
UNLIMITED

RSRE
MEMORANDUM No.4217

ROYAL SIGNALS & RADAR
ESTABLISHMENT

SPE '"1ATION OF VIPER2 IN Z

Author: D H Kema

PROCUREMENT EXECUTIVE,N
MINIST RY OF DEFENCE1..,1

ARSRE MALVERN,
WORCS.

DTK
MAR 1980

UNLO, ITED .

ROYAL SIGNALS AND RADAR ESTABLISHMENT

Memorandum 4217

Specification of Viper2 in Z

Author

D.H. Kemp

Date
October 1988

Summary

As a continuation of the use of the specification language Z which was used to specify the
Viperi microprocessor this paper covers the specification of the Viper2. This was completed
before the definitive HOL specification was complete, therefore there is no proof of correspon-
dence between the two. Using Z did highlight inconsistencies in the HOL specification that
may not have appeared until later in the specification.

(c)Controller. HMSO 1988

L - .w -i mw m nnn i iH

1. Introduction

This Memorandum is a description of the proposed Viper2 microprocessor using the
specification language Z. The description is a continuation of the work done on the Viper1
processor '. This is a first attempt to specify the Viper2 and was done in parallel with the

specification in Higher Order Logic (HOL)t. There may therefore be some inconsistencies
between this document and the HOL description 3. Where this occurs the latter should
be taken as the definitive description.

In safety critical applications it is necessary to ensure that continued operation or safe
shutdown of a system is achieved when erroneous data is input. There are two methods
to increase the integrity of a system: to analyse the software for errors and to use a
processor that is known to be functionally correct. Further confidence is achieved by
using multi-channel systems incorporating processors of dissimilar technologies but with
the same functionality. The functionality of any device is determined by the designers
specification. If an error exists in this then all the channels in the system will experience
the same common mode error.

By using a number of different methods to specify a processor, errors that may be
present in one specification may become apparent in another. This is most effective when
the methods used are basically different in character. This can be completed by using
proofs of correspondence to confirm that the two texts have the same meaning.

An expertise in the use of Z already exists at RSRE and by using a Z editor and type
checker available on the Computing Divisions PerqFlex workstations the task of specifying
Viper2 made a useful project for a vacation student, who already had a Knowledge of Z.
As a guide to the strategy required for this description J. Bowan's Z specification of the
M6800 microprocessor3 was used.

This report is the first attempt to specify the Viper2 in Z. It makes no attempt to
explain the primary constructs of Z, nor to act as a tutorial in the use of Z to specify a
microprocessor. Readers not familiar with Z should consult Specification Case studies 4

edited by I. Hayes. Although the specification has been type checked, it has neither been
proved equivalent to the HOL specification nor to be free from errors. Any inconsistencies
or errors found in this document should be reported back to the Computing Division,
RSRE.

tHigher Order Logic (HOL) is a design tool developed at the Cambridge Computing Laboratory.

Accession For

NTIS QPA&I
DTIC TAB
Unannounced Q
Justlfloatlo-

Dlstribution/

Availability Codes

Ave~ ador
Dist Speoial

Z Basic Functions

2.1 Bits and Words

Bit a (0.1>

Word f= < w:N.Bit I w> A dor w = 0 .. (rwI - 1)

Bits are represented as the set of elemerts with values 0 or 1.
Words are represented as a set of partial functions from nat.,al
numbers to Bits. The natural numbers correspond to the position of the
bit in the word, ie the result of w(n) (the wo'd w acting on th. va..,e
n) gives the n*lth B t of the word w.

LSB.IlS5 Word - Bit

w : Word
LSB w = w 0

MSB w - w Nw-I

Find the most and least sr.,icant bits of the word.

val Word- N

I w Word.
(Nw-l) , C val w a LSB w
(Ow>1) - C val w - LSB w + 2 * val(succ;w))

val returns the natural number represented by the word. Note succ;w
gives the effect of a Right shift, ie divide by two, on the word. ,e
of succiw is applied to n then first succ n is calculated, and then w

of n+l is calculated ie the n+Zth Bit is returned rather than the

n+lth one.

Spred Nik - N

V : N pred n - n - I

Useful for left shifting (in a similar way to the technique
described above).

(_set_) a (Word-Bt) - Word

Iw Word; b s Bit

w set b a w(O.b),(l,.b))

The set function returns a word which has all of its bits set to the
spacified value.

maoxvil i Word - M

I w : Word
. aaxval w - val(w set 1)

J2

Fr

3 w : Word ((val w) > maxval w)

Returns the maximum value which can be stored in the word.

wrd : ll -
(

N - Word)

U size : N1 ; valu r M; w : Word

(wra size valu - w .
((N = Sze) A
(val W = valu mod succ~maxval w)))

The function wrd returns the word of size size and set to the value
vao (if that value can be held in a word of that size). Note no
algorithm iS 9ven for calculating wrd from its arguments, just the
relat,onshps whch must hold between the word returned and the np~t
argiments.

(_") : (Word.Word) _ Word

Swl.w2 Word .

wl"2 wl U (pred w1 ; wZ

.wl. Word . M(wl-w2) Owl + .w

Concat,nate two words together.

3 ll IIlI

2.2 Bitwius Functions

rlot - Bit - Bt

not ((0-1.1-0)

Generate the logical inverse of the input bit.

=__ ((0.O)-0.(0.1iJ-1.(1.0)-1,(1,1l)-1}

(_ = ((0,0G)-0D(0.l)-l,(1,D)-0,(1,1 3-10

Standard b-twse logical functions. (note o is exclusive or)

Viperauxj keeps • .*,o,not,',wrdmaxvalsetpred,valLSB.t1SB,
Word,B't

2.3 Logical fuctions on Mords

wnot Word - Word

w Word

wnot w = 1 . not

Generate the inverse of the input word.

WordPa,r e
{ w : N. (BitB, t) I lw>O A doe w = 0 .. ((Uw)-l) }

(-pair_) (ordWord)-.WordPair

b wlwZ Word
wl pair wZ =

(i : N I i a dor wi f) dor wZ . (wl i.w2))

Ta'es a pair of words and represents them as a set of bit pairs.
indexed by a single natural number.

{-andm},[or-},(xOr_) :(WordxWord) -Word

V wl,w : Word .

wi and wZ = ((wl pa, w) (.))

wor wZ = twl pair w2 1+))
wl exor wZ = ((w1 par w2) ; (_o_))

Standard wordwise logical functions.

(C(_) : (Word.B-t) Word

b w : Word; b : Bt
w (b - ((aw} 4 (pred ; w)) U (O-b}

(_>-) : (Sit-Word) - Word

Il w : Word; b : Bit

b >> w - ((ew)-l) b b) U (suco iw)

Shift right and left while inserting a particular b't into the right

or left most position.

5l m - i i m mim m mm

Z.4 Arithmetic Functions

value ; Word - 2

V w : Word .
((MSB w - 1) A VUe w = val w - succ (Maxval w)) v
({MSB w - 0) ^ value w - val w)

Return the integer value represented by the Word. This is using the
2's complement notation. (Remember the most significant bit has a

weighting of So to cope with negative numbers subtract Zn.

mexpos.maxneg a Word

wl,w2 : Word I owl * ((wZ)*l)

ma-pos wl = mayval wZ
maxnes wl = (maval w2) - (Maxval wi)

Return the ma-mum positive and negative numbers for a word or a
particular size.

(.gsnextend_) - (Word, 1) -I Word

V l,w2 : Word; length : NJ I

(length Z vwl)a(wwZ = length)

(w s ognextend lensth) = (w" set (MSB wl)) *wl

Sign extends the word to the length specified.

(-Pad_ (Word. i) - Word

: wl,w2 Word; length N I

(length k "wl)A(MW2 * length)

(wl pad length) - (w2 set 0) wl

Pad out a word to the new word length with zeros

(_trim_) : (Word-NI) - Word

w : Word; length N N1 I length 5 w.

w trim length -(D .. length) 4 w

Trim a word down to the new word length. Note, use the above with
caution, as it simply returs a word with the top b'ts 'trimmed' off.
No check is made to ensure that the value of the word has not changed.

6

(_plus_) : (Word.Word) - Word

Id wl,w2,w3 : Word I (Wwl) - ((uw2)*l) A (Nw2) =(M.3)

(wZ plus w3 = (wi trim Nw2))
00, (value wl)=(value w')+ivalue w3)

The word returned by plus is the same size as the two input words,
and holds the value of the sum of the two words, iff this value can
be held in a word of that size.

(_times_ (Word-Word) - Word

[w!,.2,w43 Word I (w) ((NwZ)'Z) A (i.2) -(= .3

(wZ times w3 = (wl trim Ww I)
so (value wl)-(value w)*;va'je w3)

The word returned by times is the Same size as the two input words.
and holds the value of the p-oduct of the two words, if ths va.,e
can be held in a word of that s~ze.

(.,mnus_) (Word-Word) - Word

I wl.wZ.w3 Word I (Nwl = ((NwZ)+I) A (w2) =(ew3) o

(wZ minus w3 = (wl trim Uw2))
I (value wi)=value wZ '-(value w3)

The word returned by minus is the same size as the two input words.
and holds the value of the difference of the two words, iff this value
can be held ir a word of that s~ze.

S(_carry_) : (Word-Word) - Bit

Id wlwZ Word.
(w1 carry wZ = 1) * ((val w1) + (val w2) > maxval w1l

Top level specification of carry, is a carry is generated when the
result is larger than the maximum possable value which can be stored.

S(.mcarry_) i (Word-Word) - Bit

b wl,w2 : Word
(wl mcarry w2 = 1) ** ((val w1) * Ival wZ) 1 maval wi)

Top level specification of carry for multiplication.

S(_borrow_) : (Word-Word) - Bit

V wl,w2 i Word
(wI borrow wZ 1 1) ee ((val wi) c (vat wZ)

Top level specification of Borrow.

(.joverflow_) :(Word-Word) -Bit

V wl.w2 : Word I owl - *w2
(wl overflow w2 - 1) *

(value wl 4 (value w2) :o maxpos wi) v
(value wl) + (value w2) C maxneg w2Z

Top level specification of overflow. ie overflow when the sum is
greater than the largest pos ti.e value which can be held, or less
than the largest negative numbe..

C _movierflow-) (Word-Word) S it

V wl-wZ Word o wl =0.
(wi moverf low w2 1 I 1*

(value wl) * (value w2) > maxpos wl)v
(value wi) 4 (value w2) < maxneg w2

Top level specification of overflow for multiplication.

(_.underflow_.) : (Word.Word) Bit

V wl.wZ Word I ow - -
(wl underflow wZ = 1) *

(value wi) - (value w') :i maypos wI iV
(value wi) -(value w2) C maxneg w2

Top level specification of overflow on subtraction.

(_.equal-.) :(Word.Word) - Bit

ti wl,w2 Word a wl *w .w
(ul equal w2 1) (val ul - val w2)

Returns 1 if the two numbers are the same.

I(less-.)
: (Word-Word)

- Bit

I wl, 2 Word I Owl Ow Uw
I (ul less w2 - I) (m value wi c value w2)

Returns 1 if the first number is less than the second.

This completes the underlying theory of representing natural number
arithmetic by operations on vectors of bits.

3 Viper Specifics

3.1 Word Lengths

Word64 # (w Word I w-. 64)

WordZ a (w : Word I w - 3 -- For Double length integers

-- For Data words

WordZo * (w s Word I aw - ZO)

-- For Address words

Word, A (w Word I Ow4 }
-- For the funct on select

Woro13 a (w Word I a. - 3)
S--For the destnat,or, select

Word z i (w Word I aw - Z)

-- For the resgster ard memory
select

Word 1 a (w Word I *w - 1)
-- For the comparison select

and flags

Address a Word,0

Data & Word 32

Flog a Word1

Ualues

one.zero W WordTrueFalse Flag

value zero

value one a !
True - (0-1)
False - (0-0)

9

3.Z Memory
The definition of the memory and peripheral spaces, and the
behaviour of these two reg-ons.

Memory

Mem Address - Data

PERIspace Address - Data
RAMspace Address - Data

0 Bit

(,o = 0] (Mem = RAMspace)

('o = 1). (Mem = PEFIspace)

If so is zero then all memory reads are from the RAM space. If io is
one then all of the reads are from the PERIspace.

&Memory
F Memory

Memory'

bMem Address - Dala

J o = 0) (RAMspace' RAMspace . 6Mem)
(:o = I [RAMspace' = RAMspace)

If in ,s ze-o then any writes wl] affect the value in the memory f
howeve, ,o is one there are no changes to RAM. Note changes to PEPI
are not modeled.

-Memory

JMemory

N Mem ory.

No change in memory.

10

3.3 ReIisters

The specification of the ViperZ registers.

[RegName]

Resrster a (r: RegName - Word I ur>D

The Registers are the partial function from Register names to Words.

I e ResNme - Word

V re Re9Name; Ross : Register

Reg n = R egs n

Returns the value in the Reagster iven as input.

r Gene-s lPuposekegster

FYY,S ,Dooble : Re9Name

Reg A G Word32

Res X 6 Word
Res Y c- Wo'd3Z

Reg 21 c Word3

leg Double Words
Res Double - (Res A) ^ (Reg 21)

The four addrel purpose read write ramgsters (note XY.i nre inde
sters. The reFaster double is the concatsntzon of the A and 2

rag:stars.

i AddressRe sterso w
F,S,U,P : RegNsme

Reg F e Word2O

Reg S e WOrdZO

Reg U a Word2o

Reg P a Word20

The four addressing registers, The Frame pointer F points to the
start of the current stock frame. The Frame size S is the size of the
current stock frame (se the stock frame gos from F to F S ' . The stock
Limit U is the furthest up the stock is allowed to grow. Finally The
Porgram Counter P is the position in memory where the current
instruction was read from.

11

r

OtherRegisters

DWatchdogTemp RegName

Reg D a Word 32

Reg Watchdog a Word 32
Reg Temp a Word 3,

The three remaining registers. The 0 register is the error message
register. If an error occurs then the error code for that particular
error is placed in D. The Watchdog register is used when operatns in
untrusted mode. The value in Watchdog is the number of clock cycles
left to complete any untrusted operations. The registers Temp hold
the next 3Z-bit instruction to be executed.

-Processr lags.F B,PostcallTrust : RegName

Reg B e Word1

Reg Postcmll e Word1

Reg Trust * Word1

The three process Flags are held as one bt registers. The B flag

contains the result from var ous comparisons or unsigned arithmet.c.
The Postcall Flag is there to ensure that the Enter instruction alwa~s
occurs after a call instruction. and never anywhere else. It is set
true afte- a call and cleaed during an enter. The Trust flag
determines whether the machine is in trusted or untrusted mode.

_ErrorFlags

E,IAIX,IY.IZIBWE,NoStackNoSizeNoLimit RegName

Re9 E a Word1

Reg IA a Word I

Reg IX a Word I

Reg IY a Word I

Reg 17 a Word 1

Reg 18 a Word1

Reg WE a Word 1

Reg NoStack a Word
1

Res NoSize a Word 1

Reg NoLimit * Wo-d 1

The error flags. The E flag is set true if there has been an error.
This is utilised by the Jump on error and Call on error instructions.
The IA, IX. IY, 12 and IS flags show whether a register holds an

invalid value, it IA is true if A has not bean loaded since the
machine started, or since on error ocured. The WE register is set if
the Watchdog timer has Expired (hence WE). This flag will cause an

1z

error to occur if it is set while the machine is in untrusted mode. It
is ignored in trusted mode. The NoStack, NoSize and NoLimit Flags are
set true if the F, S and U registers have not been set.

Regs a ErrorFlags A
ProcessFlags
OtherRegisters A
AddressResosters A
GeneraPurposeReg sters

The ViperZ re,ster types

registers

Regs
Registers - Register

The registers at splt time consist of a 'bank' of registers and
the ViperZ register types.

M6Registers

registers
registers'

newp Address

NewWatchdog Data
NewWE Flag

bReg RegNami - Word

Registers' Registers a {P.,newpWE-NewWE}
. (Watchdog-NewWatchdog} a bReg

The ViperZ registers. The new values of the registers are the same
as the old value, apart from the three registers which are always
updated (the program counter watchdog timer and watchdog expired
flag). These can be overwritten by any modifications to them in
6Reg. Any other changes in the registers (due to the various
instructions) are also contained in Reg.

iRegisters

Rgisters

All of the registers remain the same (apart from tie three above)

13

f; - ;1111r- -
---- - --

3.4 Clock

The ViperZ cock is not represented in the HOL specification.
A defnition ,s included here for completeness.

Clock

Clock simply counts up from e.

.6Cloc;i________

Clock
Clock'

Cycles

Clk' v Clk * Cycles

Cycles is the number of cycles needed to complete the prese-t
instructhon. The parameter cycles is used by the WatchdoS timer.

14

3.5 Stop

The definition of the Stop Fla9.

StoP :_Bit

stop:Bt

The single bit to determine whether the machine is stopped or not.

6.Stoo ___________

6Reg,stars
Stop
Stop'
Values
sval Bit

stop 0 C
newp Reg (P) plus one

The machine has not stopped. The new value of the Program Counter is
P+1. The value of stop' is set later in the specification.

Ll

3.5 Viper State

AState a 6Memory A
oRegisters A6Clock A

rStop
The ViperZ changing state. The change in the Viper state is the

change in memory and the change in registers and the change in stop.

Ar i thmet i cAndLog i calUn it

r,m Data
offs Data
base Data
Result Data

The inputs and outputs to/from the ALU. r and m are the two inputs
to the ALU and Result is the result from it. Base is the base address
to read the memory (m) input to the ALU from and offs is the actual
address of the read.

16

3.7 ViperZ Operation Codes

Uiper2OpCode

op i Word 3z
sl : Word 2
• £1 a Word 4

s2 t Word
4

sZl a Word 2

fq Word2
fc a Word 4

fcl : Word
2

fch a Word 2

fddr Word 2 o

op a s2 sl ^ fq fc addr
fc - fch ' fcl

sZ a s2u - sZl

The Viper2 Op code. Op is the op code and is loaded from the address
pointed to by the Program Counter. The op code is the concatination of
the five fields shown; sZ, sl. fq, fc and addr. The fc and sZ fields
are further subdivided into two 2 bit fields.

The sZ field selects the addressing mode for the m input to the ALU
if the instruction is a data operation, or whether the operation is a
control or write instruction. The si field selects the register (r)
input to the ALU or the type of certain load instructions. The fq
(functional qualifier) field selects the destination register of the
data instructions, or whether the instruction is a control or a write
instruction. It also determines the type of call or brench performed
(it absolute or Program Counter relative). The fc (function code)
determines the instruction to be performed. Finally the addr field
determines the location to jump to. write to. read from etc.

17

3.9 Vipar2 Ovaeall State

ViperZlnputs___

attention Bit
reset sit

The two external input lines. These are assumed to be synchronous
lines clocked in at the start of each instruction. The attention lone
I s set by external devices to inform the Processor when they re~u ire
.tt enti on. It is polled by the Jump and Call on attentom
instruct ions.

6v.iperz

6it ate

ViperZOPCode

aluestcn~gclr

OP - M'em (Reg (P))
reset-
(Reg WE - alse) - (NewWatchotg(Res watchdog)

minus (wrd 32 Cycles))
(NewWE - True)**((Res Watchdog) borrow (wrd 32 Cycles) 1)

The op code is the value in ti-e memory location pointed to b
Program Counter. The reset line must be low, otherwise the mac~ine
will reset. The new value of the Watchdog Expired flag will be set to
True if the watchdog counter will become less than zero in the course
of the present instruction (not quite true as WE in fact goes true
immediately the Watchdog timer goes below zero). The watchdog timer is
decremented if the WE flag is not set.

Stopped

-Mlemory
-Reg isters

stop
stop,
aclock

stop a I
stop, a 1
newp a Reg (P)

The machine has stopped, end cannot restart until there is a Reset.

EIViperZ

6UiperZ
-mlemor y
-.Reg isters
astop

Viper state unchanged (except P. Watchdog and WE updated)

Reset

2-Memory
6Resisters

6CIocL
aStop
ViperZInputs

Values

stop, = 0
reset - 1
val newp - 0

6Reg = {E•False.IA-TrueIX-True,NoStack-TrueNoSize-True,
IY"TrueIZ-TrueIB.True.Trust-True.NoLimit.True.
WE-False.Watchdog-((Res Watchdog) set 1))

Machine status on a Reset. All of the Register Illegal flags are set
to true (as the registers have not had an, values loaded into them
yet). The error flag is set false, as is the Watchdog Expired fla9.
The program counter is set to zero.

IViperZINIT

Reset

Clk' - 0

Machine on start up.

ViperZmachinestate keeps

hClock,Stop.65top,8Uiper2,EUgper2.Uiper2INIT.
6Memory.4Memory,resisters,6RegistersClock,
AddressData,Flagl,Meory,Reset,Reg,Word6 4 ,
Word32,Word20 ,Word4 ,Uord 3 ,WordZ,Wordl.Stopped.

RegName

This section specifies the inputs to the ViperZ ALU.

invalid : Word - Bit

U w : Word .

(invalid w - 1) e. (val w > aaxval (Crd 20 0))

Returns True if the value is greater than can be held in a ze bit
word.

IS

F-rorlnstructioni
b ViperZ

Error~alue . Date

The instruction being executed is illegal. The error code of the
particular error s returned in ErrorValue.

F IllegalP =__

Errorinstruction

Val (Res P) a eaxval iPe9 P)
(Va] s2 - 151 v (val fq - 3) v (va1 fc k 7)

The program courter is about to carry, end the current instruction
is not a jump. (there is no need to couse an error if the instruction
is a jump. as there is no 'return' as in a call instructon).

29

4 Viper Operations

4.1 ViperZ ALU

This section specifies the vi input to the ViperZ ALU
Reg-sterSelect

6V,perZ

(val s! v 0) (r - Reg A)
(val sl a 1) fir - Reg X)
(val sl = Z) (- (r - Reg Y)

(val sl = 3) -* (r - Reg 21)

Select the reg-ster to be used as the r input to the ALU.

DataInstruction._

Viper 2

vel sZ x 15

The instruction is a data instruction. If sZ was 15 then it would be
a control or write instruction.

21

4.2 Addressing Modes

GlobalAddressing

Datalnstruction

val s2u . 0
Res Trust - True

base = addr pad 32
1i

Relative addressing mode. The base address is the address in the Op
code. The machine must be in trusted mode.

-StackRelativeAddress',gFDataInstructson
val sZu = 1
base = (addr pad 32) plus (Reg F pad 32)

Stack relative addressing. This gives access to local routine
variables. The base address is the Frame pointer offset by the address
from the Op code. No check is made here to see if the address
calculated is in the current stack frame. This is done in a later
error frame.

ProgramCounterRelat ve~ddressing

DataInstruction

vsl s~u - 2

base - (addr pad 32) plus (Res P pad 32)

Program Counter relative addressing. This gives access to constants
embedded in the program. This allows routines to be relocatable in
memory (ie standard ROMs can be bought which can plus straight into a
system). The base address is the program counter plus the input
address.

Address~ases 6 GlobalAddressing v StackRelativeAddressing
v ProgramCounterRelat veAddressing

The three basic addressing modes. The base address is offset by the
various index registers (or not in the case of absolute addressing).

AbsoluteAddressing

AddressBases

vel s2 - 0
offs a base

Absolute Addressing. The location to read in from is simply the base
address defined above.

22

XlndexedAddressing

AddressBaaes

val sZd - 1
offs = base plus (Reg X)

Indexed Addressing using the X index register. The location to read
in from is the bese address plus the value contained in the X index
ristar. Note the value in X can be either a positive or a negative
value. This can be used to index arrays etc.

YIndexedAddress,ng

r AddressBases

val s2l - 2

offs = base plus (Re9 Y)

Indexed Addressing using the Y index register. The location to read
in from is the base address plus the value contained in the Y index
register. Note the value in Y can be either a positive or a negative
value. This can be used to index ugrrays etc.

ZlndexedAddressing

AddressBases

val sZl - 3
offs - base plus (Reg 21)

Indexed Addressing using the 2 index register. The location to read
in from is the base address plus the value contained in the 2 index
register. Note the value in 2 can be either a positive or a negative
value. This can be used to index arrays etc.

IndexedAddressing a ZlndexedAddressing v YlndexedAddressing
v AbsoluteAddressing v XlndexedAddresstng

All of the simple addressing modes.

IndexAddressing_

IndexedAddressing

val fc 0 13

ve1 sZ < 12
a - flem (offs trim 20)
io 0

The simple addressing modes. This does not include the case of the
monadic instructions, where a memory read will not be taking place. or
the Immediate and Register addressing modes. where no memory read is
taking place. The value on the io pin is zero. so the word read in is
read from the RAM space. The a input to the ALU is the value in the
location pointed to by offset. The case of offset being outside the Z
bit address space is dealt with in the errors later.

23

Immed IateAddressing

DataInstruct ion

fva] s2 = Z)^A~m = addr pad 32) v

(val sZ = 1
3
)A(m - wnot (addr pad 32))

The two Immed~ate Addressing modes. The m input to the ALU is the
value in the acdress field padded with zeros to 32 bits, if s2 is 12.
If sZ is 13 then the m input is this value inverted (ie 's
complement). This allows bot negative and positive values to be used
as constarts.

24

4.3 Access to General Purpose Registers

SRegsterAddress-

Dataristruction

val sZ = 14

In this case the m input to the ALU is one of the general purpose
reg,sters A. X Y, or 2. Wh,ch register is used is determined by thE
bottom two bits in the address field of the op tode.

UseRegisterA-

RegsterAddress

(val addr) mod 4 = D
m = Reg A

The A regster is used as the m input to the ALU.

UseResisterX -

RegssterAddress

(val addr) mod 4 - 1
m - Reg X

The X register is used as the m input to the ALU

.UseRegisterY,-

ReisterAddress

(val addr) mod 4 a 2

m - Reg Y

The Y register is used as the m input to the ALU.

UseRegisterZ iF RegisterAddress
(val addr) mod 4 a 3
m = Reg 21

The 2 register is used as the m input to the ALU.

ResisterAddressing a UseRegisterA v UseRegisterX
V UseRegisterY v UseReSisterZ

The four cases of register addressing.
MemoryRead a ImmediateAddressing v IndexAddressing

V RegisterAddressing

The fifteen cases of memory addressing for the fifteen values sZ can
have for any data instruction.

25

4.4 Illegal Addressing Operutions

StackNctSet -

DataInstruct on
Errorlnstruction

val sZu - I
Res NoStack - True
6Memr = {}

Stack Relative addressing has been specified, however no stack has
been set up (,e no value has been loaded into F).

UnsetX

AddressBases
ErrorInstruction

val sZl 1
Reg IX = True
6M =

The X register has been selected as the index register to be used.
but it has either not been loaded, or an error has occured in
untrusted mode and all of the registers have been marked as illegal

SUnsetY[Add-essBases
ErrorInstruct-on

val s21 * 2

Res IY True
6Mem = {

The Y register has been selected as the index register to be used,
but it has either not been loaded, or an error has occured in
untrusted mode and all of the registers have been marked as illegal

-Unset2

AddressBases

ErrorInstruction

val sZl - 3
Reg 12 - True

6Mem - 0

The 2 register has been selected as the index register to be used.
but it has either not been loaded, or an error has occured in
untrusted mode and all of the registers have been marked as illegal

UnsetAddressingRegister A StackNotSet
v UnsetZ
v UnsetY
v UnsetX

Z6

The four cases of illegally used registers.
IllegelStackAddress

IndexedAddressing

ErrorInstruction

val fc 0 13
val sZu - I
((val offs) C (val (Res F)) v
(val offs) > (val (Re9 F)) * (val (Reg SM)

6Mem = 0

Il legalReadAddress -

IndexedAddressing

Error Instruction

val fc 13
val sz : 12
invalid offs = 1
6Mem = }

This is the only check thai is needed to see if the address isvalid. This is because the base address is at most a 21 bit number,so there can be no overflow on the first addition. The index registeradded to this base value can be one of four cases,

(1) The index register holds a +ve number and the result causesoverflow. Then the MSB of result is one and hence above predicate
detects the invalid address.

(2) The index register holds a +ve number and no overflow occurs.Then the address is valid iff the above predicate holds.

(3) The index register holds a -ye number and a carry occurs.Then the result must be a positive number less than the base. It is
valid.

(4) The index register is negative and no carry occurs. ie theindex register held a negative number which was 'larger' than thebase. This is detected as for -re numbers MSB - 1, and hence invalid
address.

The case of -re index register and overflow cannot occur as base is
ALWAYS positive.

27

4.5 Illegal Source Registers

RegisterAInvalid_

ResisterAddress
ErrorInst-uction

(vl addr) mod 4 0
Reg IA = True
6Mem = }

Register addressing has been specified, with the m input to the ALU
coming from the A register. This register however does not contar,
valid data.

RegisterXlnvalid __

Reg sterAddress
ErrorInstruction

(val add,) mod 4 = 1
Reg IX = True

bMem = 0

Register addressing has been specified, with the m input to the ALU
coming from the X register. This register however does not contain
valid data.

Re9isterYlnvalid =--_

RegssterAddress

Error Instruction

(val addr) mod 4 Z

Re IY - True
bMem - })

Register addressing has been specified, with the m input to the ALU
coming from the Y register. This register however does not contain
valid data.

-RegisterZInvalid _____

RegisterAddress

Errorinstruction

(val addr) mod 4 - 3
Rag I2 a True
6Mem - (Y

Register addressing has been specified, with the m input to the ALU
coming from the 2 register. This register however does not contain
valid date.

Registerinvalid & RegisterAInvalid v RegisterXInvalid
v RegisterYlnvalid v Re9isterZInvelid

29

hh ou aes where an illegal register has been selected to be the
a input to th LU.

-RegisterSelect InvalidError-

6Viper2
ErrorInstruct ion

(val s2 0 IS A V01 fc a 13) V
(Va1 fq - 3 A Va1 fe < 12) v
(Val fc - 6)

blem - (Y

The instruction selected requires a register be the r input to the
ALt). (is either a dyadic data instruction sZ o 1 and fc o 13. a Write
instruction sZ -15, fq a 3 and fc < 12 (this lost condition because
f c a 12 would give a different error code). or the instruction is
decrement with branch an zero.

-RegisterSelectAlnval id___[ResisterSelectlnval idError

Val sl 0
Reng IA -True

The instruction requires the r input to the ALt) to be the A
register. but this register does not contain valid data.

Reg-sterSelectXnvolid___[RegisterSelectlnvalidError
Va1 sl 1

Reg IX a True

The instruction requires the r input to the ALt) to be the X
register, but this register does not contain valid data.

-RegisterSelectYlnval id___[RegisterSelectlnval idError

va1 si 2
Reg IY aTrue

The instruction. requires the r input to the ALt) to be the Y
register, but this register does not contain valid data.

-RegisterSelect~lnvol id___FRegisterSelectlnvol idError

va1 sl a3
Reg 12 a True

The instruction requires the r input to the ALt) to be the 2
register, but this register does not contain valid data.

29

RegsterSelectlnvol id a RegisterSelect~rnvalid
v RegisterSeleetYInvalid
v Rego sterSelectXlnval id
v RegisterSelectAI'vao d

The four cases of ilegal register being used for the r input to the
ALU)

4.6 Comparison Operations

Comparerrorame_

RegisteSelect
MemoryRead
Bresult Word1

6Mem C}

Framing scheme for comparison operations. All registers are
unchanged exept for the Program counter. B is set in the various
comparisons below.

GreaterThanOrEqualTo

CompareFrame

Val fc = 0
Bresult = urd 1 (not (r less m))

Bresult is set true if the r input is greater than or equal to the m
input.

EqualTo

CompareFrame

val fc a 1

Bresult = wrd I (r equal m)

Bresult is set true if the r input is equal to the m input.

GreaterThan _

CompareFrame

val fc =2

Bresult wrd 1 (notf(r less a) + tr equal a)))

Bresult is set true if the r input is greater than the m input.

UnsisnedLeseThen

CompareFrame

Val fc 3
Bresult - 'rd I (r borrow a)

Bresult is set true if the r input, treated as an unsigned integer,
is less than the m input.

31

AndEquel~ero
CompareFrame

val fc - 4
Bresult = wrd I ((r and m) equal (zero))

Bresult is set true if the r input logically anded with the a input
is equal to zero.

CompOp a AndEqualZero v UnissnedLessThan v CreaterThan
v EqualTo v GreaterThanOrEqualTo

The five basic comparison operations. 8 is loaded with the following

-Condition

Compop

Val fq = 0

bReF - (B-Bresultd98-Falsel

8 is loaded with Bresult. The Illegal 8 flag is set false to show

that the B reaster conts-ha valid information.

NotCondition

CompOo

[val fq = 1
&Reg = {B-wnot(Bresult),I.False

B is loaded with not Bresult. The Illegal 8 flag is set false to
show that the 9 register contains valid information.

DorCond, tI on i__
COMPOP

val fq = 2
6Reg - (9.(Reg(B) or Bresult).IB-Falsel

B is loaded with Dresult or B. The Illegal 8 flag is set false to
show that the B register contains valid information.

SorNotCondition
CompOp

val fq - 3
6Reg a (8.(Reg (9) or wnot(Bresult)),IBJalse}

B is loaded with not Bresult or 9. The Illegal B flag is set false
to show that the 8 register contains valid information.

Compare A Condition v BorNotCondition
v BorCondition v NotCondition

32

P The four operation's load'w'g 8 with a result. The-e are IS5 4 ZC
IZee compare operations out of the possible Z". ViperZ operations.

33

4.? Vipr2 Arithmetic

ALUInstruc Ion __.__FReg-sterSelect
Memo'yRead
68 : RegName - Word

&Mem -}

Framing schema for all of the ALU operations. Note memory cannot be
changed. b holds any changes to the 9 register.

SignedAdd -

ALUInstructionF val fc - S
Result - r plus m

bB = 0

Add r to m. There is no check for overflow, this is done later in an

error schema.

_UnsignedAdd

ALUInstruction

val fc = 6
Result - r plus m
bB = {Bwrd I (r carry m),IB.False}

Add r to m, setting B if there is a Carry. IB is set false whatever
the result.

SignedSubtract .

ALUInstruction

val fc - 7
Result - r minus m

69 -

Subtract r from m. There is no check for underflow, this is done
later in on error schema.

34

UnsigriedSubtract

FALUInstruction
val fc - 8

Result - r minus m

6b - (89wrd I (r borrow m).IB-False}

Subtract m from r, and setting 9 if there is a Borrow. 19 is set

false whatever the result.

Signedlult iply

ALUInstruction

val fc 12

Result - r times m

68 • {}

Multiply r by m. There is no check for overflow, this is done later
in an error schema.

ArithmeticOp e (UnsignedAdd v SignedSubtract v SgnedMultiply
v UnsignedSubtract V Signed~dd)

The five arithmetic operations. There are 15 - 4 - S = 300 possible
operations (le 15 addressing modes by four register inputs by five
Possible operations).

35

4.0 Logical Operations

ExclusveOr _

ALUInstruction

val fc - 11
Result - r exor m
69 - 0

Returns the exclusive or of the two input words.

-And
ALUInstruction

val fc - 9
Result - r and m

68 =0

Returns the logical and of the two inputs.

-Or __________

rALUInstruction

val fc - 10
Result = r or m
6B =}

Returns the logical or of the two inputs.

LogicalOp & (Or v And v ExclusiveOr]

The three logical operators. There are 1S a 4 * 3 * 180 Possible
logical operations.

96

- -F'' F ' / \

4.9 Load Instruction

fMonadicInstruction _.._

F lndexedAddressin9
6B : ResName - Word

val fc a 13

The operation is a monodic or load instruction. There is no register
select, the only operand comes from the m input to the ALU. The
register select field sl is used to determine which operatior is
performed.

LoadRegister

MonadicInstruction

val sl - 0
Result - em(offs trim 20)

bB -C
io a 0

Simply load the register with a value from a memory location.

LoadAndNegsteRegister

MonadicInstruction

val s1 - 1

Result = zero minus (Mem(offs trim ZO))
bB - 0}

io = 0

Load and find the Z's complement of the value from a memory
location. There is no check to see if there has been an overflow as
this is done in a later error schema.

LoadEffect iveAddress_[MonsdicInstruction
val si a Z

Result = offs

68 -{}
val sZ 9 12
io . 0

Load the address detemined by the addressing mode into the result.

37

-InputFromPERI

Moned,cnstructor

val s - 3
Result : Mem(offs trim 20)

Val sz S 3

10 - I

Load in a word from PERiphe-al space.

LoadOp & LoadRegister v LoadAndNegateRegsster
v LoadEffectiveAddress v InputFromPERl

One of the four load operations. There are 15 I x 4 a 60 possible
operations.

ALU & LogicalOp v ArithmetlcOp v LoadOp

An ALU operation. At present there are 300 + 180 + 6e = 540
operations defined.

39

4.1S Destination Registers

Result ToA

ALU

val fq = 0
Reg * (A.Result,IA.Jalse) a bB

Load the result from the ALU into the A register and set the TA flag
false to show that there is valid data in the A register. Also set the
B and I flags if they should be set by this operation.

_ResultToX

ALU

val fq - I
bRes = (X-Result,IX-False} * bB

Load the result from the ALU into the X register and set the IX flag
false to show that there is valid data in the A register. Also set the
B and IB flags if they should be set by this operation.

ResultToY

F ALU
val fq = 2

bReg = (Y Result,IY.False) * 6*

Load the result from the ALU into the Y register and set the IY flag
false to show that there is valid data in the A register. Also set the
B and IB flags if they should be set by this operation.

ResultToZlF ALU

val fq - 3
6Reg = {Z1-Result.IZ.Jalse} 9'bB

Load the result from the ALU into the Z register and set the I flag
false to show that there is valid data in the A register. Also set the
B and 1B flags if they should be set by this operation.

ALUOp a ResultToA v ResultToX v ResultToY v ResultToZl

Load one of the four general purpose registers. There are 540
4 - 2160 passable operations. The two other function codes fc = 13,

fc = 14 will give annother 15 4 Z 4 = 480 operptions. This means
that in total there are Z640 data operations possible.

39

4.11 Exception Handling for ALU Operations

SignedAddOverflow -

FRLUnstruction
ErrorInstruction

Val fc = s
(r overflow m) = 1
&Mem = (}

An overflow has occured on a signed add.

SignedSubtractUndeflow_

ALUInstruction

ErrorInstruction

val fc = 7

(r underflow m) - I

&Mem = {}

An underflow has occured on a signed subtract.

rSignedMult'plyOverflow_[ALUInstructon
ErrorInstruction

val fc - 12
(r overflow m) = 1
bMem = 0

An overflow has occured on a signed multiply.

_LoadAndNegateRegisterOverflow __

MonadicInstruction
ErrorInstruction

val sl - 1

a = Mem(offs trim 20)
(zero underflow m) - 1

hMem * C>

An underflow has occured when loading and negating a register. This
means that the value which was loaded must have been maxnes.

40

-LoadEffectiveAddressError

MonadcInstruction

Errorinstruction

val sl - 2

val sZ > 12

bMem = {

Illegal operation, if sZ > 12 then it is immediate or register
addressing, it there is no 'effective address'.

InputFromPERlError_

MonadicInstruction

ErrorInstruction

Val 51 = 3
val sz > 3

6Mem = {

The operation is an input from PERI, but the addressing mode is not
global.

IllegalAddress -

[MonadicInstruction

ErrorInstruction

Val sl a 2
invalid offs -1

6Mem- {0

The operation has been defined as a load address but the address is
not legal.

MonError a LoadEffectiveAddressError v
InputFromPERIError

MonadError a MonError v
I (MonError) A IllegalAddress

MonadicError a MonadError v
- (MonadError) A LoodAndNegateRegisterOverflow

Needed to cope with two errors in the same instruction. A load
Effective Address Error will be noticed before an Illegal Input
Address error which will be noticed before a Load and negate register
overflow.

ArithError & SignedlAddOverflow v
SignedSubtractUndeflow v
SionedMultiplyOverflow v
MonadicError

41

The Errors which can occur during ALU operations.

L4

4.12 Jumps and Calls

ControlInstruction..[emoryRead
val sZ = 16
val fq 0 3

The instructon is a control instruction.

DestinationSelect

ControlInstruction
Destinaton : Word3Z

(val fq - O)A(Destination - addr pad 32)
v

(val fq = 1)A
(Destination = (addr pad 32) plus (newp pad 32))

v
(val fq = 2)A
(Destination = (addr pad 32) minus (newp pad 32))

The framing schema for a jump or a call. Destination is the location
to call or branch to. Note three types of jump, absolute or Program
Counter relative forwards or backwards.

Uncond,t,onalJumpF DestinationSelect

val fe = 0

bReg = (P-(Destination trim 20))

bMem = }

Unconditional jump. P is loaded with the value of destination.

JumplfError

DestinetionSelect

val fc = I
Reg Trust = True

val (Res E) - 1

bRe - (P.(Destination trim 20),IA-ralse,
IX-False,IY-False.IZ-False,IB-Fmlse}

6Mem - 0

Jump if the E (error) flag is set. Set mll of the Illegal Register
flags to false?

43

Jump! fBSet ____________[Destinat ,onSelect

Val fc = Z

Val (Res B) - I

Meig - (P.(Destinat tor trim 20))

Jump if the B flag is set.

JumplfBNot Set ___________FDestinationSelect
Va1 fc - 3
Val (Reg B) - 0
IbRes z (P-(Destination trim 20)1
brigs - C

Jump if the 8 flag is rnot set.

-JumplfAt tentionSet ________

Dest inationSelect

Val fc 4
attention 1
bRing - (P.(Destination trim 20))[Wem -*)

Jump if the attention input to the ljiper-2 microprocessor is set.

JumplfAttent ionNotSet_______

DestinationSelect

Val fc - 5
attention 0[Reg -(P-(Destination trim 20))
Wmee - C

Jump if the attention input to the ViperZ microprocessor is not set.

-Fai ladJumpCondit ion _________

ControlInstruction[Eipei-2

((Val fc -1) x (volI (Rag E3 0) v
((Vol fe a 2) A (val (Reg 8) 0 0)) v
((va) fC - 3) A (V 1 (Rag B) a1)) V
((yol fc - 4) A (attention - 0))
((Val fC .5) A (attention - 13))

44

If the Jump condition is false. then Viper2 state the same (apart
from the Program counter increment).

DecrementAndJumpOnNot2ero

DestinationSelect
RegsterSelect

6PC RegName - Data

val fc 6 6
Result * r minus one
(Result o zero) (bPC (P-(Destination trim 20)))

(Result - zero) (bPC u O)
(val sl = 0) (6Reg - CA.Result.IA-False) * 6PC)
(val s = 1) - (bReg - {X-Result.IX-False) o 6PC)
(val sl Z) (bRes - (Y-Result.IY-False} . 6PC)
(val sI = 3) -a (bReg {21-Result.I-Zalse} * WC)
bmem = C)

Decrement the selected register. and jump if it is not zero.

CallInstruction

DestinationSelect
6Flags i RegName - Data

TopDfCallFrame.BottomOfNewWorkspace : Data
BottomOfCallFrame.ProgramStatusWord i Data

BottomOfCallFrsme = ((Reg F) pad 3Z) plus
((Reg S) pad 3)

TopOfCallFrame - BottomDfCallFrame plus one
ProgramStatusWord = (Res P) pad 32 * (20-val(Reg Trust))
BottomOfNewWorkspace = TopOfCallFrame plus one

6Mem - ((BottomOfCallFrome trim 20)-(Reg F),
(TopffCallFrame trim ZO)-(ProgramStotusWo-d))

bReg - (F.(BottomOfNeworkspace),
P.Destination trim 20),Postcall-True)
a bFlags

The Call instruction. Set up the link frame on the stock, set the
frame pointer to point to the bottom of the new workspace. set the
postcall register to True to ensure that the next instruction is an
Enter end load in the new value for the program counter. The value in
the error flags may also alter if there is a call on Error
instruction. The link frame consists of two date words.

The first word is placed in the location above the top of the
previous stack frame and is loaded with the old frame pointer. The
second word is placed in the location above the first word. This holds
the return program counter as well as the old value of the trust bit.

UnconditionalCall ._

CallInstruction

val fc - a
6Flass - 0

45

Unconditional jump. P is loaded with the value of destination.

CallIfError

CallInstruction

Val fc = 9
v.l (Reg E) - I

vFIs - (IA.False,IX-False,IY-False,
b~ IA-False,IB-False,E-Falsel

Call if the E (error) flag is set. Set a11 of the Illegal Regste
flags to false'

7

CallIfBSet

CallInstruction

val fc = 10
val (Reg B) = 1
6Flags = <1

Call if the B flag is set.

CallIfBNotSet-

CallInstruction

val fc = 11
val (Reg B) - 0

6Flags = 0)

Call if the B fla9 is not set.

Calllf~tteitionSet

CallInstruction

vl fc = 12

attention 1

6Flaes 0

Call if the attention input to the ViperZ microprocessor is set.

CalllfAttent ionNotSet _

CallInstruction

val fc - 13

attention a 0

6Fless - 0

Call if the attention input to the Viper2 microprocessor is not set.

46

-FailedCallCondition

ControlInstruction
ViJperZ

((val fc -9) A (v.l (Rea E) - 0)) v
((Val fc 10) A (v 1 (Reg) - 0)) v
((val fc 11) (val (Reg B) - 1)) v
((vol fc - 12) A (attention = 0)) v
((Vai f = 13) A (attention a 1))

If the Call condition is false, then UiperZ state the same (apart
from the Program counter increment).

4?

- £ N (7- 4W -

4.13 Copy Instruction

-CopyFromRegisterToGeneralPurposaRegister

ControlInstruct ion
ad :N

Val fc - 7
Val fq - a
ad - (val addr) mod 16
(ad -0) (Result - Res A)
(ad - 1) -(Result - Res X)
(ad - 2) (Result - Reg Y)
(ad -3) (Result - Res Z1)
(ad - 4) (Result - (Res P) pad 32)
(ad -5) (Result - (Rag F) pad 32)
(ad = 6) (Result - (Reg S) pad 32)
(ad - 7) (Result - (Reg U) pad 32)
(ad - 8) (Result - (Reg Watchdog) pad 32)
(ad - 9) (Result - Res D)

Copy from a register to a gebriaral purpose register.

-CopyToGeneralPurposeRegister__________FCopyFromRegi aterToGeneralPurposeRegister

(val sl = 0) -*(bReg - {A-Result.IA-Falsel)
(Val sl = 1) - (bReg = (X-Pesult,lX-Falsel)
(val si = 2) (bRag = (Y.Result.IY.=Falsel)
(val a) = 3) (6Reg - (21-ResultI2JFalse})

Place value in general purpose register.

CopyFromGeneralPurposeReg isterToRe i ster_________

ControlInstruct ion
Rag sterSelect
ad :N

val fc - 7
val fq - 1
Res Trust - True
ad - (val addr) mod 16
(ad - 0) (6Rag - (A..r.IA.False})
(ad - 1) (bRag - CX.rIX.False))
(ad - 2) (6Rag - (Y-r.IY=False))
(ad a 3) Wbas - (21.i.ZwFalse))
(ad - 4) Wbas - {P-(r trim 20)))
(ad - 5) (bRag - CF.(r trim 20),NoLimit-True,

NoSize-True,NoStac'.Jmlse))
(ad - 6) -(bRag (S.=(r trim ZC),NoSize-Fale)
(ad - 7) -(bRag - (U-(r trim ZO).NoLimt-False})
(ad - 8) -(bRag - (Watchdo9.(r trim 16).WE-False})
(ad - 9) -(6Rag - (D..r))

48

Copy a value from a general purpose register to a special register.

49

4.14 Enter and Return

Enter______________________________

ControlInstruct ion

val fc = 14

(val (Reg F)) + (val addr) + 2 S (va1 (Reg U))
Reg Postcall -True

(Val fq = 0) (bReg =(S-addr.Posteall-False})
(val fq = 1) (6Reg C5S-addr,Trust'.False,Postcall..False})
(val fq = 2) (bRes ={S-addrTrust-TruePostcall.False))

The Enter Instruct ion. This must be executed immediately after a
call instruction. If it is called at any other time it will generate
an error. The enter instruction sets up the frame size required by the
routine, after checking that at least 2 words of memory are free at
the top of the new frame to accomadate a call instruct ion in the new
routine. It also sets up the trusted ness of the routine. Finally the
postcall bit is reset.

-Return _______________________

CallInstruct ion

Top~fCallFrame = (Reg F) minus one

ProgramStatusWord aMem(TopOfCallFrame)
BottomOfCallFrame = Top~fCallFrame minus one
Bottom~fNewWorkspace = Mem(BottomOf CallFrame)
bReg =(F-(Bottom~fNewWorkspace).

P.(Program~tatusWord trim 20).
Trust.4ProgramStatusWord 20),
S-(BottomOfCallFrame minus

(BottomOfNewWorkspace trim 20))l

The Return from subroutine command. This basically undoes the call
command. The frame pointer (F) program counter and trust bit are
reloaded from the link frame. The value in the frame size register is
calculated and loaded back in.

Copies a CopyFromGeneralPurp'oseResisterToRegister v
CopyToGeneraIPurposeReg ister

The two copy commands. This covers I1 4 - I - 2 - 8 operations.

Jump & UnconditionaIJump v JumplfError v
JumplfAttentionSet v JumplfBNotSet v
DecramentAndJump~nNotzero v JumplfAttent ionNotSet v
JumplfBSet

Jumps a Jump v FailedJumpCondition

The seven jump commands. This covers I . 4 7 -3 - 84 operations.

so

Call & UnconditionalCall v CallIfError v
CallIfBSet V CallIfBNotSet v CalllfAttentionSet v
CalllfAttentionNotSet

Calls * Call v FailedCallCondition

p

The six call commands. This covers I * 4 ' 6 * 3 = 72 operations.

Control a Calls v Jumps v Copies v Enter v Return

The control operations. There are 8 + 84 7 Z + 1 x 4 a 2 x 3 188
operations.

4.14 Illegal Calls and Jumps

IlleaIaJump,

Jump

Errorlnstruction

invalid Destination = I

The operation is a jump but the destination is not in memory space.

IllegalJumpCondition -

Jumps
Errorlnstruction

Reg 16 = True
(val fc = 2) v (val fc = 3)

The jump is dependant on B, but B has not been set.

IllegalJumps a IllesalJump v
IllegalJumpCondition

IllegalCallError

ControlInstruction

ErrorInstruction
DestinationSelect

TopOfCallFrame,BottomOfNewWorkspace : Data
BottomOfCallFrame.ProgramStatusWord Data

(val fc 2 8) A (val fc S 13)

BottomOfCallFrame = ((Reg F) pad 32) plus
((Reg S) pad 32)

TopDfCallFrame = BottomOfCallFrame plus one
ProgramStatusWord = (Reg P) pad 3Z * {20-val(Re9 Trust)}
BottomOfNewWorkspace - TopDfCallFrame plus one

Framing schema for Call errors.

IllesalDestination-

IllegalCallError

invalid Destination = I
8Mem - {}

The operation is a call but the destination is not in memory space.

5z

11 legalBottomflfCallFrame____FIllegalCallError
invalid BottomOfCallFrame = I

bllem - 0

The bottom of the call space is not in memory.

11 legalTopOfCal IFrame_______________FIllegalCallError
invalid TopOfCallFraie
blem = <(BottomOfCallFrame trim 20)-(Reg F))

The top of the call space is not in memory. This is only noticed
after the first write to memory has been made.

Il legal~lottom~fNeiwWorkspace _________________

Fi llegal CallError
invalid BottomOfNew~orkmpace =I

IbMem = (EottomOfCallFrarse trim 20)-CRes F),I (TopOfCallFrame trim 20).(ProgramStatus.ord)}

The bottom of the new work space is not in memory. This is only
noticed after the first two writes to memory have been made.

StacklotSet __________________F IllegalCallError

(Reg NoStack - True) v (Reg NoSize = True)
br~em - 0

A call has been made with the stack not set.

IllegalCalls * IllegalDestination V
Illeasottosof CallFrame v
IllegalTopOf CallFrame V
Illesal~ottom~fNewWorkspace v
StackNotSet

All of the Illegal Call schemes.

-r)---)

4.15 Illegal copy'

-CopyErrorl

ControlInstruct ion
Errorinstruct ion

Val fc = 7
Val fQ=a
bI~em =
((val addr = 0) A (Reg IA = True) V
(Val addr = 1) A (Reg IX = True) V
(Val uddr = 2) A (Reg lY -True) V
C Val addr = 3) A (Reg 1IZ True) V
(val addr -) A (Reg NoStack = True) v
(val addr = 6) A (Res NoSize =True) v
(Val addr = 7) A (Reg NoLicit - True)

Attempt to copy' invalid register.

CopyErrorZ2 _____________

ControlInstruct ion
Errorlnstruct ion

val fc = 7
val fq = 1

Reg Trust True
btmem = {

((VBI l a 0) A (Reg IA = True) v
(Val S! 1) A (Reg IX = True) v
(Val S! Z) A (Reg IY = True) v
(Val Si 3) A (Reg 12 = True)

Attempt to copy' invalid register.

Illegallopy_FContra llnstruct ion
Error Instruct ion

val fc = 7
Val fq = I
Resg Trust - False

bnlem = 0

Attempt to cop>' to protected register, in untrusted mode.

IllegalCopies & CopyError! v CopyErrorZ v IllegalCopy

Error in copy'ing from register to register.

54

-LimitNotSet-

SControl Instru~ct ion

ErrorInstruct ion

val fc =14

br~m =

Limit is not set in enter instruction.

55

4.16 Postce11 end Enter Errors

-PostcallNotSet_____[Contra llnstruct ion
ErrorInstruct ion

Val fo 14
Res Postcall -False
bf~em ={

Postcall is not set and Enter has been found, le Enter has occured
somewhere other than at the start of a subroutine.

-EnterNotFound .____

Contra llnstruction[ErrorInstruct ion

Val fc x 14
Res Postcall = True

&lem =C

Posteall is set and Enter has not been found, ie Enter has not
occured at the start of a subroutine.

St ar-11ver flow___________________FControlInstruct ion
Error Instruction

Val fc = 14
(Val (Reg F)) + (val addr) + 2 > (Val (Res U))

Reg Postcall = True
6Mem - *}

The stack cannot accomadate the present frame.

S6

4.17 Wr ite Operations

WriteInstruction

essterSelect

Val sz = 15
val fq = 3
Val fc S 11

b{}

Write instruction. Note fc > 11 is an illegal op code.

-GlobalWr ite -
WriteInstruction

Val fch = a

base = addr pad 3Z
io =
Res Trust True

Write to Global memory.

-LocalStackFrameWr ite__________FWr itsInstruct iof

val fch = 1
base = (addr pad 32) plus (Reg F)
io =

Write to local stack frame.

-OutputToPERI-FWriteInstruct ion

Val fch -2
base - addr pad 32
io . I

Output to PERIpheral.

WriteBase a GlobalWr ite v LocalStackFrameWr ite v OutputToPERI

The three addressing modes.

-Write_______________ __FWriteBase
(val fcl -0 A offs - best v
v81 fCl - I A offs - base plum (Res X) V
V01 fCl - 2 A offs - base plus (Reg Y) v
val fcl - 3 A Offs - base plus (Re: 21)

bilem - ((offs trim 20)- r)

57

Write to the location specified. Either absolute addressing or
indexed addressing. Write has I z 4 x , 1; = 48 Operations.

,59

low

Se

4.18 Write Errors

WriteError[JriteInstruction
ErrorInstruction

(val fcl = C) A (offs a base) v
(val fcl = 1) A (offs - base plus (Res X)) v
(val fcl = 2) A (offs - base plus (Reg Y)) v
(val fcl = 3) A (offs base plus (Res 21))

Write error framing schema.

IllegalIndex

Writelnstruction[Error Instruct on

(val fcl = 1) A (Reg IX = True) v
(val fcl = 2) , (Reg IY = True) v
(val fcl = 3) A (Reg IZ - True)

The index resister specified is illegal.

GlobalWriteError

WriteError

val fch = 0
|bMem ={}
invalid offs = 1

The write location is not in the memory space.

StackFrameWriteError

WriteError

val fch = 1
bMem = {}

invalid offs = 1 v
(val offs) < (val (Reg F)) v
(val offs) > (val (Reg F)) + (val (Reg S)))

The write location is not in the stack frame.

IGlobelOutputError -

WriteError

val fch = 2
/fMem =}
invalid offs - I

The output location is not in the memory space.

59

IllesalWriteAddress a Globel~riteError V
StackFrameWr iteError v
GlobalflutputError v
IllegalIndex

The Write Errors.

so

4.19 Other ViperZ Errors

WatchdogTimout

bUiperZ
ErrorInstruction

Res WE = True

Reg Trust = False

The watchdog timer has timed out, and ViperZ is in untrusted mode.
IllesalpOCode

[UiperZ
ErrorInstruction

val sZ = 15
((val fc = 6) A (val fq = 2)) v
((val fq = 3) A (val fc 212))

An illegal Op code. There are 1 4 x 1 x 1 1 4 x 1 4 =20
possibilities.

Viper2_Error a IllegalP v
UnsetAddressingRegister v
ResisterSelectlnvalid v
RegisterInvalid v
IllegalReadAddress v
ArithError v
IllegalJumps v
IllegalCopies v
LimitNotSet v
EnterNotFound v
StackOverflow v
PostcallNotSet v
IllegalCalls v
IllegalWriteAddress v
atchdogTimout v
IllegalOpCode

The ViperZ Error conditions.

arb Word - Word

wl,wZ : Word I awl - .w2 . w1 arb wZ

The or6 function, ie no relationship between input and output words

TrustedError[iperZError
Res Trust = True
stop' I 1

Error in trusted state, machine stops.

61

UntrustedError______________________

Vi perZ.E,-ror
Ealllnstruct ion

Res Trust - False
Top~fCallFrame = (Reg F) minus one
ProgramStatus.ord = Mem(TopDfCallFrame)

BottomOfCallFrame = TopDfCallFrame minus one
BottamOfNew4.orkspace = Mem(BottomOfCallFrame)

bes = {0-(arb (Reg A)),IA.True,
X.(ar6 (Reg X)),IX=True,
Y"(arb (Res Y)),IY-True,
21=(arb (Reg 21 31.12-True.
B3-Carb (Reg 8)).15-True,
E-True,
F-(BottomOfNewWorkspace),
P.(ProgramStatus.ord trim 20).
Trust.(ProgramStatusWord 20),
S.(BottomOfCallFrame m:nus

(BottosOfNewl.orkspace trim 20)))
stop, = 0

Error in untrusted state. Set all Error falss true and return from
subrout ine.

ViperZErrors e UntrustedError v TrustedError

62

4.20 The Viper Top Level Specification

_NotStopped

6Viper2

stop = 0

ViperOK a Compare v ALUOp v Control v Write

ViperZ has successfully completed an operation. There are 1200 +
2640 + 188 + 48 + 20 = 4096 possible operations, ie all Op codes

accounted for.

OKState a [(ViperZErrors) A UiperOK A NotStopped

NextState t ViperZErrors V OKState v Stopped v Reset

The next state of the Uiper2 machine.

S Conclusions

This document gives an initial specification of the ViperZ in 2. It has been
shown that 2 provides a higher level of specification than that written in HOL.
It has also demonstrated that it is a useful language to produce a high level
specification of a microprocessor.

This specification was completed before the HOL specification was complete

and so no attempt was made to ensure conformity between the two.

63

i.7 _W

6 Acknowledgements

I' W.J. Cullyer who produced the HOL specificat ion.

C. PySott arnd J. Kershaw for the design of the ViperZ.

C. O'Halloran for his help with the 2 editor and type checker.

S. Wisemna for suggest ing modifications.

A. Passa for turning the 2 document into a Mlemorandum.

7 References

1. Kemp D.H. Specification of Viperl in 2

2. Cullyer W.J. ViperZ ticroprocessor:Formal Specification
To be published.

3. Bowen J. The Formal Specification of a Microprocessor
Instruction Set.

4. Hayes 1. (editor) Specification Case Studies
Prentice-Hall International series in
computer science, 1987.

64

DOCUNENT CONTROL SHEET

Overall security classification of sheet R % 'ED ..

(As far as possible this sheet should contain only unclassified information. if it is necessary to enter

classified information, the box concerned must be marked to indicate the classification eg (R) (C) or (S)

1. DRIC Reference (if known) 2. Originator's Reference 3. Agency Reference 4. Report Security
Memo 4217 11U/C Classificai-'r

5. Originator's Code (if 6. Originator (Corporate Author) Name and Location
known) ROYAL SIGNALS & RADAR ESTABLISHMENT

7784000 ST ANDREWS ROAD, GREAT MALVERN,
WORCESTERSHIRE WR14 3PS

5a. Sponsoring Agency's 6a. Sponsoring Agency (Contract Authority) Name and Location
Code (if known)

7. Title

Specification of Viper 2 in Z.

7a. Title in Foreign Language (in the case of translations)

7b. Presented at (for conference napers) Title, place and date of conference

8. Author 1 Surname, initials 9(a) Author 2 9(b) Authors 3.4... 10. Date pp. rei.

Kemp D H 1988.10 64

11. Contract Number 12. Period 13. Project 14. Other Reference

15. Distribution statement

Unlimited

Descriptors (or keywords)

continue on separate piece of oaer

Ab~jract

As a continuation of the use of the specification language Z which was used to
specify the Viper 1 microprocessor this paper covers the specification of the

Viper 2. This was completed before the definitive HOL specification was

complete, therefore there is no proof of correspondence between the two. Using
Z did highlight inconsistencies in the HOL specification that may not have

appeared until later in the specification.

S80/48

II

i w--'-- -mmm m • mmmmm mmmo/miI

