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Parabolic equations for curves on surfaces (I).

Sigurd Angenent. 1

Introduction.

In this note and its sequel we study the motion of curves on a surface whose

normal velocity is a given function of its position and its curvature. A particular case

is the curve shortening problem, or flow by mean curvature for curves on surfaces.

Here, one studies curves whose normal velocity and geodesic curvature coincide.

This case has been examined in great detail in the last few years by Gage,

Gage&Hamilton, Abresch&Langer, Epstein&Weinstein and M. Grayson. Their

papers are listed in the references. Intuitively, the problem is that of describing the

motion of a rubber band on a very sticky surface, if you assume that the potential

energy of the rubber band is proportional to its length, and that the friction between

the rubber band and the surface is so large that it causes the band to move

according to the gradient flow of the length function on the space of smooth curves

on the surface.

Another special case of the problem we shall be looking at, comes from the

theory of phase transitions. M. Gurtin has formulated a model for the evolution of a

two phase system in which both phases are perfect heat conductors. (See [GuA]).

Assuming the system is two dimensional, the free boundary between the two phases

will be a plane curve. If this curve is assumed to be smooth, then its motion is

determined by the law v± = O(O)k - tk(O), where 0, 0 are given functions, 0 is the

angle the tangent to the curve makes with the x-axis, k is its curvature and v1 is the

1. While I was working on this paper, I was partially supported by an NSF grant (No. DM5-8801486), a U.S. Air Force grant
(no. AFOSR-87-0202), and the Netherlands Organization for Pure Scientific Research (ZWO).
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normal velocity of the curve.

Motivated by these and other examples (such as Gage's variation on the curve

shortening problem, in which v' = k /R, where R is the Gaussian curvature of the

surface and R is assumed to be positive) we have tried to find the most general law

of motion of the form

(1) v1 = VQk)

for curves on some surface M with a Riemannian metric g, for which the initial value

problem is well posed for a large class of initial curves.

One cannot expect that the initial value problem for (1) will have a solution

which exists for all time. It is known, for example, that solutions of the curve

shortening problem in the plane always become singular in finite time. If the initial

curve has no self intersections, then Gage&Hamilton and Grayson have shown that

the solution will shrink to a "round point" in finite time. In fact, the time it takes is

A /27r, where A is the area enclosed by the initial curve. If the initial curve does

have self intersections, then small loops may contract in finite time, causing the

curvature to become infinite. In this case, one would expect that the family of

curves converges to some singular limit curve which is piecewise smooth, with a

finite number of cusp like singularities. By drawing pictures, one can easily convince

oneself that there should be a solution of (1) which has this singular limit curve as

initial value, in some weak sense.

Our ultimate goal in these two notes is to find a large class of V 's for which

these expectations can be proved, i.e. for which a detailed description of the limit

curve is possible, and for which the class of allowable initial curves is so large that it

contains the limit curve.

Using the theory of parabolic pde 's which has been developed over the last
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three decades, it is a fairly straightforward matter to prove short time existence of

solutions to (1) for initial curves which are C2, and provided the function V satisfies

some parabolicity condition. Moreover, a very simple trick allows us to prove that

solutions are actually as smooth as the manifold M, its metric g and the function

V:S 1(M)xR--R, even in the real analytic context. In fact if M, g and V are real

analytic, then so is any solution of (1.1), and we can show this without using any of

the existing theorems on analyticity of solutions of parabolic equations!.

In this first note we deal with the most general class of V 's for which we can

solve the initial value problem for initial curves whose curvature belongs to some L

class. The sequel to this note will be devoted to a smaller class of V 's, for which

one can allow locally Lipschitz, and even locally graph-like curves as initial data for

(1). The methods which are used in parts I and I are quite different. In part I

integral estimates and a blow up argument are our main tool; in part II estimates for

the regularity of solutions of (1) are obtained by more geometrical arguments, e.g.

by comparing general solutions with special solutions, and counting their

intersections. In the next section we give a precise description of the results

obtained here.

1. The initial value problem.

We consider a fixed smooth (i.e. C') two dimensional oriented Riemannian

manifold (M, g), and denote its unit tangent bundle by

S'(M)={ET(M) I g(e, C)= 1).

It is a smooth submanifold of the tangent bundle of M, and therefore carries a

natural Riemannian metric. Moreover, the tangent bundle to the unit tangent

bundle splits into the Whitney sum of the bundle of horizontal vectors, and the
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bundle of vertical vectors. We can identify the horizontal vectors with the pull back

of T(M) under the bundle projection r:S'(M)--+M, i.e. r*T(M); the bundle of

vertical vectors is naturally isomorphic to a subbundle of r* T(M), namely

Vert = {(t,v)Er*T(M) I vit}.

The orthogonal splitting TS'(M)= r*T(M)GVert permits us to decompose the

connection V on S 1 (M) into two components, one coming from differentiation in

the horizontal direction, Vh, and its vertical counterpart Vv. Thus we have

V = VwV h .

A C1 regular curve in our manifold M is, by definition, an equivalence class of

C 1 immersions of the circle S 1 into M; two such immersions which only differ by an

orientation preserving reparametrisation will be considered to be the same regular

curve on the surface.

We let Ol(M) stand for the space of all C1 regular curves in M. For a given C1

curve we write t and n for its unit tangent and unit normal vectors, respectively; we

shall always assume that {t,n } is a positively oriented basis of Ts) (M).

The geodesic curvature of -yElI(M), if it exists, will be denoted by ky., or just k.

Given a C1 family of immersions "(t,'):S1 -4M one can decompose the time

derivative yt(t, s) as -yt(t, s) = v1lt + v 1n. The second component v- is independent of

the chosen parametrisation of each -y(t, "); it is the normal velocity of the family of

curves.

For any function V :S 1 (M) x R -R, one can formulate the following initial value

problem. Given a curve "yOEfl(M), find a family of curves -y(t)Efl(M) (Ot<tMax)

which, for t > 0, have continuous curvature, whose normal velocity satisfies

(1.1) v' = V(t,k)
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and whose initial value is - I to = 0

Throughout the entire paper we shall assume that V satisfies at least the

following conditions:

(V1) V is a locally Lipschitz continuous function,

(M2) A < OV < A-' for almost all (t,k)ES1(M)xR,
ak

(/3) JV(t, 0)[ <_ i for almost all tES1 (M)

where A, t > 0 are constants. In addition, we shall often assume that V also has one

of the following properties.

(V4) V(V) I <  foralmost all (t,k) with Ik 1 < 1

(V5) lVt@A(V) j _ v(l+ Ik I 1+') for almost all (t,k)ES'(M)xR

(Vi*) iVhV + Ikl IV"VI <(1+ Ik1 2) for almost all (t, k)ES 1(M) xR.

Here, as above, A and v are positive constants, and x is a constant in the range

1 < ic < oo. By V(V) we mean the gradient of V with respect to its first argument

tESI(M), and V"V and VhV denote the vertical and horizontal components of

V(.

One can verify that all examples which we mentioned in the introduction satisfy

these conditions, just as any V of the form V(t,k)=f(t)k+g(t), where

f, g :S (M)--R are uniformly Lipschitz functions which satisfy A <f (t) A-1 and

Jg(t) I <A.

The available standard results on parabolic equations, allow one to show without

much trouble that, assuming V1,172 and /3 and also some extra smoothness of V

(say VEC 2), the initial value problem will have a local solution (in time) for any
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initial curve which is C2+*, i.e. which has Hilder continuous curvature. This is done

in section three. By means of an approximation argument this result could then be

extended to arbitrary initial curves whose curvature is bounded.

Under the assumption V5 we can enlarge the class of allowable initial data. We

get the following:

Theorem A If V satisfies V1 ... V 5 with ic > 1, then the initial value problem has a

short time solution for any initial curve -yo whose curvature belongs to L, i.e. for

which

f Ik(s)IPds <
710

holds for some pE(nc, oo). Moreover, if [0, tMa) is the maximal time interval on which

the solution exists, then either tMa = oo, or the LP norm of the curvature becomes

unbounded as t--+tMa.

The proof is given in section eight, using the pointwise estimates for the

curvature in terms of its L,, norm which are derived in section seven, by means of a

Nash-Moser like iteration method.

If we replace V5 by the srtonger hypothesis V*, then we get a stronger

statement.

Theorem B Let V satisfy V1 ... V5*, then the initial value problem is solvable for

any initial curve which is locally the graph of a Lipschitz function. If the maximal

solution exists for a finite time, say tMa, then

S1

limin.M. suPisi.sI <I, fk (s, t)ds i_
so
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holds for any e > 0.

So in this case a solution can only blow up if it developes a kink of at least 180

degrees. The proof is spread out over parts I and H. In this part we shall show that

the theorem holds for initial curves whose curvature is p-integrable, for some p > 1

(this is just theorem A), and that the description of blow up holds with "liminf'

replaced by "limsup" (theorem 9.1). These restrictions will then be removed in part

Ii.

The strongest results we get hold in the case where the evolution of the curve

does not depend on its orientation. This is exactly the case if V satisfies the following

symmetry condition:

(S) V(t, k) = -V(-t, -k) for all tES 1(M) and kER.

Theorem C Let V satisfy V1 ... V and S, then the initial value problem has a

solution for any initial curve which is C locally graph-like.

We shall call a continuous map -f:S 1 --.M a parametrised C 1 locally graph-like

curve, if -y is locally a homeomorphism, and if for each CES' one can find C'

coordinates (x, y) on M near ,y( ) such that the image under -y of a small interval

(C-6, e+6) is the graph of a continuous functiony =f (x). A C 1 locally graph-like

curve is an equivalence class of parametrised C 1 locally graph-like curves, where two

such curves are equivalent iff they differ by a continuous reparametrization.

In particular, locally Lipschitz curves are C' locally graph-like, but a C' locally

graph-like curve can also have isolated cusps, and worse singularities.

2. The space of regular curves.

Any regular curve admits a constant speed parametrisation -Y : S 1--M, i.e. one

for which the vector "y'(s)ET,S)(M) has constant length. Since S 1=R/Z has length
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one, the length of the vector -,'(s) is exactly the length of the curve -y. This constant

speed parametrisation is unique, up to a rigid rotation of S 1. In other words, if we

define

A

nl = {'yEC'(S',M): I "y'(s) I *0 is constant },

then we have an S 1 action on 6' given by

(0-1)(S) = y(s +A)
A

and we can define the space of regular curves in M to be the quotient of fl by this

action:

0(M) = /S'

A

Using the C' topology on 0, we get a topology on 0l(M), which turns out to be

metrizable and complete.

One can give f)(M) the structure of a topological Banach manifold, i.e. every

point in fl(M) has a neighbourhood which is homeomorphic to an open subset of a

Banach space (C 1 (S 1) to be precise). The construction of such neighbourhoods goes

as follows.

Let -y0En(M) be a regular curve, with parametrization -,o:S'--+M. This

parametrization can be extended to an immersion a':[-1,1]xS 1 --+M, where

aI {0}xS t =-y0. Clearly, any regular curve which is C' close to "Y0 can be

parametrised as -& (s)=a(s, u(s)) for some C' function u with I u(s) I <1 (sES1).

The correspondence uEC' (S 1)-,-yuEf1(M) is the desired homneomorphism.

The homeomorphisms we have just defined show that n(M) is a topological

Banach manifold. It turns out that the coordinate transformations that go with these

homeomorphisms are, in general, not C', so that we cannot claim that we have
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given fl(M) a differentiable structure.

We shall occasionally talk about the lift or pull back of a curve under a local

homeomorphism, in which case we shall have the following in mind.

If -:S'--M is a continuous map, and a:Slx[-1,1]--+M is a local

homeomorphism, such that -y c--,n be lifted to a map r: s I-S I x [- 1, 1] (i.e., so that

-y= aoI) then we shall write a* (-I) for the curve r. Given a and Y, the lift a* (')

need not be uniquely determined, unless we choose one specific value for

r(to)ea-'(-y(to)) for one toES 1 . However, once the lift I' is chosen, there is a

unique lift r, =o*(11) which is close to r, for any curve -y close to -y (in the Co

topology.

3. Short time existence for smooth initial data.

We shall say that -y: [0, t0)-+fl(M) is a classical solution, or just a solution, for

short, of (1.1), if

(i) 1E C ([O, to); n(M)),

(ii) for each tE(0, to), -y(t) has continuous curvature and normal velocity,

and -y(t) (ofcourse) satisfies v' = V(t, k).

A solution -1: [0, t0)-.fl(M) will be called maximal, if it cannot be extended to a

classical solution on a strictly larger interval [0, t,)D[O, to).

Theorem 3.1 Assume V: S (M)xR-+R is a C"' function which satisfies

-- > Ofor all (t, k)ES (M)xR
ak

Let -1o be a regular curve with I-flder continuous curvature. Then there exists a unique

maximal solution 1: [0, tM,)--fn(M) with initial value -y(O) = -1o.
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If V is a Cm', 1 function, for some m > 1, then the solution "Y(t) is a Cm +2, , curve

for any t>Q and any O< a< 1

If V, the manifold M and its metric g are real analytic, then so is the solution -y(t)

for t > 0

Proof. As in the previous section, we can extend "Yo :S -+M to an immersion a

of the annulus [-1,1]xS' into M, and perturb it slightly, so that it becomes C'

smooth. If we keep this perturbation small enough, then our curve Yo can be

parametrised by a small C' function uo :S '- (-1, 1), i.e. by x--a(x, uo(x)). Nearby

curves in the C' topology will have a similar parametrization. Since our curve has

H6lder continuous curvature and a is smooth, the function uo will be C21, for

some 0<a<1.

Any classical solution -1: [O,tMa,)-+fl(M) starts off close to its initial data, so that

we may represent an initial section of this solution as the image under a of the

graph of a function u (t, x) of two variables., i.e. as "y(t, x) = a(x, u (t, x)).

To compute the curvature of -y(t, ") in terms of u and its derivatives, we consider

the pull-back of the metric g on M under a:

* -(g) = (ds)2 = A (x, y)(dx) 2 + 2B(x,y)dxdy +C(x,y)(dy) 2 .

Here A, B and C are C ' functions on S 1 x[-1,1] which satisfy

D =AC-B 2 > 0.

If we define l=A + 2Bux + Cu2, then the unit tangent t to the curve -(t,) is the

image under do of

T = 1-1/2 (ax+uxay),

and the unit normal n is the image of
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N = (ID)- 1/2 {-(B +Cu.)a. + (A +BuX) Y}

where the A,B,C and D should be evaluated at (x, u (t, x)). Using the Frenet

formulae one then arives at the following expression for the geodesic curvature of

-y(t, .):

(3.1) k= 1 3/2 D/ 2 (u +P+Quz+Ru2+Sux).

Again, PQ,R and S are C' functions of (xy), evaluated at y =u (tx). They enter

the expression for the geodesic curvature as the covariant derivatives of the vector

fields i9, and 4y, and can be expressed in terms of the Christoffel symbols of the

metric in the (x, y) coordinates.

The vertical velocity of the family of curves -y(t, x) is given by the vector ut8y, so

that its normal velocity is given by

VI = a*g(utay, N) = 1-1/2D 1/ 2 Ut.

We conclude from these computations that -y: [,t 0) -- f(M) satisfies (1.1) if and only

if the function u satisfies

(3.2) ut = F(x, u, ux, u.)

where F is given by

(3.3) F(x, u, u.,u.) = 11/2D - 1/ 2 V(drT, k),

and Tk depend on (x, u, ux, ux,) as above.

Clearly, F is a C1'1 function of its four arguments; it is well defined for all

(x, u, u,, u,,) with I u < 1, and it satisfies

(3.4) -T4 F(x,up,q) - - > 0,

q m nniai li amanKINtI U
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for any (x,up,q) in the domain of F(i.e. in S 1x[-1,1]xR 2). Therefore (3.2) is a

parabolic partial differential equation, as promised.

This construction allows us to appeal to the strong maximum principle for linear

parabolic equations, and conclude that the classical solution of (1.1) is indeed

unique, if it exists.

We can also apply the existing theory for parabolic initial value problems to

construct local solutions of (3.2). If all ingredients such as V and the initial curve are

smooth, then we can apply the results in Eidelman's treatise [Ei] (in particular

theorem 7.3 on page 311) to conclude the existence of a local solution, which is

smooth.

We shall now outline an approach which is due to DaPrato and Grisvard

([DPG]), and was extended in [Al]. As we tried to point out in [Al], one of the

advantages of this approach is the ease with which one can prove smooth, and even

analytic dependence of the solution on parameters. This in turn leads to a practically

trivial proof of the smoothing effect of the parabolic equation.

The procedure is as follows. Introduce the Banach spaces

Eo = ha(S1); El = h2+(S 1)

where h,6(S1) denotes the little Hlder space of exponent f3, i.e. the closure of

C'(S ) in the usual H6lder space equipped with the usual H6lder norm. Then,

assuming that V, and therefore also F, are Cm', 1 functions, the nonlinear differential

operator

F:uEO1 -+ F(x,u,ux,ux)EEo

is acm -1,1 mapping of the open subset

01 ={u -E I-1<u<l}
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of E1 to the Banach space E 0. Its Frechet derivative at a u0 c0 1 is given by the

linear operator

dF(uo)'v = Fq vx + Fp Vx + Fu v.

Since the operator dF(u o) with domain h 2+0 generates an analytic semigroup in h'6

for any PE(O, a], we can apply theorem 4.1 of [DPG] to conclude the existence of a

possibly short lived solution u : [0, to]-*E 1 of (3.2).

Using the uniqueness of the solution, given the initial value -yo, one easily shows

that there is a unique maximal solution; indeed, if one orders the solutions by

inclusion (i.e. "y1 <-y2 if -11 is obtained from -y2 by restriction to a smaller time

interval), then this ordering is linear, and the maximal solution is nothing but the

union of all possible solutions.

In [Al] we remarked that the construction in [DPG], combined with the implicit

function theorem on Banach spaces, shows that the solution uEC([Oto];Ex)

depends Cm -1,1 on any parameters which occur in the nonlinearityF. In particular,

this implies that the equation (3.2) generatates a Cm -1,1 local semiflow in 0 1.

Another trivial consequence of this construction is the smoothing effect of the

equation. Indeed, if we define

Ua,b (t,X) = u (at, x +bt)

then for a close to 1 and any b ER, Ua,b satisfies

Ut = Fa,b (X, t, U, Ux, U. ),

where Fa,b = a.F (x -bt, u, ux, u,,). The corresponding nonlinear differential

operator u4Fa,b(U) is Cm 1,1 both in u and in the parameters a and b. Hence the

solution u,bEC([O,tO]'E1) depends Cm - 1'1 on a and b. In particular, for any
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tE(0,to], the partial derivatives

8i+kUab *+k &i+ku

Oajbk I a=l,b=O t atiaxk

belong to Lo,([0, t o];C*(S 1)) for j +k<m, and we have the estimate

I8i+ku IC~ C~t11 o --j 'k I JC24 < Cj,k t -j-k

Also, if m =w, i.e. if F is real analytic, then so is the solution. Thus, if the manifold

M, the metric g and the velocity function V are real analytic, then all classical

solutions are real analytic. 0

4. Bounds for the length and the total curvature.

In this section we shall assume that V satisfies V1, V , 1/4. We shall show

that, if -y: [0, t0]--fl(M) is a family of curves which evolves according to (1.1), then

the length and total curvature of -y(t) remain bounded on finite time intervals. More

precisely, we prove the following:

Theorem 4.1 The length L (t) and total curvature K(t) of a classical solution

-y: [0, t 0)--fl(M) satisfy

A2t

L(t) L(O)e 4,

K(t) c I(K(0)+L(O))ec2,

where the constants C 1,C2 only depend on A, u, A, and R *

One should view these estimates as a generalisation of those of Abresch and

Langer [AL, Theorem B]. Theorem 4.1 will follow from some identities, which we

shall now derive.
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Proof. We may assume that V and the solution -y are as smooth as we like:

given the estimates for smooth solutions, an approximation argument will prove that

they also hold for the general classical solution.

Let -: [0, to)--fZ(M) be a solution of the initial value problem. Fix a t1 E(O, to),

choose a constant speed parametrization of y(tj) and let x, y be Fermi Coordinates

near the regular curve -y(t 1). In other words, extend the immersion ': S1 -.+M to an

immersion :S 1 x [-c, +c]-.M for which the pull-back of the metric on M has the

form

a*g = A (x, y)(dX)2 + (dy)2.

with A (x, O)-constant.

The scalar curvature of M is given by Gauss's formula

R 1 a2 VA -

VA ay2 '

and the geodesic curvature of the graphy =u (x, t) is

A 1 /2  { A, 2_ A x

(4.1) k = (A+p 2 )3/ 2  q P  2,4Ay}

where p =ux, q=u,,, and Ax and Ay denote the partial derivatives of A evaluated at

y =u (x).

In these coordinates the curve -y(t) (with t close to tI) is given as the graph of a

function y = u (t, x), where u (t1, x)-O. Thus, at t =t1 the normal velocity of the

curve is v1 =u,; if we differentiate (4.1) with respect to t, and put t =t1 , then we can

eliminate u, from the resulting equation for k,. If we also use the fact that, at t=t1 ,

u vanishes, so that a/as = A -1/2 a/&x, then we find that
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(4.2) ak -2V " +( 2 +R)I.

The time derivative kt can be described without referring to the coordinates xy in

the following manner. Given the family of curves -y: [0, t0)-4+(M) choose a

parametrisation -y:Slx[O, to)-+M for which the time derivative -Y" is always

orthogonal to the curve; in this way any quantity, such as the geodesic curvature k,

which is defined on the curve may be considered as a function of (x, t)ES1 x [0, to).

Then k, is its derivative with respect to time, keepingx constant.

The time derivative can also be described as the covariant derivative in the

direction of the vectorfield v'n: kt = VvLn (k).

If we write

ds = v'A7 dx

for the arclength element along the graph y = u (t, x), then its time derivative is

a-ds = -kv'ds.
Ot

This implies that the length of the curve grows according to

L'(t) = - f kvds.
'(t)

The hypotheses V2 and V3 imply that kV(t, k) _A2/4A, so that we have

L'(t) _ t12/4AL(t), from which the first estimate in theorem 4.1 follows

immediately.

To get the estimate for the total curvature we consider a more general quantity,

which will also be of use later on. Let ?kEC 2(R) be a nonnegative convex function,

and consider



(4.3) 'T(t) f fO(k) d.

Then one has

(4.4) 'P'Q) f f{I'(k)(vISS + (R+k2)V±L)_(k)kv±} ds

f { i(~kvL+ (R?/i(k)+k2Ok(k)-k?k(k))v1}ds

-11+12.

If the family of curves evolves according to (1. 1), then one has

av

T'herefore, since v' = V(t, k), one has for any c > 0

avk 2! _ 1,
v'Lk 2_-Lk ~(VtE~k(V)) 2-Eks2.

If we choose e=A/2, and recall hypothesis V 2, then this leads us to

A 2 1 (Vek .

Now let tk be a function for which O(k) =Ik I holds when Ik j 1, and

0<0- (k):51 when I k I < 1 (e.g. tp(k) = (1 +k 2 )/2). Then, from (4.5) and

Ik 5A2hypothesis V 4, we get 0/"'(k)v'k pj~ /2A, and therefore

,2

I, A ()
2A

To estimate the second term, we observe that 0 ?Nk)-kO(/(k) 512, and that
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(k)-kO'(k) vanishes for I k 1>1. In addition to this we also have I 0'(k) I <1 for

all k, and finally, it follows from V2 and V3 that I v' 1:<ji+A - I I k I . Together,

these properties of b and V imply the following estimate for 12:

12 < f(I+X-IkI)R*ds + f LIkvlLIds
-1(t) Ik I<1

<\-'R *K(t) + ((R * +1),.+(2f)-l)L (t).

Adding I1 and12 together one finds that T'(t) c(K(t)+L(t)), and using

K(t) _'(t)<K(t)+L (t) one can derive the exponential bound on the total absolute

curvature in theorem 4.1. 01

5. The average speed.

Using the maximum principle, we shall obtain an upper bound for the distance a

family of curves, which evolves according to (1.1), can cover in a given time.

We assume in this section that V satisfies V1, V2 and V3.

Theorem 5.1 There is a constant t. >0, which only depends on \,A& and R *, such

that for any family of curves -1: [0, to)---fl(M) which satisfies (1.1), one has

11(t) C N2 fT (-yA0)

for O<t <min(to, t,)

(we abuse our notation slightly by identifying the curves -y(t) with the corresponding

subsets of M; N(A) denotes the closed E neighbourhoodof the set A cAM).

Corollary. There are constants a,b > , which only depend on X,ji and R * such

that

"Y(t) C N,+bf("YO)
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holds for all t > (1

Proof. We consider an arbitrary point pE-M, which does not lie on the initial

curve -/o, and define d (t) to be the distance from p to the curve -y(t). Since the

family of curves has a C1 parametrisation ,,:(O, to)xSl-i+M, this distance is a

Lipschitz continuous function of time.

The exponential map expp :TM-.M is an immersion on a disk of radius

p=7r/ Vi . If at some moment in time t the distance function becomes less than p,

then we can choose a point q on -y(t) which minimizes dist (p,q); this point must lie

in the image of the p-disk in TM under the exponential map.

Let r be the pre image of -y(t) in the p-disk in TpM under expp. Choosing polar

coordinates (r, 0) in the tangent space TM, we can represent 1' near exp,'(q) as a

graph r=u(O). If q has polar coordinates r=d(t), 0=0, then u(O)=d(t) and

u' (0)=0. Moreover, u has a local minimum at 0=0, so that u " (0) > 0. Hence the

geodesic curvature of -y(t) at q is at least the curvature of the geodesic circle with

radius d (t) and centre p (this follows from (4.1)). See fig. 5.1.

If the metric in polar coordinates is given by

(ds) 2 = (dr)2 +A (r, )(d)) 2,

then curvature of the circle r =constant, which we denote by k (r, 0) and the scalar

curvature R of M satisfy

1 _A" 1 0 2v/A-

v( ar' V' ar2

so that k also satisfies the following Ricatti equation

Ok _ k2 +R.
Or
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Our assumption that the scalar curvature R is bounded by I R I R * then implies

that

k (r, ) >_ -v/ 7 coth(rV!)

(in fact, we only need a lower bound for the scalar curvature for this). Using the

calculus inequality coth(x) < 1+x-1 we therefore find

k(r, 0) > -r-'-,/R-

Recall that V(t, k) > -s+min(O, k)/A (hypotheses V 2 and V13) , so that the velocity

of the curve -y(t) at q satisfies

v-I > -1-(r-l+V *V";)/,,

with r-d (t). Therefore the distance function d (t) satisfies

(5.1) d'(t) -AlV--(d(t))-I > -2(Ad(t))- 1,

whenever d (t) < d* =def (,\A+/R-)- i

and d(t) is less than the immersivity radius of (M, g), which exceeds p. Since

p = ir/ vF this automatically holds if d (t) < d,.

Now define

t, -L(,\A + VF) -2.

If p lies on -(t) for some 0 < t < t,, then d (t)= 0, and, by integrating (5.1), one finds

that

0 = d (t)2 > d (0) 2 -4t/A,

which means that p lies in a 2V/-Aneighbourhoodof -y 0. Since p was any point on
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"y(t), the theorem follows.

This proof gives us an explicit estimate for t. and allows us to estimate the

maximal large scale speed a family of curves obeying (1.1) can have (i.e. the

coefficient b of the corollary to theorem 5.1). Indeed, in a time interval t. the curve

cannot travel further than d. = 2V7*7/, so that

b <- d-- < 4 A+- " 0

We conclude this section with two examples, to illustrate the theorem and its

corollary.

In the first example we let (M, g) be the hyperbolic plane, with constant negative

curvature R=-1, and we tle V(t, k)-k; in other words, we consider the standard

curve shortening problem. If we choose a circle with radius r (0) as our initial curve,

then it follows from symmetry considerations that corresponding solution of the

initial value problem will also consist of (concentric) circles.

The metric in geodesic polar coordinates is

(ds)2 = (dr)2 +sinh2(r)(dO)2,

so that the geodesic curvature of a circle with radius r is -coth(r). Therefore the

radius of the shrinking family of circles satisfies r'(t)+coth(r(t)) = 0, and thus

r(t) = arcosh(eT- t) (0<t < T),

whei e T = log cosh r (0).

The point of this example is that initially the curve will shrink with speed close to

1, and that we can make the interval on which this happens as long as we like by

choosing T large enough. The upper bound for the large scale speed which our
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theorem gives is b = 4.

In our other example we choose M = S 1 x (0, oo), with coordinates (0, r) again

(identify S 1 and R/2wrZ) and we let the metric be given by

(ds)2 = (dr)2 +e-2r*(d0)
2

where a is a positive constant. As above, we consider the curve shortening problem,

V.k, and determine the evolution of a circle r =r (t). The geodesic curvature of such

a circle is given by k = ar -1, so that a circle with radius r(t) will evolve according

to r' (t) = ara1- 1. After integrating this equation one finds that

r(t) = (a(2-a)t)1 /( 2 - ) (O<a<2)

= e' t(a=2)

= (a(2-a)(T t))l/(2 a) (a>2).

Thus, if a< 1 the (large scale) speed of the circle remains bounded, but if a> 1 the

large scale speed becomes unbounded, and even blows up in finite time if a > 2.

On the other hand the scalar curvature of (M, g) is given by

R = L-k2 = a(a-1)r- 2-a 2r 2 ,
Or

which is bounded from below if, and only if, a<1.

6. The limit curve at blowup time.

We assume V satisfies V 1, ',V 4 , and consider a classical solution,

-Y: [0,t 0 )-+1f(M), of (1.1).

Theorem 6.1 As t--to, the curves -y(t) converge, in the Hausdorff metric, to a curve

" *, which has finite total absolute curvature.
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The limit curve -y, need not be smooth, and, in particular, does not have to

belong to fl(M).

Proof. We begin with choosing a parametrisation -y:S 1 x [,t 0)-+M of our family

of curves, which, for each t, is a constant speed parametrisation of -y(t).

By theorem 5.1 all the -y(t) lie in some bounded, and hence compact, region of

M. Moreover, their lengths are uniformly bounded, so that the -y(t, ") are

equicontinuous maps from S 1 to M. The Ascoli-Arzela theorem allows us to extract

a uniformly convergent subsequence -y(tn," ), whose limit -y* is a Lipschitz continuous

map from S 1 to M. The bound for the total absolute curvature, which we have

derived in section 4, implies that -y" also has finite total absolute curvature. In other

words, except at a finite number of points, -y is locally the graph of a Lipschitz

continuous function, whose derivative is of bounded variation.

Clearly, the sequence -(t,) converges in the Hausdorff metric on compact

subsets of M to -y. We complete the proof by showing that all the -y(t) converge to

" when t-to.

Let c>0 be given, and choose a t,, for which -(t,)cN, / 2 (-y*), and

t,, > t0 -E2/16 holds. If E is small enough then we also have t 0 - t,, < t., so that we

can apply theorem 5.1. We find that for any t. < t < to

y(t) C N,/ 2 (0(t)) c N,(-y*)

and also (choosing t=tk, and letting k--+oo)

I* C NE/ (7(0)) C Nj(y(t)).

Since 6>0 is arbitrary we may conclude that the -y(t) do indeed converge in the

Hausdorff metric. 0
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Let -y: [0, tMa)-+l(M) be a maximal classical solution, and choose a

parametrization r:Slx[O, tMa,)-+M of -Y whose time derivative r, is always

orthogonal to the curve -(t). For this particular parametrization the following holds.

Theorem 6.2 As t--tMa , r(t,.) converges uniformly to a continuous map

r* EC°(S ';M).

Proof. If we denote the coordinate on S 1 by u, then arclength on "1(t) is given

by

ds = J (u, t) du,

where J(u, t) is the length of ru(u, t). In section four we observed that Jt = -kv'J.

This implies that e -, 2t/4A J is a nonincreasing function of t, so that its limit for

t--tMa must exist. Dividing by the exponential we see that J(u, t) converges

pointwise to some function J* (u) as t-+tM .

From our bound on the total absolute curvature we get

tMox

f f Ik(u, t) lJ(u, t)dudt < oo.
0 $i

Fubini's theorem implies that for almost every u ES'

Mar

(6.1) f I k(u, t) I J(u, t)dt < oo.
0

Since I ru I =J is bounded from above, the r(., t) are uniformly Lipschitz, and it

suffices to prove pointwise convergence of the r(-, t). We may also assume that the

length of -y(t) is bounded away from zero, for otherwise the arguments of the

previous theorem show that r(., t) converges uniformly to a constant.
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Let u0ES1 be given, and assume (6.1) holds for this u0.If J*(uo) > 0, then

J(uo, t) is bounded from below on [0, tMa,), and (6.1), together with the inequality

Ir, I = Iv' A+ 1k/A jimplythat

t Mar

f [r(uo, t) d t < oo.

0

Hence r(uo, t) converges as t-4tM=.

If (6.1) does not hold for u0, or if J*(u0)=0, then, for any given E > 0 we can

find a u 1 < u 0 such that

u0

fJ*(u)du < E,

U 1

and for which both (6.1) and J*(u 1) > 0 hold (here we use the assumption that the

length of the curve -y(t) doesn't vanish as t-tna).

By the dominated convergence theorem there will be a 6 > 0 such that

UO

dist(r(ul,t),r(uo,t))< fJ(u, t)du < E

U1

and dist('(u1, t),1r(u 1, s)) < c hold for tMa.-b <t,s <tMa.

The triangle inequality then implies

dist (r(uo, t),r(uo, s)) < 3E

for tMa, - 6 < t, s < tMa, so that r(uo, t) also converges. 0
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7. Integral bounds for the curvature.

The results in section three imply that, if -y: [0, tM,)--+M is a maximal solution of

(1.1), whose lifespan tMa, is finite, the H51der norm of the curvature k(t, ") of "Y(t)

must blow up as t---tMa,. Indeed, if the h ', norm of k remained bounded, for some

a>0, then the family of curves -y(t) (O<t <tMa) would be precompact in the h 2+p

topology for any 8< a; the limit -y* of the -(t) which exists, according to theorem

6.1, would be a h 2+P curve, and we could continue the solution beyond tMax.

The next theorem improves upon this observation.

Theorem 7.1 Let V be as in theorem 3.1. If -Y: [O,tMax)-M is a maximal solution

of (1.1), and if its lifespan is finite, i.e. tMa, < oo, then the maximal curvature of -y(t)

becomes unbounded as t--+tMax.

Proof. We argue by contradiction; let -y() be a maximal solution with a finite

lifespan, whose curvature satisfies I k I <c for some constant c. Since -y(t) satisfies

(1.1), a bound on the curvature implies a bound on the normal velocity v-t, so that

"t(t)-"* for some limit curve -*. This limit curve will also have bounded curvature,

and we may assume that the -y(t) converge in the C1 topology to -y* (by

compactness, and uniqueness of the possible limit). As in section three we may

represent -", and the -y(t) for t close to tMa,, as the image under some smooth

immersion a:S 1 x[- 1,+]-M of the graph of a functiony =u(t, x). This function is

a solution of the parabolic equation (3.2), and the boundedness of the curvature of

the -y(t) implies that q=ux is uniformly bounded. Differentiating (3.2) twice with

respect to x leads to

qt = a Fq a+b

in which b = F, +Fuu, +Fux. Since u, ux andu, are all bounded, this equation is
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uniformly parabolic and the term b is bounded, so that we can apply the results in

[LUS], in particular their theorem I11.10.1; the conclusion is that q is a-H6lder

continuous for some a>0. But this means that the curvature of the "1(t) also

remains Holder continuous, and therefore contradicts our assumption that -y(t) was a

maximal solution. 0

From here on we shall assume that V satisfies V 1, • , Vs.

For any p >1 we define the p norm of the curvature/
sP(t)= -- JkPds

The following theorem is an analog of theorem (4.1): it gives an estimate for the

rate at which Xp grows.

Theorem 7.2 If 1 <r <p < o, then

Xp(t) <5 (A-_t) (1/2p - 1 /2m)

holds for some constant A which only depends on A, ju, v, ic, R *, L (O),p and Xp(O).

If ic> 1, then for any A >0 there is a TA >0 such that X,(0) <A implies that

X,.(t)<2A for all tE[0, TA ," the constant TA only depends on A, i, v, r,,R*,L(0) and

A.

(recall that L (t) is the length of the curve at time t).

In addition to this growth estimate, we also have the following pointwise estimate

for the curvature, in terms of the p norm.

Theorem 7.3 If l<x<p<oo, and -y:[0,t0)-+4(M) is a classical solution of (1.1),

then one has the following pointwise inequality
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jk I < cAP/,-x) t-1/2P.

where A = max(1,supo<t<toX,(t))

and c is a constant which depends on A, p, v, r,R*,L (O),to and p.

Ifp = x > 1, then there is ane > O, such that

I k I < ct- 112

holds for tE(O, to), provided X,(t) < o holds in the same time interval, Again, the

constants c and c only depend on A, A, v, r., R *, L (0), to and p.

Proof of theorem 7.2 Throughout this proof and the next we shall use the letter c

to denote any constant which depends on A, ,p, , t, R *, L (0), to, but not on p; its

precise value may change from line to line.

For the time being, we shall assume that p 2, since the case 1 <p < 2 turns out

to be little bit more involved. If p>2, then V(k) = I k I Pis a C2 convex function, so

that we can use (4.4) to compute the rate with which X, (t) changes:

dX (t)p = -p(p-1)f 1k I p- 2ksv±Ids + f (p(R +k2) 1k Ip -2 - 1k I )kvds
dt 70) ( W)

= Il +12.

Our hypothesis V5 implies that

Vtc, (V) 2 < 2v2(1+ I k 2+2x),

so that, by (4.5), we can estimate the first term, 11, as follows:

I, < p (p-1) f- - (ks) 2 I k I p - 2+-i- I k Ip-2+ I k I p 2)ds
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-~Af (kp/2)2 dS + Cp2  -k 2+ k I P +2r)}

To estimate the other term we use the bound I R [ <R *, and the inequality

/2
_- <5kv-' < / A Ik I + A- ' I k 12

which follows from the hypotheses on V. One finds that

12  f{p(R IkIP-+IkIP+1)+- Ikl Ids
4A

< cpf IkIPk I kP+2}ds.

We add these two estimates together, and remember that I k I ' is a convex function

of p, so that I k I q < 1 + I k I P holds whenever 0 < q <p. The result is

d-d'[t(t5 <_\ I I (ktp / 2 )S,11 2 +c2(L(t)+Xptp+ .%

where we write I lu I Ie for the Lp norm of a function u on -y(t). Using our a priori

estimate for L (t) from section four, this leads to

-X(t) P :5 -,Xll(kP /2)[ 2 +cp2(Xp + 2 x \

dt

(this the only place where the dependence of c on to and L (0) is introduced).

Using H6lder's inequality and the interpolationinequality

on d ta/2 tIUs112

one finds that
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X +2r- < IlkP /2 112 1IlkP /2I14r/p

<_ c IlkP 1/2 II2+ 2r-/p  I I(kp / 2 )sl11 2r1p •

-0

From the inequalityxy 1-0 < cox + c 1-8 (1-O)y with 0 = xip we get

- #G 2 P + r-
Cp+2x < It I (kp /2 )s112 + r p_, /ik 2 112P-x

If we choose c small enough (E = ,t/(2c 2p x)), and combine the inequalities we have

found so far then we obtain

d Xt) p < - -[1(k P / 2 )s12 +cp2(1+Xp P - )

and therefore

(7.1) dxA i(kp/2) 11 2

where x -2
p-c

The first part of theorem 7.2 now follows easily by integrating the inequality one

obtains after discarding the first (negative) term in (7.1), i.e.

(7.2) dX <cp(XP 1+P x
dt - P

Indeed, whenever Xp (t)_1, one has Xp' cpX +Px, so that integration gives the

following more precise form of the of the inequality which was claimed

Xp t <_ (X(O)-P h-cpl2Xts -1px

(but only holds when p >2).
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Still assuming that p _2, we consider the borderline case, p =r.. The constant c

in the inequality (7.2) is independent of p, so that we can take the limitp---r.. In this

limit, X becomes infinite, and so, ifX, < 1, we see

dX <

dt -

Therefore, if XK(0) < -L, then Xc(t)< -±+ct, at least as long as this upper bound is

less than 1, i.e. for t<1/2c. So the second part of theorem 7.2 is true whenA _
2

To get the same result for arbitrary A, we rescale the metric, i.e. we replace the

metric g on M by a-2g. The new arclength and curvature of the curves -Y(t) become

a-lds and ok, respectively. Therefore the new r.-norm of the curvature is o- /' X,'.

This rescaling will change the parameters in the equation (such as A, U, v) and also

the quantities R * and L (0); thus X, will satisfy (7.2), but with a different constant

c. By choosing a small enough, we can make the rescaled value of X, less than -L

and the foregoing argument shows that the rescaled X,, will stay less than 1 for a

while (i.e. for TA=l/2c(a)). This completes the proof in the case p>2.

When l<p <2 the function I k I"P is no longer C 2 in k; therefore we let tP(k) be

a smooth convex function which coincides with I k P for I k I > 1. Then, defining

I(t) as in (4.3), and working out (4.4), one gets

'I"(t) < c(1+q(t)l+PX)

As above, this shows that Q(t)<_c (TA-t) 1/ 2p-12C , for some constants c and TA.

Since * dominates Xp, this proves the first part of the theorem. To prove the

second part when l<p <2 and p =x, one again lets p tend to K, and applies the

rescaling argument. 01

Proof of theorem 7.3. The starting point of the proof is inequality 7.1. If we

combine the interpolation inequality Ilull... <41uI11/2 Iluxl11/ 2 , which holds for all
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periodic functions with a square integrable derivative, with liuIl1 2 lull 1  lull,, then

we find that

1 llk/ 2 16/2 1 X 3pW1~' 2 ),I12 -_> 1Ik
52 6 l k/2 1 256 Xp12 2p

Together with inequality (7. 1) this shows that, for p 2,

X _++ I +X +PX

(7.3) <
dt - 2P X+ /2 2P i . P.

We observe that, if p > 2r., one has X = 2ic/(p - ,c) < 2, so that the negative term in

the right hand side of (7.3) dominates the positive term for large values of X. This

will allow us to find an upper bound for X (t) of the form At-' if we are given a

similar bound for Xp/2 (t). By induction we shall get a sequence of estimates of the

same form X 2jp(t) <Ajt - j where we know the aj, and have a good estimate for

the Aj. By taking the limit j--+oo we then get the desired pointwise estimate for the

curvature, since Sp(t)--+lIkllI, asp--oo.

So assume that we know that Xp/2 (t) <At-, and assume also that p > r. Then

X(t) will certainly satisfy X,(t)< Bt- if the function Y(t)=Bt- P satisfies the

reverse inequality to (7.3), for 0 < t< 1,

dYp > y 2 P+lI
>P ----- +cp Y1 +Y1~+PXJdt -2P X12 2p P -P

This, in turn, is implied by

-j3Bt -'-1 > ---- B p+ 1A -2p t +p(-) + cpB l+Pxt -#(1+px),-2p

where we have assumed that B>1, and we have only considered tElO, 1], so that we

could neglect the term Y1 -P Division by Bt-- 1 leads to
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(7.4) - > -1- t (a - ) +cpBPXtP1- PXO.

This inequality prompts us to choose 3= a+l/2p. If we assume, for the

moment, that p/3x < 1, then (7.4) is implied by

-- +cpBPx.

As we are going to choose B > 1, this inequality only becomes stronger if we replace

-,3 by -3BPX; therefore (7.4) will certainly hold if

> 2E(3+cp)BPx,

e.g., if

B = 2 (- +cp (2-x)p A 2-
(7.5) B ±CP)] A 2

(where we have assumed that l:l/4c). Now we can do the induction argument.

Let p 0 > n be given, and assume, as we do in theorem 7.3, that Xp0(t)< Ao for

O<t < 1 (without loss in generality we assume that to = 1). Then define

~).1 1 ( _ _
pj = 21 po; to =O0, aj+l = aJ + 1p -- I2-o

Clearly, all the aj are less than 1/ 2p o, and if one defines Xj = 2ic/(p j- K), then

po-2-Ic
1-PjXjatj -- p__j=>O

for all j = 1,2,3, . So, if we have an estimate Xpj_, (t) <Aj-J-'', for some

j>l, then the preceding arguments with p =pj, a=ay-i, 83=aj, A =Aj-1 and B=Aj
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show that we have a similar estimate for X, in which Aj 1 and Aj are related by

(7.5). For large j the first factor in (7.5) is 1+0 (j2-j); taking logarithms, and using

2 P_ - 2-j
2-Xj po0 - 2-U -1) ru

one deduces from (7.5)

logAj < logAj1 + 0 (j2-J.
-Po - 21-Jn

Hence the limit of the Aj exists, and one has

A oo = limj--.ooAj < cA p ° / (p o-,

while the aj also converge; their limit is 1/2p o.

So, finally, we see that the maximum norm of the curvature, Xoo, satisfies the

following inequality:

X0,(t) < cAPOI O-')t-/ 2I 0,

which completes the proof of the first part of the theorem.

Just as with theorem 7.2, we can still say something in the borderline case

p =r.> 1. In this situation the inequality (7.3) implies that

dX2, [ . 1+4x
< +2c1C X2, •

dt 4 r

So, if X, (t) < c < 8c2/,, then we get an estimate X 2,(t) <At - /4 , for small

t > 0, with which we can start the iteration procedure again. As a result we get the

second part of theorem 7.3. 0
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8. The initial value problem in W (M).

In this section we use the estimates from theorems 7.2 and 7.3 to show

solvability of the initial value problem (1.1) for initial curves belonging to W2fn(M),

i.e. the subset of (I(M) which consists of all curves whose curvature is p integrable:

W2l(M) = {7yEf(M) I k ELp(ds)}.

Any curve -yEW2fI(M) has a H6lder continuous tangent (of exponent l-l/p).

Hence one easily verifies that the set

wK = {-EWfl(M) I length(-J) <K, Ilk IlL <K)

with the induced topology of fl(M), i.e. the C1 topology, is compact.

The main result in this section is:

Theorem 8.1 Let V:S'(M)xR-.R satisfy V1 ... V5, and let x <p <oo be given.

Then the initial value problem (1.1) has a unique maximal solution

-y: [0, tM.)--+Wnf(M), for any initial curve -oEW20(M).

In fact, for each K > 0 there is a tK > 0 such that tMa, > tK whenever -to EWK. The

map 0: wK x [0, tK] -* O(M), defined by 0(^0o, t) = y(t), where -y(t) is the solution of

(1.1) with initial value -0, is continuous.

Proof. Uniqueness of the solution was already established in section three, so

that we only have to prove the existence and continuity part of the theorem.

Let -0EW2f1(M) be given. Then we approximate -yo by smooth regular curves

7,,, with I lkN IILP uniformly bounded, say -y,, EwK for some large enough K. We can

also approximate the function V by smooth functions V, which satisfy the same

hypotheses V1 ... V5, all with the same constants A v and rc.
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From section three we know that for each of these smooth initial curves there

exists a maximal solution of the corresponding initial value problem (1.1), with

V= V,. By theorem 7.1 we know that these solutions exist as long as their curvature

remains bounded, and by theorem 7.3 we know that their curvature remains

bounded as long as the Lp norm of their curvature doesn't blow up. Finally, from

theorem 7.2 we get a lower bound for the time it takes this LP norm to blow up (if

it does this at all). This estimate only depends on the constants in the hypotheses on

V, R *, the length of the initial curve and its curvature's LP norm, so that it is

independent of n. Therefore the approximating solutions -Y, (t) exist on some

common time interval [0, to], and their curvatures are uniformly Hblder continuous

on any interval [6, to] (6>0), by theorem 7.1 and its proof. This allows us to pass to a

convergent subsequence, whose limit will be a classical solution -Y: (0, to] --+ WK1 of

(1.1), for some K, >K We complete the existence proof by showing that -y has an

initial value, and that this initial value is -yo.

Choose an immersion ar:Slx[-1,1]I--M and a function uEW2(S1), with

I u (x) I < 1, such that x - a(x, u (x)) parametrizes the curve -yo. Given any E > 0 one

can find n, such that the curves r* (-In) with n > n, are graphs y = u, (x) for certain

uEW2(S1 ) with IIu-UnIIL. <E/2. Using theorem 5.1 one finds a t e >0,

independent of n, such that a* (-f, (t))cN,(j* (yo)) for 0 < t < te. By taking the limit

n--'oo this leads to r*("y(t))cN(u*("yo)) for 0<t <t_ which shows that the only

possible limit point in wK, of -I(t) as t--+0 is -yo. Since wK, is compact, this implies

that -f(t) converges to -to as t-+0.

A slightly modified version of this argument also shows that the solution

"y(t)EwK, depends continuously on the initial data -1OEwK, and time tE[0, tK], so that

the proof is complete. 0

The results of the previous section also allow one to say something about the
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rate at which the curvature blows up, if it does blow up at all.

Theorem 8.2 Let V satisfy V1 ... '5, and assume r. <p < 00.

If -y: [0, tMa,)-4Wffl(M) is a maximal solution of (1.1), which blows up in finite time

tMax < oo, then there is a constant cp < oo such that

Ilk (t,'-)IILP >: Cp(tMax-t) (2p)- ' - (2'0 - 1 .

In particular, for every e > 0 there is a c, such that

IlIk (t,'-)11 I IL Ce (tMax-t (2,1+

holds.

Proof. The first inequality follows directly from theorem 7.2, and the second

follows from the first, by using IlkIlL <L(t)11P IlkIL .IL

The example of the circle in the Euclidean plane, which shrinks according to its

curvature shows that these estimates are nearly sharp. The radius of this shrinking

circle is r(t) oc (tMa-t)'/ 2 , so that the Lp norm of its curvature is proportional to

(tM, -t)1 /p -1/2 . Since we have V(t, k) =k, we can let the constant r. have its

minimal value r= 1 and we see that theorem 8.2 is sharp for p < 00.

9. Blowup in the scale invariant case.

Consider a maximal solution -1: [0, tMa)--f(M) of (1.1), and define for any e > 0

and tE(0, tMa,)

S1

a (t) = sup I-oI<E I fk(s, t)ds

so

Thus a,(t) is the largest angle t(so) and t(sl) can make (measured after one

parallel transports t(sl) from TT(s1)(M) to T.(so)(M) ) for any so and s, with
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Iso-si I C.

Theorem 9.1 Assume that V satisfies V 1, V2, V3 and V5.

Let "y: [0, tMa)--+fl(M) be a maximal solution with tMa, < 00, then for any c > 0 one has

limsupt_,.t, (t ) > 7r.

In addition, there is a constant c > 0 such that

I lk'y(t) I IL 0. >_ C (tga' -- t) - 1/ 2 .

Proof. We argue by contradiction; suppose that for some r > 0 there is an a < 7r

such that a,(t)_<ao holds for t close enough to tm.

Introduce an arclength parametrisation-y: (O,tMa)x R-+M of the family of curves

-y(t). Thus, for 0<t <tMa, y(t, .) is an L(t) periodic function of sER. Since the

supremum norm of the curvature must blow up as t---Max, we can find a sequence

of points (tn, s,) such that

jk(t,s)l :5 <_k(tn,sn) j (sER, O<t <tn)

holds for n = 1,2, • • •

Put q, = Jk(t,,s,) -, and define a new, rescaled, version of the old metric by

gn = a'n- 1g. Then the family of curves

tn

an (

satisfies (1.1), with V replaced by V", where

V" (t,k) = anV(t, k
an

The curvature of the -y satisfies I kn(t, s) I <1 for all t<0. One easily verifies
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that the rescaled speed functions, V", all satisfy the conditions V1, V"2, V3, with the

same constants A and p. In fact, one can even replace A by A,, = a, -'. Similarly,

the V" also satisfy a stronger version of V*, namely

(9.1) IVhVn I + Ik I IV Vn 1 < /v(on 2+ Ik 12).

It follows that the normal velocities of the curves dy" (t) with -an- 2 t,, < t < 0, satisfy

I vin I < A±+A. By the same arguments as in the proof of theorem 7.1, it follows

from the uniform boundedness of k,, that the curvatures k,, are uniformly H6lder

continuous. The normal velocities must therefore also be uniformly Hblder

continuous.

Let P,,EM denote the point -(tn,sn). In view of the upper bound for the

displacement of the curve "y(t), which we derived in section five, the curves -y(t) stay

* in some bounded, and hence compact, subset of M. By passing to a subsequence, if

necessary, we may assume that the P,, converge to a point P. EM.

We consider the disk Dn with radius a. 1/2 (in the original metric) and centre P.

Its radius in the rescaled metric is ,, -1/2. As n--,oo, this disk, equipped with the

rescaled metric g', converges to the flat Euclidean plane. Looking at the portion of

the curve -yn(t) which lies in the disk D, and using the uniform Hilder continuity of

k,, and v1I, one can extract a subsequence of -"(t) which converges to a family of

curves -y* : (-oo, 0] xR---R 2 .

These curves may be unbounded since we have no control over the length of the

nth family of curves. Indeed we shall see that the assumption a0 < r forces the limit

curves to be unbounded.

As we remarked before, the total absolute curvature of a curve does not change

when one rescales the metric. Therefore the -*(t) all have finite total absolute

curvature.
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Our assumption that a(t)_ao for t close to tM, implies that, for any t<O and

s0 , sIER, one has

S1

f k.(t,s)ds I < ao
So

Since a0 <7r, this implies that for each t<0 the curve -y*(t) is the graph of a function

y =u (x), if the x and y axes are chosen in the right direction. In particular, the limit

curves are indeed unbounded.

In addition to the qualitative property of being a graph in the right coordinates,

one also gets the following quantitative result. If the coordinate axes are chosen

properly, then -* (t) is the graph of a Lipschitz continuous function, whose derivative

satisfies

~ux arctan( 2

The direction in which one should choose the coordinate axes depends a priori

on the time t. However, using the bound on the total absolute curvature, the fact

that the curvature is uniformly H6lder continuous, and the bound on v.t , one shows

that t-7y*(t) is continuous in the uniform C' topology. Therefore, if at t=to, the

curve -y* (to) is a graph with respect to a particular choice of coordinate axes, then

for t close to to, y* (t) will also have this property. So, on short time intervals, the

limit family -y* (t) may be repesented as the graph of a functiony =u (t, x).

The velocity functions V" are all uniformly Lipschitz on bounded sets, due to V,

and (9.1). Therefore, after passing to a subsequence again, if necessary, we may

assume that they converge to a Lipschitz continuous function W: S1 (R2) x R--+R,

which also satisfies V, ... V3 , and



- 41 -

IVhWI + Jkl IVvWI <vjk 2.

The limit family of curves satisfies v' * = W(t *, k *). Choosing coordinate axes,

and representing the family -y* as a graph y =u (t, x), locally in time, we find that u

has to satisfy

/Uxr

(9.2) ut = V/iii7TW(x, u, arctan(u.), (u2)/2 )

=(def )F (x, u, Ux, u. ),

where we have identified S'(R2) with R2 xS 1. Thus, a unit tangent vector

tES 1(R2) has three coordinates; two, (x, y), for its base point, and one angle OES 1

for its direction, (cos(O), sin(O)). One should compare this with the discussion in

section three; (9.2) is a special case of (3.2).

Since I Vn (t, 0) 1 a, it, we have W(t, 0) -. Therefore there is a function

A(x, u,p, q) such that F(x, u,p, q) =A(x, u,p, q)'q. The coefficient A satisfies

(1+p 2 )A(x, u,p, q)E(A, A-') (compare with (3.3)). Differentiating (9.2) with

respect to x, we find that p = u, is a weak solution of

(9.3) Pt = (Apx), (xER).

On short time intervals u, will remain uniformly bounded, so that (1+ux2)AE(A,-')

implies that (9.3) is uniformly parabolic. One consequence of this is that the

supremum norm of p =ux cannot increase with time. In particular, if - *(to) is a

Lipschitz graph in some choice of (x,y) axes, then any -y*(t) with t 0 :t<0 will be a

graph with respect to the same coordinates. By taking an arbitrarily large negative

number for to, and using the compactness of the set of orthogonal coordinate

systems, one sees that the entire family -y* (t) (t<0), can be represented as the graph

of one functiony =u (t, x).



- 42-

The x derivative of u, p =ux, is a bounded weak solution of the strictly parabolic

equation (9.3), which is defined for -oo<t<0 and xER. By Moser's Harnack

inequality ([Mo]) u, must be constant.

On the other hand, the curvature of the curve -/ (t), at the point P, and at time

t =0, is ±1. Since the curvatures of the -/ are uniformly H6lder continuous, they

converge uniformly on compact sets to the curvature of "y*, so that

Ux

1Ux2)3/2 I (x=O,t=0) = ±1 * 0.

This clearly contradicts the fact that ux must be constant.

To get the rate at which the curvature blows up we note that the evolution of vi

can be obtained by differentiatingv' = V(t, k), and using (4.2). The result is

v-L = v + Vv (V)vis + (V" (V) + Vk (R +k 2 )) v1 .

Using this equation and the hypotheses V1, • ••, VJ/ one finds that

d 1 (t, ILL, < c (1 + 11V1(t, _)1-IIV'(t(t,

which, after integration, shows that IIv'I-L must blow up at least as fast as

(tMa _t)-/ 2 . By V2 and V3 the same must be true for Ilk-1(t)tIL*. 0

10. Application to a nonlinear parabolic equation.

The methods of the last section can be used to prove a global existence theorem

for a certain class of nonlinear parabolic initial value problems. Let f:S 1 xR 3---R

satisfy the following conditions

(F1) f (x, u, p, q) is a locally Lipschitz function of its four arguments.
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(F 2 ) A< af <A-'

(F3) If(x,u,p,O)l _< (xES',u,pER)

(F4) I f I+ Ifu I+ I tfp 1-<5/(l+ Iq 12),

and let a u0 EW2(S 1) be given, for some p > 1. Then we can consider the initial

value problem

ut =f (x, U, Ux, U. ) (xES 1, 0 <t < to)

(10.1)

u(O,x) = uO(X) (xES1 )

Theorem 10.1 If f satisfies F 1 ... F 4, then the initial value problem (10.1) has a

* solution for any u 0EW2(S 1), and any to >0.

In part II we shall see that the same result holds if the initial data is merely a

Lipschitz function, instead of J 2 (S 1).

Proof. Just as we found a bound for the total absolute curvature of solutions of

(1.1) in section four, one obtains an estimate for the L, norm of u.,, for any

solution u of (10.1), in terms of the constants A, t, to and the L 1 norm of u;' (x).

We only observe that one has the following equation for q =u

qt = q + fx + fuP + fpq),

ax x

which is analogous to (4.2), and leave the details to the reader.

The bound for the L 1 norm of ux, leads to an estimate for the supremum norm

of ux. Indeed, for any periodic function u() one has I luxll. 11< IU u1IL, since ux

must have a zero somewhere, from which one can start integrating u" to estimate ux

at other points.
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In view of the bound on u. we may modify the function f (x, u, p, q) in the

region p >sup(Ilu=(t, ")l1L1 :0<t <t0 ) in any way we like, without affecting the

solution u of (10.1). In particular, we can change f so that (10.1) has the form (9.2),

i.e., so that it comes from specializing an equation of the form (1.1), where the

manifold M is the cylinder S 1 x R.

From theorem 8.1 we know that (10.1), with the modified f, has a solution if to

is small enough. Let tMa, be the lifetime of the maximal solution of (10.1). Then

theorem (9.1) tells us that, if tma < 0o,

limsupt-,Mtra,(t) > 2r.

In the present situation, where M = S 1 x R with the flat metric, one can describe the

quantity a,(t) as follows. Consider two points on the graph of y = u (t, .), whose

distance, measured along the graph, is less than E; form their tangents, and compute

the angle between these tangents. Then a,(t) is the lowest upper bound for the

angles that arise in this way.

If one has an upper bound for u,, say I u, j < PMa, then, interpreting a,(t) as

we just did, one easily finds that

ac(t) < 2arctan(pMa,) < 7r.

This contradicts the conclusion of theorem 9.1, at least if tMx, < oo. So the solution

of (10.1) exists for any positive to. 0

*!
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