at maximum stress.

This equation is hyperbolic if eu is infinite and is linear if Ce = Eu

and finite as in the elastic case. The three material parameters E0 ,

e, and Eu will be examineo separately in this section.

3 The initial soil modulus is developed in Equation (39) as a

function of tne particle size, initial void ratio, tne height h of the

minimal volume of granular soil necessary to determine stress and

s train, and a parameter k representing the average resistance of a

particle to movement in the z direction. The parameters h and k are not

easily determined. Fortunately, the initial modulus can be obtained

from the regression of Equations (49) or (84) on measured stress-strain

5data. As the magnitude of k depends on the roughness of the particles,

the packing, and the confining pressure, the dependence of the initial

3 soil modulus on the confining pressure is apparent from Equation (39).

This dependence as observed experimentally is usually expressed as

I (Seed, et al, 1986; Richart, Hall and Woods, 1970)

1/2
Eo = C1 1J3 (85)

where C1 is a constant and a3 is the confining pressure. Figure 9 shows

that the relationship holds for the medium dense sand presented by Desai

and Siriwardane (1984).

3 Figure 9 shows that C and Cu are also proportional to the square

root of the confining pressure. Since the confining pressure insitu is

I the product of the coefficient of earth pressure at rest, the effective

unit weight and the depth, the proportional relationships of E0 , au, and

3 Cu to the square root of the confining pressure allow extrapolation and
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[;:erpoiation using the experimental results of only one confining

cressure.

'ATERIAL CONSTANTS INI PARTICULATE THEORY OF STRAIN ACCUMULATION

The accumulation Of permanent stress after N cycles of load

-pp c tions 4s giver by Equation (67), arich for small values of n can

oeaproximated Dy Equation (64) 7n both equations, :he constant can

3 2e o;taineo Dy regression of ne equations on experimental data.

rnfor'tunateiy , nese constants are functions of the magnitude of the

)aopiieo Ioaa. In Equation (67) the constant BI is the permanent strain

accumulatec after the first application of the load and 1-m is the slope

3f .,e 'og-log transformation of the equation. in Equation (64), the
constant a1 is the permanent strain accumulated after the first

application of the load, and b, is the slope of the semi-log

relationship.

The permanent strain accumulated after the first application of

the !oad is given in Equation (53). However, in the deviation of
Equation (67), it was seen that B1 = Alrmf(Ca)/(l-m) where from

Equation (59) m = i/(n+1) and A = (n+1)KI, and from Equation (57) it is

seen that (n+1)KI = En+ 1- En These developments show that m satisfies

the relationship

E1/rn E I/rn 1/rn m(6
02 - 01 ) = 1 -m(6

The value of a, in Equation (64) is given by Equation (53). Also in the

deviation of Equation (64) it was seen that a, = (1/A)f(aa)ln(B/A) where

B/A is defined in Equation (63). This means that EOl(I/A)ln(B/A) = 1 or

3 b, = f(aa)iA becomes

I f (Ga)b, f/a 87)
Eolln - Eo2'\(87)

E~lyE 02 -E01
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in Equations i86 av r ues of L'2 uepenas on the magnitude of

I toe copi ej 0a 3S :;-S t >e evaIuatej -;rer toe removal of the first

oac ( up catior.

Al tnough :n' s section E -Fi nes the eeTooence of tne parameters of
Euqations ,67) ana (64) or tne 'oa, t may Le more expedient to
determine B, arc fT for" Ecuation (67) or" , a no D, for Equation (64) from

experimental ouservatiors on repeateo loarings. in this case, the

experiment must Oe made using toe vertical and confining stress expected

in the field. The vertical stress is predictable from stress transfer

theory as shown in Equation (76), and the confining pressure is the

product of the coefficient of earth pressure at rest, the effective unit

ieignt, and te depth.

I
I
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SECTION V

,RUTTING MIODEL F0R MULTILAYERED PAVEMENTS WITH PARTICULATE MATERIAL

A. INTRODUCT!ON

The Cesigns against r,:.rg are currently either empirical or

qas-eiastic. Tie empirical ?etnoo selects pavement thicknesses based

on correlations of excessive deformations to subgrade strength or to

satisfy an allowaDie value of the vertical subgrade strain. The

subgrade strengtn is usually taken as its California Bearing Ratio (CBR)

value or more recently recommended is its resilient modulus (Thompson,

1984). These methods cannot be used to predict the amount of

deformation present after load applications. The quasi-elastic method

I is more cirect and nas the capability of oDtaining cumulative

deformations. This approach uses elastic theory, either linear or

I nonlinear, to predict the expected stress state within the pavement.

The approach is termed "quasi-elastic" since it uses this predicted

elastic stress state to design laboratory tests to measure the

relationsnip of permanent strains to number of repeated load

applications.

In linear elastic analysis the pavement is assumed to be composed

of homogeneous, isotropic linear elastic layers that are infinite in the

horizontal extent. The loading is vertical and uniformly distributed on

a circular base with no surface shear. It is also assumed that there is

full continuity between the layers and within the layers. The main

limitation of this approach is that the aggregate base of the pavement

is not linear elastic. In nonlinear elastic analysis, the same

assumptions are made except that the elastic modulus of the granular

layer is described as a function of the stress state based on an

empirical curve that fits experimental results. This approach requires

complex numerical modeling, and, through its requirement for full

continuity between the layers and among the aggregate and voids,

violates the no tensile stress requirement of the aggregate.
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I Designs basea primarily on the stress transfer of layered linear

or nonlinear elastic tneor'y fail to evaluate the benefits of properly

graded and compacted granular material. In general, the method of

compaction and gradation of the granular material affects the nature of

:e stress aistribution in the material and if properly controlled can

oe used to increase the carrying capacity of the pavement by spreading

3 the loaa, thereby reducing stresses in the lower layers and decreasing

the stress concentration that causes rutting. It was already shown in

Section II that the particulate theory of stress transfer includes a

diffusion coefficient that is a function of the method of compaction and

gradation of the granular material. It is shown in this section how

tnis metnoa of stress transfer can De modified to Predict stresses in
ayerea .avements with particulate and elastic layers. The strain

7ccumulation theory of Section III is also extended to multiple layers

in order to predict rutting in the pavement.U
B. STRESS TRANSFER IN MULTILAYERED MEDIA

U Flexible pavements generally consist of a 2- to 8-inch asphalt

surface over a 12- to 36-inch granular base or subgrade. Therefore, it

is a three-layer system, with each layer transmitting stress in a

different manner due to the difference in the type of material. In this

section, the particulate stress transfer theory of Section II will be

modified to represent the condition of stress transfer through pavement

layers of varying properties.

The general expression for the vertical stress induced by an

inclined point load of vertical component 0 and horizontal component qiQ

in the X direction is given by Equation (31) and can be rewritten as

S0 {- p2 -2qx + q1
2

z 4nW(z) 4W(z) (88)I
where p2 = x2 + y2 .

I
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i Ta aetermine tne verticaI str'ess under an inclined uniform load q

on a circular area of raoius a" , Equation (88) can be modified by

replacing Q Dy qrdra, p Doy r-2 i)  2rpcoso ano x by x r cos ( +O)

where E tan - (yix). The final equation is

(z j- 27rt 'ae r' r2+p2-2rp cosO-2ojx-2qjrcos(Oi-)+q1
2z2 rdrdO (89)

I Z 4iW(z) J j J p Jo -4W(z) rr@(9

For the special case of a vertical load (q1=O), this equation can

be integrated over r to give

(~~) 27c a- + xa pacosol
az - e pL4Wwz 2W(z)] dO (0 '

Q -- ex p ( Te( -4W e p12 O 2/(z)
0' i - p2 cos2(3/W( z) J

3 For known values of "'" and W(z) tnis latter equation can be

easily integrated numerically at any value of p. Directly under the

center of the vertically loaded area (p=O), Equation (90) gives

az = q I- exp -a ] (91)

Equations (89), (90), and (91) present progressively simpler

cases. However, in each of these equations, all of the geometric and

material properties are contained in the function W(z). Therefore, the

determination of the stress distribution in layered media requires only

a modification of W(z) in that layer. Directly below the center of a

vertically-loaded circular area of radius "a" on granular material it
was shown in Section IV that W(z) = Wg(z), where Wg(z) refers to

granular layer and is given by

Wg(z) = dl z2 + d2az (92)

I
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Iere C1 afu are T aterii-scecific Constlarls reflecting the particle

Ssizes, ,acKr , afc previois 'jading. ,.n equivalent function, W(z), can

also e founci r" aterial- trat transmiL stress close to that predicted

oy elastic tr, eory. I, n , is case, setting Equation (77) equal to

Equatior, -35 ) c0ives ;4(z) = ( nz ,,,,ere

,ie( z) (93)

{6n[ a a)2lyee

In oroer to determine tre modification of W(z) in a multilayered

3 pavement, tne method presented by Golden (1984) is used. In this

method, 'Wi(z) represents the function W(z) for stress distribution in a

media composea only of the material in the itn layer, and the function

W(z) in Equation (89), (90). or (91) is taken as

IWI(Z) for z < hl

W(z) 2(z) - W2(h ) + W1(h1 ) for hl <__ z < h, + h? (94)

W3 (z) - W3(hl+h) + W2(h1 +h,) - W2(h I) + Wj(hl) for z L hl+h 2

3 where hi is the thickness of the ith layer.

The stress distribution in the asphalt layer is elastic in nature.

Therefore, the value of W(z) for flexible pavements is given by

Equation (93). The second layer of the pavement is the granular layer,

and the value of W2(z) is given by Equation (90). The third layer is

the subgrade. For cohesive subgrade it was observed that due to its

cohesive nature the elastic prediction of stresses is acceptable (Morgan

and Gerrard. 1981). In this case. Equation (93) gives W3(z). For sand

subgrade, the elastic solution is not acceptable (Morgan and Gerrard,

3 1981). and W3(z) is of the form of Equation (92). The vertical stress

on the subgrade (z = h, + h2 ) directly below the center of the loaded

area is found from Equation (91), where from Equation (94)

5
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a 2
W(z) = dj (n' - 2hh-) + d2 ah?+ (95)

* 6 [n +a ]a 24-1)

I The role played oy ,ne layer thicknesses and material constants on

cistributing the stress to the weaker subgrade layer is apparent from

3 :nis equation. From Equation (89) a larger W(z) translates into smaller

vertical stresses. Therefore. increases in all quantities hl, h2 , dl,

and d2 decrease the stress transferred to the weaker subgrade. However,

since parameters dl and a2 are functions of the gradation and compaction

of the granular layer, Equation (95) can De used to evaluate the

benefits of increased layer thicknesses versus increased compaction and

gradation.

C. RUTTING PREDICTION MODELI
The majority of research on subgrade and granular materials has

3 shown a log-log relationship of the permanent strain to the number of

load applications (Yoder and Witczak, 1974). This log-log relationship

was also derived theoretically for asphalt materials (Khedr, 1988) and

observed experimentally (Majidzadeh, Khedr, and El-Mojarrish, 1979).

This relationship is identical to Equation (67) derived for granular

I media with m not equal to one.

For granular material, it was also observed that for values of m

3 approaching one, Equation (64) becomes the more appropriate model. The

parameter, Bi in Equation (67) (and al in Equation (64)) is the

permanent deformation after the first cycle of loading and for granular

material is given by Equation (54). In this sense, Bis an explicit

function of the vertical stress at the point in question in the media.

The parameter m is also a function of the stress level, as shown in

Section V. Therefore, it is imperative that in the evaluation of BI and

I m that the correct stress be used.

I
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The :rneoreticaI resu-t of Section III and those of Khedr (1986)

indicate :nat at any oeptn z under tne loaded area the accumulated

permanent strain after N cycles is given cy

IP , l(G7)Sz= B(Gz)N (96)aN

I The carameters B( c; and m(G7 ) are functions of the vertical

stress ano material characteristics. If subscripts a, g, and s refer to

the aspralt layer, granular layer-, and subgrade, then the permanent

depression the flexible Pavement after, N cycles is

6N I 3aGz) Na -z+ 3Bg(Gz) NZ Jz+- Bs(az) NMS(GZ)dz (97)
jht f h l+h 2

Equation (97) is the general prediction model. Although it is possible
to express the B(az) parameters as continuous known functions of z, this

is not possible for the m(az) parameters. This is illustrated in

Section V for the granular layer and in Khedr (1986) for the asphalt

layer. As a result, the integrals of Equation (97) must be replaced by

summations, and the pavement divided into discrete sections of magnitude
Az. The values of B(az) and m(az) are then evaluated using the stress

3 expected in the center of each section. Further, although it is shown
in iec ;, .' Tht t i: penst oe to express B(oz) and m(az) in terms of

other material parameters, it is more efficient to determine these

parameters directly from repeated load tests using linear regression on

the log-log transformation of the measured values of cn and N. This

method concentrates on the evaluation of only two parameters B and m per

laboratory test. However, it is imperative that the stress state

5 expected in the field be used to perform the laboratory test. As an

improvement over the use of stresses determined from elastic theory, the

I values of B(az) and m(cz) should be evaluated using the stress predicted

by the multilayered theory described above. A simple closed-form

5 description of the vertical stress to be applied to the laboratory
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Ssam l s provi ea cy tne ccm inat-ion if Ecuations (91) and (94) where

I ) .10 z3 zI i Jre ,escfr .e ,e c E u aj io (91) and W2 (z) by

-qua:ion (92).

I
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ISECTION VII

I CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSTOn,S

The report 's objecti ve i s to present the results of research

investigating ratting in flexible pavements from a perspective whereby

the granular layer, is treated as particulate rather than a continuum.

it snows that tre stress transfer in the granular layer can be derived

without the assumption of the existence of the second derivation of

strains. This assumption is generally used for both linear and

nonlinear elastic stress analysis. However', in the granular layer, the

particles are ciscrete arid ceformation is tne result of discrete

I Particle motion rather than continuous particle compression.

From the results of the report, the following conclusions can be
I drawn:

d A particulate definition of stress and strain in granular

media is necessary in order to adequately model the behavior of the

granular layer in flexible pavements. This definition is necessary

since stresses are transferred only at particle contacts and not through

the voids in the material, and strains are the result of particle

movements rather than particle compression.

I The particulate definition of stress and strain allows the

development of a stress continuity relationship which when combined with

3 the equilibrium equation gives the stresses in the material. This

development has three major advantages over conventional linear and

3 nonlinear continuum analyses. First, the assumption that the second

derivatives of strains exist at all points is not unrealistically

imposed on the discrete medium; secondly, the observed stress-strain

behavior of the material is built into the stress continuity

rel ationship ; and thi rdly , the stresses are expressed in terms of a
material term W(z) that is a function of the gradation and method of

compaction of the medium.

I
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I Te -ruca.ate n eor'y predicEion of stress and strain

Ionf o rms c, e ,en t ouservations and all material constants can

Ie e,,a! ate ,. - Se OT conventional experimental methods.

* -re art: cuate theory of stress distribution reduces to the

I e 'ascic ce c.= appropriate choice of W(z), and the evaluation of

stress trcnsfer -rougn multilayered media is easily determined with a

3 systematic representation of W(z) in terms of the thicknesses and

materials composing tre layers.

3 The particulate approach to modeling granular behavior

confirms tre 'og-log relationship between accumulated permanent strain

ano number of cycles of loading. However, it magnifies the fact that

parameters io this relationsoip are highly dependent on the stress state

i the pcoi:t ,inere che strain is evaluated.

I -n e particulate theory of stress distribution through

multilayerec media can be used to predict the stress state to be used

for evaluation of the material constants in the permanent strain

accumulation versus numoer of cycles of loading. This is an improvement

5 over conventional >Inear and nonlinear elastic analysis due to its

simplicity and the rationality of the particulate approach to stress

3 distribution in granular media.

B. RECOMMENDATIONS

The evaluation of rutting in flexible pavements presented in this

3report is based on a new, more rational definition of stress and strain

in particulate media. This definition assumes that deformation is the

*result of particle movement rather than particle compression and that

stress is transferred only at particle contacts. It is gratifying that

3 this definition very simply leads to models that adequately represent

observed stress-strain behavior for granular soils under one

dimensional, isotropic, triaxial, and shear loading conditions (see

Appendix A). It also easily illustrates the diffusive nature of stress

transfer in granular material under inclined loading. Therefore, it is
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: ,e ,:e '" t lra , :: 'o :'5 '. ,o r , - a' . .  *. ;o. the transmission of

I a; r" . a r I opro a cned a ith this new

r,! io r .g ese are :re j io l ,,,.,, g:

oc e i n g -ne . er rrniance 0 T a grias under loads. Sand

,-. r- re3s r'I y or expe. a y r r, firf eIds ari their design

,e a:ty improvec tf e 2ecrtar i s m of their behavior is

y 'o " ray o elea. Tris approach is iceal ' ar" such investigation.

* Developing improvea metnoos orf interpreting the information

3 c:a~nen from nonestructive testing of f>exiole pavement using devices

s cn as toe alling weign cefriectometer. .is new approacn will allow

3 -or toe evaluation of more .Iharacterist-c pavement properties rather

- r on e res iient moulus currently meas ureo .
, n vestigatG g t.-e ;!echanics or the nonlinear nature of

tres s ave transmission in granular soils, rnereby improving the

noerstanaing of Dlast -a.nn earthquake effects on structures and

3 potentially liquefiable soil.

I
I
I
I
I
I
I
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A GENERAL STRESS-STRAIN MODEL FOR GRANULAR SOILS

I Kingsiev arrop-4illiams

The BDM Corp., McLean, VA 22102

pBSTRACT oarameter defining the order of the curve.
For order one this curve becomes a

general stress-strain model is hyperbola. Tne other approach suggested isier~vec for sranuiar soils based on the =o treat the tangent snear nodulus and

premise that the deformation in these tangent bulk modulus as variables (5).
soils is not caused so much by the These are usually taken as linear

ieformation of individual particles as by functions of the octahedral normal and

-ne relative movements of the more mobile shear stresses.

particles. The model is general and he
spect:ic relacionsnips are obtained forThdifclynmoeigte
ifeit- re latinoni ns .are obt ne fornonlinear stress-strain behavior of sandifferent Loading conditions. For one under load has led many investigators todimensional and isotropic loadingune

conditions a stress-strain curve concave propose numerical curve fitting

toward; the stress axis is derived, and techniques. One of the most popular of
for triaxial and shear Loading conditions these is the piecewise linear method. Here
the derives stress-strain curve is concave the nonlinear experimental curve is

towards the strain axis. In particular divided into pieces of linear elastic
soils that show a distinct peak stress are sections for numerical analysis. Very

well modeled, and the model reduces to the often these are the incremental Hooke's
hyperbolic model for soils exhibiting no law or the hypoelastic law (2). Another
distinct peak =tress. All cases show numerical method is the use of spline
excellent fit to experimental data. functions to fit experimentally observed

curves. These are functions that uses the
data to provide an analytic curve similar
to the graphical process of using a French

INTRODUCTION curve (1). These also require intense
numerical procedures, and the data must be

The stress-strain behavior of granular presented in a smooth form and not
soils is created primarily by individual scattered as observed experimentally.
particle movements to form a denser matrix In this paper a general stress-strain
rather than elastic compression of the model is derived from basic principles.
particles. As a result the experimental This model is shown to apply to one
curve is always nonlinear.in general it is dimensional, isotropic, triaxial, and

concave towards the strain axis under shear loading conditions as special cases
triaxial and shear loading, and concave based on the boundary conditions they
towards the stress axis in one dimensional impose.
and isotropic loading conditions. To
adequately predict the settlement under a STRESS AND STRAIN IN GRANULAR SOILS
load one needs to be able to model this
nonlinear behavior. In the determinztion of stresses and

Of primary importance in settlement strains in granular soils any
calculations is the need to model the representative element of the soil with

triaxial compression condition. One simple volume dxdydz must be composed of
empirical method proposed by Konder and particles and voids. The element must also
Zelasko (4) is the widely used hyperbolic consist of enough particles such that the
model. This model appears to be a natural relative movements of the particles as a
fit for soils that do not exhibit a result of forces on these particles
distinct peak stress. Another empirical produce strains. This means that in the
model proposed is a modification of the limit the volume dxdydz cannot be made to
Ramberg-Osgood model used for dynamic approach zero but must instead approach
loading for static conditions (2). This is some minimal finite volume ijh. This
based on fitting a curve to the initial minimal volume of fixed dimensions i,
tangent mj(uulus, the modulus of the and h in the x, y and z directions,

plastic zone. the yield stress and a respectively, is the smallest volume of
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i an, la soil -hat can oe usea a& of e irec t:ion . Aso let k represent h

ia ieress ar sr3 l. -n effect. -i s v o um e 3verace resistance or a particle to
s inalozous : o a Doint in continuous iovement i-i the x directi.on. nhe re ro re,

natezai ?heater nvln a fxe volue te frce in the x direction in the lower

fzero -naenitude on a macroscooic scale half of elment 1 is FI = '1 kxu, and the

I -ut i I MicroDscopzc eelis composea of lorce in the x direction in the upper half
:zs ret atms hat entr 3 s lave lneof element 2 is F,,, = Nzk, [u+(3ui z)dz].
:isceteatos tat eteranane ere N is the num . er of particles in the

:ince earticles are allowed to enter o alf of element 1 and N, is the

and 'eave the minimal element, if w 1s the number of particles in the upper half of
average relative displacement of element 2. 'We assume that N does notIarticle in the element in the z change much with z as compared with

:irection, then the normal strain in the changes in u, therefore, N1 = N2 = N/2.
The snear stress in the x direction at the

etement in the z direction iS interface between the two elements is

1) ('I~-Fx2)/(dxdv), or since dxdydz approaches
h jh in the limit the shear stress is

7or S!MDliCit1y we introduce a ,nicroscopic

stiffness coefficient t, -o represent the [Nkxh/(2ij)](3u/3z) (6)

average resistance of a particle to
novement in the z direction such that the
:orce on a particle in the minimal element

n t.e z direction is kw. -he magnitude in one dimensional compression of soils

)f 'k, 'epends on the rouginess of the Ev Ea, and in isotropic compression we

oarticles and the confining pressure. The have E= 
3
ta. From equation (4) these two

:orce in the element in the z direction is conditions can be represented by the
-z = Nkzw, where N is the number of single equation
particles in the element. The normal
stress in the element in the z direction oa= Eoga /(1-nEa) (7)
is then Fz/(ij) where n is the reciprocal of the

oz.= Nkzw/(ij) (2) assymptotic strain observed at large
stress. Figure (1) shows the excellent fit

:n this equation N = ijh/[Vp(l+e)], where of equation (7) to data for isotropic

V? is the average volume of a particle and loading conditions on two samples of

e is the void ratio. By definition the >cCormic Ranch sand obtained from

volumetric strain is related to the void reference (2, pg. 193).
ratio as Ev= (eo-e)/(l+e), where e, is
the initial void ratio. Therefore, a psi

= ijh/[Vp(l+e)(1-t v)] (3) 1200 /

The substitution of equations (I) and (3) /
into equation (2) and taking the z Equation (7 /
direction as the axial direction give the 0000 DS1

general relationship of axial stress to 0n -8 4.50

axial strain as S00

0 E~t5 /(1 8~13 Data Points / ,
131= EoEa/((l

-  BE) (4) for ampie
X Data Points 

Ewhere for Samole / /E uat.on (7)

Eo = k 5 /[V (l+e 0 )] (5) 400 4 l n- -56.19

3nd the parameter 3 was added since the
condition Ev- 1 is unattainable *:nder
conventional loads. From equation (4), the -- Regression Curves
derivative of Ca with respect to a at 99.9% correlation

0= = is E0 . Therefore, E, is the
0.02 3:02initial tangent modulus of the soil. 3C1 0

To look at shear stresses in granular

soils consider two minimal elements if Fiz. I. Stress-Strain in Isotropic Loading
soil adjacent to each other but separated
bv a surface dxdv in the xy plane. Let (I psi = 6,895 KPa)
element I be at location z with average
particle displacement u in the x One should also note that equation 7)
direction, and element 2 be at location can be written as o, . Eo( Ea + +E •

z+dz with average relative particle and by series expansion we have thatIisplacement i+(2u/3z)dz in the x [exp(2nEa)-1]/(2T) = Ca +nE +
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ITherefore, lettine CE = _
n 

and A = goa, -v

yes the alternate expression -auaton 00. 04-,.
=--.0)93:' -A

( = Aexp( Ea)-A 19) 19%

Equation (8) is the same as that derived -0.03' 0 0.49 kg/cm/.
by the hvpoeiastic analysis for these
loadinR conditions I , pg 139).
TRIAXIAL COMPRESSION /:uatlon

in triaxial compression of elastic -0.01. " -... . _ '*

naterial the radial strain.E.., is
proportional to tne axial strain, and the
proportional constant is the empirical 0.00. O0 9.79 kg/cm'
Poisson's ratio. In effect, if V= - dr/dga
and vs = - -/Ea , then in elastic material -- Regression Curves
v.- v. However, in triaxial compression 0.01 99% correiation
of sands the relationship of radial strain 0 0.01 0.02 0.03 0.04 0.05 o.ob

to axial strain is nonlinear (Z). To
represent this nonlinear condition one can a) Volumetri: Versus Axial Strain
let .;,- vt = D, where D is an empirical
constant representing the average
difference between J, and v.. If D = 0 the
relationship is linear, and the
nonlinearity increases with the magnitude
of D. The definition -,= - cr/ta gives C-.
dVs/d = (r+EiV-)/tE = - D/Ea, also
since the volumetric strain c, = + 2Er
we have I, = ( E,- v)/(2Ea ), which shows 4. E 

u a t
o
n  

with 
E
: = j.021

3 = G002/c,
that dv,/dt. = -0. 5d(t. , Es)/dE , . Equating b = 0.1965/C,the expressions for dvs/dta gives the I ." -

expression d(ev/a)/de. = 2D/I,, which has 3 "
solution / -_ cI -, = B s + 2D eaInga (9) 2- .050

a -0.0035/0,

= +2Dtlfla () 2b -0.2418/0-

where B is an integration constant. It ,/ )Data Points for O3 = 0.4Q k2cm'

should be noted that xlnx approaches zeroI- &ata Points for a, = q.7q kR/cm'
as x approaches zero. -- Regression Curves

The relationship of volumetric strain 99.8% correlation
to axial strain under triaxial compression 0001 0.02 0.03 0.04 0.05 0.06 t,
for a medium dense sand at two different
confining pressures as obtained from b Axial tress-Strain Behavior
reference (2, pg. 177) is shown in Figure

(2a). The regression of equation (9) on
the data in thi- figure is shown as the . ic._. Triaxial Compression
dashed lines. An excellent fit is observed
for each case. pressure Ep approaches infinity. In this

The substitution of equation (9) into case equation (12) gives f(Ea) = 1, and
equation (4) yields equation (11) reduces to the hyperbolic

model
C1, = Eo F-/( I-8B -2 D E, In E. (10)

SEOa= Ea/(a + ba) (13)
Letting ,- O and Ea - Ep at maximum stress,
we get 8B = 1I/E- E0 /oG - 2SDln~p. Also, The excellent fit of equation (11) to the
setting d0s/dC, = 0 at maximum stress stress-strain responses of a medium dense
gives 23D = -I/Ep . The substitution of sand at two different confining pressures

these into equation (10) gives the is shown in Figure (2b).
relationshxip

rais = E.[af +SHEAR LOADING

The shear strain in the element of
where a = I/E,, b = i/Op, and soil during shear loading is Y = au/az.

Therefore, the substitution of equation

f( E.) i (Ea/Ep)[In( a/S 7 ) E a1 2) (3) into equation (6) gives

In soils with no distinct peak stress such T - GoY/(l-8E) (14)3 as loose sands and sands under high
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X Dense soil

wnere Loose so l

Equation '19'n k, 2 ,( e,5)Bi : 6.0238
-e0.4 , .0818

inm the narameter 3 was added since the = 0.996) A
Ionaition E- = L is unattainable under 0.2
-onventionai loads. Evaluating dT/dY at
' = E = () shows t at 1o is the initial 0 L - .
tangent shear modulus. - 3 s MMi In elastic material under shear loading -0.2 4 _.
the volumetric strain is proportional to Equation (19) .
the shear strain. This means that in -0.1314
-Iastic material dE /dY = E,/y. in . - 0.0414 r Correlation coefficient

zranuiar soils, however, this linear - 0.963)
relation does not hold (6). To represent a) Chanee in Sample thickness
tne nonlinear relationship between tv andy
we et dE,,'dY - £v/Y = C, where C is an

empirical constant representing the E

Iverage difference between the values
Y'V,'Y and Ev/Y. This expression says that -

E = y (d~v ,dy)-C]. Differentiating both
sides o . tnis with respect to Y gives

Ydy C,-f, wnich has solution P00 /t u tion (2C s :

/ a, 0.0036, = 0.0087BY = 5 kf Y!nY (16) (i a .94
(= 0,994)

wnere B2 is an integration constant. / 1
Iubstituting equation (16) into 80 /

equation (14) and letting T = TP and Y = YP
at peak stress gives the first constant as Equation (20 sp
3B= '/yp - Go/tp - BClnYp. Further, a i -0.0043, 0.0107

setting dT/dY = 0 at peak stress gives the 60 (r = 0.999)
constant BC = - I/Yp . The substitution of

these into equation (14) gives the
expression40 /

T = Y/[af(Y) + bY] (17)

where a = I/Go, b = I/Tp, and

f(Y) : 1 + (Y/p )[ln(Y/Yp) - 1] (18) 20 XDense soil
&Loose soilU or soils with no distinct peak stress we r - Correlation coeffiilent

have the condition Yp = and equation (18)
gives fEY) = 1. In this case equation (17)
reduces to the hyperbolic model. s mm

The direct shear experimental data for
the change in sample thickness, t, with b) Shear Stress Versus Displacement
respect to shearing displacement, s, for a

sand in a loose and a dense state as
presented by Sutton (6. pg. 99), are shown FiR. 3. Direct Shear loading
in Figure (3a). The corresponding shear

stress versus displacement data for this as equations (17) and (18), or
sand is shown in Figure (3b). The sand was
tested under drained conditions and a T = sifalf(s) + bls] (20)
constant normal stress of 150 kN/m2 was
applied by the piston in both tests. In and
the direct shear test the change in sample
thickness t is proportional to the f(s) = I + (s/sp)[in(s/sp) - 1] (21)
volumetric strain r and the shearing
displacement s is proportional to the where sp is the displacement at peak

shear strain f. Therefore, the stress, and a, and b, are constants.
relationship of t to s is of the same form The regression of equation (19) on the
as equation (16). That is data of Figure (3a) are shown as the

dashed lines of the figure. Also the
- = Bis + Clslns (19) regression of equation (20) on the data of

Figure (3b) are shown as the dashed lines
where BI and C1 are constants. Also, the on that figure. In each case the fit is
relationsnip of T to a is of the same form excellent.
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mUMMARY

Based on the assumption that the
stress-strain behavior of granular media
is controlled by the displacements of
individual particles rather than particle
*ompression a general stress-strain model
for granular material is derived. This

model says that for both axial and shear
loading the stress is proportional to
strain/(1-btv)1, where the proportional

constant is the initial modulus of the
soil and 3 is a constant. For one
imensionai and isotropic loading
conditions the volumetric strain tv is
proportional to the axial strain. For
triaxial and shear loading conditions

nonlinear relationships of t- to the axial
strain and tE to the shear strain are
developed. :t is shown that the model canbe used for soils that show distinct peak

stresses when under triaxial and shear
oading, and that it reduces to the
hyperbolic model for soils that shows no
distinct peak stress.
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