PROCEEDINGS OF THE 1987 SCIENTIFIC CONFERENCE ON OBSCURATION AND AEROSOL RESEARCH

Elmer H. Engquist Karen A. Sistek
BATTELLE - EDGEWOOD OPERATIONS Edgewood, Maryland 21040

Aberdeen Proving Ground. Maryland 21010-5423

13 桇

Disclaimer

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorizing documents.

Distribution Statement

Approved for public release; distritiation is unlimited.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

19. ABSTRACT (Continue on revere if necessory and identily by block number)

In this report, 54 papers presented at the 1987 Scientific Conference on Obscuration and Aerosol Restarch are included under the headings of Physical and Chemical Properties of Aerosols, Aerosol Characterization Methods, and Optical Properties of Aerosols.

18. SUBJECT TERMS (continued)

Aerosol properties
Electromagnetic scattering
Millimeter wave radiation
Submillimeter wave radiation
Visitle radiation
Electromagnetic waves
Spherical particles
Mie scattering
Rayleigh scattering
Raman scattering
Concentration sampling
Particle dynamics
Diffusive mixing
Aerosol growth
Nucleation
Smoke generation
Aerosol generation
Photoionization
Conductivity
Chemical characterization
Phosphorus smoke
Fluorescence
Aerosol clusters
Spheres
Cylinders
Rough particles
Irregular particles
Nonspherical particles
Particle aggregates
Particle chains
Infrared emission
Cooperative scattering
Dependent scattering
Multiple scattering
Radiative transfer
Coagulation
Condensation
Liquid drop
Drop growth
Fog oil smoke
Diesel ofl smoke
Particle mechanics
Atmospheric optics
Atmospheric dispersion
Cloud dynamics
Scavenging
Aerosol cullectors
Aerosol elimination
Aerosol characterization
Particle sizing
Hygroscopic smokes
Particle size distribution
Particle orientation distribution

Optical constants
Optical properties
Anomalous diffraction
Attenuated total reflection
Reflection spectroscopy
ATR
Far-infrared
Refractive index
Index of refraction
Inversion
Inversion techniques
Gypsum
Natural minerals
Minerals
Metal
Metallic particles
Powdered minerals
Complex refractive index
Effective media
High energy laser
Particles
Aerosol particles
SERS
Surface Enhanced Raman Scattering
Dieloctric particles
Conducting particles
Cyclindrical particles
Fibers
Conducting fibers
Gas-aerosol reactions
Transport phenomena
Aerosol measurement
Spheroids
Laser pulses
Optical pulses
Pulse propagation
Clouds
Laser
Radiation transport
Fourter analysis
Plume mechanics

PREFACE

The 1987 Chemical Research, Development and Engineering Center Scientific Conference on Obscuration and Aerosol Research was held 26-30 June 1987 at the Edgewood Area Conference Center of Aberdeen Proving Ground, Maryland. The Conference is held annually, the last full week in June, under the direction of Or. Edward Stuebing, Research Area Cordinator, Aerosol Science, from whom it receives its unique and productive character.

The Conference is an informal forum for scientific exchange and stimulation amongst investigators in the wide variety of disciplines required for Aerosol research and a description of an obscuring aerosol and its effects. The participants develop sone familiarity with the Army aerosol and obscurationscience research programs and also becone personally acquainted with the other investigators and their research interests and capabilities. Each attendee is invited to present any aspect of a topic of interest and may make last minute changes or alterations in his presentation as the flow of ideas in the Conference develops.

While all participants in the Conference are invited to submit papers for the Proceedings of the Conference, each investigator, who is funded by the Army Research Program, is requested to provide one or more written papers that document specifically the progress made in his funded éfort in the previous year and which indicate future directions. Also, the papers for the Proceedings are collected in the Fall to allow time for the fresh ideas that arise at the Conference to be incorporated. Therefore, while the papers in these proceedings tend to closely correspond to what was presented at the Conference, there is not an exact correspondence.

The reader will find the items relating to the conference itself, photographs, the list of attendees, and the agenda, in the appendixes following the papers and the indexes pertaining to them.

The use of trade names or manufacturers' names in this report does not constitute an official endorsement of any commercial products. This report may not be cited for purposes of advertisement.

> Distribution of this document is limited to conference attendees to reduce the risk of its unauthorized disclosure while providing a valuable exchange of unclassified information. The proceedings are not to be used as reference material for other persons or organizations. It is incumbent on the recipient to safeguard the contents, control the dissemiriation, and destroy properly in accordance with DoD Industrial Security Directive $5220.22-M$ or Information Security Directive $5220.1-R$.

Reproduction of this document in whole or in part is prohibited except. with permission of the Commander, U.S. Amly Chemical Research, Development and Engineering Center, ATTN: SMCCR-SPS-T, Aberdeen Proving Ground, Maryland 21010-5423. However, the Defense Technical Information Center and the National Technical Information Service are authorized to reproduce the document for U.S. Government purposes.

This report has been approved for release to the public.

CONTENTS

Page

1. AEROSOL OYNAMICS 11
DETERMINATION OF LIQUID VAPOR PRESSURES FROM SINGLE PARTICLE GEOMEYRICAL RESONANCES
G. O. Rubel 13
LIQUID CROP EVAPORATION DYNAMICS BY ACOUSTIC LEVITATION IN A HORIZONTAL WIND TUNNEL
M. Seaver and T.J. Manuccia 17
A THEORY OF VERTICAL PNEUMATIC TRANSPORT IN
A DRAFT TUBE (TRANSPORT LINE) AT CHOKING H. Littman and M. H. Morgan III 23
measurement of the condensation coefficientOF WATER IN THE UMR CLOUD SIMULATION CHAMBER
D. R. White, J. L. Kassner, J. C. Carstens,
D. E. Hagen, J. L. Schmitt, D. J. Alofs,
A. R. Hopkins, M. B. Trueblood; andM. H. Alcorn29
PHOTO-OXIDATION OF SULFUR DIOXIDE WITH OH RADICAL IN THE PRESENCE OF WATER VAPOUR AND AMMONIA TO FORM CONDENSATION NUCLEI
Patrick M. Nolan and James P. Friend 39
THE COAGULATION AND DISPERSION OF NONSPHERICAL AEROSOL PARTICLES HITH INERTIAL MEMORY IN A TURBULENT FIELO
I. Güllily and M. Pekarevich 95
"LIFT-OFF" OF BUOYANT HORIZONTAL PLUMES
M. Poreh and J. E. Cermak 103
STUDIES IN AEROSOL FORMATION AND GROWTH
H. Kosuge and J. R. Brock 107
II. AEROSOL CHARACTERIZATION METHODS 115
OPTICAL PROPERTIES OF SELECTED MINERALS, METALS, OPTICAL MATERIALS, SOOT, AND LIQUIDS
Marvin R. Querry and David M. Wieliczka 117
AEROSOL PARTICLE ANALYZER MEASUREMENTS
Philip J. Hyatt, Christian Jackson, David L. Hicks, and Yu-Jain Chang 129
PARTICLE DISCRIMINATION USING THE AEROSOL PARTICLE AKALYZER
J. R. Bottiger 139
SUPERRESOLUTION TECHNIQUE FOR AEROSOL HOLOGRAPHY
Peter D. Scott and David T. Shaw 151
AN ANALYTICAL EXPRESSION FOR THE AXIAL PRESSURE PROFILE IN A SPOUT-FLUID BED EQUIPPED HITH DRAFTTUBE
M. H. Morgan III and H. Littman 157
COMPUTER MODELING OF DIESEL FUEL/FOG OIL SMOKE CLOUD
Kenneth L. Evans and Tate T. H. Tsang 163
X-RAY FLUORESCENCE DETECTION OF MEDIUM ANDHIGH 2 AEROSOLSGeorge M. Thomson, Richard A. Markland, andSandra M. Thomson179
CLUSTERS: STUDIES OF AEROSOL PRECURSORS
W. B. Tzeng, J. J. Breen, R. G. Keesee, P. D. Dao, S. Morgan, and A. H. Castleman, Jr. 187
GENERAL REMARKS ON EQUILIBRIUM CONFIGURATIONS OF N POINT CHARGES ON A SPHERE Burt V. Bronk and Robert H. Frickel 191
OPTICAL CONSTANTS OF MINERALS, LIQUIDS, ANDMETALS FRON THE MILLIMETER TO THE ULTRAVIOLET
R. J. Bell, R. W. Alexander, Jr., L. A. Newquist,
R. Van Diver, M. A. Ordal, L. L. Long, andM. R. Querry201
A NOVEL INTERFEROMETER FOR MEASUREMENTS OF OPTICALPROPERTIES AT MILLIMETER WAVELENCTHSR. J. Bell, R. W. Alexander, Jr., R. Van Oiver,S. Fry, M. A. Ordal, L. L. Long, and L. Newquist217
SENSITIVITY OF FRACTAL ANALYSIS FOR DESCRIBING PARTICLE SHAPES
P. A. Lawless, M-T. Hsieh, and P. C. Reist 225
IIl. NONLINEAR EFFECTS AT HIGH ENERGY 237
TIME RESOLVED SPECTRA OF PLASMAS INITIATED BY SINGLE AEROSOLS: AN UPDATE A. Biswas, H. Latifi, L. J. Radziemski, and R. L. Armstrong 239
EXPERIMENTAL AND THEORETICAL ANALYSIS OF THE INTERACTION OF LASER RADIATION WITH FLUID CYLINDERS AND SPHERES
D. R. Alexander, J. P. Barton, S. A. Schaub,
M. A. Emanuel, and J. Zhang 251
ENERGY BALANCE IN LASER-IRRADIATED VAPORIZING DROPLETS
A. Zardecki and R. L. Armstrong 273
EXPLOSIVE VAPORIZATION OF A SINGLE HATER DROPLET BY PULSED LASER RADIATION
J. C. Carls and J. R. Brock 279
INDICED TURBULENCE IN AEROSOL-LOADED ATMOSPHERES Shirish M. Chitanvis 289
IV. WORKSHOP: HANDLING INDIVIDUAL PARTICLES 303
OPTICAL LEVITATION OF SINGLE PARTICLES
Thomas R. Lettieri 305
AEROSOL JET ETCHING OF FINE PATTERNS
Y. L. Chen, J. R. Brock, and
I. Trachtenberg 315
v. OPTICAL PROPERTIES OF AEROSOLS 321
STATUS OF THE MICROHAVE SCATTERING FACILITY (MSF) UPGRADE
R. T. Wang 323
ANGULAR SCATTERING FROM SINGLE SUSPENDED CYLINDERS
J. D. Eversole, H.-B. Lin, and A. J. Campillo 341
EFFECTS OF SIMPLE SHADOWING ON VARIATIONAL CALCULATIONS
B. J. Stoyanov and R. A. Farrell 347
THE SCATTERING OF LIGHT FROM A DIELECTRIC KNOT
R. D. Haracz, L. D. Cohen, and A. Cohen 357
SCATTERING FROM A HELIX AND RANDOMLY ORIENTED LONG CYLINDERS AND THE INFINITE CYLINDER THEORY APPROACH
A. Cohen, R. D. Haracz, and L. D. Cohen 365
THE SCATTERING OF FEMTOSECOND OPTICAL PULSES BY SMALL DIELECTRIC SPHERES
G. T. Bennett, E. S. Fry, W. E. White, P. Herb,
G. W. Kattawar, and W. Xu 387
RADIATIVE TRANSFER CALCULATIONS FOR DETECTING A TARGET BEHIND OBSCURING ATMOSPHERES
T. Duracz and N. J. McCormick 395
AN EXACT FORMULA FOR THE ACCURACY OF A CLASS OF COMPUTER SOLUTIONS OF INTEGRAL EQUATION FORMULATIONS OF ELECTROMAGNETIC SCATTERING PROBLEMS D. K. Cohoon 401
SCATTERING OF LIGHT BY FINITE CYLINDERS
D. K. Cohoon 413
determination of molecular orientation at the surface of an aerosol particle by MORPHOLOGY DEPENDENT PHOTOSELECTION
L. M. Folan and S. Arnold 443
THEORY OF ENHANCED ENERGY TRANSFER BETHEEN MOLECULES EMBEDDED IN SPHERICAL DIELECTRIC PARTICLES
S. D. Druger, S. Arnold, and L. Folan 453
RAPID ACQUISITION OF RAMAN SPECTRA FROM OPTICALLY LEVITATED PARTICLES
G. Moncivais, J. C. Carls, and J. R. Brock 167
THEORETICAL CALCULATION ON SCATTERING BY SPHEROIDAL PARTICLES AND COMPARISON WITH MICROWAVE EXTINCTION MEASUREMENTS
Wan-Xian Hang and R. T. Wang 473
THE SIMPLEST RACIAL HAVE FUNCTIONS IN THE CALCULATION OF LIGHT SCATTERING BY A SPHEROIDAL PARTICLE $\mathrm{H}-\mathrm{X}$. Wang 489
ABSORPTION BY AGGREGATED SPHERES Leland Pierce and Herschel Weil 495
VARIOUS GEOMETRICAL DESIGNS FOR ELECTRODYNAMIC PARTICLE TRAPS AND THEIR CHARACTERISTICS H.-8. Lin, J. D. Eversole, and B. Bronk 513
EXPERIMENTAL INVESTIGATION OF POST BREAKDOWN EFFECTS
A. Biswas, P. Shah, R. L. Armstrong, and
L. J. Radziemski 521
THE SCATTERING OF ELECTROMAGNETIC RADIATION BYMULTILAYER, ANISOTROPIC PARTICLES WITH SPHERICALsymmetryD. K. Cohoon533
LIGHT SCATTERING BY ORIENTED AND RANDOMLY OISPERSED CHIRAL PARTICLES Shermila B. Singham 571
EXPERIMENTAL TEST OF A TIME-DEPENDENT INVERSE SCATTERING ALGORITHM
R. A. Elliott, T. Duracz, and N. J. McCormick 581
BACXSCATTERING ENHANCEMENT OF WAVES IN RANDOM MEDIA
V. K. Varadan, V. V. Varadan, and Y. Ma 591
ELECTROMAGNETIC ABSORPTION IN A CHIRAL COMPOSITE LAYER
Vijay K. Varadan, Vasundara V. Varadan, and Akhlesh Lakhtakia 597
SUMMARY OF RECENT WORK AT THE UINIVERSITY OF MICHIGAN RELEVANT TO ELECTROMAGNETIC WAVE
SCATTERING AND ABSORPTION BY SMALL PARTICLES
Herschel Weil and Thomas M. Willis III 603
AVERAGE INTENSITY SCATTERED BY OENSELY DISTRIBUTED NONSPHERICAL PARTICLES
Y. Ma, V. K. Varadan, and V. V. Varadan 613
BACKSCATTER ENHANCEMENT OF INFRARED AND OPTICAL
RADIATION FROM FINITELY CONDUCTING PARTICLES
WITH SMOOTH AND VERY ROUGH SURFACES--FIRST ORDERAND MULTIPLE SCATTER
Ezekiel Bahar and Mary Ann Fitzwater 619
LIGHT SCATEERING BY AN ARBITRARILY CONFIGURED CLUSTER OF SPHERES
K. A. Fuller and G. W. Kattawar 631
THE POSSIBILITY OF USING SEVEN DIMENSIONALELECTROMAGNETIC THEORY TO SOLVE THREE DIMENSIONALLIGHT SCATTERING PROBLEMS
D. K. Cohoen 645
OBL IQUE INCIDENCE RADIATIVE HEATING OF ANISOTROPIC AEROSOL PARTICLES WHOSE REGIONS OF CONTINUITY OF TENSORIAL ELECTROMAGNETIC PROPERTIES ARE DELIMITED BY COAXIAL CYLINDERS COVERED BY IMPEDANCE SHEETS
D. K. Cohoon 667
INDEXES FOR PAPERS IN THESE PROCEEDINGS
A. Index of Authors of Papers in These Proceedings 707
B. Index of Authors ' Organizations and Countries (if not U.S.A.) for Papers in These Proceedings 709
APPENDIXES
A. Photographs of Conference Attendees 711
B. List of Conference Attendees. 717
C. Conference Agenda 727
i. AEROSOL DYNAMICS

DETERMINATION OF LIQUID VAPOR PRESSURES

FROM SINGLE PARTICLE GEOMETRICAL RESONANCES

G. O. Rubel
U.S. Army Chemical Research, Development and Engineering Center Aberdeen Proving Ground, Maryland 21010-5423

ABSTRACT

This paper presents a methodology for determining the evaporation rate and vapor pressure of arbitrary liquids using geometrical light scattering resonances. The technique involves the measurement of the 90 degree elastic light scattering from singie droplets, and the detection of periodic resonances io the light scattering pattern resulting from constructive interference between surface waves and the incident beam. Using well known relationships between the resonance periodicity and the change in droplet size, the vapor pressure of dimethylphthalate is determined within ten percent of prevtously reported values.

INTRODUCTION

In the past, classicai ASTM methods have been used to measure the vapor pressure of volatile liquids. Recently, a new method was introduced that uses electrodynamic trapping of single particles to determine droplet evaporation rates and their concomitant vapor pressures [1]. The technique rests upon using a combination of : itic arid oscillating electric fields to balance the droplet against its own weight. By monitoring the time dependent droplet balancing voltage, we are able to determine the the droplet evaporation rate. The method is rapid and highly accurate. In this paper, a technique for measuring liquid vapor presjures using 90 degree light scattering is introduced that eliminates the need for monitoring the droplet balancing voltage. By measuring the 90 degree light scattering during droplet evaporation, we are able to detect the geometrical resonances that appear due to constructive interference between refractec suiface waves and the incident radiation. From the periodicity in the resonances, the time dependent droplet size is determined. Using classical expressions for continuum evaporation, the liquid vapor pressure is determined from the droplet evaporation rate.

EXPERIME:'T

Electrodynamic suspension of single droplets he; prnven to be a valuable rool in the investigation of a wide range of phenomena in aerosol physics. The principle for droplet suspension is based on developing a phase lag between the droplet motion and the osilllating electric field. For linear electric fields, the droplet experiences a net time-averaged inrce that opposes the welght of the droplet. In addition, if a static electric field that exactly silances the particle weight is impressed across the chamber, the droplet remains stationary at the null point of the oscillating field. Successive droplet masses are determined from the successive balancing voltages, assuming constant droplet charge.

Figure 1 shows a schematic of the electrodynamic droplet suspension chamber, approximately $60 \mathrm{~cm}^{3}$

In volume, and the associated electrooptical circuitry. The static electric field is impressed across the top and bottom electrodes that are electrically insulated from the central electrode using two 200 volt d.c. power supplies in series. An oscillating voltage of 500 to 1000 volts is applied across the central electrode that establishes a linear electric field inside the chamber and provides the appropriate restoring force for the charged droplet. As the droplet evaporates, the static voltage is reduced to maintain the droplet at the null point of the chamber.

A dimethylphthalate (DMP) droplet is generated by applying a high voltage to a capillary tube that conta'ns the DMP (index of refraction of 1.5138.) At a critical voltage, a spray of charged droplets is generated, and they are gulded into the chamber using focusing ficids. All droplets except one are removed from the chamber. The droplet is accurately positioned at the electrical null point by monitoring the light scattered by the droplet at 90 degrees (Fig. 1.) Light from a 2 mW helium-neon laser ($6328-A$ wavelength) is targeted onto the droplet and the light scattered at 90 degrees is detected with a split photodiode. The split photodiode consists of two diode panels that independently respend to the light scattered by the droplet. The siynal from the two diodes is passed through a difference/sum amplifier that outputs into a digital multimeter. If the droplet is positioned at the null point, then the difference output reads zero. If the droplet moves up or down, the difference output will be nonzero, and the static voltage is adjusted to bring the difference output back to zero. The balancing voltage is recorded on a y-t recorder.

The sum output of the amplifier represents the total light scattered at 90 degrees by the droplet and is recorded on a $y-t$ plotter that is driven by a quartz drive. The light is projected onto the split photodiode using a 32 mobjective that is focused onto the droplet. The acceptance angle of the microscope is approximately 4 degrens. The inftial droplet size is determined using a telemicroscope that is fitted with a scanning graticule. Using back fllumination of the droplet, we were able to measure the droplet diameter within one micrometer.

RESULTS AND DISCUSSION

Figure 2 shows the measured 90 degrees far-ffeld ifght scattering for an evaporating OMP droplet, the initial diameter of which is 84 micrometers. Because the chamber is unsaturated with DMP vapors, the droplet evaporates and resonances in the light scattering are observed. The signature of the resonance is that of a broad peak that is followed by two sharp peaks. The second sharp peak is superimposed onto a broad peak whose amplitude is smaller than the first broad peak. This distinctive pattern was also observed by Ashkin and Dzfedzic [2] in the measurement of the radation pressure on Cargille droplets the index of refraction of which is 1.51. Chylek et al. [3] showed that the sharp and broad peaks are associated with second and third order electric and magnetic resonances,
respectively. Interestingly, while the relative amplitudes of the peaks varies, their spacing remains invariant. In the present case, the spacing between successive resonances is 1.3 minutes. From Figure 2 we are able to establish an accurate measure of the time for the appearance of successive resonances as shown in the accompanying table.

As stated earlier, the appearance of a resonance is due to constructive interference between surface and incident waves, and this will only occur for specific droplet sizes. Chylek et al. [3] derived an expression for the separation between the resonances in terms of the liquid index of refraction that applied to droplets the size of which was very much greater than the incident wavelength. Using the Mie solution to single particle light scattering, they showed that the separation in the size parameter obeyed the relation

$$
\Delta_{I}=\frac{\tan ^{-1}\left(m^{2}-1\right)^{1 / 2}}{\left(m^{2}-1\right)^{1 / 2}}
$$

where m is the index of refraction and x is the droplet size parameter defined as the ratio of the droplet circumference to the radiation wavelength. For DMP, $\Delta x=0.75$. At constant radiation wavelength, we then have a measure of the droplet size at successive resonance, namely $\lambda_{a}=-0.75 \lambda, 2 \pi$

One may use this relation to define the droplet radius at successive resonances, i.e.,

$$
a_{1}=a_{0}-i(t) \frac{0.75 \lambda}{2 \pi} .
$$

Using continuum theory to model the transport of vapors away from the droplet, the liquid vapor pressure can be detemined from the relation

$$
P=-\frac{\rho R T}{2 D_{0} M_{\nabla}} \frac{\Delta a^{2}}{\Delta l}
$$

where temperature, D_{g} is the gas phase diffusion coefficient, and M_{w} is the molecular woight of the vapor. Using the data in Fig. 2, along with the expression for the liquid vapor pressure, we obtain for DMP the vapor pressure $9.37 \times 10^{-4} \mathrm{mmHg}$ at 20 C . This value is in good agreement with the literature value of $1.0 \times 10^{-3} \mathrm{mmHg}$ as reported by Frostiling [4].

REFERENCES

1. G. Rubel, On the Evaporation Rate of Multicomponent 011 Droplets, J. Colloid Interface Science, Vol. 81, No. 1, 188, 1981.
2. A. Ashk!n and J.M. Dziedzic, Observation of Optical Resonances of Dielectric Spheres by Lignt Scattering, Applied Optics, Vol. 20, No. 10, 1803, 1981.
3. P. Chylek, J.T. Kiehl, and M.K.W. Ko, Optical Levitation and Partial Wave Resonances, Physical Review A, Vol. 18, No. 5, 2229, 1978.
4. H. Frostling, Vapour Pressure Deteminations of Phthalic Esters by Analysis of a Static Aerosol With the Ald of a Flame Ionization Instrument, J. Aerosol Science, Vol. 1, 341, 1970.

FIGURE 1. ELECTRODYNAMIC PARTICLE SUSPENSION CHAMBER AND ASSOCTATED ELECTROOPTICAL CIRCUITRY

FIGURE 2. NINETY DEGREE LIGHT SCATTERING FROM AN EVAPORATING DMP DROPLET. Periodicity of resonances is shown.

LIQUID DROP EYAPORATION DYNAMICS BY ACOUSTIC LEYITATION IN A HORIZONTAL WIND TUNNEL

Mark Seaver and T. J. Manuccia
Optical Sciences Division
Code 6540
Naval Research Laboratory Washington DC 20375

Abstract

We have built the first combination acoustic levitator and horizontal wind tunnel. Comparison of our data for the evaporation of water with known water evaporation data indicates that while the precision is excelient the accuracy can be off by as much as 100%. Potential sources of this discrepancy are discussed. Qualitative experiments into the evaporation of 1butanolwater mixtures demonstrate swithing from one-phase to two-phase behavior and back in this partially miscible system. Future directions include solving the accuracy discrepancy, applying in-situ optical diagnostics to monitor gaseous species uptake by liquid drops, further improvements in apparatus design and additional studies of evaporating mixtures.

INTRODUCTION

Acoustic levitation offers two advantages over electrodynamic levitation when it comes to studies of single aerosol particles. First, one can easily set up a laminar flow of gas around the particle which effectively removes the chamber walls from consideration in the particle-gas system dynamics. The second advantage lies in the ability to levitate uncharged particles.

With these considerations in mind we have built the first combination wind tunnel and acoustic levitator. In tivis report we briefly describe the apparatus, evaluate instrument preformance and discus preliminary results from evaporation studies of the partially miscible mixture, 1-butanol/water.

APPARATUS

Acoustic levitation relies on a nonlinear acoustic effect'. The levitation force in rectangular coordinates is given by

$$
F_{\text {levitate }}=\left(\frac{5 \pi \rho_{1}^{2}}{6 \rho c^{2}}\right) k r^{3} \sin (2 k x)
$$

Where p_{1} is the acoustic intensity, p is the particle density, c is the speed of sound in the gas, k is the wave vector and r is the particle radius. Note that the r^{3} term will cancel in the force balance expression making the levitation dependent only on particle density. In a cylindrical resonator such as ours the sin term is replaced by appropriate Bessel functions in the radial dimension. At frequencies which excite high order Bessel modes our system produces multiple trapping positions thus allowing future investigations into the effects of near neighbors on particle behavior.

We have built our cylindrical resonator around the working section of an open-jet horizontal wind tunnel. Using a modulated smoke wire for flow visualization we see laminar flow in the velocity range 50-300 cm / s. Drop sizes range from a maximum diameter of $\sim 2 \mathrm{~mm}$ down to $\sim 100 \mu \mathrm{~m}$.

A minimum particle size arises because of an acoustic force node coaxial with the wind tunnel jet. Because of this node the horizontal restoring force depends on particle size. Thus, the node allow small drops to be pushed horizontally through a "mountain valley" by the drag force until the drops reach a point where the vertical force no longer exceeds the gravitational force. Operation of the resonator in a Bessel mode with no azimuthal nodes would enable particles of any size to be levitated.

Air conditioning equipment allows us to vary the relative humidity and gas compostion. Constant temperature coils wrapped around the wind tunnel control the temperature to $\pm 0.2^{\circ} \mathrm{C}$ over the range $10-35^{\circ} \mathrm{C}$. Air temperature is measured with a thermocouple. Relative humidity is determined from wet bulb measurements. When liquids other than water are used the wet bulb wick is immersed in the appropriate liquid to give a temperature for the evaporating drop.

Drop size measurements are made from photographs taken with a microscope of known magnification. Because the acoustic field distorts the drops into oblate spheroids, both a horizontal and a vertical diameter
are measured. From these measurements the drop surface area and volume are calculated.

THEORY

The evaporation rate, in terms of surface area (S), for a volatile liquid in still air is given by

$$
\begin{equation*}
\left(\frac{d S}{d t}\right)_{0}=\left(\frac{8 \pi D_{p} M_{d}}{\rho_{d} R}\right)\left(\frac{\rho_{\infty}}{T_{\infty}} \cdot \frac{\rho_{d}}{T_{d}}\right) \tag{1}
\end{equation*}
$$

In this equation D_{V} is the diffusion coefficient of liquid vapor in the gas, Md_{d} is the molecular mass of the liquid, ρd is the density of the liquid, R is the gas constant, ρ_{∞} and p_{d} are the vapor pressures of the liquid in the gas stream and at the drop surface respectively and T_{∞} and T_{d} are the gas and drop temperatures. For moving air this expression is multiplied by the so called ventillation coefficient, iv. An empirical correlation for iv has been given by Pruppacher and Beard2.

$$
f_{v}=0.78+0.308\left(\mathrm{NSc}_{\mathrm{s}}\right)^{1 / 3}\left(\mathrm{NR}_{\theta}\right)^{1 / 2} \quad \mathrm{NR}_{\mathrm{R}} \gg 4
$$

In this equation NSc(Schmidt number) = kinematic viscosity/liquid vapor diffusivity and $\mathrm{NRe}_{\mathrm{e}}$ is the drop Reynolds number.

Our data can be compared with theory by plugging our measurements of NRe vs time into eq. 1 and integrating. The resulting calculated surface area vs time behavior is then compared with the surface area vs time data determined by the experiment.

EXPERIMENTAL

Figure 1 shows the results of five seperate experiments measuring the evaporation of water under constant conditions. Each experiment started out with a drop of a different size. Therefore we have scaled the
time axis so that all drops of the same surface area coincide in time. Such scaling illustrates the precision of our measurements as well as definitively ruling out the possibility of contaminated water. Similar data precision has been obtained for all pure and mixed liquids evaluated to date. Such precision enables us to distinguish between the evaporation behavior of liquids at temperatures differing by as little as $1^{\circ} \mathrm{C}$ and wind speeds differing by 15%.

FIGURE 1. WATER EVAPORATION ($135 \mathrm{~cm} / \mathrm{s}: 12.6^{\circ} \mathrm{C} ; 40 \%$ R.H.). Data is shifted in time so that drop surface areas coincide.

Slopes obtained for plots of S vs t for water at various wind velocities, relative humitities, and temperatures display differences with their calculated counterparts which range from 10% to 100%. Thus our accuracy is not reliable. One possible explanation for these discrepancies lies in our indirect determination of the drop temperature. If the actual drop is absorbing a small amount of energy from the acoustic field it will heat up. A $1.5^{\circ} \mathrm{C}$ temperature rise in the water drop would account for the largest discrepancy. An alternative explanation lies in the relative humidity measurement. However, much larger changes in relative humidity ($>10 \%$) are required to account for the observed disagreements. In the case of other pure liquids such as 1 -butanol or undecane, the agreement between calculated evaporation slopes and measured slopes is
better than 15%. Further investigation into this aspect of the levitator is underway.

We have observed a puzzling behavior in the evaporation of 1 . butanol/water mixtures. At relative humidities below 80% the S vs t curves for the mixture are smooth, reminiscent of fig. 1. When the relative humidity exceeds 80% one can visually observe two-phase behavior. That is one sees small drops of one liquid circulating on/in the larger drop. These small drops grow in size until the system coalesces back to a single phase. When we monitor the drop surface area as this behavior occurs we generate the S vs t plot seen in Fig. 2. It is interesting to note that the discontinuity in the curve coincides with the return to one phase behavior. We are also surprised by the fact that the evaporation rate of the butanol rich surface is not perturbed by the presence of increasing amounts of water rich matterial on or just below the drop surface until all the butanol rich liquid has evaporated.

FIGURE 2. 1-BUTANOLWATER EVAPORATION (9/1; $150 \mathrm{~cm} / \mathrm{s} ; 12.2^{\circ} \mathrm{C} ; 92 \%$ R.H.). Two-phase behavior begins at about 5 min and ends at the discontinuity.

We have also seen discontinuous behavior in the evaporation of undecane/1-butanol mixtures and undecane/tridecane mixtures. Both of these latter mixtures are fully miscible systems whereas 1-butanol/
water is only partially miscible. The miscibility limits are $\sim 8 \%$ 1-butanol in water and -20% water in 1 -butanol near room temperature.

SUMMARY

In summary, we have bult and tested the first combination acoustic levitator and wind tunnel. Tests indicate that precise measurement of drop evaporation can be made under controlled conditions of wind speed, temperature and gas composition. The absolute accuracy of the method requires further testing to resolve the reason(s) behind discrepancies in the measured versus calculated evaporation of water. In the partially miscible system, 1-butanol/water, we observe evaporating drops switch from single-phase to two-phase systems and back. The two-phase behavior occurs only when the relative humidity exceeds 80%.

[^0]2 K. V. Beard and H. R. Pruppacher, J. Almos. Sci. 28.1455 (1971).

H. Littman and M. H. Morgan lll Department of Chemical Engineering Rensselaer Polytechnic Institute Troy, New York 12180-3590

ABSTRACT

This paper presents a new theory for calculating the choking gas velocity in a draft tube. The only experimental information required is the axial pressure profile and the particle mass flowrate in the tube. Axtal profiles for the voidage, gas and particle velocities, and slip velocity can then be calculated.

The choking gas velocity is important practically as it determines the minimum volumetric gas flowrate needed to move the particles through the line at a particular flowrate.

I NTRODUCTION

In the design of equipment for spraying particulate aerosols, it is important to be able to predict the minimum gas velocity necessary to move the particies in dilute phase flow, and to determine the voidage of the particles exiting the draft tube (or transport line) and the mass flowrate of the particulates. There is no fundamental theory in the literature for predicting any of the aforementioned quantities. The partly theoretical approaches and data which exist are useful primarily in testing the general soundness of our approach.

In this paper, a new theory is presented for calculating the choking velocity, given only the axial pressure profile and the particle mass flowrate. Once the choking velocity is known the axial profiles for the voldage, gas and particle velocities, and slip can be calculated. Gas velocities close to choking are indeed practical because the air requirid to move a given amount of particles in a given time period is minimized.

THEORY

A. Field equations

The mass and momentum balance equations for the draft tube in figure 1 are as follows:

$$
\begin{align*}
& \frac{d}{d z}\left(\varepsilon_{t} u_{t}\right)=0 \tag{1}\\
& \frac{d}{d z}\left[\left(1-\varepsilon_{t}\right) v_{t}\right]=0 \tag{2}\\
& \rho_{f} \frac{d}{d z}\left(\varepsilon_{t} u_{t}^{2}\right)=-\varepsilon_{t} \frac{d p_{t}}{d z}-\beta\left(u_{t}-v_{t}\right)^{2} \tag{3}\\
& \rho_{p} \frac{d}{d z}\left[\left(1-\varepsilon_{t}\right) v_{t}^{2}\right]=-\left(1-\varepsilon_{t}\right) \frac{d p_{t}}{d z}+B\left(u_{t}-v_{t}\right)^{2}-\left(1-\varepsilon_{t}\right)\left(\rho_{p}-\rho_{f}\right) g \tag{4}
\end{align*}
$$

Integrating equations 1 and 2 , we obtain

$$
\begin{align*}
& \varepsilon_{t} u_{t}=c_{1}=W_{g t} / \rho_{f} A_{t} \tag{5}\\
& \left(1-\varepsilon_{t}\right) v_{t}=c_{2}=W_{p t} / \rho_{p} A_{t} \tag{6}
\end{align*}
$$

Combining equations 3 and 4, we obtain the overall momentum balance for gas and particles

$$
\begin{equation*}
p_{f} \frac{d}{d z}\left(\varepsilon_{t} u_{t}^{2}\right)+\rho_{p} \frac{d}{d z}\left[\left(1-\varepsilon_{t}\right) v_{t}^{2}\right]=-\frac{d p_{t}}{d z}-\left(1-\varepsilon_{t}\right)\left(p_{p}-p_{f}\right) g \tag{7}
\end{equation*}
$$

Using equations 5 and 6 , equation 7 can be placed in the following form

$$
\begin{equation*}
r\left(\varepsilon_{t}\right) \frac{d \varepsilon_{t}}{d z}+\left(\rho_{p^{-\rho}}\right) g\left(1-\varepsilon_{t}\right)=-\frac{d p_{t}}{d z} \tag{8}
\end{equation*}
$$

where $\quad Y\left(\varepsilon_{t}\right)=\frac{\rho_{p} c_{2}{ }^{2}}{\left(1-\varepsilon_{t}\right)^{2}}-\frac{\rho_{f} c_{1}{ }^{2}}{\varepsilon_{t}{ }^{2}}$

Equations 5, 6 and 8 can be solved for u_{t}, v_{t} and ε_{t} if the experimental pressure profile is available, and the boundary conditions specified.
B. Boundary conditions at choking and the choking gas velocity.

Although the boundary conditions at choking are unknown, reasonable assumptions can be made. Let us consider first the conditions at the top of the draft tube. Assume that

$$
\begin{equation*}
\frac{d \varepsilon_{t}}{d z}=0 \tag{10}
\end{equation*}
$$

$$
\text { at } z=H_{t}
$$

Since equation 6 shows that $d v_{t} / d z=0$ when $d \varepsilon_{t} / d z=0$, we are assuming that the particles are not accelerating at the top of the draft tube. In a long transport line, this is undoubtedly the case.

Using equation 10 in equation 8 , the voidage at the top of the draft tube 1

$$
\begin{equation*}
\varepsilon_{t}=1-\frac{\left(-d p_{t} / d z\right)}{\left(\rho_{p}-p_{f} / g\right.} \quad \text { at } \quad z=H_{t} \tag{11}
\end{equation*}
$$

At the inlet, we assume that

$$
\begin{equation*}
\gamma\left(\varepsilon_{\tau}\right)=0 \quad \text { at } z=0 \tag{12}
\end{equation*}
$$

so that by equation 8

$$
\begin{equation*}
\varepsilon_{t}=1-\frac{\left(-d p_{t} / d z\right)}{\left(p_{p}-p_{f} / g\right.} \quad \text { at } z=0 \tag{13}
\end{equation*}
$$

Equations 11 and 13 are the equations for caiculating the voldage at the inlet and outlet to the draft tube. What is needed experimentally is the axial pressure profile which can then be differentiated numerically to determine the gradient. The inlet gradient is obviously more inaccurate because of the curvature there.

From equation 9

$$
\begin{equation*}
\frac{c_{1}}{c_{2}}=\left(\frac{\rho_{p}}{\rho_{f}}\right)^{1 / 2}\left(\frac{\varepsilon_{t}}{1-\varepsilon_{t}}\right) \quad \text { at } z=0 \tag{14}
\end{equation*}
$$

If the particle mass flowrate at choking is measured then c_{1} can be calculated from equation 14. The volumetric flowrate of gas at choking is

$$
\begin{equation*}
Q_{c}=\frac{c_{1}}{\epsilon_{t}\left(H_{t}\right)} \frac{\pi}{4} d_{t}^{2} \tag{15}
\end{equation*}
$$

Q_{c} is the minimum gas needed to move the particles through the transport line and $\varepsilon_{t}\left(H_{t}\right)$ is the minimum voidage. It is apparent that if our criteria for calculating $\varepsilon_{t}(0)$ and $\varepsilon_{t}\left(H_{t}\right)$ (equations 10 and 12) are correct then an axial pressure profile in the tube is all that is required to obtain the conditions at choking, solution of equation 8 gives the axial voidage profile in the draft tube and the average voldage in the draft tube is

$$
\begin{equation*}
\left\langle\varepsilon_{t}\right\rangle=\int_{0}^{1} \varepsilon_{t}(z) d\left(z / H_{t}\right) \tag{16}
\end{equation*}
$$

The gas and particle velocity and slip velocity profiles are calculated using equations 5 and 6.
C. The slip velocity at inlet.

For coarse particles the slip velocity is of the order of the terminal velocity (Capes and Nakamura, 1973, Day et al., 1987) so that for a particular system, we can write

$$
\begin{equation*}
\frac{u_{t}-v_{t}}{u_{T}}=k \quad \text { at } z=0 \tag{17}
\end{equation*}
$$

where the functional relationship is currently unknown.

Using equations 5, 6 and 17

$$
\begin{equation*}
k=\frac{\left[\left(\frac{p_{p}}{D_{f}}\right)^{1 / 2}-1\right]}{u_{T}} \frac{c_{2}}{\left[1-\varepsilon_{t}(0)\right]} \tag{18}
\end{equation*}
$$

Grbavcic (1986) gives an axial pressure profile and the particle mass flowrate at choking for corn kernels $\left(\left\langle d_{D}\right\rangle=8.08 \mathrm{~mm}, \rho_{p}=1290 \mathrm{~kg} / \mathrm{m}^{3}\right.$). With $u_{T}=11.64 \mathrm{~m} / \mathrm{s}$ and $c_{2}=0.0651 \mathrm{~m} / \mathrm{s}, \mathrm{k}=1.57$. This is a very reasonable number as Day et al. (1987) found $k=1.8$ for 2.73 mm . glass spheres at the inlet to a spouted bed.

REFERENCES

Capes, C.E. and K. Nakamura, Can. J. Chem. Eng. 5131 (1973). Day, J.Y., M.H. Morgan III and H. Littman, Chem. Eng. Sci. 42 1461 (1987).

Grbavcic, 2.B., 1986, private communication.

NOTATION

C_{1}, C_{2}	constants
d_{t}	tube diameter
g	gravitational acceleration
H_{t}	neight of draft tube
P_{t}	fluid pressure (dynamic)
Q_{c}	volumetric flowrate of gas at choking
u_{t}	interstitial fluid velocity
v_{t}	mass flow rate of gas
$k_{g t}$	mass flow rate of particles
$W_{p t}$	vertical coordinate measured from tube inlet
2	

Greek symbols

B fiuid-particle interphase drag coefficient
$Y\left(\epsilon_{t}\right)$ defined by eq. (g)
$\varepsilon_{t} \quad$ voidage in draft tube
-f fluid density
$\rho_{\rho} \quad$ particle density

Gas and particles exit

Gas and particles enter

Figure l. Schematic diagram o: draft tube.

MEASUREMENT OF THE CCNDENSATION COEFFICIENT OF WATER IN

 THE UMR CLOUD SIMULATICN CHAMBERD.R. White, J.L. Kassner*, J.C. Carstens, D.E. Hagen, J.L.Schmitt, D.J. Alofs, A.R. Hopkins, M.B. Trueblood, and M.W. Alcorn

RECENT PUBLICATIONS:
D.R. White, J.L. Kassner*, J.C. Carstens, D.E. Hagen, J.L. Schmitt, D.J. Alofs, A.R. Hopkins, M.B. Trueblood, W.L. Walker, and M.W. Alcorn, "iniversity of Missouri-Roila Cloud Simulation Facility: Proto II Chamber", Rev. Sci. Instrum., 58(5), May 1987.

ABSTRACT
Measurements of the condensation coefficient of water under conditions closely approximating those in natural atmospheric cloud have been made in the cooled-wall umR cloud simulation chamber. Current measurements disclose a value of condensation coefficient near unity at the outset of the experiment, generally decreasing to lower values (2.01) as the experiment progresses. The significance of the magnitude of condensation coefficient in atmospheric cloud is briefly discussed.
*Current affiliation: D.D. Hulsart Co., Inc., Tuscaloosa, AL 35401

I. INTRODUCTION

The measurement of the condensation coefficient of water is important in a number of areas. We approach this problem from the cloud physics side, so our concern is with the dropwise condensation of water under normal atmospheric conditions. We begin by a few definitions and a brief discussion of why we regard the condensation coefficient to be significant in Cloud physics.

The condensation coefficient, B, may be defined as the probability that a water molecule, upon striking a liquid water surface, sticks to that surface.

Condensation growth of a cloud drop is accompanied by heat conduction (due to the latent heat of condensation), and the thermal accommodation coefficient, a, is the thermal counterpart to B. It represents the extent to which "air molecules" accommodate to the temperature of the liquid surface (or the drop)

$$
a=\frac{E_{i}-E_{r}}{E_{i}-E_{S}}
$$

where $E_{i}=$ ave. energy/molecule of incoming stream
E_{r} = ave. energy/molecule of reflected stream
$E_{S}^{\prime \prime}=$ ave. energy/molecule of a stream corresponding
to surface temperature.
The most familiar form of drop growth theory is that adapted to the low supersaturations found in atmospheric clouds (e.g. Fitzgerald, 1970; Fukuta and

Walter, 1970; Carstens, 1979). Carstens' version may be written to reasonable approximation as follows:

$$
\begin{equation*}
(a+\ell) \frac{d a}{d t}=D_{e f f} \frac{\rho_{e q}\left(T_{\infty}\right)}{\rho_{\ell}}\left[S(t)-S_{s a t}(a)\right] \tag{1}
\end{equation*}
$$

where

$$
\begin{align*}
& \hat{i}=D_{e f f}\left(\frac{\ell \beta}{D}+\frac{\ell_{\alpha} \tilde{L n}_{g}}{p K} B\right), \tag{2}\\
& \frac{1}{D_{e f f}}=\frac{1}{\bar{D}}+\frac{\overline{\mathrm{Ln}} \mathrm{pK}_{\mathrm{pK}}}{} \quad \text {, } \tag{3}\\
& \ell_{B}=\frac{4 D}{\bar{v}} \frac{1}{B}, \tag{4}\\
& \hat{i}_{i \alpha}=\frac{8 k}{n_{g} R \bar{v}_{g}} \frac{\gamma-1}{\gamma+1} \quad \underline{a}, \tag{5}
\end{align*}
$$

and where $S_{\text {sat }}(a)$ is normally written

$$
\begin{equation*}
S_{s a t}(a)=1+\frac{r^{*}}{a}-\frac{A m_{s}}{a^{3}} \tag{6}
\end{equation*}
$$

where r^{*} and A are constants, and m_{s} is the mass of dissolved salt (e.g. Rogers, 1976). Here $\rho_{e q}\left(T_{\infty}\right)$ represents the ambient saturation vapor density; B is the slope of the vapor saturation curve at ambient temperature (i.e. $\left.B=d_{s} / d T_{\infty}\right)$; and the remaining terms are defined in Appendix A.
II. IMPORTANCE IN DROP GROWTH
A. Influence on growth rate

An important question is the following: "How rate influencirg is the accommodation process, represented by the above parameters, in drop growth?" Under ordinary atmospheric conditions where water vapor is a dilute species with respect to air, one normally assumes that diffusion and conduction are the major rate controlling
steps in condensation growth. plainly, however, if $B \rightarrow 0$ the condensation probability takes over as the rate controlling step. Condensation rates are rather different depending on which process predominates. The mater may be put briefly by looking at the "resistance" term in the transport of vapor molecules to the surface of a drop of radius a.

Suppose for the sake of argument we ignore latent heat in the formalism represented by equation(1). Then $D_{e f f}=D$, and (1) can be rewritten

$$
a \frac{d a}{d t}=\frac{\rho_{\text {eq }}(T)}{\rho_{\ell}} \frac{\left[S(t)-S_{s a t}(a)\right]}{\frac{1+\ell / a}{D}}
$$

where ($1+\ell / a$)/D can be regarded as a resistance. For diffusion controlled growth this resistance is given simply by $\frac{l}{D}$ for growth controlled jointly by diffusion and surface accommodation this resistance may be written approximately by:

where λ is the mean free path of diffusant (vapor) molecule. Thus if either $B \rightarrow 0$ or $a \rightarrow 0$ the process tends to be dominated by surface kinetics.

B. Significance in Cloud Physics

One of the nagging problems in cloud physics has been the repeated observation that cloud drop size distributions are broader than conventional (closed parcel) theory implies. The most popular explanation appeals to mixing, but inexplicably broad size distributions have also been observed (Jensen and Baker, 1986) for unmixed, i.e., adiabatic, parcels. In the unmixed case the value of B is of significance, for if it is sufficiently small it is capable of accounting for that portion of the distribution extending to the small-size end of the spectrum (Warner, 1969). III. THE SEARCH FOR B
A. Existing measurements of B

The problem with which we are here concerned arises in establishing an experimental value for B. Past measurements disclose a scattershot of values ranging from 0.001 to 1.0 , with cloud physicists often taking a value of around 0.036 as a soit of compromise (Pruppacher and Klett, 1978). It is in fact hard to justify a cholce for B based on existing measurements. The general consensus among researchers is that the condensation coefficient for a "pure" surface ought to be unity (Mozurkewich, 1986); a common hypothesis involved to "explain" the variety of values
actually measured is that trace contaminants may strongly affect such measurements. Thus the existence of trace contaminants in the real atmosphere may mean that the condensation coefficient is significantly low under ordinary meteorological conditions.
B. The UMR program

There would seem to be little point in simply adding another value of B to the variety already in the literature. Yet this variety attests to the importance of the phenomenon and entreats a resolution to the problem. We have therefore started a systematic program aimed at measuring the condensation coefficient of water over a broad range of carefully controlled conditions. We have adopted the hypothesis that departures of β from unity $(\beta<1)$ are attributable to contamination. Hence an important part of our program will consist of precautions to ensure system purity, as well as subsequent deliberate introduction of selected "contaminants". In addition ambient supersaturations will be varied over a broad range, starting with magnitudes typical of atmospheric cloud, ($n .003$) and extending to values approaching those associated with homogeneous nucleation ($S \sim 4.0$). High supersaturations are produced in the UMR fast expansion chamber. Low values are produced in the UMR cloud simulation chamber. The program has been started with the simulation chamber. IV. MEASUREMENT OF B IN THE UMR SIMULATION CHAMBER

A. OVERVIEW OF THE FACILITY

The simulation facility consists of a dynamic cooled-wall expansion chamber which simulates in-cloud thermodynamics. The hallmark of this device is the close instantaneous tracking of its wall temperature with respect to that of the interior gas. This dynamic tracking suppresses the free convection that would otherwise occur at the walls, and permits prolonged experiments under well controlled conditions.

Sample preparation consists of (1) careful filtering of outside air, followed by (2) humidification, and (3) introduction of a prepared aerosol consisting of cloud condensation nuclei. This sample is introduced into the chamber where it is subjected to an isentropic expansion. The resulting cloud is analyzed by direct photography, laser scattering, or sample withdrawal.

B. Sample preparation

Preparation begins by drawing in outside air (1-2 l/sec) and passing it through a coarse surgical cotton filter. Water vapor is removed by passing the ait through a
refrigerant dryer ($\sim 0^{\circ} \mathrm{C}$), followed by a silica gel dessicant column and low temperature ($-40^{\circ} \mathrm{C}$) freeze dryer. Finally the air passes through a column of activated carbon granules (to remove residual organics), followed by an absolute filter rated at 99.978 efficient at $0.3 \mu \mathrm{~m}$.

The clean dry air is then humidified by passing it through a pair of humidification columns. (The dew point of the air at $17^{\circ} \mathrm{C}$ is consistently $0.355^{\circ} \mathrm{C}$ below the outlet temperature.)

Finally a prepared aerosol, monodisperse NaCl nuclei in these experiments, is introduced into the clean moist air sample at a mixing ratio of l:l00 or less. At this point the sample is ready to be introduced into the simulation chamber.
C. Sample introduction

The sample is introduced into the chamber from top to bottom. It first enters the inlet manifold chamber above the top and then is introduced uniformly into the chamber by means of 164 distinct ports located between the thermoelectric modules (so as not to interfere with their operation). This inlet system is duplicated as an outlet system at chamber bottom.

The chamber is flushed for a minimum of 15 minutes and continues until a measurement of the aerosol concentration shows an acceptably stable value for 5 min. When all systems are operating normally the chamber is sealed by closing the inlet and outlet valves. After a period of equilibration the chamber is ready for a cloud-generating expansion.

D. Aerosol preparation

Part of the clean dry air sample is used as a carrier gas for the four furnace NaCl aerosol generator (the procedure is described in some detail by Alofs et al., 1979). A boat containing granulated NaCl is placed in the first furnace region (\sim $730^{\circ} \mathrm{C}$). This gives off NaCl vapor which, when cooled ($\sim 300^{\circ} \mathrm{C}$) in the region between furnaces 1 and 2 , forms an aerosol by homogeneous nucleation. Subsequent reevaporation and condensation narrows the size distribution (Kitani and Ouchi, 1967), producing mean sizes with diameters between 0.01 and 0.08 microns. (Geometric standard deviation \sim.12; CCN concentrations approach $10^{5} / \mathrm{cm}^{3}$.)

The NaCl aerosol is further narrowed by passing it through a TSI classifier. Once a monodisperse CCN is produced, it is immediately introduced into the clean moist air system prior to entering the simulation chamber. Chamber concentrations currently
range from 25 to $150 \mathrm{CCN} / \mathrm{cm}^{3}$.

E. Isentropic cooling

The desired time-temperature-pressure control profile is loaded into the control computer. The computer uses this profile to generate a signal to the wall controllers and the expansiun valve of the chamber.

Wallcooling

Wall temperature control is based on the use of thermoelectric modules to pump heat between the thin (0.96 cm) inner wall and thick (7.6 cm) fluid-thermostated outer wall. Wall temperature is controlled by separate analog controller circuits for each $15.25 \times 30.5 \mathrm{~cm}$ control section of wall. Each controller receives two inputs, one from the output of a thermometer mounted on the wall section and the other from a control computer. Based on a comparison of these signals, the controller outputs a command signal to the programmable switching power supply which then causes the wall section to heat or cool so as to drive the difference signal to zero.

Expansion

The expansion consists of the controlled removal of air radially from the sensitive volume through a series of small ports 116 ports, 0.79 mm dia. per 61 cm height) located between side wall heat sink sections. These ports are collected into a channel which is connected to an expansion manifold. An eight bit digital valve controls flow into or out of the chamber. This valve is connected to a vacuum ballast tank (for expansion) which in turn is connected to a continuously running $45 \mathrm{f} / \mathrm{min}$. mechanical vacuum pump.

Pressure is the measured variable during the isentropic expansion. It is measured by a ifferential strain gauge pressure transducer with its reference side connected to the sensing volume of a vacuum-referenced dead weight gauge.

The TEM's can cool the inner wall surface at rates up to $10^{\circ} \mathrm{C} / \mathrm{min}$ for temperatures from +40 to $10^{\circ} \mathrm{C}$ below the temperature of the heat sink. Below this range the maximum cooling rate decreases until the lowest temperature of $35^{\circ} \mathrm{C}$ below the heat sink temperature is reached. Maximum heating rate exceeds $10^{\circ} \mathrm{C} / \mathrm{min}$ for all temperatures. At present the chamber at $20^{\circ} \mathrm{C}$ regularly shows an rms spread of $0.01^{\circ} \mathrm{C}$ or less in the temperature of the 40 measured control sections with a peak-to-peak spread of less than $0.050^{\circ} \mathrm{C}$. For the interior walls $30^{\circ} \mathrm{C}$ below the heat sink temperature, the rms increases to $0.075^{\circ} \mathrm{C}$ and the peak-to-peak spread approaches $0.5^{\circ} \mathrm{C}$.

Because of this wall-tracking feature the walls are necessarily opaque. Access to the chamber is provided by three 2.3 cm diameter windows: two directly opposite each other and one at 72° from the forward direction. Each window is 1.6 mm thick Sapphire soplanar with the inner wall. About 4 mm behind the coplanar window another window (or other element) can be placed. Temperature control is achieved by passing CO_{2} gas between plates. A transistor thermometer sensor is in contact with the edge of the window and its signal used for control.

The window at 72° provides a port either for photography or low light level $T V$ camera. Photographic illumination is provided by a Xenon flash lamp. Its beam is shaped with le-ses and a slit into a vertical sheet of light in the chamber. All drops in the light are in focus for the camera lens and these are registered on film. TV illumination is provided by the laser beam.

Actual measurements of drop sizes are made by Mie scattering. The 4° forward pattern is sufficiently structured so as to identify specific peaks with particular drop radii. Thus a series of peaks and valleys permit one to directly infer drop radius vs time for a monodispersed cloud.

Resultg

The condensation coefficient was inferred directly from drop growth rates using continum theory. (We have avoided the temptation to lower pressure, so as to enhance the role of surface kinetics, because we preferred not to rely on theories in the transition regime of Knudsen number.) The theory is basically that presented by Carstens (1979); it is gimilar to the often-quoted theory of fukuta and Walter (1972), except with convective mass flux (Stefan flow) and enthalpy flux included.

Preliminary data has now been taken. All the data show a rather large spread in the vicinity of $B=1$ for the early stages of growth, out to about 6 micron radius. Thereafter the value of 6 drops monatomically reaching values as low as 0.005 near radif of 15μ. These data were generated by subjecting a monodisperse aerosol to linear "ramped" cooling rates of $10^{\circ} \mathrm{C} / \mathrm{min}$. Figure 1 illustrates the trend of this data for several $10^{\circ} \mathrm{C} / \mathrm{min}$ runs.

EIGURE 1

In the following list the tilde over a variable designates it as a molar quantity, e.g., L denotes latent heat in cal/gm, and \dot{L} cal/mole.

English symbols

a drop radius
D diffusion coefficient, water vapor in air
es vapor pressure
K thermal conductivity, air
L latent heat of condensation
n_{g} molar concentration, air (moles/cm ${ }^{3}$)
P pressure
R universal gas constant
S supersaturation ratio
T temperature
\bar{v}_{g} average speed, gas molecule
Greek symbols
Q thermal accommodation coefficient
γ ratio of specific heats (const. pressure: const. vol.)
ρ_{ℓ} density (gms/cm ${ }^{3}$), liquid water

REFERENCES

Alofs, D.J., 1979: "Nucleation Experiments with Monodisperse NaCl Aerosols", J. Appl. Meteor. 18, 1106-1117.

Carstens, J., 1979: "Drop Growth in the Atmosphere by Condensation: Application to Cloud Physics", Adv. in Coll. \& Int. Sci., 10, 285-314.

Fukuta, N., and L.A. Walter, 1970: "Kinetics of Hydrometeor Growth from a Vapor Spherical Model", J. Atmos. Sci., 26(8), 1160-1172.

Jensen, J.B., and M.B. Baker, 1986: "An Observational Study of Cloud Droplet Spectra in Continental Study of Cloud Droplet Spectra in Continental Cumulus Clouds", proc. ams Conf. on Cloud phys. Vol. 2 (preprints), Snowmass, CO.

Kitani, S., and S. Ouchi, 1967: Preparation of Monodisperse Aerosols of Sodium Chloride", J. Coll. Int. Sci., 23, 200-202.

Mozurkewich, M. 1986: "Aerosol Growth and the Condensation Coefficient for Water: A Risview", Aerosol Sci. Techn., 5(2), 223-236.

Pruppacher, H.R., and J.D. Klett, 1978: "Microphysics of Clouds and precipitation", Dordrecht, Reidel.

Rogers, R.R., 1976: "A Short Course in Cloud Physics", Pergamon.
Warner, J., 1969: "The Microstructure of Cumulus Cloud. Part II. The Effect of Droplet Size Distribution of the Cloud Nucleus Spectrum and Updraft Velocity", J. Atmos. Sci... 26, 1272-1282.

Photo-oxidation of Sulfur Dioxide with OH Radical in the Presence of Water Vapour and Ammonia to Form Condensation Nuclel

Patrick M Nolan and James P. Friend*

GEO-CENTEKS, 10903 Indian Head Hignway, Ft Wastimgton, MS 20744^{4} - Malling address: c/o Cdr/CRDEC, US Army Chemi Rsch, De: \& Engr こ̈rr ATTN SMCCR-RSC-C/Nolan, ADerdeen Proving Grounc, MD 21010-542
*Department of Chemistry, Drexel University, Philade!phia, Pernsy var: Z 19104

Abstract

The formation of condensation nuclei by photo-oxidation of sulfur dioxide by OH radical was studied in one experiment a reaction mixiure of sulfur dioxide, ozone, water vapour, and zero-air was photoiyzed 2, employing a krypton-fluoride laser (248nm). In a similar experiment ammonia was added to the reaction mixture

In each experiment the photolysis of czone produced oxygeni ir: th:e singlet D state ($O^{\circ} D$) The O^{\prime} Dreacted with water vapour to iorm OH radicals which was the primary reactant for the oxidation of sulfur dioxide A mechanism which describes the formation of condensation nuclei is presented Rate constants for the isomerization of sulfur trioxide hydrate and for the mono-, di-, and tri-nydrates of sulfurî acla were estimated

A separate experiment examines the production of particles Fror ion Ehromatography data and examination of electron-micrographs the particles were determined to be $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ The particles were reacted In a maturation system and were collected with a po:nt-to-plane elestrostatic precipitator The particles were analyzed on an elec:r?n scarining microscope and their sizes ranged between 03 and 0 e microns

Introduction.

Much work has been done on the gas-phase kinetics of the photo-oxidation of sulfur dioxide molecules Presently, experimen:ai evidence seems to support the mechanism recently proposed by caiver: ar:d Stcckwell' The mechanisms of stratospheric formation of sufur: acid bearing aerosols at relatively low concentrations o: wate: vacowir are still a subject of debate. Few studies in which a comolete Eremiza system containing $\mathrm{SO}_{2}, \mathrm{OH}, \mathrm{O}_{2}$, and $\mathrm{H}_{2} \mathrm{O}$ have been reported in terms of
condensation nucleiformation The purpose of this investigation is to examine all possible reaction mechanisms which lead to the formation of condensation nucle: and to propose a theory that describes the rate of formation of condensation nuclei as a function of reastant concentrations and light intensity

An experimental flow reactor has been employed to examine the reaction between $\mathrm{SO}_{2}, \mathrm{OH}, \mathrm{O}_{2}$, and $\mathrm{H}_{2} \mathrm{O}$ in one set of experiments ammonia gas was also added to the reaction vessel The formation of condensation nuclei was monitored as a function of varying amounts of $\mathrm{SO}_{2}, \mathrm{O}_{3}, \mathrm{H}_{2} \mathrm{O}$, and laser fower A krypton-fluoride excimer laser was used to photolyze ozone to froduce atomic axygen rin the singlet-D state ine oxygen atoms subsequently reacted with water vapour to produce the OH radical Trie OH radical concentration car be accurately caiculated from the power output of the monochromatic licht source, known concentrations of O_{3} and $\mathrm{H}_{2} \mathrm{O}$, and the absorption cross section of O_{3} To minimize wali effects, the flow reactor was designed so the reacilon takes place where the laser beam passes inrough in the center of the reartinn vessel the experimental results art interoreted to give a possible chemical kinetic pathway for condensation nuclei formation when the photolyzed reaction mixture was exposed to ammonia gas the production of large ammonium sulfate aeroscl particles was observed and identified by electron-microscopy and by ion inromatrography. By examining the particie morphology it was conciuded that ine particles were neutralized in the gas-phase The presence of suin large particles demonstrates the ex:stence of condensation nuclei in the reactur and that the gas-phase photo-oxidation of SO_{2} products are $\mathrm{H}_{2} \mathrm{SO}_{4}$ molecules

Experimental

The experimental apparatus was ces: gned to measure the production of condensation nuclei as a function of sulfur dioxide, ozone, water vapour, and ammonia concentrations, and laser power (Figure 1) The apparatus is conven!ently divided into 31 , relatively independent blocks reactants concentration (production and dilution) and ilow control, reactani mixing, reaction vessel, laser, detection of products and laser power, and data acquisition A separate set of experiments required the construction of a maturation chamber and particle collection device to study the aerosol particle formation when the photolyzec reactant mixture was reacted with ammonia A brief cutline of the experimental procedure is discussed below however, a detalled descr:ption of each

Figure 1. Schematic of Experimental flow Apparotus.
component is given in Nolan's ${ }^{2}$ work
The sulfur dioxide concentration is set by diluting a known concentration of sulfur dioxide/zero air mixture. The ozone concentration is controlled by varying the amount of O_{2} exposed to the photolyzing radiation and the water vapour concentration is varied by changing the flow rate of zero air through a hydrated molecular sieve bed Also, the ammonia concentration was controlled by changing the temperature of a permeation device

The reactants were then mixed and conducted to the reaction vessel where the mixture was photolyzed with a krypton-fluoride excimer laser io produce $O H$ radical Subsequently, the $O H$ radical attacks the sulfur dioxide, which furtioer reacts to produce condensation nuclei The condensation nuclei concentration is detected with a condensation nucle: counter. Also, the power of each laser pulse was monitored with a jouiemeter. The peak laser power output was determined and stored on a peak/detect sample/hold integrated circuit. The analog data from the condensation nuclei counter and the peak/detect sample/hold integrated circuit were converted to digital form and then stored in memory for furtrier data manipulation (Figure 2).

In a separate set of experiments the photolyzed mixture enters a maturation chamber containing ammonia At various elapsed times the resultant aerosol particles were purged from the maturation chamber and coliected on a carbon mount by utiliz!ng a point-to-plane particle electrostatic precipitator The samples were analyzed on an electron scanning microscope

Results.

A typical experimental curve is displayed in Figure 3 The figure displays the condensation nuclei concentration, particles per microliter, as a function of time in seconds The characteristic shape of the curve can be described as a composite of instrumental features and diffusion properties Time zero corresponds to the laser trigger with an 8 or 9 second delay before any condensation nuclei are detected This lack of response arises from the 3 seconds travel time from the reaction vessel to the condensation nucle: counter intake orifice and the 5 to 6 seconds response time of the condensation nuclei counter within 1 to 2 seconds, the condensation nuclei concentration is at its maximum the pulsed-plateau feature, approximately 1 second in duration, is an instrumental artifact caused by the adiabatic expansion of the Wiison cloud chamber The curve width is approximately 17 to 18 second long, which is the time needed to sweep out the reaction chamber of products

C N Concentration us Time

Figure 3. Row Dato Display of Condensation Nuclei Concentration
as a Function of Time.

The decay side of the curve is a little more drawn out due to upstream longitudinal diffusion of the condensation nuclei

3. Presentation of Integrated Data.

The curve is integrated over time, yielding the area under the curve (particle $\mathrm{sec} / \mathrm{cc}$). To obtain the total number of condensation nuclei (CN) produces in the reaction chamber, the area under the curve (A) is multiplied by the flow rate (ω), in the case, a constant with a value of $2.511 \times 10^{4} \mu \mathrm{~L} / \mathrm{sec}$

$$
C N=\omega A
$$

(Eq. 1)
To determine the dependency of condensation nuclei formation on the number of photons, a plot of the logarithm of the total number of condensation nuclei verses logarithm of the laser power is performed (see Graphs 1-4).

The data are re-organized to demonstrate the dependency of the total condensation nuclei production as a function of reactant concentrations at different laser powers (see Graphs 5-8). A laser power is selected on the Log(CN) vs. Log(Laser Power) plots to yield the condensation nuclei concentration at each reactant concentration. A laser power range from 5.00 to 12.6 m joule/pulse is chosen.

All samples are collected on carbon mounts. The electron-micrographs are obtain on a Jeol JSM-35CF electron scanning microscopy. The electron scanning potential is operated between 15 KV to 20 KV to minimize sample degradation Magnifications of samples ranged irom $\times 3000$ to $\times 20000$. Most samples are scanned perpendicular to the surface of the carbon mount. One of the samples is scanned at an angle 50° to examine the three-dimensional morphology of the particles

DISCUSSION

1. Introduction

In view of recent publications, which demonstrate the importance of the $O H$ radical as a reactant in the oxidation process of stratospheric SO_{2}, the flow reactor has been designed to study the formation of condensation nuclei. The experiments are performed under atmospheric-like conditions, where the total air pressure is kept at I atmosphere, the relative humidity at 1 to 6 percent, and trace amounts (ppm range) of sulfur dioxide and ozone are present

This discussion is primarily concerned with explaining the formation of condensation nuclei from a chemical kinetic point of view A detalled investigation into all known relevant reactions to discern the chemical mechanism which leads to the production of condensation
Graph 1. Log(CN) vs. Log(Laser Power) at Different 03 Concentrations

m
8
8

(NO)BO7
Graph 2. $\log (C N)$ vs. Log(Laser Power) at Different H2O Concentrations

(NO)007

Log(Leser Powor)
(no ${ }^{607}$

Graph 4. Log(CN) vs. Log(Laser Power) at Difterent NH3 Concentrations

Log(Leseer Power)

(NO)BOT

-

(NJ)Bon

Graph 7. Comparison of Theoretical and Experimental Results (SO2)

Log(SO2 Conc.)
(NJ)607

Log(NH3 Conc.)
(NO)607
nuclei is presented. The experimental data are compared to predictions of heteromolecular homogeneous nucleation theory. Also, evaluation of wall effects and scavenging of reactants and intermediates is given. An error analysis is performed to determine the degree of correlation of experimental data to theoretically predicted results. A brief interpertation of the experiments with the grow th of ammonium sulfate aerosol is given.
2. Calculation of $\mathrm{OH}, \mathrm{SO}_{2}, \mathrm{HSO}_{3}, \mathrm{SO}_{3}$, and $\mathrm{H}_{2} \mathrm{SO}_{4}$ Diffusion Coefficients.
The flow reactor is designed primarily to minimize wall effects and to allow an accurate calculation of the initial concentration of OH radical present in the system. The removal of OH radical due to reaction with the reactor walls is negligibly small because the radicals are generated by the laser pulse in the center of the reactor vessel. The OH radical would have to traverse a minimum distance of 2.25 cm before coming in contact with the reactor wall.

The diffusion coefficient for the OH radical is calculated to be $0.371 \mathrm{~cm}^{2} / \mathrm{sec}$ by employing Fuller's ${ }^{3}$ method for predicting binary gas-phase diffusion coefficients. The diffusion coefficients for SO_{2}, $\mathrm{HSO}_{3}, \mathrm{SO}_{3}$, and $\mathrm{H}_{2} \mathrm{SO}_{4}$ are also calculated from the following equation: $D_{\text {Air }, X}=\left[\left(1.00 \times 10^{-3}\right)(T)^{1.75}\left(1 / M_{\text {Air }}+1 / M_{X}\right)\right]^{1 / 2 / p}\left[\left(\Sigma_{\text {Air }} V_{1}\right)^{1 / 3}+\left(\Sigma_{X} V_{i}\right)^{1 / 3}\right]^{2}$
(Eq. 2)
where T is the temperature (298 K), P is the pressure (1 atm), $M_{\text {Air }}$ and M_{x} are the molar masses of air ($28.8 \mathrm{~g} / \mathrm{mole}$) and the particular component of interest, x, in grams per mole, respectively. The $\Sigma_{\text {Air }} v_{1}$ (11.10) and $\Sigma_{x} v_{1}(7.46)$ are the total special atomic diffusion volumes (unitless variable) of air and component x, respectively. The diffusion coefficients for the reactants, intermediates, and products are also calculated using Eq. 2 and are presented in Table 1 . A time of 10.7 seconds is needed for an OH radical molecule to travel a mean perpendicular distance, $\langle x\rangle$, of 2.25 cm by employing the following relationship: ${ }^{4}$

$$
\begin{equation*}
\langle x\rangle=2(D t / \pi)^{1 / 2} \tag{Eq.3}
\end{equation*}
$$

or

$$
\begin{equation*}
t=(\langle x\rangle / 2)^{2} \pi / D \tag{Eq.4}
\end{equation*}
$$

In Table 1 are given the translation times for $\mathrm{OH}, \mathrm{SO}_{2}, \mathrm{HSO}_{3}, \mathrm{SO}_{3}$, and $\mathrm{H}_{2} \mathrm{SO}_{4}$ to travel a mean distance of 2.25 cm .

Table 1. Calculated Diffusion Coefficients and Translation Times for OH , $\mathrm{SO}_{2}, \mathrm{HSO}_{3}, \mathrm{SO}_{3}$, and $\mathrm{H}_{2} \mathrm{SO}_{4}$
Species Spec. At. Dif. Vol. M.W. (g/mole) D.C. $\left(\mathrm{cm}^{2} / \mathrm{sec}\right)$ Trans Time(sec.)

OH_{3}	7.49	17	0.371	10.7
SO_{2}	27.96	64	0.172	23.1
HSO_{3}	44.42	81	0.152	26.2
SO_{3}	40.44	80	0.155	25.7
$\mathrm{H}_{2} \mathrm{SO}_{4}$	42.88	98	0.137	29.0
Air	11.10	37.8	$-\cdots$.---

With the OH radical reaction characteristic time (T), on the order of milliseconds ($T=10^{-3} \mathrm{sec}$.), it is obvious that essentially all of the OH radical will react before making contact with the wall.

Using a molar mass of $98 \mathrm{~g} /$ mole for sulfuric acid and a total special atomic diffusion volume of 42.88 , the diffusion coefficient is calculated to be $0.137 \mathrm{~cm}^{2} / \mathrm{sec}$. Sulfuric acid has the smallest diffusion coefficient because of its large atomic diffusion volume. The OH radical and the reaction intermediates are rapidly removed by reactions and from the diffusion coefficient values (Table 1), one can conclude that the OH radical and the intermediate reactants will not reach the reactor wall within the reaction time frame. However, the OH radical could react with the teflon tube connecting the reactor vessel to the condensation nuclei counter and also react with the condensation nuclei counter's internal plumbing. The sulfur trioxide hydrate and sulfuric acid molecules diffuse very slowly ($0.137 \mathrm{~cm}^{2} / \mathrm{sec}$) and since all of the condensation nuclei are swept out of the reaction vessel within 20 seconds, virtually none of the sulfur trioxide hydrate and sulfuric acid molecules will react with the reactor wall.

The individual reactions which participate in the total reaction mechanism of condensation nuclei formation are analyzed in terms of the reactant concentrations and their rate constants in the following sections.

3. Reaction.of OH Radical.

A. Production of OH Radical.

The OH radical is produced first by photolyzing ozone to form O('D) which subsequently reacts with water vapour to produce two OH radical molecules.

$$
\begin{equation*}
O_{3}+h v \rightarrow O(D)+O_{2} . \tag{Rx.1}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{O}\left({ }^{\prime} \mathrm{D}\right)+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{OH}+\mathrm{OH} \tag{Rx.2}
\end{equation*}
$$

A krypton-fluoride excimer laser, which lases at 249 nm , is used to photodissociate ozone in the Hartley bands (200 to 390 nm) region. ${ }^{8}$ The kry :-fluoride excimer laser is an excellent photodissociation source sinc: it lases near the peak absorption of ozone in the Hartley bands. The monochromaticity of the light source allows one to calculate the total number of quanta absorbed by the ozone molecules without summing over a waveiength range. The total number of quanta absorbed (I_{a}) is computed from the total energy incident on the system (E), the fraction of energy absorbed by the system (Q_{m}), and the volume (V) of the irradiated system: ${ }^{9}$

$$
\begin{equation*}
I_{a}=E Q_{m} \lambda / V h c_{s} \tag{Eq.5}
\end{equation*}
$$

where.

$$
\begin{equation*}
a_{m}=1-10^{-(\mathrm{cc}} \tag{Eq.6}
\end{equation*}
$$

and where, λ is the wavelength of the incident light, h is Planck's constant, c_{s} is the speed of light, ϵ is the absorption cross section of ozone (cm^{2} /molecule), c is the concentration of ozone (molecule/cm ${ }^{3}$), and I is the path length (cm). The absorption cross section of ozone at 248.5 nm was recently reported to be $1.082 \times 10^{-17} \mathrm{~cm}^{2} / \mathrm{molecule}$ by Molina and Molina. ${ }^{10}$ The cylindrical reaction volume of the system is simply the product of the area of the laser beam (πr^{2}) and the path length (1) of the laser beam:

$$
\begin{equation*}
v=\pi r^{2} \tag{Eq.7}
\end{equation*}
$$

The radius (r) of the laser beam is 0.25 cm and the path length from one quartz window to the other quartz w indow is 34.8 cm , yielding a reaction volume of $6.83 \mathrm{~cm}^{3}$

The concentration of $O\left(^{\prime} D\right)$ atoms, ($\left[O\left(^{\prime} D\right)\right]_{0}$), produced from the photodecomposition of ozone can be defined as:

$$
\begin{equation*}
\left[O\left({ }^{\prime} D\right)\right]_{0}=I_{a} \phi\left(O^{\prime} D\right) \tag{Eq.8}
\end{equation*}
$$

where, $\phi\left(O^{\prime} D\right)$ is the quantum yield of the ozone photodecomposition to produce $O\left({ }^{\prime} D\right)$ molecules. The subscript " 0 " denotes the instantaneous formation of $O\left({ }^{\prime} D\right)$ molecules at time zero. In fact, the photodecomposition mechanism is virtually instantaneous compared to any chemical reaction. Amimoto et al. ${ }^{11}$ measured the quantum yield of ozone $\phi\left(O^{\prime} D\right)$ at 248 nm and reported a value or 0.85 .

The production of the OH radical molecule is described by the following chemical mechanism:

$$
\begin{equation*}
\mathrm{O}\left({ }^{\prime} \mathrm{D}\right)+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{OH}+\mathrm{OH} \tag{Rx.2}
\end{equation*}
$$

However, to compute quantitatively the concentration of the OH radical.
the following $O\left({ }^{\prime} D\right)$ deactivation mechanisms must be considered:

$$
\begin{array}{ll}
O\left(^{\prime} D\right)+N_{2} \rightarrow O\left(^{3} P\right)+N_{2} & (R \times 3)^{12} \\
O\left(^{\prime} D\right)+O_{2} \rightarrow O\left(^{3} P\right)+O_{2} & (R \times 4)^{12} \\
O\left(^{\prime} D\right)+N H_{3} \rightarrow O H+N H_{2} & (R \times 5)^{12,13} \\
O\left(^{\prime} D\right)+N_{2}+M \rightarrow N_{2} O+M & (R \times 6)^{14}
\end{array}
$$

The rate of removal of $O\left(^{\prime} D\right.$) can be characterized predominantly by Rxs. 2, 3 , and 4. When ammonia is present in the reaction system, Rx. 5 does not contribute significantly to the overall rate of removal of $O\left(^{\prime} D\right)$ because of the small rate constant and the relatively small amounts of NH_{3}. Also, the termolecular reaction, Rx .6 , can also be neglected because of the sma!l rate constant. So, the rate law for the disappearance of $O\left(^{\prime} D\right)$ is as follows:

$$
-d\left[O\left(^{\prime} D\right)\right] / d t=k_{2}\left[H_{2} O\right]\left[O\left(^{\prime} D\right)\right]+k_{2}\left[N_{2} j(1)(' D)\right]+k_{4}\left[O_{2}\right]\left[O\left(^{\prime} D\right)\right](E q .9)
$$

Eq. 9 can be rewritten as:

$$
\begin{equation*}
-d\left[O\left({ }^{\prime} D\right)\right] / d t=\left(k_{2}^{\prime}+k_{3}^{\prime}+k_{4}^{\prime}\right)\left[O\left(^{\prime} D\right)\right] \tag{Eq.10}
\end{equation*}
$$

where $k_{2}^{\prime}=k_{2}\left[H_{2} O\right], k_{3}^{\prime}=k_{3}\left[N_{2}\right], k_{4}^{\prime}=k_{4}\left[O_{2}\right]$.
The integrated rate expression for Eq. 10 is,

$$
\begin{equation*}
\int \mathrm{d}\left[0\left(^{\prime} D\right)\right] /\left[0\left(^{\prime} D\right)\right]=-\left(\mathrm{k}_{2}^{\prime}+\mathrm{k}_{3}^{\prime}+\mathrm{k}_{4}^{\prime}\right) \int \mathrm{dt} \tag{Eq.11}
\end{equation*}
$$

and if, $\left[O\left(^{\prime} D\right)\right] \ll\left[\mathrm{H}_{2} \mathrm{O}\right],\left[O\left(^{\prime} \mathrm{D}\right)\right] \ll\left[\mathrm{N}_{2}\right]$, and $\left.\left[\mathrm{O}^{\prime} \mathrm{D}\right)\right] \ll\left[\mathrm{O}_{2}\right\rfloor$, en Eq. 1 I can be integrated to yield:

$$
\begin{equation*}
\operatorname{in}\left[O\left({ }^{\prime} D\right)\right]=-\left(k_{2}^{\prime}+k_{3}^{\prime}+k_{4}^{\prime}\right) t+C \tag{Eq.12}
\end{equation*}
$$

and when $t=0$ then $C=\ln \left[O\left(^{\prime} D\right)\right]_{0}$.
Finally, after evaluating the constant of integration Eq. 12 can be expressed as a product of pseudo-first-order reactions:

$$
\begin{equation*}
\left[O\left(^{\prime} D\right)\right]=\left[O\left(^{\prime} D\right)\right]_{0} \exp -\left(k_{2}^{\prime}+k_{3}^{\prime}+k_{4}^{\prime}\right) t \tag{Eq.13}
\end{equation*}
$$

B. Removal of OH Radical.

If the rate of production of OH radical is much greater than the rate of removal of OH radical, then the rate law expression is separable. One can certify the validity of this assumption by considering the chemical reaction which forms the $O H$ radical,

$$
\begin{equation*}
\mathrm{O}(\mathrm{D})+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{OH}+\mathrm{OH} \tag{Rx.2}
\end{equation*}
$$

and the chemical reactions which consume the OH radical,

$$
\begin{array}{rr}
\mathrm{OH}+\mathrm{SO}_{2}+\mathrm{M} \rightarrow \mathrm{HOSO}_{2}+\mathrm{M} & (\mathrm{Rx} .7)^{15-24} \\
\mathrm{OH}+\mathrm{O}_{3} \rightarrow \mathrm{HO}_{2}+\mathrm{O}_{2} & (\mathrm{Rx} .8)^{25-28} \\
\mathrm{OH}+\mathrm{NH}_{3} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{NH}_{2} & (\text { Rx. 9 } \\
\mathrm{OH}+\mathrm{O}(3 \mathrm{P}) \rightarrow \mathrm{O}_{2}+\mathrm{H} & (\text { Rx. } 10)^{34-33}
\end{array}
$$

$$
\begin{array}{ll}
\mathrm{OH}+\mathrm{OH} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{O} & (\mathrm{Rx} \cdot 11)^{39-44} \\
\mathrm{OH}+\mathrm{OH}+\mathrm{M} \rightarrow \mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{M} & (\mathrm{Rx} \cdot 12)^{42,45} \\
\mathrm{O}\left({ }^{3} \mathrm{P}\right)+\mathrm{O}_{2}+\mathrm{M} \rightarrow \mathrm{O}_{3}+\mathrm{M} . & (R x \cdot 13)^{46,47}
\end{array}
$$

The $O\left({ }^{3} \mathrm{~F}\right)$ species is consumed more rapidly by $R x .10$ then by $R x .13$; therefore $\mathrm{Rx}_{\mathrm{x}} .10$ is unimportant with respect to OH radical depletion. At 1 atmosphere the pseudo-first-order rate constant for Rx .13 is roughly, $10^{5} \mathrm{sec}^{-1}$

The second order reactions, (Rx. 11 and $R x, 12$), can also be neglected because of their relatively small rate constants compared to the faster pseudo-first-order reactions. For instance, setting $\left[\mathrm{H}_{2} \mathrm{O}\right]$ $\approx 10^{16}$ molecule $/ \mathrm{cm}^{3},\left[\mathrm{SO}_{2}\right] \approx 10^{12}$ molecule $/ \mathrm{cm}^{3},\left[\mathrm{O}_{3}\right] \approx 10^{13}$ molecule $/ \mathrm{cm}^{3}$ $[\mathrm{M}]=10^{19}$ molecule $/ \mathrm{cm}^{3},\left[\mathrm{NH}_{3}\right] \approx 10^{12} \mathrm{molecule} / \mathrm{cm}^{3}$, and using the rate constants in Table 2, ${ }^{48}$ then the pseudo-first-order rate constants are as follows: $\mathrm{k}_{2} \approx 10^{6} \mathrm{sec}^{-1}, \mathrm{k}_{7} \approx 1.0 \mathrm{sec}^{-1}, \mathrm{k}_{8} \approx 10^{-1} \mathrm{sec}^{-1}$, and $\mathrm{k}_{9} \approx 10^{-1} \mathrm{sec}^{-1}$ It is obvious that the production of OH radical is roughly a million times faster than the rate of depletion of OH radical, $\left.\left(k_{2}\right)>\left(k_{7}+k_{8}+k_{9}\right)\right)$. The production of OH radical can be considered to be instantaneous compared to the depletion of OH radical and so the rate of formation expression can be written as:

$$
\begin{equation*}
\mathrm{d}[\mathrm{OH}] / \mathrm{dt}=\mathrm{k}_{2}\left[\mathrm{H}_{2} \mathrm{O}\right]\left[\mathrm{O}\left(^{\prime} \mathrm{D}\right)\right] \tag{Eq.14}
\end{equation*}
$$

And if $k_{2}^{\prime}=k_{2}\left[H_{2} O\right]$ and $\left[O\left(^{1} D\right)\right]=\left[O\left(^{\prime} D\right)\right]_{0} \exp -\left(k_{2}^{\prime}+k_{3}^{\prime}+k_{4}^{\prime}\right) t$, then Eq. 14 becomes:

$$
\begin{equation*}
\mathrm{d}[\mathrm{OH}] / \mathrm{dt}=\mathrm{k}_{2}^{\prime}\left[\mathrm{O}\left(^{\prime} \mathrm{D}\right)\right]_{0} \exp -\left(\mathrm{k}_{2}^{\prime}+\mathrm{k}_{3}^{\prime}+\mathrm{k}_{4}^{\prime}\right) \mathrm{t} \tag{Eq.15}
\end{equation*}
$$

or in integration form

$$
\begin{equation*}
\int \mathrm{d}[\mathrm{OH}]=\mathrm{k}_{2}^{\prime}\left[\mathrm{O}\left({ }^{\prime} \mathrm{D}\right)\right]_{0} \int \exp -\left(\mathrm{k}_{2}^{\prime}+\mathrm{k}_{3}^{\prime}+\mathrm{k}_{4}^{\prime}\right) \mathrm{dt} . \tag{Eq.16}
\end{equation*}
$$

After integration, Eq. 16 becomes:

$$
[\mathrm{OH}]=-k_{2}^{\prime}\left[O\left({ }^{\prime} D\right)\right]_{0} /\left(k_{2}^{\prime}+k_{3}^{\prime}+k_{4}^{\prime}\right) \exp -\left(k_{2}^{\prime}+k_{3}^{\prime}+k_{4}^{\prime}\right) t+C .
$$

(Eq. 17)
At $t=0, C=k_{2}^{\prime}\left[O\left({ }^{1} D\right)\right]_{0} /\left(k_{2}^{\prime}+k_{3}^{\prime}+k_{4}^{\prime}\right)$ and so the concentration of OH radical as a function of time is:

$$
\begin{equation*}
\left.[\mathrm{OH}]=\mathrm{k}_{2}^{\prime}\left[\mathrm{O}{ }^{\prime} \mathrm{D}\right)\right]_{0} /\left(\mathrm{k}_{2}^{\prime}+\mathrm{k}_{3}^{\prime}+\mathrm{k}_{4}^{\prime}\right)\left[1-\exp -\left(\mathrm{k}_{2}^{\prime}+\mathrm{k}_{3}^{\prime}+\mathrm{k}_{4}^{\prime}\right) t\right] \tag{Eq.18}
\end{equation*}
$$

As was demonstrated earlier, $\mathrm{Rx} .2\left(\mathrm{~T} \approx \times 10^{-7}\right)$ is ten thousand times faster in producing OH radical than for the reaction which depletes OH radical. Therefore, essentially all OH radical molecules are produced before they can react via the chemical mechanisms in Rxs. 7, 8, and 9.
Rate Constant PFO-Rate Const. * Rer. *
$\underset{\sim}{\infty} \underset{\sim}{\infty} \underset{\sim}{\infty} \underset{\sim}{\infty} \underset{\sim}{\infty} \underset{\sim}{\infty} \underset{\sim}{\infty} \underset{\sim}{\infty}$ 2.2×10^{6}
5.2×10^{8}
2.0×10^{8}
$-\cdots$
1.7×10^{2}
7.4×10^{6}
6.8×10^{-1}
1.6×10^{6} 2.2×10^{-16}
2.6×10^{-11}
4.0×10^{-11} ッ-01×5て

3.0×10^{-31} 6.8×10^{-14} 1.6×10^{-13}
3.3×10^{-11}
1.9×10^{-12} $\begin{array}{ll}\bar{m} & \check{0} \\ 0 & 0 \\ \bar{x} & 0 \\ o & 0 \\ 0 & 0\end{array}$ y
$\stackrel{0}{x}$
$\underset{\sim}{n}$
 $0-$ Rate Const
1.9×10^{-2}
9.0×10^{-4}
8.0×10^{-2}
$\ldots \ldots-10^{-2}$
2.0×10^{3}
2.0×10^{6}
9.0×10^{3}
$-\cdots-\cdots-10^{6}$
$1.0 \times 1.0 \times 10^{5}$
1.0×10^{4} Rate Constant
7.7×10^{-34}
9.0×10^{-16}
8.0×10^{-15}
7.0×10^{-11}
2.0×10^{-15}
4.9×10^{-32}
4.0×10^{-13}
9.0×10^{-13}
1.23×10^{-4}
1.0×10^{-10}
1.0×10^{-11}
1.0×10^{-12}

cont. Table 2.
${ }^{\circ}$ Concentration of reactants for pseudo-first-order (PFO) are given below.
${ }^{48}$ Average value of the rate constants for model calculations recommended by NASA, Jet
Propulsion Laboratory.
${ }^{2}$ Rate constants based on theoretical kinetic model given in this work.
$[\mathrm{M}]=2.46 \times 10^{19} \mathrm{molecule} / \mathrm{cc} ;\left[\mathrm{O}_{2}\right]=4.93 \times 10^{18} \mathrm{molecule} / \mathrm{cc} ;\left[\mathrm{N}_{2}\right]=1.97 \times 10^{19} \mathrm{molecule} / \mathrm{cc}$ $\left[\mathrm{SO}_{2}\right]=10^{12} \mathrm{molecule} / \mathrm{cc} ;\left[\mathrm{O}_{3}\right]=10^{13} \mathrm{molecule} / \mathrm{cc} ;\left[\mathrm{H}_{2} \mathrm{O}\right]=10^{16} \mathrm{molecule} / \mathrm{cc}$
For reactants with variable concentrations only the order of magnitude is given.

The limit of Eq. 18 as time goes to infinity is:

$$
\begin{equation*}
(\lim t \rightarrow \infty) \quad[O H]_{\infty}=k_{2}^{\prime}\left[O\left(^{\prime} D\right)\right]_{0} /\left(k_{2}^{\prime}+k_{3}^{\prime}+k_{4}^{\prime}\right) \tag{Eq.19}
\end{equation*}
$$

Since $[\mathrm{OH}]_{\infty}$ can be considered to be formed instantaneously, OH radical consumption near $t=0$ is negligible and $[\mathrm{OH}]_{\infty}$ will equal $[\mathrm{OH}]_{0}$.

$$
\begin{equation*}
[\mathrm{OH}]_{0}=k_{2}^{\prime}\left[O\left({ }^{\prime} D\right)\right]_{0} /\left(\mathrm{K}_{2}^{\prime}+\mathrm{k}_{3}^{\prime}+\mathrm{k}_{4}^{\prime}\right) \tag{Eq.20}
\end{equation*}
$$

Again, the subscript "o" denotes the initial concentration of OH radical at the beginning of Rxs. 7,8 , and 9 .

By combining Eqs. 5, 6, and 8, one can see that the $\left[O\left(^{1} D\right)\right]_{0}$ concentration is explicitly dependent on the laser power (E) and the concentration of ozone (c).

$$
\begin{equation*}
\left[O\left({ }^{\prime} D\right)\right]_{0}=\phi\left(O^{\prime} D\right) E \lambda\left(1-10^{-\left(c C^{1}\right)}\right) / V h c_{s} \tag{Eq.21}
\end{equation*}
$$

Since, $\epsilon \mathrm{Cl} \ll 1$ one can expand $10^{-\mathrm{ccl}}$ in a Taylor series:

$$
\begin{equation*}
10^{-\epsilon \mathrm{cc}}=\exp ^{-(\ln \mid 0) \epsilon \mathrm{cl}}=\exp ^{-2.303 \epsilon \mathrm{cl}} \approx 1-2.303 \epsilon \mathrm{cl} . \tag{Eq.22}
\end{equation*}
$$

Eq. 21 can be rewritten as:

$$
\begin{equation*}
\left[O\left(^{\prime} D\right)\right]_{0}=2.303 \phi\left(O^{\prime} D\right) E \lambda \in C I / V h C_{s} \tag{Eq.23}
\end{equation*}
$$

By substituting Eq. 23 into Eq. 20 and recalling that $k_{2}^{\prime}=k_{2}\left[H_{2} \mathrm{O}\right]$ and $c=$ $\left[\mathrm{O}_{3}\right]$, the $[\mathrm{OH}]_{0}$ concentration is a linear function of laser power and ozone concentration.

$$
\begin{equation*}
[\mathrm{OH}]_{0}=\mathrm{k}_{2}\left[\mathrm{H}_{2} \mathrm{O}\right] 2.303 \phi\left(\mathrm{O}^{\prime} \mathrm{D}\right) E \lambda \in\left[\mathrm{O}_{3}\right] \mathrm{l} /\left(\mathrm{VhC}_{5}\left(\mathrm{k}_{2}\left[\mathrm{H}_{2} \mathrm{O}\right]+\mathrm{k}_{3}^{\prime}+\mathrm{k}_{4}^{\prime}\right)\right) \tag{Eq.24}
\end{equation*}
$$

Furthermore, if $k_{2}\left[\mathrm{H}_{2} \mathrm{O}\right] \ll\left(\mathrm{k}_{3}^{\prime}+\mathrm{k}_{4}^{\prime}\right)$ then $\left(\mathrm{k}_{2}^{\prime}+\mathrm{k}_{3}^{\prime}+\mathrm{k}_{4}^{\prime}\right)$ reduces to $\left(\mathrm{k}_{3}{ }_{3}+\right.$ k_{4}^{\prime}) and Eq. 24 can be rewritten as:

$$
\begin{equation*}
[\mathrm{OH}]_{0}=\mathrm{k}_{2}\left[\mathrm{H}_{2} \mathrm{O}\right] 2.303 \phi\left(\mathrm{O}^{\prime} \mathrm{D}\right) E \lambda \in\left[\mathrm{O}_{3}\right] 1 /\left(\mathrm{Vhc}_{5}\left(\mathrm{k}_{3}^{\prime}+\mathrm{k}_{4}^{\prime}\right)\right) \tag{Eq.25}
\end{equation*}
$$

Under the experimental conditions, Eq. 25 reflects the linear dependence of OH radical concentration production as function of water vapour concentration. By employing Eq. 25 typical experimental values of OH radical concentrations in the center of the reactor vessel ranged from 9.3×10^{10} molecule $/ \mathrm{cm}^{3}$ to 1.5×10^{12} molecule $/ \mathrm{cm}^{3}$.

4. Reactions of Sulfur Dioxide.

To be complete, it is important $i j$ consider other possible photo-oxidation mechanisms of sulfur dioxide. In this experimental system, sulfur dioxide molecules can possibly react by these three chemical mechanisms:

$$
\begin{gather*}
\mathrm{OH}+\mathrm{SO}_{2}+\mathrm{M} \rightarrow \mathrm{HOSO}_{2}+\mathrm{M} \tag{Rx.7}\\
\mathrm{O}\left({ }^{3} \mathrm{P}\right)+\mathrm{SO}_{2}+\mathrm{M} \rightarrow \mathrm{SO}_{3}+\mathrm{M} \tag{Rx.14}\\
\mathrm{HO}_{2}+\mathrm{SO}_{2} \rightarrow \mathrm{SO}_{3}+\mathrm{OH} \tag{Rx.15}
\end{gather*}
$$

However, under the experimental conditions, Rx. 14 is at least a hundred times slower than Rx. 7 even when the $O\left(^{3} p\right)$ concentration is at its maximum, i.e., the $O\left({ }^{3} p\right)$ concentration at the beginning of the reaction.

The photolysis of ozone also produces oxygen atoms in the ground state $O\left({ }^{3} P\right)$. Sparks et al. reported a quantum yield of, $\phi O\left({ }^{3} P\right)=0.1$, for the formation of $O\left({ }^{3} p\right) .{ }^{54}$

$$
\begin{equation*}
O_{3}+n v \rightarrow O\left(^{3} p\right)+O_{2} \tag{Rx.16}
\end{equation*}
$$

By analogy, Eq. 23 is rewritten and the $O\left({ }^{3} P\right)$ initial concentration is:

$$
\begin{equation*}
\left[O\left({ }^{3} p\right)\right]_{0}=2.303 \phi\left(O^{3} P\right) E \lambda \in c l / V h c_{s} \tag{Eq.26}
\end{equation*}
$$

Using a laser power of 14 mjoules and an ozone concentration of roughly 10^{13} molecule $/ \mathrm{cm}^{3}$, an estimate of the upper limit of the $O\left(^{3} p\right.$) concentration is approximately 10^{11} molecule $/ \mathrm{cm}^{3}$

The relative importance of the photo-oxidation of sulfur dioxide by $O\left({ }^{3} p\right)$ is also analyzed in terms of $O\left({ }^{3} P\right)$ depletion. The following reactions account for all other possible $O\left({ }^{3} p\right)$ depletion mechanisms in the reaction system.

$$
\begin{align*}
& O\left({ }^{3} p\right)+O_{2}+M \rightarrow O_{3}+M \tag{Rx.13}\\
& O\left(^{3} p\right)+O_{3} \rightarrow O_{2}+O_{2} \tag{55-59}\\
& O\left(^{3} p\right)+O H \rightarrow O_{2}+H \tag{Rx.10}
\end{align*}
$$

If $[\mathrm{M}]>\left[\mathrm{O}_{2}\right]>\left[\mathrm{O}_{3}\right]>\left[\mathrm{SO}_{2}\right]>\left[\mathrm{O}\left({ }^{3} \mathrm{P}\right)\right]$ then Rxs. 13,14 , and 17 can be evaluated as pseudo-first-order reactions. Rx. 10, for all practical purposes, is a second order reaction since $\left[O\left({ }^{3} P\right)\right]=[O H]$ and therefore is relatively unimportant. The pseudo-first-order rate constants are calculated using the rate constants in Table 2 and the following concentrations $\left[\mathrm{SO}_{2}\right]=10^{12}$ molecule $/ \mathrm{cm}^{3} ;\left[\mathrm{O}_{3}\right]=10^{13}$ molecule $/ \mathrm{cm}^{3},\left[\mathrm{O}_{2}\right]$ $=4.93 \times 10^{18}$ molecule $/ \mathrm{cm}^{3} ;[\mathrm{M}]=2.46 \times 10^{19}$ molecule $/ \mathrm{cm}^{3}$. The pseudo-first-order rate constants are: $k_{13}=7.3 \times 10^{4} \mathrm{sec}^{-1} ; \mathrm{k}_{14}=1.9 \times 10^{-2}$ $\mathrm{sec}^{-1} ; k_{17}=8.0 \times 10^{-2} \mathrm{sec}^{-1}$. Virtually all of $O\left(^{3} \mathrm{P}\right)$ reacts with the diatomic oxygen ($R x .13$) because of the six orders of magnitude difference in the pseudo-first-order rate constants ($k_{13} \gg k_{17}>k_{14}$). Therefore, $R x .14$ is of no consequence in this experimental system.

The HO_{2} radical is produced by the reaction of OH radical (Rx .8) wi.n ozone and also by the reaction of bisulfite with diatomic oxygen (Rx. 21, vide inira). ${ }^{15}$

$$
\begin{equation*}
\mathrm{OH}+\mathrm{O}_{3} \rightarrow \mathrm{HO}_{2}+\mathrm{O}_{2} \tag{Rx.8}
\end{equation*}
$$

The HO_{2} radical reacts at a much faster rate with the OH radical (Rx .18) and the O_{3} molecule (Rx .19) than it reacts with the SO_{2} molecule in Rx . 15.

$$
\begin{array}{ll}
\mathrm{HO}_{2}+\mathrm{OH} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2} & (\mathrm{Rx} \cdot 18)^{60-72} \tag{Rx.18}\\
\mathrm{HO}_{2}+\mathrm{O}_{3} \rightarrow \mathrm{OH}+2 \mathrm{O}_{2} & (\mathrm{Rx} \cdot 19)^{26} \\
\mathrm{HO}_{2}+\mathrm{HO}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{O}_{2} & (\mathrm{Rx} .20)^{73-76}
\end{array}
$$

At the start of the reaction the HO_{2} radical is consumed predominantly by Rx. 18 because of the large rate constant and the significant initial OH radical concentration. After some time when the $O H$ radical concentration drops about three orders of magnitude, Rx. 19 predominates as the primary mechanism for HO_{2} radical consumption. Using the rate constants provided in Table 2 and assuming that $\left[\mathrm{SO}_{2}\right] \approx$ 10^{12} molecule $/ \mathrm{cm}^{3}$ and $\left[\mathrm{O}_{3}\right] \approx 10^{13}$ molecule $/ \mathrm{cm}^{3}$, the oseudo-first-order rate constants for Rx .15 and Rx .19 are calculated ($k_{15}=10^{-5} \mathrm{sec}^{-1} ; k_{19} \approx 10^{-1} \mathrm{sec}^{-1}$). The rate constant for the reaction of the HO_{2} radical with $\mathrm{O}_{3}(\mathrm{Rx} .19)$ is approximately four orders of magnitude greater than the rate of reaction of the HO_{2} radical with SO_{2} (Rx. 15). On the basis of the aforementioned rate analysis, Rx. 15 is not of any importance with respect to sulfur dioxide oxidation in this reaction system. One can conclude that the primary chemical mechanism for the photo-oxidation of sulfur dioxide occurs via the reaction with the OH radical molecule ($\mathrm{Rx}, 7$).

5. Reaction of Bisulfite.

Next, the fate of the bisulfite radical is examined. Also, uncharacterized chemical mechanisms are proposed ($R \times 22-25$) to examine the possible contribution of other bisulfite radical reactions to the overall reaction scheme. In Rxs. 22 through 25 the $N_{x x}$ denotes a condensation nucleus.

$$
\begin{array}{cc}
\mathrm{HOSO}_{2}+\mathrm{O}_{2} \rightarrow \mathrm{SO}_{3}+\mathrm{HO}_{2} & \text { (Rx. 21) } \\
\mathrm{HOSO}_{2}+\mathrm{HOSO}_{2}+M \rightarrow \mathrm{~N}_{22}+M & \text { (Rx. 22) } \\
\mathrm{HOSO}_{2}+\mathrm{nH}_{2} \mathrm{O}+M \rightarrow \mathrm{~N}_{23}+M & \text { (Rx. 23) } \\
\mathrm{HOSO}_{2}+\mathrm{HOSO}_{2} \cdot n \mathrm{nH}_{2} \mathrm{O}+M \rightarrow \mathrm{~N}_{24}+M & \text { (Rx. 24) } \\
\mathrm{HOSO}_{2} \cdot \mathrm{nH}_{2} \mathrm{O}+\mathrm{HOSO}_{2} \cdot n \mathrm{H}_{2} \mathrm{O}+M \rightarrow \mathrm{~N}_{25}+M & \text { (Rx. 25) }
\end{array}
$$

Rx. 21 is characterized with a reported rate constant of 4.37×10^{-13} $\mathrm{cm}^{3} /$ molecule $\mathrm{sec} .^{77}$ The $\left[\mathrm{O}_{2}\right]=4.93 \times 10^{18} \mathrm{molecule} / \mathrm{cm}^{3}$ yields a pseudo-first-order rate constant of $2.15 \times 10^{6} \mathrm{sec}^{-1}$ Inview of the extremely large pseudo-first-order rate constant for Rx. 21 and the relatively low HOSO_{2} concentration, it is safe to say that the second
order reaction between bisulfite radical molecules ($R x .22$) is probably not a logical mechanism for the production of condensation nuclel. At low relative humidities, between 1% through $5 \%,\left[\mathrm{H}_{2} \mathrm{O}\right] * 10^{16}$ molecule $/ \mathrm{cm}^{3}, \mathrm{Rx} .23$ would have to have a rate constant of around 10^{-10} $\mathrm{cm}^{3} /$ molecule sec just to be competitive. This rate constant is about two to three orders of magnitude larger than the large rate constant of adduct hydration in Castleman's ${ }^{23}$ work. However, to dominate in rate of formation of condensation nuclei, a rate cunstant of approximately 10^{-8} $\mathrm{cm}^{3} /$ molecule sec would have to exist. The former scenario (10^{-10} $\mathrm{cm}^{3} / \mathrm{molecule} \mathrm{sec}$) is highly unlikely and the latter scenario (10^{-8} $\mathrm{cm}^{3} / \mathrm{molecule} \mathrm{sec}$) is even more unlikely. The higher order Rxs. (Rx. 24 and $R x .25$) which depend on the precursor reaction ($R x .23$) can also be discounted on the basis of the above explanation. The fate of the bisulfite radical clearly reacts by the hydrogen abstraction mechanism with dioxygen to form sulfur trioxide and HO_{2} radical.

6. Reaction of Sulfur Trioxide.

The sulfur trioxide molecules subsequently react with water molecules to form the $\mathrm{SO}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$ adduct. ${ }^{23}$

$$
\begin{equation*}
\mathrm{SO}_{3}+\mathrm{H}_{2} \mathrm{O}+\mathrm{M} \rightarrow \mathrm{SO}_{3} \cdot \mathrm{H}_{2} \mathrm{O}+\mathrm{M} \tag{Rx.26}
\end{equation*}
$$

Castieman et al. ${ }^{23}$ proposes that the direct production of $\mathrm{H}_{2} \mathrm{SO}_{4}$ is probably not the case since it would have to proceed via a four-centered mechanism and would have to have a much lower rate constant than their experimentally obtained value of $9.1 \times 10^{-13} \mathrm{~cm}^{3} / \mathrm{molecule} \mathrm{sec}$. Also, Castieman et al. ${ }^{23}$ did not observe any polymerization of SO_{3}.

$$
\mathrm{SO}_{3}+\mathrm{nSO}_{3} \rightarrow(n+1) \mathrm{SO}_{3} \quad(n>=1) \quad(\mathrm{Rx} .27)
$$

Castleman et al. ${ }^{78}$ also performed some Complete Neglect of Differential Overlap (CNDO/2) calculations yielding information on the thermodynamic stability of the $\mathrm{SO}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$ adduct and the $\mathrm{H}_{2} \mathrm{SO}_{4}$ molecule. Since CNDO/2 calculations are most appropriate for determining relative stabilities, the CNDO/2 energy values for the $\mathrm{SO}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$ adduct and the energy barrier : $0 \mathrm{H}_{2} \mathrm{SO}_{4}$ production has been rescaled to agree thermodynamic data. Castleman et al. ${ }^{78}$, calculated a value of -23.1 $\mathrm{kcal} / \mathrm{mole}$ from the JANAF tables at 0 K for the thermodynamic binding energy of the $\mathrm{H}_{2} \mathrm{SO}_{4}$ species.

The $\mathrm{SO}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$ adduct is found to have moderate thermodynamic stability
with an estimated re-scaled binding energy of $-15.2 \mathrm{kcal} / \mathrm{mole}$. The estimated re-scaled binding energy for the peak energy barrier which leads to the formation of $\mathrm{H}_{2} \mathrm{SO}_{4}$ is $-11.9 \mathrm{kcal} / \mathrm{mole}$. In other words, a 3.3 $\mathrm{kcal} / \mathrm{mole}$ energy barrier has to be overcome to produce the more stable $\mathrm{H}_{2} \mathrm{SO}_{4}$ species. The negative binding energies implies that the reactions
to form $\mathrm{SO}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{H}_{2} \mathrm{SO}_{4}$ are exothermic.

7. Isomerization of Sulfur Trioxide Hydrate.

It is apparent that the energy released to form the $\mathrm{SO}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$ adduct formation is more than enough to overcome the energy barrier of 3.3 $\mathrm{kcal} / \mathrm{mole}$ for the hydrogen rearrangement mechanism. From the CNDO/2 calculations, the minimum energy pathway for the isomerization mechanism is proposed to occur via the hydrogen "hopping" from one of the oxygen atom to the other oxygen atom.

$$
\begin{equation*}
\mathrm{SO}_{3} \cdot \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4} \tag{Rx.28}
\end{equation*}
$$

At this point, Rx. 28 is uncharacterized with respect to a rate constant. However, to get a general feel for the rate constant regime, the literature was reviewed to find other gas-phase isomerization reactions. The rate constant for the isomerization of methyl isocyanide at 503 K was found to be about 6×10^{-4} at higher pressures. ${ }^{79}$

8. Reaction of Sulfuric Acid.

The thermodynamic properties of aqueous sulfuric acid solutions and hydrates is presented in the work by Giauque, Hornung, Kurzler, and Rubin. ${ }^{80}$ They reported stable hydrates of sulfuric acid to be mono-, di-, tri-, tetra-, and heminexa-hydrate. All free energy changes for the formation of hydration are found to be positive and thus the intermediate hydrates are stable with respect to lower and higher hydrates. On this basis, the reverse process for dehydration is not considered. Given below are the hydration reactions of sulfuric acid.

$$
\begin{array}{cc}
\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O}+\mathrm{M} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}+\mathrm{M} & (\mathrm{Rx} .29) \\
\mathrm{H}_{2} \mathrm{SO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O}+\mathrm{M} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}+\mathrm{M} & (\mathrm{Rx} .3 \mathrm{O}) \\
\mathrm{H}_{2} \mathrm{SO}_{4} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{M} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}+\mathrm{M} & (\mathrm{Rx} .31) \\
\mathrm{H}_{2} \mathrm{SO}_{4} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}+\mathrm{H}_{2} \mathrm{O}+\mathrm{M} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}+\mathrm{M} & (\mathrm{Rx} .32)
\end{array}
$$

The dimerization of sulfuric acid has been considered and discounted because it is in direct competition with Rx. 29. A relatively
large pseudo-first-order rate constant of around $10^{2} \mathrm{sec}^{-1}$ is calculated for Rx. 29 using a conservative rate constant of $1 \times 10^{-14} \mathrm{~cm}^{3}$ molecule ${ }^{-1}$ sec^{-1} and a water vapour concentration of 10^{16} molecule $/ \mathrm{cm}^{3}$. In view of the large pseudo-first-order rate constant for Rx .29 and since the dimerization of sulfuric acid is a second-order reaction and the $\mathrm{H}_{2} \mathrm{SO}_{4}$ concentration is small, Rx. 33 is highly unlikely to occur.

$$
\begin{equation*}
\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{M} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4} \cdot \mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{M} \tag{Rx.33}
\end{equation*}
$$

At best if $R \times 29$ is considered to be instantaneous, $R x .34$ and 35 are still second-order reactions with a maximum reactant concentration equal to that of $\mathrm{H}_{2} \mathrm{SO}_{4}$

$$
\begin{align*}
& \mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{SO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}+\mathrm{M} \rightarrow\left(\mathrm{H}_{2} \mathrm{SO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}\right) \cdot \mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{M} \tag{Rx.34}\\
& \mathrm{H}_{2} \mathrm{SO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{SO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}+\mathrm{M} \rightarrow\left(\mathrm{H}_{2} \mathrm{SO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}\right)_{2}+\mathrm{M}
\end{align*}
$$

(Rx.35)
Rxs. 34 and 35 are reduced to the same problem as the dimerization reaction and are also of little consequence in the total reaction scheme.

O. Scavenging Reactions.

Beside the gas-phase reactions, one must consider the removal of reactants or intermediates by adsorption onto particles generated by the gas-phase reactions. The gas-phase reactions would be affected if the reactants or the intermediates are removed to an appreciable extent by adsorption. For simplicity's sake the time evolution of particle development is not considered and the worst case scenario is presented. All scavenging rates are calculated on the assumption of am instantaneous particle population and on a typical experimental particle number density. Futhermore, the "collision adsorption efficiency" coefficient (y) is assumed to be unity. The maximum scavenging rates are estimated by employing the collision frequency model which estimates the number of collisions that result in the removal of reactant or intermediate, per unit time on the surface of the particle. If the particles are more massive than the gas-phase molecules then the particles can be assumed to be stationary with respect to the gas-phase molecules. For a spherical particles the adsorption collision frequency or maximum rate of scavenging is defined as: ${ }^{23}$

$$
\begin{equation*}
R_{D}=Z_{D-C}=y \pi r_{D}^{2} N_{D} C v_{C} \tag{Eq.26}
\end{equation*}
$$

and,

$$
\begin{equation*}
v_{c}=\left(8 \mathrm{kT} / \pi \mathrm{m}_{c}\right)^{1 / 2} \tag{Eq.}
\end{equation*}
$$

where, y is the collision adsorption efficiency coefficient, r_{D} is the radius of the particle, N_{D} is number density of particle, C is the concentration of the reactant or the intermediate component, v_{c} is the average velocity of the reactant or the intermediate component, k is the Boltzmann's constant, T is the absolute temperature, and m_{c} is the molecular mass of the reactant or the intermediate component. Eq. 29 can be rearranged to yield:

$$
\begin{equation*}
R_{D}=k_{D} C \tag{Eq.28}
\end{equation*}
$$

where scavenging rate constant k_{D} is defined as $y \pi r_{p}{ }^{2} N_{p} \nu_{c}$. The gas-phase pseudo-first-order rate constant for the particular reaction under consideration is defined in general terms as k_{g}. The rate constants for scavenging of OH radical, bisulfite radical, sulfur trioxide, and sulfuric acid are compared with respective gas-phase pseudo-first-order rate constants (vide infra). If the ratio of gas-phase to scavenging rate constants is much greater than I then the scavenging process is negligible, i.e., the gas-phase reaction rate is much faster than the scavenging rate.

From the estimated rate constant ratios (k_{g} / k_{p}) in Table 3, the scavenging process does not significantly alter the gas-phase kinetics scheme by depleting the concentration of the OH radical, the bisulfite radical, or the sulfur trioxide molecule. For instance, even in the worse case scenario, the $O H$ radical reacts at least 300 times faster in the gas-phase than by adsorption on the particles.

Table 3. Parameter List for Calculating Gas-Phase Reaction Rate to Particle Scavenging Rate Ratios.

Spectes	Mass $\left(m_{c}\right)$	velocity $\left(v_{c}\right)$	k_{g}	k_{p}	k_{g} / k_{p}
OH	2.83×10^{-23}	6.09×10^{4}	7.4×10^{0}	2.39×10^{-2}	3.10×10^{2}
HOSO_{2}	1.34×10^{-22}	2.79×10^{4}	2.2×10^{6}	1.10×10^{-2}	2.00×10^{8}
SO_{3}	1.40×10^{-22}	2.81×10^{4}	9.1×10^{3}	1.10×10^{-2}	8.27×10^{5}
$\mathrm{H}_{2} \mathrm{SO}_{4}$	1.63×10^{-22}	2.54×10^{4}	$\cdots-\cdots$	9.96×10^{-3}	$\cdots \cdots$

$m_{c}(\mathrm{~g} / \mathrm{molecule}) ; v_{c}(\mathrm{~cm} / \mathrm{sec})$
Temperature $=298 \mathrm{~K} ; \mathrm{N}_{\mathrm{D}}=5 \times 10^{5}$ particle $/ \mathrm{cm}^{3} ; y=1 ; r_{\mathrm{D}}=5 \times 10^{-7} \mathrm{~cm}$
${ }^{-}$Calculated pseudo-first-order rate constants using the rate constants In Table 2 and the following concentrations: $\left(\mathrm{SO}_{2}\right)=10^{12} \mathrm{molecule} / \mathrm{cm}^{3}$;
$\left[\mathrm{H}_{2} \mathrm{O}\right] \times 10^{16}$ molecule $/ \mathrm{cm}^{3} ;\left[\mathrm{O}_{2}\right]=4.93 \times 10^{18} \mathrm{molecule} / \mathrm{cm}^{3} ;[\mathrm{M}]=$ 2.46×10^{19} molecule $/ \mathrm{cm}^{3}$

10. Summary of Reactions.

In summary, based upon the initial reaction conditions and the known relevant reactions and their relative rates, the inferred mechanism for the production of condensation nuclei is summarized in the following:

$$
\begin{array}{cl}
\mathrm{O}_{3}+\mathrm{hu} \rightarrow \mathrm{O}\left({ }^{\prime} \mathrm{D}\right)+\mathrm{O}_{2} & (\text { Rx. 1) } \\
\mathrm{O}(\mathrm{D})+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{OH}+\mathrm{OH} & \text { (Rx.2) } \\
\mathrm{OH}+\mathrm{SO}_{2}+\mathrm{M} \rightarrow \mathrm{HOSO}_{2}+\mathrm{M} & \text { (Rx.7) } \\
\mathrm{HOSO}_{2}+\mathrm{O}_{2} \rightarrow \mathrm{SO}_{3}+\mathrm{HO}_{2} & \text { (Rx.21) } \\
\mathrm{SO}_{3}+\mathrm{H}_{2} \mathrm{O}+\mathrm{M} \rightarrow \mathrm{SO}_{3} \cdot \mathrm{H}_{2} \mathrm{O}+\mathrm{M} & \text { (Rx.26) } \\
\mathrm{SO}_{3} \cdot \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4} & \text { (Rx.28) } \\
\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O}+\mathrm{M} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}+\mathrm{M} & \text { (Rx.29) } \\
\mathrm{H}_{2} \mathrm{SO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O}+\mathrm{M} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}+\mathrm{M} & \text { (Rx.30) } \\
\mathrm{H}_{2} \mathrm{SO}_{4} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{M} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}+\mathrm{M} & \text { (Rx.31) } \\
\mathrm{H}_{2} \mathrm{SO}_{4} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}+\mathrm{H}_{2} \mathrm{O}+\mathrm{M} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}+\mathrm{M} & \text { (Rx.32) }
\end{array}
$$

The above reaction scheme has been simplified and only considers the reactions which lead to the formation of condensation nuclei. The reader should note that other side reactions that compete for $O\left({ }^{1} D\right.$) atoms and OH radical molecules are not included in the total reaction scheme to focus attention on the reactions which directly participate in the production of condensation nuclei.

In the binary homogenous nucleation theory, discussed later, nuclei formation occurs when a critical constellation of n-m-mers forms containing n molecules of $\mathrm{H}_{2} \mathrm{SO}_{4}$ and m molecules of $\mathrm{H}_{2} \mathrm{O}$. In this search for a chemical kinetic mechanism, the actual molecule or molecules that are nuclel are not known. However, in view of the preceding discussion on $\mathrm{H}_{2} \mathrm{SO}_{4}$ formation and the known ability of $\mathrm{H}_{2} \mathrm{SO}_{4}$ to form hydrates, it is reasonalbe to suppose that sulfuric acid and any of its hydrates can be considered to be a condensation nucleus. The production of condensation nuclel in this reaction system is a function of the O_{3} concentration, the $\mathrm{H}_{2} \mathrm{O}$ concentration, and the SO_{2} concentration. The O_{2} concentration and M concentration are in large excess and are held constant for all
experiments described herein. The O_{3} molecule is a reactant source for the production of $O\left(^{\prime} D\right.$) atom in Rx .1 . The $O\left(^{\prime} D\right.$) atom reacts with a $\mathrm{H}_{2} \mathrm{O}$ molecule to produce the OH radical. The bisulfite radical is formed from the reaction of the OH radical with the SO_{2} molecule. Moreover, Rx .7 is in competition with two other reactions for the OH radical. The OH radical concentration is also depleted at comparable rates by Rx. 8 and Rx. 9.

The bisulfite radical is further oxidized by the diatomic oxygen to produce SO_{3}. In the presence of water vapour, the SO_{3} molecule is rapidly hydrated to produce the moderately stable $\mathrm{SO}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$ adduct. The $\mathrm{SO}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$ adduct subsequently isomerizes to the more thermodynamically stable sulfuric acid species. The $\mathrm{H}_{2} \mathrm{SO}_{4}$ molecule is the basic starting component of the condensation nuclei. Finally, the hydroscopic $\mathrm{H}_{2} \mathrm{SO}_{4}$ species is hydrated. The $\mathrm{H}_{2} \mathrm{SO}_{4}$ and its hydrates are considered to be condensation nuclei.

The mechanistic route for the formation of condensation nuclei is partially experimentally substantiated by individually excluding one of the reactants. In the absence of the UV radiation source (249 nm), i.e., the dark reaction, the formation of condensation nuclei is not observed. This observation would eliminate the notion that SO_{2} nydration or SO_{2} oxidation by ozone is a precursor mechanism for the formation of condensation nuclei. The formation of condensation nuclei was not observed when ozone is omitted from the reaction system. One can conclude that the production of condensation nuclei does not occur via the photolysis of $\mathrm{O}_{2}, \mathrm{SO}_{2}$, or $\mathrm{H}_{2} \mathrm{O}$. Diatomic oxygen absorbs below $242 \mathrm{~nm},{ }^{82}$ sulfur dioxide absorbs in the $340-390 \mathrm{~nm}, 260-340 \mathrm{~nm}$, 180-240nm, and 180-110nm region ${ }^{83}$ and water vapour absorbs below $242 \mathrm{~nm} .^{84}$ At 249 nm none of the reactants absorb to produce an excited state molecule or photodissociate.

$$
\begin{array}{ll}
\mathrm{O}_{2}+\mathrm{h} v \rightarrow 0+\mathrm{O}(\lambda<242 \mathrm{~nm}) & (\mathrm{Rx} .3) \\
\mathrm{SO}_{2}+\mathrm{h} v \rightarrow \mathrm{SO}_{2}^{*} & (\mathrm{Rx} .5)
\end{array}
$$

Rx. 5 occurs between $340-390 \mathrm{~nm}, 260-340 \mathrm{~nm}$, and 220-240nm.

$$
\begin{aligned}
& \mathrm{SO}_{2}+\mathrm{hv} \rightarrow \mathrm{SO}+\mathrm{O}(\lambda<219 \mathrm{~nm})(\mathrm{Rx} .36) \\
& \mathrm{H}_{2} \mathrm{O}+\mathrm{hv} \rightarrow \mathrm{H}+\mathrm{OH}(\lambda<242 \mathrm{~nm})(\mathrm{Rx} .37)
\end{aligned}
$$

In addition, when sulfur dioxide is also omitted from the reaction system and the laser is pulsed, no formation of condensation nuclei is observed. This observation is consistent with the idea of $\mathrm{H}_{2} \mathrm{SO}_{4}$ or some
oxidized SO_{2} species acting as a nucleating agent.
The production of condensation nuclei is not observed when the laser is pulsed in the absence of added water vapour. This empirical result is interpreted as the lack of production of OH radical molecules by Rx. 2 in which water vapour is a reactant.

11. Theoretical Kinetic Model.

The reaction scheme and assumptions presented above are used to setup theoretical kinetic rate model. Each reaction step is arranged in a differential rate format in accordance with kinetic rate law. The particular reaction step is expressed in terms of a rate constant and the participating reactants. Also, each differential rate expression will consist of the appropriate terms which mathematically describe the appearance and disappearance of the reactant of interest. Most of the differential rate expressions are simplifled by eliminating the time dependence of a particular reactant. The mathematical simplification is achieved by assuming an excess of one of the reactants, thereby, reducing a mixed second-order reaction to pseudo-first-order reaction Most of the reaction steps are found to be in the form of non-homogeneous, first order, linear, differential equations. The final rate expression for the formation of sulfuric acid tri-hydrate is quite overwhelming at first glance. The final rate expression is nothing more than a series of exponential functions with a pre-exponential constant. The large number of exponential terms in the final integrated rate expression arise from the original exponential dependency on the disappearance of the OH radical. Upon the initial integration step the original exponential is regenerated along with an additional exponential integration factor. After each integration step an additional exponential integration term is generated for each existing exponential term. The development of the kinetic model, the assumptions invoked, and the rate expressions for OH radical formation, OH radical consumption, bisulfite formation, sulfur trioxide formation, sulfur trioxide hydrate formation, sulfuric acid formation, sulfuric acid mono-hydrate formation, sulfuric acld di-hydrate formation, and sulfuric acid tri-nydrate formation are presented elsewhere ${ }^{2}$

12. Determination of Rate Constants for Reactions 28, 38 and the Hydration Reactions of Sulpuric Acid.

The total reaction scheme proposed earller (vide supra) has many well defined rate constants with the exceptions of Rxs.28, 38, and the hyoration reactions of sulfuric acid (Rxs. 29-31). The values of the rate
constants for the following reactions are generated from the computer model which best fits the experimental results as judged by a subjective process. The results given below are calculated on an Apple Macintosh computer using a rate calculation program written in Microsoft Basic, see appendix B for algorithm and code details. The computer program was designed with edit fields to facilitate changes in reactant concentrations and laser power. Each unknown rate constant is varied individually and the results are analyzed. To simulate experimental conditions, described by the particle/cm ${ }^{3}$ vs. time curves, the total number of condensation nuclei is calculated by integrating from typical integration limits, 8 to 28 seconds, (see Figure 3.) and then multiplying by the flow rate ($2.511 \times 10^{4} \mu \mathrm{~L} / \mathrm{sec}$).

$$
\begin{array}{cc}
\mathrm{SO}_{3} \cdot \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4} & \text { (Rx. 28) } \\
\mathrm{OH}+\mathrm{X} \rightarrow \mathrm{NoCN} \text { Formation } & \text { (Rx. 38) } \\
\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O}+\mathrm{M} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}+\mathrm{M} & \text { (Rx. 29) } \\
\mathrm{H}_{2} \mathrm{SO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O}+\mathrm{M} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}+\mathrm{M} & \text { (Rx.30) } \\
\mathrm{H}_{2} \mathrm{SO}_{4} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{M} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}+\mathrm{M} & (\text { Rx. 31) }
\end{array}
$$

It is found that, Rxs.28,38,29,30, and 31 are not interrelated with respect to rates of reaction. The lack of interdependency of the individual rate constants will become more apparent later in this discussion.

A. Determination of the Pseudo-First-Order Rate Constant for Reaction 38.

The reasoning behind the postulation of Rx. 38 is the necessity to express the dependence of condensation nuclei formation as a function of sulfur dioxide concentration. If Rx .38 is not proposed, even at the fast rate of condensation nuclei formation using the kinetic nucleation model, all of the OH radicals will react with SO_{2} within the experimental time regime (28 seconds). Increasing the sulfur dioxide concentration only serves to expedite the oxidation of sulfur dioxide. Without Rx. 38 , the reaction of the OH radical with $\mathrm{SO}_{2} w i l l$ always go to stoichiometric completion which eliminates the SO_{2} concentration dependency. Since, the oxidation of sulfur dioxide with the OH radical is the primary reaction for the formation of the SO_{2} oxidized species, another mechanism is proposed to compete for the OH radical. Introducing Rx. 38 restores the dependency on the sulfur dioxide concentration. Increasing
the sulfur dioxide concentration will increase the rate of formation of the oxidized sulfur species, in essence making $R x .7$ compete for the OH radical. It is essential that Rx .38 be in the total reaction scheme for any nucleation mechanism to work as function of sulfur dioxide concentration. Furthermore, Rx. 38 removes the concentration dependency on ammonia and also greatly reduces the concentration dependency on ozone. This type of behavior becomes apparent when one considers the that the OH radical is also consumed at a competitive rate by reacting with ammonia (Rx. 9) and ozone (Rx. 8). If the pseudo-first-order rate constant for Rx. 38 is much larger than the pseudo-first-order rate constants for Rx. 8 and Rx. 9 then the sum of the pseudo-first-order rate constants is simply k_{38}

The pseudo-first-order rate constant is determined to be 1×10^{3} sec^{-1} for Rx. 38. Rate constants for Rx. 28, 29, 30, 31, and 38 are generated by the computer model which best fit the ixperimental result.s. The formation of condensation nuclei remains insensitive if the pseudo-first-order rate constant is increased above $1 \times 10^{3} \mathrm{sec}^{-1}$.

The possible identification of the X component is now examined. The pseudo-first-order rate constant for Rx. 38 is roughly two orders of magnitude larger than the pseudo-first-order rate constant for Rx. 8 and Rx. 9. The pseudo-first-order rate constant for Rx .38 is a composition of the rate constant and the concentration of X. To generate a pseudo-first-order rate constant of $1 \times 10^{3} \mathrm{sec}^{-1}$, either the rate constant or the reactant concentration must be large. There are two possibilities with respect to large reactant concentrations, one is the reaction of OH radical with $\mathrm{H}_{2} \mathrm{O}$ and the other is the reaction with O_{2}.

$$
\begin{array}{ll}
\mathrm{OH}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{No} \mathrm{CN} \mathrm{Formation} & (\mathrm{Rx} .39) \\
\mathrm{OH}+\mathrm{O}_{2} \rightarrow \mathrm{No} \mathrm{CN} \text { Formation } & (\mathrm{Rx} .40) \tag{Rx.40}
\end{array}
$$

Under the reaction conditions where $\left[\mathrm{H}_{2} \mathrm{O}\right] \approx 10^{16}$ molecule $/ \mathrm{cm}^{3}$ the rate constant for Rx. 39 would have to be around $10^{-13} \mathrm{~cm}^{3} / \mathrm{molecule} \mathrm{sec}$., which is reasonable. The O_{2} concentration in the reactor vessel is 4.93×10^{18} molecule $/ \mathrm{cm}^{3}$ which yields a rate constant for Rx. 40 of $4.93 \times 10^{-15} \mathrm{sec}^{-1}$. The rate constant for Rx. 40 is not unreasonable and is a plausible reaction, along with Rx .39 , for the depletion of OH radical.

Another possible gas-phase reaction with OH radical is the reaction with hydrocarbon impurities ($\mathrm{Rx}, 41$) in the zero air. ${ }^{85}$ A specification for zero air is that the total hydrocarbon (THC) content must be less than I ppm.
$\mathrm{OH}+\mathrm{THC} \rightarrow$ No CN Formation
(Rx. 41)
A 1 ppm THC conceniration would translate into a hydrocarbon impurities
concentration of 2.46×10^{13} molecule $/ \mathrm{cm}^{3}$. Zero air is manufactured from a cryogenic mixture of liquid nitrogen and liquid oxygen which is obtained from ambient tropospheric air. The major hydrocarbon component of ambient air is methane, roughly a thousand time greater than other hydrocarbons ${ }^{86}$, and so the THC content in zero air is assumed to be methane. Davis et al. ${ }^{87}$ studied the reaction between OH radical and methane $\left(\mathrm{CH}_{4}\right)$ and obtained a rate constant of $7.7 \times 10^{-15} \mathrm{~cm}^{3}$ molecule ${ }^{-1}$ sec^{-1} by measuring the resonance fluorescence of the OH radical in a discharge flow tube apparatus. A pseudo-first-order rate constant of $1.9 \times 10^{-1} \mathrm{sec}^{-1}$ was obtained for the reaction of OH radical with methane. The reaction of $O H$ radical with methane does not react quick enough to satisfactorily explain Rx. 38.

Carbon monoxide is also another possible contaminant in zero air because of $C O$ concentration in ambient air ${ }^{86}$ and the manufacturing process described above.

$$
\begin{equation*}
\mathrm{OH}+\mathrm{CO} \rightarrow \mathrm{CO}_{2}+\mathrm{H} \tag{Rx.42}
\end{equation*}
$$

The rate constant for the reaction between OH radical and CO is $1.5 \times 10^{-13} \mathrm{~cm}^{3}$ molecule ${ }^{-1} \mathrm{sec}^{-1}$. In order for CO to play an important role in the consumption of OH radical, the CO concentration in the zero air would have to be around 100 ppm . However, Beno ${ }^{88}$ observed an enhancement of the rate constant in the presence of water vapour. Beno's ${ }^{88}$ observation near room temperature (338 K) would lower the Co concentration in the zero air by approximately a factor of two to obtain a . psuedo-first-order rate constant large enough to account for Rx. 38.

B. Determination of the First-Order Rate Constant for Reaction 28.

The isomerization of $\mathrm{SO}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$ to $\mathrm{H}_{2} \mathrm{SO}_{4}$ is the rate determining step for formation of condensation nuclei. The isomerization step does not alter the reactants' concentration dependency. Since Rx. 28 is the rate determining step and does not depend on the concentration of reactants, it only regulates the amount of condensation nuclei produced at given time. Varying k_{28} does not change the dependency of reactants concentration on the formation of condensation nuclel and therfore is independent of other reaction steps and their associated rate constant. The rate constant for the isomerization mechanism is determined to be $1.23 \times 10^{-4} \mathrm{sec}^{-1}$ by the method discussed at the beginning of section 12 . A rate constant of $1.23 \times 10^{-4} \mathrm{sec}^{-1}$ yields the approprlate condensatio nuclei concentrations. This gas-phase isomerization rate constant seems reasonable compared to that of the Isomerization of methyl
isocyanide (for rate constant, vide supra). The isomerization of methyl isocyanide is a good comparison because it is a unimolecular gas-phase reaction in which both the bonding structure and atom positioning is changed ($\mathrm{CH}_{3} \mathrm{NC} \rightarrow \mathrm{CH}_{3} \mathrm{CN}$).
C. Determination of the First-Order Rate Constants for
the Mono-, Di-, and Tri-Hydrates of Sulfuric Acid.

The first-order rate constants for the mono-, di-, tri-hydrates of sulfuric acid are $1 \times 10^{-10} \mathrm{~cm}^{3}$ molecule ${ }^{-1} \mathrm{sec}^{-1}, 1 \times 10^{-11} \mathrm{~cm}^{3}$ molecule ${ }^{-1}$ sec^{-1}, and $1 \times 10^{-12} \mathrm{~cm}^{3}$ molecule ${ }^{-1} \mathrm{sec}^{-1}$. The third body concentration, $[M]=2.46 \times 10^{19}$ molecule $/ \mathrm{cm}^{3}$, is included in the hydration rate constants. The rate of formation of condensation nuclei is insensitive to the variation of the values of the hydration rate constants. This is true if the rate of hydration is much faster then the rate of isomerization $\left(k_{28} \ll k_{29}, k_{30}, k_{31}\right)$. The magnitudes of the hydration rate constants are chosen based on the rate constant obtained by Castleman ${ }^{23}$ in the hydration of sulfur trioxide. The only reason for the different values of the rate constants is that when the hydration rate constants are equal the exponential part of rate expression vanishes.

14. Review of Theoretical Model and Error Analysis.

A sensitivity analysis is performed un final rate expression for the production of condensation nuclei by mathematically evaluating each term in the final integration rate expression independently at time equals I second and typical reactant concentrations. The ninth term, given below, is roughly a thousand times more sensitive, with respect to condensation nuclei formation, than the first term in the equation.

$$
\begin{gathered}
-\left(k_{31}{ }^{\prime} k_{30^{\prime} k_{29}{ }^{\prime} k_{26^{\prime}} k_{21}{ }^{\prime} k_{7}^{\prime}[\mathrm{OH}]_{0} /\left(k_{21}^{\prime}-\left(k_{7}^{\prime}+k_{8}^{\prime}+k_{38}^{\prime}\right)\right)}^{\left(k_{26}-\left(k_{7}{ }^{\prime}+k_{8}^{\prime}+k_{38}{ }^{\prime}\right)\right)\left(k_{28}-\left(k_{7}^{\prime}+k_{8}^{\prime}+k_{38^{\prime}}\right)\right)\left(k_{29}{ }^{\prime}-k_{28}\right)}\right. \\
\left.\left(k_{30}^{\prime}-k_{28}\right)\left(k_{31}^{\prime}-k_{28}\right)\right)\left(1-\exp \left(-k_{28} t\right)\right)
\end{gathered}
$$

The first term is far less sensitive than the other terms in the equation, with the exception of the forty-first term. The ninth term is the most sensitive because of the pre-exponential collection of constants or the pre-exponential term, ($k_{31}{ }^{\prime} k_{30}{ }^{\prime} k_{29}{ }^{\prime} k_{26}{ }^{\prime} k_{21}{ }^{\prime} k_{7}{ }^{\prime}(\mathrm{OH})_{0} /\left(k_{21}-\left(k_{7}{ }^{\prime}+k_{8}{ }^{\prime}+\right.\right.$ $\left.\left.k_{38}\right)\right)\left(k_{26}-\left(k_{7}^{\prime}+k_{8}^{\prime}+k_{38}{ }^{\prime}\right)\right)\left(k_{28}-\left(k_{7}^{\prime}+k_{8}^{\prime}+k_{38}{ }^{\prime}\right)\right)\left(k_{29}{ }^{\prime}-k_{28}\right)\left(k_{30^{\prime}}-\right.$ $\left.k_{28}\right)\left(k_{31}{ }^{-}-k_{28}\right)$. The isomerization rate constant is eliminated from the numerator upon the final integration of the rate expression. With the isomerization rate constant gone, the pre-exponential term is roughly five orders of magnitude larger than the other pre-exponential terms.

The ninth term mathematically describes the rate limiting step for the isomerization of sulfur trioxide hydrate to sulfuric acid. The same conclusion can be reached if the sulfuric acid hydration mechanisms are assumed to be in steady-state. The final integrated rate expression can be simplified by comparing the relative magnitudes of the pseudo-first-order rate constants of the total reaction scheme. If one of the rate constants in a term which is the difference between rate constants in the denominator is much larger than the other then the difference reduces to just the larger rate constant and will cancel with the appropriate rate constant in the numerator. For example if $k_{a} \gg k_{b}$ then $k_{a} k_{b} / k_{a}-k_{b}$ reduces to just k_{b}. Using the pseudo-first-order rate constant from Table 2 . one can conclude the following: $k_{2 i}{ }^{\prime} \gg\left(k_{7}{ }^{\prime}+k_{8}{ }^{\prime}+\right.$ $\left.\left.k_{9}{ }^{\prime}+k_{38}{ }^{\prime}\right) ; k_{26}{ }^{\prime}\right)\left(k_{7}{ }^{\prime}+k_{8}^{\prime}+k_{9}{ }^{\prime}+k_{38}{ }^{\prime}\right) ; k_{28}{ }^{\prime} \gg\left(k_{7}^{\prime}+k_{8}^{\prime}+k_{9}{ }^{\prime}+k_{38}{ }^{\prime}\right) ; k_{29}{ }^{\prime} \gg$ $k_{28} ; k_{30^{\prime}} \gg k_{28} ; k_{31} \gg k_{28^{\prime}} ; k_{38^{\prime}} \gg\left(k_{7}^{\prime}+k_{8}^{\prime}+k_{9}{ }^{\prime}\right)$. Since all the other terms in the final integrated rate expression are insignificant compared to the ninth term, it is reduced to:

$$
\begin{equation*}
N_{30}=\left(k_{7} / k_{38}\right)\left[\mathrm{SO}_{2}\right][\mathrm{OH}]_{0}\left(1-\exp \left(-k_{28} t\right)\right) \tag{Eq.30}
\end{equation*}
$$

Eq. 30 could have been derived directly if the steady-state approximation was invoked for the appropriate reactions based upon the above inequalities. In the limit, Eq. 30 demonstrates that the final condensation nuclei concentration will equal only a fraction of the initial $O H$ radical concentration because of the rate constant ratio. The numerator of the ratio of the pseudo-first-order rate constant is for the reaction of the $O H$ radical that produces condensation nuclei. The denominator is for the reaction that consumes the OH radical without production of condensation nuclei. However, when the final integration rate expression was derived the relative differences in the rate constants or pseudo-first-order rate constants were not known. The closed analytical rate expression was derived without the steady-state approximation as not to pre judice the kinetic model or restrict its flexibility.

Substituting Eq. 25 into Eq. 30 yields: $N_{31}=$

$$
\left(k_{7}{ }^{\prime} \mathrm{K}_{2}\left[\mathrm{O}_{3}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]\left[\mathrm{SO}_{2}\right] E 2.303 \phi\left(\mathrm{O}^{\prime} \mathrm{D}\right) \lambda \epsilon 1 /\left(\mathrm{k}_{38} \mathrm{Vhc}_{5}\left(\mathrm{k}_{3}^{\prime}+k_{4}^{\prime}\right)\right)\right)\left(1-\exp \left(-k_{28} t\right)\right) .
$$

Eq. 31 is a good approximation for calculating the condensation nuclei concentration as a function of time. One can see that the condensation nuclei formation rate has a first order dependency on the ozone concentration, water vapour concentration, sulfur dioxide concentration, and laser power. The first order dependency can be lllustrated by a
$\log -\log$ plot of the condensation nuclel concentration as a function or reactants concentration and laser power at given time interval. The slope of the log-log plots will be unity (see Graphs 5-8).

All relative percent errors are presented in terms of total condensation nuclei not the logarithm of the total condensation nuclei. The relative percent error is defined as:

$$
\begin{equation*}
10-A \mid / A \times 100 \% . \tag{Eq.32}
\end{equation*}
$$

Where O is the experimentally observed value and A is the accepted or theoretical value. The relative percent error of the total condensation nuclei is presented to reflect the true error not the error of the compressed difference between the logarithmic values.

The values generated by the theoretical kinetic model are in very good agreement with the experimental data for the higher reactant concentrations. In the regions of higher concentrations of $\mathrm{SO}_{2}, \mathrm{O}_{3}$, and $\mathrm{H}_{2} \mathrm{O}$, the relative percent error varied from 0.6% to 43.0%, however, the average relative percent deviation is 11.6%. The low concentration points of $\mathrm{SO}_{2}, \mathrm{O}_{3}$, and $\mathrm{H}_{2} \mathrm{O}$ have a much higher relative percent error, which vary from 21.1% to 76.0%. It should be noted that the relative percent error for lower concentration points decreases with increasing laser power, i.e., higher OH radical concentrations.

Given below are Graphs 18 through 20 which compare the kinetic theory to experimental data. At the higher reactant concentration, the kinetic model agrees well when compared to experimental data. The average slopes of the reactants concentration dependency and laser power dependency of the experimental data, in general, behave in the same manner as the kinetic model predicts. All of the slopes for the $\log -\log$ plot of CN as a function of reactants concentration are approximately 1 , with the exception of the ammonia concentration plots which have a slope of zero. The slopes of the ammonia concentration plots for the experimental data are slightly negative. The theoretically kinetic model also predicts a slightly negative dependency on condensation nuclei formation as a function of the ammonia concentration.
15. Homogeneous Heteromolecular Nucleation Model.

Using the homogeneous heteromolecular nucleation method described by Mirabel and Katz, ${ }^{89}$ the upper Iimit of the nucleation rate is calculated. If all of the oxidized species of sulfur dioxide is converted instantly to sulfuric acid, (Rx. 7 is the rate determining step) the sulfuric acid concentration is 1.30×10^{11} molecule $/ \mathrm{cm}^{3}$ at a laser power
of 12.6 mjoule and an ozone concentration of 9.770×10^{13} molecule $/ \mathrm{cm}^{3}$. However, the sulfuric acid concentration calculated above is based on the postulated reaction between X and OH radical (Rx. 38). At 293 K the pressure of sulfuric acid in the vapour-phase is calculated to be 3.94×10^{-6} torr by employing $p=(n / V) k T$, where $k=1.0354 \times 10^{-19} \mathrm{~cm}^{3}$ torr K^{-1} molecule ${ }^{-1}$. Using a value of 3.1×10^{-5} torr ${ }^{90}$ for the vapour pressure of pure sulfuric acid, yields an activity of 1.27×10^{-1}. At the highest experimental water vapour concentration, a relative humidity of about 6\%, the theoretical rate of nuclei formation is approximately 2.4×10^{-5} particle $/ \mathrm{cm}^{3} \mathrm{sec}$. An estimate of an experimental rate of nucleation is calrulated from the total number of particles formed under the same reactant concentrations as above and dividing it by the reaction volume, i.e., volume of the laser beam, and average residence time in the reactor. The total number of particles formed in an experiment is calculated at an ozone concentration of 9.770×10^{13} molecule $/ \mathrm{cm}^{3}$ and a laser power of 12.6 mjoule (Log(L.P.) $=1.1$). The total number of particles formed is calculated to be 1.051×10^{8} particle. The laser beam has a diameter of 0.25 cm and a length of 34.8 cm which yields a reaction volume of $6.83 \mathrm{~cm}^{3}$. If the reaction is assumed to proceed through the entire particle counting process (28 seconds) then a nucleation rate of 5.5×10^{5} particle $/ \mathrm{cm}^{3} \mathrm{sec}$ is calculated.

To obtain the number of sulfuric acid molecules contained in a critical nucleus at a relative humidity of 6%, which is predicted by heteromolecular homogeneous nucleation theory, a $\log -\log$ plot of the nucleation rate as a function of sulfuric acid activity is performed. The nucleation rates are graphically extrapolated to 6% R.H. from the work done by Mirabel and Katz. ${ }^{89}$ Nucleation rate were adjusted for the vapour - pressure of pure sulfuric acid ($p^{0}=3.1 \times 10^{-5}$ torr) obtained by Chu and Morrison. ${ }^{90}$

The plot yields a slope of roughly 8 which corresponds to the number of sulfuric acid molecules in the critical nucleus (see Graph 9). The experimental data has an average slope of around 1 with respect to sulfur dioxide, i.e., one sulfur bearing species per nucleus (see Graph 9).

Homogeneous heteromolecular nucleation theory does not correlate well with the experimental data because of the low nucleation rate (2.4×10^{-5} particle $/ \mathrm{cm}^{3} \mathrm{sec}$) and the larger number of sulfuric acid molecules per nucleus ($8 \mathrm{H}_{2} \mathrm{SO}_{4}$ molecule/nucleus). Graph 9 illustrates the difference in the dependency of nucleation rates and number of sulfuric acid molecules in each nucleus as a function of sulfuric acid activity for the experimental data and the homogeneous heteromolecular nucleation theory.

16. Estimation of Experimental Reproducibllity.

Since there is no dependence of the nuclei formation on ammonia vapour concentration, the experimental ammonia data can serve as an experiment for reproducibility (see Graph 4). A maximum relative percent error of 28.6% is obtained from the low laser power ammonia data set. An overall average relative percent error of 9.0% is calculated from the ammonia data set. It can be inferred from the experimental reproducibility that the experimental results correlate well with the theoretical kinetic model, except for the low reactant concentration points.

17. Ratio of Oxidized Sulfur Dioxide to Condensation Nuclei Formation.

Not all of the oxidized sulfur dioxide is converted into condensation nuclei within the time frame of this experiment (8 to approximately 28 seconds). To determine quantitatively the amount of intermediate $\left(\mathrm{SO}_{3} \cdot \mathrm{H}_{2} \mathrm{O}\right)$ to product conversion $\left(\mathrm{H}_{2} \mathrm{SO}_{4} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right)$, a single plot of the condensation nuclei rate (molecule $\mathrm{cm}^{-3} \mathrm{sec}^{-1}$) and the oxidized sulfur dioxide concentration (molecule $/ \mathrm{cm}^{3}$) is performed.

The condensation nuclei rates are estimated from the raw data curves by dividing the peak condensation nuclei concentrations by the time of occurence of the peak which is corrected to account for an estimated average CNC delay time of 6 seconds (see Figure 3 for typical raw data curve). The condensation nuclei concentrations are converted from nuclei/micro-liter into nuclei/ cm^{3} and are also multiplied by 100 to account for the dilution factor upon exiting the reactor vessel to the condensation nuclei counter. The condensation nuclei concentration dilution is the ratio of the reaction volume (laser beam volume) of 6.83 cm^{3} and the reactor vessel volume of $683 \mathrm{~cm}^{3}$.

The oxidized sulfur dioxide concentrations are calculated by taking the limit at irifinite time of the integrated rate expression which leads to the formation of the sulfur trioxide hydrate species. The concentration of oxidized SO_{2} species for each experiment was calculated from the integrated rate expression using the experimental concentrations of $\mathrm{SO}_{2}, \mathrm{H}_{2} \mathrm{O}, \mathrm{O}_{3}$, and NH_{3} and laser power. The slope of the linear regression line of the condensation nuclei rate verses oxidized sulfur dioxide concentration yields an isomerization rate constant on $4.0 \times 10^{-5} \mathrm{sec}^{-1}$.

Out of roughly 25,000 oxidized sulfur dioxide molecules, one
condensation nucleus is produced. This result is consistant with the idea of an isomerization reaction. The experimentally determined isomerization rate constant is about 3 times slower then the value predicted by kinetic model.

Because of cycling of the CNC sampling system and the phasing of the laser pulse with the CNC cycle, the times for the actual maximum may be in error by as much as 2 seconds. Further, phasing differences between the laser pulse and the CNC cycling are expected to cause uncertainty in the value of the peak concentrations in the raw data curves. Thus the slope of the line of Graph 10 is not expected to be as accurate an estimate of the rate coefficient (k_{28}) for nuclei formation as the more refined technique used in arriving at the kinetic model value. The kinetic model eliminates the time and phasing uncertainties by integrating the experimental raw data curves of nuclei concentration verses time. Another reason for the difference in the rate coefficient is that the kinetic model value was chosen preferentially to fit the data obtained at higher reactant concentrations, whereas the plot of Graph 10 includes all experiments.

18. Formation of Ammonium Sulfate Aerosol Particles.

A. General Discussion of Ammonium Sulfate Particle Formation.
Originally the maturation chamber apparatus was designed to study the particle growth evolution as a function of time. However, even at the shortest times the aerosol particles reached a maximum size of around 0.3 to 0.5 microns (see Figures 4-7). The shortest time is about 120 seconds, which is the time required for the photolyzed mixture to pass through the maturation chamber containing ammonia gas followed by the deposition of the particles onto the ESM mount.

The gas-phase reaction between ammonia and condensation nuclei is as follows:

$$
2 \mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \cdot \mathrm{i}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3} \rightarrow\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} \cdot \mathrm{i}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3} \quad(\mathrm{Rx} .43)
$$

The subsequent rapid growth into aerosol particles was explained by Friend et al. ${ }^{91}$ to be the heteromolecular oxtdation of SO_{2} in the solution of the droplet. The ammontum ion acts as a catalyst to oxidize SO_{2} to sulfuric acid.

$$
2 \mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{H}_{2} \mathrm{SO}_{4} \text { (solution) } \quad(\mathrm{Rx} .44)
$$

(Rx. 16 is catalyzed by NH_{4}^{+}and salt embryo.)
The ammonlum sulfate particles in this experiment were formed at low

Oxidized Sulfur Dioxide (molecule/cc)
(oes sopejnopjow) ejey NO
relative humidities (4\%). This result offers a possible explanation why ammonium sulfate particles are found in dry air over deserts and also in remote clean tropospheric air.
B. Qualitative Determination of Particle Composition.

The aerosol composition is determined by employing two separate methods. The first method is accomplished by collecting small amounts of the aerosol on an ESM mount. Multiple samples are collected on the ESM mount to build up the particle concentration to a significant level to be analyzed on a ion chromatograph. However, after 100 samples were collected on a single ESM mount and diluted in only 5.0 ml of deionized water, the ammonium sulfate concentration was not large enough to yield a reliable ammonium to sulfate ion ratio. The retention times on the ion chromatograph did yield a positive qualitative identification of the ammonium and sulfate ions. The morphology of sulfuric acid and ammonium compounds was studied by Bigg. 92 Electron-micrograph samples of ammonium sulfate, ammonium bisulfate, and ammonium persulfate were prepared to demonstrate the distinct and different appearance of each compound. By comparing the electron-micrographs obtained in this study to Bigg's ${ }^{92}$ micrographs, the products were clearly determined to be ammonia sulfate particles. The absence of a water halo indicates that the ammonium sulfate particles are created in the airborne phase, not on the ESM mount. The water halo is indicative of sulfuric acid particles because of its hydroscopic properties.

The particle growth rate could not be determined within the time regime of the experiment (2 minutes). However, the presence of larger ammonium sulfate particle would also substantiate the existerce of condensation nuclei formed in the photolysis experiment. Also, the maturation experiment confirmed that the final oxidized product of SO_{2} was the sulfate species.

19. Comparison of Nucleation Models: Advantages and Disadvantages.

The traditional homogeneous heteromolecular nucleation theory does not account for the large rate of particle formation observed under the experimental conditions in this work. Also, homogeneous heteromolecular nucleation theory falls to predict the number of condensation nuclel present in the Junge layer. At 218 K and a sulfuric actd partial pressure of 1.15×10^{-9} torr, Hamill et. al ${ }^{93}$ calculates an upper limit of 3.7×10^{-11} particle $/ \mathrm{cm}^{3} \mathrm{sec}$ for the nucleation rate via a homogeneous heteromolecular nucleation mechanism. This value
corresponds to one new particle formed per cubic centimeter every 850 years, whereas a rate of about 10^{3} times greater is needed to explain the observed concentrations in the atmosphere.

There are some drawbacks with the conventional nucleation
theory. Homogeneous heteromolecular nucleation theory does not have a lower limit boundary condition that preserves the identity of sulfuric acid. In the absence of this boundary condition it is possible to have fractional sulfuric acid molecules in the droplet. Homogeneous heteromolecular nucleation mechanism is derived from thermodynamics and depends upon macroscopic thermodynamic parameters. The free energy is treated as a macroscopic quantity and does not take into account the intermolecular and intramolecular interaction which could lead to the formation of small stable clusters.

Moveover, terms like surface tension and contact angle are really meaningless on the microscopic level. How does one measure or calculate the contact angle or surface tension of clusters containing 10 to 20 molecules that are only a few molecules in depth? A statistical mechanics approach would greatly improve the homogeneous heteromolecular nucleation theory. Unfortunately, statistical mechanics of ten becomes intractable when dealing with the liquid phase. The advantage of the homogeneous heteromolecular nucleation model is its ability to calculate the Gibbs free energy with a few thermodynamic quantities, e.g., vapour pressure of the pure component and the surface tension at different mole fractions. The homogeneous heteromolecular nucleation model is well suited at upper limits where the nucleation parameters reach their thermodynamic bulk properties, e.g., surface tension, contact angle, and bulk liquid phase properties. However, homogeneous heteromolecular nucleation is based on the assumption that gas phase molecules are non-ideal, i.e., they condense. At high gas phase concentrations the molecules behave less ideally and should not be treated as an ideal gas, i.e., $p \neq(n / V) R T$.

The kinetic model has the advantage of calculating the rate of reaction directly from the integrated rate law and also affords a more detalled physical explanation of the individual steps. The total rate expression can be simplified by employing the steady-state approximation, if applicable to larger reaction schemes, to make the final analytical solution more manageable. However, the kinetic model requires the knowledge of the rate constants for each individual step. If the situation allows, the importance of the particular mechanism can be minimized by selecting relatively large rate constants which is equivalent to invoking the steady-state approximation. ${ }^{94}$ In some cases
second-order reactions in a consecutive reaction scheme cannot be solved analytically but can be approximated by a series expansion and neglecting the higher order terms. Mixed second-order reactions can also be simplified if one of the components is in large excess, a thirty-fold excess or more. The kinetic model is best suited to schemes having a small number of elementary reaction steps where most of the rate constants are known.
20. Conclusion.

In conclusion a detailed investigation of known relevant reactions and their corresponding rate constants has led to a chemical mechanism which describes the formation of condensation nuclei.

$$
\begin{align*}
& \mathrm{O}_{3}+\mathrm{hu} \rightarrow \mathrm{O}\left({ }^{1} \mathrm{D}\right)+\mathrm{O}_{2} \quad \text { (Rx. 1) } \tag{Rx.1}\\
& \mathrm{O}\left({ }^{\prime} \mathrm{D}\right)+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{OH}+\mathrm{OH} \tag{Rx.2}\\
& \mathrm{OH}+\mathrm{SO}_{2}+\mathrm{M} \rightarrow \mathrm{HOSO}_{2}+\mathrm{M} \tag{Rx.7}\\
& \mathrm{HOSO}_{2}+\mathrm{O}_{2} \rightarrow \mathrm{SO}_{3}+\mathrm{HO}_{2} \tag{Rx.21}\\
& \mathrm{SO}_{3}+\mathrm{H}_{2} \mathrm{O}+\mathrm{M} \rightarrow \mathrm{SO}_{3} \cdot \mathrm{H}_{2} \mathrm{O}+\mathrm{M} \tag{Rx.26}\\
& \mathrm{SO}_{3} \cdot \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4} \tag{Rx.28}\\
& \mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O}+\mathrm{M} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}+\mathrm{M} \tag{Rx.29}\\
& \mathrm{H}_{2} \mathrm{SO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O}+\mathrm{M} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}+\mathrm{M} \tag{Rx.30}\\
& \mathrm{H}_{2} \mathrm{SO}_{4} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{M} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}+\mathrm{M} \tag{Rx.31}
\end{align*}
$$

However, to restore the dependency of condensation nuclei formation on the sulfur dioxide concentration a reaction between the OH radical and an unknown species was postulated (Rx. 38). Various reactions have been investigated under the experimental condition which could satisfy the postulated reaction. From the reaction scheme a kinetic model was developed. With a few verifiable assumptions a closed analytical solution was derived. Proposed rate constants for the isomerization of sulfur trioxide hydrate and for the mono-, di-, and tri-hydrates of sulfuric acid were calculated from the kinetic model. In the higher reactant concentration region the kinetic model correlates well with the experimental data (average relative error of 11.6%). At the lower reactant concentration region the kinetic model has a higher relative error range from 21% to 76%.

Applying heteromolecular homogeneous nucleation theory to our data ylelds a nucleation rate of 2.4×10^{-5} nuclelicm ${ }^{3} \mathrm{sec}$. The heteromolecular homogeneous nucleation theory also predicts that each
critical nucleus contains 8 sulfuric acid molecules (see Graph 9).
Nucleation theory does not explain the the high nucleation rates and the first-order dependency on sulfur dioxide concentration obtained in this study.

Also, wall effects and reactant or intermediate scavenging was found to be negligible. The time resolution of the maturation experiment (2 minutes) was found to be too low compared to the ammonium sulfate particle formation rate. However, from ion chromatography data and the particle morphology examined by electron scanning microscopy the particle composition is determined to be ammonium sulfate.

These results have determined that the final photo-oxidation products of sulfur dioxide is sulfuric acid. The formation of the large ammonium sulfate particles would suggest that condensation nuclei were formed from the photolysis of the reaction mixture.

Finally, a detailed investigation into the disappearance of the OH radical in the presence of $\mathrm{SO}_{2}, \mathrm{O}_{3}$, and $\mathrm{H}_{2} \mathrm{O}$ is recommended. An experiment should be designed to investigate the proposed reaction (Rx . 38) in this work.

REFERENCE

1. Stockwell, W. R., and J. G. Calvert, Atmos. Environ., 17, 2231, (1983).
2. Nolan, P. M., "Condensation Nuclei Formation by Photo-oxidation of Sulfur Dioxide with OH Radical in the Presence of Water Vapour and Ammonia", (Doctoral Dissertation, Drexel University, Philadelphia, PA, 1987).
3. Fuller, E. N., P. D. Schettler, and J. C. Giddings, Ind. Eng. Chem., 58, 19, (1966).
4. Atkins, A. W., "Physical Chemistry", (W. H. Freeman and Company, San Francisco, 1985), p. 679
5. Zellner, R., G. Wager, and B. Himme, J. Phys. Chem., 3196, 84, (1980).
6. Wine, P. H. and A. R. Ravishankara, Chem. Phys. 69, 365, (1982)
7. Ckabe, H., "Photo-Chemistry of Small Molecules, (John Wiley \& Sons, New York, 1978), p. 244.
8. Okabe, H., "Photo-Chemistry of Small Molecules, (John Wiley \& Sons, New York, 1978), p. 240.
9. Calvert, J. C. and J. N. Pitts, Jr., "Photochemistry", (John Wiley and Sons, New York, 1966) p. 588.
10. Molina, L. T. and M. J. Molina, J. Geophy. Res., 91, 14501, (1986).
11. Amimoto, S. T., A. P. Force, J. R. Wiesenfeld, and R. H. Young, J. Chem. Phys., 73, 1244, (1980).
12. Streit, G. E., C. J. Howard, A. L. Schmeltekopf, J. A. Davison, and H. I. Schiff, J. Chem. Phys., 65, 4761, (1976).
13. Sander, N. D., J. E. Butler and J. R. McDonald, J. Chem. Phys., 73, 5381, (1980).
14. Kajimoto, O. and R. J. Cvetanovic, J. Chem. Phys., 64, 1005, (1976).
15. Marigitan, J. J., J. Phys. Chem., 88, 3314, (1984).
16. Leu, M. T., J. Phys. Chem., 86, 4558, (1982).
17. Wine, P. H., and R. J. Thompson, A. R. Ravishankara, D. H. Semmes, C. A. Gump, A. Torabi, and J. M. Nicovich, J. Phys. Chem., 88, 2095, (1984).
18. Cox, R. A., Inter. J. Chem. Kinet. Symp., 1, 379, (1975).
19. Davis, D. D., A. R. Ravishankara, and S. Fischer, Geophys. Res. Letters, 6, 113, (1979).
20. Atkinson, R., R. A. Perry, and J. N. Pitts, J. Chem. Phys., 65, 306, (1976).
21. Castleman, A. W. and I. N. Tang, J. Photochemistry, 6, 349, (1977).
22. Harris, G. W., R. Atkinson, and J. N. Pitts, Chem. Phys. Lett., 69, 378, (1980).
23. Castleman, A. W., R. E. Davis, H. R. Munkelwitz, I. N. Tang, and W. P. Wood, Int. J. Chem. Kinet. Symp., 1, 629, (1975).
24. Cox, R. A., and D. Shepperd, Nature (London), 284, 330, (1980).
25. Kurylo, M. J., Chem. Phys. Lett., 23, 467, (1973).
26. Zahniser, M. S. and C. J. Howard, J. Chem. Phys., 73,1620 , (1980).
27. Anderson, J. G. and F. Kaufman, Chem. Phys. Lett., 19, 483, (1973).
28. Ravishankara, A. R., P. H. Wine, and A. O. Langford, J. Chem. Phys., 70. 984, (1979).
29. Stuhl, F., J. Chem. Phys., 59, 635, (1973).
30. Smith, I. W. M. and R. Zeliner, Int. J. Chem. Kinet., Symp. I, 341, (1975).
31. Perry R. Atkinson, R. A., and J. N. Pitts, Jr., J. Chem. Phys., 64, 3237, (1976).
32. Silver, J. A. and C. E. Kolb, Chem. Phys. Lett., 75, 191, (1980).
33. Stephens, R. D., J. Phys. Chem., 88, 3308, (1984).
34. Westenberg, A. A., N. de Haas and J. M. Roscoe, J. Phys. Chem., 74, 3431, (1970).
35. Lewis, R. S. and R. T. Watson, J. Phys. Chem., 84, 3495, (1980).
36. Howard, M. J. and I. W. M. Smith, J. Chem. Soc., Faraday Trans. 11, 77, 997, (1981).
37. Brune, W. H., J. J. Schwab, and J. G. Anderson, J. Phys. Chem., 87, 4503, (1983).
38. Keyser, L. F., J. Phys. Chem., 87, 837, (1983).
39. Westenburg, A. A. and N. de Haas, J. Chem. Phys., 58, 4066, (1973).
40. McKenzie, A. and M. F. R. Mulcahy, and J. R. Stener, J. Chem. Phys., 59, 3244, (1973).
41. Clyne, M. A. A. and S. Down, J. Chem. Soc., Faraday Trans. 11, 70, 253, (1974).
42. Trainor, D. W. and C. W. von Rosenberg, Jr., J. Chem. Phys., 61, 1010 (1974).
43. Farquharson, G. K. and R. H. Smith, Aust. J. Chem., 33, 1425, (1980).
44. Wagner, G. and R. Zellner, Ber. Bunsenges. Phys. Chem., 85, 1122, (1981).
45. KiJewsky, H. and J. Troe, Helv. Chim. Acta., 55, 205, (1972)
46. Klais, O., P. C. Anderson, and iq J. Kurylo, Int. J. Chem. Kiniet., iz, 469, (1980).
47. Lin, C. L. and M. T. Leu, Int. J. Chem. Kinet., 14, 417, (1982).
48. "Chemical Kinetics and Photochemical Data for use in Stratospheric Modeling", (NASA, Jet Propulsion Laboratory, Pasadena California, 1985).
49. Hampson, R. F., Jr., and D. Garvin, Eds, "NBS Spec. Publ. (U. S.), No. 513, (1978).
50. Nielsen, O. J., P. Pagsberg, and A. Silleserı, "Investigation of SO2, Oxidation Initiated by $\mathrm{CH} 3 \mathrm{O} 2, \mathrm{HO} 2$, and OH Using Pulse Radiolysis and Kinetic Spectroscopy, (Riso National Laboratory, Denmark, 1987).
51. Graham R. A., A. M. Winer, R. Atkinson, and J. N. Pitts, Jr., J. Phys. Chem. 83, 1563, (1979).
52. Burrows, J. P., D. I. Cliff, G. W. Harris, B. A. Thrush and J. P. T. Wilkinson, Proc. Roy. Soc. (London), A368, 463, (1979).
53. Payne, W. A., L. J. Stief, and D. D. Davis, J. Am. Chem. Soc., 95, 7614, (1973).
54. Sparks, R. K., L. R. Carlson, K. Shobatake, M. L. Kowalczyk, and Y. T. Lee, J. Chem. Phys., 72, 1401, (1980).
55. Wine, P. H., J. M. Nicovich, R. J. Thompson, and A. R. Ravishankara, J. Phys. Chem., 87, 3948, (1983).
56. Davis, D. D., W. Wong, and J. Lephardt, Chem. Phys. Lett, 22, 273, (1973).
57. McCrumb, J. L. and F. Kaufman, J. Chem. Phys., 57, 1270, (1972).
58. West, G. A., R. E. Weston, Jr., and G. W. Flynn, Chem. Phys. Lett., 56, 429, (1978).
59. Arnold, i and F. J Comes, Chem. Phys., 42, 231, (1979).
60. Keyser, i. F., J. Phys. Chem., 85, 3067, (98:).
61. Thrush, B. A. and J. P. T. Wilkinson, Chem. Phys. Lett., 81, 1, (1981).
62. Sridharan, U. C., L. X. Qiu, and F. Kaufman, J. Phys. Chem., 85, 3361, (1981).
63. Temps, F. and H. Gg. Wagner, Ber. Bunsenges. Phys. Chem., 86, 119, (1982).
64. Chang, J. S. and F. Kaufman, J. Phys. Chem., 82, 1683, (1978).
65. Hack, W., A. W. Preuss, and H. Gg. Wagner, Ber. Bunsenges. Phys. Chem., 82, 1167, (1978).
66. Lii, R-R., R. A. Gorse, Jr., M. C. Sauer, Jr., and S. Gordon, J. Phys. Chem., 84, 819, (1980).
67. Hochanadel, C. J., T. J. Sworski, and P. J. Ogren, J. Phys. Chem., 84, 3274, (1980).
68. Demore, W. B., J. Phys. Chem., 86, 121, (1982).
69. Cox, R. A., J. P. Burrows, and T. J. Wallington, Chem. Phys. Lett., 84, 217, (1981).
70. Braun, M., A. Hofzumahaus, and F. Stuhl., Ber. Bunsenges. Phys. Chem., 86, 597, (1982).
71. Burrows, J. P., R. A. Cox, and R. G. Derwent, J. Photochem., 16, 147, (1981).
72. Kurylo, M. J., O. Klals, and A. H. Laufer, J. Phys. Chem., 85, 3674, (|98|).
73. Cox, R. A. and J. P. Burrows, J. Phys. Chem., 83, 2560, (1979).
74. Thrush, B. A. and G. S. Tydall, J. Chem. Soc. Faraday II, 78, 1469, (1982).
75. Thrush, B. A. and G. S. Tydall, Chem. Phys. Lett., 92, 232, (1982).
76. Kircher, C. C. and S. P. Sander, J. Phys. Chem., 88, 2082, (1984).
77. Gleason, J. F., A. Sinha, and C. J. Howard, J. Phys. Chem., 91, 719, (1987).
78. Holland, P. M. and A. W. Castleman, Jr., Chem. Phys. Lett., 56, 511, (1978).
79. Johnston, H. S., "Gas Phase Reaction Rate Theory", (The Ronald Press Co., New York, 1966), D. 269.
80. Giauque, W. F., E. W. Hornung, J. E. Kunzler, and T. R. Rubin, J. Am. Chem. Soc., 82, 62, (1960).
81. Castellan, G. W., "Physical Chemistry, Second Edition, (Addison-Wesley Publishing Co., Massachusetts, 1971), p. 70.
82. Okabe, H., "Photo-Chemistry of Small Molecules", (John Wiley \& Sons, New York, 1978), p. 177.
83. Okabe, H., "Photo-Chemistry of Small Molecules", (John Wiley \& Sons, New York, 1978), p. 247.
84. Okabe, H., "Photo-Chemistry of Small Molecules", John Wiley \& Sons, New York, 1978), p. 201.
85. Private Communication with Dr. A. Bandy, July, 1987.
86. Rutolf, J., D. H. Enhalt, U. Schimdt, A. Khedim, "2nd Symposium, Composition of the Nonurban Troposhere", (American Meteorological Soclety, Boston, Mass., 1982).
87. Davis, D. D., S. Fischer, and R. Schiff, J. Chem. Phys., 61, 2213 , (1974).
88. Beno, M. F., C. D. Jonah, and W. A. Mulac, Int. J. Chem. K net., 17, 1091, (1985).
89. Mirabel, P., and J. L. Katz, J. Phys. Chem., 60, 1138 , (1 774).
90. Chu, K. and R. A. Morrison, "Environmental and Climat: Impact of Coal Utilization", J. J. Singh and A. Deepak, Eds., (Acalemic Press, New York, 1980), p. 293.
91. Friend, J. P., R. Leifer, and M. Trichon, J. Atmos. Sci., 0, 465, (1973).
92. Bigg, E. K., Tellus, $388,62,(1986)$.
93. Hamill, P., C. S. Klang, and R. D. Cadle, J. Atmos. Sci., :4, 150, (1977).
94. Laider, K. J., "Chemical Kinetics, Third Edition" (Harp: \& \& Row, Publishers, New York, 1987), p. 282.

Blank

The Coagulation and Dispersion of Nonspherical Aerosol
Particles with Inertial Memory in a Turbulent Field

> Isaiah Gallily and Miriam Pekarevich Department of Atmospheric Sciences The Hebrew University of Jerusalem Jerusalem, Israel

1. Introduction and aim of study

By coagulation of particles one defines any process in which two or more particles collide to form a liquid droplet (if the former originally were liquid) or a (loose) aggregate of rigid particles if the former were rigid.

The dispersion of particles is a process in which the mutual distance between them increases with time.

Both processes may be effected by various mechanisms. Thus, coagulation may occur due to: Brownian motion, gravitational setting, and turbulent effects (Fin. l), while dispersion can be produced by Brownian or turbulent diffusion.

In the atmosphere, when the aerosol particles are generated in a limited space such as a "point" or a "line", coagulation and dispersion are inter-connected since - after sufficient time - dispersion will arrest coagulation (Fig. 2),

Fig. I. Some possible mechanisms of coagulation (a-Brownian, b- gravitational. c - turbulent) (schematical).

Thus, contrary to the many studies on particles' coagulation (coupled with some other process) in a restricted environment, which were performed with the aid of a "simulating box", the situation in the free atmosphere is quite different (Fig. 2).

Most studies on coagulation, and dispersion, have been limited to the case of spherical particles though the majority of aerosol systems, for example, are composed of nonspherical particles.

Thus, we thought it worthwhile, from the practical as well as from the academic points of view, to study the problem of coagulation/dispersion of:

1. nonspherical aerosol particles, and under
2. typical atmospheric turbulent conditions.

Fig. 2. The "Box Model" of restricted environment transfered to the "Coagulating Cloud" model in a free atmosphere (Schematical).

To adhere to situations which are usually met with in real life, we restricted ourselves to (typical) particle sizes below the Kolmogoroff's (typical)eddy size, η,

$$
\begin{equation*}
\eta=\left(y^{2} / \varepsilon\right)^{1 / 4} \tag{1}
\end{equation*}
$$

$(\psi$ - kinematic viscosity, \in-dissipation rate);
Likewise we dealt with particles whose motion is influenced by their inertia, namely, with particles with inertial memory.

11. The studied system and method of investigation

The system we chose to deal with was composed of:
i. Spheroidal prolate ellipsoids (of unit density) which were taken to simulate elongated particles,
11. A Kolmogoroff's regime of turbulence which is local isotropic.

Unlike the study of Saffman and Turner (1) that was concerned with the coagulation of spherical particles and that used an analytical method of treatment, with quite a gross approximation, we could not find any way of analytical solution to the problem.

The reason is assumed to be the factor of the rotation of our particles which introduced three new additional degrees of freedom to the motion of particles.

Hence, we reccurred to a Monte Carlo numerical method in which each particle trajectory was calculated for consecutive time intervals, A tc and the process repeated enouah times till an asymptotic behaviour was reached.

Particle translation was solved according to the equation

$$
\begin{equation*}
m d v / d t=m g+F_{F} \quad, \tag{2}
\end{equation*}
$$

and its rotation, according to the Euler expression

$$
\begin{equation*}
I_{1} \dot{\omega}_{4}-\left(I_{2}-I_{3}\right) \omega_{2} \omega_{3}=L_{1} \text { etc. } \tag{3}
\end{equation*}
$$

where m was the mass of the particle, V its velocity (in an inertial system of coordinates), FF the fluiddynamic resistance to its translation, ls its moment of inertia for its (inner) axis 1 , \boldsymbol{L}_{2} its rotational velocity, and L_{1} the fluiddynamic torque which acts on it, etc.

Fr was taken according to Brenner (2) to be

$$
\begin{equation*}
F_{F}=\mu K \cdot\left(v-u_{\bullet}\right) \tag{4}
\end{equation*}
$$

K being the oberbeck transition tensor (3) , and $u_{\text {. }}$. the undisturbed fluid velocity.
L_{4} etc. was taken according to jeffery (4). (It should be noted that both Fp and Letc. could have been obtained from "Slender Body Theory" or the singularity-integral expressions).

III. The calculational way

In the Monte Carlo calculations, the initial position of particles' centers was body-centered cubic, and their initial orientation was (rectangularily) random.

The gradient of the flutds' velocity within each Kolmogoroff's eddy, which engulfed each particle, was taken to be:

1. Constant for the time $A t_{i}$,
if. Normally random for consecutive time intervals.

The velocity u_{0} of the fluid at each time interval was thus

$$
\begin{equation*}
u_{0, i=1}=u_{0, i}+\left(\partial u_{, i} / \partial y_{j}\right) d x_{j} \tag{5}
\end{equation*}
$$

(As was smaller than the Kolmogorff's typical time, the constancy of the velocity gradients seemed legical).
The Monte Carlo emthod appeared to us to be straightforward; bowever, it put quite a strain on our computer.
IV. Results

Up to now we have run numerical experiments in a 2-D and a 3-D space. We neglected in these experiments :
i. The fluiddynamic interaction between two particles which near each other on their way to coagulation,
ii. Collisions between particles containing more than one elementacy spheroid.

The reason for the second neglect layed in the assumption that, till such collision would have become important, dispersion will dilute the aerosol cloud to such an extent that coagulation would essentially cease.

Another factor which was neglected concerns what we call the "Neighbours' Effect" (Fig. 3). This effect relates to the (physical) exteni of the particle source:

x

Fig. 3. The "Neighbours' Effect" (srhematical)
namely, that particles originated from one part of an extended source (say the "circular particles) may also collide and coagulate with particles originated from a neighbouring part of the source (say, the "crosses" particles) (Fig. 3).

This "Neighbours' Effect" adds a non-linearity to the coagulation process.
The proiate particles had a log-nomal size distribution with no correlation between their lenqth and their width, and with a geometric mean of:
i. $10^{-3} \mathrm{~cm}$ for the length and $10^{-4} \mathrm{~cm}$ for the equatorial axis in the 2-D case, and if. $4 \times 10^{-4} \mathrm{~cm}$ for the length and $1 \times 10^{-4} \mathrm{~cm}$ for the equatorial axis in the 3-0 case.

The geometric standard deviation in both cases was $1.2 \times$ the geometric mean.
In the experiments, the initial sizes of the particles were (randomly) selected from the above size distribution.
Concerning the initial concentration of the particles, these were $10^{6} / \operatorname{cms}^{2}$ for the 2-0 space and $10^{\circ} / \mathrm{cm}^{\mathbf{5}}$ for the 3-D space, which we thought to be close to reality. Turbulence was characterized in our Kolmogoroff's range by: dissipation rate of $1000 \mathrm{~cm}^{2} / \mathrm{sec}^{8}$ and kinematic viscosity of $0.15 \mathrm{~cm}^{2} / \mathrm{sec}$.

With these values, the Kolmogoroff's typical eddy size was about $4 \times 10^{-2} \mathrm{~cm}$, its typical
 and its typical eddy existence-tinie $(\nu / \epsilon)^{1 / 2} \approx 10^{-2} \mathrm{sec}$.

Finally, we should add that, to obviate the unsolved problem of dealing with agaregate of more than one primary spheroid (see above), we adhered to the procedure that, after each (coagulational) collision in the Monte Carlo experiment, the involved particles were re-separated and replaced in a (normally) random fashion in space.

In the following we bring, as an example, a dispersion pattern of our particles in a 2-0 space (Fig. 4) and a table showing their collision (Table l).

Typically, in this (2-D) case about $15-20 \%$ of the original number of particles underwent their first collision during a (typical) time of $3 \times 10^{-2} \mathrm{sec}$.

The total initial number of the particles was 100 , arranged in a 10×10 array. For a 3-0 case, the percentage of collisions decreases to about 10% (of the original number)during a (typical) time of about $5 \times 10^{-4} \mathrm{sec}$. This is expected as the addition of an extra dimension to space increases the chance that the particles will also move side-ways and miss each other.

v. References

1. Saffman, P.G. and Turner, J.S., J. Fluid Mech. 1, 16 (1956).
2. Happel, J. and Brenner, H., "Low Reynolds Number Hydrodynamics", p. 226, Prentice-Hall, 1965.
3. ibid., p. 225-6.
4. ibid, p. 227.

Fig. 4. Particle dispersion in a fame of reference which
moves with the mean wind; $2-0$ motion; typical rerults

TIME $\left(\mathrm{J} \times 10^{-3} \mathrm{sec}\right.$	PARTICLE K	PARTICLE L
1	21	31
1	39	40
1	73	84
3	64	16
5	2	12
5	11	33
6	54	88
7	63	100
8	7	85
8	87	100
10	44	58
11	44	100
12	5	85
15	5	26
16	- 62	65
28	56	92

Table I: Collisions between particle K and
particle 1 (followed by re-separation);
typical results

Blank

M. Poreh and J. E. Cermak
Colorado State University
Fort Collins, Colorado 80523

RECENT PUBLICATIONS:

A) M. Poreh and J. E. Cermak, "Experimental Study of Aerosol Plume Dynamics; Part I: Wind-tunnel Study of Diffusion and Deposition of Particles with Appreciable Settling Velocities," Annual Progress Report to CROC, CER86-87MP-JECI, September 1986.
8) M. Poreh and J. E. Cermak, "Experimental Study of Aerosol Plume Dynamics; Part II: Wind-tunnel Study of Buoyant Horizontal Emissions," Annual Progress Report to CRDC, CER86-87MP-JEC5, November 1986.

Abstract

Wind-tunnel simulation of the concentration field and "lift-off" of buoyant plumes from point source with horizontal exit velocities show a previously unknown, coupled dependence of the plume on the buoyancy flux and the horizontal momentum flux at the source. Further study of buoyant emissions from line and area sources is suggested.

INTRODUCTION

The possible "lift-off" (see figure l) of a layer of buoyant gas of thickness H in a shear flow was initially analyzed by Briggs (1971), who proposed that "lift-off" occurs when $L_{p}=g H\left(\Delta \rho / \rho_{a}\right) / V^{* 2}=0(2)$, where v^{*} is the shear velocity and $\Delta \rho / \rho_{a}$ is the relative reduction in density. Flow visualizations by Meroney (1979) did not reveal, however, a lower limit to buoyancy which could induce "lift-off" in plumes. Plumes with less buoyancy will just travel a longer distance along the ground before lift-off.

In an unpublished note, Briggs suggested that the observation of Meroney might indicate that plumes need some vertical growth before they could lift-off, and proposed to increase the value of L_{p} by an order of magnitude (from Hall et al., 1980).

The vaguely defined concept of lift-off and lack of concentration measurements has stimulated tiis study, in which both the buoyancy flux and the horizontal momentum flux at the source were varied.

SUMMARY OF THE RESULTS

The experimental configurations and the results are fully described in reference B) cited above. A typical photograph of a buoyart plume is shown in figure 1 . Figures 2a and $2 b$ show typical concentration profiles downstream from the source. Figure $2 a$ depicts the effect of the dimensionless buoyancy flux F^{*} $=\left(\Delta \rho / \rho_{\mathrm{a}}\right) g Q /\left(\pi U^{3} \delta\right)$, where Q is the discharge, δ is the thickness of the boundary layer and U the mean velocity at $z=\delta$. Figure $2 b$ depicts the effect of the dimensionless horizontal momentum flux $M^{*}=4 \rho Q^{2} /\left(\rho_{a} \pi^{2} d^{2} U^{2} \delta^{2}\right)$.

One clearly sees that the height of the maximum of the various concentration profiles, $h_{\text {max }}(x)$, increases with F^{*} and decreases with M^{*}, as also documented in figure 3. A possible measure of lift-off
is the reduction with distance of the ground-level dimensionless concentration $C^{*}(0)=C(0) U \delta^{2} /\left(C_{0} Q\right)$, where C_{0} is the source concentration, versus that of the maximum dimensionless concentration $C_{\text {max }}$. Typical variations of these values are shown in Figure 4. The positions of the nine graphs in this figure were selected so that upper graphs show runs with larger values of the dimensionless buoyancy flux, whereas the graphs to the right show runs with higher dimensionless momentum flux. The graphs clearly suggest that by increasing the momentum flux, "lift-off" is delayed or completely eliminated. The ratio of $C(0) / C_{\max }$ at $x / 5=1.67$, for example, turned out to be a function of $F^{*} /\left(M^{*}\right)^{1 / 2}$, as shown in Figure 5.

The study has also shown that at large distances the maximum dimensionless concentration varies afproximately as $250\left(M^{*}\right)^{1 / 2}\left(F^{*}\right)^{-2 / 3}(x / \delta)^{-2}$.

Planned Future Studies

The results of the investigation suggest that a similar systematic study of buoyant emissions from line and area sources will also yield new information on their benavior and dependence on the initial conditions.

REFERENCES

1. Briggs, L. A. (1973) Lift-off of Buoyant Gas Initially on the Ground. ADTL Contribution File No. 87 (Draft), Nov. 1973, Air Resources Atmospheric Turbulence and Diffusion Lab., NOAA, Oak Ridge, Tennessee.
2. Meroney, R. N. (1979) Lift-off of Buoyant Gas iritially on the Ground. J. Industrial Aerodynamics, October 1979, 5, Nos. 1 and 2.
3. Hall, D. J., Barrett, C. F. and Simmonds, A. C. (1980) Wind Tunnel Mojel Experiments on a Buoyant Emission from a Building, Warren Spring Laboratory, Department of Industry, Gunnels Wood Road, Stevenage, Hertfordshire SGl 2BX.

FIGURE 1. A PHOTOGRAPH SHOWING THE MEAN PLUME BOUNDARIES AND APPARENT "LIFT-OFF."

FIGURE 2. TYPICAL CONCENTRATION PROFILES DEMONSTRATING (a) THE EFFECT OF F^{*}, AND (b) THE EFFECT OF M^{*}.

FIGURE 3. HEIGHT OF THE MAXIMUM IN JHE COVCENTRATION PROFILES FOR (a) DIFFERENT VALUES OF M^{*}, $F^{*}=$ CONSTANT, ANO (b) DIFFERENT VALUES OF $F^{*}, M^{*} \geq$ CONSTANT.

figure 5. the dependence of the concentration ratio $C(0) / C_{\max }$ AT $x / \delta=1.67$ ON F^{*} AND M^{*}.

4

STUDIES IN AEROSOL FORMATION AND GROWTH

H. Kosuge and J. R. Brock
Deparment of Chemical Engineering
University of Texas, Austin, Texas 78712

RECENT PUBLICATIONS, SUBMITTALS FOR PUBLICATION AND PRESENTATIONS:

1. J. C. Carls and J. R. Brock, "Explosion of a water droplet by pulsed laser heating", Aerosol Sci. Tech.7,79-91 (1987).
2. S. G. Kim and J. R. Brock. "Growth of ferromagnetic particles from cation reduction by borohydride ions" J. Colloid InL S:i. 116,431-443 (1987).
3. J. R. Brock and J. Oates, "Moment simulation of aerosol evaporation", J. Aerosol Sci.18,59-64 (1987).
4. J. R. Brock, D. Zehavi and P. J. Kuhn, "Formation and growth of binary aeroscl in a laminar coaxial jet", J. Aerosol Sci.,In Press.
5. S. C. Davies and J. R. Brock."Laser evaporation of droples", Appl. Opl.26,786-793 (1987).
6. S. C. Davies and J. R. Brock."Laser propagation through an evaporating polydisperse aerosol",Appl. OpL26,1865-1876(1987).
7. S. G. Kim and J. R. Brock, "Aerosol growtit and dynamics"in R. Kohl, Ed.Proceedings of the 1985 CRDEC Scientific Conference on Obscuration and Aerosol Research,R. II. Kohl and Assoc., 1987.
8. J. C. Carls and J. R. Brock, "Leser induced explosion of particles", in R. Kohl .Ed..Proceedings of the 1986 CRDEC Scientific Conference on Obscuration and Aerosol Research. R. H. Kohl and Assoc.,1987.
9. S. C. Davies and J. R. Brock, "Laver evaporation of droplets", in R. Kohl .Ed.,Proceedings of the 1986 CRDEC Conference on Obscuration and Aerosol Research. R. H. Kohl Assoc, 1987.
10. Y. L. Chen, J. R. Brock, and I. Trachtenberg. "Aerosol jer exching of fine paurms", Appl. Phys. Lett, In Press.
11. A. Dove and J. R. Brock, "Sulfate serosol modeling using the EPA Philadelphia Aerosol Field Soudy", U.S. Environmental Protection Agency Report, 200 pp. 1987.
12. J. C. Caris and J. R. Brock,"Explosive vaporization of a single water droplet by pulsed laser radiation", Abscract AAAR Annual Meeting,Seaule, September 1987.
13. H. Kosuge and J. R. Brock, "Aerosol evolution in jets expanding inso low pressure regions", Abstract AAAR Annual Meecing,Seatle, September 1987.
14. J. C. Carls and J. R. Brock, "Laser induced explosion of water droplets by laser radiation", Workshop on Physics of Direcued Energy Propagation in the Aumosphere, Las Cruces, N. M., January 1987.
15. J. R. Brock. "Formation and Growth of Ferromagnetic Particles", Department of Physics, University of Paris at Otsay. January 1987.
16. J. R. Brock, "Aerosol Formation and Growth", University of Paris VIII Val de Mame, January 1987.
17. J. R. Brock, "A Comlex Terrin Model for Aerosol Dispersion", Chemical Modeling Conference, CRDEC. August 1987.

ABSTRACT
Current work on aerosol formation and growth is summarized. In work initiated this past year, a two dimensional Flux Corrected Transport (FCT) code has been developed to oblain a detailed description of nucleation and paricle growth in a jet expanding invo low pressure region. The complex shock structures found on jet expansion have been studied. Very high nucleation rates are found to occur in the ragion behind the rear facing shock. The onset point of particle nucleation has been found to be strongly affected by the stagnation temperature but relatively insensitive to the stagnation pressure. In a separate study, an approximate theory has been developed for the composition distributions obtained from experiments on binary aerosol formation in laminar coaxial jets. The theory agrees qualitatively with the experimental finding that, at smaller concentrations of the less volatile component in the parent vapor mixture, the smaller particles in the resultant aerosol size discribution are enriched in the less volatile component.

INTRODUCTION

The oplical, physico-chemical, biological and other properties of aerosols depend on such chasacteristics of the paricles as size, shape composition, concentration, etc. These are determined by the fundamental processes of aerosel formation, growth and dynamics. For this reason, an important pan of our work has been directed wward undersunding these fundamental processes and their interaction with atmospheric motion. We begin with a deacription of current wort on particle nucleation and growth occurring in jes expanding into low pressure regions. This is followed by a brief presentation of comparisons between theory and experiment for the composition distributions of binary oil particles formed by nucleation and growth in a laminar coaxial jel.

AEROSOL NUCLEATION IN JETS EXPANDING INTO LOW PRESSURE REGIONS

An important mechamism for production of aerosol involves the sudden adiabatic cooling and subsequent paricle nucleation which may occur in fast jets. explosions. laser deconations, elc.. As a means of studying this mechanism we have initiated analysis of the nucleation and growth of paricles occurring in jets expanding into low pressure regions: this physical system is encountered in many applications such as in high alutude rocket plumes and molecular beam experiments. Although many studies have been carried out on free jet expansion, mosi of the numerical studies have been concerned with one dimensional systems. As a prelude to possible experimental studies. we have developed a model of nucleation and growth occuring in a two dimensional axisymmetric expanding jet.

The physical system modeled is shown schenatically in Fig. 1. The assumptions in the analysis are that the flow is axisymmetric, inviscid and compressible. The ideal carrier gas with constant heat capacity ratio contains a single condensable vapor. It is also assumed that any paricles formed are passive contaminans. Under these conditions, the governing equations are the Euler equations supplemented by the classical homogeneous nucleation equation and the paricle growth equations. These equations are solved numerically using the fux corrected transport (FCT) method and a time spliting procedure. The calculation domains are boch the nozzle and the expansion chamber (see Fig. 1). In implementing any numerical procedure, it is important co validate the code. We have carried out comparisons between our calculations and experiment (I. Dueker and Koppenwaller,in S. S. Fisher, Ed., Rarefied Gas Dynamics, Academic Press,vol. II,1190 ,1981; II. Danken and Koppenwaller, in R. Compargue, Ed.Rarfied Gas Dynamics, Acsdemic Press, vol II, 1107, 1979). Fig. 2 shows a comparison between our model predictions and experiment (1) for the Mach numbers at steady state along the jet axis for free expansion with the same stagnation conditions as used in the experiments ($\mathrm{P}_{0}-2.9 \mathrm{Ej} \mathrm{Pa}_{\mathrm{I}} . \mathrm{T}_{0}-160 \mathrm{~K}$). Fig. 3 shows a cumparison between model predictions and experiment (II) for the pressure discributions at steady state. again with the same stagnation conditions as in $11\left(P_{\mathbf{2}}-7.6 E 4 \mathrm{~Pa}, \mathrm{~T}_{\mathrm{o}}-280 \mathrm{~K}\right)$. In boch figures, the abscissa is the dimensionless distance from the nozzle exit and the dashed lines represent the experimenta results. From these figures, it can be seen that there is reasonably good agreement between our model predictions and experiment. This suggests that our model provides a reatonably accurate representation of the flow field in the free jet expension.

Fig. 4 shows the preasure discribution al $(-4 E-5$ s. following initiation of the froe jel expansion for the
stagnation conditions, $P_{0}=2.9 E S P_{2} T_{0}-160 \mathrm{~K}$. Al this small time steady state conditions have not been reached so that the shock surfaces cannor be definitely identified with the barrel shock and Mach disk observed in steady state experiments using schlieren photography. There are two shocks, a forward facing shock and a rear facing shock. In the related temperature distribution, the temperatures fall rapidly downstream of the nozzle behind the rear facing shock because of the conversion of internal energy to kinetic energy that occurs in an isentropic expansion. This creates a region of high supersaturation behind the shock, leading to rapid nucleation and particle growth.

Fig. 5 shows the effect of stagnation temperature on nucleation rates for $\mathrm{P}_{\mathrm{o}}=\mathbf{2} .9 \mathrm{E} 5 \mathrm{~Pa}$ and $\mathrm{t}=6 \mathrm{E} .5 \mathrm{~s}$. As stagnation temperaure increases the point for onset of nucleation shows substantial movemen: away from the nozzle. By contrast, as shown in Fig. 6, as stagnation pressure changes, for $\mathrm{T}_{\mathrm{O}}=160 \mathrm{~K}, \mathrm{t}=6 \mathrm{E}-5$ s, there is litule change of the point of onset of nucleation with respect to the nozzle; this is found for other stagnation temperatures.

Currently, we plan to carry out studies of particle nucleation and growth in the free jel expansion. Inasmuch as cluster formation is at the moment a very popular topic in materials research, a very large amount of experimenul dau is available which can be used for comparison with our model calculations. Since small cluster formation in free jets shows "magic number" and other phenomena, the dynamics of cluster formation provided by our model may provide a vehicle for a test of nucleation and particle growth theories.

COMPOSITION DISTRIBUTIONS IN BNARY OLL AEROSOLS

The principal purpose of our wort on formacion and growth of liquid aerosols has been to investigate the dependence of the disperse properties of binary aerosols, formed by homogeneous nucleation, on the phyhsicochemical properties of the parent vapor mixture. These studies have been carried out experimentally by following the condensation of oil vapors in a laminar coasial jet. A full description of the experimental system has been published (Brock, Zehavi and Kuhn, J. Aerosol Sci.17,11-23 (1986)) and will not be repeated here. An approximate moment formulation of the evolution of the spalially averaged single and binary component paricle size distribution has been used to provide a theoretical comparison with the experimental results. This formulation involves use of classical binary nucleation theory for modeling the formation and growth of binary oil serosol. This has been used to provide one of the first confirmations and details of the dynamics for the observed composition distributions obtained in our experiments.

An experimental investigation of the variation of composition with serosol paricle size was made for the system dibutyl phthalate (DBP) and diethylhexyl sebacate (DEHS). These experimental results are ahown in Fig. 7 for an initial oil vapor composition of 80% DBP- 20% DEHS and overall vapor concentration of $1.91 \mathrm{E} .5 \mathrm{~g} / \mathrm{cc}$, nitrogen carrief gas flow rate of $178 \mathrm{cc} / \mathrm{min}$, and a nozzle temperature of $270{ }^{\circ} \mathrm{C}$. In this figure the four interior curves represem avernges of samplas uken on four impactor stages. The distributions indicated were calculated using the known impactor suge efficiencies by the method described by N. A. Fuchs. Of the four distributions, the one with the smallest modal value at around $0.5 \mu \mathrm{~m}$ has a composition of 39% DEHS, the next a around 0.65 um has a composition of 23.3 \% DEHS, the next at around $0.8 \mu \mathrm{~m}$ has a composition of 21.2% DEHS. and the last at
around $0.9 \mu \mathrm{~m}$ has a composition of 19.5% DEHS. In considering these experimental results it should be noted that the use of an impactor intr: duces uncertainty owing to, among other factors, the relatively large range of paricle sizes depositing on a given stage. Also, DPB has a sufficiently high vapor pressure that complete condensation of DBP was not achieved at the usual sampling point 20 cm from the nozzle exit. The moment theory results for DEHS-DBP at similar conditions are shown in Fig. 8 giving the normalized binary distribution. $f\left(D_{p} . y\right)$ where y is the mass percent of DEHS and D_{p} is the particle diameter. Only the general trends are significant in Fig. 8 since, as noted above, no dispersion mechanisms are accounted by the present theory. As is evident, the figure shows that the smaller particles in the distribution are enriched in DEHS, a finding in qualitative agreement with the experimental results presented in Fig. 7. Under similar conditions (20% initial squalane (SQ) mass fraction in the vapor), the distribution for the lower vapor presure system dihexylphthalate - squalane (DHP-SQ) resembles that given in Fig. 8, except that for the DHP-SQ system the distribution is somewhat narrower. However, a similar qualitative result is ottained- namely, that the smaller particles in the distribution are enriched in the less volatile component $S Q$ in this case.

This observed variation of composition with paricle size is attributed to several processes. As confirmed by simulation results, the initial nuclei formed at high supersaturations are greatly enriched in the less volatile component. As growth proceeds, the lighter component tends to evaporate from the smaller particles as a result of the Kelvin effect and differential heauing of the smaller particies. These factors contribute to a differential rate of condensation with particle size between the lighter and heavier components onto the aerosol particles and therefore to the observed variations noted in Figs. 7 and 8.

It may also be noted from Figs. 7 and 8 that for particle of given diameter there is variation in composition. This prediction could not be confurmed by our experimental methods more accurately than that provided by Fig. 7 which must be regarded as only a qualitative guide to such variation. The variation in composition with particle size displayed in Fig. 7 is derived from our experimental impactor measurements and impactor efficiency curves with the assumpuion of lognormal distributions; this figure therefore contains the implied experimental and theoretical uncertainties associated with these methods. A practical method for measuring the composition of individual particles in a distribution would be desirable. It is sufficient here to examine the reasonableness of the variation in composition at a given particle size in the absence of coagulation, as in our experiments. It should be emphasized that the variations observed here in paricle size and composicion arise from the nucleation process. Without the nucleation process, if one begins with a monodisperse distribution in both size and composition, then this monodispersity will be preserved with increasing time, since there is no coagulation and condensation is occurring. With the nucleation process, any initial monodispersity is "forgouen" and the dispersion in size and composition is determined by the aerosol nucleation and growth proceses. Nucleation will produce classes of nuclei whose growth trajectories may converge at a particular time at a given particle size but with different compositions. Similarly. other nuclei will have trajectories converging at a particular time at a given composition with different particle sizes. We reiterate that the distributions displayed in Figs. 7 and 8 are intended only to provide
a qualitative idea of the variations in serosol particle size and composition.
It would be desirable to obtain experimental data of high quality for the complosition distributions of binary aerosols. Howevet, the moment theory developed by us (J. R. Brock, D. Zehavi, and P. J. Kuhn, J. Aerosol Sci., In Press) appeass to explain present experimental obsevations and provides a qualitative guide to the dynamics of the development of the composition discribution for binary merosols.

ACKNOWLEDGMENT

This wart was supported under concract DAAKI1-83-K-0006 from CRDEC, U. S. Army.

Figure 4. Pressure distribution at $t=4 E-5 \mathrm{sec}$.

Figure 7. Experimental masa distributions of an aerosol formed by condensation of an initial vapor with $20 \mathrm{mass} \%$ DEHS in DBP. Separate distributions derived from stages 3. 4, 5 and 6 of six stage cascade impactor. Units of distributions are $1 E-5 \mathrm{~g} / \mathrm{cc}-\mathrm{\mu m}$. Average compositions for each stage are: Curve $\mathcal{A}=19.5 \%$ DEHS; Curve $B=21.2 \%$ DEHS: Curve C=22. 3% DEHS; Curve $D=39 \%$ DEHS.

Figure 8. Calculated normalized binary frequency distribution for an initial oil vapor mixture containing $20 \mathrm{mass} \%$ DEHS in DBP corresponding to conditions of Fig. 7. Dpis particle diameter and y is mass $\%$ DEHS. Units of frequency are $0.2 / \mu \mathrm{m}$
II. aEROSOL Characterization methoos

Blank

OPTICAL PROPERTIES OF SELECTED MINERALS, METALS,
 OPTICAL MATERIALS, SOOT, AND LIQUIDS

Marvin R. Querry and David M. Wieliczka
Department of Physics University of Missouri-Kansas City, Missouri 64110

RECENT PUBLICATIONS, SUBMITTALS FOR PUBLICATION, AND PRESENTATIONS:
A) M.R. Querry, M.P. Roach, D.L. Striley, and C.T. Heese, "Optical Properties of Powders, Liquids, and Metals in the Infared, Visible, and Ultraviolet Spectral Regions," p. , Proceedings of the 1986 CRDEC Scientific Conference on Obscuration and Aerosol Research, R.H. Kohl, Ed., submitted September 1986.
B) R.W. Alexander, Jr., R.J. Bell, L. Newọist, M.A. Ordal, L.L. Long, and M.R. Querry, "Optical Properties of Powders, Liquids, and Metals at Millimeter and Submiliimeter Wavelengths," p. , Proceedings of the 1986 CRDEC Scientific Conference on Obscuration and Aerosol Recearch, R.H. Kohl, Ed., submitted September 1986.
C) R.J. Bell, R.W. Alexander, Jr., L. Newquist, M.A. Ordal, and M.R. Querry, "Methods for Measuring Surface Impedances in the Submillimeter and Far Infrared," p. Proceedings of the 1986 CRDEC Scientific Conference on Obscuration and Aerosol Research, R.H. Kohl, Ed., submitted September 1986.
D) M.R. Querry, "Optical Constants of Selected Liquids, Solids, and Powders," Presentation at the 1987 CRDEC Scientific Conference on Obscuration and Aerosol Research, June 23, 1987.
E) M.A. Ordal, R.J. Bell, R.W. Alexander, Jr., L.L. Long, and M.R. Querry, "Optical Properties of Au, Ni, and Pb at Submillimeter Wavelengths," Appl. Opt. 26, 744 (1987).
P) L.L. Long, R.J. Bell, R.W. Alexander, Jr., and M.R. Querry, "Preparation Dependent Properties of Pressed Pellets of Montmorillonite in the Far Infrared," Appl. Opt. 26. 1372 (1987).
G) M.R. Querry and W.P. Roach, "Optical Properties of Polycrystalline Molybdenum," J. Opt. Soc. Am. A3, No. 13, 82 (1986), Presented at the 1986 Annual Meeting of the Opt. Soc. Am., Seattle, WA, 19-24 October.
H) W.P. Roach and M.R. Querry, "Optical Properties of Polycrystalline Molybdenum," Appl. Phys. Commun. 7, 84 (1987), Presented at the Thirty-Fourth Annual Midwest Solid State Conference, $\overline{S t}$. Louis, MO, 24-25 October 1986.
I) D.L. Striley and M.R. Querry, "Optical Constants of $\mathrm{NaCl}, \mathrm{KCl}, \mathrm{CsBr}$, and CsI," Appl. Phys. Commun. 7, 85 (1987), Presented at the Thirty-Fourth Annual Midwest Solid State Conference, St-Louis, MO, 24-25 October 1980 .
J) D.L. Striley, "Optical Properties of Sodium Chloride, Potassium Chloride, Cesium Iodide, and Cesium Bromide," M.S. Thesis, University of Missouri-Kansas City, (1987).
K) M.R. Querry, "Optical Constants of Minerals and Other Materials from the Millmeter to the Ultraviolet," Final Technical Report for CRDEC Contract DAAA-15-85-K-0004, Approx. 315 pp., submitted August 1987.

CONTRIBUTIONS TO THE U.S. ARMY CRDEC COMPUTER DATABASE FOR OPTICAL CONSTANTS:
A) M.R. Querry and D.L. Striley, "Optical Constants of $\mathrm{NaCl}: 60-45,450 \mathrm{~cm}^{-1}, "$ (1987).
B) M.R. Querry and D.L. Striley, "Optical Constants of KCl: 60-45, 450 $\mathrm{cm}^{-1}, "$ (1987).
C) M.R. Querry and D.L. Striley, "Optical Constants of CsI: 60-45,450 $\mathrm{cm}^{-1}, "$ (1987).
D) M.R. Querry and D.L. Striley, "Optical Constants of $\mathrm{CsBr}: 67-45,945 \mathrm{~cm}^{-1}$," (1987).
E) M.R. Querry, "Optical Constants of BaF_{2} : $60-45,450 \mathrm{~cm}^{-1}, "$ (1987).
F) M.R. Querry, "Optical Constants of $2 \mathrm{nS}: 60-40,000 \mathrm{~cm}^{-1}, \mathrm{~d}$ (1987).
G) M.R. Querry, "Optical Constants of ZnSe: 460-20,000 $\mathrm{cm}^{-1}, "$ (1987).
H) M.R. Querry_qnd B.P. Clayman, "Optical Constants of Colloidal Montmorillonite Pellets: $50-4,000 \mathrm{~cm}^{-1}, "$ (1987).
I) M. R_{1} Querry and B.P. Clayman, "Optical Constants of Colloidal Kaolin Pellets: $50-4,000 \mathrm{~cm}^{-1}, "$ (1987).
J) M. R_{2} Querry and B.P. Clayman, "Optical Constants of Colloidal Illite Pellets: 50-4,000 cm^{-2}, " (1587).
K) M.R. Querry and B.P. Clayman, "Optical Constants of Colloidal Composite Clay Pellets: $50-4,000 \mathrm{~cm}-1, "(1987)$.
L) M.R. Querry, "Optical Constants of UMKC Diesel Soot Pellet: 180-4,000 $\mathrm{cm}^{-1}, "$ (1987).
m) M.R. Querry, "Optical Constants of NMSU Diesel Soot Pellet: 180-45,450 $\mathrm{cm}^{-1} . "$ (1987).
$\mathrm{cm}^{-1} \mathrm{~N}^{\mathrm{N}}$) M.R. Querry, "Optical Constants of NMSU Heated Diestl Soot Pellet: 180-45,450
$\mathrm{cm}^{-1},{ }^{0}$) (1987). Querry, "Optical Constants of Anhydrite, E Parallel to $\mathrm{X}: 180-4,000$
 -1 Q) M.R. Querry, "Optical Constants of Anhydrite, E Parallel to $Z: 180-4,000$ $\mathrm{cm}^{-1}, 1(1987)$.
R) M.R. Querry, "Optical Constants of Dolomite, E Parallel to c-axis: 200-4,000 $\mathrm{Cm}^{-1},{ }^{\mathrm{R}}$ (1987).
S) - 4 .R. Querry, "Optical Constants of Dolomite, E Perpendicular to c-axis: 250-

cm^{-1}, T) M.R. Querry aud W.P. Roach, "Optical Constants of Molybdenum: 180-48, 465
(1987).
U) M.R. Querry "Optical Constants of Zirconium: 180-45,450 cm^{-1}," (1987).
V) M.R. Querry, "Optical Constants of Manganese: 180-45,450 cm^{-1}," (1987).
W) M.R. Querry, D. Wielicziqa, and S. Weng, "Optical Constants of Polydimethylsiloxane (SF-96): 180-12,210 cm^{-1}," (1987).
X) D. Wieliczka, S. Weng, and M.R. Querry, "Optical Constants of Dimethylmethylphosphonate (DMMP): 180-12,430 cm^{-1} " " (1987).
Y) S. Veng, M.R. Querry, and D. Mipliczka, "Optical Constants of Dilsopropylmetbylphosphonate (DIMP): 180-12,285 cm ${ }^{-1}$ " (1987).
2) M.R. Querry ${ }_{L_{1}}$ D. Wleliczka and S. Weng, "Optical Constants of Diethylphthalate (DEP): 180-12,350 $\mathrm{cm}^{\text {L }}$," (1987).

AA) D. Wieliczkg, S. Weng, and M.R. Querry, "Optical Constants of Diethylsulfite (DES): 180-37,037 $\mathrm{cm}^{-1}, "$ (1987).

ABSTRACT

This paper concerns the measurement of the optical properties of twenty-five materials and determination of the optical constants of twenty-three of those materials. Future work will be concerned with measurement of the optical properties as a function of temperature for several other materials and determination of the optical constants of those materials. The work reported here was supported by U.S. Army CRDEC contract DAAA-15-85-K-0004.

I NTRODUCTION

The twenty-three materials for which optical properties were measured and optical constants were determined were:

Montmorillonite	Molybdenum	CsBr	DIMP
Kaolin	2irconium	2nS	DEP
Ilife	Manganese	ZnSe	DES
Composite Clay	NaCl	BaF_{2}	Diesel Soot
Anhydrite	KCl	$\mathrm{SF}-96$	1) unheated
Dolomite	CsI	DMMP	2) heated.

In this paper we present examples of the results of those investigations. For more detailed description of the investigations, readers are referred to the final Technical Report for CRDEC contract DAAA-15-85-K-0004 which has been submitted and is curreatly being reviewed by CRDEC personnel. The report provides graphical and tabular presentations of the optical properties and optical constants. More detailed tabular listings of the optical constants can be obtained from the CRDEC Computer Database for Optical Constants by contacting M.E. Milham at CRDEC.

MINERALS

The minerals that we investigated were three clays: montmorillonite, kaolin, illite; and two crystalline materials: anhydrite, and dolomite. A composite mixture of equal proportions by mass of the three clays was also investigated. The clay samples were compressed into 13 mm diameter by approximately 1 mm thick pellets and
near-normal incidence reflectance spectra were acquired in the $50-50,000 \mathrm{~cm}^{-1}$ wavenumber region. ${ }^{1}$ The spectra in the $50-4,000 \mathrm{~cm}^{-1}$ wave-number region were used to obtain the optical constants using Kramers-Kronig methods. As an example of this work, in Pigure 1 we present graphs of the reflectance spectrum and the real and imaginary parts of the complex refractive index $n+i k$ for kaolin.

Crystalline samples of anhydrite and dolomite were cleaved or cut and polished, respectively, to obtain samples for measurements of the reflectance spectra for the X, Y, Z directions of anhydrite and for the ordinary and extraordinary rays of dolomite. Kramers-Kronig analysis of the reflectance spe ra provided spectral values of the optical constants. A graphical presentation of the resultant spectra for the X direction of anhydrite appears in Figure 2.

metals

The metals that we investigated were molybdenum, zirconium, manganese, and zinc. Polycrystalline bulk samples of each metal were obtained and mechanically polished ${ }^{1}$ in preparation for acquisition of their near-normal incidence reflectance spectra which were measured for each of the four metals throughout the 180-45,454 cm^{-1} wave-number region. The spectra for Mo, $Z n$, and Ma were extended into the vacuum ultraviolet spectral region and Kramers-Kronig methods were used to determine the optical constants. Vacuum ultraviolet reflectance spectra for zinc were not found in the scientific literature, so for $z i n c$ we obtained some very tentative values of the optical constants by Kramers-Kronig analysis of the 180-45,454 cm^{-1} reflectance spectrum. The results for molybdenum are presented in figure 3.

OPTICAL WINDOW MATERIALS

Optical window materials that we investigated were $\mathrm{NaCl}, \mathrm{KCl}, \mathrm{CsI}, \mathrm{CsBr}, \mathrm{BaF} 2$, ZnS, and ZnSe . Polycrystalline samples of ZnS and ZnSe , and crystalline samples of the other five materials were used to acquire reflectance spectra for each of the seven materials. Transmittance spectra were also obtained for ZnSe. The optical constants were, in general, obtained using Kramers-Kronig methods. The results for $Z \mathrm{nS}$ are presented in figure 4. The vacum ultraviolet reflectance spectrum of ZnS previously measured by Hunter, Angel, and $H^{2} s^{2}$ were used to extend the reflectance spectrum for

DIESEL SOOT

The optical properties of three samples of Diesel soot were investigated. Two of the samples were provided by Prof. Thor Stromberg, Dept. of Physics, New Mexico State University. The two NMSU samples were collected from the open buraing of Diesel fuel. One sample, referred to hereafter as NMSU heated soot, was heated to about $320^{\circ} \mathrm{C}$ for about one-half hour to drive off any unburned hydrocarbons; the other. NASU unheated soot, was the Diese; soot as collected. The third sample, UMKC soot, was collected from open buraing of Diesel fuel in a burner that was constructed at UNKC.

Pellets of each of the three Diesel soot samples were prepared using a procedure similar to that used for the clays. It was very difficult to prepare pellets with seemingly specular surfaces. However, after numerous attempts a pellet was obtained for each of the three samples.

Near normal incidence (6.5 deg) reflectance spectra of the three pellets were acquired in the $180-4,000 \mathrm{~cm}^{-1}$ region of the infrared, and for the two NuSU samplea reflectance spectra were also acquired in the 220-2,500 nm region of the uv-vis-nir. The UMKC soot pellet, which was very fragile, was damaged in the process of acquiring the $u v-n i r$ spectra.

Complex refractive indices were obtained for the three samples by application of Kramers-Kronig methods to the reflectance spectra. We could not ind in the scientific literafure any information about the optical properties of soots in the vacuum ultravioiet spectral region; thus the $K K$ analysis was made without extrapolation of the reflectance spectra into the vacuum ultraviolet. The resultant values of and k are probably in error in the $u v-v i s$ regions. The reflectance spectrum and resultant values of $n+1 k$ for the unheated NMSU Diesel soot pellet are presented in pigure 5 .

LIQUIDS

The optical properties of five liquids were investigated; the liquids were SF-96, DMMP, DIMP, DEP, and DES. The infrared near-normal incidence reflectance spectra of SP-96, DMMP, DIMP, and DEP were measured throughout the $180-4,000 \mathrm{~cm}^{-1}$ wave-number
region using an open sample dish in a closed/purged reflectance unit. The same procedure applied to DES was unsuccessful because the sample would evaporate before the spectrum could be measured.

In the near-infrared region ($4,000-12,500 \mathrm{~cm}^{-1}$) a thin wedge-shaped cell was used to obtain four or more transmittance spectra of each of the fiveriquids. The spectrum for the imaginary part of the complex refractive.index $n+i k$ was determined for each liquid from the transmittance spectra. The wedge-shaped cell was also used in the $500-$ $4,000 \mathrm{~cm}^{-1}$ region to determine the k spectrum for DES.

Separate Kramers-Kronig algorithms applied to the reflectance and k spectra of each liquid provided $n+i k$ spectra and n spectra, respectively. Results for DMMP are presented in Figures 6 and 7. In the infrared ($180-4,000 \mathrm{~cm}^{-1}$) $\mathrm{n}+\mathrm{ik}$ for DMMP are from Kramers-Kronig analysis of the reflectance spectrum. In the near infrared (4,000$12,500 \mathrm{~cm}^{-1}$ or $800-2,500 \mathrm{~nm}$) the n spectrum for DMMP is from Kramers-Kronig analysis of the k spectrum. The reflectance spectrum in the near infrared was computed for s polarization at 6.5 degree angle of incidence using the appropriate generalized fresnel reflectance equation and spectral values of $n+1 k$ for DMMP.

REFERENCES

1. M.R. Querry, W.P. Roach, D.L. Striley, and C.T. Heese, "Optical Properties of Powders, Liquids, and Metals in the Infrared, Visible, and Ultraviolet Spectral Regions," p, Proceedings of the 1986 CRDEC Scientific Conference on Obscuration and Aerosol Research, R.H. Kohl, Ed., In Preparation.
2. W.R. Hunter, D.W. Angel, and G. Hass, "Optical Properties of Evaporated films of ZnS in the Vacuum Ultraviolet from 16 to $200 \mathrm{~nm}, " \mathrm{~J} . \mathrm{Opt}$. Soc. Am. 68, 1319-1322 (1978)
3. I.L. Tyler, G. Taylor, and M.R. Querry, "Thin-Wedge-Shaped Cell for Highly Absorbant Liquids," Appl. Opt. 17, 960-963 (1978).
kaol in pellet

FIGURE 1. KAOLIN PELLET. The upper, center, and lower graphs are respectively the measured, near-normal incidence reflectance spectrum and the real and imaginary parts of the complen refiactive index determined from $K K$ analysis of the reflectance spectrum.

ANHYDAITE: X-DIRECTION

FIGURE 2. ANHYDRITE CRYSTAL: X-DIRECTION. The upper, center, and lower graphs are respectively the measured near-normal incidence reflectance spectrum and the real and lmaginary parts of the complex refractive index determined from KK analyais of the reflectance spectrum.

FIGIJRE 3. MOLYBDENUM. The upper, center, and lower graphs are respectively the reflectance spectrum and the real and imaginary parts of the complex refractive indgx determined irom KK analysis of the reflectance spectrum. The infrared ($0-1,000 \mathrm{~cm}$ and the near infrared-visible-ultraviolet (208-2,500 nm; 48,465-4,000 cm^{-1}) spectra are on the left and right, respectively.

ZINC SULFIDE

wave numeer (1/CM)

have number (1/Cm)

ZINC SULFIDE

nave number (1/ma)

Pigure 4. ZINC SULPIDE. The upper, center, and lower graphs are respectively the reflectance spectrum and the real and imaginary parts of the complex refractive indef determined from KK analyeis of the reflectance epectrum. The infrared ($80-4,000 \mathrm{~cm}^{-1}$) and the infrared-near infrared-vieible-ultraviolet ($00-5,000 \mathrm{~mm}$) epectra are on the left and right, respectively.

FIGURE 5. NHSU UNHEATED SOUT PELLET. The upper, center, and lower graphs are respectively the reflectance spectrun and the real and imaginary parts of the complex refractive indef determined from $k K$ analysis of the reflectance spectrum. The infrared ($189-4,000 \mathrm{~cm}^{-1}$) and the near infrared-visible-ultraviolet (220-2,500 nm; 45,450-4,000 cm^{-1}) spectra are on the left and right, respectively.

Aerosol Particle_Analyzer Measuremenis

Philip J. Wyatt, Christian Jackson, David L. Hicks, and Yu-Jain Chang
Wyatt Technology Corporation Santa Barbara, CA 93130

RECENT PUBLICATIONS, SUBMITTALS FOR PUBLICATION AND PRESENTATIONS:

A) Philip J. Wyatt, Kevin L. Schehrer, Steven D. Phillips, Christian Jackson, YuJain Chang, Randalh G. Parker, David T. Phillips, and Jerrold R. Bottiger, "Aerosol Particle Analyzer", accepted by Applied Optics for a cover feature in early 1988.
B) Philip J. Wyatt and Steven D. Phillips, US Patent \#4693602, "Method and apparatus for measuring the light scattering properties of small particles" issued 15 September 1987.

Abstract

A brief description of the DAWN aerosol particle analyzer is followed by a discussion of some of the data collected using the instrument.

THEINSTRUMENT

The DAWN-aerosol system allows the light scattered from individual particles to be measured at up to 72 angular positions in three dimensions (14 are currently operational) and at two large forward and rear scattering areas, at a rate of up to 200 particles per second. Some real-time analysis of the particles is possible (e.g. symmetry of scattering, approximate indication of particle size) and more detailed later analysis is easily accomplished by storing the data on the dedicated PC.

The system consists of six main components (see Fig. 1.)

1. Laser. The laser light source used is currently a 10 mW He-Cd laser emitting a 442 nm beam of nominal diameter 0.3 mm . This beam is aligned through the center of the scattering chamber.
2. Scattering Chamber. The scattering chamber is a sphere with an internal diameter of 40 mm , and outer diameter of 100 mm . There are entry and exit apertures for the laser beam and ue particle stream (which are at right angles in each other). Then the detector positions consist of two large apertures for fiber bundles subtending an azimuthal angle of almost 2π and about $\pm 10^{\circ}$ of polar angle centered on 20° and 160° respectively, as well as 72 small apertures arranged in four great circles. These great circles have the laser beam as a common diameter, and are arranged at 45° intervals, the first being parallel to the plane of polarization of the laser beam. These ports are either plugged and sealed or contain a detector.
3. Scattered light detectors. For the 72 small ports the detector consists of an optical collimator with an acceptance angle of $\pm 1.25^{\circ}$ attached to an optical fiber, which is in turn attached to the photocathode of a photomultiplier tube. The optical bundles collect light directly and transmit it to two photomultiplier tubes.
4. Electronics. The photomultiplier outputs are amplified by six decade logarithmic amplifiers whose signals are then processed. Any one of the detector channels may be used as a trigger channel which is constantly monitored and when the output signal crosses a pre-selected threshold the outputs from all channels are sampled and then multiplexed, converted to a 12 bit digital representation, and stored in the memory of a personal computer.
5. The Data Processing Software corrects for dark current and background scattering as well as inherent sensitivity differences between the detector channels. When the instrument triggers on a particle the resultant corrected intensities can be displayed and/or stored on rotary memory means for further analysis of optical observables.
6. Aerosol Handling Hardware. A set of pumps, valves and regulators sample, dilute and introduce aerosol particles entrained in a fine laminar stream through the center of the chamber intersecting the laser beam one particle at a time.

SELECTEDDATA

The following figures show the results of the analysis of scattering patterns from a variety of particles. Data was collected using the two fiber bundles and 14 angular detectors, (the fiber bundle data are not discussed in this paper). Some measurements were made with polaroid analyzers placed in front of the optical collimators in order to distinguish between polarized and depolarized scattering. For example Fig. 2. shows the ratio of polarized to depolarized scattering measured at 55° in the vertical plane for 210 latex spheres. It can readily be seen that there is, as expected, very little depolarized scattering, except for a few isolated particles which are most likely clumps. Fig. 3 shows the scattering from a single latex sphere of nominal diameter 730 nm . On one side of the scattering chamber the detectors had analyzers aligned in the direction of polarization of the beam, while on the other side they were aligned perpendicular to the beam polarization. Note the distinctive minimum at 40° and maximum at 55° of the polarized scattering, and the small amount of depolarized scattering at the lowest angles rapidly falling to zero as the scattering angle increases.

Figures 4 and 5 show data from individual bronze and aluminum particles respectively. Again the measurements are made in the vertical plane with detectors on either side of the chamber having analyzers arranged perpendicular to each other. The position of the detectors in the polar direction are somewhat different from Fig. 3. Of interest is the anticipated minimum for depolarized scattering at 90°, the large amount of backscatter, and
the similar intensities of both polarized and depolarized scattering in the forward and backwards directions.

Figures 6 and 7 show measurements made without any polaroid analyzers of a small iron filing and solder powder. Note the similar overall intensity of the measurements but the marked symmetry of the intensities from the solder powder particles compared to those from the filings suggesting that the former is a near spherical powder.

Figures 8,9 and 10 show scattered intensities measured from individual rod shaped Bacillus subtilis. The great differences in the scattering patterns indicates the differing alignment of the rods as they pass the beam, sometimes producing symmetrical scattering, and sometimes strikingly asymmetrical scattering.

FIOURE 1. AEROSOL PARTICLE ANALYZER Mnin symtem componerts.

FIOURE 2 DEPOLARTZATION RATIO FOR LATEX SPHERES.

Latex Sphere 730 nm showing depolarization

PNGLE
FIGURE 3. SCATTERNO PATIERN FROM LATEX SPHERE. Polarized and depolarized catueriag in the verteal plane.

AlUMINUM

BRONZE

FIGURE 5. SCATTERENO PATTERN FROM ALUMINUM PARTICTE. Polarized and depolirized icattering to the yertical plane.

IRON FILING

ANGLE

FIOURE 6. SCATTERINO PATTERN FROM RRON FILNNO.
Mensured in the verdeal plape.

SOLDER POWDER

FGULRE 9. SCATTERLG PATTERN FROM SOLDER POWDER Soie the right-left symutery.

Bacillus subtılıs

ANGLE

FIGURE 8. SCATTEREVG FROM BACILLUS SUBTILSS.

Bacillus subtilis

FIOURE 9. SCATTERINO FROM BACILLUS SUBTILS.

Bacillus subtilis

ANGLE

FIOURE 10. SCATTERNN FROM BACILLUS SUBTILS.

PARTICLE DISCRIMINATION USING THE AEROSOL PARTICLE ANALYZER
J. R. Bottiger

Research Directorate. CRDEC Aberdeen Proving Ground, MD 21010-5423

RECENT PUBLICATIONS, SUBMITTALS EOR PUBLICATION AND PRESENTATIONS:
The present paper is the author's first submission on this subject.

Abstract

An instrument capable of rapidly sampling single particles from an aerosol and recording their light scattering patterns has been built by Wyatt Technology Corporation and delivered to CRDEC. This paper reports on its use in distinguishing spherical from nonspherical particles. Future work will include improving the instrument's signal-to-noise ratio and exploring the suitability of various measurement combinations as aerosol characterization parameters.

INIRODUCTION

The Wyatt Technology Corporation (WTC) has delivered to CRDEC a light scattering instrument termed an Aerosol Particle Analyzer. It is the first model produced by WTC in their SBIR supported program to develop a commercially viable instrument for the rapid characterization of very fine aerosol particles, and is of interest to the Army in particular for its potential to characterize airborne blological entities and, on a larger scale, obscurant aerosols. The instrument is similar in spirit to Boeing's Multichannel Nephelometer, also operated in our laboratory, but is considerably reduced in size and complexity as befitting a device intended ultimately for practical rather than research 2pplications.

An aerosol handiling system draws sample particles from a test aerosol and causes them to singly traverse a He-Cd laser beam at the center of a spherical
chamber. The chamber is drilled with 72 port holes laid along four great circles from which the scattered light may be observed. Eourteen separate photomultiplier tubes are attached to fourteen optical fibers terminated with SEL-FOC grin lenses which may be inserted into any of the viewing ports: the leftover 58 ports are plugged. A wide range of experimental configurations are available, depending on which ports are selected for viewing, the polarization state of the incoming laser beam, and the orientation of linear polarizers (if used) covering the SEL-EOC lenses. Detailed information on the aerosol particle analyzer may be found elsewhere. This paper concerns itself with a simple characterization of aerosol particles and the instrument's applicability to that analysis.

THE EXPERIMENT

Only eight of the fourteen detectors were used in this work; they filled eight avallable ports at the scattering angle of 40 degrees. That $1 s$, the detectors were along the circumference of a circle perpendicular to the laser beam, 45 degrees apart in azimuth, and at a 40 degree angle from the illuminated particle relative of the laser beam. The laser beam, which is emitted linearly polarized, was converted to circularly polarized light with a quarter-wave plate before entering the scattering chamber. The remaining six detectors were deployed along one of the great circles, but for present purposes we shall simply ignore the data that was collected from them.

Now it is clear from the symmetry of this configuration that if light is scattered from a spherical particle all eight detectors should receive the same flux, while an irregularly shaped particle should scatter varying amounts into the different directions. Actually, any particle exhibiting axial symmetry and oriented with its symunetry axis parallel to the incident beam will scatter circularly folarized light in an azimuthally independent fashion, but we think such an object is sufficiently rare among the particles measured in this work
that we may in practice associate uniformity among the detectors with the presence of elther a very small (Rayleigh) scatterer or a spherical scatterer.

A convenient measure of the uniformity of the scattered light is provided by the ratio of the standard deviation among the detectors to the average of the detectors, SD/AVG. If $v_{1}(1=1$ to n) are the (calibrated) outputs of the detectors, then

$$
S D / A V G=\sqrt{\frac{n \sum v_{i}{ }^{2}}{\left(\sum v_{1}\right)^{2}}-1}
$$

The quantity SD/AVG of course vanishes when the detectors are equally illuminated. It can be shown that $S D / A V G$ attains its maximum possible value, $\sqrt{n-1}$, when only one detector is illuminated and the remaining $v_{1}=0$. One can imagine that occurring for example in the scattering from a high aspect ratio fiber oriented such that the sharp forward scattering cone happens to intersect only one detector.

We now define a quantity called the sphericity index (SPX) as

$$
S P X=1-\frac{1}{\sqrt{n-1}} \frac{S D}{A V G}
$$

It varies from zero, in the worst case of only one detector being illuminated, to unity when all detectors are equally illuminated. There is no rigorous correlation, but it seems reasonable to associate "how spherical a particle is" with its measured sphericity index, perfect spheres having $S P X=1$, and objects very far from spherical, such as high aspect ratio ilakes and fibers, having sphericity indices much lower, perhaps approaching zero.

Another simple quantity we shall examine is the "brightness" of a particle, which is defined to be the average output (in calibrated microamps) of the eight detectors. Ideally, for particles of a given material, brightness and particle
size should be positively related, at least over some usefully large range. In these experiments however there is no relationsiip botween brightness and particle size except in a limiting sense, for several reasons. The most obvious one is that the particles are brought to the laser beam by a tube imm in diameter, while the beam, with a Gaussian intensity profile, is only about 0.1 m across. Thus a large range of impact parameters relative to the beam will occur: a few particles actually cross at the center of the beam, more cross at varying distances from it, and in fact most miss it altogether. A sample of identical particles then will exhibit a variety of brightnesses. ranging from zero up to a maximum corresponding to transit through the beam center.

The object of the following experiments was to use the aerosol particle analyzer to gather sphericity index and brightness measurements on some spherical and nonspherical aerosol samples.

Aerosol flows were adjusted to frovide a few hundred particles per second crossing the laser beam, verified by monitoring one of the detectors with an oscilloscope. As the average transit time was only on the order of 10 microseconds the probability of more than one particle being illuminated at a time is negligible. Although much faster collection software is now available from WTC, I used the original software which takes about a half second to store all the data from one collection event and reset, and thus sampled about two particles per second from those available.

Collected data were automatically stored in a binary file on the Instrument's PC-XT. After all measurements were completed the data were translated to an ASCII file and then imported onto Lotus 1-2-3 spreadsheets for analysis and preparation of plot files.

A holder for small copper screens was incorporated into the exhaust line leading particles out of the scattering chamber. Some fraction of those sample particles which actually traversed the laser beam then were collected on the
screens for viewing under the electron microscope.

RESULTS

Holding to light scattering custom, we began by looking at Dow polystyrene spheres. Spheres of diameter . 945 micrometers (std. dev. $=.0064$) in water were aerosolized with a tsi model 3460 Tri -jet Aerosol Generator and introduced into the aerosol particle analyzer. Data from 500 particles were collocted and analyzed. Figure la shows each particle's position on a bivariate brightness/SPX plot. Some observations and remarks about figure la follow:

1. As anticipated, most of the particles had a sphericity index close to unity. An error in any detector's measurement can only serve to lower the SPX of a sphere, so readings approach unity as a limit. The majority of particles fall into a horizontal patch with $S P X>0.9$. The vertical spread of the patch and its distince from unity is a measure of the system signal-to-noise ratio, given that the scatterers within it are essentially perfect spheres. Note that the patch becomes tighter and closer to $S P X=1$ as brightness increases.
2. A few, perhaps 10%, of the particles are distinctly nonspherical. Some may be "Junk" particles of unknown origin contaminating the system, others are certainly clusters of two or more spheres stuck together. An electron microscope's view of a section of the copper screen which intercepted sume of these spheres as they were exhausted out of the scattering chamber is shown in figure 2a. It is a typical view of the screen, and several clusters are evident.
3. One of the eight detectors is designated to be the trigger detector. Its output is continuously monitored ky an analog discrimination circuit and data is collected only from particles whose signal at the trigger detector exceeds a threshold value set by the operator. The threshold set for these and all measurements below corresponded to a brightness value of about 0.7
microamps. This is the reason there are no particles in the upper left corner of the figure.
4. A nonspherical particle can happen to throw enough light into the trigger detector to set off a data collection cycle while scattering less light into the other detectors, resulting in a particle's brightness (average of the eight detectors) being less than the threshold equivalent brightness. This is observed along the left side of figure la where nonspherical particles with brightnesses well under the 0.7 microamp threshold may be found.
5. As described in the previous section, the Gaussian intensity profile across the narrow laser beam combined with the relatively broad colum of particle trajectories leads to a distribution favoring lower brightness values, at least down to where the influence of the threshold level is felt.

Figures 1 lb and 1 c show the one-dimensional frequency distributions of sphericity index and brightness for the same particles of figure la.

The above measurement was repeated for a sample of 0.330 micrometer diameter spheres also aerosolized with the tsi tri-get. The results, shown in figures $3 \mathrm{a}-3 \mathrm{c}$ are very similar to those of the .945 micrometer spheres. The only clear difference is in the lower maximum brightness level (particles passing through center of laser beam) of the smaller spheres.

To see if these characterizations would look different for a system of nonspherical particles, an aerosol of Mgo smoke was produced. A small plece of magnesium ribbon was burned in a sealed 5 gallon bell jar, then, after a wait of about 15 minutes to allow larger particles to settle out, a sample of the white cloud was dram into the aerosol particle analyzer. A microphotograph of the copper sampling screen in figure 2b shows the MgO cloud to consist of cubes, the largest single ones being about a half micrometer in size. Much smaller cubes cluster together forming clumpy or chainlike structures with dimensions of 1-2
micrometers.

Data on 500 MgO particles are shown in figures $4 a-4 c$. The brightness distribution, being primarily a function of beam geometry, is not distinguishable from those of the spherical aerosol samples, but the sphericity index distribution has changed markedly. While there are still particles with SPX near unity, the clustering of data points there has been replaced by a roughly uniform distribution from $S P X=0.5$ to $S P X=1$.

Measurements were attempted on aerosol samples containing large particles expected to be even less spherical than the Mgo. One set of measurements was made on aluminum flakes 10-20 micrometers in diameter, and another on minusil fibers about 10 micrometors thick. However the resulting data plots looked essentially like those for MgO in figure 4. Later SEM examination of the copper sampling screens showed that the scatterers actually measured were indeed Mgo cubes and clusters, sometimes combined with .945 polystyrene spheres, as in figure 2c. Apparently few or none of the larger specimens mare it all the way through the pump and tubing of the instrument's aerosol sampling hardware; instead they impacted onto tubing surfaces already contaminated with particles from the earlier experiments releasing many small fragments which continued downstream to finally pass through the laser beam. Though not producing useful data, the incident illustrates the importance of mainitaining cleanliness in the system, and of visually inspecting sample particles with the electron microscope to insure a positive identification.

CONCLUSIUNS

The distribution of the sphericity index . a measure of the azimuthal uniformity with which an object scatters circularly polarized light - appears to be a viable descriptor for use in characterizing an aerosol. On the other hand, brightness as used here is of virtually no value, being more a characterization
of the apparatus rather than the aerosol particles. In that sense figures la, 3a, and 4 a are not truly bivariate plots of the aerosol. A more useful coordinate might be a particle size index defined, for example, by brightness when all particles are equally illuminated, or in any case by the ratio of certain forward and backward detectors. In fact the WTC instrument provides two large acceptance angle detectors in the near forward and near backward directions for that purpose, but I was unable to use them because of extra stray light in the chamber caused by a beam focusing leris I added to increase signal levels for the individual detectors.

Steps should be taken to modify the instrument as necessary to obtain a serviceable particle size estimate, or index. A laser with increased beam power may be necessary, or at least desirable. In addition, much of the aerosol sampling system - which I had to alter from WTC's original design because of the scattering chamber's unfortunate tendency to leak - is clearly not satisfactory with respect to sampling bias and cleanliness. An inlet diaphragm pump currently used iust be eliminated, and shorter straighter runs of easily replaceable tubing should be used.

EIGURE 1: Sphericity index (SPX) and brightness for 500 polystyrene latex spheres with diameter $=0.945$ micrometers.

EICARE 2: SEM photographs of a) 0.945 micrometer psi spheres particles, c) contaminant freed from walls by Al flake.

FIGURE 3: Sphericity index (SPX) and brightness for 500 polystyrene latex spheres with diameter $=0.330$ micrometers.

EIGURE 4: Sphericity index (SPX) and brightness for 500 particles of Mgo smoke.

Superresolution Technique for Aerosol Holography

by
Peter D. Scott and David T. Shaw State Universlty of New York at Buifalo Laboratory for Power and Environmental Studies Amherst, NY 14260

Abstract

Digital decoding, rather than optical reconstruction, of in-line aerosol holograms permits algorithmic image enhancement and analysis to be conveniently implemented. Here a modified Gerchberg Papoulis superresolution algorithm is reported and preliminary results demonstrating resolution enhancement shown

1. Introduction

Holography is a well-established technique for the characterization of aerosols and particle fields. Combining high resolution with a depth of fleld corresponding to hundreds to thousands of ordinary photographs, holography is frequently the only alternative where 3D images of aerosols are required. Of the many forms of holography which have been developed since its invention by Gabor in 1947, the original onaxis or in-line form has remained the cholce for most particle fleld and aerosol applications. Simplicity and robust tolerance of noise, vibration and limited coherence particularly recommend in-line technique for adverse environments, for instance industrial flues (ior particulate studies) and aircraft wing mounting (for 108 and icing studies) [1]. This report considers resolution improvement only for inline holograms, though similar procedures could be considered for off-axis and volume holograms as well.

In the idealized case of infinite hologram format, complete coherence, diffraction limited optics and linear fine-grained film the theoretical resolution limit for inline holography agrees with that for ordlnary photographic imaging using the same illumination. At vislble wavelengths the Rayleigh criterion suggests an ultimate resolution for idealized systems in the range one half to one micrometer. In practice, the physical parameter most prominently limiting resolution is the finite size of the film on which the hologram is recorded This in turn is frequently constralned by the limited low level contrast of the film

The use of practical sizeri hologram formats dictates that the higher frequency components of the image, which are scat-
tered at larger angles to the opilcal axis, are not recorded. Thus these frequency components are not avallable for reconstruction. Reported resolution for in-line setups, as well as our own experience, suggest 10 - 20 micrometers as a best routinely attainable resolution using conventional technique; and formats.

2. Superresolution

Frequency components of an 11 luminated object corresponding to wavelengths shorter than the illuminating wavelength will not propogate. Any image formed at a distance from the object, regardess of method, will demonstrate a complete loss of spatial frequencies of $1 / \lambda$ and greater. Additional high frequency bands may also be missing due, for instance, to finite fllm format

Complete absence of a range of frequencles in the recorded image does not necessarily imply that it is futlle to attempt to restore these frequencles. Missing irequency bands clearly cannot be restored using linear filters, but no such restriction obtains with nonlinear constralned procedures

Consider the case in which the Fourler transform of a 2D object is known only within a bounded region in the spatial freyuency plane. Since there are infinitely many ways to extrapolate the transform, each corresponding to a different object, the missing frequency data appears irreversibly lost Suppose, however, it may be assumed that the object is spacelimited. A classic result in complex analysis is that spacelimited objects possess analytic Fourler transforms. Then since analytic furctions are completel'; determined by their value over any finlte neighborhood, the transform can be fully recovered from the given information

Techniques which restore irequency components lying beyond the measured bandwidth are called superresolution techniques (in machine vision the designation subpixel resolution is common). Introduction of these methods is irequently greeted with some s'septicism, since it is a fundamental principle of linear signal processing

Let $\psi_{z}(x, y)$ be the scalar optical field producing the hologram as in (1). The magnitude $\left|\psi_{z}(x, y)\right|$ is known for $|x| \leq X,|y|$ $\leq Y$ since the hologram has been measured there, i.e. $|\psi(i, j)|$ is known for $|i| \leq N$, $|\boldsymbol{l}|$ M. Select extrapolation factors $a, D>1$. The hologram will be extrapolated to the discrete domain $|i| \leq[a N],|j| \leq[D M]$.

Take as initial guess in the spatial domain the conventional reconstruction (3a) setting $l(i, j)$ equal to its measured value in $|j| \leq N,|j| \leq M$ and zero for $N<|i| \leq$ [aN], $M<\operatorname{lj} \leq$ [DM]. Modify the initial guess reconstruction by enforcing all spatial constraints (including bounded spatial extent, and opacity real and bounded by zero and unity). As in the GP and the phase retrieval algorithms, proceed to the transform domain with the transform of the constraint-enforced object (convolve with $h_{z}(x, y)$). In this domain enforce the measured magnitude constraint in the inner reg!on $||\leq N, L| \leq M$ and return to the spatial domain (convolve with $\mathrm{h}_{\mathrm{z}}{ }^{*}(\mathrm{x}, \mathrm{y})$). Iterate until the summed RMS changes under constraint enforcement in both domains falls negligible

This algorithm operates like the GP algorithm, except that the Fourier domain is replaced by the field domain $\$_{z}(x, y)$ and the phase of the field is recovered along with the magnitude (hologram) extrapolation.

5. Results

An all-digital 1D simulation is shown in Figure 1. The original pulse is of unit amplitude and duration seven samples, centered at the origin. The conventional reconstruction (initial guess) demonstrates twin image and high frequency attenuation due to cropping of the hologram at 32 samples (equivalent resolution limit 3.0 pixels) The algorithm attempts to extrapolate the hologram by a factor 4 to 128 samples. The Iterations were terminated (prior to convergence criterion) at 15 iterations. Note that by the 15 th iteration, the 3.0 pixel resolution limit was clearly exceeded.

An all-digital 2D simulation of a pair of objects is shown in Figures 2 and 3. Note that the conventional reconstruction (Fig. 2c) barely resolves the pair. Proflles of grey levels along the vertical axis (winte) and horizontal axis (black) are shown in Fig. 3a. Fig. 2d shows the reconstruction after a four-fold extrapolation (15 iterations), with protiles shown in Fig 3b. Note the increased sharpness of the horizontal grey level change between the objects in Fig 3b as compared with Fig 3a.

6. Conclusions and further work

The above results demonstrate resolution enhancement for simulated in-line holography through the use of a GP-like superresolution technique Limited resolution, especially along the optical axis, has frequently been mentioned as a factor limiting the usefuiness of in-line holography for aerosol characterization and metrology. The phase retrieval / hologram extrapolation algorithm is one of a class of methods based on superresolution which may enhance avallable resolution. The present results are preliminary but encouraging. The algorithm must be systematically applied to real holograms, and this work is underway.

7. References

[1] JD Trolinger, "Particle and flow fleld holography," Proc. SPIE 532, 1985, 40-62.
[2] BR Frieden, "Image enhancement and restoration," in Picture Processing and Digital Filtering, TS Huang ed., Springer, New York, 1975.
[3] G Liu and PD Scott, "Phase retrieval and twin-image elimination for in-line Fresnel holcgrams," J. Opt. Soc. Am. A 4, 1987, 159-65.
[4] L Onural and PD Scott, "Digital decoding of in-line holograms," optical Eng, to appear Nov 1987.
[5] A Papoulls, "A new algorithm in spectral analysis and bandiimited extrapolation," IEEE Trans. Cir. Sys. 22, 1975, 218-29.

8. Figures

(see overleat)
that resolution goes with measurement bandwidth, and that you can't amplify or enhance what isn't there. With constraints, however, the link between resolution and measurement bandwidth weakens, and frequency cutoffs can sometimes be exceeded.

A wide variety of superresolution techniques have been developed, based on analytic continuation, positivity constraints, statistical principles such as maximum entropy and maximum likelihood, and model-based techniques. These methods have been applied to an equally diverse group of applications: coherent and incoherent microscopy, adaptive sonar array processing, spectroscopy, astronomy and ultrasonic imaging are important examples [2].

Here we present preliminary results which suggest that superresolution may be productively applied to in-line holographic decoding as well. These methods may help expand the range of use of holographic imaging for scientitic and engineering application by permitting resolution improvement toward, or even perhaps beyond, the diffraction limit.

3. Digital reconstruction from in-line holograms

The scalar field impressed on an image plane at a distance z along the optical axis from an object plane illuminated by a plane wave of wavelength λ is

$$
\begin{equation*}
\psi_{Z}(x, y)=(1-a(x, y)) *=h_{z}(x, y) \tag{1}
\end{equation*}
$$

where $h_{z}(x, y)$ is the usual quadratic phase kernel of the Fresnel Kirchoff approximation, $=3$ is $2 D$ convolution, and $a(x, y)$ is the real planar opacity function of the object distribution. 3D aersol distributions would occupy a superposition of such planes. For conventence in the development a planar object is assumed. The hologram of $a(x, y)$ at z is then $|\psi z|^{2}$ or

$$
\begin{equation*}
I_{z}(x, y)=1-2 a(x, y) * \operatorname{Reh}_{z}(x, y) \tag{2}
\end{equation*}
$$

where transmitted energy is assumed to dominate diffracted and $1^{* *} \mathrm{~h}_{\mathrm{z}}=1$ has been used. Reconstruction from the hologram $I_{z}(x, y)$ is conventionally accomplished by relluminating the developed hologram with the same illumination, having the effect of replacing $a(x, y)$ by $-I_{z}(x, y)$ in (1). Upon recalculat-

Ing the intensity, the image of the reconstructed object is [3]

$$
\begin{align*}
R_{z}(x, y) & =\left(1+I_{z}(x, y)\right)=\operatorname{Reh}_{z}(x, y) \tag{3a}\\
& =2(1-a(x, y))+I_{2 z}(x, y) \tag{3b}
\end{align*}
$$

The first term in (3b) is the desired object, and the second the twin image (doubledistance hologram).

If the hologram $\mathrm{l}_{\mathrm{z}}(\mathrm{x}, \mathrm{y})$ is digitally sampled, the reconstruction convolution (3a) may be computed algorithmically rather than instantiated optically. If digital decoding is used, the twin image may be algorithmically suppressed, either by stabilized inverse filtering [4] or phase retrieval [3]. Digital reconstruction is most efficlenctly implemented using the Fast Fourier Transform algorithm as described in the two foregoing references
in (3b) it is assumed that reconstruction derives from an infinite-format hologram. Restricting the input $l_{2}(x, y)$ to a finite pupil has two prinicipal effects. A puptl artifact (hologram of the pupil function) is added to the reconstruction, and the high frequency content of the reconstruction is sharply reduced for objects located near the optical axis. This is seen most clearly in the case of an object sufficlently small to use the Fraunhoter approximation. The hologram then coresporids to the object's Fourier transform modulus (modulated by a zone lens factor), and cropping the holgram clearly eliminates all information relative to high irequency content.

4. Phase retrieval / hologram extrapolation algorithm

Algorithms which enforce constraints successively in the spatial domain and a spectral or imase domain form an important class of superresolution methods. Here we combine the Gerchbers - Papoulls (GP) algorithm for spectral extrapolation [5] with hologram phase retrieval [3] to seek superresolution type enhancement for holographic images

Begin with a hologram $\mathrm{I}_{\mathrm{z}}(\mathrm{x}, \mathrm{y})$ of extent $|x| \leq X,|y| \leq Y$. Sample with X and Y sampling period of Δ to produce $l(1, j)$ for ill $\leq N, W \mid \leq M(M=[X / \Delta], N=[Y / \Delta],[] \ln -$ dicates integer part). Assume the object to de reconstructed is small and centered near the origin in the spatial plane. Superresoiotion in the reconstruction of this object is equ: ic.int to recovering unmeasured reglons of the hologram (hologram extrapolation).

11

Fig. 2a. Pair of objects
2b. Cropped hologram
2c. Conventional 2d. After 15 iterations. reconstruction.

Fig. 3a Horizorital and vertical proflies of Fig. 2c

3b. Horizontal and vertical profiles of Fis. 2d. Note the resolution improvement over 3a

M.H. Morgan Ill and H. Littman Department of Chemical Engineering Rensselaer Polytechnic Institute Troy, New York 12180-3590

ABSTRACT

A new expresston for the pressure profile in pneumatic transport systems is developed. The resulting model is found to fit coarse particle data in systems spouted with air extremely well (wthin $\pm 8 \%$ on average). In addition a pressure identity relating the overall draft tube pressure drop to the inlet and outlet pressure gradients is also deduced. The validity of the latter is also established.

INTROOLICTION

A knowledge of the axial pressure profile within a draft tube fed by a spout-fluid bed feeder is critical to the design of such systems. Without this information, a first principles prediction of either the voldage distribution or the particle transport rate through the draft tube is not possible. Furthermore, in many practical systems, direct pressure profile measurements are not feasible or are difficult to obtain. Clearly, from both a computational and experimental vantage point, being able to predict this quantity simplifies design.

Limited experimental measurements of the axial pressure profile in these systems have been reported by Claflin and Fane(1983) and Grabvacic et al.(1986). To date, no theoretical models exist. In this paper, an analytical model for the profile ts developed from variational considerations. Only a knowledge of the overall draft tube pressure drop and outlet pressure gradient is assumed. In addition, a pressure identity relating the overall system pressure drop to the inlet and outlet pressure gradients is also deduced.

THEORY

A variational formulation similar to that posed in Morgan (1986) for the axial pressure profile in a spouted bed of coarse particles is devised for a draft tube system. In our analysis, radtal pressure gradients are neglected and it is assumed that $-d^{2} p^{*} / d \zeta^{2}$ must decrease monotonically with axtal distance, ζ. The genesis of this approach arises from the fact that all the experimental pressure profiles observed to date exhlbit this characteristic. Even in those cases where a maxtmum is observed in the pressure profile one finds that $-d^{2} p^{*} / d_{\zeta} 2$ decreases monotonically with 5 . Hence the following isoperimetric variational problem was posed for the axial pressure profile in the
draft tube. In Morgan and Littman (1987), the general formulation of this particular problem is discussed in detall.

Consider the functional

$$
\begin{equation*}
J\left(P^{\star}\right)=\int_{\zeta=0}^{\zeta=1} \sqrt{1+\left(\frac{-d^{2} p^{\star}}{d \zeta^{2}}\right)^{2}} d \zeta \tag{1}
\end{equation*}
$$

in terms of the dimensionless second derivative of pressure and distance to have an extremum where the admissible curves satisfy the boundary conditions

$$
\begin{align*}
& \left.\frac{-d^{2} p}{d \zeta^{2}}\right|_{\zeta=0} \rightarrow \infty \tag{2}\\
& \left.\frac{-d^{2} p}{d \zeta^{2}}\right|_{\zeta=1}=0 \tag{3}
\end{align*}
$$

and the constraint functional

$$
\begin{equation*}
j_{0}^{1}\left(\frac{-d P^{*}}{d \zeta}\right) d \zeta=\frac{\Delta P_{T}}{\Delta P_{m F}} \tag{4}
\end{equation*}
$$

Paysical justification for the boundary and integral conditions are briefly discussed below. Firstly, equation 2 follows from the requirement that a precondition for particle transport into the draft is the existence of a large accelerating potential at the entrance to the draft tube. The magnttude of this potential is bounded by the specification given in equation 2 . The second boundary condition (eqn. 3) follows from experimental observation whicn indicates that the pressure at the outlet to the draft tube varies linearly with distance. Differentiation of such a profile leads directly to equation 3. Intuitively, one can surmise that these two boundary conditions are natural limits for such systems. The integral constraint given in Equation 4 implies that the pressure in the system is always maximized at a given fluid flowrate. A similar argument was posed in Morgan and Littman (1987) for the axial particle flowrate proflle in spouted beds. This particular operational feature of spouted beds is an intriguing one. The reason why this is the case remains an unanswered question.

General methods of solution for equations (1) through (4) are outlined in Weinstock (1952). The solution to this system of equations is

$$
\left.\frac{\frac{-d P^{*}}{d \zeta}(\zeta)-\left.\frac{-d P^{*}}{d \zeta}\right|_{\zeta}=0}{\left.\frac{-d P^{*}}{d r}\right|_{\zeta=1}-\frac{-d P^{T}}{d \zeta}}\right|_{\zeta=0}=f(\zeta)=\left[\begin{array}{ll}
1-(2-\zeta) \tag{5}
\end{array}\right]^{2} 1 / 2
$$

Integration of equation (5) gives an expression for the pressure profile within the draft tube. That equation is

$$
\begin{equation*}
P^{*}(\zeta)-P^{*}(0)=G(\zeta)\left[\left(\frac{-d P^{*}}{d \zeta}\right)_{\zeta=1}-\left(\frac{-d P^{*}}{d_{\zeta}}\right)_{\zeta=0}\right]_{\zeta=}+\left(\frac{-d P^{*}}{d_{\zeta}=}\right)_{\zeta=0}^{\zeta} \tag{6}
\end{equation*}
$$

where

$$
G(\zeta)=0.785-1 / 2\left[(1-5) \sqrt{1-(1-5)^{2}}+\operatorname{Arcsin}(1-5)\right]
$$

Evaluating the above result at $5=1$ leads to the following pressure identity.

$$
\begin{equation*}
\frac{\Delta P_{T}}{\Delta P_{m F}}=0.215\left(\frac{\Delta d P^{\star}}{d \zeta}\right)_{\zeta=0}+0.785\left(\frac{-d P^{*}}{d \zeta}\right)_{\zeta=1} \tag{7}
\end{equation*}
$$

Equation (7) implies that only a knowledge of two of the terms appearing in that equation are required for a complete specification of the pressure profile given in equation (6). Presently there are no correlations available for the quantities appearing in equation (6). A future paper will address this issue. In the next section the general validity of both equations 6 and 7 are established.

DISCUSSION OF RESULTS

In Table 1 the agreement between the predicted and experimental overall pressure drop values for several operating scenarios are summarized. The predicted pressure drops shown there were calculated from equation 6 using the experimental values of the inlet and outlet pressure gradients given in that table. Th:e data shown there are for coarse particles of CaCO_{3} spheres (1.2 mm < dp < 3.0 mm) spouted with room temperature air. The effect of both draft tube separation distance and inlet pressure gradient on overall pressure drop are shown there. The average agreement between theoretical and experimental values is within $\pm 8 \%$.

An evaluation of the general pressure drop $r \because$...onship is provided in Table 2 . These three different experimental profiles are compared in figure 1 with predictions obtatned from the general pressure drop relationship (Equation 6). This pressure relationship requires only a knowledge of two of the parameters appearing in equation 7. Given the respective experimental values of $\Delta P_{T} / \Delta P_{m F}$ and $-d P / d \zeta / \zeta=1$ provided in Table 1 , complete pressure profiles were calculated for the first three cases. In general, we found excellent agreement between theoretical and experimental values with only an average percentage error of $\pm 3 \%$. Of specific interest is case "3 where $\left(-d p^{*} / d z\right)_{z=n}$ is less than 0 . In this particular case the experimental pressure curve exhibits a maximum. Physically such cases arise in high momencum systems when the separation distance, t is
small and the draft tube entrance resides in the inlet region of the jet. The size of this inlet region, 2^{*} has recently been reported by Morgan and Littman (1987) for alr spouted beds. That correlation shown below indicates that z^{*} is proportional to the momentum at z^{*}.

$$
\begin{equation*}
\frac{z^{*}}{H}=1.46 \mathrm{M}\left(2^{*} / H\right) \tag{8}
\end{equation*}
$$

In this region the fluid entry into the spout-fluid bed region is accompanied by a rise in the axial pressure between 0 and 2^{*} (Rovero et al. (1983) and Day et al. (1987)) and a positive inlet pressure gradient results. Experimentally it has been shown that a substantial lowering of the draft tube separation distance, l below 2^{*} will result in a shut off of particle flow. In the design of such delivery systems care must be taken to maintain this separation distance, $\ell>Z^{*}$.

REFERENCES

Claflin, J.K., and A.G. Fane, Can. J. Chem. Eng., 61, 356, 1983.
Day, J.Y., H. Littman and M.H. Morgan III, Chem. Eng. Sci., 42, 1461, 1987.
Grbavcic, Z.B., Private communication, 1987.
Morgan, M.H., III, "Fluldization V", K. Ostergard and A. Sorensen, Ed., Engineering Foundation 1986, P. 249.

Morgan, M.H., Iil and H. Littman, Chem. Eng. Sci., 1987 (under review).
Rovero, G., C.M.H. Brereton, N. Epstein, J.R. Grace, L. Casalegno and N. Picinini, Can. J. Chem. Eng. 61, 289, 1983.

Weinstock, R., "Calculus of Variations", Chapter 4, 1952.

NOMENCLATURE

$G(\zeta)$	=	defined in equation
H	$=$	bed height
ℓ	=	distance between inlet orifice and draft tube entrance
$M\left(\frac{z^{*}}{H}\right)$	$=$	spout momentum at z^{*}
P	=	total pressure
${ }^{*}$	-	$\Delta P_{m F}$
$\Delta P_{m F}$	$=$	overall fluidization pressure drop
ΔP_{T}	=	overall pressure drop across draft tube
ΔP_{2}	$=$	pressure drop for height, 2
7.	$=$	vertical coordinate measured from spout inlet
$2 *$	=	location of maximum axial pressure in the spout

Greek Symbols
5 - 2/4

TABLE :. VERIFICATION OF THE PRESSURE IOENTITY

2	$(-d P / d z)_{2=0}$	$(-d P / d z)_{z=H}$	$\Delta P / H-$ ExPt	$\Delta P / H$ - Predicted
$m m$	$k P a / m$	$\mathrm{kPa} / \mathrm{m}$	$\mathrm{kPa} / \mathrm{m}$	$\mathrm{kPa} / \mathrm{m}$
125	7.85	2.45	3.92	3.61
75	2.67	1.96	2.47	2.24
50	-0.20	1.96	1.66	1.50
80	3.20	1.00	1.28	1.47
80	2.29	0.75	1.12	1.08
80	1.71	0.65	0.81	0.88
80	0.60	0.50	0.52	0.52

TABLE 2. COMPARISON OF EXPERIMENTAL AND PREDICTION PRESSURE PROFILES IN THE DRAFT TUBE

Case 1

$\boldsymbol{\sigma}$	ΔP_{2} (Predicted)	ΔP_{2} (Experimental)
0.1	45	50.0
0.3	112	115
0.5	163	170
0.7	205	210
0.9	242	245
1.0	260	260

Case 2

$\boldsymbol{5}$	$\Delta P_{\mathbf{z}}$ (Predicted)	$\Delta P_{\mathbf{Z}}$ (Experimental)
0.2	37	42
0.4	71	74
0.6	103	104
0.8	133	139
1.0	164	164

Case 3

ζ	ΔP_{2} (Predicted)	ΔP_{2} (Experimental)
0.1	3.2	1.0
0.2	10.3	8.0
0.3	19.5	22.0
0.5	42.1	48.0
0.7	68.5	72.0
0.9	97.1	96.0
1.0	112.0	112.0

Blank

COMPUTER MODELINO OF DIESEL FUEL/FOG OIL SMORE CLOUD

Kenneth L. Evans
U.S. Army Chemioal Research, Development and Engineering Center

Aberdeen Proving Ground, Maryland 21010-5423, USA

Tate T. H. Tsang
University of Kentuoky
Lexington, Kentucky 40506-0046, USA

Abstract

The objective of this work is to study the offects of ambient temperature, atmospherio stability condition and particle size on the screenjug performanoe of diesel fuel and fog oil smoke. A first order olosure model is used to describe the turbulent diffusion of the smoke in the atmospheric surface layer. Mean values of wind speed erd diffusivity in the vertical direotion are obtained by the use of the Monin-Obukhov similarity theory. The two-dimensional cross-wind line source model also includes the aerosol kinetic processes of evaporation, sedimentation and deposition. Fifty-six case atudies were simulated on a supercomputer. Numerical results are in qualitative agreement with observations.

1. INTRODUCTION

Successful and reliable predictions of the effeotiveness of aerosol obscurants require quantitative understanding on many physico-chemical processes. Although field tests on the dispersion of an aerosol plume can provide invaluable information, they are expensive. Furthermore, data acquisition and analysis on the extinotion coefficient, wind :ilocities, ve tical diffusivity, temperaturs prorile, heat rlux, turbulence structure, particle aize ristribution and particle number concentration are formidable tasks. Thus, it is not surprising to learn that it took four years of preparation for several teams of investigators to obtain reliable miorometeorologioal data on turbulence structure in a conveotive boundary layer atudy in northwestern Minnesota (Raimal et al., 1976). In the light of this faot, computer modeling becomes a valuable and versatile tool to study the dispersions of a plume of volatile aerosol. Of course, the modeling work needs to be validated by reliable experimental data. In fart, modeling and field tests should complement each other and form an integral approach to provide reliable data base.

In this work, we are interested in the persistency of a volatile aerosol dispersed in the atmospherio aurface layer. For modeling purposes, this problem involves the transport of aurosol and the arosol kinetio processes. Transport of aerosol includes the processus of advection, diffusion, sedimentatiol, and deposition. Aerosol kinetio prooesses inolude particle growth by coagulation and condensation. It also includes particle ahrinkage by evaporation. Brook (1973) appeared to be the first inveatigator to combine the model for the transport of aerosol with the godel of aerosol kinetios. Some qualitative oonclusions were drawn for the partioulate pollution problem in an urban 01ty. First order turbulenoe olosure model (K-theory) was used in his formulation. Reoentiy, much progrese has been made in oomputer modeling of atmospherio turbulence by seoond order closure models (Donaldaon, 1973) and by Large Eody Simuletions (LES) (Wyngaard, 1984). In general, seoond order
olosure models and LES oan provide auob jore detailed inforention on turbulenoe atruoture than the Ktheory eodel, whioh is a mean fleld theory nodel for turbulence. Bowever, the oomputational costa for these sdvanoed turbulence modela are much higher than that for the K-theory model. Furthermore, aerosol kinetio processes have not been implemented in LES and second order olosure models. If these processes are included in these advenoed turbulence models, the computational costs would be prohibitive even on a supercomputer, ainoe hundrede of partial differential equations have to be solved (the time averaged depandent variable is $n(x, y, z, t, m)$, where $i s$ the mase of given size olass of an aerosol oloud). In this work, the E-theory model is used as alrst attompt to atudy the offecta of ambient temperature, atmospherio atability condition and the initial mean particle diameter on the dispersion of a volatile aerosol in the atmospheric surfaoe layer.

Tsang and Brook (1982a) simulated the dispersion of arosewind line souroe problem including the ooagulation of aerosol. Suoh work was extended to investigate the offeot of disposition and coagulation on the extinotion ooefficient of a soreaning smoke (Taang and Brook, 1982b). It was concluded that the eerosol kinetic processes of ooagulation and deposition have a profound offeot on the persistency of the soreening smoke. Later, Tang and Brook (1983a) studied the dispersion of a plume of volatile aerosol under neutral atmospherio stability oondition. The line source size distribution was oharaoterized by a \log normal distribution with souroe strength of 0.3307 g/(m. 800), geometric mean diameter of $0.6 \mu \mathrm{~m}$, and geometrio standard deviation of 2.2h. It was found that Galerkin Finite Element Mothod for evaporation and Orthogonal Collooation Mothod on Finite Elements for diffusion gave satisfaotory results for a heavy 013 with vapor pressure 9.6×10^{-6} mwig and a 1 ght oil yith vapor pressure of 1.5×10^{-3} anf. In this work, we simulate the diaperaion of volatile aerosol from line sources of higher souroe atrength, narrower aize diatribution, and more volatile compounds. Our objeotive is to study the offecta of ambient temperature, atmoapherio stability condition and mean partiole diameter on the persistenoy of the acreening smoke.

2. THEORY

The ateady state E-theory model in a aysten, whioh is spatialiy homogeneous in y-direotion (1.e., orosewind line souroe problem), oan be writton as,

$$
\begin{align*}
& u(z) \frac{\partial n}{\partial x}+\frac{\partial}{\partial m}[\psi n]=\frac{\partial}{\partial z} \quad u(z) \frac{\partial p}{\partial z}+o_{2}(n) \frac{\partial{ }_{p}}{\partial z} \tag{1}\\
& u(z) \frac{\partial_{n}}{\partial x}=\frac{\partial}{\partial z} u(z) \frac{\partial_{n}}{\partial z}-\frac{1}{c_{v}} \int_{0}^{\infty} \int_{\text {nde }}^{\infty} \tag{2}
\end{align*}
$$

Bquations (1) and (2) are subject to the following boundary conditions:

$$
\begin{equation*}
n=\frac{Q_{0}}{u(h)} \delta(z-h) n_{0}(m) \quad \text { at } x=0 \tag{3}
\end{equation*}
$$

$$
\begin{align*}
& \delta_{\delta}^{s}=1.0 \tag{4}\\
& \begin{array}{ll}
n \nabla_{d}=z_{s} \int_{n} & \text { at } z=0 \\
\delta_{B}=0 & \text { at } z=0
\end{array} \\
& \text { at } x=0 \text { and } 2=1 \\
& \text { at 2x日 } \tag{5}
\end{align*}
$$

In Equation (2.1), $n=n(m, x, z)$ is the number denaity runotion. $n(m, x, 2) d$ is the number of partioles having masses in the range m and $m+d m$ at downind position x at vertioal height 2 . $u(Z)$ is the wind profile. $\mathbb{(2)}$ is the diffusivity profile. $\mathrm{O}_{2}(\mathbb{m})$ is the gravitational setting velooity for the partiole with mase $m, C_{Z}(m)=P_{D} D_{D}{ }^{2} / 18 \mu$, where P_{p} is the partiole density, D_{p} the partiole diameter, g the gravitational acoeleration, and the viscosity of air. $\mathcal{Y}(\underline{m}, \mathrm{~s})$ is the oondensation/evaporation rate for a partiole with mass mandsaturation ratio s. sac/Cv, whore C and C_{v} are vapor concentration and equilibrium vapor conoentration, reapeotively, In Equation (1), adveotion, evaporation, diffusion and sedimentation processes are desoribed by these four terms acoordingly. Equation (2) is the mass balanoe of the evaporating speoies. The last term is the oontribution due to the evaporation of aerosol partioles. Equation (3) desoribes the oross-wind line source. Q_{0} is the souroe strength, n is the source beight. δ is the delta function and $n_{0}(m)$ is the source size distribution. In this work, log-normal distributions are used. In Equation (5), fis the thiokness of the atmospherio aurface layer. In Equation (6), ∇_{d} is the deposition velooity for partiole with wass m. Its numerical values dan be obtained from Sehmel (1980). For the ovaporation process, wo use the following approximate expression, due to Puchs and Sutugin (1971):

$$
\begin{equation*}
\psi(m, s)=4\left(3 / 4 \rho_{p}\right)^{1 / 3} \times D_{g J^{-1 / 3}} o_{v}\left(s-\theta^{10}\right) \times\left(1+\frac{1.33 x n+0.71}{1+\mathrm{Kn}^{-1}}\right)^{1} \tag{8}
\end{equation*}
$$

where the diffusion coefficient $D_{g j}$ of vapor g in host gas is related to the mean moleoular apeed $\bar{\nabla}_{j}$ and the mean free path L_{j} by $D_{g j}=\frac{1}{3} \bar{v}_{g} L$. In Equation (8), ρ_{p} is the partiole denaity; In the Knudsen number, $K=2 L_{j} / D_{p}$ i and D_{p} is the partiole diameter. Ke is the Kelvin number, $K e=4 v / D_{g} k T$. Y is the surface tension, v the partiole's moleoular volume, and kT the thermal energy.

Som of the important observables of $n(m)$ are the total partiole number conoentration N, $N=\int_{0}^{\infty} n(a) d a$
the partiole mase oonosntration M ,
$M=\int_{0}^{\infty} \operatorname{man}(\mathrm{m} ;$
and the total extir.ction coeffioiont $\sigma_{\text {ext }}$, obtained from the normalized extinotion effioienoy $Q_{\text {ext }}$ ($\mathrm{P}, \mathrm{m}, \lambda$) (Bohren \& Huffman, 1983):
$\sigma_{\text {ext }}(p, m, \lambda)=\left(\frac{3}{4} p_{p}\right)^{2 / 3} \int Q_{\text {ext }}(p, m, \lambda) m^{2 / 3} n(m, t) d m$
where p is the refractive index of the aerosol under the irradiation of an electromagnetio beam of wavelength λ.

The stability of the atmosphere on be classified into six difforent Pasquill stability classes (Pasquill, 1961; G1fford, 1976). Classes A through C represent unstable atmospherio oonditions. Cless D represents neutral condition, and olasses E and F represent atable atmosphere. The wind profile-plux relationshipa depend atrongly on the atmoapheric stability.

For the numerioal solution of Equations (1) and (2), data for the wind profile $u(z)$ and the vertical diffusivity profile $\mathrm{K}(2)$ must be known. These data in the atmospherio surface layer can be provided by extensive measurements, by the advanoed turbulence models suoh as LES or by the wollknown Monin-Obukhov elmilarity. Lamb (1979) used the wind profile obtained from LES to oaloulate the dispersion of a contaminant in a oonveotive boundary layer. Alternatively, if the friotion velooity μ_{0}, the Obukhov length L and the surface roughness z_{0} are known, $u(z)$ and $K(2)$ oan be obtesned from a givon interpolation formula, wioh oan fit the mioro-meteorologioal data.

For adiabatio surface layer (neutral atmospherio oondition), the wind profile oan be desoribed by the well-known logarithmio wind profile, whioh has been verified experimentaliy. In this work, the wind profile and the diffuaivity profile under neutral atmospherio atability condition were taken from Panosky (1974) and Smith (1975), respeotively.

Por diabatio surface layer, it is 000 mon practioe to analyze the wind profile in terme of the dimensioniess wind shear, $\boldsymbol{p}_{\text {m }}$ as,

$$
\begin{equation*}
\phi_{ \pm}=\frac{k z}{u_{0}} \frac{\partial u}{\partial z} \tag{12}
\end{equation*}
$$

In Monis-Obukhov similarity theory, $\boldsymbol{\phi}_{\mathrm{m}}$ is a funotion of the dimensioniess height $\mathcal{\xi}, \boldsymbol{\xi}=2 / L$. In this work, we use the interpoiation formula proposed by Businger et al. (1971):

$$
\begin{align*}
& \phi_{m}=(1-15 \xi)^{(-1 / 4)} \tag{13}\\
& \phi_{\mathrm{h}}=0.74(1-9 \xi)^{(-1 / 2)}
\end{align*}
$$

$\xi<0$
Unstable
Condition
and

$$
\begin{array}{ll}
\left.\phi_{m}=1+4.7\right\} & \left\{_{n}=0.74+4.7\right\} \tag{14}\\
\phi_{n} & >0 \\
\text { stable } \\
\text { Condition }
\end{array}
$$

where h is the dimensionless temperature gradient defined as,

$$
\begin{equation*}
h=\frac{k z}{\theta} \frac{\bar{\theta}}{2} \tag{15}
\end{equation*}
$$

o is the mean potential temperature and 0 . is the sealing temperature, $\theta_{0}=-w^{\top} T^{\top} / U$ WT'/ $\mathbf{u s}^{\prime}$.

At neutral atmospheric condition $(\xi=0)$, Equations (13) and (14) give $\phi_{m}=1$, which corresponds to a logarithmic wind profile. The eddy diffusivity for heat transfer in a diabatio layer is given by,

$$
\begin{equation*}
k_{h}=\frac{k u_{0} z}{\phi_{h}} \tag{16}
\end{equation*}
$$

In air pollution study, it is a common practice to use the eddy diffusivity for heat and mass transfer interchangeably.

Equation (ic) with Equation (13) or (14) an be integrated to give the wind profiles for unstable and stable atmospheric conditions (Paulson, 1970).

$$
\begin{equation*}
\frac{u(z)}{u_{0}}=\frac{1}{k}\left[\ln \left(\frac{z}{z_{0}}\right)-Y_{1}\right] \quad \xi_{\substack{\text { Unstable } \\ \text { Condition }}}<0 \tag{17}
\end{equation*}
$$

Where $1=2 \operatorname{in}[(1+\bar{x}) / 2]+\ln \left[(1+\bar{x})_{2} / 2\right]-2 \tan _{-1}(\bar{x})+\pi / 2$ and $\bar{x}=\left(1-15 \xi_{1}^{(1 / 4)}=\phi_{0}^{-1}\right.$. Also,

$$
\begin{equation*}
\frac{u(2)}{u_{0}}=\frac{1}{k}\left[\ln \left(\frac{z}{z_{0}}\right)+4.7 \xi\right] \quad \sum_{\substack{\text { Stable } \\ \text { Condition }}} \ldots \tag{18}
\end{equation*}
$$

Use of Equation e (13), (14) and (16) provide the following diffusivity profiles in adiabatic surface layer,

$$
\begin{equation*}
x(z)=\frac{k y_{1} \frac{z}{4}\left[1-9 \frac{\left(z+z_{0}\right)}{0.7}, 0.5 \quad \mathcal{E}_{\substack{\text { Unstable } \\ \text { Condition }}}<0\right.}{} \tag{19}
\end{equation*}
$$

A180,
$x(z)=\frac{k u_{0} z}{0.74+4.7\left(2+z_{0}\right) / L}$
$\xi>0$ Stable. Condition

In this work, Equations (17) and (19) are used to oaloulate the wind and diffusivity profilea for unstable atmospherio conditions, whereas Equations (18) and (20) are used for atable atmospherio oonditions. The surface roughness, Z_{o}, is ohosen to be 6 om , whioh oorresponds to a field of uncut grass, unharvested orops and sorub (Deacon, 1949). For unstable stability condition of olass B and stable oondition of class F, we used Oolder's plot (1972) which anows the relationship between Pasquili's turbulence types as a function of the Monin-Obukhov length L and aurface roughneas I_{0}. In sumwary, for stability olass B, we obose the Moain-Obukhov length L to be -16.67 mand the friotion velocity u, to be $0.26 \mathrm{~m} / \mathrm{s}$. These are typioal experimental values for aconveotive boundary layer aubjooted to unstable atmospherio oonditions (Kaimal ot al., 1976). For stability olass F, we used the values of 16.67 m and $0.13 \mathrm{~m} / \mathrm{s}$ for the Obukhov length and friotion velooity, reapeotively. Agein, these values are typioal of a stable boundary layer (Caughey ot al., 1979). The wind profilea and the diffusivity profiles for stability olasses of B, D and F are in qualitative agreoment with Smith's result (1975).

3. RESULTS ARD DISCOSSION

Numerous case atudies were carried out to investigate the offects of ambient temperature, atmospheric stability condition and the initial mean partiole size on the diaperaion of a plume of volatile aerosol. Simulated heavy 011 (Fog 011) and light 011 (a diesel fuel) are used to atudy the effeot of volatility of different ohemical compounds on the total extinction ooeffioient. A line souroe of constant strength of $0.5464 \mathrm{~g} / \mathrm{m}$ seo is used for all simulations. It is assumed that the aerosel generated by the near gorund source oan be oharaoterized by log-normal diatribution. The geometrin mean partiole diameter of the souroe is elther 0.5μ m or $2 \mu \mathrm{~B}$, and the geometrio atandard deviation is 1.4. Table 1 suamarizes the physical properties of the fog 011 and the diesel fuel used in this study.

The wothod of fraotional staps is used for the numerioal solution of Equations (1) and (2). Orthogonal collooation on finite elemente (O.CF.E.M.) is used for vertioal diffiolon. Three finite elements are used in the 2 direction. Six interior oollooation points are used within eaoh element. Shifted Lengendre polynomial is used in the oollocation sethod. Tsang and Brook (1982a) tested the O.CPB.M. method for different oross-wind line souroe problesa. They shoued that O.C.F.E.M. provided more acourate results than the oentral finite difference method.

The numerioal solution for the evaporation of an aprosol oloud is a formidable job. Most numerionl methode for the evaporation process auffer either epurious oscillation or numorionl diffusion. Spurious osoiliation manifosta itsealf an the dependont variable osolllates between
poaitive and negative values of almoat the aame order of magnitude over some region whereas numerical diffusion lowers the peak value of the diatribution. Obviousiy, both apurious oscillation and numerioal diffusion are undssirable in the evaporation/oondensation of aerosols.

Daing a Galorkin Pinite Element Mothod (GF.B.M.) with natural boundary condition, Tsang and Brock (1983b) were the first to provide acourate results for evaporation of aerosol of low volatility (The vapor pressure of a oompound is a measure of its volatility.). For oompounds of higher volatility, the GF.B.M. falls beoause of severe spurious oscillation. The extinotion ooefficient and the number conoentration oaloulated from Equations (11) and (9) will be orroneous. Tsang and Lorgeonkar (1987) devised a novel numerioal soheme which oombiaed the positive definite method by Smolarikiewioz (1984) with the GF.E.M. It is found that the novel numerical soheme can remove most the spurious osoillation, and the numerical results compare favorably with the cases for whioh analytioal solutions are available. In this work, the OF.B.M. method is used for the evaporation of the fog oil and Tsang and Korgaonkar's numerioal soheme is used for the evaporation of the diesel ruel.

Simulations were carried out on a veotor supercomputer, CYBRR 205. An unvectorized version runs approximately 1.5 - 2 times faster than soalar mainframe oomputers, such as IBM 3081 and CYBER 175. In this work, veotorization is done by VAST, an automatio veotorizor by Pacific-Sierra Research Corporation. It was found that veotorization speeds up the oomputation, and a typioal simulation on CYBER 205 is six to ten times faster than IBM 3081.

Pigure 1 shows the isopleths of the total extinotion ooeffioient for a plume of fog oil smoke at 60° F under neutral atmospherio oonditions (stability olase D). The initial mean particle diameter is $0.5 \mu \mathrm{~m}$ and the wavelength of irradiation $1 \mathrm{~s} 0.5 \mu \mathrm{~m}$. Also shown in the figure are the 1sopleths for the smoke pluwe at the same ambiont temperature but under diferent atsospheric stability oonditione. It is obvious that more amoke is dispersed upward for unstable atmospherio condition (atability olass B), and the soreening effeot of the amoke for atable atmospherio oondition (atability olasa f) is far sore persiatent than that for the neutral ateospherio oondition. The extination coeffioient ext is a easure of the persiatonce of the smoke plume. This cen be explained by the faot that the vertioal diffusivity $\mathrm{X}(\mathrm{Z})$ for atability olass B is aeveral times higher than that for stability olass D. The latter is also several times higher than the diffusivity for stability class F. Notioe aloo that at hisher temperature of $80^{\circ} \mathrm{F}$, the spoke becosec less persistent beoause of the higher evaporstion rate.

Plgure 2 shows the isoplotha for the aame oase studiea in Figure 1 exoept that the wavelength of irradiation is $3 \mu \mathrm{~m}$. of partioular importanoe is the fact that the $\sigma_{\text {ext }}(\lambda=0.5 \mu \mathrm{~m}$) in Pigure 1 is about 200 tises higher then the $\sigma_{\text {ext }}(\lambda=3 \mu \mathrm{D})$ in Figure 2. This 1a due to the fact that for
partioles smaller than $0.5 \mu \mathrm{~m}$, the normalized extinotion offioienoy for irradiation with wavelength $0.5 \mu \mathrm{~m}$ is one to two orders of magnitude higher than that for irradiation with wavelength $3 \mu \mathrm{~m}$.

For $2 \mu \mathrm{~m}$ partioles, Figure 3 oompares the persistenoy between the fog 011 and the diesel fuel amoke. Obviously, the fog ofl smoke is nore persistent than the diesel fuel smoke, $\sigma_{\text {ext }}$ (fog oily ext (deisel fuel) $=10$. This oan be explained by the fact that the diesel fuel is muoh more volatile than the fog 0il. Evaporation braadens the partiole size distribution and lowers the number oonoentration. Comparison of the extinotion coeffioient isopletha in Figures 3 and 4 shows that they are not muoh different from each other. It is beoause of the fact that the ohange of the partiole aize distribution due to the ovaporation of $2 \mu m$ partioles is gradual and the normalized extinction efficiency approaches the geometrio limit of two. It should be pointed out that the same source strength is used for all the case studies. Comparison of Figures 1 and 3 shows that for the same source atrength of fog oll smoke, the extinotion ooeffioient for $0.5 \mu \mathrm{~m}$ particle is only 1.5 times higher than that for $2 \mu \mathrm{~m}$ particles, oven through the number concentration for $0.5 \mu \mathrm{~m}$ partiole at the source 18 about 64 times higher than that for $2 \mu \mathrm{~m}$ partioles. It is because smaller particles evaporate faster and thus disappear sooner then larger partioles. For the near-infrared irradiation of $3 \mu \mathrm{~m}$, comparison of Figures 2 and 4 shows that for the same source atrength of fog 011 smoke, $2 \mu \mathrm{~m}$ partioles are almost one hundred times more persistent than $0.5 \mu \mathrm{~m}$ particles. Again, it is due to tho erfect of evaporation.

Figures 5 and 6 demonstrate the most adverse offeot due to the atmospherio oondition. For stability class B, the smoke is dispersed upward and the ovaporation rate for 0.5μ in particle at $80^{\circ} \mathrm{F}$ is very high. For this oase study, oven the fog oil aerosol oloud does not form a persistent screen.

4. CONCLOSIONS

The ambient temperature, the atmospheric atability oondition and the initial partiole size have profound effects on the behavior of a volatile aerosol plume dispereed in the atmospherio surface layer. In general, evaporation beoomes inoreasingly important as the abient temperature inoreases and the intial partiole aize deoreases. The amoke forme more persistent soreen in the stable atmosphere. Its persistency deoreases in the unstable atmoaphere beosuse muoh smoke is diapersed upward. Also, smoke partioles generated by leas volatile oompound are far aore peraistent than those generated by more volatile oompound.

REFERENCRS

Bohren, C. F., and Ruffman, D. R. (1983): Absorption and Soattoring of Light By Small Partiolea. Jobn Wiley and Sons, Hew York.

Brook, J. R. (1973): Faraday Symposium No. 7, "Fogs and Smokea", Chemical Soolety, London.
Businger, J. A., Wyagaard, J. C., Izumi, Y., and Bradiey, B. F., (1971): J. Atmos. So1, 28, 181189.

Caughey, S. J., Kygaard, J. C., and Kaimal, J. C., (1979): J. Atmos. Sole, 16, 1041-1052.
Desoon, B. L., (1949): Q. J, R. Meteorol, So0., 15, 89-103.
Donaldson, C., (1973): In Workshop on Miorometeorology (D. A. Haugen, ed.). Amer. Meteorological Soo., Boston.

Puohs, N. A., and Sutugin, A. G., (1971): In Topios in Current Aerosol Researoh (O. M. Hidy and J. R. Brook, eds.). Pergamon, Oxford, Vol. 2, 1-60.

01fford, F. A. Jr., (1976): Muolear Safoty, 11, 68-86.
Colder, D., (1973): Boundary Leyer Motoorology, 3, 47-58.
Laimal, J. C., Wyngard, J. C., Haugen, D. A., Cote, O. R., Iqumi, Y., Caughey, D. J., and Readings, C. J., (1976): J. Atmos, So1., 33, 2152-2169.

Lamb, R. G., (1978): Atmospherio Environment, 12, 1297-1304.
Panofaky, H. A., (1974): Ann. Roview Pluid Meoh., 6, 147-177.
Pasquill, F., (1961): Moteorol. Mage, 20, 33-49.
Paulson, C. A., (1970): J. Applied Meteorologl, 2, 857-864.
Sehnel, O. A., (1980): Atgospherio Environeent, 14, 983-1011.
Smith, F. B., (1975): So1, Proge, 62, 121-151.
Smolarkiewioz, P. K., (1984): J. Comp, Pbya, 54, 325-362.
Tsang, T. H., and Brook, J. R., (1982a): Atpospher10 Environsent, 16, 2229-2235.
Tsans, T. H., and Brook, J. R., (1982b): Applied Optios, 21, 1588-1592.
Teang, T. H., and Brock, J. B., (1983a): Lorosol Solepoe and Teopnolegy, 2. 429-436.
Tsang, T. H., and Brook, J. A., (1983b): Lergsol Solenoe and Teomnolory, 2, 311-320.
Tsang, T. H., and Iorgaonkar, N., (1987): "Effeot of Evaporation on the Extinotion Coeffiaient of an

Wyngaard, J. C., (ed.), (1984): DTIC, AD-A146381.

Density		For 011	Diesel Fuel
	$40^{\circ} \mathrm{F}$	0.9050	0.8664
($\mathrm{g} / 0 \mathrm{~m}^{3}$)	$60^{\circ} \mathrm{F}$	0.8894	0.8500
	$80^{\circ} \mathrm{F}$	0.8679	0.8285
Vapor Pressure	$40^{\circ} \mathrm{F}$	7.32×10^{-7}	3.41×10^{-3}
(${ }^{\text {m }} \mathrm{Hg}$)	$60^{\circ} \mathrm{F}$	4.16×10^{-6}	1.048×10^{-2}
	$80^{\circ} \mathrm{F}$	2.0×10^{-5}	2.90×10^{-2}
Surface Tension	$40^{\circ} \mathrm{F}$	23.56	27.21
(dynes/om)	$60^{\circ} \mathrm{F}$	22.97	26.42
	$80^{\circ} \mathrm{P}$	22.38	25.63
Refraotive Index	$=0.5 \mu \mathrm{~m}$	1.513	1.467
	$=3.0 \mu \mathrm{~m}$	1.489-0.0021	1.411-0.0051
Molecular Height ($\mathrm{g} / \mathrm{mole}$)		330	220

Figure 1. Isopleths of Total Extinotion Coefficient $\sigma_{\text {ext }}$ in a Plume of Fog oil Lerosol at $60^{\circ} \mathrm{F}$ and Stability Class D. The Initial Mean Partiole Diameter $1 s 0.5 \mu \mathrm{~m}$. The Wavelength of Irradiation 1s $0.5 \mu \mathrm{~m} . \sigma_{\text {ext }}$ in $0 \mathrm{~m}^{-1}$ are Equal to the Values Given on Iaopletha Times 5×10^{-5}.

Figure 2. Isopleths or Total Extinotion Coefficient $\sigma_{\text {ext }}$ in a Pluve of Fog 011 Aerosol at 60° F and Stability Class D . The Initial Mean Particle Diameter is $0.5 \mu_{\mathrm{m}}$. The Wavelength of Irradiation is 3.0μ m. $\sigma_{\text {ext }}$ in om ${ }^{-1}$ are Equal to the Values Given on Isoplethe Times 5×10^{-6}.

Figure 3. Isopleths of Total Extinction Coerficient $C_{\text {ext }}^{-}$in a Plume of Fog 011 Aerosol at $60^{\circ} \mathrm{F}$ and Stability Class D. The Initial Mean Particle Dlameter is $2.0 \mu \mathrm{~m}$. The Wavelength of Irradiation $1 \mathrm{~s} 0.5 \mu \mathrm{H} . \sigma_{\text {ext }}$ in cm^{-1} are Equal to the Values Given on Isopleths Times 5×10^{-5}.

Fisure 4. Isopletha of Total Extinotion Coefficient $\sigma_{\text {ext }}$ in a Plume of Fog 011 Aerosol at 60° p and Stability Class D. The Initial Mean Partiole Diameter is $2.0 \mu \mathrm{~m}$. The Wavelength of Irradiation is $3.0 \mu \mathrm{~m}, \sigma_{\text {ext }}$ in $0 \mathrm{~m}^{-1}$ are Equal to the values Given on Isopleths Times 5×10^{-6}.

Figure 5. Isopleths of Total Extination Coefficient $\sigma_{\text {ext }}$ in a Plune of fog 011 ferosol at $80^{\circ} \mathrm{p}$ and Stability Class B. The Initial Mean Particie Diameter is 0.5μ. The Wavelength of Irradiation ia $0.5 \mu \mathrm{~m}$. $\boldsymbol{\sigma}_{\text {oxt }}$ in ome are Equal to the Values Oiven on Isopleths Tines 5×10^{-5}.

Figure C. Isopleths of Total Extincion Coefficient $\sigma_{\text {ext }}$ in a Plume of fog 011 Aerosol at $80^{\circ} \mathrm{F}$ and Stability Class B. The Initial Mean Partiole Diameter is $0.5 \mu_{\mathrm{m}}$. The Wavelength of Irradiation $1 s 3.0 \mu \mathrm{~m}$. $\sigma_{\text {ext }}$ in $o \mathrm{~m}^{-1}$ are Equal to the Values Given on Isopleths Times 5×10^{-6}.

X-RAY FLUORESCENCE DETECTION OF MEDIUM ARD HIGH Z Z AEROSOLS
 George M. Thomson and Richard A. Markland U.S. Army LABCOM Ballistic Research Laboratory: Aberdeen Proving Ground, Maryland 21005
 Sandra M. Thomson
 U.S. Army AMCCUM Chemical Research, Development arid Engineering Center Aberdeen Proving Ground, Maryland 21010

recent publications, submittals, for publication and presentations;

G. M. Thomson and S. M. Thomson, Proc. of $1 \times$ Smoke Symposium e Techerdport AMCPM-SMK-T-001-85; Vol 1, page 123; Adelphi, MO (1985).

ABSTRACT

Continued development of a device that measures the concentration of individual elements with atomic number $z>20$ contained within aerosol dust or smoke particles/droplets is reported. The device separates out the aerosol's nongaseous components by pumping it through a section of a tape made of filter paper. After gathering particles for a fixed period of time the tape advances, forcing a new section to intercept the airstream while bringing the exposed section in frat of a $25 \mathrm{mci} \mathrm{Cd}-109$ radioactive source. The source bombards the tape's contents with" 2 द-keV x-rays. These, in turn, induce fluorescence in the trapped atoms, that is, they cause the atoms to emit x-rays of their own at lower, but still easily measurable (if $2>20$), characteristic energies. A spectral analysis of the fluorescent x-rays provides raw data that reveals the abundance of each individual element in the derosol simultaneously. Note that the x-ray method is independent of the state of chemical combination of the species in question. A prototype device has. been tested on aerosols containing elements such as uranium, iron, tungsten, copper, lead and zinc. For all these materials it readily detected concentrations of 20 micrograms per cubic meter or less in periods of three minutes. At concentrations in the few milligiam/cubic meter range measurement times of a minute or less were easily achieved. A second generation system is dow in the final stages of construction which consists of three parallel-operating samplerganalyzers controlled by a single processing unit. The completed system will be used to monitor levels of potentially hazardous dusts at BRL indoor firing ranges.

1. INTRODIKTION

In this presentation we report continued progress in development of a monitor to assess the concentration of medium to high atomic number elements appearing as aerosolized particles. The device couples a state-of-the-art microanalytical technique, x-ray fluorescence, to automatic sampling in order to obtain high sensitivity, reliability, and species selectivity; all in a format that may be adapted to a wide variety of problems. At the limits of its sensitivity it can measure concentrations as low as several micrograms per cubic meter in three minutes or less. For the higher concentrations typical of obscuration, large reductions in response time are realized and different, simpler, forms of the basic method may be possible. The x-ray fluorescence dust detector has potential uses wherever airborne dusts containing copper, lead, cadmium, mercury, tron, or a host of other elements may be encountered. In the following few pages the detector's overall features, capabilities, as well some of its potentials for future use in obscuration are di, cussed. The basic principles of this device were introduced in a paper which described our

$$
\begin{aligned}
& \text { BEST LOOPY } \\
& \text { AVAILABLE }
\end{aligned}
$$

first prototype device (Thomson and Thomson 1985). This report both updates efforts to install a detection system to protect BRL workers from hazaraous depleted uranium dusts derosolized during munitions testing and reviews some of the most important features of fluoresence detection.

2. THE APPARATUS

To understand how the detector works examine figure 1, a layout drawing of its component parts. The first stage of operation starts when a mechanical plimp araws air from the test region through a connecting pipe at a flow rate that may be adjusted from between 0.0 and U .1 cu . meters/sec. In the pipe the air is intercepted by a tape of filter paper (Schlefcher and Schuell type 6U4) which traps and holds any significant particles with a minimum of flow resistance. Sample accumulation continues until a given volume of air has passed. At this time the exposed tape advances into the radiation field of an annular x-ray-emitting 25 millicurie Cadmium-lug radioactive source and a new section of tape moves into the airstream. The x-rays produced by the radioactive source have a well-defined energy near 22 keV . When tney impinge on the atoms in the collected sample material, the sample atoms fluoresce, that is, they produce x-rays of their own. The fluorescent x-rays also possess well-defined energies which are characteristic of the prossing specie's.

Figure 1. A component layout of the x-ray fluorescence dust detector.

It is this quality that is used to identify the elemental species in the derosol. As examples, if the source x-rays impact on iron, fluorescent x-rays are produced with eneryies of 6.4 keV and 7.1 keV , while, if the target is uranium, fluorescent x-rays are emitted at $13.6 \mathrm{keV}, 17.2 \mathrm{keV}$, and 20.1 keV. Reyardless of what elements yave rise to them, any fluorescent x-rays passing through the annular source's center strike a proportional counter (Reuter Stokes P3-0803-294). This device generates fast electrical pulse whose height is proportionai to energy of the x-ray. Pulses from the proportional counter in turn are directed into a multichannel analyzer where they are sorted out by pulse height/x-ray energy. The counts under each peak stored in analyzer memory are indicative of the abundance of the corresponding element in the sample. It is this quantity that forms the essential output of the detector. If its numerical value exceeds some preselected value, one can have the analyzer triyger an alarm or exert some other control. An example of a multichannel analyzer pulse height spectrum for an iron sample is shown in figure 2 along with a similar spectrum acquired from the tape alone. The large low energy peak corresponas to iron K characteristic x-rays.

rIGUKE 2. The output of the multichannel analyzer when 1 my of iron is arcumulated on the tape (upper curve) is shown along with like data from a tape without iron (lower curve). The low energy peak is from iron $K x$-rays, while the high energy peak is due to source x-rays that have Dackscattered from the tape.

Recently we have constructed a system for sampling aerosuls cintaining depteted urantua ands created within BRL's indoor firing ranges. It consists of three parallel-operating sapleps controlled by a single digital control unit. The control is capable of sequencing the samplers after a user selectable ammount of time or number of counts. Tin cintiat of ach sampler is stored In one segment of the memory of a multichannel analyzer. From the mamory the counts corresponding to any elements in any chosen sampler can be singled out and sent to a computer. Provision is also made for immediate display of any one element from each sampler disectly on the control panel. Figure 3 shows a photo of the control unit and one sampler. in riormal operation they would be separated by up to 150 feet with the sampler located close to the potentialiy hazardous aerosol, and the controller in the operating area.
2. ANALYSIS

In order to use the data it is essential to relate the observed counts corresponding to one Iine of a given element N to that element's concentration in the target aerosol C. First, one must subtract from the raw data those spurious counts produced by source x-rays backscattering. Inelastically from the paper tape and sample. The tape's contribution is found by counting an unexposed section of tape for an equal lenyth of time, while the salifle's must be interpolated from the non-peak portions of the spectrum. Having obtained a value for H, we cari use the expression:

Figure 3. A photograph of the aerosol monitor apparatus.
where V is the volume of air passed through the sampler during the user chosen sampling/counting interval, $t ; E$ is the system trapping efficiency, the fraction of the particles entering the inlet at end up adhering to the tape; a is the source activity; and k is the sensitivity. The latter quantity relates the mass of the souyht-for element deposited on the filter tape to the counts found in the selected spectral region during a unit time as normalized to a standard source activity. The sensitivity takes into account the source-target-detector yeometry, the detection efficiency, and the overall x-ray fluorescence physics.

Vetermination of V is usually a straightforward problem. E and k, on the other hand, are considerady more involved. Assessment of E has to be performed for each individual situation. One must be careful to insure that the sample is representative, that particles are not deposited in the flow path components, and that the filter paper is fine enough to trap all particle without undue restriction of flow volume. Turning now to the second quantity k, we have measured it by carefully prepariny filter tape sections with a known amount of the elemental spectes in question deposited in a yeometry which is as close as possible to that latd down by the sampler. This calibration sample is then counted by fluorescence for a given period of time. Results of this kind are shown in fiyure 4 for uranlum. Similar determinations have deen successfully carried out for iron.

3. RESULTS

In range tests at the Ballistic Research Laboratory a prototype has detected and reported uranium levels of about 6 microyrams per cubic meter in sampling times of about 3 minutes with a 2:l signal to nolse ratio (S / N). For the case of iron, a similar test series was carried out in a chamber at Chemical Researen and Development Center. The limit of detectability was tound to be about 20 micrograms at a $2: 1 \mathrm{~S} / \mathrm{N}$. At higher concentrations, in the millyram per cubic meter ranye, the sampling time could de reduced to less than a minute. Other tests reveal sensitivities similar to iron for copper, chromium, zinc and nickel. The apparatus exhiotited other features that can be useful in obscurant situations. For example, in tests at a welaing snop, the detectur was able to pick hundred microgram per cubic meter iron fumes out of smokes having much nigher concentraitons of lower L materials formed from solvents and fluxes. This result implies that tagying of oil-based or other low 2 obscurants with hiyner 2 materials may be useful. Indeed the multi-element capability of the fluorescence method may lend itself to multiple tayying schemes in wnich the output of aifferent generators coula be inatvidually identified in near-real time.

FIGURE 4. A piot of the fluorescent x-ray counts observed in 400 seconas while various amounts of uranium are bombarded with x-rays from a Ca - 109 source. The line shows a least squares fit to the measured points.

Recently we have have deen carrying out experiments to ascertain whether or not one could dispense with the pamps and filter paper needed to concentrate particulates in thin aerosols when working with dense obscurants. Such a device would irradiate the aerosol cloud in-situ and consequentily de far simpler to Duild, operate and control. It appears that tur concept is feasible if one substitutes an electron-impact type x-ray source for the radioactive source. A forthcoming paper will aiscuss direct fluorescence in detail.

4. CONCLUSIONS

The apparatus as several qualities which may be important advantayes over other means of aerosol assessment.
(a). Assessment is virtually real-time. Fluorescence gives results within minutes after sampling begins when concentrations are near its sensitivity limil. The delay reduces to several seconds when higher doses are encountered such as in obscuration.
(b). The unit is completely self-contained. All functions are carried out in one unit, on site, with a minimum of operator intervention.
(c). The detector can be used on many elemental species. It signals the presence of any element with $Z>20$ existing as a solid or as a droplet. For obscurants that do not contain elements in this range, the extreme sensitivity permits use of small quantities of heavier tagging elements.
(a). Response is virtually independent of the state of chemical combination of the element scrutinized. It provides a reliable measure of how much of a yiven material has gotten airoorne. Combined with absorption measurements, it can reveal an obscurant's efficiency.
(e). The method has multiple species capability. The BRL apparatus can simultaneously monitor one, two, or several different elemental species either individually or collectively. It permits the tayging of individual obscurant generator output and the evaluation of their separate contributions to clouds produced by multi-generator arrays.
(f). X-ray fiuorescence is flexible. It can be adapted to a wide ranye of derosol characterization tasks involving concentration levels from more than grams down to microyrams per cubic meter and it lends itself to rugged designs suitable for tiela use.
(g). Results can be easily put on a quantitative footing through a simple calibration procedure that requires only a few minutes.
(n). The equipment required is not particularly hazardous. Uf course, some care must be exercised in dealiny with the radoactive sources, but in all cases the x-rays involved are not very penetrating and can be shielded easily.

Department of Chemistr.
The Pennsylvania State Universily
iniversity Park. PA 16802

recent publications, sebmitals fog :lblication and presentations:
A) A. W. Castlewan, Jr., S. Morgan, P. D. Dao, D. Echt, and R. G. Keesee, "The Relation of Cluster Dissociation, Magic Numbers, and Chermodynamic Stabilities: Consideration of Ammonia Clusters Stidied Via Multiphoton Ionization," J. Chem. Phys., submitted.
B) S. Morgan, K. G. Keesee, and A. W. Castleman, Jr., "Studies of Clusters Using Laser Techniques: Dissociarion Processes of Methanol Clusters Following Multiphoton Ionization," Proceedings of the 1986 CRDC Crinference on Obscuration and Aerosol Research, June, 1986.

ABSTPACT

The digtributions and di:socintion of ammonla cluster lons forsed via multiphoton lonization of

 considerations based ol tieorles of aninolecular decomposition in conjunction with thermochemical data avallable for the amonla systen.

INTRODUCTION

Studies of the dyini...: fivimaion, energetics, and structure of microclusters enahle an
 several new experimentat lec?uses provides methods for ascertaining che factors controlling the formation of prenuclestion emint liefir stability, and the influence of their properties on

 particle.

A subject of considerabl: Litctest in the fleld of eluster research concerns the orlgin of magic numbers, a term which has bec: used to describe the anomalous abundance of certain sizes of clusters In an otherwise smoothly atylar cluster distribution. A systematic srudy of the dissociation of ammonia clusters followiti: their lonization by multiphoton laser techniques provides direct proof of the importance of the ri: \because : l.ly of the cluster ions and of the extensive dissociation processes which affect the resuitir, finst:- distributions.

It is evident that ti:e inatzatlon plycess itself has influence on the observed magic numbers. Considerations prese:t. $:$ irfirin account for the appearance of magic numbers, their correapondence with the thermodynamicf! $t: ;: 1: y$ of clus.ors, and the trends of metastable dissociation rates with cluster aize.

EXPERIMENTAL

The apparatue used in these studies has been described in detail elaewhere. $\mathbf{1 , 2}$ Hence, only a brief description of the featuree relevant to the present etudy are given. Neutral amonia clueters are formed in the supersonic expansion of gaseous ammonia from pulsed nozele source. The molecular beam is crosed by laser beam from a Nd:YAG pumped dye laser, equipped with a wavelength extension syatem which provides frequency doubling and mixing capabilities.

In the present study, neutral clusters of NH_{3} are ionized via non-resonant multiphoton absorption at the focus of pulsed 266 nm wavelength laser beam. Ions formed are then accelerated in an electrostatic field to approximately 2 KeV , deflected by a few degrees in a transerse field in order to separate the ion and neutral beams, and subsequently detected by a particle multiplier. The reflectron is employed to separate daughter and parent lons in order to measure rates of dissociation. The tlme-of-filght apectrum of the ions is digitized and signal averaged in a transient recorder.

RESULTS AND DISCUSSION

An extensive investigation of the unimolecular (evaporative) dissociation of ammonia cluster lons has been conducted. A trend of increasing evaporative rate coefficient with cluster size is found for the loss of one monower unit from clusters ranging in size from the $1-25$ mer as shown in Figure 1.

Based on a simple RRK treatment of unimolecular rates ${ }^{3}$ the diesociation rate constant would decrease with the number of oscillators if the energy content of the system was a fixed value. The limiting rate constant may be expressed in the form of Arrhenius equation

$$
\begin{equation*}
k=A e^{-E_{0} / k T} \tag{1}
\end{equation*}
$$

Hence, In the case of a thermal distribution, clusters with low bond energies should display larger rates of dissociation.

Another eosentially equivalent way of viewing the origin of the magic nusbers follow from consideration of clustering equence:

$$
\begin{equation*}
A_{n-1} \xrightarrow{A} A_{n} \xrightarrow{A} \rightarrow A_{n+1} \tag{2}
\end{equation*}
$$

In the case of sthermal distribution of clueters the equilibriun constant for each etep is given by the ratio of the forward and reverae rate conetants. Since the rates of the forward reactions and entropy values of adjacent clustere do not vary greaty with cluster size for soderate and large cluster Lone, 4,5 they may be taken to be approximately conatant. Therefore,

$$
\begin{equation*}
\frac{k_{r, n+1}}{k_{r, n}}=e^{-\left(\Delta H_{n-1, n}-\Delta H_{n, n+1}\right) / R T}=e^{-\Delta\left(\Delta H_{n}\right) / R T} \tag{3}
\end{equation*}
$$

This leads to a simple prediction, namely, for a thermal population, the relative diseociation rates of clusters of adjacent size should increase with cluster size. Work is in progress to assess whether these relationshipa pertain to the description of dissociation dynamics following cluster ionization.

Studies of ammonia clusters by electron impact ${ }^{6}$ and multiphoton ${ }^{1}$ ionization methods ahow that there is a mooth distribution of cluster sizes except for the anomalously large abundance for the protonated pentamer, written in terms of the central core ion as $\mathrm{NH}_{4}{ }^{+} \cdot\left(\mathrm{NH}_{3}\right) \mathbf{H}_{4}$. In Figure 2 , the enthalpy changes of successive clusterings of ammonia onto $\mathrm{NH}_{4}{ }^{+}$are plotted versus number of ligands n. The magnitude of the enthalpy change with cluster size is seen to be smoothly decreasing from the monomer to the tetramer at which point there is a dramatic drop for five and beyond. These observations concerning magic numbers in cluster systems are in accord with the above consideration. This follows from the fact that, from Equations (1) and (3), the dissociation rate of a cluster would be expected to undergo an abrupt change in the region of disconcinuous break in an otherwise smooth trend of bond energy (or ΔH°) with cluster size.

In conclusion, the present results provide direct evidence that cluster ion stablities and dissociation processes govern the magic numbers in hydrogen bonded systems. Further atudies are in progress in our laooratory to determine the extent to which this conclusior can be extended to other systems.

ACKNOWLEDGMENTS

We would like to acknowledge the contributions of 010 Echt and the support of the U. S. Army Research Office, Grant No. DAAG29-85-K-0215, and the Department of Energy, Grant No. DE-ACO2-82ER60055.

REFERENCES

1. O. Echt, ?. D. Dao, S. Morgan, and A. W. Castleman, Jr., J. Chem. Phys. 82, 4076 (1985).
2. S. Morgan and A. W. Castleman, Jr., "Unimolecular Dissociation of Protonated Mathanol Clusters," J. Chem. Phys., to be subsitted.
3. P. J. Robinson and K. A. Holbrook, Unimolecular Reactions, Wiley Interscience (1972).
4. W. Krame, B. Kamke, H. U. Kiefl, and I. V. Hertel, J. Chem. Phys. 84, 1325 (1986).
5. H. Begemann, S. Dreihofer, K. H. Meiwes-Broer, and H. O. Lutz, Z. Phye. D. 3, 183 (1986).
6. J. J. Breen, K. Kígore, K. Stephan, R. Sievert, B. D. Kay, R. G. Keesee, T. D. Mark, J. Van Doren, and A. W. Castleman, Jr.. Chem. Phys. 91, 305 (1984).
7. I. N. Tang and A. W. Castleman, Jr., J. Chem. Phys. 62, 4576 (1975).
8. M. R. Arshadi and J. H. Futrel1, 1. Chem. Phys. 78, 1482 (1974).
9. D. D. Nelson, G. T. Fraser, and W. Klemperer, J. Chew. Phys. 83, 6201 (1985).
10. N. Lee, R. G. Keesee and A. W. Castleman, Jr., J. Colloid and Incerface Science 79, 555 (1980).

Cluster Size

FIGURE 1. Rate of evaporative unimolecular dissociation of ammonia cluster ions veraus size of the cluster, N.

FIGURE 2. $-\Delta H_{n-1, ~}^{\circ}$, enthalples for successive addjtions of NH_{3} onto $\mathrm{NH}_{4}{ }^{+}$are plotted versugnubfer of 11 gands n. Data for $n=1-4$ are taken from Ref. ${ }^{4} 7$ while data for no5,6 are from Ref. 8. The expected trend for a neutral sybtem 18 also shown as a dashed curve. The bond energy for the neutral dimer shown by a square is taken from Ref. 9. The open circles represent trends expected for a charged clasaical liquid drop model, while the open triangles are the corresponding predictions for a neutral droplet (10). The cross-hatched area between the ion and neutral curves represents the excess energy in a cluster due to the reorientation of the ammonia molecules to accommodate a charge.

GPNPRAL RDYARKS ON POITILBRTUY CONFIGURATIONS

QF N POINT CHARGES ON A SPHERE

Burt V. Bronk and Robert H. Frickel Research Directorate
U.S. Anry Chemical Research, Development and Ergineering Center Aberdeen Proving Ground, Maryland 21010-5423

recent publications,subyitials for fublication and presentatians:

A) Robert H. Frickel and Burt V. Bronk, "Configurations of Charges on a Spheren, Report CRDEC-TR-87040 fron CRDEC, Aberdeen Proving Ground, MD 21010-5423, April 1987.
B) Robert H. Frickel and Burt V. Bronk, "Symetries of Configurations of Charges on a Sphare," submitted to Canadian Journal of Chamistry, 1987.

ABSTRACT

The configurations of lowast intoraction energy were obtained for seis of N point charges confined to the surface of a aphere and interacting via a mitual coulocib repulsion. As N varied between 4 and 107, many interesting patterne wore observed and the symatries of these pattarne were decerained. Since the number of symetries occuring is linited, some genaral observations on the pettorna can be made. It is expected that some of these observations made for the present linited idealized case vill alro apply to phyaically reailzable crystallizations occuring on the surfece of alcroscopic spheres.

INTRODUCLION

The ancient problen of projecting the map of the world onto a plane is a reminder that the organization of seructures on a spherical aurface is not coaplatible with the well known atructures of crystals in two or three dimornions. Since we are interested in observable properties of aerosols under all mather conditions, phase changes on the surface of liquid droplets are to be expected and we would like to have sone insight into the poasibilities and limitations of geometrien for cryatale formed on the surface of a sphere. Eripirical knowledge of such structures is limited or absent, therefore, wo have chosen to start with the idealized but well defined problea of detomining the equilibrive arrangewent for N charged particles that interact with oech other via Couloab

forces, ind are constrained to remain on the surface of a sphere. This problem is closely related to the more general problem of finding the:olnima energy arrangement for N particles on a sphere interacting with energy

$$
E=\frac{1}{2} \sum_{i=1}^{N} \sum_{j=i}^{N}\left|r_{i}-r_{j}\right|^{-m}
$$

where a de real mimer greater than zero. The Coulomb case (mol) has been previously considered for rs 16 and nary of the cases found are sind lar to those found for higher values of a (1.e. short range repulsion) ${ }^{1,2}$ We have extended the calculation to marry higher values of N up to $\mathrm{N}-107$. The large number of cases tabulated in the present paper allows us to make soon nev general observations on the pattern of occurance of the symmetries obtained. Further, in one case we found an equilibrium configuration which was lower in energy then the previously published configuration.

The actual calculations were done by a kind of molecular re. laxation. The tangential component of the coulomb force on each charge due to all the other charges on the aphere was calculated at a given time. Each charge was then allowed to move a distance equal to the tangential force multiplied by a time increment, delta, as though moving in a highly viscose fluid. When the tangential forces were negligible (to about nine significant figures) the calculation stopped. In all but one or two cases, the charges assured a configuration with the global symmetry of a nontrivial point group. Repeat calculation usually (but not always) led to identical configurations. These configurations wore apipically stable against small random perturbations. Therefore me conclude that all or at least most of the stationary point e found in our computer experiments ware real minima. To verify this would be straightforward, but very laborious and expensive in the case of a large number of particles, since it require that all eigenvalues of a high dimensional quadratic form be positive. Further, there is no known procedure for establishing that a given minima is the lowest or global minicam, although the converse is established whenever a nev lower minders is found, at we did in several cases.

RESITS

The actual configurations obtained were visualized by project. ing the positions of the charged particles onto the interiors of two circles representing the henlepheres in en equal area projection (cf. Figures 1 thru 8). The halaphores are each mean as though looking down thru a transparent sphere so that identical figures on the two circles icily a reflection plane thru the equator. The lines shown join nearest neighbors, with different tracings indicating slightly different distances. The numbers on

Pigure 1. Tetrahedral symetry. Note chat the 4 - and 22-charge configurstions have reflection planea. Some of the edges have been omitted from the 100 -charge configuration tc make the symetry more apparent.

Figure 2. Octahedral symmelry. Only the 6- and 44-charge configurations have reflection planes.

Pigure 3. Icosahedral mmetry.

Figure $4 . D_{4 d}$ symmetry.

Figure $5 . \quad D_{5, h}$ symmetry

Figure 6. $D_{6 d}$ symmetry.

Figure 7. Continuity over change in number of charges. One can see the distortion of the figure in the upper hemisphere as additional charges find their way into the lower hemisphere.

Pigure 8. Continuity over change in charge number. starting with the highly aymetric 32 -charge configuration. Retention of the five-pointed star in the upper hemispheres of the 33- and 34 -charge configurations can be seen.

. 7.

table 1.
POINT GROUP CLASSIFICATION OF EQUILIERIM CONFIGURATIONS

Sympetry	Mrmber of charges
D_{∞}	2
Icosahedral	12* $32^{*}, 72,20^{*+}, 30^{*+}$
Octahedral	6*,24,44*,48, $8^{\star+}, 14^{*+}$
Tecrahedral	$4^{\star}, 16,22^{\star}, 28,46,100$
$\mathrm{D}_{6 \mathrm{~d}}\left(S_{12 v}\right)$	14,50
$\mathrm{D}_{4 \mathrm{~d}}\left(\mathrm{~S}_{8 \mathrm{v}}\right)$	8,10,18,80,16+,32+
$\mathrm{D}_{5 \mathrm{vh}}$	7,17,27.42
D_{5}	67.77
$\mathrm{C}_{5 \mathrm{v}}$	11+
$\mathrm{D}_{3 \mathrm{vh}}$	3,5,9,20,39,41
$C_{3 v}$	31,7
D_{3}	$\begin{aligned} & 15,23,29,45,51,57,60 \\ & 63,69,75,78,101,102 \end{aligned}$
C_{3}	49,52,61+,94+
D_{2}	$\begin{aligned} & 30,34,36,40,58,64,68, \\ & 74^{+}, 90,94,104,106 \end{aligned}$
$c_{2 v}$	11,13,19,21,38,43,53
c_{2}	$26,35,37,54,55,56,59,62,63,65,66,70$. $71,73,76,81,82,83,84,85,86,87,88,89$. $91,92,93,95,96,97,98,99,103,105^{+}, 107$
$C_{\text {e }}$ (raflection only)	25,33,47,79,94+
C_{1} (no symbetry)	61,74,105

Figure 9. Energy deficit $E_{0}=n^{2} / 2-E_{n}$ vs n.

ENERGT DEVIATION VS NUREER OF OMNCES

Figure 10. Deviation of E_{o} from a straight line on log-log plot of $E_{0} v 8 n$. Deviation for nonminimal configurations (cube and D_{4} d configurations for 16 and 32 points) are shown as triangles. The deviation for the doderahedron is off scale above.
the figures give the number of charged particles considered. The point group classifications for equilibrius configurations are presented in Table I.

The configurations with the symetry groups of the regular polyhedra are shown in Figures 1 thra 3. The octahedrally symetric configurations shown in Figure 2 bear a close resemblance to the other four-fold rotationally symetric figures in Figure 4. In both cases all charges come in sets of four equivalent points resting at the corners of squares. Note however the lack of reflection or reflection-rotacion planes for $\mathrm{N}-24$ or $\mathrm{N}-48$.

The icosahedral figures shown in Figure 3 have a resemblance to the othor five-fold rotationaly symatric figures shown in Figure 5. All the five-fold figures have $N-2+5 n$ with n an integer. No five-fold figure was found for n larger than elght, and the n equals seven case is missing. In the later case, however, the figure (not shown) may be rotated to show a five pointed "Betsy Ross star" with an almost equilateral pentagon inaide on one hemispherical face. Only two cases with six-fold symatry vere found. These are shown in Figure 6.

While identical symetries are often not retained when N incrosses by one, there are cases where part of the figure shows a quasicontiruous change. This may be seen in Figures 7 and 8

The total coulonb enargy of a charge configuration may be fit to $\mathrm{N}^{2} / 2$ wh the doviation from this value giving a straight line on a log-log plot as shown in Figure 9 for N less than 40 . In Figure 10 we show the deviation of the actual graph from a stralght line on the log-log plot. (A more precise approximation for the total configuration energy is given below.) The highly symetric cases (eg. N-12 and 32) generally have energies falling below that of their neighbors as indicated on this plot. Nevertheless, some highly symmetric cases fall well above the straight line of the loglog plot. This is illustrated by the cube, (a triangle in Figure 10) and the dodecahedron, whose point falls far above the graph of Figure 10. Neither of these polyhedra represents a global energy nindme.

In eddition to the cases just mentioned, several additional local unergy minima were found which were not global ainima. For N-94, for example, there were three different configurations giving local minima (see Table 1). Since the energy mindea are very shallow, the different configurations only differ in the fifth or sixth significent figure of the energy.

GENERAL OBSERVATIONS

We have now examined a sufficient nuber of cases to warrant some general observations. Since nost of these probably arise from the general character of spherical geometry, we expect that some of then will hold for other types of interactions on a sphere. The
observations follow:

1. No soven-fold or higher sympotries occur as mininal equilibr. in configurations. (Only two cases with aix-fold symbetry were observed.)
2. The total configuracion is well approximated by the continuous charge energy, $\mathrm{N}^{2} / 2$. By considering the discrete nature of the charges we arrived at an even more accurate approximation given by

$$
E=N(N-1)(1-1 / \sqrt{N}) / 2
$$

3. Nearest nolghbor nubbers approach six as N Incroases. For N-106 it averages to 5.887 .
4. Rotational symatry is more comm than reflectional symmetry. Inversion symmetry which requires both C_{2} and is uncommon. 5. Different local minima for the same particle numer occur. 6. Relative variation in individual perticle energies decreases with N.

We expect to present data supporting observations 3., 6. and 2. elsewhere. Observation 1. Is interesting to compare with three dimensional crystals where seven-fold symetry is not possible. (According to standard theory, five-fold symetry was "not possible" until recently.) It is easy to construct a seven-fold sympetric figure for $\mathrm{N}-9$ on the aphere, but that is only a scationary point. The observation on nearest noightor nuber suggests that six-fold symatry will be the highest observed when N becowes large. The nearest neighbor rumber is expected to approach closer to six, the well-know exact close packing nearest ruaber for the plane. It is not expected to reach six for finits N however as one mast deform the sphere to map it onto the plane.

We point out that the coordinates and turther detalls for configurations iq to $\mathrm{N}-32$ are avallable in our CRDEC report listed on the first page of this article.

BEFPRPNCES

1. T.U. Molnyk, O. Knop, and W.R. Saich, Can. J. Chess. 53, 1745 1761 (1977).
2. B.W. Clare and D.L. Kepert, Proc Roy. Soc. Lond., A $40 S, 329$. 344 (1986).

Optical Constants of Minerals, Liquids, and Metals from the Millimeter to the Ultraviolet

R. J. Bell. R. W. Alexander, Jr.. L. A. Newquist, R. Van Diver M. A. Ordal, and L. L. Long

Physics Department, University of Missouri-Rolla
Rolla, MO 65401
and
Marvin R. Queryy
Physics Department, University of Missouri-Kansas City
Kansa; City. MO 64110

RECENT PUBLICATIONS, SUBMITTALS POR PUBLICATION AND PRESTATIONS:
A) M. A. Ordal, R. J. Bell, R. W. Alexander, L. L. Long, and M. R. Querry, "Optical Properties of $A u, N:$, and Pb at Submillimeter Wavelengths", Appl. Opt. 26, 744 (1987).
B) L. L. Long, R. J. Bell, R. W. Alexander, Jr., and M. R. Querry. "Preparation Dependent Properties of Pressed Pellets of Montmorilionite in the Far Infrared," Appl. Opt. 26, 1372 (1981).
C) R. W. Alexander, Jr.. R. W. Bell, L. L. Long. M. A. Ordal, L. Newquist, and M. R. Querry, "Optical Properties of Powders, Liquids, and Metals at Millimeter and Submililimeter Wavelengths," Proceedings of the 1986 CRDEC Scientific Conference on Obscuration and Aerosol Research, R. W. Kohl, editor.
D) R. J. Bell, R. W. Alexander, Jr.. Larry Newquist, and Mark A. Ordal, "Methods for measuring surface impedances in the submillimeter and far Infrared." Proceedings of the 1986 CRDEC Scientific Conference on obscuration and Aerosol Research.
E) R. J. Bell, R. W. Alexander, Jr. and R. Van Diver, "A Novel Interferometer for measurement of optical properties at mililmeter wavelengths," Proceedinge of the 1987 CRDEC Scientific Conference on obscuration and perosol Research [following paper.]
F) R. J. Bell, R. W. Alexander, Jr.. L. A. Newquist, R. Van Diver, M. A. Ordal, L.L. Long, and M. R. Querry, "Optical constants of minerals. liquide, and metals from the millimeter to the ultraviolet," Proceedings of the 1987 CRDEC Scientific Conference on Obscuration and Aerosol Research [this paper.]
G) M. A. Ordal, R. J. Bell, R. W. Alexander, Jr., and L. A. Newquist "The optical properties of $A 1, F e, T i, T a, W$ and Mo at submililmeter wavelengths," submitted to Applied Optics.
H) R. J. Bell, R. W. Alexander and M. R. Querry, "Optical constants of Minerale and other materiale from the millimeter to the ultraviolet." submitted as Chomical Research, Development and Engineering Center Contractor's Final Report, DAAA 15-85-K-0004, June 1987.

Abstract

This paper reports the continuation of previous work to measure the optical constants of natural minerals, liquids and metals from the mililimeter to the ultraviolet. Included in this paper are data for gypsum, crystalline quartz, ZnO, DMMP, aduminum, titanium, tungsten, tantulum, molybdenum, vanadium, and stainless steel. Work was performed at two campuses of the University of Missouri--the Rolla Campus and the Kansas City Campus. The mililmeter and submililmeter (far infrared) measuroments were made on the Rolla Campus and the infrared, visible and ultraviolet measurements were made on the Kansas city Campus. This wide spectral range means that Kramers-Kronig analyses can be made with better precision than when reflectance data is available oniy over a limited spectral range.

The motive for the measurement of refractive indices of gypsum, both as a single crystal and as a powder, in the far and near infrared was to establish a material for use as a standard. This goal had originally been proposed in the Friday morning discussion section of this annual June cRDEC Conference at Aberdeen. In the same session, quartz was proposed as a standard for a hard macerial.

The work reported was performed under the U. S. Army CRDEC contract DAAA-15-85-K-0004 (M. Milham and J. Embury).

I. INTRODUCTION

The materials studied may be grouped into three classes defined by the tecniques used to measure the refractive indices. These three classes are discussed below. Tables of optical constants for the materials measured have been entered into the CRDEC computer data bank.

NATURAL MINERELS: Measurements of the refractive indices of natural minerals were made by measuring the reflectance of either single crystals (where available) or of pressed powder pellets. The powders were pressed with no binder. A discussion of this method of sample preparation appears in our recent Faper "Freparation dependent properties of pressed pellets of montmorilionite in the far infrared" in Applied optics. ${ }^{1}$ of particular note is gypsum. At one of the Friday morning "Discussion Sessions" at the annual CRDEC Aberdeen Conference on Obscuration and Aerosol Science, it was decided that gypsum would make an excellent standard for the pressed powder technique for soft materials because it is avallable in single crystalline form and presses into high quality surface pellets. Thle project has been completed as a joint effort of the UMR and UMKC groupe and a paper is being prepared for publication. 2 oscillator model fits were made to the reflectance to provide convenient parameterization of the optical constants. Quartz was discuesed ae atandard for hard materiale.

METALS: The measurement of the optical constants of metals at long wavelenthe at long wavelenths -- greater than 100 micrometers -- is very difficult because metals are so highly reflecting. Two technlgues are available, stacked plane parallel waveguides ${ }^{3}$ and non-resonant cavities.4.5 Both techniques were tried in our laboratory and the non-resonant cavity method proved superior and required smaller amounts of sample. As part of our feasibillty study of plane parallel waveguides, we measured the absorption coefficient of Teflon in the submillimeter. 6 The resulte were published in Applied Optics. For the nonresonant cavity, we improved the analysis used to obtain the optical constants from the measurements. 5 In order to obtain optical constants over wide frequency range, our UMR data was combined with infrared, visible and UV measurements made at UMKC or with data from the literature. The resulting data sets covered a very wide frequency range allowing a good Kramers-Kronig malysis of the measured reflectances to give optical constants. The Drude model for metals was found to fit the data for many metale in the submillimeter frequency region. 5

LIQUIDS: The UMKC laboratory is well-known for its measurements of the optical properties of liquide in the infrared and visible. These were made by measuring the reflectance of a horizontal pool of the sample liquid and the performing a Karmers-Kronig analysis to obtain refractive indices. This technique is difficult to extend to the far inirared and instead, we measure transmittances of liquids in cells with elther TPX or silicon windowe. Very few measuements of liquide have been made in the far infrared. DMMP proved to be very strongly absorbing in the submillimeter and apecial cell was conetructed to allow very thin samples to be measured.

II. MATURAL MINERALS:

GYPSUM: Oypsum was studied, at least in part, because it was decided at One of the Priday morning informal discuseions at the annual CRDEC Aberdeen Conterence on Obecuration and Aerosol Research that it would make good -tandard for studies of natural minerals using the preseed powder technique. The preseed powder technique had originally been shown to be ueeful for natural
minerale by the UMKC laboratory. The conferees chose gypeum because it was soft, anisotropic, available as eingle cryatal and pressed to form pellets with very cmooth surfaces. Gypsum has a Mohs' hardnese of 2 . We have just published a paper discussing the preseed peliet technique in the far infrared. ${ }^{1}$ An important obeervation we made was that the preseed pellet has a surface skin that is denser than the average peldet density. This meane that the opticad constants measured from the preseed pellet are nearer the bulk values than the averase density of the pellet would indicate. For gypsum, we also measured the optical constante for all three crystalline axes. A comparison of the pressed pellet optical conetante with those of the single crystal allowed us to conclude that the pellet had an effective density 0.91 that of the single crystal and that all three cryetalilne orientatione were represented equally on the sample surface. That 1 e, the preseing operation reaulted in little preferential orientation of the cryetaliltes on the pellet surface. Gypsum was discussed in our paper in last year's proceedings of this conference. 7 see that paper for epecta of the three orientations of aingle crystal and for a powder ample. Here we give improved oscidlator fit parameter for the three cryetaldine axes. The reflectance was measured from 10 to $400 \mathrm{~cm}^{-1}$ at UMR and from 400 to $4.000 \mathrm{~cm}^{-1}$ at UMKC. The diepersion analyele wee done on the combined data eet. Table 1 gives the oscillator fit parameters for the three crystalifne axes. The form of the dielectric conetant ueed to fit the reflectance data was

$$
\begin{equation*}
c(\omega)=c_{\omega}+\sum_{j} \frac{A_{j} \omega_{O j}^{2}}{\omega_{O j}^{2}-\omega^{2}-1 \gamma_{j} \omega} \tag{1}
\end{equation*}
$$

In general, our experience was that the oscillator fit geve better realte than a Kramers-Kronig analyels, eapecially in regione were k was mall. However, a good oecillator fit required the reflectance to be meaeured over a wide irequency range, neceseitating measurements at both the UMR and UMKC laboratories. An oecidlator fit de often called a diepersive analyaie. ZINC OXIDE: Zinc oxide, or zincite 10 a very eoft meterial (Moh hardness 4) that preseed Into pellete under moderate preseure. These pellete had a emocth, miryor-ilke eurface. 2inc oxide aleo cryetallizee in the hexagonal system. The lengthe of the and c axea are 3.25 and 6.21 A, respectively. It
is positive uniaxial with $n_{0}=2.013$ and $n_{0}=2.029$ at the sodium D line. Its opecific gravity ranges from 5.64 to 6.68 .

The measured reflectance in the 10 to $350 \mathrm{~cm}^{-1}$ range ie sown in Fig. 1 . Bear in mind that this material was not measured at shorter wavelengths. Such meaeuremente will be needed if a Kramere-Kronig analyeis to obtain optical constante is wanted.

QUARTZ: Quartz has a Mohs' hardness of 7. The Priday morning Aberdeen conference session decided it would be good standard for hard materiala. Reflectance data for quartz was avallable in the literature. Kramers-Kronig analyais was used to f ind n and k. For the spectral range from 20 to $370 \mathrm{~cm}^{-1}$, the data of Ruesell and Bell was used. 8 Spitzer and Kleinman's 9 measurements were used from 370 to $1,600 \mathrm{~cm}^{-1}$. Figure 2 shows n and k for the ordinary ray, while fig. 3 shows the same for the extraordinary ray. The oscillator fit parametere are hown in Table 2 for the two cryetalline axes.

III. METALS

The optical constante of metale are particularly difficult to measure in the far infrared and millimeter epectral regione because they are oo highly reflecting. Two techniques have been employed which in effect make use of a large number of reflections. Theee are the plane parallel waveguide method (described in ref. 3) and the non-resonant cavity method (described in our recent paper, ref. B). After considerable experimentation, we decided that the non-resonant caulty method is better in the 10 to $350 \mathrm{~cm}^{-1}$ epectral range. We developed an improved theory to analyze the non-resonant cavity measurements. This is deacribed in our paper entitied "Optical properties of Au, Ni. and Pb at submililmeter wavelengthe", published in Applied optice. ${ }^{5}$

ALUMINUM: A polished polycryetalifne aluminum ample wae measured ueing the nonresonant cavity. The meaeured normalized eurface impedance ie shown in Fig. 4 as pointe with error bars. Literature values (from ref. 10) are shown at shorter wavelengthe. The values of c_{1} and c_{2} obtained from combining our long wavelength measuremente with data from ref. 10 and performing a Kramere-Kronig analyele are hown in fig. 8. Thie deta is being prepared for publication. 11

IITANIOM: A polished polycrystalline titanium sheet was measured using the nonresonant cavity. Our measured real part of the normalized surface impedance is shown in fig. 6. Data at shorter wavelengths from ref. 10 are shown as the dot dash line. Figure 7 shows ϵ_{1} and ϵ_{2} derived from the Kramers-Kronig analysis of our data combined with the short wavelength data from ref. 10 . This data is being prepared for publication. 11

TONGSTEN: Polished polycrystalline tungsten sheet was measured with the nonresonant cavity. Figure 8 plots the measured normalized surface resistance with error bars and data from ref. 10 for shorter wavelengths (dash dot and dotted line). Once again the dielectric constant was obtained from a Kramers-Kronig analysis of our data and the ref. 10 data. The results are shown as the solid lines in Fig. 9. The dash dot and dotted lines show the ref. 10 only resulte. This data is being prepared for publication. ${ }^{11}$

TANTULUM: A polished polycrystalline tantulum sheet was studied in the nonresonant cavity. Figure 10 shows the normalized surface impedance. Our nonresonant cavity data are plotted as the points with error bars and the data from ref. 10 is plotted as the dash dot line. Once again, our data was combined with the ilterature data and Kramers-Kronig analyzed to obtain ε_{1} and ε_{2}. The results are ploted in Fig. 11 as the solid lines. The dash dot line (almost on top of the solid line) is the literature values alone. This data is being prepared for publication. 11

MOLYBDENUM: A polished polycrystalidine molybienum sheet was studied in the nonresonant cavity. In Fig. 12 is plotted our measured points for the normalized surface resistance. The dash dot ine shows the datum from ref. 10 . Again, Kramers-Kronig analysis yielded ε_{1} and ε_{2}. They are plotted in Fig. 13.
stainless stegl: A sheet of pollahed stainless eteel was measured in the nonresonant cavity. The measured real part of the surface resistance is plotted versus wavenumber in Fig. 14. We have not attempted a Kramers-Kronig analysis because of the lack of reflectance measurements at shorter wavelengthe.

VANADIUM: A polished vanadium sheet was measured with the nonresonant cavity. The measured real part of the surface resiatance is plotted versue wavenumber in Fig. 15. No Kramers-Kronig analyels was made because no data was
avallable at ohorter wavelongthe.
IV. LIQUIDs

The URR group hae meacured the tranmiesion opectra of two diquide, diesel fuel and dimethyl methyd phoshonate (DMNP). Moasuring fuet the tranamiseion apectrum allowe deteraination of only the absorption coefficient for equivalentiy, the imaginary part of the refractive index, k). Difficultien with absorption in the vapor phaee in our instrument have prevented reflection measuremente euch as have been made at shorter wavelengthe by the UMAC laboratory. The mpectra were measured for a empty cell and diesel fuel filled cells of varying thicknese. The log of the ratio of the tranembesion of the silled cell to the empty cell is plotted ae function of the cell thicknese. The lope of this ilne is the abeorption confficient, $\alpha(\omega)$. The imaginary part of the refractive index, k can be obtained from a by the relation $k=2 \pi a / \lambda$.
 As a result a cell that allowed much ahorter path lengthe wae purchased. Experimentation showed that path lengthe in the 25 to 100 micrometere range were required. Thie caused some difficultios in meauring proper coll loading. silicon windows were ueed because DMMP was found to interact elowly with the TPX window. The measured absorption coefilicient vereue wavenumber is hown in fig. 16. Figure 17 presente our measured values of k vereus wavenumber.

V. SOMmARY AND FUTORE WORE

Optical constante have been measured over a wide wavelength range and for a wide varlety of materiale. We plan to extend this work to the meaeurement of the temperature dependence of optical constante. Opticel conetante as function of temperature are needed for calculations of radiation traneport of laser beame through aerosole.

1	A_{j}	$\gamma_{j}\left(c m^{-1}\right)$	$\omega_{0 j}\left(\mathrm{~cm}^{-1}\right)$
$x-a x 18$			
1	0.2421	18.170	1138.1
2	0.0986	8.844	666.5
3	0.4286	91.616	447.6
4	1.0842	128.976	333.7
5	2.6027	97.859	210.4
6	1.1337	17.840	207.9
7	2.9672	8.064	117.6
$c_{\infty}=2.628$			
Y-axia			
1	0.0432	53.718	3530.1
2	0.0108	23.198	1684.3
3	0.0943	16.983	1131.2
4	0.1422	8.832	1121.0
5	0.1740	37.910	594.8
6	1.9611	103.472	545.6
7	0.1033	81.043	412.2
8	0.3038	30.128	302.0
9	0.5991	26.178	217.3
10	0.5799	7.367	191.3
11	1.2839	27.657	165.3
$c_{*}=2.147$			
2-axie			
1	0.0379	55.059	3403.0
2	0.0166	10.335	1622.6
3	2.5834	13.904	1108.0
4	0.1623	23.918	592.8
5	0.1434	86.412	542.2
6	0.6468	42.698	295.8
7	1.1131	40.671	220.2
8	1.0278	19.926	175.1
$\boldsymbol{c}_{\boldsymbol{\omega}}$			

TABLE 2: OSCILLATOR TIT PARAMBTERS FOR QUARTZ

J	A_{j}	$\gamma_{j}\left(\mathrm{~cm}^{-1}\right)$	woj (cm^{-1})
Ordinary Ray			
1	0.009	134.	1227
2	0.010	6.98	1163
3	0.67	7.61	1072
4	0.11	7.17	197
5	0.018	8.36	697
6	0.852	4.05	450
7	0.36	2.76	394
8	0.030	7.36	263
9	0.0006	4.49	128.4
$\epsilon_{\infty}=2.356$			
Extraordinary Ray			
1	0.011	183.	1220
2	0.67	7.45	1080
3	0.10	7.78	778
4	0.006	21.56	539
5	0.05	7.13	509
6	0.699	4.56	495
7	0.72	3.10	364
$c_{\infty}=2.383$			

[^1]
FIGUR:S

1. Reflectance of a Pressed Pellet of Zinc oxide.

2b. Imaginary Part of the Refractive Index, k, for the ordinary Ray of Quartz.

2a. Real Part of the Refractive Index, n, for the ordinary Ray of Quartz.

3a. Imaginary Part of the Refractive Index, n, for the Extraordinary Ray of Quartz.

3b. Imaginary Part of the Refractive Index, k, for the Extraordinary Ray of Quartz.

5. ε_{1} and ε_{2} for Aluminum. The solid curve was obtained from the Kramere-Kronig analyois of our resonant cavity data plus the short wavelength data of ref. 10.

4. Real part of the Normalized Surface Resistance for Aluminum. Points with error bars are our nonresonant cavity measurements, while the dashed and dash dot curves for shorter wavelengths are from ref. 10 .

6. Real Part of the Normalized Surface Resistance of Titanium. Our nonresonant cavity measurements are show as data points with error bars. Data from ref. 10 are hown as the dash dot line.

7. c_{1} and c_{2} for Titanium. The solid curves show the Kramers-kronig resulte for a data set consisting of our long wavelength nonresonant cavity data and ilterature data (ref. 10). The dash dot curve is the raf. 10 data alone.

9. c_{1} and ε_{2} for Tungeten. The solid curves are for our deta plus the short wavelength dete from ref. 10. The dotted and dash dot curves are the ref. 10 data alone.

8. Real Part of the Normalized Surface Resistance for Tungsten. Our nonresonant cavity measurements are shown by the points with error bars. The ohorter wavelength data shown by the dash dot and dotted innes are from ref. 10 .

10. Real Part of the Normalized Surface Reeletance for Tantulum. Our nonresonant cavity meaourements are hown by the points with error bars The shorter wavelength data shown by the deeh dot line are from ref.

11. ε_{1} and ε_{2} for Tantulum. The solid curves are for our data plus the ehort wavelength data. The dash dot curves are the ref. 10 data alone.

13. ©1 and ϵ_{2} for Molybdenum. The
solid curves are for our data
plus the short wevelength data.
The dash dot curves are the ref.
13. E1 and ϵ_{2} for Molybdenum. The
solid curves are for our data
plus the short wevelength data.
The dash dot curves are the ref.
13. E1 and ϵ_{2} for Molybdenum. The
solid curves are for our data
plus the short wevelength data.
The dash dot curves are the ref.
13. E1 and ϵ_{2} for Molybdenum. The
solid curves are for our data
plus the short wevelength data.
The dash dot curves are the ref. 10 data alone.

12. Real Part of the Normalized Surface Kesistance for Molybdenum. Our nonresonant cavity measurements are shown by the points with error bars. The shorter wavelength data shown by the dash dot line are from ref. 10.

14. Real Part of the Normalized Surface Resistance, r, versus wavenumber for Stainlese steel.

15. Real Part of the Normalized Surface Resistance, r, versus wavenumber for Vanadium.

17. Imaginary Part of the Refractive Index versus wavenumber for DMMP.

VI. REFERENCES

1. Larry L. Long, R. J. Bell, R. W. Alexander, Jr., and Maryin R. Querry, "Preparation dependent properties of preseed pellete of montmorilionite in the far infrared", Appl. Opt. 26, 1372 (1987).
2. L. L. Long. R. J. Bell, R. W. Alexander, Jr., and M. R. Querry, "Optical Conetante of Gypaum and Calcite Single Crystals and Powders", to be published.
3. G. Brandil and A. J. Slevera, "Absolute Meaeurement of the Far-Infray ad Surface Resistance of Pb," Phys. Rev. B5, 3850 (1972).
4. M. A. Ordal, Robert J. Bell, R. W. Alexander, Jr., L. L. Long, and M. R. Querry, "Optical Properties of fourteen metale in the infrared and far infrared: Al, Co, Cu, Fe, Pb, Mo, Ni, Pd, Pt, Ag, T1, V, and W", Appl. Opt. 24, 4493 (1985).
5. Mark A. Ordal, Robert J. Bell, Ralph W. Alexander, Jr., Larry L. Long, and Marvin R. Querry, "Optical Propertiea of Au, Ni, and Pb at submillimeter wavelengths", Appl. Opt., 26, 744 (1987).
6. Mark A. Ordal, Robert J. Bell, Ralph W. Alexander, Jr., and Raymond E. Paul, "Absorption Coefficient of Dupont Teflon Fep in the $20-130$ wave-number range. Appl. Opt. 24. 2746 (1985).
7. R. W. Alexander, Jr., R. W. Bell, L. L. Long, M. A. Ordal. L. Newquist, and M. R. Querry, "Optical Properties of Powders, Liquids, and Metale at Millimetor and Submililmeter Wavelengthe," Proceedings of the 1986 CRDEC Scientific Conference on Obscuration and Aerosol Research, R. W. Kohl, editor.
8. E. E. Russell and E.E. Bell, J. Opt. Soc. Am. 57, 341 (1967).
9. W. G. Spitzer and D. A. Kleinman, Phye. Rev. 121. 1324 (1961).
10. J. H. Weaver, C. Krafka, D. W. Lynch, and D. D. Koch, Phyelce Data, optical Propertios of Metals, Part I: The Tranaition Metale and Part II: The Noble Metais, Aluminum, Scondium, Yttrium, The Lanthanides, and the Actinides, (Fachinformationmzentrum, Karleruhe, Federal Republic of Germany, 1981).
11. M. A. Ordal, R. J. Bell, R. W. Alexander, Jr., and L. A. Newquist "The optical properties of Al, Fe, Ti, Ta, W and Mo at abmililmeter wavelengths," submitted to Appl. Opt.

A Novel Interfarometer for Mangurgmente of
 Optical Properties at Millimeter Wavelenathe

R. J. Bell, R. W. Alexander, Jr., R. Van Diver,
S. Fry. M. A. Ordal, L. L. Long, and L. Newquist

Physics Department, University of Miseouri-Rolla
Rolla, MO 65401

RECENT PUBLICATIONS, SUBMITTALS POR PUBLICATION AND PRESENTATIONS:
A) M. A. Ordal, R. J. Bell, R. W. Alexander, L. L. Long, and M. R. Querry, "Optical Properties of Au, Ni, and Pb at Submililimeter Wavelengthe", Appl. Opt. 26. 744 (1987).
B) L. L. Long, R. J. Bell, R. W. Alexander, Jr., and M. R. Querry. "Preparation Dependent Properties of Preseed Pellets of Montmorillonite in the Far Infrared;" Appl. Opt. 26. 1372 (1987).
C) R. W. Alexander, Jr., R. W. Bell, L. L. Long, M. A. Ordal, L. Newquist, and M. R. Querry, "Cptical Propertles of Powders, Liquide, and Metale at Millimeter and Submililmeter Wavelengthe." Proceedinge of the 1986 CRDF.C Scientific Conference on Obscuration and Aerosol Research, R. W. Kohl, ed.tor.
D) R. J. Bell, R. *. Alexander, Jr., Larry Newquist, and Mark A. Ordal, "Methods for measuring surface impedances in the submililmeter and far infrared," proceedings of the 1986 CRDEC Scientific Conterence on obscuration and Aeronol Research.
E) R. J. Bell, R. W. Alexander, Jr., S. Fry, R. Van Diver, M. A. Ordal, L. L. Long, and L. Newquist, "A Novel Interferometer for measurement of optical properties at mililmeter wavelengthe," Procedinge of the 1987 CRDEC Scientifle Conference on Obscuration and Aerosol Research (thie paper).
P) R. J. Bell, R. W. Alexander, Jr., L. A. Newquist, R. Van Diver, M. A. Ordal, L. L. Long, and M. R. Querry, "Optical constante of minerale, liquide, and metnle from the millimeter to the ultraviolet," Proceddine of the 1987 CRDEC Scientific Conference on Obscuration and Aerogol Research (preceding paper).
G) M. A. Ordal, R. J. Bell, R. W. Alexander, Jr., and L. A. Newquist "The optlcal properties of Al, Fe, Ti, Ta, \mathcal{M} and Mo at oubmililmeter wavelengthe," cubmitted to Appiled Optice.
H) R. J. Bell, R. W. Alexander and M. R. Querry, "Optical constante of Minerale and other matariale from the millimeter to the ultraviolet," abmitted as Chemical Research, Development and Engineering Center Contractor final Report, DANA 15-85-K-0004, June 1987.

Abstract

We have developed a new type of interferometer to measure the complex reflectivity of graphite amples at millieeter wavelengthe. since graphite at these frequencies has reflectances of the order of $90-97$ percent ueuel techniques do not work. Also, to obtain reasonable complex dielectric functione one hae to control reflectances to accuracies of the order of ± 0.3 percent or better. This ia achieved with wave front divieion in this novel aspmetric

Interferometer. We obtain reflectances $* 0.939 \pm 0.3$ and phase angles $m(-1800+$ 0.2°) for preseed pelleta of Dixon 200-10 graphite at $\omega=1.1 \mathrm{~cm}{ }^{-1}$ (33 GHz). The inetrument ie etill under development.

I. INTRODUCTION

Oraphite' high reflectances makes it neceseary to perform very careful measuremente in order to obtain the complex reflectivity, r. slight errora (± 1 percent) in the measuremente can cause the real part of the diolectric constant, C_{1}, to shift by factore of two while the imaginary part of the dielectric function, ϵ_{2}, can shift an order of magnitude. Until recently we could only obtaln the comples dielectric function found by Kramere-Kronig analyais of reflectance measuremente from the $U V$ continuously to $w=1.1 \mathrm{~cm}-1$. With this now instrument, we obtain ϵ_{1}, and ϵ_{2} without the extremely broad band (s decades in frequency) reflectance meaeuremente. In our interferometer we use computer fite of the entire data ecan to obtain r. Thie requires theoretical analyeis of the inetrument in ite entirety. With the sample (reference material) in one arm of the interferometer we are ble to obtain the complex r. Homodyning ie achieved at she detector by mixing the radiation from the sample with that etraight from the source. That 10, mix the weak radiation from the sample with the etrong radiation at the detector directly from the eource producing increased seneitivity to the sample reflectivity.

II. THE OPTICAL DRSIGN

In Fig. 1 one has an optical diagram of the aeymetric inetrument. ${ }^{1}$ Beam o from the source to the detector, beam 2 goes from the source to the sample, beam 3 Ia a diffracted beam from the ample to the pick-up apherical mirror and beam 4 1e continuation of the diffracted beam to the detector for homodyning. The procese can be described for the fielde as

$$
\begin{equation*}
E=\mathbf{E}_{1}+\mathbf{E}_{2} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
E E^{*}=\left(E_{1}+E_{2}\right)\left(E_{1}^{*}+E_{2}^{*}\right)=E_{1} E_{1}^{*}+\mathbf{E}_{2} E_{2}^{*}+2 R e\left(E_{1}{ }^{*} E_{2}\right) \tag{2}
\end{equation*}
$$

where E_{1} goec directly to the detector and E_{2} is via the ample. With a chopper one can modulate E_{2} in front of the eample and not E_{1} resuiting in diecrimination egainet the etrong $\mathrm{E}_{2} \mathrm{I}_{1} *$ term leaving

$$
\begin{equation*}
E E^{*}=E_{2} E_{2}^{*}+2 \operatorname{Re}\left(E_{1}{ }^{*} E_{2}\right) \tag{3}
\end{equation*}
$$

where $E_{2} E_{2}$ is very weak while $2 R e\left(E_{1} E_{2}\right)$ dominates.
For Praunhofer diffraction the optical componente are eeparated by about 50λ and the distances are about 40 sample diameters. For these studies $d_{1}=35 \mathrm{~cm}, d_{2}=49 \mathrm{~cm}, d_{3}=62 \mathrm{~cm}, d_{4}=50 \mathrm{~cm}, \alpha=6.05^{\circ}$ and $\bar{\alpha}=8.8^{\circ}$. The
 drive resulting in a cosine oscillation with respect to sample position and second by eliminating back reflection (including those involving SEW, surface electromagnetic waves) with a special cone (the "stealth" cone) behind the sample. For the SEW on the cone, we currently have students deriving the expected SEW responses of the cone to incidant radiation.
III. THE OPERATION AND SELF-CALIBRATION

Though we have derived the detailed equations of the instrument, one has only to look at the simple theoretical conclusions to see how it works. The intensities after mixing of the two coherent fields are given by

$$
\begin{equation*}
I=A\left(1-B \frac{x}{2}\right]+C\left[1-D \frac{x}{2}\right] \cos \left[E \frac{x}{2}+F\right] \tag{4}
\end{equation*}
$$

where $(x / 2)$ is the distance the sample $1 s$ moved from the beginning position In a scan. The first and weak term is from $\mathrm{E}_{2} \mathrm{E}_{2}$ " and, of course, the second term is from the sample with C being the amplitude proportional to the sample reflectivity amplitude, r_{0}. The reflection phase angle is in F. We use the Aystant (McMillian and Company) program to obtain $A, B, D, E, \& E$ for a given scan. By acanning with a reference material (Ag or brase) we are able to obtain the sample reflectivity amplitude from

$$
\begin{equation*}
r_{O B} \cdot\left[\frac{C_{\text {sample }}}{C_{\text {reference }}}\right] r_{\text {or }} \tag{B}
\end{equation*}
$$

Also, we obtain the phase angle for the sample by abtracting fie while correcting for sample-reference thicknesses. Finally, we correct for small angular effects and non-normal incidence to obtain the sample's phase angles and complex diejectric functions:

$$
\begin{equation*}
Q_{s}+\pi=J_{o s}=\tan ^{-1}\left[\frac{\tan \left(E_{s}-F_{r}\right)+J_{r}+J_{t}-4 \pi \omega(\Delta d(0)) \cos \bar{\beta}}{\cos \bar{\beta}}\right] \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
\epsilon_{1=}=\frac{16\left\{A_{O 8}^{2}-4 R_{O 8} A n^{2} J\right\}}{A_{O E}^{4}\left[1+\frac{A_{O B}}{2}+4 \frac{J_{O B}^{2}}{A_{O B}^{2}}\right]^{2}} \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\epsilon_{2 s}=\frac{64 \sqrt{R_{O B}} \sin J_{O B}}{A_{O B}^{3}\left[1+\frac{A_{O B}}{2}+\frac{4_{O B}^{2}}{A_{O B}^{2}}\right]^{2}} \tag{8}
\end{equation*}
$$

where J_{r} is for the reference material. Jt is for the side of the head, $(\Delta d(0)$ is for the difference between the sample and reference thicknesses, $\bar{\alpha}$ is the effective angle of incicence of the ample (integrated over sample and detector horns), and $A_{0 \text { e }}-1-R_{O E}$ for $R_{O B}-r_{0 S}^{2}$ - reflectance. With our values and $\tilde{\alpha}_{x} 8.8^{\circ}$, currently we have $\varepsilon_{1}=3 \times 10^{3}$ and $\varepsilon_{2} \simeq 1 \times 10^{3}$ for $R=0.939$ and $J_{\mathrm{E}}=2^{\circ}$ for Dixon 200-10 pressed (10 tons) graphite pellets which were about 1.260 cm in diamete: See Fig. 3 for c_{1} and c_{2}.

To see how well the system performs note Fig. (in which C of Eq. (4) is plotted ve. $\frac{x}{2}$ the distance the sample is moved. The "asyatant" fit wae with with Eq. (4) and had an overall correlation coefficient of nines or an p test of 2×10^{5}.

The measured decrease of intensity $V B$. distance from the source horn (measured using a colay cell detector of small window design $\frac{3}{16} \operatorname{lnch}$) was I/R ${ }^{2}$, the angular distribution of radiation was Gausaian, the diameter correction was for that of a circular aperture in diffraction theory and the head thicknese correction behaved as $(1+\operatorname{conet} L)$ where L (s $1 / 2$ the thicknese of the sample. 2 All of thie will be reported in more detail at alater date; at which time the diffraction theory will be used ae teet of the measuring accuraciee of the Inetrument.

Finally, the sensitivity of c_{1} and c_{2} to the reflection phase angle of the sample ($R_{0 e}$ IIxed at 0.9479) is hown in Fig. 5. It illuetratee the care one hae to exerciee in the meaeurement of $J_{5}(0)=0.2^{\circ}$.
IV. SUMMARY AND FUTURE WORK

We consider this a preliminary report on the inetrument and ite ability to measure the complex reflectivity of highly reflecting graphite eamples. At $\omega=$ $1.1 \mathrm{~cm}^{-1}$ we have that $R_{08}=0.939$ and $J_{8}=0.2^{\circ}$ with $\epsilon_{1}=3 \times 10^{3}$ and $\epsilon_{2} \approx 1 x$ 10 ${ }^{3}$. We're currently improving the calibration accuracies and changing modulator techniques.

V. REPRRENCES

1. R. J. Bell (with R. W. Alexander, Jr.), Introductory Fourier Transform Spectroscopy (Academic Press, NY, 1972).
2. C. F. Bohren and D. R. Huffman, Aboorption and Scattering of fioht by Small Particles (J. Wiley \& Sons, NY, 1983).

FIGURES

HOMODYNEIMG SPECTRONETER

Figure 1: Optical Diagram of the $U M R$ homodyning, asymmetric interferometer using division of the wave front.

Figure 2: Diagram of the antireflecting background cone.

Figure 3: Real and imaginary parts of the dielectric function of a pressed pellet of Dixon 200-10 graphite. The solid lines are from Kramers-Kronig analysis and the data points are from the homodyning interferometer.

Figure 4: Intensity $\operatorname{RE}\left(E_{1}{ }^{\star} E_{2}\right)$ vs. $x / 2$ for the interferometer. The dots are the data and the solid line is the "asystant" program's fit of the data using Eq. (4). The correlation coefficient was 0.9999.

Figure 5. Theoretical plot of ε_{1} and ε_{2} vs. J for a fixes reflectance of 0.9479 for the pressed Dixon 200-10 graphite samples.

P. A. Lawless
Research Triangle Institute
Research Triangle Park, North Carolina 27709

M-T. Heich and P. C. Reist
University of North Carolina
Chapel Hill, North Carolina 27514

RECENT PUBLICATIONS, SUBMITTALS FOR PUBLICATION AND PRESENTATIONS:
A) P. C. Reiat, M-T. Heieh, and P. A. Lawless, "Fractal Analygis of Irregularly Shaped Aerosol Particles Grown at Reduced Pressures," submitted to J. Aerosol Science, 1987.
B) P. A. Lawless, P. C. Reist, and M-T. Hsieh, "Aerosol Formation with Exploding-Wire Generators," presented at the 1986 CRDEC Scientific Conference on Obscuration and Aerosol Research.
C) Ming-Ta Hsieh, P. C. Reist, and P. A. Lawless, "Analysis of Particle Agglomeration Mechanisms with Practal Geometry," presented at the 1986 CRDEC Scientific Conference on Obscuration and Aerosol Research.
D) P. A. Lawless, A. S. Damle, and P. C. Reist, "An Experimental Study of Gas Pressure Effects on the Coagulation Growth of Metallic Aerosols," presented at the 1985 CRDEC Scientific Conference on Obscuration and Aerosol Research.

ABSTRACT

This paper was presented at the poster session of the 1987 CRDEC conference for the purpose of showing the application of fractal analysis to images of real aerosol particles and determining the ability of the analysis to pick out characteristic details of the aerosol growth processes.

INTRODUCTION

Irregularly shaped aerosol particles (such as flocs, fumes, and some mineral compounds) have random or pseudo-random atructures which defy analytical description, much less systematic analysis. In a study of the growth of metallic aerosol particles at reduced pressures, we found such irregular particles in abundance. Even though the priwary aerosoi formed as near-monodiaperse aphares of approximately the same diameter at all pressures, subsequent coagulation produced structures with different morphologies, having significant differences in the shapes of the particles formed at different presures. Although the differences were subtle, they were distinctive. In an attempt to find adequate descriptors for these differences, we turned to the field of fractal geometry.

Theoretical models of particle conglomerates produced by various artificial growth laws delineated three basic types of growth, and each has a characteristic fractal dimension associated with it. To describe these growth laws, a cluster is assumed to be a large agglomerate made up of many individual subunits, called particles. often a particle is nothing more than a angle apherical eerosol, but it could be a cluster of aerosols so much smaller than other cluaters that it exhibits a more particle-like behavior.

If growth occurs from particles approaching clusters on linaar or ballistic trajectories, the resulting cluster forme in very dense fashion, and the fractal dimension for ballistic growth is 1.95 (in two dimensione). The ame etructure would occur for a large acavenging cluater dropping through a cloud of amaller particles.

If growth occurs from particles approaching a cluster with a Browian or random walk, penetretion of the particle all the way to the interior of the cluster is unlikely, leading to a less dense particle with a fractal dimension of $5 / 3$ (theoretical result) or 1.73 (atatiatical model rasult).

If growth occurs from clusters approaching clusters, the agglomerate shows very little interpenetration of the two clusters, whether a Browian or a ballistic trajectory is used. The resulting structure is even less dense, and fractal dimensions characteristic of it are 1.44 for the Browian trajectory or 1.50 for the ballistic trajectory. Thase are sumarized in Table J.
table i. fractal dimensions obtained from two-dimensional aggregation models

Model	D	
Linear trajectory, particle-cluster	1.95 ± 0.002	[1]
Brownian trajectory, particle-cluster	5/3	[4]
Brownian trajectory, particle-cluster	1.73 ± 0.06	[1,2]
Linear trajectory, cluster-cluster	$1.50: 0.05$	[3]
Brownian trajectory, cluster-cluster	1.44 ± 0.02	[3]

It is to be hoped that particles grown under Brownan cluster-cluster aggregation conditions would all have fractal dimensions close to 1.44 , or at leagt be easily distinguishable from particles grom in the Brownian particle-cluster mode. Purthermore, since our fractal analysis has to be performed on photomicrographs, it is to be hoped that the technique is insensitive to orientation effects of the chree-dimensional particle on the microscope substrate. The work reported here addresses these questions.

FRACTAL ANALYSIS OF IMAGES
In the coursa of the investigation, we have settled upon two methoda for the fractal analysis: the circular dilation method and the correlation method. The original dilation method was developed by Forrest and Witten [5], using square boxes. In this method a digitized electron micrograph is represented by values corresponding to the presence or absence of one point of particle. A smallest box is picked with ite geometric center near the center of mass of particle; then, a geries of nested equares of incraasing eizes is placed around it, and the number of "on" pixels in each square is
counted. For a fractal particle, this analysis yields a power-law relationship between the length of the aide of the equare, B, and the number of pixels, N, within it (i.e., $N(B) \sim B^{D}$, where D is che fractal dimenaion). Forrest and Witten also found that results were most reproducible when squares were chosen so that the center of mass of the particle coincided with their geometric centers.

One problem with this implementation is that it mixes information in the picture over a range of scales. The use of the square dilation blends information from pixels located at distance B/2 from the center with that from pixels located at $1.414 \mathrm{~B} / 2$ and the whole range in between. This makes comparison with other methods of calculating fractal dimension difficult and obscires some of the information in the picture. This difficulty is overcome using the "circular dilation" method.

In the circular dilation method, circles are used instead of boxes, and the pixels are counted as a function of the circle radius, R. The fractal dimension is computed in terms of the power-law dependence of pixels with radius: $N(R) \sim R^{D}$. The circular dilation is more difficult to implement as a computer program, but the results are superior.

An important limitation of both dilation methods is that the small scale structure is examined only in the vicinity of the center of dilation. It may be important to perform limited range dilations around other centers to obtain a truly representative picture of the structure. The use of a single expansion center also tends to introduce irregularities in the $N(R)$ curve as various structures in the image are encompassed by the boxes or circles. These appear to be artifacts of the dilation and can be eliminated by averaging several different $N(R)$ curves obtained from small displacements of the expansion center.

An analysis technique that overcomes these problems with the dilation methods is the uae of the point-point density correlation function. [7] This function is the normalized sumation of the product of pixel densities over all points as a function of a fixed distance between points:

$$
\begin{equation*}
C(1)=N^{-1} \sum_{\mathbf{r}} d(\overrightarrow{\mathbf{r}}) d(\overrightarrow{\mathbf{r}}-\vec{R}) \text {. } \tag{1}
\end{equation*}
$$

where: $C=$ the correlation function,
$\vec{R}=$ the separation distance,
$\vec{r}=a \operatorname{position}$ vector, and
d = the density of pixels at any position (0 or 1 for black/white images).

The correlation function determines the fractal dimension D through the relation:

$$
\begin{equation*}
C(R)=R^{D-d} \tag{2}
\end{equation*}
$$

where d is the space dimension (d - 2 for plane figures). The advantage of the correlation method is that it examines all points of the image at all scales of interest, automatically providing an average that can be achieved only with great effort using the dilation methoda. The correlation function can be computed directly for the relatively amall number of pixels involved in the images on an IBM PC computer. For largar numbers of pixels, fast Fourier transform (FFT) methods are more efficient.

Since the correlation function usually has dependence on R of 0 to -1 , correaponding to fractal dimenaions between 2 and 1 , it is a more slowly varying function than the dilation mass fractal function, which would vary as R^{2} to R over the same range of fractal dimension. It is convenient to compute a pseudo-correlation function from the wass fractal by dividing the mass fractal by R^{2} for the box dilation or by πR^{2} for the circular dilation. The resulting correlation function and pseudocorrelation functions can then be compared over a large range of R on a common basis.

SENSITIVITY ANALYSIS PROCEDURES

The comparisons of analysis methods and the sensitivity of the methods were approached in a threefold way. First, the fractal dimensions of a set of aerosol particlea grown under the same conditions and sampled at the same time were individually measured. Second, tests of the ability of fractal analysis to recover a predetermined mass diatribution function were made. And third, the dependence of the reccuered fractal dimension on particle orientation was determined. In all situations, the circular dilation and correlation analyses were performed for intercomparison of their respective results; earlier analyses had shown that these two methods were in best agreement of all methods teated.

The reasons for this program follow. The method for measurement of fractal dimension in the primary study uses electron micrographs of the particles generated. However, the real particles are three dimensional, from evidence of low angle micrographs or stereo-pairs. Weitz and Huang [6] have demonstrated that as long as the particles are aparse enough, the two-dimensional projection of a three-dimensional particle will have the same fractal characteristics as the particle itself. This also means that the tilt angle of the SEM atage need not be corrected for, aince all projections of a paricle should be equivalent in the fractal sense. These conclusions are difficult to tegt without access to three-dimensional particles that can be rotated and projected in various ways, and we have chosen to use computer-generaced particies for the teats.
results of mrasurements collections of real particles
Measurements of fractal dimension of individual particles were conducted on low magnification electron micrographs of filter samples taken from particles grown at l-atmosphere and 0.l-atmosphere pressures. Prior analyses of individual particles grown under the same conditions had strongly
suggested that clueter-cluster agglomeration of the particles was the dominant growth mechanism, with fractal dimensions of about 1.45 . The low magnification pictures (2000X to 4000X) sacrificed some small-scale detail but, on the whole, gave results similar to the ones taken at higher magnifications (20000X). The pixel sizes were appropriately scaled to give real physical sizes to the images.

Table II compares the fractal dimensions of the particle images on the two filter samples. The atandard deviation of the average is given after the average; the high and low measured fractal dimensions are also given. The smalleat particle measured at 0.1 atmosphere had a Feret's diameter of 1.7 micrometers and the largest had a Feret's diameter of 5.4 micrometers. The corresponding values at 1.0 atmsophere were 2.3 and 10.1 micrometers.
table il. practal dimensions for particle ensembles

| Pressure
 (atm) | Number of
 particles | D_{c} | Range
 (low, high) | D_{d} | Range
 (low, high) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.1 | 10 | 1.35 ± 0.06 | $1.25,1.44$ | 1.37 ± 0.09 | $0.99,1.37$ |
| 1.0 | 15 | 1.40 ± 0.15 | $1.10,1.69$ | 1.36 ± 0.15 | $1.07,1.70$ |

From this table and the individually calculated values of fractal dimension, we can conclude that the circular dilation and the correlation methods are in good agreement with one another, both in mean and in individual values. The mean values of both ensembles are very consistent with a clustercluster growth hypothesis, but both ensembles show particles whoge fractal dimensions are significantly less than the 1.44 value for that process. The 1.0 -atmosphere group aldo shows one particle whose fractal dimension is characteristic of the particle-cluster growth mechanism.

The sampling of particles is admittedly liaited; because of chis, it is difficult to choose between the explanations that these numerical differences are based on real differences in the growth mechanisms or that they merely represent statistical "noise" in the analysis. It would be expected that a growing aystem of agglomerates would pass through a particle-cluster stage until all small particles are removed and then be in the cluster-cluster stage. It is not surprising to see evidence of this in the wicrograph, but it is not conclusive.

RESULTS FOR RECOVERY OF MASS DISTRIBUTIONS

The second part of the testing procedure was to generate artificial mass distributions of point particlea according to power law and determine whether or not the fractal analyais could recover the original power law. Initially, this was to be a test of the accuracy of the hypothesis that the conclusion of Weitz and Huang [6] would apply to particles of this cype.

The mass distributions were generated in a series of concentric shells. The smallest shell consisted of a single particle at the origin of the x, y, and z axes. In each successively larger cell, a number of point particles was distilbuted in a uniform random fashion over the surface of the shell, with the number determined to correspond to a given power law:

$$
\begin{equation*}
N(r) \sim r^{8} . \tag{3}
\end{equation*}
$$

where 8 is the generating exponent. The cotal number of particles in any one distribution ranged from 250 to 350 . The random distributions on the surface of the sphere were achived by using polar coordinates for the placement process: the azimuthal angle was uniformly distributed over an angular range of 0 to 2π, while the polar angle was distributed as a sine function over the angular rang of 0 to π. The corresponding x, y, and 2 coordinates were stored for each of the point particles. Although this method of generation did not guarantee that the center of mass remained at the origin of the coordinate system, in practice it was always within about half-a-shell thickness of the origin in the cases where it was computed.

The analysis program contained a module to rotate three-dimensional point coordinates through eny observing angle and profect the resulting distribution onto a plane. The size of particles associated with each coordinate could be predetermined. For this part of the testing, the sizes were kept deliberatcly small, with a radius of 2 pixels, to reduce overlap effects during the profection. The clusters are shown in Figure 1.

The generating exponents were varied from 0.1 to 20 for the tests. These exponents gave mass distributions highly concentrated near the coordinate origin (for $g \ll 1$), nearly uniffamly concentrated throughout the volume (g = 3) and highly concentrated in the outermost she:l ($g \gg 3$). The effects of the different generating exponents can be seen to some extent in Figure lunder careful examination. The dilation (pseudo-correlation) and correlation functions are also shown next to each distribution. The correlation functions (open diamenis) show no discernable differences over the full range of generating exponents. The differences that do exist are mainiy iecaust of the changing number of points in the distributions, which had to be adjusted to keep some of the analysia arrays within bounds. The pseudo-correlation functions do show some distinct differences as the generating exponent increases, but there is no easily defined slope to the function that can be related to the generating exponent.

The only conclusion we san draw from this test is that too much information has been lost in projecting the three-dimensional distribution onto the plane for the fractal analysis to recover the generating function. It is possible that there is additional information in the correlation and
pseudo-correlation functions, in terms of second or third derivatives, which can be used to recover the generating function. However, those derivatives have not been considered an important part of the fractal analysis befure now.

results of orientation effects

To test for orientation effects, a simple theoretical particle was constructed. This particle was generated in a manner similar to the mass distributions but with several constraints. The radial mass distribution was determined in the aame way as before. The azimuthal distribution of mass was confined to five planes spaced equally around the pole of the particle. This was done to help define the center of mass near the origin of the axes. The polar angle was the only coordinate allowed to vary in a random fashion. Beginnning at a polar angle of $\pi / 2$ near the origin, the polar angle was allowed to change in random amounts of up to a maximum of $\pi / 15$ for each set of coordi.:ates. This kept successive sets of coordinates close to each other, as would be the case in a real particle composed of contacting spheres. The number of particles at each radius was determined by the radial power law.

The final particle, composed of 116 individual particles, had the shape of a five-legged starfish when viewed along the polar axis but resembled some of the natural particles we have seen when viewed along other axes. This particle was projected onto the analysis plane with four different orieritations and with different aizes assigned to the primary particle locations. The resulting images are shown in Figure 2.

The fractal dimensions computed from the images show distinct differences with the different sizes uscd for the primary particlec. For each aize of primary particles however, the changes of fractal dimension with orientation are much smaller. In neither set of fractal dinensions is the generating power law exponent (1.6) recovered. The behavior of the correlation and pseudo-correlation curves is quite sinilar for a given particie projection. The images composed of the smallest primary particles show more scatter in the curves, indicative of the gaps between the particles on the image.

These reaults indicate that orientation effects for a real particle will not seriously distort the measured fractal dimension. The fractal dimension that is measured would nut cliange much if the particle could be oriented in othir directions. However, the magnitude of the fractal dimension will be influenced strongly by the character of the projected particle. In particlur, particley whose images covers the plane densely will have a larger fractal dimension than particles whose images are sparse, even though the mass distribution may follow the same power-law dependence, as with this artificial particle.

A visual comparison of this artificial particle with some of the images of real particles shows that similar images give similar fractal dimensions, which supports the use of artificial particles in this kind of study. In particular, it shows che relative importance of the size of the primary particle in determining the characteriatics of the image. One factor that has not been stressed ir. the analysis of images is that all the priaary particles in a real particle are in contact with their neighbors. If they are not, the disjoint parts are counted as separate particles. What this implies for the artificial particles is that the primary particles should be large enough to project a continyous image in order to simulace a realistic particle.

It would seem that there is additional information in the connectedness of real particles which is not being utilized by the fractal analysis. This connectedness reduces the variations seen in the correlation curves for the artificial particles. In fact, in figure 2 , the upper right orientation was deliberately connected using small diameter intermediate particles along the five rays of the image to produce the paeudo-correlation curve in the dilation analyaia. Without that connection, the pseudo-correlation curve showed a pronounced dip and hump in the region from 4 to 10 pixels. The smoothness and straightness of the correlation curves is to a large extent due to the connectednes property.

CONCLUSIONS

In addressing the problems of interpreting the fractal dimensions of images of particles, we have come to the following conclusions:

- The circular dilation and the correlarion methods give quite comparabla results for the fractal dimensions of images. The corralation method averages its information over tha whole particle and may, therefore, be more ugeful at small scalea. The dilation mechod is more efficient at calculating fractal dimensiong at large ecales.

The fractal dimensions of images of natural particles are reasonably consistent with one another for particles grown under similar circumetances. However, the deviations of the measured fractal dinensions may be too large to identify one growth mechanism over another.

The fractal analysis using the correlation and dilation methods is not senesitive anough to recover a power-law-generating relationship for randor distributions of mass. Additional information in the images may make such recovery more practical and should be investigated. The fractal anslysis methode do seem to be robust in determining the fractal dimension at different orientationg of particles. This is extremely important for the analysis of electron micrographs of particles, which are inherentiy two dimenaional.

The connectedness property of real particles is an important factor in their frectal behavior. An artificial particle shows more variation of its fractal dimension ath the apparent size of its primary particles than with radial mass diatribution or particle orientation.

Fractal analysis of particles and their images shows some real promise in distinguishing growth mechanisms, but present analysis methods have some important shortcomings.

REFERENCES

[1] Paul Meakin, "Diffusion-Controlled Cluster Formation in Two, Three and Four Dimensions," Physical Review A, Volume 27, Pp. 604-607, 1983.
[2] Paul. Meakin, "Diffusion-Controlled Cluster Formation in 2 - 6 Dimensional Space," Physical Review A, Volume 27, pp. 1495-1507, 1983.
[3] Paul Meakin, "Effects of Cluster Trajectories on Cluster-Cluster Aggregation: A Comparison of Linear and Browian Trajectories in Two-and Three-Dimensional Simulations," Physical Review A, Volume 29, Number 2, PP. 997-999, 1984.
[4] T. A. Witten and L. M. Sander, "Diffusion-Limited Aggregarion, A Kinetic Critical Phenomenon", Physical Review Letters, Volume 47, pp. 1400-1403, 1981.
$[5]$ S. R. Porrest and T. A. Witten, "Long-Range Correlations in Smoke-Particle Aggregates", J. of Physics A: Math. Gen., Volume 12, Number S, Pp. L109- L117, 1979.
[6] D. A. Weitz and J. S. Huang, "Self-Similar Structures and the Kinetics of Aggregation of Colds Colloids," Kinetics of Aggregation and Gelation, F. Family and D. P. Landau, Editors, Proceedings of the International Topical Conference on Kinetics of Aggregation and Gelation, Athens, Georgia, 1984.
[7] R. Richter, L. M. Sander, and Z. Cheng, "Computer Simulations of Soot Aggregation." J. Coll. Interface Sci., Volume 100, pp. 203-209, 1984.

$$
m(r)-r^{0.1}
$$

$$
m(r)-r^{0.6}
$$

$$
m(r)-r^{l}
$$

$$
m(r) \sim r^{2}
$$

$m(r)-r^{3}$

$m(r)-r^{S}$

$$
m(r)-r^{10}
$$

$$
m(r)-r^{20}
$$

FIGURE 1. POWER-LAW MASS DISTRIBUTIONS for a range of generating exponents and correlation plots. Solid circles are dilation pseudo-correlation results; open diamonds are direct correlation results.

$F_{d}=1.37=0.07$
$F_{c}=1.35=0.17$
$P_{d}=1.22: 0.13$
$P_{g}=1.05 \pm 0.14$

FIGURE 2. ORIENTATION AND PARTICLE SIZE RESULTS FOR ONE ARTIFICIAL PARTICLE. Fd is the fractal dimension by dilation (closed circles on correlation plots). F C_{c} is the fractal dimension by correlation (open diamonds).
111. nonitnear effects at high energy

TIME RESOLVED SPECTRA OF PLASMAS INITIATED

 BY SINGLE AEROSOLS: AN UPDATEA. Biswas
H. Latifi
L. J. Radziemski
R. L. Armstrong

Applied Laser/Optios
Physics Department
New Mexico State University
Les Cruces, NM 88003-0001

RECENT PUBLICATIONS, SUBMITTALS
A) A. Biswas et al, "Time-resolved spectroscopy of plasmas initiated on single, levitated aerosol droplets" Opt. Lett. 12, 313 (1987).
B) A. Biswas et al, "Irradiance and laser wavelength dependence of plasma spectra from singie levitated atorosol droplets" submitted to Applied Optics. August (1987).

ABSTRACT

Spectra of plasmas initiated by NdiYAG laser on single, optically levitated, micron-sized droplets of glycerine-saturated brine solution were ingestigated.
 Just above and just below the air b:oakdown threshold level for each of the three wavelengths investigated. Temporal development of the droplet plasma was monitored by observing neutral and once-ionized carbon and neutral sodium emission. The associated air plasma was monitored with once-ionized nitrogen emission. The dependence of the plasma on lasor and ample parameters is discussed. This report brings this phase of our work on the study of aerosol-induced plasmemisaion to alose.
I. Introduction

When a laser beam propagates through the atmoshere. a variety of interactions ocour between the beam and atmosheric constituents present along the propation path. Both the aerosol and the molecular components of the atmospere interact with the propagating beam. However, for many cases of practical importance, the aerosol Interactions predominate. In this paper, we limit our discusion to aerosol-beam Interactions.

Aerosol-beam interactions may be convenientiy discussed as a function of the beam irradiance. At low irradiance, linear aerosol scatering and absorption are the
 aerosol heating and vaporization become significant, $2-4$ and a variety of nifear optical phenomena may be observed in transparent droplets. 5-7 High irradiance beams, in addition to the interactions already mentioned, may produce explosive vaporization with accompanying hydrodynamic effects, 8-11 and plasma formation. $12-17$ The prest paper focuses on a study of laser-induced plasma formation in micron-sized. ilquid aerosol droplets.

It has been known for some time that the presence of aerosols reduces the breakdown threshold of alr below lis clean-air value by several orders of magnitude. 12-14 The initial experimentson aerosol-entanced air breakdown were
 In this case, the experimental data were consistent with a modelíin which the plasma was Initiated by cascade lonization in the hot, dense vapor halo surrounding the Intensely neated carbon particies.

More recently, aerosol-initiated plasmas have been observed for quasi-transparent liquid aerosol droplets irradiatedoy laser ifghterar the visible region of the spectrum. 15-17 No theoretical model exista for the mechanism of plasmainitiation in this case although the importance of multi-photon absorption and hydrodyname effects have been stressed in recent pubilshed work. 15-17

Both spatial 16.17 and temporal ${ }^{15}$ investigations have been performed for aerosol droplet-initited plasmes. The results of these experimental studies have elucidated meny fetures of the developing plesme firebeli in the post-initiation phese. such es the existence and spatial struoture of vapor plumes emanating from the irradated
droplet, 16,17 and the time development of line spectra and electron density within the plasma. ${ }^{15}$

In this paper, we present results which show the dependence of the aerosolinitiated plasma characteristics on the wavelength and intensity of the irradiating laser beam. Liquid droplets of mixture of pure glycerine and saturated brine (NaCi) solution are optically levitated and subsequently irradiated with single pulses from an Nd: Yag laser. The fundamental, doubled, and tripled frequency lines of the Nd:YAG laser are used. Neutral (CI) and once-ionized (CII) lines of carbon, as well as the neutral (NaI) line of sodium serve as spectral probes of the droplet-initiated plasma, while the presence of oncelonized nitrosen (NII) lines monitor the production of an accompanying air plasma.

II. Experimental Considerations

Figure is a schematic diagram of the experimental arrangement. Single droplet (50:50 glycerine + saturated brine solution) are opticaliy levitated at the focus of an argon-ion laser. Droplets used in our experiments have diameters of 18 ± 4 m as measured by an imaging microscope. The levitated droplet is then aligned along the axis of a $0.5 \mu \mathrm{~m}$ scanning monochromator with a 1200 lines/mm grating as the dispersive olement. The orientation of the spectrometer sift (120 $\mu \mathrm{m}$ wide) is such that its length is parallel to the direction of the irradiating $N d: Y a g$ laser beam. This enables the collection of apatially averaged light signal from the entire region of the droplet-generated plasma. Details of the apparatus are listed in Table 1.

Light from the $N d: Y A G$ laser, incident along a direction normal to the spectrometer axis, is brought to focus on the droplet coincidence of the droplet and Nd:YAG beam may be directly observed using the microscupe). A nominally 8 nsec $Q-$ sultched pulse from the $N d: Y A G$ laser causes breakdown and plasma formation. The measured energies of the $N d: Y A G$ pulse, at different wavelengths, and an estimate of the respective irradiances are shown in Table 2. For each wavelength, pulse energies Just above and just below that required to cause alr breakdown are selected. At laser energies below air breakdown threshold, plasma rormation occurs only in the presen of levitated droplet, suggesting that it is dropletinduced. At energies above alr breakdown threshoold, plasma formation occurs with and without the levitated droplet present. However, the plasma formed in the presence of the droplet is visually
brighter and larger; it also yields a higher overall signal (continumm and spectral line intensity).

For the $0.532 \mu m$ laser line, in addition to energies just above and below air oreakdown threshold, other laser energies are used in order to investigate the effect of laser energy on the developing plasma.

A photomultiplier tube (PMT), mounted at the exit sift of the spectrometer measures the intensity of CI, CII, NaI and NII emission lines of the plasma. The photomultiplier output is processed by a transient waveform digitizer (s nsec resolution) and subsequently fed to an on-ife computer for storage and analysis.

Light collected by the spectrometer corresponding to a given spectral feature, consists of the spectral line intensity superimposed upon the plasma continumm. In order to determine the ilne intensity, two series of experimental runs are made, first with the spectrometer set "on-linen and second with the spectrometer set noff-ifine. The appropriate spectrometer setting was chosen by using a photodiode array detector. Time averaged single-shot plasma specta generated by irradiating a single levitated droplet are shown in figure 2. The figure also indicates the ondine and offaline wavelengths used during this experiment.

III. Results and Discussion

Figure 3 is a typical data set showing the signal obtained with the photo-multiplier-transient waveform digitized asseribly. The spectal line intensity obtained after subtracting the offiline signal from the on-line is shown, apical temporal profile of the laser pulse is also included in this figure. To obtain adequate signal-to-noise, as well as test the reproducibility of our method, five pairs of on-line, off-ilne differences are arithmeticaliy averaged. The shot-to-shot reproducibility is good, showing time variations in the spectral intensity profiles of ± 7 ns. The observed jitter in the time response of the spectral intensities is attributed to arify of inevitable experimental uncertainties such as: variations in the energy and pulse length of the irradiating laser beam; sifghtisplacements in alignment of the levitated droplet with the focus of the irradiating laser beam.

The temporal development of the plasma may be described by a variety of diagnostic quantities. In this paper, we select the time after the arrival or the
laser pulse at which the line under study reaches its peak value, the so-called peaktime, Tp (see Fig. 3). This time is characteristic of dynamical processes occurring in the plasma, and is easily measurable using our transient waverorm instrumentationg

Figure 4 shows the dependence of the Tp's for the various probed species on the Irradiating wavelength. Two comparisons are posisible here, firstiy, the effect of laser energy above and below air breakdown threshold at a given wavelengthend. secondiy, the effect of the laser wavelength. Each of these effects is addressed separately.

At 0.355 in below air breakdown threshold, Figure $4(a)$, the probed spectral lines reach their peaks in the sequence CII, \because ri, NaI, CI while above air breakdown threshold, Figure $4(b)$, the sequence is NII, CII, NaI and CI. The Tp's above air breakdown threshold are systematically larger than their counter-parts below air breakdown threshold. Moreover, the separation of the Tp's between CII and CI are larger above alr breakdown threshold. The fact that the ip's occur later for higher irradiance values may be explained by the fact that the deposition of more energy results in a higher initial electron density, with associated stark-Broadening, so that the spectral lines emerge above the continuum at a later time. concerning the Tp's for NII and CII above and below air breakdown threshold, the reversal of the sequence may not be as significant, since above air breakdown threshold the peak times are seen to occur within one error bar. This suggests that above air breakown threshold the air ionization occurs almost simultaneously with the droplet, while at lower laser energies the droplet 10 nizes first and subsequentiy the plasma from the droplet grows into the air ionizing it. 16,17

At 0.532 um the sequence of the Tp's is CII, NII, NaI, CI, both at higher (above air breakdown threshold) and lower (below air breakdown threshold) laser energies. The Tp's are systematically greater at the higher laser energies, as are their relative separations. In particular, we note that the separations of CI and CII are larger at the higher energy. As in the case at $0.355 \mu m$. CII and NII Tp's are closer above breakdown thresnold. Thus, at 0.532 m mhe observations are consistent with those at $0.355 \mu \mathrm{~m}$.

At 1.06 um, the sequence of CII, NII, and CI Tp's is similar above and below air breakdown threshold, but the clustering of the NII and CII Tp's above air breakdown
threshold, noted at lower wavelengths, is not observed. The behavior of $N a I$ at $1.06 m$ is puzzing, and the following discussion attempts only a provisional interpretation. Since we average over the spatial coordinates in our measurement a posible Interpretation of the behavior of the $N a I T p$ below air breakdown threshold is that the Na omission occurs in a cooler region of the plasmand, hence, may be observed at earlier times. This is consistent with studies of the spatial structure of aerosolinitiated plasmas below air breakdown threshold which show that aerosol constituents are ejected from the bulk aerosol material where the plasma is initiated. ${ }^{16,17 \text { Above }}$ air breakdown threshold, the plasma temperature is higher, the droplet is consumed by the developing plasma fireball, and the neutral species (both $N a I$ and $C I$) peak much later.

As we have noted ahove, the effects of increasing laser wavelength is to increase buth the magnitude of the $T p$'s and their separation, with this effect most pronounced When going from $0.355 \mu \mathrm{~m}$ to $0.532 \mu \mathrm{~m}$. Since the laser energy required for breakdown increases with wavelength (see Table 2) this effect might be due to energy rather than wavelength. In ot...r words, the plasmagerated by the longer wavelength laser radiation is simply hotter. We note, however, that the focal diameters also increase with wavength. We estimate the focal diameters to be $27 \mu \mathrm{~m}, ~ 40 \mu \mathrm{~m}$, and 80 umfor the $0.355 \mu \mathrm{~m}, 0.532 \mu \mathrm{~m}$, and $1.06 \mu \mathrm{~m}$ wavelengths, respectively, which would suggest the presence of a \quad a that increased photonenergles at lower wavelength will produce more photor ionization ${ }^{18,19}$ thereby explaining earlier plasma initiation times. However, the Tp's shown in figure 4 occur long after plasma inttiation and there is no compeliling evidence to suggest the Tp's will behave similarly, although the posibility cannot be ruled out. Further study is needed to resolve these difficult questions.

The dashed line ir fig. $4(a)$ shows the Tp for NII from air breakdown in the absence of the particle. Comparing these Tp's to the NII from droplet spectra suggests that the presence of the droplet delays the NII formation.

Figure 5 shows the dependence of $T p$ on laser energy at $0.532 \mu \mathrm{~m}$. The vertical dashed line marks the laser energy required to obtain air breakjown. An increase in laser energy from just below to just above alr breakiown threshold shows that the separation between Tp's, as well as their magnitude, increases. The sequence (except
for the lowest energy) is CII, NII, NaI, CI. The same explanation cited in discussing Figure 4 , namely that of larger energy deposition with higher initial electron densities and broadening, sems consistent here. However, at still higher energies the sequence changes to NaI, NII, \quad, $C I$. The air ionization could be preceding the droplet ionization, but then $N a I$ would not appear first. It may be sugested, as discussed earlier, that due to droplet explosion by the air initiated plasma, the $N a I$ appears at a colder spatial region of theplasma. Thus, at laser energies significantiy higher than air breakdown threshold the air plasma may be initiating the droplet 10 inzation. The air plasma (in the absence of the droplet) is shown bye dashed curve, and again suggests that the presence of the droplet delaysil formation.

The ratio of once ionized to neutral carbon lines (CII/CI) has been measured as a function of the time after irradiation. This ratio as a semi-quantitative indicaicion of the plasma temperature. 20 An exact calculation is not possible due to the lack of knowledge of the relative concentrations of air and droplet species contributing to the plasma.
IV. Conclusions and Recommendations

In this paper, plasma spectra were obtained for single, optically levitated, micron-sized droplets composed of glycerine-brine solution mixture. Spectra of neutral and onceionized species were obtained, both below and aoove alr breakdown threshold, as a function of laser wavelength and energy.

For laser lradiance just below and just above breakdown threshold, the peak times, Tp, become larger and spread out in time with increasing laser wavelength. The peak times for the CII and NII emission lines are further seen to become noticeably clustered above air breakdown threshold when passing from laser wavelengths of o. $355 \mu \mathrm{~m}$ to $0.532 \mu \mathrm{~m}$. Ambiguities remain in the interpretation of the wavelength and energy dependence of the observed plasma emission.

Further work on this problem should attempt to resolve the ambiguities discussed eariler, and provide quantitative data on plasma proparties. problem areas that should receive attention include an extension of the plasma data to lower wavelengha, such as the 0.266 um third harmonic of the No:YAG laser, the determination of plasa temperature, and measurements of plasma properties during the initiation phase in
particular. at early times during the initiation phases, spatio-temporal data will be needed to interpret the dynamical properties of aerosol-initiated plasmas.

ACKNOWLEDGEMENTS

We acknowledge the assistance of Martin Dorsey and Hal Cottrell during the course of this work. This research was supported by U.S. Army Research orfice grant DAAG-2g-84-K-0180. We also acknowledge the support recelved from two U.S. Department of Defense instrumentation grants, DAAG-29-85-G-D012 and DAAL03-86-G-0119.

REFERENCES

1. H.C. Van de Hulst, Light Scattering by Smali Particles, Dover, New York, 1981 .
2. R.L.Armstrong, Appl. Opt. 23. 148 (1984).
3. G. Sageev, and J.H. Seinfeld. Appl. Opt. 23. 4368 (1984).
4. F.A. Hilliams, Int. J. Heat Mass Transfer 8, 575 (1965).
5. J.B. Snow, S. - X. Q1an, and R.K. Chang, Opt. Lett. 10, 37. (1985).
6. H.-M. Tzeng, et al. Opt. Lett. 9, 499 (1984).
7. R.K. Chang, S.-X. Qian, and J. Eickmans, Proceedings of the Methods of Laser Speotroscopy Symposium, Rehovot, Iarael, December 16-20, 1985.
8. R.L.Armstrong, J.Appl. Phys. 56, 2142 (1984).
9. R.L. Armatrong. P.J. O'Rourke, and A. Zardecki, Phys. Fiulds 29. 3573 (1986).
10. S.M. Chitanvis, Appl. Opt. 25. 1837 (1986).
11. R.L. Armstrong, and A. Zardecki, Journal of Applied Physics (in press).
12. D.C.Smith.J.Appl. Phys. 48. 2217 (1977).
13. D.E. Lenoioni, Appl. Phys. Lett. 23. 12 (1973).
14. D.E. Lencioni, Appl. Phys. Lett.. 25, 15 (1974).
15. A. BJ.swas, et al, Opt. Lett. 12, 313 (1987).
16. J. H. ELakmans, W. - F. Hsioh, and R.K. Chang, Opt. Lett. 12 , 22 (1987).
17. W.-F. Hsieh, J. H. Eiokmans, and H.K. Chang, Opt. Lett. (in press).
18. H.T. Buscher, R.G. Tomlinson, and E.K. Damon, Phys. Rev. Lett., 15, 847 (1965).
19. A.J. Alcock, C. DeMichelis, and M.C. Richardson, Appl. Phys. Lett, 15, 72 (1969).
20. G. Bekeri (editor), Principles of Laser plasmas, John Wiley and Sons, NY, 593 (1976).
21. L.J. Radziemski, T.R. Loree, D.A. Cremers, and N. M. Hoffman, Anal. Chem, 55 1246 (1983).
A. Lasers
22. NdiYAG irradiating
Quanta-Ray DCR II A
laser
Average Pulse width (FWHM)
8.5 ns
23. Argon Ion Laser \quad Lexel Model 8
B. Laser-timing Components
24. Optioal Trigger EG\&G Model 1301
25. Delay Generator

SRS Model-DG535
C. Detection system

3. Photomultiplier Signal Processing

Transient Waveform Disitizer
4. Photodiode Arrary
5. Disc Calorimeter

LeCroy Module TR8828
 2 ns resolution

Traoor Northern
TN 6500
Scientech Model-365

Table 2

Laser Energies and Wavelengths Used

Havelength ($\mu \mathrm{m}$)	Average Pulse Width (ns)	$\begin{gathered} \text { Energy } \\ (\mathrm{mJ}) \end{gathered}$	Irradiançe ($\mathrm{W} / \mathrm{cm}^{2}$)
1.06	9.6	63	1.31×10^{11}
		87	1.80×10^{11}
0.532	8.5	20	1.87×10^{11}
		33	3.10×10^{11}
		40	$3 \times 10 \times 10^{11}$
		70	6.5×10^{11}
		110	1.03×10^{12}
0.355	7.5	12	2.79×10^{11}
		22	5.11×10^{11}

FIGURE 1. Schematic diagram showing experimental arrangement used to obtain time resolved spectra.

FIGURE 2. Time averaged single shot plasma spectra genarated by irradiating a single levitated droplet.

PIGURE 3. A typical data set showing the Nd:YAG pulse, on-line and off-line CII signals, and the CII line incensity as a Eunction of time.

FIGURE 4. Tp's for the different spectral species probed - plotted as a function of the irradiating wavelength (a) below air breakdown threshold (b) above air breakdown threshold.

FIGURE 5. Dependence of $T P$ on laser energy at $0.532 \mu \mathrm{~m}$.

EXPERIMENTAL AND THEORETICAL ANALYSIS OF THE INTERACTION OF LASER RADIATION WITH FLUID CYLINDERS AND SPHERES

D. R. Alexander, J. P. Barton, S. A. Schaub, M. A. Emanuel, J. Zhang
Laboratory for Electro-Optical Measurements
Department of Mechanical Engineering University of Nebraska-Lincoln Lincoln, NE 68588-0525

recent publications. submittals for publication and presentations:

A). D. Alexznder, "Experimental System for Real-Time Observation of Particle Dynamics at High Energy," Presentation at the 1985 CRDEC Conference on Obscuration and Aerosol Research, June 1985.
B). D. Alexander, K. Wiles, S. Schaub, M. Seeman, "Effects of Non-Spherical Drops on a Phase Doppler Spray Analyzer," SPIE Vol. 573, p. 67, 1985.
C). D. Alexander, "Nonlinear Effects of High Energy CO_{2} Laser Illumination of Aerosol Drops," presentation at the 1986 CRDEC Conference on Obscuration and Aerosol Research, June 1986.
D). J. Armstrong, "Experimental Study of the Explosive Vaporization of Aerosol Drops Under Irradiation by a CO_{2} Laser," Masters Thesis, Mechanical Engineering Department, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, May 1986.
E). D. Alexander and J. G. Armstrong, "Explosive Vaporization of Aerosol Drops Under Irradiation by a CO_{2} Laser Beam," Appl. Opt. 26, 533.538, 1987.
F). D. Alexander, J. Barton, S. Schaub, and M. Fitzwater, "Beam Propagation Effects Resulting From The Electric Field Strengths For Spheres and Cylinders: Internal and Near Field," presentation at Workshop on the Physics of Directed Energy Propagation in the Atmosphere," U.S. Army Atmospheric Sciences Laboratory (ASL) at New Mexico State University, Las Cruces, New Mexico, January 27-28, 1987.
G). D. Alexander, J. Barton, S. Schaub, and M. Emanuel, "Experimental And Theoretical Anal. ysis of the Interaction of CO_{2} Laser Radiation With Fluid Cylinders and Adjacent Spheres," presentation at the 1987 CRDEC Conference on Obscuration and Aerosol Research, June 1987.
H). J. P. Barton, D. R. Alexander, and S. A. Schaub, "Surface Charges on Spherical Particles Induced by Polarized Irradiation," Manuscript submitted to Journal of Optical Society of America. September 1987.
I). J. P. Barton, D. R. Alexander, and S. A. Schaub, "Internal and External Electromagnetic Fields for A Homogeneous Sphere With an Arbitrary Incident Beam," Manuscript submitted to Journal of Optical Society of America. September 1987.
J). Mark Emanuel, "Explosive Vaporization of Spherical and Cylindrical Aerosols: Comparison Between Experimental Results Using A CO ${ }_{2}$ Laser and Internal and Scattered Optical Fields," Master's Thesis, Mechanical Engineering Department, Laboratory for Electro-Optical Measurements, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, October 1987.

Abstract

Work performed under contract DAAA15-85-K-0001 for the past year is outlined. Both experimental and theoretical results have been obtained for the interaction of polarized electromagnetic laser radiation at $\lambda=10.6 \mu \mathrm{~m}$ with spheres and cylindrical fluid columns. Theoretical research presented in H discusses the surface charges on spherical particles induced by polarized electromagnetic radiation. Research presented in I reviews the progress made in calculating the internal and external magnetic fields for a homogeneous sphere with an arbitrary incident beam intensity distribution. Experimental work on the characteristica of the explosive vaporization of spherical and cylindrical aerosols is presented in J . The work presented in this paper presents an overview of published work and other work undertaken during the past year. Future plans are to use excimer lasers to extend the research to short wavelengths and to irradiance values where nonlinear effects become important and to initiate solid particle interaction studies.

Introduction

The phenomena associated with the linear and nonlinear laser heating of spherical aerosol and cylindrical fluid columns is currently being investigated. In previous work, ${ }^{1}$ we present a theoretical development for the calculation of electric surface charge density for a polarized plane electromagaetic wave incident upon a homogeneous particle. Electric field distribution calculations indicate a discontinuity in the normal component of the electric field across the surface of the sphere. This discontinuity in the normal component of the electric field is a result of accumulated electric charges on the surface of the sphere. Figure 1 gives the geometric arrangement and Figs. 2-6 illustrate that the free surface charge density has a complicated surface position dependence. In addition, if the spherical particle is polarizable, a polarization surface charge density is created which is in phase with the local internal surface normal electric field component but lags the free surface charge density by 90°. Besides providing physical insight, evaluation of surface charge densities may he important with regard to the understanding and determination of electromagnetic induced surface stresses. The external surface electric field will interact with the surface charges to create surface forces. These forces may contribute to the breakup of small particles subjected to intense laser illumination.

In a second paper, ${ }^{2}$ we present a theoretical development and computer calculations for an arbitrary electromagnetic beam incident upon a homogeneous spherical particle (See Fig. 1). As a test of the arbitrary incident beam theory and the computer program, a Mie theory type incident plane wave was assumed. Consistent with the Mie theory development as presented in Born and Wolf ${ }^{3}$, the incident linearly polarized plane electromagnetic wave is assumed to propagate in the +2 axis direction with an electric field polarization in the x axis direction. Thus, after removing the $\exp (-i \omega t)$ time dependence

$$
\begin{equation*}
\vec{E}^{(i)}=E_{0} e^{i k_{0}, I^{2}} \dot{x} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\vec{H}^{(i)}=\sqrt{\epsilon_{\mathrm{Eft}}} E_{0} e^{i k_{\mathrm{c}} \mathrm{r}^{2}} \hat{y} \tag{2}
\end{equation*}
$$

where E_{0} is the incident electromagnetic wave electric field amplitude. Substituting the incident electromagnetic field described by Eqs. (1) and (2) into the computer program produced results, as expected, identical to those of plane wave Mie theory. For illustration, Fig. 7 shows a computer program generated equatorial plane ($x-2$ plane) plot of the normalized source function,

$$
\begin{equation*}
\dot{S}=\frac{|\vec{E}|^{2}}{\left|\overrightarrow{E_{o}}\right|^{2}} \tag{3}
\end{equation*}
$$

for a $20.2 \mu \mathrm{~m}$ diameter water droplet in air with $10.6 \mu \mathrm{~m}$ wavelength (CO_{2} laser wavelength) plane wave irradiation. (Size parameter $a=2 \pi a / \lambda_{0}=6$, complex relative index of refraction $n=1.18$ +0.07 .)

An additional test of the validity of the arbitrary incident beam theory and the computer program was to use an incident linearly polarized plane electromagnetic wave but with arbitrary propagation direction and arbitrary electric field direction. As expected, the results were identical to that of plane wave Mie theory after taking into consideration a proper rotation of axis. For illustration, Fig. 8 shows, for otherwise the same conditions as Fig. 7, the normalized source function for an incident plane electromagnetic wave with the electric field in the \mathbf{x} direction but propagating in the $+y$ axis direction. The plot of Fig. 8 is identical in form and rotated 90° relative to that of Fig. 7 as expected.

The response of a spherical particle to an incident Gaussian beam is of curfent research interest. Recently, Simon et al. ${ }^{4}$ have reported an improved fundamental (TEMoo mode) Gaussian beam description that includes longitudinal, as well as transverse, components of electric and magnetic fields. Even though this fundamental Gaussian beam description does not exactly satisfy Maxwell's equations (as can be verified by direct substitution) it is an improvement over earlier paraxial descriptions and is a good approximation as long as the beam waist diameter is not small relative to the wavelength. The fundamental Gaussian beam description of Simon et al. ${ }^{4}$ was used with the arbitrary incident beam computer program. The propagation direction is along the +2 axis, the
predominate electric field polarization is along the x axis, and the nominal elertric field amplitude is E_{0}.

For illustration, Figs. 9 and 10 are normalized source function plots for a fundamental Gaussian beam of $10.6 \mu \mathrm{~m}$ wavelength and $50.6 \mu \mathrm{~m}$ beam wast diameter incident upon a $20.2 \mu \mathrm{~m}$ diameter water droplet in air as was considered in Figs. 7 and 8. In Fig. 9 the center of the droplet is at the focal point of the focused beam and comparison with Fig. 7 indicates that, for these conditions, the features of the electric field distribution are essentially the same as for an incident plane wave. (As expected, in the limit of large beam waist diameter to sphere diameter ratio, the electromagnetic field distribution converges exactly to that of an incident plane wave). In Fig. 10 the center of the droplet is translated one droplet diameter along the y axis from the focal point of the beam and though the general form of the electric field distribution is similar to that of the sphere at the focal point, the normalized source function magnitude is larger near the focal point and smaller away from the focal point, as would be expected.

Temperature Measurements within a Cylindrical Water Column

In this section, experimental results are presented in which the temperature distribution across a cylindrical water column of approximately $100 \mu \mathrm{~m}$ in diameter has been measured. A small type K thermocouple probe with a junction diameter of $\mathbf{3 5 . 4 0} \mu \mathrm{m}$ was used in the temperature measurements. To accurately position the thermocouple relative to the fluid column, the thermocouple was mounted on micrometer translators which allowed movement in three mutually perpendicular directions. A pulsed N_{2} laser imaging system ${ }^{5}$ coupled to digital image processing system ${ }^{5}$ was used to visually locate and position the thermocouple at the desired location. The cylindrical column of fluid was generated using a Thermal Systems, Inc. (TSI) vibrating orifice generator. To obtain stable fluid columns, it was necessary to run the TSI generator without any frequency input and at a higher flow rate than normally recommended. The fluid columns were irradiated using an Advanced Kinetics $100 \mathrm{~W} \mathrm{CO}_{2}$ laser operating at $\lambda=10.6 \mu \mathrm{~m}$ in the continuous, multiline mode focused to a spot size of approximately $120 \mu \mathrm{~m}$.

The initial objective of the experiment was to measure the temperature distribution across the fluid column when the particle was on the threshold of explorive vaporization. To make this measurement, however, would require a non-intrusive measurement technique since the introduction of the thermocouple acts as a nucleation site to initiate the breakup process. From the laser
imaging system, it was readily observed that, prior to placement of the thermocouple within the fluid column, the laser was slightly below threshold irradiance for explosive vaporization since no explosive characteristics were observed. However, after placing the thermocouple within the fluid atream, considerable explosive behavior pas observed as the drops impacted the thermocouple junction. Therefore; it was necessary to decrease the laser power level such that the laser was operating slightly below threshold irradiance when the thermocouple was within the fluid stream. With this restriction, the maximum temperature measured by the use of the thermocouple may be considerably lower than the temperature that exists within the stream in which no external intrusions are present. However, our attempts to measure the temperature distributions demonstrates that metastable conditions can be measured within the fluid column. A non-intrusive method of temperature measurement would be required if the actual temperature at which explosive vaporization occurs is to be accurately measured.

To measure the highest temperature possible, it was necessary to position the thermocouple probe as close to the heating area as possible without the thermocouple being heated by the laser. The temperature of the thermocouple probe without the presence of the fluid column was found to be approximately $38^{\circ} \mathrm{C}$ compared to the ambient temperature of $22^{\circ} \mathrm{C}$. Since the temperature of the preheated water entering the focal point of the laser was $58^{\circ} \mathrm{C}$, the initial temperature of the thermocouple probe was not a significant heating effect in comparison.

Measurements were first taken on the illuminated area on the fluid column having maximum temperature. The thermocouple probe was then translated across the column in increments of approximately $10 \mu \mathrm{~m}$. At each spatial location, 1000 data points were recorded using an A/D board in a PDP/73 computer data acquisition system in a 1 second interval and the average value used. Since the junction of the thermocouple was approximately $1 / 3$ of the colymr diameter, the measurements at each position represent an average temperature of the fluid column over a diameter equivalent to the junction diameter.

Figure 11 shows the experimental results consisting of 5 passes through the fluid column. The micrometer readings made as the thermocouple traversed the column were normalized to the interval from -1 to 1 . Note that the laser is propagating in the positive direction as shown on the abscissa. A maximum temperature of approximately $126^{\circ} \mathrm{C}$ occurred on the illuminated side of the fluid column and was observed to decrease rapidly as the center of the column was approached.

On the shadow side of the fluid column, the temperature was found to be approximately $60^{\circ} \mathrm{C}$ which was only $2{ }^{\circ} \mathrm{C}$ above the temperature of the water entering the laser focal point. The nature of this curve can be explained in a qualitative sense by examining Fig. 12 which shows the source function for a $100 \mu \mathrm{~m}$ infinite cylinder illuminated by a plane wave. The two curves are similar in shape with maximum values occurring on the illuminated side and decaying substantially as the center of the column was approached. As expected the major part of the energy was deposited on the illuminated side of the column which was confirmed by the measurements. Note that although the intensity of the incident beam is less than the threshold intenaity for explosive vaporization if there were no thermocouple present, the measurements document that temperatures well in excess of the boiling point exist within the column.

Further investigations are underway to perform temperature measurements on other materials and to investigate the effects of irradiance on the measured temperatures.

CO_{2} Laser Interactions with Cylinders of SFG-2 Fogoil and Methanol

Experimental work has been performed on cylinder-like fluid columns with a CO_{2} laser operating in the multi-line mode at $10.6 \mu \mathrm{~m}$ with a maximum power density of 4×10^{6} watts $/ \mathrm{cm}^{2}$. Figures 13 and 14 show the transition from shadow side initiated explosions in $80 \mu \mathrm{~m}$ methanol columns to front sutface explosions in $90 \mu \mathrm{~m}$ methanol columns. Figure 15 shows the CO_{2} laser beam interaction with a $90 \mu \mathrm{~m}$ column of SFG-2 fogoil. The fogoil explosions take place along the shadow side surface without much evidence of break through on the illuminated side. Also apparent in the original video tapes and original photographs was the appearance of large flares of a different index of refraction material thought to be dense smoke clouds or gaseous material. The fogoil was observed to produce a considerable amount of smoke during irradiation which was exhausted by using a hose connected to the laboratory exhaust system. A deposit of white powder like material was deposited on the exhaust tubing. The powder will be analyzed by CRDEC for composition.

The experimental results showed shadow side explosive behavior for $90 \mu \mathrm{~m}$ SFG-2 fogoil columns. The Mie scattering codes using an index of refraction provided by Dr. John White of CRDEC of $1.511+0.034 i$ for $90 \mu \mathrm{~m}$ columns of fogoil had the maximum source function on the illuminated side. Two samples of the fogoil being used in our experiments were sent to Dr. Marvin Querry at the University of Missouri at Kansas City for an analysis of the index of refraction.

Results obtained by his laboratory indicate an index of refraction of $1.48+0.0055$ i for the real and imaginary part of the index of refraction at $\lambda=10.6 \mu \mathrm{~m}$. Using this new value for the index of refraction, good agreement was obtained between experiments and the theoretical calculations showing the maximum source function on the shadow side of the column of fogoil.

Near Field Source Strengthe and Dual Particle Interactions

Although the source function internal to the particle appears to be a primary driving force for the explosive behavior of aerosol particles subjected to laser radiation, also of interest is the strength of the source function which is external to the particle but still in the near field. Such information is important for modelling the propagation of laser beams through a cloud of aerosol particles in which secondary interactions between nearby particles could initiate the breakdown process. In particular, the source function in the direction of beam propagation has been investigated.

The geometry under consideration is shown in Fig. 1 in which the beam propagation is assumed to be in the positive Z direction with linear polarization in the X direction. The distance along the Z axis is normalized by the particle radius. Reference to the shadow side of the particle, would therefore, indicate consideration of Z (or r) values greater than unity.

To examine the effect of size parameter on the location and magnitude of the maximum external source function. a code implementing the Lorenz-Mie scattering solution was used to determine the location and magnitude of the maximum source function for various size parameters, $a=\frac{\text { zae }}{\lambda}$. The material under consideration was water with a refractive index of $n=1.18+0.07 i$. Figure 16 shows the results of the calculations. Here, the normalized radial position represents the location of the maximum external source function along the Z axis measured with respect to the particle center. As shown in Fig. 16, the maximum external source function always occurs within one particle radii from the shadow surface. It is apparent that the particle size has a significant effect on both the location and magnitude of the maximum external source function. Note that the maximum external source function for the waler particle with $a=10$ shows more than a three-fold increase over the incident source function and is approximately 4 times the magnitude of the maximum source function observed internal to the particle ($S_{\text {mar,int }}=0.85$). It should be pointed out that the incident field is assumed to be a plane wave with uniform source function of unity magnitude.

In addition to the location and magnitude of the maximum external source function, the rate at which the maximum source function decays with increasing Z for a given particle size is of
interest. Figure 17 gives an indication of the rate at which this maximum source function decays with increasing distance from the particle. The number of radii plotted on the ordinate is found by determining the 2 location corresponding to the point at which the source function decreases to 1.5. The value of 1.5 was chosen arbitrarily but represents a value, above which, will likely produce an effect that may be observed experimentally. Based on Fig. 17, a size parameter of approximately 8 appears to produce the greatest effect on the external field. For this size parameter, the source function has a maximum value of approximately 3.1 occurring at a radial location of 1.74 . The source function continues to exceed 1.5 for an additional 5.8 drop radii.

Also of interest is the way the source function varies across the plane perpendicular to the propagation axis. In particular, the distribution of the source function at the location of the maximum external source function has been examined. The plane under consideration is the $\mathrm{X}-\mathrm{Y}$ plane labeled P_{3} as shown in Fig. 1. The results shown in Fig. 18 represent the source function distribution for a water droplet with a size parameter of 8 and where the X-Y plane is located at $Z_{0}=1.74$. Figure 18 shows a considerable amplification in the source function uear the propagation axis which decays substantially within one-half particle radius.

To observe this phenomenon experimentally it was necessary to align two particlea along the axis of the laser beam while maintaining a particle separation of approximately one drop diameter. In order to obtain a dual drop stream, a slight modification was made in the existing system used to generate single drop stresms. The TSI vibrating orifice generator presently uses a thin steel orifice consisting of a single hole ranging in size from $10.100 \mu \mathrm{~m}$. To generate the dual droplet stream, a focused argon laser beam was utilized to construct a new orifice with two boles with diameters of approximately $20 \mu \mathrm{~m}$ spaced approximately $40 \mu \mathrm{~m}$ frorn center to center. Figure 19. shows a digitized photograph of the dual droplet stream and laser interaction. Note that the beam is propagating from left to right on the image. Denoting particle 1 as the leftmost particle and particle 2 the rightmost particle, one readily observes that particle $\mathbf{2}$ is showing evidence of explosive behavior while in the shadow region of particle 1 . Since both particles are nearly identical in size, the threshold for explosive behavior should be the samp provided each is travelling at the same velocity through the stationary laser beam. As illustrated theoretically in Fig. 16-18 and experimentally in Fig. 19, it appears that particle 2 experiences a higher incident source function than particle 1 due to the amplification effect as discussed earlier in this report. The particles shown
in Fig. 19 are approximately $45 \mu \mathrm{~m}$ in diameter and the separation pt the time of laser interaction was $35 \mu \mathrm{~m}$. Using these values, the source function which would exist at the surface of the second particle was calculated. The results shown in Fig. 20 show a source function of approximately 2.6 at a location $Z_{0}=2.5$. These theoretical results are consistent with the experimental observations since one might expect the second particle to explode first based upon these calculations. It should be pointed out the theorstical discussion neglects several factors. In reality, a situation such as the one $d \in$ cribed in the above sections would involve dual interactions between the electric fields of the adjacent particles. However, if one assumes that the backward scattered light from the second particle is small, the theoretical solution may provide a reasonable model of the physi:al situation. A second factor to be considered is the fact that the field incident on the first particle $:_{\varepsilon}$ actually a Gaussian beam rather than a uniform field as assumed by the Lorenz-Mie ther-v

Conclusions

The current work reports the existence of a discontinuity in the normal component of the electric field. Based on the calculations the discontinuity in the normal component of the electric field is a result of accumulated electric charges on the surface of the sphere. The surface charge was shown to have a complicated surface position dependence. A more complete theoretical development as well as computer calculations have been presented for the first time on the interaction of a particle with an arbitrary incident intensity profile. Measurements of the temperature distribution through a laser heated fluid column showed that average temperatures as high as $126^{\circ} \mathrm{C}$ could be obtained. Differences in the location of where explosive vaporization occurred experimentally and what theoretical calculations predicted, resulted in a correction for the index of refraction for fogoil from $1.511+0.034 i$ to $1.48+0.0055 i$ at $\lambda=10.6 \mu \pi$. The current work also illustrates that the electric fields can be quite high in the shadow region of a particle. Experimental work with dual drop streams clearly demonstrated the possibility that the focusing effect of one particle on a second particle can significantly lower the breakdown irradiance values for propagation through obscurant materials.

Acknowledgements

This work was supported by the Army Chemical Research and Development Engineering Center under Contract DAAA15-85.K.0001. The advice and assistance of Dr. O. Sindoni, Dr. E.

Stuebing, and Dr. J. White of the Chemical Research and Development Engineering Center are gratefully acknowledged.

References

1. J. P. Barton, D. R. Alexander, and S. A. Schaub, "Surface Chas, on Spherical Particles Induced by Polarized Irradiation," Manuscript submitted to Journal of Optical Society of America, Scptember 1987.
2. J. P. Barton, D. R. Alexander, and S. A. Schaub, Internal and External Electromagnetic Fields for A Homogeneous Sphere With an Arbitrary Incident Beam," Manuscript submitted to Journal of Optical Society of America, September 1987.
3. M. Born and E. Wolf, Principles of Optics, (Pergamon Press, Oxford, 1970).
4. R. Simon, E.C.G. Sudarshan, and N. Mukunda, "Gaussian-Maxwell beams," J. Opt. Soc. Am. 3, 536-540 (1986).
5. D. Alexander and J. G. Armatrong, "Explosive Vaporization of Aerosol Drops Under Irradiation by a CO_{2} Laser Beam," Appl. Opt. 28, 533-538, 1987.

Fig. 1. Schematic of the geometry for the theorectical calculations.

Fig. 2. Normalized source function in the plane of polarization (x-y plane) for a spherical particle with $a=5$ and $\mathrm{n}=1.18+0.07 \mathrm{i}$.

Fig. 3. Normalized source function along the transverse centerline (x axis) for a spherical particle with $a=5$ and $\bar{n}=1.18+0.07 \mathrm{i}$.

Fig. 4. Freu surface clarge density magnitude (---- left y axis) and phase (. . . . right y axis) along the top of sphere surface $(\phi=0)$ for $a=0.1$ and $\bar{n}=1.18+0.07 \mathrm{i}$.

Fig. 5. Free surface charge density magnitude (——— left y axis) and phase (. . . . right y axis) along the top of sphere surface $(\phi=0)$ for $\alpha=5$ and $\bar{n}=1.18+0.07 i$.

Fig. 6. Free surface charge density magnitude (- —— left y axis) and phase (. . . . right y axis) along the top of sphere surface $(\phi=0)$ for $\alpha=50$ and $\bar{n}=1.18+0.07$.

Fig. 7. Plane wave propagating in the +2 direction incident on a spherical particle with $\alpha=6$ and $\bar{n}=1.18+0.07 i$. Spatial coordinates are normalized relative to sphere radius, a.

Fig. 8. Plane wave propagating in the $+y$ direction incident on a spherical particle with $\alpha=6$ and $\hbar=1.18+0.07$ i. Spatial coordinates are normalized relative to sphere radius, a.

Fig. 9. Gaussian beam with a 5 a beam waist diameter propagating in the +2 direction incident on a spherical particle located at the focal point with $\alpha=6$ and $\bar{n}=1.18+0.07 \mathrm{i}$. Spatial coodinates are normalized relative to sphere radius, a.

Fig. 10. Gaussian beam with a 5 a beam waist diameter propagating in the +2 direction incident on a spherical particle located one sphere diameter along the y axis from the focal point with $a=6$ and $\boldsymbol{n}=1.18+0.07 \mathrm{i}$. Spatial coodinates are normalized relative to sphere radius, a.

Fig. 11. Temperature distribution within a $100 \mu \mathrm{~m}$ cylindrical water column as a function of normalized radial position.

Fig. 12. Source function distribution along the centerline for a $100 \mu \mathrm{~m}$ cylindrical water column as a function of normalized radial position. Beam pclarization is along the axis of the fluid column.

Fig. 13. Typical interaction of a $80 \mu \mathrm{~m}$ methanol fluid column with a $100 \mu \mathrm{sec}$ laser puse from a CO_{2} laver operating at $10.6 \mu \mathrm{~m}$. The laser beam is incident from left to right. Maximom irrediance was $0.62 \mathrm{MW} / \mathrm{cm}^{2}$.

Fig. 14. Typical interaction of a $90 \mu \mathrm{~m}$ methanol fluid column with a $100 \mu \mathrm{mec}$ laeer pulse form a CO_{3} lever operatiog at $10.6 \mu \mathrm{~m}$. The laser is incident from left to right. Maximum lrradiance wh $0.62 \mathrm{MW} / \mathrm{cm}^{2}$.

Fig. 15. Typical interaction of a $90 \mu \mathrm{~m}$ fogoil Auid column with a $100 \mu \mathrm{ece}$ pulee from a CO_{2} laver oparating at $10.6 \mu \mathrm{~m}$. The lacer beam is incident from lett to fight. Madimum irradiasce wae $0.02 \mathrm{MW} / \mathrm{cm}^{2}$.

Fig. 16. Location and magnitude of the maximum external source function along the Z axis as a function of the size parameter, $\alpha=\frac{2 \pi a}{\lambda}$.

Fig. 17. Number of radii for which the external source function exceeds 1.5 as a function of size pa. rameter for spherical water drops.

Fig. 18. External zource function in the X.Y plane at $Z_{o}=1.74$ for water dropa with size parameter, $\alpha=8$.

Fig. 19. Example of a socond particle being in the high electric field behind the front particlo. Demonatratee that the front particle does not explode but the second particle effectively seee a very large electric field and thus explodes. The beam ls Incident from the left to right. The particles are $45 \mu \mathrm{~m}$ in diameter with a eeparation of $35 \mu \mathrm{~m}$. The particlee are illuminated with a CO_{3} lecer at $10.6 \mu \mathrm{~m}$ with an Irradiance of $0.13 \mathrm{MW} / \mathrm{cm}^{2}$.

Fig. 20. External source function in the X.Y plane at $Z_{0}=2.5$ (See Fig. 1.) for $45 \mu \mathrm{~m}$ water drops.

energy balance in laser-irradiated vapurizing droplets

A. Zardecki
Thecretical Division, MS K723
Los Alamos National Laborator:
Los Alamos, NM 87545
R. I. Armstrong
Physice Department, Applied Lascr Opt, cs Group New Mexico state University
Las Cruces, NM 88003

Recent pl:blications, stbmittals for peblication a id plesentations
A) A. Zardecki and S. A. W. ('erstl, "Off-Axis Scattering of laser Beams Uging Single and MultiGausian Plase Function Approximation," Proceedings of the $19 R 6$ - R DDEC Scientifc Conference on Ob scuration and Aerosoi Research, R. H. Kohl, Ed., In Preparation
B) R. L. Armstrong, P. J. O'Rourke, and A. Zardecki, "Vapor zation of Irradiated Droplets," Phys. Fluids, 29, 3573.3581 (1986).
C) A. Zardecki and S. A. W. Gerstl, "Multi-Gaussian Function Model for Off-Axis Laser Beam Scattering, ${ }^{n}$ Optical Socieiy of America Annual Meeting, Scattle, Octoter 19-24, 1986
D) R. L. Armstrong and A. Zardecki, " Diflnaive and Convective Vaporization of Iradiated Droplets," International Laser Science Conference, Seathle, Ociober 20-24, 198i
E) S. A. W. Gerstl, A. Zardecki, W. P. Unruh, D. M. Stupin, G. H. Stokes, and N. E. Elliot, "Of.Axi9 Multiple Scatlering of a Laser Beam in Turbid Media: Comparison oí Theory with Experiment," Appl. Opt. 26, 779.?85 (1987).
F) A. Biswas, H. Latig, P. Shah, L. J. Radziemski, ant R. L. Arritrong, "Time-R:solved Spectroscopy of Plasmas Initiated on Single, Levitated Acrosol Dioric:.." Opt. Le t. 12, 313-315 (1987)
C) A. Zardecki and S. A. W. Gerstl, "Multi-Gaissian Phase Fu'ction Model for Off-Axis Laser Beam Scattering." Appl. Opt. 28, 3000-3004 (1987).

AISTRACT

We analyse the interactions of atmospherir aerosols with a high-energy laser beam. The energ ialance equation a!!ows ts to compute the conversin, of the pulse energy in!, temperature increase, raporization, conduction, and convection. We also include the ahrinkage term whige significance has recently been dis. cussed by Davies and Brock.

INTRODUCTIO:N

The propagation of a high-flux heam of electromagnetic radiatin) through the atmosphere resulte in a variety of interactions between the Leam and atmospheric aerosed. wesent alew, the propagation path. At Low irradiances, ${ }^{1}$ linear absor,

 dropletg irradiated by 10.6 min lighi, i and vaperizationt ance $\sim 10^{3}$
$\mathrm{W} / \mathrm{cm}^{2}$, whereas for irradiance levels $\geq 10^{\circ} \mathrm{W} / \mathrm{cm}^{2}$ hydrodynamic, plasma, and nonlinear optical effects become significant.

In this paper, we emphasise the intermediate irradiance regime, vhere aerosol heating and vaporization are important. In this case, the diffusive masa cranaport and conductive energy transpert dominate the aerosol-beam interactions. A numerical analysis of the coupled aerosoi-beam equations allows us to compute the energy conversion of the incident laser pulse. This will be given in the form of plots showing the fractional energy conversion. We include the droplet radius shrinking with time similar in form to that recently analyzed by Davies and Brcck. ${ }^{8}$

a erosol heating and vaporization

For an incompresailble droplet of density ρ and constant specific keat C, the general energy conservation equation has the form

$$
\begin{equation*}
\rho \frac{\partial}{\partial t}\left(C T_{L}+\frac{1}{2} v^{2}\right)+\rho \nabla \cdot\left[\left(C T_{L}+\frac{P}{\rho}+\frac{1}{2} v^{2}\right) v j+\nabla \cdot\left(-\kappa \nabla T_{L}\right)=W\right. \tag{1}
\end{equation*}
$$

where T_{L} and \mathbf{v} are the droplet temperature and velocity at any point of the droplet, κ is the thermal conductivity, and W is the rate at which the energy is absorbed from the beam. For moderate luxcs considered here the kinetic energy term in the first term of Eq. (1) can be neglected as compared to the internal energy of the drop. If a denotes the inatantaneous diroplet radius, we obtain after integrating over the sphere with the radius $a+c$, where e is an infinitesimally small number:

$$
\begin{equation*}
\frac{4 \pi a^{3}}{3} \rho c \frac{d T}{d t}+4 \pi a^{2} m\left|L+C\left(T-T_{0}\right)\right|-4 \pi a^{2} K\left(\frac{\partial T}{\partial r}\right)_{r=a}+4 \pi a^{2} \frac{m^{3}}{2 \rho^{\prime 2}}=\pi a^{2} Q_{a} F . \tag{2}
\end{equation*}
$$

Here we have defined the mass flux $m=\rho u ; L$ is the heat of vaporisation, and T_{0} and T_{0} refer to the ambient temperature and the temperature of the gas. The other aymbole in Eq. (2), K, ρ^{\prime}, Q_{a}, and F denote the thermal conductivity ard density of the ourrounding medium, Mie sbsorption efficiency factor, and the incident Bux, respectively. Finally, the volume-averaged droplet temperature, ${ }^{\prime}$ is identified with the temperature T at the drop's surface. We note that the term $4 \pi a^{2} C\left(T-T_{0}\right)$ accounts for the droplet radius shrinking with time. If $T_{\text {borl }}$ denotes the boiling temperature, the relative gigniticance of that.ir can the expressed by the ratio $C\left(T_{\text {boil }}-T_{0}\right) / L$. For water dropleta this does not exceed 15%; w. retz..r, ilowever, the ahrinkage term for completeness

Energy $\boldsymbol{\theta} \cdot \mathrm{u}$ mase coriservation in the surrounding medium allow un to compute the musa all. heat f . . If the explicit time dependence in the coneervation equations is igrored, the desired relat: as ase

$$
\begin{align*}
& m=\frac{D}{a} \ln \left[\frac{1-V_{0}}{1-Y_{0} \exp \left(\frac{L M}{R T_{0}}-\frac{L M}{R T}\right)}\right] \tag{3}\\
& K\left(\frac{\partial T}{\partial r}\right)_{r=a}=-\frac{m C_{p}\left(T-T_{0}\right)}{\exp \left(m C_{p} a / K\right)-1} \tag{4}
\end{align*}
$$

where D, M, and C_{p} are the vapor-diffusion coefficient. molecular weight, and specific heat, respectively; R is the ideal gas constant, and y_{0}^{\prime} is the ambient-vapor mass fraction is the surrounding medium.

Inserting Eq. (4) into Eq. (2), and using the relation $m=-\rho \partial a \partial t$, resulis in two coupled eqautions for the droplet temperature and radius. These equations have the for n

$$
\begin{gather*}
\frac{\partial T}{\partial t}=\frac{3 Q_{a} F}{4 a \rho C}-\frac{3 m}{4 a \rho C}\left\{L+\frac{C\left(T-T_{0}\right)}{m}+\frac{C_{p}(T}{e x p\left(m C_{p} t / K\right)-1}-\frac{\left.T_{0}\right)}{2 \rho^{\prime 2}}\right\} \tag{5}\\
\frac{\partial a}{\partial t}=-\frac{m}{\rho} \tag{6}
\end{gather*}
$$

The beam irradiance F is given by the solution to the tranaport equation, which-due to the dependence of the scattering and absorption coeflicients on F-defines a nonlinear transport problem

ENERGY DEPOSITION IN IRRADIATEI DROPLETS

Equation (2) may be integrated term-by-term over the duration of the pulse and the volume of a single ! splet to determine the distribution of incident beam energy into diferent dissipative modes. This yields:

$$
\begin{equation*}
E_{H}^{(0)}+E_{\because}^{(0)}+E_{C}^{(0)}+E_{S}^{(0)}=E_{r}^{(0)} \tag{7}
\end{equation*}
$$

where $E_{1}^{(0)}(i=H, V, C, S)$ gives the energy deposited in heating, vaporisation, conduction, and drop shrinking, respectively, and where $E_{r}(0)$ is the energy of the pulse deposited in a single drop. In Eq. (7), we have neglected the small contribution arising from the convection term. Integrating Fq. (7) over the valume swept by the beam, when the beam traverses a distance s, we get the energy balance equation for the laser beam. In fractional form, it readg

$$
\begin{equation*}
Q_{H}+Q_{v}+Q_{c}+Q_{s}=1 \tag{8}
\end{equation*}
$$

Here $Q_{1}=E_{4} / E_{T}(i=H, V, C, S)$ gives the fraction of the deposited beamenergy. At a distance a from the input plane, E_{T} can be computed from the equation

$$
\begin{equation*}
E_{T}=E_{0}-\int F(r, t) d t d^{2} r_{1} \tag{9}
\end{equation*}
$$

where E_{0} is the initial energy of the pulse.
In Fig. 1, we show the contributions of the energy terma in Eq. (8) for the low fux case in which the maximum value of the irradiance of a Gausian pulse is $10^{3} \mathrm{~W} / \mathrm{cm}^{2}$. For the sake of completeness, we also show in Fig. 2 the pulse irradiance as a function of the propagation tistance z and the time t. In Figs. 3 and 4, we present similar results for a higher fux case corresponding to $F_{M A X}=10^{5} \mathrm{~W} / \mathrm{cm}^{2}$.

CONCLUSIONS

In this paper, we liave obtained solutions to the coupled system of droplet-beam equations, which are valid for beams of moderate irradiance. The results of these calculations illustrate features of interest such as punch-through and the significance of droplet vaporization. For the low flux case, as shown in Fig. 1, the beam energy is depleted primarily by the droplet vaporisation process. For the high fux case, Fig. 3, the beam enetgy essentially remaina constant although droplet vaporization continues to be the dominant process.

In future work, we will extend these resulta into the regime whe convective vaporization and hydrodynamic effecte must be inciuded.

REFERENCES

1. A. Ishimaru, Wave Propagation and Seattering In Random Media, (Academic Press, New York, 1978).
2. R. L. Arrsatrong, ' Aerosol Heating and Vaporisation by Pulsed Light Beams," Appl. Opl. 25, 148 -155 (1984).
3. R. L. Armatrong, "Propagation Effects on Pulsed Light Beama n Absorbing Media," Appl. Opt. 23, 156-180 (1984).
4. R. L. Armatrong, S. A. W. Gerall, and A. Zardecki, "Nonlinear Pulse Propagation in the Presence of Evaporating Aeromola," J. Opt. Soc. Am. A2, 1739-1748 (1985).
5. R L. Armatrong, A. Zardecki, and S. A. W. Gerstl, "Hydrodynamice of Evaporating Aeroscle Irradiated by Intense Laser Beams,' in Proceedinge of the Iaternatlonal Conference on Lasers 's5, edited by C. P. Wang (STS Press, McLean, VA, 1986), pp. 504-509.
6. R. L. Armatrong, P. J. O'Rourke, and A. Zardecki, 'Vaporisation of Irtadiated Dropiets," Phys. Fluida, 29, 3573.3581 (1986).
7. J. P. Reily, "High Flux Propagation through the Atmoaphere," in Proceedingb of SPIE, Vol 410 , edited by J. C. Leader (SPIE, Bellingham, WA, 1983), pp. 2-12.
8. S. C. Davies and J. R. Brock, "Laer Evaporation of Dropleta," A.ppl. Opt. 26, 786-793 (1987).

FIGURE 1. Energy balence for $5 \mu \mathrm{~m}$ water droplete irradiated by $10.6 \mu \mathrm{~m}$ laer radiation; $F_{\text {MAX }}=$ $1 \times 10^{3} \mathrm{~W} / \mathrm{cm}^{2}$.

FIGURE 2. SPatintemporal behavior of laeer heam irradiance; $F_{\text {MAX }}=1 \times 10^{9} \mathrm{~W} / \mathrm{cm}^{2}$.

FIGURE 3. Same a Fig. 1, but $F_{M A X}=1 \times 10^{\circ} \mathrm{W} / \mathrm{cm}^{2}$.

FIGURE 4. Same m Fig. 2, but $F_{\text {MAX }}=1 \times 10^{5} \mathrm{~W} / \mathrm{cm}^{2}$.

EXPLOSIVE VAPORIZATION OF A SINGLE WATER DROPLET BY PULSED LASER RADIATION.

J. C. Carls and J. R. Brock
Department of Chemical Engineering
The University of Texas at Ausin, Ausin, Texas 78712.

RECENT PUBLICATIONS, SUBMITTALS FOR PUBLICATION AND PRESENTATIONS:

1. J. C. Carls and J. R. Brock, "Explosion of a water droplet by pulsed laser heating", Aerosol Sci. Tech.7,79.91 (1987).
2. S. G. Kim and J. R. Brock, "Orowth of ferromagnetic particles from cation reduction by borohydride ions" J. Colloid int. Sci. 116,431-443 (1987).
3. J. R. Brock and J. Oates, "Moment simulation of aerosol evaporation", J. Aerosol Sci.18,59-64 (1987).
4. J. R. Brock, D. Zehavi and P. J. Kuhn, "Formation and growth of binary aerosol in a laminar coaxial jet", J. Aerosol Sci., In Press.
5. S. C. Davies and J. R. Brock, "Laser evaporation of droplets",Appl. Opt.26,786-793 (1987).
6. S. C. Daviea and J. R. Brock, "Laser propagation through an evaporating polydisperse aerosol", Appl. OpL26,1865-1876 (1987).
7. S. G. Kim and J. R. Brock,"Aerosol growth and dymamics"in R. Kohl, Ed,Proceedings of the 1986 CRDEC Scientific Conference on Obscuration and Aerosol Research,R. H. Kohl and Assoc., 1987.
8. J. C. Carts and J. R. Brock, "Laser induced expiosion of particles", in R. Kohl ,Ed. Proceedings of the 1986 CRDEC Scientific Conference on Obscuration and Aerosol Research. R. H. Kohl and Assoc., 1987.
9. S. C. Davies and J. R. Brock, "Leser evaporation of droplets", in R. Kohl, Ed.,Proceedings of the 1986 CRDEC Conference on Obscuration and Aftosol Research, R. H. Kohl Assoc, 1987.
10. Y. L. Chen, J. R. Brock, and I. Trachtenberg, "Aerosol jet ecching of fine patterms", Appl. Phys. Lelt., In Press.
11. A. Dove and J. R. Brock, "Sulfate terosol modeling using the EPA Philadelphia Aerosol Field Study", U.S. Environmental Protection Agency Repart, 200 pp. 1987.
12. J. C. Carls and J. R. Brock,"Explosive yaporization of a single water droples by pulsed laser radiation", Abstract AAAR Annual Meeting, Seaule, September 1987.
13. H. Kosuge and J. R. Brock, "Aerosol evolution in jets expanding into low pressure regions", Absuact AAAR Annual Meeting,Seatle, Seplember 1987.
14. J. C. Carls and J. R. Brock, "Laser induced explosion of water droplets by laser radialion", Workshop on Physics of Directed Energy Propagation in the Aumosphere, Las Cruces, N. M., January 1987.
15. J. R. Brock, "Formation and Growth of Ferromagnetic Particles", Department of Physics, University of Paris at Orsay, January 1987.
16. J. R. Brock, "Aerosol Formation and Growth",University of Paris VIII Val de Marne, January 1987.
17. J. R. Brock, "A Complex Terrain Model for Aerosol Disperion", Chemical Modeling Conference, CRDEC, August 1987.

ABSTRACT

The explosive vaporization of a single aerosol droplet by pulsed laser radiation is investigated. The conservation equations for mass, momentum, and energy have been solved for the asymptotic case of instantaneous heating and for the more general case of finite laser pulse length. The solution diverges from the aymptotic case as the pulse length
becomes comparable to and greater than the acoustic transit time. Extreme cooling in some regions of the flow allows the condensation of small clusters. The differential difference equations have been solved in conjuction with the transport model to show the effect of condensation on the flow.

INTRODUCTION

We are investigating the explosion of single water droplets by pulsed laser radiation. This process is imporant in studying lacer propagation through the atmosphere and laser processing of materials. In addition, a single droplet interacting with intense radiation provides a good opportunity to study droplet compositions, extreme thermodynamic statea, and states far from equilibrium. A survey of the current literarure shows that there is great interest, both experimental and theoretical, in this problem. Recent papers which include a current literature review are (Chang et al, 1988) for experimental aspecis, and (Carls and Brock, 1987) for modeling aspects.

Firsh we examine the asymptotic case of instantaneous heating. Then we relax the assumption of instantaneous heating and show how the fluid motion changes as the droplet is subjected to pulses of various lengths and intensities. Finally, we show how the motion is affected by condensation of the water into small clusters as the expansion proceeds.

The conservation equations for mass, momenwm, and energy govern the hydrodynamic response of the system. The conservation equations are given in Figure 1, along with the heating source term used in subsequent calculations. These have been solved using a Flux Corrected Transport numerical method (Book et al (1982).) The droplet was assumed to be much smaller than the laser wavelength, implying that the electromagnetic field is constant over the droples.

ASYMPTOTIC CASE

An asymptotic (numerical) solution hes been obuined by using the limit of zero laser pulse length. This corresponds
w the case in which the pulse is so short that no fluid motion occurs during the pulse. The puise length required can be determined by examining the ume required for a sound wave to craverse the droplet, the "acoustic transit time". This characteristic tine is defined as the droplet diameter divided by the droplet soundspeed. The asymptotic solution is rich in decall because of nonlinearity and coupling in the conservation equations. Some regions of the flow manifest shock waves, with associated shock heating. Other regions of the flow undergo rapid expansion and cooling. Strong cooling allows the possibility of condensation.

The details of the asymptotic solution are described and discussed fully in (Carls and Brock, 1987). Briefly, and referencing Figure 2, the fluid contains three discontinuities, two shock discontinuities and the contact discontinuity. The contact discontinuity is the interface between the between the water region and the surrounding ideal gas. It moves radially outward as the explosion proceeds. One shock wave is located in the ideal gas region and faces outward. The second shock is in the water region and faces inward, a "rear facing shock." The motion of soch shocks as viewed from a stationary reference frame is radially outward. Radially inwand of the water shock is a region of isentropic expansion and strong cooling. Condensation occurs first in this region.

FINITE PULSE LENGTH

To investigate departures from the asymptotic case, the model was modified to accept finite laser pulse lengths. The absorption coefficient was allowed to vary quadratically (see Figure 1) with density, following Zuev and Zemlyanov, (1983). Simulations over a wide range of pulse lengths and incensities have been conducted. The conditions for this series of calculations are given in Figure 3. Notice that the intensity varies inversely with the pulse length so that the cota energy of the pulse is consunt in each case.

Figure 4 shows how varying pulse length affects the amouns of energy absorbed by the dropleL The figure shows that for pulse lengths less than about one tenth the acoustic transit cime (ATT- 250 pa), the energy absorbed is approximately constant. The energy absorbed under these conditions and the fluid flow that results are virually idenical to the asymprotic case discussed errier. As the pulse lengui becomes comparable to and greater than the
scoustic transit dime, the energy absorbed by the droplet decreases. Thus, the hydrodynamics change and the flow charscteristics diverge from the symptodic solution.

Figure S shows the bocation of the contact discontinuity, the inverface between the water (vapor) and the surrounding atrosphere, as a funcrion of time for each of the different heating cases. This figure amplifies the conclusions from the previous figure. For the shortest pulse lengths, the fluid flow is indistinguishable from the asymptotic case, and the trajectory is identical in each case. As the pulse length becomes longer, the position of the contact disconuinuity versus time diverges from the asymptotic case. Thus, we see the very important role the acoustic transit time plays in determining the nature of the solution.

The presence of small particles lowers the breakdown threshold of air under laser irradiation. One explanation for this phenomenon has been that absorbing particles explode and shock heat the surrounding air sufficiendy to cause ionization (Steverding, 1974). The asymptotic solution shows that the sir surrounding the droplet is heated to very high temperatures as it is shock heated by the exploding droplet. Thus, the results for the asymptotic case bear this theory out However, as the pulse length becomes longer but with the total energy of the pulse constant, the amount of energy absorbed by the droplet becomes much less, and the maximum cemperature to which the shock wave heats the surrounding amosphere is much lower. The results for the more realistic case of finite pulse length show that the maximum air temperature is not high enough to cause much ionization, at least for the small droplets considered. Therefore, enhanced breakdown most likely odgingtes through nonlinear absorption processes in the particle phase.

CONDENSATION

Condensation in the flowfield can significanly change the hydrodynamics through latent heat release and through depletion of monomer to the condensed phase. The possibility of condenastion has been included in the simulation by solving the discrete growthltensport equalions describing aerosol dymamics and convective transport of the aerusol (Hidy and Brock, 1970). The conservation equation for the number density of cluatern containing " i " monomers is given in Figure 6. The serma on the right hand side of the equation are: addition due to nucleation, addition and loss
respectively due to condensation, addition and loss respectively due to evaporation, gain due to coagulation, and loss due to coagulation. Figure 7 shows the new equations of continuity and energy which contain source terms accounting for monomer loss, and latent heat addition.

Figures 8 - 11 show the results of the condensation calculation. Figure 8 shows the location of the contact discontinuity as a function of time for the condensing and the non-condensing cases. As can be seen from the figure, condensation causes the overall motion to slow, and the contact discontinuity does not travel as far in the same amount of time for the condensing case.

Figure 9 shows the variation in temperature for the condensing versus the non-condensing cases. Except in the high temperature shocked region on the right, the greatest temperature difference occurs in the region of lowest temperature (and highest supersaturation.) The condensation occurs most strongly in this region. In this region the temperature difference between the condensing and non-condensing cases increases as the temperature decreases. The rise in temperature is due to release of latent heat as the condensation proceeds. The shocked region on the right shows seemingly anomalous behaviour. This region shows both high levels of condensation and lower temperature compared to the non-condensing case. The high levels of condensation are due to the fact that the density in the shocked region is high, and so the collision frequency is much higher in this region. The increased collision frequency causes a condensation rate which is much higher than in the adjacent colder region, even though the supersaturation in the colder region is higher.

A possible explanation for the lower temperature in the shocked region is that because the overall effect of the condensation appears to be a deceleration of the fluid, the water vapor in the shocked region is not compressed and heated to such a high degree. The velociry of the vapor colliding with the shocked region is lower, leading to lower shock heating, and consequendy to lower temperaures in the shocked region.

Figure 10 shows the logarithm of the rumber density versus radius at a particuler time. As can be seen, the number densities are very high, increasing with decreasing temperature as is expected, except in the shocked iegion where the
number density is highest. Again, the higher number densities in the shocked region are due to higher collision rates and therefore higher condensation rates in this region. Notice how the relatively small scale oscillations in the temperature give rise to much larger perturbations in the number density.

Figure 11 shows the average cluster size in molecules versas radius at the same time level at Figure 10. The clusters formed in the condensations are very small. with the size decreasing with decreasing temperature (and increasing supersaturation.) The increase in the average size in the shocked region is because the supersaturation is lower in this region, leading to a larger crivical cluster size, and therefore to a larger average size.

ACKNOWLEDGEMENTS

This work was supported under contract DAAK11.83:K-0006 from CRDEC, U. S. Army. Helpful discussions with Mel Lax, Shirish Chilanvis, Dave Pendleton, Ed Stuebing, and Richard Chang are gratefully acknowledged.

REFERENCES

Book, D. L., Boris, J. P., Fry, M. A., Guirguis, R. H., and Kuhl, A. L. (1982). In Lecture Notes in Physics. Eighsh International Conference on Numerical Meshods in Fluid Dynamics. (E. Krause, ed.). Springer-Verlag, Berlin, v. 170 , p. 143.

Carls, J. C., and Brock, J. R.(1987). Explosion of a water droplet by pulsed laser heating, Aer. Sci. Tech. 7:79.
Chang, R. K., Eickmans.J. H., Hsich, W.-F., Wood, C. F., Zhang, J.-Z., and Zheng, J.-B. (1988). Laser induced breakdown in large transparent water droplets, Appl. Opt. in press.

Hidy, G. M. and Brock J. R., The Dynamics of Aerocolloidal Systems, Pergamon Press, Oxford, 1970.
Steverding, B. (1974). Ignition of laser detonation waves, J. Appl. Phys. 45:3507.
Zuev, V. E. and Zemlyanov, A. A. (1983). Explosion of a drop under the action of intense laser radiation, Sov. Phys J. 26:149.

CONBERVATION EQUATION8 - HEATING 8OURGE TEMM:

```
\(2 p+(\nabla \cdot p n=0\)
\(\frac{2}{a} p v+8 \cdot o m \cdot \cdot \theta\)
```



```
Enero:
        D. \(4 \cdot-\infty(p) 1\)
and:
    (a) \(q\) Q \(10 p_{0} r^{r}\)
```

FIGURE 1. CONSERVATION EQUATIONS AND HEATRIG SOURCE TERM.

Schemalic of Typical Solution:

FIGURE 2. TYPICAL DENSTTY, VELOCITY, PRESSURE, AND TEMPERATURE PROFRES FOR DNSTANTANEOUS HRATINO.

DATA ON HEATING GMULATIONS:

- inva trapiar minperino: J73K

MOIF: The tote eneroy of the leaer pulse ts constam in事解

FIOURE 3. INITUL CONDITIONS AND LASER PULSE CHARACTERISTICS FOR HEATING SDMULATIUNS.

TRAJECTORY OF CONTACT DIECONTINUITY FOR VARIOUS PUL8E LENGTH, CONSTANT ENEROY

TME (n)
FIOURE 5. POSITION OF CONTACT DISCONTINUITY VERSUS TIME FOR VARIOUS LASER PULSES.

ENERGY ABSORBED BY DROPLET FOR PULSES OF CONSTANT FLUENCE, BUT VARIOUS PULSE LENGTHS

acoustic transt time
$-7 r_{0} C_{6}$ - 2800

FIGURE 4. ENERGY ABSORBED BY DROPLET FOR VARIOUS LASER PULSES.

CONDENSATION:

Conservation equation for the number density of clusters containing " 1 " monomers:

$$
\begin{aligned}
\frac{\partial n_{1}}{\partial t}+ & \nabla \cdot n_{1} v=J(p \cdot \dot{U}) \delta_{1, i}(n) \\
& +c_{1.1} n_{1} n_{1.1} \cdot c_{1} n_{1} n_{1} \\
& \cdot d_{1} n_{1}+d_{1+1} n_{1+1} \\
+ & \frac{1}{2} \sum_{j=1}^{1 \cdot 1} \beta_{1.1 .1} n_{i} n_{1.1} \cdot n \sum_{j=1}^{\infty} \beta_{1.1} n_{1}
\end{aligned}
$$

FIGURE 6. CONSERVATION EQUATION FOR "i" SEZED CLUSTER.

POSITION OF CONTACT DISCONTINUITY VS. TIME: CONDENSING AND NON -CONDENSING VAPOR

FIGURE 8. POSITION OF CONTACT DISCONTINUITY VERSUS RADIUS FOR CONDENSING AND NON CONDENSING CASES.

CONDENSATION:

Fluid Conservation Equations:

Monomer Conservation Equation:

$$
\frac{\partial n,}{\partial i}+\nabla \cdot n, v=\frac{\partial M}{\partial i}
$$

$$
\begin{aligned}
& \text { Equation of Energy. } \\
& \frac{\partial \rho \dot{E}}{\partial t} \cdot \nabla \cdot \rho \dot{E} V \cdot \nabla \cdot P V \cdot \Delta H^{\omega 0} m_{1} \frac{\partial M}{\partial t}
\end{aligned}
$$

FIGURE 9. EQUATION OP CONTINUITY FOR MONOMER AND OVERALL EQUATION OF ENERGY INCLUDES CONDENSATION SOURCE TERMS.

TEMPERATURE VS. RADIUS AT A SELECTED TIME: CONDENSING AND NON.CONDENSING VAPOR

FIGURE 9. TEMPERATURE VERSUS RADIUS AT A CHOSEN TDME FOR THE CONDENSLNG AND NON-CONDENSNG CASES.

AVERAGE CLUSTER SIZE OF DISTRIBUTION VS. RADIUS AT A SELECTED TIME

FIGURE 11. AVERAGE CLUSTER SIZE VERSUS RADIUS AT SAME TIME AS PREVIOUS FIGURES

LOG $_{10}$ OF NUMBER DENSITY VS. RADIUS AT A SELECTED TIME

FIGURE 10. LOGARTTHM OF NUMBER DENSITY VERSUS RADIUS AT SAME TMME AS PREVIOUS FIGURE.

Induced turbulence in aerosol-loaded atmospheres.

Shirish M. Chitànvis

Los Alamos National Laboratory, Theoretical Division, MS P-371,
Los Alamos, New Mexico, 87545.
A) S.M. Chilanvis, Laser Inciuced turbulence in the atmosphere, submitted to Phys Fluids.

Abstract

.

We consider the effects of a pulse of radiation from a high energy laser beam on the ambient turbulence that exists in the atmosphere. The atmosphere is considered as a compressible, perfect gas being heated by the high energy laser pulse. We compute correlation functions of the temperature in the isobatic regime, which is deemed the most important for beam propagation. In this regime, the two-point correlation function is changed by a multiplicative factor that grows exponentially in time while the pulse is on. Empirical formulas permit us to connect temperature flucluations which we can compute to the the refractive index fluctuations of the atmosphere. These self. induced refractive index fluctuations will be useful in sludying the propagation characteristics of high energy laser beams through the atmosphere. I. Introduction.

In calculating the effects of a high energy laser beam propagating through the atmosphere, phenomena such as thermal blooming are considered. ${ }^{1}$ However, it is customary to assume that the atmospheric turbulence remains unaffected by the high energy laser beam. We shall show in this paper that high energy lasers with a suficiently high flux F can modity the existing turbulence in the atmosphere.

The protlem of turbulence even without an external heat source is of course well known to be quite complicated. ${ }^{2}$ In order to make simplifying assumptions that permit us to solve the problem within restricted regimes, we have identified three time scales of interest. ${ }^{\text {A }}$) In the first case, the pulse length is shorter than the typical hydrodynamic time for the disturbance to propagate across the beam diameter. Thus, only local heating prevalls, and the problem becomes quite simple. This is the " t^{3} "regime referred to in thermal blooming literature. 4 In this regime, the two-point temperature correlation function is changed by a small additive term which is quadratic in time. In the second regime, the pulse length is longer than the hydrodynamic time (but shorter than thermal conductivity effects to sel in), so that pressure equilibration is achieved, and the process is considered to be isobaric. ${ }^{3}$ In this regime, the temperature correlations are changed by a multiplicalive factor that grows exponentially in time. In the third regime the pulse length is longer that the characteristic thermal conductivity time, so that thermal diffusion sets in and modifies the correlation function.

In section Il we have developed the hydrodynamics to be used in the second time regime, since it turns out that it is in this regime that the effects of the laser on the ambient turbulence are. the largest. ${ }^{\text {A }}$)

Besides purely atmospheric absorption, it is possible that randomly distributed natural and anificial aerosols can act as absorption centers, giving up part of their absorbed energy to the air. This extra energy, added in a random fashion through the propagation path can further enhance atmospheric \{urbulence. It is also possible that the addition of absorptive gases to the atmsophere will perform the same task. In fact, it is conceivable that such measures may induce turbulence to a greater degree than will "normal" atmospheric absorption.

Our results on induced turbulence suggest that the use of adaptive oplics to correct the distorting effects of atmospheric turbulence on a high energy laser beam is more complicated than thought of before.

It is possible that in addition to general high energy laser propagation problems, our results might also have relevance in lidar remote sensing applications, where high energy lasers are utilized to maximize the return. 5
II. The hydrodynamic model.

One generally computes correlation functions for the different hydrodynamic variables in turbulence theory. In the present case, we present the following physical reason for the existence of correlations between hydrodynamic variables. The atmosphere absorbs energy from the laser beam in a spatially random fashion at the molecular level, or there may be randomness in the structure of the beam. As time progresses, acoustic waves spread out from these random centers. Interference between these waves will give rise to correlations. We shall now compute ensemble averaged corretation functions.

We shall begin with the usual hydrodynamic equations for the atmosphere considercd as single component fluid, and then point out the justifiable simplifying assumptions made:

$$
\begin{align*}
& \partial \rho \prime \partial \tau=-\nabla(\rho v) \tag{2.1}\\
& \rho(\partial v, \partial \tau+v \cdot \nabla v)=-\nabla P+\eta \nabla^{2} v \tag{2.2}\\
& \rho C(\partial T / \partial \tau+v \cdot \nabla T)=-P \nabla \cdot v+k \nabla^{2} T+\Re(r, \tau) \tag{2.3}\\
& \Re(r, \tau)=\alpha(\lambda) 1(r, \tau) \tag{2.4}
\end{align*}
$$

where ρ is the density, τ is the time, v is the velocity, P is the pressure. η is the viscosity. C is the specific heat at constant volume, k is the thermal conductivity, \mathcal{R} is the external heat source due to the incident laser, $\alpha(\lambda)$ is the average absorption in the
atmosphere per unit length (including the gffect of absorptive aerosols or gases), dependent on the wavelength λ of the laser beam, and I is the incident flux ($\mathrm{W} / \mathrm{cm}^{2}$).

In order to make the problem of laser induced turbulence tractable, we shall first assume that the incident pulse of electromagnetic radiation has a length $t_{T}>t_{p}>t_{\text {hydro }}$. Here, inydrc. = d / c, with d being the width of the laser beam $(10 \mathrm{~cm}$ to 100 cm$), c$ being the speed of sound $\left(3.3 \times 10^{4} \mathrm{~cm} / \mathrm{sec}\right)$, so that thydro, -0.003 sec to 0.03 sec , and t_{T} is the thermal conductivity time. Starting with Eqn.(2.3), we define t_{T} to be characteristic time for conductivity effects to be established as:
$t T=\rho_{0} C d^{2 / k}$

Setting $\rho_{0} \sim 10.3 \mathrm{gm} / \mathrm{cm}^{3}$ (density of air), d $\quad 10.100 \mathrm{~cm}, k \sim 2 \times 10^{3} \mathrm{erg} / \mathrm{cm} \cdot \mathrm{sec}$. K, ${ }^{5}$ we get tT - 20 to 2000 sec. Hence, the conductivity term is ignored in Eqn. (2.3). The pulse length is long enough for pressure equilibration to have occurred. For this reason, in keeping with the conventional assumptions made in thermal blooming calculations. ${ }^{1}$ we shall choose the pressure $P=P_{O}$ the constant ambient pressure. For computational purposes, we shall take ip to 10.100 msec . The equations to be used in this case are:
$\partial \rho / \partial \tau=-\nabla \cdot(\rho v)$
$p(\partial v / \partial \tau+v \cdot \nabla v)=0$
$\rho C(\partial T / \partial t+v \nabla T)=-P_{0} \nabla \cdot v+\mathscr{R}(r, 1)$

It may be seen from Eqn(2.2) that it is reasonable to define $\mathrm{I}_{\mathrm{visc}}$. The characteristic Itme for viscosity effects to be established in alr across the widit of the beam to be Ivisc. $=\rho_{0} d^{2} / \pi$. Selting $\rho_{0} \sim 10^{3} \mathrm{gm} / \mathrm{cm}^{3}$ (densily of air), d $-10.100 \mathrm{~cm}, \pi-2.0 \mathrm{x}$ $10.4 \mathrm{gm} / \mathrm{cm} \cdot \mathrm{sec}^{6}$ we find that ivisc. $-10^{3} \mathrm{sec}$. Since pulse lengths of high energy
lasers are much shorter than this time, we shall ignore the viswosity term in Eqn. (2.2) in this paper.

It is implicitly asumed that the laser beam does not deposit sufficient energy to generate shock waves in the atmosphere.

In this paper, we explicitly ignore terms such as $-\nabla(\Pi \cdot E)$ \| Π is polarization of the fluid, and E is the electric field] which might appear in Eqn.(2.2). This is because we have assumed that it it is the absorption of heat that is the dominant mechanism for inducing turbulence in the atmosphere.

Another feature of Eqns.(2.6)•(2.8) is that unlike conventional treatments of turbulence. 3 viscosity does not appear in them. This is because we are studying the "transient" effects of the laser beam on atmospheric turbulence on the time scale of the pulse lengith $t_{p}-10 \mathrm{msec}-0.1 \mathrm{sec}$.

Ila. The isobaric Regime ($t_{T}>t_{p}>t_{\text {hydro }}$).

This is the isobaric regime in which dissipative effects may be safely ignored.

Ila.1. Temperature iluctuations.

We shall calculate temperature correlations in this subsection.

Starting from Eqn. (2.8), it is easy to show that $J\left(r, r^{\prime}, \tau\right)=<T(r, \tau) T\left(r^{\prime}, \tau\right)>$ satisfies the following equation:

$$
\begin{gather*}
\partial \mathcal{I}\left(r, r^{\prime}, \tau\right) \partial \tau-\left[(\gamma-1) / P_{0}\right]\left\langle\left[\Re(r, \tau)+\Re\left(r^{\prime}, \tau\right)\right] T(r, \tau) T\left(r^{\prime}, \tau\right)\right\rangle= \\
(2-\eta)\left[\left\langle(\nabla \cdot v) T T^{\prime}\right\rangle+\left\langle\left(\nabla^{\prime} \cdot v^{\prime}\right) T T^{\prime}\right\rangle\right]+ \\
\left.-\nabla \cdot u T T^{\prime}\right\rangle-\nabla \cdot\left\langle v^{\prime} T T^{\prime}\right\rangle \tag{2.9}
\end{gather*}
$$

where we have used the perfect gas law $P_{0}=(R / \mu) \rho T$ and $(R / \mu) / C_{V}=(\gamma-1)$. Here, μ is the molecular weight.

Since the laser beam (represented by \Re) induces changes in the temperature correlations and vice versa, we cannot decouple the third coirelations that occur in the $<\left(\mathbb{R}+\mathbb{R}^{\prime}\right) \mathrm{T} \mathrm{T}^{\prime}>$ term in Eqn.(2.9). There exists a formal solution to the problem, based on techniques used in multiple scattering theory, where averages of products of random variables have to be taken. This solution is sketched in reference A and is given by:
$\partial コ\left(r, r^{\prime}, \tau\right) / \partial \tau-\left[(\gamma-1) / P_{0}\right] \Sigma\left(r, r^{\prime}, \tau\right) 3\left(r, r^{\prime}, \tau\right)=$

$$
\begin{gather*}
\left.(2-\gamma) \mid\left\langle(\nabla \cdot v) T T^{\prime}\right\rangle+\left\langle\left(\nabla^{\prime} \cdot v^{\prime}\right) T T^{\prime}\right\rangle\right]+ \\
-\nabla \cdot\left\langle v T T^{\prime}\right\rangle-\nabla \cdot\left\langle v^{\prime} T T^{\prime}\right\rangle \tag{2.10}
\end{gather*}
$$

where all the complications of decoupling the averages have been lumped into the "self. energy" Σ. Note that we have not imposed translational invariance on the averages in Eqn.(2.10), since it is obvious that the laser beam breaks this symmetry, at least in the direction of propagation. As shown in reference A.
$\left.\left.\Sigma\left(r, r^{\prime}, \tau\right)=\left\langle\mathscr{R}(r, \tau)+\mathscr{R}\left(r^{\prime}, \tau\right)\right\}\right\rangle+\{R(r, \tau) j\}^{\tau} \delta \tau^{\prime} \mathscr{R}\left(r^{\prime}, \tau^{\prime}\right)\right\rangle$

$$
\begin{equation*}
\left.-\langle R(r, t)\rangle{ }_{o} r^{\tau} \delta \tau^{\prime}\left\langle R\left(r^{\prime}, r^{\prime}\right)\right\rangle+O R^{3}\right) \tag{2.10a}
\end{equation*}
$$

We see that the self-energy is expressed as the sum of an average, a mean-squared diviation, etc. Since \mathfrak{R} can be expressed as the square of the electric field, it follows that the self-energy is a function of second, fourth and higher order moments of the electric field. For practical purposes, one may be restricted to looking at the lower order moments alone. On an intuitive basis, one expects the higher order moments, such as the mean squared deviation (the second and third terms on the right hand side of

Eqn.(2.10)) to become important for longer paths of propagation, when the distorting effects of turbulence on the beam profile become stronger.

As is usual in the theory of turbulence, we see that the second order correlations are connected to the third order correlations. In Eqn.(2.9), a prime indicates the value of a function at the point ($r^{\prime}, 1$). In an effort to estimate the importance of third and higher order correlations, we derived the dynamical equations for the third order correlations <vTT'> and $<(\nabla \cdot v) \mathrm{TT}^{\prime}>$, neglecting fourth and higher order correlations. These equations were derived using Eqn.(2.7) and Eqn.(2.8).
$\partial<u T T^{\prime} \gg \partial=\left[(\gamma-1) / P_{0}\right] \Sigma<u T T^{\prime}>$
$\partial\left\langle\langle\nabla \cdot v) T T^{\prime}>/ \partial \tau=\left[(\gamma-1) / P_{0}\right] \Sigma\left\langle(\Gamma \cdot v) T T^{\prime}\right\rangle\right.$

The solutions to Eqns.(2.11) and (2.11a) are simpie:

$\left.\exp \left[\left\{(\not-1) / \mathcal{P}_{\mathrm{O}}\right\} 0\right\}^{\tau} \delta \tau^{\prime} \Sigma\left(\mathrm{r}, \mathrm{r}^{\prime}, \tau^{\prime}\right)\right]$
$\left\langle(\nabla \cdot v) \mathrm{TT}^{\prime}\right\rangle=\left\langle(\nabla \cdot v) \mathrm{TT}^{\prime}\right\rangle_{\theta q}$
$\left.\exp \left[\left\{(\gamma-1) / P_{0}\right\} 0\right\}^{\tau} \delta \tau^{\prime} \Sigma\left(r, r^{\prime}, r^{\prime}\right)\right]$
(2.12a)
where the subscript eq denotes the equilibrium value of the correlation functions in the atmosphere before the laser was turned on. The exponential dependence of the correlation function in the presence of the laser is worth noling.

We may now substitute Eqns. (2.12) and (2.12a) in Eqn. (2.10) and solve the resulting equation to get:

```
3(r,\mp@subsup{r}{}{\prime},\mp@subsup{\tau}{}{\prime})=3(r,\mp@subsup{r}{}{\prime},0)\operatorname{exp}{{(\gamma-1)/\mp@subsup{P}{0}{}}0\mp@subsup{}}{}{T}\delta\mp@subsup{\tau}{}{\prime}\Sigma(r,\mp@subsup{r}{}{\prime},\mp@subsup{r}{}{\prime})]+0\mp@subsup{|}{}{\tau}\delta\mp@subsup{\tau}{}{\prime}|\zeta(r,\mp@subsup{r}{}{\prime},\mp@subsup{\tau}{}{\prime})-\mp@subsup{\zeta}{}{\prime}(r,\mp@subsup{r}{}{\prime},\mp@subsup{r}{}{\prime})}
```

where
$3\left(r, r^{\prime}, 0\right)=<T T^{\prime}$ 电
$\zeta\left(r, r^{\prime}, \tau\right)=2(2-\gamma)<(\nabla \cdot u) T$ T'>eq

$$
\begin{equation*}
\left.\exp \left(\left\{(\gamma-1): P_{0}\right\}_{0}\right\}^{r} \delta r^{\prime} \Sigma\left(r, r^{\prime}, r^{\prime}\right)\right\} \tag{2.15}
\end{equation*}
$$

and
$\zeta^{\prime}\left(r, r^{\prime}, \tau\right)=2 \nabla \cdot \mid<u T T^{\prime}>e q$

$$
\begin{equation*}
\exp \left\lceil\left\{(\gamma-1) / \mathbf{P}_{\mathrm{O}}\right\} 0 \int^{\tau} \delta \tau^{\prime} \Sigma\left(r, r^{\prime}, \tau^{\prime}\right)\right] \mathbf{j} \tag{2.16}
\end{equation*}
$$

Equation (2.13), supplemented by the definitions in Eqns.(2.14)-(2.16) represents our approximate solution to the proklem of laser induced turbulence in the atmosphere.

The main fealure of Eqn.(2.13) is the exponential dependence on the heating source term. This dependence indicates that as time progresses, the fluctuations grow exponentially in time. It is as if a "wave" of intense electromagnetic radiation came along and swept up the the temperature fluctuations already existing in the atmosphere. amplitying them. Of course. it should be remembered that for times longer than ivisc. and i_{T} our model is no longer valid.

The density and velocity correlation functions have been derived in reference A. And we shall not discuss them here, as the effect of the laser is mosi pronounced on the temperature, as compared to the other hydrodynamical variables. ${ }^{\text {A) }}$
III. Laser Beam Propagallon Characteristics.

We shall now concentrate on the isobaric regime which is accessible to high energy lasers in terms of pulse lengths. We shall also show that the effect on the turbulence in this regime can be significant, depending on the laser beam parameters. The wavelength λ of high energy lasers ranges from $0.25 \mu \mathrm{~m}$ to $10.6 \mu \mathrm{~m}$. And correlations at those spatial points separated by a disiance of a few wavelengths will be important to the beam propagation. The reason for this is that the phase of the incident laser beam (which is given initially by exp(ik.r)) will change in a distance the order of a wavelength, and it is of interest to know if the refractive index of the medium changes on that length scale as well (see the next section for the connection between temperature flucutations and relractive index fluctuations). This argument is analogous to the one used in linear propagation of laser beams through furbulence, ${ }^{7}$ where it is assumed that in the limit of geometric optics, only eddies with dimensions less than or enינal to the inner length scale I_{0} are important for optical propagation.

Let us note the following identity:
$\left\langle\left(v-v^{\prime}\right)\left(T-T^{\prime} r^{2}\right\rangle_{e q}=2\left\langle u^{\prime} T T^{\prime}\right\rangle_{e q}-2<u T^{\prime}>_{e q}\right.$

$$
\begin{equation*}
\left.=4<U T T^{\prime}\right\rangle_{\theta q} \tag{3.1a}
\end{equation*}
$$

Now, when $I_{0} \gg\left|r \cdot r^{r}\right| \sim \lambda$, where I_{0} is the inner length scale of the ambient turbulence ${ }^{3}<\left(v-v^{\prime}\right)\left(T-T^{\prime} r^{2}\right\rangle$ eq~< $\left.v^{\prime} T T^{\prime}\right\rangle e q \sim\left|r-r^{\prime}\right|^{3}$. Similarly, < $\nabla^{\prime} \cdot v^{\prime} T T^{\prime}>e q$ ~ $\left|r \cdot r^{\prime}\right|^{3}, \nabla^{\prime} \cdot\left\langle u^{\prime} T T^{\prime}\right\rangle_{e q}-\left|r \cdot r^{\prime}\right|^{2}$, while $\left\langle T T^{\prime}\right\rangle_{e q} \sim\langle T\rangle^{2}$.

For this reason, using Eqn.(3.1a), the third order correlations may be ignored in Eqn. (2.19) when considering propagation of lasers operating in the micron wavelength region. A reasonable amount of simplification is then introduced inso the expression for 3 :
$\left.\mathcal{J}\left(r, r^{\prime}, \tau\right)=\left\langle T T^{\prime}\right\rangle_{\theta q} \exp i_{0} J^{\tau} \delta \tau^{\prime} f\left(r, r^{\prime}, \tau\right)\right]$
where
$f\left(r, r^{\prime}, \tau\right)=\left\{(\gamma-1) / P_{0}\right\} \Sigma\left(r, r^{\prime}, \tau\right)$

In Eqn.(3.2), if we set $\tau=0$ or $\mathrm{I}=0$ (I appears in f), we see tha: $J=\left\langle T^{\prime}\right\rangle_{\text {eq }}$.

Since $\left\langle T T^{\prime}>_{e q}=\left\langle i \delta T+\left\langle T\left(r^{\prime}\right)\right\rangle\right)\left(\delta T^{\prime}+\left\langle T\left(r^{\prime \prime}\right)\right\rangle\right)\right\rangle_{e q}=\left\langle\delta T \delta T^{\prime}\right\rangle_{e q}+\langle T(Y)\rangle\left\langle T\left(r^{\prime}\right)\right\rangle_{e q}$, it is reasonable to define the flucluation function in the presence of the laser source as
$\left.<\delta T \delta T^{\prime}>=<\delta T \delta T^{\prime}\right\rangle_{\text {eq }} \exp \left\{0 \int^{\tau} \delta \tau^{\prime} f\left(r, r^{\prime}, r^{\prime}\right)\right\}$

For the sake of definiteness. we note that $<\delta T \delta T^{\prime}$ req is given in the inertial subrange $l_{0}<\left|r-r^{\prime \prime}\right|$ < Lo by: ${ }^{3}$
$\left.<\delta T \delta T^{\prime}\right\rangle_{e q}=C T^{2} \pi-r^{\prime} R^{;} 3$

$<\delta T \delta T^{\prime}>_{\theta q}=\left\{C_{T}{ }^{2 / I}{ }_{0}^{(4 / 3)} \mid\left(Y-r^{\prime}\right)^{2}\right.$

Following the arguments given at the beginning of the section, Eqn.(3.5) is to be used in Eqn.(3.3). Note that Eqns.(3.4) and (3.5) give approximately equal numerical values for the fluctuations for $\left|r-r^{\prime}\right| \approx I_{0}$.

In Eqn(3.3), if we set $\tau=0$ or $\mathrm{l}=0$ (l appears in f), we see that $<\delta \mathrm{T} \delta \mathrm{T}^{\prime}>=0$. Also. when $\mathrm{r}^{\circ}=\mathrm{r}^{\prime}$. $\left\langle\delta T \quad \mathrm{~T}^{\prime}\right\rangle=0$.

The right hand side of Eqn.(3.3) indicates the exponential way in which the ambient furbulence is amplified when the laser beam is turned on. The amplification factor defined as
$A=\exp \left\{0 \int^{\tau} \delta \mathrm{r}^{\prime} f\left(\mathrm{r}, \mathrm{r}^{\prime}, \mathrm{r}^{\prime}\right)\right\}$

The factor A performs two tasks. First of all, it magnifies the turbulence to an extent defined by the laser and medium parameters. Secondly, it defines the spatial profile (i.e. length scales) of
the modified turbulence as well. As defined by Eqn.(3.3), the exponent in Eqn.(3.6) is basically the sum of the powers of the flux absorbed at the two points $\mathrm{r}, \mathrm{r}^{\prime}$. Now, as the beam propagates, the refractive index fluctuations will create incoherence within the extent of the beam. This incohererice is expressed for example by the mean-squared squared deviation in the intensity that occurs in Eqn.(2.2b). This incoherent pattern will be impressed on the temperature (or equivalently refractive index) flucluations through Eqn.(3.3). Therefore, the typical length scales of these patterns will also be reflected in these fluctuations. If these length scales are smaller than I_{0}, the inner scaie of the Kolmogorov spectrum, they could dominate the hehavior of the beam. As a zeroth order approximation (ambient turbulence), the coherence length is 8 $\rho_{\text {coh. }}-\left|C_{n}{ }^{2}(2 \pi z / \lambda)^{2}\right|^{3 / 5}$, wheie $C_{n}{ }^{2}$ is the structure constant of the refractive index fluctuations, z is the propagation distance, and λ is the wavelength. For $C_{n}{ }^{2}, 10^{-15} \mathrm{~m} \cdot 2 / 3, \lambda$ $=10.6 \mu \mathrm{~m}, z=1 \mathrm{~km}$., $\rho_{c o h}-100 \mu \mathrm{~m}<\mathrm{l}_{0}-1 \mathrm{~mm}$. The implication then is that such small scale fluctuations may appea: in a full-fledged calculation of the propagation o! the laser beam. The change in the beam profile due to thermal blooming will be superposed on the scintillations.

We will now estimate the order of magnitude of A for two different cases. For simplicity, we shall consider a beam that is uniform in both space and time and assume that Σ is given by the incident flux itself. As an example, we find that at $\lambda=10.6 \mu \mathrm{~m}$, with $I_{p}=10 \mathrm{msec}, \alpha=0.0003$ $\mathrm{m}^{-1}, P_{0}=10^{5} \mathrm{~N} / \mathrm{m}^{2}, \mathrm{I}=10^{8} \mathrm{~W} / \mathrm{cm}^{2}$, we get $\mathrm{A} \sim \theta$.

Similarly, at $\dot{\lambda}=3.8 \mu \mathrm{~m}, t_{0}=10 \mu \mathrm{sec}, \alpha=0.045 \mathrm{~km}^{-1}$, with $P_{0}=10^{5} \mathrm{~N} / \mathrm{m}^{2}, 1=10^{8} \mathrm{~W} / \mathrm{cm}^{2}$ A ~ 1.001. On the other hand, we could artificially increase α by adding an absorptive substance which might increase the absorption in air by a few orders of magnitude. In this case A $\gg 1$.

IV. Connection with the refractive index fluctuations.

There is a simple empirical relation between refractive index lluctuations and tenperature fluctuations which holds under ambient atmospheric conditions: ${ }^{9}$
where B is a constant. ${ }^{9}$ We shall now assume that the same relationship holds when the laser is turned on.

It then follows from Eqn.(4.1) that
$<\delta n \delta n^{\prime}>-<\delta n \delta n^{\prime}>_{\theta q} \mid<\delta T \delta T^{\prime}>1<\delta T \delta T^{\prime}>_{\theta q} I$
$=<\delta n \delta n^{\prime}>_{e q} A\left(r, r^{\prime}, 1\right)$
where A is given by Eqn.(3.6).
Equation (4.2a) can be used in studying the propagation of laser beams, as it is this quantity that appears in most formulations of laser beam propagation through turbulence.

Our main concern with the use of Eqn.(4.1) is that we do not know its validity when an external heat source is furned on. But in the absence of better experimental data, we shall persist in using Eqn.(4.1).

V. Conclusions.

We have investigated the effect of high energy-lasers on amblent turbulence. Two-point correlation functions for the temperature were calculated in the isobailc regime. The effect of the laser, treated as a heat source, is most pronounced on temperature correlation.s. The correlations, such as the density and velocity correlations have been been derived in relerence A. We have argued that the isobaric regime is the most important as far as the beam propagation is considered. ${ }^{A}$)

It is possible that the predictions of our theory may be checked experimentally.

Efforts are under way to calculate in a sell-consistent fashion the effects of induced turbulence on a high energy laser beam propagating through the atmosphere. In this way we shall quantity further the discussion in section III.

VI. Acknowledgmente.

I wish to acknowledge helpful discussions with J. Wallace and A. Zardecki on various aspects of the problem.

[^2]"Topics in Applied Physics", Vol. 25, Ed. J.W. Strohben, SpringerVerlag (1978).
8 V.E. Zuev, Laser beams in the Atmosphere, Consultants Bureau, 1982.

9 A. Ishimaru, Wave Propagation in Random Media, Vol II, Academic Press 1978.
IV. WORKSHOP: HANOLING INOIVIDUAL PARTICLES

Thomas R. Lettieri
National Bureau of Standards
Gaithersburg. MD 20899

Abstract

Experimental techniques are presented for optically levitating single particles using laser radiation pressure

INTRODUCTION

The acceleration and trapping of single microparticles by laser radiation pressure was first demonstrated by Ashkin in 1970 [1]. By focussing a CW laser beam onto single microspheres in liquid suspension, he was able to move dielectric particles along the beam axis and trap them between two counterpropagating laser beams. Since then. he and other researchers have been able to optically levitate many types of particles including liquid droplets [2], solid microspheres [3], bubbles and microbalioons [4], multiplets [5] and, more recently, ilve viruses and bacteria [6]. Various geometries have been used in these experiments.

Optical levitation of single microparticies has several advantages over other levitation techriques such as electrostatic, electrodynamic, or radiometric suspension: (i) optical levitation is simple and uses ilittle equipment; (ii) uncharged particles can be levitated; (iii) a wide range of diameters can be suspended; (iv) multiplets, assembled from single particles, can be levitated; (v) several individual particies can be stably levitated simultaneously; and (vi) particles can be stably trapped for many hours or even days. Optical levitation also has its limitations: (i) in general, only transparent or weakly absorbing particles can be stably suspended (metallic particles, for example, are not easily levitated); (ii) the upper size limit is about 50 un in diameter; (iii) the particles usually sit in an intense electric field, which can cause problems with data interpretation; (iv) an opical trap is not strong enough to hold a particle in even a moderate gas-flow field; and (v) optical levitation requires the use of a relatively expensive laser (such as an argon-ion laser).

The present paper is intended to give some helpful, practical tips for optically levitating microparticles of different types. Topics considered include the use of vertical and horlzontal laser beams, techniques for getting the particles into the laser beam, levitation of multiplets, and stabilization of particle motion by opto-electronic feedback circuitry.

Optical-levitition geometries
Mary types of optical-levitation geometries have been developed, each
having certain advantages and disadvantages. In general, an optical trap can be classified as: single or double beam; vertical or horizontal beam; and weak or strong focussing. There are also some specialized traps such as the gradient-force and the fiber-optic traps

Single Vertical Beam

The simplost optical-levitation trap uses one focussed laser beam directed vertically upward (Figures 1 and 2). Here, the upward radiationpressure force is balanced by gra:ity so that the particle sits in stable equilibrium either above or below the focal point $\{7\}$.

Ashkin, Dziedzic, and others [8] have shown that a microsphere with refractive index greater than the surrounding medium will be trapped laterally by a force gradient across a laser beam having a TEMOo (Gaussian) intensity profile (Figure 2). These forces bring the particle into the center of the beam where the net lateral force is zero. Thua, the microsphere sits in a potential well which, for a cransparent particle in the proper size range, is stronger than the Brownan-motion and thermal forces on the particle. For a microsphere with refractive index less than the medium, say a microballoon or bubble, the lateral forces of a TEMOO profile will kick it out of the beam: in this case, a TEMol* ("donut") laser mode can be employed [8].

A parificle in a single-beam vertical trap can be stably suspended for many hours and can be easily manipulated by moving the focussing lens up. down, or side-to-side.

Double Horizontal Beams
In a double-beam optical trap, two laser beams are horizontal and counterpropagating; the particle will seek a stable equilibrium point at which the horizontal radiation-pressure forces cancel [9]. The particle is balanced upward against gravity by the gradient force across the Gaussian intensity cross-section of the TEMoo beams [9]. A typical double-beam trap is shown in figure 3. Here, the particle can be moved side-to-aide by varying the intensicies of the two beams; this is done using the variable beamsplitter. In this manner, the particle can be positioned for subsequent observation and analysis at the focus of a collection lens [10].

Gradient-Force Trap
A new type of optical trap, the gradient-force trap, uses a very atrongly focussed laser beam which propagates downard [11]: the upward force of the strong intensity gradient balances the downard force of gravity (Figure 4). The advantage of this optical-levitation scheme is that absorbing particles can be trapped; however, the particles must be very small, on the order of a few nanometers. Ashkin and Dziedzic have used the gradient-force trap to catch and hold live viruses and bacteria for many hours of observation [11]

Pocholle et al. demonstrated that microparticles can be stably Levitated above the end of an optical fiber by the radiation pressure of laser light transmitied through the fiber [12]. One advantage of this type of trap is that the optical path can be very complicated since the fiber is flexible. Thus, a microparticle can be levitated in normally inaccessible places : 12].

EXPERIMENTAL CONSIDERATIONS

In this section, various experimental parameters and conditions for stable optical levitation are considered.

Particle Characteristics
Material In general, the particle must be made of a transparent or very weakly absorbing dielectric material, otherwise the particle will rapidly heat up and become unstable in the intense electric field of the laser beam. Examples of suitable materials are: optical-qualicy glass and quartz, polystyrene, silicone oil, giycerol, DOP, DBP, and DBS. The particle should be free of inclusions and surface contamination and should be as homogeneous as possible. Exceptions to this are the gradient-force trap, which has been used to stably levitate absorbing particles that are very small. and the "donut mode" trap. which has been used co levitate metal spheres.

Size For most optical traps, the size range for stable optical levitation is about s to 50 um in diameter. At the lower size limit, Brownian motion tends to push the particle out of the beam, while at the upper size limit the particles are too massive for stable levitarion. With the gradient-force trap, very small particles of a few nm can be levitated [11].

Laser Characteristics
Type The most common laser for opticallevitation purposes is the argon-ion laser, used either at the green or the blue wavelengths. Typical laser powers are on the order of 50 mW to 1 W . At low power, the particle will come to equilibrium close to the beam focus, so that the inctdent laser intensity varies greatly across the particle. [The extreme case is a "speared" particle which sits right at, and is much larger than, the beam focus?. At high laser power, the particle sits far from the focus, and the incident field is more uniform across the particle. The latter situation is better when comparing experimental data with theoretical calculations since the incident light more closely approximates a plane wave

Other types of lasers have been used for optical levitation; the main requirement is that the power be sufficient to levitate the desired type of particle. For example, a copper vapor iaser would be a good substitute for an argun laser, while a helium-neon laser would not. Both YAG and nitrogen lasc.s have also been used to stably levitate particles.

Transverse Mode As noted earlier, the TEMoo (Gaussian) mode is used with solid particles, and the TEMol* ("donut") mode is used with hollow particles.

Eocussing The laser beam can be focussed with any positive lens having focal length from few wro to few cm . All else being equal, the stronger the focussing the stronger the trap; an f/number too large may result in a trap which is too weak to stably levitate the particle. Good choices for lenses are 5 X and 10 X microscope objectives.

Optical Cell
Stable optical levitation requires an optical cell to minimize air currents. A simple six-sided glass cell is sufficient; it could be made from glass microscope slides, or it could be a cuvette or other off the shelf optical cell. Absorbing materials should be avoided especially ar the laser-beam input and output faces, since they can heat up and cause problems with thermal convection. A typical optical cell is shown in Figure 5.

LEVITATION OF DROPLETS, SOLID PARTICLES, AND MULTIPLETS

The experimental techniques for handling droplets, solid particles. and multiplets are somewhat different from each other.

Droplets
The easiest type of microparticle to optically levitate is a droplet. It can be generated by an atomizer, a Berglund-Liu aerosol generator, or other devices which can generate polydisperse or monodisperse droplets. After the droplets are produced, there must be some way to get them into the optical cell: a $1 / 2$ to 1 min hole in the top of the cell works fine. A funnel can be used to guide the particles through the hole and into the laser beam. In general, many droplets will fall through the hole; with some luck and skill, only one can be trapped. [If several are caught, all but one can usually be removed by momentarily interrupting the beam). To minimize alr currents, the hole should be moved out of the beam after the particle has been trapped; a gliding top works well for this purpose (Figure 5). Also, with atomizers there is little control over the size of the particle that will be trapped. Thus, some means for sizing the levitated droplet must be avallable, for example a microscope with a callbrated eyeplece reticle. The spacing of the Mie fringes at 90 degrees can also be used for this purpose (Lettieri, et al., Ref. 2).

A final consideration for droplets is that they must be slowly evaporating; that is, they must have a high vapor pressure. Rapidly evaporating droplets change size too quickly to come to stable equiliorium. Therefore, liquids such as water and most alcohols should be avoided unless some provision has been made to control the atmosphere, for example by supersaturation. Usable liquids include silicone oil, glycerol, Index-matching liquids, DOP, DBP. DBS, and other clear, heavy ofls.

Solid particles can be launched into the laser beam by several techniques. The simplest method, shown in Figure 6, is to sprinkle the particles through a hole in the top of the optical cell using a salt shaker" [10]. One drawback of this approach is that, since many particles fall through the hole, more than one particle will usually trap in the focussed beam. If this occurs, the extra particles can be removed by momentarily interrupting the beam untii only one particle remains, as noted carlier. The other drawback of this approach is that there is no control over which particle levitates with regard to its size, sphericity, or surface quality.

To eliminate these drawbacks, a more sophisticated particle-launching procedure uses a piezo-electric or acoustic vibrator to shake the particles off the bottom of the cell [13]. Figure 7 shows the piezoelectric version of the vibration scheme. The procedure for trapping a particle with this arrangement is as follows. First, the optical cell is scanned horizontally until the desired particle is located (proper size, shape, cleanliness, etc.). Then, this particle is moved into the laser beam, and the focus brought down until it is just above the particle. The piezo-electric transducer is then "chirped" quickly through a range of frequencies (typically a few tens of $k H z$) in order $=0$ pop up the chosen particle. It should then trap at its equilibrium point, and the beam focus can be moved upward to its orginal position.

The above experimental considerations hold for solid particles. although they are still valid for hollow microballoons if a TEMOL* laser mode is used.

Multiplets and Aspheres

Ashkin and Dziedzic have assembled and levitated varlous types of multiplets and aspheres including doublets, triplets, spheroids, and spheres-within-spheres [14]; some of these are shown in Figure 8. The reader is referred to Reference 14 for detalls on how these particles are made by combining single microspheres and droplets.

FEEDBACK STABILIZATION OP LEVITATED PARTICLES

Abstract

A microparticle in an optical trap undergoes Brownian motion which, if strong enough, car kick the particle out of the beam. Even if these forces are not strong enough, the particle may still bounce around too much for close observation and/or analysis. Thus, it is often desirable to stabilize a levitated particle by some means. For this reason, Ashin and Dziedzic [15] designed an electro-optical feedback system which controls the laser intensity such that a levicated particle is locked in a fixed position (Figure 9). Briefly, the particle is imaged onto a split. fleld detector; the differential signal from the detector is amplified and fed to an electro-optical modulator which controls the laser intensity. If the particle drops, the intensity increases to raise it. Conversely, if the particle rises, the laser intensity decreases. There

Is also a time-derivative term in the amplifier to dampen the particle motion. Note that this system appears to only lock the longitudinal position of the particle (along the laser-beam axis). However, the transverse position (across the beam) is also locked since transuerse motion of a particle in a Gaussian beam is always accompanied by longitudinal motion (see Figure 2). With a feedback stabilization system, particle position can be fixed to better than 1 um [15]

APPLICATIONS

The main application of optical levitation has been in high. resolution particle sizing using various light scattering techniques, primarily resonance light scattering (RLS). The RLS technique makes use of che sharp morphological resonances which occur in Mie scattering as a function of wavelength [16]. Single wicrospheres can be sized co better than 100 ppm using RLS, while size changes can be detected at the 10 ppm level [16]. In particular, the evaporation rate of levitated droplets has been accurately measured using $\operatorname{RLS}[17,18]$. Resonance light scattering has also been applied in measuring an accurate mean diameter for an ensemble of microspheres, although these were in liquid suspension rather than optically levitated [19].

High-resolution measurements of refractive index can also be made using RLS from optically levitated droplets. By matching experimental and calculated resonances, Chylek, et al. have simultaneously detarmined the refractive index and diameter of silicone oil droplets to better than 50 ppm [20].

Finally, Raman spectroscopy has been done on optically levitated particles, both solid microspheres $[10]$ and liquid droplets $\{21$. One reason for levitating particles in spectroscopic applications is to keep them away from the substrate in order to avoid spurious effects such as particle deformation, Raman scattering and fluorescence from the substrate, and coupling of scattered light between the parcicle and the substrate [21]. Although other levitatinn schemes can be as effective for spectroscopic purposes, optical levitation has at least one major advantage, namely that the same laser beam which suspends the microparticle can also be used to excite the Raman spectra. Because of the high sphericity of optically levitated droplets, inelastic light scattering spectra show the same morphological resonances as do elastic Mie scattering spectra $\{10,21]$. However, Raman spectra of nonspherical microcrystals do not contain morphological resonances; these spectra are identical to that of the bulk material [10].

CONCLUSION

Optical levitation can be used to suspend single particles of many different types using relatively simple equipment. It has certain advantages over other aingle-particle suspension techniques, although its limitations preclude its use in some cases, especially where the particle is highly absorbing or is in a strong gas-flow field. Despite these shortcomings, optical le:itation should find increasing application in experiments where a single, motionless parifcle is required.

REFERENCES

[1] A. Ashkin, Phys. Rev. Lett. 24, 156 (1970).
[2] A. Ashkin and J. Dziedzic, Science 187, 1073 (1975): T.Lettieri, W. Jenkins, and D. Swyt, Appl. Opt. 20, 2799 (1981).
[3] A. Aahkin and J. Deiedzic, Appl. Phys. Latt. 12, 283 (1971); A. Ashkin and J. Dziedzic, Appl. Phya. Lett. 28, 333 (1976); G. Roosen, Can. J. Phys. S2, 1260 (1979).
[4] A. Ashkin and J. Dziedzic, Appl. Phys. Lett. 24, 586 (1974).
[5] A. Ashkin and J. Dziedzic, Appl. Opt. 19. 660 (1980); A. Ashkin and J. Dziedzic in "Light Scattering by Irregularly Shaped Particles". D. Schuerman, ed. (Plenum Press, New York, 1980).
[6] A. Ashkin and J. Dziedzic, Science 235, 1517 (1987).
(7) A. Ashikin and J. Dziedzic, Appi. Phys. Lett. 24, 586 (1974); G. Roosen, Can. J. Phys. 57. 1260 (1979).
[8] A.. Ashkin, Phys. Rev. Lett. 24, 156 (1970); A. Ashkin, Sci. Amer. 226. 63 (Feb. 1972); G. Roosen and C. Imbert, Opt. Cowm. 26. 432 (1978).
[9] G. Roosen, Opt. Comm. 21, 189 (1977).
[10] R. Thurn and W. Kiefer, Appl. Spec. 38, 78 (1984).
[11] A. Ashkin, J. Dziedzic, J. Bjorkholm, and S. Chu, Opt. Lett. 11. 288 (1986); A. Ashkin and J. Dziedzic, Science 235, 1517 (1987).
[12] J. Pocholle, et al., Appl. Phys. Lett. 45, 350 (1984).
[13] R. Thurn and W. Klefer, Appl. Spec. 38, 78 (1984); A. Ashkin and J. Dziedzic, Appl. Phys. Lett. 19, 283 (1971).
(14) A. Ashkin and J. Dziedzic, Appl. Opt. 19, 660 (1980).
[15] A. Ashkin and J. Dziedzic, Appl. Phys. Lett. 30, 202 (1977).
(16) See for example: A. Ashkin and J. Dziedzic, Phys. Rev. Lett. 38, 1351 (1977); P. Chylek, J. Kiehl, and M. Ko. Phys. Rev. A 18, 2229 (1978); R. Benner, P. Barber, J. Owen, and R, Chang, Phys. Rev. Lect. 44, 475 (1980); A. Ashkin and J. Dziedzic, Appl. Opt. 2Q, 1803 (1981).
[17] K. Fung, I. Tang, and H. Munkelwitz, Appl. Opt. 26, 1282 (1987).
[18] T. Lettieri, W. Jenkins, and D. Swyt, Appl. Opt. 20, 2799 1981).
[19] T. Lettieri and E. Marx. Appl. Opt. 25. 4325 (1986).
[20] P. Chylek, et al. Appl. Opt. 22, 2302 (1983).
[21] T. Lettieri and R. Preston, Opt. Comm. 54, 349 (1985): R.Preston, T. Lettieri, and H. Semerjian, Langmuir 1, 365 (1985).

FIGURE 1. LEVITATED DROPLET. Photograph of a liquid droplet levitated on a vertical laser beam.

FIGURE 2. VERTICAL TRAP.
Opeical trap using one ver. tical, TEMoo-mode laser beam. From Ref. [10].

FIGURE 3. HORIZONTAL TRAP.
Optical trap using two horizontal laser beams From Ref. [10].

FIGURE 4. GRADIENT TRAP. Single-beam, gradient-force optical trap. From Ref. [11].

FIGURE 6. "SHAKER" METHOD.
"Salt shaker" method for getting solid particles into laser beam. From Ref. [10].

FIGURE 5. LEVITATION APPARATUS. From Ashkin and Dzidezic \{2\}.

FIGURE 7. PZT METHOD. Piezo-electric "popper" for getting particles into laser beam. From Ashkin and Dziedzic, Ref. [3].

FIGURE 8. MULTIPLETS AND ASPHERES Examples of multiplets and aspheres which have been made and optically levitated. From Ref. [14].

FIGURE 9. FFEDBACK APPARATUS. EO apparatus for feedback stabll. Lzation. From Ref. (15).

AEROSOL JET ETCHING OF FDNE PATTERNS

Y. L. Chen, J. R. Brock and I. Trachtenberg
Department of Chemical Engincering
University of Texas, Austin, Texas 78712

Abstract

Successful demonstration of a new etching lechnique, aerosol jet etching (AJE), is reported. AJE has been used to pattern fine lines with good anisotropy in silicon dioxide surfaces on silicon substrates using an hydrofluoric acid ultrafine aerosol jet.

INTRODUCTION

In aerosol science there has long been an interest in the interactions between aerosol particles and surfaces, as evidenced by numerous studies in filtration, impaction, lung depsosition, atmospheric dry deposition, etc. However, in most cases, the particles considered in these applications have been chemically inert with respect to the surface material. There appear to be no reference: in the literature to investigations of interactions he!ween highly reactive particles with surfaces. We have recently initiated studies of the interaction of highly reactive panicles with surfaces with the applization in view of producing fine pattems on the surfaces. Such patterning is commonly referred to as "eching".

Etching is an important process that is repeated several times during the fabrication of integrated circuits. Present etching technology includes "wet chemical etching" and "dry etching". Convertional wet ecching is carried out by dipping devices to be etched in a bath of an etchant liquid, such as, for example, aqueous hydrogen fluoride solutions for etching silicon dioxide. Dry etching methods include plasma etching, reactive ion etching, ion beam milting, etc. These technologies each have their particular limitations 1,2 . We have demonstrated a new etching technique, "aerosol jet eching" (AJE), which has been used to pattern fine lines in silicon dioxide surfaces on silicon substrates using an hydrofluoric acid aerosol jet. This new technique overcomes some of the limitations found in present etching technologies.

DESCRIPTION

Aerosol jet ecching (AE) was conceived as a technique which might have the potenual for combining in one method the high selectivity of wet etching processes with the high degree of directionality (anisotropy) found with plasma ecching or ion beam milling methods, but without some of the disadvantages of these methods ${ }^{1,2}$. The basic ideas in AJE are illustrated in Fig. 1. An aerosol is generated by mixing an etchant vapor with an inert gas so as to bring about homogeneous nucleation of fine etchant particles. After nucleation and particle growth, the gas-partucle mixture is then expanded into a parial vacuum ($1-50$ wrr) through a nozzle. Because of their telatively
small mass, the gas molecules are scattered by collisions with the background gas molecules in the etching chamber and removed by pumping. The aerosol particles (iypically $0.05 \cdot 0.2 \mu \mathrm{~m}$ in diameter) are much more massive than the gas molecules and hence are largely unaffected by collisions with the background ges molecules over a substantial distance (several centimeters, depending on pressure). In this manner, a beam of energetic ulorafine particles can be directed onto a substrate to be etched. The etching reaction proceeds immediately after a particle hits the substrate. Etching rate can be controlled by adjusting the many process variables, such as particle size and concentration, substrate temperature, elc. While simple in outline, AJE involves many complex phenomena, including nucleation and particle growth processes, particle transport in compressible flow, and the impact, evaporation, and reaction processes of the ultrafine particles at the substrate surface. These last have hardly been explored in the literature.

RESULTS
In our first application of the AJE concept, we have investigated etching of silicon dioxide films (thermal oxide and phosphosilicate glass) on silicon with ultafine aerosol consisting of the 38.2 weight \% azeotrope of hydrofluoric acid. Both polymer photoresist and aluminum masks were used. In the course of this exploratory work, a number of process variables were sudied, including chamber pressure, substrate temperature, carrier gas flow rate. and nozzle size and configuration. We discuss here only two important variables .. etching chamber pressure and substrate temperature.

As a first step, it was determined from a number of trials that a jet of a vapor mixture of water and HF impinging on SiO_{2} surfaces in our system produced completely negligible etching rates. Therefore, all etching phenomena produced in our experiments can only be due to contact of liquid particles with $\mathrm{SiO}_{\mathbf{2}}$. In order for this contact to occur, a necessary but not sufficient condition is that particles have sufficient ineria to impact on the surface and not be deflected substantially by the motion of the host gas. This impaction process has been extensively studied in the context of particle collection and classification by instruments termed inertial impactorse.g.3.4. The efficiency with which particles of diameter D and mass density ρ in a directed jet impact on a surface is dependent on a number of parameters including $R e$ the Reynolds number and Ma the Mach number of the jet leaving the nozzle, η the ratio of the downstream slagnation pressure to the upstream pressure, v ratio of the nozzie diameter to the distance of the impaction surface from the nozzle exit, and the socalled Stokes number, Sk: SLk - $\rho U D^{2} C / 18 \mu d_{n}$. where U is the jet velocity, d_{n} the nozale diameter, μ the viscosity of the gas in the jet, and C the Cunningham slip correction factor. Under our operaung conditions, the ratio η of downstream stagnation pressures to upstream pressure is small, generally less than 0.1 . We determined experimentally also that the flow through the nozzle is choked and therefore. $\mathrm{Ma}=1.0$, With decreasing paricle size, represented nondimensionally by $\mathrm{Stk} ~(1 / 2$, the pressure ratio η must decrease in order for impaction to occur. This is well illustrated from our experiments by Fig. 2 showing etch depth in $\mu \mathrm{m}$ for 1 minute etching time of thermal silicon dioxide as a function of etching chamber
pressure. The aerosol chamber pressure was constant at 700 tort. As can be seen, at an etching chamber pressure of 200 tort for a 1 minute etch the etch depth is small and is evidently decreasing to zero. Therefore at etching chamber pressures somewhat above 200 tort no etching would occur because the particles are unable 10 impact on the SiO 2 suriace. From the data of Fig. 2, and other similar data, it is possible to estimate the upper bound diameter of the particles in our exching experiments. For the experimental conditions of Fig. 2, the diameter of the largest particle that impacts on the substrate surface is around $0.2 \mu \mathrm{~m}$. This maximum diameter is also confirmed from estimates based on the theory of homogeneous nucleation and particle growth.

A necessary condition for etching to occur in the AJE process is parcicle impaction. However, impaction of a particle does not necessarily imply that the particle adheres to and wets the surface; it is, of course, the liquid-solid reaction that is responsible for ecching. Therefore, it is first necessary that an impinging particle not "bounce off" (reflect from) the surface; it is common experience in impactor operatione.g. 5 that bounce off is not an important factor in deposition for liquid particles. An additional condition is that the temperature of the impaction surface be beluw the the so-called "Leidenfrost point"e.g.6. Above this point, evolution of vapor from a particle is sufficienly rapid that a vepor barriet is created preventing the drop from wetting the surface. The Leidenfrost point is dependent on the temperature of the surface, the properties of the drop, and the properties of the surfice, among other factors. However, the available information in the literature does not deal with the behavior on a heated surface of such small, energetic paricles as used in this study. In mny event, our experimental observations show that surface temperature is a critical variable in determining etch rate. In our experiments we were only able to control the substrate temperatuic; we have not measured surface temperatures at the point of impact of the particles. Fig. 3 shows etch depeh in $\mu \mathrm{m}$ in thermad silicon dioxide as a function of etch time in minutes at a chamber pressure of 35 torr with substrate temperature as parameter. It is clear that etching rate is crivically dependent on the substrate temperature.

Immediately before the areorope particles, travelling at a subatandial fraction of sonic velocity, hit the surface, their temperature is in the range $243 \cdot 263 \mathrm{~K}$. If the paniclat wat the surface, isolated paricles of diameter in the range $0.05-0.2 \mu \mathrm{~m}$ have thermal relaration times of the order of a nanosecond or less, and evaporative lifedimea of the order of microseconds to milliseconds, depending on their tempersture. With the assumption of adherence and surface weuing, from extimates of ranges of particle number concentration in the jet, the jet velocity, the evaporative lifecime, and parricle size, it is possible to estimate the fraction of the impaction surface covered by particles at any instant. For our experiment, this fraction is estimated w be in the range $0.01 \cdot 1.0$, with the lower figure being typical for the smalleat paricles at the higher surfice temperatures. Surface coverage above 1.0 is possible; this can occur at surface temperalures sufficienty low to permit particle coaleacence on the surface and formation of liquid films. If liquid films form in AJE, one t.as almost a conventional wet etching process with consequent loss of anisouropy in ecching. This leads to our experimental observation that higher degrees of anisorropic etching in AJE are achieved when the surface coverage is less than or equal wo 1.0 . The nearer to 1.0 , the faster the etch rate. Therefore, control of etching chamber pressure, surface temperature, particle size and mass flux is important in
implementation of a rapid, anisotropic AJE process.
Fig. 4 shows a sequence of micrographs of ecching of $0.9 \mu \mathrm{~m}$ PSG ($10 \mathrm{~mol} \mathrm{~m}_{\mathrm{c}} \mathrm{P}_{2} \mathrm{O}_{5}$) on silicon substrate using an aluminum mask pattern for various etching times. The first micrograph shows the typical cratered surface found with AJE; such panerns are also found in exching thermal silicon dioxide. These craters are not produced by a single particle, since the particle diameters are at least an order of magniwde smaller than the typical crater diameter. We believe that craters are formed by a process involving initial rapid etching of certain preferred sites on the surface. These sites become the cencers for preferential accumulation of impacting particles. leading to rapid crater growth. Finally, as shown in the last two micrographs in the sequence, the craters begin to coalesce and finally disappear exposing the underlying smooth silicon surface. In the final micrograph, the anisoropy is estimated to be afound 0.7 (maximum anisoropy possible is 1.0). Fig. 5 shows an example of a fine line ecch pattern produced by AJE on PSG on silicon.

Aerosol jet ecching ($A \sqrt{ }$) is a novel technique which may combine the high selectivity of wet etching with the fine line anisotropic ecching capability of some of the dry ecching processes, but without some of their disadvanuages. AJE significandy reduces the volume of environmentaly hazardous waste products and results in no radiation damage. Already we have demonstrated that AJE is successful in fine line etching of silicon dioxide with reasonably good anisoropy, which, based on our present understanding of the process, we believe may improve with etch depth. A/E may therefore become of interest in the developing uench device technology. We are now invesugating the application of AJE to other ecchans and surfaces. In addition to the applications noted here, the phenomenz observed in AJE are of fundamental incerest and may have applications outside of fine line patterning. such as in machining, surface decontamination, elc.

ACKNOWLEDGMENT

We thank M. Schmerling for his generous acsistance with SEM. This work was supported by the Texas Advanced Technology Research Program. We (I.T.) acknowledge the support of Texas Instruments Incorporated. REFERENCES

1. Thin Film Processes ,W. Kem and J. L. Vassen, eds. (Academic, New York, 1978).
2. C. M. Melliar-Sınith, J. Vac. Sci. Technol.13, 1008(1976).
3. V. A. Marple and C. M. Chien, Environ. Sci. Technol. 14,976 (1980).
4. P. Biswas and R. C. Flagan, Environ. Sci. Technol. i8 . 611 (1984).
5. Y.S. Cheng and H.C. Yeh, Environ. Sci. Technol. 13, 1392 (1979).
6. A. A. Mills and N. F. Sharrock, Eng. J. Phys. 7,52 (1986).

Fig. 1. Schemaic diapram of aerosol jet etching (AJE) aystem.

Fig. 2 Etch depth in thermal silicon dioxide versus etching chamber pressure for 1 minute etch tume Elching conditions: Silicon substate, temperature, $30^{\circ} \mathrm{C}$: Cerrier gas now rate. $790 \mathrm{ce} / \mathrm{min}$.

Fig 3. Etch depit: in thermal silicon dioxide versus etch time with substrate temperature as parameter. Elching condiuons: Etching chamber pressure. 35 torr, Carrier gas now rate, 190 cs'mun

lige SEM micrographs from acrosol jel elching (AJE) of $0.9 \mu \mathrm{~m}$ PSG on silicon for vatious
etch omes: (a) 0.5 min.: (b) 0.8 min . (c) 10 min Anisoropy apprc :imately 0.7 . Subvirate cemperature is $150^{\circ} \mathrm{C}$. Contaminanis appearing in figures occurred because samples were not handled in a clean room

v. OPTICAL PROPERTIES OF AEROSOLS

R. T. Wang

Space Astronomy Laboratory, University of Florida
1810 NW 6th Street, Galnesville, FL 32609
recent publications, submittals for publication and presentations:
A) R. T. Wang, "The Microwave Scattering Facility (MSF)," In Proceedings of the 1986 CRDEC Conference, R. Kohl, ed. (in press).
B) R. T. Wang, "Findings Through MSF Upgrade," Presented at the 1987 CRDEC Conference (June 1987).

ABSTRACT
This paper sumarizes the status of the Microwave Scattering Facility (MSF) upgrade in terms of improved efficiency, accuracy and versatility of measurement operations. Emphasis was on identifying all factors which affect measurement, precision and accuracy. For example, the scattering chamber's temperature fluctuation was confirmed to be a major drift error source due to the uneven expansion/contraction of two wave paths - via waveguide and via free space - and hence the work done on the judicious readjustment of wavegulde path lengths, circulation of water over extended lengths of plpes which are in thermal contact with the waveguides, minimizing microwave leaks and insulation of waveguides, use of new programmable microwave sources for monitoring the outcome, etc. The upgrade is not yet fully completed, but the major results to date are presented and discussed as they affect the measurements.

UPGRADING THE MSF AND THE FINDINGS

As reported previously [Ref.7], the remarkable advantages of the microwave technique over other optical methods lie in the precise controls/uses of the following critical factors in studying a single-scattering process:

1. Particle size (or the size parameter $x=2 \pi a / \lambda$, a-radius, $\lambda=$ wavelength).
2. Target shape (single particle or agglomerates).
3. Orientation/position of particle in the beam.
4. Polarization states of incident/scattered radiation.
5. Complex refractive Index m=m'-im" of target medium.
6. Discrimination of the true scattering against the unwanted, coherent background via the use of the microwave-unique compensation (or null) technique.
7. Absolute magnitude calloration of the scattered radiation.

Or these, 3, "5, \#6 and "7 have been paid special attention during the MSF upgrade. This emphasis derived primarily from our experience in operating the MSF and partly from discussions with other Army-supported researchers who kindly volced their criticisms and needs during the Army Research Office scattering workshop at Galnesville, FL, April 24-25, 1986. Fig. 1 deplets tre present MSF schematic whereln the rerouted wavegulde paths, temperature sensor positions, new equipment locations, etc., are shown to facilitate the discussion. Rather extensive flgures and tables are also incorporated here for the same reason.

A. Target Orientation/Positioning Device

A device capable of quickly and precisely orlenting/positioning a scatterer of desired shape in the beam, and which contributes little to the total scattering, is indispersable to the MSF. We have previously developed a PDP11/03 computer-controllable device [Ref. 4; sketched in Fig. 1] that employed a nylon-strings-only target mounting/suspension net (in the beam region) driven by an assembly of steppling motors, turntable, gears and rods in the out-of-beam region. This device performed the desired functions except that it required frequent maintenance potentiometer wear: malfunctioning during wintertime, mechanical alignment, etc. A new VMEMIZAR controller system tled to the new PDPIl/23 computer (Fig. 1) has therefore replaced the above motor control system. Instead of recording/monitoring target orientations through potentiometers, the new systec: works by direct counting of pulses transmitted to stepping motors of the drive mechanism, thereby eliminating the use of potentiometers and also alleviating the effort in target-orientation calibration. The installment of this new VME-PDP control system was also mandated by the need to control multiple equipment - microwave source, phase-lock counter, temperature sensors, line-voltage monitoring device, lock-in amplifier, etc. (see also Sec. C). Almost all interface computer programs ariving these gears were written in C-language and are linked to the operator's Fortran programs for a variety of measurement runs.

B. Complex Refractive Index $m=m^{\prime}-i m^{\prime \prime}$ of Target Medium

The reliability of our complex refractive lndex measunemerit dita isina the well-established wavegulde-slotted-11ne technique [2,3] was re-examined. Guided by the Faotorlal Experiment Technique [1], 3 acryilc and 3 expanded polystyrene wavegulde samples, all about 20 years of age and of nearly the same size, density and fabrication process among each material group, were chosen from our inventory to repeat refractive-1ndex measurements wider 3 controlled environments: (a) placed in a vacuum chamber, (b) left in normal room conditions, and (c) enclosed in a water-vapor-saturated chamber. The new data sets were compared agalnst each other, and, in particular, the sets by procedure (b) were compared agalnst the old measurement results. Table I shows the comparisons, from which we deduce the following: (1) mom' in or acrylic material depends appreciably on humidity and on aging (perhaps by atmospheric oxidization), even though the physical aimension of a sample is rather stable. A typlcal result in Table I showed a shlft from mo1.61-i0.006 (1968) to $\mathrm{m}=1.66-\mathrm{io} .01$ (1986). (2) On the other hand, the expanded polystyrene samples absorbed little molsture (by welght-monitoring under the above environmental conditions (a), (b) and (c)) and reglstered little changes both

In $m^{\prime \prime} m^{\prime-i m " ~ a n d ~ i n ~ d e n s i t y, ~ e v e n ~ t h o u g h ~ b o t, ~} m^{\prime \prime}$ the sample rolume and weight decreased by about the same 0.68 during these 20 years, most probably by sublimation of the ingredient volatile chemlcal.

Being a crucial parameter in a scattering process, mem'-im" of a target should be precisely known and should be stable, especially when the target is used as an absolute scattering-magnitude calibration standard. Based on the above findings, we have also conducted a search for other stable plastic materials and have recently prepared several new standard spheres/spheroids made of teflon/delrin. Both materials are distinctly different from plexiglass or expanded polystyrene in the measured refractive index (mteflon $=1.4319-20.0016$, melrin $=1.7006-i 0.022$) and in specific gravity ($p_{\text {teflon }} \cdot 2.1000$ grams/co. $\rho_{\text {delrin }}=1.4087$ grams/cc). Careful measurements on angular scattering (see also Sec. D) and on extinction are belng made so that these new targets will be included as calibration standards. Studies of effective refractive indexes of mixtures (such as polystyrene and carbon) have al so started and will be reported in the near fiture.

C. M1crowave Compensation (or Null) Techn! que

Perhaps one of the most striking features of the MSF is the extensive use of this microwave unique technique which enables us to discriminate the true scattering against the unwanted coherent background, even in the beam direction where the background intensity may be -1000 times larger than the Intensity scattered fron a lyplcal 5 cm diameter target. For the purpose of this discrimination, we split the radiation from the microwave source into two paths: one goes entirely through a waveguide (reference wave. with an optical path length denoted by L_{R}) and the other through the soatterer in free space via antennas and waveguldes (direct wave, with a total optical path length denoted dy L_{D}). These two waves recombine at a mixer nybrid junction (magic tee). For easier understanding of the null technique both a simplified hardware schematio and an appropriate vector diagram are depleted in Fig. 2 . In the absence of a target In the beam, the unwanted direct wave is compensated (or nulled) by adjusting the amplitude (Ψ) and phase (ϕ) of the reference wave so that the reference wave ls equal in amplitude but 180° out-of-phase with respect to the unwanted direct wave. The out put port of the maglc tee will then register a minimum. The lower the signal level of this minimun, the better is the degree of nulling. As a target is nolsted into the beam, the unbalanced wave appearing in the same magic tee output port is exactly proportional to the scattered wave from the target. If the initial deep nulling condition can be malntalned sufficlentiy iong enough
for a typical measurement run, the compensation is said to be stable, and the target in the beam is allowed to go through a preselected sequence of orlentations in space, thereby recording the orlentation-dependent scattering. The absolute scattering magnitudes are calidrated by measuring, in quick succession, the scattering from standard targets of known magrituses.

Accuracy of our MSF measurement is thus seen to depend critically on the stability of compensation; thus compensation drift would be a major source of error. Priority was therefore given to the isolation and remedy of the major sources of instablilty in upgrading the MSF. The following logical steps were taken:
(a) Step 1: Error Source Anal ysis

The null technique is essentially an interference technique employing two coherent waves from the same source. As mentioned earlier, one wave travels through an optical path length L_{R} and the other wave through L_{D} (cf. also Fig.2). An optical path length L is the algebralc sum of (effective refractive index X physical length) along the wave path. For example, with a second s uffix A or G to indicate whether the path is through air (whose refractive index can te assumed equal to 1) or through wavegulde, respectively, we can explicitly write [6]:

$$
\begin{align*}
& L_{D}=L_{D A}+L_{D G} \sqrt{1-(\lambda / 2 a)^{2}} \\
& L_{R}=L_{R G} \sqrt{1-(\lambda / 2 a)^{2}} \tag{1}
\end{align*}
$$

where a 13 the wider dimension of a rectangular wavegulde cpening (a-2.286 cm for our X -band waveguides). Both L_{D} and L_{R} depend not orily on the physical dimensions $L_{D C} L_{R C}$ and a, but also on the wavelength λ (or equivalentiy, on the frequency $f=c / \lambda, c=$ speed of ilght in free space) of the microwave source. A stable compensation (or nulling) is possible if, and only if, the phase difference $P-2 \pi\left(L_{D}-L_{R}\right) / \lambda$ between these two waves can be malntained constant ($-\pi$); 1.e.. uneven changes in L_{D} and L_{R} with respect to time cause the unwanted drift or noige using this technique. Furthermore, it has been noticed for a long time [6] that the environmental temperature t and the erequency stabllity of the microwave oscillator were the two dominant factors affecting the compensation stablifty of P. Hence, the error source analysis here is focused only on the effects of varlations of T and f, neglecting other less dominant disturbances such as power-line fluctuations, bullding/ground vibrations, etc. Discussion is also confined to $\theta-0^{\circ}$ scattering where the effects of (T, f) show up most markedly due to the presence of large beam background, although the same argument holds for the other scattering
angles 0 . Detalled algebralc derivations are omitted, and only those important rormulae are IIsted.

$$
\begin{equation*}
\text { Time rate of null drift }=\frac{\Delta P(f, T)}{\Delta t}=\frac{\partial P}{\partial f} \frac{\Delta f}{\Delta t}+\frac{\partial P}{\partial T} \frac{\Delta T}{\Delta t} \tag{2}
\end{equation*}
$$

Stralghtforward differentlations of Eqs. (1) yield the rate of drift due to frequency change and to temperature variation:

$$
\begin{align*}
& \frac{\partial P}{\partial f}=\frac{2 \pi}{\lambda f}\left[L_{D A}+\left(L_{D G}-L_{R G}\right) / \sqrt{1-(\lambda / 2 a)^{2}}\right] \tag{3}\\
& \frac{\partial P}{\partial T}=\frac{2 \pi}{\lambda}\left[\frac{\partial}{\partial T} L_{D A}+\frac{\partial}{\partial T}\left[\left(L_{D G}-L_{R G}\right) \sqrt{1-(i / 2 a)^{2}}\right]\right] \tag{4}
\end{align*}
$$

Eq. (3) shows that $\partial P / \partial f$ is minimized by a judicious adjustment of waveguide lengths so that

$$
\begin{equation*}
\mathrm{L}_{D A}+\left(\mathrm{L}_{\mathrm{DG}}-\mathrm{L}_{\mathrm{RG}}\right) / \sqrt{1-(\lambda / 2 \mathrm{a})^{2}}-0 . \tag{5}
\end{equation*}
$$

Furthermore, it was found that this waveguide-length adjustment, Eq. (5), couid also iead to m!nimizing the drift due to temperature change to

$$
\begin{equation*}
\frac{\partial P}{\partial T}=\frac{2 \pi}{\lambda} \times 1.1 \times 10^{-3}\left(L_{D G}-L_{R G}\right)=1.9^{\circ} /{ }^{\circ} \mathrm{C} \tag{6}
\end{equation*}
$$

If we take the coefficients of 1 inear thermal expansion of concrete (on which the reference wavegulde $1 s$ iaid) and brass (the waveguide material) respectiveiy as [8]

$$
\begin{equation*}
B_{\text {concrete }}=10^{-3} /{ }^{\circ} \mathrm{C} \text { and } Y_{\text {orass }}=1.8 \times 10^{-5} /^{\circ} \mathrm{C} \tag{7}
\end{equation*}
$$

Even with this judicious adjustment of wavegulde lengths, Eq. (5), and with a well-stabllized oscillator frequency Eq. (6), shows that the system is virtually uselesa unless the target-scattered 91 gnal 19 much larger than (beam signal $X \sin \left(\frac{\partial P}{\partial T} \frac{\Delta T}{\Delta t}\right)$), Where ΔT is the temperature drift over the run time Δt. Sone measure of temperature control is obviously needed.
(b) Step 2: Stability Monitoring

In parallel to the preceding Step 1 analysis, quantitative monitoring of the scattering chamber temperature and powerline fluctuation versus time were deaed necessary in order to find the necessary fixes. Fourteen solid-state temperature sensors were therefore placed along the critical paths of compensation, 11 of which were directly attached to waveguldes by thermally conducting glue, while the remalning 3 were supported at the tops of beam-helght plastlc plpes and could be qoved around a large space of the chamber. The actual locations of these 14 sensors are shown in Fig. 1 via their ID numbers. The new VME and PDP11/23 computers recorded each sensor's temperature over an extended time perlod with/without clrculating water along plpes in thermal contact with waveguldes (water plpes during Step 2 covered only about 3/5 of the total waveguide length); and with/without microwave radiation. Figs. 3A-3D and Figs. 4A-4D deplet some typical monitoring records without water circulation but with mlcrowave radiation. Temperature reading of each sensor with ID is along ordinate unile the recording time (at a 15 minute interval) is along abscissa. Midnight and 8:00 A.M. are marked by vertical dotted
lines. In particular, Figs. 3B-3D demonstrate the degree of compensation drifts in 2 output channels (S_{x} and S_{y} in Fig. 1) which were nulled inltially, to compare in absolute magnitude the recorded scattered $s i g n a l s S_{x}$ and S_{y} from a standard calibration sphere, the largest sphere then avallable. Figs. 5A-5D duplicate Figs. 4A-4D except that water is now running near the sensors *3 and \#4. Much more flattened temperature profiles in Figs. 5C-5D than in the corresponding Figs. $4 C-4 D$ are clearly seen. Even more striking is the similarity between the compensation drift profiles (Fig. $3 C \& 3 D$) and the very comon temperature varlation trends versus time (Figs. 3A\& 3B, Figs. 4A-4D, Figs. 5A-5D); 1.e., both showing conspicuous changes until midnight hours, tapering untll sunrise, and resuming rapld variation thereafter. These monitoring records also provided a quantitative explanation of why our $\theta=0^{\circ}$ measurements could only be performed succesafully in early morning hours and confirmed our bellef that constancy of chamber temperature was critlcal for the compensation technique.

To monltor the second source of disturbances to compensation, a new Superior Electrio's Stabiline $A C$ voltage monitor was installed to record power-line surges, sags and impulses under preset threshold potentials. Over a period or several weeks this device monitored pertubations both on the unstabllized and the Sorensen-stabllizer-controlled AC power sources. Both registered a number of such events which could contribute to experimental errors - knocking the new microwave source out of its frequency-lock, for example. The pertubations usually came in the form of short pulses, lasting about $0.5-1.5$ cycles of line frequency especlally when
equipment is turned on (or off). The unstabilized AC voltage was obse red to vary as much as ± 10 volts in a particularly busy-loaded day.
(c) Step 3: Work on Improving Stability

Improvement was made on the aforementloned critical factors, especially those related to temperature controls. Along with the findings, the work 13 explained in roughy chronological sequence. (i) Although two new ventilation fans installed in the chamber ceiling did not minlmize temperature fluctuations as much as hoped, they helped lower the near-celling temperature to more acceptable levels in summer. (2) In spite of a lot of design work, it is too expensive and time-consuming to stabllize the temperature of the whole chamber space. Instead, efforts were made to minimize the temperature variation of the waveguides, whose physical dimensions and hence optical path lengths were the most susceptible to auch varlations. (3) Having found that circulating water was the most effective agent for this purpose, a longer length of plpes in thermal contact with waveguides is clearly needed. (4) The reference waveguide $R G_{1}$ in Fig. 1 was found to be about 6 meters longer than the optimum length given by Eq. (5). It was decided that RG, should be rerouted (shortened) accordingly, and this In turn created a vibration-free, efficient water circulation. (5) A small, but not negilgible amount of microwave radiation was found to be leaking from many wavegulde jolnts over RG, and R_{2}, dus to the 1 mproper use of 1 langes/bolts $1 n$ 1982. These joints were repalred before all guides were tied to the pipes and sealed together by good-quality insulation tape. (6) Utmost care was taken not to transmit even the smallest perceptible mechanical vibration to antennas and other critical wave paths by pumping water. (7) The improvement made on the compensation stablilty, by a factor 3 in drift rate reduction, was far better than previousiy expected as noted in recent extinction/angular scattering measurement runs. (8) Since the null drift is caused only where the microwave radiation 10 split into 2 paths L_{D} and L_{R} in $F 1 g$. 2, the nev. programmable microwave oscillator (EIP 924) and irequency-locking counter (EIP 575) were relocated to the PDP-VME-housing control room without affecting stable performance. A:7meter, 50-ohm mi crowave coaxial cable now connects the frequency-locked microwave sl gnal to a new Gafs solid-state microwave power amplifier which then delivers onewatt power to L_{D} and L_{R} (see Figs. ! and 2). This not only greatly improved the operation/monitoring efficiency, but also helped eliminate some earlier technical difficulties caused by using long GPIB interface cables. Increases in the MSF capablilty by employment of the above new programable microwave source cannot be assessed at thls moment, but a few examples are shown in fig. ó where the compensation
stabllity versus frequency were measured before and after rerouting of reference waveguide paths Note that these frequency sweeps were made without any temperature controls - no water circulation, no insulation of waveguldes.

D. Absolute Magnitude Calibration of Scattering

Results of a llght scattering study are much more detalled if all scattering quantities therein are calibrated in dimensionless absolute magnitudes [5] rather than just in relative magnitudes or in those units likely to cause confusion/inconvenience. This is especially true when attempts are made by other workers to compare their results with this study. The absolute magnitude calibration is carried out in our MSF by substitution: $1 . e .$, immediately before/after a measurement run for the target under study, substitute a standard target of known absolute magnitude, repeat the measurement (now called the callbration run) and obtain the desired calibration factor. For reliable calibration such standard targets must theref ore have: (a) stable target parameters so that the scattering properties are little affected by environment. 1 factors, (b) the scattering profiles in agrement with reliable exact theorles (such as Mle theory), and (c) the scattering magnitudes cuvering a sufilciently large dynamic range.

For angular scattering studies, in particular, few of our standard targets were found to simultaneously satisfy the above rather stringent requirements (a), (b) and (c). For this reason we have conducted a search and have prepared several more new standards made of stable materials such as tefion or delrin. The measured scattering patterns of a new delrin standard sphere, for example, are compared to the Mie theory prediction using the measured target parameters. Figs. 7A-B shows the very close agreement between experiment and theory for this delrin ball (except at a few large scattering angles: $130^{\circ} \leq \theta \leq 160^{\circ}$). Notice that the agreement also includes the deef troughs occurring in the angular proflles. Compared to an old plexiglass standard sphere whose experimental and theoretioal proflles are shown in figs. 8A-8B, this new delrin gtancard sphere has a much larger dynamic range and can be used as a reliable standard more frequently.

The Work performed during 1986-1987 in order to improve the speed, accuracy, reliability and versatility of our MSF is reported, including an analysis of systematic experimental error sources and renedial measures. The emphasized topics cover those related to refractive indexes of target media, target-orientation device, judicious use of the microwave-unique compensation technique, switching from old to new computer systems in controlifng microwave equipment, and reliable absolute magnitude calibration of scattered radiation. The upgrade work will be continued so as not to interfere with our regular measurement program.

ACKNOWLEDGEMENTS

The author thanks J.L. Weinberg for administrative guidance and discussions. He also owes his gratitude to G. Eichhorn and J. Mckisson for work in computer interface problems and electronics, to D. Ely, A. Weisenberger and Y. L. Xu for assistance in miscellaneous laboratory routines, and to T. Barnello and E. Klein for help in temperature-control related work. This work was supported by the Army Research office anc in part by the University of florida's Division of Sponsored Research.

REFERENCES

1. Li, J.C.R., "Statistlcal Inference I," Edward Brothers, Inc., Ann-Arbor, M1ch. (1964).
2. Roberts, S. and von Hippel. A., A New Method of Measuring Dielectric Constant and Loss in the Range of Centimeter Waves, J. Appl. Phys. 17. 610 (1946).
3. Schuerman, D.W. and Wang, R. T., Experimental Results of Multiple Scattering, Final Rept., DAAG 29-79-C-0055, Army Chemical Systems Laboratory, ARCSL-CR-81003, Aberdeen, MD (1981).
4. Schuerman, D.W., Wang, R.T., Gustafson, B.A.S. and Schaefer, R.W., Systematic Studies of Light Scattering. 1: Particle shape. Appl. Opt. 20 4039-4050 (1981).
5. van de Hulst, H. C., "Light Scattering by Small Particles," Wiley, N.Y. (1957).
6. Wang, R.T., "Electromagnetic Scattering by Spheres of hnisotroplc Refractive Indices." Ph.D. Thesis, Rensselaer Polytechnic Institute, Troy, N.Y. (1968).
7. Wang. R.T., The Mierowave Scattering Facility, in "Proc. of the 1986 CRDEC Scientifle Conference in Obscuration and Aerosol Research," R. Kohl, ed., Army CRDEC, Aberdeen, MD (in Press).
8. Zemansky, M.W., ed., Sec. 4 of "American Institute of Physics Handbook," McGraw Hill, N.Y. (1957).

TABLE 1. DIELECTRIC MEASLREMENT RESULTS

Repeated complex refractive index measurement results are tabulated here to show the effects of aging/environment for 2 dielectric materials. All the selected 6 dielectric waveguide samples are about 20 years old, and the data for each sample is bounded by dotted lines.

DATA 10	SAMPLE MATERIAL	DATE MEASURED/ ROOM TEMP. (T) \& RELATIVE hUMIDITY (RH)	SAMPLE WAS PLACED IN:	SAMPLE DENSITY GRAMS/cc	PEASURED COMPLEX REFRACTIVE INDEX
DEP121. DTO	PLEXIGLASS	6-12-68, $\mathrm{T}=22^{\circ} \mathrm{C}$	ROOM CONDITION	1.1830	$m=1.614-i 0.006$
DEP121. DT1	"	$\begin{aligned} & 12-23-86 \\ & T=20.8^{\delta} C, R H=67 \% \end{aligned}$	"	1.1865	$m=1.642-20.010$
DEP121. DT2	"	$\stackrel{12-26-86}{T=17.1^{\circ} \mathrm{C}, R H=62 \%}$	VACUIM CHAMBER FOR 3 DAYS	1.1851	$m=1.638-i 0.009$
DEP122.DTO	PLEXIGLASS	6-12-68, $\mathrm{T}=22{ }^{\circ} \mathrm{C}$	ROOM CONDITION	1.1842	$m=1.613-20.006$
DEP122.DTI	"	$\begin{aligned} & 12-23-86 \\ & T=20.8{ }^{\circ} \mathrm{C}, \mathrm{RH}=67 \% \end{aligned}$	"	1.2035	$m=1.659-20.012$
DEP123. DTO	PLEXIGLASS	6-12-68, $\mathrm{T}=22{ }^{\circ} \mathrm{C}$	ROOM CONDITION	1.1835	$m=1.613-i 0.005$
DEP123.DT1	"	$\begin{aligned} & 12-23-86 \\ & T=20.8{ }^{\circ} \mathrm{C}, R H=67 \% \end{aligned}$	"	1.1874	$m=1.642-i 0.011$
DEP123.DT2	"	$\begin{aligned} & 12-26-86 \\ & T=17.1^{\circ} \mathrm{C}, \quad R H=62 \% \end{aligned}$	WATER-VAPORSATUP:ATED CHAMBER, 3 DAYS	1.1891	$m=1.644-i 0.012$
DEP125.DTO	EXPANDED POLYSTYRENE	8-5-69	ROOM CONDITION	0.6348	$m=1.360-i 0.005$
DEP125.DT1	"	$\begin{array}{r} 12-23-86 \\ T=20.8 \\ \delta \\ C, R H=66 \% \end{array}$	"	0.6362	$m=1.359-i 0.004$
DEP125.DT3	"	$\begin{aligned} & 12-26-86 \\ & T=17.1^{\circ} \mathrm{C}, R H=62 \% \end{aligned}$	VACUUM CHAMBER FOR 3 DAYS	0.6359	$m=1.358-20.004$
DEP126.DTO	EXPANDED POLYSTYRENE	8-5-69	ROOM CONDITION	0.6305	$\mathrm{n}=1.355-i 0.008$
DEP126.DT1	"	$\begin{gathered} 12-26-86 \\ T=17.1^{\circ} \mathrm{C}, \quad R H=62 \% \end{gathered}$	"	0.6331	$m=1.356-i 0.004$
DEP127.DTO	EXPANDED POLYSTYRENE	E^{8-5-69}	ROOM CONDITION	0.6397	$\mathrm{m}=1.362-i 0.004$
DEP127.DT2	"	$\begin{aligned} & 12-23-86 \\ & T=20.8{ }^{\circ} \mathrm{C}, \quad \mathrm{RH}=67 \% \end{aligned}$	"	0.6420	$m=1.362-i 0.003$
DEP127. DT3	"	$\begin{gathered} 12-26-86 \\ T=17.1 \\ \mathrm{O} \\ \mathrm{C}, \quad R H=62 \% \end{gathered}$	WATER-VAPORSATURATED CHAMBER, 3 DAYS	0.6423	$m=1.364-20.003$

Space Astronowy Laboratory, University of Elorida.
UPDATED MICRONAVE SCATTERING EACILITY (MSF) SCHEMATIC

MN Absorber Screen

FIGURE 2. ON THE COMPENSATION (OR NULL) TECHNIQUE Upper figure depicts the simplified hard-ware schematic of Fig. 1, while the lower figure shows the vector diagram of compensation.

FIGURES 3A-3D.
TEMPERATURE READINGS/COMPENSATION DRIFTS VERSUS TIME
Figs. $3 A \& 3 B$ are for temperature readings; while Figs. 3 C \& 30 record the drifts, where the scattering magnitudes X, Y recorded for a sphere are also shown at about 09:00 hour when the MW beam was turned off.

Nov. 17-18, 1986
MSF Temperature-
Sensors' Readings vs Time

Sensor Near RG_{1} Input

Sensor Near Transm. Antenna

Sensor Near RG, Absorber-Screen Openting

Sensor Near the $R G_{1}-R G_{2}$ Junction.
(without water circulation in the nearby pipe)

FIGURES 4A-4D. TEMPERATURE READINGS VERSUS TIME ACROSS MONITORING SENSORS Vertical dotfed
$00: 00$ midnight. $08: 00=8$ o'clock in the morning. Ordinate(with sensor IDA) in C.

Vertical dotged lines the hour marks:

FIGURES 5A-50.
TEMPERATURE READINGS VERSUS TIME ACROSS MONITORING SENSORS
Same as in Figs. 4A$4 D$ except that water was here circulating near the sensors $38 \% 4$.

$$
\left(\nabla^{\prime}+\right) \varepsilon \varsigma: \angle I: \varsigma I \text { of sع:9I:SI }: 98-2-2 I
$$

$\cdot 9$ 3yกั15

> compared to the 12-2-86 sweeps due to the judicious modification on the compensation-waveguide-lengths.

FREQUENCY (GHZ) FRERUENCY (GHZ)

effects of microwave oscillator frequency change on the stability of cancellation
The beam direction ($0=0$) background radiation was initially cancelled at the center frequency, 9.417 GHZ , and the perturbed cancellations on the phase-sensitive channel (marked Δ or ∇) and the amplitude-sensitive channel (marked + or

 The sphere parameters: x-5.001, an-1.629-10.0125. Both the enperimental (dots) and Mie theory results (continuous curves) are pioted in absolute agoltuoes.

Angular Scattering from Single
 Suspended Cylinders

J. D. Eversole
Potomac Photonics Inc.
College Park, Maryland 20742

H.-B. Lin and A. J. Campillo
Naval Research Laboratory
Washington, D. C. 20375

Recent Presentation

J. D. Eversole, H.-B. Lin, and A. J. Campillo, "Elastic Angular Scattering From Oriented Non-Spherical Particles", Proceedings of the 1987 International Symposium on Optical Particle Sizing: Theory and Practice, Rouen, France, May, 1987.

Abstract

Elastic scattering measurements and observations have been made on single cylindrical particles suspended in an electrodynamic trap. Under certain circumstances the particles could be maintained in a stationary position and orientation, and scattered light intensities from a He-Ne laser were obtained as a function of angle. The particles were made by cutting and breaking quartz wool fibers which were then sorted by filtering. Suspended particles were cylinders approximately 7 micrometers in diameter with aspect ratios from 2 to 20. Photomicrographs were taken to determine the particle size, quality of the cylinder ends, and the extent of small dust or debri attached to the particle aurface. Angular scattering patterns of the longer cylinders resembled the "infinite" cylinder case obtained by scattering from a macroscopic fiber. Differences observed in the shortest cylinders included a "broadening" of the cone of scattered radiation which increases with decreasing scattering angle, and a higher rate of intensity fall-off as a function of scattering angle. Current work has centered on reducing the cylinder diameter by etching the quartz fibers in hydrofluoric acid. An effort will be made to observe cylinders in the one micrometer diameter range to facilitate comparison with possible computational models.

Introduction

The work described here is part of an on-going program at the Naval Research Laboratory to determine optical properties of characterizable, nonspherical particles. While a uubstantial amount of prior information has been obtained for spherical particles over wide ranges of size and composition, relatively little work has been done with nonspherical particles. Furthermore, much of the available nonspherical particle data consists of an average over either size, shape, and/or orientation. Rigorous comparison of detailed theoretical and computational models requires experimental data for which composition, size, shape, and orientation are
known. Our approach has been to examine single particles, and obtain light scattering data at fixed orientations. This was achieved by suspending charged particles in an electrodynamic trap which has been modified to permit access to a wide range of scattering angles. Our main interest has been in rod-shaped or cylindrical particles with aspect ratiosgreater than 2, which may have applications as obscurants. Several candidate sources of such particles exist. However, in this study we have chosen to examine particles produced from $7 \mu \mathrm{~m}$ diameter quartz fibers which have a well-characterized scattering pattern as described below. Particles in this size range are easily imaged, so that size and shape information was taken directly by microscope observation and microphotography.

Experimental Arrangement and Procedure

Figure 1 is a schematic diagram of the basic experimental configuration showing the trap electrodes in relation to the incident laser beam and the photomultiplier tube (PMT) for detecting scattered light. In practice, the maximum range of the scattering angle, θ, was physically constrained to $\sim 120^{\circ}$ due to the electrode support and trap enclosure. An enclosure was required to prevent laboratory air currents from disturbing the suspended particle, and collection of scattered light was obtained through a wide window. An unfocused 3 mW polarized He-Ne laser was used as a light source. The PMT (Hamamatsu R.985) was mounted on a metal beam projecting from a machinist's rotary table which was driven by an ac synchronous motor. The resulting scan speed was $\sim 22^{\circ} / \mathrm{min}$. Output of the PMT was amplified and plotted on a chart recorder. A narrow band laser filter (at 632.8) blocked extraneous room light, and for all but the smallest particles, collection optics other than apertures to block stray light were not required. Arigular resolution was determined simply by the solid angle of the PMT photocathode, and was $\sim 0.3^{\circ}$.

The design of the electrodynamic trap was similar to that of previous investigators ${ }^{1 \cdot 5}$, but was distinguished from the classical bihyperboloidal trap by having the middle electrode split to permit optical access for angular scattering, and by the fact that the electrode surfaces were spherical rather than hyperboloidal. A detailed description of this arrangement and a comparison of its performance to other electrode geometries is available elsewhere. 6 Particles were delivered to the trap by dragging a small polyethylene tube through a sample of the glass cylinders, by which some of them electrostatically attached to the tube. The tube was then lowered through a small hole in the upper end cap electrode and lightly tapped to allow some of the particles to fall through the trap. Application of the ac voltage at that point usually resulted in suspension of one or more of the particles. Multiple particles were eliminated from the trap by a process of momentarily reducing the ac
voltage. With one particle suspended, the dc voltage was applied and increased until the null point was reached as determined by observation through a microscope.

As the particles were initially captured, they usually were oriented in the vertical direction. This natural tendency may be due, at least in part, to an uneven distribution of surface charge since the longer particles were observed more stably oriented than the shortest. It is interesting to note that such natural orientations were not dependent on the presence of the dc (balancing) field. In the absence of this field, the trapped particle's motion was oscillatory at the ac voltage frequency, and usually described an arc or curve. Nevertheless, in many cases it could be observed that a particular orientation was maintained throughout the oscillation period despite aerodynamic drag forces which would orient a rod-shaped particle in the direction of its motion.

Results and Discuseion

Nearly all of the scattering data was obtained with the laser beam horizontal and the cylindrical particles in the vertical orientation. Under this circumstance, as discussed previously, the scattered light is expected to be predominantly radiated in the horizontal (X-Y) plane. Indeed, an intense line of light, modulated along its length, could be directly observed by holding a piece of thin white paper to the chamber window. Since the chamber window was normal to the horizontal plane, the projected line of scattered radiation was straight. For the infinite cylinder case, represented by a taut fiber, the width of this line was primarily determined by the diameter of the incident beam (-1 mm). For the longer particles (aspect ratios greater than ~ 8) there were no differences discernable by eye in the appearence of their scattered light pattern compared to the macroscopic fiber. For a finite cylinder, some light scattering will occur in all directions due to the cylinder ends. With normal incidence geometry this type of scattering was much less intense than the characteristic scattering pattern just described.

In two cases with the shortest particles (aspect ratios ~ 3 or less), a distinct broadening of the scattered radiation line was observed. While the line remained narrow and sharp in the back scattered direction, it gradually became wider ($\sim 3 \mathrm{X}$), and more fuzzy at the near-forward part of the window. Curving the screen to keep the projected radiation equi-distant from the particle did not significantly alter this pattern. While we have been unable to find any prediction or model for this observation, we believe it may be a characteristic of scattering from short aspect ratio cylinders.

Angular scattering in the horizontal plane was recorded from $\sim 35^{\circ}$ to 150°. Suspended cylinders oriented in the vertical direction provided well-defined and reproducible oscillatory patterns (scattergrams) over this range, with a rms signal to noise ratio for the longer particles was typically between 5 and 10%. Scattered light intensities from shorter particles were correspondingly weaker. In Figure 2 typical relative scattered light intensities are plotted versus angle for several different cases. Both vertical (TE) and horizontal (TM) incident beam polarizations were obtained as shown in the left and right columns respectively. The different cases are arranged by row from top to bottom: (a) $\sim 8 \mu \mathrm{~m}$ diameter sphere, (b) "infinite" fiber, (c) long cylindrical particle, (d) intermediate length cylinder, and (e) short cylinder. Since the different particles were not precisely the same diameter, detail in the scattering patterns can not be compared. In general terms, however, the scattergram of the longest finite cylinder (c) resembles the patterns of the fiber (b) and the sphere (a) more closely than that of the shorter finite cylinders (d) and (e). From our observations, there is a general trend by which smaller aspect ratio cylinders were consistantly distinguished that shows up best in scattering with a horizontally polarized beam; namely, that the rate of decrease of the relative scattered light intensity as a function of angle is significantly higher for shorter cylinders than for either the longer cyiinders, fiber, or sphere. As yet, no predictive calculations are available to compare with these observations, partly because of computational difficulty due to the large diameters of the cylinders compared to the incident light wavelength. We are currently attempting to extend our experimental techique to cylinders with diameters of $\sim 1 \mu \mathrm{~m}$, and are optimistic that we will soon be able to compare experimental data with a finite cylinder scattering model.

References

1. E.J. Davis, "Electrodynamic Balance Stability Characteristics and Application to the Study of Aerocolloidal Particles", Langmuix, 1, 379 (1985).
2. S. Ataman and D.N. Hanson, "Measurement of Charged Drops", Ind_Eng_Chem. Fundam., 8, 833, (1969), and J.W. Schweizer and D.N. Hanson, Stability Limit of Charged Drops, L_Colloid and Interface Sci., 85, 417 (1971).
3. T.G.O. Berg and T.A. Gaukler, "Apparatus for the Study of Charged Particles and Droplets", AM. لPhys, 87, 1013, (1969).
4. C.B. Richardson and J.F. Spann, "Measurement of the Water Cycle in a Levitated Ammonium Sulfate Particle", J. Aerogol Sci, 15, 563, (1984).
5. R.F. Wuerker, H.M. Goldenberg, and R.V. Langmuir, "Electrodynamic Containment of Charged Particles", L.Appl Phys., 80, 441, (1959).
B. J. D. Eversole and H.-B. Lin, "Efferts of Design on Null Point Motion of Spheres Suspended in the Electrodynamic Balance", Rev.Sci._Inst. 68, 1190, (1987).

Figure 1. A schematic illustration of the basic experiment, showing the arrangement of the electrodymamic trap and light scattering apparatus.

Figure 2. Scattergrame from various particles as described in the text. The left and right columne ahow vertical and horizontal incident polarizations respectively.

B. J. Stoyanov and R. A. Farrell
The Milton S. Eisenhower Research Center The Johns Hopkins University Applied Physics Laboratory Laurel, MD 20707

RECENT PUBLICATIONS, SUBMITTALS FOR PUBLICATION ANO PRESENTATIONS:
A) J. A. Krill, J. F. Bird, and R. A. Farrell, "Trial Functions in Variational Calculations," in Proceedings of the 1982 CSL Scientific Conference on Obscuration and Aerosol Research (ed. by R. H. Kohl and AssOc., Tullahoma, TN, 1983), pp. 201-209.
E) J. A. Krill and R. A. Farrell, "The Development and Testing of a Stochastic Variational Principle for Electromagnetic Scattering," in Wave Propagation and Remote Sensing, Proceedings of URSI Commission F 1983 Symposium (European Space Agency, Noordwljk. The Netherlands, 1983), pp. 299-307.
C) B. J. Stoyanov and R. A. Farrell, "On the Asymptotic Evaluation of $\int_{0}^{\pi / 2} J_{0}^{2}(\lambda \sin x)$ ox, " Math. Comp. 49, 275-279 (1987).
D) B. J. Stoyanov, J. A. Krill, J. F. Bird, and R. A. Farrell, "Broadband Trial Functions for Surface Scattering with Detailed Analysis for a Simple Model," in Proceedings of the 1986 CRDEC Scientific Conference on Obscuration and Aerosol Research (ed. by Kohl and Assoc., Tullahoma, TN, 1987), to appear.
E) J. F. Bird, R. A. Farrell, E. P. Gray, and B. J. Stoyanov, "Trial Functions for Scattering from Surfaces of Arbitrary Roughness and Variational Test Caiculations," in Proceedings of the 1986 CRDEC Scientific Conference on Obscuration and Aerosol Research (ed, by Kohl and Assoc., Tullahoma, TN, 1987), to appear.
F) B. J. Stoyanev and R. A. Farrell, Effects of Simple Shadowing on Variational Calculations," presentation at the 1987 CRDEC Conference on Obscuration and Aerosol Research, June 1987.

ABSTRACT

Abstract

Shadow-induced effects, expected to become important at high frequencies, can be adequately accounted for in the variational calculations by premultiplying the previousiy-introduced boundary-Born trial fields with a simple shadow-imitating factor. The amended trial fields, with the shadowregulating parameter properly adjusted, yield variational scattering amplitudes and cross sections that are accurate at all frequencies and for all scattering directions. This is explicitly demonstrated for a simple test problem of a plane-wave scattering from an infinitely-long perfectly-conducting cylinder, for the TM polarization.

INTRODUCTION

The previously formulated $[1,2]$ stochastic variational principle has significantly facilitated evaluation of the ensemble averages which inevitably arise in theoretical investigations of electromagnetic wave scattering in random media and from randomly-rough surfaces. This paved the way for more extensive applications of variational techniques to such problems [3-6].

Even with this simplification by virtue of the stochastic variational principle, however, the calculation of the required statistical averages, which was hardly feasible before, remains a formidable numerical task inless relatively simple trial fleids are utilized. Therefore, it has been imperative to develop a practical procedure for generating efficient, yet simple, trial fields which would yield accurate variational results over the whole range of stze-parameter ka (wavenumber times characteristic scatterer size).

A significant step in this direction was made several years ago [7] when it was found that, for perfect conductors, the desired accuracy can be achieved by modifying the classic Born trial flelds so
that they become capable of satisfying the appropriate boundary conditions. The resultant "boundary-Born" trial fields were tested on simple model problems (whose exact solutions are known) such as a plane-wave scattering from an infinitely-long circular cylinder [7], a hemicylindricallyembossed plane $[8,9]$ (originally introduced by $\operatorname{Rayleigh}[10]$ as a rough-surface scattering model), and from a sinusoidally-roughened surface [11]. For the first two problems, accurate scattering cross sections were obtained over remarkably broad ranges of ka, with exceptional accuracy for ka $\preceq 1$. However, two notable discrepancies were found: the presence of narrow-band spurious spikes contaminated the variational results at a set of discrete frequencies, and the incorrect asymptotic (ka >> 1) behavior held for forward scattering from the cylinder or for specular scattering from the hemicylindricallyembossed plane, especially so for the TM polarization.

Recently, while further developing the trial-field-generating procedure, we discovered that incorporating a factor to approximate shadowing (which is expected, on physical grounds, to become important at large ka values [12]) into the previously devised boundary-Born trial fields can lead to remarkable improvements in the variational results. In fact, the aforementioned discrepancies can be removed. This is illustrated for plane-wave scattering from a perfectly-conducting cylinder for TM polariza-tion--which corresponds to sound-soft scattering in acoustics.

RESULTS AND DISCUSSION

Scattering of a plane wave by an infinitely-long conducting cylinder of radius a, whose axis is along the z direction, is depicted in Fig. 1 , where \vec{k}_{f}, \vec{k}_{s} are the incident and scattered propagation vectors, respectively, and ψ_{s} is the scattering angle. The usual polar coordinates p, are used to specify an arbitrary point in a plane normal to the cylinder axis. (Only the case of normal-incidence is considered because, for a perfect conductor, oblique-incidence can readily be deduced from this simpler problem [13].)

The Schwinger-type variational principle [12] for the scattering amplitude has the form

$$
\begin{equation*}
T^{V}=N \tilde{N} / D . \tag{la}
\end{equation*}
$$

For $T M$ polarization, the electric pleld is parallel to the cyinder axis, i.e., in the z direction, vanishes on the cylinder surface, and depends on \vec{k}_{1}. For this case, defining $\Psi E \Psi\left(\vec{k}_{1}\right)=E_{z}$, one finds

$$
\begin{gather*}
N=-\left.\frac{1 a}{4} \int_{0}^{2 \pi} d \phi e^{-1 k a \cos (\phi-\phi s)} \frac{\partial \psi}{\partial \rho}\right|_{\rho=a} \tag{b}\\
\tilde{N}=-\left.\frac{1 a}{4} \int_{0}^{2 \pi} d \phi^{\prime} e^{i k a \cos \phi^{\prime}} \frac{\partial \tilde{\psi}}{\partial \rho^{\prime}}\right|_{\rho^{\prime}=a} \tag{1c}\\
D=\left.\frac{a^{2}}{1 \sigma} \int_{0}^{2 \pi} d \phi \int_{0}^{2 \pi} d \phi^{\prime}\left[\frac{\partial \tilde{\psi}}{\partial \rho^{\prime}} H_{0}^{(1)}\left(k\left|\vec{\rho}-\vec{\rho}^{\prime}\right|\right) \frac{\partial \psi}{\partial \rho}\right]\right|_{\rho_{\rho}^{\prime}=a} \tag{1d}
\end{gather*}
$$

These are line integrals along the cylinder circumference, and $H_{0}^{(2)}$, the Hankel function of first kind and zeroth order, represents (up to a constant factor) a two-dimensional free-space Green's function appropriate for this problem. Utilizing Graf's addition theorem [14], the double integral in Eq. (1d) can be reduced to a product of single integrals. Also, $\tilde{\Psi}=\Psi\left(-\vec{k}_{s}\right)$ represents the adjoint field, i.e., the solution of the reciprocal probiem in which the source and observer are interchanged, so that the reciprocity relation [12] is satisfied due to the form of Eq. (1a). Thus, the adjoint field follows directly from the original one, by substitution $\rightarrow-\pi$. With the correct field ψ (and, hence, $\tilde{\Psi}$), each of the integrals N, \tilde{N}, and D, as well as their ratio (1a), will yield the correct scattering amplitude $T\left({ }_{s}\right)$. Knowing T, the differential cross section follows

$$
0= \begin{cases}\left(1 / k^{2} a^{2}\right)|T|^{2}, & \text { forward } \tag{2}\\ (4 / \pi k a)|T|^{2}, & \text { otherwise },\end{cases}
$$

being conveniently nomalized for forward- and back-scattering. On the other hand, when an approximate trial field is used for ψ, the variationally-approximate $\mathrm{T}^{\mathrm{V}}\left(\phi_{\mathrm{s}}\right)$ is obtained by Eqs. (1).

The previously devised boundary-Born trial field $[7,9]$

$$
\begin{equation*}
\Psi(\rho, \phi)=e^{i k \rho \cos \phi}-f(\rho) e^{1 k a \cos \phi} \tag{3}
\end{equation*}
$$

satisfies the applicable boundary condition, 1.e., $\left.\Psi\right|_{\rho=a}=0$, provided the arbitrary function $f(\rho)$ is such that $f(a)=1$. Note that when $f(p)=0$, the variationally-improved Born approximation for T^{V} obtains, which 1s, however, not accurate even for ka << 1 . This is not surprising in view of the important role played by boundary conditions at low and moderate frequencies and the fact that the Born trial function, being lust the incident plane wave, is unable to satisfy the boundary condition. When the boundary-Born trial field (3) is substituted into Eqs. (1), the as-yet arbitrary parameter

$$
\begin{equation*}
A \equiv-(1 / k) \partial \rho(p) /\left.\partial \rho\right|_{p=a} \quad-1 f^{\prime}(a) / k \tag{4}
\end{equation*}
$$

can de adjusted variationally so that its "stationary" value follows from the stationary condition

$$
\begin{equation*}
\partial T^{V} / \partial A=0 . \tag{5}
\end{equation*}
$$

Also, it turns out by virtue of reciprocity that $\tilde{X}=A$ and $\tilde{N}=N$.
The variational cross section for forward scattering (4 s = 0), obtained with such a stationary value of parameter A, is compared with the exact result in fig. 2a. For ka < 1 , where the agreement is extremely good, the two curves would be indistinguishable on this scale and are not plotted. for ka >1 broad, though small, anomalous wiggles appear, which eventually turn into the ripple for ka >> 1. The variational cross section becomes appreciably smaller than the correct one for very large size-
parameters. This suggests that the variational result may have wrong asymptotic (ka >> l) behavior for porward scattering. Indeed, an asymptotic analysis of the integrals in Eqs. (1), using the results of [15], reveals that the stationary value of the parameter $A \rightarrow 2 / \pi$ when $k a \rightarrow-$ and, up to the leading term,

$$
\begin{equation*}
T^{V}\left(\varphi_{S}=0\right) \underset{k a+\infty}{ }-k a \pi^{2} / 2 n(k a) \tag{6}
\end{equation*}
$$

Thus, $T^{V} / k a$ and, hence, σ^{V}, vanish logarithmically as ka $\rightarrow \infty$, whereas the correct $T \rightarrow-k a$ and $0 \rightarrow 1$ in this limit, when $=0$ [12].

It is well known [12] that the correct asymptotic (ka >> 1) value of the scattering amplitude for forward scattering is due primarily to the shadow-forming wave which produces shadowing effects through interference with the incident plane wave. To approximate these effects in our trial field, we premultiply the boundary-Born trial field of Eq. (3) by a simple shadow-imitating factor, to get

$$
\begin{equation*}
\psi(\rho, \phi)=(1-\beta \cos \phi)\left[e^{i k \rho \cos \phi}-f(\rho) e^{i k a \cos \phi}\right] \tag{7}
\end{equation*}
$$

where β is an arbitrary (positive) parameter independent of ρ and ψ. For this trial field, with the parameter A of Eq. (4) detemined variationally by the stationary condition (5), it turns out, to the leading term in ka, that

$$
\begin{equation*}
A\left(\phi_{5}=0\right) \underset{k a \rightarrow \infty}{\longrightarrow}-\left(\pi \beta^{3}-8 \beta^{2}-2 \pi \beta+8\right) /(4 \beta 2 n k a) \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
T^{V}\left(\Phi_{5}=0\right) \underset{k a \rightarrow \infty}{ }-k a\left(\pi^{2} \beta^{2} / 2\right) /\left(4 \beta^{2}+\pi \beta-2\right) \tag{9}
\end{equation*}
$$

The as-yet arbitrary parameter β is now adjusted so that the correct large ka-limit is obtained for T^{V}, f.e., $T^{V}\left(\bullet_{s}=0\right) \rightarrow-k a$ as $k a \rightarrow \infty$. This requires that

$$
\begin{equation*}
B=\left(\pi-\sqrt{32-3 \pi^{2}}\right) /\left(\pi^{2}-8\right)=0.853 \ldots, \tag{10}
\end{equation*}
$$

the other root being discarded as physically inappropriate. It might seem that choosing β in this way limits the appilcability of this procedure to problems wherc the exact solution is known; however, all that is actually needed is the large ka-limit of the exact solution which can be obtained from the Kirchnoff (physical optics) approximation.

The surface current distribution obtained from Eqs. (7) and (10) has certain qualitative features that one expects from physical optics. In particular, the physical-optics picture is that the surfacecurrent distribution, \vec{k}, can be expressed in terms of the incident-wave surface current, as

$$
\vec{k}=\left\{\begin{array}{cl}
2 \vec{R}^{i n c}, & \text { 1lluminated side } \tag{11a}\\
0, & \text { shadowed side }
\end{array}\right.
$$

which is, strictly speaking, valid oniy when ka $\gg 1$. While, using the definition

$$
\begin{equation*}
\vec{R}(\varphi)=-(2 / i \omega \mu) \partial \psi /\left.\partial \rho\right|_{\rho=a} \tag{11b}
\end{equation*}
$$

with Eq. (7) and the fact that the parameter A vanishes as $k a \rightarrow \infty$, we find that the surface-current density at very large size-parameters is

$$
\begin{equation*}
\vec{k}^{V}\left(\theta_{s}=0\right) \underset{k a+\infty}{\longrightarrow}(1-\beta \cos \phi) \vec{k}^{i n c} \tag{11c}
\end{equation*}
$$

The factor ($1-\operatorname{Bcos} \phi$) varies from about 0.15 for $=0$ to 1.85 for $=\pi$. Thus, the simple shadowing introduced in Eq. (7) is in approximate agreement with distribution (lla) for ka >> 1, but is physically more plausible (especially for small and moderate ka's) than the standard Kirchhoff approximation used in the earlier variational work [16-18], which sometimes leads to variational divergencies [19]. As noted above, all that was needed to properly fix β was the generic, readily obtainable, physicaloptics result for forward scattering.

At small size-parameters (ka << 1), it can be shown that the shadowed-boundary-Born trial field (7) (with parameter A determined variationally via eq. (5)) provides the correct leading term for T^{V}, independently of β and ϕ_{s}, i.e.,

$$
\begin{equation*}
T^{V} \underset{k a \rightarrow 0}{ } i \pi /(2 \ln k a) \tag{12}
\end{equation*}
$$

Therefore, the boundary-Born trial field with the properly adjusted shadowing ensures the correct small and large ka-limits of the forward scattering amplitude. The corresponding cross section is displayed in Fig. 2b. For all size-parameters in the range $10^{-2} \leq k a \leq 10^{2}$ the error is less than 2%, and this slight error will eventually disappear at smaller and larger ka's since the correct leading terms are guaranteed for these limits. [In view of this, there seems to be little point in removing the shadowing factor at small ka by using a ramp function to set B - 0 for, say, ka < 1 . We note, however, that with a ramp function the shadowed trial pield would go over to the original boundary-Born field which is exceptionally good in this ka-region. An approach similar to this was used in [9] to derive the semi-empirical formula for A for TE polarization.]

It is especially gratifying to have such accurate variational results (over the whole frequency band) for the forward direction in view of the so-called optical theorem [12,13,16,17] which allows one to find the total scattering cross section directly from the forward scattering amplitude, without carrying out the (sometimes tedious) integration over all scattering angles.

The beneficial effects of the simple shadowing introduced into the boundary-Born trial field are not confined to the forward direction only, but extend to other directions as well. Thus, with the original boundary-Born trial pleld of Eq. (3), the resultant backscatter ($\boldsymbol{\varphi}_{s}=180^{\circ}$) cross section is very accurate for ka ≤ 0.8 and has correct average behavior for moderate and large size parameters, but
is heavily contaminated by narrow-band spurious spikes beginning with some ka >1, as fig. 3a illustrates. In the earlier work [7], a preliminary cure to deal with these anomalous spikes was to use a kind of smoothing technique, by which they were significantly reduced, with the resulting accuracy better than 10% at all wavelengths. The recent variational result for backscatter, obtained with the shadowed-boundary-Born field (7) is shown in Fig. (3b). For these calculations the parameter A was determined by the stationary condition and the parameter β was selected to give the correct forward scattering in the large size parameter limit, l.e., by Eq. (10). All the anomalous spikes disappeared and the error is less than 2.5 percent, being largest in the resonance region. As noted above, the small size-parameter limit is given by Eq. (12) independent of ${ }_{s}$, and is correct so that the error vanishes in this limit.

As an example oi scattering at an arbitrary-angle, the cross sections at $=15^{\circ}$ obtained by employing the original and shadowed (with the same B-value of Eq. (10)) boundary-Born trial fields are shown, together with the exact result, in Figs. 4a and 4b, respectively. Only one anomalous spike still persists, while the error of about 2% at small ka will again disappear in the limit ka $\rightarrow 0$. This represents the worst case found at present; usually the variational results (with shadowing) are much better.

CONCLUDING REMARKS

Introducing simple shadowing into the original boundary-Born trial field for the TM scattering from an infinite cylinder results in remarkable improvements in the variational scattering amplitude and cross section, which become very accurate at all frequencies and for all scattering directions. Accounting for shadow-induced effects produces similar improvements in the variational results for the TM scattering from the hemicylindrically-embossed plane and, as was recently shown by D. E. Freund, for scattering from an acoustically-soft sphere. Presently, our efforts are directed at designing universally-efficient (yet simple) trial fields for the TE polarization, which would provide accurate results for all frequencies and scattering angles for this polarization as well.

ACKNOWLEDGMENTS

We would like to thank S. Favin for writing the computer programs to incorporate the shadowing effects. This work was supported in part by the Department of the Navy, Space and Naval Warfare Systems Cormand.

REFERENCES

1. R. W. Hart and R. A. Farrell, "A Variational Principle for Scattering from Rough Surfaces," IEEE Trans. Antennas Propag. AP-25, 708-710 (1977).
2. R. H. Andreo and J. A. Krill, "Vector Stochastic Variational Expressions for Scatterers with Dielectric, Conductive, and Magnetic Properties," J. Opt. Soc. Am. 71, 978-982 (1981).
3. E. P. Gray, R. W. Hart, and R. A. Farrell. "An Application of a Variational Principle for Scattering by Random Rough Surfaces," Radio Sct. 13, 333-343 (1978).
4. J. A. Krill and R. A. Farrell, "Comparison Between Variational, Perturbational, and Exact Solutions for Scattering from a Random Rough-Surface Model," J. Opt. Soc. Am. 68, 768-774 (1978).
5. R. L. Weaver, "A Variational Principle for Waves in Discrete Random Media," Wave Motion 2, 105-121 (1985).
6. J. A. Ogilvy, An Estimate of the Accuracy of the Kirchhoff Approximation in Acoustic Wave Scattering from Rough Surfaces, J. Phys. D: Appl. Phys. 19, 2085-2113 (1986).
7. J. A. Krill, J. F. Bird, and R. A. Farrell, "Trial Functions in Variational Calculations," in Proceedings of the 1982 CSL Scientific Conference on Obscuration and Aerosol Research (ed. by R. H. Rohl and Ass0c., fullahoma, TN, 1983) PD. 201-209.
8. J. A. Krill and R. A. Farrell, "The Development and Testing of a Stochastic Variational Principle for Electromagnetic Scattering," in Wave Propagation and Remote Sensing, Proceedings of URSI Comission F 1983 Symposium (European Space Agency, NoordwiJk, The Netherlands, 1983), pp. 299-307.
9. B. J. Stoyanov, J. A. Krill, J. F. Bird, and R. A. Farrell, "Broadband Trial Functions for Surface Scattering with Detailed Analysis for a Simple Model," in Proceedings of the 1986 CRDEC Scientific Conference on Obscuration and Aerosol Research (ed. by R. H. Kohi and Assoc., Tullahoma, TN, 1987), to appear.
10. Lord Rayleigh, "On the light dispersed from fine lines ruled upon reflecting surfaces or transmitted by very narrow sitts," Phil. Mag. 14, 350-359 (1907).
11. J. F. Bird, R. A. Farrell, E. P. Gray, and B. J. Stoyanov, "Trial Functions for Scattering from Surfaces of Arbitrary Roughness and Variational Test Calculations," in Proceedings of the 1986 CRDEC Scientific Conference on Obscuration and Aerosol Research (ed. by Kohl and Assoc., Tullahoma, in, 1987), to appear.
12. P. M. Morse and H. Feshbach, Methods of Theoretical Physics, Part II, McGraw-Hill, New York (1953).
13. J. J. Bownan, T. B. A. Senior, and P. L. E. Usienghi, Electromagnetic and Acoustic Scattering by Simple Shapes, Revised Printing, Hemisphere, New York (1987).
14. M. Abramowitz and I. A. Stegun (eds.), Handbook of Mathematical Functions, U.S. Government Printing Opfice, Washington, D.C. (1964).
15. B. J. Stoyanov and R. A. Farrell, "On the Asymptotic Evaluation of $\int_{0}^{\pi / 2} J_{0}^{2}(\lambda s i n x) d x$, "Math. Comp. 49, 275-279 (1987).
16. C. H. Papas, "Diffraction by Cylindrical Obstacle," J. Appl. Phys. 21, 318-325 (1950).
17. R. D. Kodis, "Variational Principles in High-Frequency Scattering," Proc. Camb. Phil. Soc. 54, 512-529 (1958).
18. J. F. Bird, "Analysis of All-Frequency Variational Behavior of the Kirchhoff Approximation for a Classic Surface-Scattering Model," J. Opt. SoC. Am. A 2, 945-953 (1985).
19. J. F. Bird, "Variational Divergence in Wave Scattering Theory with Kirchhoffean Trial functions," J. Opt. Soc. Am. A 3, 2047-2054 (1986).

FIGURE 1. SCATTERING CONFIGURATION. Plane-wave scattering by an inifite circular cylinder at normal incidence.

FIGURE 2a. TM FORWARD SCATTERING. The nomalized variational cross section obtained with the boundary-Born trial field without shadowing (dashed curve) is compared with the exact result (solid curve) for forward scattering from cylinder. The error at ka = 100 is about 26 percent and is increasing with ka.

FIGURE 2b. SAME AS IN FIG. 2a, except that the nomalized variational cross section (dashed curve) is now obtained with the shadowed-boundary-Born trial field. The error at ka 100 is now less than 1.4 percent and will eventually disappear as $h a \rightarrow \infty$.

FIGURE 3a. TM BACKSCATTERING. The normalized variational cross section calculated by using the original boundary-Born trial function (dashed curve) is compared with the exact solution (solid curve) for backscattering.

FIGURE 3b. SAME AS IN FIG 3a, except that the normalized variational cross section (dashed curve) is now calculated by using the shadowed-boundary-Born trial punction. The maximum error of less than 2.5 percent occurs at ka ~ 1.5.

FIGURE 4a. TM ARBITRARY-ANGLE SCATTERING. The normalized variational cross section calculated by using the or!ginal (i.e., without shadowing) boundary-Born trial field (dashed curve) is compared with the exact solution (solld curve) for $\psi_{s}=15^{\circ}$.

FIGURE 4b. SAME AS IN FIG. 4a, but now the variational result is obtained with the shadowed-boundary-Born trial field. Notice that all spurious spikes (except one at ka ~ 31.3) have disappeared and the error of less than 2 percent at small ka will fade away as $k a \rightarrow 0$.

THE SCATTERING OF LIGHT FROM A DIELECTRIC KNOT

Recent relavent publications:

\author{

1. R.D.Haracz, L.D.Cohen, A.Cohen, C. Acquista,: Light Scattering from Dielectric Targets Composed of a Continuous Assembly of Circular Disks", Appl. Opt. 25, 4386 (1986)
}
2. R.D.Haracz, L.D.Cohen, A.Cohen, and Ru T. Wang, " Scattering of Linearly Polarized Microwave Radiation from a Dielectric Helix, Appl. Opt. Dec. 1987

ABSTRACT
The scattering of light from a dielectric wire twisted into a knot is described and a comparison to a single -turn helix of the same volume is made. The first order Shifrin technique fully accounts for the geometry of the target, and we show how it is to be applied to complex shapes. It is found that the intensity patterns for the knot and the helix significandly differ in the first order.

INTRODUCTION

As an example of our recent modification to the Shifrin - Acquista method, which computes the scattering from objects which can be constructed from an assembly of rircular disks, we report here in a calculation of the scattering of an E and M wave by a dielectric knot. The advantage of using the Shifrin approach here is that the first onder calculation accounts for the target shape, thus permitting the technique to be applied to a wide variety of shapes. The clear disadvantage of the Shifrin approach is that it is linited to targets whose size parameter is less than 2 , i.c. $2 \pi a m / \lambda<2$, where " a " is the target dimension, λ is the wavelengh, and " m " is the index of refraction of the target.

OUTLINE OF THEORY

The basic integral equation of the Shifrin-Acquista approach is

$$
E_{i}(f)=E_{i n c, 1}(f)+\alpha D_{i j} \int_{\text {inrget }} d v^{\prime} G\left(f, f^{\prime}\right) E_{j}\left(f^{\prime}\right)
$$

where

$$
\begin{aligned}
& \vec{E}_{i n c}(\vec{r})=\vec{E}_{0} e^{\vec{x}_{0} \vec{r}}, k_{0}=2 \pi / \lambda \\
& D_{i j}=\partial / \partial x_{i} \partial \partial x_{j}+k_{0}^{2} \delta_{i j} \\
& G\left(r, r^{\prime}\right)=\exp \left[\frac{i k_{0}|\vec{r}-\vec{r}|}{\left|f-\vec{r}^{\prime}\right|}\right], \\
& \text { and } \alpha=\left(m^{2}-1\right) / 4 \pi
\end{aligned}
$$

The Shifrin - Acquista solution for the above equation (1) is well documented for spheres, finite cylinders, and spheroids, and the present work uses this basic type of solution to obtain scattering solutions for more complex shapes. This approach has been applied to targets which can be formed from a long dielectric cylinder. In the present applicationthe cylinder is considered to be bent into a knot. The target is then subdivided into N segments (which we consider to be disks). The appropriate equation then becomes

$$
E_{i}(\mathrm{f})=E_{i n c ;}(\overline{\mathrm{r}})+\alpha \sum_{i=1}^{N} D_{i j} \int_{i^{\mathrm{h}}} d v^{\prime} G(\mathrm{f}, \overrightarrow{\mathrm{r}}) \mathrm{E}_{\mathrm{j}}(\mathrm{f})
$$

In essence we obtain the Shifrin solution for each disk and then form a coherent sum of the fields from the disks to form the solution for the entire target. To get a rapidly converging solution for each disk segment we need to introduce the effective field:

$$
E\left(f^{\prime}\right)=\left[U^{l}(f) A+\left(1-U^{l}(f)\right] \vec{E}_{e f f}(f)\right.
$$

where

$$
1 \text {, if } \hat{f} \text { is within the } 1^{\text {th }} \text { disk }
$$

$$
U^{l}(f)=
$$

0 , if f is outside
A = polarization matrix

Next, the effective field is expanded in a power series in terms of α :

$$
\vec{E}_{e f f}(\vec{f})=\vec{E}_{i n c}(\vec{r})+\sum_{n=1}^{-} \alpha^{n} \vec{E}_{e f f}^{(n)}(r)
$$

Substitution of the expression for $E(r)$ in terms of U and $E_{\text {eff }}$ yields the integral equation for $E_{\text {eff }}$
where l^{\prime} marks one of the segments. Inserting the power series expansion of $\mathrm{E}_{\text {eff }}$ in terms of α, and collecting terms containing $\alpha^{(1)}$, ields the first order integral equation for $E_{\text {eff }}$ (r outside the target).

$$
E_{e f f, i}^{(1)}(\vec{f})=\sum_{i=1}^{N} \int d v^{\prime} D_{i j} G(\vec{f}, \hat{r}) U^{\prime}(f) A_{j k} E_{i n c, k}\left(f^{\prime}\right)
$$

By equating all terms containing powers of α^{2} we obtain the second order Shifrin approximation

$$
E_{e f f, i}^{(2)}(\tilde{T})=\sum_{l=1}^{N} D_{i j} \int d v^{\prime} G\left(f, f^{\prime}\right) U^{1}\left(f^{\prime}\right) A_{j k} E_{e f f, k}^{(1)}\left(f^{\prime}\right)
$$

where

$$
\begin{aligned}
E_{e f f, k}^{(1)}\left(f^{\prime}\right)= & \sum_{i^{\prime}=1}^{N} D_{k m} \int d v^{\prime \prime} G\left(r^{\prime}, r^{\prime \prime}\right) U^{\prime \prime}\left(f^{\prime \prime}\right) A_{m n} E_{i n c, n^{\prime \prime}}\left(f^{\prime \prime}\right) \\
& +\frac{\left[\delta_{\mathrm{km}}-A_{\mathrm{kom}}\right]}{\alpha} E_{i n c, m}\left(f^{\prime}\right) U^{\prime}\left(r^{\prime}\right)
\end{aligned}
$$

THE KNOT

A two view drawing of our model knot is shown in figure 1 , along with the target frame of reference x_{1}, y_{1}, z_{1}. This figure was placed over a coordinate grid and a series of 75 points were read from the grid which yielded a parametric representation of the knot, i.e., $x_{l}(l), y_{l}(l), z_{l}(l)$, where $l=$ $1, \ldots, 75$.The knot was then broken into seven segments and a polynomial fit was made to each segment:

$$
\begin{aligned}
& x_{1}(l)=c_{3} l^{3}+c_{2} l^{2}+c_{1} l+c_{0} \\
& y_{t}(l)=D_{3} l^{3}+D_{2} l^{2}+D_{1} l+D_{0} \\
& z_{1}(l)=F_{3} l^{3}+F_{2} l^{2}+F_{1} l+F_{0}
\end{aligned}
$$

Before the polynomial fit was applied, some adjustment was made to the coordinates to insure that no parts of the knot touched.

The vector which describes the location of each disk is given by

$$
\hat{h}_{1}=x_{1}(l) \hat{i}_{t}+y_{1}(l) \hat{j}_{t}+z_{i}(l) \hat{k}_{t}
$$

in the target frame x_{1}, y_{1}, z_{t}. The unit vectors in the disk frame are:

THE FIRST ORDER CONTRIBUTION TO E eff FOR THE KNOT
The first order contribution to $\mathrm{E}_{\text {eff }}$ is composed of the coherent sum of the scattering from each of the disks comprising the knot.

$$
\begin{aligned}
& x\left[\left(A_{j m} \cdot \hat{r}_{j}^{j} \hat{f}_{k} A_{k m}\right) E_{0, m}\right]_{\text {dijk }}
\end{aligned}
$$

where

$$
(A)_{\text {disk }}=\left|\begin{array}{lll}
a_{T E} & 0 & 0 \\
0 & a_{T E} & 0 \\
0 & 0 & a_{T M}
\end{array}\right|
$$

$$
\begin{aligned}
& a_{T E}=2 \mu\left(\mathrm{~m}^{2}+1\right), \mathrm{a}_{\text {TM }}=1, \mathrm{a}=\text { radius of the wire } \\
& \mathrm{q}_{4}^{2}=\mathrm{k}_{0}\left(\hat{r}-\hat{k}_{0}\right), \quad, \quad \mathrm{q}_{L}^{1}=\text { component of } \mathrm{q} \text { perpendicular to the disk }
\end{aligned}
$$

RESULTS
We have computed the intensity for the knot

$$
I_{22}=\left(\frac{k_{0} r}{E_{0}}\right)^{2}\left|\vec{E}_{3 c}\right|_{\theta_{\text {pol }}}^{2}
$$

where the radius of the wire $=0.2, \quad \mathrm{~V}=\pi \mathrm{a}^{2} \mathrm{~L}=10.0, \quad \lambda=2 \pi, \quad \mathrm{~m}=1.5$
Scattering from the knot is compared to the scatering from a single tum helix with the following parameters:
radius of wire $=0.2$, pitch $=0.5$, median radius of helix $=1.266$
index of refraction $=1.5$.
The volume is the same as for the knot : $\mathrm{v}=10$. Relative units are used, with the wavelength of the radiation being $\lambda=2 \pi$.

Figure 2 shows the orientation of the target frame with respect to the reference frame x_{0}, y_{0}, z_{0}, In this frame z_{0} is in the direction of incidence, $x_{0},-z_{0}$, is the scattering plane and $2 \varphi_{0}$ is the scattering angle. The intensities for the knot and the helix are shown in figures 3 and 4 , for the target orientations ($\theta_{\tau}=0^{\circ}, \phi_{\mathcal{I}}=0^{\circ}$) and ($\theta_{1}=90^{\circ} . \phi_{\tau}=90^{\circ}$) respectively (see fig. 2). We see that, in both cases, the patterns differ markedly, with the helix showing more extreme minima due to its higher degree of symmetry. Thus, the first order patterns clearly distinguish the two shapes.
Naturally, a first order calculation for something as complicated as a knot cannot be regarded as conclusive, even though our calculation takes account of this special geomery. Self interactive effects are not included in the first order.
Our work on the inclusion of self-interactions by solving the exact integral equation for the polarization marrix is nearing completion, and these effects will be reported at the next meeting of the Obscuration and Aerosol Research Conference.

FIGURE 1. Two views of the dielectric knot that is used in this calculation in the target frame.

FIGURE 2. The target x_{1}, y_{1}, z_{1} and reference x_{0}, y_{0}, z_{0} frames. The direction of incidence is along z_{0}, the direction of scattering is in the $x_{0}-z_{0}$ plane, and the target frame is oriented by the spherical angles $\theta_{\tau}, \phi_{\tau}$.

Data from ${ }^{\text {I }}$ Intensity $1-22^{\circ}$

FTGURE 3. Comparison of the intensity pattems for the dielectric knot and single- turn helix. The intensities for the knot and helix are shown for the direction of incident radiation $\theta_{\tau}=0^{\circ}, \phi_{\tau}=0^{\circ}$.

FIGURE 4. Comparison of the intensity patterns for the dielectric knot and single- tum helix. The incensities for the knot and helix are shown for the direction of incident radiation $\theta_{1}=90^{\circ} . \phi_{t}=90^{\circ}$.

SCATTERING FROM A HELIX AND RANDOMLY ORIENTED LONG CYLINDERS
 AND THE INFINITE CYLINDER THEORY APPROACH

by

ARIEL COHEN ${ }^{\text {a }}$), RICHARD D. HARACZ, and LEONARD D. COHEN

Abstract

A two dimensional method for calculating the scattered intensities from a helical dielectric target is compared with experimental results. The waveiength of the incidence was 3.12 cm and a wire made out of a plastic material, the refractive index of which was $1.625-0.012 \mathrm{i}$ and of a radius of 0.24 cm , was curved to form a 7 loop helix of radius 1.83 cm and having a pitch of 0.553 cm . The theoretical calculations presented below coherently combined the scattered fields from all segments of the helix, each being regarded as a unit length of an infinite cylinder with a corresponding tilt angle relative to the incident radiation. The polarization of the incident radiation varies relative to the orientation of each segment of the target.

The comparison between the results of the calculations and the experiment shows good agreement.

The infinite theory is also used to compare experimental results on randomly oriented long ice crystals with the theoretical prediction.

INTRODUCTION

The scattering of light by long cylinders whose aspect ratios are larger than about 20 is characterized by sharp maxima appearing all within the envelope of a two dimensional cone ${ }^{1-3}$. This cone has an apex angle which is equal to the angle between the incident light and the main axis of the long cylinder. As the aspect ratio increases, a larger portion of the scattered light from the cylinder is restricted to the above mentioned two-dimensional surface of a cone. Experimental results of $10.6 \mu \mathrm{~m}$ radiation scattered by long metallic wires, were compared with theory ${ }^{4}$ and showed that:
A.- The angular dependence can be accurately predicted for long cylinders using the infinite cylinder theory.
B.- When the scattering plane (the plane in which the scattered light is measured) is not accurately maitained perpendicular to the wire for normal incidence, the scattered intensity measured in the scattering plane drops rapidly with increasing values of the scattering angle θ (between 0° and 90°).

When the aspect ratio is smaller than 20 , the angular scattering within the cone described above will still follow in general the prediction of the infinite theory; but the incident light will also be scattered in other directions. This is supported by theory ${ }^{5}$ (for small size parameters) for finite cylinders or disks and by laboratory measurements on finite cylinders ${ }^{6}$. Recent laboratory measurements ${ }^{7}$ performed only within the cone (or within the plane, for normal incidence), also suggested that the general angular behaviour is weakly dependent on the aspect ratio as long as it exceeds the value of 20.

As a consequence the infinite theory was used to calculate the scattering by a helix.
It will be shown below that such wires in the shape of a hellix can indeed be treated as long cylinders since it can be assumed that the edge effect of finite cylinders, with small aspect ratios giving ise to the off cone scattering is reduced to a negligible value by the adjacent segments of the long curved wire.

Finally, another example of the use of the infinite theory for the prediction of the scattering properties of long cylinders will be given considering the experimental results for randomly oriented long ice crystals.

THEORY

The far field scattering of a unit length of a tilted infinite cylinder is given by the following two components ${ }^{8}$:

$$
\begin{equation*}
S_{1}=\left[b_{n I}+2 \sum_{n=1}^{\dot{-}} b_{n l} \cos (n \theta)\right] \cos \alpha+\left[2 \sum_{n=1}^{-} b_{n I I} \sin (n \theta)\right] \sin \alpha \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
S_{2}=-\left[a_{0 n}+2 \sum_{n=1}^{\infty} a_{n n} \cos (n \theta)\right] \sin \alpha+\left[2 \sum_{n=1}^{-} a_{n 5} \sin (n \alpha)\right] \cos \alpha \tag{2}
\end{equation*}
$$

where α is the polarization angle between the polarization plane of the linearily polarized incidence and the plane containing the cylinder axis and the incident light ($=$ the incident plane). For the definitions of the scattering coefficients $b_{n 1}, b_{n I I}=-a_{n I}$, and $\mathrm{a}_{\text {nII }}$, see Ref. 2. These coesficients are dependent on the tilt angle φ.

The angle θ here is not measured relative to the incidence, but on a plane normal to the axis of the cylinder. $\theta=0$ is along the incident direction.

Let ϕ be the tith angle of the cylinder measured between the incident direction and the normal to the cylinder, and let β be the scattering angle relative to the incidence direction, then (see Fig. 1)

$$
\begin{equation*}
\sin \frac{\beta}{2}=\cos \phi \sin \frac{\theta}{2} \tag{3}
\end{equation*}
$$

The two dimensional scattering is characterized by the fact that for each scattering angle $\beta=2 \phi_{0}$ relative to the incidence, only one absolute value of a rotation angle γ about the incidence corresponds to $2 \phi_{0}$ ($2 \phi_{0}$ and γ are the corresponding spherical angles, namely, the collatitude and the longitude angles).

Assuming that the incident light is along the z axis and the scattering plane is the x, z plane; then cylinders whose axes are aligned in the x, z plane will always give rise to scattered intensities in only two directions which are determined by the cylinder axis orientation and the scattering angle.

Only a cylinder whose axis is in the y direction, will scatter light in the full x, z plane.
For a general cylinder orientation, with spherical orientation angles Φ and γ (see
Fig.1), only those orientations for which $(\pi / 2-\phi)>|\gamma|$, will give rise to a scattering intensity in the x, z plane (other than the forward direction). Any other cylinder orientation will not produce scattering in the x, z plane.

The constraint equations are also discussed elsewhere ${ }^{9}$, and in addition to the equation 3 (where $\phi_{0}=\beta / 2$),

$$
\cos \varphi \sin \left(\frac{\theta}{2}\right)=\sin \varphi_{0}
$$

there is the equation of constraint

$$
\tan \phi=\cot \phi_{0} \cos \gamma
$$

Thus, there are two equations rele $\ldots \gamma, \phi_{0}$ and θ.

A CURVED WIRES

Because of the equation of constraint relating the orientation of the cylinder axis to the scattering angle β, light which is scattered in a given direction in space by a curved wire which is cut into several short and approximately straight segments, will thus be composed of coherent contributions from a small number of these segments (most of the segments violate the constraints mentioned above and do not contribute).

In the ciase of a helix, only two segments per loop contribute coherently for a given direction of scattering. We shall first discuss the case of a helix with a $2 e r o$ pitch (a toroid). Three different situations were considered:
A. The toroid is in the $2, x$ plane:
B.- The toroid is in the z.y plang; and
C.- The toroid is in the x, y plane.

In all cases the center of the toroid is placed at $(0,0,0)$.
In case A (where the toroid is in the scattering plane) \cdot See Fig. $\mathbf{2}_{\mathrm{a}}{ }^{\circ}$. the light
scattered in the direction of $2 \Phi_{\mathrm{C}}$ will emerge from merely the two segments which

[^3]The coherent sum is achieved by adding the scattered fields with a phase shift corresponding to

$$
\Delta_{A}=4 R \cos \phi=4 R \sin \phi_{0}
$$

In case B-See Fig. $\mathbf{2 b}_{b}$, the light scattered in any direction of $2 \phi_{c}$ originates from the same two segments of the toroid which are parallel to the y axis (top and botiom parts of the toroid). The scattered light is the coherent combination from two parallel cylinders being normal to the direction of incidence and separated by a distance of 2R. The phase difference for this case is :

$$
\begin{aligned}
& \Delta_{B}=2 R\left(1-\cos 2 \phi_{0}\right)=4 R \sin ^{2} \phi_{0} \\
& \Rightarrow \quad \Delta_{B}=\Delta_{A} \sin \phi_{0}
\end{aligned}
$$

In case C - See Fig. $2_{c^{-}}$, only two sgments separated by a distance of 2 R , and both parallel to the y axis, contribute to the coherent scattered light in any given scattering angle φ_{0}.

The phase difference is thus :

$$
\begin{align*}
& \Delta_{C}=2 R \sin 2 \phi_{0} \\
& \Rightarrow \Delta_{C}=\Delta_{A} \cos \varphi_{0} \tag{7}
\end{align*}
$$

When the pitch is greater than 0 , the incident light is scattered to each given direction by two segments which slightly (depending on the pitch value) differ from the parallel segments mentioned above. Thus, for case C. when the main axis of the helix is normal to the incidence and normal to the scattering plaine this helix axis is normal to the y axis), the following treatment should be used:

Let β be the scattering angle in the x, z plane, then all seyments aie !iled ralative to
the incident direction with the same tilt angle α.
That angle satisfies the equation:

$$
\begin{equation*}
\tan \alpha=\frac{\text { Pich }}{2 \pi R_{s p}} \tag{8}
\end{equation*}
$$

Since all segments should scatier light in the scattering plane x, z, the scattering angle β corresponds to $2 \phi_{0}$ in equation 3. Hence, the cylindrical scattering angle θ which contributes to the scattering into β, is given by:

$$
\begin{equation*}
\theta=2 \arcsin \left[\frac{\sin \left(\frac{\beta}{2}\right)}{\cos \alpha}\right] \tag{9}
\end{equation*}
$$

However, it is useful to note that unless the helical pitch value is considerably smaller than its radius $\mathbf{R}_{\mathbf{S}}, \boldsymbol{\theta}$ is not much different than β :

For example, according to equation $8, \alpha$ in the experiment to be discussed in the next section is equal to

$$
\alpha=\tan ^{-1}\left(\frac{0.553}{2 \pi \times 1.83}\right)=2.75^{\circ}
$$

$\Rightarrow \quad \cos \alpha=0.9988$; and by substitution of this last value in equation 9 , it
follows that

$$
\theta_{\text {experiment }} \rightarrow \beta_{\text {experiment }}
$$

Finally, for an arbitrary direction of incidence along,

$$
\begin{equation*}
L_{0}=a \dot{i}+b j+c k \tag{10}
\end{equation*}
$$

each segment has a corresponding titt angle $\phi^{*}\left(\phi^{*}=\pi / 2-\phi\right)$ which is determined as follows:

The helical axis is taken in the z direction. The helix is characterized by its radius R_{s} and the pitch P. The unit vector of the line connecting the center of the coordinate system and the center of a segment of the helix is ${ }^{10}$:

$$
\begin{equation*}
h=\left(R \cos \alpha i+R \sin \alpha j+\frac{P \alpha k}{2 \pi}\right) / s \tag{21}
\end{equation*}
$$

where

$$
s=\left[R^{2}+\left(\frac{P}{2 \pi}\right)^{2}\right]^{\frac{1}{2}}
$$

It follows that the unit vector along the axis of each segment is:

$$
\begin{equation*}
k_{\alpha}=-R \sin \alpha i+R \cos \alpha j+\frac{P}{2 \pi} k \tag{12}
\end{equation*}
$$

where i,j,k in equations 10,11, and 12, are all defined in the original x, y, z frame of reference.

The tilt angle is thus given by:

$$
\begin{equation*}
\cos \phi^{*}=L_{0} \cdot k_{\alpha} \tag{13}
\end{equation*}
$$

Similarly, the polarization angle is determinad by the dot product of the vector normal to the incident plane (the plar. 3 containing the incident direction and the axis of the corresponding segment), and the direction of the linear polarization.

These two angles, along with the constraint equations discussed above, are used in equat: 1 and 2 for the calculation of the scattering field added coherently from all pairs of segments in each given loop.

COMPARISON WITH EXPERIMENTAL RESULTS.

a) DIELECTRIC HELIX.

The experimental studies were performed using the microwave analog
technique (Wang et al. ${ }^{11}$) for a dielectric helix. A right handed, 7 -turn helix of 3.66 cm outer diameter and of 4.35 cm axial length was formed from a 0.48 cm diameter plexiglass cylinder. The complex dielectric constant of this plastic material was $\mathrm{m}=$ 1.626- 0.012 (at the operating microwave wavelength $\lambda=3.18 \mathrm{~cm}$. The microwave-unique compensation (or null) technique was employed in both extinction $\left(2 \Phi_{0}=0^{\circ}\right)$ and in angular scattering $\left(10^{\circ}<2 \phi_{0}<170^{\circ}\right)$ intensity measurements, and from the former one can also deduce the scattering intensity in the beam direction $\mathbf{(2 \Phi _ { 0 }}$ $=0^{\circ}$). A brief explanation of measurement procedures using this technique is also described in Ref. 12. The measured scattering intensities (in absolute magnitude) are denoted l_{11}, and l_{22}. The intensity l_{11} is the case when both the receiving and transmitting antennas are polarized vertically, I_{22} is for both antennnas polarized horizontally. The horizontal scattering plane corresponds to the x, z plane. Irispection of the experimental profiles I_{11} and I_{22} (Figs. 3 -6) versus the scattering angie $\mathbf{2}_{0}$ shows that the scattering by the helical structure is dependent on the orientation of the helix in the beam; and also that the intensity may vary as much as four orders of magnitude as the scattering angle changes. On the possible measurement errors, see ref. 12.

Roughly estimated, the cumulative maximum errors are 5\% if the absolute magnitudes of I_{11} and I_{22} are larger than 10^{1}. up to approximately 20% for those
between 10^{0} and 10^{1}, and may amount to as much as 100% for those magnitudes having less than 10^{-1}.

The intensities calculated are I_{11}, where the directions of initial and final linear polarization are perpendicular to the scattering plane, and I_{22}, where the directions of linear polarization are in the scattering plane (the scattering plane is formed by the directions of incidence and scattering). The experimental results for $I_{11}(0,0), 1_{22}(0,0)$ are shown in Figs3.4, and the results for $l_{11}(90,90)$ and $l_{22}(90,90)$ are shown in Figs. 5.6. Here, for example $1_{11}(90,90)$ corresponds to the helix orientation $\phi_{1}=90^{\circ}$ and $\gamma_{t}=90^{\circ}$. We note that the theoretical values drop to below 10^{-2}, even though the experiment predicts no such minima. This is due to the fact that the real target is not perfectly shaped, and hence the very sharp minima produced by an ideal helix would not be expected. However, the positions of the minima are of greatest importance as these are produced by the helix geometry, and we summarized these minima for one of the experiments from

Figures 3,4 as
$I_{22}(0,0): 50^{\circ}, 75^{\circ}, 100^{\circ}, 140^{\circ} ;$
$I_{11}(0,0): 40^{\circ}, 70^{\circ}, 135^{\circ}$,
cigures 5,6 as
$\mathrm{I}_{22}(90,90): 55^{\circ}, 90^{\circ}, 125^{\circ}$
$111(90,90): 45^{\circ}, 115^{\circ}$

Figures 7 through 10 contain the theoretical intensities $l_{11}(0,0), I_{22}(0,0), I_{11}(90,90)$, and $\mathrm{I}_{22}(90,90)$ and the comparison of the theory and experiment. From the Figures we found that:
(1) Good agreement between theory and experiment exists for forward versus back
scattering.
(2) Good agreement between theoretical and experimental values for the l_{11} intensities. The structure of the intensity patterns for $l_{11}(0,0)$ and $l_{11}(90,90)$ is particularly striking.
(3) The positions of most of the experimental minima generally agree well with the theory.

The conclusion is that the infinite theory can explain the general features of the spiral experiment. Since the infinite theory can be applied to an unlimited range of particle size parameters and refractive indices, this comparison provides a method by which one can predict the scattering of helical particles of any size, consistent with the limitation that double or higher order scattering within the particle itself can be ignored.
b) RANDOMLY ORIENTED INFINITE CYLINDERS-COMPARISON WITH EXPERIMENTAL RESULTS ON LONG ICE CRYSTALS ${ }^{13,14,15}$.

We next calculate the intensities for light of wavelength 11 microns incident on cylinders with the complex index of refraction $m=1.29-0.0954 i$ and size parameter $x=$ $2 \pi(30) / 11=17.136$. These values are used in Ref. 13 in order to estimate the effect of the scattering of thermal radiation from randomly oriented ice crystals (which are long hexagonal prisms).

We note that in Fig. 11a, which are the results of Ret. 13, the use of an inaccurate averaging procedure leads to an average intensity that drops sharply to zero starting at about $2 \phi_{0}=150^{\circ}$. We also note that the pattern becomes constant at scattering angles larger than about 80°. Our result, shown in Fig. 11b, reveals marked
differences. First, the pattern actually rises slightly at the larger scattering angles (very much like the pattern for spherical targete of the same refractive index and size parameter), and the pattern continues to show fluctuations over the full angular range. Finally, we make a comparison of our averaging procedure (which makes use of all of the constraint equations discussed above and elsewhere ${ }^{14}$) with the experimental results of Huffman et al..15 In this experiment, visible light of wavelength 0.55 microns is incident on ice crystals whose size parameter is $x=2 \pi(4) / 0.55=45.7$ and the index of refraction is $m=1.31$. Our results along with the experimental points are shown in Fig.12, Here, the experimental points are shown by black diamonds and the theory by open squares. We see that there is general agreement that extends over the whole range of the experiment (from 10° to 150°). In particular, we note that agreement is achieved at the largest scattering angle $2 \phi_{O}=150^{\circ}$. It should be pointed out that the previous attempt to fit these data, reported in Ref. 15, did not follow the experimental pattern at 150°. The general large-angle pattern of the experiment is a slightly rising curve, a result only consistent with our calculations.

Footnote

a) On leave for Hebrew University, Department of Atmospheric Sciences, Jerusalem, Israel.

Acknowledgement.

This research was partially supported by the Army Chemical Research and Development Center.

Beferencas.

1. J. Wait, Can. J. Phys. 32, 571 (1954).
2. M. Kerker, The Scattering of Light and Other Electromagnetic Radiation, Academic Press, New York, 1969.
3. C.F. Bohren, and D.R. Huffman, Absorption and Scattering of Light by Small Particles Wiley,New York, 1983.
4. A. Cohen, L.D. Cohen, R.D. Haracz, V. Tomaselli, J. Colosi, and K.D. Moeller, J. Appl. Phys.56, 1329 (1984).
5. L.D. Cohen, R.D. Haracz, A. Cohen, and C. Acquista, "Scattering of Light from Arbitrarily-Oriented Finite Cylinders," Appl. Opt. 22, 742 (1983).
6. R. T. Wang , "Extinction by Bumbbells and Chains of Spheres" Proc. 1983 CRDC Conference, J. Farmer and R.H. Kohl, eds., Army CRDC-Sp-84009, pages 223-235;
R. T. Wang and B.A.S. Gustatson, "Angular Scattering and polarization by Randomly Oriented Dumbells and Chains of Sphere," Proc. 1983 CRDC Conference, J. Farmer and R.H. Kohl, eds., Army CRDC-Sp-84009, pages 2237-247.
7. J. Eversole, " Angular Scattering From Single,Suspended Cylinders",1987 CRDEC Conference on Obscuration and Aerosol Research.
8. A. Cohen, Opt. Letters 5, 150 (1980).
9. A. Cohen, L.D. Cohen, R.D. Haracz, and S. Egent, "Double Scattering by Randomly Oriented Long Cylinders",J. Appl.Phys.(1984)
10. R.D. Haracz, L.D. Cohen, A. Cohen, and C. Acquista, "Light Scattering from

Dielgctric Targets Composed of a Continuous Assempbly of Circular Disks,"Appl. Opt (Dec., 1986).
11. R. T. Wang, "Electromagnetic Scattering from a Helix," Final Report,TCN-85-597 CRDC/Battelle (1986).
12. L.D.Haracz,L.D.Cohen,A.Cohen, and R.T.Wang,"Scattering of Linearly Polarized Microwave Radiation from a Dielectric Helix",Appl. Opt. (Dec 1987).
13. J.J. Stephens, J. Atmos. Sci. 37, 435 (1980).
14. A. Cohen,R.D. Haracz, and L.D. Cohen, "Comparison Between Angular Scattering by Randomly Oriented Finite Cylinders and the Theory of Infinite Cylinders", Proc. 1986 CRDC Conference,R.H. Kohl and D.Stroud,eds.,Army CRDC-Sp.
15. P. Huffman and W.r. Thursby, J. Atmos. Sci. 28, 1073 (1969).

Fig. 1. The scattering geometry shown in the reference frame x, y, z, where the x, z plane is the scattering plane. The orientation angles of the cylinder axis are Φ and γ, and the polarization angle of the linearily pelarized wave is α. The scattering angle between the directions of the incidence and scattering is denoted $2 \Phi_{0}$. The scattering angle used in the theory for the iniinite cylinder is measured in a plane perpendicular to the cylinder axis, and it is denoted θ.

${ }^{2}$

${ }^{2}$ c

Fig. 2. The spirals and the rings shown in the reference frame. The main axis of the spiral and the corresponding ring is
a.- parallel to the y axis.
b. parallel to the x axis, and
c.- parallel to the \mathbf{z} axis.

Figs. 3-4. The logarithm of experimental intensities I_{11} and I_{22} plotted against the scatterng angle $2 \phi_{0}$ for the spiral orientation $\phi_{t}=0^{\circ}$ and $\gamma_{t}=0^{\circ}$.

Fig. 5-6. Same as Fig. 5 for the spiral orientaion $\phi_{t}=90^{\circ}$ and $\gamma_{i}=90^{\circ}$.

Fig. 8. A comparison tulvi... :..., alv eaporimiont lor the trio lig (122) plollod

Fig 9. A comparison between ticory and experiment for the the log (i_{1}) plotred
against the scattering angle $2 \rho_{0}$ tor the orientation $\rho_{1}=90^{\circ}$ and $\gamma_{1}=90^{\circ}$.

Fig. 10. A comparison between theory and expleciment for the the $\log \left(\mathrm{I}_{22}\right)$ ploted
egaintt the scattering angle 2_{i}^{\prime}, tor the onentation $\hat{1}_{1}=90^{\circ}$ and $\mathrm{Y}_{\mathrm{t}}=90^{\circ}$.

Fig. 11. The relative intensities for randomly oriented long cylinders versus the scattering angle $2 \varphi_{0}$ for $x=17.173$ and $m=1.29-0.0954$ i. a) The results of Ret 13 . b) Our corrected results.

Fig. 12. The relative intensities for random!y oriented long cylinders versus the scattering angle $2 \phi_{0}$ for $x=45.7$ and $m=1.31$. The experimental results are shown by black diamonds (Ret. 15) and our theoretical results are shown by open squares.

The Scattering of Femtosecond Optical Pulses by Small Dielectric Spheres

G. T. Bennen, E. S. Fry, W. E. White, P. Herb, G. W. Katrawar, and W.Xu
Texas A\&M University, Physics Deparment
College Station, TX. 77843

Recent Publications, Submittals for Publicaion and Presentations:
A) E. S. Fry and X.-M. Gong, "Radiation Torque on a Cube: Geomerric Optics Limit." Proceedings of the 1986 CRDEC. Scientific Conference on Obscuration and Aerosol Research, R. H. Kohl, Ed., In press.
B) G. T. Bennett, E. S. Fry, W. E. White, P. Herb, G. W. Kattawar, and W.Xu. "Scattering of Femtosecond Laser Pulses by a Single levitated Sphere, " presented at the 1987 Annual Meeting of the American Association for Aerosol Research, Seamle, Washington, September, 1987.
C) G. T. Bennett, E. S. Fry, P. Herb, G. W. Kattawar and W. E. White, "Scattering of Femtosecond Laser Pulses by a Single Levitated Sphere," Journal of the Optical Society of America, in preparation.

Abstract

Studies of the scattering of ultrashort laser pulses by a single microsphere are underway. Emphasis is on the regime in which the physical length of the laser pulse is less than the diameter of the sphere which in turn is less than about 30 wavelengths of the laser radiation. Time averaged data are presented and it is shown that, in this case, bandwidth rather than pulse duration is the determining factor in the scattering results. Work is now underway to observe the scattering effects in the time domain where the pulse duration is indeed a decisive factor.

Introduction

The scattering of electromagnetic radiation by a microscopic sphere has already been studied extensively for the cases of incident plane waves ${ }^{1}$ and Gaussian beams. ${ }^{2.3}$ However, there is an additional, very interesting case which occurs when the incident radiaion is a pulse whose duration is so shor that the physical length of the pulse is less than the diameter of the sphere. Although some wort in this regime has been done in the radar region with relatively large spheres, ${ }^{49}$ there has been no work in the visible region of the spectrum where the corresponding sphere radius is much smaller.

Femtosecond pulses of $\mathbf{- 6 3 0} \mathrm{nm}$ laser radiation are being used to study the scattering of such pulses by single microspheres with $10-20 \mu \mathrm{~m}$ diameters. Time averaged data for pulse widths down to 30 femtoseconds have been obtained. Future work includes studies of femtosecond pulse scatrering in the time domain and studies of nonlinear laser-aerosol interactions.

Theory

For an infinite plane wave $\mathrm{E}_{0} \mathrm{e}^{i \omega t}$, with frequency ω, one can use Mie theory ${ }^{1}$ to predict the electromagnetic scattering $\mathrm{E}_{\mathbf{s}}(\omega, \mathrm{R})$, by a sphere of radius R . Furthermore, a shor pulse, $\mathrm{E}_{\mathrm{p}}(\mathrm{t})$ can be described as a superposition of such infinite plane waves via the Fourier transform,

$$
\begin{equation*}
E_{p}(t)=\frac{E_{0}}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} A(\omega) e^{i \omega t} d \omega . \tag{1}
\end{equation*}
$$

Thus, the scattered field of the pulse, $\mathrm{E}_{\mathrm{sp}}(\mathrm{t})$, is the appropriately weighted Fourier superposition of the plane wave scattered amplitudes $E_{3}(\omega, R)$.

$$
\begin{equation*}
E_{s p}(t)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} A(\omega) E_{s}(\omega, R) e^{i \omega t} d \omega . \tag{2}
\end{equation*}
$$

Now $\mathrm{Esp}_{\text {sp }}(t)$ gives the time dependence of the scartered field and will be studied in future experiments, but in the present case we have observed only the time averaged scattered intensity. The corresponding scattered signal S is specifically given by,

$$
\begin{equation*}
S \propto \int_{\infty}^{\infty}\left|E_{s p}(t)\right|^{2} d t \tag{3}
\end{equation*}
$$

By Parseval's theorem we can write this as,

$$
\begin{equation*}
S \propto \int_{-\infty}^{\infty}|A(\omega)|^{2}\left|E_{s}(\omega, r)\right|^{2} d \omega . \tag{4}
\end{equation*}
$$

Thus to calculate the time averaged scattering for short pulses one has to determine the spectral distribution of the incident pulse, apply Mie theory to calculate the scattering field for each frequency component, and then use Eq. 4.

Experiment

A schematic of the experimental arrangement is shown in Fig. 1. The femtosecond laser follows the design of Valdmanis, et.al. ${ }^{6}$ It produces -0.2 nJ pulses at a 100 MHz repetiion rate

Figure 1. Block diegram of exporimental sotup
with pulse widths down to 28 fsec. In Fits. 1 the autocorrelator is used to monitor pulse width and the optical maltichannel analyzer is used to monitoc the spectal distribution of the pulse. The particie so be obnerved is muspended in an electric quadrupole trap ${ }^{7}$ which has a slit in the center ring electrode so that the angular distribution of the scautered inteasity can be observed by a photomultiplier. The latuer is mounted at the end of an arm that swings in a semicircle centered on the trap.

For the present data a glass microsphere was suspended in the trap. It was sized in the usual manner by measuring the angular distribution of the scattered intensity with a cw He - Ne laser and furing the data with Mie results for different sphere radii. The index of refraction of the glass microsphere was 1.5097 at 630 nm and a best fit to the Cw data gave a diameter of $15.0 \mu \mathrm{~m}$.

At each pulse length for which scamering dan is to be obtained, the spectral distribution is measured with the optical mulachannel analyze. The result for a 125 femposecond pulse is shown in Fig. 2. This dent is used to obtain $\mathbf{A}(\omega)$, which is required for the theorerical predictions of short pulse scatuering effects via Eq(4).

Figure 2. Spectral distribution of a 125 fsec. pulse.

Figa 3a and 3b ahow experimental results for 125 fsec and 54 fsec pulses, respectively. Also shown as a smooth curve superimposed on the deta is the theoretical prodiction using the spectral distribution measured for each pulse length. Clearly the effect of decreasing pulse icigth is to wash out the resonances. This is to be expected since the angular positions of the resonances depend on wavelength and as pulse length decreases, the wavelength spread increases, thereby averaging any given resonance over a wider angular range. It should also be noted that the resonances are shifted in angle for these two sets of data. This is a consequence of the fact that the peak wavelength of the laser shifts to the red as the pulse length decreases, in fact, in this example. the peak of the spectral disribution for the 54 fsec pulse was shifted 4 nm to the red from the peak of the 125 fsec pulse.

Conclusions

Our theoretical and experimental investigations show that the time averaged results for short pulse scattering are determined by pulse bandwidth, not pulse length. For example, both a pulse of a few femtoseconds and a cw laser with the same bandwidth as the pulse will give the same time averaged scattering results. On the other hand, measurements in the ime domain will show significanly different effects and will provide a plethora of exiting new studies.

Future Directions

Time rosolved scattering studies of microspheres are being initiated. These will eventually be extended to microscopic cubes in fixed orientations. Such studies will provide a new, direct probe of particle morphologies and could provide a definitive remote sensing tool for the size of raindrops, and for paricle shapes in clouds and smokes. Time resolution on the femtosecond scale will provide a superb probe of the effects occurring in the weak localization of photons and such studies are being planned. Finally, studies of non-linear laser-acrosol interactions are being iniciated. Such sudies are especially suited to the femtosecond laser work for three importans reasons: (1) Higher peak powers can presently be obrained with pulses in the femosecond regime than by any other means. We expect to be able to achieve peak intensities up to $10^{19} \mathrm{wats} / \mathrm{cm}^{2}$ at the focus after amplification. (2) This high peak power is achieved with a relatively low pulse energy, consequently the effects of the large electric fields associated with the pulse can be better isolated from the purely thermal effects. (3) The different ionization processes occurring can be distinguished in the time domain.

Figure 3. Comparison of experimental and theoretical (amooth curve) data for (A.) 125 thec. and (B.) 54 faec. putees.

References

1. M. Kerktr, The Scatsering of Uight and Other Electromagnetic Radiation, (Academic, New York, 1969).
2. L. W. Casperson, C. Yeh, and W. F. Yeung. Appl. Opt. 16, 1104 (1977).
3. W. G. Tam and R. Corriveau, J. Opt. Soc. Am. 68, 763 (1978).
4. J. Rheinstein, IEEE Trans. Ans. Prop. AP-16, 89 (1968).
5. S. K. Chaudhuri, F. B. Sleator, W.-M. Boemer, Radio Sci. 19, 987 (1984).
6. J. Valdmanis, R. L. Fork, and J. P. Gordan, Opt. Lett. 10, 131 (1985).
7. R. F. Wiuerker, H. Shetton, and R. V. Langmuir, J. Appl. Phys. 30, 342 (1959).

RADIATIVE TRANSFER CALCULATIONS FOR DETECTING A TARGET BEHIND OBSCURING ATMOSPHERES

T. Duracz and N. J. McCormick
Depariment of Nuclear Engineering
UNIVERSITY OF Washington
Seattle, Washington 98195

Abstract

Numerical radiative transfer calculations are presented for an idealized plane geometry atmosphere that is externally illuminated by a very short pulse of radiation. The results identify optical depths and/or surface albedos for which an external detector measuring the emerging irradiance could not detect the presence of an object obscured by the atmosphere.

I. INTRODUCTION

Light detection and ranging (lidar) devices are used to detect the location of objects in optically thin atmospheres for which the effects of scattering are small enough that they can be ignored or treated by an approximate correction. For atmospheres of interest here that are optically thick at the wavelength of the measurements, scattering effects must be incorporated by means of a multiple-collision analysis or use of the radiative transfer equation.

The linear Boltzmann equation is used here to analyze the propagation of radiation through a homageneous atmosphere, and the scattering of radiation at the surface of the object behind the atmosphere is assumed to be isotropic (i.e., Lambertian reflection). Thus, the ability to detect the presence of the obscured object depends upon the direction and time characteristics of the incident radiation pulse, the single scattering albedo and phase function of the atmosphere, the albedo of the object and its distance from the surface of the atmospiese, the characteristics of the detector located external to the atmosphere, and the magnitude of the difference in signals when the object is present or absent.

For simplicity the incident illumination is assumed to be normally directed at the atmosphere and of an infinitesimal duration, while the atmosphere is described by the Rayleigh phase function and a variable single scattering albedo; the albedo of the surface of the object is also variable. For the detector, it is assumed that the backscattered irradiance (i.e., the angle-integrated flux crossing a detector surface that is parallel to the surface of the atmosphere) can be measured for a time interval after the pulse. The detection of the object is to be made from the time-integrated backscattered irradiance.

The limitations of these assumptions are worth noting. First, the slab geometry chosen for the calculation is certainly idealized since we expect neither a uniformly broad incident laser pulse nor a slab atmosphere nor a reflecting slab object behind it; if we can show, however, that it is not possible to detect such an object under such circumstances,
then there is no reason to expect a non-slab object could be detected behind a multiplyscattering atmosphere of a more complicated geometry. Second, for a normally-incident illumination the radiation is initially in the direction of the shortest distance to the object, so the time required for the object to perturb the backscattered irradiance is minimum and the magnitude of the decaying pulse is maximum; this illumination representa a worst case, however, in the sense that there is no azimuthal dependence of the backscattered radiance which might help in the detection of the object. Third, a Rayleigh scattering atmosphere represents a worst case when attempting to detect an object since a more forward scatterer would enhance the probability that radiation would move through the atmosphere, scatter off the object, and come back through the atmosphere to indicate the presence of the object. Finally, a Lambertian-reflecting object represents a worst case for detection since it backscatters the radiation uniformly in all directions.

II. THE METHOD OF ANALYSIS

To describe the transport of radiation within the obscuring atmosphere, the timedependent radiative transfer equation is used,

$$
\begin{equation*}
\left(v^{-1} \partial_{t}+\mu \partial_{a}+1\right) I(x, \mu, t)=\int_{-1}^{1} p\left(\mu, \mu^{\prime}\right) I\left(x, \mu^{\prime}, t\right) d \mu^{\prime} \tag{1}
\end{equation*}
$$

where $I(x, \mu, t)$ is the radiant energy per unit area, μ, and time (i.e., the radiance integrated over the azimuthal angle). Also, μ is the cosine of the polar angle with respect to the x axis and t is the time in mean collision times (met), as measured in terms of the scattering and a'usorption properties of the atmosphere and the speed of light; v is the speed of light in the atmosphere, as measured in units of inverse time, while $p\left(\mu, \mu^{\prime}\right)$ is the phase function. The distance x is measured into the atmosphere in units of mfp, the mean free path (i.e., the inverse of the extinction cocfficient), from $x=0$ at the surface of illumination to $x=X$ at the depth where the object is located if there is one present.

The ingoing radiance due to the pulse is given by

$$
\begin{equation*}
I(0, \mu, t)=\delta(\mu-1) \delta(t), \quad 0 \leq \mu \leq 1 \tag{2}
\end{equation*}
$$

and that reflected back into the atmosphere by the object at $x=X$ is

$$
\begin{equation*}
I(X,-\mu, t)=2 A \int_{0}^{1} \mu I(X, \mu, t) d \mu \tag{3}
\end{equation*}
$$

The detector is to measure the backscattered irradiance

$$
\begin{equation*}
E(t)=\int_{0}^{1} \mu I(0,-\mu, t) d \mu \tag{4}
\end{equation*}
$$

The backscattered irradiance can be integrated as a function of time to obtain a quantity Q, and for the calculations we selected the interval $2 \leq t \leq 20 \mathrm{mct}$, i.e.,

$$
\begin{equation*}
Q=\int_{3}^{30} E(t) d t \tag{5}
\end{equation*}
$$

In principle this quantity could be used to infer either the surface albedo of an object when its depth of location is known, or the locetion when its albedo is known.

III. NUMERICAL RESULTS AND DISCUSSION

The calculations were done using the TIMEX program ${ }^{1,2}$ for a single scattering albedo of unity, for different surface albedos of the object ($A=0,0.2,0.4,0.6,0.8$, and 1.0), and for different optical depths of location of the object ($X=1,2,3,4,5,6$, and $\infty \mathrm{mfp}$).

Fig. 1 shows the backscattered irradiance for a perfectly absorbing object $(A=0)$ behind a nonabsorbing obscuring atmosphere of depth X for $X=1,2,4$, and $\infty \mathrm{mfp}$. By way of comparison, results analogous to those in Fig. 1 are shown in Fig. 2 to illustrate the effect on the backscattered irradiance of a perfectly reflecting object ($A=1$) at the same locations. Of course the figures represent the two extreme cases for the reflection from the object, so objects with $0<A<1$ would give results that lie between these.

The detection of the object depends upon the magnitude of the perturbation in the backscattered irradiance. Fig. \mathcal{S} is a map of the time-integrated backscattered irradiance Q as a function of the object's surface albedo A and the location X. For any value of Q there is an isocline of possible values of $[X, A]$. The upper left-hand portion of the figure shows a region for objects with albedos $A>0$; the lower left-hand portion shows a region for objects with $A \geq 0$. These two regions indicate the presence of an object. When there is no object, the value of $Q=0.423$ and the line which corresponds to that value lies between the two regions and goes asymptotically to $X=\infty$. Thus the map provides a global picture of the detectability of an object behind a uniform obscuring atmosphere.

IV. COMMENTS

The results shown here represent a near-worst-case for attempting to detect an object through a thick obscuring atmosphere in the sense that if the atmosphere or the object scatters more anisotropically, detection would be somewhat easier.

It also should be emphasized that perhaps another way of detecting an object would be to use another observable instead of Q or in conjunction with Q to better resolve X and A for the object; further work to answer this question is presently underway.

Acknowledgments

This work was supported by the U.S. Army Research Office DAAL03-86-K-0118 while computer time was provided by the San Diego Supercomputer Center.

References

1. T.R. Hill and W.H. Reed, "TIMEX: A Time-Dependent Explicit Discrete Ordinatea Program for the Solution of Multigroup Transport Equations with Delayed Neutrons", Radiation Shielding Information Center Computer Code CCC -274, Oak Ridge National Laboratory (1976).
2. For this calculation with TIMEX it is necessary to run the code twice to properly treat boundary conditions (2) and (3); in the first calculation, the uncollided source option is used, but this option does not properly allow for reflection at the object. In the second calculation, a very thin source is used to generate an isotropic angular distribution that is backscattered from the surface. The correct solution is obtained by adding the results of the first calculation plus the product of the fraction of photons reaching the object times the surface albedo times the results of the second calculation.

Fig. 1. Curves of the backscattered irradiance $E(t)$ versus time for a perfectly reflecting object behind a nonabsorbing obscuring atmosphere for (from top to bottom) depths of 1 , 2,4 , and $\infty \mathrm{mf}$.

Fig. 2. Curves of the backscattered irradiance $E(t)$ versus time for a perfectly absorbing object behind a nonabsorbing obscuring atmosphere for (from top to bottom) depths of ∞, 4,2 , and 1 mfp .

Fig. 3. Seoclines of Q, the timo-integrated irradiance, in the parameter apace |depth \mathbf{X}, surface albedo A| for an obseured object.

AN EXACT FORMULA FOR THE ACCURACY OF A CLASS OF

 COMPUTER SOLUTIONS OF INTEGRAL EQUATIONFORMULATIONS OF ELECTROMAGNETIC SCATTERING
PROBLEMS
D. K. Cohoon

Department of Mathematics 098-16
Temple University
Philadelphia, Pennsyleania 1912e

ABSTRACT

A method of improving the accuracy of traditional methods (Guru and Chen (6], Hagmann and Gandhi [7]-[8], Hagmann and Levin [9], and Livesay and Chen (13] of solving integral equations has been obtained. We now have exact formulas for the accuracy of projective approximation methods (Gohberg and Feldman [5], Neittaanmaki and Saranen [20]) for solving integral equations. For a class of approximation schemes for estimating the solution of integral equations of electromagnetic scattering, we can develop a systematic procedure for reducing the original infinite rank integral equation to an exact finite rank integral equation capable of being completely analyzed by digital computer. In this paper the method is illustrated for the popular pulse basis function method(Guru and Chen [6], Hagmann and Gandhi [7]-[8], Hagmann and Levin (9], and Livesay and Chen [13]).

2. INTRODUCTION $T 0$ PIORECIVE APPRODMLTION METHODA

In this section we explain (i) linear interpolation, (ii) Fourier series approximations, and (iii) pulse basis functions as projective approximation methods.

A projection is a linear operator P on a vector space V with the property that $P^{2}=P$. A projective approximation scheme is a linear mapping P from a vector space V into a subspace W of approximates of members of V with the property that P is the identity operator on W in the sense that $\mathrm{Pw}=\mathrm{w}$ for all w in W .

We now explain linear interpolation. A common example would be to approximate the space V of functions which are continuous on $[a, b]$ by members of a space W of functions which are linear on each of

$$
\left.S=\left(\left(x_{0}, x_{1}\right), \mid x_{1}, x_{2}\right), \cdots,\left(x_{\mathrm{a}-1}, x_{\mathrm{a}}\right)\right)
$$

where $a=x_{0}<x_{1}<\ldots<x_{\mathrm{b}}=b$ and to define P by the linear interpolation rule,

$$
\begin{equation*}
\operatorname{Pf}(x)=f\left(x_{1-1}\right)\left(\frac{\left(x_{i}-x\right)}{\left(x_{1}-x_{i-1}\right)}\right)+f\left(x_{i}\right)\left(\frac{\left(x-x_{1-1}\right)}{\left(x_{i}-x_{i-1}\right)}\right) \tag{1.1}
\end{equation*}
$$

if x belongs to an interval in the collection of subintervals, $\left(x_{0}, x_{1}\right)_{2}$ $\left[x_{1}, x_{2}\right), \ldots,\left(x_{n-1}, x_{n} \mid\right.$ containing the open interval $\left(x_{1-1}, x_{1}\right)$. Note that if this is the case, then

$$
\begin{equation*}
P^{2} f(x)=P f(x) \tag{1.2}
\end{equation*}
$$

Next we interpret Fourier series or eigenfunction expansions and consider the space V to be the set of functions defined on an open set Ω of R^{n} which are square integrable with respect to Lebesgue measure ν and valued in a Hibbert space X with norm | $\mid x$ with two functions f and g being equivalent on Ω if

$$
\begin{equation*}
\int_{\Omega}|f-g|^{2} d \nu=0 \tag{1.3}
\end{equation*}
$$

where f and g are taken from the collection of Lebesgue measurable functions h from Ω into X which are square integrable over Ω in the sense that

$$
\begin{equation*}
\left.\int_{\Omega}|\mathrm{f}|\right|_{\mathrm{X}} ^{2} \mathrm{~d} \nu<\infty \tag{1.4}
\end{equation*}
$$

We say that two functions f and g are orthogonal if

$$
\begin{equation*}
\int_{\Omega}(f, g) x_{x} d \nu=0 \tag{1.5}
\end{equation*}
$$

where $(f, g)_{x}$ denotes the inner product in the Hilbert space X of the values of f and g so that

$$
\begin{equation*}
|f|_{x}^{2}=(f, f)_{x} \tag{1.6}
\end{equation*}
$$

If

$$
F=\left\{\phi_{i}: i \in I\right\}
$$

is a finite set of pairwise orthogonal functions in V, then we let W be the smallest vector subspace of V containing F and note that a projection operator is defined by the rule,

$$
\begin{equation*}
\operatorname{Pf}(x)=\sum_{i \in I}\left(\frac{\int_{\mathbf{n}} f(x) \phi_{1}(x) d \nu(x)}{\int_{\Omega} \phi_{i}(x)^{2} d \nu(x)}\right) \phi_{1}(x) \tag{1.7}
\end{equation*}
$$

The projection operator defined by equation (1.7) is the basis of Fourier series approximations and also eigenfunction expansions if we incorporate into d $\nu(x)$ weight functions associated with for SturmLiouville equations(for example).

The pulse basis function method has been used by Guru and Chen [6], Hagmann and Gandhi [7-8], Hagmann and Levin [9], and Livesay and Chen $[13$) to predict the results of electromagnetic interactions with complex structures by decomposing the scattering body into cells within each of which the induced electric vector is assumed to be a co:istant. The pulse basis function method makes use of the concept of the partition of an open set Ω of $\mathbf{R}^{\mathbf{n}}$.

We have defined for each $x \in \mathbf{R}^{\mathrm{n}}$ and each $r>0$ the set

$$
B(x, r)=\left\{y \in R^{n}:|x-y|<r\right\}
$$

to be the ball of radius r centered at x. We let Ω be an open set in \mathbb{R}^{n} whose closure is bounded. A partition of Ω is a set $P(\Omega)$ of pairs (V_{i}, x_{i}) where $i \in I$ and the ball $B\left(x_{i}, r\right)$ is contained in V_{i} for some $r>0$,

$$
\begin{equation*}
\bigcup_{i \in I} V_{i}=\Omega \tag{1.8}
\end{equation*}
$$

and $\mu_{\mathrm{n}}\left(\mathrm{V}_{\mathrm{j}} \cap \mathrm{V}_{\mathrm{k}}\right)=0$ if $\left(\mathrm{V}_{\mathrm{j}}, \mathrm{x}_{\mathrm{j}}\right)$ and $\left(\mathrm{V}_{\mathrm{k}}, \mathrm{x}_{\mathrm{k}}\right)$ are distinct members of $P(\Omega)$
so that $\mathrm{x}_{\mathrm{i}} \neq \mathrm{x}_{\mathrm{j}}$ if and only if $\mathrm{i} \neq \mathrm{j}$ and $\mu_{\mathrm{n}}\left(\mathrm{V}_{\mathrm{i}} \cap V_{\mathrm{j}}\right)=0$ where μ_{n} is the standard Lebesgue measure on R^{n} where we let

$$
\begin{equation*}
P(\Omega)_{1}=\left\{V_{i}:\left(V_{i}, x_{i}\right) \in P(\Omega) \text { for some } x_{i} \in V_{i}^{i}\right. \tag{1.9}
\end{equation*}
$$

and we define the functions

$$
x_{v_{1}}(x)=\left\{\begin{array}{lll}
1 & x & \in V_{i} \tag{1.10}\\
0 & x & \text { is not a member of } V_{i}
\end{array}\right.
$$

to be the characteristic functions or pulse functions associated with the sets V_{i} in $P(\Omega)_{1}$. The sets V_{i} are called cells in a cellular decomposition of Ω.

Definition 1.2. We define the projector P associated with the partition

$$
\begin{equation*}
P(\Omega)=\left\{\left(\mathrm{V}_{\mathrm{i}}, \mathrm{x}_{\mathrm{i}}\right): \mathrm{x}_{\mathrm{i}} \in \mathrm{~V}_{\mathrm{i}}, \mathrm{i} \in I, \mathrm{~V}_{\mathrm{i}} \subset \Omega\right\} \tag{1.11}
\end{equation*}
$$

which satisfies the conditions of definition (1.1) by the rule,

$$
\begin{equation*}
\operatorname{Pf}(\mathrm{x})=\sum_{\mathrm{v}, \in \mathrm{P}_{(\Omega)}} \chi_{v_{i}}(x) f\left(x_{1}\right), \tag{1.12}
\end{equation*}
$$

for all functions $: \Omega \rightarrow \mathbf{C}^{\mathrm{m}}$ where \mathbf{C}^{m} denotes complex m dimensional space for all positive integers m .

A direct calculation will show that the following is valid.
Proposition 1.1. If $\left(\mathrm{C}^{\mathrm{m}}\right)^{\mathrm{n}}$ denotes the vector space of all mappings from Ω into \mathbf{C}^{m} (complex in dimensional space), then the mapping

$$
\begin{equation*}
P:\left(C^{m}\right)^{n} \rightarrow\left(C^{m}\right)^{n} \tag{1.13}
\end{equation*}
$$

satisfies

$$
\begin{equation*}
P P=P \tag{1.14}
\end{equation*}
$$

In practice we decompose the scattering body into cells and suppose that the electric vector is constant within each of these cells. Thus, there are three unknown components of a complex electric vector in each cell which means that our unknown functions are for three dimensional scattering problems valued in \mathbf{C}^{3} (complex 3 dimensional space). If there are N cells, the integral equation of electromagnetic scattering has the form,

$$
\begin{equation*}
\left(\mathbf{E}-\mathbf{E}^{i}\right)(p, \omega)=\frac{i \omega^{2}}{c^{2}} \int_{\Omega} \frac{\left(\epsilon-\epsilon_{0}\right)-i \sigma / \omega}{\epsilon_{0}} \mathbf{G}(p, q) \cdot \mathbf{E}(q) d v(q) \tag{1.15}
\end{equation*}
$$

where

$$
\begin{equation*}
G(p, q)=\left(1+\left(\frac{1}{k_{0}^{2}}\right) \nabla(\nabla)\right)\left(\frac{\exp \left(i k_{0}|p-q|\right)}{4 \pi|p-q|}\right) \tag{1.16}
\end{equation*}
$$

may be approximated by the finite rank integral equation,

$$
P_{\Omega}^{x} E-P_{\Omega}^{x} E^{i}=\frac{i \omega^{2}}{c^{2}} \int_{\Omega}\left(\frac{\epsilon-\epsilon_{0}-i \sigma / \omega}{\epsilon_{0}}\right)(y) P_{\Omega}^{x} G(x, y) \cdot P_{\Omega}^{x} E(y) d v(y)(1.17)
$$

where G is defined by equation (1.16). By equating coefficients of $\chi v_{1}(x)$ on each side of (1.17) and evaluating integrals of known functions of y over the sets V_{i} we reduce the finite rank integral equation (l.17) to a system of 3 N equations in 3 N unknowns. However, we will show that the equation (1.17) is really the wrong finite rank integral equation to subject to computerization and furthermore that if we start with any valid projective approximation scheme and assume that the original infinite rank integral equation has a unique solution, then it can be reduced to a finite rank integral equation whose solution is exactly the projection of the exact solution of the original infinite rank integral equation.

In addition we remark that while the Neumann series, (Kleinman [12], Shifrin [22]) as it is usually applied in electromagnetic scattering, is only valid for scatterers which are nearly diaphanous in the sense that if

$$
(\mathbb{I}-K) \mathbf{E}=\mathbf{E}^{\mathbf{i}}
$$

is the original integral equation describing the scattering of light from our aerosol particle, then the operator K has to be contractive or have norm less than 1 , the methods of this paper, although also using series of operators, are actually valid for scattering bodies with a wide range of electrical properties.
2. ELACT FORMULAS FOR THE ACCURACY OF APPROIMMATE

8OLUTIONS OF LVTEGRAL RQUATIONS
Let X be a Hilbert space and let $B(\mathrm{X})$ denote the Banach space of bounded linear transformations of \mathbf{X} into itself. Let

$$
\begin{equation*}
\mathrm{K}: \Omega \times \Omega \rightarrow B(\mathrm{X}) \tag{2.1}
\end{equation*}
$$

be such that if we let $h(x)=\operatorname{Tf}(x)$, where

$$
\begin{equation*}
T(x)=\int_{\Omega} K(x, y) f(y) d \nu(y) \tag{2.2}
\end{equation*}
$$

implies that $h=T f$ is in $L^{2}(\Omega, X)$ whenever f is in $L^{2}(\Omega, X)$ where ν denotes Lebesgue measure on Ω and $L^{2}(\Omega, X)$ denotes the square integrable ν - measurable functions from Ω into X. Thus, let us assume that the original integral equation is

$$
\begin{equation*}
f(x)-g(x)=\lambda T f(x) \tag{2.3}
\end{equation*}
$$

where in practice in electromagnetic scattering, for example, $g(x)$ would denote the ambient source of light, Ω would denote the aerosol particle, and $f(x)$ would denote the total electromagnetic field that exists because of the presence of the aerosol particle \cap in the ambient electromagnetic field defined by $g(x)$. We define a projection operator,

$$
\begin{equation*}
P: L^{2}(\Omega, X) \rightarrow L^{2}(\Omega, X), \tag{2.4}
\end{equation*}
$$

as a linear mapping from $L^{2}(\Omega, X)$ into a function in a finite dimensional subspace of this space which approximates the original function. We let Q^{x} be an operator on functions of x in Ω valued in the Banach space X such that

$$
\begin{equation*}
P \int_{\Omega} K(x, y)(\operatorname{Pf}(y)) d \nu(y)=\int_{\Omega} Q^{x} K(x, y) \operatorname{Pf}(y) d \nu(y) \tag{2.5}
\end{equation*}
$$

We introduce new operators L and N on $L^{2}(\Omega, X)$ by the rules,

$$
\begin{equation*}
\operatorname{Lf}(x)=P \int_{n} K(x, y) \operatorname{Pf}(y) d \nu(y)=\operatorname{PTPf}(x) \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
N f(x)=\int_{n}\left(K(x, y)-Q^{x} K(x, y) P\right) f(y) d \nu(y), \tag{2.7}
\end{equation*}
$$

so that

$$
\begin{equation*}
\mathbf{T}=\mathrm{L}+\mathrm{N} . \tag{2.8}
\end{equation*}
$$

The usual approximate equation that we sqlve in practice is

$$
\begin{equation*}
\mathrm{Pf}_{\mathrm{a}}-\mathrm{Pg}=\lambda \mathrm{PTPf}_{\mathrm{a}}(\mathrm{x}) \tag{2.9}
\end{equation*}
$$

We usually have to assume that the solution $u=\mathrm{Pf}_{\mathrm{a}}$ of the equation (2.9) is as close as we want to both the actual solution f of the original integral equation (2.3) and its approximation Pf. This might be true if Pg is close in norm to g and if $\lambda \mathrm{L}$ is close in norm to g and if $\lambda \mathrm{L}$ defined by (2.6) is close in operator norm to the exact integral transform λT. A consequence of these assumptions would be that the operator norm of the difference λN between λT, defined by (2.2) and (2.8) and $\lambda \mathrm{L}=\lambda$ PTP, where L is defined by (2.6) is a very small number. We will show in this paper that this widely used assumption($[6],[8]$, and [13]) while capable of yielding correct results with sufficient computing time is actually not needed. The only hypothesis that is needed is that the projector P be a good enough approximator that if N is defined by (2.1), (2.5), and (2.7), then

$$
\begin{equation*}
\max \left(|\lambda||N|_{\Omega},|\lambda||(P-1) N|_{\Omega}\right)<1 \tag{2.10}
\end{equation*}
$$

where if S is any linear transformation of $L^{2}(\Omega, X)$ into itself, then

$$
\begin{equation*}
|S|_{\Omega}=\sup \left(|S f|_{n}: f \in L^{2}(\Omega, X) \text { and }|f|_{\Omega}=1\right) \tag{2.11}
\end{equation*}
$$

with

$$
\begin{equation*}
|f|_{n}^{2}=\int_{\Omega}|f(x)|_{x}^{2} d \nu(x) \tag{2.12}
\end{equation*}
$$

for all functions f in $L^{2}(\Omega, X)$ where if w is in X and X happens to be a Hilbert space, then

$$
\begin{equation*}
|w|_{x}^{2}=(w, w)_{x} . \tag{2.13}
\end{equation*}
$$

where $(u, v)_{X}$ is the Hilbert space inner product of u and v with respect to the inner product of X and where otherwise more generally jw $\left.\right|_{\mathrm{x}}$ represents the Banach spare norm of w. The inequality (2.10), which is our key assumption, is reasonable if the original equation actually has a solution and projection by the operator P actually provides us with a good approximation scheme. Ordinarilly with projective approximation schemes we have a sequence of projectors whose images of a function g approach the function g being approximated. We use the assumption of inequality (2:10) to develop an exact finite rank integral equation whose soluti ", is the projection under P of the exact solution of the
original infinite rank integral equation (2.3). The inequality (2.10) means that the operator G_{λ} can be defined by the rule,

$$
\begin{equation*}
G_{\lambda}=\sum_{k=1}^{n} \lambda^{k-1} N^{k}=N+\lambda N^{2}+\lambda^{2} N^{3}+\cdots \tag{2.14}
\end{equation*}
$$

so that since

$$
\begin{equation*}
(\mathrm{I}-\lambda N)\left(\mathrm{I}+\lambda \mathrm{N}+\lambda^{2} \mathrm{~N}^{2}+\ldots\right) \mathrm{f}=\mathrm{f} \tag{2.15}
\end{equation*}
$$

it will follow that

$$
\begin{equation*}
(I-\lambda N)\left(I+\lambda G_{\lambda}\right) f=f \tag{2.16}
\end{equation*}
$$

for all f in $L^{2}(\Omega, X)$. Thus, we can in view of the relation,

$$
\begin{equation*}
\lambda T=\lambda N+\lambda L \tag{2.17}
\end{equation*}
$$

which follows immediately from equation (2.8), express the original integral equation (2.3) in the form

$$
\begin{equation*}
\mathbf{f}=\mathbf{g}+\lambda \mathbf{N f}+\lambda \mathbf{L f} . \tag{2.18}
\end{equation*}
$$

We see by rearrangement of terms in equation (2.18) that

$$
\begin{equation*}
(\mathbf{I}-\lambda N) f=g+\lambda L f \tag{2.19}
\end{equation*}
$$

Applying the operator $I+\lambda G_{\lambda}$ to both sides of equation (2.19) and using the fact that if r is an operator of norm smaller than one,

$$
\begin{equation*}
(1-r)\left(1+r+r^{2}+r^{3}+\ldots\right) f=f \tag{2.20}
\end{equation*}
$$

it follows that

$$
\begin{equation*}
f=\mathbf{g}+\lambda L f+\lambda G_{\lambda}(\mathbf{g}+\lambda L f) \tag{2.21}
\end{equation*}
$$

It is possible to represent the action of the operator N appearing in the decomposition, equation (2.17), of T in terms of G_{λ}, L, g, and f by realizing that equation (2.21) and (2.18) imply that

$$
\begin{equation*}
\lambda N f=\lambda G_{\lambda}(g+\lambda L f) \tag{2.22}
\end{equation*}
$$

We now would like to apply the projection operator to both sides of equation (2.21). To help us we note that equation (2.6) and the
relation $\mathrm{P}^{2}=\mathrm{P}$ implies that

$$
\begin{equation*}
\mathrm{PL}=\mathrm{L} . \tag{2.23}
\end{equation*}
$$

Consequently, equations (2.21) and (2.23) imply that

$$
\begin{equation*}
P f=P g+\lambda L f+\lambda P\left(G_{\lambda}(g+\lambda L f)\right) . \tag{2.24}
\end{equation*}
$$

Substituting (2.22) into (2.24) we see that

$$
\begin{equation*}
\mathrm{Pf}=\mathbf{P g}+\lambda \mathrm{Lf}+\lambda \mathrm{PNf} \tag{2.25}
\end{equation*}
$$

We wish to reduce the integral equation (2.25) to an exact finite rank integral equation. We introduce an operator $L_{(K, P)}$ by the relation,

$$
\mathrm{L}_{(\mathrm{K}, \mathrm{P})}=\mathrm{PT}
$$

so that in view of the fact that $\mathrm{L}=\mathrm{PTP}$, (equation (2.6)) it follows that

$$
\begin{equation*}
\mathrm{Lf}=\mathrm{L}_{(\mathrm{K}, \mathrm{P})} \mathrm{Pf} \tag{2.26}
\end{equation*}
$$

We now see that (2.25) and (2.26) imply that equation (2.24) is equivalent to

$$
\begin{equation*}
\mathrm{Pf}=\mathrm{Pg}+\lambda \mathrm{PL}_{(\mathrm{K}, \mathrm{P})} \mathbf{P f}+\lambda \mathrm{PNf} \tag{2.27}
\end{equation*}
$$

While this is not a finite rank integral equation it suggests that an approximate finite rank integral equation,

$$
\begin{equation*}
\mathrm{Pf}_{\alpha}=\mathrm{Pg}_{\mathrm{g}}+\lambda \mathrm{PLPf}_{\alpha}+\lambda \mathrm{PNPf}_{\alpha} \tag{2.28}
\end{equation*}
$$

might give a more accurate solution, a solution closer to f, than the solution Pf_{a} of the traditional approximate equation,

$$
\begin{equation*}
\mathrm{Pr}_{\mathrm{a}}=\mathrm{Pg}+\lambda \mathrm{PL}_{(\mathrm{K}, \mathrm{P})} \mathrm{Pf}_{\mathrm{a}} \tag{2.29}
\end{equation*}
$$

We will go much further than this, however, and reduce the equation (2.25) to a true finite rank integral equation whose solution will be the approximation Pf of the exact solution f of (2.3) and also give a precise and calculable formula for the difference f-Pf. We can do this by making use of the relation (2.16) whose validity follows from the basic assumption that P is a good enough approximator that inequality (2.10) is valid. This will permit us to achieve our goal of expression f in terms of our rough approximation Pf and the stimulati ig field $g b^{\prime}$ an exact
formula. Going back to equation (2.19) we obtain the relationship,

$$
\begin{equation*}
f=\sum_{k=0}^{\infty}(\lambda N)^{k}(g+\lambda L f) \tag{2.30}
\end{equation*}
$$

Making use of the obvious relationship, $L=L_{(K, p)} P$, operating on both sides of (2.30) with N and substituting into equation (2.27) we see that

$$
\begin{equation*}
\mathbf{P f}=\operatorname{Pg}+\lambda P L_{(K, P)} \mathbf{P f}+\lambda P N \sum_{k=0}^{\infty}(\lambda N)^{\mathbf{k}}\left(\mathbf{g}+\lambda \mathbf{L}_{(K, P)} \mathbf{P f}\right) \tag{2.31}
\end{equation*}
$$

Collecting the terms in equation (2.31) involving the unknown member Pf of a finite dimensional vertor space, we have the relation,

$$
\begin{equation*}
P f=P g+\lambda P N \sum_{k=0}^{\infty}(\lambda N)^{k} g+\lambda P\left(L_{(K, P)}+N \sum_{k=0}^{\infty}(\lambda N)^{k} \lambda L_{(K, P)}\right) P f(\tag{2.32}
\end{equation*}
$$

Our first objective is achieved since equation (2.32) is a truly finite rank integral equation in the unknown member Pf of a finite dimensional vector space. The computer program giving a solution of this equation would provide us with the coefficients of the basis vectors of this finite dimensional vector space that appear in the representation of Pf; in other words the linear combination of the basis vectors of the image of P with these coefficients is the exact value of $\mathrm{Pf}_{\text {, }}$ the projection of the exact solution f of the orisinal integral equation (2.3). Thus, from this point on we assume that Pf is known.

To finish this section we use our exactly determined value of Pf that was obtained by solving the finite rank integral equation under the assumption that 1 - $\lambda \mathrm{L}$ is invertible on the image of the projection operator P where $L=$ PTP, and subtract the right sides of equations (2.18) and (2.25) obtaining the relation,

$$
\begin{equation*}
(f-P f)=(g-P g)+\lambda(I-P) N f \tag{2.33}
\end{equation*}
$$

which can be rewritten in the form

$$
\begin{equation*}
(\mathrm{I}-\lambda(\mathrm{I}-\mathrm{P}) \mathrm{N}) \mathrm{f}=(\mathrm{g}-\mathrm{Pg}+\mathrm{Pf}) \tag{2.34}
\end{equation*}
$$

Again making use of the hypothesis (2.10) we conclude that the exact sclution of the infinite rank integral equation is

$$
\begin{equation*}
f=\sum_{k=0}^{\infty}(\lambda(1-P) N)^{k}(g-P g+P f) \tag{2.35}
\end{equation*}
$$

where Pf is the exact solution of the finite rank integral equation (2.32).
We have proven the following.

Theorem. If \mathbf{P} is a projector from $L^{2}(\Omega, X)$ onto a finite dimensional vector space such that if L and N are defined by (2.6) and (2.7) respectively, and if inequality (2.10) is satisfied, then equation (2.32) is a finite rank integral equation whose solution is the projection Pf of the exact solution f of (2.3). Furthermore, if (2.32) has a unique solution, then the original infinite rank integral equation has a unique solution given by (2.35).

We note that we have reduced the question of uniqueness of the solution of an infinite rank integral equation to the uniqueness of the solution of a finite rank integral equation. We note also that we have an exact formula for the error associated with the discretization associated with the projection operator P .
2. Replrences

1. Barber, P.W. Om. P. Gandhi, M.J. Hagmann, Indira Chatterjee. Electromagnetic absorption in a multilayer model of man. IEEE Transactions on Biomedical Engineering. Volume BME-26 Number 7, pp 400-405(1979).
2. Calderon, A.P. and A. Zygmund. On the existence of certain singular integrals. Acta Mathematica Volume 88, pp 85-139 (1952)
3. Cohen, L.D., R. D. Haracz, A. Cohen, and C. Acquista. Scattering of light from arbitrarily oriented finite cylinders. Applied Optics Volume 21, pp 742-748(1983)
4. Colton, David and Rainer Kress. Integral equation methods in scattering theory. New York: John Wiley \& Sons(1983).
5. Gohberg, I.C. and I. A. Feldman. Convolution equations and projection methods for their solutions. Providence, Rhode Island: American Mathematical Society (1974).
6. Guru, Bhag Singh and Kun-Mu Chen. Experimental and theoretical studies on electromagnetic fields induced inside finite biological bodies. IEEE Transactions on Microwave Theory and Techniques Volume MTT-24 No. 7(1976).
7. Hagmann, M. J. and O. P. Gandhi. Numerical calculation of electromagnetic energy deposition in man with grounding and reflector efferts. Radio Science Volume 14 Number $6 s$ pp 2329(1979)
8. Hagmann, M. J. and O.P. Gandhi. Numerical calculation of electromagnetic energy deposition for a realistic model of man. IEEE Transactions on Microwave Theory and Techniques Volume MTT-27 Number 9 pp 804-809(1979)
9. Hagmann, M.J. and R. L. Levin. Nonlocal energy deposition--a problem in regional hyperthermia. IEEE Transactions on Biomedical Engineering Volume 33, pp 405-411(1986)
10. Haracz, Richard D., Leonard D. Cohen, and Ariel Cohen. Scattering of linearly polarized light from randomly oriented cylinders and spheroids. Journal of Applied Physics Volume 58 Number 9 , pp 3322-3327 (November, 1958)
11. Holt, A. R. and J. W. Shepherd. Electromagnetic scattering by dielectric spheroids in the forward and backward directions. Journal of Physics A. Math. Gen. Volume 12 Number 1, pp 159-166(1979)
12. Kleinman R. E. Low frequency electromagnetic scattering In P. L. Uslenghi (Ed) Electromagnetic Scaitering New York: Academic Press (1978)
13. Livesay, D. E. and Kun-Mu Chen. Electromagnetic fields induced inside arbitrarily shaped biological bodies. IEEE Transactions on Microwave Theory and Techniques. Volume MTT-22 Number 12, pp 1273-1280(1974)
14. Neittaanmaki, P. and Jukka Saranen. Finite element approximation of vector fields given by curl and divergence. Mathematical Methods in the Applied Sciences 3, pp 328335(1981)
15. Neittaanmaki, Pekka and Jukka Saranen. Semi-discrete Galerkin approximation methods applied to initial boundary value problems for Maxwell's equations in anisotropic inhomogeneous media. Proceedings of the Royal Society of Edinburgh 89 A pp 125-133(1981)
16. Ramm, A. G. Numerical solution of integral equations in a space of distributions. Journal of Mathematical Analysis and Applications Volume 110 pp 384-390(1985)
17. Ramm, A.G. Theory and applications of some new classes of integral equations. New York: Springer Verlag (1980)
18. Saranen, Jukka On generalized harmonic fields in domains with anisotropic homogeneous media. Journal of mathematical analysis and applications Volume 88 Number 1, pp 104115(1982)
19. Saranen, Jukka. Some remarks on the convergence of the horizontal line method for Maxwell's equations. Jyvaskyla 10, Finland: University of Jyvaskyla Department of Mathematics Report 23 (1980)
20. Saranen, Jukka. Uber die Approximation der Losungen der Maxwellschen Randwertaufgabe mit der Methode der finite Elemente. Applicable Analysis Volume 10 pp 15-30(1980)
21. Shepherd, J. W. and A. R. Holt. The scattering of electromagnetic radiation from finite dielectric circular cylinders. Journal of Physics A Math. Gen. 16 pp 651652(1983)
22. Shifrin, K. S. Scattering of light in a turbid medium. MoscowLeningrad: Gosudarstvennoye Izdatel'stro TeknikoTecreticheskoy Literatury Moscow Leningrad (1951)
23. Uzunoglu, N. K., N. G. Alexopoulos and J. G. Fikioris. Scattering from thin and finite dielectric cylinders. Journal of the Optical Society of America Volume 68 Number 2, pp 194-197(1978)
24. Uzunoglu, N. K. and A. R. Holt. The scattering of electromagnetic radiation from dielectric scatterers. Journal of Physics A. Math. Gen. Volume 10 Number 3, pp 413424(1977)

SCATTERING OF LIGHT BY FINITE CYLINDERS

D. K. Cohoon
Department of Mathematics 098-18
Temple University
Philadelphia, Pennoyluania 1912 E

ABSTRACT

The primary content of this report is the description of a computer program developed originally at Drexell University and modified for use at the Chemical Research, Development, and Engineering Center of Aberdeen Proving Ground. We deacribe (i) the mathematical basis of this program to predict the manner in which light in scattered by a simulated acrosol particle modeled by a finite length cylinder, (ii) the meaning of key FORTRAN varisblea used in various parts of the program, (iii) the input parameters and their unita and meaning, and (iv) the output variables and their meaning. Uur writing is deliberately expository on the level of the light acattering novice and may, therefore, be leas elegant than the advanced reader might prefer.

We describe in this report an approximate method of solving the volume electric field integral equation deacribing the scattering of electromagnetic radiation by a penetrable nonmagnetic obstacle of arbitrary shape but posseasing a permittivity and an electrical conductivity which can vary from point to point within the scatterer. The method usea Fourier analysis of distributions in the derivation of the approximations.

The integral equation considered in this paper hae been widely studied, and physically motivated derivations of the equation have been provided. However, a mathematical proof seems to be absent from the literature. The author heo under support by Southwest Research Institute numerically verified, that if the exact solution of the problem of describing acattering by a apheroid is subatituted into the integral equation atudied in this paper, then this integral equation is atisfied. The equivalence of this integral equation to the transmisaion probiem of electromagnetiom, where we asume that the Maxwell equations are astiafied in the interior and another get of Marwell equations are satiofied in the exterior of the acattering cylinder, and where the difference between the solution of the exterior equationa and the electric field \mathbf{E}^{\prime} and the magnetic field \mathbf{B}^{1} of the incoming radiation satiafy the Silver Muller radiation conditions, and where the usual rogularity condition requiring continuity of tangential components of electric and magnetic fields across surface boundaries separating regions of regularity or amoothness of electrical properties is ansumed to be valid, can be proven mathematically. While many numerical methods have been developed to attack the problem of solving this integral equation, none have been successful on existing computer systems when the scasterer thape is complex. The exact solution of this integral equation when the ecatterer is a finite length cylinder in atill not known, and no formula han been developed which is valid over a wide range of frequenciea by any method. A method of improving the accuracy of traditional methods (Guru and Chen [8], Hagmann and Gandhi [7]-[8], Hagmann and Levin [q], and Livesay and Chen [13j of colving incegral equations hae been obtained, and this is discussed in this report.

The method of solution used by the program described in this report is an iterstive scheme baed on the Neumann Series. The method described in this report is particularly useful when considering the random orientation problem or the problem of acattering from a cloud whose particlea have a given atatistical diatribution of orientationa. The rescon for this is that the iterative technique developed in thie report that makes use of the Shiffrin method of calculating the action of multipla dimensional integral operatora can be carried out vary rapidly for particlea with a sufficiently emall index of refrection. The range of validity of this method and of the computer program are provided to the potential user of the progtam in this report.

1. DNTEGRAL EQUATIONS AND LIGET SCATTERING

The purpose of this section is to provide the user of the program with a description of both the equation that is solved by the computer program, and the method of solution that is used. The equation solved is the volume integral equation studiod by Muller in his clagical worke and now widely used (|3|-|11|). This equation hae the form

$$
\begin{equation*}
\mathbf{E}=\mathbf{E}^{1}+\left(\mathrm{grad}(\text { div })+k_{o}^{2}\right) \int\left(m^{2}-1\right)\left(\frac{\exp \left(i \mathbf{k}_{0}\left|\mathbf{r}-\mathbf{r}_{v}\right|\right.}{4 \pi\left|\mathbf{r}-\mathbf{r}_{V}\right|}\right) \mathbf{E}\left(\mathbf{r}_{v}\right) \mathrm{dv}\left(\mathbf{r}_{v}\right) \tag{1.1}
\end{equation*}
$$

whare r is the observation point, \mathbf{E}^{i} is the electric vector of the incoming field, \mathbf{E} is the electric vector of the total electromagnetic field resulting from the interaction of the incoming radiation with the aerosol particle, and r_{γ} is the variable of integration which varies over the particle. The integral equation above has several advantagea including the fact that it permits the analysis of light ecattering by aerosol particles whose electrical properties are not the same at every internal point and that only the scatterer need be modeled. In using the finite element method a large area of air space surrounding the scatterer, namely the entire region where the ambient light is significantly altered by the presence of the particle, must be lescribel in a computer momel of light scattering. The disadvantage is that computer analysis can be very costly if the wrong approach is taken. In this report an approximate solution is obtained using the concept of Born series together with the use of Fourier analysis and complex variables to get an exact expression for higher dimenaional iterates of the integral operator. This makes the problem of averaging over orientation quite tractable. In the above equation only \mathbf{E}^{\prime} is known, the value of \mathbf{E} both inside the integral and outside the integral must be determined. A typical procedure is to rewrite the integral equation (1.1) in the form

$$
\begin{equation*}
\mathbf{E}=\mathbf{E}^{1}+K \mathbf{E} \tag{1.2}
\end{equation*}
$$

where K represente the integral operator. If the norm, $|K|$ of the dyadic integral operator is amaller than one, then the integral equation (1.2) has a unique solution which is represented in the form

$$
\begin{equation*}
\mathbf{E}=\sum_{\mathrm{n}=0}^{\infty}(\mathrm{K})^{\mathrm{o}} \boldsymbol{E}^{\mathrm{i}} \tag{1.3}
\end{equation*}
$$

1 remark that the reader can easily see the origin of the series solution (1.3) which is sometimes called the Neumann series by rewriting equation (1.2) in the form,

$$
\begin{equation*}
\mathbf{E}-\mathbf{K} \mathbf{E}=\mathbf{E}^{1} \tag{1.4}
\end{equation*}
$$

and realising that equation (1.3) in very similar to the geometric series

$$
\begin{equation*}
\frac{1}{1-R}=\sum_{n=0}^{\infty} R^{0} \tag{1.5}
\end{equation*}
$$

relation that is valid if R is a complex number whose absolute value is sinaiier than one. The analogy is precisely the following relation,

$$
\begin{equation*}
(I-K)^{-1}=\sum_{n=0}^{\infty} K^{0} \tag{1.6}
\end{equation*}
$$

where \mathbf{I} is the identity operator which tranaforms every vector valued function \mathbf{E} into itself, which is valid whenever the norm of the operator K is smaller than one. These are the conditions under which this equation hae been solved in this report. The program developed in this report was adapted from the computer program written at Drexel University which is described in Acquista I! ! and in the joint works of Ariel Cohen, Leonard Cohen, and Richard Haracz $\left(|3|-3_{1}\right)$. Hott in $j 9 j$ uses the volume integral equation (1.1) without using the assumption that the norm of K is amaller than one and has evidently obtained some results which agree very well with experiments. A surface impedance approach aimilar to that used by King [14] was used by Pedersen et al. [15| who aleo obtained numerical results which sometimes agreed very well with the resulte of light scattering experiments; Pederien et al. however use a Pocklington type of theory and reduce the three dimenaional integral operator to a murface integral by averaging over the cross section of the cylinder. The apecific numerical values for which comparisons with theory and experiment are gord are detailod in $|9|$ and $|15|$. For example, a typical set of values for which Pederion got good results was for a tungeten wire with a wavelength to length ratio of .525 and a length to diameter ratio of 660. J. W. Shepherd and A. R. Holt $\{9 \mid$ on the other hand appear to get excellent agreement with backecatter experimenta for a finite cylinder with a length - radius ratio of 5 to 1 , a circumference to wavelength ratio of 0.458 , and a complex index of refraction given by

$$
\begin{equation*}
N-i K=3.14-i 0.03 \beta \tag{1.7}
\end{equation*}
$$

The problem of developing a robust program for describing the interaction of light with a fat cylinder with a high complex index of refraction remains unsolved and would probably require a direct attack on the integral equation without using any assumptions about the sise of the norm of the ascociated integral operator, and would probably use an extention of the methods of $99 \mid$. All of the above methods involve a discretisation of the integral operator appearing in the integral equation (1.1), and they furthermore imply that there is some projective transformation onto a vector apace of potential approximates of the solution of the integral equation. By the use of the word projective 1 am implying that the approximation of an acceptable approximate is equal to iteelf. We furthermore are considering at any time a finite dimepsional vector apace for a source of possible approximate solutions of ou: integral equation. Ar integral operator is asid to be of finite
rank if ite image is a finite dimensional space of functions. A best approximate of the real solution of the original integral equation (1.1) might be a function in a finite dimensional vector apace which is an close as posible to the actual solution. We thini of this beat approximate as a projection of the actual eolution onto the finite dimensional vector space in which we are looking for approximations to the actual solution of (1.1). If the apace is chosen 00 that we can get ressonably cloce to the actual colation with a beat approximate, we can show that there is an exact finite rank integral equation whowe zolution is the projection of the actual solution, and that furthermore there is a correction to this solution which can with enough ayatematic calculation give the exact solution to (1.1). Said differently, it in poseible to get an approximation to the solution to (1.1) and to also have a mathematical value of the exact arror asociated with this approximation. It is aleo posaible to dovelop a differential oquation with eolutions in a vector apace of matrix valued functions of pairs of pointe in three dimentional apace which yield a reaolvent kernel R auch that the solution \mathbf{E} of (1.1) is given by

$$
\begin{equation*}
E^{\prime}-R E^{\prime}=\mathbf{E} \tag{1.8}
\end{equation*}
$$

so that the determination of the unknown \mathbf{E} is simply, carried out by evaluating $R E^{\prime}$ which involves evaluating an integral. To anderatand how we compute R we rewrite the equation (1.1) in the form

$$
\begin{equation*}
E-E^{\prime}=\int_{n} G\left(r_{v} r_{v}\right) E\left(r_{v}\right) d v\left(r_{v}\right) \tag{1.9}
\end{equation*}
$$

and then observe that the operator R deacribed above in given by

$$
\begin{equation*}
R E^{\prime}=\int_{n} R_{\lambda}\left(r_{r} r_{v}\right) E^{1}\left(r_{v}\right) d\left(r_{V}\right) \tag{1.10}
\end{equation*}
$$

where

$$
\begin{equation*}
\frac{\mathrm{d} R_{\lambda}}{\mathrm{d} \lambda}\left(\mathrm{r}, \mathrm{r}_{v}\right)=\int_{n} R_{\lambda}(r, \mathrm{~d}) R_{\lambda}\left(\mathrm{r}_{v}, r_{v}\right) \mathrm{dv}(\mathrm{r} v) \tag{1.11}
\end{equation*}
$$

and where

$$
\begin{equation*}
R_{0}=G \tag{1.12}
\end{equation*}
$$

We discuse in this paragraph the validity of the integral equation whose solution was obtained by the computer program described in this report. In particular we want to know the connection between solutions of integral equations and the solution of the atandard Maxwell equation boundery value problem. We seek eolutions of the equations of Maxwell which are

$$
\begin{equation*}
\operatorname{curl}(E)=-\frac{\partial B}{\partial t} \tag{1.13}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{curl}(H)=\frac{\partial D}{\partial t}+J \tag{1.14}
\end{equation*}
$$

where the constitutive relations for a general optical material (c. f. Reintjes $[17], p 8$) are defined through the introduction of a polarisation vector P by meane of the relationabip

$$
\begin{equation*}
\frac{\partial \mathbf{D}}{\partial t}+\mathbf{J}=\epsilon_{0} \mathbf{E}+\frac{\partial \mathbf{P}}{\partial t} \tag{1.15}
\end{equation*}
$$

and a magnetisation vector M by the rule

$$
\begin{equation*}
\mathbf{B}=\mu_{0}(\mathbf{H}+\mathbf{M}) \tag{1.16}
\end{equation*}
$$

In a nonmagnetic material we have $\mathbf{M}=0$ and wof find that \mathbf{P} is determined as the trace of the matrix product of the matrix whose number of rows is the number of states and whose (i, j) entry is the transition dipole matrix entry between otatea i and j and the decaity of atates operator (Reintjes [17], p 22). For linearly responding materials which can be treated as a Lorents medium with a single type of oacillator, this relation in given more simply by

$$
\begin{equation*}
\mathbf{P}=\operatorname{Nex} \tag{1.17}
\end{equation*}
$$

where

$$
\begin{equation*}
m \frac{d^{2} x}{d t^{2}}+g \frac{d x}{d t}+m \omega_{0}^{2} x=e E \tag{1.18}
\end{equation*}
$$

Subatituting the solution of equation (1.18) coupled with (1.17) into the linear relationahip,

$$
\begin{equation*}
P=\left(c-e_{0}\right) \mathbf{E}-i(\sigma / \omega) \mathbf{E} \tag{1.19}
\end{equation*}
$$

we obtain the atandard diapersion relationshipe giving the complex index of refraction as a function of the frequency of the incident light for a aimple one oncillator Lurents medium. We require that the Marwall equationa be aatinfed inside and outaide the acatterer, that the tangential componenta
of \mathbf{E} and \mathbf{H} be continuous acroas the boundary of the acatterer, and that the electric and magnetic vectore of the scattered radiation satiafy the Silver Muller radiation conditions. Thus, we require that

$$
\begin{equation*}
\mathbf{E}^{\prime}=\mathbf{E}-\mathbf{E}^{\mathbf{1}} \tag{1.20}
\end{equation*}
$$

which represents the difference between the total electric vector and the electric vector of the incident light beam, should satisfy the relationship,

$$
\begin{equation*}
\binom{L I M}{R \rightarrow \infty}\left(\int_{S_{1}}\left(\mid \operatorname{curl}\left(E^{\cdot}\right) \times n-i k_{0} E^{\prime}!\right)^{2} \mathrm{~d} a\right)=0 \tag{1.21}
\end{equation*}
$$

where S_{R} is a aphere of radius R centered at a point in the bounded acatterer Ω. We multiply out the expresoion in the integrand appearing in the left side of equation (1.21) obtaining the relationship,

$$
\begin{gather*}
\left(\operatorname{curl}\left(E^{\prime}\right) \times n-i k_{0} \mathbf{b}^{\prime}\right) \cdot\left(\operatorname{curl}\left(E^{\prime}\right)^{*}+i k_{0}\left(E^{\bullet}\right)^{\bullet}\right)= \\
\left(\mid \operatorname{curl}\left(E^{\bullet}\right) \cdot n \|^{2}+k_{0}^{2}\left(\left|E^{\prime}\right|\right)^{2}-i k_{0}\left(E^{\prime} \times \operatorname{curl}\left(E^{\prime}\right)^{0}\right) \cdot n\right)+i k_{u}\left(\left(E^{\prime}\right)^{\bullet} \times \operatorname{curl}\left(E^{d}\right)\right) \cdot n \tag{1.22}
\end{gather*}
$$

In developing the above equation we have used the fact that

$$
\begin{equation*}
(A \times n) \cdot B=(B \times A) \cdot n \tag{1.23}
\end{equation*}
$$

for all vectors \mathbf{A}, \mathbf{B}, and n . This enables us to show that if \mathbf{E}^{d} defores the difference between two representations of the electric field vector in the interior of the scatterer Ω which satisfies the Maxwell equations, (1.13) and (1.14), the radiation condition (1.21) and the condition that tangential components of the electric field \mathbf{E} and the magnetic field \mathbf{H} are continuous acrose the boundary of the scatterer that then

$$
\begin{equation*}
k_{o} \omega \mu_{0} \int_{n} \sigma\left(\left|E^{d}\right|\right)^{2} d v=0 \tag{1.24}
\end{equation*}
$$

This permits us to show that in a naturally arising collection of electromagnetic fields, there is only one solution of the Maxwell equations (1.13) and (1.14) inside and outaide the scatterer \cap which satisfies the radiation condition (1.21) and the regularity conditions requiring continutity of tangential components of \mathbf{E} and \boldsymbol{H} acrose the boundary of \cap. Furthermore, by introducing the dual integral equation obtained by applying the curl operation to both sides of equation (1.1) and enforcing the first Maxwell equation (1.1), we can prove that the second Maxwell equation (1.14) is satiafied both inside and outaide the scattering body. If we assume that the electrical properties are infinitely differentiable, we can prove that tangential components of \mathbf{E} and \mathbf{H} are continuous acrosa the boundary of the acatterer. We note that by smoothing sharp edges, we can get as close as we pleace to describing an aerosol particle whose electrical properties change suddenly from those of free space by passing acroas the particle boundary by using infinitely smooth electrical properties. The particular form of the kernel function in the integral equation (1.1) enaures us that outside the scatterer

$$
\begin{equation*}
\mathbf{E}-\mathbf{E}^{\prime}=\mathbf{E}^{\prime} \tag{1.25}
\end{equation*}
$$

satisfies the relation (1.21). This proves mathemtically that the integral equation formulation (1.1) of the light scattering problem was completely equivalent to the atandard Maxwell equation formulation. This is important, because we then know that if we can prove that we have developed a numerical scheme for correctly solving the integral equation (1.1), such as the iterative method deacribed in this report, then we are confident that this is the exact solution of our light scattering problem under the milder assumption that the scattering process is correctly described by the solution of the atandard tranamission problem asociated with linear Maxwell equations.

Siuce the term appearing in the integrand of equation (1.1) is infinite when the variable of integration r, is exactly equal to the obeervation point r, we have been concerned about the numerical interpretation of the action of the integral operator on an electromagnetic field, and we have carried out careful numerical experiments with a principle value interpretation which excises a aphere coutaining the observation point r and breaks up the integration over Ω into a portion interior and exterior to this sphere which is contained in \cap. We have compared solutions which were obtained numerically with exact solutions for aerosol particles with special ahapes. We have used the exact solution for scattering by a amall spheroid in an electromagnetic field making use of the fact that the field inside an ellipsoid is nearly uniform (Stratton [18], page 213) if this ellipsoidal dielectric is amall compared with the wavelength. Furthermore, exact formulas can be found for the components of the Polarisation vector inside an ellipsoidal dielectric in a uniform field, which is oyuivalent to the problem of a very amall ellipsoidal dielectric in a plane wave light source. What I did was to assume that the scatterer was very small and take the observation point r of equation (1.1) to be inside the ellipooid. I then noted that the electric vector \mathbf{E} appearing in equation (1.1) wan just a constant vector. I, therefore, substituted an arbitrary conatant vector into (1.1). I
axcieed a amall aphere about the obearvation point and evaluated the action of the integral operator on the conatant vector inside this excised aphere using apherical coordinatea by an exact formula; thie jut involved the evaluation of nine simple trigonometric integrale. I next cut a cylindrical hole in the ellipsoid whose axis pased through the center of the excised sphere and whose radius was exactly the radiue of the excised aphere. I used a highly accurate Gauss quadrature scheme to evaluate the action of the integral operator outaide the cylindrical ahaft in my apheroid. I did the anite kind of accurate integration over the region of the cylinder inside the apheroid and above and below my excised aphere. In carrying out the calculation, I made my excised aphere as large as ponible to reduce the varistion in the integrand in the portion of the apheroid that was outaide the excised sphere. The following table show the sise and complex index of refraction of a apheroid subject to 60 cycle per second radiation.

SPEEROID DATA	
Minor Axis Length 2 meters	$10^{6}-i 0.33 /\left(60 \times 8.854 \times 10^{-12}\right)$

The next table showe the comparion of two different methods of calculation. These are the exact calculation using apheroidal coordinates and the computations involving the development of a syntem of three equations in three unknowns based on the knowledge that (Stration [18], page 213) the internal electric vector of a dielectric cllipacid in a uniform field is a constant.

FIELDS INDUCED IN A SPHEROID				
acis ratio 3/2	$\begin{gathered} \operatorname{Re}\left(E_{n}\right)_{1001} \\ .2687743454 \times 10^{-10} \end{gathered}$	$\begin{gathered} \operatorname{lm}\left(E_{4}\right)_{\operatorname{sen} 1} \\ .2637426820 \times 10^{-7} \end{gathered}$	$\begin{aligned} & \text { Re }\left(E_{y}\right) \text { ccuvinu4 } \\ & .266768 \times 10^{-10} \end{aligned}$	
4/2	$.2475938871 \times 10^{-10}$	$.2447808138 \times 10^{-7}$	$.244759 \times 10^{-10}$. 244791×10^{-7}
8/2	$.2365922431 \times 10^{-10}$. $2339072117 \times 10^{-7}$	$.236609 \times 10^{-10}$. 233921×10^{-7}

This analyais of methods of comparing integral equation solutions of the problem of computing the fields induced in spheroids to the exact formulation using the Maxwell equations is not without relevance to the problem of describing acattering by apheroids. Firat of all the method of computation shows that when the observation point r is inside the scatterer, then the singular portion of the integral operator cannot be ignored, and that it in properly computed by excining a aphere containing the obervation point and calculating the principle value integral over the aphere and over the common part of the interior of the acatterer and the exterior of the aphere containing the observation point. The integral equation used in producing the above table was the quasi static integral equation, but for particlea whose sise parameter is much smaller than a wavelength of light, the quadiatatic analyai is very accurate. (Stratton [17], page 213) and Bohren and Huffan [2], pages 130-157) The integral equation used in the above analyais was the one obtained from equation (1.1) by setting

$$
\begin{equation*}
\exp \left(\text { in } d r-r_{v} 0=1\right. \tag{1.26}
\end{equation*}
$$

A second reacon that a knowledge of this comparison is useful is due to the comparison (Haracs et a [8]) between exact apheroid calculations uning apheroide that are similar in ahape to a funite cylinder, and numerical solution of the integral equation when the scatterer is the finite cylinder circumscribing the apheroid or which has the same length and volume as the spheroid. The authors showed that good agreement wa obtained when the index of refraction was 1.5 and the aspect ratio wat 10(Haracs et al. [8], page 9326).

The program at the present time produces as its output the intensities asociated with the componente of the electric vector of the ecattered radiation that are parallel to the detector plane but perpendicular to the direction of propagation, and the component perpendicular to the direction of propagation, but this is inadequate since in recent years diecussions at the CRDEC Aerosol Sciance Confarence have confirmed that much more information is available from particles interogated by electromagnetic radiation than is available from these two amplitudes which turn out to be related to the first two Stokes parameters of the acattered radiation. At the present time one of the preferred means of presenting this information is through the eeven independent parameters of the four by four Mueller matrix (Bohren and Huffman \{2|). To calculate the entries one could perform experiments on the object of intereat by aubjecting it to light with different polariastions and meseuring with phaee the electric vectors of the acattered radiation. The reason that this is correct ia that the real and imaginary parts of the entries, S_{1}, S_{2}, S_{3}, and S_{4}, of the amplitude scattering matrix (Bohren and Huffman (2), pagea 62-63) completely determine all aixteen entries of the four by four Mueller matrix (Bohren and Huffman [2|, page 65). The formule are linted explicitely in Bohren and Huffman |2|, pege 65. Thus, to show that everything can be obtained with the present program we simply have to show how to get the four complex entriee of the amplitude scattering matrix.

In the next section we will explain how to get the unit vectors $e_{s_{1}}$, and e_{7}, in the direction of the
x and y axen, reapectivaly, of the detoctor coordinate oyatern. We meume that $E ;$ is the eloctric mector of the acatered radiation when the electric vector of the incident radiation ia parallel to the reference plane. We aeame that E_{6} in the electric vector of the scattered radiation when the electric vector of the incident radiation makea an angle of 90 degrees with reapect to the reference plane. Both of theee quantition are computed by the progran. Modulo the constant ctherafore we we that the complas entriee of the ampl:i: Se ecattering matrix are given by

$$
\begin{align*}
& \mathrm{CS}_{2}=\frac{\left(\mathrm{E}_{0}^{\left.\mathrm{g} \cdot \mathrm{e}_{2}\right)}\right.}{\left(\mathrm{E}_{0}^{1} \cdot \mathrm{E}_{3}\right)} \tag{1.27}
\end{align*}
$$

$$
\begin{align*}
& c S_{4}=\frac{\left(E_{0} \cdot \epsilon_{y_{4}}\right)}{\left(E_{j} \cdot \epsilon_{y_{4}}\right)} \tag{1.29}
\end{align*}
$$

As we use the quantitian calculated by equations, we see that the entriee of the Mueller matrix are all proportional to $(|c|)^{2}$ which torne out to be given by

$$
\begin{equation*}
(|c|)^{2}=\frac{1}{k_{0}^{2} r^{2}} \tag{1.31}
\end{equation*}
$$

where \mathbf{z}_{0} is the propagation constant of free apace or $2 \pi / \lambda$ where λ here denotes the wavelength of the light. This fact cauee the entriee of the Mneller matrix to be independent of the distance from the ecattorer to the detector.

We now sive a precise explanation of the computation of the entries of the Mueller matrix in terme of the ontries of the amplitude acabtering matrix. From Bohron and Huffmen ([2], p 68) the amplitude acattering matrix in given by the relation,

$$
\binom{E^{\prime} \cdot u_{s_{4}}}{E^{\prime} \cdot \cdot_{4}}=c\left(\begin{array}{ll}
S_{2} & S_{3} \tag{1.32}\\
S_{4} & S_{1}
\end{array}\right)\binom{F^{\prime} \cdot e_{z_{4}}}{F^{\prime} \cdot \cdot_{y_{4}}}
$$

The Muellar matrix rolatee the Stokee parametars of the incident radiation to the Stokee parameters of the ecattered rediation at each detector position. Since there are four Stokee parameters defined by the relations which ars the action of quadratic forms on the incident radiation given by

We now mate some commente concerning the exiatence of the Muellar matrix. We note that combinations of L_{4}, Q_{1}, U_{1}, and V_{1} will give all posible combinations of products of the two

$$
\begin{align*}
& \left(E^{\prime} \cdot \theta_{z_{d}}\right)\left(E^{\prime} \cdot \bullet_{z_{d}}\right)^{\bullet}=(1 / 2)\left(I_{0}+Q_{1}\right) \tag{1.34}
\end{align*}
$$

$$
\begin{align*}
& \left(E^{\prime} \cdot \bullet_{z_{d}}\right)\left(\boldsymbol{I}^{\prime} \cdot{ }_{r_{0}}\right)^{\bullet}=(1 / 2)\left(U_{0}-i V_{0}\right) \tag{1.36}\\
& \left(\mathrm{E}^{\prime} \cdot \bullet_{\mathrm{y}_{0}}\right)\left(\mathrm{E}^{\prime \cdot} \cdot \bullet_{\mathrm{s}_{1}}\right)^{*}=(1 / 2)\left(\mathrm{U}_{0}+\mathrm{iV}\right)
\end{align*}
$$

W0 remark that equations (1.34) through (1.37) also hold with the superacript a which represents the scattered radistion replaced by the superscript i which is used to tell us for example that Σ^{\prime} denotes the electric vector of the incident light beam. These equations have the form

$$
\begin{align*}
& \left(\mathbf{E}^{\prime} \cdot \mathbf{e}_{\mathrm{I}_{1}}\right)\left(\mathbf{E}^{1} \cdot \mathbf{e}_{\mathrm{I}_{1}}\right)^{\prime}=(1 / 2)\left(I_{1}+Q_{1}\right) \tag{1.38}\\
& \left(\mathbf{E}^{\prime} \cdot e_{y_{1}}\right)\left(\mathbf{E}^{\prime} \cdot e_{y_{1}}\right)^{0}=(1 / 2)\left(I_{1}-Q_{1}\right) \tag{1.39}\\
& \left(\mathbf{E}^{1} \cdot e_{\mathbf{z}_{0}}\right)\left(\mathbf{E}^{1} \cdot e_{y_{0}}\right)^{\bullet}=(1 / 2)\left(\mathrm{U}_{1}-\mathrm{i} \mathrm{~V}_{1}\right) \tag{1.40}\\
& \left(E^{\prime} \cdot e_{y_{1}}\right)\left(\mathbf{E}^{\prime} \cdot e_{x_{1}}\right)^{\cdot}=(1 / 2)\left(U_{1}+i V_{1}\right) \tag{1.41}
\end{align*}
$$

Thus, it is clear from this and the expansion of the quadratic forms that there is a four by four matrix, which we will refer to as the Mueller matrix, which relates the Stokes parametera of the ecattered rediation to the Stokea parametera of the incident radiation. Furthermore, this rolutionahip is written in the form

We will now explain how we can in a systematic manner calculate the representation of all the Mueller matrix elements in terms of the entries of the amplitude scattering matrix by the use of the relations (1.38) through (1.41), their analogues for the incident radiation, and the matrix equation (1.32). We will illustrate our method with the following computation of the (1 j) entries of the Moeller matrix for j running from 1 to 4. Substituting the matrix relation (1.32) into the right aide of the expreation for L given by equation (1.33) we see that

$$
\begin{align*}
L= & |c|^{2}\left(\left|\left(E^{1} \cdot e_{r_{4}}\right)\right|^{2}\left(S_{2} S_{i}^{0}+S_{4} S_{i}^{0}\right)+\left(E^{\prime} \cdot e_{x_{4}}\right)\left(E^{1} \cdot e_{y_{4}}\right)^{0}\left(S_{2} S_{j}^{0}+S_{4} S_{1}^{0}\right)+\right. \\
& \left|\left(E^{1} \cdot e_{y_{4}}\right)\right|^{2}\left(S_{g} S_{j}^{0}+S_{1} S_{i}^{0}\right)+\left(E^{1} \cdot e_{y_{4}}\right)\left(E^{\prime} \cdot e_{z_{4}}\right)^{0}\left(S_{3} S_{i}^{0}+S_{1} S_{j}^{0}\right) \tag{1.43}
\end{align*}
$$

It will then follow after making the replacementa suggested by equations (1.38) through (1.41) that

$$
\begin{align*}
I= & \left.i c\right|^{2}\left((1 / 2)\left(I_{1}+Q_{1}\right)\left(i S_{2 i} i^{2}+\left.i S_{1}\right|^{2}\right)+(1 / 2)\left(U_{1}-i V_{1}\right)\left(S_{3} S_{2}^{0}+S_{1} S_{i}^{0}\right)+\right. \\
& \left.(1 / 2)\left(U_{1}+i V_{i}\right)\left(S_{3} S_{2}^{0}+S_{1} S_{4}^{0}\right)+(1 / 2)\left(I_{1}-Q_{1}\right)\left(\left|S_{3}\right|^{2}+\left|S_{1}\right|^{2}\right)\right) \tag{1.44}
\end{align*}
$$

Thus, if we simply collect the coefficients of L in equation (1.44) we find that since

$$
\begin{equation*}
L_{1}=\left(|c|^{2}\right)\left(S_{(1,1)} \dot{\mathcal{L}}_{1}+S_{(1,2)} \mathbf{Q}_{1}+S_{(1,3)} U_{1}+S_{(1,4)} V_{1}\right) \tag{1.45}
\end{equation*}
$$

the Mueller matrix entry $S_{(1,1)}$ ia given by

$$
\begin{equation*}
S_{(1,2)}=(1 / 2)\left(\left|S_{1}\right|^{2}+\left|S_{2}\right|^{2}+\left|S_{3}\right|^{2}+\left|S_{6}\right|^{2}\right) \tag{1.46}
\end{equation*}
$$

Collecting the coefficients of Q_{i} we find that

$$
\begin{equation*}
S_{(1,2)}=(1 / 2)\left(\left|S_{2}\right|^{2}+\left.i S_{4}\right|^{2}-\left(\left|S_{1}\right|^{2}+\left|S_{3}\right|^{2}\right)\right) \tag{1.47}
\end{equation*}
$$

Since half of a number and its complex conjugate is the real part of the complex number, the factor $(1 / 2)$ does not appear in the expression for $S_{11.3)}$. We deduce that

$$
\begin{equation*}
S_{(1, S)}=\operatorname{Re}\left(S_{2} S^{*}+S_{1} S_{4}^{*}\right) \tag{1.48}
\end{equation*}
$$

where if

$$
\begin{equation*}
z=x+i y \tag{1.49}
\end{equation*}
$$

denotes a complex number, then

$$
\begin{equation*}
\operatorname{Re}(z)=x \tag{1.50}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{lm}(s)=y \tag{1.51}
\end{equation*}
$$

The last term in the above expression is then determined to be

$$
\begin{equation*}
S_{(1.4)}=\operatorname{Im}\left(S_{2} S^{j} ;-S_{1} S_{4}^{0}\right) \tag{1.52}
\end{equation*}
$$

The remainifg terms are given in Bohren and Huffman (| 2 !, page 85) and are derived in the same way. The present computer program can therefore yield all the Mueller matrix entries as a function of detector ingle.

2. LABORATORY, TARGET, AND DETECTOR COORDINATE SYSTRMS

In this section we treat three coordinate aystems called the laboratory, the target, and the detector coordinate ayatems whose : axes reapectively coincide with (i) the direction of propagation of the radiation, (ii) the axis of a scattering cylinder, and (iii) a line joining the center of this cylinder and a point detector of the light scattered by the cylinder. We will refer to these coordinate syatems as reapectively the $x_{0}-y_{0}-s_{0}$ coordinate syntem, the $x_{a}-y_{0}-z_{i}$ coordinate aystem, and the $x_{d}-y_{d}-s_{d}$ coordinate syatem. We let $e_{x_{d}}, e_{y_{0}} e_{x_{d}}$ denote the unit vectore in the direction of the peritive x_{0}, y_{0} and m_{0} exes. We let $e_{x_{1}}, e_{y_{1}}, e_{i_{1}}$ denote the unit vectore in the direction of the positive x_{a}, y_{a}, and s_{1} axes. We let $e_{x_{1}}, e_{y_{d}}, e_{1_{d}}$ denute the unit vectors in the direction of the positive x_{d}, y_{d}, and s_{d} axes. The detector is in the plane containing the x_{0} axis and the s_{0} axis. In these coordinate aystems the y_{0} axis or the laboratory y axis and the detector y axis or the y_{d} axis coincide so that there is a aimple two dimensional relationship between the coordinates of the laboratory axis and the detector axis given by

$$
\left(\begin{array}{l}
E_{x_{0}} \tag{2.1}\\
E_{y_{4}} \\
E_{r_{4}}
\end{array}\right)=\left(\begin{array}{ccc}
\cos \left(2 \phi_{0}\right) & 0 & \sin \left(2 \phi_{0}\right) \\
0 & 1 & 0 \\
-\sin \left(2 \phi_{0}!\right. & 0 & \cos \left(2 \phi_{0}\right)
\end{array}\right)\left(\begin{array}{l}
E_{x_{4}} \\
E_{\gamma_{4}} \\
E_{\gamma_{4}}
\end{array}\right)
$$

where $2 \phi_{0}$ is the angle between the line from the center of the cylinder to the detector and the s_{0} acin. Coordinate tranaformations of the type given by equation (2.1) are members of the real orthogonal group and are inverced simply by interchanging rows and columns; consequently the inverse transformation is given by

$$
\left(\begin{array}{l}
E_{x_{4}} \tag{2.2}\\
E_{y_{4}} \\
E_{\mathrm{r}_{4}}
\end{array}\right)=\left(\begin{array}{ccc}
\cos \left(2 \phi_{0}\right) & 0 & -\sin \left(2 \phi_{0}\right) \\
0 & 1 & 0 \\
\sin \left(2 \phi_{0}\right) & 0 & \cos \left(2 \phi_{0}\right)
\end{array}\right)\left(\begin{array}{l}
E_{x_{4}} \\
E_{\gamma_{4}} \\
E_{\mathrm{x}_{4}}
\end{array}\right)
$$

The s_{d} axis is obtained simply by rotating the s_{0} axis toward the x_{0} axis by an angle of $2 \phi_{0}$. Since the y_{d} axis in the same as the y_{0} axis, we see that the x_{d} axis is aimply that line which pases through the origin of the original coordinate syatem and which in perpendicular to both the s_{d} axis and the y_{d} axis. The Fortran variable used in our program to denote the detector angle $2 \phi_{0}$ is TTO.

We now discuss the relationship between the target coordinates and the the laboratory coordinates. The cylinder makes an angle of ϕ with respect to the $:_{0}$ axis and the axis of the acattering cylinder that is taigeted so to apeak by the incoming light beam, and the projection of this cylinder on the $x_{0}-y_{0}$ plane makes an angle of γ with respect to the x_{0} axis. The FORTRAN names for these variables are given in the following table.

PHA	ϕ	angle of cylinder and s_{0} axis
GA	γ	angle of cylinder shadow and x_{0} axis

The two angles ϕ and γ can be uned to expreas a point on the cylinder axis one unit away from the origin has spherical coordinates given $(1, \gamma, \phi)$ and consequently the unit vector in the direction of the positive s a axis is with respect to the laboratory frame given by

$$
\begin{equation*}
e_{s_{t}}=\sin (\gamma) \cos (\phi) e_{x_{0}}+\sin (\gamma) \sin (\phi) e_{y_{0}}+\cos (\gamma) \cos (\phi) e_{s_{0}} \tag{2.3}
\end{equation*}
$$

We get the unit vector in the direction of the positive $y_{\text {a }}$ axis by the cross product formula,

$$
\begin{equation*}
e_{y_{0}}=\frac{e_{1} \times e_{1}}{\left|e_{1_{1}} \times e_{e_{1}}\right|} \tag{2.4}
\end{equation*}
$$

The final unit vector the one in the direction of the positive $x_{\text {a }}$ axis is given by

$$
\begin{equation*}
e_{z_{1}}=e_{y_{1}} x e_{n_{1}} \tag{2.5}
\end{equation*}
$$

To rolate a vector expreased in the laboratory coordinate to one its representation in the target or cylinder axis coordinatea we make the following transformation

$$
\left(\begin{array}{l}
E_{x_{1}} \tag{2.6}\\
E_{y_{1}} \\
E_{x_{1}}
\end{array}\right)=\left(\begin{array}{ccc}
\cos (\gamma) \cos (\phi) \sin (\gamma) \cos (\phi) & -\sin (\phi) \\
-\sin (\gamma) & \cos (\gamma) & 0 \\
\sin (\phi) \cos (\gamma) & \sin (\phi) \sin (\gamma) & \cos (\phi)
\end{array}\right)\left(\begin{array}{l}
E_{x_{1}} \\
E_{y_{1}} \\
E_{y_{1}}
\end{array}\right]
$$

We now define the polarisation angle a which represents the angle between the electric vector of the incoming radiation and the x_{0} ais under the asoumption that the electric vector of the incoming rediation lien in the $x_{0}-y_{0}$ plane. The FORTRAN variable used in this program is defined in the following teble.
AWFA a angle of E^{\prime} and the x_{0} axis

This definition of a means that the electric vector of the incident radiation is given by

$$
\begin{equation*}
E^{\prime}=E_{\alpha \cos }(\alpha) e_{x_{0}}+E_{\infty} \sin (\alpha) e_{y_{0}} \tag{2.7}
\end{equation*}
$$

To represent a vector given in axial or detector coordinates in laboratory coordinates you simply multiply by the invarse of the coefficient matrix in the above equation; this inverse matrix is obtained from the firat coefficient matrix aimply by interchanging rows and columns. One of the procedure carried out by the program is the execution of this matrix multiplication. In the original Drexel University $(|3|-|8|)$ code thio wa written in the tranaparent form,

$$
\begin{aligned}
& \text { EOXA }=\text { EO }{ }^{*}\left(\operatorname{COS}(\mathrm{PHA})^{*} \operatorname{COS}(\mathrm{GA})^{\circ} \operatorname{COS}(\mathrm{ALFA})\right. \\
& \left.+\operatorname{COS}(\mathrm{PHA}) \cdot{ }^{\cdot} \operatorname{SIN}(\mathrm{GA})^{*} \operatorname{Sin}(A L F A)\right) \\
& E O Y A=E O^{*}\left(-\operatorname{SIN}(G A)^{\circ} \operatorname{COS}(A L F A)\right. \\
& \left.+\operatorname{COS}(\mathrm{GA}){ }^{*} \sin (\operatorname{ALFA})\right) \\
& \mathrm{EOZA}=\mathrm{EO}^{\circ}\left(\mathrm{SNN}(\mathrm{PHA})^{\circ} \operatorname{COS}(\mathrm{GA})^{*} \operatorname{COS}(\mathrm{ALFA})\right. \\
& \left.+\operatorname{SIN}(\text { PHA })^{*} \operatorname{SIN}(A L F A) \cdot \operatorname{SIN}(G A)\right)
\end{aligned}
$$

whare ALPA is the polarisation angle and EO is the length of the olectric vector of the incoming radiation, and GA ia the angle made by the cylinder ahadow in the $x_{0}-y_{0}$ plane, and PHA is the angle made by the cylinder axie and the direction of propagation of the radiation. To average over orientation we simply integrate the ccattering intenaity over the two angles γ and ϕ at each obearvation point. Gauecian quadrature is used to carry this out accurately and subroutine GAUSS is uned to select the Gausian quadrature pointa to carty out this surface integral.

8. THE PUPL PUNCTION

The characteriatic function of the cylinder acattering the light is the function on all of \mathbb{R}^{3}, three dimenaional apace, which takes on the value 1 at pointa inside the cylinder and which takes on the value of 0 at all other pointe. The FUNCTION U in the Drexel $(\mid 3]-[8 \mid)$ code calculates the apatial Fourier trandorm of the characteristic function of the scattering cylinder at a apecific point in three dimentional apace depending on components of the vector \bar{X} given by

$$
\begin{equation*}
\mathbf{I}=k_{00} \mathbf{3}_{1}-k_{0} \tag{3.1}
\end{equation*}
$$

where \mathbf{k}_{0} is the ratio of the angular frequency of the incoming light to the vacuum speed of light. The Fortran varisbles ured are IPAP for the component parallel to the cylinder axis and XPER is the component perpendicular to the cylinder axis. Because of symmetry we naturally will change coordinates first and calculate this Fourier tranaform in the $x_{4}-y_{0}-s_{4}$ coordinate system. Aceuming that thim has been done, we then change to cylindrical coordinates with respect to this coordinate syrtem and write

$$
\begin{equation*}
v(x, y, v)=\iint_{0}^{R+\pi} \int_{-\pi / n}^{b / 2}\left(\exp \left(i\left(\pi_{v}\left(\cos (\theta) \cos \left(\theta_{v}\right)+\sin (\theta) \sin \left(\theta_{v}\right)\right)+\operatorname{siv}\right)\right)\right] d s_{v} d \theta_{v} r_{v} d r_{v} \tag{3.2}
\end{equation*}
$$

where (r_{v}, θ_{v}, s_{y}) in the representation in cylindrical coordinatee of a point which varies over the cylinder. The integral with reepect to a , can be carried out exactly leaving ue with

$$
\begin{equation*}
u(x, y, s)=\int_{0}^{R+\pi} \int_{-\pi}^{\exp \left(i\left(r r_{v} \cos \left(\theta-\theta_{v}\right)\right)\right.}\left(\frac{\exp (i \operatorname{sh} / 2)-\exp (-i \operatorname{sh} / 2)}{i s}\right) d \theta_{v} r_{v} d r_{v} \tag{3.3}
\end{equation*}
$$

This further simplifiee and in fect can be completely integrated if we make use of the following two fecte which are eatablinhed in Appendix B of the paper on .cattering by infinite cylinders. The firat one is the representation of the Bessel function of order 0 by the relationship,

$$
\begin{equation*}
J_{0}(w)=\left(\frac{1}{2 \pi}\right) \int_{-\pi}^{+\pi} \exp (-i w \cos (\theta)) d \theta \tag{3.4}
\end{equation*}
$$

and the relation,

$$
\begin{equation*}
\int_{0}^{R} J_{0}(r) r d r=R J_{1}(R) \tag{3.5}
\end{equation*}
$$

which can be proven by many methods including just using the series representation of the Bessel functions which is given by

$$
\begin{equation*}
J_{m}(r)=\sum_{n=0}^{\infty}\left(\frac{(-1)^{2} w^{2 m+m}}{2^{2 m+m_{n}}!(n+m)!}\right) \tag{3.6}
\end{equation*}
$$

Thus, we see that simply making use of these facts and the elementary relation

$$
\frac{\sin (\psi / 2)}{\psi / 2}=\frac{\exp (i \psi / 2)-\exp (-i \psi / 2)}{i \psi}
$$

we see that with ψ replaced by sh/2 that

$$
\begin{equation*}
u(x, y, s)=2 \pi R^{2} h\left(\frac{J_{1}(\mathrm{Rr})}{R r}\right)\left(\frac{\sin (s h / 2)}{s h / 2}\right) \tag{3.7}
\end{equation*}
$$

The function u is defined in the $\operatorname{Drexel}(|3|-|8|)$ Univeraity code ae follows

```
FUNCTION U(XPAR,XPER,A,H,XK)
P = SQRT(XPAR**2 + XPER **2)
X = XPAR*(H/2)* XK
Y = XPER * ^ ^
C= ABS(X)
B=ABS(Y)
IF(C.LT.O.001) XA = 1-X** 2/6+X* 4/120
IF(C.GE.0.001) XA = SIN(X)/X
IF(B LT.0.001) XB = (1-Y** 2/8+Y**4/192)*0.5
[F(B.GE.0.001) XB = BESS1(Y)/Y
V = 3.14159285358979323** A** 2* H
U = 2****'XA*
RETURN
END
```

where the function BESS1 io the firat order Bessel function J_{1}, and the input variables XIX, A, and H are defined in the following table

XI	the propagation constant of the wave
A	the radius of the cylinder
H	the length (or height) of the cylinder

1. THE INCOMING PELD E VECTOR, XPAR, AND XPER

We discuse here the detector or target coordinate system and its use in providing a representation of the eloctric voctor of the incoming radiation, in defining the polarisation vector of the incoming radiation, and in defining another vector \bar{X} defined by

$$
\mathbf{X}=\mathbf{k}_{0} \mathbf{e}_{\mathbf{x}_{1}}-\mathbf{k}_{0}
$$

and in defining XPAR and IPRER by the rules,

$$
\mathbf{X P A R}=\mathbf{e}_{\mathbf{1}} \cdot \mathbf{X}
$$

which means the component of \bar{X} parallel to the cylinder axis, and

$$
\text { IPER }=\left(\mathbf{X} \cdot e_{\mathbf{x}_{4}}\right) e_{\mathbf{x}_{4}}+\left(\mathbf{X} \cdot e_{4}\right) e_{4}
$$

which means the component of X which is perpendicular to the cylinder axis. We note that by the definition of \mathbf{X} that it is independent of the polarisation of the incoming radiation, but is related to the unit vector in direction of propagation and the unit vector pointing from the center of the ecatterer to the detector. We develop components of thin vector parallel and perpendicular to the unit vector, e \mathbf{i}_{1}, pointing along the axis of the cylindrical acatterer so that while the vector itself is independent also of the orientation of the scattering cylinder, the manner in which it is decomr osed is related to the scatterer orientation.

In this section we let x_{0}, y_{0}, and s_{0} denote the laboratory coordinates whose z axis is aligned with the direction of propagation of the radiation, and we let x_{d}, y_{d}, s_{d} denote the usual x, y, and a coordinaten in the aystem whose a axis coincides with a line from the detector to the origin of the laboratory frame where we asume that the detector is comewhere in the plane containing the x_{0} axis and the s_{0} axis. The origin of both coordinate systems is the center of the cylinder that is ecattering the light. If we let e_{2}, denote the unit vector pointing from the origin to the detector and we let $2 \phi_{0}$ denote the angle between the direction of propagation of the radiation and the the line from the origin of the coordinate aystem to the detector. Then we clearly have

$$
\begin{equation*}
e_{i_{1}}=\sin \left(2 \phi_{0}\right) e_{2_{4}}+\cos \left(2 \phi_{0}\right) e_{4} \tag{4.1}
\end{equation*}
$$

If we further mesume that the unit vector e, in the direction of the positive y axis of the detector coordinate system exactly coincides with the unit vector $e_{\text {, }}$ in the direction of the positive y axis of the laboratory coordinate aystem, then the unit vector $e_{x_{1}}$, in the direction of the positive x axis of the detector coordinate syatem can be obtained by taking the crose product of ey, and the vector $e_{\mathbf{a}_{2}}$, obtaining

$$
\begin{equation*}
e_{x_{1}}=-\sin \left(2 \phi_{0}\right) e_{x_{0}}+\cos \left(2 \phi_{0}\right) e_{x_{0}} \tag{4.2}
\end{equation*}
$$

The above relationships between the basis elements defines an orthogonal transformation relating the representations in the tivo coordinate aystems. The relation between detector and laboratory coordinates is given by

$$
\left(\begin{array}{l}
E_{4_{4}} \tag{4.3}\\
E_{\psi_{1}} \\
E_{4}
\end{array}\right)=\left[\begin{array}{ccc}
\cos \left(2 \phi_{0}\right) & 0 & \sin \left(2 \phi_{0}\right) \\
0 & 1 & 0 \\
-\sin \left(2 \phi_{0}\right) & 0 & \cos \left(2 \phi_{0}\right)
\end{array}\right]\left(\begin{array}{l}
E_{x_{1}} \\
E_{\psi_{1}} \\
E_{\tau_{4}}
\end{array}\right)
$$

and in the detector coordinatea the relationship for the electric field vector components is a function of the coordinates of the field in the laboratory frame given by

$$
\left(\begin{array}{l}
E_{x_{4}} \tag{4.4}\\
E_{\gamma_{0}} \\
E_{x_{0}}
\end{array}\right)=\left(\begin{array}{ccc}
\cos \left(2 \phi_{0}\right) & 0 & -\sin \left(2 \phi_{0}\right) \\
0 & 1 & 0 \\
\sin \left(2 \phi_{0}\right) & 0 & \cos \left(2 \phi_{0}\right)
\end{array}\right)\left(\begin{array}{l}
E_{\varepsilon_{4}} \\
E_{c_{1}} \\
E_{x_{4}}
\end{array}\right)
$$

since the inverse of a member of the res orthogonal group is just its transpose. Since the electric vector of the incoming wave is perpendicular to its direction of propagation, we see that if at sorre time we freese the vector which Acquista ($[1], \mathrm{p} 2933$) assumed to have unit length is given by

$$
\begin{equation*}
E_{0}=\cos (\alpha) e_{x_{2}}+\sin (\alpha) e_{0} \tag{4.5}
\end{equation*}
$$

where a is the angle between the eloctric vector and the x_{0} axis in the laboratory frame, then, we can use our matrix relationship to doduce that

$$
\begin{gather*}
\left(\begin{array}{l}
E_{x_{4}} \\
E_{\gamma_{4}} \\
E_{\chi_{4}}
\end{array}\right)=\left(\begin{array}{ccc}
\cos \left(2 \phi_{0}\right) & 0 & -\sin \left(2 \phi_{0}\right) \\
0 & 1 & 0 \\
\sin \left(2 \phi_{0}\right) & 0 & \cos \left(2 \phi_{0}\right)
\end{array}\right)\left(\begin{array}{c}
\cos (\alpha) \\
\sin (\alpha) \\
0
\end{array}\right) \\
=\left(\begin{array}{c}
\cos \left(2 \phi_{0}\right) \cos (\alpha) \\
\cos (\alpha) \\
\sin \left(2 \phi_{0}\right) \cos (\alpha)
\end{array}\right) \tag{4.6}
\end{gather*}
$$

Computation of the iterate of integral operators using Fourier analysis of distribution (in the Laurant Schwarts eense) where the Fourier transform of a function which would not normally have a Fourier transform is defined in cerma of its action on a smooth function which vanishes outside of a closed interval. The normal action of a fuaction f which might very well grow at infinity on a function g which is amcoth and equal to sero identically outside of a closed interval is given by

$$
(f, g)=\int_{-\infty}^{+\infty} f(x) g(x) d x
$$

With this definition the action of the Fourier tranaform of f, which by the way completely defines f in the diatribution senae, on a teat function g in the action of f on the Fourier transform of g, which is defined in the clnesical sense. The function f can not grew too fast, however, since it has to be defined on all the Fourier tranaforms of functions of which are smooth and vanish outside a closed interval. These computations require the analyais of the vector

$$
\begin{equation*}
\mathbf{X}=k_{0} e_{1_{0}}-\mathbf{k}_{0} \tag{4.7}
\end{equation*}
$$

which in the reference frame (laboratory frame) is given by

$$
\begin{equation*}
\mathbf{I}=\boldsymbol{t}_{0}\left(\sin \left(2 \phi_{0}\right) e_{1_{0}}+\cos \left(2 \phi_{c}\right) \bullet_{q_{4}}\right)-\boldsymbol{z}_{0} \varepsilon_{\alpha_{4}} . \tag{4.8}
\end{equation*}
$$

Note that if γ is the angle between the s_{0} axis and the axis of the acattering cylinder whoee direction coincides with the unit vector e_{1}, which is the unit vector in the direction of the positive s axir of the target coordinate ayatem and if ϕ is the angle between the projection of the target axis on the plane containing the x_{0} axis and the y_{0} axis, then since ($1, \phi, \gamma$) are the apherical coordinates of the tip of the vector e_{1}, in the $x_{0}-y_{0}-s_{0}$ coordinate aystem,

$$
\begin{equation*}
a_{4_{1}}=\sin (\gamma) \cos (\phi) e_{4_{4}}+\sin (\gamma) \sin (\phi) e_{y_{0}}+\cos (\gamma) \cos (\phi) e_{4_{4}} \tag{4.9}
\end{equation*}
$$

If we take the dot product of our vector \mathbf{I} with the vector e_{3}, then we get the component of the vector I that is parallel to the target. This in the fortran variable IPAR that in used in the Drexel Univeraity code described in Haracs, L. Cohen, and A. Cohen $[8]$ and in the paper and technical report (Cohen, L., R. Haracs, and A. Cohen ($|7|$ (page 9, equation 6)) and appearing as an argument in the pupil function u as it in used to represent the electric vector of the acattered radiation in [$6 \mid$ (equation 18, page 745). Taking the dot product of X with the vector e_{1}, we see that

$$
\begin{equation*}
\mathbf{X} \cdot e_{0}=\mathbf{k}_{0}\left(\sin \left(2 \phi_{0}\right) \sin (\phi) \cos (\gamma)+\cos (\phi)\left(\cos \left(2 \phi_{0}\right)-1\right)\right) \tag{4.10}
\end{equation*}
$$

is the component of X parallel to the axis of the cylinder. The coding in the original Drexel program
$(|3|-[8])$ ueed to calcolate XPAR is given in the following table.

$$
\begin{aligned}
& \text { XPAR }= \text { XK }^{*}\left(\operatorname{SIN}(T T O)^{*} \operatorname{COS}(\mathrm{GA})^{\circ} \operatorname{SIN}(\mathrm{PHI})+\right. \\
&\left.+\operatorname{COS}(\mathrm{PHI})^{*}(\operatorname{CUS}(\mathrm{TTO})-1)\right) \\
& \hline
\end{aligned}
$$

This in calculated in subroutine PRST of the Drexel program
To find the other argument XPER used in $[7]$ (page 9, equation 8) we make use of the coordinate tranaformations in the real orthogonal group devoloped in the previous section. Remember that the target coordinate system in derivod from a knowlodge of the unit vectors in the direction of their poaitive coordinate axes which are given by equation (4.9) and the relation

$$
\begin{equation*}
e_{y}=\frac{e_{4} \times e_{1}}{\left|e_{1} \times e_{1}\right|} \tag{4.11}
\end{equation*}
$$

and

$$
\begin{equation*}
e_{\varepsilon_{1}}=e_{e_{1}} \times e_{i_{1}} \tag{4.12}
\end{equation*}
$$

The matrix equation relating \mathbf{X} in laboratory coordinates to \bar{X} in target coordinates is given by

$$
\left(\begin{array}{l}
x_{x_{1}} \tag{4.13}\\
x_{\mu_{1}} \\
x_{0_{1}}
\end{array}\right]=\left[\begin{array}{ccc}
\cos (\gamma) \cos (\phi) & \sin (\gamma) \cos (\phi) & -\sin (\phi) \\
-\sin (\gamma) & \cos (\gamma) & 0 \\
\sin (\phi) \cos (\gamma) & \sin (\phi) \sin (\gamma) & \cos (\phi)
\end{array}\right]\left[\begin{array}{c}
k_{0} \sin \left(2 \phi_{0}\right) \\
0 \\
k_{0}\left(\cos \left(2 \phi_{0}\right)-1\right)
\end{array}\right]
$$

Carrying out she multiplication on the right side of (4.13) wo see that the componente of the represeatation of the vactor I in the cylinder axis coordinate ayatem are given by

$$
\begin{gather*}
X_{1_{1}}=k_{0}\left(\cos (\gamma) \cos (\phi) \sin \left(2 \phi_{0}\right)-\sin (\phi)\left(\cos \left(2 \phi_{0}\right)-1\right)\right. \tag{4.14}\\
X_{1}=k_{0}\left(-\sin (\gamma) \sin \left(2 \phi_{0}\right)\right) \tag{4.15}\\
X_{1_{1}}=k_{0}\left(\sin \left(2 \phi_{0}\right) \sin (\phi) \cos (\gamma)\right)+\cos (\phi)\left(\cos \left(2 \phi_{0}\right)-1\right) \tag{4.16}
\end{gather*}
$$

Thus, we see that we got the same answer that we had before for XPAR and that we can now from the equations (4.14) and (4.18) exprese the perpendicular component of \boldsymbol{X} amply as the norm of the vector

$$
\begin{equation*}
V=X_{x_{1}} e_{1_{1}}+X_{y_{1}} e_{4} \tag{4.17}
\end{equation*}
$$

so that the perpendiculer component of X in given by

$$
\begin{equation*}
\left(X_{1_{1}}^{2}+X_{i_{0}}^{2}\right)^{1 / 2}=k_{0}\left(\left(\cos (\phi) \cos (\gamma) \sin \left(2 \phi_{0}\right)-\sin (\phi)\left(\cos \left(2 \phi_{0}\right)-1\right)\right)^{2}+\left(-\sin (\gamma) \sin \left(2 \phi_{0}\right)\right)^{2}\right)^{1 / 2} \tag{4.18}
\end{equation*}
$$

This perpendicalar component of \mathbf{X} is callod XPER and appears in equation (10) of reference $|\theta|$ by L. Cohen, R. Haracs, A. Cohen, and C. Acquiata. The FORTRAN otseements in the Drexel ($|3|-|8|$) computer program producing the value of XPER is given in the following table.

$$
\begin{aligned}
& \text { XPER }=\mathrm{XK}^{\circ} \mathrm{SQRT}\left(\left(\mathrm{COS}(\mathrm{PHI})^{\circ} \mathrm{COS}(\mathrm{GA})^{\circ} \mathrm{SIN}(\mathrm{TTO})+\right.\right. \\
& \left.-\operatorname{SIN}(\mathrm{PHI}){ }^{\circ}(\operatorname{COS}(\mathrm{TTO})-1)\right)^{\circ \circ}{ }^{\circ} \\
& \left.+\left(\operatorname{SIN}(\operatorname{GA})^{\bullet} \operatorname{SIN}(T T O)\right)^{* *}{ }^{\circ}\right)
\end{aligned}
$$

b. THE SCATTERED RADLATION FIELD

Observe that if we express the induced electric vector an infinite series of vector valued functiona of the form

$$
\begin{equation*}
E=E^{1}+\sum_{n=1}^{\infty}\left(m-1 \Gamma \Sigma_{n}\right. \tag{5,1}
\end{equation*}
$$

and substitute this into equation (1.1) and truncate higher order terms, then the approximation to the effective scattered radiation is given by the component of the vector,
that is perpendicular to the detector direction since thin is the part of the vector in used in cair.ulating Mueller matrix entries. In the above equation the tranaformation T simply changea the representation of a point in laboratory coordinates to the representation of a point in the target coordinate system where the saxis coincides with the exis of the cylinder so that the action of T is simply the matrix action in the following equation

$$
\left(\begin{array}{l}
x_{x_{1}} \\
x_{\gamma_{1}} \\
x_{1}
\end{array}\right]=\left(\begin{array}{ccc}
\cos (\gamma) \cos (\phi) & \sin (\gamma) \cos (\phi) & -\sin (\phi) \\
-\sin (\gamma) & \cos (\gamma) & 0 \\
\sin (\phi) \cos (\gamma) & \sin (\phi) \sin (\gamma) & \cos (\phi)
\end{array}\right)\left[\begin{array}{c}
\mathbf{k}_{0} \sin \left(2 \phi_{0}\right) \\
0 \\
\mathbf{x}_{0}\left(\cos \left(2 \phi_{0}\right)-1\right)
\end{array}\right)
$$

The angles used in the above equation are defined in the following table

The olectric vector of the acattered radiation is approximated by equation (5.2). This vector is produced by our computer program and in enough to calculate all the entries of the amplitude acattering matrix using formulas (1.27) through (1.30). To calculate the expression on the right side of equation (5.2) wo need to know that for a finite cylinder,

$$
\begin{gathered}
A_{\mathrm{Tz}}=\frac{2}{\mathrm{~m}^{2}+1} \\
A_{\mathrm{Tz}}=1
\end{gathered}
$$

and that the componenta $E_{3}, E_{y,}$, and E_{3}, are given by the relations embodied in the matrix equation,

$$
\left(\begin{array}{l}
E_{\gamma_{1}} \tag{5.3}\\
E_{\gamma_{1}} \\
E_{\gamma_{1}}
\end{array}\right)=\left(\begin{array}{ccc}
\cos (\gamma) \cos (\phi) & \sin (\gamma) \cos (\phi) & -\sin (\phi) \\
-\sin (\gamma) & \cos (\gamma) & 0 \\
\sin (\phi) \cos (\gamma) & \sin (\phi) \sin (\gamma) & \cos (\phi)
\end{array}\right)\left(\begin{array}{l}
E_{\mathbf{x}_{4}} \\
E_{\gamma_{1}} \\
E_{\gamma_{3}}
\end{array}\right)
$$

We apply equation (5.3) when the column vector in the laboratory frame represents the electric vector of the incoming radiation polarised an angle a away from the detector plane which contains the x and s axes of the laboratory frame which means that (5.3) is used with

$$
\begin{align*}
& E_{x_{4}}=E_{0}(\cos (\alpha)) \tag{5.4}\\
& E_{y_{0}}=E_{0}(\sin (\alpha)) \tag{5.5}
\end{align*}
$$

and

$$
\begin{equation*}
E_{\xi}=0 . \tag{5.6}
\end{equation*}
$$

The parameter \mathbf{k}_{0} in given by

$$
\begin{equation*}
k_{0}=\frac{2 \pi}{\lambda} \tag{5.7}
\end{equation*}
$$

and the function u is defined by

$$
\begin{equation*}
u\left(X_{3}, X_{7}, X_{3}\right)=2 \pi A^{3} H\left(\frac{J_{1}\left(A_{\rho}\right)}{A_{\rho}}\right)\left(\frac{\sin \left(s_{s} H / 2\right)}{s_{2} H / 2}\right) \tag{5.8}
\end{equation*}
$$

where

$$
\begin{gathered}
\rho=\text { XPER }=\left(\left(X_{3}\right)^{2}+\left(X_{1}\right)^{2}\right)^{1 / 2} \\
\mathbf{z}_{1}=X_{4}
\end{gathered}
$$

and $X_{\text {3 }}$, is given by

$$
\begin{equation*}
X_{1}=\operatorname{XPAR}=k_{0}\left(\sin \left(2 \phi_{0}\right) \sin (\phi) \cos (\gamma)\right)+\cos (\phi)\left(\cos \left(2 \phi_{0}\right)-1\right) \tag{5.9}
\end{equation*}
$$

where $X_{X_{1}}$ and $Y_{y_{\text {, }}}$ are coordinates of a point represented in the coordinate system whoee s axis coincides with the axis of the cylinder. and the variablea A, H, and the function J_{1} are defined in the following table

J_{1}	the Bessel function of order one
\mathbf{A}	the radius of the cylinder
H	the length (or height) of the cylinder

We will now detail the calculation of the electric vectors of the ocattered radiation in the detector coordinate syatem and in the laboratory coordinate system; we will also express the projections of the electric vector of the incoming radiation at the target in the detector coordirate syatem. Absuming sero phase of the incident radiation at the target location we see that

$$
\begin{equation*}
E_{0} \alpha \operatorname{in}(\alpha) \tag{5.10}
\end{equation*}
$$

Equations (5.3) - (5.6) imply that in the target coordinate aystem the electric vectors of the acattered radiation are given by

$$
\begin{gather*}
E_{\varepsilon_{0}}^{1}=E_{0}(\cos (\alpha) \cos (\gamma) \cos (\phi)+\sin (\alpha) \sin (\gamma) \cos (\phi)) \tag{5.11}\\
E_{y_{0}}^{j}=E_{0}(-\cos (\alpha) \sin (\gamma)+\sin (\alpha) \cos (\gamma)) \tag{5.12}
\end{gather*}
$$

and

$$
\begin{equation*}
E_{1_{0}}^{1}=E_{0}(\cos (\alpha) \sin (\phi) \cos (\gamma)+\sin (\alpha) \sin (\phi) \sin (\gamma) \tag{5.13}
\end{equation*}
$$

However, in order to carry out the analyais in a syatematic manner we need to go from the target to the detector coordinate aystem. The trassform relating the representation in the target coordinate syatem to a representation in the detector coordinate aystem is given by

$$
\left(\begin{array}{l}
E_{x_{1}} \\
E_{\gamma_{4}} \\
E_{\varkappa_{4}}
\end{array}\right)=T\left(\begin{array}{l}
E_{x_{1}} \\
E_{\gamma_{1}} \\
E_{\eta_{4}}
\end{array}\right)
$$

where the matrix T is defined by the relation,
$T=\left(\begin{array}{ccc}\cos \left(2 \phi_{0}\right) \cos (\gamma) \cos (\phi)-\sin \left(2 \phi_{0}\right) \sin (\phi) & -\cos \left(2 \phi_{0}\right) \sin (\gamma) & \cos \left(2 \phi_{0}\right) \sin (\phi) \cos (\gamma)-\sin \left(2 \phi_{0}\right) \cos (\phi) \\ \sin (\gamma) \cos (\phi) & \cos (\gamma) & \sin (\phi) \sin (\gamma) \\ (5.14) \\ -\sin \left(2 \phi_{0}\right) \cos (\gamma) \cos (\phi)-\cos \left(2 \phi_{0}\right) \sin (\phi) & \sin \left(2 \phi_{0}\right) \sin (\gamma) & -\sin \left(2 \phi_{0}\right) \sin (\phi) \cos (\gamma)+\cos \left(2 \phi_{0}\right) \cos (\phi)\end{array}\right)$
The tranaformation described by equation (5.14) can be used to transform the natural target coordinate aystem representation of the electric vectore of the acattered radiation, which in turn is naturally given in terms of the target coordinate gyatem representation of the electric vectors of the incident radiation by the equations,

$$
\begin{align*}
& E_{i_{0}}^{\prime}=\frac{\exp \left(i k_{0} I\right)}{r} u(X) E_{x_{0}} A_{T E} \tag{5.15}\\
& E_{i}=\frac{\exp \left(i k_{0} I\right)}{I} u(X) E_{y_{0}} A_{T E} \tag{5.16}\\
& E_{i_{0}}=\frac{\exp \left(i k_{0} I\right)}{r} u(X) E_{i_{0}} A_{T M} \tag{5.17}
\end{align*}
$$

where

$$
\begin{equation*}
x=x_{x_{0}} e_{x_{0}}+x_{r_{0}} e_{0}+x_{4_{1}} e_{1_{0}} \tag{5.18}
\end{equation*}
$$

with

$$
\begin{gather*}
X_{X_{1}}=k_{0} \cos (\gamma) \cos (\phi) X_{r_{1}}=k_{0}\left(\cos (\gamma) \cos (\phi) \sin \left(2 \phi_{0}\right)-\sin (\phi)\left(\cos \left(2 \phi_{0}\right)-1\right)\right) \tag{5.19}\\
X_{Y_{.}}=-k_{0} \sin \left(2 \phi_{0}\right) \sin (\gamma) \tag{5.20}
\end{gather*}
$$

and

$$
\begin{equation*}
X_{1}=k_{0} \sin \left(2 \phi_{0}\right) \sin (\phi) \cos (\gamma)+k_{0}\left(\cos \left(2 \phi_{0}\right)-1\right) \cos (\phi) \tag{5.21}
\end{equation*}
$$

This will permit us to calculate explicitely the first iteration approximation to the scattering of light by a finite length cylinder. If wo are considering ahort fibers then the polarisation matrix elements are slightly modified by the relationa

$$
\begin{equation*}
A_{\pi \Sigma}=\frac{1}{\left(m^{2}-1\right)} \varepsilon_{\pi \Sigma}-1 \tag{5.22}
\end{equation*}
$$

and

$$
\begin{equation*}
A_{T M}=\frac{1}{\left(m^{2}-1\right)} g_{I M}-1 \tag{5.23}
\end{equation*}
$$

where if

$$
\begin{equation*}
=\left(1-\frac{4 A^{2}}{H^{2}}\right)^{-1 / 2} \tag{5.24}
\end{equation*}
$$

then

$$
\begin{equation*}
g \pi=\frac{g\left(a^{2}-1\right)}{2}\left(\frac{0}{s^{2}-1}-(1 / 2) \ln \left(\frac{!+1}{t-1}\right)\right) \tag{5.25}
\end{equation*}
$$

and

$$
\begin{equation*}
g_{M}=\left(s^{2}-1\right)\left((0 / 2) \ln \left(\frac{s+1}{s-1}\right)-1\right) \tag{5.28}
\end{equation*}
$$

We note that if we let the apoct ratio of the cylinders go to infinity, then grz approsches .5 and g_{m} approaches 1 and we get the polarisation matrix entries given by

$$
\begin{equation*}
A_{\pi}=\frac{1}{m^{2}+1} \tag{3.27}
\end{equation*}
$$

and

$$
\begin{equation*}
A_{T M}=1 \tag{5.28}
\end{equation*}
$$

The second order integration involves an integral over aix dimenaional apace，but as each integral is a convolution，the integration can be simplified by the use of Fourier analysis．To do this simply recognise that the Fourier transform of a convolution is the product of the Fourier tranaforms．The basic idea is that if we are working with a range of parameters for which the Neumano seriea ultimately converges，then we can be assured of the the accuracy of our computations if the firat and second iterations agree．

6．THE U8ER GUDE

This section of the code is the user guide to the Drexel（ $|3|-|8|$ ）University computer program whose theory we deacribed in this report．The first iterate version of the code described here is valid for \mathbf{H} to \mathbf{A} ration between 20 and infinity and for indices of refraction ranging from 1．to 1.9 according to studies carried out by Drexell University（ $|3|-|8|$ ）．The formula for getting data in that will aenre reseonable resulta is to require that

$$
\begin{equation*}
\Delta \Phi=4 \pi|m-1|(a / \lambda) \leq 2 \tag{6.1}
\end{equation*}
$$

where $\Delta \Phi$ denotes a phase ahift within the cylinder，a is the cylinder radius，λ is the wavelength of the incoming light in microns，and m is the index of refraction of the material in the cylinder．If inequality（ 5.1 ）is violated Drexel（ $|3|-|8|$ ）found that even with the iteration of the infinite cylinder solution，there wat a discrepancy between the results of the first and second iterate calculations．

We now diacoas the range of parameters，the accuracy，and the eomparisons among methode of computation．We have adopted in requiring inequality（5．1）the stringent requirement that the second order itaration should provide a correction of less than one percent．Since we know that（5．1）will asoure us that the mapping defined by

$$
\begin{equation*}
f(\mathbf{E})=\mathbf{E}^{\mathbf{i}}-K \mathbf{E} \tag{6.2}
\end{equation*}
$$

is a contraction mapping which will mean that if we atart with any trial solution such as E^{i} that if we get succeasive approximations via the calculations

$$
\begin{equation*}
E_{\mathrm{o}+1}=f\left(E_{\mathrm{o}}\right) \tag{6.3}
\end{equation*}
$$

that the eequence of approximations $\mathbf{E}_{\mathbf{a}}$ will ultimately converge to the correct solution of the integral equation．Thus，if the firat and second iterales agree to within one percent we can be reasonably aure that the firat iterate actually gave the correct anawer．If the first and the second iterates did not agree，it might atill be true that the second iterate gave the correct answer，but we would then have to compute a third iterate to cee if the two answers were the same．It has been shown through teating that if the apect ratio is larger than 20 （ $6 \mid$ ，pages 746－748）and inequality （ 8.1 ）is satisfied，then the first iterate and the second iterate do agree to within one percent．This code should be uend in conjunction with the double iteration code if one wishes to use it as prodictive tool when the ratio of the leagth $⿴ ⿱ 冂 一 ⿱ 一 一 厶 儿$ to the cylinder radius A is amaller than 20．One could get a shape similar to that of a cylinder by inceribing a apheroid inside the cylinder of interest．Also， Coben et al（ $[6], \mathrm{p} 748$ ）erggest using the extended boundary condition method when using this code for prodictions of scattering from cylindere whose apect ratio（fiber length to fiber diameter）is less than 20 to validate calculations．The colution of this integral equation is exactly the solution of the standard boundary value problem for the Maxwell equations by the equivalence proof outlined in soction 1 of thin report in which wo explain the steps needed to show that the the formulation of the scattering problem usiag the integral equation（1．1）is equivalent to the atandard transmiasion problem formulation uaing the Marwell equations（1．13）and（1．14）and the radiation condition （1．21）．This analyas shows that the integral equation we are using is the correct one．A systematic reduction of projective approximation schemes for approximating the solutions and incident field by mombers of finite dimensional vector apaces to finite rank integral equations can be developed．In Holt and Shepherd［9］ouch a ocheme is developed to predict the scattering of light by low aspect ratio cylindere．With the aid of such methods coupled with a formula for the exact value of the error，one could concaivably colve the acattering problem for cylindera of any index of refraction and any apect ratio and at the ame time know the error asociated with a computer algorithm which carties out the calculation．This is not true of the program deacribed in this report，so we need to make calculations using more than one iterate and to compare with other reliable methode of calculation．

Another poasible check on the accuracy of our computer code is comparion with the Poderaen，Pedermen and Waterman code．The program developed by Pedersen Pedersen and Waterman（ $[15 \mid$ ）hae been acquired and incorporated into a UNIVAC file．For long thin tungaten wires，the theory developed in［15］hae been compared with experimental resulte．The resulte of this
experiment which has been described by King and Wu [14) and by Pedersen et al ([15], pp 31 - 37) agrees well with the computer predictions by a visual inspection of graphs. The tungsten wire diameters ranged from 1 to 3 mils, the frequency of the radiation was 9.375 billion cycles per second (9.375 GHs), the conductivity is considered to to be infinite, and in a graph of cross section versus angle of incidence where the theory and experiment agreed,well, typical values include a length to wavelength ratio of .525 and a length to diameter ratio of 660 . To carry out this comparison we would have to put in a conductivity or imaginary index of refraction into the Drexell code, and run a comparison for come nearly diaphanous but dissipative cylindera where the Pedersen code is known to be valid and where the inequality (5.1) is also valid. This would probably mean consideration of a very long thin and mildly dissipative structure with cylindrical symmetry. Although no attempt has been made in $\{15$ | to provide the user with any measure of the accuracy of the output of the computer program, this could be carried out theoretically and would then make the Pedersen approach a useful benchmark because of its rapid run time and because it is not restricted to diaphanous scatterers.

We now discuss the use of the infinite cylinder code in checking possible upper aspect ratio limits of the validity of this computer program. It has been shown (Ariel Cohen et al [4], page 698) that the theory of infalte eylindera can be applied to findte cylindera if the aspect ratio if larger than 100. A class of criteria is developed where under these circumstances the infinite cylinder scattering theory agrees with experimental measurement. Specific parametera are listed in the article by Cohen et al beginning on page 1331 of volume 56 of the Journal of Applied Physics (1984). Experiments were cariied out for sise parameters of 71.7 and a complex index of refraction of

$$
m=(12-60 i)
$$

for the case where the electric vector of the incident light was parallel to the cylinder axis. In Cohen ($[5]$, page 746) we find that the authors indicate that they found excellent agreeme.: between the exact result for an infinite cylinder and the finite cylinder program deacribed in this report when the reciprocal wavelength in microns is $k_{0}=0$, the radius is 1 microns, the index of refraction astisfies $m=1.46$, the angle between the cylinder axis and the direction of propagation of the radiation is $\phi=\pi / 6$ or ϕ equale 30 degrees, and the cylinder length is 100 microns giving an aspect ratio (length to diameter ratio) of 5000 .

The random orientation program described next is interactive and requests information from the user. It delivera an averaged calculation for a variety of polarizations. At the present time the polarisation angles considered are produced automatically by a LO LOOP inside the program. This could be modified by editing and could be made an interactive parameter. All physical unita including the wavelength of the incoming radiation are given in microns. Typical data considered would be a cylinder with a .5 micron radius, and a 20 micron length giving a 20 to ore ratio, and an index of reíraction of 1.25 , and a wavelength of one micron. The validity has been apparently checked when the length is 20 or greater, if the radius is .5 microns so results would have to be checked by using multiple iterations in case the above conditions were not satisfied. The fixed orientation program is simpler and can be derived from the random orientation by simply removing the integration over the orientation and reading values of γ and ϕ giving the orientation of the scattering cylinder.

We can prove using the method outlined in section 1 of this report that we are solving the correct integral equation. Analyais in this report proves that the integral equation that we are working with is correct. This program implements an improvement of a classical approxirnation of the solution of this equation developed by many authors including Ariel Cohen of Hebrew University in Jerusalem, Leonard Cohen of Drexel University in Philadelphia, and Richard Haracs of Drexel University in Philadelphia who were involved in the writing of this computer program $(\mid 1], \mid 3]-[8]$, Bohren [2], and [19]). To finish this section we provide a table of the input variablea and their meaning, and the output variables.

We now explain the input of date and the une of the program. The program in on the UNIVAC of MISD of Aberdeen Proving Ground. After signing onto the UNIVAC you have to
 is fairly complox and involve bringing in all neoded subroutinas and the FORTRAN library. The command for ranning the battery of programa is

ADD OOHOON ${ }^{\circ}$ OOHEN.FINITECYLCOM

The dotails of asing the FORTRAN compiler, mapping, linking the parts of the program, the main program, which is called OOHOON ${ }^{\circ}$ COHEN.FINITECYLINT, together with ite enbroutines, is taken care of atomatically. The program alks the uear interactively to supply deta. He or the ahould enter the deta requested apparated by commes with no comma at the baginning or and and then deprom the RETURN koy on the koyboard.

We now diecuse the input deta. There are two requeste for date that appear on the ecrean. The near in expected to aimply respond to the queations. We will however list the varisbles and their meaning in the following table.

THE PIRST REQUEST TO TER USER	
NDAY	The number of the day of the month
MONTH	The number of the moath of the year
YEAR	The number of the year

The next tuble give information abous the cylinder propertiea and aise, the angular frequency divided by the apeed or asid differently the reciprocal of the wavelength when the wavelength is civan in mereas, and finally the magritude of the electric vector.

	TEE SECOND REQUEST TO TEE USER
IN	The index of rafraction of the ecelterar
A	The radius of the cylinder in microns
E	The length of the cylinder in microns
EO	The reciprocal of the wavelength in reciprocal microns
EO	The incoming wave eloctric vector amplitude

To conclade we give a discuseion of the output of the computer progrem. The key output variablee are TOD and ALPAD, which deacribe the angle betwoen the s-axis in the laboratory frame and the line from the origin to the detector and the angle between the eloctric vector of the incoming wave and the the x_{0} axia, reepectivoly. The output intenaity variables are $\mathbf{X 1 2 2}$ and $\mathbf{X 1 1 2}$. The variable, 1022, denotee the intenaity calculated from the component of the electric vector of the acalterred radintion parallel to the x-wie of the detector coordinate syatem. The varisble, II12, denotee the intenaity calculated from the component of the eloctric vector of the ecattered radiation that in perpendicular to the detector plane, which we have taken to be the plane containing the x_{0} anis and the m_{0} axis. The vector $\mathbf{\# 2 2}$ that we have dafined can be thought of a being calculated from the comporfont of the electric vector lying in the detector plane, the plane containing the x_{0} axie and the s_{0} asie that ie perpendicaler to the line joining the center of the cylinder to the point detector. The vector e_{1} is the crose product of a, and the vector a_{3}. The angular varisblea and the intenaity variables are all dafined asecinctly in the following table. In the table I have lot E, denote the eloctric vector of the seetterad rediation.

We consider here a problem of deecribing the scattering of light by a randomly oriented simalated seroeol particle represented by a finite length penetrable cylinder. Since we are integrating over the intenaitiea computed from componente of the electric vector of the scattered radiation that are parallel and perpendicular, reapectively, to the detector plane containing the x_{0} axie and the s_{0} axie, wo might expect that we would get different reaule when the electric vector to the detector plane which corresponds to $a=0$ and when the electric vector in perpendicular to the detector plane which correaponde to $\alpha=\pi / 2$ This indeed turns out to be the case and it also turas out that for certain situations we might expect the $\mathbf{X I 2 2}$ for $\alpha=0$ to be related to $\mathbf{X I} 12$ for $a=\pi / 2$ This indeod aleo turns out to be the case. A detailed atudy of thin and related obearvations will be the subject of a future paper. Below we find the reaulta for the case $a=0$

THE	INPUT	DATA XM,		
1.3	.8	10.0	1.	1.0

SCATTERING WHEN THE E VECTOR IS IN THE DETECTOR		
$2 \phi_{0}$	1122	II12
0	. 128897247934833662	. 00815756560908
45	. 0185914912777634318	. 000184963828979569811
90	. 000187548797108760846	. 00015064385175556076
135	. 00996771143864721220	. 188084054364860006
180	. 0161983903023829448	. 000164821002167191503

We consider in this section a fixed orientation model and analyse the results of a oingle and double iteration calculation. We will give in the following table a calculation outside of the known range of validity of the program to show its limitations and the need for caution in using the program to describe the acattering of light by cylinders whose sise and optical parameters to not satiafy the inequality (5.1)

THE DNPUT DATA KM,	R, $\mathbf{H}, \mathrm{XK}, \mathrm{E}$			
1.3	.5	5.0	1.	1.0

FIRST ORDER RESULTS			
$2 \phi_{0}$	a	XI22	XI12
0.00	0.00	.0361908	.2782583
45.00	0.00	.0128148	.000256797
90.00	0.00	.000449405	.00224702
135.00	0.00	.00302799	.0000368551
180.00	0.00	.000375925	.00000289035

RESULTS OF TWO ITERATIONS			
$2 \phi_{0}$	α	XI22	X112
po.00	0.00	.000418810	.0028389
135.00	0.00	.0039108	.0000371545

There are two eatimations of the acattered field. We subatitute the quanalatic solution for an infinite cylinder and act on that with the integral operator K to get $\mathrm{E}^{(1)}$. We next act on $\mathrm{E}^{(1)}$ to get $E^{(2)}$ Thia type of analysin is detailed in my report on exact finite rank integral equations. One can see that Drexel in anuming that they have a contraction mapping of the form

$$
\mathrm{f}(\mathbf{E})=\mathbf{E}^{\prime}+\mathbf{K} \mathbf{E}
$$

and that they aro seeking a vector valued function \mathbf{E} such that

$$
f(\mathbf{E})=\mathbf{E}
$$

What are they doing when they atart with their approximate value which they say is clocer to the true value than is $\mathbb{E}^{\mathbf{d}}$ io mouming that iterates of this value will bring them closer to the true value than will the iterate of the incident field.

The progarn can be modifed so that it can take the appropriate form of the acatterod electric vector and the two values, E'e. $\mathbf{1}_{\text {, }}$ and $\mathbf{E}^{\prime} \cdot e_{\text {, }}$ can be used to calculate all four Stokea parametera. As the polarisation of the incoming wave varies these can be used to compute Mueller matrix entrien. For example, the Stokes paramter I is given by

$$
\mathrm{I}=\mathrm{XPAR}+\mathrm{XPER}
$$

$$
Q=X P A R-X P E R
$$

According to Bohren ($|2|$, page 53) the program could be used to evaluste all the entries of the Muller matrix, a matrix which describes the relationahip between the four Stokes parameters of the incident wave and thoee of the transmitted wave. The Mueller matrix entries can be computed by making computations of the Stokes vectors of the acattered radiation for incident radiation with different polarisations. However, we will give a diacuasion of how to do this in a way which is in harmony with the natural interpretation of the seven idependent entries of the Mueller matrix (Bohren and Huffman [2], pages 63 through 68). The Mueller matrix is a 4 by 4 matrix which provides a relationship between the incident and scattered Stokes parameters. If you simply remember that a linear tranaformation is completely determined by its action on a set of basis vectora, you can that one simply has to compute the action of the acattering operator on a linearly independent net of Stokea parameters for incoming radiation. It is very interesting, however, that the eeven indopendout parametare used in defining the Muelter matrix can be related to the reaponse of the asaterer to unpolarised light, the reaponse of the scatterer to right circularly polarised light, the :apponse of the acatterer to left circularly polarised light, and the response of the scatterer to ligh' whose polarisation angle with reapect to the detector plane is 45 degrees. With the present progrem ty getting IPAR and IPER one could easily get the 2 by 2 amplitude scattering matrix relating the two projections of the incoming rediation to the two projections of the electric vectors of the scattered radiation that are parallel and perpendicular to the detector plane. The precise formulas for the entries of the amplitude scatlering matrix are given in equations (1.27) through (1.30) of this report. Once these are determined, the formulas in Bohren and Huffman ($|2|$, page 65) give all the sixteen entries of the Mueller matrix relating the Stokes parametera of the incoming and acattered radiation. The traditional andynis for unpolarized light relates the Stokes parameters $L_{1}, Q_{n} U_{n}, V, r a t i o ~ t o ~ L_{i}$ to the matrix elements via the formulas

$$
\begin{aligned}
& \frac{L_{1}}{L_{4}}=S_{(1,1)} \\
& \frac{Q_{1}}{L_{1}}=S_{(2,1)} \\
& \frac{U_{1}}{L_{1}}=S_{(0,1)} \\
& \frac{V_{1}}{L_{1}}=S_{(4,1)}
\end{aligned}
$$

One of the Mueller matrix entries can be computed directly from calculations with polarisations parallel and perpendicular to the reference plane, which can be done quite easily with the output of the present program. We find that the $(1,2)$ entry of the Mueller matrix is given by

$$
s_{(1,2)}=\frac{L_{0}-l_{20}}{24}
$$

where l_{0} is the value of acattered intensity defined by

$$
1=\mathrm{XPAR}+\mathrm{XPER}
$$

When the polarisation angle of the incoming radiation is sero, and where L_{∞} is the value of the ecattered intensity given by the above equation when the polarisation angle of the incomining radiation is 90 degreee with respect to the detector plane. The $\mathrm{S}_{(1,0)}$ entry of the Mueller matrix is given by

$$
s_{(1,4)}=\frac{\mathfrak{I}_{R}-\mathfrak{I}_{L}}{2 L_{4}}
$$

where I_{n} is the scattered intenaity asociated with right circularly polarised light, I_{L} is the acattered intennity meccialed with left circularly polarised light, and 4 is the intensity of the incident light. These quantitiee would be difficult to get from the program directly, but by using two polarisationa to calculate all the entries of the amplitude acatcering matrix by equations (1.27) through (1.30) all the entries of the Mueller matrix can be calculated from the formulas in Bohren and Huffman ($|2|$, page 65). This indirect calculation might help us infer the resulta of clasgical scattering experiments and might therefore serve as an experimental check on our calculations. Finally, if you consider the ecattering amplitudea used to calculate XPAR and XPER, respectively for the 45 degree polarisation, then from the phases of the projections of the electric vectors on the unit vectora e_{4}, and on the unit vector e^{\prime}, and a knowledge of the entries of the scattering amplitude matrix we aee that

$$
S_{(1,9)}=\operatorname{Re}\left(S_{2} S_{j}^{0}+S_{1} S_{0}^{*}\right)
$$

where the numbers $S_{3} S_{3}$ represent the entriee in the first row of the ecattering amplitude matrix and the numbers S_{4} and S_{1} denote the entries in the second row of the acattering amplitude matrix which is defined by the two equations,

$$
\mathbf{\Sigma}^{\prime} \cdot e_{\mathbf{x}_{0}}=c\left(S_{2}\left(\mathbf{E}^{\prime} \cdot e_{\mathbf{x}_{0}}\right)+S_{9}\left(\mathbf{E}^{\prime} \cdot e_{\mathbf{e}_{2}}\right)\right)
$$

and
where

$$
c=\frac{\exp (-i k(r-s))}{i k r}
$$

is a factor in the definition of the entries of the amplitude acattering matrix which causea these entries to be in some sense independent of the distance of the ccattarer to the observation point. The formale for the entrien of the amplitude acattering matrix are given in equations (1.27) through (1.30) of this report.

The program which gives the single and double iteration reaults is listed below.

```
C MAIN PROGRAM
        REAL EO
        OPEN(UNIT - 3,FILE - 'SCATOUT.TXT', FORM - 'FORMATTED'.
        1 ACCESS - 'SEQUENTIAL', STATUS - 'NEW')
        PRINT *, 'THE DATE IS'
    100 FORMAT(2X, 'THE DATE IS')
        READ *, NDAY,MONTH, NYEAR
        PRINT *, NDAY, '/', MONTH, '/',NYEAR
        WRITE(UNIT - 3, FMT - 101) NDAY,MONTH,NYEAR
    101 FORMAT( 2X, I2, '/',I2, '/', I2)
        PRINT *, 'SCATTERING FROH A SPIRIAL'
        PI - 3.i4159265358979323
        AA = PI/180
C
C HIER - 0
    PRINT *, 'ENTER THE VALUE OF HIER, O FOR FIRST ORDER,'
        PRINT *, 'ENTER HIER - 1 FOR FIRST AND SECOND ORDER'
        IF SINGLE ORIENTATION CALCULATIONS ARE DESIRED, THEN SET
    ORIENT - 1 AND OTHERHISE SET ORIENT - O IF AN AVERAGE OVER
    ORIENTATIONS IS DESIRED.
        READ *, ORIENT
        IF (HIER.EQ.1) WRITE(UNIT=3,FMT-1010)
    1010 FORMAT(2X, 'THE FIRST TWO ORDERS ARE INCLUDED')
        PRINT *, 'ENTER THE INDEX, RADIUS, HEIGHT, KO, EO
        READ *, XM,A,H,XK,EO
        PRINT *, 'INDEX -', XM, 'RADIUS -', A, 'HEIGHT -', H
        WRITE (UNIT - 3, FMT - 103) XM,A,H
    103 FORMAT(2X,'INDEX - '. XM, 'RADIUS - ', A, 'HEIGHT -',H
        ALPHA = (XH**2 * 1)/(4*PI)
C ISHP - 1 (CYLINDER), ISHP - 2 (PROLATE), ISHP - 3 (OBLATE)
C ISHP = 4 (SPHERE)
    READ *, ISHP
    IF(ISHP.EQ.1) GO TO 1000
    IF(ISHP.EQ.2) GO TO 2000
    IF(ISHP.EQ.3) CO TO 3000
    IF(ISHP.EQ.4) GO TO 3500
1000 ATE - 2/(XM**2 + 1)
    ATM - 1
    GO TO 4000
2000
    AE = H/2
    BE - A
    EX = SQRT (1-(BE/AE)**2)
    DEL - 1/EX
    DEL1 - 1 - DEL**2
    DEL2 - DEL1*ALOG(DEL + SQRT(DEL**2-1)) + DEL
    ATE - 2/(2 + DEL*(XM**2 - 1)*DEL12)
    ATM = 1/(XH**2 - DEL* (XM**2-1)*DEL2)
```

```
    GO TO 4000
3000
    AE - A
    BE - H/2
    EX - SQRT(1 - (BE/AE)**2)
    DEL = 1/EX
    DEL1 - 1 + DEL**2
    ACOT - PI/2 - ATAN(DEL)
    DEL2 - DELI*ACOT - DEL
    ATE = 2/(2 + DEL*(XM**2 - 1)*DEL12
    GO TO 4000
3500 ATE = 3/(XM**2 + 2)
    ATM - ATE
4000 CONTINUE
    IF(ORIENT.EQ.0) WRITE(UNIT-3,FMT-777)
    IF(HIER.EQ.0) THEN
    WRITE(UNIT - 3, FMT - 778)
    ELSE
    WRITE(UNIT - 3. FMT - 779)
    ENDIF
C ITERATION OF THE POLARIZATION ANGLE
    DO 12I = 1,1
    ALFA - (I-1)*PI/2
    ALFA - THE ANGLE BETWEEN THE ELECTRIC VECTOR OF THE IiirJMING
C
C RADIATION aND THE dETECTOR PLANE OR THE polarization angle
    ALFA = (I-1)*PI/2
    ALFAD - ALFA/AA
    PRINT *, 'ANGLE OF POLARIZATION -', ALFAD
    WRITE(UNIT - 3, FMT - 345) ALFAD
    345 FORMAT(4X,'THE POLARIZATION ANGLE -', F6.2)
    IF(ORIENT.EW.1) THEN
    PRINT *, 'ENTER ORIENTATION OF POLAR AND AZIMUTHAL ANGLES IN DEGREES'
    READ *, PHAD,GAD
    WRITE(UNIT-3,FMT - 543)PHAD,GAD
    543 FORMAT(4X,'POLAR=',F6.2,4X,'AZIMUTH -',F6.2)
    PHA - PHAD*AA
    GA - GAD*AA
    ENDIF
C ITERATION OF THE SCATTERING ANGLE
    PRINT *, 'ENTER SCATTERING ANGLES +1 IN DEGREES (START,END) AND INTERVAL'
    READ 8, IAS, IAE, INT
    ANGLE - (K.1)
    TOD = ANGLE
    TTO - TOD*AA
    TO - TTO/2
    PRINT *, 'SCATTERING ANGLE -'.TOD
    IF(ORIENT.EQ.1) THEN
    EOXA - EO*(COS (PHA)*COS(GA)*COS(ALFA) + COS(PHA)*SIN(GA)*SIN(ALFA))
    EOYA = EO*(-SIN(GA)*COS(ALFA)+COS(GA)8SIN(ALFA))
    EOZA - EO*(SIN(PHA)*COS(GA)*COS(ALFA) +SIN(PHA)*SIN(ALFA)*SIN(GA))
    GET THE FIRST AND SECOND ORDER CONTRIBUTIONS TO E IN THE REFERENCE
c frame
    CALL FIRST(GA, PHA, EOXA, EOYA, EOZA,TO,ATE,ATM, EO, ESAXO, ESAYO, ESAZO,
    1 A,H,XK,XM,ISHP)
    IF(HIER.EQ.1) THEN
    CALL SECND(GA, PHA, EOXA, EOYA, EOZA,TO,ATE,ATM, EO, ESAX2, ESAY2, ESAZ2,
    1 A,H,XK,XM, ISHP)
        ELSE
        ESAX2 - 0
    ESAY2 - 0
    ESAZ2 - 0
    ENDIF
C WE NOW COMBINE THE FIRST AND SECOND ORDER CONTRIBUTIONS
    ESAXO - ALPHA*ESAXO + ALPHA**2*ESAX2
    ESAYO - ALPHA*ESAYO + ALPHA**2*ESAY2
    ESAZO - ALPHA*ESAZO + ALPHA**2*ESAZ2
    XI22 - (ESAXO*COS (TTO) - ESAZO*SIN(TTO))**2
    XI12 - ESAYO**2
    ELSE
    CALL AVERAGE(TO;ALTA,ATE,ATM,EO,HIER,A,H,XK,XM,XI22,XI12)
    ENDIF
    PRINT *,'IIR - ',XI22, 'I2R -', XI12
    WRITE(UNIT-3, FMT - 700) TOD,ALFAD,XI22.XI12
    ENDIF
```

PRINT *, 'I1R =', XI22, 'I2R =', XI 12
700 FORMAT(4X,'TO -',F6.2,2X,'ALFA -', F6.2,2X,
1 ' I22-', E12.6, 2X, 'I12 -', E12.6)
12 CONTINUE
777 FORMAT(4X,' THIS IS FOR AN AVERAGE OVER ORIENTATIONS')
778 FORMAT(RX,' THIS RESULT .INCLUDES ONLY THE FIRST ORDER')
779 FORMAT(4X,' THIS RESULT INCLUDES THE FIRST TWO ORDERS') END
SUBROUTINE AVERAG(TO, ALFA, ATE, ATM, EO,HIER, A, H, XK, XM, XI 22, XI12)
DIMENSION PT(64),WT(64), XI(3),X2(3)
PI $=3.14159265358979323$
$\mathrm{AA}=\mathrm{PI} / 180$
$\mathrm{Xl}(1)=0$
$x(2)=0$
$x 1(3)=0$
$\mathrm{X} 2(1)=0$
$X 2(2)=0$
$x 2(3)=0$
N -20
CALL GAUSS (PT, WT, N)
ALPHA - (XM**2 - 1) /(4*PI)
NN - 20
CALL GAUSS (PT,WT,N)
NN $=20$
N1 - 1
N2 - 2
N3-1
DE - 0
IF(N1.EQ.3) DE $=0.01 D 0$
C ITERATION OF RANGE
DO 11 IRANGE = N1,N2,N3
IF (IRANGE.EQ.3) NN - 1
ITERATION OF AZIMUTHAL ANGLE
DO 11 I - 1 N
$G A=P I * P T(I)$
$G A D=G A / A A$
PB $-\operatorname{ATAN}(\operatorname{TAN}(T O) / \operatorname{COS}(G A))$
C ITERATION ON THE POLAR ANGLE
DO $11 \mathrm{~J}=1, \mathrm{~N}$
GA $=\mathrm{PI} * \mathrm{PT}(\mathrm{I})$
GAD - GA/AA
$\mathrm{PB}=\operatorname{ATAN}(\operatorname{TAN}(T O) / \operatorname{COS}(G A))$
C ITERATION ON THE POLAR iNGLE
DO il J - 1. NN
IF (IRANGE.EQ.2) GO TO 77
IF (IRANGE.EQ.3) GO TO 79
PHA - (PB - DE) $*$ PT (J)
60 TO 78
77 PHA - (PI - PB - DE) *PT(J) $+(\mathrm{PB}+\mathrm{DE})$
GO TO 78
$79 \mathrm{PHA}=\mathrm{PB}$
78 CONTINUE
EOXA $=E O *(\operatorname{COS}(P H A) * \operatorname{COS}(G A) * \operatorname{COS}(A L F A)+\operatorname{COS}(P H A) * S I N(G A) * S I N(A L F A))$
EOYA - EO* ($-\operatorname{SIN}(G A) * \operatorname{COS}(A L F A)+\operatorname{COS}(G A) \star \operatorname{SIN}(A L F A))$
EOZA $=$ EO* (SIN(PHA)*COS (GA) *COS (ALFA) $+\operatorname{SIN}($ PHA $) * S I N(A L F A) * S I N(G A))$
C
THE FIRST AND SECOND ORDER CONTRIBUTIONS TO E IN THE REFERENCE FRAME
CALL FIRST(GA. PHA, EOXA, EOYA, EOZA, TO, ATE, ATM, EO, ESAXO, ESAYO, ESAZO,
1 A, H, XK, XM)
IF (HIER.EQ.1) THEN
CALL SECND (GA, PHA, EOXA, EOYA, EOZA,TO, ATE, ATM, EO, ESAX2, ESAY2, ESAZ2,
1 A, H,XK,XM)
ELSE
ESAX2 - 0
ESAY2 - 0
ESAZ2 - 0
ENDIF
C COMBINATION OF THE FIRST AND SECOND ORDER CONTRIBUTIONS
ESAXO - ALPHA*ESAXO + ALPHA**2*ESAX2
ESAYO - ALPHA*ESAYO + ALPHA**2*ESAY2
ESAZO = ALPHA*ESAZO + ALPHA**2*ESAZ2
XI - (XK/EO)**2
IF(IRANGE.EQ.1) FAC - SIN(PHA)*WT(J)*(PI*(PB.DE))
IF (IRANGE.EQ.2) FAC - SIN(PHA)*WT(J)*(PI - PB - DE)*PI
IF(IRANGE.EQ.3) FAC - (SIN(PHA)**2/SIN(TO))*WT(I)*PI*2.0*DE

```
    X2(IRANGE) = XI*(ESAXO*COS(TTO) - ESAZO.SIN(TTO))**2*FAC
    1 + X2(IRANGE)
    X1(IRANGE) - XI*ESAYO**2*FAC + XI(IRANGE)
    11 CONTIINE
    X122 = (X2(1) + X2(2) + X2(3))/(2*PI)
    XI12 - XI(3)/(2*DE)
    IF(N1.EQ.3) THEN
    XI22 - X2(3)/(2*DE)
    XI12-XI(3)/(2*DE)
    ENDIF
    RETURN
    END
    SUBROUTINE GAUSS(PT,WT,N)
    DIMENSION PT(64),WT(64),PTT(64),WTT(64)
    WT(1) = 0.1527533871
    WT(2) = 0.1491729864
    WT(3) = 0.1420961093
    WT(4) = 0.140961093
    WT(5) - 0.1181945319
    WT(6) 0.1019301198
    WT(7) = 0.0832767415
    WT(8) = 0.0626720483
    WT(9) = 0.0406014298
    WT(10) - 0.0176140071
    PT(1) = 0.0765265211
    PT(2) = 0.2277858511
    PT(3) - 0.373706088?
    PT(4) - 0.5108670019
    PT(S) = 0.6360536801
    PT(6) = 0.7463319064
    PT(7) = 0.8391169718
    PT(8) = 0.9122344283
    PT(9) - 0.9639719272
    PT(10) - 0.9931285991
    N2 - N/2
    no }7\textrm{I}=1,\textrm{N}
    PTT(I) = PT(I)
    WTT(I) - WT(I)
    7 CONTINUE
    DO 5 1 - 1,N
    IF(I.GT.N/2) GO TO 13
    PT(I) = (1. PTT(N/2+1. I))/2
    WT(I) = WTT(N/2 + 1 - I)/2
    s continue
    RETURN
    END
    FUNCTION BESSI(X)
    SIGN = X/ABS(X)
    X = ABS(X)
    IF(X.GT.3) CO TO 10
    Y - (X/3)**2
    Z - X*(0.5-0.56249985*Y+.21093573*Y**2 - 0.3954289E.1*Y*** +
    10.443319E.2*Y**4 - 0.31761E.3*Y**S + .1109E-4*Y**6)
    GO TO 20
    10Y - 3/X
        Fl = 0.79788456 +.156E.5*Y +.1659667E.1*Y**2 +.17105E-3*Y**3 -
    1 0.249511E-2*Y**4 + 0.113653E-2*Y**5 - 0.20033E-3*Y**6
    Tl = X-2.3561945+0.12499612*Y +0.565E-4*Y**2 -0.637879E-2*Y**3
    1 0.74348E\cdot3*Y**4 + 0.79824E.3*Y**S - . 29166E.3*Y**6
    Z - Fl*COS(11)/SQRT(X)
    20 X - SIGN*X
C23456789012345678901234567890123456789012345678901234567890123456789012
    BESSl - SIGN+Z
    RETUR:
    END
    FUNCTION U(XPAR,XPER,A,H,XK,ISHP)
    P - SQRT(XPAR**2 + XPER**2)
    IF(ISHP.EQ.1) GO TO 1000
    IF(ISHP.EQ.2) GO TO 2000
```

```
    IF(ISHP.EQ. 3) GO TO 3000
    IF(ISHP.EQ.4) GO TO 3500
1000
    X = XPAR*A*XK
    Y = XPER*A*XK
    C = ABS (X)
    B = ABS (Y)
    IF(X.LT.0.001) XA = 1 - X**2/6 + X**4/120
    IF(C.GE.0.001) XA - SIN(X)/X
    IF(B.LT.0.001) XB - (1- - '**2/8 + Y**4/192)*.5
    IF(B.GE.0.001) XB - BESSI (Y)/Y
    V = 3.141S9265358979323*A**2*H
    U = 2*V*XA*XB
    GO TO 4000
2000
    AE = H/2
    BE - A
    EX = SQRT(1.0 - (BE/AE)**2)
    X - AE*SQRT(P**2 - (EX*XPER)**2)
    U = 4.0*3.14159265358979323*BE*AE**2*(SIN(X) -X*COS(X))/X**3
C234567890123456789012345678901234567890123456789012345678901234567890
    GO TO 4C00
3000 AE - A
    BE = H/2
    EX = SQRT(P**2 - (EX*XPAR)**2)
    U - 4.0*3.14159265358979323*BE*AE**2*(SIN(X) . X*COS(X))/X***
    GO TO 4000
3500 X = A*P
    U = 4.0*3.13149265358979*A**3*(SIN(X) - X*COS(X))/X**3
4OCO CONTINUE
    RETURN
    END
    SUBROUTINE DETEC(TTO,XXO,YYO,ZZO,XOP,YOP, 2OP)
    XCP = (XXO*SIN(TTO) + 220*COS(TTO))*SIN(TTO) - XXO
    YOP = -YYO
    ZOP - (XXO*SIN(TTO) + 2ZO*COS(TTO))*COS(TTO) . 220
    RETURN
    END
    SUBROUTINE FIRST(G,PHI, EX, EY, EZ,TO,ATE,ATM, EO, ESX, ESY, ESZ,
    1 A,H,XKO,XM,ISHP)
    XK = XKO
    TTO = 2*TO
    XPAR - (SIN(PHI)*COS(G)*SIN(TTO)+COS(PHI)*COS(TTO)-COS(PHI))
    XPAR - XPAR*XKO
    XPER = SQRT((COS(PHI)*COS(G)*SIN(TTO) - SIN(PHI)*COS(TTO) +
    1 SIN(PHI))**2 + (SIN(G)*SIN(TTO))**2)*XKO
    UI - U(XPAR, XPER,A,H,XK,ISHP)
    CONST - XK**2*U1
    XX - EX*ATE
    YY = EY*ATE
    22 - EZ*ATM
    EXX - COS (PHI)*COS(G)*XX-SIN(G)*YY+SIN(PHI)*COS(G)*2Z
    EYY = COS(PHI)*SIN(G)*XX+COS(G)*YY+SIN(PHI)*SIN(G)*2Z
    EZZ - - SIN(PHI)*XX + COS(PHI)*ZZ
C THE PORTION OF E PERPENDICULAR TO THE SCATTERED DIRECTION IS
C EXTRACTED
    CALL DETEC(TTO, EXX,EYY,EZZ,ESX,ESY,ESZ)
    ESX - ESX*CONST
    ESY - ESY*CONST
    ESZ - ESZ*CONST
    RETURN
    END
    SUBROUTINE SECND(G,PHI,EX,EY,EZ,TO,ATE,ATM, EO, ESX,EST,ESZ
    1 A,H,XKO,XM,ISHP)
    DIMENSION FX(3),FY(3),FZ(3),PT(64),WT(64),PP(64),WW(64)
    TTO = 2*TO
    XK = XKO
    DO 44 I = 1.3
```

```
    FX(I) - 0.0
    FY(I) - 0.0
    FZ(I) = 0.0
    N - 20
    NN = 20
C2345678901234567890
    XEP - . 001
    PI - 3.14159265358979323
    CALL GAUSS(PT,WT,N)
    CALL GAUSS(PP,WW,NN)
    XKX - -XK*SIN(PHI)
    XKY = 0.
    XKZ - XK*COS(PHI)
    RX = COS(PHI)*COS(C)*SIN(TTO) - SIN(PHI)*COS(TTO)
    RY = -SIN(G)*SIN(TTO)
    R2 = SIN(PHI)*COS(G)*SIN(TTO) + COS (PHI)*COS(TTO)
    FTOTX - 0
    FTOTY = 0
    FTOTZ - 0
    DO 100 I - 1,NN
    PRINT *,I
    DO 90 J - 1,N
    THP - PT(J)*PI
    DO 90 K - 1,N
    PIP - 2*PI*PT(K)
    DO }85\mathrm{ II - 1,3
    IF(II.EQ.1) P = (PP(I)* (XK-XEP) + XEP) +XX
    IF(II.EQ.2) P = XK - (PP(I)*(XK - XEP; +XEP)
    iF(II.EQ.3) P - 2*XK/PP(I)
    PX - P*SIN(THP)*COS(PIP)
    PY - P*SIN(THP)*SIN(PIP)
    PZ - P*COS(THP)
    PDA2 = PX*EX + PY*EY
    PDB2 - P2*EZ
    XIX = PX + RX*XK
    XIY - PY*RY*
    X1Z = PZ*RZ*XK
    X2X = - PX + SIN(PHI)*XK
    X2Y = -PY
    X2Z = -PZ - COS(PHI)*XK
    X1PAR - X12
    X1PER = SQRT(X2X**2 + X1Y**2)
    X2PAR - X2Z
    X2PER - SQRT(X2X**2 + X2Y**2)
    U2 = U(X2FAR, X2PER,A,H,XK, IXHP)
    FAC - 2.*PI**2
    FAC1 = XK**2*ATE**2 + ATE*(1-ATE)/(XM**2 - 1)*(P**2 - XK**2)
    FAC2 - XK**2*ATM**2 + ATM*(1 - ATM)/(XM**2 - 1)*(P**2•XK**2)
    FAC3 - ATE**2*PDA2+ATM**2*PDB2
    XF - 1.0
    IF(II.EQ.3) XF - P**2
    FX(II) = SIN(THP)*U1*U2*P**2/(P**2 - XK**2)*(FAC1*EX
    1-FAC3*PX)*WW(I)*WT(J)*WT(K)*FAC*XF
    FY(II) = SIN(THP)*U1*U2*P**2/(P**2 - XK**2)*(FAC1*EY - FAC3*PY)*
    1 WW(I)*WT(J)*WT(K)*FAC*XF
85 CONTINUE
    IF(J.EQ.1.AND.K.DEQ.1) THEN
    PRINT *, FX(1),FX(2),FX(3)
    PRINT *, FY(1),FY(2),FY(3)
    PRINT *, FZ(1),FZ(2),F2(3)
    ENDIF
    FTOTX - (XK - XEP)*(FX(1) + FX(2))
    1 + 1./(2.0*XK)*(FX(3) + FTOTZ
    FTOTY = (XK - XEP)*(FY(1)+FY(2))
    1+1./(2.0*XK)*FY(3)+FTOTY
    FTOTZ - (XK - XEP)*(FZ(1)+FZ(2))
```

```
    1 + 1./(2.0*XK)*FZ(3) + FTOTZ
    IF((J.EQ.1).AND.(K.EQ.1)) PRINT *,FTOTX,FTOIY,FTOTZ
    90 CONTINUE
    100 CONTINUE
C2345678901234567890123456789012345678901234556789012345678901234567890
    PRINT *, FTOTX, FTOTY, FTOTZ
    EXX = COS(PHI)*COS(G)*FTOTX - SIN(G)*FTOTY+
    1 SIN(PHI)*COS (G)*FTOTZ
    EYY - COS(PHI)*SIN(G)*FTOTX - COS(G)*FTOTY+
    1 SIN(PHI)*SIN(G)*FTOTZ
    E2Z - -SIN(PHI)*FTOTX + COS(PHI)*FTOT2
    PRINT *, EXX,EYY,EZZ
    CALI DETEC(TTO, EXX,EYY,EZZ,ESX,ESY,ESZ)
    ESZ = ESZ*XK**2/(2*PI**2)
    ESY - ESY*XK**2/(2*PI**2)
    ESZ - ESZ*XK**2/(2*PI**2)
    PRINT *, ESZ,ESY,ESZ
    RETURN
    END
```


8. REPERTNCES

1. Acquista, Charles. Light scattering by Tenuous Particles: a generalisation of the Rayleigh-Gans-Rocard approsch. Applied Optics Volume 15, Number 11 (November, 1976) pp 2932-2936
2. Bohren, Craig F. and Donald R. Huffman. Absorption and Scattering of Light by Small Particles. New York: John Wiley and Sons(1983)
3. Cohen, Ariel, Leonard D. Cohen and Richard D. Haracs. Angular ecattering diatributions by long copper and brass cylinders: experiment and theory. Journal of Applied Physics Volume 56 Number 5 (September 1, 1984) pp 1329-1332
4. Cohen, Ariel, Leonerd D. Cohen, and Richard D. Xaracs. Double Scattering by Randomly Oriented Long Cylinders. Journal of Applied Phyeica Volume 57. Number 3 (February 1, 1985) pp 698-703
5. Cohen, Ariel, Richard D. Haracs, and Leonard D. Cohen. Asymmetry factors for randomly orianted infinite cylindera. Journal of Applied Physics Volume 68. Number 3 (August 1, 1985) pp 1135-1140
6. Cohen, Leonard D., Richard D. Haracs, Ariel Cohen, and Charles Acquista. Scattering of Light from Arbitrarily Oriented Finite Cylinders. Applied Optics. Volume 22, Number 5 (March 1, 1983) Pp 742-748
7. Cohen, Leonard D., Richard D. Haracs, and Ariel Cohen. Electromagnetic Scaftering Properties of Finite Cylindert and Spheroids CRDC-CR-85041 Aberdeen Proving Ground, Maryland 21010-5423: U.S. Army Armament, Munitions and Chemical Command (November, 1985)
8. Haracs, Richard D., Leonard D. Cohen, and Ariel Cohen. Scattering of Linearly Polarized Lighe from Randomly Oriented Cylinders and Spheroids. Journal of Applied Phyaics. Volume 58 Number 9 (November 1, 1985) pp 3322-3327
9. Holt, A. R. and J. W. Shepherd. Eloctromagnetic Scattering by Dielectric Spheroida in the Forward and Backward Directions. Journal of Appliad Physics A. Math. Gen. Volume 12 (1979) pp 159-165
10. Holt, A. R. Some Factors Affecting the Remote Sensing of Rain by Polarisation Diversity Radar in the 3 to 38 Gigaberts Range Radio Science Volume 19, Number 5 (SeptemberOctober 1984) pp 1399-1412
11. Holt, A. R. Acoustic, Electromagnetic and Elastic Wave Scattering: Focus on the T-matrix approach IN Varadan, V. V. and V. K. Varadan (eda) Scatteaing Theory (1980) pp 255268
12. Lhimaru, A. Wave Propagation and Scattering in Random Media. Volume 1. New York: Academic Preso(1978) p. 205
13. Kerker, Milton. The Scattering of Light and Other Electromagnetic Radiation. New York: Academic Preas (1989)
14. King, R. W. and T. T. Wu. The Scattering and Diffraction of Waves. Cambridge, Masachusetts: Harvard University Prese (1959)
15. Pedersen, Norman En, Jeanne C. Pedersen, and Peter C. Waterman. Final Report on Theoratical Study of Single and Multipie Scattering by Cylindere. CRDC-CR-85014 (a Chemical Research and Development Center Technical Report) Aberdeen Proving Ground, Maryland 21010-5423 U. S. Army Armament, Munitions, and Chemical Command (April, 1985)
16. Ras, 8. and J. A. Lowinaohn. Scattering and Absorption by a Thin, Finite Dielectric Cylinder. Applied Physics 22 (1980) pp 61-69
17. Relntjes, John F. Nonlinear optical parametric processes in liquide and gases. New York: Acedemic Prese (1984)
18. Stratton, Juliua. Electromagnetic Theory. New York: McGraw Hill (1941)
19. Usunogla, N. K., B. G. Evans, and A. R. Holt. Scattering of Electromagnetic Radiation by Precipitation Particles and Propagation Characteristica of Terrestrial and Space Communications Syotems. Proceedings Inat. Electr. Eng. Volume 124 (1977) pp 417-424
20. Usunoglu and A. R. Holt. The Scattering of Electromagnetic Radiation from Dielectric Scatterert. Journal of Physica A. Math. Gen. Volume 10, Number 3 (1977) pp 413-424
21. van de Hulet, H. C. Light Scattering by Small Particles. Now York: John Wiley and Sons, Inc. (1957)
22. Wait, J. R. Exact Surface Impedance for a Cylindrical Conductor. Electr. Lett. 15 (1979) PP 659-660
23. Wilton, Donald R. and Raj Mittra. A New Numerical Approach to the Calculation of Electromagnetic Scattering Properties of Two-Dimensional Bodiea of Arbitrary Croae Section. IEEE Tranasctions on Antennas and Propagation, Vulume AP-20, Number 3 (May, 1972) PP 310-317

Blank

Determination of Moleculer Orientation ot the Surfece of en Aerosol Perticle
by
Morpholagy Dependent Photoselection.
L.M. Folan and S. Arnold

Microparticle ehotophysics Leboratory (MP ${ }^{3} \mathrm{~L}$)
Polytechnic University
333 Joy St. , Brooklyn, N.Y. 11201

RECENT PUBLICATIONS, SUBMITTALS FOR PUBLICATION AND PRESENTATIONS:
A. L.M. Folen, S. Arnold and S.D. Druger, Enhenced Energy Transfer within a Microparticle, Chem. Prys. Lett. $118,322(1985)$
B. S.Arnold and L.M. Folen, A Fluorescence Spectrometer for a Single Electrodynemically Levitated Microparticle, Rev.Scl.Inst.57, 2250(1986).
C. L.M. Folen, Optical depth probing in a microporticle, Bull. Amer. Phys. Soc. 32, 605 (1987).
D. S.D. Druger, S.Arnold, and L.M. Folan, Theory of Enhenced Energy Transfer between Molecules Embedted in Spherical Dielectric Microparticles, J. Chem. Phys. 87.2649 (1987).
E. S. Arnold, end L.M.Folen, A Soherical Void Electrodynamic Levitator, Rev.Sci.Inst (to be published, Sept. , 1987).
F. L.M. Folan and S. Arnold, Determination of Moleculer Orientation ot the Surfece of an Aerosol Particle by Morphology Dependent Photoselection, Opt. Lett. (Submitted August, 1987)

ABSTRACT
The orientation of fluorescent molecules on the surface of en eerosol perticle hes been determined for the first time by using a new technique, Morpholagy Dependant Photoselection. The excitation spectrum of the engulerly aver eged nuor escence from e single leviteted perificle is mesured using an integroting sphere levitator. By utilizing the relative intensities of resonant peoks in this spectrum and knowlecto of the polerizotion properties of different resonances we show that one may errive at the orientotion of molecules reletive to the surface normel

In this paper we report the first determination of the orientation of molecules on the surfece of a spherical, micron sized perticle. The method, referred to as Morpholagy Dependent Photoselection (MDPS), is besed on photoselection' and the properties of the netural electromagnetic resonances of small dielectric perticles.

Recently we reported the experimental observation of enhenced energy transfer between molecular species in liquid perticless,3. To further investigote energy trensfer oprobe to the spatial distribution of ective molecules was required. The probe was needed to ensure that segregetion or eppregetion do not accur in the particles and to allow investigetion of systems where the molecules of Interest are confined to the surfece of the particle. The fluorescence excitation spectrum of a perticle provides such a probe.

Fluorescence excitation spectra of fibers were reported by Owen et al ${ }^{4}$ and resonent features in emission spectra from spherical particles by Benner ot ol ${ }^{5}$, but no attempt hes been mede until the current work to derive specific information obout the distribution and orfentation of the fluorescent molecules from the spectra. In what follows we will show thet through on understending for the relative emplitude of verlous resonances one can gain information about the homogeneity of absorbers in the particie, and if the ective molecules are at the particle suriace, the orientation of the molecular absorption moment with respect to the surfece normal can be inferred. The work described below involved epplying en insolubie, surfece ective fluorescent oye to o glycerol sphere, meesuring ofluorescence excitetion spectrum of the composite perticle and compering the meesurements with model calculations.

A schematic diegram of the experimental apper atus is shown in Fig. 1.

Fig. 1 A schematic dieprem of the experimentel epperatus.

The spherical void electrodynemic levitutor (SVEL) uses a combination of dynemic and static forces to stobly levitete singie pariticies ${ }^{6}$. The electrode confíuration was chosen 90 that once the interior surfece is cooted with o high diffuse reflector (Kodek product 6080) the SVEL becomes a neerly ideel integrating sphere. The Integration significently increeses the signal leval at the datector, and the signal magnitude abtained is proportional to the total cross-section for the scottering procoss (either elestic or inelastic). This is a key odventege in the present work. The total cross-section for fluorescence scattering is expected to be proportional to the perticle's absorption cross-section, and (as we will show) it is the porticle's sbsorption spectrum which eneoles us to determine the or ientation of surface sctive molecules.

The excitation beem provides by o tunsble cw oye laser was circularly polerized. Circuiar polerization was used to eliminate ony possible azimuthal bles in the angular integration. The elastically scattered light was collected through o short poss dielectric filter ($\lambda_{\text {pass }}<600 \mathrm{~nm}$ (DF)) using a telescope (T) with F/6 optics. A polerizer (P) wes used to select reotiation poler ized paroilel to the scatter ing plene. For the small acceptence engle used in the experiments the elestic scotter ing spectrum neer 90° is dominated by TM resonences. The Integrated fluorescences signal was collected with a $1 / 8$ inch glass light pipe (LP) and detected througn o combination of dielectric and colored glas filters (F) with a photomultiplier tube (PMT). Fluorescence excitation and the elestic scatter ing spectro were recordeo simultaneously in order to tientity the type of mate (TM or TE) responsible for the resonences seen in the fluorescence excitotion spectrum.

For a possible surfece ective species we chose Dill (5). The molecule hes a tydrophilic chromophore (alcerbocyaning heed group) and thydrophobic aliphetic chains (iwo C_{18} tells). Dil(5) and its homologue Dil(3) (corbocyanine heod group) hive successiully been used to prepere Lengmuir-8locaptt films on weter', and therefore Dil(5) is expected to remain on the surface of a poler liquid like giycoral.

A glycerol perticle was produced, cherged and pushed in to the SVEL using the plocopipette J_{1} asescribed previousily ${ }^{8}$. The pipette J_{2} conteining o $10^{-5} \mathrm{M}$ Dill(5) solution in chloroform wes then positioned sbove the SVEL in plece of J_{1}. A chloroform perticles wes injected into the SVEL and mede to collide with the lovituted olycerol pericle. The collision
was essisted by meking the cherge on the chloroform particie opposite to and smaller than the cherge on the glycerol particle. When a collision occured the porticle wes seen to recoll and Dill(5) nuorescence was detected. The chlorofrom eveporated repidly leoving a composite Dil(5)-glycerol perticle.

Fig. 2 shows the integrated fluorescence excitation spectrum (upper spectrum) and 90° scottering for a composite perticie 5.4μ in reolus.

Fig. 2 Fluorescence excitation (upper curve, isbeled l_{p}) end 90° in plene poler izeo elestic scattering (lower curve, lebeled I_{5}) of a $5^{\text {A }}$, micron redius glycerol perticle with o submonolayer coeting of the fluorescent dye Dill(5).

The elestic scattering spectrum wos used to size the perticle through a proceoure similier to that of Cryylek et e19. Resonent moles found in the procoss are cherecter ized by their peneric class(TE or TM) end by mode numbers, n,end orders, s (e.0., TE $_{n, s}$). Allowances were mede in the ift for a small amount of scottered light polarized perpendiculer to the scetter ing plene
(due to imperfect elignment of the polarizer) and a small change in the particle redius due to oveporation. The primary thing to note in the excitetion spectrum is that the TE resonences are systematically more intense then the TM resonences of the seme number and order, and that both third (sharp) and fourth (broed) order resonances are present.

The excitation spectrum was modelled as follows. The angularly integroted fluorescence intensity was assumed to be proportional to the powar sosorbed dy the perticle. Since the power obsorbed by a single molecule is in proportion to $|\mathrm{L} \circ \mathrm{E}(\mathrm{c})|^{2}$, where μ is the absorptive transition moment, the power absorbed by the entire particle will be proportional to $N \quad 2$ $\sum_{i=1}\left|\mu_{1} \propto E\left(L_{1}\right)\right|$, where N is the total number of obsorbing molecules. The first step in evaluating this sum is to consider the orientation of a molecule at o perticulor point $£ w i t h i n$ the particle. For a soluble material in a liquid there will be no preferred or ientation and the angle between the tronsition moment ond the field moy be overeged over; in this bulk-rondom case the absorption spectrum wIll be in proportion to the volume overoge of $\left|E\left(\omega \boldsymbol{L}_{1}\right)\right|^{2}$. $\left\langle\mid E\left(\omega_{\perp} . \perp\right)^{2}\right\rangle_{V}$. In the case of absorbers confined spatially to the surficce there ore two major possibilities, the molecules may de rondomly or iented with respect to the surfece normal or they mey take a specific orientation. In the surfoce-random case the molecular orientation at ony porticular position on the surfece may once apoin be eversped out is in the bulk-rendom case and the absorption spectrum will be in proportion to the surface everse of the sauare modulus of the field at the surfoce, $\left.\left.\langle | E(\omega, r=\theta)\right|^{2}\right\rangle$. Finally, in the cose of molecules wich are or ientated preferentially so that their absorptive moment is ot en angle of relative to the surfece normal, one mey only averepe over the orlientation of the projection of the sosorptive moment in the plane of the surfece. In this circumstence the ebsorption spectrum will follow

$$
\begin{equation*}
\left\langle E_{r}^{2}(\omega, r=a)\right\rangle_{s} \cos ^{2} \theta_{m}+\left\langle E_{t}^{2}(\omega, r=a)\right\rangle_{s} \sin ^{2} \theta_{m} / 2 \tag{1}
\end{equation*}
$$

where $E_{t}{ }^{2}(\omega, r=\theta)=E_{\theta}^{2}(\omega, r=0)+E_{\phi}^{2}(\omega, r=a)$ and the fector of $1 / 2$ in the second term expresses the fect thet the in plene component of the obsorption moment is equally likely to lie along a meridion or perallel of the sphere. In the surface-oriented $s-0$),
surface-random($s-r$) and bulk-random(b-r) cases the locel fields were calculated from Mie theory. ${ }^{10}$ One gains an eppreciation for the photoselection ideo in examining Egn. 1 for o perticular case. Since only TM modes have radial fields a molecula with a redial absorptive moment ($\theta_{m}=0$) connot be excited by a TE mode, and thus oll TE resonences would be absent in an obsorption spectrum although the TM resonances would be strong

In onolyzing the doto in Fig. 2 computations of the frequency dependences of $\left\langle\left. E(\omega, L)\right|^{2\rangle_{r}},\left\langle\left. E\left(\omega_{r} r=0\right)\right|^{2}\right\rangle_{s}\right.$, and expression 1 were made using the porticle redlus (5.44 μ) and refrective index (1.470) obtained from the elastic scattering spectrum ond incorporating the leser linewidth reported of the manufecturer (0.025 nm). Colculations of the resonant peok height (peok height above the non resonant background) were performed for the resonances $T E_{68,3}, T M_{68,3}, T E_{64,4}$ and $T M_{64,4}$, using wovelengith intervals of 0.0025 nm and averaging 10 points around the peak of interest. The loss due to the absorbers wes included using an effective bulk imeginary part of the refrective index (K). The K value was determined by forcing the calculated peak height ratio $T E_{68.3} / T E_{64,4}$ to match the dota. The ratios $T E_{68,3} / T M_{68,3}$ and $T E_{64,4} / T M_{64,4}$ were then used to decide whather the model calculations greed with the experiment.

The bulk-random cose gove values for the peak height ratios $T E_{68.3} /{ }^{\prime} M_{68,3}$ which were close to unity in sharp disagreement with the dote. The $T E_{68,3} / T E_{64,4}$ rotio wes found to be very sensetive to the K value used in the calculations while the $T E_{68,3} / T M_{60,3}$ and $T E_{64,4} / T M_{64.4}$ rotios were found to be quite insensitive. Supplementary experiments using the hignly soluble dye Sulforhodemine 101 yielded excitation spectro whose peok rotios were sily fit using the bulk random model. This led us to conclude thot the Dil(5) molecules are not homogeneously distributed in the particle bulk.

In the surfoce random case the $T E_{68,3} / T M_{68,3}$ and $T E_{64,4} / T M_{64.4}$ ratios were apoin incompatible with the dete and insensitive to choice of the effective K volue. Calculations were then performed for the surface or iented case. Expressions for the intensity ratios for a particular made peir ere esily obtained from Expression 1, for exemple

$$
\begin{equation*}
\frac{I\left(T E_{68,3}\right)}{I\left(T M_{68,3}\right)}=\frac{\left\langle E_{t}^{2}\left(T E_{68,3}, r=a\right)\right\rangle_{s} \sin ^{2} \theta_{m} / 2}{\left\langle E_{r}^{2}\left(T M_{6 \theta, 3}, r=a\right)\right\rangle_{s} \cos ^{2} \theta_{m}+\left\langle E_{t}^{2}\left(T M_{6 \theta, 3}, r=a\right)\right\rangle_{s} \sin ^{2} \theta_{m} / 2} \tag{2}
\end{equation*}
$$

The sensitivity of the ratio to the molecular orientation θ_{m} in Eqn. 2 is clearly seen. Hed we taken a ratio of $T E$ modes such as $T E_{68,3} / T E_{64,4}$ the dependence on θ_{m} would heve dropped out since neither TE mode hes any redial fieid component. This is especially useful since the $T E_{68,3} / T E_{64,4}$ ratio is very sensitive to K and this sensitivity has been used in datermining the effective K value. On this basis we have computed both the $T E_{68.3} / T M_{64.3}$ and $T E_{68,4} / T M_{64,4}$ ratios as a function of molecular orientation, θ_{m}, and these computations are presented in Fig. 3.

Fig. 3 A plot of the theoretical fluorescence ratlos $T E_{60.3} / T M_{60.3}$ and TE $E_{64.4} / T M_{64,4}$ ase function of θ_{m} for $K=8 \times 10^{-6}$. The two points with error bers show the experimentolly observed rotios for the dete shown in Fig 2.

The two points with error Ders indicate the meesured ratics from Fig.2. The TE 68.3 /TM 64.3 dete point yields an angle $\mathrm{C}_{\mathrm{m}}=66^{\circ} \pm 2^{\circ}$. The $T E_{60,4}$ TTM $_{64,4}$ point yields a less precise value for θ_{m} but the two determinations agree within experimental uncertainty.

The experimental results for the DII(5)-glycerol system ere consistent with o model system in which the absorption moments make en angle of $66^{\circ} \pm 2^{0}$ with the surfece normal ($24^{0} \pm 2^{\circ}$ from the surfece).

Studies with the homolog DII(3) have shown that its emission moment is perallel to the conjugated oridge of the molecule and that the cosorption moment mekes en angle eppox. 28° with the emission moment ${ }^{1}$. Direct comparison of fluorescence depolerizotion by Dil(3) and Dil(5) at our leboratory indicates that the engle between the emission and obsorption moments in the two homologues is the seme to within a few degrees. Therefore the engle with the tengent determined from Morphologically Dependent Photoselection(MDPS) of $24^{0} \pm 2^{0}$ Indicates thot the conjugeted bridge lies epproximately in the surfece plene consistent with our expectations. Thus it eppears that MDPS is a reelistic meens for arriving at the or ientation of molecules on the surfece of a microperticle for those cases in which one knows the orientation of electronic transition moments relative to the molecule.

The spectral method described sbove is generol in the sense that it cen be extended to any other optical process whose rate is determined by the Fermi co.den Rule end for which a dipole epproximation moy be made. Photoomission is enother such process for which sensitive experiments can be mode end for which we ore currently investigeting the use of MDPS.

We ore greteful for the cooperative support of the Notional Science Foundotion and the Chemical_Reserch Develooment_nd_Enoineering Centec (CRDEC) of the Army through ATM-84-13574. One of us (L.M.F.) wes supported in pert by the US Joint Services Electronics Contrect No. F49620-82-C-0084.

References

1. A.C. Albrecht, J. Mol. Spec. 6.84 (1961).
2. L.M. Folen. S. Arnold and S.D. Druger, Chem. Phys, Letters L18, 322(1985).
3. S.D. Druger . S. Arnold end L.M. Folen, J. Chem Phys. 87, 2649(1987).
4. J.F. Owen, P. W. Berber . P.B. Dorion and R.K. Cheng. Phys. Rov. Letts. 47 1075(1981).
5. R.E. Benner , P.W. Barber, J.F. Owen and R.K. Chang, Phys. Rev. Lett. 44475 (1980).
6. S. Arnold and L.M. Folen, Rev. Sci. Inst. (in press).
7. A. Ruoudel-Teixier and M. Vandeyver, Thin Solid Films 68. 129 (1980)

8 S. Arnold and L.M. Folen, Rev. Sci. Instrum. 57. 2250 (1986).
9. P. Chylek, V. Rameswamy, A. Ashkin and J.M. Dzieckic, App!. Opt. 22, 2302(1983).
10. "Absorption and Scattering of Light by Small Particles", C.F. Boiren and D.R. Huffman, John Wiley, New York 1983, Chapter 4.
11. D. Axelrod, B lophys. J. 26 , 557 (1979).

Theory of Enhanced Energy Transfer Between Molecules Embedded in Spherical Dielectric Particles

Stephen D. Druger

Materials Research Center and Department of Chemistry Northwestern Univarsity, 2145 Sheridan Road, Evanston, IL 60201

Stephen Arnold, Lorcan M. Folan
Department of Physics and Institute for Imaging Science Polytechnic University, 333 Jay Street, Brooklyn, NY 11201

RELEVANT PUBLICATIONS:

A) S. D. Druger and P. J. McNulty, Radiation Pattern of Fluorescence from Molecules Embedded in Small Particles: General Case, Appl. Opt. 22, 75 (1983).
B) S. D. Druger and P. J. McNulty, Radiation Pattern of Raman Scattering from Randomly-Oriented Molecules In or Near Small Particles, Phys. Rev. A29, 1545 (1984).
C) L. M. Folan, S. Arnold, and S. D. Druger, "Enhanced Energy Transfer Within a Microparticle", Chem. Phys. Lett. 118, 322 (1985).
D) S. D. Druger, S. Arnold, and L. M. Folan, "Theory of Enhanced Energy Transfer Between Molecules Embedded in Spherical Dielectric Particles", J. Chem. Phys., J. Chem. Phys. 87, 2649 (1987).

ABSTRACT

The effects of morphological resonances on intermolecular energy transfer and molecular fluorescence within an aerosol droplet are studied by developing and applying a theory based on electromagnetic solutions for a dielectric sphere, leading to results in terms of measurable spectral quantities for the donor and acceptor molecules separately in the bulk host medium. Mie resonances in droplets of about ten $\mu \mathrm{m}$ diameter are predicted to cause only moderate changes in the integrated radiative rate, while strongly enhancing the rate and quantum efficiency of energy transfer. Additional results obtained argue further for the role of Mie resonances in the recently. observed energy-transfer enhancement, and provide insight into the energy. transfer mechanism. Our results can now be applied in moredetalled calculations and in combined experimental/theoretical studies of enhanced energy transfer through Mie resonances. Parts of the theory describing fluorescence can be extended and employed in studies of interest with regard to fluorescent remote sensing.

This work results from a theoreticaliexperimental collaborative interaction between research efforts at Northwestern and at New York Polytechnic Universities; here we give an overview emphasizing new cheoretical results.

I. INTRODUCTION

An improved understanding of molecular photophysical processes near the surface of an aerosol droplet is of intrinsic scientific interest as well as having practical value in obscuration science and in developing methods of remote sensing by fluorescent Lidar.

Experimental studies have shown that proximity to metallic surface can strongly affect molecular photophysical processes l-3 Proximity effects of this kind, while perhaps surpriaing at first glance, are implied ${ }^{4}, 5$ by the way in which the presence of the interface modifies the appropriate boundary conditions and therefore the states of the electromagnetic field (including the vacuum states) thereby changing the electromagnetic interactions responsible for processes such as spontaneous emission and Raman scatering. Proximity to a dielectric (i.e., nonconducting) surface might be expected to have far amaller effects.

Experimental evidence has recently been found, however, for a very strong effect of surface proximity on energy transfer between molecules in a small dielectric droplet. ${ }^{6}$ The specific case in point ${ }^{6}$ is chat of coumarin (C1) donors mixed with rhodamine 6G (R6G) acceptors in a glycerol host droplet (of about $10 \mu \mathrm{~m}$ diameter). The coumarin is excited at wavelengths short enough for the R6G absorption to be small. Once excited, the Cl molecule relaxes internally and then either fluoresces or else cransfers energy via dipole-dipole interaction to the R6G, which then relaxes and fluoresces

For the bulk sample, the energy transfer i- found essentially proportional to the acceptor concentration. But in an aerosol droplet of about $10 \mu \mathrm{~m}$ diameter, the essuntial experimental results are:
(1) The fluorescence (observed from a waveleagth region where R6G fluorescence dominates) is essentially proportional to the Cl donor
concentration, but shows almost no dependence on the acceptor concentration.
(2) At the lowest acceptor concentrations, the energy transfer is enhanced by a factor of -10^{2} relative to the bulk.
(3) The lowest concentrations for which such effects are observed is about 10^{-7} molar.
(4) Furthermore, the spectrum is in a regime where there are many sharp peaks attributable to the effect of Mie resonances in either the $C l$ or 26G [plus glycerol droplet] systems. In the combined C1+R6G [plus glycerol droplet] system, there is a noticeable weakening of the peaks in the region of maximum spectral overlap between Cl (donor) emission and R6G (acceptor) absorption, as would be expected if energy transfer is depleting the populations of excited donors in some regions of the droplet.

A goal of the theoretical work aumarized here has been to explore the mechanisms apparently responsible for these effects. Although the small area under the narrow resonance emission peaks might make enhanced energy transfer via Mie resonances seem unlikely, we have already proposed that the experimental data are evidence for such a mechanism. 6 Our arguments were based on the analogy between Mie resonances and cavity resonances.

Present theoretical efforts are now almed at developing and applying a detailed analysis of the enhanced transfer effect based on electromagnetic solutions for an actual dielectric particle. The effects of the Mie resonances on energy transfer and on the competing process of fluorescence without transfer are both considered, and so the present research also contains inherent parts of our current theoretical work on fluorescence from molecules on and within an aerosol drcplet.

II. NEW THEORETICAL RESULTS

We consider an initially-excited donor molecule embedded at location \dot{r}, within a continuous dielectric sphere containing a uniform distribution of acceptors. We seek to find the effect of Mie resonances of the dielectric sphere on:
(1) energy transfer by the donor to all available acceptors, and
(2) fluorescence by the donor into the far zone.

For energy transfer, we start from the Fermi golden rule for transition rates between each initial state consisting of the donor excited and the acceptor unexcited, coupled by dipole-dipole interactions to final states in which the donor is unexcited and the acceptor excited. More specifically, we use the rate (ultimately to be summed over all transitions)

$$
w_{t r}-(2 \pi / h)\left|\vec{\mu}_{d} \cdot \stackrel{\rightharpoonup}{T} \cdot \vec{\mu}_{\mathrm{a}}\right|^{2} \delta\left(\mathrm{E}_{\mathrm{f}} \cdot \mathrm{E}_{\mathrm{i}}\right)
$$

where

$$
\vec{\mu}_{\mathrm{d}}=\left\langle\Phi_{\mathrm{df}}\right| \Sigma_{\mathrm{j}} \in \overrightarrow{\mathbf{r}}_{\mathrm{j}}\left|\Phi_{\mathrm{di}}\right\rangle
$$

is the dipole moment for the transition from the donor in state $\mid \operatorname{lodi}_{1}>$ to the donor in state $\left|\Phi_{d f}\right\rangle$ (with a similar expression for the acceptor transition moment $\underline{\mu}_{\mathrm{a}}$): also $E_{1} \cdot \mathrm{E}_{\mathrm{f}}$ is the net change in total energy of the donoracceptor pair, \mathbb{T} is the usual dipole-dipole interaction tensor in free space with (μ, ν) components given by

$$
\mathrm{T}_{\mu \nu}=\left(3 \mathrm{X}_{\mu} \mathrm{X}_{\nu} \cdot \mathrm{R}^{2} \delta_{\mu \nu}\right) / R^{5}
$$

where $\vec{R}=\left(X_{1}, X_{2}, X_{3}\right)$ is the distance vector between donor and acceptor.
Two issues involving important physical aspects of the problem are especially noteworthy. First, the presence of the interface modifies the dipole-dipole interaction H^{\prime}, and the firgt issue is to determine the modified interaction. Second, important physical features enter into the specific way of summing over all transitions that contribute to the net transfer.

First, in free space, in the near zone, the matrix element of the dipole-dipole interaction has exactly the same form as the interaction energy between two classical oscillators, except that the dipole moments (i.e., $\vec{\mu}_{\mathrm{d}}$ and $\vec{\mu}_{\mathrm{a}}$) of the classical oscillators are replaced by quantum mechanical transition dipole matrix elements. The geometrical tensor \mathbb{T} is the same, however. Now, for the classical problem, the existence of the interface leads to an interaction still of the form $\vec{\mu}_{d} \cdot{ }_{\vec{r}} \cdot \vec{\mu}_{a}$, but with a modified geometrical tensor \boldsymbol{T} determined by solution of the electromagnetic boundary problem (i.e., with $\dddot{T} \cdot \vec{\mu}_{d}$ giving the field at $\overrightarrow{\boldsymbol{r}}$ produced by the classical dipole at point \vec{r}^{\prime}). Our ansatz for the quantum case is then to use the same classical \mathbb{T} that has been modified by the presence of the dielectric Interface. This amounts to a gevi-classical approximation in which the molecule is treated quantum mechanically, but the dielectric and the electromagnetic field are treated classically.

Second, the sumation over transitions in the golden rule formula involves a physical constraint and a physical assumption. The constraint, overlooked in much of the previous fluorescence work, is that there is only one photon to be dissipated statistically through all final channels after a given initial excitation. We incorporate this constraint using a physical assumption of rapid relaxation to an equilibrium distribution of excited vibrational and electronic states between initial excitation and either fluorescence or energy transfer...the same equilibrium distribution ${ }^{7}$ as for the molecule in bulk. The constraint and assumption are combined (in the summation over all eransitions for transfer) by expressing the combination of dipole matrix elements and initial occupation probabilities of donor states that occurs in terms of the experimentally observable spectral shape function for donor emission $f(k a)$, where $f(k a) d(k a)$ is the relative probability for
emission in wavenumber range ($k, k+d k$) with a the radius of the droplet and with $\int f(k a) d(y . a)-1$. The quantum-mechanical dipole matrix elements for the acceptor are similarly expressed in cerms of the experimentally
observable extinction coefficient $\alpha(k)$ at the given wavenumber k. Thus, the resulting expressions are in terms of quantities found experimentally from the pure-donor emission spectrum in buik and the pure-acceptor spectrum in bulk, rather than computed using the necessarily approximate methods of quantum chemistry.

The miscellaneous ingredients of the theory include averaging over all molecular orientations, and integrating formally over acceptor distributions (we hold the donor locarion $\overrightarrow{\boldsymbol{r}}$, fixed, being interested in the averaged transition rates and branching ratios for a specific donor iocation). The result is an integral over wavenumbers that exhibits the usual sharp peaks at the Mie resonances. We sum the integrais over these peaks formally using a Lorentzian approximation (taking the peaks to be narrow).

All this leads to immense analytical simplification compared with the intermediate results. The Me contributions to the transfer, measured relative to the free radiative rate, occur as sums over resonant wavenumbers k_{0} for E-type and M-type resonances,

$$
\begin{aligned}
& \frac{W_{t r}^{\prime}}{W_{\text {rad }}}-N \pi\left[\frac{4 \pi a^{3}}{3}\right]\left[\frac{3\left|r_{1}\right|^{5}}{8}\right] \\
& \times\left\{\left.\sum_{\sum_{k=k_{0}}(E ; \ell 1)}^{\infty} k^{2} f(k a) \alpha(k) \frac{\left|F_{E}(\ell)\right|^{2}}{\gamma_{0}(E ; \ell i)} \frac{A \mid\left\{I_{\ell}\left(n_{1} k a\right) \mid\right]}{(2 \ell+1)} A| | j_{\ell}\left(n_{l} k r^{\prime}\right)\right|^{2}\right\} \\
& \left.+\left|n_{1}\right|^{4} \sum_{k=k_{0}(M ; \ell i)}^{\infty}(2 \ell+1) k^{2} f(k a) a(k) \frac{\left|F_{M}(\ell)\right|^{2}}{\gamma_{0}(M ; \ell i)}\left|I_{\ell}\left(n_{1} k a\right)\right|\left|J_{\ell}\left(n_{1} k r^{\prime}\right)\right|^{2}\right\}
\end{aligned}
$$

Each E-type or M-type resonance at a corresponding wavenumber k_{0} is labelled by indices ($\ell, 1$) which indicate the $i^{\text {th }}$ resonance for mode number ℓ (where actually ℓ also labels the spherical harmonic $\vec{Y}_{\ell \ell m}$ of the multipole expansion term that gives rise to the resonance). The F, A, and I coefficients are combinations of spherical Bessel functions J_{ℓ} and Hankel functions $h_{\ell}(l)$ whose specific form is not important in the overview being presented here, yo denotes the width of the corresponding resonance, a is the radius of the droplet, and n_{1} is its complex refractive index. The important features to note are (1) the spectral overlap between donor emission $f(k a)$ and acceptor extinction $a(k)$ that tends to maximize transfer in the region of maximum speceral overlap, and (2) the cccurrence of the inverse width ro of the resonance, which tends to maximize transfer from the narrowest resonances, as we have previously argued ${ }^{6}$ was expected on the basis of the cavity analogy. For fluorescence, we follow much the same procedure as in obtaining the rate for energy transfer, except that we use the photon emission rate from a classical oscillator divided by the energy $n \omega$ of the photon rather than the Fermi golden rule, multiplying also by the well-known classical-to-quantum conversion factor for the dissipated power. The result

$$
\begin{aligned}
\frac{W_{r a d}^{\prime}}{W_{r a d}}-\frac{\pi}{2} & \left\{\sum_{k=k_{0}(E ; \ell i)}^{\infty} \frac{\left|n_{1}\right|^{4}}{(k a)^{2}} \frac{\left|G_{E}(\ell)\right|^{2}}{\gamma_{0}(E ; \ell i)} f(k a) A\left[\left|j_{\ell}\left(n_{1} k r^{\prime}\right)\right|^{2}\right\}\right. \\
& \left.+\sum_{k=k_{0}(M ; \ell i)}^{(k a)^{2}} \frac{\left|n_{2}\right|^{4}}{\infty} \frac{(2 \ell+1)}{\sum_{0}(M ; \ell 1)} f(k a)\left|j_{\ell}\left(n_{1} k r^{\prime}\right)\right|^{2}\right\}
\end{aligned}
$$

has the same dependence on inverse width of the resonance. (Here the G
coefficients are specific combinations of spherical Bessel functions and
spherical Hankel functions.) Also, each resonance has precisely the same radial dependence on donor location as for energy transfer.

III. COMPARISON WITH EXPERIMENT

To apply these results, we first estimate the imaginary part of the refractive index $l m\left(n_{1}\right)$ from experimental extinction data to be $=10^{-6}$ at (falrly high) acceptor concentrations of 10^{-5} molar, and smaller at lower concentrations. Experimental data shows the maximum spectral overlap between donor emission and acceptor absorption to occur at ka ≈ 57, corresponding to $\ell=76$, so that resonances in this ka range produce the main contribution to the transfer. We have carried out fairly thorough studies of the resenances up to and somewhat beyond the relevant ka values and find, in particular, that the resonance widths are generally small and comparable in value for the first two orders but a factor of ten or more wider for higher orders. Under conditions where the imaginary part of the refractive index $I^{(m)} n_{1}$) is smaller still, the first-order resonances for relevant ka values become even narrower (1.e., ro becomes about a factor of 10^{-3} smaller chan for second order resonances)
A. Cutoff concentration of the enhancement effect

To estimate the iowest acceptor concentration above which the transfer via Mie resonances leads to the enhanced energy-transfer effect, we consider a radial location r ' of the donor that maximizes the effect of Mie resonances in both the energy rransfer and fluorescence, and use representative experimental values of the parameters in our expressions for the fluorescence and energy-transfer rates. We find that the Mie contribution to the fluorescence rate W^{\prime} rad W^{\prime} rad (i.e., relative to the rate in bulk) is given approximately by 3×10^{-2} where m is the number of resonance peaks that contribute $(=50)$. This is not negligible, but is still only of order 1 or

Fig. 1. Angular-averaged coupling of an electric dipole to an $\ell=76$ E-type mode as a function of fractional radial position r^{\prime} / a In and near an aerosol droplet of refractive index $1.47+10^{-7} 1$. for resonances of orders 1,2 , and 3 .
so. Although the particle environment affects the fluorescence rate also by means other the Mie resonances, these effects are again not expected to be very profound. For energy transfer, however, we obtain a Mie resonance contribution that is proportional to the acceptor concentration and which is $\gg 1$ down to acceptor concentrations less than $10^{\circ 7}$ molar (when $I m\left(n_{1}\right)$ is negligible, the contribution $i s \gg 1$ down to 10^{-10} molar]. Then at radial donor locetions near where the Mie resonance contribution is maximized, the branching ratio between energy transfer and fluorescence is predicted to be almost unity for all acceptor concentrations above this cutoff limit.
B. Dependence on donor location

The specific radial dependence on donor location (for a uniform acceptor distribution) is the same for the Mle resonance contributions to both fluorescence and energy transfer. It is plotted in Fig. 1 for a typical mode both inside and outside the droplet, and represents the coupling of a transition dipole to the Mie resonance of the particle. The enhancedtransfer effect is seen to be predicted for donors in a shell below the surface comprising about 158 of the volume. Actually, the same is true for acceptors, except that the dependence on acceptor radial location has been disguised by integrating over the uniform acceptor diseribution.

Figure : also provides a physical explanation of why the enhancedtransfer effect occurs; namely, the coupling between two dipoles through the Mie resonance is enhanced for both dipoles in the active region, thereby enhancing the dipole-dipole transfer, but there is no comparable enhancement of the coupling between a dipole emitter anywhere inside the sphere to a dipole detector in the far zone, so that fluorescence is not similarly enhanced.
C. Estimate of the enhancement factor

We estimate the enhancement by estimating the branching ratios for transfer (with donor fluorescence as the competing process) both in the particle and in the bulk. The ratio of these two branching ratios gives the enhancement factor.

In the bulk, we assume that all excitation is transferred if an acceptor happens to fall within a critical distance $\left(R_{0}=50 \mathrm{~A}\right)$ but otherwise leads to donor emission. The probability of rransfer is then the probability that an acceptor lies within a distance \mathbb{R}_{0} from the donor at the given acceptor
concentration. In the particle, all donors in the active region are assumed to transfor successfully, while all others deactivate by fluorescence.

The onhencement factor obtained as the ratio of the two branching ratios obtained under these assumptions is about 400 at $10^{\circ} 6$ molar, in rough agreement with experiment.
D. Concentration dependence

An understanding of the concentration dependence then follows by a similar argument. If all donors in the active region transfer energy while all others fluoresce, there would be no dependence on acceptor concencration. Actually, the donors in the interior have a weak residual probability of ordinary Forster transfer, which depends linearly on acceptor concentration. The overall effect should be weak dependence on acceptor concentration, which is what is actually observed.
E. Long-range character of the enhancement offect

Finally, Fig. 2 shows a typical dependence on relative location of the

Fig. 2. Dependence of the Mie-resonance transfer rate on relative donor/acceptor position with both donor and acceptor on the same annular shell for $\ell=20$, where θ is the angle between the donor/ acceptor radius vectors. The plot for an $\ell=75$ resonance is similar, except for the larger number of oscillations.
energy transfer rate through a single Mie resonance for donor and acceptor on the same annular shell, as computed from our theory for annular shells both inside and outside the sphere. Dipoles at diametrically opposite points of the shell are seen to produce the same Mie-resonance transfer-rate contribution as do nearby points. The long-range character of the Mieenhanced transfer to distant points that are not diametrically opposite to the donor also becomes apparent.

IV. SUMMARY AND CONCLUSIONS

Our theoretical work on the enhanced energy-trangfer effect now provides a quantitative treatment based on actual solutions for a dielectric sphere While furcher and more quantitarive work remains to be done in appiying the present methodology and results to experiment, the present work leads already to a number of conclusions:
(1) We obtain theoretical confirmation that enhanced transfer via Mie resonances should be the dominant contribution for a substantial region of the dielectric droplet.
(2) Estimates are obtained in agreement with experiment for the enhancement factor and for the acceptor-concentration cutoff.
(3) The Mie enhanced contribution is predicted to be long range in character.
(4) A clearer picture than before emerges of how the transfer occurs, as well as a more general criterion possibly epplicable to nonspherical geometries. Specifically, the enhancement is seen to result from enhanced coupling between the electromagnetic modes of the particle and a dipole at points within a localized active region, without comparably-enhanced coupling at dipole locations in the far zons.
(5) The theory leads to quantitative expressions that can now be used and extended for further application and for use in more-detailea experimental studies.

The theoretical work reported here involves not only development of a theory of Mie-resonance effects on dipole-dipole energy transfer (which indirectly affect observed fluorescence), but also extension of previous work on
fluorescence by molecules near dielectric particles without dipole-dipole energy transfer. We expect our future theoretical efforts to build upon the present work in applications to fluorescence as well as in applications to energy transfer.

references

1. A review is given, e.g., by R. R. Chance, A. Frock, and R. Silbey, Advan. Chem. Phys. 37, 1 (1978).
2. D. Kleppner, Phys. Rev. Lett. 47. 233 (1981)
3. M. Moskovits, Rev. Mod. Phys. 57, 783 (1985).
4. G. Barton, J. Phys. B7, 2134 (1974).
5. E. Power and T. Thirunamachandran, Phys Rev. A25. 2473 (1982).
6. L. M. Folan, S. Arnold, and S. D. Druger, Chem. Phys. Lett. 118, 322 (1985).
7. See, e.g., J. B. Birks, Organic Molecular Photophysics, (Wiley, London, 1973), vol. I, p. 98 ff .
G. Moncivais, J. C. Carls, and J. R. Brock

Chemical Engineering Deparment
University of Texas, Austin, Texas $\mathbf{7 8 7 1 2}$

RECENT PUBLICATIONS, SUBMITTALS FOR PUBLICATION AND PRESENTATIONS:

1. J. C. Carls and J. R. Brock, "Explosion of a water droplet by pulsed laser heating", Aerosol Sci. Tech.7,79.91 (1987).
2. S. G. Kim and J. R. Brock, "Growth of ferromagnetic particles from cation reduction by borohydride ions" J.

Colloid Int Sci. 116.431-443 (1987).
3. J. R. Brock and J. Oates, "Moment simulation of aerosol evaporation", J. Aerosol Sci.18,59-64 (1987).
4. J. R. Brock, D. Zehavi and P. J. Kuhn, "Formation and growth of binary aerosol in a laminar coasial jet", J. Aerosol Sci.,In Press.
5. S. C. Davies and J. R. Brock,"Laser evaporation of droplets", Appl. Opt.26,786-793 (1987).
6. S. C. Davies and J. R. Brock, "Laser propagation through an evaporating polydisperse aerosol", Appl.

Opt 26,1865-1876 (1987).
7. S. G. Kim and J. R. Brock," Aerosol growth and dynamics"in R. Kohl, Ed. Proceedings of the 1986 CRDEC Scientific Conference on Obscuration and Aerosol Research,R. H. Kohl and Assoc., 1987.
8. J. C. Carls and J. R. Brock,"Laser induced explosion of particles", in R. Kohl, Ed. Proreedings of the 1986 CRDEC Sciensific Conference on Obscuration and Aerosol Research. R. H. Kohl and Assoc., 1987.
9. S. C. Davies and J. R. Brock, "Laser evaporation of droplets". in R. Kohl. Ed .Proceedings of the 1986 CRDEC Conference on Obscuration and Aerosol Research, R. H. Kohl Assoc, 1987.
10. Y. L. Chen. J. R. Brock, and I. Trachtenberg. "Aerosol jet etching of fine pauems", Appl. Phys. Leth., In Press. 11. A. Dove and J. R Brock, "Sulfate aerosol modeling using the EPA Philadelphia Aerosol Field Study", U. S. Environmental Protection Agency Report, 200 pp. 1987.
12. J. C. Carls and J. R. Brock, "Explosive vaporization of a single water droplet by pulsed laser radiation", Abstract AAAR Annual Meeting, Seattle, September 1987.
13. H. Kosuge and J. R. Brock, "Aernsol evolution in jets expanding into low pressure regions", Abstract AAAR Annual Meeting,Seatue, September 1987.
14. J. C. Carls and J. R. Brock, "Laser induced explosion of water droplets by laser radiation", Workshop on Physics of Directed Energy Propagation in the Atmosphere, Las Cruces, N. M., January 1987.
15. J. R. Brock, "Formation and Growth of Ferromagnetic Particles", Department of Physics, University of Paris at Orsay, January 1987.
16. J. R I. ock, "Aerosol Formation and Growth".University of Paris VIII Val de Marne, January 1987. 17. J. R. 2.ock. "A Comlex Terrain Model for Aerosol Dispersion", Chemical Modeling Conference, CRDEC. August 1987.

ABSTRACT
An optical levitation and rapid scan spectrometer system has been developed which makes it possible to obtain accurate Raman spectra on single suspended particles in times of the order of 1.10 sec . and to track prominent Raman peaks in times in the range $0.1-1 \mathrm{sec}$. Experimental Raman spectra oblained with this system are presented for levitated glass microspheres and for bulk and suspended particles of dioctylphthalate and glycerol. In addition to the Raman bands, sharp peaks appear in the levitated particle spectra which are attributed to partial wave electromagnetic resonances.

INTRODUCTION

Recendy there has been much interest in microprobe spectroscopy .. obeaining spectra from very small sample volumes. A number of investigators have reported Raman spectra obtained from single particles suspended by opuical levitatione.8.1,2. The ideal arrangement for Raman particle studies would be for the particle to be free of any supports and for it to be perfectly centered in the middle of a laser focus where the highest light intensity is found. These requirements are met by the technique of oprical levitation, pioneered by Ashkin and coworkers at the Bell Laboratories. Here we report our first studies of Raman spectroscopy of optically levitated particles with an experimental arrangement that permits a considerable decrease in the time for acquisition of complete spectra over that previously reported ${ }^{1,2}$; these previous times have been in the range of $10-100$ minutes while in our experiments useful acquisition times smaller than 1 second are possible. It should be pointed out, however, that our wavenumber resolution at these small times is much less than those achieved in these references 1,2 .

PROCEDURE
The experimental arrangement for our studies is shown schematically in Fig. 1. The basic components of our system are a Spectra Physics 165 argon ion laser, 0.22 m SPEX monochromator, TN6500 Tracor Northern Rapid Scan Spectrometer, optical cell and collection and focussing optical elements. The light emitted from a particle captured in the optical focus in the suspension cell was collected at 90° using a 5 X microscope objective. A Raman notch fiter was placed betweer. the microscope and the monochromator to eliminate the laser line and the signal was focussed into the spectrograph. In most of our experiments, an argon ion laser beam was used at around 250 mW operating at 488 nm in the TEM $_{00}$ mode. Droplets were also suspended using the 514.5 nm line and it was found that particle capture and suspension were facilitated at the longer wavelength.

With proper alignment of the optical system, it was relatively easy to capture paricles. In experiments using $30 \mu \mathrm{~m}$ glass spheres, the spheres were incroduced through a tube above the focal point of the laser beam. Liquid dropiets were produced by aspiration into a chamber above an opening to the cell.

RESULTS

Raman spectra were oblained for bulk dioctylphthalate (DOF), bulk glycerol, and levitated particles of DOP. glycerol, and glass microspheres. Fig. 1 shows a comparison between the bull. DOP and a $\sim 30 \mu \mathrm{~m}$ suspended DOP particle. Fig. 2 is a similar comparison for bulk glyierol and a - $\mathbf{3 0}$, \mathbf{m} glycerol paricle. In boih cases some of the Raman assignments ${ }^{\mathbf{3}}$ are shown above the peaks for the bulk spescra. It can be seen that the agreement in the Raman peaks between bulk and particle phases is good. However, the suspended particles exhibit sharp peaks that are absent in the bulk spectua. These may be associated with the partial wave electromagnetic resonances reported in the literaturee.8.1,2. Fig. 3 shows the spectru. $\quad 30 \mu \mathrm{~m}$ suspended glass microsphere; the peaks shown here correspond w those already reported for suspenuu glass microspheres ${ }^{2}$.

The time necessary to aequire the spectra shown here varied from $1-i 0$ seconds. This is in contrast to the previously reported times which varied from tens of minutes for glass microspheres ${ }^{2}$ to hours for DOP particles ${ }^{1}$. It should be pointed out, however, that the resolution in these experiments was far superior to ours; mact, but not all, of the fine structure auributed to partial wave electromagnetic resonances is not observed in our spectra.

Here we have demonstrated the capability of obtaining accurate Raman spectra on a time scale significantly smaller than has been previously reported. This permis observation of transient chemical phenomena in suspended particles such as surface reactions, diffusion and reaction in particles, and chemical changes in particles induced by laser radiation. We plan to report work along these lines in the near fuure.

ACKNOWLEDGMENT

This work was suppored under contract DAAK-83-K.0006 from CRDEC, U. S. Army.

REFERENCES

1. R. Latieri and R. E. Prestion, Opl Commun. $54,349.352$ (1995).
2. R. Thum and W. Kiefer, Appl. Spectrose.38, 78.83 (1984).
3. J. G. Grasselli and N. M Richcer, Eds_Atlas of Spectral Data and Physical Constants of Organic Compounds, CRC Press, Cleveland, 1975.

(anclen

Blank

THEORETICAL CALCULATION ON SCATTERING BY SPHEROIDAL PARTICLES

 AND COMPARISON WITH MICROWAVE EXTINCTION MEASUREMENTSWan-Xian Wang and R.T. Wang
Space Astronomy Laboratory, University of Florida
Gainesville, FL 32609

RECENT PUBLICATIONS, SUBMITTALS FOR PUBLICATION AND PRESENTATIONS:
This paper is submitted to Journal of Electromagnetic Wave.

Abstract

The new algorithms on calculations of the scattering coefficients have been applied to the prolate and oblate spheroids having very high aspect ratio and/or very large aize and being either dielectric or metaliic. The extinction P-Q plot comparisons, of prolate-prolate, prolate-cylinder, oblate-oblate, and oblate-disk with equal volume for different aspect ratios and size parameters, between theory and microwave measurements are provided, as reveals a good agreement to the extinction profiles for spheroids and a similarity of prolate to cylinder or oblate to disk in the extinction efficiency.

1. INTRODUCTION

The corrections and developments on the theory of scattering by prolate spheroidal particles as well as comparison with experiments had been atudied by the authors. ${ }^{1}$ In order to cover the apecific gap in the case of moderate values of size parameter c ($=\kappa\left(a^{2}-b^{2}\right)^{\frac{1}{2}}$, where κ is wave number, a is semi-major $a x i s$, and $b i s$ semi-minor axis) and intermediate number n, the higher order terms of the ordinate expansions for spheroidal eigenvalues and those of asymptotic expressions for prolate and oblate eigenvalues must be added. ${ }^{2,3,4}$

As the aspect ratio becomes higher, that is, the radial coordinate ξ for prolate $\left(-a /\left(a^{2}-b^{2}\right)^{\frac{1}{2}}\right)$ goes to 1 or ξ for oblate $\left(=b /\left(a^{2}-b^{2}\right)^{\frac{1}{2}}\right)$ is less than 1 , we have to use the series expansions in powers of $\left(\xi^{2}-1\right)$ for prolate or of ($\xi^{2}+1$) for oblate so as colate the spheroidal radial functions of the second $k i n d, R_{m n}^{(2)}(c, \xi)$ for prolate or $R_{m n}^{(2)}(-i c, 1 \xi)$ for oblate.
II. PROLATE AND OBLATE RADIAL FUNCTIONS $R_{\min }^{(2)}(c, \xi)$ AND $R_{\text {min }}^{(2)}\left(-1 c, 1 \xi_{0}\right)$

By employing the relation between the spheroidal radial and angular functions of the second kind, the prolate radial functions ${\underset{m}{m}}_{(2)}^{(c, \xi)}$ can be wr:ten in the form:

$$
\begin{equation*}
P_{m n}^{(2)}(c, \xi)=Q_{m n}(c) R_{m n}^{(1)}(c, \xi)\left[\frac{1}{2} \log \frac{\xi+1}{\xi-1}\right]+g_{m n}(c, \xi) \tag{1}
\end{equation*}
$$

The implications of quantities contained in Eq. (1) refer to the paper. ${ }^{5}$
Juat eimply abstituting $-i c$ to c and 1ξ to ξ in Eq. (1), and using the transformation of

$$
\begin{equation*}
\frac{1}{2} \log _{\frac{\xi+1}{\xi-1}} \text { for prolate } \longrightarrow 1\left[\tan ^{-1} \xi-\frac{\pi}{2}\right] \text { for oblate } \tag{2}
\end{equation*}
$$

we can obtain the oblate radial functione: ${ }^{6}$

$$
\begin{equation*}
R_{\operatorname{mn}}^{(2)}(-1 c, 1 \xi)=1 Q_{\min }(-1 c) R_{\operatorname{mn}}^{(1)}(-1 c, 1 \xi)\left[\tan ^{-1} \xi-\frac{\pi}{2}\right]+g_{m n}^{\star}(-1 c, 1 \xi) \tag{3}
\end{equation*}
$$

where

$$
\begin{array}{ll}
g_{\operatorname{mn}}^{\star}(-1 c, 1 \xi)=\left(\xi^{2}+1\right)^{-\frac{m}{2}} \sum_{r=0}^{\infty} \beta_{2 r^{\prime}} \xi^{2 r} & \text { for (} n-\mathbb{R} \text {) odd } \\
g_{\min }^{\star}(-1 c, 1 \xi)=\xi\left(\xi^{2}+1\right)^{-\frac{m}{2}} \sum_{r=0}^{\infty} \beta_{2 r^{\prime}} \xi^{2 r} & \text { for }(n-\mathbb{m}) \text { even } \tag{4-2}
\end{array}
$$

The coefficiente $B_{2 r}^{m n}$ for roo can be directly generated from the corresponding recursion syotem; ${ }^{6}$ the initial coefficients $\beta_{0}^{\operatorname{mn}}$ can be evaluated from:

$$
\begin{array}{ll}
\beta_{0}^{m n}=-\left[c R_{m n}(1)^{\prime}(-1 c, 10)\right]^{-1} & \text { for }(n-m) \text { odd } \\
\beta_{0}^{\operatorname{mn}}=\left[c R_{\operatorname{mn}}^{(1)}(-1 c, 10)\right]^{-1}-1 Q_{\operatorname{mn}}(-1 c) R_{\operatorname{mn}}^{(1)}(-1 c, 10) & \text { for }(n-m) \text { even } \tag{5-2}
\end{array}
$$

where

$$
\begin{align*}
& R_{m n}^{(1)^{\prime}}(-1 c, 10)=\frac{1^{n-m-1} 2_{m}^{m} c^{m+1} d_{1}^{m n}(-1 c)}{(2 m+3) \sum_{r=1}^{\infty} d_{r}^{m n}(-1 c) \frac{(2 m+r)!}{r!}} \\
& R_{\min }^{(1)}(-1 c, 10)=\frac{1^{n-m_{2} m_{m}} 1 c^{m} d g^{m n}(-1 c)}{(2 m+1) \sum_{r=0}^{\infty} d_{r}^{m n}(-1 c) \frac{(2 m+r)!}{r!}} \quad \text { for (n-m) odd }
\end{align*}
$$

111. COMPARISONS WITH EXPERIMENTS

Since any mis-order of ti.e apheroidal eigenvaluee $x_{m n}$ will cause the infinite or incredible rasults on the diagram of $P-Q$ plot (P and Q are the imaginary and real parts of the extincion efficiency, respectively), the eigenvalues aust be in the increasing order with number n and m. Thus we have to carefully choose the Boumamp's or asymptotic method for the calculation of $\lambda_{\text {mn }}$ near the gap mentioned in Section 1 . Tables 1,2 , and 3 show the computational eelection of these two methode for the apheroide with the espect ratio $2: 1,4: 1,8: 1$, and $12: 1$.

Pollowing are four groupe of graphe for comparison of theoretical and experimental reaults
in the forms of $P-Q$ plot: Group 1 is the comparison for prolate-prolate spheroids; Group 2 for prolate spheroid-cylinder; Group 3 for oblate-oblate apheroids; Group 4 for oblate spieroiddisk. Ir these groups, former particles are used in theoretical calculation, latter ones are measured with microwave equipments. In all figures, $x_{v}\left({ }_{v} \boldsymbol{a}_{v}\right)$ is size parameter of spheroid, with a being the radius of equal-volume sphere, wis refractive index, subscripts th and ex denote whether theoretical or experimental, the running number in a pair of curves indicates the tilted angle of the particle axis from \vec{k} (propagational) direction as the axis is swept through 90° in the ircident $K-E$ and $K-H$ planes.

The computational outcomes on the extinction profiles seem to fit well to the measurements if the instrumental drift due to the influence of temperature gradient, and a little variation of refractive index of particle over long period of time are taken into account. Actually, even a little fluctuation of this kind of drifi and of refractive index will greatly deform the profiles on the $P-Q$ plot.

The comparison between prolate spheroids and cylinders and that between oblate spherolds and disks under the equal-volume condition reveal that their extinction curves are very gimilar and the absolute magnitudes of extinction etticiency are close. The former results (for prolate spheroid-cylinder) are expected, but the latter ones come out beyond our original expertation. Apparentiy the edge effect in disk only exerts a litele function to the extinction cross section compared with oblate spheroid.

IV. ACKNOWLEDGMENT

Tinis research work is supported by the U.S. Army Research Office, Research Triangle Park, NC.

REFERENCES

1. Wan-xian Wang and R.T. Wang, "Corrections and Developments on the Theory of Scattering by Spheroid - Comparison with Experiments," presented at 1986 CRDEC Scientific Conference on Obscuration and Aerosol Research, Aberdeen, MD (June 1986).
2. Wan-xian Wang, "Power-Series Expansion of the Eigenvalues for Spheroidal Differential Equation," presented at 1986 CRDEC Sciertific Conference on Obscuration and Aerosol Research. Aberdeen, MD (June 1986).
3. Wan-xian Wang, "Asymptotic Development of the Prolate Spheroidal Eigenvalues and eigenfunctions," presented at 1986 CRDEC Scientific Conference on Obscuration and Aerosol Research, Aberdeen, MD (june 1986).
4. Wan-Xian Wang, "Aaymptotic Development of the Oblate Spheroidal Eigenvalues," presented at 1986 Scientific Conference on Obscuration and Aerosol Research, Aberdpen, MD (June 1986).
5. Wan-Xian Wang, "Coefficients a_{r}^{m} in Spheroidal Radial Functions $R_{m n}$ for High Aspect Ratio," presented at 1986 Scientific Conference on Obscuration and Aerosol Research, Aberdeen, MD (June 1986).
6. Wan-Xian Wang, "Coefficients $b_{r}^{m n}$ in Spheroidal Radial functions $R_{m n}$ for High Aspect Ratio," presented at 1986 Scientific Conference on Obscuration and Aerosol Research, Aberdeen, \mathbb{M} (June 1986).

Table 1
Computational Selection
Method I: Bounkeanp's, Method II: Asymptotic
2:1 and 4:1 Prolate Spheraids

Table 2
Computational Selection
12:1 Prolate Spheroids

Table 3
Computational Selection
2:1, 4:1, and 8:1 Oblate Spheroids

Figure LA. P-O Plot

Figure 1B. P-Q Plot

Figure 3B. P-R Plot

Figure 3D. P-Q Plot

Figure 4D. P-ก Plot

THE SIMPLEST RADIAL WAVE FUNCTIONS IN THE CALCUATION OF

 LIGHT SCATTERING BY A SPHEROIDAL PARTICLEWen-Xian Wang
Space Astronamy Laboratory, University of Florida Gainesville, FL 32609

recent publicatians, subilitiais for publicatian and presentatians:

A) Wan-xian Wang, 'Power-Series Expansion of the Eigenvalues for Spheroidal Differential Equatian", presentation at the 1986 CRDEC Conference on Obscuration and Aerosol Research, June 1986.
B) Wan-xian Wang, "Asymptotic Development of the Prolate Spheroidal Eigenvalues and Eigenfunctions", presentation at the 1986 CRDEC Conference on Obscuration and Aerosol Research, June 1986.
C) Wan-xian Wang, "Asymptotic Development of the Oblate Spheroidal Eigenvalues" presentation at the 1986 CRDEC Conference on Obscuration and Aerosol Research, June 1986.
D) Wan-xian Wang, "Coefficients a_{r}^{m} in Spheroidal Radial Functions $R_{m n}$ for High Aspect Ratio", presentation at the 1986 CRDEC Conference on Obscuration and Aerosol Research, June 1986.
E) Wan-xdan Wang, "Coefficients b_{r}^{mn} in Spheroidal Radial Functions R_{m} for High Aspect Ratio", presentation at the 1986 CRDEC Canference on Obscurration and Aerosol Research, June 1986.
F) Wan-xdan Wang and Ru T. Wang, "Corrections and Developments on the Theory of Scattering by Spheroid - Comparison with Experiments", presentation at the 1086 CRDEC Conference on Obscuration and Aerosol Research, June 1986.

ABSTRACT
The simplest forms of the spheroidal radial functions are obtained here by using new radial coordinate in the spheroidal differential equation.

INTRODUCIION

The spheroidal radial differential equation in prolate coordinate system can be expressed as

$$
\begin{equation*}
\frac{d}{d \xi}\left(\left(\xi^{2}-1\right) \frac{d R_{m n}}{d \xi}\right)-\left(\operatorname{mn}^{\left.-c^{2} \xi^{2}+\frac{m^{2}}{\xi^{2}-1}\right) R_{m n}=00000 .}\right. \tag{1}
\end{equation*}
$$

where ξ is the radial coordinate, $\lambda_{\text {mn }}$ and R_{mn} are the spheroidal eigenvalues and radial functions, of order m and degree n, respectively, with m and n being positive integers, and $\mathrm{n} \geqslant \mathrm{m}$. In oblate coordinate system, one just repalces c by -ic and ξ by $\mathrm{i} \xi$ in Eq. (1).

The expression of the spheroidal radial functions is usually written in the form: ${ }^{1}$

$$
\begin{equation*}
R_{\operatorname{mn}}^{(j)}(c, \xi)=\frac{1}{\sum_{r=0, I}^{\infty} d_{r}^{m}(c) \frac{(2 m+r)!}{r!}}\left(\frac{\xi^{2}-1}{\xi^{2}}\right)^{\xi m} \sum_{r=0, I}^{\infty} i^{r+m-n_{r}^{m n}(c) \frac{(2 m+r)!}{r l} z_{m+r}^{(j)}(c \xi)} \tag{2}
\end{equation*}
$$

where $d_{Y}^{\operatorname{mn}}(c)$ are the expansion coefficients of the spheroidal angle functions S_{m} with respect to the associated Legendre functions P_{m+r}^{m}, r is the sumnation index, and the prime over the sumation symbol indicates that the sumation is over anly odd number of r when ($n-m$) is odd, and over only even when ($n-m$) is even. Superscript δ for the radial functions $R_{\text {tan }}(c, \xi$) and the spherical Bessel functions $z_{m+r}(c \xi)$ of order ($m+r$) implies which of the four kinds of the spherical Bessel functions is referred to, that is, spherical Bessel, Neumarn, and Hankel functions of the first and of the secand, in order of $j=1,2,3$, and 4 , respectively.

The expansion cuefficients $d_{r}^{m n}(c)$ obey the recursion relation:
$\frac{(2 m+r+2)(2 m+r+1) c^{2}}{(2 m+2 r+3)(2 n+2 r+5)} c_{r+2}^{m}(c)+\left[(m+r)(m+r+1)-\lambda_{m n}+\frac{2(m+r)(m+r+1)-2 m^{2}-1}{(2 m+2 r-1)(2 m+2 r+3)} c^{2}\right] d_{r}^{m n}(c)+$
$\frac{r(r-1) c^{2}}{(2 m+2 r-3)(2 \pi+2 r-1)} d_{r-2}^{m}(c)=0 \quad(r \geqslant 0)$
Eq. (2) is the classical expression of the spheroidal radial functions.

THE SIMPLEST RADIAL FUNCIIONS

Now let us introduce another radial coordinate σ, and make the transformation
$0=\left(\xi^{2}-1\right)^{\frac{3}{2}}$
then the relation of the first order derivatives between ξ and σ is
$\frac{d}{d \xi}=\left(\sigma^{2}+1\right)^{\frac{3}{2}} \frac{1}{\sigma} \frac{d}{d \sigma}$
With this new radial coordinate, Eq. (1) is converted to

$$
\begin{equation*}
\left(\sigma^{2}+1\right) \frac{d^{2} R_{m n}}{d \sigma^{2}}+\frac{2 \sigma^{2}+1}{\sigma} \frac{d R_{m n}}{d \sigma}-\left(\lambda_{m n}-c^{2}\left(\sigma^{2}+1\right)+\frac{m^{2}}{\sigma^{2}}\right) R_{m n}=0 \tag{6}
\end{equation*}
$$

Eq. (6) can be readily decouposed into three separate equations:

$$
\begin{align*}
& \sigma^{2} \frac{d^{2} R_{m n}}{d \sigma^{2}}+2 \sigma \frac{d R_{m n}}{d \sigma}+\left(c^{2} \sigma^{2}-h(h+1)\right) R_{m n}=0 \tag{7a}\\
& \frac{d^{2} R_{m n}}{d \sigma^{2}}+\frac{2}{\sigma} \frac{d R_{m n}}{d \sigma}+\left[c^{2}-\frac{h(h+1)}{\sigma^{2}}\right] R_{m n}=0 \tag{7b}\\
& \frac{1}{\sigma} \frac{d R_{m n}}{d \sigma}+\left[\lambda_{m n}-h(h+1)+\frac{m^{2}-h(h+1)}{\sigma^{2}}\right) R_{\operatorname{mn}}=0 \tag{7c}
\end{align*}
$$

where h is the order number of spherical Bessel function, being an arbitrary integer.

It is obvious that both Eqs. (7a) and (7b) have the same solution of spherical Bessel function of order h :

$$
\begin{equation*}
R_{\text {lin }}=z_{h}(c \sigma) \tag{8}
\end{equation*}
$$

For simp!icity, we denote $z_{h}(c \sigma)$ by z_{h}. Substituting the trial solution $R_{\operatorname{tr}} z_{h}$ into Eq. (7c), we have the following expressions:

$$
\begin{align*}
& \frac{1}{\sigma} \frac{d R_{m}}{d \pi}=\left[\frac{h}{(2 h-1)(2 h+1)} z_{h-2}+\frac{1}{(2 h-1)(2 h+3)} 2_{h}-\frac{h+1}{(2 h+1)(2 h+3)} 2_{h+2}\right] c^{2} \tag{9a}\\
& \frac{R_{m}}{\sigma^{2}}=\left[\frac{1}{(2 h-1)(2 h+1)} 2_{h-2}+\frac{2}{(2 h-1)(2 h+3)} 2_{h}+\frac{1}{(2 h+1)(2 h+3)} z_{h+2}\right] c^{2} \tag{9b}
\end{align*}
$$

Thus we can simply rewrite the radial functions in the form of the surmation:

$$
\begin{equation*}
R_{\operatorname{tin}}=\sum_{h} A_{h} Z_{h} \tag{10}
\end{equation*}
$$

With the substitution of Eq. (10) in Eq. (7c), which is a linear differential equation, the coefficients of spherical Bessel functions are found to be:

$$
\begin{align*}
& \operatorname{term} z_{h-2}: \frac{\left(m^{2}-h^{2}\right) c^{2}}{(2 h-1)(2 h+1)} A_{h} \tag{11a}\\
& \operatorname{term} z_{h}: \frac{\left(2 n^{2}+1-2 h(h+1)\right) c^{2}}{(2 h-1)(2 h+3)} A_{h}+\left[\lambda_{m n}-h(h+1)\right] A_{h} \tag{llb}\\
& \text { term } z_{h+2}: \frac{\left(m^{2}-(h+1)^{2}\right) c^{2}}{(2 h+1)(2 h+3)} A_{h} \tag{11c}
\end{align*}
$$

Equating the term with the lowest order of spherical Bessel functions in Eq. (7c) gives $h=m$

The other terms of the series in Eq. (10) can be obrained by taking

$$
\begin{equation*}
h=m+2 r \tag{13}
\end{equation*}
$$

where r is an integer, with $r \geqslant 0$. Finally, we get the solution for the spheroidal radial functions, as follows:

$$
\begin{equation*}
R_{\operatorname{tn}}=\sum_{r=0}^{\infty} A_{m+2 r^{2} m+2 r} \tag{14a}
\end{equation*}
$$

For the sake of corvenience, we use subscript $2 r$ instead of $m+2 r$ in the coefficient A, that is,

$$
\begin{equation*}
R_{\operatorname{mn}}=\sum_{r=0}^{\infty} A_{2 r^{2}}{ }_{m+2 r} \tag{14b}
\end{equation*}
$$

where the coefficients $A_{2 r}$ obey the recursion relation, the form of whtch is similar to Eq. (3):

$$
\frac{4(m+r+1)(r+1) c^{2}}{(2 m+4 r+3)(2 m+4 r+5)} A_{2 r+2}+\left[(m+2 r)(m+2 r+1)-\lambda_{m n}+\frac{2(m+2 r)(m+2 r+1)-2 m^{2}-1}{(2 m+4 r-1)(2 m+4 r+3)} c^{2}\right] A_{2 r}+
$$

$$
\begin{equation*}
\frac{(2 m+2 r-1)(2 r-1) c^{2}}{(2 m+4 r-3)(2 m+4 r-1)} A_{2 r-2}=0 \tag{15}
\end{equation*}
$$

The ratio of the second coefficient to the first one, A_{2} / A_{0}, can be specifically evaluated by deleting the last term in Eq. (15) and then setting $r=0$, that is,

$$
\begin{equation*}
\left[m(m+1)-\lambda_{m}+\frac{c^{2}}{2 m+3}\right) A_{0}+\frac{4(m+1) c^{2}}{(2 m+3)(2 m+5)} A_{2}=0 \tag{16}
\end{equation*}
$$

There are two non-trivial independent solutions for the second order differential Eq. (6). Examination of Eq. (15) reveals that as r approaches infinity, either $A_{2 r+2} / A_{2 r}$ increases as $-16 \mathrm{r}^{2} / \mathrm{c}^{2}$, or goes to zero as $-\mathrm{c}^{2} / 16 \mathrm{r}^{2}$. Of these two solutions, the former leads to a divergent series. Therefore we choose the latter, which can be generated from the upward recursion.

NORMALIZATION

The spheroidal radial functions $\mathrm{R}_{\mathrm{m}}^{(\mathrm{J}}$, which satisfy the radial differential Eq. (6), are normalized so that, for $c \sigma \rightarrow \infty$, they have the asymptotic forus:

$$
\begin{align*}
& R_{\operatorname{mn}}^{(1)} \rightarrow \frac{1}{c o} \cos \left(c \sigma-\frac{n+1}{2} \pi\right) \tag{17a}\\
& R_{\operatorname{mn}}^{(2)} \rightarrow \frac{1}{c \sigma} \sin \left(c \sigma-\frac{n+1}{2} \pi\right) \tag{1;0}
\end{align*}
$$

After nomalization of the spheroidal radial functions, we find that

$$
\begin{array}{ll}
R_{m}^{(1)}(c, \sigma)=\frac{\sum_{r=0}^{\infty} A_{2 r} z_{m+2 r}^{(1)}(c o)}{\sum_{r=0}^{\infty} 1^{m-n+2 r} A_{2 r}} & \text { for (n-m) even } \\
R_{\operatorname{ma}}^{(1)}(c, \sigma)=\frac{\sum_{r=0}^{\infty} A_{2 r^{2}} r_{m+2 r}^{(2)}(c \sigma)}{\sum_{r=0}^{\infty} 1^{m-n+2 r+1} A_{2 r}} & \text { for (n-m) odd } \\
R_{\operatorname{mn}}^{(2)}(c, \sigma)=\frac{\sum_{r=0}^{\infty} A_{2 r^{2} m+2 r}^{(2)}(c \sigma)}{\sum_{r=0}^{\infty} 1^{m-n+2 r_{2}} A_{2 r}} & \text { for (n-m) even }
\end{array}
$$

$$
\begin{equation*}
R_{\min }^{(2)}(c, 0)=-\frac{\sum_{i=0}^{\infty} A_{2 r^{2}} 2_{m+2 r}^{(1)}(\infty)}{\sum_{r=0}^{\infty} 1^{1 n-n+2 r+1} A_{2 r}} \quad \text { for }(n-m) \text { odd } \tag{18d}
\end{equation*}
$$

ACANOWLEDGYENT
This research work is supported by the U.S. Army Research Office, Research Triangle Park, NC.

RERERENCES

1. C. Flamer, Spheroidal Wave Functions, Stanford University Press (1957).

Absorption by Aggregated Spheres

Leland Pierce

Herschel Weil
The University of Michigan Radiation Lab, EECS Dept. Ann Arbor, MI 48109.2122

ABSTRACT
Work in progress on electromagnetic scattering and absorption from aggregated Rayleigh spheres is described. Absorption cross-sections are calculated at frequencies around that of visible light, and static internal and near-field equipotential lines are plotted. Future work will concentrate on plotting the electric field lines, improving our numerical procedure to allow more arbitrary shapes, particularly those with axial symmetry.

I. THEORY:

plane wave, electric field vector polarized in x_{j}-direction incident on dielectric body

The work we present is an extension of the investigation described by Weil [1986]. It follows the formulation of Rayleigh theory given by Senior [1976]. The polarization tensor X_{i}, and the dipole moments P_{i} of the induced fields:

$$
P_{i}=\epsilon_{0} X_{i j} E_{j}
$$

are found by considering the fields in the limit as $k_{0} \rightarrow 0$. Hence one solves the statics problem.

Let $\Phi_{;}^{\prime}$ be ihe scattered, exterior potential and Φ; be the total, interior potential. Then the conditions governing Φ_{j}^{j} and Φ_{j} for a unit electric field excitation of a scatterer of boundary B and unit outward normal \hat{n} are:

$$
\begin{aligned}
& \nabla^{2} \Phi_{j}^{\prime}=0 \quad \text { Outside B } \\
& \Phi_{j}^{\prime}=O\left(r^{-2}\right) \text { as } r \rightarrow \infty \\
& \nabla^{2} \Phi_{j}=0 \quad \text { Inside B } \\
& \Phi_{j}^{\prime}=\Phi_{j}+x_{j} \quad \text { On B } \\
& \frac{\partial}{\partial \mathrm{n}} \Phi_{j}^{\prime}=\epsilon \frac{\partial}{\partial \mathrm{n}} \Phi_{j}+\hat{\mathrm{n}} \cdot \hat{x}, \quad \text { On B }
\end{aligned}
$$

By using Green's Theorem twice, once inside and once outside B, and combining the results, Senior obtained: *

$$
\Gamma\left[\Phi_{j}^{\prime}+x_{j}\right]+(1-\Gamma)\left[\epsilon \Phi_{j}+x_{j}\right]=\frac{(1-\epsilon)}{4 \pi} \int_{B}\left(\Phi_{j}^{\prime}-x_{j}^{\prime}\right) \frac{\partial}{\partial n^{\prime}}\left(\frac{1}{R}\right) d S^{\prime}
$$

where $R=\left|\bar{r}-\bar{r}^{\prime}\right|$, and

[^4]\[

\Gamma= $$
\begin{cases}1, & \text { if } \bar{r} \text { is external to } B \\ \frac{1}{2}, & \text { if } \bar{r} \text { is on } B \\ 0, & \text { if } \bar{r} \text { is interior to } B\end{cases}
$$
\]

Now specialize to a body of revolution in cylindrical coordinates p, ϕ, z :

$$
d S^{\prime}=\rho^{\prime} d \phi^{\prime} d s^{\prime}
$$

where s^{\prime} is length along the body perimeter, S.
For an x-directed \bar{E} field the right hand side becomes:

$$
=\frac{(1-\epsilon)}{4 \pi} \int_{0}^{2 \pi} \int_{S}\left(\Phi_{1}^{\prime}-x^{\prime}\right) \frac{\partial}{\partial n^{\prime}}\left(\frac{1}{R}\right) \rho^{\prime} d \phi^{\prime} d s^{\prime}
$$

Since the total field will vary as $\cos \phi^{\prime}$, along the body's perimeter it can be written in the form:

$$
\Phi_{1}^{\prime}=\Phi_{1}^{\prime}-x^{\prime}=\frac{-1}{1-\epsilon} W_{1}\left(s^{\prime}\right) \cos \phi^{\prime}
$$

so the right hand side becomes

$$
=-\frac{1}{4 \pi} \int_{S}\left[\int_{0}^{2 \pi} \cos \phi^{\prime} \frac{\partial}{\partial \mathrm{n}^{\prime}}\left(\frac{1}{\mathrm{R}}\right) d \phi^{\prime}\right] \mathcal{W}_{1}\left(s^{\prime}\right) \rho^{\prime} d s^{\prime}
$$

Senior and Ahlgren [1972, eqn. 63, p. 20] put this expression into the form:

$$
=-\frac{1}{4 \pi} \int_{S} 2 \cos \phi\left\{\rho \cos \alpha^{\prime} \Omega_{2}+\left[\left(z^{\prime}-z\right) \sin \alpha^{\prime}-\rho^{\prime} \cos \alpha^{\prime}\right] \Omega_{1}\right\} W_{1}\left(s^{\prime}\right) \rho^{\prime} d s^{\prime}
$$

At $\phi=0^{\circ}$ this gives:

```
outside: \(\quad-\Phi_{1}^{\prime}(F)\)
badry: \(\left.\frac{1}{2} \frac{(1+\epsilon)}{(1-\epsilon)} W_{1}(s)\right\}=\rho+\frac{1}{2 \pi} \int_{S} W_{1}\left(s^{\prime}\right)\left\{\rho \cos \alpha^{\prime} \Omega_{2}+\left[\left(z^{\prime}-2\right) \sin \alpha^{\prime}-\rho^{\prime} \cos \alpha^{\prime}\right] \Omega_{1}\right\} \rho^{\prime} d s^{\prime}\)
inside: \(-\epsilon \Phi_{1}(\bar{F})\)
```

This is an integral equation for W_{1} whe \bar{F} is on the surface B. Similarly for the z-directed \mathbf{E} field excitation, the field along the body's perimeter can be written in the form:

$$
\Phi_{3}^{\prime}=\frac{-1}{1-\epsilon} W_{3}\left(s^{\prime}\right)
$$

```
outside: \(\quad-\Phi_{j}^{\prime}(\bar{r})\)
bndry: \(\left.\frac{1}{2} \frac{(1+\epsilon)}{(1-\epsilon)} W_{3}(s)\right\}=z+\frac{1}{2 \pi} \int_{S} W_{3}\left(s^{\prime}\right)\left\{\rho \cos \alpha^{\prime} \Omega_{1}+\left\{\left(z^{\prime}-z\right) \sin \alpha^{\prime}-\rho^{\prime} \cos \alpha^{\prime} \mid \Omega_{0}\right\} \rho^{\prime} d s^{\prime}\right.\)
inside: - \(\epsilon \Phi_{3}(F)\)
```

In these equations

$$
\Omega_{\mathrm{n}}=\int_{0}^{*} \frac{\cos ^{\mathrm{n}}(\Psi)}{\mathrm{R}^{3}} d \Psi \quad \mathrm{n}=0,1,2
$$

and

$$
R=\left[\left(\rho+\rho^{\prime}\right)^{2}+\left(z-z^{\prime}\right)^{2}\right]\left[1-m \sin ^{2} \theta\right]
$$

where

$$
\begin{aligned}
m & =\frac{4 \rho \rho^{\prime}}{\left(\rho+\rho^{\prime}\right)^{2}+\left(z-z^{\prime}\right)^{2}} \\
0 & =\frac{1}{2}(\pi-\Psi)
\end{aligned}
$$

Senior and Ahlgren (p. 61) show that

$$
\begin{aligned}
& \Omega_{0}=\frac{1}{4}\left(\frac{m}{\rho \rho^{\prime}}\right)^{3 / 2}\left[K(m)+2 m \frac{d}{d m} K(m)\right] \\
& \Omega_{1}=\left(\frac{m}{\rho \rho^{\prime}}\right)^{3 / 2}\left[\left(1-\frac{m}{2}\right) \frac{d}{d m} K(m)-\frac{1}{4} K(m)\right] \\
& \Omega_{2}=\frac{1}{m^{2}}\left(\frac{m}{\rho \rho^{\prime}}\right)^{3 / 2}\left[2 m\left(1-\frac{m}{2}\right)^{2} \frac{d}{d m} K(m)-\left(1-\frac{m^{2}}{4}\right) K(m)+E(m)\right]
\end{aligned}
$$

where K and E are Elliptic Integrals.
The Electric Polarizability Tensor is

$$
X_{i j}=\left(1-\epsilon_{r}\right) \int_{B} \hat{n} \cdot \hat{x}_{i} \quad \Phi, d S
$$

For the case of rotational symmetry about the 2 -axis $X_{11}=X_{22} \neq 0$;
$X_{33} \neq 0 ; X_{i j}=0, i \neq j$. Hence we need only find X_{11} and X_{33}.
The absorption cross-section can be expressed in terms of $X_{i i}$, and by averaging over all possible scatterer orientations (all assumed equally likely) one gets the average absorption cross-section:

$$
<\sigma_{\mathrm{A}}>=\frac{k_{0} V}{3} \operatorname{Im} \cdot\left(2 \mathrm{X}_{11}+\mathrm{X}_{33}\right)
$$

where k_{0} is the free-space wavenumber of the incident light, and V is the volume of one scatterer. The dimensionless quantity $\left\langle\sigma_{\mathrm{A}}\right\rangle / k_{0} \mathrm{~V}$ is used in the plots of absorption vs. frequency (in $10^{15} \mathrm{~Hz}$) presented in the Results section.

II. PRACTICE:

The integral equations for W_{1} and W_{3} are solved using the moment method. We choose pulse basis functions and delta-function weighting functions to get a point-matching solution.

The body perimeter is broken up into equal-length arcs and the W's are determined at the center of each arc. The integral becomes:

$$
\int_{\theta^{\prime}} \mathrm{W}_{i}\left(s^{\prime}\right) \mathrm{K}_{i}\left(\bar{r}, \bar{r}^{\prime}\right) \rho^{\prime} d s^{\prime}=\sum_{j=1}^{\mathrm{N}} \mathrm{~W}_{i}\left(s_{j}\right) \int_{1,-\Delta / 2}^{s,+\Delta / 2} \mathrm{~K}_{i}\left(\bar{r}, \bar{r}^{\prime}\right) \rho^{\prime} d s^{\prime}
$$

where j runs over every segment of the perimeter, and i is either 1 or 3.
A simple six-point integration scheme works well if \bar{r} is on the surface, and the surface hes no cusps. However, to get the near fields, and accurate surface values for complicated shapes, a more sophisticated method must be used. This is because for \bar{r} near the surface $K\left(\bar{r}, \bar{r}^{\prime}\right)$ varies rapidly, hence a 6 -foint integration scheme will not capture it sufficiently.

Our method removes the rapidly-varying terms and integrates them analyticall;: over the appropriate very small sub-segment (approximating it as straight, no longer curved). This can give us accurate field values near the surface and elsewhere. However, at the time of this conference the closest we have gotten to the surface for accurate off-surface values is about a tenth of the local radius of curvature of the body's surface. This is because we have yet to remove another singularity, as explained in the following section.

Singularity Extraction and Integration:

The troublesome terms are in the Ω_{n} 's. Specifically a $\frac{1}{\mathrm{~m}_{1}}$ term and a $\ln \left(\frac{1}{m_{1}}\right)$ term. Both blow up as the field point approaches the surface (source point) in our integral equations. Since

$$
\begin{aligned}
K(\mathrm{~m}) \simeq & \left(a_{0}+a_{1} \mathrm{~m}_{1}+\cdots a_{4} \mathrm{~m}_{1}^{4}\right) \\
& +\left(b_{0}+b_{1} \mathrm{~m}_{1}+\cdots \cdot b_{4} \mathrm{~m}_{1}^{4}\right) \ln \left(\frac{1}{\mathrm{~m}_{1}}\right) \\
\frac{d}{d \mathrm{~m}} \mathrm{~K}(\mathrm{~m}) \simeq & \left(\frac{b_{0}}{\mathrm{~m}_{1}}+\left(b_{1}-a_{1}\right)+\left(b_{2}-2 a_{2}\right) \mathrm{m}_{1}+\cdots\left(b_{4}-4 a_{4}\right) \mathrm{m}_{1}^{3}\right) \\
& -\left(b_{1}+2 b_{2} \mathrm{~m}_{1}+\cdots 4 b_{4} \mathrm{~m}_{1}^{3}\right) \ln \left(\frac{1}{\mathrm{~m}_{1}}\right) \\
\mathrm{E}(\mathrm{~m}) \simeq & 1-\frac{1}{4} \mathrm{~m}_{1}+\frac{1}{4} \mathrm{~m}_{1} \ln \left(\frac{1}{\mathrm{~m}_{1}}\right)
\end{aligned}
$$

where $m_{1}=1-\mathrm{m}$. The troublesome terms are:

$$
\begin{aligned}
& \frac{b_{0}}{m_{1}} \text { in the } \\
& \frac{d}{d m} K(m) \text { term, } \\
&-b_{1} \ln \left(\frac{1}{m_{1}}\right) \text { in the } \\
& \frac{d}{d m} K(m) \text { term, } \\
& \text { and } b_{0} \ln \left(\frac{1}{m_{1}}\right) \text { in the } \\
& K(m) \text { term. }
\end{aligned}
$$

The constants a_{i} and b_{1} can be found in Abramowitz and Stegun [1964]. We pulled these terms out of the expressions for $K_{1}\left(\bar{r}, \bar{r}^{\prime}\right)$, integrated them analytically, then added them back in to the numerical integration which was done with the remaining terms.

The geometry to explain the following formulas for the analytic evaluations is
shown in the following figure.

We need to evaluate two integrals involving b_{0} / m_{1} :

$$
\begin{aligned}
& I_{1}=\int_{-\frac{A}{2}}^{\frac{A}{2}} \frac{1}{m_{1}} d s^{\prime}=2 \sin \alpha^{\prime}\left(\mathrm{s} \sin \alpha^{\prime}+t \cos \alpha^{\prime}\right) \ln \left[\frac{\Delta^{2} / 4-s \Delta+s^{2}+\left(t^{\prime}-t\right)^{2}}{\Delta^{2} / 4+s \Delta+s^{2}+\left(t^{\prime}-t\right)^{2}}\right]+\Delta \\
& +\frac{4\left(s \sin \alpha^{\prime}+t \cos \alpha^{\prime}\right)\left(s \sin \alpha^{\prime}+t^{\prime} \cos \alpha^{\prime}\right)}{t^{\prime}-t}\left[\tan ^{-1}\left(\frac{\Delta-2 s}{2\left(t^{\prime}-t\right)}\right)+\tan ^{-1}\left(\frac{\Delta+2 s}{2\left(t^{\prime}-t\right)}\right)\right]
\end{aligned}
$$

$I_{2}=\int_{-\frac{1}{2}}^{\hat{s}} \frac{\mathbf{t}^{\prime}}{m_{1}} d \mathrm{~s}^{\prime}=$
$\left(s \sin \alpha^{\prime}+t \cos \alpha^{\prime}\right)\left\{\left(4 s \sin \alpha^{\prime}+2 t^{\prime} \cos \alpha^{\prime}\right) \ln \left[\frac{\Delta^{2} / 4-s \Delta+s^{2}+\left(t^{\prime}-t\right)^{2}}{\Delta^{2} / 4+s \Delta+s^{2}+\left(t^{\prime}-t\right)^{2}}\right]+4 \Delta \sin \alpha^{\prime}\right.$
$\left.+\frac{4\left[\operatorname{st} t^{\prime} \cos \alpha^{\prime}+s^{2} \sin \alpha^{\prime}-\left(t^{\prime}-t\right)^{2} \sin \alpha^{\eta}\right]}{t^{\prime}-t}\left[\tan ^{-1}\left(\frac{\Delta-2 s}{2\left(t^{\prime}-t\right)}\right)+\tan ^{-1}\left(\frac{\Delta+2 s}{2\left(t^{\prime}-t\right)}\right)\right]\right\}$
These integrals are combined with the other terms in the expressions for the Ω_{n} 's and then with others to make the K_{i} 's. The following expressions are for that part of each K_{i} that is singular:

$$
\begin{aligned}
& K_{\text {iextra }}=\frac{2\left[s^{2}+t^{2}+t^{\prime 2}+2 t^{\prime} \sin \alpha^{\prime}\left(s \cos \alpha^{\prime}-t \sin \alpha^{\prime}\right)\right]}{t^{\prime}\left[s^{2}+\left(t+t^{\prime}\right)^{2}+4 t^{\prime} \sin \alpha^{\prime}\left(s \cos \alpha^{\prime}-t \sin \alpha^{\prime}\right)\right]^{s / 2}} \\
& .\left(s^{2}+t^{2}-t^{\prime 2}\right)\left[t^{\prime} \cos \alpha^{\prime} I_{1}+\sin \alpha^{\prime} I_{2}\right]
\end{aligned}
$$

$$
K_{\operatorname{sextr} a^{\circ}}=\frac{4 \cos \alpha^{\prime}\left[\sin \alpha^{\prime}+t \cos \alpha^{\prime}\right]\left[s^{2}+t^{2}-t^{2}\right]}{\left[s^{2}+\left(t+t^{\prime}\right)^{2}+4 t^{\prime} \sin \alpha^{\prime}\left(s \cos \alpha^{\prime}-t \sin \alpha^{\prime}\right)\right]^{5 / 2}}\left[t^{\prime} \cos \alpha^{\prime} I_{1}+\sin \alpha^{\prime} l_{2}\right]
$$

As of the date of this conference we are atill in the process of doing the $\ln \left(m_{1}\right)$ term, but the analysis is similar.

III. RESULTS:

We simulated two spheres, both separate and overlapping. Two examples are the following:

separate

overlapping

The center-to-center separation of the two spheres is given in terms of the sphere diameter. For example, the separate spheres above have a center-to-center separation of about 2 , whereas the two overlapping spheres have a center-to-center separation of about 0.8 .

The fields were plotted with a variety of separations and also at many different frequencies; each different frequency corresponds to a different ϵ for gold, tabulated in Physik Daten [1981] and plotted in fig. 1. The dimensionless average absorption cross-section, as described earlier, was plotted for each geometry as a function of frequency.

Our results agree qualitatively with gold colloid observations where the colloid looks deep red when the gold particles are distinct and changes to blue when the particles aggregate as described, for example, in Weitz, et. al. [1985]. This can be seen in the absorption spectra later in this paper. To convert the frequency
used there into wavelength one can use the formula:

$$
\lambda(\text { in } \mu \mathrm{m})=\frac{0.3}{\mathrm{f}\left(\text { in } 10^{15} \mathrm{~Hz}\right)}
$$

Hence, the absorption spectrum plot for a single gold sphere can be seen to have it's peak at about $0.58 \times 10^{15} \mathrm{~Hz}$, which corresponds to blue light, and then to tail off slowly ofter that. Therefore a single gold sphere, or a collection of widely separarated gold spheres, will absorb blue light significantly more than the red and yeilow and hence based on this analysis the un-aggregated colloid will appear reddish-yellow in white light. Similarly, for two aggregated spheres (separation $=1.0$) the peak absorption is at $0.45 \times 10^{15} \mathrm{~Hz}$, corresponding to red light, while the absorption at the blue wavelengths is about five times less. Hence, in an aggregated colloid the red is absorbed more than the blue and it would look blue in white iight.

Note that this analysis can also be easily applied to a variety of other materiais including other metals, lossy materials, and smoke.

Figure 1: Permittivity in vicinity of visible and IR frequencies for gold. ($\left.e_{r}=\epsilon^{\prime}+j e^{\prime \prime}\right)$

Absorption Cross-Section Spectra for Aggregated Spheres.

Absorption Cross-Section Spectra for Aggregated Spheres.

Equipotential Plots, selected frequencies

1. Each figure on the next two pages has the real part and imaginary part of the potential for a particular shape, frequency and 'incident' E-field direction. x-directed means E is vertical at infinity.
z-directed means E is horizontal at infinity.
2. Each plot has 8 equipotential lines, but ΔV between them varies from plot-to-plot. Hence a large value for ΔV means that we have high local E-field concentrations.
3. ϵ_{r} in each plot is the value for the relative dielectric constant.
4. Each plot is associated with a point on the graph below. From that can be determined the 'frequency' in each field plot. They are static field plots with the only vestige of frequency being in the relationship of ϵ_{r} to f for gold.
5. All the plots are for a center-to-center separation of 0.8 between two solid spheres each with a radius of 0.5 .
6. Only one quadrant in the $x_{1} x_{3}$-plane is shown. The equipotential lines in the other quadrants may be obtained by symmetry.

Gold Collold Abs. Xsection/vol, Separation: 0.80000

X-Directed Excitation

2-Directed Excitation

Imaginary Part $\Delta V=.0019 \mathrm{~V}$

1: $\varepsilon_{\mathrm{r}}=-24.79+\mathrm{j} 0.79$

Imaginary Part
$\Delta V=.56 \mathrm{~V}$

Imaginary Part $\quad \Delta \mathrm{V}=.07 \mathrm{~V}$

References:

1. Abramowitz, M. and Stegun, I. A. . Handbook of Mathematical Eunctions. National Bureau of Standards, 1964.
2. Physik Daten; Part II, Fachinformationzentrum Energie, Physik, Mathematik, GMBH, Karlsruhe, 1981.
3. Senior, T.B.A., Low-frequency scattering by a dielectric body. Radio Science, 11, pp. 477-482, 1976.
4. Senior, T.B.A. and Ahlgren, T.J., The numerical solution of low-frequency scattering problems. Univ. of Mich. Radiation Lab. Scientific report \# 013630-9-T, Feb, 1972.
5. Weil, H., Proceedings of the 1985 Scientific Conference on Obscuration_and_AerosoL Research. pp. 547-551. July 1986, Report \# CRDEC-SP-86019.
6. Weitz, D. A., M. Y. Lin, C. J. Sandroff. Colloidal Aggregation Revisited: Surf Sci (Netherlands), Vol. 158. pp. 147•164, 1985. See especially p. 148 and p. 157.

Various Geometrical Designs for Electrodynamic Particle Traps and Their Characteristics

H.-B. Lin
Naval Research Laboratory
Washington D.C.

J. D. Eversole

Potomac Photonics Inc
College Park, MD 20742
B. Bronk
U.S. ARMY CRDEC

Aberdeen Proving Ground, MD 21010

Recent Publications

Abstract

The bihyperboloidal electrodynamic particle trap has been used extensively for the study of individual particles, and has also recieved much theoretical consideration. While nonhyperboloidal levitation cells also have been employed previously, such designs are inherently less mathematically tractable, and consequentiy have recieved little theoretical attention. In order to gain confidence in the application of designs which deviate from the classic, bihyperboloid shape, we have adopted an empirical approach in which traps using a variety of electrode arrangements (including spherical surface electrodes, and "linear" quadrupoles such as are employed in mass spectrometers) have been quantitatively compared in their ability to suspend and stabilize similar particles. Of special interest is the condition of minimum particle motion occuring at the symmetry or null point of the cell. Comparison among some of the different cells was acheived by measuring the particles null point motion using scattered laser light. The scattered light is heterodyned with a frequency shifted reference beam, in effect forming a interferometer capable of resolving periodic motion with an amplitude of $0.02 \mu \mathrm{~m}$ (re 100 Hz). The trap designs studied in this way have demonstrated equivalent capability compared to the bihyperboloidal cell. The general characteristics of each design is discussed.

Introduction

Particle traps using alternating electric fields have been successfully employed as research tools for over two decades. Such traps are commonly refered to as quadrupole levitation cells or electrodynamic balances. The alternating electric field provides a pseudo-potential well to contain the charged particle, while a vertical static electric field is also usually provided to counter the force of gravity and maintain the particle at the potential well minimum. However, rigorous theoretical treatment of the electric field and particle equations of motion has only been achieved for the particular case of bihyperbolic electrode geometry. Although
a wide range of cell designs and electrode geometries have been used previously with appearent success, ${ }^{1.9}$ observations under vacuum conditions show significant particle motion 10 . With the addition of damping forces from normal gas pressure, it is not cles io what extent residual particle motion remains.

We have attempted to quantify the difference between selected types of cells in comparison to the hyperboloid design in terms of the minimum or nullpoint motion of a trapped particle, and explore other specialized designs. The motivation behind this work has been two-fold: (a) to provide greater optical access to the particle for light scattering studies and (b) to determine the feasibility of particle storage and transfer. Our approach to this study was to make a quantitative determination of trapped particle motion using an interferometric optical technique. To our knowledge, previous observations and assessments of balanced particle motion have all been visual, and therefore somewhat subjective and difficult to compare. In this part of our study, three cells with different electrode surface shapes were fabricated and compared in terms of the amplitude of periodic motion of similar particles levitated in each. Measurement of particle motion was achieved by forming a Mach-Zehnder type of interferometer with scattered light from the particle. A heterodyne beat signal was generated by shifting the frequency of the reference beam a known amount and then recombining the scattered light with the shifted reference beam at a diode detector. By examining the resulting beat signal with a spectrum analyzer, this technique easily provided a resolution of the particle motion amplitude of about $0.02 \mu \mathrm{~m}$ (at frequencies greater than $\sim 100 \mathrm{~Hz}$). Since several extensive descriptions of the theory of particle motion in the electrodynamic balance and its design have already been published, ${ }^{10-13}$ no attempt will be made to provide that background here. Greater detail of the experimental arrangeinent and measurement technique can also be obtained elsewhere. ${ }^{14}$

Results

Three different electrode designs were initially studied. These traps are cylindrical and Figure 1 shows the cross sectional schematic though the verticle (symmetry) axis for each: (a) the bihyperboloidal standard, (b) spherical surface approximation to (a), and (c) a varient of (b) with a horizontal mid-plane section of the center, or ring electrode removed. The conclusion from examining the null point motion of 30 and 11 mm diameter glass spheres suspended in the different traps at atmospheric pressure is that no difference can be determined down to the resolution of our measurement. Particle motion in response to an external force (such as gravity) was linear in each case as shown in Figure2. Fig 2(a) shows the motion amplitude of a $30 \mu \mathrm{~m}$ glass sphere in the hyperbolic-surface trap (Fig. 1(a)), while in (b) the motion of an $11 \mu \mathrm{~m}$ glass sphere in the spherical-surface split-ring trap (Fig. 1(c)) is shown.

Linear types of traps which might be able to stably suspend multiple particle along a line of equilibrium rather than at a point were also considered. The initial
concept along these lines was to extend the cross sections shown in Fig. 1 along the dimension perpendicular to the page, thus transforming the center, or null wint into a null line which is horizontal as shown in Figure 3(a). An alternative conception was to arrange four metal rods vertically with their ends joined to the corners of two plastic squares (top and bottom) as shown in Fig. 3(b). Diametrically opposite rods were electrically connected and the alternating potential was applied between the two pairs of rods forming an electrodynamic potential well along the center line verticle axis, entirely analogous to commercially available quadrupole mass spectrometers. To keep the particle from falling out the bottom of this trap, metal plates were placed on the inside surfaces of the square plastic end pieces, and a dc balancing voltage applied. The characteristics of these various designs have been listed in outline from below:

Spherical Surface - Split Ring Cell Characteristics

- Operation Identicle to Classic Bihyperboloidal Cell - Particle Exhibits Normal Dynamics
- Ease of Particle Capture Similar to Bihyperboloidal Cell
- Stability at Null Point Indistinguishable from Bihyperboloidal Cell
- Offers Extended Viewing of Particle Between Split Rings and also Between Ring and Endcap Electrodes
- Provides continuous Scanning of Scattering Angle
- Simpler Geometry is Relatively Easy to Fabricate

Spherical Surface Cell - Linear Extension - Characteristics

- Operation Similar to Other Axis-symmetric Cells, Particle is Balanced Vertically by DC Voltage
- Particles Can Be Transported from One End of the Cell to the Other Along its Centerline by Either Electrostati.s or Hydrodynamics
- Particles Can Be Delivered to the Trap either from the Ends, the Top, or the Sides
- Multiple Particles are Suspended in a Row Along the Centerline
- Partilces are Subject to Greater Lateral Oscillations than in the Axis-Symmetric Cells
Vertical Linear Quadrupole Trap
- Particles are "Automatically" Balanced Vertically
- Vertical Postion of the Particle is Determined by the DC Voltage
- Multiple particles are Suspended Vertically Along the Centerline
- Particles Can Be Delivered into the Trap Independently
- Lateral Oscillations Always Present

Obvious areas of future investigation would be to explore the pressue dependence of the null point stability measurement for the various trap designs since it is wellknown that null point motion becomes visible under vacuum even for the bihyperboloidal design. Also it would be interesting to extend the range of particle size and/or mass to a lower limit than was possible with our current apparatus.

REFERENCES

1. H. Straubel, Dechema Monograph, 32, 153, (1959).
2. S. Ataman and D.N. Hanson, Ind. Eng. Chem. Fundam., 8, 833, (1969), and J.W. Schweizer and D.N. Hanson, J. Colloid and Interface Sci., 35, 417 (1971).
3. T.G.O. Berg and T.A. Gaukler, AM. J. Phys., 37, 1013, (1969).
4. C.B. Richardson and J.F. Spann, J. Aerosol Sci., 15, 563, (1984).
5. R.F. Wuerker, H.M. Goldenberg, and R.V. Langmuir, J. Appl. Phys., 30, 441, (1959).
6. H.H. Blau, D.J. McCleese, and D. Watson, Appl. Opt., 9, 2522, (1970).
7. C.B. Richardson, H.-B. Lin, R. McGraw, and I.N. Tang, Aerosol Sci. and Tech., 5, 103 (1986).
8. E.J. Davis and A.K. Ray, J. Colloid Interface Sci., 75, 566, (1980).
9. A. Pluchino, Optics Lett., 11, 276,(1986).
10. R.F. Wuerker, H. Sheldon, and R.V. Langmuir, J Appl. Phys. 30, 347 (1959).
11. R.H. Frickel, R.E. Shaffer, and J.B. Stamatoff, Tech. Report ARCSL-TR77041, U.S. Army Armament Research and Developement Command, Aberdeen, Maryland (1978).
12. A. Müller, Ann. Phys., 7, 206, (1960).
13. E. James Davis, Langmuir, 1, 379 (1985).
14. J. D. Eversole and H.-B. Lin, "Effects of Design on Null Point Motion of Spheres Suspended in the Electrodynamic Balance", Rev. ScivInsir, 58, 1190, (1987).

Figure 1. Schematic diagrams showing the cross sections of different electrode designs for the three quadrupole levitation cells studied: (a)hyperbolic, (b) spherical, and (c) is the same as (b) but with the mid-section of the ring electrode removed. The three cell designs are drawn to the same scale.

Figure 2. Graphs of particle displacement as a function of the d.c. balancing voltage showing good linearity in each case, and similar behavior among different cell designs and particle sizes: (a) from a $30 \mu \mathrm{~m}$ diameter sphere in the hyperbolic cell, and (b) from a $11 \mu \mathrm{~m}$ sphere in the split ring cell. In (b), two independent measurements are shown with increasing (squares), and decreasing (diamonds) d.c. voltage.

Figure 3. Schematic drawings of (a) the linear extension of the spherical surface trap, and (b) the verticle linear trap.

Blank

A. Biswes
P. Shah
R. L. Armstrong
L. J. Radziemski
Applied Laser/Optics
Physics Department
Now Mexico State University Las Cruces. NM 88003-0001

ABSTRACT

Perturbations of the ambient medium by laser induced plasmas initiated in clean alr, or on aerosols and solid surfaces, affect the passage of laser energy through the perturbed volume. The time and spatial extent of the perturbation is of interest in determining degradation of laser beam transmisaion. Photothermal spectroscopy and two-pulse oreakdown threshold studies are being used to diagnose these effects. Significant probe perturbations were seen in the 0-5 us and 2 mstime scales. Preliminary explanations are offered and suggestions are made for further studies on these effects. We are planning to study the shooks formed by the plasmas. After that we will begin looking at the effects on irradiated (sub-plasma) aerosol droplets.

INTRODUCTION
There is continuing interest in the physics of laser-induced breakdown plasmas, the interaction of high irradiance laser beams with clean air and aerosols. Measurements have been made of explosive aerosol vaporization (i), shock-wave formation (2), spatially reaolved spectra of exploding aerosol droplets (3), and time resolved spectra of plasmas formed on a single jevitated aerosol droplets (4). Time dependent hydrodynamic effects have been subjects of theoretical analyses (5) and measurements (6). Afterglow measurements of a laser induced plasma in helium at a pressure of 10 atmospheres have been carried out using a He:Ne probe beam (7) where electron density, temperature and absorption coefficient of the plasma could be determined during the first 600 nanoseconds after the laser fired. In this work the shock wave was also studied.

In spite of all this work on the primary interaction causing laser induced breakdown, little attention has been given to the subsequent atate of the medium. The resulting perturbations can be called post-pulse or second-pulse effects. one knows from much of the work above and other analyses (6) that plasma causes a transient local high temperature and low density in the breakdown volume. The point of the present study is to detefmine for some conditions, the duration of the perturbation on the "second pulsen. Two time resolved diagnostic techniques have been used. The first, photothermal spectroscopy (8), measures the ensuing waverront perturbation. The point of departure of our study from the work reported (7) 1 s to detect and study effects of the plasma long after the luminous aftergiow. Furthermore our conditions are also different in that the plasma is formed at atmospheric pressure in the laboratory alr. The photothermal signal we observe is due to either a lens effect or deflection of the probe beam due to a transient perturbation altering the refractive index in a volume in and around the laser initiatad plasma.

The second, the modification of the breakdown thresholds for the second pulse by the first pulse, is a direct measure of the ability of secondintense laser beam to pass through the plasma perturbed volume. At the begining of this study little was known about the longevity of the perturbetion of the medium. The measurements we have made have defined the temporal duration, at least for the set of conditions we have used. In general there might be two effects. First, the plasmeformed by the first
pulse might leave enough free electrons so that, for a certain period of time, breakdown by a second pulse is more likely. This is equivalent to lowering the breakdown threshold. On the other hand the first plasma might disrupt the focusing properties of the medium so that the irradiance of the second pulse would be degraded, Inhibiting plasma formation, and aiding second pulse transmission. fhis is equivalent to raising the oreakdown threshold. As we shall see below, both offects have been observed.

EXPERIMENTAL SETUP

A plasma was initiated by focusing firstiy, a Nd:YAG (0.532 um) and secondly a pulsed $\mathrm{CO}_{2}(10.6 \mathrm{um})$ laser on to the surface of a nail (without the nail the cof plasma oould not rorm reproducibly). The He:Ne beam axis was aligned to be perpendicular to the initiated plasma axis. The focusing lens for initiating the plasma along with the nail on which the plasma is initiated is transiated in ioo um steps so that the He:Ne probes the plasma along the axis of the initiating beame The total length scanned in this manner is about 7 mm of which the luminous region of the plasma extends up to $3-4 \mathrm{~mm}$. The zero or start position for this scan is such that the lie: Ne probe is almost flush with the surface of the nailon which the plasma Initiates. Figure $1 a$ shows the experimental arrangement schematicaliy. The He:Ne beam is guided with the aid of the plane mirrors Mi and M2 (see figure ia) to pass through a He:Ne iine filter and brought to incidence on a 500 um pinhole mounted in front of a photomultiplier tube. The photomultiplier (pMT) signal is then amplified and fed into a transiont waveform digitizer with a 5 ns resolution. The details of the apparatus used are in Table 1.

In the absence of any plasma ateady de signal of the He:Ne beam is observed. In the presence of the plasma the digitizer is triggered by the laser firing and poste pulse perturbations experienced by the Hes Ne beam can be recorded as a function of the position of the probe and the time arter the laser fired. The experimental arrangement also allows imaging the plasma on to the PMT by removing the He:Ne line filter so the time for which the luminous afterglow of the plasma lastsen be measured.

Some variations of the above described experimental setup have also been used. Sometimes the He:Ne beam was passed almost parallel to the plasma-initiating beam axis so that the plasma was now probed nearly along its axis. Furthermore plasmas were initiated on single optically levitated solid (glass microspheres) and liquid (glycerine droplets) and the He:Ne probed the resulting plasma (zee figure ib).

For the two-pulse studies widely differing wavelengths required that separate optics be used to focus each beam. This diotated counter-propogation arrangement, as illustrated in figure 2. The relevant experimental parameters are contained in table I. It was critical that the beam be focused into the same volume in space. for alignoent a 500 um diameter pinhole was placed at the focus of the CO_{2} beam. Each lens was manipulated until a plasma from each beam could be seen forming in the hole. The alignment was checked visually with the pinhole removed. With small time intervals between the two pulses, a muffed "pop" could be heard when the beams were correctly focused, Plasma formation was monitored by a fast photodiode which sensed the plasma light emitted, but was insensitive to either of the laser wavelengths. The signal from the photodiode went directiy to a transient waveform digitizer. The temporal arrangement of the two laser pulses was controlled by four-channel digital delay generator accurate to 2 ns . The two cases investigated were Cor first and Nd:YAG first. In the former the spacing between the two pulses was varied from 20 us to 3.5 ms, in the latter from 50 us to 1 s.

EXPERIMENTAL RESULTS

A. PHOTOTHERMAL PERTURBATIONS

In general we observe two types of signals, early and late, as shown in figure 3 a and 36 . Figure $3 a$ shows a relatively sharp and well defined feature. As the plasma 1s translated across the $H e: N e$ beam the time after the pump laser pulse that the peak of this signal appears changes and this perturbation is associated with the ahook wave. This signal appears as a decrease in the de level of the Heafe due to blooming followed immediately by focussing or enhanced peak. After the enhanced peak the do level often shows a characteristic broader and shallower blooming effect. The amplitude of this perturbation and its temporal profile also varies with the position of the plasma being probed.

Figure 4 shows a position versus time plot of this perturbation for both the NdiYAG and CO_{2} plasma. The NdiYAG pulse width is nominally 9 ns while the CO pulse width is 85 ns. Correspondingly, the luminous afterglows of their plasmas last for i us and 9 us respeotively. Thus the trace shown in figure 4 for the Nd: Yag plasm, covers apatial and tomporal region starting during the lifetime of the luminous afterglow and lasting far beyond this region. For the cor plasma the movement of perturbation is observed essentially for times corresponding to the luminous lifetime of the plasma, and over apatial region corresponding to a few milimeters beyond the boundary of the luminous afterglow.

The velocities of the travelling shock wave as estimated from the moveme of these perturbations start at $3000-5000 \mathrm{~m} / \mathrm{s}$ and slow down to $300-400$ m/s for the regions studied. The decrease in velocity, nowever, is not uniform and exhibits large fluctuations. Another rather curious observation afforded by the traces of figure 4 are positions in both the $N d: Y A G$ and C_{2} laser initiated plasmas where rather sharp discontinuities in the position versus time curves appear. In fact correspondig to these discontinuities the shock wave velocity is zero or negative suggeting a momentary backward swing or halting of the shock wave. No definitive explanation for this behaviour is offered at this time, although we note that discussions of backward or reflected shocks have appeared in the literature (5). other secondary effects were observed and are being analyzed. Some preifainary fnvestigations of plasma intitiated on aerosols railed to show any difference in the early time perturbation associated with the shock wave, rrom the corresponding signal obtainedin ciean air.

The long term effect is lregular and not reproducible from shot to shot. It usually occura $0.5-3$ ms after the laser fires and a simple calculation of the thermal diffusion time t_{n} :

$$
t_{n}=4 w^{2} / D
$$

where wis the distance travelled by the thermal wave and D is the thermal diffusivity. Using the values of air at room temperature yields a value of th to be 1.2 ms whion 18 of the order of the long term aignals. These "thermal perturbitions are not observed in the absence of plasmarormation. A comparison of plasmatitiated
in olean air and on nail show that in the latter case the amplitude of these long torm perturbations are severely attenuated. A tentative explanation offered for this observation is that the metalifc nail may be acting as a heat sink conducting away most of the thermal energy thus causing a milder perturbation when the plasmalume $1 s$ probed.
B. DUAL PULSE BREAKDOWN THRESHOLD

Abstract

We used the $N d: Y A G$ laser by itself at various repetition rates. We observer the frequency of breakdown as a function of yag energy/irradiance and repetition rate. The repetition rates were varied from 0.1 to 23 Hz , corresponding to interpulse separations of 10 s to 43 ms . Only at the highest rate was there a discernableffect, an increase of about 10% in the energy/irradiance needed to produce breakdowne one posisible source of the irradiance increase was heating of the yag rod leading to increased beam divergence and a larger spot size. A higher energy per pulse would then be needed to obtain the same breakdown frequency. We checked this effect by kefing the flashlamps runing at 23 Hz , but Q-switching at lower repetition rates. the increase in breakdown energy required appeared to be real and not associated with rod heating.

The second and most extensive set of experiments involved the counter propogating CO_{2} and $N \mathrm{X}: Y \mathrm{AG}$ beams rocused into the same volume of space with the col pulse first. Typical signals observed for this arrangement are shown in figure 5 . In gentral we observed a significant decrease in the YAG-induced plasma signal after a cor Initiated breakdown. We interpret this decrease in plasma light to mean a decresed coupling of YAGenergy into the plasma. Indeed at the smaller time intervals (20 us to 250 us), the YAG plasma often did not initiate at all, evidence of an increase in the breakdown threshold. The effects were greatest at shortest interpuse separations, least for the longest. At a given separation, increasing the yag energy In many cases increased the plasma signal and the frequency of breakdown. These results are summarized in figure 6 which shows the decrease in peak YaG - induced plasma signal (called suppression) as a function of the interpilse time and yag energy. The complex behaviour of the curves at later times remains to be explained.

Finally we conducted a set of experiments with the YaG pulse coming before the CO_{2} pulse. Here the results were opposite to those observed above. The CO_{2} was set so that the breakdown rate was about 5/10. Then the YaG was turned on with sufficient - nergy to form plasma. The CO_{2} breakdown rate rose to $10 / 10$, evidence for a deorease in the breakdown threshold. It should be noted that the visual volume of the CO_{2} plasme was 5 to 10 times larger than the YaG plasma.

With our conditions we have observed three effects:
a. For the yag only, slight increase in breakdown threshold at about 40 ms interpulse separation;
b. For the CO_{2} first, an increase in the breakdown threshoid out to about 3 ms lnterpulse separation;
c. For the YaG first, a decrease in the breakdown threshold for the CO_{2} out to beyond 500 ms .

It would appear that multiple effects are at work here. The resulta of (a) and (b) above would be consistent with a medium perturbation which caused defocusing leading to less energy deposition and thereby requiring higher irradiance to achieve breakdown. The medium perturbation theory is supported by the late signals seen in the photothermal experiments.

With regard to (c) above, the initial yag plasma is so small compared to the CO_{2} induced plasma that medium perturbation might not be significant. However, the first plasma does provide seed electrons for the subsequent CO_{2} pulse, alding rather than inhibiting breakdown, as oberved with conventional preionization (8).

Sometimes the breakdown threshold will vary depending on whether the electron diffusion in the laser focus 18 amipolar or free-electron, the later being much faster (8). We calculated the Debye length for both YaG and CO_{2} plasmas and found it to be on the order of 2 to 10 um. This is considerably smajler than the spot sizes
 we expeot no breakdown threshold variation due to this effect.

SUMMARY

A Nd:YAG Q-switched laser at 0.532 um and pulsed CO_{2} laser at 10.6 um were used to form plesmas which were probed with thene laser. Two types of perturbations were detected, the first one rather well defined and repetitive ocourring within hundreds of nanoseconds to few microseconds of the laser pulse was associated with a travelling shook wave. The second, more diffuse and irregular and occurring about 2-3 ms after the laser pulse was tentatively associated with thermal diffusion phenomena. The second diagonistic was carried out primarily with two lasers, a pulsed CO_{2} (10.6 um) and a pulsed Nd:YAG (1.06 um). We observed both inoreases and decreases in the breakdown threshold for a second pulse pasing through the same volume in which a laser induced plasma had been previously formed. The increase was observed when the initial plasma formed was by the CO_{2} beam, the decrease when it was formed by the Nd: yag beam.

ACKNOWLEDGEMENTS

We gratefully aknowledge the support of CRDEC provided through contract No. DAAG29-81-D-0100 (Delivery Order 0025). We also acknowledge the support received from two U.S. Department of Defense instrumentation grants. DAAG-29-85-G-0012 and DAAL)3-86-G-0119, and a New Mexico State Arts and Sciences Minigrant, RC-86-25.

references

1. P. Kafalas and A. P Ferdinand, Appl. Opt. 12, 29 (1973).
2. P. Kafalas and J. Herrman, Appl. Opt. 12, 772 (1973).
3. J. H. Eichmans, W. -F. Hseih, and R. K. Chang, Opt. Lett. 12, 22 (1987).
4. A. Bisuas, H. Latifi, P. Shah, L. J. Radziemski, and R. L. Armstrong, Opt. Lett. 12. 313 (1987).
5. R. L. Armotrong, P. J. O'Rourke, and A. Zardecki, Phys. Fluids 29, 3573 (1986); R. L. Armstrong and A. Zardecki, J. Appl. Phys. (in press).
6. L. J. Radziomski, T. R. Loree, D. A. Cremers, and N. M. Hoffman, Anal. Chem. 55. 1246 (1983).
7. G. Lampis and S. C. Brown, Phys. Fluids, 11, 1137 (1968).
8. R. T. Brown and D. C. Smith, Appl. Phys. Lett. 22, 245 (1973).

Laser:

(1) Nd:YAG laser	Quanta-Ray Nd:YAG Q-switched pulse width 9 ns energy per pulse $90-400 \mathrm{~mJ}$ minimum spot size 40 um
(ii) CO_{2} laser	Tachisto TEA CO_{2} pulse width $85^{2} \mathrm{~ns}$ energy per pulse 250-400 mJ minimum spot size 90 um
(111) He:Ne laser	Spectra Physics 155
Detectors:	
(1) photomultiplier tube	Hamamatsu R928 and P128A rise time 2 ns
(1i) photodiode	$\begin{aligned} & \text { Scientech 301-020 } \\ & \text { rise time } 1 \text { ns } \end{aligned}$
Data acquisition:	
(1) Transient Digitizer	Lecroy Th 8828 ($5 \mathrm{~ns} / \mathrm{pt}$.)
(11) Digital delay generator	SRS DG535, 4 channel 2 ns accuracy 20 us - 10 s delays
(111) Anplifier	Lecroy 612A
Optics:	
(i) focusing lens (Nd:YAG) (1i) focusing lens (CO $)$	14 cm focal length glass 5.0 cm Ge lens

Figure 1. Experimental arrangement for observing photothermal signals (a) plasma scanning set-up (b) alternative set-up used to probe aerosol induced plasmas.

Figure 2. Schematic of experimental arrangement used to observe two-pulse breakdownthreshold effects.

Figure 3. (a) Early photothermal signals. Note the signal is negative and the perturbation is positive going indicating probe beam attenuation (b) late photothermal signals; Shows the unperturbed He:Ne signal.

Figure 4. Plot showing the position va. time after plasma-initiating laser pulse, for the early photothermal perturbation.

:III
Figure 5. Typical two-pulse aignals, in this case showing the lower YAG-induced plasua signal after a CO_{2} induced plasma.

Figure 6. Ratio of YaG-induced plasma signal (preceded by CO_{2}-inidiated plasma) to YaGinducec plasma signal (no previous plasma), called suppression. Low, medium, and high refer to YAG energies of 130,250 , and 400 mJ respectively.

THE SCATTERING OF ELECTROMAGNETIC RADIATION BY
MULTILAYER, ANISOTROPIC PARTICLES WITH SPHERICAL SYMMETRY
D. K. Cohoon

Department of Mathematics 098-16
Temple University
Philajelphia, Pennsylvania 19182

ABSTRACT

The purpose of this paper is to describe methods of resolving discrepancies between experimental observations of scattering by crystaline particles and attempts to explain these observations assuming that the electrical properties of these particles can be described by the use of scalar valued functions for the permittivity conductivity, and permeability. We can develop coupled integral equations describing the interaction of electromagnetic radiation with a heterogeneous, penetrable, dispersive, anisotropic scatterer and can use several methods of solving these integral equations. The solution of the problem of describing scattering by an anisotropic sphere can be substituted into the integral equation to check the integral equation formulation of the problem. Conditions are given for the uniqueness of the solution of the associated transmission problem. Because of the multiple propagation constants in an anisotropic material, the trivial uniqueness arguments valid for isotropic scatterers do not have a guaranteed success in understanding the more complex interaction phenomena.

An exact analytical Mie-like solution has been obtained for fields induced in and scattered by an N layer sphere, where each layer has anisotropic constitutive relations. We show that as the tensor parameters change so that each layer becomes isotropic, then the distinct radial functions used in representing the electric and magnetic fields induced in the structure both converge to the same spherical Bessel and Hankel functions and all the propagation constants in each layer converge to the propagation constant k given by

$$
\mathbf{k}^{2}=\omega^{2} \mu \epsilon-i \omega \mu \sigma
$$

and the solution approaches the ordinary Mie solution for an N layer sphere. The anisotropic sphere computer code, for the case of magnetic losses, dielectric losses, and dissipative impedance sheets, and perfectly conducting or penetrable inner cores has been yalidated by energy balance computations involving balancing the difference between the total energy entering the sphere minus the total energy scattered away with the sum of the surface integrals representing losses due to dissipative impedance sheets separating the layers plus the sum of the triple integrals over the layers whose values represent magnetic and dielectric losses within the anisotropic penetrable layers.

Two Bessel functions with two different complex indices depending on ratios of tangential and radial magnetic properties and ratios of tangential and radial electrical properties, respectively, participate in the solution in the case of scattering by the simplest anisotropic sphere. The scattering problem is solved for the case where the scatterer consists of (i) N anisotropic dielectric layers, (ii) N of these layers separated by sheets of charge or impedances, and (iii) a perfectly conducting core surrounded by $\mathrm{N}-1$ anisotropic layers.

The atmosphere of the earth is filled with small anisotropic scatterers. It is important to understand the nature of the scattering of light for individuai aerosol particles, to determine precisely how a cloud including these particles might impede the progress of the sunlight or a laser communication. These anisotropic scatterers have many sources including. volcanic erruptions and human activity. The term anisotropic here refers to the constitutive relations between B and B and between D and E and J and E which are tensorial; in isotropic particles the Fourier transforms with respect to time of these quantities are related by scalars. We will use ϵ to denote the tensor permittivity of the anisotropic particle, and we let ϵ_{0} denote the permittivity of free space. We let 1 denote the 3 by 3 identity matrix. The tensor magnetic permeability is denoted by μ. We consider time harmonic radiation with frequency ω. By lumping together the frequency times the imaginary part of the permittivity tensor and the real part of the usual conductivity tensor we get a real tensor o. The Maxwell equations for anisotropic materials, therefore, have the form

$$
\begin{equation*}
\operatorname{curl}(\mathbf{H})=i \omega \epsilon_{0} \mathbf{E}+\left(i \omega\left(\varepsilon-\epsilon_{0} \mathbf{I}\right)+\sigma\right) \mathbf{E} \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{curl}(\mathbf{E})=-i \omega \mu_{0} \mathbf{H}-i \omega\left(\mu-\mu_{0} \mathbf{I}\right) \mathbf{H} \tag{1.2}
\end{equation*}
$$

Equations (1.1) and (1.2) together with the fact that the divergence of a curl is zero tell us that

$$
\begin{equation*}
\frac{\left.\operatorname{div}\left(\epsilon-\epsilon_{0} I-i \sigma j \omega\right) E\right)}{\epsilon_{0}}=-\operatorname{div}(\mathbf{E}) \tag{1.3}
\end{equation*}
$$

Similarly, the fact that

$$
\begin{equation*}
\operatorname{div}(\mu \cdot \Pi)=0 \tag{1.4}
\end{equation*}
$$

implies that

$$
\begin{equation*}
\operatorname{div}\left(\mu \cdot \mathbf{H}-\mu_{0} \mathbf{H}\right)=-\mu_{0} \operatorname{div}(\mathbf{H}) \tag{1.5}
\end{equation*}
$$

Thus, thinking in terms of the traditional free space Maxwell equations with electric and magnetic currents J_{e} and J_{m} and electrical and magnetic charge densities ρ_{e} and ρ_{m} we see that equations (1.1) and (1.2) may be reexpressed in the form,

$$
\begin{equation*}
\operatorname{curl}(\mathbf{B})=i \omega \epsilon_{0} \mathbf{E}+J{ }_{e} \tag{1.6}
\end{equation*}
$$

where J_{e} is given by

$$
\begin{equation*}
J_{e}=i \omega\left(\varepsilon-I \varepsilon_{0}\right) \mathbf{E}+\sigma \mathbf{E} \tag{1.7}
\end{equation*}
$$

and the Maxwell equation driven by the magnetic current source term is given by

$$
\begin{equation*}
\operatorname{curl}(E)=-i \omega \mu_{0} \mathbf{H}+J_{ \pm} \tag{1.8}
\end{equation*}
$$

where the magnetic current density J_{m} is given by

$$
\begin{equation*}
J_{\mathbf{I}}=i \omega\left(\mu-I \mu_{0}\right) \mathbf{H} \tag{1.9}
\end{equation*}
$$

The free space isotropic relations yield

$$
\begin{equation*}
\operatorname{div}(\mathbf{E})=\frac{\rho_{e}}{\epsilon_{0}} \tag{1.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{div}(\mathbf{B})=\frac{\rho_{\mathrm{m}}}{\mu_{0}} \tag{1.11}
\end{equation*}
$$

which, respectively, provide us with an operational definition of stimulated electrical and magnetic charge density. Using a pill box concept and the fact that there is no current density in the exterior of the scatterer, we can in addition introduce the notion of surface electric and magnetic charge density which we denote by η_{e} and η_{m}, respectively. The surface electrical charge density is derived through the notion of picking a point on the bounding surface of the scatterer whose normal is n and placing a thin volume around this point so that the exterior and interior portions of the boundary have area equal to A except for a portion of the bounding surface with a very small area whose normal is nearly perpendicular to the normal n and 80 that if J_{+} is the current density at this point just outside the scatterer and J_{-}^{+} denotes the current density at this point just inside the scatterer, then conservation of charge on the surface is defined approximately by the relation

$$
\begin{equation*}
A\left(\frac{\eta(t+\Delta t)-\eta(t)}{\Delta t}\right)+A\left(\left(J_{+} \cdot n\right)-\left(J_{-} \cdot n\right)\right)=0 \tag{1.12}
\end{equation*}
$$

which means since

$$
\begin{equation*}
\mathbf{J}_{+}=0 \tag{1.13}
\end{equation*}
$$

that the surface charge density, electrical or magnetic, is given by

$$
\begin{equation*}
i \omega \eta=\left(J_{-} \cdot n\right) \tag{1.14}
\end{equation*}
$$

Thus, the electrical surface charge density is given by equation

$$
\begin{equation*}
\eta_{e}=\left(\frac{-i}{\omega}\right)\left(J_{e} \cdot n\right) \tag{1.15}
\end{equation*}
$$

and the magnetic surface charge density is given by

$$
\begin{equation*}
\eta_{m}=-i \omega\left(\left(\mu-\mu_{0} \mathbf{I}\right) \cdot(\mathbf{B} \mathbf{n})\right) \tag{1.16}
\end{equation*}
$$

To fully analyze these equations and relate them to the original transmission problem for an anisotropic heterogeneous penetrable scatterer, we need to construct equivalent sources. We will need to consider potentials due to volume and surface electric and magnetic charges and potentials due to volume electric and magnetic currents. From the continuity equation, the electrical charge density satisfies the relation,

$$
\begin{equation*}
\operatorname{div}\left(J_{e}\right)+\frac{\partial \rho_{e}}{\partial t}=0 \tag{1.17}
\end{equation*}
$$

where in our case J_{e} is given by equation (1.7). A similar relationship for magnetic charge density is developed from a combination of equations (1.11) and (1.9) and the basic Maxwell equation (1.8). The continuity equation for magnetic charge density has exactly the right form in the sense that a valid equation is obtained by replacing e by m in equation (1.17). By defining electric and magnetic surface charges using the relationships,

$$
\begin{equation*}
\mathrm{i} \omega \eta_{e}=\left(\left(\mathrm{i} \omega\left(\epsilon-\epsilon_{0} \mathrm{I}\right)+\sigma\right) \cdot \mathbf{E}\right) \cdot \mathbf{n} \tag{1.18}
\end{equation*}
$$

and

$$
\begin{equation*}
i \omega \eta_{\mathrm{m}}=\left(-\mathrm{i} \omega\left(\mu-\mu_{0} \mathrm{I}\right) \cdot \mathbf{H}\right) \cdot \mathbf{n} \tag{1.19}
\end{equation*}
$$

we complete all we need to derive a coupled set of integral equations in the electric and magentic field vectors involving both surface and volume integrals. With these definitions we represent the difference
between the ambient and total electric vector in terms of gradients of the potentials of the eloctric volume and surface charge densitics, the electric vector potential, and the curl of the magnetic vector potential.
We similarly represent the difference between the total and ambient We similarly represent the difference between the total and ambient
magnetic field intensity in terms of the gradients of the potentials of magnetic field intensity in terms of the gradients of the potentials of the volume and surface magnetic charge densities, the magnetic vector potential, and the curl of the electric vector potential. A coupled electric vector magnetic vector integral equation is immediately derived
trom the relationships,

$$
\begin{equation*}
\mathbf{E}-\mathbf{E}^{\prime}=-\operatorname{grad}\left(\Phi_{e}\right)-\operatorname{grad}\left(\Psi_{e}\right)-i \omega \mathbf{A}_{e}-\left(\frac{1}{\epsilon_{0}}\right) \operatorname{curl}\left(\boldsymbol{A}_{\mathrm{m}}\right) \tag{1.20}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbf{H}-\mathbf{H}^{\prime}=-\operatorname{grad}\left(\Phi_{m}\right)-\operatorname{grad}\left(\Psi_{\mathrm{m}}\right)-i \omega A_{\mathrm{m}}+\left(\frac{1}{\mu_{0}}\right) \operatorname{curl}\left(A_{e}\right) \tag{1.21}
\end{equation*}
$$

For scatterers with a general shape the set of equations implied by equations (1.20) and (1.21) are not solvable in closed form. We therefore assume that the scattering body has spherical symmetry and assume a special form of a tensor relationship between j_{e} and E and between the magnetic current density J_{m} and the magnetic field intensity \mathbf{A} in each layer of the structure. This will enable us to get an extension of the usual Mie solution. Specifically we assume that the scattering body Ω consists of N regions delimited by spheres defined by the equations $:=R_{1}$ for $i=1,2, \ldots, N$, where the p th region is bounded by $r=R_{p}$ and $r=R_{p-1}$ if p is $2,3, \ldots$, or N and the core region is bounded by $r=R_{1}$. In the simplest solution discussed in this paper we assume that we have anisotropic constitutive relations defined in terms of the unit vectors e_{r}, e_{θ}, and $e_{\text {, }}$ perpendicular to the radial, θ, and ϕ coordinate planes, respectively. For time harmonic radiation if D is the dielectric displacement and J is the ordinary electric field current density, then there are constants ϵ_{r} and σ_{r} in the radial direction and constants ϵ and o for relations along the surface so that

$$
\begin{equation*}
\frac{\partial D}{\partial t}+J=\left(i \omega \epsilon_{\mathrm{r}}+\sigma_{\mathrm{r}}\right) \mathrm{E}_{\mathrm{t}} \mathrm{e}_{\mathrm{r}}+(\mathrm{i} \omega \epsilon+\sigma)\left(\mathrm{E}_{\rho} e_{\theta}+\mathrm{E}_{\phi} e_{\phi}\right) \tag{1.22}
\end{equation*}
$$

Furthermore, there exist constants related to the magnetic properties of the material denoted by μ_{r} and μ so that if B is the magnetic flux
density, and the impinging radiation is time harmonic, then

$$
\begin{equation*}
\frac{\partial B}{\partial t}=i \omega_{\mathrm{r}} \mathrm{H}_{\mathrm{r}} e_{\mathrm{r}}+i \omega \mu\left(\mathrm{H}_{\boldsymbol{\rho}} e_{\rho}+\mathrm{H}_{\phi} e_{\phi}\right) \tag{1.23}
\end{equation*}
$$

If we simply require that tangential components of \mathbf{E} and \mathbf{H} are continuous across the boundaries $r=R_{R}$ then expansion coefficients can be related by 2 by 2 matrices as in (Bell, Cohoon, and Penn [1]). If we allow thin impedance sheets between the layers, then the expansion coefficients are also related by 2 by 2 matrices.

Normally when one thinks of scattering by a sphere, the spherical Bessel and Neumann functions come to mind. In our problem we will make use of two Bessel functions with a complex order and will require their evaluation at complex arguments. We assume that ν is complex and define a special function Ψ_{ν} by the rule

$$
\begin{equation*}
\Psi_{\nu}(z)=\frac{\pi^{1 / 2} J_{\nu+1 / 2}(z)}{2^{1 / 2} 2^{1 / 2}} \tag{1.24}
\end{equation*}
$$

where if we allow W to denote the Bessel function with index equal to $\nu+1 / 2$ or specifically

$$
\begin{equation*}
W=J_{\nu+1 / 2}(z) \tag{1.25}
\end{equation*}
$$

this means that the function W satisfies the Bessel differential equation,

$$
\begin{equation*}
z^{2} \frac{d^{2} W}{d z^{2}}+z \frac{d W}{d z}+\left(z^{2}-(\nu+1 / 2)^{2}\right) W=0 \tag{1.26}
\end{equation*}
$$

and then the function Ψ_{ν} defined by equations (1.24) through (1.26) satisfies the equation

$$
\begin{equation*}
\left(\frac{1}{z}\right)\left(\frac{\partial}{\partial z}\right)^{2}(z \Psi)+\left(1-\frac{\nu(\nu+1)}{z^{2}}\right) \Psi=0 \tag{1.27}
\end{equation*}
$$

We will need in order to implement our solution on the computer a knowledge of the Wronskian of the independent solutions of the Bessel
differential equation (1.26). It is known that

$$
\begin{equation*}
-Y_{\nu}(z) \frac{d}{d z} J_{\nu}(z)+J_{\nu}(z) \frac{d}{d z} Y_{\nu}(z)=\frac{2}{\pi z} \tag{1.28}
\end{equation*}
$$

and this is enough to enable us to evaluate the expressions involving Wronskians of linearly independent solutions of differential equations satisfied by radial functions needed to represent the electric and magnetic fields in the anisotropic materials. We needed two types of differential equations, one with a term involving the ratio of tangential to radial magnetic permeabilities and the other involving a ratio of tangential to radial permittivities. The radial functions associated with a ratio of magnetic properties are denoted by $\Psi(\mathrm{a}, \mathrm{p})$. The Wronksian determinant, which we denote by Δ is for these functions given by the expression,

$$
\begin{aligned}
& \Delta=
\end{aligned}
$$

where the superscript 3 refers to a radial function which is singular at the origin and the superscript 1 refers to a radial function which is regular at $r_{1}=0$ in the integrability sense, and where the radial functions $\Psi(a, p)$, are solutions of the differential equation,

$$
\begin{equation*}
\left(\frac{1}{r}\right)\left(\frac{\partial}{\partial r}\right)^{2}\left(r \Psi_{(n, p)}^{(a, j))}+\left(k^{2}-\left(\frac{n(n+1)}{r^{2}}\right)\left(\frac{\omega \mu}{\omega \mu_{r}}\right)\right) \Psi(\mathrm{n}, \mathrm{p})=0\right. \tag{1.30}
\end{equation*}
$$

where the complex constant k is when r is in the pth layer given by

$$
\begin{equation*}
\mathbf{k}^{2}=\omega^{2} \mu^{(p)} \epsilon^{(p)}-i \omega \mu^{(p)} \sigma^{(p)} \tag{1.31}
\end{equation*}
$$

The other radial functions $\Psi\left(\begin{array}{l}\text { (}, \mathrm{p}\end{array}\right)$ satisfy the differential equation,

$$
\begin{equation*}
\left(\frac{1}{r}\right)\left(\frac{\partial}{\partial r}\right)^{2}\left(r \Psi_{(n, p)}^{(b, j)}\right)+\left(k^{2}-\left(\frac{n(n+1) s}{r^{2}}\right)\right) \Psi_{(n \cdot p)}^{(b \cdot j)}=0 \tag{1.32}
\end{equation*}
$$

where

$$
\begin{equation*}
s=\left(\frac{i \omega \epsilon^{(\mathrm{P})}+\sigma^{(\mathrm{P})}}{i \omega \epsilon_{\mathrm{r}}^{(\mathrm{P})}+\sigma_{\mathrm{r}}^{(\mathrm{P})}}\right) \tag{1.33}
\end{equation*}
$$

We remark that the entire theory could be made completely symmetric by introducing a magnetic charge conductivity so that the Maxwell equations would have the form,

$$
\begin{equation*}
\operatorname{curl}(\mathbf{E})=-i \omega \mu_{0} \mathbf{H}-\left(i \omega\left(\mu-\mu_{0} \mathbf{I}\right)+\sigma_{\text {m }}\right) \mathbf{H} \tag{1.34}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{curl}(\mathbf{B})=i \omega \epsilon_{0} \mathbf{E}+\left(i \omega\left(\epsilon-\epsilon_{0} I\right)+\sigma_{e}\right) \mathbf{E} \tag{1.35}
\end{equation*}
$$

With these formulations of the Maxwell equations, we can use the potential representation of the electric and magnetic field vectors to write a surface volume integral equation system coupling the electric and magnetic vectors in the form, described by G...lia and Uslenghi (8)) in their paper on electromagnetic scattering by anisotropic materials with a completely gerieral shape.

As a part of this formulation we make use of the temperate rotationally invariant fundamental solution of the Helmholtz operator of free space derived in Treves [30] using the Haar measure on the
rotation group, given by

$$
\begin{equation*}
G(r s)=\frac{\left.\exp \left(-i k_{0}|r-s|\right)\right)}{4 \pi|r-s|} \tag{1.36}
\end{equation*}
$$

The coupled electric vector magnetic vector integral equations describing the interaction of radiation with an anisotropic material are given by

$$
\begin{align*}
& \mathbf{E}-\mathbf{E}^{\prime}=-\operatorname{grad} \int_{\Omega} \frac{\operatorname{idiv}\left(\mathrm{i} \omega\left(\epsilon-\epsilon_{0} \mathrm{I}\right)+\sigma_{\mathrm{e}}\right) \mathbf{E}}{\omega \epsilon_{0}}(\mathrm{~s}) \mathrm{G}(\mathrm{r}, \mathrm{~s}) \mathrm{dv}(\mathrm{~s}) \\
& \left.+\frac{i}{\omega \epsilon_{0}} \operatorname{grad} \int_{\sigma \Omega}\left(\left(i \omega\left(\epsilon-\epsilon_{0} I\right)+\sigma_{e}\right) \cdot E\right) \cdot n\right)(s) G(r, s) d a(s) \\
& -i \omega \mu_{0} \int_{\Omega}\left(i \omega\left(\epsilon-\varepsilon_{0} I\right)+\sigma_{e}\right) \cdot E(s) G(\Sigma s) d v(s) \\
& -\operatorname{curl} \int_{\Omega}\left(i \omega\left(\mu-\mu_{0} I\right)+\sigma_{\mathrm{m}}\right) \cdot \mathbf{H}(\mathrm{s}) \mathrm{G}(\mathrm{r}, \mathrm{~s}) \mathrm{dv}(\mathrm{~s}) \tag{1.37}
\end{align*}
$$

and

$$
\begin{align*}
& \mathbf{H}-\mathbf{B}^{i}=-\operatorname{grad} \int_{\Omega} \frac{\operatorname{idiv}\left(\mathrm{i} \omega\left(\mu-\mu_{0} \mathbf{I}\right)+\sigma_{\mathrm{m}}\right) \mathbf{B}}{\omega \mu_{0}}(\mathrm{~s}) \mathrm{G}(\mathrm{r}, \mathrm{~s}) \mathrm{dv}(\mathrm{~s}) \\
& -\frac{i}{\omega \mu_{0}} \operatorname{grad} \int_{o n}\left(\left(i \omega\left(\mu-\mu_{0} \mathrm{I}\right)+\sigma_{\mathrm{m}}\right) \cdot \mathbf{B} \cdot \mathrm{n}\right)(\mathrm{s}) \mathrm{G}(\mathrm{r}, \mathrm{~s}) \mathrm{da}(\mathrm{~s}) \\
& -i \omega \epsilon_{0} \int_{\Omega}\left(i \omega\left(\mu-\mu_{0} I\right)+\sigma_{\mathrm{m}}\right) \mathbf{H}(\mathrm{s}) \mathrm{G}(\mathrm{r}, \mathrm{~s}) \mathrm{dv}(\mathrm{~s})+ \\
& \operatorname{curi} \int_{\Omega}\left(i \omega\left(\epsilon-\epsilon_{0} I\right)+\sigma_{e}\right) \cdot E(s) G(r, s) d v(s) \tag{1.38}
\end{align*}
$$

We can make use of the energy balance relationship described in [1] to express the total absorbed power in terms of coefficients used to express the radiation scattered away from the sphere and the expansion coefficients of the incident radiation. This gives is the extinction and scattering cross sections of our spherical structure. The same results are necessarily obtained by integration of the power density distribution over the interior of the sphere. This has been done for a variety of anisotropic structures as a check on our computer program. The triple integral and the formula in Bell et al (1) give answers agreeing to at least 7 decimal places when 12 point Gauss quadrature is used for integrating with respect to θ, ϕ, and r in each layer of the sphere. The agreement persists even when different ratios of real and imaginary parts of radial and tangential permittivity, and conductivity are used. The possibility of a purely anisotropic loss can
pe seen by observing the energy conservation relation (c.f. Jin Au Kong 18]) for a general anisotropic material. For isotropic materials the situation is different in that, for example, to have a magnetic loss in a linearly responding material one must have a magnetic permeability with a nontrivial imaginary part.

For an anisutropic material with a completely general shape the problem of computing the interaction at first glance may seem formidable. However, by the use of the method of Cohoon [3]. and the
resolvent kernel methods presented by this author at the Midwest Conference on Differential Equations held at Vanderbilt University in Nashville, Tennessee on October 23-24, 1987 one can develop a robust method of solving the coupled system, given by equations (1.37) and (1.38), that does not require excessive computer memory.

THE INPUT DATA FREQUENCY, E LENGTH, NO OF REGIONS	
$1 . \mathrm{GHZ}$	$1.00 \mathrm{~V} / \mathrm{M}$

INPUT DATA (SURPACE BOUNDARIES)
2.50 CM

ELECTBICAL AND MAGNETIC PROPERTIES		
REGION ONE		

ELECTRICAL AND MAGNETIC PROPERTIES		
REGION TWO		
PARAMETER	REAL PART	IMAGINARY PART
ϵ_{r}	40.	1.00
ϵ	50	2.00
μ_{r}	3.00	1.80
μ	5.40	2.00
σ_{r}	1.50	0.40
σ	1.80	0.60

AVG AND TOTAL ABSORBED POWER	
BY TRIPLE INTEGRATION	
$6.82536 \mathrm{D}-02 \mathrm{~W} / \mathrm{M}^{* *} 3$	$7.49310489 \mathrm{D}-6$ WATTS

AVG AND TOTAI ABSORBED POWER BY \triangle POYNTING VECTOR $\triangle N A L Y S L S$
6.62536D-02 W/M**3 7.49310488D-6 WATTS

Table 1. The above table shows the results of an energy balance computation. Using only the expansion coefficients for the scattered radiation and the known expansion coefficients for the incoming radiation, the total absorbed power was computed. This was compared with a computation of the internal electric and magnetic losses using numerical triple integration over the layers.

We attempt to develop an electric vector representing a solution of the Maxwell equations in spherical coordinates in the interior of an anisotropic body. A priori we consider in the pth layer of the sphere three radial functions which we denote by $\left.\left.\Psi_{(a, p}^{(,)}\right), \Psi_{(n, p}^{b},\right)$, and $\Psi(\mathrm{c}, \mathrm{p})$. and we assume furthermore that within this layep the electric vector \mathbf{E} of a solution of the Maxwell equations has the form,

$$
\begin{aligned}
& \mathbf{E}=\sum_{(\mathrm{m}, \mathrm{a}) \in I}\left(\mathbf{a}_{(\mathrm{m}, \mathrm{a})} \boldsymbol{\Psi}(\mathrm{a}, \mathrm{j}, \mathrm{j})\left[\operatorname{im} \frac{\mathrm{P}_{\mathrm{n}}^{\mathrm{m}}(\cos (\theta))}{\sin (\theta)} \mathrm{e}_{\theta}-\frac{\mathrm{d}}{\mathrm{~d} \theta}\left(\mathrm{P}_{\mathrm{a}}^{\mathrm{m}}(\cos (\theta))\right) \mathrm{e}_{\theta}\right) \mathrm{e}^{i \operatorname{m} \phi}+\right. \\
& c_{(m, a)} \frac{\Psi\left(\begin{array}{l}
(\mathrm{n} . \mathrm{p}) \\
k r
\end{array}(k r)\right.}{} P_{\mathrm{n}}^{\mathrm{m}}(\cos (\theta)) \mathrm{e}^{\mathrm{im} \phi_{\phi_{r}}}+ \\
& \left.b_{(m, n)}\left(\frac{-1}{k r}\right)\left(\frac{\partial}{\partial r}\right)\left(r \Psi_{(n, p)}^{(b, j)(k r))}\left(\frac{d}{d \theta}\right) P_{n}^{m}(\cos (\theta)) e_{\theta}+i m \frac{P_{n}^{m}(\cos (\theta))}{\sin (\theta)} e_{\phi}\right) e^{i m \phi}\right)
\end{aligned}
$$

We will suppose that the material within the layers satisfies the constitutive relations described in the introduction. We define singular vector fields on the sphere by the rules,

$$
\begin{gather*}
A_{(m, \mathrm{a})}(\theta, \phi)=\left(\operatorname{im} \frac{P_{\mathrm{a}}^{\mathrm{m}}(\cos (\theta))}{\sin (\theta)} e_{\theta}-\frac{d}{d \theta} P_{\mathrm{a}}^{\mathrm{m}}(\cos (\theta)) e_{\phi}\right) e^{i m \phi} \tag{2.2}\\
C_{(\mathrm{m}, \mathrm{a})}(\theta, \phi)=P_{\mathrm{a}}^{\mathrm{m}}(\cos (\theta)) \mathrm{e}^{\mathrm{im} \phi_{e_{r}},} \tag{2.3}
\end{gather*}
$$

and

$$
\begin{equation*}
\mathbf{B}_{(m, a)}(\theta, \phi)=\left(\frac{d}{d \theta} P_{\mathrm{D}}^{\mathrm{m}}(\cos (\theta)) \mathrm{e}_{\theta}+\operatorname{im} \frac{\mathrm{P}_{\mathrm{a}}^{\mathrm{m}}(\cos (\theta))}{\sin (\theta)} e_{\phi}\right) \mathrm{e}^{i \operatorname{lm} \phi} \tag{2.4}
\end{equation*}
$$

We now make use of the following Lemma to simplify the computation of the curl of vector fields and especially curl (\mathbf{H}).

Lemma 2.1. If $F(r)$ is a differentiable function of r, and if

$$
A=F(r) \mathbf{A}_{(m, 0)}(\theta, \phi)
$$

or, equivalently,

$$
\begin{gather*}
F(r) A_{(m, n)}(\theta, \phi)=F(r)\left(\operatorname{im} \frac{P_{D}^{m}(\cos (\theta))}{\sin (\theta)} e_{p}-\frac{d}{d \theta} P_{a}^{m}(\cos (\theta)) e_{\phi}\right) e^{i m \phi} \tag{2.5}\\
C=F(r) C_{(m, 0)}(\theta, \phi)=F(r) P_{a}^{m}(\cos (\theta)) e^{i m \phi} e_{r} \tag{2.6}
\end{gather*}
$$

and

$$
\begin{equation*}
F(r)\left(\frac{d}{d \theta} P_{\mathrm{D}}^{\mathrm{m}}(\cos (\theta)) e_{\theta}+\operatorname{im} \frac{P_{\mathrm{D}}^{\mathrm{m}}(\cos (\theta))}{\sin (\theta)} e_{\theta}\right) \mathrm{e}^{\operatorname{lm} \phi} \tag{2.7}
\end{equation*}
$$

then

$$
\begin{gather*}
\operatorname{curl}(A)=(n(n+1)) \frac{F(r)}{r} C_{(m, a)}(\theta, \phi)+\left(\frac{1}{r} \frac{\partial}{\partial r}(r F(r))\right) B_{(m, \Delta)}(\theta, \phi)(2.8) \\
\operatorname{curl}(C)=\frac{F(r)}{r} A_{(m, n)}(\theta, \phi) \tag{2.9}
\end{gather*}
$$

and

$$
\begin{equation*}
\operatorname{curl}(B)=\left(-\frac{1}{r} \frac{\partial}{\partial r}(\mathrm{rF}(r))\right) \mathbf{A}_{(\mathrm{m}, \mathrm{~s})}(\theta, \dot{\phi}) \tag{2.10}
\end{equation*}
$$

Proof. This follows from the fact that in spherical coordinates if

$$
\begin{align*}
& \operatorname{curl}(v)=\frac{1}{r(\sin (\theta))}\left(\frac{\partial}{\partial \theta}\left(\sin (\theta) v_{\phi}\right)-\frac{\partial v_{0}}{\partial \phi}\right) e_{r}+ \tag{2.11}\\
& \frac{1}{r}\left[\frac{1}{\sin (\theta)} \frac{\partial v_{r}}{\partial \phi}-\frac{\partial}{\partial r}\left(\pi v_{\phi}\right)\right) e_{e} \\
& +\frac{1}{r}\left(\frac{\partial}{\partial r}\left(r v_{f}\right)-\frac{\partial v_{r}}{\partial \theta}\right) e_{\theta} \tag{2.12}
\end{align*}
$$

and the relation

$$
\begin{gather*}
-\frac{1}{\sin (\theta)}\left(\frac{d}{d \theta}\right)\left(\sin (\theta) \frac{d}{d \theta} P_{a}^{m}(\cos (\theta))\right)+\left(\frac{m^{2}}{\sin ^{2}(\theta)}\right) P_{a}^{m}(\cos (\theta)) \\
=n(n+1) P_{a}^{m}(\cos (\theta) \tag{2.13}
\end{gather*}
$$

which is simply the differential equation of Legendre which is usually expressed in the form,

$$
\begin{equation*}
\frac{d}{d z}\left(\left(1-z^{2}\right) \frac{d W}{d z}+\left(n(n+1)-\frac{m^{2}}{1-z^{2}}\right) W=0\right. \tag{2.14}
\end{equation*}
$$

where $z=\cos (\theta)$.
We now use the definition of \mathbf{E}, equation (2.1), the definition of the three sections, (2.2) - (2.4), in the tangent and the normal bundle of the sphere, and Lemma 2.1 to represent E as

$$
\begin{align*}
& \mathbf{Z}=\sum_{(m, a) \in I}\left(\mathbf{a}_{(m, a)} \mathbf{Z}_{\mathbf{a}}^{(\mathbf{a})}(\mathrm{r}) \mathbf{A}_{(\mathrm{m}, \mathrm{a})}(\boldsymbol{0}, \phi)+\right. \\
& \left.\mathrm{c}_{(\mathrm{m}, \mathrm{a})} \frac{Z_{\mathrm{a}}^{(\mathrm{c})}(\mathrm{r})}{\mathrm{kr}} \mathrm{C}_{(\mathrm{m}, \mathrm{a})}(\theta, \phi)+\mathrm{b}_{(\mathrm{m}, \mathrm{a})}\left(\frac{-1}{\mathrm{kr}^{\mathrm{r}}} \frac{\partial}{\partial r}\left(\mathrm{r} Z_{\mathrm{a}}^{(\mathrm{b})}(\mathrm{r})\right)\right) \mathrm{B}_{(\mathrm{m}, \mathrm{a})}(\theta, \phi)\right) \tag{2.15}
\end{align*}
$$

where

$$
\begin{align*}
& \mathbf{Z}_{\mathrm{a}}^{(\mathrm{a})}(\mathrm{r})=\Psi_{(\mathrm{a}, \mathrm{p}}^{(\mathrm{a})}(\mathbf{k r}) \tag{2.16}\\
& \mathbf{z}_{\mathrm{a}}^{(\mathrm{b})}(\mathrm{r})=\Psi_{(\mathrm{a}, \mathrm{p}}^{(\mathrm{b})}(\mathrm{kr}) \tag{2.17}\\
& \mathbf{Z}_{\mathrm{a}}^{(c)}(\mathrm{r})=\Psi_{(\mathrm{a}, \mathrm{p}}^{(, j)}(\mathbf{k r}) \tag{2.18}
\end{align*}
$$

where the functions on the right side of the equations (2.16) through (2.18) are defined by equations (1.30) through (1.33) but may actually be conceptualized at this stage of development as generalizations of these solutions. In developing the solution of the Maxwell equations we have to compute the curl of the vector field \mathbf{E}. We find that

$$
\begin{align*}
& \operatorname{curl}(E)=\sum_{(m, a) \in l}\left(\mathbf{a}_{(m, a)} \frac{\mathbf{Z}_{0}^{(\mathrm{a})}(\mathrm{r}) \mathrm{n}(\mathrm{n}+1)}{r} \mathrm{C}_{(\mathrm{m}, \mathrm{a})}(\theta, \phi)+\right. \\
& \mathrm{a}_{(\mathrm{m}, \mathrm{a})} \frac{1}{\mathrm{r}} \frac{\partial}{\partial_{\mathrm{r}}}\left(\mathrm{r} Z_{\mathrm{n}}^{(\mathrm{a})}(\mathrm{r})\right) \mathrm{B}_{(\mathrm{m}, \mathrm{a})}(\theta, \phi)+\mathrm{c}_{(\mathrm{m}, \mathrm{a})} \frac{\mathbf{Z}_{\mathrm{a}}^{(\mathrm{c})}(\mathrm{r})}{\mathrm{kr}^{2}} \mathbf{A}_{(\mathrm{m}, \mathrm{a})}(\theta, \phi) \\
& \left.+\frac{b_{(\mathrm{m}, \mathrm{a})}}{\mathrm{kr}}\left(\frac{\partial}{\partial \mathrm{r}}\right)^{2}\left(\mathrm{r} \mathrm{Z}_{\mathrm{a}}^{(\mathrm{b})}(\mathrm{r})\right) \mathrm{A}_{(\mathrm{m}, \mathrm{n})}(\theta, \phi)\right) \tag{2.19}
\end{align*}
$$

Equation (2.19) and the Maxwell equation (1.2) and equation (1.23) therefore imply that the magnetic field intensity is given by

$$
\begin{gather*}
\mathbf{H}=\sum_{(m, a) \in I}\left(\left(\frac{i}{\omega \mu_{r}}\right) \mathbf{a}_{(m, a)} \frac{Z_{n}^{(a)}(r) n(n+1)}{r} C_{(m, a)}(\theta, \phi)+\right. \\
\mathbf{a}_{(m, a)}\left(\frac{i}{\omega \mu}\right) \frac{1}{r} \frac{\partial}{\partial r}\left(r Z_{a}^{(a)}(r)\right) B_{(m, a)}(\theta, \phi)+ \\
\left.\frac{i}{\omega \mu}\left(c_{(m, a)} \frac{Z_{\mathrm{a}}^{(c)}(r)}{k r^{2}}+b_{(m, a)} \frac{1}{k r}\left(\frac{\partial}{\partial r}\right)^{2}\left(r Z_{n}^{(b)}(r)\right)\right) A_{(m, a)}(\theta, \phi)\right) \tag{2.20}
\end{gather*}
$$

We now will get the final Maxwell equ-:-ion relating the curl of the magnetic field intensity to the electric field vector through a tensor relationship. We find that equations (2.2) - (2.10) and (2.20) and the Maxwell equation (1.1) and the original representation, equation (2.1), of E imply that

$$
\begin{align*}
& \operatorname{curl}(\mathbf{B})=\sum_{(\Phi, n) \in I}(\\
& a_{(m, a)}\left(\frac{i}{\omega \mu_{r}}\left(\frac{Z_{n}^{(a)}(r) n(n+1)}{r^{2}}\right)+\frac{i}{\omega \mu}\left(\frac{-1}{r}\left(\frac{\partial}{\partial r}\right)^{2}\left(r Z_{n}^{(a)}(r)\right)\right) A_{(m, a)}(\theta, \phi)\right. \\
& +\frac{n(n+1)}{r}\left(\left(\frac{i}{\omega \mu}\right)\left(c_{(m, n)} \frac{Z_{n}^{(r)}(r)}{k r^{2}}+b_{(m, n)} \frac{1}{k r}\left(\frac{\partial}{\partial r}\right)^{2}\left(r Z_{n}^{(b)}(r)\right)\right) C_{(m, a)}(\theta, \phi)\right) \\
& \left.+\frac{1}{k_{p} r} \frac{\partial}{\partial r}\left(\frac{i}{\omega \mu}\left(c_{(m, n)} \frac{Z_{\mathrm{D}}^{(c)}(k r)}{r}+b_{(m, n)}\left(\frac{\partial}{\partial r}\right)^{2}\left(r Z_{a}^{(b)}(r)\right)\right)\right) B_{(m, n)}(\theta, \phi)\right) \\
& =\sum_{(m, \mathrm{a}) \in I}\left((\mathrm{i} \omega \epsilon+\sigma) \mathbf{a}_{(\mathrm{m}, \mathrm{a})} Z_{\mathrm{a}}^{(\mathrm{a})}(\mathrm{r}) \mathbf{A}_{(\mathrm{m}, \mathrm{n})}(\boldsymbol{\theta}, \phi)+\left(\mathrm{i} \omega \epsilon_{\mathrm{r}}+\sigma_{\mathrm{r}}\right) \mathrm{c}_{(\mathrm{m}, \mathrm{a})} \frac{\mathbf{Z}_{\mathrm{a}}^{(\mathrm{c})}(\mathrm{r})}{\mathbf{k r}} \mathrm{C}_{(\mathrm{m}, \mathrm{a})}(\boldsymbol{\theta}, \phi)+\right. \\
& \left.(i \omega \varepsilon+\sigma) b_{(m, a)}\left(\frac{-1}{k r} \frac{\partial}{\partial r}\left(\mathrm{r}_{\mathrm{a}}^{(\mathrm{b})}(\mathrm{r})\right)\right) \mathbf{B}_{(\mathrm{m}, \mathrm{a})}(\theta, \phi)\right) \tag{2.21}
\end{align*}
$$

The first differential equation that we derive is obtained by equating coefficients of the vector field $\boldsymbol{A}_{(\mathrm{m}, \mathrm{a})}$ on both sides of equation (2.21) and is given by,

$$
\frac{i Z_{\mathrm{a}}^{(\mathrm{a})}(\mathrm{r}) \mathrm{n}(\mathrm{n}+1)}{\mathrm{r}^{2} \omega \mu_{r}}+\left(\frac{-\mathrm{i}}{\omega \mu}\right) \frac{1}{\mathrm{r}}\left(\frac{\partial}{\partial r}\right)^{2}\left(\mathrm{r} Z_{\mathrm{a}}^{(\mathrm{a})}(\mathrm{r})\right)=(\mathrm{i} \omega \epsilon+\sigma) Z_{\mathrm{a}}^{(\mathrm{a})}(\mathrm{r})(2.22)
$$

We can do this because of the orthogonality relauonships,

$$
\begin{equation*}
\int_{0}^{2 \pi} \int_{0}^{\pi} A_{(m, 0)}(\theta, \phi) \cdot B_{(m, n)}(\theta, \phi) \sin (\theta) d \theta d \phi=0 \tag{2.23}
\end{equation*}
$$

and

$$
\begin{equation*}
\boldsymbol{A}_{(m, a)} \cdot \mathbf{C}_{(m, a)}=0=\mathbf{B}_{(m, a)} \cdot \mathbf{C}_{(m, a)} \tag{2.24}
\end{equation*}
$$

Notice that the differential equation may be rewritten in the form,

$$
\begin{equation*}
\frac{-1}{r}\left(\frac{\partial}{\partial r}\right)^{2}\left(r Z_{\mathrm{a}}^{(a)}(r)\right)+Z_{\mathrm{a}}^{(a)}(r)\left(\frac{n(n+1) \omega \mu}{r^{2} \omega \mu_{r}}\right)=r^{2} Z_{\mathrm{a}}^{(a)}(r) \tag{2.25}
\end{equation*}
$$

where

$$
\begin{equation*}
k^{2}=\omega^{2} \mu \epsilon-i \omega \mu \sigma \tag{2.26}
\end{equation*}
$$

We note that the ordinary spherical Bessel function satisfies the relationship,

$$
\begin{equation*}
\left(\frac{1}{r}\right)\left(\frac{\partial}{\partial r}\right)^{2}\left(r j_{\mathrm{a}}(k r)\right)+\left(k^{2}-\frac{n(n+1)}{r^{2}}\right) j_{\mathrm{D}}(k r)=0 \tag{2.27}
\end{equation*}
$$

which shows that when the two permeabilities approach one another, the radial function becomes simply a spherical Bessel function with an integer index.

The next radial differential equation can be obtained by equating coefficients of e, on both sides of equation (2.21) and by making use of the properties of the traditional scalar spherical harmonics $P_{\mathrm{n}}^{\mathrm{m}}(\cos (\theta))$ (Bell, Cohoon, and Penn [2]). These considerations give us the relationship,

$$
\begin{align*}
& \left(i \omega \epsilon_{r}+\sigma_{r}\right) c_{(m .0)} \frac{Z_{n}^{(c)}(r)}{r}= \\
& \frac{i n(n+1)}{\omega \mu r}\left\{c_{(m, a)} \frac{Z_{z}^{(c)}(r)}{r^{2}}+b_{(m, a)} \frac{1}{r}\left(\frac{\partial}{\partial r}\right)^{2}\left(r Z_{a}^{(b)}(r)\right)\right) \tag{2.28}
\end{align*}
$$

The final radial differential equation is obtained by equating coefficients of the vector field $B_{(m p)}(\theta, \phi)$ defined by equation (2.4) on both sides of equation (2.21). This differential equation has the form

$$
\begin{gather*}
(i \omega \varepsilon+\sigma) b_{(m, a)}\left(\frac{-1}{r}\right)\left(\frac{\partial}{\partial r}\right)\left(\left(r Z_{\mathrm{a}}^{(b)}(r)\right)=\right. \\
\frac{1}{r} \frac{\partial}{\partial r}\left(\frac{i}{\omega \mu}\left(c_{(m, a)} \frac{Z_{0}^{(c)}(r)}{r}+b_{(m, a)}\left(\frac{\partial}{\partial r}\right)^{2}\left(r Z_{\mathrm{D}}^{(b)}(r)\right)\right)\right) \tag{2.29}
\end{gather*}
$$

We have consistency between the two differential equations, (2.28)
(2.29), if and (2.29), if

$$
\begin{align*}
& \frac{\left(i \omega \epsilon_{\mathrm{r}}+\sigma_{\mathrm{r}}\right) c_{(m, \mathrm{a})}}{n(\mathrm{n}+1)_{\mathrm{r}}}\left(\frac{\partial}{\partial \mathrm{r}}\right)\left(\mathrm{r} Z_{\mathrm{n}}^{(\mathrm{c})}(\mathrm{r})\right)= \\
& -\mathrm{b}_{(\mathrm{m}, \mathrm{n})}(\mathrm{i} \omega \epsilon+\sigma)\left(\frac{1}{r} \frac{\partial}{\partial_{r}}\right) \mathrm{r} Z_{\mathrm{n}}^{(b)}(\mathrm{r}) \tag{2.30}
\end{align*}
$$

We find that we get a very simple solution of these equations if we simply let

$$
\begin{equation*}
Z_{\mathrm{a}}^{(b)}=Z_{\mathrm{a}}^{(\mathrm{e})}(\mathrm{r}) \tag{2.31}
\end{equation*}
$$

and assume that

$$
\begin{equation*}
c_{(\mathrm{m}, \mathrm{a})}=\frac{-\mathrm{n}(\mathrm{n}+1)(\mathrm{i} \omega \epsilon+\sigma)_{\mathrm{b}_{(\mathrm{m}, \mathrm{a})}}}{\left(\mathrm{i} \omega \epsilon_{\mathrm{t}}+\sigma_{\mathrm{r}}\right)} \tag{2.32}
\end{equation*}
$$

Under our simple hypothesis we derive two distinct radial differential equations. As in the traditional Mie solution (Bell, Cohoon, and Penn (1]) we have multipliers of the A vector fields which are of the same type that one gets by computing the curl of the product of a solution of the scalar Helmholtz equation by the unit vector or and vector fields which have the same form as the curl of a vector field of this type. In the traditional solution ([1]) the coefficients multiplying the terms involving regular and singular radial functions times the first type of vector field are labeled with a and a, respectively, and the coefficients multiplying the terms involving the regular and singular functions times the second type of vector field are labeled with b and β, respectively.

Combining equations (2.28) and (2.29) and making use of the assumptions embodied in equations (2.30)-(2.32) give us the differential equation,

$$
\begin{equation*}
\frac{1}{r}\left(\frac{\partial}{\partial r}\right)^{2}\left(r Z_{n}^{(b)}(r)\right)+\left(k^{2}-\frac{n(n+1)}{r^{2}}\left(\frac{i \omega \epsilon+\sigma}{i \omega \epsilon_{r}+\sigma_{r}}\right)\right) Z_{\mathrm{d}}^{(b)}(r)=0(2 \tag{2.33}
\end{equation*}
$$

Making use of this second radial differential equation, and making use of the relationships between the coefficients, equations (2.30) through (2.32), we will get a new representation of the magnetic field intensity \mathbf{H} that was originally given by equation (2.20). Specifically we need to first look at the term involving the a vector in equation (2.20). The relevant observation, using equation (2.28), is that

$$
\begin{align*}
& \left(c_{(m, a)} \frac{Z_{0}^{(b)}(r)}{r^{2}}+b_{(m, a)} \frac{1}{r}\left(\frac{\partial}{\partial r}\right)^{2}\left(r Z_{0}^{(c)}(r)\right)\right)= \\
& \left(\frac{-n(n+1)\left(i \omega_{\epsilon}+\sigma\right)}{i \omega \epsilon_{r}+\sigma_{r}}\left(\frac{Z_{n}^{(c)}(r)}{r^{2}}\right)+\left.\frac{1}{r}\left(\frac{\partial}{\partial r}\right)^{2}\left(r Z_{\mathrm{a}}^{(c)}(r)\right)\right|_{b_{(m, a)}}=\right. \\
& =-i \omega \mu\left(i \omega \epsilon_{r}+\sigma_{r}\right)\left(\frac{Z_{0}^{(c)}(r)}{n(n+1)}\right) c_{(m, a)}=-k^{2} Z_{n}^{(c)}(r) b_{(m, a)} \tag{2.34}
\end{align*}
$$

Combining these equations we obtain a greatly simplified expression for \mathbf{B} of the form,

$$
\begin{gather*}
\mathbf{B =} \sum_{(m, a) \in l}\left(\frac{i}{\omega \mu_{r}} \mathbf{a}_{(m, a)} Z_{a}^{(a)}(r) \frac{n(n+1)}{r} C_{(m, a)}(\theta, \phi)+\right. \\
\\
\left(\frac{i}{\omega \mu} a_{(m, n)} \frac{1}{r} \frac{\partial}{\partial r}\left(r Z_{n}^{(a)}(r)\right)\right)_{(m, a)}(\theta, \phi)+ \tag{2.35}\\
\\
\frac{i}{\omega \mu}(-k) Z_{a}^{\left.(b)(r) b_{(m, a)} A_{(m, a)}(\theta, \phi)\right)}
\end{gather*}
$$

The simple relationships (2.15) and (2.35) give us easy matrix relationships between expansion coefficients used to represent the field in one layer to those used to represent the field in another layer. Details concerning these intralayer relationships are discussed in the next sections of the paper. We will discuss spherical structures with a metallic core, dielectric multilayers where the layers may have nontrivial magnetic properties, and structures where the layers are separated by charge sheets or very thin layers, referred to in the literature, as impedance sheets.

$\frac{\text { THE INPUT DATA TELQUENCY, E LENGTE, NO OF }}{1 . \mathrm{GHZ}}$		
DNPUT DATA (SURFACE BOUNDAETES)		
SPHERE RADIUS $=\ldots \quad 3.00 \mathrm{CM}$		
PARAMETER	REAL PART	DMAGDARY PART
4	10.	8.00
c	15.	7.00
μ	21.00	2.00
μ	11.00	3.00
0	3.00 2.00	1.00 2.00

HIPCTICAL CONDUCTIVITY AND EEACTTVITY OF TEE URPEDANCE SEDET		
PARAMETER 0.	$\begin{gathered} \text { REAL PART } \\ 1.00 \end{gathered}$	MAGDARY PART $\mathbf{3 . 2 0}$

AVG AND TOTAL ABBOLBRD POWTR BY VOLUNE INTIGRATION OVIR THE DNTIAOL AND SUEYACE DNTEGEATION OVH TEI DPPIDANCE SHEET	
$6.15132 \mathrm{D}-05 \mathrm{~W} / \mathrm{M}^{\circ 0} 3$	6.95097963D-9 WATTS

\qquad	
$0.15132 \mathrm{D}-0.5 \mathrm{~W} / \mathrm{M}^{6 / 3}$	0.96097963D-9 WATTS

Table 2.1 Energy balance computation for an anisotropic, spherically symmetric particle covered by a lossy, reactive impedance sheet. The typical Poynting vector falculation on the outer boundary covered by the impedance sheet yields the total absorbed power. This must match a computation involving a surface integral for the impedance sheet loss, plus the magnetic loss and the electric loss in the interior.

8. INTRALAYEP REATIONSHIPS

The purpose of this section is to develop matrix equations which relate the expansion coeffici ents in one layer to those in adjacent layers and ultimately to be able to express the expansion coefficients of the field in any layer to the expansion coefficients of the incident radiation. The program will treat both structures with metalic cores and dielectric multilayers with nontrivial magnetic properties. We will choose four expansion coefficients for each layer. These expansion

The electric vector in layer p is given by

$$
\mathbf{E}=\sum_{(m, n) \in I}(
$$

$$
\alpha_{(\mathrm{m}, \mathrm{a})}^{(\mathrm{p})} Z_{(\mathrm{a}, \mathrm{p})}^{(\mathrm{a}, 3)}(\mathrm{r}) \mathbf{A}_{(\mathrm{m}, \mathrm{D})}(\theta, \phi)+\beta_{(\mathrm{m}, \mathrm{n})}^{(\mathrm{p})}\left(\frac{-1}{\mathrm{kr}} \left\lvert\, \frac{\partial}{\partial r}\left(\mathrm{r} Z_{(\mathrm{p}, \mathrm{p})}^{(b, 3)}(\mathrm{r})\right) \mathbf{B}_{, \mathrm{m}, \mathrm{n})}(\theta, \phi)+\right.\right.
$$

$$
\begin{equation*}
\left(\left.\frac{-n(n+1)\left(i \omega \epsilon^{(p)}+\sigma^{(p)}\right)}{\left.i \omega \epsilon_{\mathrm{f}}^{(\mathrm{P})}+\sigma_{\mathrm{f}}^{(\mathrm{P}!}\right)}\right|_{j} \beta_{(\mathrm{m}, \mathrm{a})} \frac{\mathrm{Z}_{(\mathrm{n}, \mathrm{p})}^{(\mathrm{b}, 3}(\mathrm{r})}{\mathrm{kr}} \mathrm{C}_{(\mathrm{m}, \mathrm{a})}(\theta, \phi)\right) \tag{3.1}
\end{equation*}
$$

It is now very easy in view of the relationships given in Lemma 1.1 , where the vectors $A_{(m . a)}, B_{(m . q)}$, and $C_{(m, 0)}$ are given by equations (2.2), (2.3), and (2.4) respectively to calculate the magnetic field intensity E and show that in view of orthogonality relationships (2.23), (2.24), and the additional relationships, valid when the index q is different from n which state that

$$
\int_{0}^{2 \pi} \int_{0}^{\pi} \boldsymbol{A}_{(m, n)}(\theta, \phi) \cdot \boldsymbol{A}_{(m, q)}(\theta, \phi) \sin (\theta) \mathrm{d} \theta \mathrm{~d} \phi=0
$$

and that

$$
\int_{0}^{2 \pi} \int_{0}^{\pi} B_{(\mathrm{m}, \mathrm{a})}(\theta, \phi) \cdot \mathbf{B}_{(\mathrm{m}, q)}(\theta, \phi) \sin :(\theta) \mathrm{d} \theta \mathrm{~d} \phi=0
$$

that very simple relationships result when we equate tangential components of E and B across the boundaries.

The magnetic intensity vector \mathbf{H} is given by

$$
\begin{aligned}
& \mathbf{H}=\sum_{(\mathrm{m}, \mathrm{n}) \in!}(\\
& \left(\frac{i}{\omega \mu^{(p)}}\right)\left(-k_{p} b_{(m, a)}^{(p)} Z_{(a, p)}^{(b, i)}(r) \mathbf{A}_{(m, a)}(\theta, \phi)+a_{(m, n)}^{(p)} \frac{1}{r} \frac{\partial}{\partial r}\left(r Z_{(a, p}^{(a, 1)}(r)\right) B_{(m, a)}(\theta, \phi)\right)
\end{aligned}
$$

$$
\begin{align*}
& \left(\frac{i}{\omega \mu^{(p)}}\right)\left(-k_{p} \beta_{(\mathrm{m}, \mathrm{a})}^{(\mathrm{p})} Z_{(\mathrm{n}, \mathrm{p}}^{(\mathrm{b}, 3)}(\mathrm{r}) \mathbf{A}_{(\mathrm{m}, \mathrm{n})}(\theta, \phi)+\alpha_{(\mathrm{m}, \mathrm{a})}^{(\mathrm{p})} \frac{1}{\mathrm{r}} \frac{\partial}{\partial \mathrm{r}}\left(\mathrm{r} Z_{(\mathrm{a}, \mathrm{p}}^{(\mathrm{p}, 3)}(\mathrm{r})\right) \mathrm{B}_{(\mathrm{m}, \mathrm{a})}(\theta, \phi)\right) \\
& \left.+\left(\frac{i}{\omega \mu_{\mathrm{r}}}\right) \alpha_{(\mathrm{m}, \mathrm{n})} Z_{(\mathrm{n}, \mathrm{p})}^{\left(\begin{array}{l}
\text { a }
\end{array}\right.}(\mathrm{r}) \frac{\mathrm{n}(\mathrm{n}+1)}{\mathrm{r}} \mathrm{C}_{(\mathrm{m}, \mathrm{D})}(\theta, \phi)\right) \tag{3.2}
\end{align*}
$$

The ordinary boundary value problem requires continuity of tangential components of \mathbf{E} and \mathbf{H} across the boundary layers

$$
\begin{equation*}
r=R_{p} . \tag{3.3}
\end{equation*}
$$

Making use of this and the orthogonality relationships we deduce that if we let
and
and if we let

$$
\begin{equation*}
\rho_{p}=\frac{\mu^{(p)} k_{p+1}}{\mu^{(p+i)} k_{p}} \tag{3.6}
\end{equation*}
$$

then the expansion coefficients are related by a matrix equation,

The matrix relationship (3.7) may be abbreviated as

We obtained the matrix relationship (3.7) by equating tangential components of \mathbf{E} and \mathbf{H} across the boundary of the spherical surface separating the layers, taking the inner product of both sides of this equation with respect to $\mathbf{A}_{(\mathrm{m}, \mathrm{a})}$ and then integrating over the surface of this sphere.

A second matrix relationship is obtained by equating tangential components of E and H across the separating spherical boundary, taking the inner product of both sides of these equations with respect to the vector functions $B_{(m, n)}$, and then integrating over the surface of the sphere; this second matrix equation relates the expansion coefficients $b\left(p_{m, a)}\right)$ and $\beta(\underset{(p, n)}{(p)}$ to those in layer $p+1$, and is given by

The matrix relationship (3.9) may be rewritten in abridged form as

$$
T^{(p)}\left(R_{p}\right)\left(\begin{array}{l}
b(p), 0) \tag{3.10}\\
\beta(p) \\
p, 0)
\end{array}\right)=T^{(p+1)}\left(R_{p}\right)\left(\begin{array}{l}
b(p+1 \\
b(p) \\
\beta(p+0) \\
(p, 0)
\end{array}\right)
$$

Define new matrices by the rules,

$$
\begin{equation*}
Q_{(m, 0)}^{(p)}=S_{\binom{(\rho)}{(p)}}\left(R_{p}\right)^{-1} S_{(m, 0}^{(p+1)}\left(R_{p}\right) \tag{3.11}
\end{equation*}
$$

and

Thus, if region $N+1$ is the region surrounding the sphere, we assume that $a(m, n)+1 p$ and $b\left(\begin{array}{c}(, a) \\ (1) \\ \text { are all completely known. Thus, since }\end{array}\right.$

$$
\alpha_{(\mathrm{m}, 0)}^{(1)}=\beta\left(\begin{array}{l}
(\mathrm{m}, 0) \tag{3.13}\\
(1)
\end{array}=0\right.
$$

for all nonnegative integers n and all integers m not smaller than $-n$ nor larger than $+n$. Thus, we see that as in the case of isotropic N layer spherical structures ('Bell, Cohoon, and Penn [1]) we have the relationships,
where the matrix $Q^{(\mathrm{m}, \mathrm{D})}$ is given by

$$
\begin{equation*}
Q^{(m, a)}=Q_{(m, a)}^{(1)}\left(R_{1}\right) Q_{(m, a)}^{(2)}\left(R_{2}\right) \cdots Q_{(m, a)}^{(N)}\left(R_{N}\right) \tag{3.15}
\end{equation*}
$$

The matrix relationship (3.14) yields two equations in two unknowns which in turn imply that
and

Thus, we see that
and

Similarly, we see that
and
where

$$
\begin{equation*}
R^{(\mathbb{m}, n)}=K_{(m, n)}^{(1)}\left(R_{1}\right) R_{(m, 0)}^{(2)}\left(R_{2}\right) \cdots R_{(m, n)}^{(N)}\left(R_{N}\right) \tag{3.22}
\end{equation*}
$$

From these relationships the expansion coefficients in all layers can be determined from the expansion coefficients in the inner core of the multilayer structure. The basic relationships are
and

From equations (3.23) and (3.24) we see that all the coefficients in layer two are now completely known. By iterating these results we can get all the coefficients in layers three through N . Since we already know the expansion coefficients in layers one and two and in the region of free space surrounding the N layer structure we see that by making use of the formulas (3.1) and (3.2) we get the components of the electric and magnetic field vectors in each layer of the structure and in the region of free space surrounding the structure.

[^5]Let us suppose that the inner core of an N layer structure is perfectly conducting which means that on this inner layer defined in spherical coordinates by

$$
\begin{equation*}
r=R_{1} \tag{4.1}
\end{equation*}
$$

the electric vector \mathbf{E} defined by equation (3.1) is identically zero which means that in view of the orthogonality relationships described in section 3 that

$$
\begin{equation*}
a_{(m, n)}^{(2)} Z_{(\mathrm{a}, 2)}^{(\mathrm{a}, 1)}\left(\mathrm{R}_{1)}+\alpha_{(\mathrm{m}, \mathrm{n})}^{(2)} \mathrm{Z}_{(\mathrm{n}, 2)}^{(\mathrm{s}, 3)}\left(\mathrm{R}_{1}\right)=0\right. \tag{4.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{b}_{(\mathrm{m}, \mathrm{a})}^{(2)} \mathrm{W}_{(\mathrm{a}, 2)}^{(\mathrm{b})}\left(\mathrm{R}_{1)}+\beta_{(\mathrm{m}, \mathrm{a})}^{(2)} \mathrm{W}_{(\mathrm{a}, 2)}^{(\mathrm{b}, 3)}\left(\mathrm{R}_{1}\right)=0\right. \tag{4.3}
\end{equation*}
$$

where the Z function appearing in equation (4.2) is defined by equation (2.16) and equation (1.30), and the W function appearing in equation 4.3) is defined by equations (1.32), (1.33), (2.17), and (3.5). The Z and W functions associated with layer 2 are evaluated at the boundary separating the core from the first coating.

If as before we define $Q_{(\underset{m}{0}, 0)}^{(p)}$ by the rule,

$$
\begin{equation*}
Q_{(m, n)}^{(p)}\left(R_{p}\right)=S_{(m, n)}^{(p)}\left(R_{p}\right)^{-1} S\binom{(p+1)}{(n)}\left(R_{p}\right) \tag{4.4}
\end{equation*}
$$

where
and

$$
\begin{align*}
& S^{(\mathrm{m}, \mathrm{n})}=\mathrm{Q}_{(\mathrm{m}, \mathrm{a})}^{(\mathrm{n})}\left(\mathrm{R}_{2}\right) \mathrm{Q}_{(\mathrm{m}, \mathrm{n})}^{(\mathrm{B})}\left(\mathrm{R}_{3}\right) \cdots \mathrm{Q}_{(\mathrm{m}, \mathrm{a})}^{(\mathrm{N})}\left(\mathrm{R}_{\mathrm{N}}\right) \tag{4.7}
\end{align*}
$$

Thus, the coefficients in layer 2 are related to the expansion coefficients in the outer layer by means of the relation,

Thus, using equation (4.2) and equation (4.8) we see that for each pair (m, n) of integers where n is nonnegative and the absolute value of m
does not exceed n we have three equations in the three a priori unknown coefficients, where only the expansion coefficients, a ($\mathrm{m}_{\mathrm{p}, \mathrm{p})}^{+1}$), are assumed to be known. Thus, if the determinant of the S matrix is defined by the rule,
then the solution of the system of equations is given by
and the expansion coefficient of the scattered wave in the medium surrounding the sphere is given by

The remaining expansion coefficients are derived in an analogous manner. By defining a matrix $T^{(m, a)}$ by the rule,

$$
T^{(m, n)}=R_{(m, a)}^{(2)}\left(R_{2}\right) R_{\left(\begin{array}{l}
(3), n) \tag{4.13}\\
(3)
\end{array} R_{3}\right) \cdots R_{(m, a)}^{(N)}\left(R_{N}\right) .}
$$

where the R matrices appearing in equation (4.13) are defined by equations (3.9), (3.10), and (3.12), we see that we have the relationship between the expansion coefticients in the first penetrable layer surrounding the perfectly conducting core and the expansion coefficients in the region of free space surrounding the multilayer spherical structure given by

For every pair (m, n) equation (4.14) and the relationship (4.3) demanded by the assertion that the tangential component of E vanish on the boundary of the scatterer gives us again three equations in three unknowns. The solution of this system of equations is
and the expansion coefficient of the scattered wave in the medium surrounding the sphere is given by
where the determinant $\Delta\left(T^{(m, n)}\right)$ is given by

This analysis enables us to assess the effectiveness of coatings on materials in impeding or transmitting radiation to a conducting core surrounded by penetrable but anisotropic materials with both nontrivial electrical and nontrivial magnetic properties. We can also calculate the absorbed and scattered radiation by using the expansion coefficients for the scattered radiation in the outer layer. The electric vector of the incident radiation is expressed in terms of known expansion coefficients by the relation,

$$
\begin{aligned}
& \mathbf{E}^{\prime}=\sum_{(\mathrm{m}, \mathrm{a}) \in I}(
\end{aligned}
$$

where the superscript zero for the Z functions and their derivatives means that these functions are solutions of the ordinary Bessel equation (2.27) with $k=k_{0}$ All other expansion coefficients are expressed in terms of the expansion coefficients appearing in equation (4.19).

5. LAYERS SEPAPATED BY DMPHDANCE BHDET8 OR CHAEGE LAYHR

The impedance sheet relationship states that at the surface

$$
\begin{equation*}
r=R_{p} \tag{5.1}
\end{equation*}
$$

separating region p from region $p+1$ we have

$$
\begin{equation*}
\mathbf{e}_{\mathrm{r}} \times\left(\mathbf{H}_{\mathrm{p}+1}-\mathbf{H}_{\mathrm{p}}\right)=\sigma_{\mathrm{f}}^{\left(\mathrm{p} \mathbf{\Sigma}_{\mathrm{p}}\right.} \tag{5.2}
\end{equation*}
$$

The development of intralayer relationships through the use of equation (5.2) is enhanced if we simply use the definitions (2.5), (2.6), and (2.7) and observe that

$$
\begin{gather*}
\mathbf{e}_{\mathbf{r}} \times \mathbf{C}_{(\mathrm{m}, \mathrm{a})}(\theta, \phi)=0, \tag{5.3}\\
\mathbf{e}_{\mathrm{r}} \times \mathbf{B}_{(\mathrm{m}, \mathrm{a})}(\theta, \phi)=-\mathbf{A}_{(\mathrm{m}, \mathrm{a})}(\theta, \phi) \tag{5.4}
\end{gather*}
$$

and

$$
\begin{equation*}
\boldsymbol{e}_{\mathrm{r}} \times \mathbf{A}_{(\mathrm{m}, \mathrm{n})}(\theta, \phi)=\mathbf{B}_{(\mathrm{m}, \mathrm{n})}(\theta, \phi) \tag{5.5}
\end{equation*}
$$

Making use of the above relationships, (5.3) through (5.5) and equation (3.2) which gives a representation

$$
\begin{aligned}
& \theta_{r} \times\left(\mathbf{H}_{p+1}-\mathbf{H}_{\mathrm{p}}\right)=\sum_{(\mathrm{m}, \mathrm{a}) \in I}(
\end{aligned}
$$

$$
\begin{align*}
& \left.\left.\frac{i k_{p+1}}{\omega \mu^{(p+1)}} \beta_{(m, n)}^{(p+1)} \sum_{(n, p+1)}^{(b, 3)}\left(R_{p}\right)-\frac{i k_{p}}{\omega \mu^{(p)}} \beta_{(m, n)}^{(p)} Z_{(n, p)}^{(b, 3)}\left(R_{p}\right)\right) A_{(m, n)}(\theta, \phi)\right) \tag{5.6}
\end{align*}
$$

If we assume a tensor relationship between the surface conductivity and the electric vector we obtain the relationship

$$
\begin{aligned}
& \mathrm{J}_{\mathrm{e}}=\sum_{(\mathrm{m}, \mathrm{a}) \in I}(
\end{aligned}
$$

$$
\begin{align*}
& \left.-\sigma_{b}\left(\mathrm{~b}(\mathrm{p}, \mathrm{a}) \mathrm{W}_{(\mathrm{a}, \mathrm{p}}\right)+\beta_{(\mathrm{m}, \mathrm{a})}^{(\mathrm{p})} \mathbf{W}\left(\begin{array}{c}
(\mathrm{b}, \mathrm{p})
\end{array}\right)\left(\mathrm{R}_{\mathrm{p}}\right) \mathbf{A}_{(\mathrm{m}, \mathrm{a})}(\boldsymbol{\theta}, \phi)\right) \tag{5.7}
\end{align*}
$$

By making use of orthogonality we obtain the following relationships

$$
\begin{aligned}
& \rho^{\left.\rho_{p} a_{(m, n)}^{(p+1)}\right)} W_{(a, p+1)}^{(a, 1)}\left(R_{p}\right)+\rho_{p} \alpha_{(p, n)}^{(p+1)} W_{(n, p+1)}^{(0,3)}\left(R_{p}\right)=
\end{aligned}
$$

and

$$
\begin{aligned}
& \rho_{p} b\left(\begin{array}{l}
(p+1) \\
m
\end{array} Z_{(n, p+1)}^{(b, 1)}\left(R_{p}\right)+\rho_{p} \beta_{(m, p}^{(p+1)} Z_{(n, p+1)}^{(b, j)}\left(R_{p}\right)=\right. \\
& \mathrm{b}(\mathrm{p}, \mathrm{a}) \mathrm{Z}_{(\mathrm{n}, \mathrm{p}}^{(\mathrm{b})}\left(\mathrm{R}_{\mathrm{p}}\right)+\boldsymbol{\beta}_{(\mathrm{m}, \mathrm{a})}^{(\mathrm{p})} \mathrm{Z}_{(\mathrm{a}, \mathrm{p}}^{\left.\mathrm{b}, \mathrm{p}^{2}\right)}\left(\mathrm{R}_{\mathrm{p}}\right)+
\end{aligned}
$$

In order to simplify the matrix relationships connecting expansion coefficients in layer p to those in layer $p+1$ we introduce some new functions by the rules,

$$
U\left(\begin{array}{l}
(\mathrm{a}, \mathrm{p}) \tag{5.10}
\end{array}\right)=\left(W(\mathrm{a}, \mathrm{p})+\left(\frac{i \omega_{\mu}^{(p)} \sigma_{\mathrm{a}}}{k_{p}}\right) Z\binom{\mathrm{a}, j)}{(\mathrm{a}, \mathrm{p})}\left(R_{p}\right)\right.
$$

and

Making use of the definitions in equations (5.10) and (5.11) we reproduce a setting similar to either that of section 3 or section 4 depending on whether or not the inner core is penetrable or perfectly conducting, respectively. The matrix relationships are
and

We note that in case

$$
\begin{equation*}
0=\sigma_{2}=\sigma_{b} \tag{5.14}
\end{equation*}
$$

the intralayer relationships (5.12) and (5.13) are exactly those given by equations (3.7) and (3.9), respectively.

The solution of the system of equations relating the expansion coefficients is therefore the same as the solutions given in section 3 and section 4 and that the Wronskian relationship shows that the determinant of the new coefficient matrices on the left sides of (5.12) and (5.13) are respectively equal to the determinant of the coefficient matrices of the left sides of equations (3.7) and (3.8). The inverses needed to define the analogue of the matrices defined by equations (3.11) and (3.12) have to exist.

In this section of our paper we demonstrate a powerful means of validating computer codes for describing the interaction of electromagnetic radiation with anisotropic structures whose regions of continuity of tensorial electromagnetic properties are delimited by spherical reactive and lossy impedance sheets with a common center. This was important since no previous workers have published any data regarding scattering by anisotropic spheres. We have found data concerning scattering by isotropic spheres with either a penetrable or a perfectly conducting core, but the standard references do not include calculations of bistatic cross sections of magnetically lossy spherical structures even when the layers are isotropic, and no energy balance computations for these magnetically lossy structures seems to have been published. This section provides data for magnetically lossy anisotropic structures. We keep track of the energy going into our structure and the radiation scattered away from our spherically symmetric multilayer stucture. This can be carried out by a Poynting vector analysis over the outermost surface of the scatterer or by integrating the power density over the interior of the layers or the surfaces of lossy impedance sheets. We discuss here a simple calculation when impedance sheets are present. The sphere considered, also may have both magnetic and electrical losses. The constitutive relations are tensorial. In what follows if α is a tensor, then $\operatorname{Re}(\alpha)$ is the tensor formed by computing the real part of each entry and $\operatorname{Im}(\alpha)$ is the tensor formed by computing the imaginary part of each entry. When there are off diagonal elements it is possible to have losses, for example, from a permittivity tensor which has only real entries. If $\sigma_{1} \epsilon$, and μ are respectively the conductivity, permittivity, and permeability tensors, then losses arise, for diagonal tensors, from the real part of the conductivity tensor, the imaginary part of the permittivity tensor, and the imaginary part, $\operatorname{Im}(\mu)$, of the permeability tensor.

The sum of the surface integrals of the energy per unit area per unit time deposited in the impedance sheets separating the regions of continuity of the tensorial electromagnetic properties of the material plus the triple integral of the power density over the interior of an anisotropic multilayer spherical structure is related to the expansion coefficients $\alpha_{(0, N+1)}$ and $\beta_{(0, N+1)}$ of the scattered radiation by the equation ([1]),

$$
\begin{align*}
& \sum_{k=1}^{M}\left[R_{k}{ }^{2} \int_{0}^{r}\left(\int_{0}^{2 r}\left(\operatorname{Re}\left(\sigma_{\theta}^{(k)}\right)\left(\left|E_{\theta}\right|^{2}+\left|E_{\phi}\right|^{2}\right)\left(R_{k}, \theta, \phi\right)\right) d \phi\right) \sin (\theta) d \theta\right)+ \\
& \text { Ry } 5 \\
& \int_{0}^{R} \int_{0} \int_{0}\left(\omega \operatorname{lm}(\mu)\left(\left|H_{\theta}\right|^{2}+\left|H_{\phi}\right|^{2}\right)+\omega \operatorname{lm}\left(\mu_{r}\right)\left|H_{r}\right|^{2}\right) r^{2} \sin (\theta) \mathrm{d} \phi \mathrm{~d} \theta \mathrm{~d} r+ \\
& \mathrm{R}=3 \mathrm{~F} \\
& \int_{0}^{R} \int_{0}^{\pi} \int_{0}^{2 \pi}\left(\omega \operatorname{Im}(\epsilon)\left(\left|E_{\theta}\right|^{2}+\left|E_{\phi}\right|^{2}\right)+\omega \operatorname{Im}\left(\varepsilon_{T}\right)\left|E_{r}\right|^{2}\right) r^{2} \sin (\theta) d \phi r \theta d r+ \\
& \text { R } \pi_{2 \pi} \\
& \iint_{0} \int_{0} \int_{0}\left(\operatorname{Re}(\sigma)\left(\left|E_{0}\right|^{2}+\left|E_{\phi}\right|^{2}\right)+\operatorname{Re}\left(\sigma_{r}\right)\left|E_{r}\right|^{2}\right) r^{2} \sin (\theta) d \phi d \theta d r= \\
& \frac{\pi\left|\mathrm{E}_{0}^{2}\right|}{\mathbf{k}_{0}^{2}}\left(\frac{\epsilon_{0}}{\mu_{0}}\right)^{1 / 2}\left|\operatorname{Re} \sum_{\mathrm{n}=1}^{\infty}(2 \mathrm{n}+1)\left(\alpha_{(\mathrm{n}, \mathrm{~N}+1)}+\beta_{(\mathrm{n}, \mathrm{~N}+1)}\right)\right|- \\
& \frac{\pi\left|E_{0}^{2}\right|}{k_{0}^{2}}\left(\frac{\epsilon_{0}}{\mu_{0}}\right)^{1 / 2} \sum_{\mathrm{n}=1}^{\infty}(2 \mathrm{n}+1)\left(\left|\alpha_{(\mathrm{n}, \mathrm{~N}+1)}\right|^{2}+\left|\beta_{(\mathrm{n}, \mathrm{~N}+1)}\right|^{2}\right) \tag{6.1}
\end{align*}
$$

The constitutive relations between $(\partial / \partial t) \mathbf{D}+\mathbf{J}$ and \mathbf{E}, for the case of time harmonic radiation, are given ty the equation,

$$
\left(\begin{array}{l}
i \omega D_{r}+J_{t} \tag{6.2}\\
i \omega D_{\ell}+J_{\theta} \\
i \omega D_{\phi}+J_{\phi}
\end{array}\right)=\left(\begin{array}{ccc}
i \omega \epsilon_{r}+\sigma_{r} & 0 & 0 \\
0 & i \omega \epsilon+\sigma & 0 \\
0 & 0 & i \omega \epsilon+\sigma
\end{array}\right)\left(\begin{array}{l}
E_{r} \\
E_{\phi} \\
E_{\phi}
\end{array}\right)
$$

The constitutive relations between $(\partial / \partial t) \mathrm{B}$ and the magnetic field H are defined by the equation,

$$
\left(\begin{array}{l}
i \omega B_{r} \tag{6.3}\\
i \omega B_{\theta} \\
i \omega B_{\theta}
\end{array}\right)=\left(\begin{array}{ccc}
i \omega \mu_{r} & 0 & 0 \\
0 & i \omega \mu & 0 \\
0 & 0 & i \omega \mu
\end{array}\right)\left(\begin{array}{l}
H_{r} \\
H_{\theta} \\
H_{\phi}
\end{array}\right)
$$

The above computations have enabled us to provide a reliable set of equations for the expansion coefficients of both the scattered and induced electromagnetic fields. If there were an error in the formulas that produced incorrect electromagnetic fields, one could be confident
that integrating an incorrect power density over one of the layers or over one of the delimiting impedance sheets would not have given a 7 to 10 digit agreement between the computations of the total absorbed power using an energy balance computation by numerically integrating the power density distribution over the layers and over the surfaces of the lossy impedance sheets and making a comparison between the Poynting vector calculation on the outer surface of the sphere of the total electromagnetic energy entering minus the total energy scattered away from the spherical structure. These computations should enable one to quickly identify any errors in algebra or transcription of the formulas to the computer algorithm.

One of the unique features of our anisotropic structure was the peculiar behavior of the fields near the center of the sphere. It turns out that if we have only an anisotropy in the real part of the permittivity and if the radial component exceeds the angular component, then there is an integrable singularity in the power density at the center and if the radial permittivity is smaller than the angular permittivity, then the electric field vector goes to zero at the origin. Furthermore, if the radial permittivity is larger than the angular permittivity, no combination of the two linearly independent solutions will yield a solution which is bounded at the origin.

In spite of the complexities of the interaction of radiation with anisotropic structures I found that I could achieve the 9 digit agreement in the two methods of computing the total absorbed power with a tensor product of Gaussian quadrature schemes and for the most part making use of only 1728 function evaluations per layer. I checked the Gaussian quadrature by using in addition a scheme which used 4096 function evaluations per layer and make sure that the two methods gave the same answer. I also checked the computations by artificially adding extra layers. In making the computations I also made certain that the exact formula for the incoming radiation and our series expansion in spherical harmonics gave numerically identical answers on the surface of the sphere, and had checking subroutines which calculated the tangential components of the electric and magnetic vectors on both sides of the delimiting surface. When the delimiting surface happened to be an impedance sheet I not only made sure that the impedance sheet boundary condition was satisfied, I also checked to make sure that the spherical harmonic expansion of the internal fields had converged.

THI INPUT DATA TREQUENCY, E LENGTE, NO OP IEGIONS	
$1 . \mathrm{GHZ}$	$1.00 \mathrm{~V} / \mathrm{M}$

INPUT DATA (SURPACE BOUNDAPIES)
$2.50 \mathrm{CM} \quad 3.00 \mathrm{CM}$

ELECTRICAL AND MAGNETIC REGION ONE		
PARAMETER		
REAL PART	MMAGINARY PART	
ϵ	50	9.00
ϵ	60	8.00
μ_{1}	1.00	0.80
μ	2.40	1.00
σ_{1}	0.50	0.80
σ	0.60	0.40

ELECTRICAL AND MAGNETIC PROPERTIES		
REGION TWO		

AVG AND TOTAL ABSORBED POWEE
BY TRPLE DNTEGRATION
$6.62536 \mathrm{D}-02 \mathrm{~W} / \mathrm{M}^{\circ} \cdot 3 \quad 7.49310489 \mathrm{D}-6$ WATTS

AVG AND TOTAI \triangle BSORBED POWER BY A
POYNTING VECTOR $\triangle N A L Y S I S ~$
:---:

| INPUT DATA (SURPACE BOUNDARIS) |
| :--- | :---: |
| SPGERE RADIUS $=\quad 3.00 \mathrm{CM}$ |

CORE REGION INATEIOR TO THE DPPEDANCE SHEET		
PARAMETER	REAL PART	dMAGNARY PART
4	∞.	10.00
-	60.	10.00
${ }_{4}$	1.00	2.00
μ	3.00	2.00
σ_{1}	2.00	1.00
-	2.00	1.00

EHECTICAL CONDOCTIVITY AND LEACTIVITY OF THE DPPRUNCCE SHITT		
PARAMETER σ_{4}	$\begin{gathered} \text { REAL PARTT } \\ 0.00 \end{gathered}$	$\begin{gathered} \text { DMAGINARY PART } \\ 0.00 \end{gathered}$

AVG AND TOTAL ABSORPED POWT BY VOLUNE INTEGRATION OVER THE DNTITIOL $\triangle N D$ SURIACE INTEGEATION OVER TEE DPPEDANCE SHEET	
3.11025D-02 W/M	5.77955703D-6 WATTS

AVG AND TOTAL ABSORBID POWTR BY A
POYNTING VECTOR ANAIY8IS
$5.11025 \mathrm{D}-02 \mathrm{~W} / \mathrm{M}^{\circ \circ} 3 \quad 5.7^{70} 5703 \mathrm{D}-6$ WATTS

| INPUT DATA (SULIACE BOUNDAYT-3) |
| :--- | :---: |
| SPEERE RADIUS $=\quad 3.00 \mathrm{CM}$ |

PARAMETER	Real Part	DMAGDARY PART
4	10.	8.00
c	15.	7.00
μ	21.00	2.00
μ	11.00	3.00
0_{1}	3.00	1.00
0	2.00	2.00

EHECYLCAI CONDOCIIVITY $4 N D$		
\triangle	TI	NCE 8ET4
PARAMETER σ_{0}	REAL PART 1.00	DAGDARY PART 3.20

AVG AND TOTAL ABSORBTD POWT BY VOLUSE DNTLGRITION OVE THE DNTITHOE AND SURYACE DNTEGRATION OVAL TER ITPIDA:ICE SHEST	
6.15132D-05 W/M ${ }^{\circ} \mathrm{B}$	6.86097933D-9 WATTS

1. GEZ	$1.00 \mathrm{~V} / \mathrm{M}$	1

INPUT DATA (EUNJAC BOUNDATIES)
SPEERE RADIUS $=\quad 3.00 \mathrm{CM}$

PARAMETER	Real part	daginary part
4	∞.	10.00
-	60.	10.00
μ	3.00	2.00
μ	3.00	2.00
0	2.00	1.00
-	2.00	1.00

EWCTRICAI CONDUCTVITY AND LEACTIVITY OF TES DOPEDANCE SEITT		
PARAMETER σ_{0}	REAL PART 8.00	MAGDARY PART 3.00

AVG AND TOTAL ABEORAD FOWA
BY VOLOME DNTECEATION OVL THE DNTHENOR AND SURIACE DNTEGEATION OVH THE DPPEDNCE SHITI $1.01541 \mathrm{D}-04 \mathrm{~W} / \mathrm{M}^{\circ 9} \mathrm{~s} \quad 1.14840185 \mathrm{D}-8$ WATTS

f. CONCLOSIONS

Primary applications include the design of particles or structures with prescribed absorption and scattering cross sections, estimation of the internal energies and temperatures stimulated in the layers comprising our spherical structure or on the lossy impedance sheets separating these layers, and computation of bistatic radar cross sections of these structures. We could conceivably design a particle that would absorb most of the radiation of a given frequency and by embedding these spherical particles in a penetrable layer with a density that increased with depth design a selectively absorptive coating. One could through the use of power density distribution curves and the use of spectral distributions of energy density within these structures quickly design a coating that would offer the maximum protection against electromagnetic pulses or would solve other electromagnetic compatibility problems. The power density distribution curves may help one treat cancer with microwaves. By proving that one could adjust the sources that a hot spot could be focused at a tumor location anywhere within the spherical structure, one could prove within this simulated biological structure that one could raise the temperature of the tumor about 4 degrees centigrade and kill the tumor without harming the nearby normal tissue. This would provide encouragement for the general research problem in the more complex clinical problem of a real patient with a real tumor. Another possibility is the use of the sphere program which, because the solution is exact, and because the computing cost and time is so low that the program could be used effectively on a personal computer, one could design eye protective equipment to protect people from laser beams while permitting them to see with other parts of the visual spectrum. This could be done by designing a multilayer structure that is reflective or absorptive to the frequencies of laser which represents a potential threat to the eyes but which permits certain light frequencies to pass unhindered through the coating so that the individual wearing the protective device could still see.

Another use of the program would be to design coatings for metalic structures that would have prescribed absorption and scattering properties and to in general benchmark computer codes, such as integral equation solvers, by cumparing the answers they get fur complex spherical structures with those obtained by our exact solution. Figure 1 shows the power density distribution across the z-axis of a perfectly conducting sphere coated with an anisotropic layer, where the radiation is traveling from the negative z-axis toward the positive $z-$ axis so that the illuminated side of the sphere is at $2=-3$. A typical calculation is the bistatic radar cross section computation which can be verified by measurement in an anechoic chamber. Figure 2 shows the bistatic radar cross section of the coated sphere related to Figure 1; this ating is magnetically lossy, and is itself covered by an impedance set.
Bistatic radar cross sections are defined in Ruck et al ([24], p 9) and in van de Hulst ([32], p 285) by the formula

$$
\begin{equation*}
\sigma=4 \pi \pi^{2} \frac{\left|E^{0}\right|^{2}}{\left|E^{1}\right|^{2}} \tag{7.1}
\end{equation*}
$$

where r is the distance from the center of the sphere to the point where the calculation was carried out. In my bistatic cross section subroutine I simply made sure I was far enough away from the sphere that the expression σ was independent of r. While the program would have run faster if I used asymptotic expressions, this permitted me to track the cross section measurements as a function of r. What is usually plotted is 10 times the logarithm to the base 10 of σ divided by πa^{2} as a function of the bistatic angle.

Comparisons were made with bistatic cross section data for spheres which can be found in yan de Hulst ([32], pages 152 and 153) for penetrable non lossy spheres and in Ruck ($[24]$, page 152). My calculations, not repeated here, were in agreement with these results although I' made some improvement in the detail of these 1948 computations (van de Hulst [32], page 152, the figure legend).

Human tissue is anisotropic and may have absorption properties which would be of concern to bioelectromagneticists. Figure three shows the infinite spike in the power density distribution curve in the center of an anisotropic single layer structure whose radial permittivity exceeds the tangential permittivity. The structure is nonmagnetic, as is human tissue, and has a conductivity of .5 mhos per meter. There is no impedance sheet covering the structure. Note the high power density distribution near the center of the structure; if a cancerous tumor were located near this hot spot, we could probably destroy the cancer without harming the normal tissue excessively by raising it to a temperature of 4 degrees centigrade above the ambient temperature. The bistatic radar cross section, shown in Figure 4, while having an interesting structure does not appear at first glance to contain enough information by itself to enable an experimentalist to discern that he was working with an anisotropic structure. A more sensitive prober of the anisotropies of a penetrable structure than the bistatic cross section would probably have to be developed.

The program is also effective in treating very large anisotropic structures. In Figure 5 we see a power density distribution plot of a 1 meter diameter structure censisting of an isotropic .1 meter radius core with a radial and tangential permittivity of 50 surrounded by an anisotropic coating that is .4 meters thick and having a radial permittivity of 60 and a tangential permittivity of 40. Both structures had were nonmagnetic and had a conductivity of .5 mhos per meter. Figure 6 gives the bistatic radar cross section of this structure. The bistatic radar cross section appears to be very sensitive to the conductivity of the object. When I dropped the conductivity to . 05 mhos per meter, the bistatic radar cross section developed much more structure. The latter is shown in Figure 7.

The code for computing both internal and external fields associated with the scattering of electromagnetic radiation by a multilayer anisotropic spherical structure with the inner core being either perfectly conducting or penetrable and with the possibility that the layers may be separated by impedance sheets appears to have many potential applications. The concept of charge sheets, for example, in view of the fact that my computations show that these structures have an extremely low absorption of energy may be useful in the design of a type of energy shield to protect structures from laser beams.

Another application would be particle design. The design structure proposed here could be used with cylinder or sphere scattering. The basic idea is to consider an objective function such as the absorption cross section or the scattering cross section and regard this objective function, which may itself be a prescribed function of the frequency of the incoming radiation and not just a single number, and consider it to be a function of layer thickness, tensor permittivity, tensor magnetic permeability, and tensor electric field conductivity. We would make the problem equivalent to minimizing a function of a real variable defined on a finite dimensional vector space by taking as the function to be minimized, the square of the difference between idealized values of the absorption or scattering cross section and the values calculated by the computer program at a finite number of frequencies.

We then would use the same operations research methods used to find submarines or lost transmitting objects such as a child lost in a foggy marsh by using gradient search to go in the direction of increasing sound or in this case a decreasing difference between calculated and desired properties of an nbjective function. We consider a .5 micron sphere subjected to $60,000,000$ Megahertz radiation having an electric field strength of 1 Volt per meter, a relative electric permittivity with a real part equal to 50 , a relative magnetic permeability of 1 , zero conductivity and allow the imaginary part of the relative permittivity to move up from 0 , then since when the imaginary part of permittivity is zero, there is zero absorption, and since as the imaginary part of the permittivity goes to infinity, there is also zero absorption as the energy would have zero penetration, there must then be some intermediate value at which the absorption would be a maximum. Figure 8 is a plot of absorbed energy as a function of the imaginary part of the permittivity and shows this feature. In our particle the maximum occurs when the imaginary part of the relative permittivity is slightly less than 1 . Since there is scattering even when there is zero absorption, the scattering curve is more subtle. However, when the imaginary part of the permittivity goes to infinity, all radiation is scattered away so there must also be a minimum of the scattered radiation. This is shown in Figure 9.

The notion of minimization goes back to the basic mathematical concept of a lower semicontinuous function on a compact set, in this case the allowable or physically reasonable values of the design parameters, having a maximum. If the function on the compact set is continuous, then the function achieves both its maximum and minimum value. One way to think about this problem is to invert a highly nonlinear system of equations. By this I mean that if our objective were in fact realized by some choice of parameters, could we then from the objective function recover the parameters which produced it. Furthermore, given this could we get as close as we desire to a possibly nonrealizable objective function by being able to invert this transformation. If the functions being considered in a particle or coating design are smooth, we could use the concept of slack variables. For example if we wanted to describe the set

$$
x^{2}+y^{2}<R^{2}
$$

we could introduce the slack variable z and write it as

$$
R^{2}-\left(x^{2}+y^{2}\right)=x^{2}
$$

We note that the set of points P in the subset of n dimensional space defined by

$$
g(Q)=0
$$

and at which a function $f(Q)$ is locally a muximum or a minimum is among the critical points of the transformation T from n dimensional space into 2 dimensional space defined by

$$
(u, v)=(f(Q), g(Q))
$$

or precisely those points Q for which the 2 by n matrix whose first row consists of the first partial derivatives of f with respect to its n independent variables and whose second row consists of the first partial derivatives of g with respect to its independent variables has rank strictly less than 2. This means that if you pick any two columns out of this transformation differential matrix and form a two by two matrix, then this 2 by 2 matrix has a zero determinant. Finding these critical points and analyzing them will give a complete resolution of the smoke particle design problem. A computer program implementing this algorithm is available to the Chemical Research Development and Engineering Center of Aberdeen Proving Ground, Maryland E. W. Stuebing, Private Communication). A more recent program to carry out unconstrained minimization of a function of several variables makes use of the Levenberg-Marquardt algorithm that was modified by Argonne National Laboratory and is available through the repository at the Naval Surface Weapons Center to government agencies. The conjugate gradient method or the method of steepest descent can be used to find the local minimums of a function of several variables, which in the case of a design problem with our sphere code or a code to describe scattering by a multilayer anisotropic cylinder which can be developed in a similar manner would be the impedance sheet properties, tensor electric and magnetic properties within a layer and layer thicknesses. The low central processing unit time required by the computer program described in this paper makes this type of design calculation practical.

1. Bell, E. L., D. K. Cohoon, and J. W. Penn. Electromagnetic energy deposition in a concentric spherical model of the human or animal head. SAM-TR-79-6. Brooks AFB Tx 78235: USAF School of Aerospace Medicine (December, 1979)
2. Cohoon, D. K., J. W. Penn, E. L. Bell, D. R. Lyons, and A. G. Cryer. A computer model predicting the thermal response to microwave radiation. SAM-TR-82-22. Brooks AFB Tx 78235: USAF School of Aerospace Medicine (December, 1982)
3. Cohoon, D. K. An exact formula for the accuracy of a class of computer solutions of integral equation formulations of electromagnetic scattering problems (to appear in Electromagnetics)
4. Cosenza, M, L. Herrera, M. Esculpi, and L. Witten. Evolution of radiating anisotropic spheres in general relativity. Physical Review D Volume 25 Number 10 (May 15, 1982) pp 25272535.
5. Consenza, M., L. Herrera, M. Esculpi, and L. Witten. Some models of anisotropic spheres in general relativity. Journal of Mathematical Physics 22 (1) (January, 1981) pp 118-125.
6. Fymat, Alain L. Radiative properties of optically anisotropic spheres and their climatic implications. Journal of the Optical Society of America. Volume 72, Number 10(October, 1982) pp 1307-1310.
7. Geim, A. K., V. T. Petrashov, and A. A. Svintsov. Helicon resonances in an anisotropic sphere. Soviet Technical Physics Letters 12 (7) (July, 1986) pp 361-362.
8. Graglia, R. D. and P.'L. E. Uslenghi. Electromagnetic scattering from anisotropic materials, Part I General Theory. IEEE Transactions on Antennas and Propagation Volume AP-32 No. 8 (August, 1984)pp 867-869.
9. Greenberg, J. M., A. C. Lind, R. T. Wang, and L. F. Libelo IN Kerker, M. (Ed.) Interdisciplinary Conference on Electromagnetic Scattering. London: Pergamon Press (1963) p 123.
10. Herrera, L. and J. Ponce de Leon. Anisotropic spheres admitting a one paramter group of conformal motions. Journal of Mathematical Physics 26 (8) (August, 1985) pp 2018-2023
11. Herrera, L., G. J. Ruggeri, and L. Witten. Adiabatic Contraction of Anisotropic Spheres in General Relativity. The Astrophysical Journal 234 (December 15, 1979) pp 1094-1099.
12. Holoubek, J. A Simple Representation of Sman Angle Light Scattering from an Anisotropic Sphere. Journal of Polymer Science Part A-2 Volume 10 (1972) pp 1461-1465.
13. Holoubek, J. Small Angle Scattering of Circularly Polarized Light from an Anisotropic Sphere. Journal of Polymer Science Volume 11 (1973) pp 683-691
14. Hovhannessian, S. S. and V. A. Baregamian. The Diffraction of a Plane Electromagnetic Wave on an Anisotropic Sphere. Izdatelstva Akad. Nauk of Armenia S. S. R. Physics 16 (1981) pp 37-43
15. Ibanez, J. M. Collapse of Anisotropic Spheres in General Relativity: An Analytical Model. The Astrophysical Journal

284 (September 1, 1984) pp 381-383.
16. Kanoria, Mridula. Forced vibration of a non-homogeneous anisotropic sphere or cylinder having a rigid inclusion. Indian Journal of Theoretical Physics Volume 31 No. 2 (June, 1983) pp 55-64.
17. Kong, A. Electromagnetic Fields Due to Dipole Antennas over Stratified Anisotropic Media. Geophysics Volume 37 Number 6 (December, 1972) pp 985-996.
18. Kong, Jin Au. Electromagnetic Wave Theory. New York: John Wiley (1986)
19. Leon, J. Ponce de. New Analytical Models for Anisotropic Spheres in General Relativity. Journal of Mathematical Physics Volume 28 No. 5 (May, 1987) pp 1114-1117.
20. Markiewicz R. S. Alfven Wave Oscillations in a Sphere, with Applications to Electron Hole Drops in Ge. Physical Review B Volume 18, Number 8 (October 15, 1978)
21. Meeten, G. H. The Birefringence of Colloidal Dispersions in the Rayleigh and Anomalous Diffraction Approximations. Journal of Colloid and Interface Science Volume 73 Number 1 (January, 1980) pp 38-44
22. Mochida, Isaọ, Keiko Maeda, and Kenjiro Takeshita. Structure of Anisotropic Spheres Obtained in the Course of Needle Coke Formation. Carbon. Volume 15 (1977) pp 17-23.
23. Lacheisserie, Etienne de. Magnetisme. Effet de forme non uniforme en magnetostriction. C. R. Acad. Sc. Paris t. 268 (June 30, 1969) PD 1696-1699. Transmitted by M. Louis Neel.
24. Ruck, George T. Donald E. Fiarrick William D. Stuart, and Clarence K. Krichbaum. Kadar Cross Section Handbook. Volume 1 New York: Plenum Press(1970)
25. Sanchez, Richard. Integral Form of the Equation of Transfer for a Homogeneous Sphere with Linearly Anisotropic Scattering. Transport Theory and Statistical Physics 15 (3) (1986) pp 333-343.
26. Sheehan, J. P. and L. Debnath. Forced Vibrations of an Anisotropic Elastic Sphere. Archives of Mechanics 24 (1972) pp 117-125.
27. Stein, Richard S. and Marion E. Rhodes. Photographic Light Scattering by Polyethylene Films. Journal of Applied Physics. Volume 31, Number 11 (November, 1960) pp 1873-1884.
28. Stein, Richard S. and Robert Prud'tomme. Origin of Polyethylene Transparency. Polymer Letters Volume 9 (1971) Pp 595-598.
29. Stevens, G. L. Radiative Transfer on a Linear Lattice: Application to Anisotropic Crystal Clouds. Journal of Atmospheric Science 37 (1980) pp 2095-2104.
30. Stewart B. W. Conformally Flat Anisotropic Spheres in General Relativity. J. Physics A. Math. Gen. 15 (1982) pp 2419-2427.
31. Treves, F. Linear Partial Differential Equations with Constant Coefficients. New York: Gordon and Breach (1966).
32. Van de Hulst, H. C. Light Scattering by Small Particles. New York: Dover Publications(1981).
33. Wang, R. T. and J. M. Greenberg. Scattering by Spheres with nonisotropic refractive indices. Applied Optics 15 (1976) p
1212 .
34. Wolff, Ingo. A Generalized Description of the Spherical Three Layer Resonator with an Anisotropic Dielectric Material. LEEE MTT-S Digest (1987) pp 307-310.

CHIRAL PARTICLES

Shermila Brito Singham
Life Sciences Division, Los Alamos Nacional Laboratory, Los Alamos, New Mexico 87545.

RECENT PUBLICATIONS AND SCBMITTALS FOR PUBLICATION:
A) S.B. Singham and G.C. Salzman, "Evaluation of the Scattering Matrix of an Arbitrary Particle using the Coupled Dipole Approximation", J. Chem. Phys. 84, 2658-266\% (1986).
B) S.B. Singhatn, C.W. Patterson and G.C. Salzman, "Polarizabilities for Light Scatzering from Chiral Particles", J. Chem. Phys. 85, 763-770 (1986).
C) M.K. Singham, S.B. Singham and G.C. Salzman, "The Scattering Matrix for Randomly Oriented Particles", J. Chem. Phys. 85, 3807-3815 (1986).
D) S.B. Singham, "Intrinsic Optical Activity in Light Scattering from an Arbitrary Particle", Chem. Phys. Lett. 130, 139.144 (1986).
E) S.B. Singham and C.F. Bohren, "Light Scattering by an Arbitrary Particle: a Physical Reformulation of the Coupled Dipole Method", Opt. Lett. 12, 10-12 (1987).
F) S.B. Singham, "Form and Intrinsic Optical Activity in Light Scatcering by Chiral Particles". J. Chem. Phys. 87, 1873-1881 (198/).
G) S.B. Singham, "Coupled Dipoles in Light Scattering by Randomly Oriented Chiral Particles", submitted to J. Chem. Phys.

Abstract

The use of coupled dipoles in modelling light scattering by oriented and randomly dispersed chiral particles is examined in this paper. The chirality considered here is form chirality which results from macroscopic structural mirror asymnetry in the particle. For a chiral particle described by spherical dipoles, it is shown that large magnitude terms that contribute the the chiral matrix elements of an oriented particle do not contribute at all in the orientation average. This result will be used in future work to obtaln a more efficient method of evaluating light scattering by randomly dispersed chiral particles.

The coupled dipole method is known to be a good approximate technique for evaluating ligh: scattering by arbitrarily shaped particles. In chis method, an arbitrary particle is subdivided into units where each unit is small compared with the wavelength of light. Each unit is then assumed to behave like a spherical dipolar oscillator with its polarizability specified
by its dimensio: and the bulk dielectric constant of the particle. The fields at the dipoles are determined by the incident field and interactions among all the dipoles in the collection. These resultant fields are obtained by solving, self-consistencly, a set of linear, coupled equations and retardation effects are taken fully into account. The scattered fleld at the detector is then evaluated by summing the fields scatered by the dipolar oscillators.

For a set of N optically inactive difoles, the field E_{i} at an oscillator i is determined by the incident field ($E^{\circ} e^{i \underline{k} \cdot \underline{I}_{i}}$) as well as by the scattered fields from the other dipolar oscillators, i.e.,

$$
\begin{equation*}
\underline{E}_{i}-\underline{E}^{0} e^{i \underline{k} \cdot r_{i}}+\sum_{i \sim j}^{N}\left[a_{i j} \hat{\alpha}_{j} E_{j}+b_{i j}\left(\hat{a}_{j} E_{j} \cdot \underline{n}_{j i}\right) \underline{n}_{j i} j\right. \tag{1}
\end{equation*}
$$

where $a_{i j}=\frac{e^{i k r_{i j}}}{r_{i j}}\left(h^{2} \cdot \frac{1}{r_{i j}^{2}}+\frac{i k}{r_{i j}}\right)$
ard $b_{i j}-\frac{i_{i}}{r_{i j}}\left(\frac{3}{r_{i j}{ }^{2}} \cdot k^{2} \cdot \frac{3 i k}{r_{i j}}\right)$
k is the wavenumber of the radiation, $r_{i j}$ is the distance and \underline{n}_{j} the unil vector from j to: The explicit sime dependence of the fields is omitted and only elastic light scattering is considered. Retardation effects are completely accounted for in this model. The electric dipole moment is given by $A_{j}=\hat{a}_{j} E_{j}$, where E_{j} is the field at the scattering center and $\hat{\alpha}_{j}$ is, in general, a compiex puiarizajility tensor. If the dipolar inits aze gaken to be sphericai, the rolarizabilizy of each unit (α) is a scalar.

The scattered field at the detector $\left(E_{d}\right)$ is the sum of the amplitudes of the far-fieic contributions from the N spherical dipoles. : e..

$$
\begin{equation*}
\left.\underline{E}_{d}-\frac{k^{2} e^{i k r_{d}}}{r_{d}} i \hat{l} \cdot \underline{n}_{d} \underline{D}_{d}\right) a \sum_{j}^{N} e^{-i k \underline{n}_{d} \cdot \underline{r}_{j}} E_{j} \tag{2}
\end{equation*}
$$

where r_{d} is the distance and D_{d} the unit direction of the detector from the origin. The amplitude scatiering matrix elements ${ }^{2}$ of the particle can be
obtained by determining E_{d} for two orthogonal polarizations of the incident light. The incident light propagates in the positive z direction and the $x z$ plane is chosen to be the scattering plane; the amplitude scattering matrix elements can be obtained from

$$
\begin{array}{ll}
s_{1}-C E_{y}^{y}, & s_{2}-C\left[E_{x}^{x} \cos \theta \cdot E_{z}^{x} \sin y\right], \\
s_{3}-C\left[E_{x}^{y} \cos \theta \cdot\left[\sum_{z}^{y} \sin \theta\right],\right. & s_{4}-C E_{y}^{x}
\end{array}
$$

where, $C=\frac{-i k r}{e^{i k(r-z)}}$, and θ is the scattering angle. The scattered field components of E_{d} along the x, y and z axes are specified by $E_{x, y, z}$ and the superscript refers to the incident light which is linearly polarized in the x or y directions

The elements of the 4×4 scattering matrix ${ }^{2}$ are obtained by linear combinations of products of the amplitude scatering matrix elements. The products

$$
\begin{align*}
& \operatorname{Re}\left[\left(s_{2}-s_{1}\right)\left(s_{3}^{\star}-s_{4}^{\star}\right)\right\}-s_{13}-s_{31} \\
& \operatorname{Im}\left\{\left(s_{2}-s_{1}\right)\left(s_{3}^{\star}-s_{4}^{\star}\right)\right\}-s_{24}+s_{42} \\
& \operatorname{Re}\left[\left(s_{2}+s_{1}\right)\left(s_{3}^{\star}-s_{4}^{\star}\right)\right]-s_{23} \cdot s_{32} \\
& \operatorname{Im}\left\{\left(s_{2}+s_{1}\right)\left(s_{3}^{\star}-s_{4}^{\star}\right)\right]-s_{14}+s_{41} \tag{4}
\end{align*}
$$

contain only the 2×2 off-block-diagonal matrix elements which are sensitive to chirality and will be referred to as chiral matrix elements. For a collection of rardomly oriented particles, these products become $2 S_{13}\left(-2 S_{31}\right)$. $2 \mathrm{~S}_{24}\left(-2 \mathrm{~S}_{42}\right), 2 \mathrm{~S}_{23}\left(--2 \mathrm{~S}_{32}\right)$ and $2 \mathrm{~S}_{14}\left(-2 \mathrm{~S}_{41}\right)^{2}$

We write equation (1) in the form
where E_{i}^{o} is the incident field at dipole $1\left(-E^{o} e^{i k \cdot I_{i}}\right)$. E_{j}^{i} is the field at 1 due to interactions (to all orders) with only the $j^{\text {th }}$ dipole, $E_{j k}^{i}$ is the
field at i due to interactions involving both the $j^{\text {th }}$ and $k^{\text {th }}$ dipoles and the other fields in the series are similarly defined. The summations are over the total number of dipoles. i.e., N. In this series, the field at a given dipole is determined by the incident field and the fields due to many center interactions with the other dipoles which are used to describe the particle. Equation (5) is a finite series in which the last term is a summation over the field at 1 due to interactions with the remaining (N-1) dipoles. As the interactions are retained to all orders, equation (5) is simply equation (1) with the interaction fields specified in terms of the dipolar centers involved.

The scattered field at the detector can also be witten in terms of a series over many center terms and the product $\left(S_{2} \cdot S_{1}\right)\left(S_{3}^{*}-S_{4}^{*}\right)$ can then be written as
with $E^{i}-e^{-i k I_{d} \cdot I_{i}} e^{i k z} i(\cos \theta-1)$

$$
E_{j}^{i a}=e^{-i k g_{d} \cdot I_{i}}\left\{E_{j x}^{i x} \cos \theta \cdot E_{j z}^{i x} \sin \theta \cdot E_{j y}^{i y}\right\}
$$

and $E_{j k}^{i a}, E_{j k}^{i b}, \ldots$ defined similarly. The other product $\left(S_{2}+S_{1}\right)\left(S_{3}^{\star} \cdot S_{4}^{\star}\right)$ is given by a similar series with a $\dot{\text { ifferent }}$ linear combination for the E^{i} and $E^{\text {ia }}$ terms. $i . e$.

$$
\begin{align*}
& +\underset{\substack{i j k \ell \\
i \sim j k A \ell}}{\sum} E_{j}^{i a} E_{\ell}^{k b}+\underset{\substack{i j k \ell m \\
k \neq \ell \sim m \\
i \sim j \ell<m}}{\sum} E_{j}^{i a} E_{\ell m}^{k b}+\cdots \tag{6}
\end{align*}
$$

$$
\begin{align*}
& E^{i}=e^{-i k D_{d} \cdot \Sigma_{i}} e^{i k z_{i}}(\cos \theta+1) \\
& E_{j}^{i a}=e^{-i k D_{d} \cdot I_{i}}\left[E_{j x}^{i x} \cos \theta \cdot E_{j z}^{i x} \sin \theta+E_{j y}^{i y}\right] \tag{8}
\end{align*}
$$

and so on.
For a collection of randomly oriented particles, the orientation averages of the products $\left(S_{2}-S_{1}\right)\left(S_{3}^{*} \cdot S_{4}^{*}\right)$ and $\left(S_{2}+S_{1}\right)\left(S_{3}^{*}-S_{4}^{*}\right)$ are required These averages are zero unless the particle is chiral. The orientation averages are obtained by numerically summing the magnitudes of the products over a large number of orientations until convergence is reached or, equivalently, by using an analy=ic averaging method.

The orientacion average of $\left(S_{2} \cdot S_{1}\right)\left(S_{3}^{*} \cdot S_{4}^{*}\right)$ can also be obtained from the sum of the orientation averages of the field products in the series givert in equation (6). That is, the average can be obtained by summing the integrais over all space of each of the field products $E^{1} E_{k}^{j b}, E^{1} E_{k \ell}^{j b}$, etc.. in equation (6). Some of these field products become denticallyzero when integrated over all spa:e. This is found to be the case for those products which derive from dipolar centers which do not form a chiral struc-ure.

The first term in the series in equation (6), $E^{i} E_{k}^{j b}$, is derived from fields involving at most three dipolar centers. For a given orientation of the structure described by the three dipoles, its mirror image in the scattering plane exists if all possible orientations of the particle are allowed, i.e., the particle can be rotated to another orientation such that the three dipoles now form the mirror image of the original three dipole structure. This is always possible when the subunits are not optically active. The y coordinates of the three dipoles ciange sign while the x and z coordinates are unchanged in the mirror image in the acattering plane ($x z$). The term $e^{-i k D_{d} \cdot I_{i}}$ is unchanged on reflection in the scattering plane because n_{d} lies in this plane; E^{i} is then the seme for the original and reicected
structures. The field $E_{j}^{i a}$ is also unchanged on reflection in the scattering plane because $E_{j x}^{i x}, E_{j z}^{i x}$ and $E_{j y}^{i y}$ are unaffected on changing the sign of the y axis. However, $E_{j}^{i b}$ changes sign on reflection because $E_{j x}^{i y}, E_{j z}^{i y}$ and $E_{j y}^{i x}$ change sign with reflection of i, j, k in the $x 2$ plane. The product $E^{i} \varepsilon_{k}^{j b}$ then has opposite signs for a pair of mirror symmetric structures and gucs to sciu ni:en it is averagad over all space because the mirror symmetric pair exists in the orientation average.

The products $E^{i} E_{k i}^{j h}$ and $E_{j}^{i a_{i}} E_{\hat{\chi}}^{k b}$ involve two, three or four dipolar centers The terms involving two or three dipolar certers will again average to zero because the mirror images of the structures in the scattering plane exist in the orientation average. The products involving four dipclar centers will also average to aero if the four dipoles do not form a chiral structure However, if the four dipoies do form a chiral arrangement, the mirror image of the structure is not present in the orientation average and the field products will be non-zero when averaged over all space. For the same reasons, all other field products in the series described i:l equation (6) will also average to zero unless the dipolar centers involved in the products form a chiral structure. The same result is true for $\left(S_{2}+S_{1}\right)\left(S_{3}^{*}-S_{4}^{*}\right)$ because the same symnetry considerations hold and the only difference is that E^{i} and the $E^{i a}$ terms ale differert linear combinations from those in ($\left.s_{2}-s_{i}\right)\left(S_{3}^{*} \cdot S_{i}^{*}\right)$.

The large difference in the mapritudes of the 2×2 off-biock-diagonal matrix elements for oriented and orieniationally averaged chiral structures is now evident. Many of the field products which contribute to the matrix elements of the oriented structure, do not contribute at all in the orientation average. In particular, the leading, term in the series given in equation (6) is of large magnitude and expected tor be a major component of the 2×2 off-block-diagonal matrix elements of oriented particles and this term

$$
\begin{align*}
& \left.E^{i}=e^{-i k g_{d} \cdot E_{i}} e^{i k z_{i}(\cos \theta}+1\right) \\
& E_{j}^{i a}-e^{-i k D_{d} \cdot E_{i}\left[E_{j x}^{i x} \cos \theta \cdot E_{j z}^{i x} \sin \theta+E_{j y}^{i y}\right]} \tag{8}
\end{align*}
$$

and so on.
For a collection of randomly oriented particles, the orientation averages or the products $\left(S_{2}-S_{1}\right)\left(S_{3}^{*}-S_{4}^{*}\right)$ and $\left(S_{2}+S_{1}\right)\left(S_{3}^{*}-S_{4}^{*}\right)$ are required. These averages are zero unless the particle is chiral. The orientation averages are obtained by numerically summing the magnitudes of the products over a large number of orientations until convergence is reached or, eouivalently, by using an analytic averaging method.

The orientation average of $\left(S_{2}-S_{1}\right)\left(S_{3}^{\star}-S_{4}^{*}\right)$ can also be obtained from the sum of the orientation averages of the field products in the series given in equation (6). That is, the average can be obtained by summing the Integrals over all space of each of the fleld products $E^{i} E_{k}^{j b}, E^{i} E_{k \ell}^{j b}$, etc.. In equation (6). Some of these field pr-ducts become identically zere when integrated over all space. This is found to be the case for those products which derive from dipolar centers which do not form a chiral structure

The first term in the series in equation (6), $E^{i} E_{k}^{j b}$, is derived from fields involving at most three dipolar centers. For a given orientation of the structure described by the three dipoles, its mirror image in the scattering piane exists if ali possible orientations of the particle are allowed, i.e., the particle can be rotated to another orientation such that the three dipoles now form the mirror image of the original three dipole structure. This is always possible when the subunits are not optically active. The y coordinates of the three dipoles change sign while the x and z coordinates are unchanged in the mirror image in the scattering plane ($x z$). The term $e^{-1 k D_{d} \cdot \Sigma_{1}}$ is unchanged on reflection in the scattering plane because n_{d} lies in this plane: E^{i} is then the same for the original and reflected
goes to zero in the orientation average
In order to illustrate this difference in criented and orientationally averaged scattering, we describe a model calculation for a simple chiral structure. Four spherical dipoles whicn folu: a chiral structure are chosen as a model and the dipoles form one third of a turn of a helix with a radius of luU nm and a pltch of 200 nm . The (x, y, z) coordinates of the four dipoles in the orlented structure are $(100,0,0),(86.6,50,16.67),(50,86.6,33.33)$ and $(0,100,50)$ and the polarizability of each dipole is $3 \times 10^{3} \mathrm{~nm}^{3}$. The incident light has a wavelength of 600 nm and is propagating along the positive z direction.

The fields corresponding to interactions among specific dipolar centers were evaluated by obtainin? the self-consistently coupled fields for each group of dipoles. Thus, the field at dipole i due to j was obrained by evaluating the final field at i in the 'particle' described by i and j and subtracting the incident fieldat (i.e., E_{i}°). In a similar manner, the field at 1 due to all interactions with J and k was obtained by finding the final field at i from the self-consistent solution for interactions with \mathcal{I} and k and subtracting tine incident field at i and the fields at i due to two center interactions with j and two center interactions with k. The fields due to four center interactions were obtained similarly

Figures 1 and 2 show the angular distributions of the real and imaginary parts of $\left(S_{2} \pm S_{1}\right)\left(S_{3}^{*} \cdot S_{4}^{*}\right)$ for the oriented particle composed of four spherical dipolar units. The solid lines are the total calculated values of the chiral matrix elements while the dashed lines are two and three center field products and the chain-dashed lines are the four center field products From the results, It is evident that the two and three center field products dominete and that the four center terms are an extremely small component at
most angles of the angular dis:ributions for the oriented farticle.
The cancellation of the field products that do not contribute to the orientation averages of the chiral matrix elements is a source of the slow convergence that has been observed for these elements when calculated by summing the magnitudes over a large number of orientations. The chiral matrix elements when calculated this way are contained as small differences between large magnitude field products. When the orientation averages of the chiral matrix elements for a simple model were calculated using only the field products that survive the averaging, convergence was rapidly achieved. If this feature, i.e., retention of only the field products that contribite to the average, can be efficiently incorporated into an orientation averaging method for arbitrarily shaped chiral particles, it is probable that the computational difficulties in calculating the chiral matrix elements will be significantly improved.

References

> 1. E.M. Purcell and C.R. Pennypacker, Astrophys. J. 186, 705 (1973).
> 2. C.F. Bohren and D.K. Huffman, dbsorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

Acknowledgements

I am grateful to Dr. Gary Salzman for his encouragement and interest in this work. This work was performed under the auspices of the US Department of Energy and supported in part by the US Army CRDEC.

Elzure.

Angular distributions of two chiral matrix elements of a heifcal structure. A third of a turn of a helix with a radius of 100 nm and a pitch of 200 nm is modelled by four spherical dipoles each with a pularizability of $3 \times 10^{3} \mathrm{~nm}^{3}$ The incident light is in the z direction and has a wavelength of 600 nm . The $x z$ plane is the scattering plane. (a) Solid line angular distribution of the real part of $\left(S_{2}-S_{1}\right)\left(S_{3}^{*} \cdot S_{4}^{*}\right)$ for the oriented particle. Dashed line two and three center field products. Chaln-dashed line - four center products. (b) Solid dine - angular distribution of the imaginary part of $\left(S_{2} \cdot S_{1}\right)\left(S_{3}^{*}-S_{4}^{*}\right)$ for the oriented particle. Rashed line - two and three center field products. Chaln-dashed line - four center field products

Elqure 2.

Two chiral matrix elements for the helical particle described in the caption for figure 1. (a) Soldd line angular distribution of the real part of $\left(S_{2}+S_{1}\right)\left(S_{3}^{*} \cdot S_{4}^{*}\right)$ for the oriented particle. Dashed ine two and three center field products. Chein-deshed dine. four center field products. (b) Solid line angular distribution of the imaginary part of $\left(S_{2}+S_{1}\right)\left(S_{3}^{*}-S_{4}^{\star}\right)$ for the oriented particle. Dashed dine - two and three center field products. Cheln-dashed line - four center field products.

EXPERIMENTAL TEST OF A TIME-DEPENDENT INVERSE SCATTERING ALGORITHM

R.A. Elliot
Department of Applied Physics and Electrical Engineering Oregon Graduate Center
19600 N.W. Von Neumann Drive
Beaverton, Oregon 97006-1999
AND
T. Duracz and N.J. McCormick
Department of nuclear Engineering
UNIVERSITY OF WASHINGTON
SEATtLE, Washington 98195

RECENT PUBLICATIONS AND SUBMITTALS:
A) R.A. Elliott, T. Duracz, N.J. McCormick and D.R. Emmons, "Experimental Test of a Time-Dependent Inverse Radiative Transfer Algorithm for Estimating Scattering Paraneters," J. Opt. Soc. Am. A (to be published).
B) T. Duracz and N.J. McCormick, "Numerical Study of the Time-Dependent Radiative Transfer Inverse Problem," J, Opt. Soc. Am, A. 4 (October 1987).

Abstract

Experimental and numerical simulation tests have been performed on an inverse radiative transfer algorithm designed to estimate the Legendre moments of the single scatter phase function. Measurements of the time-resolved backscattered radiance from a plane geometry "semi-infinite" medium consisting of suspensions of nonabsorbing or weakly absorbing spheres were used in the inversion algorithm.. It has proven possible, even in the presence of experimental noise, to estimate the single scatter albedo with a relative error of $<1 \%$. Estimates of the asymmetry factor have been found to be less accurate ($<12 \%$), and estimating higher moments appears to be impractical. Similar experiments on more highly absorbing spheres are planned.

INTRODUCTION

The general objective of this research program is to infer the fraction of energy absorption and the angular scattering pattern for a multiple scattering (optically very thick) target illuminated by a pulsed laser. The algorithm used is based on the radiative transfer equation and requires only the backscattered radiance at asymptotically long times, i.e., many collision times after the pulse. Potential applications of this work include the ability to remotely determine the scattering properties of aerosols, clouds, and smokes so that the
effects of multiple scattering on the operation of optical systerns in a low visibility atmosphere can be predicted. The specific objectives of the project are to estimate the albedo of single scattering f_{0} and as many of the coefficiente $f_{n}, n \geq 1$, as possible of a Legendre polynomial expansion of the angle-dependent single-interaction scattering function

$$
\begin{equation*}
p\left(\mathbf{\Omega}^{\prime} \cdot \mathbf{\Omega}\right)=(4 \pi)^{-1} \sum_{n=0}^{\infty} f_{n} P_{n}\left(\mathbf{\Omega}^{\prime} \cdot \Omega\right) . \tag{1}
\end{equation*}
$$

The albedo, f_{0}, and the asymmetry factor, $g=f_{2} / f_{0}$, are of special interest.

THE INVERSION ALGORITHM

The time-dependent inverse radiative transfer algorithm ${ }^{1-4}$ is based on the use of Fourier azimuthal moments $B^{m}(\mu, t)$ of the radiance backscattered from a plane geometry semi-infinite medium. These moments are calculated from the surface backscattered radiance $B(\mu, \phi, t)$ using

$$
\begin{equation*}
B^{m}(\mu, t)=\left\{\left.\pi\left(1+\delta_{m 0}\right)\right|^{-1} \int_{0}^{2 \pi} d \phi R(\mu, \phi, t) \cos m \phi\right. \tag{2}
\end{equation*}
$$

where μ is the cosine of the polar angle measured from the outward surface normal and ϕ is the azimuthal angle in the plane of the surface, as measured from the direction cpposite to the incident illumination. Long after the incident pulse centered about time $t=0$, the Fourier backscatter moments asymptotically decay according to

$$
\begin{equation*}
B^{m}(\mu, t) \cong C^{m}(\mu)-\frac{1}{2} \exp \left|-v\left(1-f_{m}\right) t\right| \tag{3}
\end{equation*}
$$

where v is the inverse of the mean time be ween photon collisions with the scattering centers.

Although the f_{m} can be extracted from Eq. (3) by differentiation of the data in the asymptotic regime, ${ }^{2.3}$ a least squares curve fitting procedure is preferable for experimental data. In this procedure, the coefficients can be estimated using the equation ${ }^{4}$

$$
\begin{equation*}
v\left(\mathrm{i}-f_{m}\right)=\frac{<t><\ln \left[\left.t^{\frac{1}{3}} B^{m}(\mu, t)|>-<t \ln | t^{\frac{1}{2}} B^{m}(\mu, t) \right\rvert\,>\right.}{\left\langle t^{2}\right\rangle-<t>^{2}} \tag{4}
\end{equation*}
$$

where $<f(t)>$ is the average of N values of $f(t)$ for N time points $t_{i}, i=1$ to N, if a linear logarithmic curve fitting is used. An exact exponential curve fitting is employed in this paper for which the value given by Eq. (4) has been shown to be a good approximation. ${ }^{4}$

THE EXPERIMENT

An experimental setup designed to validate the inversion algorithm is illustrated in Fig. 1. A frequency doubled, passively mode-locked, Nd:YAG laser is used to produce 532 $n \mathrm{~m}$ light pulses of about 35 psec duration and $50 \mu J$ energy. A $\lambda / 4$ waveplate converts the linearly polarized laser beam to circular polarization and the beam is expanded to 3.1 cm
diameter (e^{-1} intensity) by lenses $L 1$ and $L 2$ before being directed into the scattcing ceil at an angle θ_{0} to the normal to the entrance window. The scattering cell, a 15 cm diameter by 15 cm blackened glass cylinder with an $A R$ coated window on one end and a black anodized aluminum plate on the other, is intended to simulate a semi-infinite medium. The mirrors $M 1$ and $M 2$, aperture, and lens $L 3$ collect the light scattering in the direction (θ, ϕ) and direct it to the streak camera which records the temporal variation of the backscattered radiance with a time resolution of less than 20 psec . The azimuthal angle, ϕ, can be varied throughout the range 0° to $360^{\circ}, 0^{\circ}$ being in the forward direction of the incident beam. Beam splitters and a variable delay line are used to obtain a reference light pulse needed for precise time registry and amplitude normalization. Figure 2 is a typical example of an intensity vs time record constructed from the digitized data provided by the streak camera. The record shows the reference pulse on the left and the backscattered radiance on the right. The unit of time is a "channel," i.e., the streak camera sampling interval; each channel has a width of 4.31 psec at the sweep speed used throughout these experiments.

Scattering experiments have been performed on systems of both nonabsorbing latex spheres and weakly absorbing polymer dynospheres as detailed in Table I. The time resolved backscattered radiance was measured for azimuthal angles of $\phi=0^{\circ},=45^{\circ}, \pm 90^{\circ}$, and $\pm 135^{\circ}$ at a polar angle of 21° in water corresponding to 28° in air. The polar angle of the incident beam was fixed at 36° in water, corresponding to 52° in air.

An average of 10 individual pulses in each measurement direction was used to reduce the effects of rardom fluctuations in the experimental data. Additional measurements were made for all cases with the scattering cell replaced by a white plane paper card at the same location as the surface of the scattering medium in order to locate in time the incident pulses with respect to the backscattered radiance.

RESULTS OF THE EXPERIMENT

Data obtained from the experiments were processed to produce moments for $m=0$ and $m=1$. Figures 3 and 4 are typical examples of the time evolution of these moments. The moments were subsequently used in the inversion algorithm to give the results in Tables II and III.

CONCLUSIONS

The method offers a viable technique of determining the single scatter albedo, at least for weak absorbers, since even in the presence of experimental noise it was possible to determine its value with a relative error of less than 1%. However the degree of anisotropy of the scattering kernel can in most cases only be roughly estimated. For very small spheres (Case A), where the scattering is almost isotropic, no estimate could be made. For larger spheres with more anisotropic scattering, relative errors of 5% (Case B), 0.4% (Case C), and 12% (Case C^{*}) were obtained.

ACKNOWLEDGMENT

This work was supported by the U.S. Army Research Office and the San Diego S_{u} percomputer Center.

References

1. N.J. McCormick, "Remote characterization of a thick slab target with a pulsed laser," J. Opt. Soc. Am. 72, 756-759 (1982).
2. K.K. Hunt and N.J. McCormick, "Numerical test of an inverse method for estimating single-scattering parameters from pulsed multiple-scattering experiments," J. Opt. Suc. Am. A 2, 1965-1971 (1985).
3. T. Duracz and N.J. McCormick, " Analytical er:or estimates for the time-dependent radiative transfer inverse problem," J. Opt. Soc. Am. A 3, 1871-1875 (1986).
4. T. Duracz and N.J. McCormick, ${ }^{n}$ Numerical study of the time-dependent radiative transfer inverse prohlem," J. Opt. Soc. Am. A 4, (to be published).

TABLE I

TEST SCATTERING SYSTEMS

Case	Particle Type	Diameter	Scattering Length
A	latex sphere	$0.091 \mu \mathrm{~m}$	1.21 mm
B	latex sphere	$0.482 \mu \mathrm{~m}$	1.00 mm
C	dynosphere	$1.900 \mu \mathrm{~m}$	0.92 mm

" polymer doped with Rhodamine B

TABLE II
ALBEDO, f_{0}

Case	Mie Calculation	Num. Simulation	Experiment
A	1.0000	1.0020	1.0025
B	1.0000	1.0085	0.9991
C	0.9993	$* *$	0.3976
C	0.9993	$*$	0.9949

- measurements made at 24 azimuthai angies
-" not calculated

TABLE III
ASYMMETRY FACTOR, f_{1}

Case	Mie Calculation	Num. Simulation	Experiment
A	0.0889	0.1424	\ldots
B	0.8497	0.8638	0.8923
C	0.8964	\cdots	0.9002
C.	0.8964	\cdots	0.7957

- measurements made at 24 azimuthal angles
* not calculated
" not determined because no asymptotic region was found

FIGURE 1

OPTICAL SYSTEM FOR TIME RESOLVED BACKSCATTER MEASUREMENTS

FIGURE 2
MEASURED BACKSCATTERED RADIANCE

TIME (CHANNEL NUMBER)

FIGURE 3

ZEROTH FOURIER MOMENT (CASE B)

FIGURE 4

FIRST FOURIER MOMENT (CASE C*)

BaCKSCATTERING ENHANCEMENT OF WAVES IN RANDOM MEDIA

V.K. Varndan, V.V. Varadan and Y. Ma
Research Censer for the Engineering of Electronic and Acoustic Maverials
Deparment of Envineering Sciance and Mechanics
The Pevrryluania Stare University University Park. PA 16802

RECENT SUBMITTALS FOR PUBLICATION AND PRESENTATIONS:

A) V.V. Varadan, V.K. Varadan and Y. Ma, "Multiple scalleriog of waves in random media containing coaspherical scattererz," presented al the Electromagoetic Wave Propagation Panel Symposium apodsored by AGARD, NATO, Italy, April 1987.
B) V.V. Veradac, Y. Ma and V.V. Varedan, "Scatcered iolensity of a wave propagatiog in a discrete random medium," submitted to Applied Optics, Augusi 1987.
C) V.K. Varadan, Y. Ma aod V.V. Varedan, "Enhanced backscallering of optical waves due to deasely distributed scatteren," submitted to SPIE's 1988 techaical Symposium Southeast on Optica, Electro-Optics, and Sensors.

ABSTRACT

Kecently, an interesting phenomeoon haz been reported as a result of aceies of optical backsatiering experiments conducted usiog collimated light sources (lasers). A locally high intensity maximum has been observed in the rage of $\pi-\varepsilon<\theta<\pi+\varepsilon$ where ε is of the order of milliradians and $\theta=\pi$ is the backsallering direction. Albeit similar phenomede found in backicattering from various random media, e.g., scattering of electrons by impurities in metals and light scatuering from random rough surfaces, this is the firat observation of enhanced backscatleriog from suapensions.

In this paper, based on multiple scauering theory, we use the improved two acatlerers T matrix program, which takes all back and forth acattering into accound between two scatlerers and considera the multiple scattering effect, in the inteosity calculation. The widths and magoltudes of the beckacatuered intensity peak of our computations compare favorably with those of optical experimente.

INTRODLCTION

Beckacauctiog eahancement or similar phenomena have been observed in various backicallering experimeats, for example, the Aoderson localization from scattering of electrons by impurities In metals (Abrahami et al., 1979 ; Bergmann, 1984], sciatillation to turbuleat mediat [Yeh et al., 1975; Rino et al., 1982] and speckling from light scattering by rendom rough surfaces [Dainty, 1984; Hecht, 1986]. And generally speaking, the eahanced bsckicatering can happen when (i) waves ecattered by turbulent media - contiouous random media (e.g., atonotphere); (li) waves scatlered by a collection of randomly distributed scatlerers with high concentration; (iii) waves scattered by moving scatlerers of by scatlerers haviog Browaiso motion; (iv) waves scatcered by scallerers (moviog or atathonary) la a turbulent medium ; (v) waves scatlered from random rough surfaces; (vi) waves scaticred by scatterera in froat of a rough
boundary.
The reason for this is partly that athough waves are travelling in random media, the propagation of waves in such media (cases (i) - (vi)) is accompanied by multiple scatlering as well as secific coherent effects and the eahancemeat is caused by positive iaterference of all the scattered waves. The recently observed enhanced backeattering phenomenon from dense suspensions appears to be the similar result which cannot be explained by radiative-tranafer theory. Albeit the cyclic diagram in conjunction with point scaterer approximation introducce in multiple scattering theory to explain the enhanced backscattering [Tsang and Ishimaru, 1985]. however, the expefimeotal observations all deal with scatterer's size large compared with the incident waveleogth (Kuga and lshimaru, 1983; Albada and Lagendijk, 1985; Wolf and Maret 1985)., and therefore a decailed computation based on anisotropic sattering. for finite size scatterers is essential. In addition, the back and forth scattering between pair of scatterers, which has been neglected in the ladder approximation, may have major contribution toward backacattering rather than in the forward direction mentioned in one previous paper [Bringi et al., 1980] conuthored with us.

In this paper, bsed on multiple scattering theory, we use the improved two scatterers T matrix program, which Lakes all back and forth scattering into account between two teaticrers and coosiders the multiple scattering effech in the fotensity calculation. The widths ad magnitudes of the backscattered intensity peak of our computations compare favorably with those of oplical experiments.

LNCOHERENT INTENSTTY FORMULATION

The detailed derivations and Inverractiate steps in obtiaing the final expression for iotensity can be referred w our paper (Varadio et al. 1987). The average incohereat intensity < I > can be oblained as follows

$$
\begin{align*}
&<\|>\quad \Delta_{0} \int<\left|u_{j}\right|^{2}>_{j} d r_{j} \\
&+n_{0}^{2} \iint<u_{k} u_{j}>_{j k} g\left(r_{j k}\right) d r_{k} d r_{j} \\
&-n_{0}^{2} \iint<u_{k}>_{k}<u_{j}>_{j} d r_{k} d r_{j} \tag{1}
\end{align*}
$$

 conditional configuration averages holding the positions of the j-th and both the j-th and k-th scatterers fixed, respectively, and $g\left(r_{j k}\right)$ the radial distribution function for spherical scatterers. Equation (t) is an exact expression for the incoherent intensity $\langle 1\rangle$

In order to perforio the computation, we oeed to make approximntions for the expression of $\left.\langle | u_{j}\right|^{2}>{ }_{j}$ and $<u_{k} u_{j}>_{j}$, which are both unknown, in terms of the effective exciting field < $u_{k}>_{k}$ which is knowo (Veradan et al, 1985). By neglecting higher order statiatics and consideriog only the two particle pair correlation function [Varadan el al., 1987], we can oblein

$$
\begin{aligned}
& \langle I\rangle=\quad n_{0} \Sigma \int\left|\Psi^{j} T^{j}<\alpha^{j}\right\rangle_{j} \|\left(\Psi^{j} T^{j}<\alpha^{j}\right\rangle_{j} l^{0} d r_{j} \\
& +o_{0}^{2} \Sigma \|\left(\Psi^{j} T^{j} \sigma_{j k} T^{\mathbf{k}}<\alpha^{k}>{ }_{k} \|\left(\Psi^{j} T^{j} \sigma_{j k} T^{k}<\alpha^{\mathbf{k}}>_{k} \|^{0}\left(r_{j k}\right) d r_{j} d r_{k}\right.\right. \\
& +n_{0}^{3} \Sigma \int \|\left[\Psi^{j} T^{j} \sigma_{j k} T^{k} \sigma_{k m} T^{m}<\alpha^{m}>_{m}\right] \times \\
& \times\left|\Psi^{j} T^{j} \sigma_{j k} T^{\mathbf{k}} \sigma_{k m} T^{m}<\alpha^{m}>_{m}\right|^{0} g\left(r_{j k}\right) g\left(r_{\mathbf{k m}}\right) d r_{j} d r_{k} d r_{m}
\end{aligned}
$$

+... (ladder diagrams)

$$
\begin{align*}
& +0_{0}^{2} \Sigma \| f\left(\Psi^{k} T^{k}<\alpha^{k}>_{k} \| \Psi^{j} T^{j}<\alpha^{j}>\right\rangle_{j}\left[g\left(r_{j x}\right)-1\right] d r_{j} d r_{k} \\
& +n_{o}^{2} \Sigma \|\left[\Psi^{k} T^{k} \sigma_{k j} T^{j}<\alpha^{j}>_{j} \|\left(\Psi^{j} T^{j} \sigma_{j k} T^{k}<\alpha^{k}>_{k}\right)^{*} g\left(r_{j k}\right) d r_{j} d r_{k}\right. \\
& +n_{o}^{2} \Sigma \int \| \Psi^{k} T^{k} \sigma_{k j} T^{j} \sigma_{j k} T^{k}<\alpha^{k}>_{k} \mid x \\
& \times\left|\Psi^{j} T^{j} \sigma_{j \mathbf{k}} T^{\mathbf{k}} \sigma_{\mathbf{k j}} \mathrm{T}^{j}<\alpha^{j}>_{j}\right|^{\bullet} g\left(r_{j \mathbf{k}}\right) d r_{j} d r_{\mathbf{k}} \\
& +\ldots \text { (cyclic diagrams) } \tag{2}
\end{align*}
$$

In Eq. (2) T^{j} is the T - Matrix of the j-th scatterer (Varadan and Varadan, 1980), $\boldsymbol{\Psi}^{\mathbf{k}}$ is the outgoing function (Hankel function) of the \mathbf{k}-th scatterer and $\sigma_{k j}$ the translation operator. Each term of the two series in (2) represents a certain erder of scalliring. For the same order of scallering, the cyclic terms are proportional to a higher power in the number density. Thus at low concentrations cyclic terms contibute less than the ladder terms to the the same order of scattering. Eq. (2) can be represented diagrammatically as follows.
(a) Ladder Diagram

(h) Cyclic Diagram

In fact the 30 called cyclic terms can all be summed if one rcplaces the infinite series in (4) with the T-matrix of a pair of scatiefers which considefs ail the hack and forth scallering between them. The back and forth scatlering between a pair of scatlerers, which has been neglected io the ladder approximation, may have major contribution toward backscatiering rather than in the forward direction mentioned in one previous paper (Bringi et al., 1980] cosuthored with un. Eq. (4) may hence be writlen diagrammatically as

where $T^{j k}$, the two scatlerer T - matrix has the following lorm [Varadan and Varadan, 1981]

$$
\left.T^{j k}=R\left(r_{0}\right) T^{j} \mid 1-\sigma\left(r_{j k}\right) T^{k} \sigma\left(r_{k j}\right) T^{j}\right]^{-1}\left|1+\sigma\left(r_{j k}\right) T^{k} R\left(r_{k j}\right)\right| R\left(-r_{0}\right)
$$

$$
\begin{equation*}
+R\left(r_{0}\right) T^{k}\left[1-\sigma\left(r_{k j}\right) T^{j} \sigma\left(r_{j k}\right) T^{k}\right]^{-1}\left(1+\sigma\left(r_{k j}\right) T^{j} R\left(r_{j k}\right) \mid R\left(-r_{0}\right)\right. \tag{6}
\end{equation*}
$$

In the above expression, $R\left(r_{0}\right)$ is the regular part of the translatign matrix $\sigma\left(r_{0}\right), r_{j k}=r_{j}-r_{k}$ and $r_{0}=\left(r_{j}+r_{k}\right) / 2$.

RESULTS AND DISCUSSION

In geberal, at low concentralions, both the magoitude of scatuered intensity and multiple acatueriag contribution are bot stroag eoough to reach the threshold of the exhancod backscattering. When the eohaoced backscatiering happeas, the width of the intensity peak is proportional ω the imaginary part of the effective wavenumber. In other words, the width is inversely proportional to the mean free path which is getting smaller when the concentration is gelling larger (the average separation distance between two scatterers is gelling smaller). The calculated mean free path length, which compares very well with that of the experiment, and the data used in the intensity calculation are shown ia Table 1.

To perform the calculation, one needs to adopt the cylindrical coordinates instead of the spherical one to match the experimental set-up which briags the complexities in converting the spherical functions to their cylindricai counterperts. Furthermore, in order to compare with the experimental results, especially the magaitude and the width of the inteasity peak, the propar integration limita must be laken care of very carefully. The widths and the magnitudes of the backscatered inteasity peak of our computations compare favorably with those of Albada's experimenta in which the receiver used has very small field of view and, hence, gives a much beller signal resolution (see Fig. 1). However, due to the truncation of the orders of acattering due to the tremendous amount of CPU time required, we did not oblaid a full match.

REFERENCES

E. Abrahams, P.W. Anderson, D.C. Licciardello and T.V. Ramakrishnan, Phys. Rev. Lell. 42, 673 (1979).
E. Akkermans, P.E. Wolf, and R. Maynard. Phys. Rev. Letf. 56, 1471 (1986).
M.P. Van Albada and A. Lagedijk, Phys. Rev. Lell. 35, 2692 (1985).
G. Bergmana, Phys. Rev. 107, 1 (1984).
V.N. Briagi, T.A. Seliga, V.K. Varadan and V.V. Varadan, "Bult propagation characteristics of ditcrele random medis," in Mulliple Scatlering and Waves in Random Media, edited by P.L Chow, W.E. Kohler and G.C. Papanicoleou, North-Holland, 1981.
J.C. Dalnty (ed.), Laser Speckie and Related Phenomena, Sprioger-Verlag, 1984.
Y. Kuga and A. Ishimaru, J. Opt. Soc. Am. A1, 831 (1984).
C.L. Rino, IEEE Trans. Ansennas Propagat. AP.24, 912 (1976).
L. Tisng aud A. Ishimanu, J. Opi. Soc. Am. A2, 1331 (1985).
V.K. Varadad and V.V. Varadan, Eds., Acoustic. Electromagnetic and Elastic Wave Scatiering - Focus on the T

Marrix Approach, Pergamoo Press, New York, 1980.
V.V. Varaden and V.K. Varadin, J. Acoust. Sac Am. 70, 213 (1981).
V.V. Varadan, Y. Ma and V.K. Varadan, J. Opt. Soc. Am. A2, No. 12, 2195 (1985).
V.V. Varadab, Y. Ma and V.V. Varadan, "Scattered intensity of a wave propagating in a discreve random medium" submitud to Applied Oprics, August 1987.
P.E. Wolf and G. Mareh Phys. Rev. Lelf. 55, 2696 (1985).
K.C. Yeh, Radio Sci. 18, 159 (1983).

Table 1. Data used in the calculation [Ref : Albada and Lagendijk, 1985]
Conceatration $n_{0} \quad$ (i) $14.1 \times 10^{16} / \mathrm{m}^{3}$ (corresponding volume fraction $c=0.09587$)
(ii) $\quad 3.48 \times 10^{16} / \mathrm{m}^{3} \quad(\mathrm{c}=0.02366)$
(iii) $\quad 1.49 \times 10^{16} / \mathrm{m}^{3} \quad(\mathrm{c}=0.01013)$

Particle size $\mathrm{d}=1.091 \mu \mathrm{~m}$ (in diameter)
Refractive index o (latex 5100) $=1.6$
Refraclive index o (distilled water) $=1.33$

He-Ne laser wavelength $\lambda=633$ am

Nondimeosional frequency $\mathbf{k d}(2 \pi d / \lambda)=10.8294(\gg 1)$

Calculated_effective $K=K 1+i K 2$
(i) $\quad K_{1} / \mathbf{k}_{w}=1.01266, K_{2} / \mathbf{k}_{w}=0.1514 \times 10^{-1} \quad(c=0.09587)$
(ii) $\quad K_{1} / k_{w}=1.00231, K_{2} / k_{w}=0.3839 \times 10^{-2} \quad(c=0.02366)$
(iii) $\quad K_{1} / \mathbf{k}_{w}=1.00093, K_{2} / \mathbf{k}_{w}=0.1618 \times 10^{-2} \quad(c=0.01013)$

Mean free path (Albada's experiment) $=2.6 \mu \mathrm{~m} \quad\left(\right.$ for $n_{0}=14.1 \times 10^{16} / \mathrm{m}^{3}$)
Caiculated mean free path (from K_{2}) $=2.5 \mu m$

Fig. 1 Backscatlered iatensity: Comparison with oplical experimeat [Albada and Lagendijk, 1985]

ELECTROMAGNETIC ABSORPTION IN A CHIRAL COMPOSITE I.AYER

VUAY K. VARADAN, VASUNDARA V. VARADAN and AKHLESH LAKHTAKIA
Research Censer for the Engineering of Electronic and Acoustic Materials
Deparmens of Engineering Science and Mechanics
The Penarylvania State University
University Park. PA 16802

RECENT PUBLICATIONS, SUBMITTALS FOR PUBLICATION, AND PRESFNTATIONS:

1. A. 'akhtakia, V.V. Varadan and V.K. Varadan, "A parametne study of microwave renection chafacteriatics of a planar achiral-chiral interfaces," IEEE Trans EMC 28. 90 (1986).
2. V.K. Varadao, V.V. Varadan and A. Lakhtakia, On the possinility oi designing anti-reflection coatings using chiral composiles." J. Wave-Mater. Ineract. 2. 71 (1987).
3. V.K. Varadan, A. Lakhtakia and V.V. Varadan, "A comment on the solutions of the equaiton Vxa = ka." J. Phy.r A 20, 2649 (1987).
4. V.K. Varadan, A. Lakhtakia and V.V. Varadan, "Rad:ated preenlials and astes in :satuon:c itital reedia, J Phys. A 20. 000 (1987)
5 V.V. Varadan, A. Lakhtakia and V.K. Varadan, "On the cyutralence of sources and duatity of fields in isotrepic thira: modia," J. Phys. A 20, 000 (:985).

Abstract

The possible use of chiral compusite media for designing coaungs instrumental in refucing EM reflection from metallic surfaces has been investigated. Such coalungs may be fabacated by suspending chiral microgeometries in a dielectuc matrix material. It can be shown that these coatings can significantly cut doun reflections, regardiess of the incident polarization, over a wide frequency range $(50-300 \mathrm{GHz})$ and incidence angles $\left(0^{\circ}-30^{\circ}\right)$. A sample result has been given.

INTRODUCTION

A chiral substance might exist in two distinct molecular forms, which are ntherwise identical in their chemical and physical properties; but although one is a mirror image of the other it cannot be superpeed on its mirror image. In other words, the two molecules se incongruent mirror images of each other [Laxhtakia es al 1986]. Chirality, however, is a phenomenon which can be found in the less exotic everyday life. Mobius strips, golf clubs, helices. sea-shells, and, of course, the hands of a human being are examples of chiral objects found everywhere. Substances with chiral microgeometrics can, therefore, be lailored to possess desirable elecuromagnetic properties and theif use exploited.

With the proliferation in the use of the eiectromegnetic spectum at frequencies around 100 GHz wilnessed by the past few years, it has become desirable to design zffieient anti-reflection coatings for metallic surfaces. Lon weight. low-loss dielectric composites have been particularly atuactive for this purpose, but such matirials tum out
to be pour absorbers of electromagnetic energy. There has been a need. therefore, to find matirials which are lightweight but, in addition, are effective absorbers as wenl. It wil be shown in this repor: that criral iompestis can be attractive as highly cfficient absorbers. The electromagnetic boundary value problem of a planc chirs: coating on a perfectly conducling surface will be investigated and several designs of such coatings discussed. Fram the numencal studies presented, it will be show that endowing low loss dieiectric composites with chital propertics can easily cut down the reflected power density by a factor of 4 or more

THE ANTI-REFLECTION COATING ON A MFTALIIC SLBSTRATE.

Let V be the region $0 \leq z \leq d$ occupied by a chiral medium whose properties are deceribed above. and ve he thit half-space $z \leq 0$ which docs not exhibit chiralily. The plane $z=d$ is assumed to be firiciliy coricucilig so lital li:e presented geometry describes a metallic surface coated with a chiral layer of thickness d. The primed quant:lics refer to the achiral half space V, whereas the unpnmed quantities hold in the layer V.

Consider a plane monochromatic wave

$$
\begin{gather*}
E_{1}=\left(A_{E} j-A_{H} \cos \theta_{0} i+A_{H} \sin \theta_{0} k\right) \exp \left[i k^{\prime}\left(\cos \theta_{0} z-\sin \theta_{0} x\right)\right] \tag{1a}\\
H_{1}=\left(1, i \omega \mu^{\prime}\right) \Gamma \times E_{G} \tag{ib}
\end{gather*}
$$

 coefficients $A_{E} \neq 0, A_{H}=0$ refer to a TE-polanzed incident planewave. ithe cocffiacats $A_{F}=0, A_{H} \times 0$ d:avie $3=$ incident fiv-polorized field.

Inside the chiral layer \forall, the existing field has to be expressed in terms of Q_{R}. the inght-circutirly poisrized (RCP) waves, and Q_{L}, the left-cifcularly polanzed (LCP) waves. One RCP and one LCP wave, in genctal, exis: in V propagating towards $2=0$ and another pat of a LCP and a RCP wave propagating towards $2=0$ Thus, :he appropnate representation of the ficld in V is given by [Lakhtakia et al 1986; Vatidan e: ai 1937]

$$
\begin{align*}
Q_{L} & =A_{1}\left(-\cos \theta_{L} i-i j+\sin \theta_{L} k\right) \exp \left[i k_{L}\left(\cos \theta_{L} z+\sin \theta_{L} x\right)\right] \tag{2a}\\
& +A_{2}\left(\cos \theta_{L} i-i j+\sin \theta_{L} k\right) \exp \left[-i k_{L}\left(\cos \theta_{L}:-\sin \theta_{L} x\right)\right]
\end{align*}
$$

2nd

$$
\begin{align*}
Q_{R} & =C_{1}\left(-\cos \theta_{R} i+i j+\sin \theta_{R} k\right) \exp \left[i k_{R}\left(\cos \theta_{R^{2}}+\sin \theta_{R} x\right)\right] \\
& +C_{2}\left(\cos \theta_{R} i+i j+\sin \theta_{R} k\right) \exp \left[-i k_{R}\left(\cos \theta_{R^{z}}-\sin \theta_{R} x\right)\right]
\end{align*}
$$

In this refresentaton, the cuifficiols $A_{1}, A_{2}, C_{1}, C_{2}$ are as yet unknowns io be de:crmoned as sinlulions of itic boundary value problem; the coefficients A_{1}. C_{1} refer to the waves going out to $2=\mathrm{J}$. whic the remaning two to those going towards 7. $=0$. The fic!d in the chiral region is given in icrms of E.is (2a.b) by

$$
\begin{equation*}
E_{c h}=Q_{L}+a_{R} Q_{R} \quad, \quad H_{c h}=a_{L} Q_{L}+Q_{R} \tag{3}
\end{equation*}
$$

~h:

$$
\begin{gather*}
a_{R}=\left[k_{R}\left(1-k^{2} \alpha \beta\right)+\alpha k^{2}\right] / j \omega E, \tag{4a}\\
a_{L}=\left[k_{L}\left(1-k^{2} \alpha \beta\right)-\beta k^{2}\right] / j \omega \mu, \tag{4b}\\
k_{R}=k\left\{\left[1+(\alpha-\beta)^{2} k^{2} / 4\right]^{1 / 2}-(\alpha+\beta) k / 2\right\}\left[1-k^{2} \alpha \beta\right]^{-1}, \tag{4c}
\end{gather*}
$$

and

$$
\begin{equation*}
k_{L}=k\left\{\left[1+(\alpha-\beta)^{2} k^{2} / 4\right]^{1 / 2}+(\alpha+\beta) k / 2\right\}\left[1-k^{2} \alpha \beta\right]^{-1} . \tag{4d}
\end{equation*}
$$

with $k=\omega \dot{k}(\mu \varepsilon)$ being appropriate to the chiral mediam. The parameters $\varepsilon, \mu, a \operatorname{and} \beta$ relate to the constitutive equations of the chiral medium [Lakhtakia es al 1986].

The representation of the reflected field in V takes the form

$$
\begin{gather*}
E_{\text {ref }}=\left[A_{3}\left(\cos \theta^{\prime} i-i j+\sin \theta^{\prime} k\right)+C_{3}\left(\cos \theta^{\prime} i+i j+\sin \theta^{\prime} k\right)\right] \cdot \\
\cdot \exp \left[-i k^{\prime}\left(\cos \theta^{\prime} z-\sin \theta^{\prime} x\right)\right] \tag{5a}\\
H_{\text {tef }}=\left(1 / i \omega \mu^{\prime}\right) \nabla \times E_{\text {Tef }} \tag{5b}
\end{gather*}
$$

so that the reflected field also consists of a LCP and a RCP wave; while Snellis law yields $\mathrm{K}_{\mathrm{L}} \sin \boldsymbol{\theta}_{\mathrm{L}}=\mathrm{K}_{\mathrm{R}} \sin \theta_{R}=$ k 'sin $\theta_{0}=k \cdot \sin \theta^{\prime}$. Followiog Lakhakia es al [1986]. the boundary value problem is solved, wod the wial reflected power density in V^{\prime} is evaluated as

$$
\begin{equation*}
P_{r c t}=(1 / 2) \sqrt{\varepsilon^{\prime} / \mu^{\prime}} \cos \theta_{0}\left\{2\left|A_{3}\right|^{2}+2\left|C_{3}\right|^{2}\right\} \tag{6}
\end{equation*}
$$

whereas the incident power density is given by

$$
P_{i}=\begin{array}{ll}
(1 / 2) \sqrt{\varepsilon^{\prime} / \mu^{\prime}} \cos \theta_{0}\left|A_{E}\right|^{2} & , \text { TE incidence } \tag{7}\\
(1 / 2) \sqrt{\varepsilon^{\prime} / \mu^{\prime}} \cos \theta_{0}\left|A_{H}\right|^{2} & , \text { TM incidence }
\end{array}
$$

Computations of the reflection efficieocies

$$
\begin{equation*}
R=P_{\mathrm{ref}} / \mathrm{P}_{\mathrm{i}} \tag{8}
\end{equation*}
$$

can therefore be made. It must be noted that ($1-R$) is the absorption efficietcy of the chiral layer since whatever energy is not reflected back into V moust have been absorbed in V. Furthermore, it should be noted that in order ω guarante the energy conscrvation principle in an otherwise lossless medium, the condition $\alpha=\beta^{0}$ in the constitutive equations for the chiral medium is sufficicat (Fedorov 1959). Since $\beta=\alpha$ guarantees the time-reversal symmetry of the solution (Satiten 1958); therefore, along with the condition $\beta=\alpha^{*}$ for energy conservation whold (Fedorov 1959). to all subsequent oumencal sludies made $\beta=\alpha$ was assumed wo real.

NUMERICAL RESULTS AND DISCUSSION

The boundary value problem was implemented on $\operatorname{DEC} \forall A X$ 11/730 minicomputer and the feflection efficiencies $R_{\text {TE }} . R_{T M}$ of Eq. (8) were computed for both incident polarizations. The schural half-space V was uken
to be free-space s. the $\varepsilon^{\prime}=\varepsilon_{0}$ and $\mu^{\prime}-\mu_{0}$. In addition, the chiral layer was taken to be deveid of magnetic properties and μ was set equal to μ_{0}. On the other hand. v was filled up by a low loss chiral deelectic meditm so that its relative permittivity eico was complex with $\operatorname{Im}\left\{\varepsilon_{0} \varepsilon_{0}\right\} \ll \operatorname{Re}\left\{\varepsilon_{i} \varepsilon_{0}\right\}$. The thickress d of the coating was assumed to be 2 mm for all of our numerical studies.

A design of a wideband ant reflection chiral coating, however, cannot afford to have both $\varepsilon^{\prime} \varepsilon_{0}$ and β independent of frequency. Once it became ciear from numerical experimentation that (i) chirality is ineffective in the reduction of the reflection efficiency if $\varepsilon \varepsilon_{0}$ is purely real, and (ii) that either β or $\varepsilon \varepsilon_{0}$ or both must be frequency dependent in order to obtain a widebaod anti-reflection coating. design of such a coaling becomes more of an nptionization problem. Shown in Figs. 1.3 is a sample design with $\varepsilon: \varepsilon_{0}$ assumed wo constant, whereas $\beta=\beta(\Omega)$ assumed is shown in Fig. 1. In Figs. 2 aod 3, the enhancement of the absorption ifficiency of over a $50-300 \mathrm{GHz}$ ffequency range by incoporating this frequency dependent $\beta=\beta(1)$ is illustrated, for the TE- and TM- polarization incidence cases, respectively. The relative permitlivity $\varepsilon_{i} \varepsilon_{0}$ is set at $5.0+10.05$ for all frequencies censidered. It should be noted from these two figures that whereas the design objective of achieving $R_{T E}$ and $R_{T M}$ less than 20% for $50 \leq$ f $\leq 300 \mathrm{GHz}$ and $0^{\circ} \leq \theta_{0} \leq 30^{\circ}$ can be achieved using the β of Fig 1 , the reflection efficiences hover around 92% if β were to be set equal ω zero.

From our ourmerical studies, several conclusions can be dawn. Firstly, in reducing reflection if a larger cons:ant β is used, then the values of ε ' ε_{0} tend to decrease over the entire fiequency band o! interesh a goal which appears to be desirabie for materiai scieulast. However, this also teods ia ieduce the banduidth over which the desired absorption efficiencies an be aihieved. Secondly, and as stated earlicr, chirality in the absence of a lossy e is of no use whatsoever in reducing reflected power density. A sm. loss must be present for a to be effective. Therefore, chirality serves ooly as an eohaocemeat factor for absoption, but of itseif it is not an absorbing mechanism. Thirdly. and very importaotly, both $\mathbf{e} / \varepsilon_{\mathrm{o}}$ and β should be frequency depeodent. This last conclusion, however, was not verified here because of the complexities of multivariate optimization problems.

Io summary, this report desenbes the use of low loss dielectre chiral composites to fabacate low weight and highly effective anti-reflection coatirgs. Low loss dielecuics in the $-100 \mathrm{GH}_{2}$ fiequency range of this kind are quite commonly avalable and are attractive because of their low mass densitics. However, such materials are not very effective ahsorbers Suspension of chiral microgeometries in these mateials can, however, endow them with fotamonal activity, and simultanecusly, tum them into eifictent absorbers of electiomagnetis radiation.

REFERENCES

Fedorov, F.l. [1959]. On the Theory of Oplical Aclivity in Crystals, 1 The Law of Conservation of Encrg: and the Oplical Acuvily Tensors, Opi. Speitrosc. ('SSRR) 6, 49.5?
Lakhtakla. A. Varadan. V. V. and Varadan. V.K. (1996). A patametic study of microwave reflection characteristics of a planar achialchiral interfaces. IELE frans E:S 28.90 .95.
 742.743

Varadan. VK, Varadan. $V \forall^{\prime}$ and Lakhtakla. A 1198°) On the possibility of designing antireflectuon

Figure 1 The frequency profile $\beta=\beta(1)$ used for the result shown in Figs. 2 and 3. The paramecter β cartics the unit of meter.

Figure 2 Refiection efficiency $R_{T E}$ flolled as a function of θ_{0} and frequency f for a 2 mm thick anti-refleccion coating. The complex permativity eigo $=5.0+10.05$. In the upper figure the $\beta=\beta(\cap)$ of Fig 1 is used while in the lower figure β is set equal to 0.0 m .

Figure 3 Same as Fig 2. but $R_{\text {IM }}$ is plolted

Summary of Recent Work at the University of Michigan Relevant to Electromagnotic Wave Scattering and Absorption by Small Particles

Herschel Weil and Thomas M. Willis III Radiation Laboratory, EECS Department, University of Michigan Ann Arbor, MI 48109-2122

RECENT PUBLICATIONS, SUBMITTALS FCR PUBLICATION AND PRESENTATIONS*

A) T.B.A. Senior, "A Critique of Certain Half Plane Diffraction Analyses", Electromagnetics I pp. 81-90, 1987.
B) T.B.A. Senior and J.L. Volakis, "Sheet Simulation of Dielectric Layers", presented at the URSI National Radio Science Meeting, Boulder, CO, January 1987.
C) T.B.A. Senior and J.L. Volakis, "Sheet Simulation of a Thin Deiectric Layer", Radio Science 22. to appear December 1987.
D) J.L. Volakis and T.B.A. Senior, "Diffraction by a Thin Dielectic Halfplane", IEEE Transations A-P-35, to appear December 1987.
E) H. Weil, "Surface Roughness Clustering and Material Effects in Absorption and Scattering by Electrically Small Particles", Proceedings of the 1985 CRDEC Scientific Conference on Obscuration and Aerosol Research, R.H. Kohl, Ed., CRDEC. SP. 86019, July 1986.
F) H. Weil and T.M. Willis, "Improved Computational Method and Results for Scattering, Absorption and Internal Fields of Disk-like Particles with Diameters $\leq \lambda$ " , Proceedings of the 1986 CRDEC Scientific Conference on Obscuration and Aerosol Research, (submitted, September 198f.).
G) T.M. Willis and H. Weil, "Inter ial Induced Fields, Scattering and Absorption of Electromagnetic Radiation by Disc-Shaped Aerosols: An Improved Computational Formulation and Computer Code", Report RL 023618-1-T. The University of Michigan, EECS Department, Radiation Laboratory, December 1986.

[^6]H) T.M. Willis and it. Weil, "Ir.proved Computaticnal Method for Scattering, Absorption of Internal Fields of Disc-like Particles with Diameters $\leqslant 4 \lambda$, presented at the 1987 URSI Radio Science Meeting, Virginia Polytechnic Institute and State University, Blacksburg, VA, June 1987.

1) T.M. Willis and H. Weil, "Disk Scattering and Absorption by an Improved Computation Method", Applied Optics 26 to appear September 1987.
J) T.M. Willis, H. Weil and D.M. Le Vine, "Applicability of Physical Optics Thin Plate Scattering Formulas for Remote Sensing", submitted for publication to IEEE Transatiors on Geoscience and Remote Sensing, Abril 1986.

ABSTRACT

Brief descriptions are given of theoretical and computational scattering research in progress or recently completed at the Radiation Laboratory.

INTRODUCTION

The research is summarized under the following headings:
A) Individual particles

1. Thin plates as shown in the following figure, $k t \leq 0.5, k D_{\max }<1$ where I is a "moderate" integer and k is the free space wave number.

2. Rayleigh particles, $k D_{\max }<0.1$.
B) Cistributions of scatterers
C) Combined Electric and magnetic current sheet approximations to thin slabs of infinite extent and application to semi-Infinite thin bodies.
In the remainder of this paper we expand on the work listed in this outline.

INDIVIDUAL PARTICLES

Thin Plates

The thin plate efforts may be divided into two "exact" methods in which the Induced current densities J are numerically computed, and two "approximate" methods in which à priori assumptions for the form of the J's are used. Each of the "exact" procedures requires relatively heavy numerical computation in the solution of iriegral equations for the J's. With both approximate methods, the only computations needed are simple numerical evaluations of explicit formulas for the scattering cross-sections.

The exact methods are:
[Refs. F., G., l., J \downarrow
The first "exact" method is discussed in Rets. F., G., I. and J., for the homogeneous dielectric circular plate or disk. A method we have labelled CWW is used to solve an integral equation for the total (conduction plus polarization) induced current density \bar{J}. This equation involves both volume and surface integrations. It is solved using twice differentiable continur.,s basis functions tailored espesially for this problem. With these functions one avoids the numerical instabilities evident in other methods to solve for \bar{J} (electric field $\overline{\mathrm{E}}$) ir, bodies where one dimension is much smaller than the other dimensions. We mentior explicitly that all three components of $\overline{\mathrm{J}}$. (J_{x}. J_{y}, J_{z}) are obtained by CWW since this is not true in the remaining methods described. In these $\mathrm{J}_{\mathbf{z}}$ is assumed constant or, in particular, zero. Ref. H summarizes the theory and also includes the details of an extensive verification of the method by comparison of backscatter results with experimental results and with computational results by other methods. The conclusions from these comparisons are that the CWW method works very well for disks where
$0 \leq k a \leq 12$
$0 \leq k t<0.5$
$0<a / t \leq 10^{4}$
for arbitrary direction and polarization of the incident radiation and for arbitrary index of refraction, where a is the radius and t is the thickness of the disk. The limitation on $k a$ is due to an arbitrary limitation placed on the maximum matrix size (30×30) in the code and can probably be successfully relaxed. We are particularly interested in using CWW to explore the intemal field and current density structure of a disk during the next year. We will also use it in connection with our work on distributions of scatterers.

The second exact procedure [T.J. Peters and J.L. Volakis, "Application of a Conjugate Gradient FFT Method to Scattering from Thin Planes Plates", (submitted to IEEE Transactions A-P).] is applicable to thin flat plates of any shape and may be used for homogeneous dielectric or magnetic materials. It is designed to be efficient for very large plates. The method starts with a volume integral equation reduced to 2-dimensional integrals by assuming \bar{J} is z independent. It finds surface current components J_{x}^{s} and J_{y}^{s}. Results for circles, squares and triangles have been found, but the computations are very "heavy" even for 2λ on a side. Work is contiruing to make the code much more efficient and to run on parallel processors. In the following figures we show a comparison of backscatter cross section vs. angle of incidence θ for a circular disk as computed by CWW and by this CG-FFT metinod.

Circule plate: $r_{0}=\lambda_{0, r}=.01 \lambda_{0,1}=2.0-j 10.0$,

The approximate methods are two so called "physical optics" methods. they diller according to whether the assumed current densities \bar{J} correspond to:
(A) Infinite slabs volume distribullon of current density

(B) infinite equivalent membranes carrying a 2d current

The plates are shown by the cross-hatched regions.

All modifications of \bar{J} due the effects of the finite plate size and shape are neglected except for setting $\bar{J}=0$ outside the plate.
[Ref. J.]
The infinite slab method derived and evaluated in Ref. J. was first introduced by D.M. Le Vine (The Radar Cross-section of Dielectric Disks", IEEE Transactions AP-32, pp. 6-12, 1984]. We have checked its range of validity for circular plates so thin that $\theta^{\text {inkt }}=1$ (where the disk's complex index of refraction is n) as a function of n, t and a by comparing back scattering cross sections based on this method with the cross-sections computed by the exact CWW method. The results of these comparisons show that this physical optics method (with $\theta^{\text {inkt }}$ replaced by 1 in the formulas) gives good results for all angles of incidence and polarizations for low refractive index materials provided a/t $\gg 1$. As nka increases for fixed att the results deteriorate for near grazing and grazing incidence for \bar{E} polarization parallel to the flat surfaces of the disk.

The equivalent membrane method was applied to finite plates [T.B.A. Senior, K. Sarabandl and F.T. Ulaby, "Measuring and Modeling the Backscattering Cross Section of a Leaf", Radio Science, (to appear December 1987).] The membrane was a resistive sheet of complex resistance R (ohms/square) carrying surface current density $J_{\mathrm{s}}(\mathrm{c} / \mathrm{m})$ where,

$$
\begin{aligned}
& R=\mid Z /[k t(e-1)\} \\
& J_{S}=\left.\{\hat{n} \times \bar{H}\rangle\right|^{+}=-\hat{n} \times\left(\hat{n} \times \bar{E}^{+}\right) / R
\end{aligned}
$$

Here \bar{E} and \bar{H} are the total electric and magnetic fields, + and - represent the upper and lower surface values and the normal \hat{n} is pointing upward. Z is the impedance of free space.

The back scattering cross-section formulas were found analytically for rectangular plates and verified against 35 GHz experiments on rectangular sections of moist and dry vegetation leaves. The formulas agree with measurements only for angles of incidence well away from edge-on (grazing incidence). This method has been generalized to hold for curved plates and checked vs. 35 GHz experimental results for the two cases illustrated here.

We are presently exploring analytically the sources for the disagreements between the two methods near grazing incidence.

Raylelgh Particles

[Ref. E and also L. Plerce and H. Weil, these proceedings.]
For particles or particle aggregates of dimensions much less than the free space wavelength we have studied the internal and near fields of aggregating spheres in a region when $R e(\varepsilon)<0$. Enhanced resonance absorption bands occur when $\mathrm{Re}_{\theta(\mathrm{e})}$ < 0 . Absorption spectra were generated for pairs of gold spheres close together and/or aggregated. This work is continuing with emphasis on computing and plotting the detailed internal fields.

DISTRIBUTIONS OF SCATTERERS

We revised an oid UM program, CLOUDS [H. Weil and T.M. Willis, Radio Science 17. 1018-1026 (1982).] for bistatic scattering by clouds made of homogeneous spheres and discs of arbitrary size distributions and, for the discs, arbitrary orientations. Specifically CWW was introduced to replace a much less accurate disc program originally used. This program allows for simple scattering only. It computes the Stokes parameters of the received signals.

We intend to explore some aspects of transmission through slich clouds and also the use of Rayleigh and physical optics formulas, where applicable, in order to speed up the computations.

COMBINED ELECTRIC AND MAGNETIC CURRENT SHEET APPROXIMATIONS TO THIN SLABS OF INFINITE EXTENT AND APPLICATION TO SEMI -INFINITE THIN BODIES

[Reis. I..J.]
In order to be able to take into account the normal component of current while still using a membrane model of a dielectric slab the following research was carried out on Ref. I and applied to a half plane in Ref. J as a step toward treating finite particles.

The slab is theoretically replaced by a zero thickness electrically resistive sheet carrying tangential electric current density $\hat{n} \times\left(\bar{H}^{+} \cdot \bar{H}^{-}\right)$superimposed on a "modified" magnetically conductive sheet carrying tangential magnetic current density $\hat{n} \times\left(\bar{E}^{+}-\bar{E}\right)$ which simulates a normal component of electrical current density. The basis of this reduction are the boundary conditions.
Resistive sheet:

$$
\hat{n} \times\left\{\hat{n} \times\left(\bar{E}^{+}+\bar{E}^{+}\right)\right\}=-2 R \hat{n} \times\left(\bar{H}^{+}-\bar{H}\right)
$$

Modified conductive sheet:

$$
\hat{n} \times\left\{\hat{n} \times\left(\bar{H}^{+}+\bar{H}\right)\right\}-\frac{i Y}{k} \hat{n} \times \frac{\partial}{\partial n}\left(\bar{E}^{+}+\bar{E}\right)=2 R^{\times} \hat{n} \times\left(\bar{E}^{+} \cdot \vec{E}\right)
$$

where

$$
R=\frac{i Z}{k(\varepsilon-1)} \text { and } R^{x}=\frac{i Y \varepsilon}{K(\varepsilon-1)}
$$

A similar reduction has been carried out for magnetic materials. For general materials the procedure reduces the number of variables from 6 to 4 , when solving for the current densities corresponding to a finite size thin scatters. It could of course improve the accuracy of the physical optics method for finite plates as well.

In addition to the application to half-planes in Ref. D. these boundary conditions have been used by M. Ricoy and J.L. Volakis to solve 2 -dimensional scattering problems for structures of arbitrary cross-section, formulated as two coupled 2-dimensional integral equations. However in analytically eliminating the computational inaccuracy inherent in evaluating the integrals within the salf cell and adjacent cells they did not employ the zero thickness approximation.

Typical Structures:

Homogeneous

Layered Transversely

Layered Longitudinally

The method can be used to generate simple asymptotic results for scattering and diffraction as was done by Herman and Voiakis using the simpler single current sheet models of thin layers. [M.I. Herman and J.L. Volakis, "High frequency scattering by a resistive strip and extensions to conductive and impedance strips", Radio Science, 22, 335-349 (1987).] The method involves a uniform asymptotic evaluation of the multiply diffracted fields from the edges.

A VERAGE INTENSITY SCATTERED BY DENSELY DISTRIBUTED NONSPHERICAL PARTICLES

Y. Ma, V.V. Varadan and V.K. Varadan
Research Center for the Engineering of Elecrronic and Acousic Marerials Deparmens of Engineering Science and Mechonics
The Penryluaria State University
University Park. PA J6802

RECENT PUBLICATIONS, SLBMITTALS FOR PLBLICATION AND PRESENTATIONS:

A) V.V. Varadan, V.K. Varadan and Y. Ma, "EM wave propagation in discrete random media: nonspherical statistics," in Proceedings of the 1986 CRDC Sciertific Conference on Obscuration and Aerosol Research.
B) V.V. Varadan, V.K. Varadan, Y. Ma, and W.A. Steele, "Effects of nonspherical statistics on EM wave propagation in discrele random media," Radio Science 22, No. 4, 491 (1987).
C) Y. Ma, V.V. Varadan fad V.K. Varadan, "Calculations of the incoherent intensity for random media contasoing nonspheriral scatlerers." Presented at the URSI Radio Science Meeting, Blacksburg, Virginia, June 1987.
D) V.V. Varadan, Y. Ma and V.K. Varadan, "Scattered intensity of a wave propagating in a discrete random medium," submitled to Appied Optics, August 1987.

ABSTRACT
I his paper investigates the second moment (average intensity) of an EM wave field propagating in a medium containing deasely distributed nonspherical scatuerers whose positions are random. The effective propagation constant K oblained from our previous work, using the nonspherical statistics in the investigation of multiple EM wave scattering by aligned prolate and oblate dielectric spheroids, and the appropriate pair correlation function for nonspherical scatterers obtained by the Monk Carlo method are required in implementing the moment equation to get the numerical results for iolensity. The comparison between the resula using correct nonspherical statistics and approximated spherical statistics iodicates that even a small difference for the effective propagation constant K will preduce a remarkable difference in interisity. Numerical results for average intensity scattered by spherical particles using our intensity formalism are also presented and compared with some microwave measurements. The extension of the present work is to study wave propagation in a medium containing a random distribution of randomly onented nonspherical scatterers and investigate the isouropic properies of the medium.

INTRODUCTION

The statisucal moments of wave propagating in a random medium are of great interest for use in communication, probing and reroole sensing. The present paper following the trace of our previous work, in which the first moment of a random wave field has been carefully investigatec using appropriate statistics, tarls to examine the effects of nonspherical statistics on the second moment (average intensity) of wave field propagating in a mediuro consistiog of randoraly distribuled nonspherical scalterers In our intensity formalism, shape factor, sise
distribution, orientation distribution and physical properties of scallerers can all be considered, however, the intensity equation for densely distributed seaterers requires the pair correlation function which is available at the present time only for simple shaped scatterers with soecial aligoments.

To make the problem tractable, nonspherical scatterern with rotational symmetry properties randomly distributed in free space are first considered. Scatterers of this kind whose scattering responses are able to be respreseated by the T-matrix [Varadan and Varadan , 1980]. Further, we consider only the aligned case which means the symmetry axes of the scatlerers are all parallel to the direction of the incident wave.

In the calculation of latensity, without losing generality, we used the distorted Born approximation in the intensity equation in which the required effective propagation constant K is oblained from our previous work [Veradan et al., 1986, 1987] using the noaspherical statistics io the investigation of multiple EM wove scattering by aligaed prolate and oblate dielectric apheroids. The pair correlation function for nonspherical scatterers is obtained by the Monce Cario method which has been incroduced in our paper [Varadan, et a1, 1987). The comparison between the results using correct noospherical statistics and approximated spherical atatistics indicates that even a emall difference for the effective propagation constant K will produce a remarkable difference in intensity. Numerical results for average intensity scallered by sphencal pafticles using our intensity formalism are also presented and compared with some microwave measuremeats.

MLLTIPLE SCATTERING FORMLLATION FOR THE INTENSITY

We consider $N(N \rightarrow \infty)$ rotationally symmetric oriented scatterers randomly distributed in a volume $V(V \rightarrow \infty)$ so that the number of particles per unit volume $n_{0}=N / V$ is fioite. For the scatcering of waves by those seatterers located at $r_{1}, r_{2} \ldots, r_{N}$, we represent the wial field outside the scallerer by
$U(r) \quad=U_{0}(r)+\Sigma u_{j}\left(r-r_{j}\right)$.
where u_{0} is the iocident wave field and $u_{\text {, }}$ the field scallered from the j-th scatterer if the scatlerers are randomly distributed in space, the whal field can be divided into two parts and expressed as

$$
U(r) \quad=\langle U(r)\rangle+v .
$$

We call < $U(r)>$ or $<U>$ the average of coherent field and v the fluctuation or incoherent field. The angular brackels < > represent the configuration or ensemble average whose definition is quite common in statistics

Simularly, we average the "intensity" (or the second moment of the field) $\mid \mathrm{Ul}^{2}$ over the ensemble, and write the "average bolal inleosity" as

$$
\begin{align*}
\left.\left.\langle | U\right|^{2}\right\rangle & \left.=\left.1\langle U\rangle\right|^{2}+\left.\langle | v\right|^{2}\right\rangle \\
& =\mid\left\langle U>\left.\right|^{2}+V\right. \tag{2}
\end{align*}
$$

where $1: U>\left.\right|^{2}$ is the cohereat intensity and can be determioed if the average field < $U>$ is known. However, the incoherent inteosity V which is the ensemble average of the absolute square of the field nuctuation is not a directly oblainable quantity. By the use of (1) and some operation rules for the configuration average, the incoherent intensity V in (2) can be written as

$$
\begin{equation*}
\left.V=\left.\Sigma\langle | u_{j}\right|^{2}\right\rangle+\Sigma \Sigma\left\langle u_{k} u_{j}^{\bullet}\right\rangle-\Sigma \Sigma\left\langle u_{k}\right\rangle\left\langle u_{j}^{\bullet}\right\rangle \tag{3}
\end{equation*}
$$

where the superacript "" represeots the complex conjugate of the allached quantity. (3) is a finite sum though "N",
the number of scatlerers, can be fairly large; its computation becomes impractical even for a moderate N and in most cases impossible. In terms of ap appropriate probability distribution function and the conditional configuration average, (3) can be expressed in the following integral form

$$
\begin{align*}
V \quad & n_{0} \int<\left|u_{j}\right|^{2}>_{j} d r_{j} \\
& +n_{0}^{2} \iint<u_{k} u_{j}>_{j k} G\left(r_{j k}\right) d r_{k} d r_{j} \\
& -n_{0}^{2} \iint<u_{k}>_{k}<u_{j}>_{j} d r_{k} d r_{j} \tag{4}
\end{align*}
$$

where $<>_{j}$ and $<>_{j k}$ are conditional configuration averages holding the positions of the j-th and both the j-th and k-th scatterert fixed, respectively. $G\left(r_{j k}\right)$ the pair correlation function, for aligned spheroidal particlas, can be expanded in the Legendre polynomials as [Varadan el al., 1987]

$$
G(r)=\Sigma_{n} x_{n}(r) P_{n}(\cos \theta)
$$

where the coefficients depend on the distance between particles and azimuthal angle and implicitly on the concentration of scatierers. For apherical scatierers, the pair correlation function becomes the radial distribution function $g\left(r_{j k}\right)$ upon which spherical statistics bases. Eq. (4) is an exact expression for the incoherent intensity V.

If the scatierer locations are random and independent of one another, only the first term on the RHS of (4) remains. This is the single saattering approximation to the intensity. Otherwise, in addition to incoherent single scattering, a relatively cohereat inteosity appears as the contribution of the second term grows. As the concentration of scatterers increases a local order ls introduced to the near field of the scatterns since the particles can only be packed in a limited number of ways. In order to proceed further with the computation of the incoherent intensity as slated in (4), we need expressions for $\left\langle u_{j}\right\rangle ;\left\langle\left. u_{j}\right|^{2}\right\rangle ;$ and $\left\langle u_{k} u_{j}\right\rangle$.

Listorted Bom Aporosimation

In order to calculate the incohereat intensity V from (4) an approximation needs to be made for $<\left|u_{j}\right|^{2}>_{j}$ as well as for $<u_{k} u_{j}{ }^{\bullet}{ }_{j k}$, which are both unknown. If we consider only firt order scattering, we can use the distorted Born approximation (DBA) as follows:

$$
\begin{equation*}
\left\langle u_{\mathbf{k}} u_{j}^{\bullet}\right\rangle_{j k} \equiv<u_{k}>_{\mathbf{k}}<{u_{j}}^{\bullet}>_{j} \tag{5}
\end{equation*}
$$

This approximation was used by Twersky [Tweraky. 1957] iv solviog the rough surface scallering problems and has subsequently been used by several other authors. Using (5), in the distorted Born approximation, (4) can thus be written as

$$
\begin{align*}
v= & u_{0} \int<u_{j}>_{j}<u_{j}^{*}>_{j} d r_{j} \\
& +n_{0}^{2} \iint<u_{k}>_{k}<u_{j}^{*}>_{j}\left|G\left(r_{j k}\right)-1\right| d r_{k} d r_{j} \tag{6}
\end{align*}
$$

Equation (6) represents the incohereat intensity io the DBA. Its source is the coherent field, <ujp u_{j}. Later we show that the average scatiered field $<u_{j}>_{i}$ is related to the average exciting field when we neglect the field fluctuations in the field exciting a satterer. Equation (6) tells us that the recond term has a contribution to the intensity whenever the i-th and j-th scatterers are close to each other (position dependence), otherwise the contsibution can be seglected. Eq. (6) is a deterministic equation since ooly the average exciting field is involved and the calculation is straight forward as long at the pair correlation function is known.

Implementulion of the T-Matris

To compute the inteosity to the DBA, or to proceed further with the analysis of (4), we beed an expreasion for the coherent field. For a single scatcerer, the scallered field from the j-th scauerer can be expressed as

$$
\begin{equation*}
u_{j}=\Sigma f_{0}^{j} \Psi_{\mathbf{0}}^{j} \tag{7}
\end{equation*}
$$

where $f_{n}{ }^{j}$ are the scatuered field coefficients and $\Psi_{0}{ }^{j}$ the outgoing functions (Hankel functiona). The scatlered field coefficients $f_{n}{ }^{j}$ and the exciting field coefficients $\alpha_{n}{ }^{j}$ are related through the T matrix [Varadan and Varadan, 1980]:

$$
\begin{equation*}
f_{0}{ }^{j}=\Sigma T_{0 n}{ }^{j} a_{0} j . \tag{8}
\end{equation*}
$$

Substituting (8) jow (7) and taking the conditional configuration average, we have

$$
<u\rangle_{j}-\Sigma \Sigma<T_{n}{ }^{j} \alpha_{n}{ }^{j} \Psi_{n}^{j}>_{j}
$$

Further, to simplify the computation, we assume the shape, size, and physical properics of all the acaterers are independent of their positions. In such a case, (9) can be writteo as

$$
\begin{equation*}
\left.\langle u\rangle_{j}-\sum \sum T_{D 0}{ }^{J}<\alpha_{0}{ }^{j}\right\rangle_{j} \Psi_{n} J . \tag{10}
\end{equation*}
$$

where the exciting field coefficients of the j-th scatlerer can be shown to be [Varadan et al. 1985]

$$
\begin{equation*}
\alpha_{n}^{j}=q_{n^{j}}^{j}+\sum \sum \sum \sigma_{n n^{\prime}}\left(r_{k}-r_{j}\right) T_{0^{\prime} n^{\prime \prime}} \alpha_{n^{\prime \prime}} \tag{11}
\end{equation*}
$$

In (11), $i_{0} j$ are the incident fleld coefficients of the j-th icatuerer and σ_{nn} is the tranilation matrix for iphertal wave functions. Although $\alpha_{0}{ }^{j}$ are, in general, unknown for andom distribution of ecatierens, their consitional average $\left\langle\alpha_{0}{ }^{j}\right\rangle_{j}$ (average exciting field coefficients of the j-th scauerer whose position is fixed) are assumed to have the following form (Veradan et al., 1985)

$$
\begin{equation*}
\left\langle\alpha_{0}^{j}\right\rangle_{j}=X_{0} \exp \left(i K k_{0}{ }^{\circ r_{j}}\right) \tag{12}
\end{equation*}
$$

which atates that for to incident plase wave field, the average excitiog field propagates with a aew propagation constant K along the lacident wave direction $\mathbf{k}_{\mathbf{o}}$. The new propagation constant K is complex and frequeacy dependent and can be oblained by solving the dispersion equation [Varadan et al.,1986].

RESULTS AND DLSCUSSION

lo order to show the effect of noospherical atatistics on inteosity, results based on the approximation for randomiy distributed apheroids using single acattering theory and the spherical statistics (Circumacribing Sphere Approximation and Equivaleat Volume approximation [Varadad el al., 1986] are compared with those using noospherical statistica. We have picked values of the effective waveoumber, which is obtained using the noospherical atatatics in the inveatigation of multiple EM wave scathering by aligned prolate and oblate dielectic spheroids [Varaga et al., 1987), and used them to compute the intensity and thow the results in Figs 1 and 2. One sees from both figures that, off-forward ecatteriog at the fixed frequency as well as forward acattering at different frequencies, without using the correct pair satistics for nonspherical scatierert, the compuced inteoties are quite different ?rom case to case. This fect explains why it is decesary to introduce the noosphencal statiatics into the inteasity calculation.

To check the validity of our formalism, we compared our incoherent inkosity calculations with the microwave experiments conducted by Beard et al. [1965]. The tranmitted intensity was calculated using the DBA as given in
(6) where $\theta=0^{\circ}$ represents the forward difection. This caleulation is based on the experimental aet-up which consista of a alab region styrofomm container, for various concentrations of scatlerers at the fixed frequency. For the case ke $=\mathbf{2 0 . 8}$ for tenuous scatceers will relative index of refraction 1.016 the compuled results mateh very well with the measurementa for off-forward acatiering as depicted in Fig. 3.

REFERENCES

C.I. Bard, T.H. Kays and V. Twerairy, "Scattered inteasities for random distributions - microwave data and optical applications," App. Opf. 4, 1299 (1965).
V. Twersky, "On acattering and reflection of sound by rough surfaces," J. Acourt. Soc. Am. 29, 209 (1957).
V.K. Varadan tod V.V. Veradad, eds., Acoustic, Electromagnetic and Elartic Wave Scaltering.Focus on the T-matrix Approach, Pergamon Press, New York, 1980.
V.V. Varadaa, Y. Ma asd V.K. Varadan, "Propagator model includiog muluple fielda for diserete random media," J. Optical Soc. Am. 78 (5), 1879 (1985).
V.V. Varadan, V.K. Varadan ad Y. Ma. "EM wave propagation in discrete random media: nonspherical sutislics." in the Proceediogs of the 1986 CRDC Scientific Conference on Obscuration and Acrosol Research.
V.V. Varadad, V.K. Varadan, Y. Ma, and W.A. Stecle, "Ẹffects of nonspherical suatistics on EM wave propagation in dikerete random media," Radio Science 22, No. 4, 491 (1987).
V.V. Varadan, V.K. Varadan and Y. Ma, "Multiple scattering of waves io random media conlaining non-spherical scatterera," in the Electromagnetic Wave Propagation Panel Symposium aponsored by AGARD. NATO, 1987.
V.V. Varadan, Y. Ma and V.K. Varadan, "Scatlered intensity of a wave propagatiog io a discrece random gredium," subastued to Applied Oplics, August 1987.

Fig. 1 Porward scaltered incoherent intensity vertus nondimensional frequency ka . (oblate spherold b/a $=0.667, c=0.15$)

Fig. 2 Incoherent intensity versus scallering angle at ka $=1.0$. (oblate spheroid $b / a=0.667, c=0.15$)

Fig. 3 Incoherent intensily : Comparison with mirrowave expenmeats [Beard et sl., 1965]

Ezekiel Bahar and Mary Ann Fitzwater
Electrical ngincering Department
Universit; wiebraska-Lincoln
Lincoln, M. oraska 685RA-0511

RECENT PUBLICATIONS, SUBMITTALS FOR PUBLICATION AND PRESERTATIONS:
A) E. Bahar, "Co-Polarized and Cross-Polarized Incoherent Diffuse Specific Intensicies for Linearly Polarized Excitations of Irregular Shaped Particies," 1986 CRDC Scientific Conference on Obscuration and Aerosol Research, Aberdeen, Maryland, June 23-27, 1986.
B) E. Bahar, "Extinction Cross Sections and Albedos for Particles with Very Rough Surfeces," 1986 CRDC Scientific Conference on Obscuration and Aerosol Research, Aberdeen, Marylend, June 23-27. 1986.
C) E. Behar, "Scattering and Depolarization of Linearly Polarized haves by Finitely Conducting Particles of Irregular Shape," 2986 International Union of Radio Science, Commiasion F Symposium on Wave Propagation: Remote Sensing and Communacations, University oi New Hampshire, Durham, New Hampshire, July 28-August 1, 1986.
D) E. Bahar, "Application of Full Wave Theory to Computer Aided Geometric Design," 2Oth Midwest Symposium on Circuits and Systems, University of liebraska-Iincoln, August il-12, 1986.
E) E. Behar, "Incoherent Diffuse Scattering by Irregular Shaped Particles of Finite Conductivity," International Unicn of Radio Science (URSI) Symposium on Electromagnetic Theory, Budapest, Hungary, August 25-29, 1986.
F) E. Bahar, "SEASAT Microwave Altimeter Measurement of the Ocean Gravity-Wave Equilibrium-Range Spectral Behavior Using Full Wave Theory," 1986 International Geoscience and Remote Sensing Symposium (IGARSS '86), University of Zurich-irchel, Switzerlant, September 3-11, 1986.
G) E. Bahar, "Scattering and Depolarization by Rough Terrain and Vegetation Covered Terrain-Unified Full Wave Approach," Fall 1986 Electromagnetic Wave Propagation Panel Symposium on "Terrestrial Propagation Sharacteristics on Modern Systeras of Communications Surveillance, Guidance and Control," Sponsored Dy Advisory Group for ferospace Research and Development (NATO), Ottawa, Sanada, October 20-2'4 1986.
4) E. Bahar, "Scattering and Depolarization by Layers of Particles with Rough Surfaces Excited at Oblique Incidence," Irternational inion of Radio Sciences (URSI) Meeting at the University of Colorado, Bowder, January i2-15, 1987.
I) E. Bahar, "Scattering from Random Rough Surfaces and Random Media Consisting of Irregular Shaped Particles," U. S. Army Research Office Workshop on "Propagation in Random Media, Scattering from Rough Surfaces," wasingeton, D. C., March 23-25, 1987.
J) E. Bahar, "Multiple Scattering Effects of Random Distributions of Irregularly Shaped Particles on Infrared and Opticai Propagation," Spring 1987 Electromagnetic Wave Propagation Panel Specialists' Meeting on Scattering and Propagation in Random Media sponsored by Advisory Group for Aerospace Research and Development (NATO), Rome, Italy, May 18-22, 198?.
K) E. Bahar, "Enhancement of Backecatter from Random Rough Surfaces--Full Wave Solution," 1997 IEEE AP-S International Symposium and URSI Radio Science Meeting, Virginia Tech., Blackaburg, Virginia, June 15-19, 1987.
L) E. Eahar, "Backscatter Fnhancorent of Infrared and Optical Radiation from Finitely Conducting Particles with Smooth and Very Rough Surfaces-First Order and Multiple Scatter," 1987 CRDC Scientific Conference on Obscuration and Aerosol Research, Aberdeen, Maryland, June 22-26, 1987.
M) E. Bahar, "Radar Cross Section of Rough Terrain and Vegetation Covered Terrain," XXII General Assembly of the International Union of Radio Salence, Tel Aviv, Iarael, August 24-September 2, 1987.
N) E. Bahar, "Multiple Sattering in Media Consisting of Nonspherical Finitely Conducting Particles," vith M. A. Fitzwater, roceedings of the 1985 CRDC Scientific Conference on Obscuration and Aerosol Research, in press.
0) E. Bahar, "Scattaring and Depolarization by Conducting Cylinders with Rough Surfaces," with M. A. Fitzvater, Applied Oftics, Vol.25, pp. 1826-1832, June 1986.
P) E. Bahar, Fwil Wave Solutions for Elertromaguetic Scattering and Depolarization in Irregular Stratified Madia," Special Iague of Radio Scionce ot Naves in Inhomogeneous Media, Yol. 21, No. 4, pp. 543-550, July-Aㄱgust 1986.
Q) E. Bahar, "Multiple Scatteririg by Conducting Particles with Random Rough Surfaces at Infrared and Optical Frequencies," with K. A. Fitzwater, Radio Science, Vol. 21, No. 4, pp. 689-706, JulyAugust 1986.
R) E. Bahar, "Co-Polarized and Cross-Polarized Incoherent Diffuse Intensities Scattered by Finitely Conducting Particles of Irregular Ghape," with M. A. Fitzwater, Proceedings of the 1986 Intarnational Union of Radio Science Symposium on Wiave Propagation and Remote Sensing, Durham, New Hampohire, pp. 4.2.1-4.2.4, August 1986.
S) E. Bahar, "Extinction Cross Sections and Albedos for Particles with Very Rough Surfaces," with S. Chakrabarti and M. A. Fitzwater, Applied Optics, Vol. 25, No. 15, pp. 2530-2536, August 1986.
T) E. Bahar, "Scattering and Depolarization of Linearly Polarized Waves by Finitely Conducting Particles of Irregular Shape," with M. A. Fitzwater, Journal of Applied Physics, Vol. 50, No. 6, pp. 2123-2132, September 1986.
U) E. Bahar, "Incoherent Diffuse Scattering by Irregular Shaped Particles of Finite Conductivity," with M. A. Fitzwater, Proceedings of the International Radio Science Union Sjuposium on Electromagnetic Theory, Budapest, Hungary, pp. 63-65, August 1986.
V) E. Bahar, "SEASAT Microwave Altimeter Measurement of the Ocean Gravity-Wave Equilibrium-Range Spectral Behavior Using Full Wave Theory," Proceedings of the 1986 International Geoscience and Remote Sensing Symposium, IGARSS 1986, Zurich, USA, SP-254, pp. 1345-1349, September 1986.
w) E. Bahar, "Scattering and Depolarization by Randam Rough Terrain and Vegetation Covered Terrain--Unified Full Wave Approach, "Proceedings of the Advisory Group for Aerospace Research and Development (NATO) on Terrestrial Propagation Characteristics in Modern Systems of Communication, Surveillance, Guidance and Control, AGARD-CPP-407, Pp. 4.2-4.14, 0ctjoer 1986.
X) E. Bahar, "Scattering and Depolarization by Random Rough Surfaces, Unified Full Wave ipproach-An Overview," Proceedings of the International Symposium on Muitiple Scattering of Waves in Randoc Media and Random Rough Surfaces, Editors, V. V. Varadan and V. K. Varadan, pp. 115-733, Pennsyivarian State University, 1987.
Y) E. Behar, "Application of Full Wave Theory to Computer Aided Gecmetric Design," with S. Chakrabarti, Proceedings of the 29th Midwest Sjmposium on Circuits and Systems, Editor, M. Ismail, pp. 9ll915, North Holland, liY 1987.
Z) E. Bahar, "Co-Polarized and Cross-Folarized Incoherent Specific Intensities for Waves at Oblique Incidence Upon Layers of Finitely Conducting Particles of Irregular Shape," with M. A. Fitzwater, Journal of the Optical Society of America A, Vol. 4, pp. 4l-56, January 1987.

AA) E. Behar, "Reviev of the Full Wave Solutions for Rough Surface Scattering and Depolarization-Comparisons with Geometric and Physical Optics, Perturbation and Two-Scale Solutions," Journal of Geophysical Research, Vcl. 92, No. 65, pp. 5209-5224, May 15, 1.987.

BB) E. Bahar, "Full iave Theory Applied to Computer Aided Graphics for Three Dimensional Objects," with S. Chakrabarti, IEEE Computer Graphics and Applications, Special Issue, Supercomputers for Graphics, Vol. 7, No. 7, pp. 46-60, July 1987.
CC) E. Bahar, "Comparison of Unified Full-Wave Solutions for Normal-Incidence Microwave Backacatter from Sea with Physical Optiss and Hybrid Solutions," with D. E. Barrick and M. A. Fitzwater, International Journal of Remote Sensing, in press.

DD) E. Bahar, "Albedos and Extinction Cross Sections for Particles with Very Rough Surfaces," with S. Chakrabarti and M. A. Fitzwater, Proceedings of the 1986 CRDC Scientific Conference on Obscuration and Aerosol Research, in press.

EE) E. Bahar, "Co-Polarized and Cross-Polarized Incoherent Diffuse Specific Intensities for Linearly Polarized Excitation of Irregular Shaped Particles," With M. A. Fitzwater, Proceedings of the 1986 CRDC Scientific Conference on Obscuration and Aerosol Research, in press.

FF) E. Bahar, "Incoherent Diffuse Scattering by Irregular Shaped Particles of Finite Conductivity," Invited paper in special issue of Radio Science, in press.

GG) E. Bahar, "Multifle Scattering Effects of Random Distributions of Irregularly Shaped Particles on Infrared and Optical Propagation," with M. A. Fitzwater, Proceedings of the Advisory Group for Aerospace Research and Developmert (NATO) Spring 1987 Electromagnetic Wave Propagation Panel Symposium "Scattering and Propagation in Random Media," in press.
iH) E. Banar, "Full w'ave Theory and Controlled Optical Experiments for Enhanced Scattering and Depolarization by Random Rouigh Surfaces," with M. A. Fitzwater, Optics Commanications, in presa.
II) E. Bahar, "Generailzed Fourier Transforms for the Acoustic Pressure ard Velocity in Compreseible Viacous Stratified Media," submitted for review.

JJ) E. Bahar, "Scattering of Acoustic Waves in Irregular Layered Media-Full Wave Solutiona," submitted for review.
:KK) E. Bahar, "Full Wiave Solutions for the Scattering of Acoustic Waves Excited by Arbitrary Source Distributions in Irreguiar Layered Media," submitted for review.

LL) E. Behar, "Znhancement of the Backscattered Diffuse Specific Intensities from Random Distributions of Finitely Conducting Particles with Rough Surfaces," with M. A. Fit 2vater, submitted for review.
MM) E. Bahar, "Use of the Full Wave Approach to Demonstrate the Respestive Regions of Validity of the Perturbation, Physical Optics and Hybrid Solutions for Electromagnetic Scattering by Random Rough Surfaces," submitted for review.

NN) E. Bahar, "Physical Interpretation of the Full wave Solutions for the Electromagnetic Fieldg Scattered from Irregular Stratifled Redia," submitted for review.

ABSTRACT

The incoherent diffuse specific intensities (modified Stokes parameters) tackscattered from a parallel layer consisting of random distributions of finitely conducting particles with amooth and rough aurfaces are evaluated. The normally and obliquely inciaent excitations at infrared and optical
frequencies are vertically or horizantally polarized. The particle surface roughness, which is characterized by its joint probability density function, is assumed to be sufficiently rough in order to significantly effect the diffuse specific intensities. Thus the full wave approach is used to determine the phase matrix as well as the extinction coefficient that appears in the equation of radiative transfer. The enhanced backscattered intensities that depend upon the particle surface roughness are campared with the enhanced backscatter that is associated with Mie scattering from smooth spherical particles. The enhanced backscattered diffuse spocific intensities are evaluated for different particle sizes, complex permittivities, roughness parameters and excitations. The effects of varying the optical thickness of the layer are also considered. Since the enhanced backscatter phenomenon reported here is primarily due to the particle surface roughness it appears in both the first order and the multiple scatter solutions of the radiative transfer equations.

1. INTRODUCTION

The incoherent diffuse specific intensities (modified Stokes parameters) backscattered fram a parallel layer consisting of random distributions of finitely conducting particles are derived for vertically and horizontally polarized excitations at infrared and optical frequencies. Normal incidence and oblique incidence are considered, thus the incident electric field is parallel or perpendicular to the scattering plane.

Both smooth spherical particles as well as spherical particles with two dimensional random rough surfaces are considered. The particle rough surface neight (measured normal to the unperturbed spherical surface) is characterized by its joint probability density function which is related to the surface height correlation function or its spectral density function. A unified full wave approach that accounts for specular point as well as diffuse (Bragg) scattering in a aelf-consistent manner is used to derive the expressions for the phase matrix and the extinction coefficient appearing in the equation of radiative transfer (Bahar et al. 1986, 1987a).

By comparing the results for the specific intengities backscattered from both smooth and rough particles with different sizes, roughness parameters and complex permittivities it is possible to distinguish between the phenomenon of enhanced backscatter due to Mie scatter from spherical particles and enhanced backscatter due to the diffuse scatter generated by the rough surface of the particle. The polarization dependence of the backscattered diffuse specific intensities at normal and oblique incidence as well as the effects of varying the opilcai thickness of the layer of particles are considered in the illustrative examples.

2. FORMJLATION OF THE PROBLEM

In this section, the principal equations leading to the solution of tne incoherent diffuse specific intensities (modified Stakes parameters) are formulated for a layered medium consisting of a random distribution of irregularly shaped particles characterized by their rendom surface height spectral density functions and finite conductivity (see Fig. 1). Of particular concern in tinis work is the phenomenon of enhanced backacatter. The avarage surface of the particles is assumed to be spherical with radius a, between 2.5 and 5 wavelengths λ. The random surface height h, messured normal to the unperturbed apherical particle, is assumed to have a Gausian probability density with
mean square height $\left\langle h^{2}\right\rangle$, such that the roughness parareters $B=4 k_{0}^{2}\left\langle h^{2}\right\rangle$ varies betwicar ten and forty. Thus the perturbation technique (Rice 1951) cannot be ussd to account for diffuse scattering due to particle aurface roughness. The full wave technique which accounts for specular point as well as Bragg scatter in a unified self-consistent manner (Bahar and Fitzwater 1984) is used here to determine the fields scattered by the particles with rough surfaces. The backscatter incoherent diffuse specific intensities are derived for both the smooth and rough particles in order to distinguish between enhanced backscatter tiherent in the Mie solution for spherical particles and the enhanced backscatter that can be attributed to the effects of the surface roughness of the irregiar finiteiy conducting particles.

Linearly polarized electromagnetic waves are assumed to be normally or obilquely incident upon a parallel layer of irregularly shaped particles (see Fig. 2). The radius vector from the center to the surface of the particle is

$$
\begin{equation*}
\bar{r}_{s}=(a+h) \bar{a}_{r} \tag{2.1}
\end{equation*}
$$

In which the random rough surface height is characterized by the two dimensional spectral density function h or its Fourier transform, the autocorreiation funstion <hh'>, a is its average radius, and \vec{a}_{r} is the unit radius vector.

The incenerent diffuse specific intensity matrix [i] satisfies the equation of radiative transfer (Chandrasekhar 1950; Ishimaru 1978).

$$
\begin{equation*}
\mu \frac{d[I]}{d \tau}=-[I]+\int[S]\left[I^{\prime}\right] d \mu^{\prime} d \phi^{\prime}+\left[I_{i}\right] \tag{2.2}
\end{equation*}
$$

In which the elements of the column matrix [I] are the modiried Stokes parameters (Ishimaru 2978). A suppressed exp(i山t) time dependent excitation is assumed. The vertically and horizontally polarized components of the electric field are E_{1} and E_{2} respectively. The optical distance T is measured in the z direction, normal to the plane of the parallel layer (seefig. 2). The matrises (I) and [r'\} represent the incoherent diffuse intensities for waves scattered by the particles in the direstion $\theta^{-\cos ^{-1}} \mu$ and ϕ and for waves incident on the particles in the direction $\theta^{\prime}-\cos ^{-1} \mu^{\prime}$ and ϕ^{\prime} respectively. The 4×4 scattering (phase) matrix $[5]$ in the reference coordinate system (x, y, z) (see Fig. 2) is expressed in terms of the scattering matrix [S^{\prime}] associated with the scattering plane (that contains the incident and scatter wave normals n^{-1} and n^{-f} respectively) through tre following transformation

$$
\begin{equation*}
[s]=[\mathscr{L}(-\pi+\alpha)]\left[S^{\prime}\right]\left[\mathscr{L}\left(\alpha^{\prime}\right)\right] \tag{2.3}
\end{equation*}
$$

In (2.3) [S'] is the weighted sum of two matrices

$$
\begin{equation*}
\left[s^{\prime}\right]=\left|x\left(\bar{v} \cdot \bar{a}_{I}\right)\right|^{2}\left[S_{M I E}\right]+\left[S_{D}\right] \tag{2.4}
\end{equation*}
$$

where [$S_{M I E}$] is obtained from the Mie solution for finitely conducting spherical particles of radius a (Ishimaru 1978) and $\left[S_{D}\right]$:s the diffuse scattering contribution to the matrix [S'] due to the particle
surface roughness (Bahar and Fitzwater 1987a). The full wave approach is used to determine the elements of (S_{D}). The quantity X in (2.4) is the scattering particle's random rough surface height characteristic function. The coefficient $|X|^{2}$ in (2.4) accounts for the degradation of the specular point contribution to the scattered fields by the rough surface $\left(|x|^{2} \leq 1\right.$ and as $\beta \rightarrow 0,|x|^{2}+1$). For $k_{0} a \gg 1$ the Mie solution [$S_{\text {MIE }}$] accounts for the specularly reflected waves as well as the shadow forming wave scattered by the spherical particie. Thus in view of the coofficient $|x|^{2}$, as B increases the contribution to [S^{\prime}] due to specular scatter decreases, while the diffuse acattering contribution $\left[S_{D}\right]$ increases. The transformation matrices in (2.3) are expressed in terms of the angle α ' between the reference plane of incidence and the scattering plane and the angle a between the acattering plane and the reference plane of scatter (see Fig. 2) (Bahar and Fitzwater 198ia).

Since in this work it is assumed that linearly polarized waves (vertical, (V) or horizontal, (K))are obliquely incident ufon a parallel layer of optical thickness τ_{0} containing a random distribution of irregularly shaped particles, the incident Stokes matrix at $z=0$ is

$$
\begin{equation*}
\left[I_{\text {inc }}\right]=\left[I_{0}^{P}\right] \delta\left(\mu^{\prime}-\mu\right) \delta\left(\phi^{\prime}\right) \tag{2.5}
\end{equation*}
$$

In which $\mu^{1}=\cos \theta^{1}$, the direction of the incident wave is $\left(\theta^{1}, 0\right), \delta(\cdot)$ is the Dirac delta function and

$$
\left[I_{0}^{v}\right]=\left[\begin{array}{l}
1 \tag{2.6}\\
0 \\
0 \\
0
\end{array}\right] \quad\left[I_{0}^{H}\right]=\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right]
$$

Thus the reduced incident intensity is

$$
\begin{equation*}
\left[I_{r i}\right]=\left[I_{1 n c}\right] \operatorname{axp}\left(-\tau / \mu^{i}\right) \tag{2.7}
\end{equation*}
$$

and the ($4 \times \mathrm{l}$) excitation matrix in (2.2) is

$$
\begin{equation*}
\left[I_{1}\right]=\int[S]\left[I_{r 1}\right] d \mu^{\prime} d \phi^{\prime} \equiv[F] \exp \left(-\tau / \mu^{I}\right) \tag{2.8}
\end{equation*}
$$

where the (4xl) matrix [F] is

$$
\begin{equation*}
[F]=\left.[S]\left[I_{0}^{P}\right]\right|_{\substack{\mu^{\prime}=\mu^{\prime} \\ \phi^{\prime}=0}} \tag{2.9}
\end{equation*}
$$

and the matrix $\left[I_{0}^{P}\right]$ ($P=V, H$) is defined by (2.6). Using a Fourier series expansion for the diffuse specific intensities and the matrioes [S] and [F]. (Ishimaru et al. 1982, Bahar and Fitzwater 2987a) the equation of radiative transfer for the $m^{\text {th }}$ component of the Fourier series expansion can be written es follows

$$
\begin{equation*}
\mu \frac{d}{d \tau}[I]_{m}=-[I]_{m}+\int_{-1}^{1}[S]_{m}\left[I^{\prime}\right]_{m} d \mu^{\prime}+[I]_{m} \exp \left(-\tau / \mu^{1}\right) \tag{2.10}
\end{equation*}
$$

For details of the analysis see Bahar and Fitzwater 19870 where only forward scatter is considered.

3. ILLUSTRATTVE EXAMPLES

The particle randam two dimensional rough surface height h (measured normal to the unperturbed surface) is assumed in this work to be homogeneous and isotropic with a Caussian probability density. The unperturbed surface is assumed to be apherical (2.1). Thus, the rough surface height autocorrelation function $\left\langle h(\bar{r}) h\left(\bar{r}^{\prime}\right)\right\rangle=\langle h h '\rangle$ is only a function of the distance $\bar{r}_{d}=\mid \bar{r}-\bar{r}, i=\left(x_{d}^{2}+z_{d}^{2}\right)^{\frac{1}{2}}$ measured along the surface of the spherical particle of radius a. It is ulso assumed that the rough surface correlation distance r_{c} (uhere $\left\langle h^{\prime}\right\rangle=\left\langle h^{2}\right\rangle \exp (-1)$) is smaller than the circumference of the particle.

The two dimensional surface height syectral density function $W\left(v_{x}, v_{z}\right)$ is the two dimensional Fourier transform of the surface height autccorrelation function <hh'> (Bahar and Fitzwater 1987b). In these illustrative examples the following special form is assumed for the surface height spectral density function.

$$
\begin{equation*}
W\left(v_{T}\right)=\frac{2 C}{\pi}\left[\frac{v_{T}}{v_{T}^{2}+v_{m}^{2}}\right]^{8} \tag{3.1}
\end{equation*}
$$

in which the constant C has the dimension of (meters) ${ }^{-4}$. The above expression for $W\left(v_{T}\right)$ vanisines for $v_{T} \rightarrow 0$ and $v_{T} \rightarrow \infty$ and its peak value is $W\left(v_{T}=v_{m}\right)=C / 128 \pi v_{m}^{8}$. Thus the chcice of the constant $v_{\text {in }}$ determines the dominant scales of the surface roughness. The surface height normalited autocorrelation function R is given in closed form in terms of the modified Bessel functions of tr: second kind of order zero and one, K_{0} and K_{1}, respectiveiy.

$$
\begin{align*}
R(\xi) & =\left[1-\frac{3 \xi^{2}}{2}+\frac{3 \xi^{4}}{32}+\frac{\xi^{6}}{3072}\right] \xi K_{1}(\xi) \\
& +\left[\frac{1}{2}-\frac{\xi^{2}}{4}+\frac{\xi^{4}}{96}\right]^{2} K_{0}(\xi)=\left\langle h h^{\prime}\right\rangle /\left\langle h^{2}\right\rangle \tag{3.2}
\end{align*}
$$

In whicn the dimensionless argument is

$$
\begin{equation*}
\xi=v_{m} r_{d} \tag{3.3}
\end{equation*}
$$

Three cases are considered at infrared and optical frequencies
Case (a) $\lambda=0.555 \mu, D=10 \lambda, \varepsilon_{r}=-40-112$ (aluminum)
Case (b) $\lambda=10 \mu \mathrm{~m}, \mathrm{D}=5 \lambda, \varepsilon_{r}=1.5-18$ (dissipative dielectric)
Cage (c) $\lambda=10 \mu m$, uniform distribution of $D / \lambda=5,5.5,6,6.5,7,7.5$ and 8

$$
\varepsilon_{r}=1.5-18 \text { (dissipative dielectric) }
$$

In all the following illustrations the diffuse scattering intensities are given for the particles with the smooth and the rough surfaces and both first order scatter (solid lines) and multiple scatter results are presented.

In Figures 3 and 4 the backscattered apocific intensities I_{1} and I_{2} respectively, are plotted as functions of the acatter angle θ. The excitation at $\lambda=0.555$ m (case a) is normally incident and ifnearly polarized with the electric field in the \bar{a}_{x} direction. The optical thickness of the layer is
$T_{0}=0.1$. The particle surface roughness is given by (3.1) with $\gamma_{m} D=4$. Thus, the correlation length is $r_{c}=0.1 \pi \mathrm{D}$. The roughness parameter $\beta=40$, corresponding to a mean square slope $\left\langle\sigma_{8}^{2}\right\rangle=\beta / k_{o}^{2} r_{c}^{2}=1 / \pi^{2}$ and the mean square radius of curvature is given oy $k_{o}^{2}\left\langle p^{2}\right\rangle=417$. In Figure 3 , I_{1} is obtained in the $\phi=0,180^{\circ}$ plane (both the incident and scattered electric fields are in the scatter plane which is normal to $\bar{n}^{-1} \ln ^{-1}$) while in Figure $4, I_{2}$ is plotted in the $\Phi=90^{\circ}$, 270° plane (both the incident and scattered electric fields are perpendicular to the scatter plane). Since the optical thickness is $\tau_{0}=0.1$ the first order and multiple scatter results are not very different, however the particle surface roughness does have a very significant effect of smoothing out the fluctuations in the diffuse specific intensities as a function of the scatter angie. These fluctuations In the diffuse specific intensities scattered by smooth particles are more pronounced for the vertically polarized case than for the horizontally polarized case. This results directly from the Mie solution for large conducting spheres. The enhanced backscatter manifested in these illustrative examples is die to the peak in the backscattered differentiated cross sections for spherical particles (Mie solution) as vell as due to the particle surface roughness. In Figures 5 and 6 , the backscattered diffuse scattering intensities I_{1} and I_{2} are plotted as functions of the scatter angle θ in the plans of incidence, $\phi=0,180^{\circ}$. The excitations which are vertically and horizontally polarized respectively, at $\lambda=10 \mu \mathrm{~m}$ (case (b)) are obliquely incident at angle $\theta^{1}=15^{\circ}$. The particle surface roughness is given by (3.3) with $v_{m} D=4\left(r_{c}=0.1 \pi D\right)$. The roughness parareter is $B=10$ corresponding to $\left\langle\sigma_{s}^{2}\right\rangle=1 / \pi^{2}$ and $k_{0}^{2}\left\langle p^{2}\right\rangle=102$. The optical thikeness of the layer is $\tau_{0}=1$. The vertically polarized diffuse scattering intensity I_{1} (Figure 5) is more oscillatory than the horizontally polarized intensity I_{2} (Figure 6) and the backscatter enhancement is present only for the particles with rough surfaces.

In Figure 7 the tackscattered specific intensity I_{1} is plotted as a function of the scatter angle θ in the $\phi=0,180^{\circ}$ plane. The excitation at $\lambda=10 \mu m$ (case (c) mixture of particles of differert aizes) is normally incident and linearly polarized with the electric field in the \bar{a}_{x} direction. The optical thickness of the layer is $\tau_{0}=2$. The particle sirface roughness is given by (3.3) with $v_{m} D=4\left(r_{c}=0.1 \pi D\right)$. The roughness paraneter is $B=10$ corresponding to $\left\langle\sigma_{s}^{2}\right\rangle=.0645$ and $k_{0}^{2}\left\langle p_{0}^{2}\right\rangle=33 i$. There is no enhanced backscatter associated with the mixture of smooth particles. However, the results do exhibit enhanced backscatter for the particles with rough surfaces. In figure 8 the backscattered specific intensity I_{2} is plotied as a function of the scatter angle θ in the $0=90^{\circ}$, 270° plane. The excitation is as in figure 7 (case (c)). Thus, in the $\phi=90^{\circ}, 270^{\circ}$ plane both the incident and scattered intensities are horizontally polarized. The optical thickness of the layer is $\tau_{0}=2$. The particle surface roughness is the same as in Figure 7 . Here too, the phenomenon of the enharcei backacatter manifests itself only when the surface of the particles is rough. This enhanced baciscatter
is more distinct when the scattering plane is perpendicular to the direction of the electric field, namely for the horizontally polarized case.

4. CONCLUDING REMARKS

The incoherent diffuse specific intensities (moaified Stokes parameters) that are scattered, in the oackiard direction, from a parallel layer consisting of a random distribution of irregular shaped particies are computed for both vertically and horizontally polarized excitations at infrared and opticgl frequencies. The finitely conducting particies considered here are spherical in shape with average diameter D and a rough surface height h (measured normal to the unperturbed spherical surface) charasterized by its correlation function <hh'> or 1 its fourier transform, the surface height spectral density function. Waves that are both normally and obliquely incident upon the layer of particies are considered. It is shown that there is a pronounced backscatter enhancement that is due to the surface roughness of the particle. On comparing the solutions for the backscattered specific intensities for particles with smooth and rough surfaces it is seen thot the Mie differential scatter contributior $\left[S_{\text {lie }}\right]$ to the total phase matrix [$\left.S^{\prime}\right]$ (2.4) does not result in backscatter enhancement for all the cases considered. However, for particles with roughness parameters $B=4 k_{0}^{2}\left\langle h^{2}\right\rangle \geq 10$ the backscatter intensities were enhanced even when there is no corresponding enhancement due to Mie scatter from smooth spherica: particles. The diffuse scatter contribution [S] ${ }_{D}$ to the total phase matrix [S'] (2.4) is derived using a full wave approach.

Since the Mde solution for the vertically polarized scattered intensity is more oscillatory than for horizontelly polarized intensity, the phenomenon of enhanced backscatter is usually more pronodnced in the scatter plane perpendicular to the incident electric field (horizontally polarized incident wave). Both first order as well ss multiple scatter results for particles with smooth and rough surfaces are presented. Thus, it is shown that the enhanced backseatter phenomenca described in this work is primarily due to the particle surface roughness and not multiple scatter. Particles with different compiex permittivities are considered and the effects of changing the optical thickress of the lajers are obtained.

5. REFERENCES

1. Batiar, E. and M. A. Fitzwater (1984), "Scattering Cross Sections for Composite Rough Surfaces Using Full Wave Approach," IEFE Trans. Antennas Propag. AP-32, pp. 730-734.
2. Bahar, E., S. Chakrabarti, and M. A. Fitzwater (1986), "Extinction Cross Sections and Albedos for Particles with Very Rough Surfaces," Applied Optics, 25, pp. 2530-2536.
3. Bahar, E., and M. A. Fitzwater (1987a), Co-polarized and Cross-pola-ized Incoherent Specific Intensities for Waves at Oblique Incidence Upon Layers of Finitely Conducting Particles with Rough Surfaces," Journal of the Optical Society of America A, 4, pp. 41-56.
4. Bahar, E., and M. A. Fitzwater (19870), Enhancement of the Backacattered Diffuse Specific Intensities for Rendom Diatributions of Finitely ConductIng Particles with Rough Surfaces," Journal of the Opticel Society of Americe A, in press.
5. Cnandrasekhar, S. (1950), Radiative Transfer, Dover, New York.
6. Ishimaru, A., R. Woo, J. W. Armstrong, and D. C. Blackman (1982), "Multiple Scattering Calculations of Rain Effects," Radio Science, 17, pp. 1425-1433.
7. Rise, S. A. (1951), "Reflection of Flectromagnatic Waves from a slightly Rough Surface," Communication of Pure and Applied Math. , 4, pp. 351-378.

ACKIOWLEDGMENTS

The work was partially sponsored by the U. S. Army Research Contract DAAG-29-82-K-0123. The authors also acknowledge the National Science Foundation Engineering Supercomputer Grant ECS 8515794/5. The manuscript was prepared by Mrs. E. Everett.

Figlire 1. Scattering geometry for a rough conducting sphere.

FIGURE 2. Scattering geometz indicating incident and scattered wave normals \bar{n}^{-1} and \bar{n}^{f} and corresponding field components E_{1} paralled (vertical) and E_{2} perpendicular (horizontal) polarizations.

FIGURI 3. Backscattered incoherent specific intensity i: for a vertically polarized normally incident wave; $90^{\circ} \leq \theta \leq 180^{\circ}$, scatter plane $\phi=0^{\circ}, 180^{\circ}$, case (a), optical thickness $\tau_{0}=.1$ \qquad , first order scatter for smooth and rough particles; multiple-scatter (Eqn. 2.2) for smooth $(+)$ and rough (Δ) particles. Roughness parameter $B=4 k_{0}^{2}\left\langle h^{2}\right\rangle=40$, correlation lengtin $\left.r_{c}=0.1 \pi I\right), D / \lambda=10$.

FIGURE 4. Backscatteied incoherent specific intensit $\because I_{2}$ For a vertically polarized normally incident wave, $90^{\circ} \leq \theta \leq 190^{\circ}$, scatter plane $\Phi=90^{\circ}, 270^{\circ}$, case (a), optical thickness $\tau_{0}=.1$ _, First order scatter for smooth and rough particles; multiple-scatter (Esr. 2.2; for smooth $(+)$ and rough (Δ_{\prime} particles. $B=40$, $r_{c}=0.1 \pi D, D / \lambda=10$.

FIGURE 5. Backscattered incoherent specific intensity I_{1} for a vertically polarized wave incident at $\theta^{i}=15^{\circ}$, $\phi^{1}=0^{\circ}, 90^{\circ} \leq \theta \leq 180^{\circ}$, scatter plane $\phi=0^{\circ}, 180^{\circ}$, case (c), optical thickness $\mathrm{T}_{0}=1$. , first order scatter for smooth and rough particles; multiplescatter (Eq. 2.2) for smooth (+) and rough (Δ) particles. $\beta=10, r_{c}=0.1 \pi D, D / \lambda=5$.

FIGURE 6. Backscatterei incoherent specific intensity i_{e} for a horizontally polarized wave incident at $\theta^{1}=15^{\circ}$, $\phi^{1}=0,90^{\circ} \leq \theta \leq 180^{\circ}$, scatter plane $\uparrow=0^{\circ}, 180^{\circ}$, case (c), optical thickness $\tau_{0}=1$. , first order scatter for smooth and rough particles; multiplescatter (Eqn. 2.2) for smooth (+) and rough ($(厶)$
particles. $B=10, r_{c}=0.1 \pi D, D / \lambda=5$.

FIGURE 8. Backscattered incoherent specific intensity I_{2} for a vertically polarized normally inc!dent wave, $90^{\circ} \leq \theta \leq 180^{\circ}$, scatter plane $\Phi=90^{\circ}, 270^{\circ}$, case (d), optical thickness $T_{0}=2$. \qquad , first order scatter for smooth and rough particles; multiple seatter (Eqn. 2.2) for smooth (+) and rough (Δ) particles. $B=10, r_{c}=0.1 \pi D$, uniform distribution of $D / \pi=5$, $5.5,6,6.5,7,7.5,8$.

LIGHT SCATTERING BY AN ARBITRARILY CONFIGURED CLUSTER OF SPHERES

K. A. Fuller and G.W. Kattawar Texas A\&:M University, Department of Physics College Station, Texas, 77843

RECENT PUBLICATIONS, SUBMITTALS FOR PUBLICATION, AND PRESENTATIONS:

(A) K. A. Fuller, G. W. Kattawar, and R. T. Wang, "Electromagnetic Scattering from Two Dielectric Spheres: Further Comparisons Between Theory and Experiment," Appl. Opt. 25,2521(1986)
(B) K. A. Fuller and G. W. Kattawar, "A New Approach to Electromagnetic Scattering by Interacting Spheres," ir. Pruceedings of the 1986 CRDC Scientific Conference on Obacu. ration and Aerosol Research, R. H. Kohl, ed.
(C) K. A. Fuller and G. W. Kattawas, "A New Method for the Stuciy of Light Scattering by Ensembles of lnteracting Spheres," Presented at the Joint Fall Meeting of the Texas Sections of the American Physical Society and of the American Association of Physics Teachers, Nacogdoches, Tx (Nov. 7, 1986)
(D) K. A. Fuller and G. W. Kattawar, "Light Scattering by Ensembles of Interacting Spheres," presented to the Life Sciences Division of Los Alamos National Laboratory, Los Alamos NM, July 20, 1987.
(E) K. A. Fuller, Cooperative Electromagnetic Scattering by Ensembles of Interacting Spheres, PhD Dissertation, Texas A\&M University, 1987.
(F) K. A. Fuller and G. W. Kattawar, "A Consummate Solution to the Problem of Classical EM Scattering by an Ensemble of Spheres Part l: Linear Chains," submitted to Optics Letters.
(G) K. A. Fuller and G. W. Kattawar, "A Consummate Solution to the Problem of Classical EM Scattering by an Ensemble of Spheres Part Il: Clusters," to be submitted to Optics Letters.
(H) C.-R. Hu, G. W. Kattawar, M. E. Parkin, and P. Herb, "Symmetry Theorems on the Forward and Backward Scattering Mueller Matrices for Light Scattering from a Nonspherical Dielectric Scatterer," accepted for publication in Appl. Opt.
(I) G. W. Kattawar, C.-R. Hu, M. E. Parkin, and P. Herb, "Mueller Matrix Calculations for Dielectric Cubes: Comparison with Experiments." accepted for publication in Appl. Opt.

Abstract

This is the third in a series of reports appearing in these proceedings on our study of cooperative scattering by clusters of spheres. Our second report included outlines of the derivation of our newly developed order of scattering (OS) technique and of a more familiar method for the study of light scattering by two or more interacting spheres for the case where translation of coordinate origins was restricted to the z-axis of a fixed or primary coordinate system. For completeness, those outlines (with slight modifications that are needed when a general ensemble of spheres is considered) and the requisite schematics are reproduced in this report as well. Comparisons between selected calculations and experimental results are made for a triangular cluster of three spheres. Comparisons between the more established technique. which involves matrix inversion, and the new method are also made. The two methods are in complete agreement with one another, but for the cases considered, the OS technique is much more efficient and its description of the physics involved is much more complete. The agreement between experiment and theory is most gratifying.

INTRODUCTION

We report here on the extension of our solution of the problem of light seattering by ensembles of interacting spheres to include cases other than that of linear chains. This extension establishes our capability to model a cluster of arbitrary configuration with the only theoretical constraint being that the spheres do not intersect.

The scattering geometry used in this study is depicted in Fig. 1. Parameters of the form $k x=2 \pi x / \lambda$, where λ is the wavelength of the incident radiation, will be used henceforth to describe the dimensions of the system. The constituent spheres are assumed to be of identical size and composition, with size parameter $k a$ (radius a) and complex refractive index $N 1$. Such uniformity is not a requirement of the theory, but is employed both for simplicity and for comparison with existing experimental data. Linearly polarized plane wave radiation with wave vector \mathbf{k}_{0} impinges on this particle, with the angle between \mathbf{k}_{0} and the ${ }^{\prime} \boldsymbol{z}$-axes specified by α. Although \mathbf{k}_{0} could be restricted to the z-axis without loss of generality, allowing for $\alpha \neq 0$ leads to very substantial simplifications when calculating the scattering properties of linear chains. ${ }^{1-3}$ The polarization angle γ of the incident electric field \mathbf{E}_{0} will be allowed to take on only the values 0° and 90° for \mathbf{E}_{0} lying in or perpindicular to the $x z$-plane, respectively.

Fig. 1 The scattering geometry. Those quantities preceeded by a superscript denote coordinates measured with respect to the corresponding origin ' O, and the spheres in the cluster are centered about these origins. Quantities marked with a subscript ij denote the coordinates that locate the $j^{\text {th }}$ origin in the $1^{\text {th }}$ coordinate system. The quantities ${ }^{\text {c }} \hat{e}_{6}$ are unit vectors in the $\ell^{\text {th }}$ systena. The cylindrical components δ are employed here to help provide perspective but will not be involved in the text of this paper.

THE STANDARD METHOD

It is necessary to begin with a brief outline of the standard method for determining the fields scattered by such a system. The first comprehensive solution to the problem was obtained through the efforts of Liang and Lo ${ }^{1}$ and Bruning and Lo. ${ }^{2}$ In their theory (as well as ours), it is assumed that the scattered fields can be expanded as

$$
\begin{equation*}
\mathbf{E}_{1}=\sum_{\ell=1}^{L} \sum_{n=1}^{\infty} \sum_{m=-n}^{n}\left({ }^{\ell} A E_{m n}^{\ell} \mathbf{N}_{m n}^{(3)}+{ }^{\ell} A H_{m n}^{\ell} \mathbf{M}_{m n}^{(3)}\right) \tag{1}
\end{equation*}
$$

where, once again, ℓ is an index used to identify specific constituents of a cluster of L spheres. The expansion coefficients ${ }^{\ell} A E_{m, n}$ and ${ }^{\mathcal{L}} A H_{m n}$ correspond, respectively, to the E. and H-type modes of the $\ell^{\text {th }}$ sphere, and ${ }^{\ell} N_{m n}^{(3)}$ and ${ }^{\prime} M_{m n}^{(3)}$ are the vector spherical harmonics in the $\ell^{\text {th }}$ coordinate system, the origin of which lies at the center of the $f^{\text {th }}$ sphere. Vector wave functions with superscripts (1) and (3) have a radial dependence based on the spherical Bessel functions, $j_{n}(k \cdot r)$ and spherical Hankel functions of the first kind, $h_{n}^{(1)}(k \cdot r)$, respectively. If $L=1$ then the coefficients ${ }^{\mathcal{A}} A E_{m n}$ and ${ }^{\prime} A H_{m n}$ take on the form $v_{n} p_{m n}(\cos \alpha)$ and $u_{n} q_{m n}(\cos \alpha)$, respectively, where v_{n} and u_{n} are the Mie coeffiecients, and $p_{m_{n}}(\cos \alpha)$ and $q_{m n}(\cos \alpha)$ are the expansion coefficients of the incident plane wave.

In order to apply boundary conditions successfully, one must be able to expand the fields aratiered by the $f^{\text {th }}$ sphere about the center of any $i^{\text {th }}$ constituent of the chain. This can be accomplished through the use of the addition theorem for vector spherical harmonics ${ }^{1-6}$ which allows us to write

$$
\begin{align*}
\prime \mathbf{M}_{m n}^{(3)} & =\sum_{\nu=1}^{\infty} \sum_{\mu=-\nu}^{\nu}\left({ }^{\ell} \mathbf{M}_{\mu \nu}^{(1)} A_{\mu \nu}^{m n}\left(k \mathbf{d}_{1 \ell}\right)+{ }^{\ell} \mathbf{N}_{\mu \nu}^{(1)} B_{\mu \nu}^{m n}\left(k \mathbf{d}_{1 \ell}\right)\right) \\
{ }^{\prime} \mathbf{N}_{m n}^{(3)} & =\sum_{\nu=1}^{\infty} \sum_{\mu=-\nu}^{\nu}\left({ }^{\ell} \mathbf{N}_{\mu \nu}^{(1)} A_{\mu \nu}^{m n}\left(k \cdot \mathbf{d}_{1 \ell}\right)+{ }^{\ell} \mathbf{M}_{\mu \nu}^{(1)} B_{\mu \nu}^{m n}\left(k \mathbf{d}_{1 \ell}\right)\right) . \tag{2}
\end{align*}
$$

The procedure for finding the scattering coefficients now closely parallels that used in finding the Mie coefficients, and one is lead to a set of $2 L$ coupled linear equations of the form

$$
\begin{align*}
& \ell A E_{m n}={ }^{\ell} v_{n}\left[{ }^{\ell} p_{m n}-\sum_{i \neq \ell} \sum_{\nu} \sum_{\mu}\left(A E_{\mu \nu} A_{m n}^{\mu \nu}\left(k \mathbf{d}_{\imath \ell}\right)+{ }^{i} A H_{\mu \nu} B_{n, n}^{\mu \nu}\left(k \mathbf{d}_{i \ell}\right)\right)\right] \\
& \ell A H_{m n}={ }^{\ell} u_{n}\left[{ }^{\ell} \varphi_{m n}+\sum_{i \neq \ell} \sum_{\nu} \sum_{\mu}\left(A H_{\mu \nu} A_{m n}^{\mu \nu}\left(k \mathbf{d}_{i \ell}\right)+{ }^{\imath} A E_{\mu \nu} B_{m n}^{\mu \nu}\left(k \mathbf{d}_{i \ell}\right)\right)\right] \tag{3}
\end{align*}
$$

Furthermore, it can be shown ${ }^{3}$ that

$$
A_{\mu \nu}^{m n}\left(k \cdot d_{l i}\right)=(-1)^{n+\nu} A_{\mu \nu}^{m n}\left(k d_{i l}\right)
$$

and

$$
B_{\mu \nu}^{m n}\left(k \mathrm{~d}_{\ell i}\right)=-(-1)^{n+\nu} B_{\mu \nu}^{m n}\left(k \mathrm{~d}_{1 \ell}\right)
$$

Eq. 3 can be cast in the form of a matrix equation in which the translation coefficients give rise to the coefficient matrix, and the scattering coefficients can then be found by direct matrix inversion.

THE NEW METHOD

Rather than matrix inversion, we have found a straightforward way to obtain the scattering coefficients through an order of scattering (OS) technique. Fig. 2 depints the scattering process in the context of this method where, for ease of visualization, we have set $L=2$. The "scattering ladders" in Fig. 2a should be interpreted as follows: Plane wave radiation strikes the first sphere which then scatters a field (as prescribed by Lorentz- Mie theory) both to the field point and to the second sphere. The second sphere then responds to the field incident on it from the first sphere, scattering radiation to the field point and back to the first sphere. This process is continued indefinitely, and the total scattered field is then obtained by adding all of these contributions to a sum of similar terms which arise from plane wave radiation incident on the second sphere. In Fig. 2, a term of the form ' $\mathbf{k}^{(\rho)}$ is understood to be the wave vector of the $j^{\text {th }}$-order multiply scattered field, or the $j^{\text {th }}$-order partial field, emanating from the $f^{t h}$ sphere, and ${ }^{\prime} \theta$ is the angle between the wave vectors ${ }^{\prime} k^{\prime \prime}$) and the z-axis. Our theory applies equally well to the calculation of far, near, and internal fields, and this is why ${ }^{1} A \not f^{2} \theta$ in Fig. 2.

Fig. 2 An illustration of the order of scattering process through the use of scattering ladders. The contributions to the total scattered field by the partial fields generated from radiation incident on the first sphere are shown on the left and those arising from radiation incident on the second sphere are shown on the right.

To obtain explicit expressions for the partial fields, we first expand the $j^{\text {th }}$-order partial field of the $f^{t h}$ sphere as

$$
\begin{equation*}
{ }^{\ell} \mathbf{E}^{(J)}=\sum_{n, m}\left({ }^{\ell} a_{m n}^{(\jmath)}{ }^{\prime} \mathbf{N}_{m n}^{(3)}+{ }^{\ell} b_{r i n}^{(\jmath)}{ }^{\ell} \mathbf{M}_{m n}^{(3)}\right) . \tag{4}
\end{equation*}
$$

In the context of a more generalized form of the Lorentz-Mie theory, this scattered field is now regarded as the incident field seen by the other $\left(i^{\text {th }}\right)$ sphere, and with the help of the addition theorem, it can then be expanded about the $i^{\text {th }}$ origin. Upon solving the resulting boundary value problem one finds that the $j^{\text {th }}$-order scattering coefficients can be written as

$$
\begin{align*}
& { }^{1} a_{m n}^{(1)}={ }^{1} v_{n} \sum_{\nu} \sum_{\mu}\left({ }^{2} a_{\mu \nu}^{(1-1)} A_{\mu \nu}^{m n}\left(k \mathrm{~d}_{12}\right)+{ }^{2} b_{\mu \nu}^{(1-1)} B_{\mu \nu}^{m n}\left(k \mathrm{~d}_{12}\right)\right) \\
& { }^{1} b_{m n}^{(\jmath)}={ }^{1} u_{n} \sum_{\nu} \sum_{\mu}\left({ }^{2} b_{\mu \nu}^{(j-1)} A_{\mu \nu}^{m n}\left(k \mathrm{~d}_{12}\right)+{ }^{2} a_{\mu \nu}^{(j-1)} B_{\mu \nu}^{m n}\left(k \mathrm{~d}_{12}\right)\right) \\
& { }^{2} a_{m n}^{(1)}={ }^{2} v_{n} \sum_{\nu}(-1)^{n+\nu} \sum_{\mu}\left({ }^{1} a_{\mu \nu}^{(\rho-1)} A_{\mu \nu}^{m n}\left(k \mathrm{~d}_{12}\right)-{ }^{1} b_{\mu \nu}^{(1-1)} B_{\mu \nu}^{m n}\left(k \cdot \mathrm{~d}_{12}\right)\right) \tag{5}\\
& { }^{2} b_{m \nu}^{(J)}={ }^{2} u_{n} \sum_{\nu}(-1)^{n+\nu} \sum_{\mu}\left({ }^{1} b_{\mu \nu}^{(j-1)} A_{\mu \nu}^{m n}\left(k \mathbf{d}_{12}\right)-{ }^{1} a_{\mu}^{(j-1)} B_{\mu \nu}^{m n}\left(k \mathbf{d}_{12}\right)\right) .
\end{align*}
$$

In addition to quantifying the partial fields which combine to produce the net scattered field, Eq. 5 allows one to see exactly what role each of the $\nu^{\text {th }}$-degree, $\mu^{\text {th }}$-order TH and TE modes arriving from one sphere play in stimulating any $n^{\text {th }}$-degree, $m^{\text {th }}$-order TH or TE mode in the other sphere for any order of scattering.

For brevity, the notation

$$
\begin{align*}
& { }^{1} a_{m n}^{(\prime)}={ }^{1} v_{n}{ }^{2} \Xi_{m n}\left(k \cdot \mathrm{~d}_{12}\right) \\
& { }^{1} b_{m n}^{(\prime)}={ }^{1} u_{n}{ }^{2} \Xi_{m n}\left(k \cdot \mathbf{d}_{12}\right) \tag{6}\\
& { }^{2} a_{m n}^{(\prime)}={ }^{2} v_{n}^{\prime} \Xi_{m n}\left(k \cdot \mathbf{d}_{21}\right) \\
& { }^{2} b_{m n}^{(\prime)}={ }^{2} u_{n}{ }^{\prime} \Xi_{m n}\left(k \cdot \mathbf{d}_{21}\right)
\end{align*}
$$

may be employed, where it is understood that if $j=0$ then !he ${ }^{\prime} \Xi_{m n}\left(k \cdot d_{1}\right)$ and ${ }^{\prime} \Xi_{m n}\left(k d_{1} c\right)$ are to be repiaced with ${ }^{\prime} p_{m n}$ and ${ }^{\prime} q_{m n}$, respectively. The expansion coefficients of the total
scattered field are then given by

$$
\begin{align*}
& \ell_{A} E_{m n}=\sum_{j=0}^{\infty} \iota_{a n}^{(\jmath)} \\
& \ell^{\prime} A H_{m n}=\sum_{j=0}^{\infty} \iota_{m n}^{(\jmath)} . \tag{i}
\end{align*}
$$

dISCUSSIONS AND COMPARISONS WITH EXPERIME.'TAL DATA

When one is dealing with two spheres, it is clear that a $j^{\text {th }}$-order scattering term is encountered exactly twice for any j: One from each sphere. For $L(>2)$ spheres, any partial field ' $\mathbf{E}^{(J)}$ will have more than L histories (except for $j=0$), and the number of these possible histories increases very dramatically with either L or j. If one is not careful, the problem oi keeping track of the possible ways to generate a particular $j^{\text {th }}$-order partial field will become intractable, even for $L=3$. A very natural way to proceed is to replace each particle in the scattering ladder with an appropriate set of scattering ladders, thereby reducing an L-sphere scattering problem to a continued sequence of 2 -body problems. Fig. 3 diagrams such an extension for the case of three spheres. We have tested this method against that involing matrix inversion and have obtained excellent numerical agreement.

In addition to checking our OS calculations against those of the older method, we have also compared our results with experimental data which were kindly provided by Dr. R. T. Wang of The Space Astronomy Laboratory at the University of Florida. Some of the results of this latter study are showin in Figs ta and 5 . Attention is called to the fact that the converged "sparkle" function in Fig. 4 a is symmetric about $\alpha=55^{\circ}$ whereas the particle possesses only threefold symmetry. This feature is due to the fact that reciprocity has combined with particle symmetry to yield a more periodic scattering pattern than might otherwise be anticipated. In the present case it is, more precisely, a reflection of reciprocal scattering across the y--plane that accounts for the added symmetry.

It is the close agreement between experiment and theory which can be seen in the above figures that best validates our calculations. With that, we proceed to examine in Fig. 4b

Fig. 3 A partial illustration of light scattering by three spheres in which the incident radiation impinges on a specific pair of spheres in the system. The total scattered field is obtained hv adding the partial fields from this figure to those generated by radiation that is incident on the third sphere.

Fig. 4 (a) A comparison of experimental measurements with theoretical values for the intensity of light scattered into $3=50^{\circ}$ by a triangular cluster of spheres as a funtion of cluster orientation. Results for the case in which all correlation effects have been neglected are labeled n.i.s. (noninteracting spheres). (b) A study of the convergence properties of the OS method. The solid line is for the converged solution and the dotted line is for n.i.s. The curve made up of long dashes corresponds to the case of scattering by a noninteracting sphere and bisphere and that made up of short dashes corresponds to the sum of the two first order interactions between these particles. At an azimuth angle of 0° the incident radiation impinges on the bisphere at broadside.

Fig. 5 A comparison of experimental measurements with theoretical values for the intensity of light scattered into $3=0^{\circ}$ by a triangular cluster of spheres as a funtion of cluster orientation. Results for the case in which all correlation effects have been neglected are labeled ni.s. (noninteracting spheres).
the convergence of $O S$ for the situation illustrated in Fig. 4a. To do this the three-sphere is divided into a bisphere and a singlet, and the following notation is introduced: Let the intensity of radation scattered by a noninteracting singlet and bi:phere be expressed as

$$
I_{s}^{(j=0)}=\left.\left|\left({ }^{1} \mathbf{E}_{s}+{ }^{2} \mathbf{E}_{0}\right)^{(0)}+{ }^{3} \mathbf{E}_{s}^{(0)}\right|^{2} \equiv\right|^{b} \mathbf{E}_{1}^{(0)}+\left.{ }^{3} \mathbf{E}_{0}^{(0)}\right|^{2},
$$

where b stands for bisphere and $s b$ is to be read singlet-bisphere. Extension of this notation to higher orders of singlet-bisphere interactions should be obvious. In this context, the progression of the interaction for the cluster being studied in Fig. 4 a is shown in Fig. 4 b . Further calculations have been made to determine the phase functions of this triangular cluster at specific orientations with respect to the incident beam. These phase functions are displayed in Fig. 6.

In addition to the increased amount of physical insight that can be gained from this apHunch, OS also avoids the need to peaform matrix inversions. and hence it actually requires less computing time in many cases. For linear chains of up to five spheres, the amount of computing time required by $O S$ is typically $l^{\prime} 2$ to $2 / 3$ of that required by matrix inversion, provided that morphological resonances of the independent constituents are avoided. If a singlet resonance is encountered. it may be more advantageous (computationally) to use mati' x inversion. though this point warrants further study. As mentioned earlier, restriction of the clumet feometry to linear chams results in simplification of the calculations. This simplifica. fun is particularly marked n the case of the matrix method since inversion of the relatively lage array generated from E_{f}. (3) can then be broken up into a sequence of inversions of substantially smaller arrays due to the decoupling of azimuthal modes that is brought on by the introduction of cylindical symmetry to the problem. ${ }^{1-3}$ Consequently, calculation of the scattering coefficients of the triangular cluster via $E q$. (3) with its attendant increase in array size takes 15 times longer than when $O S$ is used. As seen in Fig. 4b, ignoring interactions lietween the bisphere and saglet beyond $J=1$ provides a very good approximation to the exact sparkle function. Such an approximation runs in about $1: 20$ the time required by matrix inversion.

This work was supported by the U'. S. Army Research Office under contract DAAL03-86-K-0168.

REFERENCES

1. C. Lang and Y'. T. Lo, Radio Science, 2, 1481(1967).
2. J. H. Bruning and I'. T'. Lo. IEEE Trans. Antennas Propag.. AP-19, 378(1971).
3. K. A. Fuller, Coopcrative Electromagnetic Scattering by Ensembles of Interacting Spheres. PhD Dissertation. Texas Adill Liniversity. 1987.
4. B. Friedman and J. Russek. Quart. Appl. Math., 12, 13(1954).
5. S. Stein, Quart. Appl. Math., 19, 15(1961).
G. O.R. Cruzan. Quart. Appl. Math., 20, 33(1962).

THE POSSDBILITY OT USING SEVEN DIMENSIONAL

ELECTROMAGNETIC THEORY TO SOLVE TBREE

DIMENSIONAL LIGET SCATTERING PROBLEMS

D. K. Cohoon

Department of Methematics 0sS. 16

Temple Univeroisy

Phïadelphia, Pennoylvania 19122

ABSTRACT

The Caley algebra is used to construct a curl operation. An electromagnetic theory is fully developed using this curl operation. Every differentiable vector field is a gradient plus a curl which means that the standard potential theory of electromagnetic theory in three dimensional space carries over. Unlike the usual higher dimonsional electromagnetic theory using exterior differentials as the rifl operation, the electric and magnetic vectors are vector fields of the same form. The uniqueness theory based on radiation conditions of Silver Mueller type carries over to the seven dimensional scattering problems. The impetus for this work is the structure theorem of Zorn ([29]) developed
in 1931. The curl is shown to be self adjoint which means that variational formulations of scattering problems also carry over to seven dimensional space.

By considering separable expansions of the vector fields in seven dimensional space, there may be a possibility of solving scattering problems in three dimensional space, because the first three components of the seven dimensional curl of the imbedding of a three dimensional vector field in seven dimensional space is exactly the three dimensional curl of the original vector field. So every solution of a three dimensional scattering problem is a solution of the seven dimensional Maxwell equations. Conversely, to every solution of the seven dimensional Maxwell equations in free space we can associate in a natural way a solution of the three dimensional Maxwell equations possibly with sources.

A uniqueness theorem is established for seven dimensional, magnetically lossy, penetrable, anisotropic scatterers covered by impedance sheets.

1. INTRODUCTION

We define the curl operation on the space $C^{\infty}\left(\Omega, c^{7}\right)$, where Ω is an open set in real seven dimensional space by the rule,

$$
\begin{align*}
& \text { curl }(\mathbb{E})= \\
& \left(\begin{array}{l}
\left.\frac{\partial E_{3}}{\partial x_{2}}-\frac{\partial E_{2}}{\partial x_{3}}+\frac{\partial E_{5}}{\partial x_{4}}-\frac{\partial E_{4}}{\partial x_{8}}+\frac{\partial E_{7}}{\partial x_{6}}-\frac{\partial E_{6}}{\partial x_{7}}\right) e_{1}+ \\
\left.-\frac{\partial E_{3}}{\partial x_{1}}+\frac{\partial E_{1}}{\partial x_{3}}+\frac{\partial E_{6}}{\partial x_{4}}-\frac{\partial E_{7}}{\partial x_{5}}-\frac{\partial E_{4}}{\partial x_{6}}+\frac{\partial E_{5}}{\partial x_{7}}\right) e_{2}+ \\
\left(\frac{\partial E_{2}}{\partial x_{1}}-\frac{\partial E_{1}}{\partial x_{2}}-\frac{\partial E_{7}}{\partial x_{4}}-\frac{\partial E_{6}}{\partial x_{5}}+\frac{\partial E_{5}}{\partial x_{6}}+\frac{\partial E_{4}}{\partial x_{7}}\right) e_{3}+ \\
\left(-\frac{\partial E_{5}}{\partial x_{1}}-\frac{\partial E_{6}}{\partial x_{2}}+\frac{\partial E_{7}}{\partial x_{3}}+\frac{\partial E_{1}}{\partial x_{8}}+\frac{\partial E_{7}}{\partial x_{6}}-\frac{\partial E_{3}}{\partial x_{7}}\right) e_{4}+ \\
\left(\frac{\partial E_{4}}{\partial x_{1}}+\frac{\partial E_{7}}{\partial x_{2}}+\frac{\partial E_{6}}{\partial x_{3}}-\frac{\partial E_{1}}{\partial x_{4}}-\frac{\partial E_{3}}{\partial x_{6}}-\frac{\partial E_{2}}{\partial x_{7}}\right) e_{5}+ \\
\left(-\frac{\partial E_{7}}{\partial x_{1}}+\frac{\partial E_{4}}{\partial x_{2}}-\frac{\partial E_{8}}{\partial x_{3}}-\frac{\partial E_{2}}{\partial x_{4}}+\frac{\partial E_{3}}{\partial x_{8}}+\frac{\partial E_{1}}{\partial x_{7}}\right) e_{6}+ \\
\left(\frac{\partial E_{6}}{\partial x_{1}}-\frac{\partial E_{5}}{\partial x_{2}}-\frac{\partial E_{4}}{\partial x_{3}}+\frac{\partial E_{3}}{\partial x_{4}}+\frac{\partial E_{2}}{\partial x_{5}}-\frac{\partial E_{1}}{\partial x_{6}}\right) e_{7} .
\end{array}\right.
\end{align*}
$$

where e_{j} for $j=1,2,3,4,5,6$, and 7 denotes the unit vector in the direction of the positive x_{j} axis, and each E_{j} is a complex valued infinitely differentiable function of the points $\left(x_{1}, x_{2}, x_{3}, x_{4} x_{6}, x_{6}, x_{7}\right)$ in Ω. Thus, the function

$$
\begin{equation*}
\mathbf{E}=E_{1} e_{1}+E_{2} e_{2}+E_{5} e_{3}+E_{4} e_{4}+E_{5} e_{5}+E_{6} e_{6}+E_{f} e_{1} \tag{1.2}
\end{equation*}
$$

is valued in C^{7}, complex 7 dimensional space, and its curl is also in the space $C^{\infty}\left(\Omega, C^{7}\right)$, which means that the curl defined by (1.1) is a topological endomorphism of this space of functions. The rule for the curl defined by equation (1.1) is based on the structure theorem of Caley space (e.g. Zorn [29], or Calabi [3]).

If we start with a solution of Maxwell's equations in three dimensional space and extend the \mathbf{E} and H vector fields to seven
dimensional space by requiring that partial derivatives with respect to the variables x_{4} through x_{7} vanish, then with the above definition of curl and the natural definition of Maxwell's equations in seven dimensional space based on the curl operation, we see that our solution in three dimensional space satisfies the seven dimensional Maxwell equations.

We note that the curl operation defined by equation (1.1) is self adjoint in the sense that if A and C are infinitely differentiable functions from an open set Ω in real seven dimensional space valued in complex seven dimensional space and vanishing outside of a compact subset K of Ω, then

$$
\begin{equation*}
\int_{n} \operatorname{curl}(A(x)) \cdot C(x) d x=\int_{\Omega} A(x) \cdot \operatorname{curl}(C(x)) d x \tag{1.3}
\end{equation*}
$$

The above relationship follows by a simple integration by parts.
Zorn ([29], 1931) showed that a vector space satisfying the axioms of a Caley space algebra, which is the type of algebra for which one can define a traditional type of curl operation, is necessarily seven dimensional.

To have a traditional type of electromagnetic theory one needs the concept of scalar and vector potentials. The following theorem shows that this is possible with the curl we have defined in equation (1.1).

Theorem 1.1. If the curl operation is defined on the function space $C^{\infty}\left(\Omega, C^{7}\right)$ of infinitely differentiable functions on open subsets n of real seven dimensional space and valued in complex seven dimensional space, C^{7}, then

$$
\begin{equation*}
\operatorname{curl}(\operatorname{curl}(\mathbf{E}))=\operatorname{grad}(\operatorname{div}(\mathbf{E})-\Delta \mathbf{E} \tag{1.4}
\end{equation*}
$$

This follows from a computation. Observe that if $\operatorname{curl}(\operatorname{curl}(\mathbb{E}))_{j}$ denotes the jth component of the curl of the curl, then the first component of the curl is given by

$$
\begin{align*}
& \operatorname{corl}(\operatorname{curl}(E))_{1}= \\
& \quad \frac{\partial}{\partial x_{2}}\left(\frac{\partial E_{2}}{\partial x_{1}}-\frac{\partial E_{1}}{\partial x_{2}}-\frac{\partial E_{7}}{\partial x_{4}}-\frac{\partial E_{6}}{\partial x_{5}}+\frac{\partial E_{5}}{\partial x_{6}}+\frac{\partial E_{4}}{\partial x_{9}}\right) \\
& - \\
& -\frac{\partial}{\partial x_{3}}\left(-\frac{\partial E_{3}}{\partial x_{1}}+\frac{\partial E_{1}}{\partial x_{3}}+\frac{\partial E_{6}}{\partial x_{4}}-\frac{\partial E_{7}}{\partial x_{5}}-\frac{\partial E_{4}}{\partial x_{6}}+\frac{\partial E_{8}}{\partial x_{7}}\right) \\
& + \\
& +\frac{\partial}{\partial x_{4}}\left(\frac{\partial E_{4}}{\partial x_{1}}+\frac{\partial E_{7}}{\partial x_{2}}+\frac{\partial E_{6}}{\partial x_{3}}-\frac{\partial E_{1}}{\partial x_{1}}-\frac{\partial E_{3}}{\partial x_{6}}-\frac{\partial E_{2}}{\partial x_{7}}\right) \\
& - \tag{1.5}\\
& -\frac{\partial}{\partial x_{5}}\left(-\frac{\partial E_{5}}{\partial x_{1}}-\frac{\partial E_{6}}{\partial x_{2}}+\frac{\partial E_{7}}{\partial x_{3}}+\frac{\partial E_{1}}{\partial x_{5}}+\frac{\partial E_{2}}{\partial x_{6}}-\frac{\partial E_{3}}{\partial x_{7}}\right) \\
& + \\
& +\frac{\partial}{\partial x_{6}}\left(\frac{\partial E_{6}}{\partial x_{1}}-\frac{\partial E_{5}}{\partial x_{2}}-\frac{\partial E_{4}}{\partial x_{3}}+\frac{\partial E_{3}}{\partial x_{4}}+\frac{\partial E_{2}}{\partial x_{5}}-\frac{\partial E_{1}}{\partial x_{6}}\right) \\
& -
\end{align*}
$$

We collect terms in the above expression and find that there is considerable cancellation of terms. Some manipulation will show that

$$
\begin{equation*}
\operatorname{curl}(\operatorname{curl}(E))_{j}=\frac{\partial}{\partial x_{j}}(\operatorname{div}(E))-\Delta E_{j} \tag{1.6}
\end{equation*}
$$

which completes the proof of Theorem 1.1.
The following theorem will give us a generalization of the notion that every vector field is a curl plus a gradient. In the following theorem you can let n be three or seven and let L denote respectively the three dimensional curl or the seven dimensional curl defined by equation (1.1).

Theorem 1.2. Let n be an arbitrary open subset of real n dimensional space. Let $C^{\infty}\left(\Omega, C^{\bullet}\right)$ denote the infinitely differentiable functions trom the open set $\boldsymbol{\Omega}$ to complex n dimensional space. We let L denote a linear partial differential operator from $C^{\infty}\left(\Omega, C^{a}\right)$ into itself.

We suppose that there is an elliptic partial differential operator with constant coefficients

$$
\begin{equation*}
P(D)=P\left(-i \frac{\partial}{\partial x_{1}},-i \frac{\partial}{\partial x_{2}}, \cdots,-i \frac{\partial}{\partial x_{1}}\right) \tag{1.7}
\end{equation*}
$$

such that if E is a member of $C^{\infty}\left(\Omega, C^{n}\right)$, then

$$
\begin{equation*}
L(L(E))=\operatorname{grad}(\operatorname{div}(E))+P(D) E \tag{1.8}
\end{equation*}
$$

then there is a vector field A, a kind of vector potential, in $C^{\infty}\left(\Omega, C^{a}\right)$ and a scalar valued function in $C^{\infty}\left(\Omega, c^{1}\right)$ such that

$$
\begin{equation*}
\mathbf{E}=\mathrm{L}(\boldsymbol{\Lambda})+\operatorname{grad}(\boldsymbol{\Phi}) \tag{1.9}
\end{equation*}
$$

Proof. The fact that $P(D)$ is elliptic (or in the special case where L is a curl that Δ, the Laplacian, is elliptic implies that for any scalar valued function such as a component E_{j} of the vector field \mathbf{E} we can always find a solution G_{j} of the equation,

$$
\begin{equation*}
P(D) G_{j}=E_{j} \tag{1.10}
\end{equation*}
$$

If we now define for the special case of $n=7$

$$
\begin{equation*}
G=G_{1} e_{1}+G_{x_{2}}+G_{x_{3}}+G_{8} e_{4}+G_{8} e_{6}+G_{8} e_{6}+G_{x_{7}} \tag{1.11}
\end{equation*}
$$

and observe that with $\mathrm{L}=$ curl as defined by (1.1) that

$$
\begin{equation*}
L(L(G)=\operatorname{grad}(\operatorname{div}(G))-P(D) G \tag{1.12}
\end{equation*}
$$

Since equations (1.10) and (1.11) imply that

$$
\begin{equation*}
\mathbf{E}=P(\mathbf{D}) \mathbf{G} \tag{1.13}
\end{equation*}
$$

the last two equations imply that

$$
\begin{equation*}
\mathbf{E}=\mathbf{L}(\mathbf{A})+\operatorname{grad}(\Phi) \tag{1.14}
\end{equation*}
$$

where

$$
\begin{equation*}
A=-L(G) \tag{1.15}
\end{equation*}
$$

and

$$
\begin{equation*}
\theta=\operatorname{div}(G) \tag{1.16}
\end{equation*}
$$

We see from the above argument and its obvious
generalizations that solvability of elliptic equations in spaces of infinitely differentiable functions will give us many ways to develop a set of vector and scalar potentials and that the traditional curl and gradient decompositions of an arbitrary vector field are valid when this vector field is an infinitely differentiable function from open subsets of real three or seven dimensional space, respectively, into complex three or seven dimensional space.

A key to integral equation formulations of electromagnetic scattering problems in anisotropic, penetrable, dispersive, beterogeneous material bodies in 3 or 7 dimensions is (a) the development of the fundamental solution of the free space Helmholtz equation, and (b) the possibility of introducing artificial electric and magnetic charges and currents.

We begin with a concept of functional averages (Treves [25]), Haar measures on the group of rotations in R^{n} and averages involving integrals over the surface of a sphere of radius one of the function under consideration acting on the distance of a point x in R^{n} to the origin multiplied by a vector point on the unit sphere and divided by the surface area of this unit sphere. These two natural ways of averaging physical quantities are the same for rotationaliy invariant functions. The rotation group average of the function f is

$$
\begin{equation*}
G f(x)=\int_{G} f\left(T^{-1} x\right) d T \tag{2.1}
\end{equation*}
$$

where the group G is $O(n)$, the group of real orthogonai transformations, and the sphere average of f is

$$
\begin{equation*}
\operatorname{Sf}(x)=S_{a}^{-1} \int_{|\varepsilon|=1} f(|x| \xi) d S_{n}(\xi) \tag{2.2}
\end{equation*}
$$

then

$$
\begin{equation*}
S(G f)(x)=(S f)(x) \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
G(S f)(x)=(G f)(x) \tag{2.4}
\end{equation*}
$$

where S and G are the sphere and rotation group average operators defined by (2.2) and (2.1) respectively. But by the Fubini theorem

$$
\begin{equation*}
\mathbf{S G f}=\mathbf{G S f} \tag{2.5}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
\mathbf{S f}=\mathbf{G f} \tag{2.6}
\end{equation*}
$$

which means that the two means of getting a rotationally invariant function from an arbitrary one are identical. By relating functions on the nonnegative real numbers to rotationally invariant functions on $R^{\text {n }}$ through the use of higher dimensional spherical coordinates, we can develop an natural means of transforming the Helmholtz operator into an ordinary differential operator and extract from this differential operator the most general rotationally invariant fundamental solution of the Helmboltz operator and by a judicious choice of the parameter appearing in this solution, we can obtain from this class a temperate fundamental solution of the free space Helmholtz operator. This process is, in fact the origin of the familiar fundamental solution,

$$
E=\frac{-\exp \left(-i k_{0} r\right)}{4 \pi r}
$$

that appears in three dimensional electromagnetic scattering problems.
In this short note we will simply write down the fundamental solution in general and specialize it to dimension 2 and also to odd dimensions where it can be expressed in terms of spherical Bessel and Neumann functions and write it down explicitely in three and seven dimensions.

We now discuss a general property of fundamental solutions of partial differential operators,

$$
\begin{equation*}
P(D)=P\left(-i \frac{\partial}{\partial x_{1}},-i \frac{\partial}{\partial x_{2}}, \cdots,-i \frac{\partial}{\partial x_{b}}\right) \tag{2.7}
\end{equation*}
$$

if

$$
P(D) E=\delta
$$

where δ is the Dirac delta distribution, and if u is an infinitely differentiable function such that

$$
\begin{equation*}
P(D) u=0 \tag{2.8}
\end{equation*}
$$

then

$$
\begin{equation*}
P(D)(E+C u)=\delta \tag{2.9}
\end{equation*}
$$

implies that $\mathrm{E}+\mathrm{Cu}$ is also a fundamental solution for every constant C. Some lengthy manipulations show that the most general rotationally invariant fundamental solution of the Helmholtz operator, $\Delta+k_{0}^{2}$, is

$$
\begin{align*}
& E_{\mathrm{h}_{0}}=\left(\frac{\left(-\mathrm{k}_{0}\right)^{(\mathrm{n}-2)}}{2^{\mathrm{n} / 2} x^{\Omega / 2-1}\left(-\mathrm{r} \mathrm{k}_{0}\right)^{(\mathrm{D}-2) / 2}}\right) Y_{(\mathrm{a}-2) / 2\left(-\mathrm{r} \mathrm{k}_{0}\right)} \\
& +\left(\frac{C\left(-k_{0}\right)^{(n-2) / 2}}{\left(-r k_{0}\right)^{(n-2) / 2}}\right) J_{(n-2) / 2\left(-r k_{0}\right)} \tag{2.10}
\end{align*}
$$

The expression (2.10) will seem to be more familiar to the reader if we specialize to $n=2$ or $n=2 m+1$. If $n=2$, then

$$
\begin{equation*}
E_{K_{0}}=(1 / 2) Y_{0}\left(-k_{0}{ }^{r}\right)+C J_{0}\left(-k_{0^{r}}\right) \tag{2.11}
\end{equation*}
$$

If we set $C=i / 2$, then we obtain the familiar relation,

$$
\begin{equation*}
E_{k_{1}}=\frac{i H_{d}^{(2)}\left(-k_{0^{r}}\right)}{2} \tag{2.12}
\end{equation*}
$$

Letting $\mathrm{n}=2 \mathrm{~m}+1$ we see that if

$$
\begin{equation*}
C=\frac{\left(2 k_{0} / \pi\right)^{1 / 2}\left(-k_{0}\right)^{m-1}}{2^{m+1} \pi^{m+1}} \tag{2.13}
\end{equation*}
$$

then given the fact that $(n-2) / 2=m-1 / 2, n-2=2 m-1$, $(n-1) / 2=m$, and $(n+1) / 2=m+1$ that

$$
\begin{gather*}
E_{n_{0}}=\left(\frac{(-i)\left(-k_{0}\right)^{2 m}-1}{2^{m+1} \pi^{m}\left(-r k_{0}\right)^{m-1}}\right)\left(j_{m-1}\left(-r k_{0}\right)+i y_{m-1}\left(-r k_{0}\right)\right) \\
=\left(\frac{(-i)\left(-k_{0}\right)^{m}-1}{2^{m+1} \pi^{m}\left(-r k_{0}\right)^{m-1}}\right) h_{m_{m}(1)}\left(-r k_{0}\right) \tag{2.14}
\end{gather*}
$$

If $m=1$, then $n=3$ and we get the familiar result,

$$
\begin{align*}
E_{k_{1}} & =\left(\frac{(-i)\left(-k_{0}\right)}{4 \pi}\left(\frac{\sin \left(-r k_{0}\right)}{-r k_{0}}-\frac{i \cos \left(-r k_{0}\right)}{-r k_{0}}\right)\right. \\
& =-\left(\frac{\cos \left(r k_{0}\right)-i \operatorname{inin}\left(r k_{0}\right)}{4 \pi r}\right)=-\frac{\exp \left(-r k_{0}\right)}{4 \pi r} \tag{2.15}
\end{align*}
$$

If $m=3$, then $n=7$ and

$$
\begin{equation*}
E_{k_{0}}=\left(\frac{(-i)\left(-k_{0}\right)^{s}}{2^{4} \pi^{3}\left(-r \mathbf{k}_{0}\right)^{2}}\right)\left(\mathrm{j}_{2}\left(-\mathrm{r} \mathbf{k}_{0}\right)+\mathrm{iy} \mathrm{y}_{2}\left(-\mathrm{r} \mathbf{k}_{0}\right)\right) \tag{2.16}
\end{equation*}
$$

where

$$
\begin{equation*}
j_{2}(x)=\left(\frac{3}{z^{3}}-\frac{1}{2}\right) \sin (x)-\left(\frac{3}{s^{2}}\right) \cos (z) \tag{2.17}
\end{equation*}
$$

and

$$
\begin{equation*}
y_{2}(z)=\left(\frac{-3}{z^{2}}\right) \sin (x)+\left(\frac{1}{z}-\frac{3}{z^{3}}\right) \cos (x) \tag{2.18}
\end{equation*}
$$

In $\mathbf{n}=3$ dimensional space charges have a $1 / \mathrm{r}$ potential and in 7 dimensional space charges have a

$$
V=\frac{C}{r^{6}}
$$

potential. If the permeability μ, the permittivity ϵ, and the conductivity e are tensor functions of three or seven dimensional space and our radiation has a $\exp (i \omega t)$ time dependence, then in three our seven dimensional space Maxwell's equations can be recast in the form,

$$
\begin{equation*}
\operatorname{curl}(E)+i \omega \mu_{0} \mathbf{B}=-i \omega\left(\mu-\mu_{0} I\right) \mathbf{H}=J_{m} \tag{2.19}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{curl}(\mathbf{H})-i \omega \epsilon_{0} E=\left(i \omega \epsilon+\sigma-i \omega \epsilon_{0} I\right) E=J_{E} \tag{2.20}
\end{equation*}
$$

Thus, with the introduction of magnetic charge densities ρ_{m} and electrical charge densities p_{e} via the relations,

$$
\begin{equation*}
\left(\frac{\rho_{\mathrm{m}}}{\mu_{0}}\right)=\operatorname{div}(\boldsymbol{B}) \tag{2.21}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\frac{\rho_{e}}{\epsilon_{0}}\right)=\operatorname{div}(E) \tag{2.22}
\end{equation*}
$$

and developing scalar and vector potentials in the anaiogous manner, the entire theory of electromagnetism extends easily from 3 to 7 dimensions. In developing the coupled integral equation formulation of the interaction problem we simply solve the system of Maxwell equations (2.19) and (2.20) with sources.

Uniqueness is established in a natural function space by showing that in this space (cf [2]) that the Maxwell equation and integral equation formulation of the problem are equivalent. If σ is a strictly positive definite tensor, then uniqueness of the Maxwell equation formulation of the problem may be eatablished if the scattered radiation is required to satisfy the appropriate Silver Mueller radiation condition.

Let E' denote the iifference between two solutions of the problem of describing scattering by anisotropic materials. Let Ω be an open set in real seven dimensional space whose material properties or constitutive relationships are tensorial. If α is a tensor, then $\operatorname{lm}(\alpha)$ is a tensor whose entries are the imaginary parts of the entries of a and $\operatorname{Re}(\alpha)$ is a tensor whose entries are the real parts of the entries of the tensor a. We will give here a proof of the uniqueness of the transmission problem in three or seven dimensional space when the scattorer is anisotropic and covered by an impedance sheet with a positive definite surface conductivity tensor in the sense that if the boundary condition at the outer surface on of the scattering body n requires continuity of tangential components of \mathbf{E} and the relation

$$
\begin{equation*}
\mathbf{n} \times\left(\mathbf{H}_{p+1}-\mathbf{H}_{p}\right)=\sigma_{i}^{(p)} \cdot \mathbf{E}^{p} \tag{3.1}
\end{equation*}
$$

where p denotes the region index just inside the outer portion of the scatterer and $p+1$ denotes the region index in the free space surrounding the scatterer Ω and where the relation indicated by (3.1) is valid exactly on the boundary of the scattering body \cap, thelı the conductivity tensor σ_{0}, where for simplicity we have dropped the superscript \mathbf{p}, satisfies the condition that if \mathbf{E} is a nonzero vector, then

$$
\begin{equation*}
\left(\left(\sigma_{0} \cdot \mathbf{E}\right) \cdot \mathbf{E}^{0}+\left(\sigma_{0}^{0} \cdot \mathbf{E}^{0}\right) \cdot \mathbf{E}\right)>0 \tag{3.2}
\end{equation*}
$$

We will eatablish in this section uniqueness of the scattering problem of determining tire ratsation transmitted into the interior of and scattered by a penptraile anisotropic scatterer Ω when the conductivity tensor σ is positive :ecinite in the sense that if \mathbf{E} is a
vector field defined in the interior of n with values in complex seven dimensional space, then a relationship of the form (3.2) is satisfied if \mathbf{E} is nonzero. We require special relationships for the tensors iwe and the tensors $i \omega \mu$. Specifically, we insist that if Σ is a nonzero vector then it is true everywhere in the interior of Ω that

$$
\begin{equation*}
\left((i \omega \epsilon \cdot E) \cdot E^{*}-\left(i \omega \epsilon^{*} \cdot \mathbf{E}^{\bullet}\right) \cdot \mathbf{E}\right)>0 \tag{3.3}
\end{equation*}
$$

or else the left side of inequality (3.3) is zero. Furthermore, if \mathbf{B} is not identically zero, then

$$
\begin{equation*}
\left(\mathbf{H}^{\bullet} \cdot(\mathrm{i} \omega \mu \cdot \mathbf{H})-\mathbf{H} \cdot\left(\mathrm{i} \omega \mu^{\bullet} \cdot \mathbf{H}^{\prime}\right)\right)>0 \tag{3.4}
\end{equation*}
$$

or else the left side of inequality (3.4) is identically zero. We require that the difference between two supposedly different solutions of the scattering problem satisfy the Silver Mueller radiation condition. The proof is then carried out by examining the Silver Mueller radiation condition in the form,

$$
\begin{equation*}
\frac{\operatorname{LDM}}{R \rightarrow \infty} \int_{G_{m}}\left|\left(\mathbf{n} \times \operatorname{curl}\left(E^{s}\right)-i \mathbf{i}_{0} E^{v}\right)\right|^{2} d s=0 \tag{3.5}
\end{equation*}
$$

where C_{R} is a surface defined by

$$
\begin{equation*}
C_{R}=\left\{x \in R^{R}: \sum_{i=0}^{1} x_{1}^{2}=R^{2}\right\} \tag{3.6}
\end{equation*}
$$

By using the impedance sheet boundary condition which becomes the standard boundary condition if o_{0}, the surface conductivity, is zero and by realizing that the Silver Mueller radiation conditions imply that

$$
\begin{align*}
& 0=\left(\frac{\operatorname{Lim}}{R \rightarrow \infty}\right) \int_{C_{R}}\left(|(\mathbf{n \times c u r l}(E))|^{2}+E_{0}^{2}\left(|(E)|^{2}\right) d z+\right. \\
& \omega \mu_{0} \mathbf{k}_{0} \int_{\sigma=}\left(\left(\sigma_{\theta} \cdot E\right) \cdot E^{0}+\left(\sigma_{i}^{0} \cdot E^{*}\right) \cdot \mathbf{z}\right) d z+ \\
& \omega \mu_{0} \mathbf{k}_{0} \int_{\mathbf{n}} \operatorname{div}\left(\left(\mathbf{H} \times \mathbf{E}^{\prime}\right)+\left(\mathbf{B}^{*} \times \mathbf{E}\right)\right) d v \tag{3.7}
\end{align*}
$$

We immediately establish uniqueness by noting that if the difference \mathbf{E} between two solutions of the scattering problem were nonzero anywhere, then the right side of equation (3.7) would be positive giving a contradiction since the left side of this equation is zero.

Theorem. If the electrical properties of a scatterer Ω satisfies (3.2) on separating sheets if σ_{0} is nontrivial, satisfies (3.2) with σ_{0} replaced by σ, satisfies (3.3), and satisfies (3.4) in the intericr of the scatterer if σ, ϵ, and μ, respectively, are nontrivial then there is at most one classical solution of the scattering problem.

By combining these concepts a rayriad of different uniqueness theorems can be derived. Note that while the hypotheses in the above theorem may seem stringent, they do not require directly that the frequency domain Maxwell equations be an elliptic system.

By making use of the function G derived in section 2 of this paper and by introducing a magnetic charge conductivity σ_{m} we can show that a symmetric system of coupled electric and magnetic field integral equations deacribing the scattering of a general object in seven dimensional space is, following the three dimensional development in Graglia and Uslenghi [8], given by,

$$
\begin{aligned}
& E-E^{\prime}=-\operatorname{grad} \int_{\Omega}\left(\frac{\operatorname{idiv}\left(i \omega\left(\epsilon-\epsilon_{0} I\right)+\sigma_{e}\right) E}{\omega \epsilon_{0}}\right) G(r, s) d v(s)
\end{aligned}
$$

$$
\begin{align*}
& -i \omega \mu_{0} \int_{\Omega}\left(i \omega\left(\varepsilon-\varepsilon_{0} I\right)+\sigma_{e}\right) \cdot \mathbf{E}(\varepsilon) G(r, s) d v(s)+ \\
& -\mathrm{curl} \int_{\Omega}\left(\mathrm{i} \omega\left(\mu-\mu_{0} \mathrm{I}\right)+\sigma_{\mathrm{m}}\right) \cdot \mathrm{B}(\mathrm{~s}) \mathrm{G}(\mathrm{r}, \mathrm{~A}) \mathrm{dv}(\mathrm{~s}) \tag{3.8}
\end{align*}
$$

and

$$
\begin{align*}
& \mathbf{H}-\mathbf{H}^{\prime}=-\operatorname{grad} \int_{\mathrm{B}} \frac{\operatorname{idiv}\left(\mathrm{i} \omega\left(\mu-\mu_{0} \mathrm{I}\right)+\sigma_{\mathrm{m}}\right) \mathbf{B}}{\omega \mu_{0}}(\mathrm{~s}) \mathrm{G}(\mathrm{r} \beta) \mathrm{dv}(\mathrm{~s}) \\
& -\operatorname{grad} \int_{o n}\left(\left(\frac{\left(\mathrm{i} \omega\left(\mu-\mu_{0} \mathrm{I}\right)+\sigma_{\mathrm{m}}\right)}{\mathrm{i} \omega \mu_{0}}\right) \cdot \mathbf{B} \mathrm{m}\right)(\mathrm{s}) \mathrm{G}(\mathrm{r}, \mathrm{~s}) \mathrm{da}(\mathrm{~s}) \\
& -i \omega \varepsilon_{0} \int_{\Omega}\left(i \omega\left(\mu-\mu_{0} \mathrm{l}\right)+\sigma_{\mathrm{m}}\right) \mathbf{A}(\mathrm{a}) \mathrm{G}(\mathrm{r}, \mathrm{~s}) \mathrm{dv}(\mathrm{~s})+ \\
& \operatorname{curl} \int_{\Omega}\left(i \omega\left(\epsilon-\varepsilon_{0} \mathrm{I}\right)+\sigma_{e}\right) \cdot \mathrm{E}(\mathrm{~s}) \mathrm{G}(\mathrm{r}, \mathrm{~A}) \mathrm{dv}(\mathrm{~s}) \tag{3.9}
\end{align*}
$$

where here the function $G(r, s)$ is the function E_{n}, given by equation (2.16).

We remark that the use of dyadic identities can transform the surface volume integral equations given by (3.1) and (3.5) into volume integral equations by making use of the dyadic relationship,

$$
\begin{equation*}
\int_{\infty}(\mathbf{D} \cdot \boldsymbol{F}) \mathbf{G} d \mathbf{s}=\int_{\Omega}(\operatorname{div}(\mathbf{P}) \mathbf{G}+(\mathbf{\nabla} \cdot \nabla) \mathbf{G}) d \mathbf{v} \tag{3.10}
\end{equation*}
$$

This identity is applied to each of the integrals over the boundary an of
Ω and permits us to get a coupled system of volume integral equations． From equation（3．8）and（3．10）we get the volume electric field integral equation，

$$
\begin{align*}
& \mathbf{E}-\mathbf{E}^{\mathbf{1}}= \\
& \frac{i}{\omega \epsilon_{0}} \int_{\square}\left(\left(\left(i \omega\left(z-\epsilon_{0} I\right)+\sigma_{e}\right) \cdot E \mathrm{E}\right)(\mathrm{a})(\mathrm{grad})_{s}(\mathrm{grad}), G(\mathrm{r}, \mathrm{~s}) \mathrm{dv}(\mathrm{~s})\right. \\
& -i \omega \mu_{0} \int_{\Omega}\left(i \omega\left(c-\epsilon_{0} I\right)+\sigma_{e}\right) \cdot E(s) G(r f) d v(s)+ \\
& -\operatorname{curl} \int_{\Omega}\left(i \omega\left(\mu-\mu_{0} I\right)+\sigma_{m}\right) \cdot ⿴ ⿱ 冂 一 ⿱ 一 一 厶 心(s) G(r, s) d v(s) \tag{3.11}
\end{align*}
$$

From equation（3．9）and（3．10）we get the companion magnetic field integral equation，

$$
\begin{align*}
& \mathbf{H}-\mathbf{H}^{\mathbf{\prime}}= \\
& \frac{i}{\omega \mu_{0}} \int_{n}\left(\left(\left(i \omega\left(\mu-\mu_{0} I\right)+\sigma_{m}\right) \cdot B n\right)(B)(\operatorname{rad}),(\operatorname{crad}), G(r \Omega) d v(0)\right. \\
& -i \omega \epsilon_{0} \int_{\Omega}\left(i \omega\left(\mu-\mu_{0} I\right)+\sigma_{m}\right) \cdot B(s) G(r, s) d v(s)+ \\
& +\operatorname{curl} \int_{\Omega}\left(j \omega\left(e-\epsilon_{0} I\right)+\sigma_{e}\right) \cdot E(0) G(r, a) d v(0) \tag{3.12}
\end{align*}
$$

1. Bergshoeff, E, I. G. Koh; and E. Seagin. Yang-Mills-Einstein supergravity in seven dimensions. Physics Review D. 32 (6) (September 15, 1985) pp 1353-1357
2. Boyer, C. P. and G. N. Flemming. Quantum field theory on a seven dimensional homogeneous space of the Poincare group. Journal of Math. Phys. Volume 15, Number 7 (1974) pp $1007-$ 1024
3. Calabi, Eugenio. Construction and Properties of some 6Dimensional Almost Complex Manifolds. Transactions of the American Mathematical Society 87 (1958) pp 407-438
4. Cohoon, D. K. Electromagnetic scattering in three and seven dimensional space - - the equivalence of integral equation and Maxwell equation formulation of scattering problems with applications. AP-S International Symposium 1986, 1986 International Symposium Digest Antennas and Propagation (Cat. No 86CH2325-9) Volume 2 Philadelphia, Pennsylvania USA (8-13 June, 1986) pp 1023-1026
5. Dine, Michael and Nathan Seiberg. Couplings and scales in superstring models. Physics Review Letters B. 155 No. 3 (1985) pp 151-155
6. Dundarer, Resit, Fess Gursey, and Chia-Hsiung Tze. Generalized vector products, duality, and octonionic identities in $\mathrm{D}=8$ geometry. APB. Math. Phys. 25 (5) (May, 1984) pp 1496-1506.
7. Gonealer-Diax, P. F. Cloeed Theory of Electrodynamics and

Gravitation. Inst. De Optica Dasa de Valdes, CSIC, Serrano, Madrid, Spain Atti Fond. Giorgio Ronchi (Italy) Volume 34, No. 4-5 (July- October, 1979) pp 403-411
8. Graglia, R. D. and P. L. E. Uslenghi. Electromagnetic acattering from anisotropic materials, Part I General Theory. IEEE Transactions on Antennas and Propagation. Volume 12, Number 8 (August, 1984) pp 867-869
9. Green, M. and D. Groes. Workshop on Unified String Theories. Papers from the Workshop Held at the University of California, Santa Barbara, California, July 29 - August 16, 1985. Singapore: World Scientific Publishing Company (1986) 745 pages
10. Horowitz, Gary T. What is a Calabi-Yau Space? IN Green, M. and D. Gross (Eds) Workshop on Unified String Theories. Papers from the Workshop Held at the University of California, Sants Barbara, California, July 29 - August 16, 1985. Singapore: World Scientific Publishing Company (1986) pp 635-653
11. Kim, Jae Kwan, I. G. Koh, and Yongsung Yoon. Calabi-Yau Manifolds from arbitrary weighted homogeneous spaces. Physics Review D 33 (No 10) (May 15, 1986) pp 2893-2895
12. Kim, Kee Yong, Yong Duk Kim, Y. S. Myung, and Young Jai Park. Stability analysis of $M_{4} s^{2} s^{2}$ in the Einstein Maxwell System. Phynical Review D. Particles and Fields. Third Seriees. Volume 33 Number 2 (1986) pp 477-483
13. Koh, I. G. and E. Seagin. Yang-Millo-Einotein supergravity in seven dimensions. Physical Review D. Particlea and Fields.

Third Series. Volume 32. Number 6 (1985) pp 1353-1357
14. Li , Shu Chen. Interaction of Electromagnetic Radiation with Simulated Biostructures. Ph.D. thesis. Philadelphia, Pennsylvania 19122: Temple University (March 31, 1986), 456 pages
15. Lindstrom, U. and J. Grundberg. A torsion potential. Nuovo Cimento B (11) 75, No. 2 (1983) pp 171-184
16: Mecklenburg, W. Aspects of seven-dimensional relativity. Physics Review D. 21 (8) (April 15, 1980) pp 2149-2166
17. Media, K. Cosmological solutions with Calabi-Yau Compactification. Physics Letters B. 166, No. 1 (1986) pp 59-64
18. Media, K. Attractor in a superstring model: The Einstein Theory, the Friedman Universe and inflation. Physics Review D. 35 (2) (January 15, 1987) pp 471-479
19. Pernici, M., K. Pilch., P. van Nieuwenhuizen, and N. P. Warner. Noncompact guagings and critical points of maximal supergravity in seven dimensions. Nuclear Phys. B. 249, No. 3 (1985) pp 381-395
20. Pernici, M. and K. Pilch. Guaged maximally extended supergravity in seven dimemsions. Physics Lett. B. 143 No $1-3$ (1984) pp 103-107
21. Rayski, J. Multidimensional Unified Theory. Inst. of Phys., Jagellonian Univ., Krakow, Poland. Acta Phys. Austriaca Suppl. 19 Facts and Proeepects of Guage Theories 21 Feb. - 3 March 1978 Schledming, Austria (1978) pp 869-870
22. Redoer, S. and Z. R. Yang. Sise and shape of directed lattice
animals. J. Phys. A. Vol. 15 No. 4 (1982) pp L177-L187
23. Romans, L. J. and N. P. Warner. Some supersymmetric counterparts of the Lorente Chern Simons term. Nuclear Physics B. Vol. 273 No. 2 (1986) pp 320-332
24. Salam, Abdus. $\mathrm{SO}(4)$ Guaging of $\mathrm{N}=2$ supergravity in seven dimensions. Physics Lett. B. Vol. 126, No. 5 (1983) pp 295300
25. Treves, F. Linear Partial Differential Equations with Constant Coefficients. New York: Gordon and Breach (1966)
26. Van Nieuwenhuizen, P. and N. P. Warner. New compactifications of ten and eleven dimensional supergravity on manifolds which are not direct products. Communications in Mathematical Physics Vol. 99 No. 1 (1985) pp 141-151
27. Witten, Edward. Dimensional Reduction of Superstring Models. Physics Letters B Volume 155, No. 3 (1985) pp 151-155
28. Yasuda, Osamu. Higher derivative terms and zero modes in $D=10$ supergravity. Physics Letters B. Volume 169 No. 1 (1986) pp 64-68
29. Zorn, M. Theorie der alternativen Ringe. Abh. Math. Sem. Hamb. Univ., Volume 8 (1931) pp 123-147.
30. Zorn, M. Alternativkorper und quadratishe Systeme. Abh. Math. Sem. Hamb. Univ. vol. 9 (1933) pp 395-402

OBLIQUE INCIDENCE EADUTIVE BRATEG OF

ANISOTROPIC AHEOSOL PAETICLES WEOSE LEGIONS OF
 CONTINUITY OF TENSORUL BHECTROMAGNETIC
 PROPERTES AES DELINTIED EY COATHL CYLINDERS

COVERED BY RMPEDANCE SHRETS
D. 5. Cubeon

Depertinatit of Mothomatics ass-16

Tomale Unioersif

Philedelghin, Pasangoanin 1919:

ABSTRACT

A computer program has been written which predicta first of all the internal and scattered radiation associated with the interaction of plane electromagnetic waves (posibly more than one) with an anisotropic cylindrical structure whoee regions of continuity of tensorial electromagnetic properties are delimited by courial cylinders covered by impedance sheets, and then usen the calculated power density
distribution as a source term for an energy equation to calculate the radiation induced thermal excuraions. The motivation for this work is to (i) be able to predict the precise radiation induced temperature distribution in a cylindrically symmetric simulated biostructure modeled by an N layered infinite cylinder (ii) be able to model the interaction of light with a fibrous aerowol particle, or (iii) to be able to develop a benchmark for elongated structures arising in radar design considerations, hardening atructures against electromagnetic pulses, or in the design of structures with maximal extinction or absorption properties. This program will carry out the calculations in the difficult wavelength region and when the structure has an arbitrary orientation with reapect to the incoming radiation. The oblique incidence problem requires the analysia of four by four matrices to relate expansion coefficients in one layer to those of another layer. The more widely studied normal incidence problem just requires the use of two by two matrices. While the electric and magnetic vectors of radiation interacting with a sphere have two componente each which are tangential to the surface of the ephere, relation involving Legendre polynomials permit one to reduce the problem of plane waves interacting with an N layer sphere to an analysis of two sets of two by two matricen. So in some sense this solution is necessarily more complex and rich in atructure than that provided by the Mie solution. The program could with effort be extended to treat the problem of scattering by structures posesoing a surface charge distribution which makee the usual boundary conditions which state that the tangential componente of E, the electric vector, and H, the total magnetic vector, are continuous acrom separating boundaries alightly different because of
surface conductivity. The fact that electrical properties of the material with which the radiation is interacting could depend on remperature would mean that even the electric fields themselves could depend in a nonlinear way on the electric and magnetic vectors of the incoming radiation. By eatimating the temperature, we may be able to predict whether or a linear analysis would give useful results. This would be true if the temperature increases were small enough that the electrical properties did not change significantly.

We prove a theorem showing that a graph of percent power versus percent body weight is necessarily a concave function with a strictly negative second derivative. This shows the invalidity of any uniform heating assumptions while at the same time suggesting that the problem of using microwaves to treat cancer could be solved by determining the source location and phase relationshipa that will cause a hot spot to move to the location of a tumor.

Also, we show that multiple beams or sources which we will simulate mathematically by combinations of plane waves can be used to move hot spots and can in fact in our special case produce a 2 dependent power density distribution in a simulated biostructure modeled by an infinite cylinder.

A shooting method based eigenfunction expansion scheme was used to get an exact analytical expression for the microwave induced temperature excursions in the simulated biostructure modeled as an N layer infinite cylinder structure. The purpose of the research is to show that by moving a hot apot to the location of a tumor one could by raising the temperature of the tumor a few degrees centigrade deatroy the cancer without harming nearby normal time. By use of a full
wave molution coe can simulate from a variety of microwave sourcee such a belicas and platea. We would of course have to know how a direct contect atructure could be modeled by a complex combination of remote sources which would mean that we would have to solve this more difficult problem by other means.

In the pact water fllled bags have been used to attempt to couple power to a penetrable body such a human tisoue in an attempt to achieve a therapeutic thermal incresse that would be effective in treating cancer. This can be achieved, as our calculations show, by simply creating the proper phase relationahip between the electric and magnetic vectors. This concept can also be applied to the nuclear fusion problem.

The solution of the problem of deacribing the acattering of radiation by an anisotropic N layer cylinder is based on (i) a bead of singular vector Belds for a apace of vector valued function which are invariant with reppect to the curl operation which we use to senerate a base of solutions of the Maxwell equations in each layer, (ii) the completeneen of the Bilbert space generated by these epartion of variablea solutions, and (iii) a proof of uniquenem of the solution of the sestteriag problem which satisfiea the Silver Mueller radiation conditions on a sequence of cylinders whose ais coincides with the scatterer axis and whose radii approach infinity and the continuity of tangential componenta of the electric and magnetic vectors arose the separating boundarien. Condition (iii) enables us to say that a positive definite bilinear functional acting on the difference between two solutions of the problem is identically zero.

We begin with a review of the solution of the problem for isotropic multilayer cylindrical structures delimited by coardal cylinders with a circular croes section. For the case of structures with isotropic layers, solutions of the vector Maxwell equations are obtained by starting with solutions of the scalar Helmbolta equation and computing the curl of this function times the unit vector along the cylinder axis. A second group of solutions is obtained by tating the curls of the first equation; these solutions are denoted by N with appropriate subecripts and superscripts. The original solutions, the curl of the product of a solution of the scalar Eelmbolts equation and the unit vector along the axis of the cylinder, are denoted by the letter M. The \mathbf{M} vectors oaly have components in the radial and theta
directions, and the N vectors have components in the radial, theta, and asial directions. We let denote the angle between the direction of incidence of the radiation and a plane perpendicular to the cylinder axis, and we let s denote the angle between the direction of incidence and the cylinder axis. We will let h denote the product of the propagation constant and con (s). The quantity κ in each layer will be a hind of modified propagation constant which is the square root of the difference between the square of the usual propagation constant and the square of h, and is always complex if our material is dissipative, and in the nondissipative case of free space κ is equal to the ordinary propagation constant of free space, which is the ratio of the angular frequency of the light and the vacuum speed of light multiplied by min (s). Since in (s) is exactly 1 for normally incident light which corresponds to s equal to 90 degrees, we see that κ is equal to k in this case. The basic solutions of the scalar Belmholtz equation are
in free space which is the $(\mathrm{N}+1)$ st layer and in the layer indexed by p, we have

$$
\begin{equation*}
\left.v_{(p, a)}^{(1)}=z_{i}^{(1)}\left(x_{p} r\right)_{e}^{-a r}\right)_{e} b r \tag{1.2}
\end{equation*}
$$

where the Z function is an ordinary Bessel fuaction if $j=1$ and is a Hankel or a Neumann function if $j=3$ and where

$$
\begin{equation*}
x_{p}^{2}=k_{p}^{2}-h^{2} \tag{1.3}
\end{equation*}
$$

with

$$
\begin{equation*}
k_{p}^{\prime}=\omega^{2} \mu_{p} C_{p}-i \omega \mu_{p} \sigma_{p} \tag{1.4}
\end{equation*}
$$

In the layer indexed by p we have

$$
\begin{equation*}
\left.M()_{2}\right)=\cot \binom{(0)}{0} \tag{1.5}
\end{equation*}
$$

and the N vector in the layer indexed by p is givea $\mathrm{b} ;$

$$
\begin{equation*}
N(f)=(1 / x,) \cos (M(G)) \tag{1.6}
\end{equation*}
$$

We note that if somehow we bow the electric vector in the layer indexed by p, that the mappetic vector is easily determined by the relation,

$$
\begin{equation*}
H_{p}=\left(\frac{1}{-i \omega_{p}}\right) \operatorname{corl}\left(E_{p}\right) \tag{1.7}
\end{equation*}
$$

An important identity which eambles us to exprese the magnetic vector in terms of the \mathbf{M} vectors and the \mathbf{N} vectors is the relation,

In the layer indexed by p the electric vector is given by the relation,

$$
\begin{aligned}
& E_{p}=
\end{aligned}
$$

Thus, once the expansion coefficients are known in each layer, the electric and magnetic fields are completely known. We get the magnetic vector by computing the curl of the electric vector and making use of equation (1.7). The equation for the curl of the electric vector is

$$
\begin{aligned}
& \left(\frac{1}{t_{p}}\right) \cos \left(E_{p}\right)=
\end{aligned}
$$

By combining equations (1.7), (1.9), and (1.10) and using the equation for the curl in cylindrical coordinates we get the following relationship between the expansion confliciente in layer p and the expansion conemicient in layer $\mathrm{p}+1$.

$$
\begin{align*}
& \frac{k^{2}+1-h^{2}}{\mu_{p+1}} J_{2}\left(a_{p+1} R_{p}\right) A_{(0, p+1)}+\frac{\xi_{p+1}^{2}-h^{2}}{\mu_{p+1}} z_{2}^{(2)}\left(n_{p+1} R_{p}\right) a_{(0, p+1)} \tag{1.11}\\
& -x_{p} J_{2}^{\prime}\left(x_{p} R_{p}\right) A_{\left(a_{p}\right)}+-x_{p} Z_{p}^{(z)}\left(x_{p} R_{p}\right) a_{\left(x_{p}\right)}+
\end{align*}
$$

$$
\begin{align*}
& \frac{h_{n}}{k_{p+1} R_{p}} J_{s}\left(r_{p+1} R_{p}\right) B_{(0, p+1)}+\frac{h_{n}}{k_{p+1} R_{p}} z_{p}^{(2)}\left(r_{p+1} R_{p}\right) b_{(0, p+1)} \tag{1.12}\\
& \frac{k_{p}^{y}-b^{2}}{k_{p}} J_{s}\left(r_{p} R_{p}\right) B_{(s, p)}+\frac{k_{p}^{2}-k^{2}}{k_{p}} Z_{p}^{(2)}\left(r_{p} R_{p}\right) b_{(s, p)}= \\
& \frac{\xi^{2}+1-h^{2}}{k_{p+1}} J_{2}\left(R_{p+1} R_{p}\right) B_{(n, p+1)}+\frac{k_{p+1}^{2}-h^{2}}{k_{p+1}} z_{2}^{(2)}\left(R_{p+1} R_{p}\right) b(0, p+1) \tag{1.13}
\end{align*}
$$

$$
\begin{aligned}
& \frac{-k_{p} R_{2}}{\mu_{p}} \mathrm{~J}_{2}^{(2)}{ }^{\prime}\left(R_{p} R_{p}\right) B_{(1, p)}+\frac{-k_{1} R_{2}}{\mu_{p}} \mu_{2}^{(2)^{\prime}}\left(R_{p} R_{p}\right) b_{(0, p)}=
\end{aligned}
$$

$$
\begin{align*}
& -\frac{k_{p+1} k_{p+1}}{m_{p+1}} J_{2}^{\prime}\left(x_{p+1} k_{p}\right) B_{\left(p_{p}+1\right)}+\frac{-k_{p+1} k_{p+1}}{m_{p+1}} Z_{2}^{\left(y_{1}\right)}\left(k_{p+1} k_{p}\right) b_{(n,+1)}(\tag{1.14}
\end{align*}
$$

We can exprese the above relationshipe compactly in matrix language in the form

$$
S^{(a, p)}\left(\begin{array}{l}
A_{(p, p)} \tag{1.15}\\
A_{(i, p)} \\
B_{(p, p)} \\
b_{(i, p)}
\end{array}\right)=S^{(n, p+1)}\left(\begin{array}{l}
A_{(a, p+1)} \\
B_{(s, p+1)} \\
B_{(z, p+1)} \\
b_{(s, p+1)}
\end{array}\right)
$$

We note that in the case of normal incidence, the parameter h is proportional to the cosine of ninety degrees and is therefore zero which means that the matrix equation (1.15) reduces to two 2 by 2 matrix equations for the case of incoming radiation with a general polarization. For the case of an incoming electromagnetic wave with the electric vector or the magnetic vector parallel to the cylinder the axis, the solution of the problem becomes particularly simple as then \mathbf{H} or, respectively, \mathbf{E} is proportional to a vector having the same form as \mathbf{M}. The form of the coefficient matrices appearing in equation (1.15) enable one to conveniently write the inverse of the coefficient matrices explicitely even though they are 4 by 4 matrices. A particularly useful fact is the Wronskian relationahip,

$$
\begin{equation*}
J_{a}^{\prime}(s) Y_{a}(s)-J_{a}(s) Y_{a}^{\prime}(s)=\frac{-2}{\pi} \tag{1.16}
\end{equation*}
$$

This enables is to write out the inverse explicitely and accurately since some of the terms in the determinant of the 4 by 4 matrix appearing on the left side of equation (1.15) may be accurately evaluated using the relationship (1.16). In developing the equations we also make use of the fact that the cylindrical Besal functions with either integer or complex index satisfy the equation,

$$
\begin{equation*}
\left(\frac{1}{s}\right) \frac{d}{d s}\left(s \frac{d w}{d s}\right)+\left(1-\frac{v^{2}}{s^{2}}\right) w=0 \tag{1.17}
\end{equation*}
$$

By eetting the layer index p equal to $N+1$ and mating use of equation (1.9) we can get the acattered radiation as a function of position outaide the cylindrical scatterer. By using Poyntings theorem we can derive simple formulas for the total scattered and total abeorbed power per unit length along the cylinder. Since the electric field is represented in vector form we can predict what would be measured in a photomultiplier tube placed behind a polarizer simply by calculating the intensity using the component of the electric vector that is paralled to the gratings of the polariser.

Previous work on cylinder ecattering typically considered multilayer structures subject to normally incident radiation (Bussey, [5]), or single layer structures subject to obliquely incident radiation (Wait [20]) and typically considered materials with real indices of refraction and aspumed that the electric vector I was either perpendicular to the plane containing the direction of propagation or was paralle to this plane (Bohrea and Euffman ([2], pp 195-200). We systematically treat all casen by considering a completely general form for the electric vector of the incoming radiation. In the region labeled $N+1$ the electric vector of the incoming radiation is given by

$$
\begin{equation*}
E E_{n+1}^{1}=\sum_{n=-\infty}^{\infty}\left(F_{2} M(N+1 \infty)+G_{2} N\left(N+L_{\infty}\right)\right) \tag{1.18}
\end{equation*}
$$

Athough the field represented by equation (1.12) can be quite complex, we asmuse that the expansion coefinciente F_{2} and G_{a} are completely fnown thereby leaving only two unknown coefficiente of the type 2 vector wave functions asociated with Banked function for the
reprementation of the field in the repion of spece outside the cylinder Since the type 2 vector wave functions are unbounded on the cylinder axis, they must dot make any contribution in the inner layer. Thus, there are two untrown expansion coefficients in the inner layer, and there are two unknown coefficients representing the scattered radiation in the space surrounding the scatterer. By inverting one of the four by four matrices in equation (1.11) we can relate coefficients in layer p to layer $p+1$. By matrix composition we can get a system of four equations in four untnowns relating for each n the representation of the field in the inner layer to the expansion coefficients for the scattered radiation.

Note that the power density distribution is given by

$$
\begin{equation*}
s=\frac{\left.\left(\sigma_{1}+\omega k_{1}\right)\right)\left._{1}\right|_{1} ^{2}}{10^{2} \times 4.184} \tag{1.19}
\end{equation*}
$$

We further note that if we had two radiation sources coming in at two different angles, then their individual electric fields would have the form,

$$
\begin{equation*}
B_{1}=F_{1^{e}} e^{-1, t} \tag{1.20}
\end{equation*}
$$

and

$$
\begin{equation*}
B_{1}=P_{p} e^{-B_{r}} \tag{1.21}
\end{equation*}
$$

where

$$
\begin{equation*}
b_{j}=t_{\infty} c_{0}\left(\xi_{j}\right) \tag{1.22}
\end{equation*}
$$

for $j=1$ or $j=2$ where ςj denotes the beam angle of the jth beam. This would mean that the power density distribution is proportional to

$$
\begin{equation*}
8=c\left(E_{1}+B_{2}\right)\left(E_{1}+E_{2}\right)^{\circ} \tag{1.23}
\end{equation*}
$$

Subatituting (1.20) and (1.21) into (1.23) we find that the power density induced in the infinite cylinder structure by the two plane wave
sourcen in given by

This yields a s dependent power density distribution.
In the following theorem \mathbf{X} denotes the cylinder crowe section, μ denoten the crom sectional area measure, Lebergue measire, and S is the power density function defined above. The integral of S over a region in the croes section will be the energy deposited per unit length per unit time in that region of the croee section. Also, $\mathrm{E}(\mathrm{r})$ will denote the integral of S over that region of points (x, y) in the crose section for which $P(x, y)$ is greater than r. The theorem ahows that the second derivative of $E(r)$ with respect to

$$
\begin{equation*}
s(x)=\mu(\{(x, y) \in X: P(x, y)>r\}) \tag{1.25}
\end{equation*}
$$

is necessarily negative. The following abstact mathematical theorem explains why shape of the graph of percent power versus percent bjdy weight is concave down.

Theorem 1. Let X be a Hausdorfi space. Let μ be a monotone measure on the o algebra of Bored sets of X such that $\mu(X)=1$. Let $P \cdot X \rightarrow|a, b|$ be a continuous function from the nonempty set X into the closed interval $[a, b]$. Assume that a is smaller than b and that there is a point x_{1} in X and a point x_{3} in X such that $P\left(x_{1}\right)=s$ and $P\left(x_{2}\right)=b$. Let r be a member of $[a, b]$ and let

$$
\begin{equation*}
s(x)=\mu(\{x \in X: P(x)>r\}) \tag{1.26}
\end{equation*}
$$

and let $\mathrm{E}(\mathrm{r})$ be defined by

$$
\begin{equation*}
E(r)=\int_{z \in X \cdot P(z)>r} P d \mu \tag{1.27}
\end{equation*}
$$

then

$$
\begin{equation*}
\frac{d E}{d \rho}=? \tag{1.28}
\end{equation*}
$$

and the function $\mathrm{E}(\mathrm{r})$ defined by equation (1.27) has a negative second derivative and is consequently a concave fuction of ς.

Proof. It is clear that $s(r)$ is a decreasing function of r. The theorem then follows from the fact that the second derivative of $E(r)$ with respect to r is the derivative of the left side of (1.22) with respect to r divided by the derivative of $s(r)$ with respect to r. Thus, the second derivative of $E(r)$ with respect to s is therefore 1 divided by a negative number.

The source term for the heat equation is given by the relation

$$
\begin{equation*}
S=(1 / T) \int_{f_{1}}^{T_{1}}\left(\frac{d \nabla\left(B \times E^{0}\right)}{10^{\delta} \times 4.184}\right) d t \tag{2.1}
\end{equation*}
$$

where we let the time t for the source term driving the heat equation be the midpoint of the interval from T_{1} to T_{2} since the heat equation is on a much lower time scale than the occillations of the incoming electromagnetic wave and since it is itself the reoult of averaging microecopic energy equations and where

$$
\begin{equation*}
T=T_{2}-T_{1} \tag{2.2}
\end{equation*}
$$

Another simpler form for the source term of the radiatively driven heat equation is given by

$$
\begin{equation*}
s=\frac{\left.\left(\sigma_{1}+w_{c}\right)\right)_{1}^{2}}{10^{2} \times 4.184} \tag{2.3}
\end{equation*}
$$

where σ_{1} denoten the real part of the electrical conductivity and c_{2} denotes the imaginary part of the complex permittinty of the aeroeol particle, and where the subscript a indicatee a local time average of the leagth of the electric vector was taken. Once the source term is determined in the more natural centimeter-gram-second units using equation (2.1) or (2.3), we can then calculate using eigenfunction expansions the solution of a alightly seneralised beat equation which includes a heat sink term -bu where u denotes the increase in temperature within the seroeol particle above the ambient temperature and satisfies the equation,

$$
\begin{equation*}
x\left(\frac{\partial u}{\partial x}\right)=\operatorname{div}(K(\operatorname{Red}(n)))-b+s \tag{2.4}
\end{equation*}
$$

where , is the density in grams per cubic centimeter, c denoten the
specific beat in calories per gram degree centigrade, and \mathbf{K} aymbolisea the thermal conductivity in caloriee per centimeter per degree centigrade per recond, and b denotes a heat sink term in calories per cubic centimeter per second per degree. We seek a solution of the radiatively driven heat equation which satisfee sero initial conditions so that $=0$ when the time parameter t is sero and Newton cooling law conditions on the boundary of the aeroeol particle of the form

$$
\begin{equation*}
\mathbf{K}_{N}\left(\frac{\partial u}{\partial r}\right) u\left(R_{N} \rho_{s, t}\right)+E_{u}\left(R_{N}, N_{x}, t\right)=0 . \tag{2.5}
\end{equation*}
$$

where

$$
\begin{equation*}
r=R_{p} \tag{2.6}
\end{equation*}
$$

is the equation of the cylinder separating layer p from layer $p+1$ and when $p=N$ equation (2.6) defines the surface separating the multilayer cylindrical scatterer from the surrounding space. It is at this surface that the Newton cooling law given by equation (2.5) is valid.

We begin our discuscion of the solution of the heat equation by writing some general relationships that are valid for beat transfer problems in any dimension. If we are solving the heat transfer problem defined by the energy equation (2.4) in an arbitrary bounded open set Ω with a amooth normal vector N in a space of any dimension, all considerations are the same except that the surface boundary condition (2.5) is replaced by

$$
\begin{equation*}
(K \operatorname{grad}(a) \cdot N+E x)(x)=0 \tag{2.7}
\end{equation*}
$$

for all pointe r in the boundary, an of the seattering object Ω.
We will solve this more general boundary value problem by the method α representation of the solution in a Eilbert space generated by eigenfunctions of the elliptic portion of the heat operator. This
given an exact solution and permits one to accurately compute temperatures at thounands of points within the sarool particle once the expansion coefficients are known. We will seek functions which are solutions of the elliptic partial differential equation,

$$
\begin{equation*}
\operatorname{div}\left(K\left(\operatorname{mad}\left(X_{1}\right)\right)\right)-b i=-\lambda_{1} \in t_{t} \tag{2.8}
\end{equation*}
$$

We find solutions of equation (2.8) which satisfy the generalized Newion cooling law given by equation (2.7). The theory of semicontinuous function on a compact subeet of the unit ball in the Bilbert space of square integrable functions shows that a Rayleigh Ritz procedure could yield and show the existence of a sequence of eigenfunctions. Suppose we simply make use of the Gaiss divergence theoram and note that

An important and obvious relationship is that if Ψ_{1} and Ψ_{j} are eigenfunctions corresponding to distinct eigenvalues, then

$$
\begin{equation*}
-\left(\int_{\infty} \mathrm{E} \psi_{i} \psi_{2} d c\right)=\int_{Q} d i v\left(\psi_{j}\left(K\left(\operatorname{med}\left(\psi_{t}\right)\right)\right)\right) d \sigma \tag{2.10}
\end{equation*}
$$

This implies in view of other relationshipe and the subtraction of the forms of the right side of (2.10) with j and k interchanged that

$$
\begin{equation*}
\left(\lambda_{1}-\lambda_{1}\right) \int_{0} \phi_{t} H_{1} c d t=0 \tag{2.11}
\end{equation*}
$$

The eigenvalues λ_{k} and the eigenfuncticns aatinfy the Rayleigh form

$$
\begin{equation*}
\lambda_{k}=\left\{\frac{\int_{\infty} E w_{1}^{2} d a+\int_{a}\left(R\left(\operatorname{Rrad}\left(\psi_{1}\right) \operatorname{rrd}\left(\psi_{1}\right)\right)+\psi_{z}^{2} b\right) d v}{\int_{0} \psi_{1}^{2} x d v}\right\} \tag{2.12}
\end{equation*}
$$

Carrying out this analysia is precisely the Rayleigh Rits procedure for the entimation of aigenfunctions and cigenvaluen. This procedure could
be used with particles of a genaral shape. To get the aigenvalues and cigenfunctions we begin by minimising the functional sugsented by the right side of equation (2.12); this gives us the eigenfunction correapooding to the smallent eigenvalue. If we amume that \mathbf{k} such eigenfunctions and cigenvalues have been determined we get the next one by minimizing the functional in the subepace of functions on the unit ball of the Eilbert apace which are regular and which are orthogonal to each of the first \mathbf{k} eigenfunctions.

We next discuse uniqueness of the solution of the heat equation (2.4) which satisfies the Newton cooling law relationship (2.7). We let w denote the difference between two such solutions and first of all note that w satisfies the equation

$$
\begin{equation*}
\propto\left(\frac{\partial w}{\partial k}\right)=d v(K(\operatorname{mad}(w)))-b w \tag{2.13}
\end{equation*}
$$

Atter multiplying both sidee of the above equation by w and using the Gause divergence theorem, we see that

$$
\begin{gather*}
\left(\frac{\partial}{\partial x}\right) \int_{0}\left(\nabla^{2} / z\right) \tau d v= \\
-\left(\int_{a}\left(\operatorname{Krred}(v) \cdot \operatorname{red}(\nabla)+\nabla^{2} b\right) d v+\int_{\infty} \mathrm{E} \nabla^{2} d \theta\right) \tag{2.14}
\end{gather*}
$$

Since it is clear that if the conducting body is physical in the sense that it dissipates hest or \mathbf{b} is positive, heat lows from hot to cool or K is poritive and given that the dot product of the temperature gradient and the outward directed normal is positive which means that the body is hotter than the outaide medium that the body should lose heat to its envisonment which is to say that I shculd be positive, then

$$
\begin{equation*}
\left(\frac{\partial}{\partial r}\right) \int_{a}\left(\nabla^{2} / 2\right) \operatorname{ced} v \leq 0 \tag{2.15}
\end{equation*}
$$

Furthermose, at $:=0$ the fact that each solution is sero certainly implies this for the diference of two solutions and if we let

$$
\begin{equation*}
F(t)=\int_{a}\left(w^{2}(x) d v\right. \tag{2.16}
\end{equation*}
$$

we from (2.15) that the derivative of $F(t)$ in nonponitive so that $F(t)$ is nooincreasing, that by its very definition $F(t)$ is nonnegative, and $F(0)=0$, which taken together means that $F(t)$ in erro for all positive values of t. This implies that since κ is ponitive everywhere in $\boldsymbol{\Omega}$ that the difference between the two solutions is identically zero for all positive values of t.

The existence proof is completely constructive and in fact shows us how to get a very robust method of calculating the temperature for all times at thousands of points even when the radiative beating scheme is temporally or even apatially quite complex. We simply take a series expansion

$$
\begin{equation*}
u=\sum_{k=1}^{\infty} x_{i}(t) H_{k} \tag{2.17}
\end{equation*}
$$

realizing that if we bew the expansion cocficients $i_{k}(t)$ the radiation induced thermal excursion would be completely known, and subetitute this function, which is suaranteed to satisfy the Newton cooling law boundary condition given by equation (2.5), into equation (2.4). When we do this we obtain the relation,

We now use the fact that the eigenfunctions form a complete orthogonal set of functions in the sens: that the only function in our Eilbert space which is orthogonal to all of them with respect to the weight function ρe is the function which is identically sero. Indeed, the

Rayleigh procedure guaranteen this. Thun, we let

$$
\begin{equation*}
b_{z}(t)=\left\{\frac{\int_{a} \frac{s}{\infty} u x d v}{\int_{a} u^{2} \operatorname{ped} v}\right\} \tag{2.19}
\end{equation*}
$$

If we multiply both siden of equation (2.18) by th and integrate over Ω, make une of the orthogonality relation given by equation (2.11), and subetitute in the relation suggested by equation (2.19), we see that

$$
\begin{equation*}
\frac{d a_{1}(t)}{d}+\lambda_{1} a_{1}(t)=b_{2}(t) \tag{2.20}
\end{equation*}
$$

We see that since $b_{k}(t)$ is completely known for each \mathbf{k} since the source term S is trown and since equation (2.20) is a simple first order linear equation, it follows that the expansion coefficiente are given by

$$
\begin{equation*}
a_{k}(t)=\int_{0}^{1} \exp \left(-\lambda_{k}(t-r)\right) b_{k}(r) d r \tag{2.21}
\end{equation*}
$$

This is in fact the exact procedure which is used in our computer program.

We remark that the computation of temperature excursions when plane wave impinge on the simulated biontructure from different direntions is carried out simply by breaking up the source term into a sum of source terms with differen 8 dependencies and solving the heat equation for each source term eeparately and adding up the reulte. The source term is written in the form

$$
\begin{equation*}
S=S_{0}+S_{1} 0^{-a, ~}+S_{0} 0^{-a, 1}+\cdots+S_{1} 0^{-1 k_{0} 3} \tag{2.22}
\end{equation*}
$$

We then solve $\mathrm{i}+1$ heat equations of the form (2.4). If s_{j} is a function of s and 0 , then the heat equation is solved by seeking a solution of the form

$$
\begin{equation*}
\nabla_{1} 0^{-4,1} 1=a_{1} \tag{2.23}
\end{equation*}
$$

Where ∇_{f} depende only on I and 0 and

$$
\begin{equation*}
\alpha\left(\frac{\partial a_{j}}{\partial x}\right)=d r\left(K\left(\operatorname{mad}\left(u_{j}\right)\right)\right)-b a_{j}+s_{1} e^{-a, s} \tag{2.24}
\end{equation*}
$$

Then the solution u of (2.4) is given by

$$
\begin{equation*}
a=x_{0}+x_{1}+x_{2}+\cdots+x_{2} \tag{2.25}
\end{equation*}
$$

The functions γ_{k} are obtained in the usual way except that the blood Low cooling or bioheat transfer term b is modified by a radiative cooling tarm $h_{j}{ }^{3}$.

TRANSVERSE ELECTRIC EXFOSURE
FREOUENCY $=500.00 \mathrm{MHZ}$
PERK ELECTRIC FIELS - 61.38 VOLTS/METER

FGWEF DISTRIGUTION IN F MULTILAYE ED SFHEFE EXFOSED TO MICFOWFVE RFDIFTION

FREOLENCY $=500.00 \mathrm{MHZ}$
PEAK ELECTRIC FIELS $=61.3$ V VOLTS/METER

LAYER	RELATIVE	ELECTRICAL	GENSITY
BOUNSGRY	OIELECTRIC	CONSUCTIVIT	
(CM)	CONSTANT	(MYOS/M)	(GRGMS/CCI
11.28	$39: 600$	0.6500	1.0000

POWER DISTRIGUTISN IN F MLLTILFYERED SFHERE. EXPOSED TO MICROWFVE. RADIATISN
PEAK ELESTRIC FIEIE=51.3B VOLTS/METER

FOWER DISTRIGUTION IN F MULTILGYEFED SFHERE
EXFOSED TO MICROWFIVE RADIATION

FREOUENCY $=500.00 \mathrm{MHZ}$ PEAK ELECTRIC F!ELO $=61.38 \mathrm{vOLTS} / \mathrm{METER}$			
LAYER	RELATIVE	ELECTRICGL	OENSITY
BOUNGARY	DIELECTRIC	CONSUCTIVITY	
(CM)	CONSTANT	(MHOS/M)	(GRAMS/CC)
11.28	39.600	0.6500	1.0000

CYLINDRICAL MODEL

transverse magnetic exposure

FREOUENCY $=500.00 \mathrm{MHZ}$
PEAK ELECTRIC FIELD -194.09 VOLTS/METER LAYER RELATIVE ELECTRICAL DENSITY $\begin{array}{cccc}\text { BOUNDARY } & \text { DIELECTRIC } & \text { CONDUCTIVITY } & \text { DENSITY } \\ \text { (CM) } & \text { CONSTANT } & \text { (MHOS/M) } & \text { (GRAMS/CC) } \\ 0.10 & 60.000 & 1.0000 & 1.0000 \\ 3.00 & 79.200 & 0.6490 & 1.0500\end{array}$

PERK ELECTRIC FIELS $=61.38$ VOLTS/METEF

LAYER	RELATIVE	ELECTRICFL	DENSITY
BOUNDARY	OIELECTRIC	CONOUCTIVITY	
(CM)	CONSTFNT	(MHOS/M)	(GRAMS/CC)
11.29	39.600	0.6500	1.0000

SUM OF POWER GBSORFTIONS OVER THGT PER CENT OF EQUAL BODY WEIGHT SUSUNITS WITH THE HIGHEST POWER DENSITIES
transuerse electric ex osure FREQUENCY $=500.00 \mathrm{MHZ}$
PEAK ELECTRIC FIELC $=61.38 \mathrm{VOLTS} / \mathrm{METER}$
layer felative electrical oensit boungary oielectric concuctivity (MHOS/M) (GRAMS/CC) 0.650
1.000

SLM OF FOWER FGSORFTIONS OVER THGT
FER CENT OF EOURL GODY WEIGHT SUGUNITS WITH THE HIGHEST FDWER DENSITIES
TRGNJVERSE MGGNETIC EXPOSURE
FREOUENCY $=500.05 \mathrm{MHZ}$
FEAK ELECTR C FIELG = 6i.3B VOLTS/METER

LAYER BOUNEARY (CM!	RELATIVE DIELECTRIG CONSTANT	ELECTRICAL CONSUCTIVITY (M40S/M)	SENSITY (CRAME/CC)
11.23	33.500	0.5500	1.000s

The numerical etability of the temperature excursion calculation was verifed in exveral ways. We compared the calculation of the cource tarm by the primary electromagnetic calculation and the reprementation of \& by linear combinations of eisenfunctions of the elliptic part of the beat operator. We ebowed that uing different sumciently large numbers of cisenfunctions did not change the predicted temperature before the third decimal place. Similar calculations carried out for spherical atructures ($[4],[8]$) were verified by experimental mearurement.

Caneoteorsc ecatranic

We begin by considering the gradient and the curl operations in cylindrical coordinates. The curi operation in

$$
\begin{aligned}
& \operatorname{arit}(T)=\left(\frac{1}{r} \frac{\partial F_{i}}{\partial t}-\frac{\partial F_{i}}{\partial z}\right) \bullet_{r}+ \\
& \left(\frac{\partial T_{r}}{\partial \boldsymbol{\partial}}-\frac{\partial T_{i}}{\partial T}\right) 0_{0}+ \\
& \left(\frac{1}{8} \frac{\partial}{\partial r}\left(r P_{a}\right)-\frac{1}{8} \frac{\partial F_{f}}{\partial \theta}\right) e_{s}
\end{aligned}
$$

The gradient operator in cylindrical coordinatee is given by

The basic method we use to develop a representation of solutions of the Maxwell equations that we can use in solving the electromagnetic interaction problem in an anisotropic material is the developmeat of clames of vector fielde which may mathematically be regarded as members of a module, in the abotract agebra sease, over a ring of functions of the radial variable such that the curl of a vector feld in this clam is a linear combination of the other vector felds in the clase. In the case of scattering by cylinders, the clam of vector fielda that we consider are radial functions, that in to say functions of the distance s from the common ads of the delimiting cylinjers,

$$
\begin{align*}
& A_{(m a)}=0^{m 0_{e}-n_{n}} e_{1} \tag{4.3}\\
& B_{(m \alpha)}=0^{m 0_{0}-n_{0}} e_{0} \tag{4.4}
\end{align*}
$$

and

$$
\begin{equation*}
C_{(a, 1)}=e^{m l_{e}-m_{n}} e_{1} \tag{4.5}
\end{equation*}
$$

We note that after multiplication of vector fields of the form (4.3)-(4.5) by afunction of r , then no new vector fields are formed by computing the curl of one of these vector field that could not have been obtained by an addition of vector fielde of the other two typea. Specifically we find that

$$
\begin{align*}
& \operatorname{curl}\left(F_{(r)}\right)_{(m, \lambda)}^{m} \\
& \operatorname{inF}(r) A_{(m, a)}+\left(F^{\prime}(r)+\frac{F(r)}{r}\right) C_{(m, l)} \tag{4.7}
\end{align*}
$$

With this formulation it is pomible to solve the Maxwell equations within the layer when there is a hirly general relationship between B and I and between $\frac{\partial D}{\partial t}$ plue J and E. To solve the Maxwell equations we aspume that the magnetic permeability tensor μ has a bounded inverse and exprem the electric vector E of the induced wave in the form,

$$
\begin{gather*}
=\sum_{m=-\infty}^{\infty}\left(\alpha_{m} U_{n}^{(0)}(r) \mathcal{A}_{(m \lambda)}+\right. \\
\left.b_{m} U_{n}^{(n)}(r) B_{(m, \lambda)}+c_{n} U_{n}^{(f)}(r) C_{(m \lambda)}\right) \tag{4.9}
\end{gather*}
$$

While the situation is particularly simple when the tensor M is diagonal in the cylindrical coordinate system we mee that if we use the Maxwell equation

$$
\begin{equation*}
\cot (E)=-i \omega \mu \tag{4.10}
\end{equation*}
$$

to solve for A , that in fact I has the repreventation,

$$
\begin{aligned}
& I=\frac{1}{\omega} \mu^{-1} \sum_{n=-\infty}^{\infty}\left(\left(\operatorname{lin}_{n} U_{n}^{(b)}(r)+\operatorname{inc} \frac{U_{n}^{(k)}(r)}{p}\right) \Lambda_{(m)}+\right.
\end{aligned}
$$

$$
\begin{align*}
& \left.\left(-a_{n} \frac{U_{e^{(a)}}^{(r) t m}}{r}+b_{m}\left(U_{n}^{(b)}(r)+\frac{U_{n}^{(n)}(r)}{r}\right)\right) c_{(n, h)}\right) \tag{4.11}
\end{align*}
$$

By applying the curl operation to the left side of (4.11) and mating use of the Maxwell equation

$$
\begin{equation*}
\operatorname{corl}(B)=i \omega \mathbb{E}+\sigma E \tag{4.12}
\end{equation*}
$$

we get a system of coupled differential equations involving the. coefiriente used to represent the electric vector 5 . These are solved in each layer and by mating use of angular and regular radial functions we have a relationship between the expansion coneriente in layer p and the expansion coefincienta in layer $p+1$ by simply for the expreaion for I and the expresion for I on opposite sides of a cylinder delimiting regions of continuity of tensorial elsctromapnetic propertien equating the coefmients of $B_{(m, 1)}$ and the coeficients of $C_{(\square,)}$. From the coupled system of diferential equations in the radial functions $U_{n}(a)$, $\mathrm{O}_{\mathrm{n}}^{(0)}$ and $\mathrm{U}_{\mathrm{n}}^{(\mathrm{c})}$ we obtain a boowledge of the valuee of themefunctions and their derivatives at the cylindrical intarface between the layers
which will then earable us to relate expansion coeficienta in one layer to those in the adjacent layers. From a tnowiedge of the regularity of the solutions at the crigin and a browledge of the expansion coefificienta used to represent the incoming electromagnetic wave, the repreventation of the I and II in each layer is completely determined.

1. Bell, Eard L., David K. Cohoon, and John W. Penn. Electromagnetic Energy Deposition in a Concentric Spherical Moded of the Human Head SAM-TR-79-6. Interim Report for the Period January 1977 September 187796 pagee Brooks AFB, Texne 78235: USAF School of Aeroopace Medicine (December, 1979)
2. Bohren, Craig F. and Donald R. Huffinan. Abeorbtion and Seattering of Light by Small Particlea. New York: John Wiley (1983)
3. Bohren, C. F. and V. Trimble. Computer Programa for Calculating Scattering and Abeorption by Normally Muminated Infinite Cylinders Project No. 38 lnatitue of Occupational and Eavironmental Health, Montreal (1979)
4. Burr, John G., David K. Cohoon, Eart L. Bell, and John W. Pean. Thermal Response of a Model of a Simulated Cranial Structure Exposed to Radiofrequency Radiation, IEEE Transections on Biomedical Eagineering. Volume BME-27, Number 8(Auguat, 1980) pp 452-460.
5. Busey, Howard E. and Jack H. Richmond. Scattering by a Losery Dielectric Circular Cylindrical Multilayer, Numerical Values. IEEE Transections on Antennan and Propagation. Volume 23 (1975) pp 723-725
6. Cohen, Ariel, Leonard D. Cohen, and Richard D. Haraca. Double scattaring by randomly oriented long cylindern. Journal of Applied

Physica. Volume 57. Number 3 (February 1, 1985) pp 008-703
7. Coben, Arial, Bichard D. Harack, and Leonard Cohen. Ayymetry Factors for Randomly Oriented Infinite Cylinders. Journal of Applied Physica. Volume 58, Number 3 (August, 1985) pp 1135-1140
8. Cohoon, David K., John W. Pean, Eart L. Bell, David R. Lyons, and Arthur G. Cryer. A Computer Model Predicting the Thermal Response to Macrowave Radiation. Final Report for the Period January 1980November 1980. 152 pages Brooks AFB, Texas 78235: USAF School of Aerospace Medicine (December, 1982)
9. Davis, J. Electromagnetic Resonance Absorption by a Uniform Plagma Cylinder. Journal of Applied Physica. Volume 41 Number 4 (March 15, 1985) Pp 1887-1868
10. Bammond, W. S. and Mak Hamid. Diffraction by an Infinite Dielectric Cylinder due to a Normally Incident Cylindrical Wave. Electron Letters. Volume 6 (December 27, 1969) pp 675-676
11. Barrington, Roger F. and Joeeph R. Mauts. Impedence Sheet Approximation for Thin Dielectric Shella. IEEE Transactions on Antennas and Propagation. Volume AP-23 Number 4 (July, 1975) pp 531-534
12. Ho, Benry S. Dose Rate Distribution in Triple Layered Dielectric Cylinder with Irregular Croen Section Irradiated by Plane Wave Sources Joural of Microwave Power. Volume 10, Number 4 (December, 1975) pp 421-423
13. Maroudi, Babib, Carl H. Durney, Peter W. Barber, and Magdy F.

Iaknoder. Dlectromagnatic Abeorption in Multilayer Cylindrical Models of Man. EFPD Transactions on Microwave Theory and Techniques Volume MTT-27, Number 10 (October, 1979) pp 825-830
14. Maykere, D. and P. Vincent. Difraction D'une Onde Electromagetic Plane par un Object Cylindrique Non Infiniment Conducteur de Section Arbitraire Optica Communications. Volume 5, Number 5 (Augut, 1972) pp 327-330
15. Morita, Nagayomi. Surface integral representations for dectromagnetic acattering from dielectric cylinders. IEEE Transactions on Antennas and Propagation. Volume A5-28 Number 2 (March, 1978) pp 261-266
16. Richmond, J. H. Efficient Recursive Solutions for Plane and Cylindrical Multilayers. Report 1988-1 Columbus Obio Electroecience Laboratory (August 10, 1985)
17. Samaddar, S. N. Seattering of Plane Electromagnetic Wavee by Radially Inhomogeneous Infinite Cylinders. Nuovo Cimento B (Italy) Volume 68B Number 1 (March 11, 1970) pp 33-50
18. Van Bladed, J. Scattering of Low Frequency Electromagnetic Waves by Dielectric Cylinders. IEDE Tranasctions on Antennas and Propagation.
19. Wait, Jamee R. Electromagnetic Radiation from Cylindrical Structuren. New York: Pergamon Prea (1959)
20. Wait, Jamee R. and David A. Bill. Dlectromagoetic Surface Fields Produced by a Pule Excited Loop Buried in the Earth. Journal of

Applised Phyicica. Volume 43 Number 10 (October, 1972) pp 3988-3989
21. Wu, Lo-Kso and Leonard L. Trai. Hectromagretic Fialde Ioduced inelde Astitrary Clytinders of Biological Tisoce. IFEE Traneactions on Antainise and Propagation
22. Wu, Lo-Ken and Leooard L. Trai. Scattering by Abbitrarily Crom Sectioned Layered Long Dielectric Cylinders. IPRE Traneactions on Anteanan and Propagation. Volume AP-25 Number 4 (July, 1977) Pp 518-524

INDEX A
INDEX OF AUTHORS OF PAPERS IN THESE PROCEEDINGS

ACQUISTA, C., 357
ALCORN, M. W., 29
ALEXANDER, D. R., 251
ALEXANDER, JR., R. W., 201,217
ALFOS, D. J., 29
ARMSTRONG, R. L., $239,273,521$
ARNOLD, S., 443, 453
BARTON, J. P., 251
BAHAR, E., 619
BELL, R. J., 201, 217
BENNETT, C. T., 387
BISWAS, A., 239. 521
BOTTIGER, J. R., 139
BREEN, J. J., 187
BROCK, J. R., 107, 279, 315, 467
BRONK, Burt V., 191, 513
CAMPILLO, A. J., 341
CARLS, J. C., 279, 467
CARSTENS, J. C., 29
CASTLEMAN, JR., A. W., 187
CERMAK, J. E., 103
CHANG, Yu-Jain, 129
CHEN, Y. L., 315
CHITANVIS, Sh1rish M., 289
COHEN, A. 357,365
COHEN, L. D., 357,365
COHOON, D. K., $401,413,533,645,667$
DAO, P. D., 187
DRUGER, S. D., 453
DURACZ, T., 395, 581
ELLIOT, R. A.، 581
EMANUEL, M. A., 251
EVANS, Kenneth L., 163
EVERSOLE, J. D., 341,513
FARRELL, R. A., 347
FITZWATER, M., 619
FOLAN, L. , 443, 453
FRICKEL, Robert H., 191
FRIEND, J. , 39
FRY, E. S., 387
FRY, S., 217
FULLER, K. A., 631

GALLILY, I., 95
HAGEN, D. E., 29
HARACZ, R. D., 357,365
HERB, P., 387
HiCKS, David L., 129
HOPKINS, A. R., 29
HSIEH, M. T., 225
JACKSON, Christian, 129
KASSNER, J. L., 29
KATTAWPR, G. W., 387,631
KEESEE, R. G., 187
KOSUGE, H., 107
LAKHTAKIA, A., 597
LATIFI, H., 239
LAWLESS, P. A., 225
LETTIERI, Thomas R., 305
L!N, H. B., 341, 513
LITTMAN. H., 23, 157
LONG, L. L., 201, 217
MA, Y., 591, 613
MANUCCIA, T. J., 17
MARKLAND, Richard A., 179
MCCORMICK, N. J., 395, 581
MONCIVAIS, G., 467
MORGAN III, M. H., 23, 157
MORGAN, S., 187
NEWQUIST, L. A., 201, 217
NOLAN, P., 39
ORDAL, M. A., 201, 217
PEKAREVICH, M., 95
PIERCE, Leland, 495
POREH, M., 103
QUERRY, Marvin R., 117, 201
RACZIEMSKI, L. J., 239, 521
REIST, P. C., 225
RUBEL, G. 0., 13

SCHAUB, S. A., 251
SCHMITT, J. L., 29
SCOTT, Peter D., 151
SEAVER, M., 17
SHAH, P., 521
SHAH, David T., 151
SINGHAM, S. B., 571
STOYANOV, B. J., 347
THOMSON, George M., 179
THOMSON, Sandra M., 179
TRACHTENBERG, 1., 315
TRUEBLOOD, M. B., 29
TSANG, Tate T. H., 163
TZENG, W. B., 187
VAN DIVER, R., 201, 217
VARADAN, V. K., 591, 597, 613
VARADAN, V. V., 591, 597, 613
WANG, R. T., 323, 357, 473
WANG, W-X., 473, 489
WEIL, Herschei, 495,603
WHITE, D. R., 29
WHITE, W. E., 387
WIELICZKA, David M. , 117
WILLIS III, Thomas, 603
WYATT, Philip J., 129
XU,W., 387
ZARDECKI, A., 273
ZHANG, J., 251

INDEX B
INDEX OF AUTHORS' ORGANIZATIONS
AND COUNTRIES (IF NOT U.S.A.)
FOR PAPERS IN THESE PROCEEDINGS
Aberdeen Proving Ground (U.S. Army)
Chemical Research, Development and Engineering Center, 13, 139, 163, 179, 191, 513
Army Muntitions and Chemical Command, 179 Ballistic Research Laboratory, 179

Colorado State University, 103
Drexel University Department of Chemistry, 39, 357, 365

GEO-CENTERS, 39
Hebrew University of Jerusalem (Israel) Department of Atmospheric Sciences, 95

The Johns Hopkins University Milton S. Eisenhower Research Center, 347 Applied Physics Laboratory, 347

Los Aiamos National Laboratory Life Sciences Division, 571 Theoretical Oivision, 273, 289

Nationa! Bureau of Standards, 305
Naval Research Laboratory Optical Sciences Division, 17, 341, 513

New Mexico State University
Physics Department, 239, 273, 521
Applied Laser Optics Group, 239, 273, 521
Northwestern University Materials Research Center and Department of Chemistry, 453

Oregon Graduate Center, 581
Pennsylvanta State University Department of Chemistry, 187 Department of Engineering Science and Mechanics, 591, 597, 613

```
Polytechnic University
    Microparticle Photophysics Laboratory, 443
    Department of Physics and Institute
        for Imaging Science, }45
Potomac PhotonIcs, Inc., 341, 513
Rensselaer Polytechnic institute
    Department of Chemical Engineering, 23, 157
Research Triangle Institute, 225
State University of New York at Buffalo
    Laboratory for Power and Environmental
        Studies, 151
Temple University
    Departnent of Mathematics, 401, 413, 533, 645,667
Texas A&M University
    Department of Physics, 387, 631
University of Florida
    Space Astronomy Laboratory, 323, 473, 489
liniversity of Kentucky, 163
University of Michigan
    EECS Department, 495,603
University of Missouri-Kansas City
    Physics Department, 117, 201
University of Missouri-Rolla
    Physics Department, 29, 201, 217
University of Nebraska-Lincoln
    Laboratory of Electro-Optical
        Measurements, 251
    Department of Mechanical Engineering, 251
    Electrical Engineering Department, 619
University of North Carolina, 225
University of Texas
    Chemical Engineering Division, 10?, 279, 315,467
University of Washington
    Department of Nuclear Engineering, 395,581
Wyatt iechnology Corporation, 129
```

APPENDIX A
PHOTOGRAPHS OF CONFERENCE ATTENDEES
(TAKEN MIDWEEK)

Blank
PHOTOGRAPH 1
1987 CRDEC SCIENTIFIC CONFERENCE ON OBSCURATION AND AEROSOL RESEARCH

(Left to Right)
$\begin{aligned} & \text { First Row: } \begin{array}{l}\text { George Kattawar, Chia-Ren Hu, Gary Salzman, Roger Jchnston, Dave Pendleton, } \\ \\ \\ \text { John Barton, Kenneth Evans, Ming Leung, Ignatius Tang, H. B. Lin, Chui Lin Wang }\end{array} \\ & \text { Jecond Row: Ru Hang, Thomas Lettieri, Steve Druger, Glenn Bennett, W. Flood, G. Rubel, } \\ & \text { Norman McCormick, W. P. Van de Merwe, L. Folan, Duane Smith, Wan-Xian Wang }\end{aligned}$
Robert Frickel, Arthur Carrieri

$$
\begin{aligned}
& \text { PHOTOGRAPH } 2 \text { (Left Half) } \\
& \text { (Left to Right) } \\
& \text { First Row: N. Presser, R. Remaly, C. Wood, E. Engquist, C. Richardson, Sherwin Amimoto, } \\
& \begin{array}{l}
\text { John White, R. A. Elliott, R. K. Chang, Tony Piuchino, Mel Lax, Orazio Sindoni, } \\
\text { Kirk Fuller, John Yen }
\end{array} \\
& \text { Second Row: Bill Acker, David Leach, Ed Stuebing, E. Bahar, Curt Wagner, Mark Seaver, } \\
& \text { Jim Davis, D. Cohoon, Joe Carls, Marek Sitarski }
\end{aligned}
$$

APPENDIX B
LIST OF CONFERENCE ATTENDEES

Blank

APPENDIX B

1987 CRDEC Scientific Conference
 on
 Obscuration and Rerosol

Attendees List

ACKER, William
Yale University
Applied Physics Laboratory
P.O. Box 2157

New Haven, CT 06520
ALEXANOER, Dr. Dennis R.
Mechanical Engineering Dept.
255 WSEC
University of Nebraska-Lincoln Lincoln, NE 68588

AMIMOTO, Sherwin
The Aerospace Co.
P.O. Box 92957-M5-753

Los Angeles, CA 90009
ARNOLD, Professor Stephen
Dept. of Physics
Polytechnic Institute of New York 333 Jay St.
Brooklyn, NY 11201
AVIDESIAN, Dr. Thomas
Dept. of Mechanical \& Aerospace Engineering Cornell University Upson hall
Ithaca, NY 14853-7501
BACH, Walter
U.S. Army Research Office
P.O. Box 12211

Research Triangle Park, HC 27709
BAHAR, Dr. Ezekiel
Dept. of Electrical Engineering University of Nebraska-Lincoln WSEC 209N
Incoln, NE 68588-0511
BARBER, Or. Peter W.
Dept. of Electrical Engineering
Clarkson Universtty
Potsdam, MY 13676
BARTON, Dr. Johri P.
University of Nebraska-Lincoln 255 HSEC
Dept. of Mechanical Engineering Lincoln, NE 68588-0525

BELL, Or. Robert J.
Physics Dept.
University of Missouri-Rolla
Rolla, MO 65401
BENnETT, Glent T.
Dept. of Physics
Texas A \& M University
College Station, YX 77843
BIRD, Joe
Applied Physics Laboratory
Johns Hopkins University
Laurel, MD 20707
BLEIWEISS, Max
Commander
USA DGP
STEDP-MT-TM-O
Dugway, UT 84022
BOTTIGER, Jerald
Commander
U.S.Army Chemical Research, Development and Engineering Ceneter
ATTN: SMCCR-RSP-B
Aberdeen Proving Ground, MD 21010-5423
BREEN, Jack
Penn State University
128 Davey Lab.
Dept. of Chemistry
University Park, PA 16802
8ROCK, Professor James R.
Dept. of Chemistry Engineering
University of Texas
Austin, TX 78712
BRONK, Burt
Commander
U.S. Army Chemical Research, Development
and Engineering Center
SMCCR-RSP-B
Aberdeen Proving Ground, MD 21010-5423

BRUNO, John SAIC 1710 Goodridge Dr. McLean, VA 22180	CHYLEK, Dr. Peter Dept. of Physics New Mexico State University Las Cruces, NM 88003
CAPPS, Dr. C. David	COHEN, Professor Ariel
Boeing Aerospace Co.	Dept. of Atmospheric Sciences
P.O. Box 3999, MS 87-50	Hebrew University
Seattle, WA 98124	Jerusalem ISREAL
CARLON, Hugh	
Commander	COHEN, Leonard
U.S. Army Chemical Research, Devalopment and Engineering Center	Dept. of Physics and Atmospheric Sciences Drexel University
ATTN: SMCCR-RSP-B	Philadelphia, PA 19104
Aberdeen Proving Groound, MD 21010-5423	COHOON, Dr. David
CARLS, J.C.	Temple University
University of Texas	43 Skyline Dr.
Dept. of Chemical Engineering	Glen Mills, PA 19342
Austin, TX 78712	COMEFOPD, Jack
CARPIN, John	USA Dugway Proving Ground
Commander	ATTN: STEDP-MT-C
U.S. Army Chemical Research, Development and Engineering Center	Dugway, UT 84022
ATTN: SHCCR-RST-E	CURRY, Bill
Aberdeen Proving Ground, MD 21010-5423	Argonne National Laboratory 9700 S. Cass Ave
CARSTENS, Professor John C.	Eng Bldg 207
Graduate Center for Cloud Physics Res. 109 Norwood Hall	Argonne, IL 60439-4841
University of Missouri-Rolla	DAUBER, Edwin
Rolla, MO 65401	W.L. Gore \& Associates $\text { P.O. Box } 1100$
CHiNG, Professor Richard	Elkton, MD 21921
Applied Physics Lab	
Yale University	DAVIS, James E.
P.O. Box 2157	Dept. of Chemical Engineering
Yale Station	BF-10
New Haven, CT 06520	University of Washington Seattle, WA 98195
CHATRATHI, Kris	
11 T Research Institute	DIMMETE, James
Chemistry Division	Commander
10 West 35th St.	U.S. Army Chemical Research, Development
Chicago, IL 606i6	and Engineering Center ATTN: SMCCR-MUS-S
Chitanvis, Dr. Shirish	Aberdeen Proving Ground, MD 21010-5423
Los Alamos National Lab T-DOT-MS-P371	
Los Alamos, NM 87545	

OOHERTY, BOb
Commander
U.S. Army Chemical Research, Development and Engineering Center
ATTN: SMCCR-RSP-B
Aberdeen Proving Ground, MD 21010-5423
DRUGER, Stephen
Dept. of Chemistry
Northwestern University
Evanston, IL 60201
ELLIOTT, Dr. R.A.
Oregon Graduate Center
19600 N.W. Von Neumann Dr.
Beaverton, OR 97006-1999
ELLINGSON, Bob
University of MO
Dept. of Meteorology
College Park, MO 20742
ENSOR, Dave S.
Research Triangle Institute
P.O. Box 12194

Research Triangle Park, NC 27709
EVANS, Kenneth
Commander
U.S. Army Chemical Research, Development and Engineering Center
ATTN: SMCCR-MUS-S
Aberdeen Proving Ground, MD 21010-5423
EVERSOLE, Jay
Commander
Naval Research Lab.
ATTN: Code 6546
Washington, DC 20375
FARRELL, Richard
Applied Physics Lab.
Johns Hopkins University
Laurel, MD 20797
FLANIGAN, Dennis
Commander
U.S. Army Chemical Research, Development and Engineering Center
ATTN: SMCCR-RSP-B
Aberdeen Proving Ground, MD 21010-5423

FOLAN, Lorcan
Physics Dept.
Polytechnic Institute of New York
333 Jay St.
Brooklyn NY 11201
FLOOD, Dr. W.A.
Army Research Office
P.0. Box 12211

Research Triangle Park, NC 27709
FRICKEL, R. H.
Commander
U.S. Army Chemical Research, Development and Engineering Center
ATTN: SMCCR-RSP-B
Aberdeen Proving Ground, MD 21010-5423
FRICK, Glendon
Naval Research Lab
ATTN: Code 4116
Washington, DC 20375-5000
FREUND, David
Applied Physics Lab
Johns Hopkins University
Laure1, MD 20707
FRY, Professor Edward
Dept. of Physics
Texas A \& M University
College Station, IX 77843
FULLER, Kirk
Texas A \& M University
Dept. of Physics
College Station, TX 77843
GALLILY, frofessor Isaiah
Dept. of Atmospheric Sciences
Hebrew University
ปerusalem 91904
ISRAEL
GIERYIC, Michael S.
Commander
U.S. Army Chemical Research, Development and Engineering Center
ATTN: SMCCR-RSC-A
Aberdeen Proving Ground, MD 21010-5423

```
GUSTAFSON, Dr. Bo
Space Astronomy Lab
University of Florida
1810 N.W. 6th St.
Gainesville, FL 32601
HALLIDAY, John
Commander
U.S. Army Natick R&D Engineering Center
Materials Science Branch
Physical Science Division/SATO
Attn: STRNC-YSA
Natick, MA 01760
HARACZ, Dick
Dept. of Physics & Atmospheric Sciences
Drexel University
Philadelphia, PA }1910
HEBERLEIN, Jockel
Westinghouse R & D Center
1310 Beulah Rd.
Pittsburg, PA }1523
HENDERSON, Patrice
Commander
U.S. Army Chemical Research, Development
    and Engineering Center
ATTN: SMCCR-RSC-A
Aberdeen Proving Ground, MD 21010-5423
hOLlAND, Dr. Paul
General Research Corp
5383 Hollister Ave.
Santa Barbara, CA 93111
HU, Professor Chia-Ren
Dept. of Physics
Texas A & M University
College Station, TX }7784
JAFOLLA, Dr. James
Photon Research Association
3377 N. Torrey Pines Ct.
Suite 300
La Jolla, CA }9203
Johnson, R.B.
Aerospace Corp.
Bldg, A6-1647
P.O. Box }9295
Los Angeles, CA }9000
```

GUSTAFSON, Dr. Bo
Space Astronomy Lab
1810 N.W. 6th St.
Gainesville, FL 32601
halliday, John
Commander
U.S. Army Natick R\&D Engineering Center

Materials Science Branch
Physical Science Division/SATO
Attn: STRNC-YSA
Natick, MA 01760
HARACZ, Dick
Dept. of Physics \& Atmospheric Sciences
Drexel University
Philadelphia, PA 19104
HEBERLEIN, Jockel
'Nestinghouse R \& D Center
1310 Beulah Ra.
Pittsburg, PA 15235
HENDERSON, Patrice
Commander
U.S. Army Chemical Research, Development
and Engineering Center
ATTN: SMCCR-RSC-A
Aberdeen Proving Ground, MD 21010-5423
holland, Dr. Paul
General Research Corp
5383 Hollister Ave
Santa Barbara, CA 93111
HU, Professor Chia-Ren
Dept. of Physics
College Station, TX 77843
JAFOLLA, Dr. James
Photon Research Association
3377 N. Torrey Pines Ct.
Suite 300
a Jolla, CA 92037
Johnson, R.B.
Aerospace Corp.
Bldg, A6-1647
Los Angeles, CA 90009

JOHNSTON, Roger MS M888
JORDAN, Hans
Battelle Colombus Division
505 King Ave.
Columbus, OH 43201
Kagan, Jeff
Commander
U.S. Army Chemical Research, Development and Engineering
ATTN: SMCCR-RSP-B $21010-5123$
Aberdeen Proving Ground, MD 21010-5423
KATTAWAR, Or. George
Dept. of Physics
Texas A \& M University
College, Station, TX 77843
KENNEDY, Dr. John
Naval Weapons Support Center
Code 5063
Crane, IN 47401
KLEINMAN, Dr. Ralph
University of Delaware
Dept of Math Sciences
Newark, DE 19716
KLETT, James
PAR Associates
1741 Pomona Drive
Las Cruces, NM 88001
Dept. of Pure \& Applied Physics
U.M.I.S.T.
P.O. Box 88
Manchester M60 100
ENGLAND
LAWLESS, Phil
Research Triangle Institute
Box 12194
Durham, NC 27709
LAX, Melvin
City College of New York
Physics Dept.
New York, NY 10031

JOHNSTON, Roger
MS M888
Los Alamos National Lab
Los Alamos, NM 87545
JORDAN Hans
Battelle Colombus Division
505 King Ave.
Columbus, OH 43201
KAGAN, Jeff
Commander
U.S. Army Chemical Research, Development
and Engineering
ATTN: SMCCR-RSP-B
Aberdeen Proving Ground, MD 21010-5423
KATTAWAR, Dr. George
Dept. of Physics
Texas A \& M University
College, Station, TX 77843
KENNEDY, Dr. John
Naval Weapons Support Center
Code 5063
Crane, IN 47401
KLEINMAN, Dr. Ralph
University of Delaware
Dept of Math Sciences
Newark, DE 19716
KLETT, James
PAR Associates
1741 Pomona Drive
Las Cruces, NM 88001
LATHAM, John
Dept. of Pure \& Applied Physics
U.M.I.S.T.
P.O. Box 88
Manchester M60 IQO
ENGLAND
LAWLESS, Phil
Research Triangle Institute
Box 12194
Durham, NC 27709
LAX, Melvin
City College of New York
Physics Dept.
New York, NY 10031

LEACH, David
Yale University
Applied Physics
P.O. Box 2157

Yale Station
New Haven, CT 06520
LEONG, Dr. Keng
Argonne National Lab Bldg 207
c700 South Cass Ave.
Argonne, IL 60439
LETTIERI, Thomas R.
National' Bureau of Standards
MET-A117
Gaithersburg, MD 20899
LIN, H.B.
Code 6501
Naval Research Lab
Washington, DC 20375-5000
LITTMAN, Howard
. 33 Ricketts Bldg
Rensselaer Polytechnical Institute
Dept. of Chemical Engineering
Troy, NY 12180-3590
LEUNG, Ming K.
Dept. of Physics
Polytechnic Institute of New York 333 Jay Street
Brooklyn, N.Y. 11201
MA, Yushieh
Dept. Of Eng. Science \& Mechanics 227 Hammond Bldg
Pennsylvania State University University Park, PA 16802

MAJESKI, John
PM/Smoke
USA TECOM
ATTN: AMSTE-TC-M
Aberdeen Proving Ground, MD 21005-5005
MARTIN, Dan
Commander
Dugway Proving Ground
ATTN: STEDP-MT-L
Dugway, UT 84022

McCALLY, Russell
Dept of Physics
Johns Hopkins Univeristy
Laurel, MD 20707
McCORMICK, Norman
Dept. of Nuclear Engineering
University of Washington
81dg BF 10
Seattle, WA 98195
MORGAN, Morris
Dept. of Chemical Engineering
Resselaer Polytechnic Institute
Troy, NY 12180-3590
NOLAN, Pat
Dept. of Chemistry
Drexel University
32nd \& Market St.
Philadelphia, PA 19104
PATERNO, Dorothea
Commander
U.S. Army Chemical Research, Development annd Engineering Center
ATTN: SMCCR-RSL
Aberdeen Proving Ground, MD 21010-5423
PENDLETON, Or. David
Atmospheric Sciences Lab
P.O. Box 236

White Sands Missile Range, NM 88002
PIERCE, Joe
W.L. Gore \& Associates
P.O. Box 1100

Elkton, MD 21921
PIERCE, Leland
University of Michigan
EECS Dept.
Ann Arbor, MI 48105-2122
PINNICK, Dr. Ronald
Atmospheric Sciences Lab
ATTN: DELAS-EO-ME
White Sands Missile Range, NM 88002
PLUCHINO, Antonio (Tony)
Aerospace Corp
Bldg A 6-1647
P.0. Box 92957

Los Angeles, CA 90009

POZIOMEK, Ed

Commander

U.S. Army Chemical Research, Development and Engineering Center
SMCCR-RS
Aberdeen Proving Ground, MD 21010-5423
PRESSER, Nathan
Aerospace Corporation
P.0. Box 92957

Los Angeles, CA 90009
QUERRY, Marvin
Dept. of Physics
University of Missouri
Kansas City, MO 64110
RADZIEMSKI, Or. Leon J.
Dept. of Physics
New Mexico State University
P.O. Box 30001/ Dept 30

Las Cruces, NM 88003-0001
REMALY, Bob
IIT Research Institute
Chemistry Division
10 West 35th St.
Chicago, IL 60616

RILEY, Erica

Commander
U.S. Army Chemical Research, Development and Engineering Center
ATTN: SMCCR-RSP-B
Aberdeen Proving Ground, MD 21010-5423
RIN, Chun Hsun
Commander
U.S. Army Chemical Research, Development and Engineering Center
ATIN: SMCCR-DDE
Aberdeen Proving Ground, MD 21010-5423

RUBEL, Glenn
Commander
U.S. Army Chemical Research, Development and Engineerng Center
ATTN: SMCCR-RSP-B
Aberdeen Proving Ground, MO 21010-5423
SALZMAN, Dr. Gary
Los Alamos National Lab
P.O. Box 1663

M5 M888
Los Alamos, NM 87545
SAUTER, David
Atmospheric Sciences Lab
ATTN: DELAS-EO
White Sands Missile Range, NM 88002
SCARBOROUGH, Sharon
W.L. Gore \& Associates
P.O. Box 1100

Elkton, MD 21921
SCOTT, Peter
Dept. of Elec. Eng./LAPES Lab
Studio University of N.Y./Buffalo
Room 330 Banner Hall
Amherst. N.Y. 14260
SEAVER, Mark
Naval Research Lab
Code 6540
Washington, DC 20375
SHAW, Or. David
Dept. of Electrical Engineering
State University of New York
330 Bonner Hall
Buffalo, NY 14260
SINDONI, Orazio
Commander
U.S. Army Research, Development
and Engineering Center
ATTN: SMCCR-RSP-B
Aberdeen Proving Ground, MO 21010-5423
SITARSKI, Marek
U.S. Dept of Energy
P.O. Box 880

Morgantowne Energy
Technology Center
Morgantowne, WV 26505

SMITH, Or. Duane	TURETSKY, Abraham
Aerospace Corp.	Commander
M2-253	U.S. Army Chemical Research, Development
P.0. 80x 92957	and Engineering Center
Los Angeles, CA 90009	ATTN: SMCCR-RSP-B
	Aberdeen Proving Ground, MD 21010-5423
SNELSON, Dr. Alan	
Illinoise Institute of Technology	TZENG, Wen-Bih
Research Institute	Penn State University
10 W .35 th St.	128 Davey Lab
Chicago, IL 60616	Dept. of Chemistry University Park PA 16802
STEPHENS, John R.	VAN DE MERWE, Wim
CHM-2	l.aser Bio Physics
M/S C-348	Uriform Services of the Health Sciences
Los Alamos National Lab	4301 Jones Bridye Rd.
Los Alamos, NM 87545	Bethesda, MD 20814-4799
STOYANOV, Basil	VAN DE WAL, Dr. Anthony
Johns Hopkins Applied Pnysics Lab	Project Manager, Smoke/Obscurant
Johns Hopkins University	ATTN: AMCPM-SMK-T
Laurel, M0 20707	Bldg 324 Aberdeen Proving Ground, MD 21005
STUEBING, Edward	Aberdeen Proving Ground, MD 21005
Commander	VARADAN, V.V.
U.S. Army Chemical Research, Development and Engineering Center	Dept. of Engineering Science \& Mechanics Penn State University
ATTN: SMCCR-RSP-B	227 Hammond Bldg
Aberdeen Proving Ground, MD 21010-5423	University Park, PA 16802
TANG, Ignatius	VOGT, Dr. Gerald
Bldg 815	Los Alamos National Lab
Brookhaven National Lab	NST-e
Upton, NY 11973	MAIL STOP-C348
	Los Alamos, NM 87545
THOMSON, George	
USA BRL	VU, Bien
ATTN: SLCBR-SE-E	Systems Planning
Aberdeen Proving Ground, MD 21005	1500 Wilson Blvd.
	Arlingtn, VA 22209
THOMSON, Sandra	
Commander	WAGNER: Dr. Curt
U.S. Anmy Chemtcal Research, Development	Physics Lept
and Engineering Center	Southwest State University
ATTN: SMCCR-RST-C	Marshall, Minnesota
Aberdeen Proving Ground, MD 21010-5423	56258
TSANG, Tate	WANG, Chui Lin
Dept. of Chemical Engineering	The Dept. of Physics
University of Kentucky	The City College
Lexington, KY 40506	University of New York

SMITH, Or. Duane
Aerospace Corp.
253
O. 80×9295

SNELSON, Dr. Alan
Illinoise Institute of Technology
Research Institute
10 W . 35th St.
Chicago, IL 60616

STEPHENS, John R.
CHM-2
M/S C-348
Los Alamos National Lab
Los Alamos, NM 87545
STOYANOV, Basil
Johns Hopkins Applied Pnysics Lab Johns Hopkins University

Mo 20707
Edward
Commander
Army Chemical Research, Development
and Engineering Center
ATTN: SMCCR-RSP-B
Aberdeen Proving Ground, MD 21010-5423
TANG, Ignatius
Bldg 815
Brookhaven National Lab

THOMSON, George
USA BRL
ATTN: SLCBR-SE-E
Aberdeen Proving Ground, MD 21005
THOMSON, Sandra
Commander
.S. Army Cremtcal Research, Development
and Engineering Center
ATTN: SMCCR-RST-C
Aberdeen Proving Ground, MD 21010-5423
TSANG, Tate
Dept. of Chemical Engineering
University of Kentucky
Lexington, KY 40506

TURETSKY, Abraham
Commander
U.S. Army Chemical Research, Development
and Engineering Center
ATTN: SMCCR-RSP-B
Aberdeen Proving Ground, MD 21010-5423
TZENG, Wen-Bih
Penn State University
Davey Lab
Dept. of Chemistry
University Park, PA 16802
VAN OE MERWE, Wim
Uniform Services of the Health Sciences
4301 Jones Bridye Rd.
Bethesda, MD 20814-4799
VAN DE WAL, Dr. Anthony
Project Manager, Smoke/Obscurant
ATIN: AMCPM-SMK-I
Bldg 324

VARADAN, V.V.
Dept. Of Engineering Science \& Mechanics
Rtate University
227 Hammond Bldg
University Park, PR 16802
Gog Or. Gerald
NST-e
MAIL JTOP-C348
Los Alamos, NM 87545
VU, Bien
Systems Planning
Arlingtn, VA 22209
WAGNER: Dr. Curt
Physics Dept
Southwest State University
Marshall, Minnesota

WANG, Chui Lin
The Dept. of Physics
The City College
New York, NY 10031

```
WANG, Chuen Chung
Dept. of Chemical Engineering
University of Maryland
College Park, MD 20742
WANG, Ru T.
Space Astronomy Lab
University of Florida
1810 N.W. 6th St.
Gainesville, FL 23601
WANG, Dr. Wan-Xian
Space Astronomy Lab
University of Florida
1810 N.W. 6th St.
Gainesville, FL 23601
WEIL, Herschel
Dept. of Electrical and Computer Science
University of Michigan
Ann Arbor, MI 48109
WEINBERG, Dr. Jerry
Space Astronomy Lab
University of Florida
1810 N.W. 6th St.
Gainesville, FL }3260
WHITE, John R.
Commander
U.S. Army Chemical Research, Development
    and Engineerng Center
ATTN: SMCCR-RSP-B
Aberdeen Proving Ground, MD 21010-5423
WHITE, William
Texas A&M University
Dept. of Physics
College Station, TX 77843-4242
WILLIS, Thomas M.
University of Michigan
Dept. of EECS
Ann Arbor, MI 48109-2122
WOOD, Carol
Yale University
Applied Physics Lab
P.0. Box 2157
New Haven, CT }0652
```

WYATT, Dr. Philip Wyatt Technical Co. P.O. Box 3003

Santa Barbara, CA 93130-3003
YEN, John
Naval Ocean Systems Center ATTN: Code 843
San Diego, CA 92152
YUDANIN, Boris
Physics Dept.
City College of NY
New York, NY 10031
ZARDECKI, Andrew
Los Alamos National Lab MS-P371
Los Alamos, NM 87545

APPENDIX C CONFERENCE AGENDA

The preseaters have only 2 (two) miantes to give as overview of their posur; please do not exceed your time. To the audience, please refrain from anking questione duriag presentation.

츨
varoess Paeumatic Transport
I. Howard Litman (RP1), Investigation of Bouadary Conditions for

1. Kenneth Evans (CRDEC), Simulation of Aerosol Plumes of Diesel Fuel and Fog Oil
2. George Thomson (BRL), An X-Ray Fuorescence Device for Concentration Measurement in Aerosols of Medium to High A tomic Number
 Precursors
TUESDAY, 23 JUNE
OSSCURATDON SC IENCE TENTN ANANVRSARY OPCNNOUSE
II. AEROSOL CHARACTERIZATION METHODS

[^7]from 8:15 to 10:00 at Elde. E5051

I. ADROSOL DYNAMICS (centinued)

Moderator: Geren Rubal

10:15 John Latham (UMIST-England), Mixing Procesasa in Cloods [16)
10:35 Miehael Poran (Colorado SLU.), Wind Tunael Studies of Large Particle Setlemeat [15]

Breakdown: Wavelenght Dependence $|15|$
08:55 R. K. Chang, W. F. Hrieh, J. B. Zheng, and J. H. Eickmans (Yale
University), High Intensity Visible Laser Iaduced Plama with
Transparent Liquid Dropleta |15|
09:15 L. J. Radzlomski, R. Armstrong, H. Biowas and H. Latiji (NMSU), Time Resolved Spectra of Plasmas Initiated by Single Aerosols: an Update (High Ifradiance Plasma Formation) |15] 09:30 BREAK

10:00 D. R. A loxandor, J. P. Barton, S. A. Schaut, M. A. Emanuel (University of Nebraska -Lincoln), Experimental and Theoretical Analysis of the Iteraction of CO_{2} Laser Beam with Fluid Cylinders and A djacent Spheres. [15]

10:20 A. Zardackl, R. L. Armatrong (Los Alamos National Laboratory), Energy balance in Laser Irradiated Vaporising Dropleta [15]

10:40 J. C. Carls, S. C. Davies, and J. R. Broek (Univeruity of Toxas), Reaponse of Siagle Particlea and Aeronol to High Energy Lemer Radialion [25]

11:10 S. M. Chitanvis (Los Alamor National Laboratory), Laer Induced Turbulence in A erosol-loaded A tmospheres (15)

11:30 K. M. Leung (Polytechnie Univ. NY), Intrinsecally Nonlinear Ipteraction of Intenase Electromagnetic Waves with Microparticies [15] 11:50 LUNCH

1:00 C. F. Wood, D. H. Leach, J. Z. Zhans, end R. K. Chong (Yas University), Explosive Vaporization of Liquid Dropleta by High Intensity CO_{2} and Visible Lasers [15]

1:20 M. Lax, J. M. Chitanvis, C. L. Wang, B. Yudanin, A. Zardeki Droplet \{25|
兴惑
J. C. Carls, G. Moncivias, J. R. Brock (Univ. of TEXAS), Semiconductor Etching
Willam Curry (Argonne Labs.), The Effect of Evaporation on Cloud Extinction Characleristics
A.Turotaky and D.Patarno (CRDEC), Thermally Induced Morphological A leration of Intumescent Fiber Forming Precirsors
B. Bronk, R. Frickel (CRDEC) General Remarks on Structures Likely to be Observed on Spherical Surfaces liferred from Equilibrium Calculations Uader Coulomb Forsea
 Querry (Univeraity of Missouri-Rolla) Experimental Optical Properties of Liquids
II. R. J. Bell, S. Fry, R. Vanderver, M. Ordal, L. L. Lang, L. Newe viet, R. W. Alexender (University of Miseouri-Rolla), A Now Clasa of Intarfarometer for Grap hilu Studies

WEDNESDAY, 24 JUNE

III. NONLINEAR EFFECTS ATHIGH ENERGY
Moderator: Oraxio I. Sindoni
08:15 P. Cnyiok, M. Jarzembeti, V. Srivastava, R. G. Pinnick (NMSU), Pressure Dependence of Laser Induced Breakdown of Aerosola and Gases [15]
88:35 R.G. Pinnlek, P. Chyleck, M. Jarzembeki, E. Creegan, V. Srivatave, J. Cructeion (A tmospheric Sciences Lab), Aerosol-Induced Laser
08:15 Ru T. Wang (University of Florida), Findings Through Mierowave Scatlering Facility Upgrade [15]
08:35 J. D. Pondeton, R. G. Pinnick, and Peter Chplek (A tmospherie Sciences Laboratory), Mie Theory Poynting Flux Lines at Resonance [15]
$08: 55$ Potor W. Barbor, S. C. Hill (Clarkson University), Resonance Effects A ssociated with Nonspherical Particies [15]
09:15 Jay Eversole, H. B. Lin, A. J. Campillo (Potomec Pbolonica, Ine.),
A ngular Scatiering from Single, Suspended Cylindera [16| 09:35 bREAK
 Effecta of Simple Shadowing on Variational Calculationa |15]
10:20 Leonard Cohon, Richard Haraet, Ariel Cohen (Drexel University),
10:40 A flal Cohen, Riehard Haraes, Leonard Cohen (Drexel University),
 Scallering Functions [15]
11:00 C. T. Bennoth E. S. Fry, W. E. White, P. Herb, G. W. Kallawar (Texas A. \& M.), The Scattering of Fembesecond Optical Pulsea by Small Dielectric Spheres [15]
11:20 R. B. Johnson (Aerospace Corp.), Novel Methods for
11:40 T. Duracz, N. J. MeCormlek (U. of Washingion-Seattle),
 Obscuring Atmospheres [15]
кdorsonjads गวprad j8uls 'U
1:15 E. James Davls (University of Washington), Fluorescence Measurements or Single Reacting Microparticles [15]

1:50 M. Starskt (Clarkson University, c/o DOE/METC), Dynamice of 1:50 Response of Small Nonhomogeneous Droplet to Intense Optical Response of Small Nonhomogeneous Droplet to Intense Optical
Fields (High Temperature Termal Radiation Laser Beam) |15] 2:10 BREAK

IV. WORKSHOP, HANDLING INDIVIDUAL PARTICLES

Ouiqomes :M pronpg :solisopon

Ignatus Tans (Boothaven National Laboratories). Phyctical and
Chemical Me Lsurements of Single Suspended Particles [25|
Chemical Mesurements of Single Suspended Paricles |25|
3:30 E. James Davis (University of Washington), Sirgle Micropurticle Messurementu [25]

4:00 Thomes Lottierl (National Bureat of SLandarda), Optieal Levitation of Single Particles [25|

4:30 General discussion
5:00 Contruing Diseussions over Cocktalls and Dinner at the

TIURSDAY, 25 JUNE
v. OPTICAL PROPERTIES OF AEROSOLS

Moderators: Burt V. Bronk and Robert H. Frickel
A. Seattering by Single Particles and Small Aggregate:

08:15 Ru T. Wang. (University of Florida), Findinga Through Microwave Scaluering Facility Upgrade [15]
 Sciences Laborabory), Mie Theory Poyating Flux Liaes at Resonance [15]

08:55 Potur W. Barbor, S. C. Hill (Clarkson University), Resonance Effects A ssociatad with Nonapherical Particles [15]
 A agular Scatteriag from Single, Suepended Cylindera [15| 09:35 BREAK

10:00 Basll J. Stoyenov, Richard A. Farrell (Johns Hopkins Univeraity), Effects of Simple Shadowing on Variational Caleulationa [15]

10:20 Leonard Cohen, Richard Harses, Ariel Cohen (Drexel Univeraity), Seatlering From a Dielectric Knot [15]
'((9)
 Scattering Functione [15]

 Small Dielectric Spherea [15]

11:20 R. B. Johnson (Aerospace Corp.), Novel Methods for Nonapherical Scattering Calculations [15]

11:40 T. Duraci, N. J. MeCormick (U. of Washington-Seattle), Radiative Tranafer Calculations for Detecting an Object behind Obscuring A lmoapheres (15)

12:00 LUNCH

1:15 E. Jamas Davis (University of Washington), Messurements of Single Reacting Microparticles [15]
$\stackrel{3}{i}$

1:50 M. Starskl (Clarkson University, c/o DOE/METC), Dynamics of Response of Small Nonhomogeneous Droniet to Intense Optical Fieids (High Temperature Termal'Radiation Laser Beam) [15] 2:10 BREAK

IV. WORKSHOPY HANDLING INDIVDUUL PARTICLES

Moderator: ESward W. Stuebing

2:30 Stophen A rnold (Polytechnic Institute of New York), Speetroscopy of Single Levilated Parlicies [25]

3:00 Ignatius Tang (Bookhaven National Laboratories), Physical and Chemical Mensurements of Single Suspended Particles [25)
 Messurements [26]

4:00 Thomas Letuerl (National Buresu of Standards), Optical Levitation of Single Particlea [25]

4:30 GENERAL DISCUSSION
5:00 Continulng Discuasiona over Coektalla and Dinner at the Omeer' : Club (Beef and Burgundy, 6:00-8:00 pm)

THUREDAY, 25 JUNE
V. OPTICAL PROPERTIES OF AEROSOLS

Moderators: Burt V. Bronk and Robert H. Fricke:
A. Scattering by Single Particlea and Small Aggregates
THURSDAY POSTER SESSION (continued)

 Electromagnetic Particle Traps and Their Charseleristica
III. L. Redriemskl, H. Birwas (New Mexico State Univeraity), Experimental Investigation of Effecta following immediately after
the Formation of Laser Induced Breatidown Plasma
III. P. Chylok, M. Jarsemboti, V. Srivalsova, R. Pinnick (NMSU),
 and Gases
III. K. M. Leung (Poly. Univ. NY), Effective Nonlinear Dielectric Fuaction of a Random Collection of Rayleigh Sized Partielea
D. Conoon (Tumple University), Interrogation of Clouds of Fibers-- Mueller Marrix Entry Compulation for Finita Length
Cylinders with Fixed or Random Orientation Cylindera with Fixed or Random Orientaion
 Penetrable Disperaive A nistropic Aerosol Particlea
V. C. RIChardson, R. L. Hightower (University of Arkansas), Seattering Studies of Evaporation of Levilated Ammonium Nitrate Droplets
V. G. Salzman and S. Singham (Los Alamos National Laboratory), Scallering from Chiral Particles
V. R. A. Ellloth T. Duracx, N. J. MeCormick (Oregon Graduate
 Scattering Algorithm

1:35 L. Folan, S. Arnold (Polytechnie Univeraity of New York), Electromagnetic Sounding of Molecular Structure at Surface and Interior of Aerosoi Partieles: Theory [15]

1:55 S. Arnold, L. Folen (Polytechnic Uaiversity of New Yort), Electromagnetic Sounding of Particles: Experiment [15] 2:15 BREAK

2:35 S. Drugor (Northwestern University), Theory of Intermolecular Energy-Transfer Enhancement by Mie Resonances [15]

NOISSGS \&GLSOd XVASANHL
 PREVIENS 3:00 to 3:30

POSTERS OPEN: 3:30-5,30 (with refreahments)

The presenters have only 2 (two) minutes to give an overview of their poster;
plesese do not exceed your time. To the sudience, please refrain from asking
questions during presentation.

Related
V. Goorge W. Kottowar, Pascal Herb (Texas A. \& M. University), Mueller Matrix Calculations for Two Interacting Dielectric Cubes
V. W. X. Wang (Univeraity of Florida), Theoretical Calculations on Scattering by Spherical Particles and Comparison with Microwave Extenction Measurementa
V. W. E. Whita, E. S. Fry (Texas A. \& M. University), Femtosecond Laser Scattering from Spheres
V. T. Willis, H. Weil (University of Michigan), Verification of Dise Scattering by the CWW (Full Wave) Method and Range or Validity

FRIDAY, 20 JUNE
08:15 V. V. Varadan, V. K. Varadan, Y. Ma (Penmylvania State
University), Backscattering Enhancement of Waves in Random Media (15)
$08: 30$ V. K. Varrdan, V. V. Varaden (Pennaylvania State University), Electromagnetic A bsorption by Chiral Materiads [15]

Progress on Aeronol Scattering and Absorplion A alysia at the University of Michigan [25]
 Scallered by Densely Distributed Nonapterical Puticlea [15] $09: 45$ break

 Very Rough Surfaces - First Order and Multiple Seatter [18]
10:25 K. A. Fullor, G. W. Kattawar (Texas A. \& M. Univerity), Light Scatering by an Arbitrary Cluster of Spheres $|15|$
v. discussion
Moderator:Edward W. Stuebing
 Program

[^0]: 1 R. T. Beyer, Nonlinear Acoustics, (Naval Sea Systems Command, Dept. of the Navy, Washington DC, 1974) ch. 3.

[^1]: Sources of Quartz data were refs. 8 and 9.

[^2]: 1 P.B. Walsh and J.L. Ulich, Thermal biooming in the atmosphere, Laser Beam propagation in the Atmsophere, "Topics in Applies Physics", Vol. 25, Ed. J.W. Strohben, Springer-Verlag (1978). 2 V.I. Tatarskii, The effects of the turbulent atmosphere on wave propagation. NTIS document no. TT-68-50464, translated by the Israel Program for Scientific Translations, (1971).
 A)S.M. Chitanvis, Laser Induced Turbulence in the atmosphere, submitted to Phys. Fluids.
 4 J. Wallace and M. Camac, J. Opt. Soc. Am. 60,1587 (1970)
 5 D.K. Killinger and N. Menyuk, Laser remote sensing of the atmosphere, Science,235,37 (1987)
 ${ }^{6}$ C.D. Hodgman, R.C. Weast, S.M. Selby, Handbook of Chemistry and Physics, Chemical Rubber Publishing Co., (1958)
 7 S.F. Clifford, Ther Classical theory of wave propagation in a turbulent medium, Laser Beam propagation in the Atmsophere.

[^3]: have a tith - i le ! relative to the norn :' : Jat re9 along the 2 axis) $\phi=\pi / 2-\phi$.

[^4]: *This is the correct form of the corresponding equation which is given following eq. 19 in Senior (1976)

[^5]: The sbove graph shows the effecta of anlsotropy on the cotal sboorbed power for a .5 mlcron aerosol particle eubjected to $600,000,000$ Megahertz radiation. In the original droplet the radial and tangential relative permittivity were etequal to $50+1$ and the rasl part of the radial parmittivity was varied making the droplet anieotropic as soon ae thie real part differed from 50. The droplet was considered to be nonmagnetic, and the complex conductivity wae set equal to zero. The field atrength wat 10 volte per meter.

[^6]: -This list concerns only research supported in whole or in part by CRDEC. Publications regarding work described in the paper but not supported by CRDFC are referenced explicitly in the ext.

[^7]: 11:20 Phllip J. Wyath, Chriotian Jactoon, David Hicte, Yu-Jain Chans, Rendell G. Parker, William Proctor (Wyatt Technology Compeny), Aenasol Particle Analyzer Messurements and Second Generation Instrument [15]

 11:40 Jerold Botugor (CRDEC), Particle Discrimination Using the Aerosol Particle Analyzer [15]
 II. AEROSOL CHARACIER2ATIONMEITOD

 ## ssothot pjasar :10quspow
 11:00 Marvin quarry (Universily of Missouri - Kanas City), Optical

 Constants of Selected Liquida, Solida, and Powders [15]