
Lg)

NAVF Control Number: AVF-VSR-166.1088

88-02-1 7-MSS

Ada COMPILER
VALIDATION SUMMARY REPORT:

Certificate Number: 880605W1.09071
Meridian Software Systems, Inc.

Meridian AdaVantage 2.2 - LECTE
Zilog System 8000

S MAR 081983 0
Completion of On-Site Testing:

8 June 1988

Prepared By:
Ada Validation Facility

ASD/SCEL
Wright-Patterson AFB OH 45433-650j

Prepared For:
Ada Joint Program Office

United States Department of Defense
Washington DC 20301-3081

Approved foz pvij'c r,,,31-ej
_ Ditributio (nr .ai:d

I$

UNCLASSIFIED
SECURITV CLASSIFICATION Of THIS PA6E (When Data Entered)

REPORT DOCUMENTATION PAGE - ,s -v .no.s

1. REPORT NUMBER 12. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMbER

4. TITLE (andSubtile) 5 5. TYPE OF REPORT & PERIOD COVERED

Ada Compiler Validation Summary Report: Meridian 8 June 1988 to 8 June 1989
Software Systems, Inc., Meridian AdaVantage 2.2, Zilog 5, PERFORMING'bRG. REPORT NUMBER

System 8000 (Host & Target), (880605W1.09071).
7. AUTHOR(s) S. CONTRACT OR GRANT NUMBER(s)

Wright-Patterson Air Force Base,
Dayton, Ohio, U.S.A.
9. PERFORMING ORGANIZATION AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK

AREA L WORK UNIT NUMBERS

Wright-Patterson Air Force Base,
Dayton, Ohio, U.S.A.

11. CONTROLLING OFFICE NAME AND ADDRESS 1Z. REPORT DATE
Ada Joint Program Office 8 June 1988
United States Department of Defense 8j, NUMbeR 1P 9A8ES
Washington, DC 2D301-3081 33 r).

14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) 15. SECURITY CLASS (ofthisreport)

UNCLASSIFIED
Wright-Patterson Air Force Base, is.a. R SHFIICATION/DOWNGRADING
Dayton, Ohio, U.S.A. N/A
16. DISTRIBUTION STATEMENT (ofthisReport)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract enteredin Block 20 If different from Report)

UNCLASSIFIED

19. SUPPLEMENTARY NOTES

I9. KE YWORDS (Continue on reverse side if necessary and identify by block number)

Ada Programming language, Ada Compiler Validation Summary Report, Ada
Compiler Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-
1815A, Ada Joint Program Office, AJPO

20. ABSTRACT (Continue on reverse side if necessary and identify by blork number)

Meridian Software Systems, Inc., Meridian AdaVantage 2.2, Zilog System 8000 under Zeus
3.21 (Host and Target), Wright-Patterson Air Force Base, ACVC 1.9.

DD UO(1473 EADITZIN O I NO, 65 IS B&GCET1L
I JAN 73 S/N 0102-LF-014-6601 UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

Ada Compiler Validation Summary Report:

Compiler Name: Meridian AdaVantage 2.2

Certificate Number: 880605WI.09071

Host: Target:
Zilog System 8000 under Zilog System 8000 under
Zeus 3.21 Zeus 3.21

Testing Completed 8 June 1988 Using ACVC 1.9

This report has been reviewed and is approved.

Ada Validation Facility
Steven P. Wilson
Technical Director
ASD/SCEL
Wright-Patterson AFB OH 45433-6503

Add/Validation-brgani zation
Dr. John F. Kramer
Institute for Defense Analyses Accesiori For
Alexandria VA 22311 NTIS ,

DTIC T.4i El

Ada Jnt Program Office
Virginia L. Castor
Director
Department of Defense
Washington DC 20301 ,:t

2

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT 1-2
1.2 USE OF THIS VALIDATION SUMMARY REPORT 1-2
1.3 REFERENCES 1-3
1.4 DEFINITION OF TERMS 1-3
1.5 ACVC TEST CLASSES 1-4

CHAPTER 2 CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED 2-1
2.2 IMPLEMENTATION CHARACTERISTICS2-2

CHAPTER 3 TEST INFORMATION

3.1 TEST RESULTS 3-1
3.2 SUMMARY OF TEST RESULTS BY CLASS 3-1
3.3 SUMMARY OF TEST RESULTS BY CHAPTER3-2
3.4 WITHDRAWN TESTS 3-2
3.5 INAPPLICABLE TESTS 3-2
3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS . . 3-4
3.7 ADDITIONAL TESTING INFORMATION 3-5
3.7.1 Prevalidation 3-5
3.7.2 Test Method 3-5
3.7.3 Test Site 3-6

APPENDIX A DECLARATION OF CONFORMANCE

APPENDIX B APPENDIX F OF THE Ada STANDARD

APPENDIX C TEST PARAMETERS

APPENDIX D WITHDRAWN TESTS

CHAPTER 1

INTRODUCTION

This Validation Zummary Report (-VS describes the extent to which a
specific Ada compiler conforms to the Ada Standard, ANSI/MIL-STD-1815A.
This report explains all technical terms used within it and thoroughly
reports the results of testing this compiler using the Ada Compiler
Validation Capability 'A&ve-) An Ada compiler must be implemented
according to the Ada Standard, and any implementation-dependent features
must conform to the requirements of the Ada Standard. The Ada Standard
must be implemented in its entirety, and nothing can be implemented that is
not in the Standard.

Even though all validated Ada compilers conform to the Ada Standard, it
must be understood that some differences do exist between implementations.
The Ada Standard permits some implementation dependencies--for example, the
maximum length of identifiers or the maximum values of integer types.
Other differences between compilers result from the characteristics of
particular operating systems, hardware, or implementation strategies. All
the dependencies observed during the process of testing this compiler are
given in this report.)

The information in this report is derived from the test results produced
during validation testing. The validation process includes submitting a
suite of standardized tests, the ACVC, as inputs to an Ada compiler and
evaluating the results. -The purpose of validating is to ensure conformity
of the compiler to the Ada Standard by testing that the compiler properly
implements legal language constructs and that it identifies and rejects
illegal language constructs. The testing also identifies behavior that is
implementation dependent but permitted by the Ada Standard. Six classes of
tests are used. These tests are designed to perform checks at compile
time, at link time, and during execution.

1 - \

INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

This VSR documents the results of the validation testing performed on an
Ada compiler. Testing was carried out for the following purposes:

. To attempt to identify any language constructs supported by the

compiler that do not conform to the Ada Standard

" To attempt to identify any language constructs not supported by
the compiler but required by the Ada Standard

" To determine that the implementation-dependent behavior is allowed
by the Ada Standard

Testing of this compiler was conducted by SofTech, Inc. under the
direction of the AVF according to procedures established by the Ada Joint
Program Office and administered by the Ada Validation Organization (AVO).
On-site testing was completed 8 June 1988 at Laguna Hills, CA.

1.2 USE OF THIS VALIDATION SUMMRY REPORT

Consistent with the national laws of the originating country, the AVO may
make full and free public disclosure of this report. In the United States,
this is provided in accordance with the "Freedom of Information Act" (5
U.S.C. #552). The results of this validation apply only to the computers,
operating systems, and compiler versions identified in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject compiler has no nonconformities
to the Ada Standard other than those presented. Copies of this report are
available to the public from:

Ada Information Clearinghouse
Ada Joint Program Office
OUSDRE
The Pentagon, Rm 3D-139 (Fern Street)
Washington DC 20301-3081

or from:

Ada Validation Facility
ASD/SCEL
Wright-Patterson AFB OH 45433-6503

1-2

INTRODUCTION

Questions regarding this report or the validation test results should be
directed to the AVF listed above or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

1.3 REFERENCES

1. Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

2. Ada Compiler Validation Procedures and Guidelines, Ada Jcint
Program Office, 1 January 1987.

3. Ada Compiler Validation Capability Implementers' Guide, SofTech,
Inc., December 1986.

4. Ada Compiler Validation Capability User's Guide, December 1986.

1.4 DEFINITION OF TERMS

ACVC The Ada Compiler Validation Capability. The set of Ada
programs that tests the conformity of an Ada compiler to the
Ada programming language.

Ada An Ada Commentary contains all information relevant to the
Commentary point addressed by a comment on the Ada Standard. These

comments are given a unique identification number having the
form AI-ddddd.

Ada Standard ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

Applicant The agency requesting validation.

AVF The Ada Validation Facility. The AVF is responsible for
conducting compiler validations according to procedures
contained in the Ada Compiler Validation Procedures and
Guidelines.

AVO The Ada Validation Organization. The AVO has oversight
authority over all AVF practices for the purpose of
maintaining a uniform process for validation of Ada
compilers. The AVO provides administrative and technical

1-3

INTRODUCTION

support for Ada validations to ensure consistent practices.

Compiler A processor for the Ada language. In the context of this

report, a compiler is any language processor, including
cross-compilers, translators, and interpreters.

Failed test An ACVC test for which the compiler generates a result that

demonstrates nonconformity to the Ada Standard.

Host The computer on which the compiler resides.

Inapplicable An ACVC test that uses -features of the language that a
test compiler is not required to support or may legitimately

support in a way other than the one expected by the test.

Passed test An ACVC test for which a compiler generates the expected

result.

Target The computer for which a c.ompiler generates code.

Test A program that checks a compiler's conformity regarding a
particular feature or a combination of features to the Ada

Standard. In the context of this report, the term is used to
designate a single test, which may comprise one or more
files.

Withdrawn An ACVC test found to be incorrect and not used to check
test conformity to the Ada Standard. A test ray be incorrect

because it has an invalid test objective, fails to meet its
test objective, or contains illegal or erroneous use of the

language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard is measured using the ACVC. The ACVC
contains both legal and illegal Ada programs structured into six test
classes: A, B, C, D, E, and L. The first letter of a test name identifies
the class to which it belongs. Class A, C, D, and E tests are executable,
and special program units are used to report their results during
execution. Class B tests are expected to produce compilation errors.
Class L tests are expected to produce compilation or link errors.

Class A tests check that legal Ada programs can be successfully compiled
and executed. There are no explicit program components in a Class A test
to check semantics. For example, a Class A test checks that reserved words
of another language (other than those already reserved in the Ada language)
are not treated as reserved words by an Ada compiler. A Class A test is
passed if no errors are detected at compile time and the program executes
to produce a PASSED message.

1-4

INTRODUCTION

Class B tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that every syntax or
semantic error in the test is detected. A Class B test is passed if e',ery
illegal construct that it contains is detected by the compiler.

Class C tests check that legal Ada programs can be correctly compiled and
executed. Each Class C test is self-checking and produces a PASSED,
FAILED, or NOT APPLICABLE message indicating the result when it is
executed.

Class D tests check the compilation and execution capacities of a compiler.
Since there are no capacity requirements placed on a compiler by the Ada
Standard for some parameters--for example, the number of identifiers
permitted in a compilation or the number of units in a libra -y--a compiler
may refuse to compile a Class D test and still be a conforming compiler.
Therefore, if a Class D test fails to compile because the capacity of the
compiler is exceeded, the test is classified as inapplicable. If a Class D
test compiles successfully, it is self-checking and produces a PASSED or
FAILED message during execution.

Each Class E test is self-checking and produces a NOT APPLICABLE, PASSED,
or FAILED message when it is compiled and executed. However, the Ada
Standard permits an implementation to reject programs containing some
features addrez~ed by Class E tests during compilation. Therefore, a Class
E test is passed by a compiler if it is compiled successfully and executes
to produce a PASSED message, or if it is rejected by the compiler for an
allowable reason.

Class L tests check that incomplete or illegal Ada programs involving
multiple, separately compiled units are detected and not allowed to
execute. Class L tests are compiled separately and execution is attempted.
A Class L test passes if it is rejected at link time--that is, an attempt
to execute the main program must generate an error message before any
declarations in the main program or any units referenced by the main
program are elaborated.

Two library units, the package REPORT and the procedure CHECKFILE, support
the self-checking features of the executable tests. The package REPORT
provides the mechanism by which executable tests report PASSED, FAILED, or
NOT APPLICABLE results. It also provides a set of identity functions used
to defeat some compiler optimizations allowed by the Ada Standard that
would circumvent a test objective. The procedure CHECK FILE is used to
check he contents of text files written by some of the Class C tests for
chapter 14 of the Ada Standard. The operation of REPORT and CHECKFILE is
checked by a set of executable tests. These tests produce messages that
are examined to verify that the units are operating correctly. If these
units are not operating correctly, then the validation is not attempted.

1he text of the tests in the ACVC follow conventions that are intended to
ensure that the tests are reasonably portable without modification. For
example, the tests make use of only the basic set of 55 characters, contain
lines with a maximum length of 72 characters, use small numeric values, and

1-5

INTRODUCTION

place features that may :it be supported by all implementations in separate
tests. However, some tests contain values that require the test to be
customized according to implementation-specific values--for example, an
illegal file name. A list of the values used for this validation is

provided in Appendix C.

A compiler must correctly process each of the tests in the suite and
demonstrate conformity to the Ada Standard by either meeting the pass
criteria given for the test or by showing that the test is inapplicable to
the implementation. The applicability of a test to an implementation is
considered each time the implementation is validated. A test that is
inapplicable for one validation is not necessarily inapplicable for a
subsequent validation. Any test that was determined to contain an illegal
language construct or an erroneous language construct is withdrawn from the
ACVC and, therefore, is not used in testing a compiler. The tests
withdrawn at the time of this validation are given in Appendix D.

1-6

CHAPTER 2

CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED

The candidate compilation system for this validation was tested under the
following configuration:

Compiler: Meridian AdaVantage 2.2

ACVC Version: 1.9

Certificate Number: 880605W1.09078

Host Computer:

Machine: Zenith Z-248
with Floating Point Co-Processor

Operating System: MS/DOS 3.10

Memory Size: 640 Kilobytes

Target Computer:

Machine: Zenith Z-248
with Floating Point Co-Processor

Operating System: MS/DOS 3.10

Memory Size: 640 Kilobytes

2-1

CONFIGURATION INFORMATION

2.2 IMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the behavior of
a compiler in those areas of the Ada Standard that permit implementations
to differ. Class D and E tests specifically check for such implementation
differences. However, tests in other classes also characterize an
implementation. The tests demonstrate the following characteristics:

Capacities.

The compiler correctly processes tests containing loop statements
nested to 65 levels, block statements nested to 65 levels, and
recursive procedures separately compiled as subunits nested to 17
levels. It correctly processes a compilation containing 723
variables in the same declarative part. (See tests D55A03A..H (8
tests), D56001B, D64005E..G (3 tests), and D29002K.)

" Universal integer calculations.

An implementation is allowed to reject universal integer
calculations having values that exceed SYSTEM.MAX INT. This
implementation processes 64 bit integer calculations. (See tests
D4AO02A, D4A002B, D4AO04A, and D4AO04B.)

" Predefined types.

This implementation supports the additional predefined types
BYTEINTEGER and LONG INTEGER in the package STANDARD. (See tests
B86001C and B86001D.)

• Based literals.

An implementation is allowed to reject a based literal with a
value exceeding SYSTEM.MAX INT during compilation, or it may raise
NUMERIC ERROR or CONSTRAINT ERROR during execution. This
implementation raises NUMERICERROR during execution. (See test
E24101A.)

SExpression evaluation.

Apparently default initialization expressions for record
components are not evaluated before any value is checked against a
component's subtype constraints. (See test C32117A.)

Assignments for subtypes are performed with the same precision as
the base type. (See test C35712B.)

2-2

CONFIGURATION INFORMATION

This implementation uses no extra bits for extra precision and all
extra bits for extra range. (See test C35903A..)

Apparently NUMERIC ERROR is raised when an integer literal operand

in a comparison or membership test is outside the range of the
base type. (See test C45232A.)

No exception is raised when a literal operand in a fixed-point
comparison or membership test is outside the range of the base
type. (See test C45252A.)

Apparently underflow is gradual. (See tests C45524A..Z.)

Rounding.

Apparently, the method used for rounding to integer and longest
integer is round to even. (See tests C46012A..Z.)

Apparently, the method used for rounding to integer in static
universal real expressions is round away from zero. (See test
C4AO14A.)

Array types.

An implementation is allowed to raise NUMERIC ERROR or
CONSTRAINT ERROR for an array having a 'LENGTH that exceeds
STANDARD. INTEGER'LAST or SYSTEM.MAXINT. For this implementation:

Declaration of an array type or subtype declaration with more than
SYSTEM.MAX INT components raises CONSTRAINT ERROR for a two
dimensional array when the second dimension length is greater than
MAXINT. Otherwise, no exception is raised. (See test C36003A.)

No exception is raised when 'LENGTH is applied to an array type
with INTEGER'LAST + 2 components. (See test C36202A.)

No exception is raised when 'LENGTH is applied to an array type
with SYSTEM.MAXINT + 2 components. (See test C36202B.)

A packed BOOLEAN array having a 'LENGTH exceeding INTEGER'LAST
raises NUMERICERROR when the array objects are declared. (See

test C52103X.)

A packo- two-dimensional BOOLEAN array with more than INTEGER'LAST
components raises NUMERIC ERROR when the array objects are
declared. (See test C52104Y.)

A null array with one dimension of length greater than
INTEGER'LAST may raise NUMERIC ERROR or CONSTRAINT ERROR either
when declared or assigned. Alternatively, an implementation may
accept the declaration. However, lengths must match in array

2-3

CONFIGURATION INFORMATION

slice assignments. This implementation raises NUMERIC ERROR when
the array type is declared. (See test E52103Y.)

In assigning one-dimensional array types, when checking whether
the expression's subtype is compatible with the target's subtype,
the expression appears to be evaluated in its entirety before
CONSTRAINT ERROR is raised. In assigning two-dimensional array
types, when checking whether the expression's subtype is
compatible with the target's subtype, the expression does not
appear to be evaluated in its entirety before CONSTRAINTERROR is
raised. (See test C52013A.)

. Discriminated types.

When an incomplete type with discriminants is used in an access
type definition, and a compatible discriminant constraint is
given, the declaration may be accepted or rejected during
compilation. This implementation accepts such subtype
indications. (See test E38104A.)

In assigning record types with discriminants, when checking
whether the expression's subtype is compatible with the target's
subtype, the expression appears to be evaluated in its entirety
before CONSTRAINTERROR is raised. (See test C52013A.)

" Aggregates.

In the evaluation of a multi-dimensional aggregate, all choices
appear to be evaluated before checking against the index type.
(See tests C43207A and C43207B.)

In the evaluation of an aggregate containing subaggregates, not
all choices are evaluated before being checked for identical
bounds. (See test E43212B.)

CONSTRAINT ERROR is raised before all choices are evaluated when a
bound in a nonnull range of a nonnull aggregate does not belong to
an index subtype. (See test E43211B.)

" Representation clauses.

An implementation might legitimately place restrictions on
representation clauses used by some of the tests. If a
representation clause is used by a test in a way that violates a
restriction, then the implementation must reject it.

2-4

CONFIGURATION INFORMATION

Enumeration representation clauses containing noncontiguous values
for enumeration types other than character and Boolean types are
not supported. (See tests C35502I..J, C35502M..N, and A39005F.)

Enumeration representation clauses containing noncontiguous values
for character types are not supported. (See tests C355071..J.
C35507M..N, and C55B16A.)

Enumeration representation clauses for boolean types containing
representational values other than (FALSE => 0, TRUE => 1) are not
supported. (See tests C355081..J and C35508M..N.)

Length clauses with SIZE specifications for enumeration types are
not supported. (See test A39005B.)

Length clauses with STORAGE SIZE specifications for access types
are not supported. (See tests A39005C and C87B62B.)

Length clauses with STORAGE SIZE speci*ications for task types are
supported. (See tests A39005D and C87B62D.)

Length clauses with SMALL specifications are supported. (See

tests A39005E and C87B62C.)

Record representation clauses are supported. (See test A39005G.)

Length clauses with SIZE specifications for derived integer types
are not supported. (See test C87B62A.)

Pragmas.

The pragma INLINE is not supported for procedures or functions.
(See tests LA3004A, LA3004B, EA3004C, EA3004D, CA3004E, and
CA3004F.)

Input/output.

The package SEQUENTIAL_10 cannot be instantiated with
unconstrained array types and record types with discriminants
without defaults. (See tests AE2101C, EE2201D, and EE2201E.)

The package DIRECT 10 cannot be instantiated with unconstrained
array types and record types with discriminants without defaults.
(See tests AE2101H, EE2401D, and EE2401G.)

There are no strings which are illegal external file names for
SEQUENTIALIO and DIRECTIO. (See tests CE2102C and CE2102H.)

Modes IN FILE and OUT FILE are supported for SEQUENTIALIO. (See
tests CE2102D and CE2O2E.)

2-5

CONFIGURATION INFORMATION

Modes INFILE, OUTFILE, and INOUTFILE are supported for

DIRECTI. (See tests CE2102F, CE2102I, and CE2102J.)

RESET and DELETE are supported for SEQUENTIALIO and DIRECTIO.
(See tests CE2102G and CE2102K.)

Dynamic creation and deletion of files are supported for

SEQUENTIALIO and DIRECTIO. (See tests CE2106A and CE2106B.)

Overwriting to a sequential file does not truncate the file. (See

test CE2208B.)

An existing text file cannot be opened in OUT FILE mode, but can
be created in OUTFILE and IN FILE modes. (See test EE3102C.)

More than one internal file can be associated with each external
file for TEXT 10 for reading only. (See tests CE3111A..E (5
tests), CE3114B, and CE3115A.)

More than one internal file can be associated with each external

file for SEQUENTIAL 10 for reading only. (See tests CE2107A..D (4

tests), CE2110B, and CE2111D.)

More than one internal file can be associated with each external

file for DIRECT 10 for reading only. (See tests CE2107F..I (4

tests), CE2110B, and CE2111H.)

An internal sequential access file and an internal direct access
file cannot be associated with a single external file for writing.
(See test CE2107E.)

Temporary sequential and direct files are given names and are

deleted when they are closed. (See tests CE2108A and CE2108C.)

Generics.

A generic subprogram body cannot be compiled as a subunit in a

seperate compilation from its declaration. (See tests CA1012A and
CA2009F.)

A generic package body cannot be compiled as a subunit in a
separate compilation from its specification. (See tests CA2009C,
BC3204C, and BC3205D.)

A generic unit body cannot be compiled in a separate compilation
from its subunits. (See test CA3011A.)

2-6

CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

Version 1.9 of the ACVC comprises 3122 tests. When this compiler was
tested, 27 tests had been withdrawn because of test errors. The AVF
determined that 288 tests were inapplicable to this implementation. All

inapplicable tests were processed during validation testing except for 201
executable tests that use floating-point precision exceeding that supported
by the implementation. Modifications to the code, processing, or grading
for 10 tests were required to successfully demonstrate the test objective.
(See section 3.6.)

The AVF concludes that the testing results demonstrate acceptable
conformity to the Ada Standard.

3.2 SUMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL
A B C D E L

Passed 105 1046 1591 17 12 36 2807

Inapplicable 5 5 262 0 6 10 288

Withdrawn 3 2 21 0 1 0 27

TOTAL 113 1053 1874 17 19 46 3122

3-1

TEST INFORMATION

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER TOTAL

2 3 4 5 6 7 8 9 10 11 12 13 14

Passed 190 484 539 244 166 98 140 326 118 36 232 3 231 2807

Inapplicable 14 88 135 4 0 0 3 1 19 0 2 0 22 288

Withdrawn 2 14 3 0 0 1 2 0 0 0 2 1 2 27

TOTAL 206 586 677 248 166 99 145 327 137 36 236 4 255 3122

3.4 WITHDRAWN TESTS

The following 27 tests were withdrawn from ACVC Version 1.9 at the time of
this validation:

A35902C A74106C AD1AO1A B28003A BC3105A
C34004A C35502P C35904A C35904B C35A03E
C35A03R C37213H C37213J C37215C C37215E
C37215G C37215H C38102C C41402A C45332A
C45614C C85018B C87B04B CC1311B CE2401H
CE3208A E28005C

See Appendix D for the reason that each of these tests was withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of features
that a compiler is not required by the Ada Standard to support. Others may
depend on the result of another test that is either inapplicable or
withdrawn. The applicability of a test to an implementation is considered
each time a validation is attempted. A test that is inapplicable for one
validation attempt is not necessarily inapplicable for a subsequent
attempt. For this validation attempt, 288 tests were inapplicable for the
reasons indicated:

C35502I..J (2 tests), C35502M..N (2 tests), C35507I..J (2 tests),
C35507M..N (2 tests), C355081..J (2 tests), C35508M..N (2 tests),
A39005F, and C55B16A use enumeration representation clauses which
are not supported by this compiler.

3-2

TEST INFORMATION

* C35702A uses SHORTFLOAT which is not supported by this

implementation.

" C35702B uses LONGFLOAT which is not supported by this

implementation.

" A39005B and C87B62A use length clauses with SIZE specifications
for derived integer types or for enumeration types which are not
stpported by this compiler,

k39005C and C87B62B use length clauses with STORAGE SIZE
specifications for access types which are not supported by this
implementation.

" The following tests use SHORTINTEGER, which is not supported by
this compiler:

C45231B C45304B C45502B C45503B C45504B
C45504E C45611B C45613B c45614B C45631B
C45632B B52004E C55BO7B B55BO9D

" C45531M..P (4 tests) and C45532M..P (4 tests) use 48-bit
fixed-point base types which are not supported by this compiler.

" C86001F redefines package SYSTEM, but TEXT 10 is made obsolete by
this new definition in this implementation and the test cannot be
executed since the package REPORT is dependent on the package
TEXTIO.

" C96005B requires the range of type DURATION to be different from
those of its base type; in this implementation they are the same.

" BA1011C, CA2009F, CA1012A, LA5008A, and LA5008B compile generic
subprogram declarations and bodies in separate compilations. This
compiler requires that generic subprogram declarations and bodies
be in a single compilation.

" CA2009C, LA5008C, BC3204C, and BC3205D compile generic package
specifications and bodies in separate compilations. This compiler
requires that generic package specifications and bodies be in a
single compilation.

CA3011A, LA5008D..F (3 tests), and LA5008M..N (2 tests) compile
generic unit bodies and subunits in separate compilations. This
compiler requires that generic unit bodies and their subunits be
in a single compilation.

CA3004E, EA3004C, and LA3004A use the INLINE pragma for
procedures, which is not supported by this compiler.

" CA3004F, EA3004D, and LA3004B use the INLINE pragma for functions,
which is not supported by this compiler.

3-3

TEST INFORMATION

AE2101C, EE2201D, and EE2201E use instantiations of package
SEQUENTIAL 10 with unconstrained array types and record types
having discriminants without defaults. These instantiations are
rejected by this compiler.

" AE2101H, EE2401D, and EE2401G use instantiations of package
DIRECT 10 with unconstrained array types and record types having
discriminants without defaults. These instantiations are rejected
by this compiler.

" CE2107B..E,G..I (7 tests), CE2110B, CE2111D, CE2111H, CE3111B..E
(4 tests), and CE3114B, are inapplicable because multiple internal
files cannot be associated with the same external file, except for
reading. The proper exception is raised when multiple access is
attempted.

" CE2201G attempts to create a sequential file of unconstrained
records. This implementation raises USEERROR when the creation
is attempted.

" The following 201 tests require a floating-point accuracy that
exceeds the maximum of 15 digits supported by this implementation:

C24113L..Y (14 tests) C35705L..Y (14 tests)
C35706L..Y (14 tests) C35707L..Y (14 tests)
C35708L..Y (14 tests) C35802L..Z (15 tests)
C45241L..Y (14 tests) C45321L..Y (14 tests)
C45421L..Y (14 tests) C45521L..Z (15 tests)
C45524L..Z (15 tests) C45621L..Z (15 tests)
C45641L..Y (14 tests) C46012L..Z (15 tests)

3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS

It is expected that some tests will require modifications of code,
processing, or evaluation in order to compensate for legitimate
implementation behavior. Modifications are made by the AVF in cases where
legitimate implementation behavior prevents the successful completion of an
(otherwise) applicable test. Examples of such modifications include:
adding a length clause to alter the default size of a collection; splitting
a Class B test into subtests so that all errors are detected; and
confirming that messages produced by an executable test demonstrate
conforming behavior that wasn't anticipated by the test (such as raising
one exception instead of another).

Modifications were required for 2 Class A tests, 6 Class B tests, and 2
Class C tests.

3-4

TEST INFORMATION

The following Class B tests were split because syntax errors at one point

resulted in the compiler not detecting other errors in the test:

B22003A B49003A B49005A B59001A B85013C
B97101E

The following executable tests were split because the resulting programs
were too large to be executed:

AE2101A AE2101F C52102B C52102C

Test EA1003B was processed with option I in effect to enable library
installation of a legal compilation unit in the same file as an illegal
unit. With the default option in effect, the legal unit is not installed
in the library.

3.7 ADDITIONAL TESTING INFORMATION

3.7.1 Prevalidation

Prior to validation, a set of test results for CVC Version 1.9 produced by

the Meridian AdaVantage was submitted to the AVF by the applicant for
review. Analysis of these results demonstrated that the compiler
successfully passed all applicable tests, and the compiler exhibited the
expected behavior on all inapplicable tests.

3.7.2 Test Method

Testing of the Meridian AdaVantage using ACVC Version 1.9 was conducted
on-site by a validation team from the AVF. The configuration consisted of
a Zilog System 8000 operating under Zeus 3.21.

A magnetic tape containing all tests except for withdrawn tests and tests
requiring unsupported floating-point precisions was taken on-site by the
validation team for processing. Tests that make use of
implementation-specific values were customized before being written to the
magnetic tape. Tests requiring modifications during the prevalidation
testing were included in their modified form on the magnetic tape.

The contents of the magnetic tape were loaded directly onto the host
computer. After the test files were loaded to disk, the full set of tests
was compiled and linked on the Zilog System 8000, and all executable tests
were run. Results for non-executable tests were transferred to an ALR
386/2 via LapLink and were compared to the corresponding results produced
by the ALR 386/2 (which had been examined by the validation team). The
comparison was done using an Ada program that was supplied by Meridian
Software Systems and was examined by and modified under the supervision of
the validation team. Executable test results and all non-executable

3-5

TEST INFORMATION

results differing from the ALR results in respects other than
machine-specific header information were printed from the Zilog System
8000, and examined by the validation team.

The compiler was tested using command scripts provided by Meridian Software
Systems, Inc. and reviewed by the validation team. The compiler was
tested using all default option settings except for the following:

Option I Switch Effect

Q Suppress informational messages.
w Suppress warnings.
I Permit installation of valid units and invalid units

in a file. (For EA1003B only.)
-i To produce a listing file.
E To produce a listing file.

Tests were compiled, linked, and executed (as appropriate) using a single
computer. Test output, compilation listings, and job logs were captured on
magnetic tape and archived at the AVF. The listings examined on-site by
the validation team were also archived.

3.7.3 Test Site

Testing was conducted at Laguna Hills, CA and was completed on 8 June 1988.

3-6

APPENDIX A

DECLARATION OF CONFORMANCE

Meridian Software Systems, Inc. has submitted the
following Declaration of Conformance concerning the
Meridian AdaVantage.

A-1

DECLARATION OF CONFORMANCE

Compiler Implementor: Meridian Software Systems, Inc.
Ada Validation Facility: ASD/SCEL Wright-Patterson AFB OH 45433-6503
Ada Compiler Validation Capability (ACVC) Version: 1.9

Base Configuration

Base Compiler Name: Meridian AdaVantage Version: 2.2
Host Architecture ISA: Zilog System 8000 OS&VER #: Zeus 3.21
Target Architecture ISA: Zilog System 8000 OS&VER #: Zeus 3.21

Implementor's Declaration

I, the undersigned, representing Meridian Software Systems, Inc., have implemented
no deliberate extensions to the Ada Language Standard ANSI/MIL-STD-1815A in
the compiler(s) listed in this declaration. I declare that Meridian Software Systems,
Inc. is the owner of record of the Ada language compiler(s) listed above and, as
such, is responsible for maintaining said compiler(s) in conformance to A.NSI/MIL-
STD-1815A. All certificates and registrations for Ada language compiler(s) listed in
this declaration shall be made only in the owner's corporate name.

____.__._____ Date: _________
StepheiK B. Whitehill
Vice President
Compiler Systems Development
Meridian Software Systems, Inc.

Owner's Declaration

I, the undersigned, representing Meridian Software Systems, Inc., take full
responsibility for implementation and maintenance of the Ada compiler(s) listed
above, and agree to the public disclosure of the final Validation Summary Report. I
further agree to continue to comply with the Ada trademark policy, as defined by
the Ada Joint Program Office. I declare that all of the Ada language compilers
listed, and their host/target performance, are in compliance with the Ada Language
Standard ANSI/MIL-STD-1815A.

Date:________
Stephen B. Whitehill
Vice President
Compiler Systems Development
Meridian Software Systems, Inc.

A-2

APPENDIX B

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to implementation-
dependent pragmas, to certain machine-dependent conventions as mentioned in
chapter 13 of the Ada Standard, and to certain allowed restrictions on
representation clauses. The implementation-dependent characteristics of
the Meridian AdaVantage 2.2, are described in the following sections, which
discuss topics in Appendix F of the Ada Standard. Implementation-specific
portions of the package STANDARD are also included in this appendix.

package STANDARD is

type INTEGER is range -32768 .. 32767;
type BYTE INTEGER is range -128 .. 127;
type LONGINTEGER is range -2147483648 .. 2147483647;

type FLOAT is digits 15 range -1.79769313486231E+308
1.79769313486231E 308;

type DURATION is delta 0.0001 range -8640 0 .0000.. 86400.0000;

end STANDARD;

B-I

APPENDIX F OF THE Ada STANDARD

1. Implementation-Dependent Pragmas
The following predefined pragmas are implemented:

elaborate interface list pack
page priority shared suppress

The following predefined pragmas are accepted but not implemented:
controlled memory-size storage unit
inline optimize system name

2. Implementation-Dependent Attributes
There are presently no implementation-dependent attributes in Meridian
AdaVantage.

3. Package System
PACKAGE SYSTEM IS
TYPE ADDRESS IS NEW LONGINTEGER;

TYPE NAME IS (Z8001);

SYSTEM NAME : CONSTANT NAME := Z8001;

STORAGE UNIT : CONSTANT 8;
MEMORY SIZE : CONSTANT := 8388608;

-- SYSTEMDEPENDENT NAMED NUMBERS

MIN INT : CONSTANT -2147483648;
MAX _NT : CONSTANT := 214783647;
MAX DIGITS : CONSTANT := 15;
MAX MANTISSA : CONSTANT 31;
FINE DELTA : CONSTANT :: 2.0 ** (-30);
TICK : CONSTANT := 1.0;

-- OTHER SYSTEM-DEPENDENT DECLARATIONS

SUBTYPE PRIORITY IS INTEGER RANGE 1 .. 20;
END SYSTEM;

4. Implementation-Dependent Features
Length clauses for specifying task stack sizes are supported.
These implementation-dependent features are supported:

- pragma pack
- record representation clauses
- address clauses
- length clauses for fixed-point 'SMALL specifications
- length clauses for task stack size specifications
- pragma INTERFACE to C and assembly
- machine code insertions
- representation attriburtes for all types
- unchecked type conversions
- unchecked storage attributes

The remaining implementation-dependent features ari not supported in

B-2

APPENDIX F OF THE Ada STAnDARD

this release.

5. Unchecked Conversions
The only restriction on the use of unchecked conversions is that it may not
be used to convert between a scalar object and a composite object. Note

that conversions between objects whose sizes do not conform may result in

storage areas with undefined values.

6. I/O Packages
Implementation-dependent I/O characteristics are:

- An existing text file cannot be opened in OUTFILE mode, but can
be created in OUTFILE mode or INFILE mode.

- In calls to OPEN and CREATE, the form parameter must be the empty
string (the default value).

- RESET may not be used to change the mode of a file of mode IN FILE.

- More than one internal file can be associated with each external
file for sequential or direct I/O for reading only.

- Temporary sequential and direct files are given names. Temporary

files are deleted when they are closed.

- File I/O is buffered; files associated with terminal devices are

line-buffered.

- The packages SEQUENTIAL I/O and DIRECTI/O cannot be instantiated

with unconstrained composite types.

B-3

APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values, such
as the maximum length of an input line and invalid file names. A test that
makes use of such values is identified by the extension .TST in its file
name. Actual values to be substituted are represented by names that begin
with a dollar sign. A value must be substituted for each of these names
before the test is run. The values used for this validation are given
below.

Name and Meaning Value

$BIG IDI (1 .. 199 => 'A', 200 => '1')
Identifier the size of the
maximum input line length with
varying last character.

$BIG ID2 (1 .. 199 => 'A', 200 => '2')
Identifier the size of the
maximum input line length with
varying last character.

$BIG ID3 (1 99 => 'A', 100 => '3',
Identifier the size of the 101 .. 200 => 'A')
maximum input line length with
varying middle character.

$BIG ID4 (1 .. 99 => 'A', 100 => '14',
Identifier the size of the 101 .. 200 => 'A')
maximum input line length with
varying middle character.

$BIG INT LIT (1 .. 197 => '0', 198 .. 200 => "298")
An integer literal of value 298
with enough leading zeroes so
that it is the size of the
maximum line length.

C-I

TEST PARAMETERS

Name and Meaning Value

$BIGREALLIT (1 .. 194 > '0',

A universal real literal of 195 .. 200 => "69.0EV")

value 690.0 with enough leading
zeroes to be the size of the
maximum line length.

$BIG STRING1 (1 => "', 2 .. 101 => 'A', 102 => '"')
A string literal which when
catenated with BIG STRING2
yields the image of BIGIDI.

$BIGSTRING2 (1 => "', 2 .. 100 => 'A',

A string literal which when 101 => '1', 102 => '"')

catenated to the end of
BIG STRING1 yields the image of

BIG-IDi.

$BLANKS (1 .. 180 => '

A sequence of blanks twenty
characters less than the size
of the maximum line length.

$COUNT LAST 32766
A universal integer
literal whose value is
TEXTIO.COUNT'LAST.

$FIELD LAST 32767
A universal integer
literal whose value is
TEXTIO.FIELD'LAST.

$FILE NAME WITH BAD CHARS /a/b/c/d/e/f/g/hl
An external file name that
either contains invalid
characters or is too long.

$FILE NAME WITH WILD CARD CHAR /a/b/c/d/e/f/g/h2
An external fIle name that

either contains a wild card
character or is too long.

$GREATER THAN DURATION 86_400.0

A universal real literal that
lies between DURATIONIBASELAST
and DURATION'LAST or any value
in the range of DURATION.

C-2

TEST PARAMETERS

Name and Meaning Value

$GREATERTHANDURATION BASE LAS" 10_000000.0
A universal real literal th.1t is
greater than DURATION'BASE'LAST.

$ILLEGAL EXTERNAL FILE NAMEI /a/b/c/d/e/f/g/h3
An external file name which
contains invalid characters.

$ILLEGAL EXTERNAL_FILENAME2 /a/b/c/d/e/f/g/h4
An external file name which
is too long.

$INTEGERFIRST -32768
A universal integer literal
whose value is INTEGER'FIRST.

$INTEGER LAST 32767
A universal integer literal
whose value is INTEGER'LAST.

$INTEGER LAST_ PLUS_1 32768
A universal integer literal
whose value is INTEGER'LAST + 1.

$LESS THAN DURATION -86_400.0
A- universal real literal that
lies between DURATION'BASE'FIRST
and DURATION'FIRST or any value
in the range of DURATION.

$LESSTHANDURATIONBASEFIRST -10 000_000.0
A universal real literal that is
less than DURATION'BASE'FIRST.

$MAX DIGITS 15
Maximum digits supported for
floating-point types.

$MAXINLEN 200
Maximum input line length
permitted by the implementation.

$MAX_tNT 21'47'4836'47
A universal integer literal

whose value is SYSTEM.MAX INT.

$MAX INT PLUS 1 2 14 7 4 83 64 8
A universal integer literal
whose value is SYSTEM.MAX INT+1.

C-3

TEST PARAMETERS

Name and Meaning Value

$MAX LEN INT BASED LITERAL (1 .. 2 => "2:", 3 .. 197 => '0',
A universal integer based 198 .. 200 => "11:")
literal whose value is 2#11#
with enough leading zeroes in
the mantissa to be MAXINLEN
long.

$MAX LEN REAL BASED LITERAL (1 .. 3 => "16:", 4 .. 196 => '0',
A universal real based literal 197 => 200 "F.E:")
whose valie is 16:F.E: with
enough leading zeroes in the
mantissa to be MAXINLEN long.

$MAX STRING LITERAL (1 => '"', 2 .. 199 :> 'A', 200 => "')
A string literal of size
MAXINLEN, including the quote
characters.

SMININT -211474836248
A universal integer literal

whose value is SYSTEM.MININT.

$NAME BYTEINTEGER
A name of a predefined numeric
type other than FLOAT, INTEGER,
SHORT FLOAT, SHORT INTEGER,
LONGFLOAT, or LONGINTEGER.

$NEG BASED INT 16#FFFFFFFE#
A based integer literal whose
highest order nonzero bit
falls in the sign bit
position of the representation
for SYSTEM.MAXINT.

C-4

APPENDIX D

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform to the
Ada Standard. The following 27 tests had been withdrawn at the time of
validation testing for the reasons indicated. A reference of the form
"AI-ddddd" is to an Ada Commentary.

" B28003A: A basic declaration (line 36) incorrectly follows a
later declaration.

" E28005C: This test requires that "PRAGMA LIST (ON);" not
appear in a listing that has been suspended by a previous
"PRAGMA LIST (OFF);"; the Ada Standard is not clear on this
point, and the matter will be reviewed by the AJPO.

" C34004A: The expression in line 168 yields a Value outside
the range of the target type T, but there is no handler for
CONSTRAINTERROR.

* C35502P: The equality operators in linas 62 and 69 should be
inequality operators.

" A35902C: The assignment in line 17 of the nominal upper

bound of a fixed-point type to an object raises
CONSTRAINT ERROR, for that value lies outside of the actual
range of the type.

" C35904A: The elaboration of the fixed-point subtype on line
28 wrongly raises CONSTRAINTERROR, because its upper bound
exceeds that of the type.

" C35904B: The subtype declaration that is expected to raise
CONSTRAINT ERROR when its compatibility is checked against
that of vrious types passed as actual generic parameters,
may, in fact, raise NUMERIC ERROR or CONSTRAINT ERROR for
reasons not anticipated by the test.

D-1

4f WITHDRAWN TESTS

C35AO3E and C35A03R: These tests assume that attribute
'MANTISSA returns 0 when applied to a fixed-point type with a
null range, but the Ada Standard does not support this
assumption.

C37213H: The subtype declaration of SCONS in line 100 is
incorrectly expected to raise an exception when elaborated.

C37213J: The aggregate in line 451 incorrectly raises
CONSTRAINTERROR.

C37215C, C37215E, C37215G, and C37215H: Various discriminant
constraints are incorrectly expected to be incompatible with
type CONS.

C38102C: The fixed-point conversion on line 23 wrongly
raises CONSTRAINTERROR.

C41402A: The attribute 'STORAGE SIZE is incorrectly applied
to an object of an access type.

C45332A: The test expects that either an expression in line
52 will raise an exception or else MACHINE OVERFLOWS is
FALSE. However, an implementation may evaluate the
expression correctly using a type with a wider range than the
base type of the operands, and MACHINEOVERFLOWS may still be
TRUE.

C45614C: The function call of IDENT INT in line 15 uses an
argument of the wrong type.

" A741o6C, C85018B, C87BO4B, and CC1311B: A bou-nd specified in
a fixed-point subtype declaration lies outside of that
calculated for the base type, raising CONSTRAINTERROR.
Errors of this sort occur at lines 37 & 59, 142 & 143, 16 &
48, and 252 & 253 of the four tests, respectively.

BC3105A: Lines 159 through 168 expect error messages, but
these lines are correct Ada.

AD1AO1A: The declaration of subtype SINT3 raises
CONSTRAINTERROR for implementations which select INT'SIZE to
be 16 or greater.

" CE2401H: The record aggregates in lines 105 and 117 contain
the wrong values.

" CE3208A: This test expects that an attempt to open the
default output file (after it was closed) with mode IN FILE
raises NAMEERROR or USE-ERROR; by Commentary A!-06048,
MODEERROR should be raised.

D-2

