
UTC VF rtoPv

RADC-TR-88-1 59, Vol 11 (of two)
Final Technical Report
August 1988

U)

0

(RESEARCH IN DISTRIBUTED
PERSONAL COMPUTER-BASED
INFORMATION SYSTEMS
Semi-Annual Technical Report. No. 5

BBN Laboratories Inc.

Spnoed byIJrC
=etens Advanced Research Projects Agency E TIC

ARPA Ordur No. 4224
0FEB 1989e

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION JULMITE.D

The views and conclusions contained in this document are tlose of the authors and should not be
IntePted as necessarily rePrsnttinl the official policies, either eiprssed or Implied, of the Datenre
Advanced Resarch Proects Agency or the U.S. Government.

ROME AIR DEVELOPMENT CENTER
Air Force Systems Command

Griffiss Air Force Base, NY 13441-5700

. 8 9 2 n

This report has been reviewed by the RADC Public Affairs Division (PA)
and is releasable to the National Technical Information Service (NTIS). At
NTIS it will be releasable to the general public, including foreign nations.

RADC-TR-88-159, Vol II (of two) has been reviewed and is approved for
publication.

APPROVED: / [/*

THOM'AS F. LAN-RENCE
Proj ect Engineer

APPROVED:

RAYMOND ?. URTZ JT,
Technical Director
Directorate of Comwand & Control

FOR Tile CMAD-(

JO1HN A. RITZ
Directorate of Plans & Programs

If your address has changed or if you wish to be removed from the RADC
mailing list, or if the addressee is no longer employed by your organization,
please notify RIADC (COT) Griffiss APB NY 13441-5700. This will assist us
in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices
on a specific doucment require that it be returned.

RESEARCH IN DISTRIBUTED PERSONAL COMPUTER-
BASED INFORMATION SYSTEMS Semi-Annual
Technical Report No. 5 Vol II (of two)

Harry C. Forsdick
Robert H. Thomas

Contractor: BBN Laboratories Inc.
Contract Number: F30602-81-C-0256
Program Code Number: XTlO
Effective Date of Contract: 2 July 1981
Contract Expiration Date: 14 July 1985
Short Title of Work; Research in Distributed Personal Computer-

Based Information Systems
Period of Work Covered; October 83 - March 84

Principal Investigator: Robert H. Thomas
Phone: (617) 873-3483

RADC Project Engineer: Thomas F. Lawrence
Phone: (315) 330-2158

Approved for public release; distribution unlimited.

h1iis research was supported by the Defenre Advanced
Research Projects Agency of the Department of Defense
and was monitored by Thomas F. Lawrence, RADC (COTD),
Griffiss AFB NY 13441-5700 under Contract F30602-81-C-0256.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

Form Approved

REPORT DOCUMENTATION PAGE OMBNo. 0704-.088

Ia. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

UNCLASSIFIED N/A
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

N/A
2b. DECLASSIFICATION/DOWNGRADING SCHEDULE Approved for public release;
N/A distribution unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

5723 RADC-TR-88-159, Vol II (of two)

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 74. NAME OF MONITORING ORGANIZATIONI (f eppoilceble)
BBN Laboratories Inc. Rome Air Development Center (COTD)

6c. ADORES$ (City, Stitt, and ZIP Code) 7b. ADDRESS (City, S~ate. ond ZIP Code)
10 (tulton Street
Cambridge MA 02238-0001 Griffisa ABE NY 13441-5700

Be. NAME OF FUNDING/ SPONSORING 8b. OFFICE SYMBOL g PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION Defense Advanced (Iff •o•keke)

Research Projects Agency F30602-81-C-0256
6 ADDRESS ?City. Stei.tdlt, Co) 10. SOURCE OF FUNDING NUMIERS
1400 Wtilson Blvd. PROGAMu NO ROJECT 'TASK IWORK UNIT'"ELEMENT NO. NO. NO ACCESSION NO

Arlinton VA 22304 01

11. TITLE (i-k~o* Sfty CilcMxv)=

RESFARCH IN DISTRIBUTED PERSONAL COHPUTER-BASED INFORMATION SYSTFNS Stai-Annual Technical

ftffl~tSrO&A AU5THOR(S)
Harry C. Foradick, Robert It. Thomas
I Is OF RIPOAT 1 .b TIME COV.RED -. A E I Joinnn IS PAGE COUnT

Final FROM Oct 83 TO Mar 84 August 1988 80

16 SUPKEMINTARY NOTATION

NIA

1? (OIATI CODE 101 SUSIECT TERM% (Cointvwe o= 11e ftwwaly ;; =-Vjnee
FIELD GROUP SUGR•OU• Muli Media Message System

Distributed System
Distributed Personsl Computer Environment

l, ABSTRACT (ConNIW, on ,,., ,F fM t e e nd uty i & ,) b "=)
The primary focus of the personal computer task area to the developent af on electronil
message system called Diamond, uhich vill run in a distributed personal computer environment.
The message cystem viii, support a user interface that exploits the capabilities of advanced
single-user computers, handle messages that contain data other than text, have a distributed
architecture, operate In A secure fashion, permit use from a variety of user access points,
and have a trau"portable implementation.

0O OFTIUIIONAVAqA:LTY OF ASS'RACT 211 ASsTfACT SECURITY CLAS$•IFKAON
Ou'CtAsIF~'ti~!T~ 0 SAME AS APT I)DTIC U'SIRS un~r &~ph

::a NAME Of RESONVILE I N2bTELE#4ON (5rW.V At#& CodeD 22c OttCE sYSol
Thomasn F. ,ivrencp _()15) 330-2158 RADC (COTb)

0O Fotm 1473. JUN 6 t,,,,on ale e at*,,,iI to S AU$;CtA$ ON O $.PAG
UNCLASSIFT ED

TABLE OF CONTENTS

Page

1. INTRODUCTION A- 1

1.1 Project Overview A- I
1.1.1 Distributed Personal Computer Systems A- i
1.1.2 Support for Strategic C3 Experiment A- 3
1.1.3 Hermes Maintenance A- 3

1.2 Summary of Recent Project Activity A- 3
1.3 Organization of this Report A- 5

2. THE DIAMOND MULTIMEDIA MESSAGE SYSTEM A- I

2.1 Initial Release of Diamond A- 9
2.2 Authentication Manager A- 9
2.3 Document Manager A- 9

2.3.1 New Features .g*s,* A- 9
2.3.2 Multiple Document Managers A- 10
2.3.3 Document Cache A- 11
2.3.4 Document Store Scavenger A- 11

2.4 Access Point A- 12
2.5 Multimedia Document Editor: EditDoc A- 13
2.8 Import/Export Manager A- 16
2.7 Printer Manager A- 17
2.8 Porting Diamond to the Sun Workstation A- 18

2.8.1 Interprocess Communication A- 18
2.8.2 Windows A 19
2.8.3 Mouse A- 19

2.9 Papers and Presentations Accession For -20
NTIS GRA&I

DTIC TAB

3. THE JERICHO JADE SYSTEM Unannounced El A- 21
Justification

3.1 Performance Improvements By A- 21
3.2 Synchronization Distribution/ A- 21
3.3 WindowSystem A- 22
3.4 Improvements to Pascal Debugger Availability Codes A- 22

Avail and/or
Dist Specital,

Best Available Copy

A-i

4. THE JADE PROGRAMMING ENVIRONMENT A- 23

4.1 Network Protocol Software and IPC A- 23
4.1.1 Internet Protocol (IP) A- 23
4.1.2 File Transfer Protocol (FTP) A- 24
4.1.3 Interhost Interprocess Communication (IPC) A- 24

4.2 Software State Database A- 26
4.2.1 Software Distribution A- 26
4.2.2 Concurrency Control A- 27
4.2.3 Distributed Architecture A- 2 8

4.2.4 User Interface A- 29
4.2.5 Future Work A- 29

4.3 IPC Monitoring Facility A- 30
4.3.1 System Dlesin A- 31
4.3.2 System Architecture A- 38
4.3.3 Current Status A- 4 1

5. JERICHO INmTmUSP A- 43

5.1 Garbage CoilettUon A- 43
5.2 Catch. Throw, and Unwind-Protect A-44
5.3 Multple Process Capability A- 45

6. ALePH A- 4?

8.1 Content Addressed Documentation A- 4 7
8.1.1 The Interlisp Advertiser A-47
0.1.2 Conclusions A-5

6.2 Programaing Tools A- 55
8.2.1 Directory Browser A-58
6.2.2 File Compersion PresentaUon A- 5
6.2.3 Code Presentation A- ea
8.2.4 Graphical Debugging A- 64

7. HEIW MARIMANCE A- 6.

A-ii

LIST OF FIGURES

Figure I. The Distributed Architecture of Diamond A- 8

Figure 2. The graphical display of an interprocess message A- 38
Figure 3. The time stamps along an interprocess message path A- 36
Figure 4. The component processes of the monitoring facility A- 39
Figure 5. AD hoc page of the Interlisp Advertiser frame 1 A- 49
Figure 6. AD hoc page of the Interlisp Advertiser frame 2 A- 50

Figure 7. AD hoc page of the Interlisp Advertiser frame 3 A- 50
Figure 8. AD hoc page of the Interlisp Advertiser frame 4 A- 51
Figure 9. AD hoc page of the Interlisp Advertiser frame 5 A- 51
Figure 10. Obtaining Help: Relevant Functions for the FONTS window A- 52
Figure 11. Obtaining Help: How was the DRAWingELLIPSEs window generated? A- 53
Figure 12. Obtaining Help: The effects of SOURCETYPEs and OPERATIONs A- 54
Figure 13. Annotated browsing of the old EQLENGTH A- 59
Figure 14. Annotated browsing of the new EQLENGTH A- 59

Figure 15. Code segment parametcrized by the variables OBJECT and A- 81

OPERATOR
Figure 18. Code segment with OBJECT bound to REALNUMBER and OPERATOR A- e2

unbound
Figure 17. Code segment with OBJECT bound to REALNUMBER and OPERATOR A- 62

bound to TIMES
Figure 18. Code segment with OBJECT unbound and OPERATOR bound to TIMES A- 2

Figure 19. Program Browser for the program HANOI A 5
Figure 20, Graphical Debugger for the program HANOI A- 86

A-iii

1. INTRODUCTION

This is the fifth semi-annual technical report for Contract No. F30602-81-
C-0256. entitled "Research in Distributed Personal Computer Based Information
Systems." It covers work done between October 1983 and March 1984. The first four
semi-annual reports are BBN Reports 4924. 5301, 5395 and 5722.

1.1 Project Overview

The tasks for this project fall into three broad areas:

I. Research in distributed personal computer systems.

2. Support for the Strategic C3 Experiment.

3. Maintenance of the Hermes electronic message system.

The project objectives in each of these areas are discussed briefly below.

1.1.1 Distributed Personal Computer Systema

The primary focus of the personal computer task area is the development of an
electronic message system, called Diamond, which will run in a distributed personal
computer environment. The message system will.

"o Support a user interface that exploits the capabilities of advanced single-
user computers

"o Handle messages that contain data other than text (e g.. images. line
drawings, speech)

"o Have a distributed architecture

"o Operate in a secure fashion

"o Permit use from a variety of types of user access points

"o Have a transportable implementatiou

The personal computers used in the initial implementation of the the Diamond
message system will be Jericho computer systems Portability will be demonstrated by
moving the system to another comparable personal computer system.

Development of the message system requires work in a number of supporting
areas. including

I Basic System Support. Diamond will be developed as an application program
that executes on a collection of personal computers and sharel resource

A-I

computers interconnected by a high bandwidth local network. Diamond, as
well as other applications, requires the support of "operating system" level
software. The purpose of this software is to make the Jericho personal
computer usable as a sophisticated, autonomous, single-user computer
system. Development of the basic system support involves the design and
implementation of storage management functions, bit map display functions, a
multiple process capability, an interprocess communication facility, and
support for the standard DoD network communication protocols-

2. Input/Output Support for a Variety of Data Types. The Diamond message
system will be designed to handle messages composed of a number of types
of information, including text, facsimile, graphics, and speech. This capability
for multiple media communication will require the development of software
that supports the input and output of these different types of data, and. in
some cases (speech, sound and facsimile), system engineering to interface
the personal computer systems with hardware required for the input/output
of this data.

3. Distributed System Support: Diamond will execute on a distributed system
architecture Diamond and other applications developed for this environment
will require supporting software designed to enable personal computers to
function effectively in a multiple-computer- netuork environment. This will
include the development of a network interprocess communication facility, a
distributed file systcm supported by personal computer storage resources
and dedicated file server computer resources, means for accessing devices
that are remote from a personal computer as if they were local, a user
authentication mechanism, and access control mechanisms to provide for
controlled sharing in a distributed environment. The software developed here
will run in part on the personal computers and in part on the shared-
resource computers.

4 Programming Language Support. The Pascal programming language will be
used for much of the initial programming required for the Diamond message
system development. In addition, we expect tr use lnterUsp for some of the
user intorfqce exporimantation and research. Therefore. a certain amount of
effort will be required to ensure that the implementations of Pascal and
InterLisp for the Jericho computer and their supporting environments are
adequate Furthermore. it is important that software modules written in
Pascal and InterLisp be able to be used together in personal computer based
systems such as Diamond. Currently this sort of interoperability is not
possible, and it is not clear to what extent it can be achieved.

5 Programming Environments Diamond will be a rea3onably large system. It will
be built by a team of implementers. of which each member will use a
personal computer for software development. To facilitate implementation of
systems that will be built like Diamond, we will design. implement, and
experiment with an application development environment, called the Jade
environment, that is intended to support the construction of distributed
application programs and that is capable of supporting programming projects
large enough to require many programmers. each supported by a personal
computer

We will use a new programming environment, called Aleph. to explore
extensions to the lnterlisp environment that exploit features unique to
personal computers of the Jericho class. This will involve experimental
investigation in the areas of graphical debugging, facilitation of routine

A-2

bookkeeping activities, techniques for presenting multiple views of systems,
vocal annotation of textual documents. and content-addressed
documentation.

1.1.2 Support for Strategic C3 Experiment

The objective of work in this area is to support the Strategic C3 Experiment. a
technology transfer and evaluation project being conducted by DARPA and the
Strategic Air Command. A number of contractors are working on this experiment with
ARPA and SAC Our role, at present. is principally to adapt the Hermes electronic
message system to the needs of SAC users who are participating in the experiment.

In particular. we are working to.

I. Modify Hermes so that ,t can operate with a full-screen editor, such as
EMACS or WE, in order to provide full-screen editing and composing of draft
messages as an integrated Hermes function.

2 Extend the data management capabilities of Hermes to provide a template-
driven report generator capable of summarizing the information contained in
groups of message/records.

3. Investigate the problem of softwLre aids for scheduling personnel and
equipment. Develop algorithms and experimental software to support these
scheduling tasks and experimentally study user interface and implementation
Issues.

The work in this task area was completed during the previous reporting period,
Consequently. this task area is not discussed in this report.

1.1.3 Hermes Maintenance

The objective of this task is to provide software maintenance for the Hermes
electronic message system This includes correcting probiems that would prevent
effective use of Hermes, should any arise, installing Hermes on new hosts at the
direction of the ARPA office, and making improvements to the Hermes software.

1.2 Summary of Recent Project Activity

Our accomplishments during this reporting period include the following

o First Release of Diamond. The Document Manager. Authentication manager
and User Access Point software have been integrated into the first release
of the Diamond system.

o Document Manager The implementation of the Document Manager progressed
with the introduction of folders. access control and the ability to send
documents from one user to another. In addition, we implemented the ability
for multple doct, ments managers to share the load of storing documents and
built a scavenger ,.)ol to reconstruct broken Document Manager databases.

A-3

o Authentication Manager The implementation of the Authentication Manager
has :ontinued Operations necessary to support the first release of Diamond
have been implemented.

o Access Point. We have completed the initial implementations of the four
parts of the Diamond User Access Point These include the Coordinator
(initial point of contact with Diamond). ShowFolder (for manipulating folders),
EditDoc Ifor viewing and editing documents). and ShowRegistry (for managing
information about users and groups of users)

o Document Editor We have completed the design and initial implementation
of a new multimedia document editor called EditDoc. With this new editor.
Diamond users will be able to view and compose documents that contain text,
graphics. scanned images. voice and spread-sheet charts integrated
together so that they appear to be part of one composite object. We hope
that EditDoc will permit users to compose documents that have the same
expressive power as journal articles or books where text. figures and
captions are integrated into one cohesive document.

o Workstation Portability Target. Having selected the Sun Workstation as the
target for porting Diamond. we have designed a strategy to move unmodified
programs from the Jericho development environment to the Sun Workstation
Environment This involves the development of a PCode to M68000 assembly
code translator (including a peep-hole optimizer) as well as some low level
routines for run-time support We have decided to port the Diamond
document editor. EditDoc. es a test of this strategy.

o Network-wide Interproceass Communication. Work continued on the Network-
wide IPC facility in the area of timeouts of interactions between Diamond
components and the ability to run an operational configuration in parallel
with one or more debugging configurations.

o Software State Databaoe During this reporting period the initiai
implementction of the Software State Database was completed, and the
Diamond group began using the system for all their software distribution
needs

o IPC Monitoring We have completed the initial design of the IPC monitoring
facility and have begun work on the implementation of its low-level
mechanisms

o Iaterllap Work continued on developing the Jericho Interlisp system in the
areas of garbage collection, non-local exiting facilities and multiple process
capabilities

o Aleph Work continued in the two major thrusts of Aleph Content Addressed
Documentation and Programming Tools

These items, and others. are described in more detail in the following sections of
this report

A-4

1.3 Organization of this Report

The rest of this report describes our work in the task areas identifie!P in SectionI i in more detail. Section 2 discusses work on the Diamond multimediajsystem andrelated activities. Work on Jade, the Jericho Pascal operating system, is described inSection 3 Section 4 presents our activities related to the development of the Jadeprogramming environment. Work on the Interlisp system for the Jericho computer isdescribed in Section 5. Section 6 discusses our work on Aleph. Section 7 describesrecent Hermes maintenance activity. I

A-5

2. THE DIAMOND MULTMEDIA MESSAGE SYSTEM

Diamond is a distributed system implemented by a variety of components which
together provide a single coherent service. The components of Diamond are"

"o User Access Point: The user's main contact with Diamond. The Access Point
is composed of several tools including:

9 Coordinator: All of the actions of the Access Point are directed by
this tool. The user can always inquire about the state of Diamond by
interacting with the Coordinator.

* Document Presenter/Editor: Documents are viewed and composed using
this tool. The Document Editor embodies all of the protocols concerning
Document and Atomic Object Representations.

* Folder Presenter: Folders of documents and other folders are viewed
and manipulated by the Folder Presenter. This tool also interacts with
the Document Presenter/Editor tool to show or compose documents.

* User/Group Registry Presenter: The User and Group Databases (see
below) can be examined and modified using this tool.

"o Authentication Manager: This component maintains information about
authenticated users and processes of a Diamond cluster as well as long term
information about user preferences and groups of users.

"o Document Manager: Documents and folders of documents and other folders
are managed by this component. When a user saves a document, the
Document Manager accepts the document and stores it in a Folder for later
retrieval.

"o Device Managers: Various devices such as Image Scanners and Printers are
managed by Device Managers.

"o Import/Export Manager: Documents sent to recipients outside a Diamond
cluster are Exported by this component. Likewise, documents originating
outside a cluster which are addressed to a recipient supported by the
cluster are imported by the Import/Export Manager. This component takes
care of any protocol conversions that may have to occur between the
standard DARPA Internet Multimedia Protocol and the protocols used
internally by Diamond.

"o Internet Gateway: Communication with hosts on the DARPA Internet is done
by use of the Internet Gateway.

Figure 1 illustrates the architecture of a Diamond cluster.

Preceding Page Blank

A-7

Diamond Distributed Arcbitecture

00vocader age

Docum~ent 4Ajthantication Document AuUwfllcation
ManagerMvwgr

Pdifl-r Mvwtapr ba
Gatewa~y

Am=es Point A==es Polnt. AC=s Point

A-BU

2.1 Initial Release of Diamond

During this reporting period we completed an initial version of Diamond that runs
on the distributed architecture described above. Initial implementations of User
Access Point software, including a multimedia editor and tools for displaying folders
and the user database, of the Document Manager, and of the Authentication Manager
have been completed. With this version, user documents are stored in the Diamond
Document Store, and are retrieved for presentation by the user's workstation A.ccess
point. The access control mechanism designed to assure the privacy of use-
documents has been imaplemented. It is an access control list mechanism that requires
cooperation between the Authentication Manager and Document Managers. While manv
improvements ai-e required to make Diamond a robust and easy to use system.
completion of the initial version is a significant milestone.

Since it became operational, the project staff has been using Diamond on a daily
basis. As a result, a number of bugs have been identified and corrected, and a number
of improvements, primarily to thi Access Point tools and multimedia aditor ha.e b, en
made.

Subsequent sections of this report describe the status of the various Diamond
components shown in Figure 1.

2.2 Authentication Manager

The initial implementation of the Authentication Manager has been completed. All
of the main operations on the three databases (Access Control, Principal and Group
Databases) supported by the Authentication Manager have been implemented. The
Authentication Manager is now used by the Document Manager and User Access Point
tools in the released version of Diamond.

The Access Point needs to associate profile information with each user. For
example. one user preference is the default font to be used by the various components
of Diamond. A logical place to keep this information is with the user's entry in the
Principal database. To do this, we have implemented user parameters for principals.
Since similar information may need to be associated with groups, user parameters were
also added to the Group database. User parameters are Name-Value pairs associated
with a record in a database. Since we cannot anticipate all of the possible pairs that
will be used, the representation of the pairs is extensible and expandable. The OP
data representation (see section 4,2 of B8N Report No. 5722) fulfills these
requirements and is used to represent user parameters. Thus user parameters are
Name-Value pairs stored in the principal's or group's record in the OP data
representation.
2.3 Document Manager

2.3.1 New Features

During this period, w contl.nued the implementation of the Diamzion Document
Manager described in the previous semi-annual report. Several important additions
were made to the Document Manager.

A-9

1. Folders were added to the document store. Folders contain references to
other folders or documents; these references are called citations. Additions
were made to the Document Store Manager to handle requests to add, delete,
or modify citations in folders.

2. Access control was implemented. Every request to perform an operation on
an object in the document store is access controlled. Examples of these
operations are: creating a folder or document, reading a folder or
document, sending a document to other users, and adding, deleting or
modifying citations in folders. Associated with each object in the Diamond
document store, there is a list of Diamond principals and the operations
that they are allowed to perform on that object. When a request to perform
an operation is received by the Document Manager, the Document Manager
.ontacts the Authentication Manager to obtain the Diamond principal
associated with the process making the request. The Document Manager
then checks that principal's access against the list of principals and access
rights associated with the object and performs the operation only if that
principal is allowed to perform the requested operation.

3. The ability to send documents as messages was added to the Document
Manager. When an user is created in the Diamond syatem, two folders are
created for the user, a root folder which contains all the other folders
belonging to the user and an InBox folder, which is used to receive
messages. A document is sent to other Diamond users as follows. The
Docummnt Manager parses To and Cc lists associated with the document in
o ý.er to obtain the names of the recipients. It then contacts thz
Authentication Manager to obtain the UID of the InBox folder associated with
each of the recipients. Finally, it places a citation for the document in
each 1nPox folder. Note that the documents are never copied. The Document
MAnager can currently send mesisaes to other Diamond users; it will be
expanded to send asessages to users outside the Diamond system and to send
meu3r ges to groups of Diamond users.

2.3.2 Multiple Document Ma-,gerv

"During this period, we aL'ao began work on multiple Document Managers. A
Diamond cluster will contain one or more Document Managers, each running on a
different maa.hiae and managing 4. do"'ument store on that machine. Multiple Dccument
Managers will eventually be used both for load balancing. i.e. a folder or ¢icument will
be stored on one of several document stores to limit the load on any ore machine.
and for reliability, 4.e. cey folders ama documents will be stored in mcne than one
document store to make them more readily available i- the event of machine crashes.

The Diamond document stor, is organized as follows. There is a root folder
which is the base of the Diamond hierarchy of folders. The root folder contains a
citation for the root folder of oach Diamond user, the root folder n* tach Diamond
user contains a citation for- that user's InBox folder and for any aOd4ttonal folders
that the user chooses to creat" in their root folder The user ran create folders in
their root folder or in an) folder in their root folder, thus, the user has complete
control of their own hierarchy of folders.

There are currently two DoiLument Managers running in our Diamond cluster.
These currently implement toad bal:incing, but n .r replication of folders and

A-1O

documents. The load balancing is implemented as follows. One document store contains
the Diamond root folder. When a new Diamond user is created, the Authentication
Manager. which creates new users, contacts each Document Manager to obtain the size
of that manager's document store. The Authentication Manager then creates the
user's root folder in the smallest document store; any folders subsequently created in
that user's root folder are created on the same document store. In other words, load
balancing is achieved at the Diamond user level; some Diamond users have all of their
folders on one of the document stores and some have all of their folders on the other
document store. Note that where their folders are located is invisible to the user.

Implementation of multiple Document Managers required several enhancements to
the Document Managers. For example, when documents are sent as messages between
users whose folders are on different document stores, it is necessary to add a citation
for a document on one document store to a folder on another document store. In
order to support multiple Document Managers, the Document Managers were modified to
generate requests to and process requests from other Documeat MP.nagers. Examples of
these requests are adding and deleting citations from folders and modifying reference
counts of objects stored on one document store and referenced on another document
store.

During this period, we also studied the problem of load balancing on a more
detailed level, i.e splitting one us-!r's folders across multiple document stores, and the
problem of replicating folders and documents. We plan to add both these features to
the Document Manager.

2.3.3 Document Cache

In order to improve performance of the Diamond system. we implemented a local
cache for the document store The cache is maintained at each access point and
contains the folders, documents, and atomic objects most recently referenced from
that access point Whenever an user requests that a folder, document or atomic
object be retrieved, the access point software checks the contents of the local cache.
If a document or an atomic object is requested and the cache contains it, the
document or atomic object is simply read from the cache. Documents and atomic
objects are immutable, thus a copy of the object in the local cache is guaranteed to
be the same as the copy in the document store. If a folder is requested, then the
access povit software contacts the document store to determine it the cached copy is
up-to-date. If It 13 up-to-date. the cached copy is used, if it is not. the document
store returns the up-to-date copy of the folder and it is stored in the cache. A tool
was implemented to control the size of the cache (i.e. the number of disk pages used
by the cache) by deleting the least recently referenced objects from the cache. This
tool is typically run periodically by a background process.

2.3.4 Document Store Scavenger

We implemented a scavenger for the document store. The scavenger is used to
check for document store inconsistencies caused by software bugs or hardware
crashes and to correct them. The scavenger reads every folder and document in the
document store and constructs a table of the object's UID, objects referen:ed by the
object, and objects that reference the object. This table is compared to the document
store database, and the database entries are corrected to match the table. The
scavenger can handle multiple document stores. Currently. the Document Store

A-I1

managers must be stopped in order to run the Scavenger. We plan to improve the
scavenger so that the document store can be dynamically scavenged while the
Document Store managers are in use.

2.4 Access Point

As reported in the previous semi-annual technical report, users access Diamond
through Access Points. Diamond is designed to accommodate access points with a
range of capabilities, from powerful personal computers connected to high performance
local area networks ("high end" access points) to alphanumeric terminals with modems
("low end" access points). In this contract, we have been focussing on the "high end"
access point design and implementation. During this reporting period, we have
implemented the various parts of the Access Point for the Jericho. The implementation
has closely followed the design document that was described in the last report. The
Access Point software will be ported to Sun Workstations later.

There are five principal parts of the Access Point visible to the user:

1. Session management functions: Login, Logout, establishing user environment
from profile, status, and cleanup.

2. Folder management functions: Viewing folders, citation manipulation, and
access control to folders and documents.

3. Document management functions: Viewing and editing documents.

4 Principal and Group management functions: Viewing. editing. and arcess
control of Principals. and Groups.

5 User Profile management functions: Viewing and editing user profiles.

To achieve the goals of the Diamond user interface, we have adopted a multi-
process architecture that allows multiple concurrent tasks to occur. The Access Point
is made up of a collection of tools (Folder Presenter, Document Presenter.
Principal/Group Presenter) and a Coordinator program which provides session
management functions and coordinates the activities of the various access point tools.
Each tool runs in a separate process and window to allow maximum user flexibility.

The Coordinator program is the controlling element of the user interface. it
principal responsibility is managing the display and the various windows used to
present and edit documents and other objects. Since users gain access to the system
by invoking the coordinator, the coordinator is called Diamond. The coordinator also
provides login control (including re-authentication in the event of a failure) and
profile management. The user can tailor Diamond to suit his/her own needs. Using
profile preferences, a user can control the area of the display surface to which
Diamond will confine its operations, the size and shape of windows used to display
folders and documents, the format used to display citations in folders, the fonts used
in various situations, and a variety of other aspects of Diamond operations. A user's
preferences are stored in the user's (principal) record in the User Registry, and they
are obtained from the Authentication Manager when the user logs in.

A-12

The library APLib was developed to support common functions in the access point
tools. APLib interacts with the Coordinator to perform most of the functions it
provides. Among the functions is a set of global commands (a menu hierarchy) which
is available from any access point tool.

The folder presenter tool (called ShowFolder) provides the user with the ability
to display and manipulate the contents of folders. A number of features are under
user control through preference settings, including: the display format of citations,
the set of citations displayed, and the order of citations displayed. ShowFolder also
provides the user with an access control list editor.

The document presenter tool (called EditDoc) is described in the next section.

The principal/group registry presenter tool (called ShowRegistry) provides the
user with the ability to display and manipulate the principals (i.e., the list of groups a
principal belongs to), groups (i.e., the list of principals in a group or the list of
groups a group belongs to), the principal registry (i.e., the list of principals), or the
group registry (i.e., the list of groups). ShowRegistry also provides the user interface
for creating new principals and groups.

The initial version of the complete access point became available in February,
1984, and has received steady use since. We are continuing to improve its
performance, its functionality, and its ease of use.

2.5 Multimedia Document Editor: EditDoc

We have completed the design of a new multimedia document editor for Diamond
called EdifDoc. Earlier in the project we developed a multimedia editor, known as
MMEdit, which allowed us to experiment and test ideas concerning multimedia editors.
One of the main conclusions to come out of the MMEdit experiments is that a
multimedia editor should support documents in which all of the various multimedia
elements are laid out and directly visible on one display surface, Such an editor
would simulate a single piece of paper (or perhaps a sequence of pages) on which
different multimedia elements have been placed, To do this properly, each of the sub-
editors for the different media types must observe a common set of conventions and
implement a set of generic operations.

EditDoc has been designed based on the conclusions from the experiments with
MMEdit. With EditDoc. Diamond users will be able to view and compose documents that
contain text, graphics, scanned images, voice and spread-sheet/charts integrated so
that they appear to be part of one composite entity. We hope that EditDoc will permit
users to compose documents that have the same expressive power as journal articles
or books where text, figures and captions are integrated into one cohesive document,

In EditDoc, a document is a collection of elements (of possibly different media
type) each of which is located at a particular position on a quarter plane (extending
infinitely to the right and down) and occupying a specified width and height. In most
instances, users limit themselves to producing documents which have conventional
widths. The window in which EditDoc displays the document is a viewport on the
quarter plane and may be positioned, using scroll bars, anywhere on the quarter

A-13

plane. Currently, we do not allow elements to overlap, although there is no reason
why they could not. We have not addressed the issue of pagination of documents in
the design of EditDoc, although this does not appear to be a difficult problem and will
be dealt with in the future.

One of the goals of MMEdit was to be as extensible as possible, if a new
application program was developed, it was possible to include the display of that
program as part of a document. With such "general purpose" elements, the presence
of the element was indicated with a text caption and the object could be viewed by
asking for more detail about the caption. More detail would be provided by creating a
separate window and then running a separate application program on a data file that
was included in the message In this way, spread sheets were included in MMEdit
documents by invoking the spread sheet program. Any other useful display produced
by an application program could be included in a document. Although this approach
to integration is simple and all-inclusive, it is lacking in the area of document
integration. People viewing such documents were distracted by the fact that general
purpose elements were displayed differently from text, images and voice elements which
were supported directly by the editor.

As a result, in EditDoc we relaxed the requirement that any display produced by
any application be able to be included in a document. Instead, we have defined a
specification that must be met by progrhms that implement multimedia element types to
be included in EditDoc documents. Thus, EditDoc is a multimedia document editor
which calls on sub-editors to manipulate mono-media elements of the document. The
main editor, EditDoc, interprets commands whenever the mouse arrow in in the "white
space" of the document while the component editors interpret commands when the
arrow is in a box corresponding to the media type that they support.

New element types can be added to the multimedia document editor either by
writing a new sub-editor from scratch following the sub-editor specification or by
creating a front-end to an existing application, The front-end provides the
functionality required by the sub-editor specifications and uses existing functions of
the application to achieve the desired effect. We will take both approaches in the
implementation of EditDoc. Specifically, we already have an implementation of a line-
drawing graphics program to which we will add a front-end to provide the EditDoc
functionality.

The EditDoc sub-editor specification is as follows.

1. The sub-editor is completely responsible for the creation, presentation and
editing of elements of a given type in a multimedia document.

2. The display of the element either for presentation or editing should be
confined to the dimensions of the box allocated for the element by EditDoc.

3. For each element in a document, EditDoc will maintain a record which
describes the type of the element, the position and dimensions of the box
surrounding the element and a field which points to a sub-editor managed
data structure which ts the type-specific representation of the element.

4. The sub-editor should support the following generic functions which will be
called with an element of the supported type as an argument;

InitElemT•ype Initialize any global data structures of the sub-editor.

A-14

This is the only function which does not take a specific
element as an argument. It is called once per invocation
of EditDoc.

EnterElemType Create a new element of type ElemType. Do any
initialization of the sub-editor specific data structure
associated with the element.

EditElemType Edit an existing element. While editing, a set of
conventions must be followed so that the user perceives
an integrated interface to EditDoc. These conventions are
described below.

DrawE•7emType Draw the display of an existing element.

DeleteElemType Delete an element from the document. Release any storage
occupied by the sub-editor specific data structure
representing the element.

VriteEi emTypeBoxToOctetBuf
Save a representation of the element in an array of
octets. This is the way individual elements of a document
are saved on non-volatile storage.

ReadE'emnTypeBoxFromOctetBuf
Take an uninitialized element and initialize It with the
contents of an array of octets that was produced by a
previous call to WriteEteMTl•peBoxToOctetBuf.

CBOtherElemTypeToElemTyjpe
This describes a family of functions that are used by the
Diamond Clipboard mechanism to translate from one
element type to another. If there are N types of elements
in an implementation of EditDoc, then there will be N*(N-1)
such functions, although some of them may be empty if It
is not possible to perform the translation.

CBElemTypeReassign
Reassign the storage pool used by the sub-editor data
structure used by an element on the Clipboard.

CB/EnemtpeDispose
Dispose of the storage occupied by the sub-editor data
structure used by an element on the Clipboard.

S. The set of conventions to be followed while editing an element are as
follows;

a. If a button is clicked on the mouse while editing. then examine where
the mouse is located. There are three cases.

Mouse is in box surrounding an element: Depending on the
button pushed, perform the appropriate action. If the left button
is pushed, then select a part of the element, whatever that may
mean for the particular element type. It the left button is held,
the mouse dragged and then the left button released, then the

A-iS

select operat.on is performed on multiple parts of the element. If
the middle button is pushed, then pop up a menu and allow the
user to select an operation. If the right button is pushed, then,
depending on the context either abort the currently uncompleted
operation or. if there is no operation outstanding, unselect all
selected parts of the element.

ii. Mouse is in scroll bar: Call the routine DoScrollBarCmd. This will
cause the viewport on the document to be moved to some other
position.

iii. Mouse is somewhere else. Return to the main editor EditDoc after
saving any state that must be preserved.

6. If a key is typed on the keyboard then interprets that key as a command to
the sub-editor. For some sub-editors, keyboard input is not appropriate
and keystrokes will be ignored. A graphics editor is an example. it is

difficult to do graphical manipulations from the keyboard; the mouse pointer
is much better. Other sub-editors, such as the text sub-editor, will rely
heavily on keyboard input, since that is the primary way to enter text. Still
others, such as the spread-sheet/chart sub-editor adopt a combined
strategy using the keyboard where it is the best input device and the mouse
pointer where it is best.

7. If any other message comes to a sub-editor, it should suspend its operation
and return to the main editor. This is different from leaving the sub-editor
since the appearance of the display should not change and the sub-editor
will be returned to by the main editor after the message has been
processed

There is another level of detail to the specification, however this specification imparts
most of the spirit of how the main editor EditDoc and the sub-editors will interact,

The initial implementation of EditDoc has been completed and currently there are
sub-editors for text, graphics, speech and images, We have plans for adding a sub-
editor for spread sheet/charts.

2.8 Import/Export Manager

We have developed an initial implementation of the Diamond Import/Export
Manager. This component is responsible for supporting message communication with
users who are external to a Diamond cluster. It takes messages addressed to external
users and translates them into either SMTP (text-only) format or RFC 759/767
(multimedia) format, depending on information in the User Registry (external
multimedia recipients have an MPM address stored in the registry). It then submits
the translated messages to a delivery service that transmits them to the appropriate
internet host(s). In addition, it accepts messages which originate outside of a Diamond
cluster, translates them to Diazond format, and delivers them to users local to the
cluster.

Since the Import/Export Manager handles both multimedia and text-only mail, it

A-16

can translate (reduce) a multimedia message originated within Diamond to a text-only
message suitable for delivery to users at text-only sites. It does this by retaining
the text parts of the original message and replacing the non-text parts with
indicators that record the type of object that was removed. This permits us to use
Diamond for all of our daily message activity, both text-only and multimedia.

2.7 Printer Manager

The Printer Manager is used to produce hard copies of Diamond documents.
Because of the variety of media types that can appear in Diamond documents, we
require printers that can reproduce arbitrary bitmaps. Laser printers are the most
attractive alternatives because of their speed and the quality of their output. The
work of this manager involves a translation between the internal representation of
documents used in Diamond and the protocol for driving the laser printer.

We have performed some initial experiments with producing hardcopies of
Diamond documents on a laser printer, the QMS model LG1200 laser printer. A number
of issues were raised by this experiment, including:

o The set of fonts available on the laser printer is different from the set used
in Diamond. While it is possible to make conservative mappings between the
two sets', this is not a satisfactory solution because the appearance of the
printed document is different from its appearance on the display. Another
approach would be to down-load the Diamond fonts to the laser printer and
use them in the printing process. The problem with this approach is that
the resolution of the Display device on which the Diamond fonts are
displayed is one third the resolution of the laster printer. Thus Diamond
fonts appear to be very small on the laser printer. Automatic scaling
programs do not work very well either, because most good digital fonts have
had the attention of a good type face designer to eliminate staircasing
effects of raster devices.

o Similarly, the line drawing graphics capabilities of the QMS LGI200 (and most
likely all other laser printers) are different from the representations used in
Diamond. For example, in Diamond, it is possible to specify arbitrary fill
patterns while on the QVS LGI200 there are a set of fixed fill patterns. In
any case, the difference in resolutions would also impact the appearance of
textures.

Future work on the Printer Manager will have to address these issues. Since we are
not certain about what laser printer will be used in the future with Diamond, we are
currently deferring work on the Printer Manager.

1contervatlve In the sense that letters In the font on the laser printer occupy the less
than or some spoce as letters in the corresponding font in Olopond

A-17

2.8 Porting Diamond to the Sun Workstation

During this reporting period we completed our decision on the strategy to be
used to port Diamond to the Sun WorkStation. The approach adopted for porting
Diamond is to translate the Jericho Pascal compiler's PCode output into M68000
assembly code. By using this approach, the vast majority of Diamond and its support
libraries can be ported as is. Most of the machine differences are accommodated in a
small number of libraries which have identical interfaces for the two machines but
differ in their implementations.

The initial version of the translator to perform the conversion from PCode to
M68000 assembly code has been completed. This version is lacking certain code
generator optimizations but is otherwise fully functional.

The successful operation of the translator required a few minor modifications to
the Pascal compiler. One such modification was to provide for the compilation of IEEE
floating point constants which are used on the Sun instead of Jericho floating point
constants. A compile-time switch determines which conversion is performed.

The runtime support for such functions as access to files, free storage facilities,
and inter-process communication have been written. Several libraries have been
translated including most of those which require different implementations on the Sun.

As a test vehicle, we have ported EditDoc which is the document editor
component of Diamond. EditDoc was chosen because it is a program of substantial size
which makes heavy use of the display primitives, uses files, and uses the mouse, but
does not need to use the network communication facilities. Porting EditDoc required
that several standard libraries be ported and that has been done. Most of these
libraries were simply recompiled and translated and required no modifications.

The conversion of some libraries posed particular problems and these are
discussed below.

2.8.1 Interprocess Communication

One of the major differences between Jericlho and the Sun Workstation is that
Jericho is a single address space, multiple process machine and the Sun Workstation is
a one address space per process machine. The Jericho interprocess communication
(JIPC) mechanism depends heavily on memory sharing as a mechanism for passing
information from one process to another. The Sun Workstation running Berkeley ,.2
UNIX provides interprocess communication through character streams between
processes. We have mimicked JIPC on the Sun workstation by passing the data
contained in the JIPC messages plus the data in the storage block whose address was
being passed in the JIPC message through the Sun IPC character stream and
reconstit%.tlng the storage block on the receiving end.

There are several instances where actual data sharing is used by two or more
processes. One of these is the extended variable data base This mechanism allows
values to be associated with particular keywords as a way of providing parameters
global to several programs or for avoiding repeated complicated computations from

A-iS

session to session. Since, on the Sun workstation, each process has a separate
address space, the values of variables set in one process are not available to any
other process. To circumvent this, a server process maintains the database and
responds to queries and requests from other processes via the mimic JIPC. We expect
there will be additional such servers needed for similar situations.

2.8.2 Windows

Several problems related to the use of windows were encountered. The mechanism
in the Sun window system for always maintaining the correct contents of a window is
too costly to use. It requires doing every operation twice: once on the display screen
and again on a backup copy of the window contents in main memory. This slows down
painting operations by at least a factor of two. The alternative is to respond to
interrupts indicating that particular areas of the window have been damaged by being
overlaid with another window and repainting tho3e areas from the underlying data.

Responding to these window damage interrupts requires substantial alterations to
the control structure of EditDoc and its libraries. In particular, it must be possible
to back out of those operations, such as selecting an item from a menu, which wait for
a user action. This is because such library routines have no knowledge of what
information is supposed to be on the screen and cannot be expected to repaint it.
They must return to the main program to allow it to repaint the screen.

2.8.3 House

The Sun window system does not provide any way for a program to determine the
position of the mouse. The only way to know the position of the mouse is to receive a
continuous stream of input events each reporting the mouse position. This might
suffice if only one process needs to know where the mouse is, but, in fact, several
processes may need to know. Our solution is to do the mouse tracking in the window
manager process and for other processes to query the window manager via JIPC to
determine the mouse position. Such queries are time consuming (roughly 20 msec
apiece versus a few microseconds on Jericho) and will severely impact certain
operations.

Another problem with the mouse is the limited size of the cursor image (16 by 16
pixels), We have designed new icon fonts to accommodate this, but a larger iaage
would be preferable.

The method of displaying the mouse image on the screen is also deficient. it is
not possible to insure that the mouse will always be visible regardless of its
background. On Jericho. the mouse image can consist of both a whki'e part and a
black part. This allows the white part to be visible on black backgrounds and the
black part to visible on white backgrounds. The Sun mouse image is restricted to a
single image which can be white or black or can complement the background. None of
these can be guaranteed to be sufficiently visible over all backgrounds. No
satisfactory solution to this problea has been found.

A-19

2.9 Papers and Presentations

We have produced a video tape whieh presents the goals, architecture, and
equipment used in Diamond. It illustrates the user interface to Diamond by showing
how a user reads a message and then how he would compose a response to that
message.

We have submitted a paper, titled "Initial Experience with Multimedia Documents
in Diamond" to the IFIP WG 6.5 Working Conference on Computer-Based Message
Services to be held in May in Nottingharm. England. The paper describes and compares
three different approaches to dealing with multimedia documents: the approach used
in the experimental multimedia document editor MMEdit. the approach used in the
DARPA Internet multimedia protocol and the approach being used in the EditDoc
multimedia editor.

A-20

3. THE JFRICHO JADE SYSTEM

Jade is the oper:.ti..lig system for the single user Jericho computer system
developed at BBN. This s--tion documents tasks that were performed in improving the
Jade system primarily to meet the requirements of Diamond.

3.1 Performance Improvements

Several enhancements to the RoutineTrace tool and Pascal microcode were made
to help us track down performance problems. Briefly, RoutineTrace is a tool which
initiates and terminates the recording of certain information about what programs are
doing and then analyze.- and presents that information to aid in determining where
bottlenecks and other performance reduction is occurring. The enhancements were to
add additional ent,-ies in the data being recorded about page fault behavior and
present that information in the RoutineTrace printout.

The information derived from these printouts lead to revisions to the scheduler
algorithm. W'',t we discovered was tbat processes could consume their tntire run time
quantum bv faulting in a few pages and then some other process would be run. This
process ii, lit then exhibit the same behavior. If a sufficient number of processes
were runnable, they might all consume their entire run time quanta with very little
usefut work being done and then by the time the first process made its way back to
the .,ead of the priority queue the pages it had faulted in would have been removed to
make way for the other processes' pages. Severe thrashing would onsue. The
iiodification that was made was to credit a process's run quantum for the time lost to
p&ge faults. Thus the run quantum would determine useful time spent rather than
total time spent.

3.2 Synchronization

A synchronization machae•.m has been added to Jade which implements the
notion of mutual exclusion semaphores and the P (lock) and V (unlock) operations.
The synchronization mechanism was motivated by the needs of Diamond. In particular,
managers such as the Diamond Documgent Store and the Authentication Manager have
multiprocess implementations which enable them to service multiple simultaneous client
requests. A general purpose synchronization mechanism was required so that
processes within a manager can acquire exclusive acce-s lo various internal
databases.

Two possible implement tions of the synchvonlzation mechanism were considered.
The first uses a ser"-r proces and the low level mterprocess communication
mechanism. rhe second uses shured memory and the interprocess communication
mechanwsm. The second is more efficient, and hence is being used on the Jericho.
However, the second approach will not work on the Sun Workstation because the Sun
has no shared memory. The first approach will be used on the Sun.

A-21

3.3 WindowSystem

The Jade window system has been enhanced to include a "hint" facility. A hint is
a signal sent to a process that an event relevant to a window of interest to that
process has occurred. Examples of such events include selection of a window (e.g., the
user has selected the window for keyboard and mouse button input.), de-selection of a
window, and adjustient of the shape of a window. When a process receives such a
hint signal, it cEn take action appropriate to the event. For example, when the
window is selected, the process might choose to highlight various regions of the
window, and when the window is de-selected, it might choose to "un-highlight" them.
A process dealing with windows can request hint signals for various events from the
Window Manager or it con instruct the Window Manager not to provide hint signals.
The hint mechanism was developed to support the needs of the Diamond Access Point,
which must permit a user to switch back and forth among multiple windows.

3.4 Improvements to Pascal Debugger

The Pascal Debugger support for breakpoints has been improved in a number of
ways during this reporting period. A list of all the breakpoints that have been set
can be obta. ied. All breakpoints can be removed by a single command. Breakpoints
can be named such that when a named breakpoint is encountered the debugger
reports its name, in addition, breakpoints can be removed by name. When a
breakpoint has been encountered, it is possible to resume execution from (goto)
another point in the routine containing the breakpoint (or any ro'itine within the
dynamic scope of the routine containing the breakpolr .); it is also possible to resume
execution from a breakpoint by exiting from a r-peclfied routine that is on the stack
beneath (i.e., that had been called by) die current routine.

A- 22

4. THE JADE PROGRAMMING ENVIRONMIVENT

The Jade programming environment is the set of tools and libraries that is used
to develop applications on a set of distributed single-user computer systems such as
Jericho or Sun Workstations. This section describes our efforts during this reporting
period to enhance the ability to produce distributed applications on such
workstations.

4.1 Network Protocol Software and IPC

4.1.1 Internet Protocol (IP)

The Jade implementation of the DoD Internet Protocol (IP) has been changed to
provide a software "loopback" for internet packets sent by processes to their own
local host. Previously such packets were sent to the nearest internet gateway, which
simply returned them to the local host. Sending the packets to a gateway was an
implementation shortcut that permitted the host to treat the packets as if they had
originated at some other host. For example, if a TCP connection were opened between
two processes on the same Jade host, the data packets sent on the connection would
be "reflected" off the nearest internet gateway.

With the software loopback such packets no longer leave the local host, but
rather are processed as if they had come in from the network. This reduces the load
imposed on gateways for local traffic, it reduces the delay for such local
communication, and it also makes such local commuuication possible when no gateway
is available,

A more general network routing mechanism has been implemented which performs
three functions: special routing. message redirection, and segment size control.
Special routes can be set up so that packets addressed to a particular host or
network (or protocol) can be transmitted to a particular local network address. This
is the mechanism whereby the loopback feature is enabled or disabled. It also permits
a specific gateway to be used to get to another network rather than the default
gateway.

The routing table is used to implement the message redirection feature. When
gateways receive messages for which they are not on the optimum route or when hosts
receive messages via a non-optimum interface, they send ICMP redirection messages to
the originating host. The improved IP implementation makes use of these messages to
modify the routing table so that subsequent transmissions to such destinations will be
sent to the preferred local address.

Associated with each routing entry is a maximum segment size for segments being
sent to that destination, This allows a segment size to be chosen which will avoid
fragmentation and reassembly costs. It also permits proper fragmentation to be
performed when hosts on the local network vary in tht packet size they can handle.

The new IP implementation also main~alns a table of hosts, networks, and

A-23

protocols which are unreachable. When ICMP destination unreachable messages are
received from gateways or hosts, an entry is made in this table. Subsequent attempts
to transmit to that destination will fail rather than cause another transmission. This
reduces extraneous network traffic and permits protocol implementations built on IP
(such as TCP) to quickly indicate failure rather than retransmitting for a period of
time and then failing with an uninformative result. The entries in this table are aged
such that after roughly a minute or two they are removed. This allows the recovery
of a once dead host to be noticed and communication to commence.

The IPStat program was modified to provide information on the information in the
routing and dead destination tables. There is currently no dynamic way of adding
special routes to the routing table, but special routing entries can be put in the
>Configuration file and these will be entered when the IP server starts up.

4.1.2 File Transfer Protocol (FTP)

Our last semi-annual. report described the Jade implementation of the TCP-based
DoD standard File Transfer Protocol (FTP). During this reporting period the TCP-based
FTP for Jade has been made sufficiently reliable that we now use it for file transfers
between Jerichos and non-Jericho hosts in place of the private file transfer protocol
we had been using2

. In particular, we use the TCP FTP exclusively for transferring
files between Jerichos and our TOPS-20 hosts.

4.1.3 Interhost Interprocesa Communication (1PC)

The IPC facility developed to support Diamond and other distributed applications
has been described in previous semi-annual reports. During this reporting period, the
interhost IPC facility has been enhanced in two ways: features have been added to
help processes use timeouts more effectively, and a mechanism has been developed to
permit multiple disjoint IPC "conflgurations" -to run on the same network.

Support for Managing Timeouts

Diamond components use timeouts as a means for monitoring interactions with
other components. For example, when a User Access Point process attempts to retrieve
a multimedia document from the Document Store, it sends a request message to a
Document Manager and waits for the Document Manager to respond by transmitting the
requested document. It uses a timeout so that it doesn't wait forever for the response.

Although the timeout mechanism provides a means for a component to detect the
possible failure of another component, it presents two problems: the selection of an
appropriate timeout interval, and the action to take if the timeout occurs. The timeout
interval must be small enough so that possible failures are detected quickly, but large
enough so that timeouts don't occur under heavy load conditions. When a timeout does
occur, a component is faced with the problem of determining whether the timeout was
due to a failure, in which case it should give up or try another manager, or was due

2 The private FTP Is described in "Research in Distributed Personal Computer-Bosed

information Systems", OM Report No. 4924,

A-24

to an unexpectedly large amount of processing necessary to handle the request or to
heavy load conditions, in which cases it should continue waiting.

Message tracing and host probing capabilities designed to make it possible for a
client process, such as an Access Point tool, to determine the status of another host
have been implemented. These mechanisms are intended to be used together with
timeouts to achieve improved reliability and failure recovery. In particular, when a
timeout occurs they make it possible for a process to determine if the host to which a
(request) message has been sent has crashed, has crashed and recovered since the
message was sent, or is simply slow in processing the request.

These mechanisms make use of a host "incarnation number" scheme. Each host
has an "incarnation number" associated with it that is incremented each time the host
(actually the IPC software on the host) is restarted. When IPC components on different
hosts communicate to send and receive (reliable) messages they also exchange and
store each other's incarnation numbers.

The host probe mechanism provides clients means to determine whether a remote
host is up, and if so, its current incarnation number. This is used by the higher level
Diamond software as follows.

When a client process, such as the Access Point, invokes an operation on an
object (requesting that the message be sent reliably rather than with minimal effort),
the IPC makes available to it the host to which the operation was sent and that host's
incarnation number. Should a timeout occur, the process can initiate a probe of the
host to which its request was sent to determine what action it should take. After
initiating the probe, it should restart its timer and wait for either the result of the
probe or the response to the operation. The client's probe request is handled by the
IPC which attempts to probe the IPC at the destination host to obtain its incarnation
number. The destination IPC will respond with its incarnation number if it is up, or, if
it is not, the local IPC will time out the probe and declare the destination host to be
down In either case, the local IPC will deliver the result of the probe to the local
client process.

When the probe result is delivered, if the result indicates either that the remote
host is down or that it is up but has a different incarnation number from the one it
had when the requested operation was initiated, the client can assume that the
operation did not successfully complete, and it should take an appropriate recovery
action. If the remote host is up and its incarnation number is the same as when the
operation was initiated, the client can assume that the operation is still being
processed by the manager and that it will eventually complete. Therefore, the client
process can continue waiting. Of course, should the time out occur again, the client
should initiate another probe of the host. The assumption here is that the manager
performing the operation will eventual complete it and reply to the client. For this
scheme to work, managers must be well-behaved and care must be taken when
shutting down a manager to ensure that no client requests are pending.

The IPC facility has also been modified to deliver a negative acknowledgement to
a process sending a message whenever it determines that the message cannot be
delivered. This enables client processes to detect failures before their timeouts occur,
making them appear more responsive to users.

A-25

Multiple Configurations

It is desirable to be able to run more than one group of IPC Servers on a single
collection of hosts at the same time, such that an IPC Server within a group supports
communication among processes within that group and IPC Servers in different groups
do not communicate. The same host might have several IPC Servers running on it, each
of which is a member of a different group or configuration. For example, there are
situations where it is useful to have several debugging configurations and an
operational configuration sharing the same network and set of hosts.

Running multiple configurations on the same hardware .base requires means for
ensuring that components within a configuration limit their activities to their own
configuration. It is useful to think of the IPC and client/manager processes as
operating at different levels. Different techniques for achieving isolation between
configurations may be needed at different levels within a configuration. At the IPC
level isolation can be achieved by preventing communication between configurations. At
the client/manager level achieving isolation may require ensuring managers in
different configurations don't interfere with one another by trying to control the same
devices or by accessing the same databases.

At the IPC Server to IPC Server level, running multiple simultaneous
configurations requires that a given IPC Server be able to distinguish IPC Servers that
are in its configuration group from those that are not. The manner in which IPC
Servers use UDP and TCP to communicate makes this easy to accomplish. Isolation of
groups can be accomplished by assigning each group different UDP and TCP ports.

During this reporting period we modified the Jade IPC Server to implement the
scheme for partitioning IPC configurations based on the use of UDP and TCP port. The
ability to support multiple configurations has been proven to be very useful. It enables
us to have an operational configuration of Diamond that runs all the time, and to run
one or more debugging configurations, as required at various times to support system
development.

4.2 Software State Database

During this reporting period the initial implementation of the Software State
Database (SSD) was completed, and the Diamond group began using the system for all
their software distribution needs. The following sections describe our initial experience
with the system.

4.2.1 Software Distribution

The biggest improvement which we have noticed in using the system is in how
quickly and quietly new software gets distributed. This process has speeded up both
the release and the subsequent retrieval of new files.

o Release. Before the Software State Database was installed, releasing new
software was a side-effect of the process of updating to get the latest
version of all software. Since this was a rather long process, programmers
would tend to batch releases with updates which took place every few days.

A-26

Under the new system, installing new software is separated from the update
process and can be done quickly and painlessly.

o Retrieval. Updating to get newly released software has become faster and
more fully automated. The speedup has occurred siace the files to retrieve
can be determined by examining a single database file rather than examining
the entire file system and comparing write dates and version numbers.

The functionality of several programs, some of which were necessarily
interactive, has been combined into the simple BringOver operation. Most
users now have a background request which runs at night and does a
complete update automatically. It is also easy to use the interactive
interface to do a partial update when necessary.

This improved functionality has been especially useful since we have begun work
on a number of closely-coupled systems which are being concurrently developed by
several programmers. It is important that they be able to quickly exchange and
coordinate the release of new versions of their dependent modules.

Another major advantage of the database approach is that it is now possible to
look in one place and determine which version of some module exists on each machine
in our environment. The software database maintains a separate version number for
each machine installed in the system. It is possible to look at the database and
determine who needs to do a retrieval in order to get some newly released software.
This is especially useful as distributed applications come on line, since these may
require all machines to be. running a consistent protocol. We have made heavy use of
this capability in distributing new versions of the Software State Database itself, since
there have been several instances where the protocol between the central database
controller and client programs has changed or the format of records in the database
was altered.

4.2.2 Concurrency Control

The Software State Database system provides a distributed CheckOut, Install,
Checkln facility, Before modifying a module, the programmer must CheckOut the
module using SSD. While the module is checked out, no one else can check out or
install a new version of that module. Upon completing the changes, the programmer
Installs the new version and checks the module in. It is now available for other
programmers to check out and modify. A programmer can easily determine the status
of a file by examing the distributed database.

In the period leading up to the initial release of SSD, our group began
development of several systems which required close interaction between multiple
programmers. There was significant contention for several modules containing
declarations used by all the sub-systems. The release of the SSD system made the
process of sharing these files simpler in several ways.

1, It was easy to determine if another programmer was in the process of
modifying a file. Before the release of SSD this would require a flurry of
phone calls or walking around to several offices.

2. It was easier and faster to make a new version available. The Install
procedure informs the database about the existence of a new version and

A-27

moves a copy of the newly installed file to a central repository. At that
point, anyone interrogating the database would get the latest version.

3. When checking out a file, SSD ensures that the latest version of the file is
on the file system servicing the user checking out the file. Previously, a
user would do a full, time-consuming update in order to ensure the latest
version of everything was on his machine before working on a single file.

4.2.3 Distributed Architecture

The Software State Database was the first major system to make extensive use of
the full Inter-Process Communication system and Operation Protocol developed to
support Diamond's distributed architecture. Our experience with SSD resulted in a
number of changes to the IPC mechanism, particularly in the area of robustness in the
face of failures.

One database controller resides on a single machine within a cluster of machines
connected by a local area network. This controller maintains a master copy of the
Software Database and serializes all requests which modify the database (operations
such as Install or CheckOut). A request to perform some operation is formulated on
the user's machine and then sent off to the database controller using the IPC
mechanism. This request is then confirmed or aborted by the controller, depending on
the state of its master database. The appropriate response is sent off to the
requesting machine and, upon confirmation, any file movements associated with the
request are done by the user's machine. Upon completion of the file movements, the
user's machine again contacts the database controller to notify it of completion of the
request. At this point the changes to the database are made visible to other users of
the Software State system.

Though the view of the database which exists on any user's machine is just a
snapshot of the true status of the database, it is possible to do a quick incremental
database retrieval and ensure that the status of a group of files is up to date in the
local database. The IPC mechanism provides a quick and efficient means of sending
this information between machines. In addition, the programmer is guaranteed that
even if his local database is not completely up to date, no operation will be permitted
which will leave the system in an inconsistent state, since all requests are mediated by
the database controller.

There were a number of reasons why the system was designed with a single
database controller, rather than a more general distributed database architecture
using a voting or locking protocol.

o The design using a single controlle- is simpler,

o We could guarantee, to a high order of reliability, that the machine running
the controller would always be up, However, we could not guarantee that all
or even most of the other machines would be running when some user
wished to use the system. We would then have to deal with the problem of
partitioning of the database and merging conflicting databases when
partitions dissolve.

o We wished the system to be as non-intrusive as possible. Any system
involving voting or distributed locking would have required servers on each

A-28

machine doing some processing whenever anyone was using SSD. Though the
actual amount of processing might be small, paging costs would be visible to
users as their machine responded to a request.

o A centralized mechanism would give the fastest response time since it would
require the minimum number of interacting machines.

Our experience with this design has been excellent. The response to a request
is fairly quick and we have had no problems with inconsistent databases. Interaction
with the controller tends to be short and fairly sporadic.

4.2.4 User Interface

There are two styles of user interaction with SSD. One is a tool-oriented
interface in which the user specifies a set of files on the command line. For example
the user might type

Exec> checkout ooditdoco

in order to CheckOut all the files associated with the EditDoc editor.

The other interface is through a highly interactive tool which gives the user
greater flexibility in specifying the set of files to operate on and permits the user to
view the contents of any record in the database. A user is able to fill out a form to
match fields in the database record. For example, a user may ask to view all the files
which he has checked out. This is implemented as a fairly general query' mechanism.
Some examples of the types of queries which can be specified are:

o All checked out files.

o All files checked out by some set of people.

o All checked out files except for those checked out by a particular user.

o All files installed within the last week.

o All files which have not been modified for six months.

The ability to query the database has made it much easier to handle
dependencies between programmers. It has also enabled us to keep better track of
the status of sets of files.

4.2.5 Future Work

Future developments will concentrate on integrating inter-module dependencies
within the SSD system. Dependencies can be used to check the legality of Install and
BringOver operations in order to ensure that only a consistent set of software is
placed on a file system. Dependencies may also be used to automatically determine
the actions which need to be taken to bring a set of files into a consistent state, in
the style of Make on UNIX,

A-29

It will also be valuable to be able to query the database to view the
dependencies between modules. If the interface to some widely-used public library
changes, the database will be able to tell us what files depend on it and may need to
be recompiled or even edited to reflect the changes. Systems like Make do not
maintain external databases describing interrelations between modules and so provide
no mechanism for determining this information.

A further goal may be to integrate some version control system, such as the
Source Code Control System into the Software State Database framework. It would be
possible to integrate a more complex view of the version of a particular module into
the system and to implement this view through some other utility such as SCCS. The
facilities provided by the two systems complement each other fairly well.

4.3 IPC Monitoring Facility

The IPC monitoring facility is a tool which makes it possible to monitor the
interprocess communication (IPC) traffic between the components of a distributed
system. This tool is intended to overcome, at least in part, some of the problems that
plague the developers of distributed programs. In particular, our work has focused on
issues related to distributed system debugging and demonstration.

Distributed System Debugging

The process of debugging a faulty software system can be broken down into
three stages: error detection, location and repair.

"o Detection - The debugging cycle starts when the software system is
observed behaving in a manner which is not in accordance with the system's
specification.

"o Location - Once it has been determined that the system is behaving
anomalously, the next step is to trace the computation backward until a
point is found where a module is given a reasonable set of inputs, but
produces an unreasonable result. Unfortunately, in many cases, a significant
amount of time will have elapsed between the point in a computation when a
software error occurs and the time when it is first detected. In the
intervening period, information that would have proved useful in back-
tracing the computation may have been overwritten,

Even if there is not enough information to back-trace the computation, the
developer can still use whatever information is available to formulate a
hypothesis as to where the bug is. This hypothesis focuses suspicion on a
portion of the software. During future runs of the program, the developer
can monitor these suspected portions carefully In the hope of obtaining
more information regarding the bug. This additional information may then
be used to further reduce the area of software suspected of containing the
software error. Assuming that the software error is reproducible, repeated
application of the above approach will eventually narrow the area of
suspicion to the line or group of lines that contain the error.

"o Repair - Once the software error has been found, the next task is to
correct the software. The amount of work that this entails will vary

A-30

depending on whether the error was the result of a design flaw, interface
inconsistency or coding mistake.

The nature of the software system being debugged (i.e. sequential vs.
distributed) has little effect on the degree of difficulty involved in stages 1 and 3 of
the debugging cycle. The task of error location (stage 2), however, is significantly
more difficult for distributed systems than it is for sequential ones. This is due to
the existence of multiple, asynchronous processes which are running on multiple
processors.

A consequence of multiple processes is that instead of one locus of control,
there are now several. Furthermore, the results of the system now depend not only
on system input, but also on the relative timing of the processes.

For back-tracing to be effective in locating an error, a computation should be
halted as soon as a software error is detected. In a loosely-coupled, distributed
system, this type of behavior cannot be achieved. Although it is- possible to
immediately halt the processor that detected the error, all of the other processors
that are involved in the computation will continue working until an indication of the
error condition is propagated to them. As a result of this communication delay,
critical information in these processes is likely to be overwritten, thereby making
back-tracing that much more difficult.

Distributed System Demonstration

"For many distributed application programs, it is important that the application's
users be insulated from the distributed nature of the system. For example, the user
of a distributed operating system does not need to know where his files are stored.
The distributed operating system takes care of those details for him. While this
abstraction layer makes the system easier to use, it frustrates any attempt to
demonstrate, via the user interface, the underlying interprocess interactions.

4.3.1 System Design

As discussed above, the developers of distributed application programs are faced
with debugging and demonstration problems for which the development tools designed
for sequential programs are inadequate. The IPC monitoring facility is intended to
remedy some of these inadequacies by providing a way to examine the information that
passes between the components of a distributed system. This section describes the
initial design of the IPC monitoring facility. The topics discussed include: design
e•onsiderations, basic mechanisms, and system architecture.

4.3.1.1 Design Considerations

The design of the IPC monitoring facility was influenced by the following set of
considerations and goals. Some of the goals conflict and they are therefore described
in order of decreasing importance.

1. Support the development of Diamond and other distributed programs which
are based on the same underlying interprocess communication mechanism.

A-31

Diamond is a loosely-coupled distributed system which may be viewed as a
collection of communicating objects. Each object has a type (e.g. document,
folder, process) and a unique identifier (UID) which serves to distinguish an
object from all others in the system. When one object wishes to
communicate with another, the sending object constructs a message and
addresses it to the UID of the intended recipient. This message is then
given to the local interprocess communication server (IPCServer) for
delivery. The IPCServer determines the host where the destination object
currently resides and transmits the message to the IPCServer on that host.
The IPCServer on the destination host then determines the type of the
object to whom the message is addressed. If the intended receiver of the
message is a process, the message is delivered directly to the object.
Otherwise, the message is delivered to the process which is responsible for
managing objects of the indicated type.

In this initial design, the monitoring program receives copies of the
messages that are being monitored (passive monitoring). The more
complicated task of active monitoring, in which the monitoring program
intercepts the interprocess messages being monitored, is not addressed.

Although the IPC monitoring facility has been tailored to support the needs
of the Diamond and Cronus$ distributed systems, many of the ideas and
mechanisms discussed below are applicable to any distributed program that
is based on a message-oriented interprocess communication facility. The
nature of the support that the IPC monitoring facility provides for the
development of such programs is explained below in the remaining design
considerations.

2. Allow users to examine the behavior of a distributed program from a single
work station.

Debugging utilities that were designed as aids for sequential program
development are inadequate for monitoring the flow of data and program
control as it passes between distributed system components. It is
conceivable that a program's behavior could be monitored by running each
process in the system through a conventional debugging utility. The output
from these debuggers could be displayed on one or more terminals for each
of the host computers involved. At best, such an approach would be
awkward, inefficient and time consuming.

The IPC monitoring facility shifts the "leg work" of distributed program
debugging from the program developers to the computer. The information
wh.ch is of interest in the distributed system is automatically collected and
retrieved for either immediate display or later analysis.

3. Display the distributed system behavior in a way that clearly indicates
component interconnections and the relative timing of component
interactions.

An understanding of the flow of data and program control is essential in

'V Hoffmon, W. MacGregor. R. Schontz. R. Thomas. E. Burke and S. Woinick, Cronus. A
Distributed Operating System. Preliminary Sjstem/Subsystem Spectficat.on, UON Report
5260. February 1983.

A-32

debugging any program. For distributed programs, the existence of multiple
loci of control make it particularly difficult to comprehend the program's
behavior.

The IPC monitoring facility makes it easy to visualize the behavior of a
distributed system. As shown in Figure 2, the components of a distributed
system are represented graphically. Host computers are represented by
large circles which enclose process objects. Processes are represented by
ovals and connections between processes and hosts are indicated by lines.
Messages from one process to another are represented by small circles and
are shown travelling along the intercomponent connections.

4. Instead of monitoring all interprocess messages, allow users to specify the
set of messages that are of interest.

When debugging a piece of software. it is important to focus attention on
the region of the program or set of interprocess interactions that is
suspected of being faulty. Any information pertaining to portions of the
system that are believed to be working correctly is of little value. Indeed,
such information may have a deleterious effect by distracting attention from
the parts of the program which are suspect.

Through the use of filters, the IPC monitoring facility allows a user to
specify the subset of the total message traffic that is to be monitored. A
message is monitored only if the contents of the message match at least one
of the specified filters.

S. Support the monitoring of transactions.

Many of the interactions between Diamond's distributed components follow a
Client/Manager paradigm. One process, acting as a client, invokes an
operation on an object. This is accomplished by sending the object a
message which contains the name of the operation to be performed and the
input arguments for the operation, This message is delivered to the process
responsible for managing the object. The manager performs the operation
and sends a message containing the result arguments back to the client.
Note that in the course of performing an operation, a manager may. in turn.
invoke other operations, thereby behaving like a client toward some other
manager The initial operation and all of its suboperations are identified by
a transaction ID.

For both debugging and demonstration purposes, it is useful to think of
monitoring an terms of transactions rather than individual interprocess
messages. Accordingly. the IPC monitoring facility allows users to specify
transactson filters. If the contents of a message matches one of these
transaction filters, the matched message and all subsequent messages that
have the same transaction ID as the originally matched message will be
monitored.

6. Allow users to control the level of detail at which information about the
distributed system is displayed.

Interprocess messages in Diamond have two parts, a header portion and a
data portion. The header portion contains information related to message
transport (e.g. source UID. destination UID, data offset and data size) and is
encoded according to an IPC peer-to-peer protocol. The data portion of a

A-33

message is of variable length and is encoded as name-value pairs according
to the OP protocol. 4 Each value in a name-value pair has an associated
type. These types are either simple (e.g. integer, boolean) or structured
(e.g. array. record). Furthermore. the elements of a structured type may
themselves be either simple or structured types

Both portions of a message are potentially of interest in the debugging or
demonstration of a distributed system. Accordingly. the IPC monitoring
facility allows users to examine all of the information that a message
contains. In order to avoid overwhelming users with unwanted information.
however, the data that is contained in the message is interactively displayed
in response to "more detail" and "less detail" operations. This is patterned
after' the mechanism for displaying variables in the Jade debugger When a
user asks for more detail on a message. the names and values of the top
level fields in the message are shown. If additional information exists for
any of the displayed fields, it may be obtained by positioning the mouse
cursor over that field and asking again for more detail. Less detail, returns
the user to a display of the data at the next higher level. In this manner,
the user can examine the contents of the message at any level of detail.
Furthermore, since knowledge of the IPC peer-to-peer and the OP protocols
is built into the IPC monitoring facility, the message fields are formatted
appropriately when they are displayed.

7, For messages that are being monitored, record time stamps for key events
along the message transport path.

The recording of time stamps along the message transport path has two
uses. First. this information makes the detection of race conditions possible
in that the relative arrival times for two messages that are sent to the eame
process may be determined. Secondly. the differences between the time
stamps taken along the message path are indicative of the performance of
the distributed system.

As shown in Figure 3. the IPC monitoring facility records time stamps at six
points along the meteage transport path. The events associated with these
six time stamps. TI through T6. are as follows.

TI The sending process sends the message.

12 The local lPCServr receives the message.

T3 The local IPCServer sends the message to the remote IPCServer.

T4 The remote IPCServer receives the message.

T5 The remote IPCServer sends the message to its intended recipient

TO The intended recipient receives the message.

4A description of this protcol is given in Secieon 4.2 of Research in Oistrbuted
Person4-, Computer-Bosed lnfortc*ion $Systems. Semt-Annuaal TechntcoL Report No. 4.
MMi Rseort 5722. Soptembec 1"84.

A-34

8. Permit the display of interactions between the components of a distributed
application while the application is executing.

As the monitored application executes, monitoring information is collected
and sent back to the monitoring host. Since the application execution and
the monitoring information retrieval proceed in parallel, the behavior of the
application can be displayed in (near) real time. Furthermore, the
monitoring information is recorded and may be replayed. This makes it
possible to study the application by repeatedly displaying its behavior.

9. Minimize the "costs" associated with interprocess messte monitoring.

The use of the IPC monitoring facility adds a certain amount of overhead to
the running of a distributed application. The matching of messages against
filters and the transport of monitoring information back to the monitoring
host all serve to degrade the performance of the distributed application
being monitored. Care has been taken throughout the design of the IPC
monitoring facility to limit such "costs".

4.3.1.2 Basic Mechanisms

At a high level, the function of the IPC monitoring facility is simply the
collection, retrieval and presentation of monitoring data. These three tasks and the
work that they entail are described in greater detail below.

Data Collection

Data collection in the IPC monitoring facility is supported by a filter mechanism
which allows a user to specify the subset of the total message traffic that is to be.
monito, ed.5

Once a filter has been specified. it is assigned a filter ID and distributed to all
of the IPCServer processes in the distributed system. The filter ID consists of the
internet address of the host on which the filter was specified and a sequence number
which distinguishes the filter from all others that have been specified on that :host.
By distributing these filters, we ensure that each IPCServer has it complete copy of
the filter data base. Consequently, the matching of irterprocess messages against
those filters does not require any Interhost communication.

Although the task of matching messages against the- flter- data base does not
require any interhost communication, it is still * fairly "expenslve'". operation which
must be performed for every intecprocess message -that is sent, To avoid. slowing down
the IPC facility on hosts which we are not interested in monltoring, a mechanism is
provided for enabling or disabling the monitoring facility On a host. Hosts which are
rot enabled for monitoring do not maintain a copy of tht filter dta base ur attempt
to perform any me3sage matching. To actually monitot an mnterprocess message,
therefore, both of the following conditions Liu~t hold-.

o The message's source and destination hosts are both enabled ftr monitoring.

5 Ibid. Stcton 4.4.1

A-35

•ererver

HOSU HOsW3

Figure 2. The graphical display of an interprocess message

°A-T36

o The message matches at least one of the filters in the filter data base.

Whenever an interprocess message is sent from a host for which monitoring is
enabled, the message is matched against the filter data base. If one or more matches
are found, the header portion of the message is modified to indicate that the message
is being monitored. Monitoring a message entails collecting information at several
points along the path of the message and sending this information back to the
monitoring host(s). The information that is collected includes: a copy of the
interprocess message, the name and process ID of the process that sent the message,
the name and process ID of the process that received the message, and time stamps
that are associated with events along the message's path.

Data Retrieval

Once the message information has been collected at the remote hosts, it must be
sent to the host that is running the monitoring program. This program coordinates
and displays the incoming monitoring information from all of the hosts in the
distributed system.

The monitoring information for a message is sent to the monitoring program in
the form of three meta-messages. Each of these meta-messages coI'responds to a
point along the message path and contains information that was available at that
point. The first mete-message contains a copy of the contents of the message, the
name and process ID of the sending process and the first three time stamps for the
message (Ti through T3 in Figure 3. This mete-message is sent when the original
message leaves the IPCServer on the sender's host.

The second meta-message contains the name and process ID of the destination
process, and the fourth and fifth time stamps for the message (T4 and T5 in Figure 3.
This meta-message is sent when the original message leaves the IPCServer on the
receiver's host. Note that if the sending and receiving processes for the message are
both on the same host, the first two meta-messages would be sent at the same time.
Rather than send two separate messages, the information is instead merged into a
single mete-message.

The third mete-message contains the last time stamp for the monitored message
and is sent when the destination process finally receives the message. For the case
where the receiving process happens to be the IPCServer itself, the information from
the second and third mete-messages is combined into a single mete-message.

In addition to the information described above, each mete-message also contains
a Message ID which identifies the original message that corresponds to the monitoring
information contained in the meta-message. This Message ID is the same for each of
the three meta-messages and is used to collate them.

Data Presentation

The last phase of the monitoring facility is responsible for the merging,
sequencing and display of incoming monitoring information. As meta-messages arrive
at the monitoring host, they are written to a log file. This log file is then used to
drive a program which displays the behavior of the distributed application that is
being monitored.

A-37

As a result of interhost communication delays, the order in which meta-messages
arrive at the monitoring host typically differs somewhat from the sending order of the
original messages. One of our stated goals, however, is to display messages in a way
that clearly indicates the relative order in which the messages were sent. While it is
conceivable that the messages could be sequenced according to their time stamps, in
practice the synchronization of clocks in a distributed system is a difficult problem.
Rather than require a "global physical clock", the IPC monitoring facility instead uses
a logical clock to order messages.

The logical clock mechanism is essentially a way to assign a number to a
message, where the number is thought of as the time that the message was sent. This
mechanism ensures that if message B was sent as a result of message A, then the
clock value that is associated with message A will be less than that which is
associated with message B. The implementation of logical clocks is straightforward and
may be summarized by the following two rules:

1. Before a message is sent, the logical clock on the sending host ticks. This
new clock value is the logical time stamp for the message that is being sent
and is included in the header portion of the message.

2. When a message is received, the logical clock on the receiving host is
adjusted so that the clock value is equal to the maximum of the former
clock value and one more than the logical time stamp on the received
message.

Clock ;= Max(Clock, ReceivedTimeStamp + 1)

Logical clocks ensure that no matter what order the meta-messages arrive at
the monitoring host, it is possible to sequence them so that causal relationships
between messages are preserved. Once the meta-messages have been merged and
sequenced, they may then be displayed by the monitoring program.

4.3.2 System Architecture

In order to monitor distributed application programs, the IPC monitoring facility
has to itself be a distributed system. For every host that is engaged in the display of
distributed system behavior, there is one IPCMonitor process and one MetaMsg Manager
process. Furthermore, those hosts that have been enabled for monitoring are also
each running a MonitorData manager process. Enabling a host for monitoring means
that as interprocess mesuages are sent, they are matched against the set of
monitoring filters. If a match is found, the monitoring information is collected, sent
back to the monitoring hos: that specified the filter, and displayed. For example,
Figure 4 shows a distributed system where distributed application programs are being
monitored on host HI. Hosts Hi and H2 have been enabled for monitoring but host H3
has not. The processes that comprise the IPC monitoring facility and the manner in
which they cooperate with one another are described in greater detail below

4.3.2.1 IPCMonltor

The IPCMonitor process is the user interface to the IPC monitoring facility.
Through this interface, a user may add and remove monitoring filters, enable or
disable monitoring on the distributed host computers, and control the display of
monitoring information that is being collected and retrieved by the other components
of the IPC monitoring facility.

A-38

" I.11ntamps

Figure 4. The component processes of the monitoring facility

A-39

A user is allowed to vary the speed at which information about the program
being monitored is presented. This capability makes it possible to slow down or even
completely freeze the message traffic display so that the content of the displayed
messages may be examined. Slowing down the display of information, however, does
nothing to slow down the rate at which new monitoring information is arriving. To
avoid the backlog of unprocessed monitoring information that would otherwise result, a
separate process, the MetaMsg manager, is used to process incoming meta-messages.

Under this approach, when the IPCMonitor is ready to display more information,
it just asks the MetaMsg manager for the next chunk of monitoring data.

4.3.2.2 MetaMsg Manager

In addition to processing incoming meta-messages, the MetaMsg manager also
records the message information in a log file so that it is possible to repeatedly
display the monitored behavior of a system.

The MetaMsg manager also acts as a distributor for any new filters or changes to
existing ones. The MetaMsg manager maintains a table of all of the hosts in the
distributed system that are currently enabled for monitoring. Whenever, the user adds
or changes a filter, the IPCMonitor passes the filter request to the MetaMsg manager.
This process then transmits the request to all of the known MonitorData managers in
the configuration.

Finally, the MetaMsg manager is also responsible for exercising a degree of global
control over the logical clock mechanism described in Section 4.3.1.2. Although logical
clocks ensure that no matter what order messages are received by the monitoring
facility, it is possible to order them so that causal relationships are preserved, they
do not provide a way of determining when all of the messages with logical time stamps
that are less than some logical clock value have been received. This is needed in
order to determine when it is "safe" to commit the actions required in displaying a
message. The MetaMsg manager remedies this deficiency by periodically polling all of
the MonitorData managers for the earliest possible logical time stamp of sent messages
that may still be in transit, By taking the minimum of these local earliest possible
time stamp values, a global earliest possible time stamp (GEPTS) is obtained. All
display actions resulting from time stamps that are less than the GEPTS value may be
committed.

4.3.2.3 MonitorData Manager

When a host is enabled for monitoring, the IPCServer creates the MonitorData
manager which is used for communicating between the IPCServer and MetaMsg manager
processes. This is needed because the IPCServer cannot send and receive messages in
the same way that a typical client process does. Accordingly, the MonitorData
manager process is used as an intermediary.

When the IPCServer sends a message to the MetaMsg manager, the message is
first passed to the MonitorData manager process using an intrahost message transport
mechanism, The MonitorData manager, which is a normal client process, then sends
the message to the MetaMsg manager using the interhost IPC facility, Messages from
the MetaMsg manager to the IPCServer are sent in a similar manner -- first to the
MonitorData manager and then to the iPCServer.

A-40

In addition to the IPCServer's main responsibility of transporting interprocess
messages, it also maintains the logical clock and checks the messages that it sends
against the set of monitoring filters. If a match is detected, a meta-message is
constructed which is then sent to the appropriate MetaMsg manager.

4.3.3 Current Status

During this reporting period, we completed the initial design of the IPC
monitoring facility as described above and began w!.rk on the implementation of some
of its low-level mechanisms.

The existing IPC facility has been modified to provide support for monitoring.
This entailed modification of the IPC peer-to-peer protocol, implementing the logical
clock and filter matching mechanisms, and providing an intrahost communication path
between the IPCServer and MonitorData manager proces...es.

Although the MonitorData manager portioa of the IPC monitoring facility has been
implemented, work on the MetaMsg manager and IPCMonitor implementations is just
beginning.

A-41

5. JERICHO INTERLISP

The objective of the Jericho Interlisp task is to port and extend the Interlisp
programming language and environment to BBN's Jericho personal computer. Interlisp is
one of the two major dialects of the LISP programming language which underlies most
research in Artificial Intelligence. This task services two principal goals. First, it
Drovides the development environment in which other DARPA supported research in
Artificial Intelligence proceeds at BBN, most notably the work in natural language
understanding and knowledge representation. Second, this task builds the foundation
for the ALEPH component of this project which is to explore novel programming
techniques and tools.

The task of porting Interlisp-10 from a mainframe to a personal computer
involves three categories of effort: 1) porting the initial system, 2) extending it to
accommodate the functional capabilities of the hardware, and 3) system maintenance.
In previous reporting periods, we have addressed each of these areas. In the current
period, we continued system maintenance activities; in particular, we improved the
reference counting garbage collector, we added a CATCH, THROW, UNWIND-PROTECT
facility, and we worked toward incorporating a multiple-process capability in
anticipation of interoperability.

5.1 Garbage Collection

During the current reporting period, we extended the reference counting garbage
collector to re-use variable length data types, specifically lists and arrays. In
addition, we improved its performance.

When the reference counting garbage collector finds a variable length datum to
be freed, it marks the free region in a bit array which has one bit for each word of
virtual memory. This array is the same one that is used by the compacting garbage
collector to mark used data (see the previous report for more detail).

The allocator for variable length types initially assigns a contiguous segment of
memory for the type. A segment is currently 8K words. When a segment becomes full,
the allocator searches the regions of the bit array corresponding to segments of the
desired type for a contiguous free chunk. The minimum size of the chunk is the
maximum of the size required for the current allocation and a user settable parameter
\FREMIN. The value of \FREMIN is initially 100. If a chunk is found, it is marked used
in the bit array and allocation proceeds from the chunk. If no chunk is found, a new
segment is assigned. To avoid searching the same sections of the bit array, we start
each search where the last one left off. The starting point is reset after every
garbage collection.

We initially used a slightly different me.-iod for reusing the free -regions. At
every garbage collection we built a chain throu h the free chunks with the first word
of each chunk pointing to the next one. This , ethod has terrible paging performance
because it requires referencing the list or a-ray space as well as the bit array.
Consequently, we abandoned it in favor of the s-arch technique.

Preceding Page Blank A-43

This technique for variable length items required some modifications to the
compacting garbage collector. Since the compacting garbage collector does not
compact arrays, it is important to let the allocator know what array space is free.
This is accomplished by initially marking all array space as free. When an array that is
used is encountered, its extent is then marked as used.

The above scheme uses microcode primitives to set or clear a number of bits and
to find the next zero or one in a region of an array. These primitives are useful for
other things as well so they have been made available to the user as new op-codes.

We have improved the performance of the reference counting garbage collector
by implementing more of it in microcode. The portions now in microcode are the atom
hash table scan (reported previously), the reference table scan to clear the stack
bits, and some assistance for the reference table scan for zero count entries to be
feed. This last scan searches from the last entry it found (initially 0) returning the
next pointer to be freed or NIL if none is found. We also added a microcode operation
to add a datum to the free list for its type.

The speed of the reference counting garbage is quite good. The time required to
add and delete entries from the reference table is not measurable for any computation
that we have seen. The fixed overhead for a garbage collection in the case where
nothing is found to free is less than 0.25 seconds.

5.2 Catch, Throw, and Unwind-Protect

Interlisp provides the basic non-local exit facilities RETTO and ERROR! as well
as several others based on them. RETTO causes a return to a specified stack frame
while ERROR! returns to the nearest stack frame named ERRORSET or to the top level if
no such frame exists.

Common Lisp provides similar abilities with CATCH and THROW. Because CATCH
and THROW are more versatile than the ERRORSET, ERROR! combination, we have
included these facilities in Interlisp Jericho.

A problem with non-local exit facilities is that sometimes a compution wishes to
assure that certain cleanup operations (such as closing files) are performed even if
the computation is exited non-locally. Interlisp provides a group of macros called
RESETLST, RESETFORM, RESETSAVE etc. which attempt to address this problem.
However, there are several deficiencies. The resulting code is hard to read, the
cleanup form is computed at run time and thus is not compiled, and in the particular
case of a non-local exit to the top level, the cleanup form is evaluated in the wrong
environment; namely. at the top-level rather than in the environment in which it
appears.

The Common Lisp UNWIND-PROTECT is a clearer and better method so we have
included it in Interlisp Jericho. (UNWIND-PROTECT protected-form Icleanup-formt')
evaluates protected-form and the cleanup-forms in the correct environment whether
the UNWIND-PROTECT is exited normally or via a THROW to a containing CATCH. The
cleanup forms are also evaluated during RESET or control-D, which are effectively
throws to the top level, and during ERRORI. which is effectively a throw to the most
recent ERRORSET.

A-44

The Interlisp non-local exit RETTO is sometimes used to abort a computation but
is also used for coroutines and generators where the abandoned computation may be
resumed. In that case, the cleanup--forms probably should not be evaluated so RETTO
and its derivatives have not been changed. We have added two new functions,
RETTO&UNWIND and RETFROM&UNWIND, which do evaluate cleanup-forms for UNWIND-
PROTECTs between their invocation and the destination frames. In the current
implementation, if the destination frame is not in the current stack environment, these
functions will unwind to the top-level. This should probably be changed to cause an
error.

5.3 Multiple Process Capability

Our ultimate goal under the concept of interoperability is to provide for a
multiple process capability for both Lisp and Pascal simultaneously. Our original design
strategy called for a microcode kernel which would implement the basic process
mechanism to be shared by both language environments. But an additional constraint
forced us to reconsider this approach. That constraint is imposed by our need to keep
Interlisp Jericho compatible with Interlisp-D.

Under this constraint, and after looking at the Interlisp-D multiple process
facility, we decided that sharing the microcode kernel was an untenable way of
achieving Interlisp-D compatible multiple processes in Interlisp Jericho. This was
primarily because the kernel embodies a preemptive form of scheduling whereas
Interlisp-D is based on a non-preemptive scheme. Consequently, we changed our
design to yield a compromise between these two forms of scheduling.

The result is that we plan to first bring up a multiple process capability in
Interlisp Jericho by adapting and integrating the Interlisp-D process package. Later,
we will execute this version of Interlisp Jericho as a single process among the Pascal
preemptive processes controlled by the microcode kernel. We will then have multiple
processes running for both languages simultaneously and we will maintain compatibility
with Interlisp-D.

During this reporting period, we have begun the effort to adapt the Interlisp-D
process package. Since multiple process code so heavily impacts all of the other
system code, we have also taken this time as an opportunity to update the Interlisp
Jericho system with the newest version of Interllsp-D. We are making progress toward
this goal but still have much left to do. In particular. the input/output software has
been dramatically affected by the transition to multiple processes as has the interrupt
system. We fully expect to resolve these problems in the coming months.

A-45

6. ALEPH

The goal of the ALEPH component of the project is to conceive and test new
ideas and tools which can aid the programmer in his task. We expect that the
capabilities of a personal computer such as the Jericho can offer new opportunities in
this , particularly the high-resolution bitmapped display.

In this reporting period, we continued our two major thrusts which were
documented in the previous report: Content Addressed Documentation and Programming
Tools. In the first category, we investigated and implemented the dynamic catalogue
idea which we call the Interlisp Advertiser. In the second category, we discuss four
tools we developed the Directory Browser, File Comparison Presentation, the Code
Presenter, and the Graphical Debugger.

6.1 Content Addressed Documentation

Users of sophisticated programming environments (such as LISP) often confront
problems stemming from the breadth and scope of the procedural capabilities of the
system. One of these problems is finding information about needed functional
capabilities. Sometimes these capabilities are known to exist but their name is
unknown or can not be recalled; often, however, users do not know if the capability is
or isn't available in the system and they must simply browse and "discover" it. As
described in cir previous semiannual report, the solution that we have been exploring
consists of "advertising" a functional capability by showing in a small "movie screen"
or advertising window a short "movie strip" of what the advertised capabilit7 can do.
During this reporting period we have begun developing a tool, which we call "The
Interlisp Advertiser", that is based on this idea.

6.1.1 The Interlisp Advertiser

The Interlisp Advertiser can be considered an advertising catalog, in which the
various features and system capabilities are shown in advertising windows. Much in
the way in which commercial catalogs are organized, our advertising windows can be
grouped thematically and displayed simultaneously in a single page. As with a paper
catalog, a user can converge on a relevant section by consulting a thematic Table of
Contents, an Index, or simply by flipping pages. In contrast with hard-copy catalogs,
however, users of our tool can derive a sense of action from the animation in the
advertising windows, and can obtain relevant information (e.g.. the name of the
advertised function or feature) by pointing to one.

Having found the information, another problem that often arises is how to use it,
after suitable modifications, in the user's particular situation and context. A solution
that we have just begun to explore is to provide a "hands on" workshop environment
that facilitates modification and experimentation of an existing functional capability to
adapt it to the user's requirements, and that makes it easy for the user to
incorporate the modified capability into his own software.

We shall next describe how the system appears to its users. As an example we

Preceding Page Blank
A-47

shall use an "ad hoc" page of this kind of "advertising catalog"; this is a page that we
have constructed to conveniently illustrate the various features of the system but
which lacks thematic unity and, as a page, would therefore not be included as a part
of the Advertiser.

In this "ad hoc" page, which appears in the following figures, we have included 8
advertising windows. Each advertising window shows an animated sequence of what a
particular function or feature of the Interlisp display package does. Thus, the
SCROLLing window shows how to scroll text printed in a window, the tertPOSITION
window shows how to specify where text is to be printed, and the SOURCE&OPERAT.
window shows how to combine background bits and displayed bits to obtain a variety
of visual effects. The other windows show how to adjust the shape of a window,
change its background texture, select fonts, draw ellipses and compute region
intersection operations. The bottom of the page is occupied by a Help window, which
appears in all the system's pages.

In figures 5 through 9 we have tried to capture what happens during the
animation sequences (albeit with marginal success). Each figure depicts the screen as
it appears after each window has played one frame of the animation Thus, during the
first frame a cursor moves leftward on the SCROLLing window to simulate moving the
mouse so as to touch the left border (a smudge is still visible in figure 6. overlapping
the "p" in "properly"), and in the textPOSITION window, an arrow flashes indicating
where the next line of text (the "the beginning" line, also in figure 6) is going to
appear. Similar demonstrative actions take place in between the images in figures
6 through 9.

The animated sequences in each window can a)l "play" simultaneously as shown,
or one window at a time at the user's discretion. Depressing the left button on the
mouse (see the BUTTONS window on the upper left hand corner) causes a COMMAND
menu to appear, with which the user can control the way information is displayed.
Pointing to a window with the mouse and depressing the center button summons a
HELP menu with which the user can obtain specific information about the advertised
feature.

In figure 10 we have placed the mouse over the FONTS window, and we have
depressed the middle button, summoning the Help menu. With it, the user can request
information on relevant function (FNS) or variable (TERMS) names, can ask to see how
what he has just seen was done (HOW?), can ask for an exemplar of usage (EXAMPLE),
or can ask for a demo in which he can exert control over the actions advertised or
explore the advertised function's capabilities (DEMO). In the figure we have 3elected
the FNS menu item. The relevant functions (i.e.: procedures available ýn Interil~p) are
listed in the Help Window. Figure 11 shows what happens if someone waated to know
how the third ellipse in the DRAWin#ELLIPSEs window was generated. pointing to the
window with the mouse and selecting the HOW? menu item produces a .rmntv-,.t of the
code that was used to generate the DRAWIngELLIPSEs display. wti, the portion
responsible for that third ellipse highlighted Finally, figure 12 S4'ovs !i, example of
the "hands on" exploration facility: Depressing the Heir. button in the
SOURCE&OPERAT. window and selecting the DEMO item causes th' 'y•tem to show the
kind of visual effect that would be created if the user chose tlt, lNýETZT sourct type
and the PAINT operation, Like for the HOW' menu item. HOWDEMO" shows how the DEMO
works, the item is shaded, and users are cautioned appropriately if they select it,
until the demo is actually seen.

A-48

ýo- lie'imes 13hanging h hrce
w.irndows are ter
too small to This is the bitmap
display all GAM 12 8&10 REPLACE
the text that font the texture bits
is printed on ~-
them. In these
cases, if the
window is set

kdlusting, or D'rawing ellipses.
changing, the

form or
shape of a Z

window.)

2N.

-- •N -- •-U

Figure 5. AD h oc page of the Interlisp Advertiser frame 1

A-49

C=1

;J ý 2. ori• o 2•'

Figure 6. AD hoc page of the Interlisp Advertiser frame 2

IL~I
.d.

Vo-a 2€

Figure 7. AD hoc Paqe of the InterlisD Advertiser frame 3

A-50

-----L IIE]
T"!I

Figure 8. AD hoc page of the Interlisp Advertiser frame 4

Figure 9. AD hoc vage of the Interlisp Advertiser frame 5

A- 51

...

.-..... :0o.-!!. :• -. o lu m LA

-: .is p l a y l 1 4 I hthe text that.M ... I

.i::: them. In these
.. p . cases, if t.he

1: ..n
,. .~~. ly

...(Adjusting, Drawing ellIipses. !i•:.•i•-
:" or changing, -.!:i•:'

:: . the form or• gg'l -91.'••
:+- J " shape of a Y"%

.....

.C
gý vg .. :..

•~~~ .-. • :

! 68-nter ruoted bi

Figure 10. Obtaining Help; Relevant Functions for the FONTS window

A-52

* IIIi

4 0 . -
SSomnetimes Changing
Iwindows are
"too small to the beginning This is the.
display all HELVETICA 12
the text that MEDIUM

is printed on of a line font
them In these
cases, if the

-- window is set
I... 4 -. 5..? -

".'Adjust irig, D-aainc ellips
jor i:.anging,I
thp for, or FNS

shane of aTEM

I 'hi A E ,!jt • - '

r W ; R., -1:"ENT"

"DSOPPAIO hp
1
(ntPATilT

LP.2

S IgRure 11 O~htan£np Help How was the DRAWlngELLUPSEs widOW ge-,eraedI

A-5i3

Lu~~ ~ ~ ~ I USIP mo

/ ,i!......

(- Sometimes Changing 0 0

windows are- too smalal tO the beginning This is the

display all HELVETICA 12
the text that MEDIUM E -:

is printed on of a line font
them. In these
cases, if the " 7"

* window is set .

(Adjusting, Dirawing ellIipses. ----------
or changing,
the form or
shape ofa a-"
window.) •od•.~~. --, b .&. f;:. ..

... .•]'!:••'

ri.:..- e• p V11

* I"

INPT~t~s ~ ~ Depes LEFT US t t\,n to

SFigure 12 Obtamrn Help. The effects of SOURC tTYPEs and OPERATIONs

A- 54

6.1.2 Conclusions

Our Interlisp Advertiser derives its leverage from the following key ideas:

o Instead of a mere paper substitute, the screen becomes a dynamic, parallel
visual processing interface, i.e.: showing many "mini movies" simultaneously.

o The user's visual reasoning abilities are involved too, not just the verbal
ones.

o Uses the mind's visual evocative powers. It elicits visually rather than
verbally.

o Uses depictions of events (such as the effects of procedures), rather than
descriptions. It is hard to describe space or time sequences verbally.
Animated figures work much better.

o It gains additional leverage by acting through the final effect produced, and
not on the basis of preconceived ways of achieving the desired effect ("I
didn't know one could do it that way").

As a consequence, we believe that our approach opens up new dimensions in
system documentation, system development, and on-line performance aids:

I. First of all we have an "active" rather than a "passive" approach to system
documentation. Since it relies on figural, dynamic, and ostensive modes of
presentation.of information, it makes possible to vividly demonstrate system
functions instead of just describing them verbally.

2. It makes it much easier for a new user to learn by him/herself. It fosters
self-tutoring.

3. It facilitate exploration of choices and Instantiation of procedures in the
user's domain,

4. It makes it possible to implement pieces of user software by lifting and
modifying "advertised" software.

Coping with large amounts of procedural information is not only a problem for
system developers. The military end users of the sophisticated systems that will be
produced in the next decade will also confront the same problems and will have to
depend on self reliance. It is extremely important that such systems have the ability
to impart procedural instruction to their users, since it is unrealistic to expect that
all users will have always in their heads all the procedural knowledge they may
require. Systems incorporating the ideas exemplified in the Interlisp Advertiser should
be able to provide such information in a most fruitful way

6.2 Programming Tools

During this reporting period, we continued to design and implement tools to aid
the programmer in his/her activities. Some of the tools are new ideas and others

A-55

integrate results of our previous work. All make use of the bitmapped display. Below
we describe these tools, which consist of:

o the Directory Browser, which allows inspection and manipulation of the tree
structured directory system and the files stored therein

o File Comparison Presentation, which integrates the File Browser with the
Heuristic File Comparator to visually display the differences between two
files

o the Code Presenter, which provides alternative views of symbolic source code
according to the influence of run-time context

o the Graphical Debugger, which provides a graphic interface for program
debugging and includes a dynamic graphical tracing facility.

8.2.1 Directory Browser

The Directory Browser, like the File Browser described in our previous report, is
an instance of the genertl notion of browsing. The original notion of browsing was to
provide a way of viewing or looking at some object too large and/or too complex to
present in its entirety in any one image. A text file, for example, is generally too large
to print on a single screen but it is both feasible and useful to show some segment of
the file and to allow the user to control which segment is shown. Other objects such
as complicated data structures may have an organization best displayed at varying
levels of abstraction.

The more current notion of browsing extends the idea to allow manipulation of
the object being examined. A browser comes to look much like an editor. Indeed, the
generalization of editors to objects other than text and the extension of browsers to
allow modification of the object viewed have been two ideas on convergent paths. The
emerging idea is one we have called multi-representational editing, The ultimate goal
is to provide a variety of presentations for an underlying body of information and,
through interactions with any given presentation, change that information, Of course,
any change induced through one presentation must be reflected immediately in all
other relevant presentations.

Our Directory Browser has been a step along this evolutionary path, It provides
different presentations for different facets of a Jericho's file system, and it allows
interactions with the files in the system. some of which alter the state of the system.
We now will describe the capabilities of this browser and the way a user interacts with
it.

The Jericho file system, like that of Unix. is tree-structured A directory
contains entries for files and some of thesi file.i may themselves be directories, In
other words, directories are special instances of files whose contents are simply file
descriptors. One of these directories is distinguished to be the root of the tree-
structure and has the name ROOT (it contains an entry for itself as well).

One of the capabilities of the Directory Browser is that it can present a
graphical depiction of any subset of branches emanating from the root of the tree
representing the directory structure. The user can specify any set of (sub)directories
of interest and the browser will determine the appropriate branches to display.

A-56

This graph is active in the sense that selecting nodes of the graph cause actions
related to the associated directory. One type of selection makes the designated
directory the current connected directory (ie. it provides a context for file references
which do not specify a directory). This offers the user a very simple way to establish
this condition, especially as compared to typing the command when the chosen
subdirectory is deep in the hierarchy and a long path name would be required.

A second type of selection opens a scrollable window on the associated directory
in which the list of file names appears. Any subset of the file names can be selected
and highlighted using the pointing device. A menu can then be used to invoke
commands which operate on the selected files. Several different kinds of commands
"exist.

Some of the commands manipulate the files themselves. These are:

o Browse, which calls the File Browser on the selected file

o Type, which types the selected file in a special window

o Copy, which copies the selected files into another specified directory

o Move, which moves the selected files into another specified directory (this
removes the files from the original directory which Copy does not)

o Expunge, which gets rid of the selected files

o Info, which presents relevant information about the selected files such as
size in various metrics, dates, and file type

Other commands are related to files which are directories themselves. These are;

o SelectionDirectory, which opens the Directory Browser on the directory file
currently selected by the browser

o ParentDirectory, which opens the Directory Browser on the directory which
is the parent of the directory currently being displayed by the browser

o ConnectSelection, which makes the connected directory be the directory
selected in the browser

o ConnectParent. which makes the connected directory be the directory which
is the parent to the directory displayed by the browser

o Connect. which makes the connected directory be the directory displayed by
the browser

The remaining commands effect the selections themselves (as opposed to the files
represented by the selections). They allow the user to push the current set of
selections onto a stack and later pop them back. The user can also clear the current
set of selections. These operations are convenient when one is building up a large
selection list and the addition of another entry depends on information not currently
presented. The user can push the partially collected list of selections, select the
questionable file. and then obtain the information necessary for the decision, He/she
can then pop back the partially collected list and add or not the file in question.

A-57

The File Browser is an extremely convenient tool for the programmer. It provides
an easy way to peruse the set of files in a given directory. Any subset can quickly
and simply be chosen and a single operation applied to the lot. In addition to this
pragmatic benefit, experience with the Directory Browser is beginning to provide
support for an important idea; namely, that, contrary to common practice, the better
interface is not the one that tries to provide the single best way to achieve something
but rather the interface which provides a variety of ways to accomplish something. The
user can then choose which mechanism suits him/her best under whatever
circumstance. The Directory Browser gives alternative ways to manipulate files in
addition to the ways already available, say by typing.

6.2.2 File Comparsion Presentation

In our previous report, we described, among other things, two programming tools:
the File Browser and the Heuristic File Comparator. The File Browser provides a way
to view a file in a window under user control. The Heuristic File Comparator compares
two versions of a file containing program source code in order to determine
differences. The comparison is structurally based rather than textually based as has
been the practice historically. In this reporting period, we have integrated these two
capabilities to provide simultaneous, coordinated browsing of the two file versions
including visual annotations of the discovered differences.

Comparison of two files requires the taking of a perspective under which one file
is considered the "old" file and one the "new" file. Thus as elements are matched in
the structures contained in a file, several cases may obtain: an element appearing
only in the new file is an insertion; an element only in the old file is a deletion.
elements which are matched in the two files but differ constitute a modification;
finally, an element in the old file may be permuted so as to reside in a new position
relative to its associated elements. Recall that embedding, another possible type of
change. is not handled by the comparator.

In figures 13 and 14, we see old and new versions of the function EQLENGTH,
which is a predicate which checks the length of a list. The body of the code is a
conditional (COND) with two clauses in the old version and three in the new version.
Although either of the first two clauses in the new version could plausibly be matched
with the first clause in the old version, the underline of the first clause In the new
version indicates insertion of the clause; a mark in the old version appears with a
count of one to indicate that a single structure has been inserted at this position in
the new version.

The first clause in the old version has thus been matched with the second clause
in the new version. Each clause has two elements and the second elements match
identically. The first elements are matched and are both lists. In this context, the
atoms "ILESSP" and "ZEROP" have been matched and highlighted to indicate
modification, the atom "N" in each list is matched without difference, and the atom "I"
in the old version has a line through it to indicate deletion - there is a
corresponding mark and count in the new version in this position to indicate the
deletion.

Finally. down inside the la3t clause in each version is a list beginning with the
atom "NTH." it is a function call with the arguments N and X in the old version and
the same arguments but in reverse order in the new version. The marks above these

A-58

(LAMBDA (X N)
(CONO ((N -)

(NLISTP X))
(T (AND (LISTP (SETQ X (NTH h W)

(NLISTP (CDR X))))))

Flure 13. Annotated browsing of the old EQIEZNGTH

(LAMBDA (X N)

((ro
(NLISn X))

(T (AND (LXSYP (SETO X (NTH)
(NLIsYP (CDR X))))))

Figure 14. Annotated browsing of the new tQLENGTH

A-59

program elements are arrows denoting permutation. The direction of an arrow
indicates in which direction one must look to find the corresponding element in the
other version.

In addition to the visual annotation, a set of commands has been added to the
File Browser for use when browsing an annotated file The commands have to do with
positioning the cursor in the file. One command searches forward from the current
position to find the next annotation in the file; a parallel command searches backward
to find the previous annotation. The third and final relevant command works only if
the current position is at an annotation; in this case, it finds the counterpart in the
other version of the file and sets the current position of that file to its annotation.

This last command is quite useful as it explicitly indicates which elements in the
two versions have in fact been matched by the Heuristic File Comparator. Moreover,
when numerous insertions, deletions, or long distance permutations cause
corresponding elements to fall in radically different parts of the respective files, this
command directs the user to the precise location of the matching element.

Integrating the File Browser and the Heuristic File Comparator has yielded a very
useful tool for software development. The augmented File Browser provides just the
right interface for the user to control inspection of the differences found between two
versions of the same file. In future work, we hope to extend this capability to all list
structured objects in the programming environment.

6.2.3 Code Presentation

One of the essential properties of computer programs that makes them so
valuable is the ability to provide flexible behavior. This flexibility comes at a cost of
program complexity, however, as flexibility is embodied in multiple execution paths.
Several related paths are often aggregated within a single body of code, say a
function or a procedure. and some branching control structure is used to decide
which path to choose based on available data. Moreover, branching paths can be
embedded within other branching paths. As a consequence. it can be very difficult to
discern the path of execution through a given piece of code in different contexts.

Figure 15 is an example of such a piece of code. This code is parameterized by
the two variables OBJECT and OPERATOR and is intended to return the name of the
function which performs the prescribed operation for the given object type. For
example. the PLUS operator for the INTEGER object is IPLUS. This code is implemented
with the case statement SELECTQ and, in fact, has SELECTQ's embedded in each of the
alternatives of the containing SELECTQ. The major SELECTQ branches on the object
type and chooses a minor SELECTQ which is particular to that object type. The minor
SELECTQ then distinguishes among operator types and locates the proper return value.

We have been working on a programming tool. which we call the Code Presenter.
that is intended to make code such as this more comprehensible. The idea is to
construct a hypothetical execution environment in which to view the code. The state
of this environment will then restrict the possible paths through the code. If all of the
state relevant to the code is defined, a unique path will be determined. If only a
partial state is defined, the set of possible paths will simply be reduced.

A-60

(SELECTQ OBJECT
(INTEGER (SELECTQ OPERATOR({PLUS (QUOTE IPLUS))

DIFFERENCE (QUOTE IDIFFERENCE))
TIMES (QUOTE ITIMES)>(QUOTIENT (QUOTrE IQUOTIEl:.T>)

EPRINT (QUOTE PR INT.INTEGER))ERRO OPERATOR .IS AN UNKNOWN OPERATOR FOR INTGE')">
(REAL.NU1BER (SELECTQ OPERATOR'

PLUS QUOTE FPLUS)4
DIFIERENCE (QUOTE FOIFFERENCE))
TIMES (QUO E FTIMES))
QUOTIENT (QUOTE FQUOTIENT))
PRINT (QUOTE PRINT.REAL.NUMBER))

(S PERAToERROR OPERATOR "IS AN UNKNOWN OPERATOR FOR REAL NUMBERS"))(LIST (SELECTO PRT
(FIRST (QUOTE CAR))
SECOND (QUOTE CAOR))
THIRD (QUOTE CADOR)
REST (QUOTE CoR))

(PRINT (QUOTE PR NTL.TSTr)
(ERROR OPERATOR "IS AN UNKNOWN OPERATOR FOR LISTS')))

(ERROR OBJECT -iS NOT A KNOWN OATATYPE"))

Figure 15. Code segment parameterized by the variables OBJECT and OPERATOR

A-61

(SELECTQ OPERATOR
(PLUS (QUOTE FPLUS))

DIFFERENCE (QUOTE FDIFFERENCE))
TIMES (QUOTE FTIMES))
QUOTIENT (QUOTE FQUOTIENT))
PRINT (QUOTE PRINT.REAL. NUMBER))
ERROR OPERATOR "IS AN UNKNOWN OPERATOR FOR REAL NUIMBERS"))

Figure 16. Code segment with OBJECT bound to REAL.NUMBER and OPERATOR unbound

(QUOTE FTDVES)

Figure 17. Code segment with OBJECT bound to REALNUMBER and OPERATOR bound to
TIMES

(SELECTO 05JECT
(INTEGER (QUOTE ITrES))

REAL. MBER (QUOTE FTMES))LIST (ERROR quote TD4qE$)""S AN UNoNOWN OPERATOR FOR LISTS"))

(ERROR OBECT "IS NOT A KNOWN OATATYE-"))

Flgure 18. Code seagcenL with OBJECT unbound 6nd OPERATOR bound to TIM4ES

A-62

In figure 15, we see the code segment presented in its entirety. This is the
presentation one gets when both of the variables OBJECT and OPERATOR have no value.
In figure 16, one sees the reduced code when the variable OBJECT has been bound to
REALNUMBER. This minor SELECTQ is the only relevant code segment under this
condition. Binding the variable OPERATOR to TIMES further restricts the code so that,
as shown in figure 17, only the final result, FTIMES, is left. Figure 18 shows yet
another interesting view of this code in the case that OPERATOR is bound to TIMES and
OBJECT remains unbound. Here each of the minor SELECTQ's has been reduced to its
respective case chosen by the value of OPERATOR and we see the major SELECTQ from
this perspective.

The Code Presenter has three facets. The first is the maintenance of the
hypothetical execution environment which forms the context for code presentation. The
second is the ability to simulate the code so that execution paths can be determined
according to the constraints of the execution environment. Finally, the code must be
presented to the user to show the results of the simulation. We discuss each of the
facets below.

There are two general cases in which a user might want to inspect code. The
first is when he/she merely wants to examine the code under different conditions so
as to provide insight on the structure of the code. The second is when the user is
actually running some code and wants to inspect it in the current runtime context.
The hypothetical environment and the simulation work together to support both cases,
When the simulation needs the value of a variable, it first looks in the hypothetical
environxuent to see it it has a valur there. If not. it then looks in the real execution
environment. This way the user can use the current context it he/she desires or can
override it with . hypothetical case. He/she can even make a variable bound in the
real environment appear unbound via the hypothetical environment. Functions are
provided to set and unset individual variables as well as to initialize the entire
hypothetical execution environment.

Simulation is used to determine which paths of code can potentially be executed
within a partially or wholly specified environment. The reason simulation is used is to
avoid any possible side effects the code might cause in the real environment were it
to be directly executed In addition, direct execution would not provide all of the
information we desire.

Simulation is achieved by examination of the function calls which are composed
to 'orm U.-! tarzet code segment. The Code Presenter is endowed with knowledge about
system functions so it knows which system functions it can simulate and how to do so.
For calls to user functions, t obtains the relevant function bodies and continues the

'mruleat~cn. For functions it cannot simulate. it simply goes no farther. Simulation of
computation also depends on the vaI1ues of variables, When these are unavailable, once
again the simulation must stop.

When simulation is complete and the information has been gathered about viable
execut~on paths, there still remains the problem of presenting this information to the
user. The most obvious and straightforward way and the one we pursued first is to
present an edited vermton of the code which retains only the viable execution paths.
This is the method shuwn in figures 16, 17. and i8.

An alternative way to present this information would be to show the entire code
segment but highlight or dirtinguish the viable paths For example. one might show

A-63

such paths in a different font which is larger or perhaps bold. The advantage of this
approach is that it shows the contrast between paths which are viable and those
which are not in context. We intend to investigate this presentation style in. the
coming months.

A preliminary version of the Code Presenter has been implemented and runs
successfully on examples such as that shown in the figures. In future work, we would
like to make it more robust by increasing its knowledge for simulation. We would also
like to try other schemes for presenting the results. Our initial work suggests that
this tool is a valuable one.

6.2.4 Graphical Debugging

Debugging any complex computer program has long been a difficult enterprise.
This is due to the fact that most of a program's behavior has no direct visible
consequences. The chain of events between the execution of an erroneous piece of
code and overt evidence of program malfunction is often a long and complicated one.
Consequently. the art of debugging is very much a case of detective work to infer the
true culprit from available evidence.

D-ebugiging techniques commonly involve modifying the target program in ways
that produce more overt behavior. These modifications act as probes into the code to
that more evidence can be gathered for the detective process. It is worth noting,
however. that since computers can execute millions of instructions per second, oie
simply cannot make every action of the program manifest. To do so would produc~e an
amount of information impossible to sift through, with most of it being useless, The
trick %it to make the right choice about what to shokw so that ont can home in on the
problem quickly and directly.

A com-mon debugging technique is called tracing. The idea is to plfice a probe at
a function call inttleefac, that is. a function can be modified so that information can
be presented to the programmer when the function is entered and when it is exited&
Typically. together with the function name. arguments are printed on entry and return
values ar* p~inted on exit Several functions can be modified this way to that as the
progrask is executed, one sees a (sparse) trail of the computation path.

Tracing is a valuablem technique. however. the lhaeor presentation of printed
information it provides fails to carry with it the abstract structure of the p.,ogram,
which is an important context ku which to interpret the information. Such a context to
pte-eented well by thb- Program Browser written for lnterlisp-41 and available iu
biterlisp Jericho.

The Prtograa Browser constructs and v~isually depicts a graph of functions and
their cailliag relationships. Figure 19 is an example for a programh named HANOI whicb
plays a visually animated version of the gar e Towers of Hanoi The nodes of the grept.
are function names and the children of 4~ny node represent functions called by th,
parent node. thus. in the example. HA.NOI io the top-level function and it calls, among~
others, OTHEllPSG. OitEATEDISMB. and HANOII. Under standard use, the graph is a
tree. so that if a functton is called by two ditferen.tofnuictons. it will appear as the
child of each and hence will be representLed by two nodes iii the tree. Such nodes can
be msarked with surrounding rectanigle$ to indicate multiple reprtientation as is the
case wit~h the function (IT1ERPEG.

A-64

OTHERPEG]

OREATEDISKBM

CREATEPEGS---•H BOX

MAKEHANOIWINDOW

HANOI TH'PG

"•HANOIl•TRO

TRACK

BASEDISKBM

MOVEDisKMOVEDSKI<C'AVEDISKM-EBASE

G'ET PEA-T.AT

CREATEDtSK$..

Figure 19. Program Browser for the program HANOI

"A-65

In addition to its visual presentation of program structure, the graph nodes of
the Program Browser are active. Using the pointing device, the user can select a node
representing a function for three purposes.

"o Printing, for which the source code of the selected function is printed in a
window

"o Description, which presents the results of an analysis of the selected
function in a window; functions called and variables bound or used freely
are examples of such results

"o Editing. which invokes the editor on the selected function

We have augmented the Program Browser with a set of capabilities, most notably
a tracing facility, so that it can now act as a user interface for program debugging.
We call this tool the Graphical Debugger.

When the debugging capability is invoked, every function represented by a node
in the Program Browser graph is modified to participate in a dynamic graphical trace.
When a function is called, its node is highlighted to show execution is within that
function. When it calls a subsidiary function, its highlighting remains but is diminished
and the new function is highlighted. Thus, at any given instant of time, a partial
branch of the tree is distinguished and. in fact. is a representation of the execution
stack.

In Figure 20, one sees a snapshot of HANOI with the path HANOI, HANOIL,
MOVEDISK, and MOVEDISKI marked. MOVEDISKI was the function being executed as a
substep of MOVEDISK when the snapshot was taken. When the program is in progress.
patterns of activity can be discerned as the highlighting moves around the graph. In
this example, one immediately notices that after the program is Initialized. all
execution is localized in the subtree rooted at HANOIl and. within that, predominantly
in the subtree rooted at MOVEDISK.

The dynamic trace imposes only a moderate overhead on execution speed so that
the highlighting moves around the graph rather rapidly which gives a nice global sense
of program activity. However, the pace is too brisk to allow discrimination of intricate
ordering relationships. As a consequence. we added the ability to induce a pause as
each function is entered and exited. The duration of the pause can be varied
dynamically so that activity can be slowed a lot or a little. This allows toe user to
quickly get to the interesting program component and then slow things down for
detailed inspection. Indeed, the pause can be made into a stop so that the program
can be single-stepped.

Another way to control execution for debugging purposes is to impose a stop or
break when a particular function is entered. This way, the program can run at full
speed up to the point of interest. The user can then single-step or run slowly as
he/she desires. The Graphical Debugger provides an interface for establishing and
identifying such breaks. The user can request a break and then point to a node and
the represented function will thereafter stop each time it is entered. The user can
similarly request to remove a single break. Alternatively, the user can request to
remove all current breaks. Yet another command wili highlight all the nodes currently
representing broken functions.

A-66

OTHERPEGI

CREATEDISKWM

CREATEPEGS---HDBOX.
1 ,4

0

0,ATEDI•SKS TG~

Figure 20. Graphical Debuger for the program HANOI

A-67

I •

Above, we mentioned that trace facilities usually print arguments and return
values as functions are entered and exited. The Graphical Debugger does not do this
routinely. Instead, the user can ask for such information for the currently highlighted
node. If that node gained control because it was just called, then its arguments are
printed. If the node regained control because a function it called just returned, then
the return value of the called function is presented. Perhaps we should provide the
option of presenting such information for selected nodes automatically so that the
user is not required to make a request every time.

Finally, thie debugging capability also presents some other information displayed
as numbers above and below the nodes in the graph as can be seen in Figure 20. The
number above a node is a recursion count which denotes how many times the function
has been invoked without yet returning. The node HANOI1 in the example has been
called five such times. The number below a node counts how many times the function
has been called at all. One sees that SHADEBOX has been called by CREATEDISKS in
the bottom of the graph fifteen times.

The Graphical Debugger appears, from prelimintry use, to be a convenient
Interface with which to develop programs. Seeing a dynamic trace provides an
interesting and sometimes insightful perspective on program execution. The ability to
control that execution via reference to functions through their representative nodes
is efficient. More experience with this package will indicate how it might be improved
and what long-term utility it can provide.

A-68

7. HERMES MAINTENANCE

During this reporting period the work on the Hermes mail handling program was
routine maintenance.

A-69

