LE Ko T LN

RSRKE wmC

T g

-

2N

MU Mo, 4217

g

s

SR
S
P M Rt

UNLIMITED

=}

.~ RSRE
MEMORANDUM No. 4217

ROYAL SIGNALS & RADAR
" ESTABLISHMENT

SPE"‘WiCATlON OF VIPER2 IN Z
Author DHKema 7(

v . v L
az.um 0 waaa A “Rs&wm '5“ NS'R- W‘

pnovunsmem EXECUTWE
 MINISTRY' OF DEFENCE,
Rsms MALVERN P

BAT 90 g saﬁf»‘

CUNLRTED

ROYAL SIGNALS AND RADAR ESTABLISHMENT

Memorandum 4217

TR Ye =

Specification of Viper2 in Z

Author
D.H. Kemp

Date
October 1988

Summary

F As a continuation of the use of the specification language Z which was used to specify the
Viperl microprocessor this paper covers the specification of the Viper2. This was completed
before the definitive HOL specification was complete, therefore there is no proof of correspon-
dence between the two. Using Z did highlight inconsistencies in the HOL specification that
may not have appeared until (ater in the specification.

©Controller, HMSO 1988

1. Introduction

This Memorandum is a description of the proposed Viper2 microprocessor using the
specification language Z. The description is a continuation of the work done on the Viperl
processor 1. This is a first attempt to specify the Viper2 and was done in parallel with the
specification in Higher Order Logic (HOL)t. There may therefore be some inconsistencies
between this document and the HOL description 3. Where this occurs the latter should
be taken as the definitive description.

In safety critical applications it is necessary to ensure that continued operation or safe
shutdown of a system is achieved when erronevus data is input. There are two methods
to increase the integrity of a system: to analyse the software for errors and to use a
processor that is known to be functionally correct. Further confidence is achieved by
using multi-channel systems incorporating processors of dissimilar technologies but with
the same functionality. The functionality of any device is determined by the designers
specification. If an error exists in this then all the channels in the system will experience
the same common mode error.

By using a number of different methods to specify a processor, errors that may be
present in one specification may become apparent in another. This is most effective when
the methods used are basically different in character. This can be completed by using
proofs of correspondence to confirm that the two texts have the same meaning.

An expertise in the use of Z already exists at RSRE and by using a Z editor and type
checker available on the Computing Divisions PerqFlex workstations the task of specifying
Viper2 made a useful praject for a vacation student, who already had a Knowledge of Z.
As a guide to the strategy required for this description J. Bowan’s Z specification of the
M6800 microprocessor® was used.

This report is the first attempt to specify the Viper2 in Z. It makes no attempt to
explain the primary constructs of Z, nor to act as a tutorial in the use of Z to specify &
microprocessor. Readers not familiar with Z should consult Specification Case studies ¢
edited by I. Hayes. Although the specification has been type checked, it has neither been
proved equivalent to the HOL specification nor to be free from errors. Any inconsistencies
or errors found in this document should be reported back to the Computing Division,
RSRE.

tHigher Order Logic (HOL) is a design tool developed at the Cambridge Computing Laboratory.

Accession f‘or
NTIS CRA%L
DTIC TAB

Unannounced O
Justiftcation |

By.
Distribution/

Availability Codes

1 Avall and/cr
Dist Special

Al 5

2 Besic Functions
2.1 Bits end Words

Bit 2 0.1}

Word ¢ { w:NaBit | 80 o dom w = 0 .. (W(Ww) - 1))

Bits are represented as the set of elemerts with values @ or 1.
Words ere represented as @ set of partial functions from nat.ral
numbers to Bits. The natural numbers correspond te the posttion of the
bit 1n the word, 1e the result of win) (the wo-d w acting on the vaiue

n) gives the n+1tP 8.t of the word w.

LSB.MS8 : Word — Bit

6w : Word o
(SBuw=wl
MSB w = w #nu-1

Find the most and least s.gr.ficent bits of the word.

I val : Word = N

¥ w: Word o
(#4=]1) = (val w = LSB w)
(W31) s (val w = LSB w + 2 # vallsucciw))
val returns the natural number represented by the word. Note succiw

gives the effect of a Right shift, ie divide by two, on the word. e
1f sucelw 1s spplied to n then first suce n is calculated. and then w

of n+l is calculsted ie the n+2'™ B.t 1s returned rather than the
n#lth one.

lpred:Nl-oN

rUn:N-predn=n°l

Useful for left shifting (in & similar way to the technique
descr ibed above).

| (_set_) : (Word=Bit) = Word

Ut Word; b s Bit o
wset b= wi{(lub),(1eb)}

The set function returns @ word which has all of its bits set to the
specified value.

I maxval 1 Word - N

Uw: Word e
© ‘waxval w = vallw set 1)

*
~ (3w Word « ((val w) > maxval w))

Returns the maximum value which can be stored in the word.

urd:Nl-.(N-oHord)

YUsize : Ny valu t N: w : Word «

(wra s12e valu = W) o
(W = 5:20) A
(val w = valu mod succimaxval w))})

The function wrd returns the word of size size and set to the value
vaiu (1f that vslue can be held in @ word of that sizel. Note no
algor ithm 15 giver for calculating wrd from 1ts arguments, just the
relationsh.ps wh.ch must hold between the word returned and the input
arguments.

(_"_) ¢ (WordsWord) — Word

U wl.wg : Word o
WltwZ =Wl U Cpred ™ 5z)

B owl,we @ Word o #(Wl Wl) = #ul + w2

Concat nate twuo words together.

2.2 Bituwise Functions

rot : Bit = Bit

not = (01,10}

Generate the logical inverse of the input bit.

(e)o(_*).(_0_) : (Bit=Bit)=Bit

(%) = €10,00m0, (0,131, (1,0 1,(1,1)1}
(o0 = (0,00, £0,1)m1,(1,0M1,(1,1)0}
(o) = €00,000,00.10m0,(1,00m0,(1,1)m1}

Standard b:tw.se logical functions. (note © 1s exclusive or)

Viper _aux_1 keeps ..+,0,n0t.",wrd.maxval,set.pred,val .LSB.MSB,
Word.B:t

2.3 Logical fuctions on words

| wnot : Word e Word

Y w ot Word o
wnot w = W 2 not

Generate the inverse of the input word.

WordPair =
{w: N o (BitsBit) | w0 o dom w =0 .. ((®4)-1))

I (_pair_) : (WordsWord)—WordPair

8wl @ Word o
wl pair w2 =
{i:N|) edomuwl NdomuZ o t e (Wl 15w2 1))

Takes 8 pa'r of words and represents them as a set of bit pairs.
indexed by a single natural number.

lgj_and_),(_or_).(_gxor_) : (WordxWord)=Word

Y wl,wd : Word o
Wl and w2 = ((W] pam W&) 3 (_.))
wlior wZ = (Il pair wd 33 (1)
Wl exor wZ = ((wl par w2) 2 (_o_))

Standard wordwise logical functions.

(_ec_) : {(Word=B:t) — Word

Uw: Wordi b: Bit o
W< b= ((M) ¢ (pred 2 w)) U {0xb)

(>>_) : (Bitxlord) ~ MWord

U w: Words b 3 Bit o
b > we= {((wu)=]1) e b)Y U (suce 3 w)

Shift right and left while inserting a particular bit inte the right
or left most position.

2.4 Rrithmetic Functions

I value : Word ~ &

value w

= val W = succ (maxval w)) v
value w = val w)

>>

Return the integer value represented by the Word. This is using the
2's complement notation. (Remember the most significant bit has a

weighting of -2""1, S0 to cope with negat ive numbers subtract 2”.

maxpos . .maxneg : Word — 2

U wl.wZ ¢ Mord | #wl = ((Wug2)+1) ,
maxpos wl = maxval wo
maxnes w1l = (maxval w2) = (maxval wl)

Return the ma>:mum posit.ve snd negative numbers for 8 word of a
particular size.

(_s-gnexterd_) : (Hord-Nx) — lord

Y wl.,uZ : Word: length : Nl |
(length 2 #Wl) (w2 = length) »

(w] signextend lensth) = (wd set (MSB wi)) o wi

Sign extends the word to the lergth specified.

(_pad_} : (Hord-Nl) - Word

B wl, w2 : Word: length : Nl |
(length 2 #1). (W2 = length) o

(wl pad length) = (W2 set 0) o Wil
Pad out a word to the new word length with zeros

| (_trim_) : (Hord-Nl) - Word

Y w : Word: length : Ny | lensth € ww &
W trim length =(0 .. length) 9

Trim @ word down to the new word length. Note, use the above with
caution, @s 1t simply returs @ word with the top bits "trimmed’ off.
No check i1s made to ensure that the value of the word has not changed.

I (_plus_) : (Wordxkord) — Worgd

U wl,u2.w3 ¢ Word | (Wwl) = ((wu2)41) o (Wa2) =(ma3)

(w2 plus w3 = (Wl trim #a2))
o (value wl)=(value w2)+ ivalue u3)

The word returned by plus i1s the same size as the two input words.
and holds the value of the sum of the two words. 1ff this value can
be teld in a word of that size.

(_times_) : (Word=Word) - Word

U Wl w2 w3 ¢ Word | (wl) = ((#i2)82) o (W2) =(8.3)

(W times w3l = (w] trim W)
e (value W!)x(value w2)¥ivalue w3)

15 the same size as the two 1nput words.
1ff this valce

The word returned by times
snd holds the vaiue of the p-oduct of the twc words.,
can be held in a word of that size.

(mirus_) ¢ (Word=kord) — Word
.

(02141) o (W2) =(0n3)

U wl.w2.w3 : Word | (aul) =

(g minus w3 = (Wl trim ®u2))
e« (value wll={value w2 '~(value w3)

The word returned by minus 15 the same size as the twoc 1nput words.
iff this value

and holds the value of the difference of the two words.,

can be held irn & word of that s.ze.

I (_corry_) : (WordsWord) — Bit

U wl,wZ ¢ Word o
(wl carry w2 = 1) e» ((val wl) ¢ (val w2) > maxval wl)

Top level spec:fication of carry. ie 8 cerry ts genersted when the
result 1s lasrger than the maximum possable value which cen be stored.

I (_mcarry_) 1 (Wordxhord) - B:t

¥ wl,w2 ¢ Word «
(Wl mcarry w2 = 1) oo ((val wl) + (val W2) > maxval wl)

Top level spec:fication of carry for multiplication.

I (_borrow_) : (Wordskord) — Bt

U wi,wZ ¢ Word o
(1] borrow w2 = 1) e ((val wl) € (val w2))

Top level specification of Borrow.

| (_overflow_) : (WordsWord) — Bit

U wl,w2 : Word | #ul = 82 o
(w] overflow w2 = 1) e
€ ({value wl) + (value wZ) > maxpos wl) v
((value wl) + (value W2) € maxneg w2))

Top level spec fication of overflow, ie overflow when the sum 1s
grester than the largest pos tive value which can be held. or less
than the largest negat:ve number.

l (_moverflow_) : (WerdsWord) - Bit

U nl.wZ ¢ Word | #nl = w2 o
(1] moverflow w2 = 1) e
C((value wl) + (value w2) > maxpos wl)y
((value W1) + (value wZ2) € maxneg w2))

Tor level spectfication of overflow for mult.plicat on.

(_underflon_) : (WordsWord) — Bit

B l.nd @ Word | #ul = 8.2 .
(w1 underflow Wl = 1) o=
(((value wl) = (value w2) > mexpos wi
((value wi) ~ (value w2} € maxneg w2

—
-

Top level spec:fication of overflow on subtraction.

I (_equal_) : (Wordsord) - Bit

Y wl,w2 : Word | wul = w2 o
(W] equal w2 = 1) e (val Wl = val w2)

Returns 1 if the two numbers are the same.

| (_less_) : (Wordshord) — Bit

Y wi,w2 @t Word | #ul = w2 o
(] less wZ = 1) oo (value Wl € value w2)

Returns 1 if the first number is less than the second.

This completes the underlying theory of representing nstural number
erithmet ic by cperstions on vectors of bits.

oy " 'y

3 Viper Specifics

3.1 Word Lengths

Hards4 [
Hordaz 'Y
Hordzo &
Hord, 3
Horda 3
Nordz [
uordl &
Address &
Oats [
Flag e

{ % : Word |

{ w1 bord |
Cwibord |
{w: Word |
{w: bord |
{w: Word |

{u: Word |

Hor g2
uofdaz

Hordl

rV-lues ——
one.zero : Word
True.False : Flag

True =
False =

value zerc =
value one = §

{01}
€00}

L2

L]

"oy

"y

=643
.32y
=20
=4)
=3)
=2 3
=1)

For Double length integers

For Data words

For Address words

For the function select

Fer the dest.nat or select

For the reg:ster and memory

select

For the compar ison select

snd flags

e

e

1

3.2 Memory

The defin:ition of the memory ard peripheral spaces, and the
behaviour of these two reg.ons.

_ﬂemory

Mem ¢ Address — Data
PERlspace : Address — Data
RAMspace : Address — Data
io : Bit

(10 = 0) e (Mem = RAMspace)
(10 = 1) = (Mem = PEFIspace)

—

If 10 is zero then all memory reads are from the RAM space. If 10 s
one then all of the reads are from the PERIspace.

_. AMemory

Memory
Memory’
bMem : Acdress < Data

(@Y}
(:o

0) =» (RAMspace' = RAMspace e &flem)
1) =» (RAMgpace’ = RAMspace)

If 10 15 ze~0 then any writes w,ll affect the value in the memory f
however 10 1s one there are no changes to RAM. Note changes to PERI
are not modeled.

—Zflemory
Aflemory
.

éMem = @

e —————

No change in memory.

10

T R YR W G Y T ———— @ TP

3.3 Registers
The specification of the Viper2 registers.

[{RegName)
Reg:ster & { r: RegName o Word | wr>0)

The Registers sre the partial function from Register names to Words.

l Res : RegName — MWord

U n : RegName: Reqs : Resister «
Reg n = Regs n

Returns the value in the Reg:.ster given as input.

. GeneralPurposeRegisters o
A.Y.Y.Z1.Double : RegName

Reg A € MWordy,
Reg X € Nordsz
Reg Y € Nord3:
Reg 21 € Nord32
es Double € Unrds4

Reg Double = (Reg R) * (Reg 21)

The four general purpose read write registers (note X.Y.2! are index
registers. The register double is the concatination of the R and 2
registers.

. AddressReg sters __
F.S.U,P : RegName

Resg F € Hordzo
Reg S € Hordyg
Reg U € Wordy,
Reg P ¢ Nordzu

N

The four addressing registers. The Frame pointer F points to the
start of the current steck frame. The Frame size S i1s the size of the
current stack frame (1@ the stack freme goes from F to F+S'. The stack
Limit U is the furthest up the stack is sllowed to grow. Finally The
Porgrem Counter P 1s the position in memory where the current
instruction wes read from.

11

e RN Y 4

OtherReg sters

—————————

D.Watchdog.Temp : RegName

REQ D € “Ordaz
Reg Watchdog € Hordaz
Reg Temp € Hordaz

The three remaining rea:sters. The D reaister is the error message
register. lf an error occurs then the error code for that particular
error is placed 1n D. The Watchdog register is used when operat.ng In
untrusted mode. The value in Watchdog 18 the number of clock crcles
left to complete any untrusted operations. The registers Temp hold
the next 32-bit instruction to be executed.

_Processflass

B.Postcall.Trust : RegName

Reg B € Hordl
Reg Postcall e Wordy
Reg Trust € Hord1

The three process Flags sre held as one b't registers. The B flag
contains the result from var ous compar.sons or uns.gned arithmei.c.
The Postcall Flag 1s there to ensure that the Enter instructior alua:s
occurs after @ call instruction. and never anywhere else. It 1s se:
true after ® call and cleared during an enter. The Trust flag
determines whether the mactine 1s 1n trusted or untrusted mode.

_Errorflags
E.IA.IX,1Y,12,18,WE NoStack .NoSize,NoL im:t : RegName
Reg E € Wordy
Reg IR € UWordy
Reg IX [Nordl
Reg 1Y € Word,
Reg 12 e uordl
Reg 1B € Hord1
Reg WE e Word,
Res NoStasck ¢ Hordl
Reg NoSize & Wordy
Reg NolLimit ¢ Ho*dl

The error flags. The £ flag 1s set true if there has been an error.
This 18 utilised by the Jump on error and Csl]l on error instructions.
The 1A, IX, 1Y, IZ snd IB flags show whether a register holds en
invaelid value. ie A s true 1f A has not been losded since the
machine sterted. or since an error occured. The WE register 1s set 1 f
the Wastchdog timer hes Expired (hence WE). This fleg will cause an

12

—— - I Y SQE R T

—

ity e

error to occur if 1t is set while the machine 1s 1n untrusted mode. It
is ignored in trusted mode. The NoStack. NoSize and NoLim:t Flags are
set true 1f the F, S and U registers have not been set.

Regs @ ErrorfFlags a
ProcessFlags a
DtherReg sters a
AddressRegisters a
Gener @#)PurposeReg isters

The Viper2 regrster types

reQ St erS ey
Regs
Reaisters : Register

The reg:sters at spl:t time consist of a 'bank’ of registers and
the Viper2 reg:ster types.

ORearsters -
rresusters

registers’

newp : Address

NewWatchdes : Data

NewWE : Flag

bReg : RegName « liord

Registers’ = Registers ¢ {Pwnewp,WErNewlt}

o {Watchdog~NewWatchdog} e 8Reg

The Viper2 registers. The new values of the registers are the same
#s the old value. aspart from the three registers which are always
updated (the program counter watchdog timer and watchdog expired
flag). These can be overwritten by any modifications to them n
bReg. Any other changes in the registers (due to the wverious
instructions) are slso contained in bReg.

— ZRegisters
BRegisters

e
SReg = {3}
e ——

All of the registers rema:in the same (apart from tie three sbove)

13

3.4 Clock

The Viper2 clozk is not represented (n the HOL spec:fication.
A definition 1s included here for completeness.

Clock o0,

ICI&:N

Clock simply counts up from @.

_8Clock

Clock
Clock’
i Cycles : N

Clk' = Clk + Cycles

2

Cycles s the number of cycles needed to complete the present
instruction. The parameter cycles 1s used by the Watchdog timer.

-

14

3.5 Stop

The def inition of the Stop Flag.

r_Ston__.
stop : Bit
——eeuvnred

The single bit to determine whether the machine is stopped or not.

r_AStOD

ARegisters
Stop

Stop’
Values
sval : Bit

stop = 0
newp = Reg (P} plus one

e

The machine has not stopped. The new value of the Program Counter s
P+1. The value of stop’ 1s set later in the spec:fication.

15

§ T /-

TR EE e T ——

3.6 Viper State

AState & OMemory a
ORegisters a
AClock a
AStop

The Viper2 changing state. The changse in the Viper state is the
change in memory and the change in registers and the change in stop.

Ar1thmet icAndlogicalUnit

r.m + Data
offs : Data
base : Data
Result : Data

J

The inputs and outputs to/from the ALU. r and m are the two inputs
to the ALU and Result 1s the result from it. Base i1s the base address
to read the memory (m) input to the ALU from and offs 1s the actual
address of the read.

16

- T — -

T YR e e v ——

-

3.7 Viper2 Operation Codes

. Viper20plode
of s Hordaz

si t Hordz
[¥4 :t Wordg
s21 t Word,

s2u : Word,
fq t Word,
fc + Word,
fel Wor dy
fch : Wordy
addr : Wordyg

op » s2 * 81 “ fq * fc * eddr
fec = fch ~ fcl
sZ = s2u * s2l

The Viper2 Dp code. Dp is the op code end is loaded from the sddress
pointed to by the Program Counter. The op code is the concatinat:on of
the five fields shown: €2, si., fq, fc and addr. The fc end s2 fields
are further subdivided into two 2 bit fields.

The s2 field selects the addressing mode for the m input to the ALU
+f the instruction 1s @ detas operation, or whether the operation 1s a
control or write instruction. The sl field selects the register (r)
input to the ALU or the type of certe:n load instructions. The fq
(functional qualifier) field selects the destination register of the
data instructions, or whether the instruction i1s a control or a write
instruction. It also determines the type of csll or branch performed
(1e sbsolute or Program Counter relative). The fc (function code!
determines the instruction to be performed. Finally the addr field
determines the location to jump to., write to, read from etc.

1?7

N i

3.8 ViperZ Oversll State

Viper2lnputs e

sttention : Bit
reset : Bit

The two external input lines. These sre assumed to be synchronous
lines clocked in at the start of esch instruction. The sttent.on line
1s set by external devices to inform the processor when they require
attention. 1t s polled by the Jump end Call on attent.on
instruct ions.

F.AU\pefz
8State
Ar ithmet icAndlogicalUn:®
Viper20pCode
Viper2lnputs

Values

op = Mem (Reg (P))
reset = 0

(Reg WE = False) =+ (NewWatchdog=(Reg Watchdos)
minus (wrd 32 Cycles))

(NewhlE = Trye e ((Reg Watchdog) borrow (wrd 32 Cycles) = 1)

e

The op tode 1s the value in the memory locmtion pointed to by
Program Counter. The reset line must be low: otherwise the mach.ne
will reset. The new value of the Watchdog Expired flag will be set to
True if the wstchdog counter wtll become less then zero in the course
of the present instruction (not quite true as WE in fact goes true
immed ately the Watchdog timer goes below zero). The watchdog timer s
decremented 1f the WE flag 1s not set.

I_Stopped [
EMemory
ZRegisters

Stop

Stop’

4Clock

The machine has stopped. snd cannot restsrt until there is a Reset.

_EViper2
aViper2
EMemory
ZRegisters
8Stop
S

18

Viper state unchanged (except P, Watchdog and WE updated)

_Reset

EMemory
OReg:sters
BClock

0Stop

Viper ZInputs
Values

stop’ = 0
reset = |
val newp = §

8Reg = {E~False,]A=True.IXwTrue ,NoStack=True.NoSizesTrue.
1V=True,12=True.1BwTrue.TryustuTrye.NoL imitnTrue.
WEwFalse.Watchdog~((Reg Watchdog) set 1))

Machine status on @ Reset. All of the Register Illegal flags sre set
to true las the registers have not had any values loaded into them
yet). The error flag is set false. as is the Watchdog Expired flas.
The program counter is set to zero.

_ViperZINIT
Reset

e r——
Clk' =0

R

Machine on start up.

Viper2_machine_state keeps

8Clock .Stop.AStop,8Viper2,EV iper2.Viper2INIT.
OMemory,ZMemory.registers,8Reg:isters,Clock.,
ﬁddress»Data.Flas,ﬂemory,Reset.Res;Hnrds*.

Hordaz.uordzo.Hord‘.uorda.Uordz.Hordl.Stopped.
RegName

This section specifies the inputs to the Viper2 ALU.

I invalid : Word — Bit

Y w: Word o
| Ginvelid w = 1) e (val w > maxval (wrd 20 0))

Returns True if the value is grester than cen be held in 8 20 bt
word.

19

ErrorInstruction
8V iper2
ErrorValue : Data
The instruction being executed is tllesal. The error code of the
particular error s returned i1n ErrorValue.

IllegalP
’-Error!nstruct 1on

val (Reg P) = maxval {Reg P)
tval 82 = 15) v (val fqa = 3) y (val fc 2 7)

r

The program courter is sbout to cerry, snd the current instruction
is not @ jump. (there 1s no need tu couse an error if the instruction
1S a Jjump, as there 1s no 'return’ as in a call instruction).

20

4 Viper Operstions
4.1 Viper2 ALU

This section specifies the vi input to the Viper2 ALU

_RES‘SQ!FSE]QC! —————————

aViper2

(val si = 0) e (r = Reg R)
(val s1 = 1) = (r = Reg X)
(val s1 =) = (r = Reg Y)
(val s1 = 3) = (r = Reg 21)

Select the reg:ster to be used as the r input to the ALU.

— Datalnstruction _
&Viper2

val s2 = 15

The instruction is » data instruction. If 82 was 15 then it would be
8 control or write instruction.

21

....... 1 ooy P B

4.2 Addressing Modes

__GlobalAddressing

Datalnstruction

val s2u =0
Reg Trust = True
base = addr pad 32

Relat ive addressing mode. The base address is the address in the QOp
code. The machine must be in trusted mode.

— StackRelat iveRddress:ng

Datalnstruction

val s2u =1
base = (addr pad 32) plus (Reg F pad 32)

Stack relat:ve address:ing. This gives sccess to local routine
var 1ables. The base address is the Frame pointer offset by the address
from the DOp code. No check 15 made here to see 1f the address
calculated is in the current stack frame. This is done in @ later
error frame.

ProgramCounterRelat vefiddressing

Datalnstruction

val s2u = 2
base = (addr pad 32) plus (Reg P pad 32)

Program Counter relative addressing. This gives sccess to constants
embedded 1n the proarnm. This allows routines to be relocstable in
memory (1e standerd ROMs can be bought which cen plug straight into a
s;ztem). The base address is the program counter plus the input
address.

AddressBases # GlobalAddressing y StackRelat iveAddressing
v ProgramCounterRelat 1veAddressing

The three besic addressing modes. The base address is offset by the
various index registers (or not in the case of sbsclute sddressingl.

AbsoluteRddressing
AddressBases

val s2) = 0
offs = bese

Absolute Addressing. The locstion to read in from 1s simply the base
sddress def ined sbove.

22

XIndexedRddress ing e
Addr essBases

vel sZl = 1
offs = base plus (Reg X)

3

Indexed Addressing using the X index register. The location to read
in from 1s the base sddress plus the value contained in the X index
register. Note the value in X can be either @ positive or a negative
value. This can be used to index arrays etc.

. YIndexedAddress NG e

AddressBases

val s2l1 = 2
offs = base plus (Reg Y)

3

Indexed Addressing using the Y index register. The location to read
in from i1s the base address plus the value contained in the Y index
register. Note the velue in Y can be either @ positive or & negat:ve
value. This can be used to index wrrays etc.

_2IndexedAddressing _____
AddressBases

val 82l = 3
offs = base plus (Reg 21)

Indexed Addressing using the 2 index register. The location to read
in from 1s the base address plus the value contained in the Z index
register. Note the velue in Z can be either & positive or 8 negat ve
value. This can be used to index srrays etc.

IndexedAddressing ¢ ZIlndexedAddressing v YIndexedAddress i ng
v AbsoluteAddressing v XIndexedAddress ng

All of the simple addressing modes.

_ IndexRddressing o

IndexedAddressing

val fc = 13

val 82 <€ 12

m = tem (offs trim 20)
io=0

—

The simple addressing modes. This does not include the case of the
monadic instructions, where & memory rged will not be taking place. or
the Immed.ste snd Register sddressing modes. where no memory read s
tokin% place. The value on the io pin is zero. so the word read 1n 1s
resd from the RAM gpace. The m nput to the ALU 1s the value in the
locstion pointed to by offset. The cese of offset being outside the 20
bit sddress space is deslt swith in the errors later.

23

Immed ateRddress ing

Datalnstruction

(val s2 = 12)a(m = addr pad 32) &
(val 2 = 13)A(m = wunot (addr pad 32))

)

The two Immed: ate Addressing modes. The m input to the ALU 15 the
value in the address field padded with zerps to 32 bits, if s2 15 12.
If 82 16 13 then the m input is this value inverted (e 1's
complement}. This allows both negative and positive values to be used
8s constanrts.

24

4.3 Access to Geners] Purpose Registers

Register@ddress

Datainstruction

val sZ = 14

)

In this case the m input to the ALU is one of the general purpose
reg:sters R, X Y. or 2. Wh.ch register 1s used is determined by the
bottom two bits 1n the address {ield of the op code.

- UseReg sterh

Reg sterAddress

{val addr) mod ¢ = 0
m = Reg A

The A register 1s used as the m 1nput to the ALU.

UseRegisterX

———

RegsterAddress

(val addr) mod 4 = 1
m = Reg X

'}

The X register 1s used as the m 1nput to the ALU.

. UseRegisterY ________

RegisterAddress

(val addr) mod 4 = 2
m=Reg Y

e

The Y register is used as the m input to the ALU.

UseRegister?

Reg i sterRddress

(val addr) mod ¢ = 3
m = Reg 21

-

The 2 register is used as the m input to the ALU.

Reg sterAddressing & UseRegisterA v UseRegisterX
v UseRegisterY v UseRegister2
The four cases of register addressing.

MemoryRead & ImmedisteRddressing v IndexRddressing
v RegisterRddressing

The fifteen cuses of memory sddressing for the fifteen values s2 can
have for sny dsta instruction.

25

et snmenasshestee e Sy

4.4 Illege] Rddressing Operstions

. StackNctSet

Datalnstruct:on
Errorlnstruction

———

val s2u = 1
Reg NoStack = True
dMem = {3}

J

Stack Relative addressing has been specified, however no stack has
been set up (1@ no value has been loaded into F)

UnsetX

Addr essBases
Errorlnstruction

————

val s2] =
Reg IX =
brer = {}

True

The X reaister has been selected as the index register to be used.
but 1t has either not been loaded, or ®n error has occured n
untrusted mode and all of the registers have been marked os 1llegal

Y
—UnsetY

AddressBases
ErrorInstruction

val s21 = 2
Reg 1Y = True
&Mem = {3}

The Y register has been selected as the index register to be used.
but 1t has either not been loaded. or an error has occured In
untrusted mode and all of the registers have been marked as illegal
- UnsetZ

Addr essBases
ErrorInstruction

————————m—m—

val 821 = 3
Reg IZ = True
SMem = {3

')

The Z register has been selected »s the index register to be used.
but t has either not been losded, or an error has occured in
untrusted mode and all of the registers have been marked as illegal

UnsetAddress ngRegister & StackNotSet
v UnsetZ
v UngetY
v UnsetX

26

The four cases of illegally used registers.

IllegnlStackAddress

IndexedAddressing
Errorlnstruction

val fc » 13
val s2u = |

((va]l offs) < (va]l (Reg F))
(val offs) > (val (Reg F1)

dtem = ()

v
+ (val (Reg 5)))

lllesalﬁeadﬂddress_q

IndexedAddressing
ErrorInstruction

val fc = 13

val s2 < 12
invalid offg = 1
otem = {}

This is the only check that is needed to see if the address s
valid. This i1s because the base address is 8t most » 21 bit number,
so there can be no overflow on the first eddition. The index register
sdded to this base value can be cne of four ceses.,

£1) The index register holds s +ve number and the result causes
overflow. Then the MSB of result ,s one snd hence above predicate
detects the invalid sddress.

(2) The index register holds 8 +ve number snd no overflow occurs.
Then the address is valid 1ff the above predicate holds.

(3) The index register holds s -ve number end @ carry occurs.
Thfndthe result must be a positive number less than the base. It is
valid.

(4) The index register is nesstive snd no carry occurs. ie the
index register held s negative number which was ‘larger’ than the
ba:e- This is detected as for -ve numbers MSB = 1, end hence inval id
sddress.

The cese of -ve index register gnd overflow cannot occur s base 15
ALWARYS positive. .

2?

4.5 Illessl Source Registers

RegisterAlnvalid

——
RegisterAddress
ErrorInstruction

(val addr) mod 4 = 0
Reg IR = True
bMem = {}

ry

Register addressing has been spec:fied, with the m input to the ALU
coming from the A register. This register however does not contain
valid data.

-

RegisterXInvalid

—
RegisterRddress
ErrorInstruction

(val add-) mod 4 = 1
Reg IX = True
dMem = ()

2

Register addressing has been specified, with the m input to the ALY
coming from the X register. This reg:ster however does not contarn
valid data.

—RegisterYInvalid

Reg:sterAddress
ErrorInstruction

(val addr) mod ¢ = 2
Reg 1Y = True
dMem = {3

Register addressing has been specified, with the m input to the ALY
co?nzs from the Y register. This register however does not contain
valid dats.

- RegisterZlnvalid ____

RegisterAddress
Errorlnstruction

(val addr) mod ¢ = 3
Reg 12 = True
oMem = {}

e

Register addressing has been specified, with the m input to the ALU
coTngsdfrom the 2 register. This register however does not contain
val sts.

Registerlnval id & RegisterAlnvalid v Reg:sterXInvelid
v RegisterYIlnvalid v RegisterZlnval id

28

The four cases where an illegsl register has been selected to be the
m input to the ALU.

RegisterSelectlnvelidError

Viper2
Errorlnstruction

——

((vel 52 » 15 o val fc » 13) y
(val fa=3 A val fc €12)y
(val fe = 6))

bMem =)

2

The instruction selected requires a register be the r input to the
ALU. (1e either a dysdic data instruction 82 » 15 and fc » 13, a write
instruction s2 = 15, fq = 3 end fc < 12 (this last condition because
fc 2 12 would give a different error code). or the instruction s
decrement with branch on zero.

E Reg:sterSelectAlnval d
RegisterSelectInval idError

1 vel s1 = 0
Reg 1A = True

2

The instruction requires the r input to the ALU to be the A
t register, but th:s register does not contain valid data.

4 : r_Reg-sterSelectXInvelnd

—
RegisterSelectInval 1dfrror

’ val s1 = |
Reg IX = True

| The instruction requires the r input to the ALU to be the X
r register. but this register does not contain vald data.

_RegisterSelectYInvald

——

RegisterSelectInval idError

vel s1 = 2
Reg IY = True
1 . The instruction requires the r input to the ALU to be the Y

register, but this register does not contain valid data.

- RegisterSelect2Inval id
RegisterSelectInval idError

vel s1 = 3
Reg 12 = True

']

The instruction requires the r input to the ALLU to be the 2
register, but this register does not contain valid data.

29

s —

Reg sterSelectInval id e RegisterSelectZlnvald
v RegisterSelectYInval:d
v RegisterSelectXInvalid
v RegisterSelectRlnval d

A The four cases of illegal register being used for the r input to the
LU.

30

S Y T I i g Py

il

4.6 Comper ison Operstions

Fram
unchan
compar

- Compareframe ___

RegisterSelect
Memor yRead
Bresult : Word

dMem = {}

J

tng schema for comparison operations. All registers are
ged exept for the Program counter. B s set in the various
isons below.

_GreaterThanOrEqualTo e

Compar eframe

val fc =10
Bresult = wrd 1 (not (r less m))

Bresult 1s set true if the r 1nput is areater than or equsl to the m
nput.
_EqualTe
Compar eframe
val fc =1
Bresult = wrd 1 (r equai m)

Bresult 1s set true if the r input is equal to the m input.

— Greater Than

CompareFrame

val fe =2
Bresult = wrd 1 (not{{r less m) + (r equal m)))

Bresult is set true if the r input is greater than the m input.

—UnsignediessThan

Compar eFrame

vel fc = 3
Bresult = wrd 1 (r borrow m)

Bresult is set true if the r input, treated es en unsigned integer.
is less than the m input.

31

F_hnquua]Zern
Compareframe

val fc = ¢
Bresult = wrd 1 ((r and m) equal (zero))

-

Bresult is set true if the r input logically anded with the m input
is equel to zero.

CompDp & AndEquelZerc v UnsignedlessThan y Greater Than
v EqualTo v Greater ThenOrEqualTo

The five basic comparison operations. B is losded with the following

Condition
r CompOp

val fq=0
SReg = (BeBresult.lB-False}

—

B is losded with Bresult. The Illegal B flag is set false to show
that the B reqgister contains valid information.

_NctCondition

CompOp
val fq =1
8Res = {Bwwnot(Bresult),IBwFalse)

is loaded with not Bresult. The Illegal B flag is set false to

show that the B register contains valid information.

rBorCondnhon —_—

CompOp

val fq = 2
&Reg = {B~(Reg(B) or Bresult),IB-False)

—

B is loaded with Bresult or B. The Illegal B flag is set false to
show that the B register contains valid information.

BorNotCondition
CompOp

val fq = 3
OReg = {Bu(Reg (B) or wnot(Bresult)),1B.False)

ot

B is losded with not Bresult or 8. The Illegal B flag i1s set false

to show that the B reg:ster contains valid information.

Compere & Condition v BorNotCondition
v BorCondition v NotCondition

32

| wTe -

The four operations load:ng B with @ result.aThere are 15 x 4 « 2C =
1200 compare operations out of the possible Z!" Viper2 operations.

33

4.7 Viper2 Arithmetic

_ALUInstruction o
Reg'sterSelect

Memor yRead

&B : RegName « Word

&Mem = {2

Framing schema for all of the ALU operations. Note memory cannot be
changed. 8B holds any changes to the B register.

_Signedhdd L
ALUInstruction

val fc = §
Result = r plus m
68 = {3

'

Rdd r to m. There 1s no check for overflow, this 1s done Jater n an
error schema.

Uns 1 gnedAdd
FaLUInstruct on

val fc =6
Result = r plus m
5B {Bruurd 1 (r carry m),1B~False}

Add r to m, setting B if there is a Carry. IB i1s set false whatever
the result.

SignedSubtract
ALUInstruction

————

val fc = 7?7
Result = r minus m
&8 = {)

Subtract r from m. There is no check for underflow, this is done
lster in an error schema.

34

UnsignedSubtract
ALUInstruction

val fc =8
Result = r minus m
5B & {Bewsrd 1 (r borron m).1B~False}

Subtract m from r, end setting B if there is a Borrow. IB is set
false whatever the result.

~Sianedultioly 0
ALUInstruction

val fo = 12
Result = r times m
48 = {}

J

Multiply r by m. There is no check for overflow. this is done later
in @n error schema.

Ar1thmet icOp & (UnsignedAdd v SignedSubtract v SignedMultiply
v UnsignedSubtract v SignedRdd)

The five arithmetic operations. There sre 15 » 4 x § = 300 possible

operations (1e 15 wddressing modes by four register inputs by five
noss ible operations].

35

4.8 Logicel Operstions

Retu

Retu

Exclus ' velr oy

ALUInstruction

-

val fc = 11
Result = r exor m
-] = {3

rns the exclusive or of the two input words.

_And

ALUInstruction

val fc =9
Result =r snd m
&8 = {3

rns the log:ical snd of the two inputs.

Or

pn ! o———————

ALUInstruction

val fc = 10
Result = rorm
&8 =

Retu

The
logica

J

rns the logical or of the two inputs.
Logical0p & (Or v And v Exclusivelr)

three logical operators. There are 15 = 4 = 3 = 1B0 possible
1 operations.

4.9 Load Instruction

MonadicInstruct ion

r IndexedAddress ing
48 : RegName « MWord

val fc = 13

The aperation is 8 monad:c or load instruction. There ts no register
select, the only operand comes from the m input to the ALU. The
register select field sl is used to determine which operatiorn s
per formed.

 LoadResister

MonadicInstruction

val s1 =0
Result = Mem(offs trim 20)
68 = {}
io =0

Simply load the register with @ value from a memory locstion.

_LoadAndNegateReg ster

MonadicInstruction

val 1 =1

Result = zero minus (Mem(offs trim 20))
4B = {}

io =0

2

Load snd find the 2's complement of the value from a memory
location. There is no check to see if there has been an overflow as
this 1s done in a later error schema.

_LoadEffect iveAddress
Monadclnstruction

val s1 =2
Result = offs

8 = {}
val s2 € 12
io =0

Load the address detemined by the addressing mode into the result.

3?

— InputFromPERT
Monad. cInstructior

val s! =3

Result = Mem(offs tram 20)
[-1:] = {}

val s2 ¢ 3

o =1

J—

Load in a word from PERIpheral space.
Load0p # LoadRegister v LoadAndNegateReg:ster
v LoadEffect iveAddress v InputfromPERI

One of the four load operations. There are 15 » § = 4 = B0 possible
operat ons.

ALU 2 Log:celDp v Arithmet icOp vy LoadOp

An ALU operation. At present there are 300 + 180 + B = 540
operations defined.

e - WwerIvarw—A

4.10 Destination Registers

. ResultToR
ALY

val fq =10
bReqa = {AwResult,IA-False} ¢ 6B

I

Load the result from the ALU into the A register and set the IR flas
false to show that there is valid data 1n the A register. Alse set the
B end IB flags 1f they shauld be set by this operation.

ResultToX

F-ALU

val fq = 1
bReg = {X~Result.IX~False) e 6B

o

Load the result from the ALU into the X register and set the IX flag
false to show that there t1s valid data in the A reg:ster. Rlso set the
B and IB flags if they should be set by this operation.

__ResultToY
ALY

val fq = 2
&Reg = {YwResult.IY~False} ¢ &B

Load the result from the ALU into the Y resister and set the IY flag
false to show that there 1s valid data in the A register. Also set the
B and 1B flaas if they should be set by this operation.

’_ResultToZI
ALy

val fq = 3
bReg = {Z1eResult.lZwFalse) o 8B

4

Load the result from the ALU into the 2 register and set the 12 flag
false to show that there is valid dats 1n the A register. Alsp set the
B and IB flags 1f they should be set by this operaton.

ALUDp & ResultToA v ResultToX v ResultToY y ResyltToZ2l
Losd one of the four general purpose registers. There are 540
x 4 = 2160 possable operations. The two other function codes fc = 13,

fc = 14 will give snnother 15 x 4 » 2 x 4 = 482 pperstions. This means
that n total there are 2642 dsta operations possible.

39

-, adhune - I U R

4.11 Exception Handling for ALU Operstions

SignedRddOver flow

ALUInstruction
ErrorInstruction

val fc =5
(r overflowm) = 1
sMem = {>

An overflow has occured on 8 signed add.

- S:gnedSubtractUndeflow

ALUInstruction
Errorlnstruction

val fc =7
(r underflow m) = 1
éMem = {3

1 An underflow has occured on a signed subtract.

SignedMult iplyOver flow

ALUInstruction
Error Instruction

val fc =12
(r overflou m) = |
dMem = {3

An overflow has occured on a signed multiply.

rLoadﬂndNesateRes»sterOverllou_,

MonadicInstruction
Errorlnstruction

val 81 =1

m = Mem(offs trim 20)
(zero underflow m) = |
SMem = {}

J—1

An underflow has occured when losding snd negsting s register. This
means thet the value which wes loaded must have been maxneg.

40

_LoadEffectiveRddressError

Monad . cInstruction
Errorinstruction

val 81 =2
val 82 > 12
btiem = {}

Illegal operation, if 82 > 12 then it is immediate or register
sddressing, 1e there is no ‘effective address’.

— InputFromPERIError

Monad:cInstruction
Errorlnstruction

val s1 =3
val &2 > 3
&Mem = {}

J

The operation 1s an input from PERI. but the address ng mode i1s not
1 global.
IllegalRddress

’—Honad ielnstruction
ErrorInstruction

ﬁ val s1 » 2
invalid offs = 1
bMem = {}

The operation has been defined as 8 load sddress but the address s
not lesal.

MonError & LoadEffect ivefddressError ¢
InputFromPERIError

MonadError @ MonError v
~ (MonError) A 1llegalAddress

Monad icError & MonsdError v
[= (MonadError) o LoadAndNegateRegisterOverflow

Needed to cope with two errors in the same instruction. R load

Effective Address Error will be noticed before an Illegsl Input

‘ ﬁddr:;s error which will be noticed before s Load and negste register
overflow.

ArithError 8 SignedAddOverflox v
SignedSubtractUndeflow v
SignedMult iplyOverflow v
HMonadicError

41

The Errors which can occur during ALU operations.

42

—

4.12

The

The

Jumps end Calls

Controllnstruction
Memor yRead

val s2 = 1§
val fq » 3

e

instruct:on is a control instruction.

Dest inat 1onSelect

Controllnstruction
Dest:nat on : uordaz

(val fq = 0)a(Dest inat ion = addr pad 32)

(val f; = 1)a
(Destination = (addr pad 32) plus (newp pad 32))

v
(val fq = 2)a
(Dest :nation = (addr pad 32) minus (newp pad 32))

n

framing schema for & jump or 8 call. Destination s the location

to c£all or branch to. Note three types of jump. absolute or Program
Counter relstive forwards or backwards.

Uneo

_Unconditionaldump

Dest inationSelect

val fe = 0
8Reg = {P=(Destination tr.m 20}
oMem = {}

et

nditional yump. P (s loaded with the value of dest:nation.

-

JumplfError

Dest inst ionSelect

val fec = |
Reg Trust = True
val (RegBE) =1

dReg = {Pw{Destination trim 20),IAFalse,
IXwFalse,IYuFalse.[Z2+False, [BuFalse}

btem = (3

o

Jump if the E (error} flag is set. Set all of the Illegal Register

fless

to false?

43

— JumpIfBSet
Dest inationSelect

val fc = 2

val (Reg B) =

8Reg = {P~(Destination trim 20))
dMem = {}

Jump

if the B flag is set.

. JumplfBNotSet
Dest inatonSelect

val fc = 3

val (Reg B) = 0

bReg = {Pw(Dest ination trim 20)}
bMem = {3}

3 Jump

1f the B flag is not set.

_JumpIfAttentonSet
Dest inat 1onSelect

————————

val fc = ¢

sttention = 1

bReg = (Pn(Destination trim 20}
dMem = (>

Jump

if the sttention input to the Viper2 microprocessor is set.

 JumpIfAttent ionNotSet
Dest inat ionSelect

———

val fc = §

attention = 0

8Reg = (P~(Destination trim 20}
oMem = ()

Jump

if the attention input to the Viper2 microprocessor is not set.

FailedJumpCondition

Controllnstruction

EViper2
((val fc = 1) o (val (Reg E) = 8))
((va]l fec = 2) o (val (Reg B) = 0))
((ve] fc = 3) o (val (Reg B) = 1))
((va] fc = 4) o (attention = (1)) v
((val fc = 5) o (ettention = 1))

44

1f the Jump condition is false. then ViperZ state the same (apart
from the Program counter increment).

DecrementAndJumpOnNot Zero

-

Destinat ionSelect
RegisterSelect
bPC : RegName <« Data

val fc = B
Result = r minus one

(Result » zero) ws (OPC = {(Pu(Destination trim 201))
(Result = zero) we (OPC & (3})

(val s1 = 0) = (OReg » {A-Result.lA-False) o SPC)

(val s1 = 1) = (BReg = {X~Result.,IX~False} o BPC)

(val 51 = 2) = (HReg = {YuResult.l¥wFalse)} o &4PC)

(val 81 = 3) = (HReg = {Z1wResult,l2.False) ¢ &PC)

bMem = {}

1 ,

Decrement the selected register. and jump if it is not zero.

J Calllnstructtion
Dest inat ionSelect
1 bFlags :+ RegName « Data

TopOfCallframe.BottomOfNewblorkspace : Data
BottomDfCallFrame.ProgramStatusilord : Data

r BottomDfCallframe = ((Reg F) pad 32) plus

* ((Reg S) pad 32)
TopOfCallFrame = BottomOfCallFrame plus one

ProgramStatusWord = (Reg P) pad 32 ¢ {(20~val(Reg Trust)}

BottomOfNewlorkspace = TopOfCallfreme plus one
SMem = {(BottomDfCallFrame trim 20)(Reg F),
(TopOfCallFrame trim 20 J(PregramStatushord)}
bReg = {Fu(BottomOfNewlorkspace),
Pw(Dest ination trim 20).Postcalle~True}
o bOFlags

The Call instruction. Set up the link frame on the stack, set the
frame pointer to point to the bottom of the new workspace. set the
postcall register to True to ensure that the next instruction is an
Enter and load i1n the new velue for the program counter. The value In
the error flags may elso elter if there is a call on Error
ingtruction. The link freme consists of two date words.

The first word is placed in the location sbove the top of the
previous stack frame and s loaded with the old frame pointer. The
second word 1s placed in the locstion sbove the first word. This holds
the return program counter sas well as the old value of the trust bit.

pUncanditionelCall
Cslllnstruction

; val fc = B8
; &Flags = ()

45

Unconditional jump. P is loaded with the value of destination.

Call
flags

Call

Call

CalllfError
FCalllnstruct ion

val fc = 9
val (Reg E) = 1

bFlage = {]A-False.]X~False.]YwFalse.
12+Ffalse.]B~False,.E~False}

J

+f the £ (error) flag 1s set. Set all of the I1llegal Reg:ster
to false?

ColllfBSet oo

Calllnstruction

val fc = 10

val (Reg B) =

&Flags = (}

+f the B flag is set.

_CalllfBNotSet
Calllnstruction

val fc
val (Re
5F lags

=11
g B) =0
= {}

-

if the B flag 1s not set.

—CalllfAttentionSet _
Calllnstruction

val fec = 12
attention = |
OFlags = {}

Call

if the attention input to the Viper2 microprocesso

CalllfAttentionNotSet
r Celllnstruction

15 set.

val fc = 13
sttention = 0
4Flegs = {}

5

Call

if the attention input to the Viper2 microprocessor is not set.

46

FailedCallCondition

r.Controllnstructnon
SViper2
((val fc = 8) A (va]l (Reg E) = 0))
((va)l fc = 10) A (val (Reg B) = 0))
((ve]l fc = 11) o (vel (Reg B) = 1))
((vel fc = 12) » (attention = 0}) v
((val fc = 13) 5 (sttention = 1))

3

If the Call condition is false. then Viper2 stste the same (apart

from the Program counter increment),

4?

&y T T

-

-

Ry

4.13 Copy Instruction

F_CopyFromResisterToGeneralPurposeResister

—
Controilnstruction
ad : N
val fc = ?
val fq =0
ad = (vel eddr) mod 16
(ad = 0) =» (Result = Reg R)
(ad = 1) ew» (Result = Reg X)
(ad = 2) e» (Result = Resg Y)
(ad = 3) =e (Result = Reg Z21)
(ad = 4) =» (Result = (Res P) ped 32)
(ad # 5) e=» (Result = (Reg F) pad 32)
(ad = 6) =» (Resylt = (Reg S) pad 32)
(ad = ?) =» (Result = (Reg U) pad 32)
(ad = B) we (Result = (Reg Watchdog) pad 32)
(ad = 9) =+ (Result = Reg D)
Copy from a register to a gebneral purpose register.
_. CopyToGeneralPurposeReg:ster
CopyFromRes:ster ToGeneralPurposeRegister
(val s1 = 0) =» (HReg = {A~Result.,]lA~False})
(val 81 = 1) =» (bReg = {XuResult.IX~False})
{val s1 = 2) e (bReg = {YwResult.IY«Falgel})
(val s1 = 3) =s (5Reg = {ZieResult.,IZ~wFalsel})}

Place value in general purpose register.

_CopyFromGener slPurposeRegister ToRegister

Controllnstruction
RegisterSelect

————————

ad : N

val fc = ?

val fq =1

Reg Trust s True

ad = (val addr) mod 16

(ad = 0) «» (OReg = {Awr.]lAFalse))

(ad = 1) e« (BReg = {Xwr.IX-False})

(od = 2) e» (BReg = {Ywr,IYwFolsel)

(ad = 3) = (8Reg = {(Z21wr.]2-False})

(8d = 4) = (OReg = (Pwir trim 20)})

(ad = §) ww (8Reg = {Fui(r trim 20),NoLimit=True,
NoSi1zewTryue .NoStac'«=False))

(ad = B) e (BReg = {Swmir trim 20).NoS:ize~False})

(ad = ?) s (8Reg = {Un(r trim 20).NoL mit-False)})

(ad = B) =+ (8Reg = {Watchdogw(r trim 16),WE-~False})

(ad = 9) = (bReg = {Dewr))

Y

48

Copy 8 value from a general purpose register to a special register.

49

v S -

v

R ve e Tyt

4.14 Enter and Return

—Enter

Controllnstruction

val fc = 14

(val (Reg F)) + (val addr) + 2 € (val (Reg U))

Reg Postcall = True

(val fq = 0) = (8Reg ={Swaddr.,Postcall~False})

(val fq = 1) =» (8Reg ={S~addr,Trust~False,Postcall~False})
(val fg = 2) =+ (PReg ={Swaddr.Trust~True.PostcallnFalse})

The Enter Instruction. This must be executed immediately after a
call instruction. If 1t is called at any other time it will generate
an error. The enter instruction sets up the frame size required by the
routine, after checking that at least 2 words of memory are free at
the top of the new frame to accomadate a call instruction in the new
routine. It also sets up the trusted ness of the routine. Finally the
postcall bit is reset.

__Return

Calllnstruction

TopOfCallFrame = (Reg F) minus cne
ProgramStatusiord = Mem(TopOfCallfFrame)
BottomOfCallFrame = Top0fC3llFrame minus one
BottomOfNewWorkspace = Mem(BottomOfCallFrame)
&Reg = {Fn(BottomDfNewlorkspace),

Pw(ProgramStatuslord trim 20),

Trustw(ProgramStatusWord 20),

Sw(BottomOfCallFrame minus
(BottomOfNewlorkspace trim 20))}

The Return from subroutine command. This basically undoes the call
command. The frame pointer (F) program counter and trust bit are
reloaded from the link frame. The value in the frame size register is
calculated and loaded back in.

Copies ¢ CopyfromGeneralPurposeRegisterToRegister v
CopyToGeneralPurposeRegister

The two copy commands. This covers 1 » 4 x 1 x 2 = B operations.

Jump & Unconditionaldump v JumplfError v
JumpIfAttent ionSet v JumplfBNotSet v
DecrementAndJumpOnNotZerc v JumpIfAttentionNotSet v
JumpIfBSet

Jumps @& Jump v FailedJumpCondition

The seven jump commands. This covers 1 = 4 x ? » 3 = B4 operations.

50

oAt d A |

g ——-

Call & UnconditionalCall v CalllfError v
CalllfBSet vy CalllfBNotSet v CallIthtentnonSet v

CallIfAttentionNotSet

Calls & Call v FailedCallCondition
The six call commands. This covers 1 = 4 » 6 = 3 = ?Z operations.
Control & Calls vy Jumps y Copies v Enter v Return

The control operations. There are 8 + B4 + 22 + 1 = 4 » 2 = 3 = 188
operations.

51

4.14 Jllegel Calls and Jumps

__Illegallump

. ———
Jump
ErrorInstruction

invalid Destination = 1

The operation is a jump but the destination is not in memory space.

F_IllesalJumpCond;tion

Jumps
ErrorInstruction

Reg IB = True
(val fc = 2) v (val fc = 3)

The jump is dependant on B, but B has not been set.

IllegalJumps 2 Illesaldump v
IllegalJumpCondition

_IllegalCallError

Controllnstruction

Errorlnstruction

DestinationSelect
TopOfCallFrame,.BottomOfNewllorkspace : Data
BottomOfCallframe.ProgramStatusllord : Data

(val fc 2 8) A (val fc € 13)

BottomOfCallFrame = ((Reg F) pad 32) plus
((Reg S) pad 32)

TopOfCallFrame = BottomDfCallFrame plus one
ProgramStatuslord = (Reg P) pad 32 ¢ {20wval(Reg Trust)}
BottomOfNewlorkspace = TopOfCallFrame plus one

.

Framing schema for Call errors.

_IllegalDestination
IllegalCallError

——

invalid Destination = 1
bMem = {}

J

The operation is & call but the destination is not in memory space.

S2

ﬁmwwv"r—'rr—'*—

r_IIlesalBottomD{CallFrame
I1legalCallError

invalid BottomOfCallframe = 1
SMem = {}

4

The bottom of the call space is not in memory.

_IllegalTopOfCallFrame
IllesalCallError

invalid Top0fCallFframe = 1
SMem = {(BottomOfCallFrame trim 20)n(Reg F)}

2

The top of the call space is not in memory. This is only noticed
after the first write to memory has been made.

IllegalBottom0fNewlorkspace
r-IllesaICaIIError

invalid BottomOfNewWorkspace = 1
&Mem = {(BottomOfCallFrame trim 20)=(Reg F),
(TopOfCallFrame trim 20)n(ProgramStatuslord)}

3

The bottom of the new work space is not in memory. This 1s only
noticed after the first two writes to memory have been made.

StackNotSet
IllegalCallError

(Reg NoStack = True) v (Reg NoSize = True)
&Mem = {}

A call has been made with the stack not set.

IllegalCalls # IllesalDestination v
IllegelBottomDfLal)Frame v
I1lesalTopQfCallFrame v
IllegalBottomOfNewlorkspace v
StackNotSet

All of the Illegal Call schemas.

§3

4.15 Illegael Copy

_. CopyErrorl .

Controllnstruction

Errorlnstruction

val fc =7

val fq =10

dMem = {3

({val addr = 0) A (Reg IA = True) v
(val addr = 1) o (Reg IX = Trye) v
(val addr = 2) Ao (Reg 1Y = True) v
(val addr = 3) A (Reg IZ = True} v
(val addr = §) o (Reg NoStack = True) y
(val addr = 6) A (Reg NoSize = True) v
(val addr = ?) o (Reg NoLimit = True))

Attempt to copy invalid register.

__CopyError2

Controllnstruction
Errorlnstruction

val fc = 7
val fq =1
Reg Trust = True
i btem = {2
{(val sl = 0) Ao (Reg IA = True) v
(val s1 = 1) o (Reg IX = True) v
(val s1 = 23 A (Reg IY = True) +
(val s1 = 3) o (Reg IZ = True))
N Attempt to copy invalid register.

_ IllegalCoPy

Controllnstruction
ErrorInstruction

val fc
- val fq 1

Res Trust = False
oMem = (>

—

Attempt to copy to protected register., in untrusted mode.

IlleaalCopies & CopyErrorl v CopyErrorZ v IllegalCopy

Error in copying from register to register.

54

LimitNotSet _______

Controllnstruction
Errorlnstruction

val fc = 14

bMem = {r

]

Limit is not set in enter instruction.

sS

4.16 Postcall end Enter Errors

PostcallNotSet

[
Controllnstruction
Errorlnstruction

val fc = 14
Reg Postcall = False
&Mem = {3

Postcall is not set and Enter has been found, ie Enter has occured
somewhere other than at the siart of 8 subroutine.

EnterNotFound

——
Controllnstruction
Errorinstruction

val fc = 14
Reg Posteall = True
&Mem = {¥

Posteall is set and Enter has not been found, ie Enter has not
occured at the start of a subroutine.

— StackOverflow

Controllnstruction
Errorlnstruction

val fc = 14

(val (Reg F)) + (val addr} + 2 > (val (Reg U))
Reg Postcall = True

tMem = {}

The stack cannot accomadate the present frame.

56

4.17 Write Operations

Writelnstruction _

RegisterSelect

val sZ2 = 15
val fga = 3

val fc < 11
6Reg = {}

Write instruction. Note fc > 11 is an illegal op code.

_Globallrite

e——————
s Writelnstruction
val fch = 0
base = addr pad 32
io =0

Reg Trust = True

1 Write to Global memory.

__LocalStackFramelrite

Writelnstruction

val fch = 1
ﬂ base = (addr pad 32) plus (Reg F)
io =0

Write to local stack frame.

~OutputToPERT

Writelnstruction

val fch = 2
base = addr pad 32
io =1

Output to PERIpheral.

WriteBase & Globallrite v LocalStackFramelrite v Output ToPER]
The three addressing modes.

LWrite

Wr i teBase

(val fcl = 0 o offs = base v
val fcl = 1 , offs = base plus (Reg X) v
val fcl = 2 A offs = base plus (Reg Y)
val fecl = 3 , offs = base plus (Reg 21))

&Mem = {(offs trim 20) » r)

5?

Write to the location specified. Either absolute addressing or
indexed addressing. Write has 1 x 4 x 1 x 12 = 48 QOperations.

&

58

4.18 Write Errors

WriteError

Fur itelnstruction
Errorlnstruction
(val fcl = 0) o (offs = base) v
(val fcl = 1) A (offs = base plus (Reg X)) y
(val fecl = 2) Ao (offs = base plus (Reg Y)) v
(val fcl = 3) 5 (offs = base plus (Rea Z21))
Write error framing schema.
_Illegallndex —
Writelnstruction
Errorlnstruction
(val fcl = 1) o (Reg IX = True) v
(val fel = 2) o (Reg IY = True) v
(val fcl = 3) A (Reg 12 = True)
The index register specified is illegal.
GloballriteError _
WriteError
val fch = 0
bMem = {}
invalid offs = 1
The write location is not in the memory space.
StackFrameWr iteError
rHr iteError
val fch = 1
dMem = {>
(invalid offs = | v
(val offs) ¢ (val (Reg F)) v
(val offs) > (val (Reg F)) + (val (Reg S)))
The write location is not in the stack frame.
. GlobalOutputError
WriteError
val fch = 2
sMem = {3
invalid offs = 1

The output location is not in the memory space.

59

IllesallriteRddress & GloballriteError v
StackframelriteError v
GlobalQutputError v
Illegallndex

The Write Errors.

60

4.19 Other Viper2 Errors

WatchdogTimout
r.AUnperZ

—

Errorlnstruction

Reg WE = True
Req Trust = False

3

The watchdog timer has timed out, and ViperZ is in untrusted mode.

o

IllegalOpCode

aVperd
Errorlnstruction

val sZ = 15

((val fc
((val fq

B) A (val fq=2))y
3) A (val fec 212))

e

An illegsal Op code. There are 1 =4 =1 x1 +1 x4x1=x4
possibilities.

ViperZ2_Error & IllesalP

UnsetARddressingRegister
RegisterSelectInvalid
RegisterInvalid
IllegalReadAddress
ArithError
IllegalJdumps
IllegalCopies
LimitNotSet
EnterNotFound
StackOver flow
PostcallNotSet
IllegalCalls
Illegallr iteARddress
WatchdogTimout
IlleaalOpCode

€€ CCLCCCCL<LKL

The ViperZ Error conditions.

arb : Word — Word

Y wl,w2 ¢ Word | #nl = 2 o w1l = arb W2

20

The arb function., ie no relationship between input and output words

-

TrustedError

Viper2 _Error

Reg Trust = True
stop’ = 1

cead

Error

in trusted state, machine stops.

61

| e

_Untrustedtrror

Viper2_Error
CallInstruction

Reg Trust = False

TopOfCallframe = (Reg F) minus one
ProgramStatusiord = Mem(TonOfCallframe)
BottomOfCallFrame = TopOfCallFrame minus one

BottomOfNewWorkspace = Mem(BottomDfCallframe)
&Reg = {A~{arb (Reg R)),IAR~True.,
Xm(arb (Reg X)), IX~True,
Yelarb (Reg Y)),1Y=True.
Z2ilnlarb (Reg Z21)),12wTrue,
Bularb (Reg B)),1BwTrue,
ExTrue,
Fw(BottomOfNewlorkspace),
Pw(ProgramStatuslord trim 20).
Trustw(ProgramStatusWord 201),
Sw(BottomOfCallFrame minus
(BottomOfNewlWorkspace trim 20))}

stop® = 0

Error in untrusted state. Set all Error falas true and return from
subrout ine.

Viper2_Errors & UntrustedError v TrustedError

62

4.20 The Viper Top Level Specification

—NotStopped

dViper2

stop’ =0
e —————

ViperOK & Compare v ALUOp v Control v Write
Viper2 has successfully completed an operation. There are 1200 +
2640 + 1B8 + 4B + 20 = 40396 possible operations, ie all Op codes
accounted for.
OKState & ~(ViperZ_Errors) ao ViperOK A NotStopped
NextState & ViperZ Errors v OKState v Stopped v Reset

The next state of the ViperZ machine.

8§ Conclusions

This document gives an initial specification of the Viper2 in 2. It has been
shown that Z provides a higher level of specification than that written in HCL.
{ It has also demonstrated that it is a useful language to produce a high level
specification of @ microprocessor-

This specification was completed before the HOL specification was complete
and so no sttempt was made to ensure conformity between the two.

63

- - T W

—— e ——

4

<

6 Acknowledgements

W.J. Cullyer who produced the HOL specification.

C. Pygott and J. Kershaw for the design of the Viper2.

C. B'Halloran for his help with the 2 editor and type checker.
S. Wiseman for suggesting modifications.
A.

Passa for turning the Z document into & Memorandum.

7 References
1. Kemp D.H. Specification of Viper! in 2

2. Cullyer W.J. Viper2 Hicroprocessor:Formal Specification
To be published.

3. Bowen J. The Formal Specification of a Microprocessor
Instruction Set.

4. Hayes I. (editor) Specification Case Studies

Prentice-Hall International series in
computer science, 1987.

64

DOCUNENT CONTROL SHEET

Overall security classification of sheet L . .0 T it it rrce v

(As far as possible this sheet should contain only unclassified inforsation, If it is mecessary to enter
tlassified information, the box concerned must be marked to indicate the classification eg (R) (C) or (S))

1. DRIC Reference (if knoun) | 2. Originator's Reference |2, Agency Reference 4. Report Security
Memo 4217 u/c Classificat-or
5, Originator's Code (if 6. Originator (Corporate Author) Nase and Location
known) ROYAL SIGNALS & RADAR ESTABLISHMENT
7784000 ST ANDREWS ROAD, GREAT MALVERN,
WORCESTERSHIRE WR14 3PS
Sa. Sponsoring Agency's 6a. Sponsoring Agency (Contract Authority) Mame and Location
Code (i f knoun)

7. Title

Specification of Viper 2 in Z.

7a. Title in Foreign Language (in the case of translations)

Tb. Presented at (for conference napers) Title, place and date of conference

8. Author 1 Surname, initials{ 9(a} Author 2 9{b) Authors 3.4... 10. Date po. ref
Kemp D H 1988.10 64
11, Contract Number 12, Period 13. Project 14, Other Reference

15, Distribution statesent

Unlimited

Descriptors (or keywords)

continue on separate piece of paper

Absfract
Tof

As a continuation of the use of the specification language Z which was used to
specify the Viper 1 microprocessor this paper covers the specification of the
Viper 2. This was completed before the definitive HOL specification was
complete, therefore there is no proof of correspondence between the two. Using
Z did highlight inconsistencies in the HOL specification that may not have
appeared until later in the specification. ,

L o 4 -

12

$80/48

