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I. INTRODUCTION

Images obtained using coherent illumination contain a multiplicative noise

component called speckle. The noise component is a result of interference
between wavelets scattered from a surface whose roughness is on the order of
the wavelength of the illumination. The statistical properties of this noise
have been developed [1] and the phenomenon and its suppression have !. en

extensively studied [2].

The presence of speckle noise in an imaging system reduces the resolution

capability of the system by as much as a factor of seven [3] and is particu-
larly severe in imagery of low contrasts [4]. Thus the suppression of speckle

noise is an important component of a coherent imaging system design. The

design of suppression techniques can best be optimized by basing them on a
detection theory. An excellent account of the detection theory for small high

contrast objects in speckle noise has been given by Dainty [5].

For images in speckle, the resolution can be expected to improve if inde-
pendent intensity patterns, or looks, are superimposed. This is due to the

fact that the standard deviation of the mean of N-independent measurement sets
is given by = ai/(N)Y2 where aI is the standard deviation of a single mea-
surement set. The noise can also be reduced by averaging the fluctuations

over some area A of uniform intensity in the image. If s is linear dimension

of a speckle in the image plane then the standard deviation should be reduced

by a factor proportional to s/A2.

The procedures used to produce the final speckle smoothed image can be

divided into four categories: I) reduction in the temporal coherence of the

illumination, 2) reduction in the spatial coherence of the illumination, 3)

time averaging while moving the receiver or transmitter aperture, and 4)

integrating adjacent pixels. These techniques trade off system bandwidth,
recording time, or system resolution for signal-to-noise improvement.

An appealing option to the above "N-look" methods of speckle smoothing is

to perform some type of digital processing technique in addition to or instead

of N-look smoothing. Conventional imaging processing techniques have been
developed for additive noise; however, if the log of the intensity is first

obtained, then speckle noise becomes an additive noise [6] and conventional

techniques can be applied [7].

In this paper a digital simulation of an image with speckle noise is
developed and verified by comparison to experimentally obtained speckle
imagery. The digital simulation is then used to obtain detection probability

statistics and to evaluate various linear and nonlinear digital filtering
techniques for speckle reduction.



II. SPECKLE THEORY

Radiation that has at least a partial degree of spatial and temporal

coherence will exhibit speckle noise due to volume scattering while propa-

gating through a medium such as the atmosphere or due to scattering from a
rough surface. The physical origin of this noise is in the interference of

many coherent wavelets that, because of the scattering, have traveled over

different optical path lengths.

In free space propagation it is easy to see that many wavelets will con-

tribute to the intensity at an observation point. In a perfect imaging sys-
tem, diffraction causes the intensity at an image point to result from many
wavelets.

To obtain speckle we require only that a large number of scattering

events occur within the point spread function of the imaging system [I].

The electric field at any point (x,y) in our observation plane is, for a

monochromatic wave

E = a(x,y)eiwt

where a(x,y) is the complex amplitude of the field. For both free space pro-

pagation and imaging, the amplitude is given by the sum of amplitudes of wave-

lets

N

a(x,y) = lak lexp (ik) (I)

k=l

To obtain the statistics of the electric field, we must solve the classi-

cal random walk problem [1,2]. In general, the statistics depend upon the

coherence of the radiation and the statistics of the scattering surface or
medium. For simplicity, we will assume that the radiation is coherent and

linearly polarized. We will only consider speckle caused by scattering from a
rough surface and will make those assumptions necessary to allow us to ignore

the details of the scattering process [3]. The resulting statistics apply to

speckle fields that were generated in this study.

The assumptions to be made are:

I. The scattering does not affect the polarization. To produce speckle
in the laboratory, we rely upon multiple scattering in opal glass, which depo-

larizes the light. A polarizer is used in the recording of the speckle field

to allow us to retain this assumption.

2. ak and k are statistically independent of each other and of all
other a's and 's. This assumption allows us to neglect the actual scattering
event.

3. sk is uniformly distributed in the interval -n to w. This assumption
requires that the scattering surface be rough compared to a wavelength.
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4. We will assume that the observation plane is in the far field. The
statistics in the image plane are the same as the far field, provided there
are a large number of independent scattering centers within the point spread
function of the imaging system [1,2]. With these assumptions and for a value
of N large enough to allow application of the central limit theorem, we can
write speckle as a complex Gaussian field

a(x,y) = aR(x,y) + i al(x,y) (2)

where aR,aI are zero mean Gaussian random variables (for each x,y) with vari-
ance

2 21 [21
aa E Ia R E a 1 (3)

The speckle intensity is then, simply

s = s(x,y) = a2 (x,y) + a2 (xy) (4a)
R I

and phase

0 = O(x,y) = tan -1 al(xy)

aR(x,y) (4b)

The random variables 8 and s are found to be independent with densities

p(s) =I exp (-s/2a2) , s > 0 (5a)

2a 2a
a

p(e) = Y2t, - 7 < 8 < , (5b)

p(sA) = p(s) p() (5c)

The intensity at a point in the observation plane obeys negative exponen-
tial statistics and the phase obeys uniform statistics. Also the intensity
and phase are statistically independent. We will call this fully-developed
speckle.

The intensity is the parameter measured experimentally and thus of pri-
mary interest. The mean and variance of the intensity are given by

A 2

Us= E [s] = 2a , (mean) (6a)
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m2, s E [E 2 2 (second moment) (6b)

A2 2
= E [(s_1s)] = s (variance) (6c)

The contrast ratio (a measure of signal to noise) is defined as

standard deviation (7)Cr = mean

For fully developed speckle, Cr = I regardless of the signal strength. Thus,
speckle is a signal dependent on multiplicative noise. This is in contrast to
images with additive noise where a change in total light level can affect the
apparent signal to noise [4].

A. Fully Developed Speckle in the Presence of Coherent Background

(Ricean Statistics)

The effect of coherently adding a uniform intensity to the speckle
intensity is of more than pedantic interest. If the assumption that the sur-
face roughness is greater than a wavelength no longer can be made, then the
resulting speckle pattern can be analyzed by assuming that it consists of a
uniform field coherently added to a speckle field [1,2]. This would corre-
spond to scattering from a slightly rough object with the uniform field
corresponding to a specular reflection and the speckle field corresponding to
diffuse scattering. We would expect to encounter this mixed beam case more
often than the fully developed case (for example, holography).

In this case the speckle complex amplitude contains a constant phasor
so that

a = a s + aR + j a I  , (8)

as = constant with a fixed phase angle (zero phase angle can be assumed).

2
Let a S so . Then

= (as + aR)
2 + a

2

I

= so + s + 2asaR (9)

The statistics of ; are given as follows:

4



Joint Density

( S+ so 2 V s socose4r 2 exp )a , s > 0, -T e < n

a

0 , otherwise.

Marginal Density
1 exp + o  I s S;o/Us ,s > 0

US US=s) 2~~/s(11)

0 , otherwise.

Io(. ) = zero order modified Bessel function of first klnd.

Mean

; = E[s1 = E[s] + so + 2E [asaR]

= E[s] + so + 2E [as] E [aR]

= E[s] + so = Us + so (12)

Second Moment
2 2

E [(;)2] = 2 Us + 4usS ° + S (13)

Variance

2 2
;= us (1 + 2r), where r = beam ratio = so/s (14)

The contrast ratio is given by

Cr =1 + 2r/(1 + r) (15)

For large values of r

Cr = 2- r (16)

B. N-Look Averaging

One method used to reduce speckle noise is the intensity addition of
N speckle patterns

N

E = sk - (17)
k-l

5



If each speckle field sk is statistically independent of all the other N-i

fie]ds, and all the average intensities Ok are distinct, i.e., "k t if

k # Z, then the probability density is

N Uk N-2 s
p(s) Ek exp , s > 0 (18)

k-l N kl
k =l (IUk~up) 6k,p

p~k

p(s) = 0, otherwise.

If the average intensity is the same for all N fields [1], i.e., Ok = o for

k = I ..... ,N, then

N-i
p(s) = ( exp s > 0

=0 ,s > 0 (19)

The average value of intensity, the variance and the contrast ratio may be

calculated from this probability density function giving

< s > - Po (20)

< s2 > . (I + 1/N) vo2  (21)

G2  U0
2/N (22)

i/ NF (23)

6



III. DIGITAL MODEL

For our initial experiments, a very simple test pattern was selected.

This test pattern consists of a 64 x 192 array of pixels which contain square

celts of sizes I x 1, 2 x 2, 4 x 4, 8 x 8, and 16 x 16 at eight different in-

tensities. This pattern is similar to a chart developed by Rose[8] f :- exper-

iments in human vision. This type of pattern was also used in a previous
investigation of speckle noise[9]. Figure I shows the optical and digital

test patterns

If we let

v(x,y) = image intensity at x,y

T(x,y) = object transmittance (or reflectivity) at x,y

then

v(x,y) = T(x,y) s(x,y) (24)

is the speckle image model in the simplest case with no receiver noise.

To generate the speckle noise intensity s(x,y) for fully developed

speckle, we first generate a pseudo-random pair of Gaussian random variables,

then calculate their magnitude squared. This algorithm, repeated for every
point in the image field, will produce a speckle noise field. One hundred
twenty eight speckle noise fields 64 x 192 pixels in size were digitally gene-
rated.

In addition to the noise fields with fully developed speckle, eight

frames of size 64 x 192 that contain speckle noise with Ricean statistics were
generated. The beam ratios selected were 0, 2.41, 6.46, 14.48, 30.49, 62.5,
126.5 and 254.5. These beam ratios were selected to provide the same beam
ratio Cr as occurs in N-look averaging for N=l, 2, 4. ..... , 128.

In the more general case of spatially invariant diffraction limited
imaging geometry, the observed image is given by first finding the amplitude

field in the imaging plane as

A(x,y) = f F K(x- , Y-n) a(c,n)ddn (25)
-W -00

where a(c,n) is the complex amplitude distribution of the object. Then the

Image intensity is given by

v(x,y) = IA(x,y) 12 + n(x,y) (26)

where n(x,y) represents the additive detector noise.

7



IV. MODEL VALIDATION: N-LOOK FILTER RESULTS

Figure 2 shows the histogram of the digital test pattern in the presence

of fully developed speckle. This histogram represents the convolution of the
test pattern intensity distribution with the speckle intensity distribution

given by (5a). Figure 3 shows the histogram of the Ricean speckled test pat-
tern for y = 6.46 (Note that y = 0 would be the same as fully developed

speckle).

To validate the digital speckle models we compare the N-look, linear tem-

poral averaging filter outputs of digital and optical experiments. Let

vk(x,y) = T(x,y) sk(x,y) (27)

where k = I, ..., N and vk represents the kth image of the object. Then

E[vk] = TE[sk] - Tlis (28)

This suggests

N1 1 N

TN(xY) Z s N vk(x,y) (29)
k=l

as an estimate of T(x,y). This is a point by point (i.e., for each x,y)

average of N independent samples of a random variable. Therefore,I N
E[TNI = -2 g Evk] = T (30)

Us k=l

which means TN is an unbiased estimate of T. Using a probability model such

as (19) for iN, it is quite easy to show that it is the maximum likelihood
estimate of T given vk(x,y), k=l ..... ,N. Also,

2 1 T 2  N
E[T NI = - E[sksk] (31)

1s N2  k,z=i

Since sk and sk are independent from (6b) we get

2 2 k=

E[sksk] =

8 k Z (32)



This gives

2 T2
E[TN] + T2  (33)

From (33) we have

var[TN] = E[TN - E(TN)]2  T2  (34)

Therefore the contrast ratio is

T 1T .1 1(35)

Thus the contrast sho'ild improve by V-as the number of looks, N is increased.

The above N look digital filter was applied to a sequence of 128 computer
simulated speckle images of the digital test pattern of Figure 1. Filtered
outputs for N=1,2,4,8,16,32,64 and 128 were produced (see Figure 4). Output
images were displayed on a high quality TV monitor and photographs were made
for evaluation by a set of observers. The observers made independent evalua-
tions of the minimum detectable contrast as a function of the object size for
the digital imagery and for optical images produced (see Figure 5 [4] using
the test pattern in Figure I). Figure 6 [10] shows the comparison between the
optical and digital speckle experiments for minimum detectable contrast for
objects whose size (area) is about sixteen times the speckle size. The
results show agreement between the two experiments except for the effects due
to the optical transfer function. The reader can perform his own evaluation
by comparing the digitally produced data shown in Figure 4 with the optically
produced data in Figure 5. The effect of the optical transfer function can be
seen in the N-128 case in Figure 5 where the low contrast elements of rows 3
and 4 are not visible. To-verify the Ricean speckle model, one needs to com-
pare the digital and optical Ricean speckle images at various beam ratios. It
has been established earlier[4] that a Ricean speckle with beam ratio r and an
N-look temporarily averaged speckle have the same contrast when

'l + 2r I

l+r AN

or r = N +N 2 - N - I (36)

Thus Ricean speckle at r = 0, 2.41, 6.46, 14.48, 30.49, 62.5, 126.5 and 254.5
corresponds to the N-look averaged speckle for N = 1,2,4,8,16,32,64 and 128
respectively. Figure 7[10] shows the digitally and optically produced Ricean
speckle images respectively. An agreement consistent with Figure 6 was
obtained in this case also.

The agreement obtained between the optical and digital imagery validates
the use of the digital model in speckle noise experiments involving human
observers.

9



Nonlinear Temporal Filters

It is difficult to accomplish nonlinear filtering of speckle noise in an
optical system. However, in a digital system it is quite easy to produce non-
linear filters. Two nonlinear filters that were simple to implement digitally
were selected for the initial experiments.

Square Root Filter

From Eq. (27) we can write

vY 2 = T Y2 sY2  (37)

or

T/2 = EtvY2 V~ 2 1(38)

which suggests

A N Y2( Yr211l2
TN(x,y) = /E[s

k=l

16 N vk(x,y)j 2

Ps [ k=l J

Squaring Filter

Also from Eq. (27)

v 2 : T2  2 (40)
k k

which gives 12

= 1.(41)

and/
I N 2 1/2

NN = KN k (42)

as another estimate of T.

10



These nonlinear filters did not produce a measurable change in the mini-

mum detectable contrast compared to the linear temporal filter. Observers did

comment however that the noise in the squaring filter data appeared less
objectionable. Experimental results using these filters are shown together
with spatial averaging results of the next section.

V. SPATIAL FILTERS FOR SPECKLE REDUCTION

The results of the N-look temporal averaging method show that a large
number of looks (N > 8) may be required to detect objects which have small
size and/or low contrast. Spatial filtering of speckle images offers a means
of speckle noise reduction when the number of available looks is not very
large. We consider several simple linear spatial filters.

A. Spatial Averaging Filter

A standard technique used to reduce speckle noise in synthetic aper-
ture radar systems is to integrate the intensity values of adjacent pixels.
This type of speckle filtering is digitally produced very easily in the
following fashion. Let

N

VN(Xy) N Vk(x,y) (43)
k=l

and define a spatial average vN as

vN(x,y) = Y2[vN(x,y) + V4{vN(x - A,y)

+ vN(x + A,y) + vN(x,Y - A)

+ vN(x,y + A)1] • (44)

For digital images x,y are integer indices and A = I. From Eqs. (27) and (43)
we would have

TN(xY) = i vN(x,y) (45)

if T(x,y) is almost constant over the averaging window. In general, the size
of the window will govern the tradeoff between resolution and speckle noise
suppression. In these experiments, the spatial filter improved object recogni-
tion for the larger objects with an accompanying reduction in resolution. The

spatial filter was combined with each of the other filters (linear, square,
and square root) and the results are shown in Figure 8. The minimum detect-
able contrast of large objects for a linear temporal averaging of N with spa-
tial averaging is approximately equal to the same minimum detectable contrast
for a linear temporal averaging of 2N without spatial averaging. Figure 8

shows that, as was the case without spatial filtering, the nonlinear filters
produce no visible improvement.

11



. 3omomorphic Filtering for Speckle Reduction

Since speckled Images involve multiplicative noise, linear filtering
methods may not be employed arbitrarily. Consider an N-look averaged speckle

image given as

VN(x,y) = T(x,y) SN(x,y) , T > 0 , S > 0 (46)

where SN(x,y) represents the speckle noise after averaging over N looks.
Taking the logarithm of both sides of (46) we can write

WN(x,y) = Z(x,y) + nN(x,Y) (47)

where

WN(x,y) = log VN(x,y)

Z(x,y) = log T(x,y)

nN(x,y) = log SN(x,y)

Eq. (47) now represents observations WN(x,y) of a signal Z(x,y) Ia the pre-
sence of additive noise n(x,y). It has been shown by Arsenault[ll] that for
N > 2, the additive noise may be modeled reasonably well by a Gaussian density
function. Regardless of the probability distribution of nN, one can design
easily optimum linear filters to estimate Z(x,y) from WN(x,y). Figure 9 shows
the block diagram of the overall filter algorithm. This filter is also called
a homomorphic filter. We shall compare this filter with the conventional fil-
tering method shown in Figure 10. Here, we use the same filter as in homomor-
phic filtering, but logarithmic and exponential operations are deleted. The

following filters are considered.

C. Low Pass Filter (Fl)

An ad-hoc digital low pass filter was designed to filter the noise.
The frequency response of this filter is given by

H(wx, wy) = h(w x ) h(wy) (48)

where wx and wy are the spatial frequency variables in the Fourier transform
domain of the sampled images. Figure 11 shows the normalized frequency
response h(w). The passband is chosen to be [ ,I ] and the transition

width to be --. The filter was implemented via the discrete Fourier trans-

formation of the speckle image.

D. Wiener Filter (F2)

For a signal with additive noise, the frequency response of the opti-
mum linear mean square filter (called the Wienet filter) is given by

G(wxwy ) = Sz(wx,wy)/(Sz(x,wy) + Sn(wx,wy)) (49)

12



where SZ and Sn denote the spectral density functions of the signal and noise
processes. Since in our digital simulations the speckle size was chosen to
coincide with the sampling grid size, the fully developed speckle field is

independent from pixel to pixel. Hence, nN(x,Y) can be considered as a white
noise field of mean p. and UZ, the mean value of Z to be zero by subtracting
the sample mean trW of the observation field from each observation WN(x,y).
Hence, for zero mean data

S~(tw~ = = 2 N = 1
Sn(U_,'(y) = an 2

, N > 2 (50)

2
where we have used the result of Arsenault[ll] to evaluate a .. To estimate
the spectral density of the signal Z(x,y) we assume its covariance function is
exponentially decreasing in each dimension, i.e.,

Cov[Z(x,y)] = E[(Z(x',y') - uz)(Z(x+x',y+y') - uZ]

2 Ix I yf (51
=z Px Py (51)

where 0 < p 1< 1. For zero mean observation WN(x,y), the parameters Px Py

can be estimated as

Px =  Z W(x,y) W(x+l,y)/(x E(W(x,y))2 )  (52a)
xy xy

Py = r r W(x,y) W(x,y+l)l(E r(W(x,y))2)  (52b)
x y x y

2 2
The variance 2 is estimated from a2 the sample variance of W(x,y) as

2 2 2
9Z = aW - a "

Note that this model does not require the a priori knowledge of the object
covariance since all the measurements are made on the available data. Experi-
mentally, this model was found to be satisfactory although a better covariance
model would be ultimately desirable. The object spectral density function
corresponding to the foregoing covariance model is simply given by its Fourier
transform as

Sz(U',aWY) = 82 [(1 - 2ax coswx ((I - 2ay coswy)]- I  (53)

13



where

p2 = cy(1 - P 2(I - p2 )/I + 2 2(I + Py)

= Px/(l + P 2 ay = /(l + P )
x y

Given SZ and Sy, the Wiener filter design is complete. It is implemented via

the discrete Fourier transforr, of the sampled image as follows:

1. Take the logarithm of the image VN(x,y) to obtain WN(x,y).

2. Find the sample mean of WN(x,y) and subtract from each pixel
value.

2
3. Calculate px, py, aZ and the Wiener filter frequency response.

4. Take the discrete Fourier transform (DFT) of the image (of appro-
priate size). In the present case (see examples in paragraph G below) a
256x256 transform was adequate.

5. Multiply the image DFT with the Wiener filter gain sampled at
appropriate frequencies.

6. Take inverse DFT, exponentiate and scale the image appropriately

for display.

E. Spatial Averaging Filter (F3)

The homomorphic spatial filter is implemented by spatial averaging of
WN(x,y) according to (44).

F. Median Filter (F4)

Here a spatial window of suitable size (3x3 here) is chosen. We
slide this window on the image field WN(x,y) and for each position, replace
the pixel value at the center of the window by the median value of all the
pixels lying in the window.

G. Examples and Comparisons

The foregoing filters (Fl to F4) were implemented digitally both in
the homomorphic mode and in the conventional mode. In the homomorphic mode,
the logarithmically transformed image is the input to a spatial filter and its
output is exponentiated (Fig 9). In the conventional mode, the logarithmic
and the exponential transformation are deleted. The spatial filters, once
designed, are kept the same in either mode.

Figure 12 shows the test pattern used and the corresponding N-look
averaged speckle images for N-1,2,4 that are available for digital processing.
Figures 13 to 16 show the results of applying homomorphic filters F1 to F4 to
these images. These results show that filters Fl, F2 and F3 tend to smooth
the speckle. The median filter performs some smoothing but distorts smaller
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objects. In a detection experiment this could cause high false alarm rates.
This is not completely surprising because the median filter is known to per-
form well on binary noise whereas presently (in the homomorphic mode) the
noise is nearly Gaussian.

Figures 17 to 19 compare the performances of the various homomorphic
filters. Since the noise is additive and nearly Gaussian as expected, we find
the Wiener filter to give the best performance. The low pass filter tends to
oversmooth and somewhat distort the size and shape of the objects. The median
filter affects most, the resolution of objects to which are close to the size
of the median filter window. It is notable that both the Wiener and Spatial
averaging filters are able to resolve objects of smaller size (see the fourth
and the fifth rows).

Finally, we compare the conventional vs homomorphic filters in
Figures 20 to 23. For larger objects (low resolution), the performance of the
linear and homomorphic filters is nearly equivalent. However for smaller size
objects (rows 3, 4, and 5) i.e., at higher resolution, the homomorphic filters
definitely seem to perform better. This is particularly noticeable for the
Wiener and Spatial averaging filters (Figures 21, 22).

H. Conclusion

Based on the foregoing experiments we conclude the following:

I. Homomorphic filtering has a definite advantage over straightfor-
ward linear filtering for speckle reduction.

2. The homomorphic Wiener filter yields most favorable results in
terms of resolution vs noise reduction. More accurate object spectral density
models could be useful in the design of Wiener filters.
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