AD-A203 845

IMe FILE CopY o ¢«

RADC-TR-88-159, Vol Il (of two)
Final Technical Report
August 1988

RESEARCH IN DISTRIBUTED
PERSONAL COMPUTER-BASED

: INFORMATION SYSTEMS A
‘Semi-Annual Technical Report No. 5
BBN Laboratories Inc. . 4
| §E§?§i 23?5%@;; ;;esearcn Projects Agency sEDI}::ggD
0 FEB 1089

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing thas officlal policies, either expressed or implied, of the Detense
Advanced Resesrch Projects Agency or the U.S. Government.

ROME AIR DEVELOPMENT CENTER
Air Force Systems Command
Gritfiss Alr Force Base, NY 13441-5700

1 89 2 9 180

This report has been reviewed by the RADC Public Affairs Division (PA)
and is releasable to the National Technical Information Service (NTIS). At
NTIS it will be releasable to the general public, including foreign nations.

RADC-TR-88-159, Vol II (of two) has been reviewed and is approved for
publication.

APPROVED: /4///// ¢ (Pler (70 2

THOMAS F. LAYRENCE
Project Engineer

N\

A~
{:/ &+ f‘y ";I .)
APPROVED: ™\ mé i Aé/_
RAVMOND P. URTZ JI&,
Technical Director
Pivectorate of Command & Control

SERSY/N T

JOUN A, RITZ
Directorate of Plans & Programs

If your address has changed or if you wish to be removed from the RADC
mailing list, or if the addressee is no lounger employed by your organization,.
pleasc notify RADC (COTD) Criffiss AFB NY 13441-5700. This will assist us
in maintaining a current mailiag list.

Do not return copies of this report unless contractual obligations or notices
on a specific doucment require that it be returned.

RESEARCH IN DISTRIBUTED PERSONAL COMPUTER-
BASED INFORMATION SYSTEMS Semi-Annual
Technical Report No. 5 Vol II (of two)

Harry C. Forsdick
Robert H. Thomas

Contractor: BBN Laboratories Inc.

Contract Number: F30602-81-C-0256

Program Code Number: XT10

Effective Date of Contract: 2 July 1981

Contract Expiration Date: 14 July 1985

Short Title of Work: Research in Distributed Personal Computer-
Based Information Systems

Period of Work Covered: October 83 - March 84

Principal Investigator: Robert H. Thowas
Phone: (617) 873-3483

RADC Project Engineceer: Thomas F. Lawrence
Phone: (315) 330-2158

Approved for public release; distribution unlimited.

This resecarch was supported by the Defenee Advanced
Research Projects Agency of the Department of Defense

and was monitored by Thomas F. Lawrence, RADC (COTD),
Criffiss AFB NY 13441-5700 under Contract F30602-81-C-0256.

UNCLASSTFIED

SECUR! TFICATION OF THIS PAGE
Form Approved
REPORT DOCUMENTATION PAGE OMB No. 0704-0188

Ta, REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS

UNCLASSIFIED N/A

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION / AVAILABILITY OF REPORT

[A)

'2%. DECLASSIFICATION / COWNGRADING SCHEOULE Approved for public release;

N/A distribution unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

5723 RADC-TR~88-159, Vol II {(of two)

6a. NAME OF PERFORMING ORGANIZATION 6. ?I;Flgi, Isvfg,a;m. 7a. NAME OF MONITORING ORGANIZATION

& {1)

BBN Laboratories Inc. Rome Air Development Center (COTD)

6. ADORESS (City, State, and ZIP Code) 7b. ADDRESS (City, Scate. end ZIP Code)

10 Moulton Street

Cambridge MA 02238-0001 Criffiss AFB NY 13441-5700

8a. NAME OF FUNDING / SPONSORING 8b. OFFICE SYMBOL] 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

QRGANIZATION Defense Advanced (i applicable)
Research Projects Agency F30602-81~C-0256
8. ADDRESS (City, State, and 2P Code)) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
i‘?? ":1“3AB;‘2"3’ 0 " ELEMENT NO. | NO. NO ACCESSION NO
n
riington 627028 D224 o1 01

11. NTLE (inciude mmo?c'muﬁmiw
RESEARCH IN DISTRIBUTED PERSONAL COMPUTER-BASED INFORMATION SYSTEMS Semi-Annual Technical

S
"2 iensonu. AUTHOR(S)

tiarry C. Foradick, Robert H. Thomas

133, TYPE QF REPORY 11 TIME COVERED 4. DATE OF REPOART (Year, Month Day) ['% PAGE COUNY
Final from Oct 83 ro Mar 84 August 1988 80
T6 SUPRLEMENTARY NOTATION —
NIA
V7 COIATI COOES T8 SUBITCT TERMY (COnTunad O revarse 11 exensary and iOeatily Dy BIOCk AUMDE)
FIELD "~ GROUP SUB.GROUP Hultd Media .‘teange Systm
12) Digtributed System
Distributed Personsl Computer Envi{ronment

T9 AUSTRALT (COMINGE On Feverse 17 necetsary snd iGentifly By BIOCE AGmber)

- The primary focus of the personal computer task ares s the developaent of an elsctronic
wessage system called Dismond, which will run in & distributed personal computer environment.
The message system will: support a vser interface that explofts the capabilicies of advanced
single-user computers, handle messages that contain data other than text, have a dietributed

architecture, operate in a sccure fashion, permit use fros a variety of user access points,
and have a transportable implementation.

} e Y ro

fw

10 OB TRRUTNION (AVATLAUITY OF ABSIRACT 21 ABTRACT SECUMTY CLASSIHICATION
Qustassrapuncanted £ sane as set) D¢ Lisay ULCLASSIPIED
133 NAME OF RESPONVRLE 'NDWVIDLZAL 230 TELEPHONE (Include Area Code) [22c OF#:CE $¥YMR0L
Thomas F. lLawrence (315) 310-2158 RADC (COTD)
DD Form 1473, JUN 88 Prewous eGitions ate obsclete SECURITY CLAYSIICANON OF THIp PAGE

UKCLASSIFIED

TABLE OF CONTENTS

Page
1. INTRODUCTION A-1
1.1 Project Overview A- 1
1.1.1 Distributed Personal Computer Systems A-1
1.1.2 Support for Strategic C3 Experiment A- 3
1.1.3 Hermes Maintenance A- 3
1.2 Summary of Recent Project Activity A- 3
1.3 Organization of this Report A-5
2. THE DIAMOND MULTIMEDIA MESSAGE SYSTEM A- 7
2.1 Initial Release of Diamond A-9
2.2 Authentication Manager o . _A-9
2.3 Document Manager A-9
2.3.1 New Features A- 9
2.3.2 Multiple Document Managers A- 10
2.3.3 Document Cache A- 11
2.3.4 Document Store Scavenger A- 11
2.4 Access Point A- 12
2.5 Multimedia Document Editor: EditDoc A- 13
2.6 Import/Export Manager A- 16
2.7 Printer Manager A- 17
2.8 Porting Diamond to the Sun Workstation A- 18
2.8.1 Interprocess Communication A- 18
2.8.2 VWindows .A- 19
2.8.3 Mouse A- 19
2.9 Papers and Presentations Accession For 20
NTIS GRA&I
DTIC TAB
3. THE JERICHO JADE SYSTEM Unannounced O A- 21
Justification _ _______ |
3.1 Performance Improvements By - ﬁ- gi
3.2 Synchronization Dist -
3.3 WindowSystem stribution/ A- 22
3.4 Improvements to Pascal Debugger Availability Codes A- 22
Avail and/or
Dist Special
Best Available Copy \ [H
.

4. THE JADE PROGRAMMING ENVIRONMENT

4.1 Network Protocol Software and IPC
4.1.1 Internet Protocol (IP)
4.1.2 File Transfer Protocol (FTP)

4.1.3 Interhost Interprocess Communication (IPC)

4.2 Software State Database
4.2.1 Software Distribution
4.2.2 Concurrency Control
4.2.3 Distributed Architecture
4.2.4 User Interface
4.2.5 Future Work

4.3 IPC Moaitoring Facility
4.3.1 System Design
4.3.2 System architecture
4.3.3 Current Status

JERICHO INTERLISP

5.1 Garbage Collestion
5.2 Catch, Throw, and Unwind-Protect
6.3 Multiple Process Capability

ALEPH

8.1 Content Addressed Documentation
8.1.1 The Interlisp Advertiser
6.1.2 Conclusions

6.2 Programming Tools
0.2.1 Directory Browser

6.2.2 File Comparsion Presentation

8.2.3 Code Presentation
8.2.4 Graphical Debugging

7. HERMES MAINTENANCE

A-ii

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure
Figure
Figure
Figure
Figure

Do

Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.

Pigure 18.
Figure 7.
Figure 18.

Figure 19.
Figure 20,

LIST OF FIGURES

The Distributed Architecture of Diamond

The graphical display of an interprocess message

The time stamps along an interprocess message path

The component processes of the monitoring facility

AD hoc page of the Interlisp Advertiser frame 1

AD hoc page of the Interlisp Advertiser frame 2

AD hoc page of the Interlisp Advertiser frame 3

AD hoc page of the Interlisp Advertiser frame 4

AD hoc page of the Interlisp Advertiser frame §
Obtaining Help: Relevant Functions for the FONTS window
Obtaining Help: How was the DRAWingELLIPSEs window generated?
Obtaining Help: The effects of SOURCETYPEs and OPERATIONs
Annotated browsing of the old EQLENGTH
Annotated browasing of the new EQLENGTH
Code segment parametcrized by the variables OBJECT and
OPERATOR
Code segment with OBJECT bound to REAL.NUMBER and OPERATOR
unbound
Code segment with OBJECT bound to REAL.NUMBER and OPERATOR
bound to TIMES

Code segment with OBJECT unbound and OPERATOR bound to TIMES

Program Browser for the program HANOI
Graphical Gebugger for the program HANO!

A-iii

A- 8
A- 38
A- 38
A- 39
A- 49
A- 50
A- 50
A- 51
A- 61
A- 52
A- 53
A- 54
A- 59
A- 59
A- 81

A- g2
A- 62
A- a2

A~ a5
A- 6%

1. INTRODUCTION

This 1s the fifth semi—ennual technical report for Contract No. F30602-81-
C~0256. entitled "Research 1n Distributed Personal Computer Based Information
Systems.” It covers work done between October 1983 and March 1984. The first four
semi—annual reports are BBN Reports 4924, 5301, 5395 and 5722.

1.1 Project Overview

The tasks for this project fall into three broad areas:

1. Research in distributed personal computer systems,

[V

Support for the Strategic C3 Experiment,

3. Maintenance of the Hermes electronic message sysiem.
The project objectives in each of these areas are discussed briefly below.
1.1.1 Distridbuted Personal Computer Systems

The primary focus of the personal computer task area is the development of an
electronic message system, called Diamond, which will run in a distributed personal
computer environment. The message system will

o Support a user interface that exploits the capabililies of advanced single-
user compulers

o Handle messages that conlain data other than text (e g. images. line
drawings, speech)

Have a distributed architecture

[}

©

Operate in a secure fashion
o Permil use from a vatiety of types of user access points

o Have a transportable implementation

The personal computers used in the initial implementation of the the Diamond
message svstem will be Jericho compuler systems Portability will be demonstrated by
moving the system Lo another comparable personal computer system.

Development of the message system requires work i & numbder of supporting
areas. including

1 Basic System Support. Diamond will be developed as an application program
that executes on & collection of personal computers and shared resocurce

A-1

computers interconnected by a high bandwidth local network. Diamond, as
well as other applications, requires the support of "operating system” level
software. The purpose of this software is to make the Jericho personal
computer usable as a sophisticated, autonomous, single-user computer
system. Development of the basic system support involves the design and
implementation of storage management functions, bit map display functions, a
multiple process capability, an 1nterprocess communication facility, and
support for the standard DoD network communication protocols.

Input/Output Support for a Variety of Data Types. The Diamond message
system will be designed to handle messages composed of a number of types
of information, including text, facsimile, graphics, and speech. This cepability
for multiple media communication will require the development of software
that supports the input and output of these different types of data, and. in
some cases (speech. sound and facsimile), system engineering to interface
the personal computer systems with hardware required for the input/output
of this data.

Distributed System Support: Diamond will execute on a distributed system
architecture Diamond and other applications developed for this environment
will require supporting software designed to enable personal computers to
function effectively in a multiple-compuler network environment. This will
tnclude the develecpment of a nelwork interprocess communication facility, a
distributed file system supported by personal computler storage resources
and dedicated file server computer resources, means for accessing devices
that are remote from & personal computer as if they were local. a user
authentication rechanism, and access control mechanisms to provide for
controlled sharing in s distributed environment. The soltware developed here
will run 1n part on the personal compulers and in psrt on the shared-
resouyrce computers.

Programming Language Support. The Pascal programming language will be
used for much of the initial programming required for the Diamond message
system development. In addition. we expect tc use Interlisp for some of the
user interface experimentation and research. Therefore. a certain amount of
effort will be required to ensure that the implementations of Pascal and
Interlasp for the Jericho computer and their supporting environments are
adequate Furthermore. il is important that software modules writien in
Pascal and Interlisp be able ‘o be used together in personal computer based
systems such as Diamond. Currently this sort of inleroperability is not
possible, and it 15 not clear to what extent it can be achieved.

Progranming Environments Diamond will be a reasonably large system. It will
be built by a team of implementers. of which each member will use a
personal computer for software development. To facilitate implementation of
systems that will be buill like Diamond, we will design. implement. and
experiment with an application development environment., called the Jade
environpient, that is intended to support the construction of distribuled
application programs and that is capable of supporting pregramming projects
large enough to require nany programmers. each supported by a personal
compuler

We will use a new programming environment. called Aleph. to explore
extensions to the Interlisp environment that exploit features unique to
personal computers of the Jericho cless. This will involve experimental
investigation o the areas of graphical debugging. facilitation of routine

A-2

bookkeeping activities. techniques for presenting multiple views of systems,
vocal annotation of textual documents, and content-addressed
documentation.

1.1.2 Support for Strategic C3 Experiment

The objective of work in this area 1s to support the Strategic C3 Experiment. a
technology transfer and evaluation project being conducted by DARPA and the
Strategic Atr Command. A number of contractors are working on this experiment with
ARPA and SAC Our role, at present. 1s principally to adapt the Hermes electronic
message system to the needs of SAC users who are participating in the experiment.

In particular, we are working to.

1. Modify Hermes so that it can operate with a full-screen editor, such as
EMACS or WE, in order to provide full-screen editing and composing of draft
messages as an integrated Hermes {unction.

2 Extend the data management capabilities of Hermes to provide a template-
driven report generator capable of summarizing the information contained in
groups of message/records.

3. Investigate the problem of softwcre ads for scheduling personnel and
equipment. Develop algorithms and experimental software to support these
scheduling tasks and experimentally study user inlerface and implemeniation
1s5ues.

The work tn this task area was completed during the previous reporting period.
Consequently. thus task erea is not discussed in this report.

1.1.3 Hermes Maintenance

The objective of Lhis task Iy o provide software maintenance for the Hermes
¢lectronic message system This includes correcting probiems that would prevent
eftfective use of Hermes, should any arise. installing Hermes on new hosts at the
direction of the ARPA office. ond making improvements to the Hermes software.

1.2 Summary of Recent Project Activity

Our accomplishments during this reporting period include the following

o First Release of Diamond The Documenl Manager. Aulhenlication manager
and User Access Point software have been integroted inlo the fHirst release
of the Diamond system.

o Document Manager The implementalion of the Document Mansger progressed
with the introduction of folders. access contirol and the ability to send
documents from onc user to ancther In addition, we implemented the abilily
for multiple docv ments managers to share the load of storing documents and
built a scavenger _»oi to reconstruct broken Document Manager databases.

A-3

o Authentication Manager The implementation of the Authentication Manager
has continued Operations necessary to support the first release of Diamond
have been implemented.

o Access Point. We have completed the 1initial implementations of the four
parts of the Diamond User Access Pomnt. These include the Coordinator
tinitial point of contact with Diamond), ShowFolder {for manipulating folders),
EditDoc (for viewing and editing documents). and ShowRegistry {for managing
information about users and groups of users)

o Document Editor We have completed the design and :irutial implementation
of a new multimedia document editor called EditDoc. With this new editor,
Diamond users will be abtle to view and compose documents that contain text,
graphics. scanned 1mages. voice and spread-sheet chartls ntegrated
together so that they appear to he part of one composite object. We hope
that EditDoc will permit users to compose documents that have the same
expressive power as journal articles or books where text, figures and
captions are integrated into one cohesive docuument.

o Workatation Portability Target. Having selected th: Sun Workstation as the
target for porting Diamond. we have designed a strategy to move unmodified
programs from the Jericho development environment to the Sun Workstation
Environment This involves the developmenl of a PCode to MG68000 assenmbly
code transiator (including a peep-hole optimizer) as well as some low level
routines for run~tme support We have decided to port the Diamond
docunment editor. EditDoc. s a test of this strstegy.

o Nelwork-wide Interprocess Communication. Work contihued on the Network-
wide [PCT facility in the ares of limeouls of interactions between Damond
componenls and the ability to run an operational configuration in parellel
with one or more debugging configurations. :

¢ Sofiware State Database During this reporting period the mtiai
impiementetion of the Software State Database was completed. and the
Dismond group began using the system for all their software distribution
needs

o IPC Monitoring We heve completed the imtial design of the IPC montoriag
focility and have begun work on the implementation of its low-level
mechanisms

o Ilnterlisp: Work conlinued on developing the Jericho Inlerlisp system in the
areas of garbage collection, non-local exiting facilities and multiple process
capabihities

o Aleph Work continued in the two major thrusts of Aleph Coatent Addressed
Docunrenlation and Programming Tools

These items. and others. are described in more detai) in the following sections of
this report

A-4

1.3 Organization of this Report oot ﬂ“/’J

‘L_.-..—T——'

k in the task areas 1dentifie\ in Section
on the Diamond multimedia . Ssystem and

The rest of this report describes our wor
1.1 1n more detail “Section 2 discusses work

related activities. Work on Jade, the Jericho Pascal operating system, is described in
Section 3 Section 4 presents our activities related to the development of the Jade
programming environment. Work on the Interlisp system for the Jericho computer is

described 1n Section 5. Section 6 discusses our work on Aleph. Section 7 describes
recent Hermes maintenance activity. ‘/:/ﬁ)

J A
.

2. THE DIAMOND MULTIMEDIA MESSAGE SYSTEM

Dlamond. is a distributed system implemented by a variety of components which
together provide a single coherent service. The components of Diamond are:

o User Access Point: The user's main contact with Diamond. The Access Point
1s composed of several tools including:

* Coordinator: All of the actions of the Access Point are directed by

this tool. The user can always inquire about the state of Diamond by
interacting with the Coordinator.

* Document Presenter/Editor: Documents are viewed and composed using
this tool. The Document Editor embodies all of the protocols concerning
Document and Atomic Object Representations.

* Folder Presenter: Folders of documents and other folders are viewed
and manipulated by the Folder Presenter. This tool also interacts with
the Document Presenter/Editor tool to show or compose documents.

* User/Group Registry Presenter: The User and Group Databases (see
below) can be examined and modified using this tool.

o Authentication Manager: This component maintains information about
authenticated users and processes of a Diamond cluster as well as long term
information about user preferences and groups of users.

o Document Maneager: Documents and folders of documents and other folders
are managed by this component. When a user saves & document, the
Document Manager accepts the document and stores it in a Folder for later
retrieval.

o Device Managers: Various devices such as Image Scanners and Printers are
managed by Device Managers.

o Import/Export Manager: Documents sent to recipients outside a Diamond
cluster are Exported by this component. Likewise, documents originating
outside a cluster which are addressed to a recipient supported by the
cluster are imported by the Import/Export Manager. This component takes
care of any protocol conversions that may have to occur between the
standard DARPA Internet Multimedia Protocol and the protocols used
internally by Diamond.

o Internet Gateway: Communication with hosts on the DARPA Internet is done
by use of the Internet Gateway.

Figure 1 illustrates the architecture of a Diamond cluster.

Preceding Page Blank

A-7

Diamond Distributed Architecture

- A ot 204
R Gy T

Figure | The Distributed Architecture of hanond

A-8

2.1 Inpitial Release of Diamond

During this reporting period we completed an initial version of Diamond that runs
on the distributed architecture described akbkove. Initial implementatiens of User
Access Point software, including a multimedia editor and tools for displaying folders
and the user database, of the Document Manager, and of the Authentication Manager
have been compieted. With this version, user documents are stored in the Diamond
Document Store, and are retrieved for presentation by the user's workstation access
point. The access control mechanism designed to assure the privacy of user
documents has been implemented. It is an access control list mechanism that requires
cooperation between the Authentication Manager and Document Managers. While manv
improvements aire required to make Diamond a robust and easy to use system.
completion of the initial version is a significant milestone.

Since it became operational, the project staff has been using Diamond on a daily
basis. As a result, a number of bugs have been identified and corrected, and a number
of improvements, primarily to the Access Point tools and multimadia a2ditor 2a.e bren
made.

Subsequent sections of this report describe the status of the various Diamond
components shown in Figure 1.

2.2 Authentication Manager

The initial implementation of the Authentication Manager hes been completed. All
of the main operations on the three databases (Access Control, Principal and Group
Databases) supported by the Authentication Manager have been implemented. The
Autlhientication Manager i1s now used by the Document Manager and User Access Point
tools in the released version of Diamond.

The Access Point needs to associate profile information with each user. For
example. one user preference is the default font to be used by the various components
of Diamond. A logical place to keep this information is with the user's entry n the
Principal database. To do this, we have implemented user parameters for principals.
Since similar information may need to be associated with groups, user parameters were
alsc added to the Group database. User parameters are Name-Value pairs associated
with a record in a database. Since we cannot anticipate all of the possible pairs that
will be used. the representation of the pairs is extensible and expandable. The OP
data representation (see section 4.2 of BBN Report No. 5722) fulfills these
requirements and is used to represent user parsmeters. Thus user parameters are
Name~Value pairs stored in the principal's or group’'s record in the OP data
representation.

2.3 Document Manager

2.3.1) New Features

During this perind, we continued the implementation of the Diamond Document
Manager described in the previous semi-annual report. Several important additions
were nade to the Document Manager.

1. Folders were added to the document store. Folders contain references to
other folders or documents: these references are called citations. Additions
were made to the Document Store Manager to handle requests to add, delete,
or modify citations in folders.

2. Access control was impiemented. Every request to perform an operation on
an object 1n the document store is access controlled. Examples of these
operations are: creating a folder or document, reading a folder or
document., sending & document to other users, and adding, deleting or
modifying citations in folders. Associated with each object in the Diamond
document store, there 1s a list of Diamond principals and the operations
that they are allowed to perform on that object. When a request to perform
an operation is received by the Document Manager, the Document Manager
contacts the Authentication Manager to obtain the Diamond principal
associated with the process making the request. The Document Manager
then checks that principal's access against the list of principals and access
rights associated with the object and performs the operation only if that
principal is allowed to perform the requested operation.

3. The ability to send documents as messages was added to the Document
Manager. When an user is created in the Diamond syistem, two folders are
created for the user, a root folder which contains all the other iolders
belonging to the user and an InBox folder, which is used to receive
messages. A document is sent to other Diamond users as follows. The
Documsnt Manager parses To and Cc lists associated with the document in
o .er to obtain the names of the recipients. It then contacts th:
Authentication Manager to obtain the UID of the InBox fclder associated with
each of the recipients. Finally, it places a citation for the document in
each 'nPox folder. Note that the documents are never copied. The Document
Manager can curr:ntly send messages to other Diamond users; it will be
expanded to send wessages to users outside the Diamond system and to send
mesrages lo groups of Diamond users.

2.3.2 Multiple Docunent Ma.isgers

During this period, we a.s0 began work on multiple Document Managers. A
Diamond cluster will centuin one or more Document Managers, each running on a
different machine and managing . dorument store on that machine. Muliiple Decument
Managers will eventually e used both for load balancing. i.e. a folder or ¢acument will
be stored on oue of several document stores to limit the load on any ore machine,
and for reliability, i.e. gey folders ana documents will be stored in mcie than one
docunent slore to make them more readily available i~ the event of nachine crashes.

The Diamond document stor: {is organized as follows. There iz a root folder
which 15 the hase of the Diamond hierarchy of folders. The root foliler contains a
sitation for the root foider of cach Diamond user, the root folder ot :ach Diamond
user contains a citation for that user's InBox folder and for any sad4itional folders
that the user chooies to create in their root folder The user can create folders in
their root folder or in any folder in their root folder. thus, the user has complete
control of their own hierarchy of folders.

There are currently two Dowument Managers running in our Diamond cluster.
These currently implement ioad balancing., but not replication of folders and

A-10

documents. The loed balancing is implemented as follows. One document store contains
the Diamond root folder. When a new Diamond user is created. the Authentication
Manager, which creates new users, contacts each Document Manager to obtain the size
of that manager's document store. The Authentication Manager then creates the
user's root folder 1in the smallest document store; any folders subsequently created in
that user's root folder are created on the same document store. In other words, load
balancirg is achieved at the Diamond user level, some Diamond users have all of their
folders on one of the document stores and some have all of their folders on the other
document store. Note that where their folders are located is invisible to the user.

Implementation of multiple Document Managers required several enhancements to
the Document Managers. For example, when documents are sent as messages between
users whose folders are on different document stores, 1t is necessary to add a citation
for a document on one document store to & folder on another document store. In
order to support multiple Document Managers, the Document Managers were modified to
generate requests to and process requests from other Documenl Managers. Examples of
these requests are adding and deleting citations from folders and modifying reference
counts of objects stored on one document store and referenced on another document
stare.

During this period, we also studied the problem of load balancing on a more
detailed level, 1.e splitting one ucar's folders across multiple document stores, and the
problem of replicating folders and documents. We plan to add both these features to
the Document Manager.

2.3.3 Document Cache

In order to improve performence of the Diamond system, we implemented a local
cache for the document store The cache is maintained at each access point and
contains the folders, documents, and atomic objects most recently referenced from
that access point. Whenever an user requests that a folder, document or atomic
object be retrieved. the access point software checks the contents of the local cache.
If a document or an atomic objecl is requested and the cache contains i, the
document or atomic object is simply read from the cache. Documents and atomic
objects are immutable, thus a copy of the object in the local cache 1s guaranteed to
be the same as the copy in the document store. If a folder 18 requested, then the
access poiit software contacts the document store to determine if the cached copy is
up-to~date. If it 13 up-to-date. the cached copy 1s used, if iL is not, the document
store returns the up-to~date copy of the folder and it is stored in the cache. A tool
was implemented to control the size of the cache (i.e. the number of disk pages used
by the cache) by deleting the least recently referenced objects from the cache. This
tool is typically run periodically by a background process.

2.3.4 Docunment Store Scavenger

We implemented a scavenger for the document store. The scavenger is used to
check for document store inconsistencies caused by software bugs or hardware
crashes and to correct them. The scavenger reads every folder and document in the
document store and constructs a table of the object’s UID, objects referen:ed by the
object, and objects that reference the object. This table is compared to the document
store database, and the database entries are corrected to match the table. The
scavenger can handle multiple document stores. Currently, the Document Store

A-11

managers must be stopped in order to run the Scavenger. We plan to improve the
scavenger so that the document store can be dynamicelly scavenged while the
Document Store managers are in use.

2.4 Access Point

As reported in the previous semi—annual technical report, users access Diamond
through Access Points. Diamond is designed to accommodate access points with a
range of capabilities, from powerful personal computers connected to high performance
local area networks ("high end" access points) to alphanumeric terminals with modems
("low end” access points). In this contract, we have been focussing on the "high end”
access point design and implementation. During this reporting period, we have
implemented the various parts of the Access Point for the Jericho. The implementation
has closely followed the design document that was described in the last report. The
Access Point software will be ported to Sun Workstations later.

There are five principal parts of the Access Point visible to the user:

1. Session management functions: Login. Logout, establishing user environment
from profile, status., and cleanup.

2. Folder management functions: Viewing folders, citation manipulation, and
access control to folders and documents.

3. Document management functions: Viewing and editing documents.

4+ Principal and Group management functions: Viewing, editing. and ercess
control of Principals and Groups.

5 VUser Profile management functions: Viewing and editing user profiles.

To achieve the goals of the Diamond user interface, we have adopted a multi-
process architecture that allows multiple concurrent tasks to occur. The Access Point
15 made up of a cnllection of tools (Folder Presenter. Document Presenter,
Principal/Group Presenter) and a Coordinator program which provides session
management functions and coordinates the activities of the various access point tools.
Each tool runs in a separate process and window to allow maximum user llexibility,

The Coordinator program is the controlling element of the user interface. it
principal responsibility 1s managing the display and the various windows used to
present and edit documents and other objects. Since users gain access to the system
by invoking the coordinator, the coordinator is called Diamond. The coordinator also
provides login control (including re-authentication in the event of a failure) and
profile management. The user can tailor Diamond to suit his/her own needs. Using
profile preferences. a user can control the area of the display surface to which
Diamond will confine its operations, the size and shape of windows used to display
folders and documents, the formal used to display citations in folders, the fonts used
in various situations, and a variety of other aspects of Diamond operations. A user's
preferences are stored in the user’'s (principal) record in the User Registry, and they
are obtained from the Authentication Manager when the user logs in.

A-12

The library APLib was developed to support common functions in the access point
tools. APLib interacts with the Coordinator to perform most of the functions it
provides. Among the functions is a set of global commands (a menu hierarchy) which
is available from any access point tool.

The folder presenter tool (called ShowFolder) provides the user with the ability
to display and manipulate the contents of folders. A number of features are under
user control through preference settings, including: the display format of citations,
the set of citations displayed, and the order of citations displayed. ShowFolder also
provides the user with an access control list editor.

The document presenter tool (called EditDoc) is described in the next section.

The principal/group registry presenter tool (called ShowRegistry) provides the
user with the ability to display and manipulate the principals (i.e., the list of groups a
principal belongs to), groups (i.e., the list of principals in a group or the list of
groups a group belongs to), the principal registry (i.e., the list of principals), or the
group registry (i.e., the list of groups). ShowRegistry also provides the user interface
for creating new principals and groups.

The initial version of the complete access point became available in February,
1984, and has received steady use since. We are continuing to improve its
performance, its functionality, and its ease of use.

2.5 Multimedia Document Editor: EditDoc

We have completed the design of a new multimedia document editor for Diamond
called EditDec. Earlier in the project we developed a multimedia editor. known as
MMEdit, which allowed us to experiment and test jdeas concerning multimedia editors.
One of the main conclusions to come out of the MMEdit experiments is that a
multimedia editor should support documents in which all of the various multimedia
elements are laid out and directly visible on one display surface. Such an editor
would simulate a single piece of paper (or perhaps a sequence of pages) on which
different multimedia elements have been placed. To do this properly. each of the sub-
editors for the different media types must observe a common set of conventions and
implement a set of generic operations.

EditDoc has been designed based on the conclusions from the experiments with
MMEdit. With EditDoc, Diamond users will be able to,view and compose documents that
contain text, graphics, scanned images, voice and spread-sheet/charts integrated so
that they appear to be part of one composite entity. We hope that EditDoc will pernmit
users to compose documents that have the same expressive power as)ournal articles
or books where text, figures and captions are integrated into one cohesive document.

In EditDoc, a document is a collection of elements (of possibly different media
type) each of which is located at a particular position on a quarter plane (extending
infinitely to the right and down) and occupying a specified width and height. In most
instances, users limit themselves to producing documents which have conventional
widths. The window in which EditDoc displays the document is a viewport on the
quarter plane and may be positioned, using scroll bars., anywhere on the quarter

A-13

plane. Currently, we do not allow elements to overlap. although there is no reason
why they could not. We have not addressed the 1ssue of pagination of documents in
the design of EditDoc, although this does not appear to be a difficult problem and will
be dealt with in the future. '

One of the goals of MMEdit was to be as extensible as possible. if & new
applicaticn program was developed, 1t was possible to include the display of that
program as part of a document. With such "general purpose” elements, the presence
of the element was indicated with a text caption and the object could be viewed by
asking for more detail about the caption. More detail would be provided by creating a
separate window and then running a separate application program on a date file that
was included in the message In this way, spread sheets were included in MMEdit
documents by invoking the spread sheet program. Any other useful display produced
by an application program could be included in a2 document. Although this approach
to integration is simple and all-inclusive, it is lacking in the area of document
integration. People viewing such documents were distracted by the fact that general
purpose elements were displayed differently from text, images and voice elements which
were supported directly by the editor.

As a result, in EditDoc we relaxed the requirement that any display produced by
any application be able to be included in a document. Instead. we have defined a
specification that must be met by programs that implement multimedia element types to
be included in EditDoc documents. Thus, EditDoc is a multimedia document editor
which calls on sub-editors to manipulate mono-media elements of the document. The
main editor, EditDoc, interprets commands whenever the mouse arrow in in the “white
space” of the document while the component editors interpret commands when the
arrow is in a box corresponding to the media type that they support.

New element types can he added to the multimedia document editor either by
writing a new sub-editor from scratch following the sub-editor specification or by
creating a front-end to an existing application. The front-end provides the
functionality required by the sub-edilor specifications and uses existing functions of
the application to achieve the desired effect. We will take both approaches in the
implementation of EditDoc. Specifically, we already have an implementation of a line~
drawing graphics program to which we will add a {ront-end to provide the EditDoc
functionality.

The EditDoc sub-editor specification is as follows:

1. The sub-editor 13 completely responsible for the creation, presentation and
editing of elements of a given type in a muliimedia document.

2. The display of the element either for presentation or editing should be
confined to the dimensions of the box allocated for the element by EditDoc.

3. For each element in a document, EditDoc will maintain a record which
describes the type of the element, the position and dimensions of the box
surrounding the element and a field which points to a sub-editor managed
data structure which i1s the type-specific representation of the eleuent.

4. The sub-editor should support the following generic functions which wil] be
called with an element of the supported {ype as an argument:

InitElemType Initialize any global data structures of the sub-editor.

A-14

This is the only function which does not take a specific
element as an argument. It 1s called once per invocation
of EditDoc.

EnterEiemType Create a new element of type ElemType. Do any
initialization of the sub-editor specific data structure
associated with the element.

EditElemType Edit an existing element. While editing, & set of
conventions must be followed so that the user perceives
an integrated interface to EditDoc. These conventions are
described below.

DrawZlemType Draw the display of an existing element.

DeleteElemType Delete an element from the document. Release any storage
occupied by the sub-editor specific data structure
representing the element.

Write£lemTypeBoxToOctet Buf
Save & representation of the element in an array of
octets. This is the way individual elemenis of a document
are saved on non-volatile storage.

ReadflemTypeBoxFromOctetBus
Take an uninitialized element and initialize it with the
contents of an array of octets that was produced by a
previous call to WriteElemTypeBoxToOctetBuf.

CBOtherElemTypeToElemType
This describes & family of functions that are used by the
Diamond Clipboard mechanism to translate from one
element type to another. If there are N types of elements
in an implementation of EditDoc, then there will be N*(N~-1)
such functions, although some of them may be empty if it
1s not possible to perform the translstion.

CBElemTypeReassign
Reassign the storage pool used by the sub-editor data
structure used by an element on the Clipboard.

CBElemTypeDispose
Dispose of the storage occupied by the sub-edilor data
structure used by an element on the Clipboard.

The set of conventions to be followed while editing an element are as
follows:

a. It a button 1s clicked on the mouse while ediling. then examine where
the mouse is located. There are three cases:

1 Mouse is in box surrounding an element. Depending on the
button pushed, perform the appropriate action. If the left button
1s pushed, then select a part of the element, whatever thal may
mean for the particular element type. If the left button is held,
the mouse dragged and then the left button released, then the

A-15

select operat.on is performed on multiple parts of the element. If
the middle button is pushed. then pop up a menu and allow the
user to select an operation. If the right button is pushed, then,
depending on the context either abort the currently uncompieted
operation or, if there is no operation outstanding, unselect all
selected parts of the element.

1. Mouse 1s 1n scroll bar: Call the routine DoScrollBarCmd. This will

cause the viewport on the document to be moved to some other
position.

ii1. Mouse 1s somewhere else: Return to the main editor EditDoc after
saving any state that must be preserved.

6. If a key is typed on the keyboard then interprete that key as a command to
the sub-editor. For some sub—editors, keyboard input is not appropriate
and keystrokes will be ignored. A graphics editor is an example. it is
difficult to do graphical manipulations from the keyboard; the mouse pointer
is much better. Other sub-—editors, such as the text sub-editor, will rely
heavily on keyboard input, since that is the primary way to enter text. Still
others, such as the spread-sheet/chart sub-editor adopt a combined
strategy using the keyboard where it is the best input device and the mouse
pointer where it 1s best.

7. If any other message comes to a sub-editor, it should suspend its operation
and return to the main editor. This 1s different from leaving the sub-editor
since the appearance of the display should not change and the sub-editor
will be returned to by the main editor after the message has been
pracessed

There 1s another level of detall to the specification, however this specification imparts
most of the spirit of how the main editor EditDoc and the sub-editors will interact.

The 1nitial implementation of EditDoc has been completed and currently there are
sub-editors for text. graphics, speech and images. We have plans for adding a sub-
editor for spread sheet/charts.

26 Import/Export Manager

We have developed an initial implementation of the Diamond Import/Export
Manager. This component 18 responsible for supporting message communication with
users who are external to a Diamond cluster. It takes messages addressed to external
users and transiates them into either SMTP (text-only) format or RFC 759/767%
(multimedia) format, depending on information in the User Registry (external
multinedia reciptents have an MPM address stored in the registry). It then submits
the translated messages to a delivery service that transmits them to the appropriate
iiternet host(s). [n addition, it accepts messages which originate outside of a Diamond
cluster, translates them to Diamond format, and delivers them to users local to the
cluster.

Since the Import/Export Manager handles both multimedia and text-only mail, it

A-16

can transiate (reduce) a multimedia message originated within Diamond to a text-only
message sultable for delivery to users at text—only sites. It does this by retaining
the text parts of the original message and replacing the non-text parts with
indicators that record the type of object that was removed. This permits us to use
Diamond for all of our daily message activity, both text—only and multimedia.

2.7 Printer Manager

The Printer Manager 1s used to produce hard copies of Diamond documents.
Because of the variety of media types that can appear in Diamond documents, we
require printers that can reproduce arbitrary bitmaps. Laser printers are the most
attractive alternatives because of their speed and the quality of their output. The
work of this manager involves a translation between the internal representation of
documents used in Diamond and the protocol for driving the laser printer.

We have performed some initial experiments with producing haidcopies of
Diamond documents on a laser printer, the QMS model LG1200 laser printer. A number
of issues were raised by this experiment, including:

o The set of fonts available on the laser printer is different from the set used
in Dhamond. While it is possible to make conservative mappings between the

two sets', this is not a satisfactory solution because the appearance of the
printed document is different from its appearance on the display. Another
approach would be tc down-load the Diamond fonts to the laser printer and
use them in the printing process. The problem with this approach is that
the resolution of the Display device on which the Diamond fonts are
displayed is one third the resolution of the laster printer. Thus Diamond
fonts appear to be very small on the laser printer. Automatic scaling
programs do not work very well either, because most good digital fonts have
had the attention of a good type face designer to eliminate staircasing
effects of rasier devices.

o Similarly, the line drawing graphics capabilities of the QMS LG1200 (and most
likely all other laser printers) are different {rom the representations used in
Diamond. For example, in Diamond, it is possible to specify arbitrary fill
patterns while on the QMS LG1200 there are a set of fixed fill patterns. In
any case, the difference in resolutions would also impact the appearance of
textures. .

Future work on the Printer Manager will have to address these issues. Since we are
not certain about what laser printer will be used in the future with Diamond, we are
currently deferring work on the Printer Manager.

Yconservative in the sense that letters in the font on the loser printer occupy the less
than or same space as letters in the corresponding foat in Diemond

A-17

2.8 Porting Diamond to the Sun Workstation

During this reporting period we completed our decision on the strategy to be
used to port Diamond to the Sun WorkStation. The approach eadopted for porting
Diamond 1s to translate the Jericho Pascal compiler's PCode output into M68000
assembly code. By using this approach, the vast majority of Diamond and its support
libraries can be ported as is. Most of the machine differences are accommodated in a
small number of lLibraries which have identical interfaces for the two machines but

differ in their implementations.

The 1nitial version of the translator to perform the conversion from PCode to
M68000 assembly code has been completed. This version is lacking certain code
generator optimizations but is otherwise fully functional.

The successful operation of the translator required a few minor modifications to
the Pascal compiler. One such modification was to provide for the compilation of IEEE
floating point constants which are used on the Sun instead of Jericho floating point
constants. A compile—time switch determines which conversion is performed.

The runtime support for such functions as access to files, free storage facilities,
and inter—process communication have been written. Several libraries have been
translated including most of those which require different implementations on the Sun.

As a test vehicle. we have ported EditDoc which 1s the document editor
component of Diamond. EditDoc was chosen because it 1s a program of substantial size
which makes heavy use of the display primitives, uses files, and uses the mouse, but
does not need to use the network communication facilities. Porting EditDoc required
that several standard libraries be ported and that has been done. Most of these
libraries were simply recompiled and translated and required no modifications.

The conversion of some libraries posed particular problems and these are
discussed below.

2.8.1 Interprocess Conmunication

One of! the major differences between Jericho and the Sun Workstation is that
Jericho 13 a single address space, multiple process machine and the Sun Workstation is
a one address space per process machine. The Jericho interprocess communication
(JIPC) mechanisim depends heavily on memory sharing as a mechanism for passing
information f{rom one process to another. The Sun Workstation running Berkeley +.2
UNIX provides interprocess communication through character streams between
processes. We have mimicked JIPC on the Sun workstation by passing the data
contained in the JIPC messages plus the data in the storage block whose address was
being passed in the JIPC message through the Sun IPC character stream and
reconstituting the storage block on the receiving end.

There are several instances where actual data sharing 15 used by two or more
processes. One of these 1s the extended variable data base This mechanism allows
values to be associated with particular keywords as a way of providing parameters
global to several programs or for avoiding repeated complicated computations from

A-18

session to session. Since, on the Sun workstation, each process has a separate
address space, the values of variables set in one process are not available to any
other process. To circumvent this, a server process maintains the database and
responds to queries and requests from other processes via the mimic JIPC. We expect
there will be additional such servers needed for similar situations.

2.8.2 Windows

Several problems related to the use of windows were encountered. The mechamsm
1in the Sun window system for always maintaining the correct contents of a window 1is
too costly to use. It requires doing every operation twice: once on the dispiay screen
and agein on a backup copy of the window contents in main memory. This slows down
painting operations by at least a factor of two. The alternalive is to respond to
interrupts indicating that particular areas of the window have been damaged by being
overlaid with another window and repainting those areas from the underlying data.

"Responding to these window damage interrupts requires substantial alterations to
the control structure of EditDoc and its lhibraries. In particular, it must be possible
to back out of those operations, such as selecting an i1tem from a menu, which wait for
a user action. This i1s because such library routines have no knowledge of what
information is supposed to be on the screen and cannot be expected to repaint it
They must return to the main progran to allow it to repaint the screen.

2.8.3 Mouse

The Sun window systen does not provide any way for a program to determine the
position of the mouse. The only way to know the position of the mouse is to receive a
continuous stream of input events e¢ach reporting the mouse position. This might
suffice if only one process needs to know where the mouse is, but, in fact, several
processes may need to know. Our sclution is to do the mouse tracking in the window
menager process and for other processes to query the window mansger via JIPC to
determine the mouse position. Such queries are time consuming (roughly 20 msec
apiece versus a few mnicroseconds on Jericho) and will severely impect certain
operations.

Another problem with the mouse is the limited size of the cursor image (16 by 16
. ptxels). We have designed new icon fouls to accommodate this, but a larger image
would be preferabdle.

The method of displaying the mouse image on the screen i8 also deficient. It is
not possible to insure that the mouse will always be visible regardless of its
background. On Jericho. the mouse image can consist of both a white part and o
black part. This allows the white part to be visible on black backgrounds snd the
black part to visible on white backgrounds. The Sun mouse image is restricted to a
single image which can be white or black or can complement the background. None of
these can be guaranteed to be sufficiently visible over all backgrounds. No
satisfactory solution to this problem has been found.

A-19

2.9 Papers and Presentations

We heve produced a wvideo tape which presents the goals. architecture, and
equipment used 1n Diamond. It illustrates the user interface to Diamond by showirng
how a user reads a message and then how he would compose a response to that
message.

We have submitted a paper, titled “Initial Experience with Mullimedia Documents
in Diamond” to the IFIP WG 6.5 Working Conference on Computer—Based MNessage
Services to be held in May in Nottingham, England. The paper describes and compares
three different approaches to dealing with multimedia documents: the approach used
in the experimental multimedia document editor MMEdit, the approach used in the
DARPA Internet multimedia protocol and the approach being used in the EditDoc
multimedia editor.

A-20

3. THE J¥RICHO JADE SYSTEM

Jade is the oper:tiiag system for the single user Jericho computer system
developed at BBN. This s-=ction documents tasks that were performed in improving the
Jade system primarily to meet the requirements of Diamond. .

0

3.1 Performance Improvements

Several enhancements to the RoutineTrace tool and Pascal microcode weire made
to help us track down performance problems. Briefly, RoutineTrace 1s a tool which
initiates and terminates the recording of certain information about what progrems are
doing and then analyzes and presents that information to aid in determining where
bottlenecks and other performance reduction is occurring. The enhancements were to
add additional ent:sies in the data being recorded abtout page fault behavior and
present that information in the RoutineTrace printout.

The information derived from these printouts lead to revisions to the scheduler
algorithm. W'=i we discovered was tbat processes could consume their eatire run time
quantum by faulting in a few pages and then some other process would be run. This
process 5. ut then exhibit the same behavior. If a sufficient number of processes
were runnable, they migh: all consume their entire run time quanta with very little
usefu: work being done and then by the time the first process made its way back to
the % ead of the priority queue the pages it had faulted in would have been removed to
make way for the other processes’ pages. Severe thrashing would ensue. The
modificarion that was made was to credit a process's run quantum for the timas lost to
psge faults. Thus the run quantum would determine useful time spent rather than
total time spent.

3.2 Synchronization

A synchromzation macha::.m has been addsd to Jade which implements the
notion of mutual exclusion semaphores and the P (lock) and V (unlock) operations.
The synchronization mechanism wes motivated by the needs of Diamond. In particular.
managers such as the Diamond Douument Store and the Authenlication Manager have
multiprocess implementations which enable them to service mulliple simultaneous client
requests. A general purpose synchronization mechanism was required so that
processes within & manager can acquire exclusive access 'o various internal
databases.

Two possible implementations of the synchronization mechanism were considered.
The first uses a serv:r process and the low level interprocess communication
mechanism. The second uses shuared memory and the interprocess communication
mechanism. The second i1s more efficient, and hence s being used on the Jericho.
However, the second approach will not work on the Sun Workstation because the Sun
has ne shared memory. The first approach will be used on the Sun.

A-21

3.3 VindowSystem

The Jade window system has been enhanced to include a "hint” facility. A hint is
a signal sent to a process that an event relevant to a window of interest to that
process has occurred. Examples of such events include selection of a window (e.g.. the
user has selected the window for keyboard and mouse button input), de-selection of a
window, end adjustrent of the shape of a window. When e process receives such a
hint signal, 1t cen tske action appropriate to the event. For example, when the
window 1s selected, the process might choose to highlight various regions of the
window, and when the window is de-selected, it might choose to "un—highlight" them.
A process dealing with windows can request hint signals for various events from the
¥indow Manager or it cen instruct the Window Maneger not to provide hint signals.
The hint mechanism was developed to support the needs of the Diamond Access Point,
which must permit a user to switch back and forth among multiple windows.

3.4 Improvements to Pascal Debugger

The Pascal Debugger support for breakpoints has been improved in a number of
ways during this reporting period. A list of all the breakpoints that have been set
can be obta..ed. All breakpoints can be removed by a single command. Breakpoints
can be named such that when a named breakpoint is encountered the debugger
reports its name;, in addition, breakpoints can be removed by name. VWhen a
breskpoint has been encountered, it is possible to resume execution from (goto)
another point in the routine containing the breawpoint (or any routine within the
dynamic scope of the routine containing the breakpoir .); it is also possible to resume
executicn from a breakpoint by exiting from a specified routine that is on the stack
beneath (1.e.. that had been called by) the current routine.

A-22

4. THE JADE PROGRAMMING ENVIRONMENT

The Jade programming environment is the set of tools and libraries that is used
to develop applications on a set of distributed single—user computer systems such as
Jericho or Sun Workstations. This section describes our efforts during this reporting
pericd to enhance the abiiity to produce distributed applications on such
workstations.

4.1 Network Protocol Software and IPC
4.1.1 Internet Protocol (IP)

The Jade implementation of the DoD Internet Protocol (IP) has been changed to
provide a software “loopback” for internet packets sent by processes to their own
local host. Previously such packets were sent to the nearest internet gateway, which
simply returned them to the local host. Sending the packets to a gateway was an
implementation shortcut that permitted the host to treat the packets as if they had
originated at some other host. For example, if a TCP connection were opened between
two processes on the same Jade host, the data packets sent on the connection would
be "reflected"” off the nearest internet gateway.

With the software loopback such packets no longer leave the local host, but
rather are processed as if they had come in from the network. This reduces the load
imposed on gateways for local tralfic, it reduces the delay for such local
communication, and it also makes such local communication possible when no gateway
is availables.

A more general network routing mechanism has been implemented which performs
three functions: special routing. message redirection, and segment size control
Special routes can be set up so that packets addressed to a particular host or
network (or protocol) can be transmitted to a particular local network address. This
is the mechanism whereby the loopback feature is enabled or disabled. It also permits
a speciflic gateway to be used to get to another network rather than the default
gateway.

The routing table is used to implement the message redirection feature. When
gateways receive nmessages for which they are not on the optimum route or when hosts
receive messages via a non-optinum interface, they send ICMP redirection messages to
the originating host. The improved [P implementation makes use of Lhese messages to
modify the routing table so that subsequent transmissions to such destinations will bhe
sent to the preferred local address.

Associated with each routing entry is a maximum segment size for segments being
sent to that destination. This allows a segment size to be chosen which will avoid
fragmentation and reassembly costs. It also permits proper fragmentation to be
performed when hosts on the local network vary in th2 packet size they can handle.

The new [P implementation alss mainiains a table of hosts, networks, and

A-23

protocols which are unreachable. When ICMP destination unreachable messages are
received from gatewayvs or hosts, an entry is made in this table. Subsequent attempts
to transmit to that destination will fail rather than cause another transmission. This
reduces extraneous network traffic and permits protocol implementations built on IP
(such as TCP) to quickly indicate failure rather than retransmitting for a period of
time and then failing with an uninformative result. The entries in this table are aged
such that after roughly & minute or two they are removed. This allows the recovery
of a once dead host to be noticed and communication to commence.

The IPStat program was modified to provide information on the information in the
routing and dead destination tables. There is currently no dynamic way of adding
special routes to the routing table, but special routing entries can be put in the
>Configuration file and these will be entered when the IP server starts up.

4.1.2 File Transfer Protocol (FTP)

Our last semi-—-annueal-report described the Jade implementation of the TCP—based
DoD standard File Transfer Protocol (FTP). During this reporting period the TCP-based
FTP for Jade has been made sufficiently reliable that we now use it for file transfers
between Jerichos and non-Jericho hosts in place of the private file transfer protocol

we had been us'm32 . In particular, we use the TCP FTP exclusively for transferring
files between Jerichos and our TOPS-20 hosts.

4.1.3 Interhost Interprocess Communication (IPC)

The IPC facility developed to support Diamond and other distributed applications
has been described in previous semi-annual reports. During this reporting period, the
interhost IPC facility has been enhanced in two ways: features have been added to
help processes use timeouts more effectively, and a mechanism has been developed to
permit multiple disjoint IPC "configurations”:to run on the same network.

Support for Managing Timeouts

Diamond components use timeouts as a means for monitoring interactions with
other components. For example, when a User Access Point process attempts to retrieve
a multimedia document from the Document Store, it sends a request message to a
Document Mansger and waits for the Document Manager to respond by transmitting the
requested document. It uses a timeout so that it doesn't weit forever for the response.

Although the timeout mechanism provides a means for a component to detect the
possible failure of another component, it presents two problems: the selection of an
appropriate timeout interval, and the action to take if the timeout occurs. The timeout
interval must be small enough so that possible failures are detected quickly. but large
enough so that timeouts don't occur under heavy load conditions. When a timeout does
occur, a component is faced with the problem of determining whether the timeout was
due to a failure, in which case it should give up or try another manager, or was due

21"\: private FTP is described in *"Reseorch in Distributed Personol Computer-Baosed
Information Systems", BBN Report No. 4924.

A-24

to an unexpectedly large amount of processing necessary to handle the request or to
heavy load conditions, in which cases 1t should continue waiting.

Message tracing and host probing capabilities designed to make it possible for a
client process, such as an Access Point tool, to determine the status of another host
have been implemented. These mechanisms are intended to be used together with
timeouts to achieve improved reliability and failure recovery. In particular, when a
timeout occurs they make it possible for a process to determine if the host to which a
(request) message has been sent has crashed, has crashed and recovered since the
message was sent, or is simply slow in processing the request.

These mechanisms make use of a host “incarnation number” scheme. Each host
has an "incarnation number” associated with it that is incremented each time the host
(actually the IPC software on the host) is restarted. When IPC components on different
hosts communicate to send and receive (reliable) messages they also exchange and
store each other's incarnation numbers.

The host probe mechanism provides clients means to determine whether a remote
host is up, and if so, its current incarnation number. This is used by the higher level
Diamond software as follows.

When e client process, such as the Access Point, invokes an operation on an
object (requesting that the message be sent reliably rather than with minimal effort),
the IPC makes available to it the host to which the operation was sent and that host’s
incarnation number. Should a timeout occur, the process can initiate a probe of the
host to which its request was sent to determine what action it should take. After
initiating the probe, it should restart its timer and wait for either the result of the
probe or the response to the operation. The client's probe request is handled by the
IPC which attempts to probe the IPC at the destination host to obtain its incarnation
number. The destination IPC will respond with its incarnation number if it is up, or, if
it 18 not, the local IPC will time out the probe and declare the destination host to be
down. In either case, the local IPC will deliver the result of the probe to the local
client process.

When the probe resuilt is delivered, if the result indicates either that the remote
host 1s down or that it 18 up but has a different incarnation number from the one it
hed when the requested operation was initiated, the client can assume that the
operation did not successfully complete, and it should take an appropriate recovery
action. If the remote host is up and its incarnation number is the same as when the
operation was 1nitiated, the client can assume that the operation is still being
processed by the manager and that it will eventually complete. Therefore, the client
process can continue waiting. Of course, should the time out occur again, the client
should initiate another probe of the host. The assumption here is that the manager
performing the operation will eventual complete 1t and reply to the client. For this
scheme to work, managers must be well-behaved and care must be taken when
shutting down a manager to ensure that no client requests are pending.

The IPC facility has also been modified to deliver a negative acknowledgement to
a process sending a message whenever it determines that the message cannot be
delivered. This enables client processes to detect failures before their timeouts occur,
making them appear more responsive Lo users.

A-25

Multiple Configurations

It is desirable to be able to run more than one group of IPC Servers on a single
collection of hosts at the same time, such that an IPC Server within a group supports
communication among processes within that group and IPC Servers in different groups
do not communicate. The same host might have several IPC Servers running on it, each
of which is a member of a different group or configuration. For example, there are
situations where it is useful to have several debugging configurations end an
operational configuration sharing the same network and set of hosts.

Running multiple configurations on the same hardware .base requires means for
ensuring that components within a configuration limit their activities to their own
configuration. It is useful to think of the IPC and client/manager processes as
operating at different levels. Different techniques for achieving isolation between
configurations may be needed at different levels within a configuration. At the IPC
level isolation can be achieved by preventing communication between configurations. At
the client/manager level achieving isolation may require ensuring managers in
different configurations den't interfere with one another by trying to control the same
devices or by accessing the same databases.

At the IPC Server to IPC Server level, running multiple simultaneous
configurations requires that a given IPC Server be able to distinguish IPC Servers that
are in its configuration group from those that are not. The manner in which IPC
Servers use UDP and TCP to communicate makes this easy to accomplish. Isclation of
groups can be accomplished by assigning each group different UDP and TCP ports.

During this reporting period we modified the Jade IPC Server to implement the
scheme for partitioning IPC configurations based on the use of UDP and TCP port. The
ability to support multiple configurations has been proven to be very useful. It enables
us to have an operational configuration of Diamond that runs all the time, and to run
one or more debugging configurations, as required at various times to support system
development.

4.2 Software State Database

During this reporting period the initial implementation of the Software State
Database (SSD) was completed, and the Diamond group began using the system for all
their software distritution needs. The following sections describe our initial experience
with the system.

4.2.1 Software Distribution

The biggest improvement which we have noticed in using the system is in how
quickly and quietly new software gets distributed. This process has speeded up both
the release and the subsequent retrieval of new files.

o Release. Before the Software State Database was installed, releasing new
software was a side-effect of the process of updating to get the latest
version of all software. Since this was a rather long process, programmers
would tend to batch releases with updates which took place every few days.

A-26

Under the new system, installing new software is separated from the update
process and can be done quickly and painlessly.

o Retrieval. Updating to get newly released software has become faster and
more fully automated. The speedup has occurred siace the files to retrieve
can be determined by examining a single database file rather thar examining
the entire file system and comparing write dates and version numbers.

The functionality of several programs, some of which were necessarily
interactive, has been combined into the simple BringOver operation. Most
users now have a background request which runs at night and does &
complete update automatically. It 1s also easy to use the interactive
interface to do a partial update when necessary.

This improved functionality has been especially useful since we have begun work
on a number of closely-coupled systems which are being concurrently developed by
several programmers. It is important that they be able to quickly exchange and
coordinate the release of new versions of their dependent modules.

Another major advantage of the database approach is that it is now possible to
look in one place and determine which version of some module exists on each machine
in our environment. The software database meaintains a separate version number for
each machine installed in the system. It is possible to look at the database and
determine who needs to do a retrieval in order to get some newly released software.
This is especially useful as distributed applications come on line, since these may
require all machines to be running a consistent protocol. We have made heavy use of
this capability in distributing new versions of the Software State Database itself, since
there have been several instances where the protocol between the central database
controller and client programs has changed or the format of records in the database
was altered.

4.2.2 Concurrency Control

The Software State Database system provides a distributed CheckOut, Install,
Checkin facility. Before modifying a module, the programmer must CheckOut the
module using SSD. While the module is checked out, no one else can check out or
install a new version of that module. Upon completing the chenges, the programmer
Installs the new version and checks the module in. It is now available for other
programmers to check out and modily. A programmer can easily determine the status
of a file by examing the distributed database.

In the period leading up to the initial release of SSD, our group began
development of several systems which required close interaction between multiple
programmers. There was significant contention for several modules containing
declarations used by all the sub-systems. The release of the SSD system made the
process of sharing these files simpler in several ways.

1. It was easy to determine if another programmer was in the process of
modifying a lile. Before the release of SSD this would require a flurry of
phone calls or walking around to several offices.

2. It was easier and faster to make a new version available. The Install
procedure informs the database about the existence of a new version and

A-27

moves a copy of the newly installed file to a central repository. At that
point, anyone interrogating the database would get the latest version.

3. When checking out a file, SSD ensures that the latest version of the file 1s
on the file system servicing the user checking out the file. Previously, a
user would do a full, time—-consuming update in order to ensure the latest
version of everything was on his machine before working on a single file.

4.2.3 Distributed Architecture

The Software State Database was the first major system to make extensive use of
the full Inter—Process Communication system and Operation Protocol developed to
support Diamond's distributed architecture. Our experience with SSD resulted in a
number of changes to the IPC mechanism, particularly in the area of robustness in the
face of failures.

One database controller resides on a single machine within a cluster of machines
connected by a local area network. This controller maintains a master copy of the
Software Database and serializes all requests which modify the database (operations
such as Install or CheckOut). A request to perform some operation is formulated on
the user’s machine and then sent off to the database controller using the IPC
mechanism. This request is then confirmed or aborted by the controller, depending on
the state of its master database. The appropriate response is sent off to the
requesting machine and, upon confirmation, any file movements associated with the
request are done by the user's machine. Upon completion of the file movements, the
user's machine again contacts the database controller to notify it of completion of the
request. At this point the changes to the database are made visible to other users of
the Software State system.

Though the view of the database which exists on any user's machine is just a
snapshot of the true status of the database, it is possible to do a quick incremental
database retrieval and ensure that the status of a group of files is up to date in the
local database. The [PC mechanism provides a quick and efficient means of sending
this information between machines. In addition, the programmer is guaranteed that
even if his local database is not completely up to date, no operation will be permitted
which wijll leave the system in an inconsistent state, since all requests are mediated by
the database controller.

There were a number of reasons why the system was designed with a single
database controller, rather than a more general distributed database architecture
using a voting or locking protocol.

o The design using a single controlle~ is simpler.

o We could guarantee, to a high order of reliability, that the machine running
the controller would always be up. However, we could not guarantee that all
or even most of the other machines would be running when some user
wished to use the system. We would then have to deal with the problem of
partitioning of the database and merging conflicting databases when
partitions dissolve.

o We wished the system to be as non-intrusive as possible. Any system
involving voting or distributed locking would have required servers on each

A-28

machine doing some processing whenever anyone was using SSD. Though the
actual amount of processing might be small, paging costs would be visible to
users as their machine responded to a request.

o A centralized mechanism would give the fastest response time since it would
require the minimum number of interacting machines.

Our experience with this design has been excellent. The response to a request
is fairly quick and we have had no problems with inconsistent databases. Interaction
with the controller tends to be short and fairly sporadic.

4.2.4 User Interface

There are two styles of user interaction with SSD. One is a tool-oriented
interface in which the user specifies a set of files on the command line. For example
the user might type

Exec> checkout seditdoce

in order to CheckOut all the files associated with the EditDoc editor.

The other interface is through a highly interactive tool which gives the user
greater flexibility in specifying the set of files to operate on and permits the user to
view the contents of any record in the database. A user is able to {fill out a form to
match tields in the database record. For example, a user may ask to view all the files
which he has checked out. This is implemented as a fairly general query mechanism.
Some examples of the types of queries which can be specified are:

o All checked out files.
o All files checked out by some set of people.
o All checked out files except for those checked out by a particular user.
o All files installed within the last week.
o All files which have not been modified for six months,
The ability to query the database has made it much easier to handle

dependencies between programmers. It has also enabled us to keep better track of
the status of sets of files.

4.2.5 Future Work

Future developments will concentrate on integrating inter-module dependencies
within the SSD system. Dependencies can be used to check the legality of Install and
BringOver operations in order to ensure that only a consistent set of software is
placed on a file system. Dependencies may also be used to automatically determine
the actions which need to be taken to bring a set of files into a consistent state, in
the style of Make on UNIX.

A-29

It will also be valuable to be able to query the database to view the
dependencies between modules. If the interface to some widely—used public library
changes, the database will be able to tell us what files depend on it and may need to
be recompiled or even edited to reflect the changes. Systems like Mcke do not
maintain external databases describing interrelations between modules and so provide
no mechanism for determining this information.

A further goal may be to integrate some version control system, such as the
Source Code Conlrol System into the Software State Database framework. It would be
possible to integrate a more complex view of the version of a particular module into
the system and to implement this view through some other utility such as SCCS. The
facilities preovided by the two systems complement each other fairly well.

4.3 IPC Monitoring Facility

The IPC monitoring facility is a tool which makes it possible to monitor the
interprocess communication (IPC) traffic between the components of a distributed
system. This tool is intended to overcome, at least in part, some of the problems that
plague the developers of distributed programs. In particular, our work has focused on
1ssues related to distributed system debugging and demonstration.

Distributed System Debugging

The process of debugging a faulty software system can be brocken down into
three stages: error detection, location and repair.

o Detection - The debugging cycle starts when the software system is
observed behaving in a manner which is not in accordance with the system's
specification.

o Location - Once it has been determined that the system is behaving
anomalously, the next step is to trace the computation backward until a
point is found <where a module is given a reasonable set of inputs, but
produces an unreasonable result. Unfortunately. in many cases, a significant
amount of time will have elapsed between the point in a computation when &
software error occurs and the Lime when it is first detected. In the
intervening period, information that would have proved useful in back-
tracing the computation may have been overwritten,

Even if there 15 not enough information to back-trace the computation, the
developer can still use whatever information is available to formulate a
hypothesis as to where the bug is. This hypothesis focuses suspicion on a
portion of the soltware. During future runs of the program, the developer
can monitor these suspected portions carefully in the hope of obtaining
more information regarding the bug. This additional information may then
be used to further reduce the area of software suspected of containing the
software error. Assuming that the software e;ror is reproducible, repeated
application of the above approach will eventually narrow the area of
suspicion to the line or group of lines that contain the error.

o Repair ~ Once the software error has been found, the next task is to
correct the software. The amount of work that this entails will vary

A-30

PR —————

depending on whether the error was the result of a design flaw, interface
inconsistency or coding mistake.

The nature of the software system being debugged (i.e. sequential! vs.
distributed) has little effect on the degree of difficulty involved in stages ! and 3 of
the debugging cycle. The task of error location (stage 2), however, is significantly
more difficult for distributed systems than it 1s for sequential ones. This is due to
the existence of multiple, asynchronous processes which are running on multiple
processors.

A consequence of multiple processes is that instead of one locus of control,
there are now several. Furthermore, the results of the system now depend not only
on system input, but also on the relative timing of the processes.

For back-tracing to be effective in locating an error, a computation should be
halted as soon as & software error is detected. In a loosely—coupled, distributed
system, this type of behavior cannot be achieved. Although it is. possible to
immediately halt the processor that detected the error, all of the other processors
that are involved in the computation will continue working until an indication of the
error condition is propagated to them. As a result of this communication delay,
critical information in these processes is likely to be overwritten, thereby making
back—tracing that much more difficult.

Distributed System Demonstration

-

*For many distributed application programs, it is important that the application’s
users be insulated from the distributed nature of the system. For example, the user
of a distributed operating system does not nesed to know where his files are stored.
The distributed operating system takes care of those details for him. While this
abstraction layer makes the system easier to use, it frustrates any attempt to
demonstrate, via the user interface, the underlying interprocess interactjons.

4.3.1 System Design

As discussed above, the developers of distributed applicaticn programs are faced
with debugging and demonstration problems for which the development tools designed
for sequential programs are inadequate. The]PC monitoring facility is intended to
remedy some of these inadequacies by providing a way to examine the information that
passes between the components of a distributed system. This section describes the
initial design of the IPC monitoring facility. The topics discussed include: design
ronsiderations. basic mechanisms, and system architecture,.

4.3.1.1 Design Considerations

The design of the IPC monitoring facility was influenced by the following set of
considerations and goals. Some of the goals conflict and they are therefore described
in order of decreasing importance.

1. Support the development of Diamond and other distributed programs which
are based on the same underiying interprocess communication nechanism.

A-31

Diamond is a loosely—coupled distributed system which may be viewed as a
collection of communicating objects. Each object has a type (e.g. document,
folder, process} and a unique identifier (UID) which serves to distinguish an
object from wall others in the system. When - one object wishes to
communicate with another, the sending object constructs a message and
addresses it to the UID of the intended recipient. This message is then
given to the local interprocess communication server (IPCServer) for
delivery. The IPCServer determines the host where the destination object
currently resides and transmits the message to the IPCServer on that host.
The IPCServer on the destination host then determines the type of the
object to whom the message is addressed. If the intended receiver of the
message 1S a process, the message is delivered directly to the object.
Otherwise, the message is delivered to the process which is responsible for
managing objects of the indicated type.

In this initial design, the monitoring program receives copies of the
messages that are being monitored (passive monitoring). The more
complicated task of active monitoring, in which the monitoring program
intercepts the interprocess messages being monitored, is not addressed.

Although the IPC monitoring facility has been tailored to support the needs

of the Diamond and Cronus® distributed systems, many of the ideas and
mechanisms discussed below are applicable to any distributed program that
is based on a message—oriented interprocess communication facility. The
nature of the support that the IPC monitoring facility provides for the
development of such programs is explained below in the remaining design
considerations.

2. Allow users to exanine the behavior of a distributed program from a single
work station.

Debugging utilities that were designed as aids for sequential progranm
development are inadequate for monitoring the flow of data and progranm
control as it passes between distributed system components. It is
conceivable that a program's behavior could be monitored by running each
process in the system through a conventional debugging utility. The output
from these debuggers could be displayed on one or more terminals for each
of the host computers involved. At best, such an approach would be
awkward, inefficient end time consuning.

The IPC monitoring facility shifts the "leg work" of distributed program
debugging from the program developers to the computer. The information
which is of interest in the distributed system is automatically collected and
retrieved for either immediate display or later analysis.

3. Display the distributed system behavior in a way that clearly indicates
component interconnections and the relative timing of component
interactions.

An understanding of the flow of data and program control is e¢ssential in

'SM. Hoffman, W. MocGregor, R. Schontz, R. Thomos, E. Burke ond B. Wornick, Cronus, 4
Distriduted Operating System Preliminary System/Subdsystem Specification, 88N Report
5280, February 1983.

A-32

debugging any program. For distributed programs, the existence of multiple
loct of control make it particularly difficult to comprehend the program's
behavior.

The IPC monitoring facility makes it easy to visualize the behavior of a
distributed system. As shown in Figure 2, the components of a distributed
system are represented graphically. Host computers are represented by
large circles which enclose process objects. Processes are represented by
ovals and connections between processes and hosts are indicated by lines.
Messages from one process to another are represented by small circles and
are shown travelling along the intercomponent connections.

Instead of monitoring all interprocess messages, allow users to specily the
set of messages that are of interest.

When debugging a piece of software, it is important to focus attention on
the region of the program or set of interprocess interactions that is
suspected of being faulty. Any information pertaining te portions of the
- system that are believed to be working correctly is of little value. Indeed,
such information may have a deleterious effect by distracting atiention from
the parts of the program which are suspect.

Through the use of filters., the IPC monitoring facility allows a user to
specify the subset of the total message traffic that is to be monitored. A
message is monitored only if the contents of the message match ai least one
of the specified filters.

Support the monitoring of transactions.

Many of the interactions beltween Diamond's distributed components follow a
Client/Manager paradigm. One process, acting as a client, invokes an
operation on an object. This is accomplished by sending the object a
message which contains the name of the operation to be performed and the
input argunents for the operation. This nessage is delivered Lo the process
responsible for managing the object. The manager performs the operation
and sends a message containing the resull arguments back to the client.
Note that in the course of performing an operation., a manager may. in turn,
tnvoke other operations, thereby behaving like & client toward some other
manager The initial operation and all of its suboperations are identified by
a transaction ID.

For both debugging and demonstration purposes, it is useful to think of
monitoring in terms of transactions rather then individual interprocess
messages. Accordingly. the IPC monitoring facility allows users to specily
transaction filters. If the contents of a message matches one of these
transaction filters, the matched message and all subsequent messages that
have the same transaction ID as the originally maiched nessage will be
monitored.

Allow users to control the level of detail at which information sbout the
distributed system is displayed.

Interprocess messages in Diamond have two parts, a header portion and a
data portion. The header portion contains information related to nessage
transport (e.g. source UlD, destination UID, data offset and data size¢) and is
encoded according to an IPC peer—-to-peer protocol. The data portion ol a

A-33

message 1S of variahle length and 1s encoded as name-value pairs according

to the OP protocol.* Each value in a name-value pair has an associated
type. These types are either sumple (e.g. integer, boclean) or structured
(e.g. array. record). Furthermore, the elements of a structured type may
themseives be either simple or structured types.

Boih portions of a message are potentially of interest in the debugging or
demonstration of a distributed system. Accordingly., the IPC monitoring
faciity allows users to examine all of the information that a message
contains. In order to avoid overwhelming users with unwanted information,
however, the data that 1s contained in the message 1s interactively displayed
ih response to "more detail” and “less detail" operations. This 1s patterned
after the mechanism for displaying variables in the Jade debugger When a
user asks for more detail on a message, the names and values of the top
level fields in the message are shown. If additional information exists for
any of the displayed fields, it may be obtained by positioning the mouse
cursor over that field and asking sgain for more detsil. Less detail, returns
the user to a display of the data at the next higher level. In this manner,
the user can examine the contents of the message at any level of detail
Furthermore, since knowledge of the IPC peer-to-peer and the OP protocols
1s built into the IPC monitoring facility, the message fields are formatied
appropriately when they are displayed.

7. For messages that are being monitored, record time stamps for key eventa
along the message transport path.

The recording of time stamps along the message transport path has two
uses. First, this informetion makes the detection of race conditions possidle
in that the relative arrival times for two messages that are sent to the sane
pirocess may be determined. Secondly. the dilferences between the tine
stamps teken along the message path are indicative of the performance of
the distributed systen.

As shown in Figure 3. the PC monitoriag facility records lime stemps at six

points along the message transport path. The events associated with these
six time stamps. T1 through T6. are a3 follows.

T1 The sending process sends the neasage.

T2 The local IPCServer receives the messege.

T3 The local IPCServer sends the message to the remote IPCServer.
14 The remote IPCServer receives the neisqe.

TS The remole IPCServer sends the messege to ils intended recipient.

T8 The intended recipient receives the message.

%A description of this protocol is given in Section 4.2 of Research in Distribuled
Personal Computer~Based Informction Systems. Semi-dnnual Technical Report No. 4,
BN Report 5722, September 1984,

A-34

8. Permit the display of interactions between the components of a distributed
application while the application is executing.

As the monitored applicaticn executes, monitoring information is collected
and sent back to the monitoring host. Since the application execution and
the monitoring information retrieval proceed in parallel, the behavior of the
application c¢an be displayed in (near) real time. Furthermore, the
monitoring information is recorded and may be replayed. This makes it
possible to study the application by repeatedly displaying its behavior.

9. Minimize the “costs” associated with interprocess messsge monitoring.

The use of the IPC monitoring facility adds a certain amount of overhead to
the running of a distributed application. The matching of messages against
filters and the transport of monitoring information back to the monitoring
host all serve to degrade the performance of the distrijbuted application
being monitored. Care has been taken throughout t.he design of the IPC
monitoring facility to limit such "costs". A

4.3.1.2 Basic Mechanisms
At a high level, the function of the IPC monitoring facility is simply the

collection, retrieval and presentation of monitoring data. These threc tasks and the . -

work that they entail are described in greater detail below.
Data Collection

Data ccllection in the IPC monitoring facility is supported by a'ﬂlter rechanism

which ellows a user to specily the subsel of the total message t.nmc that 13 tn be
monitosed. ' ,

Once a iilter has been specified. it is assigned a filter ID and distributed to all
of the IPCServer processes in the distributed system. The. filter ID consists of ths
internet address of the host on which the filler was specified and a sequence number -
which distinguishes the filter from all others that have been specified on that host. -

By distributing these filters, we ensure that each IPCServer has 4 complete copy of o

the {filter date base. Censequently. the maiching of im.erpmcess messuges azainst'
those filters does not require any interhost communtcation. .

Although the task of matching messages against the-_mtet- data base does not
requirs any interhost communication, it iz still a fsiriy "expensive'" operation which
must be performed for every interprocess message that is sent. To avuid slowing down
the IPC facilily on hosts which we are not interestsd in monitoring, a mechanism is
provided for enabling or disabling the monitoring facihity on a host. Hests which are
not enabled for monitoring do not maintain & copy of the filter data base or attempt
to perform any message matching. To actually monitor em m‘grprocess message,
therefore, both of the following conditions muit held.

o The message's source and destination hosts are both enabled fur monitoring.

Sibid. Section 4.4.1

“Aw35

Y e ———— o R ——————

Host2

Figure 2. The graphical display of an interprocess message

Figure 3. The time stamps along an interprocess message path

A-36

o The message matches at least one of the filters in the filter data base.

Whenever an interprocess message is sent from a host for which monitoring is
enabled, the message is matched against the filter data base. If one or more matches
are found, the header portion of the message is modified to indicate that the message
is being monitored. Monitoring a message entails collecting information at several
points along the path of the message and sending this information back to the
monitoring host(s). The information that is collected includes: a copy of the
interprocess message, the name and process ID of the process that sent the message,
the name and process ID of the process that received the message, and time stamps
that are associated with events along the message's path.

Data Retrieval

Once the message information has been collected at the remote hosts, it must be
sent to the host that is running the monitoring program. This program coordinates
and displays the incoming monitoring information from all of the hosts in the
distributed systenm.

The monitoring information for a message is sent to the monitoring program in
the form of thrse meta—messages. Each of these meta-messages corresponds to a
point along the message path and contains information that was available at that
paint. The first meta-message contains a copy of the contents of the message, the
name and procass ID of the sending process and the first three time stamps for the
message (T1 through T3 in Figure 3. This meta—message is sent when the original
message leaves the IPCServer on the sender’'s host.

The second meta-message contains the name and process ID of the destination
process, and the fourth and fifth time stamps for the message (T4 and T5 in Figure 3.
This meta-message is sent when the original message leaves the [PCServer on the
receiver's host. Note that if the sending and receiving processes for the message are
both on the same host. the first two meta—-messages would be sent at the same time.
Rather than send two separate messages, the information is instead merged into a
single meta-message.

The third meta-message contains the last time stamp for the monitored message
and 15 sent when the destination process finally receives the message. For the case
where the receiving process happens to be the IPCServer itself, the information from
the second and third meta-messages is combined into a single meta—message.

In addition to the information described above, each meta—-message also contains
a Message ID which identifies the original message that corresponds to the monitoring
information contained in the meta-message. This Message [D is the same for each of
the three meta-messages and is used to collate them.

Data Presentation

The last phase of the monitoring [facility i1s responsible for the merging.
sequencing and display of incoming monitoring information. As meta-messages arrive
at the monitoring host, they are written to a log file. This log file is then used to
drive a program which displays the behavior of the distributed application that is
being monitored.

A-37

As a result of interhost communication delays, the order in which meta—messages
arrive at the monitoring host typically differs somewhat from the sending order of the
original messages. One of our stated goals, however, is to display messages in a way
that clearly indicates the relative order in which the messages were sent. While it is
conceivable that the messages could be sequenced according to their time stamps, in
practice the synchronization of clocks in a distributed system is a difficult problem.
Rather than require a '"global physical clock”, the IPC monitoring facility instead uses
a logical clock to order messages.

The logical clock mechanism is essentially a way to assign a number to =a
message, where the number is thought of as the time that the message was sent. This
mechanism ensures that if message B was sent as a result of message A, then the
clock value that is associated with message A will be less than that which is
associated with message B. The implementation of logical clocks is straightforward and
may be summarized by the following two rules:

1. Before a message is sent, the logical clock on the sending host ticks. This
new clock value is the logical time stamp for the message that is being sent
and is included in the header portion of the message.

2. When a message is received, the logical clock on the receiving host is
adjusted so that the clock value is equal to the maximum of the former
clock value and one more than the logxcal time stamp on the received
message.

Clock := Max(Clock, ReceivedTimaStamp + 1)

Logical clocks ensure that no matter what order the meta-messages arrive at
the monitoring host, it is possible to sequence them so that causal relationships
between messages are preserved. Once the meta-messages have been merged and
sequenced, they may then be displayed by the monitoring program. _

4.3.2 System Architecture

In order to monitor distributed application programs, the IPC monitoring facility
has to itself be a distributed system. For every host that is engaged in the display of
distributed system behavior, there is one IPCMonitor process and one MetaMsg Manager
process. Furthermore, those hosts that have been enabled for monitoring are also
each running a MonitorData manager process. Enabling a host for monitoring means
that as interprocess mescages are sent, they are matched against the set of
monitoring filters. If a match is found, the monitoring information is collected, sent
back to the monitoring hos: that specified the filter, and displayed. For example,
Figure 4 shows a distributed system where distributed application programs are being
monitored on host H1. Hosts Hl and H2 have been enabled for monitoring but host H3
has not. The processes that comprise the IPC monitoring facility and the manner in
which they cooperate with one another are described in greater detail below

4.3.2.1 [PCMonitor

The IPCMonitor process is the user interface to the IPC monitoring facility.
Through this interface, a user may add and remove monitoring filters, enable or
disable monitoring on the distributed host computers, and control the display of
monitoring information that is being collected and retrieved by the other components
of the IPC monitoring facility.

A-38

IPCSarver (M)

Figure 4. The component processes of the monitloring facility

A-39

A user is allowed to vary the speed at which “information about the program
being monitored is presented. This capability makes 1t possible to slow down or even
completely freeze the message traffic display so that the content of the displayed
messages may be examined. Slowing down the display of information, however, does
nothing to slow down the rate at which new monitoring information is arriving. To
avoid the backlog of unprocessed monitoring information that would otherwise result, a
separate process, the MetaMsg manager, is used to process incoming meta—messages.

Under this approach, when the IPCMonitor is ready to display more information,
it just asks the MetaMsg maneager for the next chunk of menitoring data.

4.3.2.2 MetaMsg Manager

In addition to processing incoming meta-messages, the MetaMsg manager also
records the message information in a log file so that it is possible to repeatedly
display the monitored behavior of a system.

The MetaMsg manager also acts as a distributor for any new filters or changes to
existing ones. The MetaMsg manager maintains a teble of all of the hosts in the
distributed system that are currently enabled for monitoring. Whenever, the user adds
or changes a filter, the IPCMonitor passes the filter request to the MetaMsg manager.
This process then transmits the request to all of the known MonitorData managers in
the configuration.

Finally, the MetaMsg manager is also responsible for exercising a degree of global
control over the logical clock mechanism described in Section 4.3.1.2. Although logical
clocks ensure that no matter what order messages are received by the monitoring
facility, it is possible to order them so that causal relationships are preserved, they
do not provide a way of determining when all of the messages with logical time stamps
that are less thaen some logical clock value have been received. This 18 needed in
order to determine when it is "safe" to commit the actions required in displaying a
message. The MetaMsg manager remedies this deficiency by periodically polling all of
the MonitorData managers for the earliest possible logical time stamp of sent messages
that may still be in transit. By taking the minimum of these local earliest possible
time stamp values, a global earliest possible time stamp (GEPTS) is obtained. All
display actions resulting from time stamps that are less than the GEPTS value may be
committed.

4.3.2.3 MonitorData Manager

When a host is enabled for monitoring. the IPCServer creates the MonitorData
manager which is used for communicating between the IPCServer and MetaMsg manager
processes. This is needed because the IPCServer cannot send and receive messages in
the same way that a typical client process does. Accordingly. the MonitorData
manager process is used as an intermediary.

When the [PCServer sends a message to the MetaMsg manager. the message is
first passed to the MonitorData maneager process using an intrahost message transport
mechanism. The MonitorData manager, which is a normal client process, then sends
the message to the MetaMsg manager using the interhost IPC facility. Messages from
the MetaMsg manager to the [PCServer are sent in a similar manner —- first to the
MonitorData manager and then to the {PC3erver.

A-40

In addition to the IPCServer’'s main responsibility of transporting interprocess
messages, it also maintains the logical clock and checks the messages that it sends
against the set of monitoring filters. If a match is detected, a meta-message is
constructed which is then sent to the appropriate MetaMsg manager.

4.3.3 Current Status

During this reporting period, we completed the initial design of the IPC
monitoring facility as described above and began work on the jimplementation of some
of its low—level mechanisms.

The existing IPC facility has been modified to provide support for monitoring.
This entailed modification of the IPC peer—to-peer protocol, implementing the logical
clock and filter matching mechanisms, and providing an intrahost communication path
between the IPCServer and MonitorData manager proces:es.

Although the MonitorData managef portica of the IPC monitoring facility has been .
implemented, work on the MetaMsg manager and IPCMonitor implementations is just
beginning.

A-41

5. JERICHO INTERLISP

The .objective of the Jericho Interlisp task i1s to port and extend the Interlisp
programming language and environment to BBN's Jericho personal computer. Interlisp is
one of the two major dialects of the LISP programming language which underlies most
resegrch in Artificial Intelligence. This task services two principal goals. First, it
orovides the development environment in which other DARPA supported research in
Artificial Intelligence proceeds at BBN, most notably the work in natural language
understanding and knowledge representation. Second, this task builds the foundation

for the ALEPH component of this project which is to explore novel programming
techniques and tools.

The task of porting Interlisp-10 from a mainframe to a personal computer
involves three categories of effort: 1) porting the initial system, 2) extending it to
accommodate the functional capabilities of the hardware, and 3) system maintenance.
In previous reporting periods, we have addressed each of these areas. In the current
period, we continued system maintenance activities; in particular, we improved the
reference counting garbage collector, we added a CATCH, THROW, UNWIND-PROTECT

facility, and we worked toward incorporating a multiple—process capability in
anticipation of interoperability.

5.1 Garbage Collection

During the current reporting period, we extended the reference counting garbage

collector to re-—use variable length data types, specifically lists and arrays. In
addition, we improved its performance.

When the reference counting garbage collector finds a variable length datum to
be freed, it marks the free region in a bit array which has one bit for each word of
virtual memory. This array is the same one that is used by the compacting garbage
collector to mark used data (see the previous report for more detail).

The allocator for variable length types initially assigns a contiguous segment of
memory for the type. A segment is currently 8K words. When a segment becomes full,
the allocator searches the regions of the bit array corresponding to segments of the
desired type for a contiguous free chunk. The minimum size of the chunk is the
maximum of the size required for the current allocation and a user settable parameter
\FREMIN. The value of \FREMIN is initially 100. If a chunk is found, it is marked used
in the bit array and allocation proceeds from the chunk. If no chunk is found, a new
segment is assigned. To avoid searching the same sections of the bit array, we steart

each search where the last one left off. The starting point is reset after every
garbage collection.

We initially used a slightly different me:. iod for reusing the free .regions. At
every garbage collection we built a chain throu h the free chunks with the first word
of each chunk pointing to the next one. This r ethod has terrible paging performance
because it requires referencing the list or s 'ray space as well as the bit array.
Consequently, we sbandoned it in favor of the s . arch technique.

Preceding Page Blank A-43

This technique for variable length items required some modifications to the
compacting garbage collector. Since the compacting garbage collector does not
compact arrays, it 1s important to let the allocator know what array space is free.
This is accomplished by initially marking all array space as free. When an array that is
used is encountered, its extent is then marked as used.

The above scheme uses microcode primitives to set or clear a number of bits and
to find the next zero or one in a region of an array. These primitives are useful for
other things as well so they have been made available to the user as new op-codes.

We have improved the performance of the reference counting garbage coliector
by implementing more of it in microcode. The portions now in microcode are the atom
hash table scan (reported previously), the reference table scan to clear the stack
bits, and some assistance for the reference table scan for zero count entries to be
feed. This last scan searches from the last entry it found (initially 0) returning the
next pointer to be freed or NIL if none is found. We alsoc added a microcode operation

to add a datum to the free list for its type.

The speed of the reference counting garbage is quite good. The time required to
add and delete entries from the reference table is not measurable for any computation
that we have seen. The fixed overhead for a garbage collection in the case where
nothing is found to free is less than 0.25 seconds.

5.2 Catch, Throw, and Unwind—~-Protect

Interlisp provides the basic non-local exit facilities RETTO and ERROR! as well
as several others based on them. RETTO csuses a return to a specified stack frame
while ERROR! returns to the nearest stack {rame named ERRORSET or to the top level if
no such frame exists.

Common Lisp provides similar abilities with CATCH and THROW. Because CATCH
and THROW are more versatile than the ERRORSET, ERROR' combination. we have
included these facilities in Interlisp Jericho.

A problem with non-local exit facilities is that sometimes a compution wishes to
assure that certain cleanup operations (such as closing files) are performed even if
the computation is exited non-locally. Interlisp provides a group of macros cailed
RESETLST, RESETFORM, RESETSAVE etc. which attempt to address this problem.
However, there are several deficiencies. The resulting code is hard to read, the
cleanup form is computed at run time and thus is not compiled, and in the particular
case of a non-local exit to the top level, the cleanup form is evaluated in the wrong
environment; namely, at the top-level rather than in the environment in which it
appears.

The Common Lisp UNWIND-PROTECT is a clearer and hetter method so we have
included it in Interlisp Jericho. (UNWIND~PROTECT protected-form jcleanup-form|®)
evaluates protected—-form and the cleanup-forms in the correct environment whether
the UNWIND-—PROTECT is exited normally or via a THROW to a containing CATCH. The
cleanup forms are also evaluated during RESET or control-D, which are effectively
throws to the top level. and during ERROR!, which is effectively a throw to the most
recent ERRORSET.

A-44

The Interlisp non-local exit RETTO is sometimes used to abort a computation but
is also used for coroutines and generators where the abandoned computation may be
resumed. In that case, the cleanup--forms probably should not be evaluated so RETTO
and its derivatives have not been changed. We have added two new functions,
RETTO&UNWIND and RETFROM&UNWIND, which do eveluate cleanup-forms for UNWIND-—-
PROTECTs between their invocation and the destination frames. In the current
implementation, if the destination frame is not in the current stack environment, these
functions will unwind to the top-level. This should probably be changed to cause an
error.

5.3 Multiple Process Capability

Our ultimate goal under the concept of interoperability is to provide for a
multiple process capability for both Lisp and Pascal simultaneously. Our original design
strategy called for & microcode kernel which would implement the basic process
mechanism to be shared by both language environments. But an additional constraint
forced us to reconsider this approach. That constraint is imposed by our need to keep
Interlisp Jericho compatible with Interlisp-D.

Under this constraint, and after looking at the Interlisp—-D muitiple process
facility, we decided that sharing the microcode kernel was an untenable way of
achieving Interlisp~D conmpatible multiple processes in Interlisp Jericho. This was
primarily because the kernel embodies a preemptive form of scheduling whereas
Interlisp~D is based on & non-preemptive scheme. Consequently, we changed our
design to yield a compromise between these two forms of scheduling.

The result is that we plan to first bring up a multiple process capability in
Interlisp Jericho by adapting and integrating the Interlisp-D process package. Later,
we will execute this version of Interlisp Jericho as a single process among the Pascal
preemptive processes controlled by the microcode kernel. We will then have multiple
processes running for both languages simultaneously and we will maintain compatibility
with Interlisp-D.

During this reporiing period, we have begun the effort to adapt the Interlisp-D
process package. Since mnultiple process code so heavily impacts all of the other
system code, we have also taken this time as an opportunity to update the Interlisp
Jericho system with the newest version of Interlisp-D. We are making progress toward
this goal but still have much left to do. In particular, the input/output software has
been dramatically affected by the transition to multiple processes as has the interrupt
system. We fully expect to resolve these problems in the coming months.

A-45

6. ALEPH

The goal of the ALEPH component of the project i1s to conceive and test new
ideas and tools which can aid the programmer in his task. We expect that the
capabilities of a personal computer such as tne Jericho can offer new opportunities in
this aree, particularly the high~resolution bitmapped display.

In this reporting period, we continued our two major thrusts which were
documented in the previous report: Content Addressed Documentation and Programming
Tools. In the first category, we investigated and implemented the dynamic catalogue
1dea which we call the Interlisp Advertiser. In the second category, we discuss four

tools we developed the Directory Browser, File Comparison Presentation, the Code
Presenter, and the Graphical Debugger.

8.1 Content Addressed Documentation

Users of sophisticated programming environments (such as LISP) often confront
problems stemming from the breadth and scope of the procedural capebilities of the
system. One of these problems is finding information about needed functional
capabilities. Sometimes these capabilities are known to exist but their name is
unknown or cen not be recalled; often, however, users do not know if the capability is
or 1sn’'t available in the system and they must simply browse and “discover” it. As
described in cur ;revious semiannual report, the solution that we have been exploring
consists of "advertising” a functional capability by showing in a small "movie screen”
or advertising window a short "movie strip” of what the advertised capability can do.
During this reporting period we have begun developing a tool, which we rall “The
Interlisp Advertiser”, that is based on this idea.

6.1.1 The Interlisp Advertiser

The Interlisp Advertiser can be considered an advertising catalog, in which the
various features and system capabilities are shown in advertising windows. Much in
the way in which commercial catalogs are organized, our advertising windows can be
grouped thematically and displayed simulteneously in a single page. As with a paper
catalog, a user can converge on a relevant section by consulting a thematic Table of
Contents, an Index, or simply by flipping pages. In contrast with hard—-copy catalogs,
however. users of our tool can derive a sense of action from the animation in the
advertising windows, and can obtain relevant information (e.g. the name of the
advertised function or feature) by pointing to one.

Having found the information, another preoblem that often arises is how to use it,
after suitable modifications, in the user's particular situation and context. A solution
that we have just begun to explore is to provide a "hands on” workshop environment
that facilitates modification and experimentaticn of an existing functional capability to
adapt it to the user's requirements, and that makes it easy for the user to
incorporate the modified capability into his own software.

We shall next describe how the system appears to its users. As an example we

Preceding Page Blank
A-47

shall use an "ad hoc"” page of this kind of "advertising catalog”, this i1s a page that we
have constructed to conveniently illustrate the various features of the system but
which lacks thematic unity and, as a page, would therefore not be included as a part
of the Advertiser.

In this “ad hoc” page, which appears in the following figures, we have i1ncluded 8
advertising windows. Each advertising window shows an animated sequence of what a
particular function or feature of the Interlisp display package does. Thus, the
SCROLLing window shows how to scroll text printed in a window, the textPOSITION
window shows how to specify where text is to be printed, and the SOURCE&OPERAT.
window shows how to combine background bits and displayed bits to obtain a variety
of visual effects. The other windows show how to adjust the shape of a window,
change 1its background texture, select fonts, draw ellipses and compute region
intersection operations. The bottom of the page is occupied by a Help window, which
appears in all the system’'s pages.

In figures 5 through 9 we have tried to capture what happens during the
animation sequences (albeit with marginal success). Each figure depicts the screen as
it appears after each window has played one frame of the animation Thus, during the
first frame a cursor moves lefiward on the SCROLLing window tc simulate moving the
mouse so as to touch the left border (a smudge is still visible in figure 6, overlapping
the "p” in "properly”), and in the textPOSITION window, an arrow f{lashes indicating
where the next line of text (the “the beginning” line, also in figure 6) is going to
appear. Similar demonstrative actions take place in between the images in figures
6 through 8.

The animated sequences in each window can all "play” simultaneously as shown,
or one window at a time at the user's discretion. Depressing the left button on the
mouse (see the BUTTONS window on the upper left hand corner) causes a COMMAND
menu to appear, with which the user can control the way information is displayed.
Pointing to a window with the mouse and depressing the center button summons a
HELP menu with which the user can obtain specific information about the advertised
feature.

In figure 10 we have placed the mouse over the FONTS window, and we have
depressed the middle button, summoning the Help menu. With i{, the user can request
intormation on relevant function (FNS) or variable (TERMS) names, can ask to see how
what he has just seen was done (HOW?). can ask for an exemplar of usage (EXAMPLE),
or can ask for a demo in which he can exert control over the actions advertised or
explore the advertised function's capabilities (DEMO). In the figure we have selected
the FNS menu item. The relevant functions (i.e.: procedures available :u Interiisp) are
listed in the Help Window. Figure 11 shows what happens if someone wuited to know
how the third ellipse in the DRAWingELLIPSEs window was generated:. pointing to the
window with the mouse and selecting the HOW? menu item produces a .perintout of the
code that was used to generate the DRAWIngELLIPSEs display, «:h the portion
responsible for that third ellipse highlighted. Finally, figure 12 skhows un example of
the “"hands on" exploration facility: Depressing the Helr OHutton in the
SOURCE&OPERAT. window and selecting the DEMO itewm causes th: apnitem to show the
kind of visual effect that would be created if the user chose tii: DNVERT source type
and the PAINT operation. Like for the HOW? menu item, HOWDENO® shows how the DEMO
works., the item s shaded, and users are cautioned appropriately if they select it,
until the demo is actually seen.

A-42

agdeitat

1T otmet imes Changing
windows are

too <mall to This is the
digplav all GACHA 12 BOLD
the text that font

1$ printed on
them. In these
cases, if the
window is set

v s emmmet.

DRAWINQELLIPSE S
wadyusting, or Dirawing ellipses.
changing, the
torm or
shape of a
window.)

i HEGUV L LRLY sl LW g
'*mod atternoon, Mario,
(NILY

G1-a{VERTISE

£~

Figure 5. AD hoc page of the Interlisp Advertiser {rame 1

A-49

; ™~ ! At
- v | Q a
m 0033-€9 m
0)34-29 ! H
ﬁ 0)34-29 Yy
(3S1143M0V-19 Y
N)
Q)]
0 Eal
- +
+ H
H (i)}
Qo >
3 &
= Qo
o} 1))
1] -
o ~
i 4
- 0]
o H
+ =]
o —
[
(]
()] Ko
5 -
1
bl 1
| o] (o] <
0 { mopurm
¢)0 adeys [1})
{ ropusm 10 W10) 3Y) o
¢ jo edweys o *Buybueud Jo
Za.mou“nh:t Ma -385d3 119 Buymesq *buyasnipy) M
“sasdi[(a Buimelg 10 *Buyisnipy) 0, ————
183 S} MOpUlM 8]
WY) ‘sesed
103 3y mopUln 9} asey) Ul weyd)
o4y J) '383€d (o] vo pejuyid 3y L
a3y U] ‘weyl h L RN T I IVEY
vo pajujid ¢ Jimix3y 3L L1e Aeydsyp
TR 1R £AuCe 3 o1 yews 001 a
Lie Aeidsyp (a) it srOpuUyA <
0} (ttws 0O} A SIm)jawng)
Bie SMOpULM
2w} 10W05 -)
< 03100\ dSTTYILINI 3D ~
- . [\
] : . u
S vu.— Cgwedsp vxuc. R Q@Ju 03 wo1Irq hro~¢l“m..—.)d.u:wu—.w o
mapura 19u0ry g -l
Hal

F
F

the Interlisp Advertiser frame 5

A-51

o Alvoor —e
s1qyesod s3 3¢

Ay 10800 O
193 31 vOpuie

183 33 mopum

10y 0 an) ‘sesed

. Y asoyl Ul WUl
T— WL oy ¥ g0 vo eIy sd 3t

[5T7a Suninas By, o09] 1Tyl axer syl
X (te Lvidsip

30 PALUY S S
ITYI IEE) s
i1 Aeyduip

AD hoc page of the Interlisp Advertiser frame 4

B c21324u0-070t4 By
T T emrgereres?

AD hoc vage of

| 27541930 JSITINILNI 2

%

oiin, A
3 30H-0V 1950y

°

-

13

Figure 8.
Figure 9.

-

Frompt Window ¢ ' '

¥ill show the names of relevant INTERL}SP functions.

tooc smali to Changing
display all
the text that
is printed on
them. In theze
cases, if the
window is set
up properly,
it is possible

+n crenll i9¢

m ChAawinabELLIPSES
J(Adjusting, Drawing ellipses.
or changing,
the form or
shape of 3
window.)

Hetp Menu

FNS

i yofide W

elevint Furctiens

EY
DLFFONT FULTORERTE FC

88~intercupted b

Figure 10. Obtaining Help: Relevant Functions for the FONTS window

A-52

Proinpt Window

Shows this window's advertlsmg function highlighting the
part that is responsible f

the current framse

@he INTERLISP Adbertise
B SCRoLLing _ Jtext POSTION —JFONTS |

- Somet imes k.hdng\ng

windows are the begi
too small to & BeGINMING HThis ¢ the s tmaps |,

display al} HELVETICA 12 r:— XORed 'Mlh
the text that MEDIUM
is printed on of a line Hrant
L_ them. In these

cases, if the

H u.mdow is set
DRA g P R a TEXTURE
fAdiusting, Drawing ellipsgs R
or vndnging, e
the torm Or FNS
shape of & TERMS
window) EXAMPLE

¢ DEMO
: < [HOVDEMD?

Wlndﬁw

! anawa rapnurm auLLPTRy "‘"G‘HEHT“ -
' _(PRoa z}Lp PEFATION -{QUOTE PaTHT}
e GPEPAS M- QU1 HIY
. LRAYIHGERL IR2Ee
DSPPE.:ET “URAYIHSELLTPSESHE oy ;
mwm nm.mmELLWf'smm .r.um_, v
Wi o RaAl] &&5-"
:(bpumupsrg 49, 25 45‘ Foll ,ﬁnunb m
P n;owmmsm.;w e e
ne . TRESUME CORDYTRTR CaLLPTR R
. \UPhNEL{U‘JC -198378..1% 89.
. e S RUDTERCRBUND K‘
.. : ?U?’A’HHGELL{ ‘“‘n
: ;(RESUME o PIE CALLPTRY,

SF Ivel 1y 0 eici Ol mendow)
ContraraM - GETMQUSESTATE broak

AETMQUZE S TATE peobon)
SB 0
GEMQULET TR TE

Sfeintarrnted b
L3 B ETEFACTS HAAN 4
reriupted hetle

PGE TROLE I TATE breavan,
N

Ghtaimng Help How was the DRAWIngELLIPSEs window generated®

Figure |1

A-53

" Prompt Window

step Gives ygu a chance to practice by letting you 1nteract
with th& advertised functlona|1ty

U

Figure 12

’ :::<* Somet imes

4 window is set

windows are
too small to
display all
the text that
is printed on
them. In these
cases, if the

iom mmamnmwll

Changing
the beginning

of a line

This is the
HELVETICA 12
MEDIUM

font

{Adjusting,
or changing,
the form or
shape of 3
window.)

grelp ‘hc@o
s
}ef{uxce

INPUT
INVERT
MERGE

"TEXTURE
LAY

SOURCETYPES

Pop tewet fy0ficaigh wendew

P Y I T Y] L U
RE00 afvEMTISE A
tnterrupted belod
thterrupted belod

*1=PEQD VINDOWPR
S(v-HELPMENU UnS

onfeal W1

Prernter rupted b

n

DRAWINGELLIPSEs

{trawing ellipses.

PAINT INVERT ERASE

(BPLUS vroven)

T e

1 OPLUS broben

<-" OPERATION
Depress LEFT but?hq\tn ’
qe]ect SOURLETVPF ahd DPERATION

To CUIT ‘ l\\\\\

iR U teead } o,

Obtaining Help. The effects of SOURCETYPEs and OPERATIONs

8.1.2 Conclusions

Our Interlisp Advertiser derives its leverage from the following key ideas:

o Instead of a mere paper substitute, the screen becomes a dynamic, parallel
visual processing interface, i.e.. showing many "“mini movies” simultaneously.

o The user’'s visual reasoning abilities are involved too, not just the verbal
ones.

o Uses the mind's visual evocative powers. It elicits visually rather than

verbally.

o Uses depictions of events (such as the effects of procedures), rather than
descriptions. It is hard to describe space or time sequences verbally.
Animated figures work much better.

o It gains additional leverage by acting through the final effect produced, and
not on the basis of preconceived ways of achieving the desired effect ("I
didn't know one could do it that way").

As a consequence, we believe that our approach opens up new dimensions in
system documentation. system development, and on-line performance aids:

1. First of all we have an "active” rather than a "passive" approach to systenm
documentation. Since it relies on figural, dynamic, and ostensive modes of
presentation.of information. it makes possible to vividly demonstrate system
functions instead of just describing them verbally.

2. It makes it much easier for a new user to learn by him/herself. It fosters
self~-tutoring.

3. It facilitate exploration of choices and instantiation of procedures in the
user's domain,

4. It makes it possible to implemen! pieces of user software by lifting and
modifying "advertised” software.

Coping with large amounts of procsdural information 1s not only a problem for
system developers. The nilitary end users of the sophisticated systems that will be
produced in the next decade will also confront the same problems and will have to
depend on self reliance. 1 {5 extremely important that such systems have the ability
to impart procedural instruction to their users, since it is unrealistic to expect that
all users will have always in their heads all the procedural knowledge they may
require. Systems incorporating the ideas exemplified in the Interlisp Advertiser should
be able to provide such information in a most fruitful way.

6.2 Programming Tools

During this reporting period, we continued to design and implement tools to aid
the programmer in his/her activities. Some of the tools are new ideas and others

A-55

integrate results of our previous work. All make use of the bitmapped display. Below
we describe these tools, which consist of:

o the Directory Browser, which allows inspection and manipulation of the tree
structured directory system and the files stored therein

o File Comparison Presentation, which integrates the File Browser with the
Heuristic File Comparator to visually display the differences between two
files

o the Code Presenter, which provides alternative views of symbolic source code
according to the influence of run~time context

o the Graphical Debugger, which provides a graphic interface for program
debugging and includes a dynamic graphical tracing facility.

68.2.1 Directory Browser

The Directory Browser, like the File Browser described in our previous report, is
an instance of the general notion of browsing. The original notion of browsing was to
provide a way of viewing or looking at some object too large and/or too complex to
present in its entirety in any one image. A text file, for example, is generally too large
to print on a single screen but it is both feasible and useful to show some segment of
the file and to allow the user to control which segment is shown. Other objects such
as complicated data structures may have an organization best displayed at varying
levels of abstraction.

The more current notion of browsing extends the idea to allow manipulation of
the object being examined. A browser comes to look much like an editor. Indeed, the
generalization of editors to objects other than text and the extension of browsers to
allow modification of the object viewed have been two i1deas on convergent paths. The
emerging idea is one we have called multi-representational editing. The ultimate goal
1s to provide a variety of presentations for an underlying body of information and,
through interactions with any given presentation, change that information. Of course,
any change induced through one presentation must be reflected immediateiy in all
other relevant presenlations.

Our Directory Browser has been a step along this evolutionary path. It provides
different presentations for different facets of a Jericho's file system, and it allows
interactions with the files 1n the system. some of which alter the state of the system.
We now will describe the capabilities of this browser and the way a user interacls with
it

The Jericho file system, like that of Unix. i3 tree-structured A directory
contains entries for files and some of these files may themselves be directories, in
other words, directories are special Instances of files whose contents are simply file
descriptors. One of these directories 15 distinguished to be the root of the tree-
structure and has the name ROOT (it contains an entry for itsell as well).

One of the capabilitics of the Directory Browser 1s that i1t cen present a
graphical depiction of any subset of branches emenating from the root of the tree
representing the directory structure. The user can specify any set of (sub)directories
of interest and the browser will determine the appropriate branches te display.

A-56

This graph is active in the sense that selecting nodes of the graph cause actions
related to the associated directory. One type of selection makes the designated
directory the current connected directory (ie. it provides a context for file reterences
which do not specify a directory). This offers the user a very simple way to establish
this condition, especially as compered to typing the command when the chosen
subdirectory is deep in the hierarchy and a long path name would be required.

A second type of selection opens a scrollable window on the associated directory
in which the list of file names appears. Any subset of the file names can be selected
and highlighted using the pointing device. A menu can then be used to invoke
commands which operate on the selected files. Several different kinds of commands
exist.

Some of the commands manipulate the files themselves. These are:

o Browse, which calls the File Browser on the selected file
o Type, which types the selected file in a special window
o Copy, which copies the selected files into another specified directory

o Move, which moves the selected files into another specified directory (this
removes the files from the original directory which Copy does not)

o Expunge, which gets rid of the selected files

o Info, which presents relevant information about the selected files such as
size in various metrics, dates, and file type

Other commands are related to files which are directories themselves. These are:

o SelectionDirectory, which opens the Directory Browser on the directory file
currently selected by the browser

o ParentDirectory. which opens the Directory Browser on the directory which
13 the parent of the directory currently being displayed by the browser

o ConnectSelection, which makes the connected directory be the directory
selected in the browser

0 ConnectParent, which makes the connected directory be the directory which
is the parent to the directory displayed by the browser

o Connect. which makes the connecled directory be the directory displayed by
the browser

The remaining commands effect the selections themselves (as opposed to the files
represented by the selections). They allow the user to push the current set of
selections onto a stack and later pop them back. The user can also clear the current
set of selections. These operations are convenient when one is building up a large
selection list and the addition of another entry depends on information not currently
presented. The user can push the partially collected list of selections, select the
questionable file, and then obtain the information necessary for the decision. He/she
can then pop back the partially collected list and add or not the file in question.

A-57

The File Browser is an extremely convenient tool for the programmer. It provides
an easy way to peruse the set of files in a given directory. Any subset can quickly
and simply be chosen and a single operation applied to the lot. In addition to this
pragmatic benefit, experience with the Directory Browser is beginning to provide
support for an important idea, namely, that, contrary to common practice, the better
interface is not the one that tries to provide the single best way to achieve something
but rather the interface which provides a variety of ways to accomplish something. The
user can then choose which mechanism suits him/her best under whatever
circumstance. The Directory Browser gives alternative ways to manipulate files in
addition to the ways already available, say by typing.

8.2.2 File Comparsion Presentation

In our previous report, we described, among other things, two programming tools:
the File Browser and the Heuristic File Comparator. The File Browser provides a way
to view a file in a window under user control. The Heuristic File Comparator compares
two versions of a file containing program source code in order to deternine
differences. The comparisen is structurally based rather than textually based as has
been the practice historically. In this reporting period, we have integrated these two
capabilities to provide simultaneous, coordinated browsing of the two file versions
including visual annotations of the discovered differences.

Comparison of two files requires the taking of a perspective under which one file
is considered the “old" file and one the "new" file. Thus as elements are matched in
the structures contained in a file, several cases may obtain. an element appearing
only in the new file is an insertion; an element only in the old file is a deletion;
elements which are matched in the two files but differ constitute a modification;
finally. an element in the old file may be permuted so as to reside in a new position
relative to its associated elements. Recall that embedding, another possible type of
change, is not handied by the comparator.

In tigures 13 and 14, we see old and new versions of the function EQLENGTH,
which i3 a predicate which checks the length of a list. The body of the code 1s a
conditional (COND) with two clauses in the old version and three in the new version.
Although either of the first two clauses in the new version could plausibly be matched
with the first clause in the old version, the underline of the first clause in the new
version indicates insertion of the clause; a mark in the old version appears with a
count of one to indicate that a single structure has been inserted at this position in
the new version.

The tirst clause in the old version has thus been matched with the second clause
in the new version. Each c¢lause has two elements and the second elements match
identically. The first elements are matched and are both lists. In this context, the
atoms "ILESSP" and “ZEROP” have been matched and highlighted to indicate
modification, the atom “N" in each list is matched without difference, and the atom “1“
in the old version has & lhne through it to indicate deletion -~ there is a
corresponding mark and count in the new version in this posilion to indicate the
deletion.

Finally. down inside the last clause in each version is a list beginning with the
atom “NTH." It 13 & function call with the arguments N and X in the old version and
the same arguments but in reverse order in the new version. The marks above these

A-58

|
(LAMBDA (X N)
(COND ((HIENEER N)
(NLISTP X))
(T (AND (LISTP (SETQ X (NTH N %)))
(NLISTP (CDR X))))))

Figure 13. Annotated dbrowsing of the old EQLENGTH

(LAMBDA (X N)
(CONO (CILESSEN)

NIL)

(- Ny

(NLISTP X))

(T (AND (LISTP (SETQ X (N™ R #)))
(NLISTP (CDR X))))))

Figure 14. Annotated dbrowsing of the new EQLENGTH

A-59

program elements are arrows denoting permutation. The direction of an arrow
indicates in which direction one must look to find the corresponding element in the
other version.

In addition to the visual annotation, a set of commands has been added to the
File Browser for use when browsing an annotated file. The commands have to do with
positioning the cursor in the file. One command searches forward from the current
position to find the next annotation in the file; a parallel command searches backward
to find the previous annotation. The third and final relevant command works only if
the current position is at an annotation; in this case, it finds the counterpart in the
other version of the file and sets the current position of that file to its annotation.

This last command is quite useful as it explicitly indicates which elements in the
two versions have in fact been matched by the Heuristic File Comparator. Moreover,
when numerous insertions, deletions, or long distance permutations cause
corresponding elements to fall in radically different parts of the respective files, this
commend directs the user to the precise location of the meatching element.

Integrating the File Browser and the Heuristic File Comparator has yielded a very
useful tool for software development. The augmented File Browser provides just the
right interface for the user to control inspection of the differences found between two
versions of the same file. In future work, we hope to extend this capability to ell list
structured objects in the programnming environment.

8.2.3 Code Preaentatian

One of the essential properties of computer programs that makes them so
valuable is the ability to provide flexible behavior. This flexibility comes at a cost of
program complexity, however, as flexibility is embodied in multiple execution paths.
Several related paths are often aggregated within a single body of code, say a
function or a procedure, and some branching control structure is used to decide
which path to choose based on available data. Moreover. branching paths can be
embedded within other branching paths. As a consequence, it can be very difficult to
discern the path of execution through a given piece of code in different contexts.

Figure 15 is an example of such a piece of code. This code is parameterized by
the two variables OBJECT and OPERATOR and is intended to return the name of the
function which performs the prescribed operation for the given object type. For
example, the PLUS operator lor the INTEGER object is IPLUS. This code is implemented
with the case statement SELECTQ and. in fact, has SELECTQ's embedded in each of the
alternatives of the containing SELECTQ. The major SELECTQ branches on the object
type and chooses a minor SELECTQ which is particular to that object type. The minor
SELECTQ then distinguishes among operator types and locates the proper return value.

We have been working on a programming tool. which we call the Code Presenter.
that is intended to make code such as this more comprehensible. The idea is to
construct a hypothetical execution environment in which to view the code. The state
of this environment will then restrict the possible paths through the code. It all of the
state relevant to the code is defined. a unique path will be determined. 1If only a
partial state is defined. the set of possible paths will simply be reduced.

A-60

scroilible PP Window . . - .

(SELECTQ OBJECT
(INTEGER (SELECTQ QPERATOR
PLUS (QUOTE IPLUS) 2
DIFFERENCE (QUOTE DIFFERENCE))
TIMES (QUOTE ITIMES
QUOTIENT (QUOTE IQUOTIENT))
PRINT (QUOTE PRINT. INTEGENO)‘%‘
ERROR OPERATOR "“IS AN UNK OPERATOR FOR INTEGERS")))
(REAL .NUMBER (SELECTQ OPERATOR’
PLUS %QUOTE FPLUSF)
DIFFERENCE (QUOTE DIFFERENCE))
TIMES (QUOTE FTIMES
QUOTIENT QUOTE FQUOTIENT
PRINT (QUOTE PRINT REAL .NUMBER)
ERROR PERATOR “IS AN UNKNOWN OPERATOR FOR REAL NUMBERS"))
(LIST (SELECTQ OPERATO

FIRST (QUOTE CAR&A
SECOND QUOTE CA
THIRD (QUOTE CADDR
REST (QUOTE CORR
PRINT QUOTE PRINT.LIST
ERROR OPERATOR “IS AN U NOVN OPERATOR FOR LISTS“)))
(ERROR OBJECT “IS NOT A KNOWN DATATYPE™

Figure 15. Code segment parameterized by the variables OBJECT and OPERATOR

A-61

’ p
Serollabie PP Window .) . ;

(SELECTQ OPERATOR
PLUS (QUOTE FPLUS)F)
DIFFERENCE (QUOTE FDIFFERENCE))
TIMES (QUOTE FTIMES
QUOTIENT (QUOTE FQUOTIENT)
PRINT (QUOTE PRINT.REAL .NUMBER)))
ERROR OPERATOR “IS AN UNKNOWN GFERATOR FOR REAL NUMBERS"))

Figure 16. Code segment with OBJECT bound to REAL.NUMBER and OPERATOR unbound

(QUOTE FTIKES)

Figure 17. Code segment with OBJECT bound to REAL.NUMBER and OPERATOR bound to
TIMES

(R s avore 11
g NlNéER (QUOTE FT&s))

LIST (ERROR S yote TIHENO)
S AN WN OPERATOR FOR L1STS*))
(ERROR 0BJECY “IS NOT A KNOWN DATATYPE®))

Figure 18. Code segnent with OBJECT uabound and OPERATOK bound to TIMES

A-62

In figure 15, we see the code segment presented in its entirety. This is the
presentation one gets when both of the variables OBJECT snd OPERATOR have no value.
In figure 16, one sees the reduced code when the variable OBJECT has been bound to
REAL.NUMBER. This minor SELECTQ is the only relevant code segment under this
condition. Binding the variable OPERATOR to TIMES further restricts the code so that,
as shown in figure 17, only the final result, FTIMES, is left. Figure 18 shows yet
another interesting view of this code in the case that OPERATOR is bound to TIMES and
OBJECT remains unbound. Here each of the minor SELECTQ's has heen reduced to its
respective case chosen by the value of OPERATOR and we see the major SELECTQ from
this perspective.

The Code Presenter has three facets. The first is the maintenance of the
hypothetical execution environment which forms the context for code presentation. The
second i3 the ability to simulate the code so that execution paths can be determined
according to the constraints of the execulion environment. Finally, the code must be
presented to the user to show the results of the simulation. We discuss each of the
facets below.

There are two general cases in which a user might want tc inspect code. The
first is when he/she merely wants to examine the code under different conditions so
as to provide insight on the structure of the code. The sacond is when the user is
actually runping some code and wants to inspect it in the current runtime context.
The hypothetical environment and the simulation work together to support both cases.
When the sinulation needs the value of a variable, it first looks in the hypotheticel
environnent to see if it has a valuc there. If not, it then looks in the real execution
environment. This way the user can use the current context if he/she desires or can
override it with e hypothetical case. He/she can even make a variable bound in the
real environment appear unbound via the hypothetical environment. Functions are
provided to set and unset individual variables as well as to initialize the entire
hypothetical execution environmeni.

Simulation 15 used to determine which paths of code can potentially be executed
within & partially or wholly specified environment. The reason simulation is used is to
avoid any possible side effecte the code might cause in the real environment were it
to be directly executed In addition, direst execution would not provide all of the
information we desire.

Simuiaticn i1s achieved by examination of the function calls which are composed
to form Llhe (arget code segment. The Code Presenter i3 endowed with knowledge about
system functions 20 1t knows which system functions it can simulate ahd how to do so.
For calls to user functions, ! obtains the relevant function bodies sand continues the
simulation. For functiens it csanot simuiate, it simply goes no farther. Simulation of
computation also depends on the values of variables. ¥hen these are unavailable, once
agein the simulation must stop.

When simulation is complete and the information has been gathered about viable
execution paths, there still remains the probiem of presenting this information to the
user. The most obvious and stroightlorward way and the one we pursued first is to
present an edited version of the code which relains only the viable execution paths.
Thas 15 the method shuwn n figures 16, 17, and i8.

An alternative way to present this information would he to show the entire code
segment but highlight or distinguish the viable paths For exsmpls, one might show

A-63

such paths in a different font which 1s larger or perkaps bold. The advantage of this
approach 1s that il shows the contrast between paths which are viable and those
which are not in context. We intend to investigate this presentation style in the
coming months.

A preliminary version of the Code Presenter has been ymplemented and runs
successfully on examples such as that shown in the figures. In future work, we would
like to make it more robust by increasing its knowledge for simulation. We would also
like to try other schemes for presenting the results. Our initial work suggests that
this tool is a valuable one.

6.2.4 Graphical Debugging

Debugging any complex computer program has long been a difficult enterprise.
This is due to the fact that most of a program's behavior has no direct visible
consequences. The chain of events between the execution of an erroneous piece of
code and overt evidence of pregram malfunction is often a long and complicated one.
Consequently. the art of debugging is very much a case of detective work to infer the
true culprit from available evidence.

- Debugging techniques commonly involve modifytng the target program in ways
that produce more overt behavior. These nodifications act as probdes into the cede so
that more evidence can be gathered for the detective process. It is worth noling,
however, that since computers can execute millions of instructions per second, one
stmply cannot make every action of the program manifest. To do so would produce an
amount of informstion impossible to sift through. with most of i being useless. The
trick 12 to make the right choice about what toc show 35 that one can home in vn the
problem quickly and directly. ‘

A common debugging techiique is called tracing. The idea 18 to place a probe at
a function call interfece; that is, a function can be modified so that infornation can
be presented to the programier when the function is entered and when it is exited.
Typmcally. together with the function name, arguments are printed en entry and return
values ar¢ printed on exit Several functions can be modified this way so that as the
program is executed, ohe sees a (sparse) trail of the computation path.

Tracing is & valuable {echnique. however, the linear presentation of printed
information it provides fails to carry with it the abstrast structure of the program.
which 15 an important context i which to interpret the information. Such & context is .
ptesented well by the Progrm Browser writlen for¢ !nterhspwb and available ia
faterlisp Jericho. .

The Pragran Browser construcls and visuslly depicts a graph of funclions and
their calling relationships. Figure 19 is an exampie for a program named HANO! which
plays a visually anipated version of the gare Towers of Hanoi The nades of the graph
are function nanes and the children of any node represent funclicns called by th-
parent node. Thus. in the exanmple, HANO! is the top-level function and it calls, smong
others, OTHERPEG. CREATEDISKBM. and HANO!l. Under standard usé. the graph is @
tree. so thal if & funciion is called dy two differen’ functions. it will appear as the
child of each and hence will be represented by two podes 1t the tree. Such nodes can
be imarked with surrounding rectangles to indicate multiple reprisentation as is the
case with ihe funclisn GTHERPEG.

A-64

[CTHERPEG]

CREATEDISKBM

CREATEPEGS—SHADEBOX

MAKEHANOIWINDOW

TRACK
Z BASEDISKEM

MOVEDISH! Moveozsm<

MCVEDISK2—ERASE

\GETPEGDATA]

GETPE TA

CREATEDISKS
ADEBQ

Figure 19. Program Browser for the program HANO!

A-65

In addition to its visual presentation of program structure, the graph nodes of
the Frogram Browser are active. Using the pointing device, the user can select a node
representing a function for three purposes.

o Printing, for which the source code of the selected function is printed in a
window

o Description, which presents the results of an analysis of the selected
function in a window; functions called and variables bound or used freely
are examples of such results

o Editing, which invokes the editor on the selected function

We have augmented the Program Browser with a set of capabilities, most notably
a tracing facility, so that it can now act as a user interface for program debugging.
We call this tool the Graphical Debugger.

When the debugging capability is invoked, every function represented by a node
in the Program Browser graph is modified to participate in a dynamic graphical trace.
When a function is called, its node is highlighted to show execution is within that
function. When it cails a subsidiary function, its highlighting remains but is diminished
and the new function is highlighted. Thus, at any given instant of time, a partial
branch cof the tree is distinguished and. in fact, is a representation of the execution
steck. '

In Figure 20, one sees a snapshot of HANO! with the path HANOI, HANOII,
MOVEDISK, and MOVEDISK1 marked. MOVEDISK! wsas the function being executed as a
substep of MOVEDISK when the snapshot was taken. When the program is in progress,
patterns of activity can be discerned as the highlighting moves around the graph. In
this example, one immediately notices that after the program is initialized. all
execution is localized in the subilree rooted at HANOI1 and, within that, predominantly
in the subtree rooted at MOVEDISK.

The dynanic ‘race imposes only a moderate overhead on execution speed s0 that
the highlighting moves around the graph rather rapidly which gives a nice global sense
of program activity. However, the pace 13 too brisk to allow discrimination of intricate
ordering relationships. As a consequence. we added the ability to induce a pause as
each function 13 entered and exited. The duration of the pause can be varied
dynamically so that activity can be slowed a lot or a little. This allows the user to
quickly get to the interesting program component and then slow things down for
detalled inspection. Indeed, the pause can be made into a stop so that the program
can be single-stepped.

Another way to control executivn for debugging purposes 18 to impose a stop or
break when a particular function is entered. This way, the program can run at full
speed up to the point of interest. The user can then single~step or run slowly as
he/she desires. The Graphiral Debugger provides an tinterface for establishing and
tdentifying such breaks. The user can request a break and then point to a node and
the represented function will thereafter stop each time it is entered. The user can
similarly request to remove a single break. Alternatively, the user can request to
remove a)l current breaks. Yet another command wili highlight all the nodes currently
representing broken functions.

A-66

¢
CREATEDISKBM

1

. *
CREATEPEGS—{SHADEBOX

A q

Figure 20. Graphical Debugger for the program HANOI

A-67

Above, we mentioned that trace facilities usually print arguments and return
values as functions are entered and exited. The Graphical Debugger does not do this
routinely. Instead, the user can ask for such information for the currently highlighted
node. If that node gained control because it was just called, then its arguments are
printed. If the node regained control because a function it called just returned, then
the return value of the called function is presented. Perhaps we should provide the
option of presenting such information for selected nodes automatically so that the
user is not required to make a request every time.

Finally, tlie debugging capability also presents some other information displayed
as numbers above and below the nodes in the graph as can be seen in Figure 2C. The
number above a node 1s a recursion count which denotes how many times the function
has been invoked without yet returning. The node HANOIl in the example has been
called five such times. The number below a node counts how many times the function
has been called at all. One sees that SHADEBOX has been called by CREATEDISKS in
the bottom of the graph fifteen times.

The Graphical Debugger appears, from preliminary use, to be a convenient
interface with which to develop programs. Seeing a dynamic trace provides an
interesting and sometimes insightful perspective on program execution. The ability to
control that execution via reference to functions through their representative nodes
is efficient. More experience with this package will indicate how it might be improved
and what long—term utility it can provide.

A-68

7. HERMES MAINTENANCE

During this reporting period the work on the Hermes mail handling program was
* routine maintenance.

A-69

