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I. Introduction

The marksmanship training units of the various U.S. Armed Services have tradition-
ally been interested in the ballistics of national match rifles and ammunition. The Ballistic
Research Laboratory (BRL) has received many questions over the years concerning match
ammunition performance, from captains of service rifle teams, marksmanship training in-
structors, and U.S. Olympic match shooters. The answers provided in the past by the
BRL were best estimates, since no aeroballistic data had ever been collected for match
ammunition.

The first BRL spark photography range firings of a match bullet were conducted in
1975, using the 7.62mm, 168 grain Sierra International bullet, fired from a Remington
40-XB match rifle chambered for 7.62mm NATO (.308 Winchester). The 168 grain Sierra
International is a commercial match bullet, which is currently loaded in the M852 Match
ammunition. Additional spark range tests were conducted in 1980, to extend the data base
for the 168 grain Sierra International bullet, and to determine the aeroballistic properties
of the 7.62mm M118 Match (Special Ball) ammunition, and the 190 grain Sierra Matchking
Hollow Point bullet.

This report is a consolidation of all the BRL aeroballistic data collected for 7.62mm
match bullets from 1975 to the present.

II. Test Facilities and Material

The spark range firings were conducted in the BRL Free Flight Aerodynamics Range. !
The Aerodynamics Range is an enclosed, instrumented firing range designed to accurately
record the flight of a projectile over approximately 90 metres of its trajectory. The free
flight range technique for obtaining aerodynamic data demands unusually high accuracy in
the measurement of position, time of flight, and projectile pitch and yaw angles. Figure 1
is a photograph (circa 1958) of the BRL Free Flight Aerodynamics Range. Figure 2 is a
schematic illustration of the coordinate reference system for the range.

The 1975 firings of the 168 grain Sierra International bullet were conducted using a
Remington Model 40-XB “Rangemaster” Center Fire Rifle, chambered in .308 Winchester,
with a 27.25 inch barrel, and a rifling twist rate of 1 turn in 12 inches. Launch Mach
numbers varied from 2.2 down to 1.4, and yaw levels from 1 degree to 7 degrees were
induced using a half-muzzle yaw inducer with a variable lip extension. For the 1980 firings
of the M118 Match and the 190 grain Sierra Matchking bullets, a Remington Model 700
ADL rifle chambered in .308 Winchester was used. The Model 700 barrel length was 22
inches, and rifling twist rate was 1 turn in 10 inches. The faster twist rifling was used for
the 1980 tests because preliminary calculations had indicated that the gyroscopic stability
of the heavier bullets might be too low at subsonic launch velocities. from the 12 inch twist
barrel used in 1975.




Launch Mach numbers for the 1980 tests varied from 2.2 down to 0.6, so the entire
useful velocity range of the match bullets would be covered. For completeness. the 168
grain Sierra International bullets were also tested at low supersonic and subsonic speeds.
Yaw levels induced in the 1980 tests were essentially the same as those obtained in 1973.

All firings used Lake City Match cartridge cases. and appropriate charges of IMR
4895 propellant were used for the higher supersonic speeds. Reduced charges of IMR
4198 propellant were used for the lower supersonic velocities. Further reduced charges of
Hercules 2400 and Hercules UNIQUE were used to achieve the desired subsonic speeds.
Figures 3 through 5 are sketches of the three match bullets tested. A sample of five each of
the three projectile types were measured for complete physical characteristics. The average
physical properties of the match bullets are presented in Table 1.

ITII. Results

The free flight spark range data were fitted to solutions of the linearized equations
of motion and the resulting flight motion parameters were used to infer linearized aerody-
namic coefficients, using the methods of Reference 2. Preliminary analysis of the aerody-
namic data showed distinct variation of several coefficients with yaw level. In BRL Report
974, Murphy 3 has shown that aerodynamic coefficients derived from the linearized data
reduction can be used to infer the coefficients in a nonlinear force and moment expan-
sion, if sufficient data are available. For the 7.62mm match bullets, sufficient data were
obtained to permit determination of several nonlinear aerodynamic coefficients. A more
detailed analysis of nonlinear effects is presented in the subtopics of this section, which
discuss individual aerodynamic coefficients.

An interesting and useful by-product of spark photography range testing is the high
quality shadowgraph information obtained. Figures 6 through 17 show the flowfields
around the three 7.62mm match bullets at four supersonic Mach numbers. The shad-
owgraph figures were selected from range stations where the angle of attack was less than
one degree.

The round-by-round aerodynamic data obtained for the 7.62mm match bullets are

listed in Tables 2, 3 and 4. Free flight motion parameters for the three bullets are listed
in Tables 5, 6 and 7.

1. Drag Coefficient

The drag coefficient, Cp . is determined by fitting the time-distance measurements
from the range flight. Cp is distinctly nonlinear with yaw level. and the value determined
from an individual flight reflects both the zero-yaw drag coefficient, Cp, . and the indnced




drag due to the average vaw level of the flight. The drag coefficient variation 1s
expressed as an even power series in yaw amplitude:

CD=CD0+CD°~252+--- (1)

where Cp, is the zero-yaw drag coeflicient Cp,, is the quadratic yaw drag coefficient,
and 62 is the total angle of attack squared.

Analysis of the zero-yaw drag coefficient data for the 7.62mm match bullets showed
that the M118 bullet had the lowest drag of the three designs tested, at supersonic speeds.
The 190 grain Sierra Matchking averaged four percent higher drag than the M118. and the
168 grain Sierra International bullet averaged eight percent higher drag than the military
M118 design, over the Mach number range 2.2 to 1.1. At subsonic speeds. the zero-yaw
drag coefficients of the three bullets are nearly identical. Figures 18, 19 and 20 show the
variation of zero-yaw drag coefficient with Mach number for the three match bullets tested.
The variation of the quadratic yaw drag coefficients, Cp,, , with Mach number are shown in
Figures 21, 22 and 23, for the respective bullet designs. The yaw drag coefficients presented
were used to correct the range measured total drag coefficients to zero-yaw values. Dashed
portions of curves are used throughout this report to indicate trends, in regions where no
data were collected.

The round-to-round standard deviation in zero-yaw drag coefficient at supersonic
speeds was determined for each match bullet design, from the least-squares fit of the drag
data. All the 7.62mm match bullets showed standard deviations in Cp, between 0.7 percent
and 0.8 percent, which represents significant improvement over the one to three percent
drag standard deviations typical of military ball projectiles. The standard deviation in
drag coefficient for an individual flight in the BRL Aerocynamics Range is of order of 0.2
percent, hence the measurement error does not contribute significantly to the observed
round-to-round standard deviation in drag.

2. Overturning Moment Coefficient

The range values of the overturning moment coefficient, Cyyr, , were fitted using the
appropriate squared-yaw parameters from Reference 3. A weak dependence of Cyy, on yaw
level was observed for all the 7.62mm match bullets. The overturning moment is assumed
to be cubic in yaw level, and the coefficient variation is given by:

Cy =CM00+C252+“' (2)

[+ 4

where Cy, is the zero-yaw overturning moment coefficient. and C, is the cubie coef-
ficient.

The variation of CM,,O with Mach number for the three 7.62mm match bullets is shown
in Figures 24 through 26. The cubic overturning moment coefficients. C, “~ed to correct
the range values of Cyy, to zero-yaw conditions, are included on the figui s.




3. Gyroscopic Stability

The variation of launch gyroscopic stability factor, S, . with launch Mach number. at
standard atmospheric conditions. is shown for the three 7.62mm match bullets in Figures 27
through 29. The stability factors for 10 inch twist and 12 inch twist of rifling are illustrated.
For a launch Mach number of 2.3 (muzzle velocity approximately 2570 feet/second), the
M118 bullet from a 12 inch twist barrel has a gyroscopic stability factor of 1.4; the stability
factor of the 190 grain Sierra Matchking at the same muzzle velocity and twist rate is 1.3.
The corresponding value of S, for the 168 grain Sierra International bullet at the same
conditions is 1.65. Thus all the above 7.62mm match bullets are gyroscopically stable
when fired from a 12 inch twist barrel at muzzle velocities greater than 2500 feet/second.
However, for the M118 bullet, and especially for the 190 grain Sierra Matchking, there is
no margin of safety for cold weather (high air density) atmospheric conditions, if a 12 inch
twist is selected.

A launch gyroscopic stability factor between 1.5 and 2.0 is usually specified. to insure
- mple safety margin under worst case conditions. Thus for the 7.62mm NATO cartridge.
the 12 inch twist rate is an excellent choice for the 168 grain Sierra International (M852)
bullet, and a 10 inch twist barrel should be selected for the M118 or 190 grain Sierra
Matchking bullets.

4. Lift Force Coeflicient

The range values of the lift force coefficient, Cy_ , were also analyzed using the methods
of Reference 3. No significant value of the cubic lift force coefficient could be found, for
any of the three 7. 62mm match bullets. The range values of the lift force coefficient are
plotted against Mach number in Figure 30.

No significant difference in lift force coefficient with bullet type is observed in Fig-
ure 30. The curve in the plot was obtained ‘rom a least squares fit of the CL, data, and
should be used for all three 7.62mm match bullets. The lift force coefficient is not as well
determined from spark range tests as is the overturning moment coefficient. This fact is
reflected in the larger round-to-round data scatter observed in Figure 30, compared with
the overturning moment coefficient data plotted in Figures 24 through 26.

5. Magnus Moment Coeflicient and Pitch Damping Moment Coefficient

The Magnus moment coefficient, Cyy,, , and the pitch damping moment coefficient,.
(Cy, + Cu,), are discussed together, since if either coefficient is nonlinear with vaw level,
both coefficients exhibit nonlinear coupling in the data reduction process. 3 Due to mutual
reaction. the analysis of Cy,, and ( Cy, + Cy;, ) must be performed simultaneously.
althougl the aerodynamic moments are not, in themselves. directly physically related.




If the dependence of the Magnus moment and the pitch damping moment are cubic
in vaw level. the nonlinear variation of the two moment coefficients is of the general form:

Crpy = Cp, + C,6* (3)

(CMq + CM(,) = (CM,, + CMC'.)O + dy 6° (4)

where C Mpaq and (C M, + Cm ,,)0 are the zero-yaw values of Magnus and pitch damp-

ing moment coeficients, respectively, and C, and d, are the associated cubic coefficients.

In Reference 3, it is shown that the non-linear coupling introduced through the data
reduction yields the following expressions for range values [R-subscript] of Cy, and

(C.wq + CMC-,>2

[Crpy) 4 = Cotyoy + G288 + d2biry (3)
[(Cyy + Cus)|, = (Cuy + Cuas), + Ca 8y + 286y (6)

where the above effective squared yaws are defined as:

(¢ KZ — ¢5 K

§ = Kf + K& + (7)
(6F — 85)
Iz [(K} oF — K& o }
: 2 - ,
Sery = | T (81
Iy (OII.-2 - Ob)
) Iy\ [(o + &%) (K& - K@)
beyr = | — , - (9)
Iz (6F — o5)
NCA ¢ 1)
beyy = (10)
(6F — &%)

The remaining symbols are defined in the List of Symbols in this report.

Preliminary analysis of the 7.62mm match bullet data showed strong nonlinearity in
the range values of Cyy,, and (Cy, + Cyy,) at angles of attack less than 2 degrees. for
both supersonic and subsomc speeds The data rounds were separated into Mach number
groups. by bullet type. and an analysis was performed to determine the cubic coetficients at
hoth small and large yaw levels. No significant values of the cubic pitch damping momeunt

coefficient, d, , could be found.




The data were then analyzed assuming a cubic Magnus moment and linear pitch
damping moment. Further analysis revealed no significant variation of either coefficient

with bullet type at supersonic speeds, and all bullet types were then combined for final
analysis.

The combined data rounds were again separated into Mach number groups, and final
values of the cubic Magnus moment coefficient were obtained. Plots of the range Magnus

moment coefficient versus 6, ? are shown in Figures 31 through 34, for the four Mach number
intervals selected.

The Magnus moments of the 7.62min match bullets show a bi-cubic behavior; i.e., a
strong cubic dependence on angle of attack at small yaw level, followed by a very weak
dependence on angle of attack at larger yaw levels. The small yaw cubic Magnus moment
coefficient, C2 , appears to be constant for all bullet types at all supersonic speeds, and has
the value C, = 250. The angle of attack at which bi-cubic behavior begins increases slowly
with decreasing Mach number; at M = 2 the critical angle of attack is around 2 degrees,
and at M = 1.1 the critical angle has increased to about 4 degrees. At subsonic speeds
the value of C, = 300 was obtained, and bi-cubic behavior appears at angles of attack of
approximately 5 degrees. A significant variation of the Magnus moment with bullet type
is also observed at subsonic speeds, as is illustrated in Figure 34.

The cubic Magnus moment coefficients were then used to correct the range values of
Cu,, and (Cuy, + CMG) to zero-yaw conditions, and the results are illustrated in Figures 35
through 38. A comparison of Figures 35 and 36 shows that the three 7.62mm match bullets
have essentially identical zero-yaw Magnus moment coeflicients at supersonic speeds, but
. .the 168 grain Sierra International bullet shows 50 percent larger (negative) coefficients than
the other bullets, at subsonic speeds. The pitch damping moment coefficients, corrected
to zero-yaw conditions, are shown in Figures 37 and 38. The effect of bullet type on the
pitch damping moment at subsonic speeds is even more startling than that observed for
the Magnus moment. The average value of (C’Mq +C "d)o for the M8 and the 190 grain
Sierra Matchking bullets at subsonic speeds is approximately —4; the 168 grain Sierra

bullet shows three out of four values positive, with an average zero-yaw pitch damping
moment coefficient of + 1.

It shouid be noted that the analysis of nonlinear Magnus and pitch damping data from
free flight spark ranges is a delicate process at best, and the results are highly sensitive
to small errors in determination of the damping exponents on the two modal arms. The
uncertainties in damping rate determinations are reflected in the larger round-to-round

data scatter in Magnus and pitch damping moment coefficients, compared with the smaller
scatter observed in the overturning moment coefficients.

6. Damping Rates

The damping rates, Ar and Ag, of the fast and slow yaw modes indicate the dy-
narnic stability of a projectile. Negative A's indicate damping; a positive \ means that its
associated modal arm will grow with increasing distance along the trajectory.



For a projectile whose Magnus or pitch damping moments are nonlinear with yaw
level, the damping rates also shew a nonlinear dependence on yaw. 4 Figures 39 through
42 illustrate the variations in damping rates with yaw level for the 7.62mm match bullets
at supersonic and subsonic speeds.

At supersouic speeds, the fast arm is always damped, for all the bullet types, at all
yaw levels tested. Th= slow arm is undamped at small yaw levels, but damped at larger

y.w. Thus a slow arm limit cycle yuw is predicted at supersonic speeds; the expected
magnitude is about Z degrees.

At subsonic speeds, the fast arm is damped at all yaw levels for the M118 and 190
grain Sierra Matchking bullets. The fast arm for the 168 grain Sierra International bullet
is essentially neutrally damped at small yaw, and is probably damped at larger yaw levels,
although no data were taken to substantiate this estimate. The slow arm at subsonic

- speeds shows the same characteristic behavior observed at supersonic speeds; dynarnically

unstable at small yaw, but stable at larger yaw levels. The predicted magnitude of the
slow arm limit cycle yaw at subsonic speeds is approximately 4.5 degrees for the M118
and 190 grain Sierra Matchking bullets, and about five degrees for the 168 grain Sierra
International (M852) bullet.

No direct measurement of limit cycle yaw at long range has been made for any of the
7.62mm match bullets. However, a two degree limit cycle yaw at supersonic speeds and
a four to five degree limit cycle yaw at subsonic speeds are consistent with unpublished
results ottained by Piddington for the similarly shaped 7.62mm, Ball M80 bullet, and with
results obtained by the author for 5.56mm M855 and SS-109 bullets. 3

IV. Conclusions

The M118 Match (Special Ball) bullet has the lowest drag coefficient of the three
7.62mm match bullets tested, at supersonic speeds. The 190 grain Sierra Matchking bullet
shows four percent higher average drag coefficient than the M118, and the 168 grain Sierra

International (M852) bullet shows eight percent higher average drag coefficient than the
M118 design.

The round-to-round variation in drsg coefficient for the 7.62mm match bullets is
significantly smaller than that observed for typical military ball bullets. The standard

deviation in Cp, for the match bullets, at supersonic speeds, was found to be between 0.7
percent and 0.8 perceut.

The three 7.62mm match bullets, launched at standard atmospheric conditions and
at muzzle velocities above 2500 feet per second, are gyroscopically stable from a 12 inch
twist of rifling. To insure an adequate margin of safety for cold weather (high air density)

conditions, a 16 inch twist rate should be selected for the M118 and 190 grain Sierra
Matchking bullets.

The nonlinear Magnus moment properties of the 7.62mm match bullets predict a slow
arm limit cycle yaw of approximately two degrees at supersonic speeds, growing to four



to five degrees at subsonic speeds. Although the predicted limit cycle yaws are consistent
with observations made for similarly shaped bullets, the long range flight dynamic results
need to be verified by an independent experiment.

V. Recommendations

It is recommended that a 12 inch twist of rifling be selected for firing the 168 grain
Sierra International (M852) bullet from the 7.62mm NATO cartridge case. A 10 inch twist
of rifling should be selected for the 21118 or 190 grain Sierra Matchking bullets, to allow
a cold weather safety margin.

A long range limit cycle yaw test should be conducted with 7.62mm match bullets,
to verify the flight dynamic predictions made in this report.




Photograph of the BRL Free Flight Acrodynamies Range.

Figure 1.
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Shadowgraph of 190 Grain Sierra Bullet at Mach 1.1.

Figure 16.
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Table 1. Average Physical Characteristics of 7.62mm Match Bullets.

Projectile Reference =~ Weight Center Axial  Transverse
Diameter of Moment  Moment
Gravity of Inertia  of Inertia
(mm) (grams) (cal - base) (gm-cm?®) (gm-cm?)
M118 7.82 11.27 1.80 .716 6.78
130 Sierra 7.82 12.27 1.81 .787 7.68
168 Sierra 7.82 10.89 1.54 .722 5.38




Round

Number

13903
13901
13902
13906
13907

13912
13911
13918
13820
13929

13930

Table 2. Aerodynamic Characteristics of the M118 Match Bullet.

Mach ay Cp Cwu, Clra Citpa (Cu,
Number (degrees) + Ch,)
2.191 2.60 .3290 2.54 2.61 .10 -5.81
2.184 2.03 .3263 2.57 2.60 .23 -6.87
2.181 2.10 .3219 2.585 2.59 .13 -6.35
1.848 1.01 .3361 2.78 -~ ~.17 -4.04
1.801 1.93 . 3436 2.72 -~ .07 -5.99
1.407 6.64 .4629 2.89 2.12 .32 -8.10
1.395 2.20 .3807 2.98 2.37 ~-.12 -3.16
1.098 3.22 .4326 3.18 1.72 ~.35 1.47
1.086 7.60 .4968 3.09 1.64 .16 -5.80

.803 3.61 . 1459 3.35 1.41 ~.27 .14

.798 10.80 .2425 3.16 1.47 ~.01 -2.30

CPy
(cal -
base)

2.66
2.68
2.68




Table 3. Aerodynamic Characteristics of the 190 Grain Sierra Matchking Bullet.

Round Mach

Number

13904 2.208
13905 2.138
13909 1.821
13908 1.800
13914 1.440
13915 1.347

13922 1.140
13921 1.114

13935 .763
13933 .732
13934 .673
13931 .639

Qg

NN NN W

W W N

Number (degrees)

.43
.25
.41
11
.37

.52
.23
.93
.73
.18

.1.086
18.

Cpo

.3306
.3411
.3615
.3560
.3971

.45390
.4588
.439%4
.1441
.1452

.2844
.3848

Cu,

W NN

W wwoww

w

.82
.83
.98
.96
.18

.19
.33
.35
.58
.57

.15
.94

CL

a

1.64

Ciypa

.10
.05
.01

.16
.02
.05

.15
.03

(Car,
+ Chit,)

.85
.85
.18
.62
.53

.51
.12
.80
.11
.82

.C6
.56

C' Py
(cal -
base)




Table 4. Aerodynamic Characteristics of the 168 Grain Sierra International Bullet.

Round

Number

12135
12130
12129
12136
12138

12137
12144
12145
12151
12152

13924
13923
13959
13939
13936

13941

Mach
Number (degrees)

NN NN

o e

—

.219
.217
.210
.202
.826

.817
.T75
773
.450
.412

.150

1.119

.866
.817
.753

.703

o1

N - OO e [ I e )

(S Y |

S

.24
.63
.04
.95
.29

.30
.60
.81
.75
.08

.79
.79
.12
.18
.73

.65

Cp

.3995
.3404
.3371
.4099
.3664

.3678
.4496
.4503
4111
.4182

.5451
.4433
.2033
.1713
.1582

.1538

Car,

W W NN NN

WwWwwow

.61
.69
.66
.62
.89

.88
.84
.84
.06
.06

.00
.99
.17
.36
.35

.29

Ct

a

2.30
2.53
2.49

2.02

Cipa

.10
.10
-.41
-.29
.11
.09

-.37

-1.79
-1.41
-1.02

.66

(Chy,
+ Chay,)

-5.56
-4 .40
-9.48
-5.55
-6.09

-9.22
-5.78
-5.83

-3.72

C Py
(cal -
base)

2.39




Table 5. Flight Motion Parameters of the M118 Match Bullet.

Round Mach 5, Si Apx10° A\sx10° RAp K of os  Spin
Number Number (1/cal) (1/cal) (r/cal) (r/cal) (r/cal)
13903 2.191 1.81 .84 -.106 -.065 .0276 .0316 .0161 .0032 .183
13901 2.184 1.79 1.02 -.095 -.088 .0229 .0232 .0161 .0032 .184
13902 2.181 1.77 .86 =-.110 -.071 .0217 .0256 .0159 .0033 .181
13906 1.848 1.66 ~-.16 -.164 .042 .0041 .0166 .0160 .0036 .186
13907 1.801 1.61 .62 -.130 -.032 .0176 .0262 .0154 .0037 .181
13912 1.407 1.58 1.01 -.101 -.106 .0808 .0738 .0155 .0038 .183
13911 1.395 1.52 .46 -.108 -.007 .0172 .0332 .0152 .0040 .182
13918 1.098 1.39 -- -.060 .046 .0353 .0435 .0145 .0045 .180
13920 1.086 1.43 .85 -.092 -.062 .0920 .0955 .0147 .0043 .180
13929 .803 1.30 -2.01 -.078 .062 .0393 .04%0 .0140 .0049 .179
13930 .738 1.38 .73 -.055 -.017 .1287 .1358 .0144 .0045 .179
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Table 6. Flight Motion Parameters of the 190 Grain Sierra Matchking Bullet.

Round Mach 5_,, Sd /\F‘ X 103 /\5 X 103 I\—F I\’s O’F O'S Spin
Number Number (1/cal) (1/cal) (r/cal) (r/cal) (r/cal)
13804 2.208 1.69 .30 -.171 .17 .C157 .0192 .0152 .0033 .181
13905 2.138 1.72 .82 -.118 -.067 .0313 .0412 .0156 .0033 .185
13909 1.821 1.61 .70 =-.101 -.036 .0240 .0320 .0152 .0036 .184
13908 1.800 1.61 .65 -.119 -.034 .0180 .0300 .0152 .0036 .183
13914 1.440 1.54 .26 -.157 .014 .0143 .0372 .0150 .0038 .184
13915 1.347 1.54 .78 -.121 -.058 .0440 .0580 .0150 .0038 .184
13922 1.140 1.43 .61 -.113 -.022 .0475 .0560 .0143 .0042 .180
13921 1.114 1.42 -10.2 ~-.108 .092 .0294 .0414 .0143 .0042 .181
13935 .763 1.29 - -.043 .029 .0440 .0478 .0134 .0048 .178
13933 .732 1.30 - -.098 .134 .0316 .0444 .0136 .0047 .179
13934 .673 1.52 1.12 -.031 -.054 .1753 .1676 .0147 .0039 .181
13931 .639 1.68 1.05 ~.040 -.033 .2179 .2253 .0154 .0034 .1i84
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Table 7. Flight Motion Parameters of the 168 Grain Sierra International Bullet.

Round Mach S, Sy Apx10® Asx10° KLp Ks O o' Spin
Number Number (1/cal) (1/cal) (r/cal) (r/cal) (r/cal)
12135 2.219 1.95 .76 =-.134 -.066 .0622 .0836 .0194 .0035 171
12130 2.217 1.92 .15 -.1786 .016 .0091 .0258 .0195 .0036 .i72
12129 2.210 1.88 .00 -.355 .06 .0017 .0172 .0191 .0036 .169
12136 2.202 1.94 7 -.132 -.066 .0719 .0908 .0194 .0035 .17l
12138 1.826 1.78 ~.38 ~-.305 .102 .0014 .0206 .0191 .0039 .17
12137 1.817 1.78 ~-.05 =-.365 .079 .0016 .0213 .0190 .0039 .171
12144 1.775 1.84 .75 =-.138 -.065 .0571 .0882 .0194 .0038 .173
12145 1.773 1.84 .70 ~-.145 -.0568 .0561 .0934 .019¢ .0038 .173
12151 1.450 1.68 ~.07 ~-- -- .0003 .0273 .0188 .0042 .171
12152 1.412 1.68 ~.43 -.220 .079 .0044 .0339 .0187 .0042 .171
13924 1.150 1.89 .3¢ -.152 -.010 .0848 .1045 .0203 .0038 .180
13923 1.119 1.88 -- -- -- .0111 .0263 .0202 .0038 .179
13959 .866 1.68 -- =.021 .387 .0199 .0621 .0192 .0043 .175
13939 .817 1.861 -- .064 .271  .0260 .0644 .0189 .0045 .175
13936 .7583 1.63 -- .066 .181 .0316 .0555 .0192 .Q045 .17s
13941 .703 1.64 1.33 -.047 -.187 .0648 .0473 .0191 .0044 .175
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List of Symbols

cubie static moment cocfReient

cubic Magnus moment coeffi-
cient

Drag Force
[(1/2)pV? S]

zero-yaw drag coefficient

quadratic yaw drag coefficient

Lift Force
[(1/2)p V3556

Normal Force
[(1/2)pV?56]

Static Moment
[(1/2),V?5d5)

Magnus Moment
((1/2)pV2Sd (pd/V) §]

Magnus Force

((1/2)p VS (pd/V) &)

61

Positive coefficient: Force ir
plane of total angle of attack.
ap, L to trajectory in direc-
tion of a;. (a, directed from
trajectory to missile axis.)
§ = sinay.

Positive coefficient: Force in
plane of total angle of attack.
a, L to missile axis in direc-
tionof . Cyv, = Cr, + Cp

Positive coctficient: M oment
increases angle of attack a,.

Positive coefficient: Moment

~ rotates nose L to plane of a,

in direction of spin.

Negative coefficient:  Force
acts in direction of 90° rota-
tion of the positive lift force
against spin.



List of Symbols (Continued)

For most exterior ballistic uses. where & x~ q. 3 ~ —r. the definition of the
damping moment sum is equivalent to:

Damping Moment

(Cym, + Cyy) = > Positive coefficient: Moment
! [(1/2)pV?S5d(g:d/V)] increases angular velocity.
Roll D ing Moment
Ci, = O/f) arrfmg /e_x—l-T Negative coefficient: Moment
[(1/2)pV*Sd (pd/V)] decreases rotational velocity.
Cpy = center of pressure of the nor-
mal force, positive from base
to nose
a3 = angle of attack, side slip
1 .
a, = (a® + 397 = sin~!§,

total angle of attack

Ap = fast mode damping rate negative A indicates damping
As = slow mode damping rate negative A indicates damping
P = air density

by = ast mode frequency

o' =  slow mode frequency

c.m. = center of mass

d = body diameter of projectile,

reference length

d, = cubic pitch damping moment
coefficient
I, = axial moment of inertia

62




List of Symbols (Continued)

Iy = rtransverse moment of inertia

Kr = magnitude of the fast yaw
mode

Ks = magnitude of the slow yaw
mode

l = length of projectile

m = mass of projectile

M =  Mach number

p = roll rate

q, T =  transverse angular velocities

% = (¢ + )

R = subscript denotes range value

[
I

= dimensionless arc length along
the trajectory

S = (=d?*/4), reference area
Sq = dynamic stability factor
Sy =  gyroscopic stability factor
12 =  velocity of projectile
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List of Symbols (Continued)

Etfeerive Squared Yoaw Parameters

o = A2+ KJ

5(;2 — A—Fg + R2 + ('ﬁ/F I\’I? - é{s‘ I\—S:))
‘ 7 (¢ = &%)

dé”F = I\',,g + 2 I\';’

')fi‘ = 2 [\',5 + IL'¢

_ (Q) [( Sp + o) (NG — K} >]
(0F — o%)

52 _ (L) [(EReP - K}of)
€TH - I_ ) 12
y (9% — 95) )
(o K& — 05 K2)
(0 — &%)

2 —
5'3HH -
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