
~1TWHiTCOPY c~iIA T M I

SA Tool for Viewing IDL Data Structures

TR88-009

0 April 1988

Contract N00014-86-K-0680

DTIC Ralph Cook
J%-ZLECTEI

SJAN 26 19830

The University of North Carolina at Chapel Hill
Department of Computer Science
CB#3175, Sitterson Hall
Chapel Hill, NC 27599-3175

Aq

SD ,t': 6ubon Ui1i;itfd

A Tool for Viewing IDL Data Structures

by

Ralph Cook

A Thesis submitted to the faculty of the University of North Ca.rolina at
Chapel Hill in partial fulfillment of the requirements for the degree of Master
of Science in the Department of Computer Science.

Chapel Hill

1988

Approved by:

Advisor - Dr. Richard Snodgrass

Reader - Dr.Bartaaaa

Rea er - Dr. James Agins

©1988

Ralph Cook

ALL RIGHTS RESERVED

RALPH ELLSWORTH COOK. A Tool for Viewing IDL Data Structures (Under

the direction of RICHARD SNODGRASS.)

Abstract

The Interface Description Language (IDL) allows specification of complex

data structures and provides run-time procedures to help use them. A use-

ful debugging tool for interactive display of selected run-time IDL structures

can be built using an existing debugger, workstation windowing software, and

information generated by the IDL compiler. This tool's design can allow

graphics output as an enhancement, though it is not clear a graphics ver-

sion will be significantly more useful. This thesis describes the design and

implementation of such a tool: IDLView's features include transparcnt deter-

mination of node type, display of IDL nodes, classes, sets, and sequences, and

expansion of node attributes. IDLVIEw uses an instance of the intermedi-

ate representation generated by the IDL compiler to interpret the run-time

instances of IDL data structures. (4 g) P

SA q , O : 0 , 0 ',

NTIS (;A 4

L

- t)

LAI _ .. I O s

Acknowledgements

I would like to thank Sundar Varadarajan, Ed McKenzie, and Vikram Biyani for

technical help, Pamela Manning for figure drawing, the students of the COMP

240 compiler construction course for reviewing the program, and especially Rick

Snodgrass for tireless and excellent advice, editing, and overall support.

This work was supported in part by ONR contract N00014-86-K-0680.

I_,

to Bly

Contents

1 Introduction 1

2 Previous Work 3

2.1 DBXTOOL and DEBUG.............................. 3

2.2 Blit Debugger...................................... 3

2.3 GELO System................................... 4

2.4 GRAB Directed-graph Browser 5

2.5 Program Visualization System. 5

2.6 CASEDE Environment. 6

2.7 INCENSE Debugger 6

2.8 VIPS Visual Debugger. 7

2.9 Summary..8

3 Some I1DL Basics 10

4 The Problem 13

4.1 Tools for Viewing the AER............................. 13

4.2 Using DBXTQOL to View IDL Instances..................... 15

4.2.1 The DBXTOOL Environment........................15

4.2.2 Some IDL Run-Time Representation Facts. 16

4.2.3 An Example DBXTOOL Session 17

5 IDLView External Design 21

5.1 Hardware and Base Software Decisions 21

5.2 Window Management Software.......................... 22

5.3 Overall Goals and Program Structure...................... 23

5.4 The Command Interface............................... 26

5.5 The IDLView Display................................. 28

5.6 Summary List of Current Features........................ 31

iv

6 Internal Design and Implementation 32

6.1 Dividing IDLVLIB and IDLVIEw Functions................. 32

6.2 Communication Between IDLVIEw 4nd IDLVLIB............. 36

6.3 Using SunView................................... 41

6.4 Tracking the Display - Boxes and Box Attributes............. 42

6.5 Using CANDLE................................... 46

7 Conclusions and Future Work 48

7.1 IDLVIEW's Current Status 48

7.2 Limitations of the Current Version. 50

7.3 Future Graphics Version Features. 50

7.4 Miscellaneous Additional Features. 52

References 54

A User's Guide 56

A.1 Introduction. 56

A.2 The Display. 56

A.3 Setting Up To Run IDLView. 59

A.3.1 Checking the SunTools Version 59

A.3.2 Initializing DBXTOOL 60

A.3.3 Compiling and Linking Your Code. 61

A.4 Initializing IDLVIEw 61

A.5 Using IDLView. 62

A.6 The Scrolibar 64

A.7 Removing IDLView Windows 64

A.8 Possible Problems and Solutions 65

A.9 Current Limitations. 65

A.10 Tricks of the Trade 67

A.11 Error Messages. 67

B 'man' Page for IDLVIEw 75

v

List of Figures

1 An IDL Specification Fragment. 17

2 Overall IDLVIEw Data Flow Diagram 25

3 An Example IDLVIEw Display......................... 29

4 IDLVLIB Functional Data Flow......................... 34

5 IDLVIEw Functional Data Flow........................ 35

6 IDLVIEW Graphics Version Display Features. 51

7 A "Stacked" Set or Sequence Display. 53

8 An IDL Specification Fragment. 57

9 A Typical IDLVIEw Display. 58

vi

1 Introduction

The use of large data structures of heterogeneous data types is routine for many

significant programming efforts today. Debugging environments, however, do not

usually provide complete tools for displaying such data structures; the availability

of graphics workstations suggest ways such displays could be implemented.

With the Interface Description Language (IDL), a programmer defines data

structures made up of scalar and aggregate types, including sets and sequences

[14]. The IDL compiler converts the data structure definitions into source code

in a target programming language, including run-time procedures for manipulating

instances of the structures. The programmer then writes programs in the target

language to implement specific algorithms on the data structures described, using

the IDL-generated data structures and procedures.

Displaying IDL data structure instances during debugging presents certain prob-

lems. Most available IDL tools operate only on a representation external to a pro-

gram, and are therefore awkward for debugging [13]. Any standard Unix debugger

requires the programmer to understand IDL implementation details he does not

otherwise have to know, and to type many commands to examine an IDL instance

of even moderate size.

We believe the most useful debugging tools display data structure instances at

the same level at which the programmer created them. If the debugger displays data

at a lower level (e.g. strings as sequences of hexadecimal values), the programmer

must interpret the display as well as the behavior of his program. If the display

is at a much higher level (e.g. display of an integer and an array as a 'stack'), the

programmer has to interpret the display as a representation of his own structure,

and may have difficulty determining whether a problem is with the model or the

code.

This thesis describes IDLVIEw, a program which displays IDL data instances at

the programmer's level. First we discuss research in display of large data structures.

We then explain some basic IDL concepts and mechanics, and describe current

problems encountered examining IDL data structures. The final sections describe

the design and implementation of IDLVIEw itself, concluding with a summary of

2

current features and ideas for future work.

2 Previous Work

This section discusses current research work on display of large data structures,

especially tools suitable for a debugging environment.

2.1 DBXTOOL and DEBUG

The current state of commercial debugging programs on mid-size computer systems

is represented by Sun Microsystem's DBXTOOL (15] and Digital Equipment Corpo-

ration's VAX DEBUG [1]. Both provide features commonly expected of a "high-

level" debugging environment: display of source code which scrolls with execution,

debugger output to a file, conditional breakpoints, watchpoints, updated display of

selected variables during execution, execution of commands when a breakpoint is

encountered, and so forth. Since DBXTOOL runs on a graphics workstation, it can

and does provide a mouse-and-cursor command interface; VAX DEBUG runs on a

traditional 24-line 80-column terminal, and includes a complete facility for defining

keyboard keys as commands and parts of commands.

Both debuggers provide display of entire arrays and structures, but differ when

displaying a data structure which may have different sub-structures in different

instances (In Pascal, such a structure is called a variant record, in C, a union).

VAX DEBUG displays all possible variables of such a structure, DBXTOOL requires

the user to specify one variant to be displayed. The VAX DEBUG approach helps

the programmer figure out which variant exists, while the DBXTOOL approach can

display only those fields in the variant specified.

2.2 Blit Debugger

Cargill's Blit debugger, implemented on a "bitmap terminal" controlled by a 68000

microprocessor, runs on less sophisticated equipment than DBXTOOL or DEBUG,

and provides slightly less function than they do [4]. The Blit debugger does not

display source code during execution; it occupies a certain portion of the limited

memory of the Blit terminal during debugging, and virtual memory is not supported.

Despite the limitations, Cargill's debugger does provide some useful ideas. For

i I l I l I i I I -

4

instance, it implements an interactive method for viewing selected parts of struc-

tured data types: when a structure or structure pointer is selected for display, a

menu is made available which contains the structure's fields. The programmer se-

lects one for display; if the selected field is itself a structure, the process is repeated.

This menu structure reduces keystrokes when displaying nested structures.

It is interesting that Blit's author discards as "not credible" the idea that "a

general purpose debugger will be able to display the arbitrary structures encountered

in real programs". While we agree that the entirety of any interesting data structure

is too much information for either display or comprehension, we believe we can

produce useful displays based on IDL run-time information plus user guidance about
what is to be displayed.

2.3 GELO System

The GELO system developed by Steven Reiss provides automatic layout of graphi-

cal representation of data structures; the layout is based on user-defined constraints

such as minimum and desired size, placement of sub-objects, priority among ob-

jects, and sizing constraints l1l]. The system reduces these constraints to a system

of equations which define the layout. The companion APPLE editor allows user

definition of the mapping between a program's data structures and GELO struc-

tures, and the PEAR editor allows him to edit a data structure via its graphical

representation.

In GELO, Reiss defines basic display objects: simple shapes with enclosed text,
tile objects with definable interior rectangular regions, layout objects containing

nodes and arcs, and arc objects for connecting display items. A programmer defines

how data structures are to be displayed by defining objects for each data structure

type.

Reiss states that being restricted to only automatic layout of display objects is

unsatisfactory: a programmer often wants a picture to look a particular way enough

to spend time producing it. GELO provides the programmer no run-time control

over its layout decisions. Reiss also reports that "natural editing" operations are

sometimes rendered invalid because his graphics-oriented editor requires consistency

with the underlying data structure, rather than allowing the programmer freedom

to change the structure as he edits.

5

2.4 GRAB Directed-graph Browser

The GRAB program allows a user to "browse" through a directed graph structure

[12]. The authors list "rules for a designer" for menu-based, graphical applications:

provide "as much visual feedback as possible", make interface modes invisible, and

provide the correct operations for the user. Two important features mentioned

include automatic display layout (instead of user-defined layout) and stability of

unchanged portions of the graph while other parts change.

The display heuristics used by GRAB might not be appropriate for a debugging

display. For example, GRAB assumes no order dependence for leaves and no level

dependence of nodes; this could result in closely-related "sets" of data structures

appearing in widely-spaced areas on the display. It is possible the heuristics used

could be modified for debugging purposes.

A larger problem is that GRAB calculates placement of every node in the graph

before any display, making multiple passes over the graph to refine node placement.

This would be too slow for a debugging environment on current workstations, and

in fact (its authors felt) too slow for its own browsing application. Other problems

reported were unnecessary edge-crossings allowed by their layout algorithm, and the

difficulty of viewing large numbers of near-parallel neighboring edges.

2.5 Program Visualization System

The Program Visualization (PV) System at Computer Corporation of America pro-
vides "moving pictures" of data structures during program execution [2, 3, 6]. It

includes tools for creating pictures based on the algorithms and data structures in a

program, both via intrusive (i.e. changing of source code) and non-intrusive methods

of display. The authors (and the authors of GRAB) speak of the "challenge (of)

the graphical depiction of very large data structures" and of "opening the side of

the machine and watching the program run".

It seems to us, however, that viewing a running program is not the same as

finding bugs, regardless of the display. Perhaps that is why many examples given

of this feature are for algorithm instruction rather than debugging; some tools even

require modification of source code to produce the displays. For production systems,

this means the code has to be changed after debugging. Changed code is undebugged

code by definition.

6

In fact, the pictures produced this way are often at a level higher than the
source code: they show stacks, queues, etc. Certainly a programmer unfamiliar

with a program can learn from a graphical depiction of its algorithm, but it is not

part of the debugging process. Bugs are found at the level at which the programmer

created the code.

We feel, therefore, that the proper level for display of inform tion to the pro-
grammer is the level of the source code being debugged. This is demonstrated by
the far greater ease with which programmers use programs lI& DBXTOOL, which

step one program source line at a time (instead of one machine instruction like older
debuggers) and provide examination of variables by name and as declared (instead
of the hexadecimal or octal dumps by address found in older deboggers).

2.6 CASEDE Environment

Another idea in this area is to provide commonly used higher-leve data structures,
with automated displays which are part of the debugging tool and/or the trans-
lator ruil-time. Mateti and Radack describe a "hint language f"r their CASEDE
environment [8]. In this proposed system, the programmer specifies:

" display of records and pointers as stacks, trees, or lists,

" connection between variables (such as arrays and indices),

" layout methods of certain structures, such as whether elenets of an array are
displayed horizontally or vertically), and

" which fields of a record to display.

They do not go into more detail, but we can visualize a system with a predefined
"stack" display allowing the programmer to name an array and an integer which

model a stack and displaying them as a picture of a stack. The addition of data
types and their operations is similar to the Modula and Ada "pacage" constructs,
but proposed for a different part of the program development cycle.

2.7 INCENSE Debugger

Myers' debugger INCENSE performs automatic layout of data structure displays,

though it also provides user-defined displays [9]. It uses pre-defimed layouts for plac-

ing structures referenced by pointer from other structures, with a simple, attractive

7

method for drawing edges between them. Myers identifies the user-defined display

structures and location of such referents as the "most difficult aspects of INCENSE".

His work contains examples of how such a system might be implemented, though

INCENSE's limitations seem severe for a production system - only global variables

can be accessed by INCENSE, there are memory limitation problems for storing the

symbol table, variant records and some other data types are not supported, and

there is no automatic garbage collection. INCENSE runs on a machine with no

virtual memory system and less than a megabyte of memory - a small computer

compared to ones used in most studies discussed here.

Included among Myers' goals for a debugging system were the following:

* reduce the volume of data required from the user,

* adjust output quantity to human capacity,

" output only completely processed results,

* generate pictures automatically,

" require no modification of the source program, and

" execute quickly.

Myers reports success at these goals, though he says the execution speed needs

to and will increase in future versions.

2.8 VIPS Visual Debugger

The VIPS visual debugger has almost all the features mentioned so far [7]. As a

debugger implemented in and for an Ada programming environment, VIPS displays

data flow, source code, execution-stack windows, and user-defined structures. Sub-

records of records are displayed in increasingly smaller fonts as remaining room on

the display decreases. Each time a subprogram is invoked, a subwindow is created

for it and any packages declared in it. User-defined displays are written in the Figure

Description Language, a subset of Ada.

VIPS' authors maintain that debugging tools such as BLIT, INCENSE, and the

PV and Pecan debuggers "are insufficient for debugging programs because they

represent only a part of program execution behavior". To the extent that these and

other, lesser tools are in fact used for debugging, the statement seems exaggerated;

8

we also feel that this judgement of "sufficiency" may be eironeous. We have not used

VIPS, but it appears from the examples given that it displays more information

than programmers may want.

For example, VIPS adds a sub-window to a part of the display each time a
subprogram is invoked; the programmer therefore has a window for each level of

the current call depth (plus one for each package implemented by each subprogram

called). It is rare that a programmer wants a display of the entire call stack, pos-

sibly because few bugs are found there. We maintain that displays that are not
likely to be useful should neither compete for the programmer's attention by ap-

pearing automatically nor consume processing power being generated. VIPS also

recalculates the positions of all nodes in the data window when any node is added
to it, implying either a more powerful machine or more patient programmers than

we believe IDLVIEw is likely to have.

2.9 Summary

Problems addressed in this research area include choice of information to display,

execution speed, and the layout of graphical representation of data structures. Al-
though various user interfaces are presented, there is nothing radically different from

existing tools; we conclude that researchers are, in general, satisfied with interfaces

currently available. We have also seen that some of the work on displays is not

strictly applicable to debugging.

Among the principles mentioned in this section that we either adopted or had

considered on our own:

Allow the user to select what is displayed. In order to best use screen space and

computing power, the user selects each item to be displayed. IDLVIEw does
not expend processing time or screen space on items which are not requested.

Display data instances at the source code level. IDLVIEw displays IDL instances in

the same format the programmer uses them. This format is generated auto-

matically and familiar to all IDL programmers; moreover, it is the level at
which the programmer finds bugs.

Do not require changes to the user's code. In a debugging environment, such a re-

quirement is unacceptable.

9

We decided not to attempt a complex graphical display in this version; we had

planned to do so in a future version of IDLVIEW, and will now evaluate whether

it is necessary. It is no longer clear that a graphics version would provide enough

extra information to be worthwhile; we may be able to provide the same additional

function without the use of graphics.

f~

IM

3 Some IDL Basics

This section provides enough information to orient a programmer to the Interface

Description Language (IDL); it emphasizes those aspects of the language which

are involved in run-time display. Though it may be skipped by a reader already

conversant with IDL, it may also alert such a reader to issues covered later. The

full description of IDL is given in The Interface Description Language: Definition

and Use [14].

A programmer uses IDL to describe data structures made up of the following

types:

scalar Integer, String, Rational, or Boolean.

node An aggregate of attributes, where each attribute may be any IDL type

listed here. Similar to C struct and Pascal record.

class An aggregate of attributes, where each attribute may be any IDL type

listed here; unlike those of a node, the attributes for different instances

of a class may vary. Similar to C union and Pascal variant record.

sequence Zero or more of another IDL type; duplicate members are allowed and

order is significant.

set Zero or more of another IDL type; duplicate members are not allowed

and order is not significant.

private User-defined types with user-defined operations and implementations.

The difference between node and class deserves some elaboration. The following

IDL fragment declares the class Customer to contain the subclasses Comercial-c

and Government.c; Customer has the attributes Name (a String) and Location (a

node type named Address); further, a Government.c node contains the attribute

Agency-name, and a Comercial-c node contains no attributes specific to its type.

Customer ::= Commercial-c I Government-c;

Customer => Name String,

Location Address;

Governent-c -> Agency-name : String;
Commercial-c ->;

Customer is an IDL class (since it has subclasses), and Comercial-c and Gov-

ernmentc are nodes (since they have no subclasses). An instance of Governmentc

has the attributes Name, Location, and Agency-name; one of Commercial-c has Name

and Location. (Although this example's class has only two nodes as subclasses, in

general a class may have any number of classes, nodes, or both as subclasses.)

An IDL programmer can declare an attribute as Seq of Customer (which is

a class), but he must often deal with an individual element of that sequence as a

node and not a class. For instance, he can create a new instance of a node which

is a member of a class, but cannot create a new instance of a class directly; i.e., he

can create a new Commercial-c or a new Governmentc, but cannot create a new

Customer. IDL provides a function which returns the node type for situations in

which a program must determine the node type of a class instance.

IDL specifications are organized into structures, where each structure has an

associated root node. All elements declared within the structure must be reachable

from the root node, i.e. every declared element must be contained, directly or indi-

rectly, within the root node. Often the root node has only one attribute which is a

sequence of a class, and the rest of the IDL specification describes the class.

An IDL programmer defines one or more processes in his IDL specification; each

process contains one or more ports. A port is declared for either input or output and

is associated with one structure. For the case mentioned above, where the root node

of a structure is a sequence of classes, the structure read by the port is analogous to

a traditional file, and the sequence of classes analogous to a series of records in the

file. The process is analogous to a traditional program: it reads in data, performs

some operations on it, and writes it out in a different form.

A given node or class may have different attributes in different structures; a

node may be declared in one structure, then inherit those attributes in a second

structure which declares additional attributes for it. Since ports are associated with

structures, one may think of a "view" of a node as being the the set of attributes

declared for that node within the structure associated with a given port.

12

One way IDL programs utilize a node with different attributes for different struc-

tures is for the common case of reading data, adding information to it, and writing

it out with the added information. In semantic analysis, for instance, a compiler can

read in nodes from syntactic analysis via a port defined for a syntactic structure, add
semantic information to the nodes with attributes defined in a semantic structure,

and write out the semantic version through a port associated with the augmented

structure. An advantage of IDL is that the semantic definitions can inherit the

syntactic declarations, instead of re-declaring attributes used in both phases.

At runtime, nodes are represented internally by the union of all declared at-

tributes; this allows the use of the node to change without changing its runtime

representation. This version of the node's structure is called the invariant for that

node; it should be noted that the invariant does not necessarily have the same

structure as any one port's "view" of that node.

4 The Problem

This section describes the tools available for displaying instances of IDL structures

before IDLVIEw was available, and what problems there are with using them.

4.1 Tools for Viewing the AER

The ASCII External Representation (AER) represents IDL instances as sequences
of ASCII characters; sets and sequences are enclosed in identifying pairs of sym-
bols, and structures used in more than one place are labelled at one instance and

referred to by label thereafter. Snodgrass describes the AER and some programs

designed for viewing it [131. Three of those he mentions are reviewed in this section
- IDLFortMAT, TREEWALK, and TREEPR.

The AER can be examined with a standard text editor. However, the format is

intended primarily for communicating IDL structure instances between programs,
not for reading by programmers. The basic problems for run-time viewing are:

The size of an AER file

Since useful IDL structures normally have thousands of nodes and their order

in an AER file is not designed for the programmer to read, the user has much

confusing text to search through.

Label and reference usage

Labels are a way of referring to a node without having to duplicate the infor-

mation in it. The location of references, however, is fixed by the IDL routines

which write the AER file, and are inconvenient for a programmer to resolve.

The AER format

The AER is not designed to be read; attribute/value pairs tend to be on their

own lines, but no lines are indented. When an attribute is a sequence, for

example, AER lists its elements before the next attribute for that node. This

is convenient if the programmer happens to want to look at that particular

sequence in relation to that node, but makes it hard to see the rest of the

. owm m m me m -i i m i

14

attributes in the node containing the sequence. This is especially true since

the only delineation for sequences are the enclosing angle bracket characters,

and tracking a specific pair of them through many text lines is difficult.

IDLFoRMAT improves on this by formatting an AER file. All attributes of a

node are indented to the same level, as are elements of sets and sequences. Sequences

of strings, which normally occupy lines of text too long to fit on a screen, are broken

into viewable lines and indented.

The result is workable for small IDL instances, but for viewing significant struc-

tures it does not give the user enough help. For example, the AER file lists members

of a sequence declared for an attribute within the node containing the attribute; to

skip uninteresting sequences, the reader must must keep track of indentation over

many lines of text. Also, the indentation level gets so deep that the text cannot fit

on a screen (or even a page).

TREEWALK provides interactive viewing of an IDL instance, one node and tree

level at a time. Commands are provided to "walk" the directed graph which is the

IDL data. The labelling used in the AER file to reduce duplication is put to use

in TREEWALK to reduce the amount of information the programmer must view at

one time. For example, a sequence is presented as a series of labels rather than as

a series of complete nodes; the programmer can then choose which element of the

sequence he wishes to view, rather than having to find one in a large display.

TREEWALK works reasonably well for a programmer interested in only a small

part of the entire instance. Like AER and IDLFORMAT, however, it does not show

the directed-graph nature of the instance.

TREEPR (pronounced "Tree Print") reads an AER file and prints the IDL in-

stance represented as a directed graph. An attribute which is a sequence has lines

drawn to the elements of that sequence; an attribute which is a node has a line

drawn to the representation of that node. To address the problem of large in-

stances, TREEPR supports options for either producing output which can be taped

together into one large diagram or for producing output which fits on one page at

a time. It also supports dot-matrix or laser-printer output. There is no option for

selecting which portion of an AER file to print.

None of these tools show the values of IDL structures while a program is in

progress (without changing code to produce output at the point where viewing is

15

desired); all of them operate from AER, which is external output from an IDL

program.

4.2 Using DBXTOOL to View IDL Instances

This section describes what a programmer must know and do to examine IDL

instances using the Sun Microsystems DBXTOOL debugger, including the overall

DBXTOOL environment, some necessary facts about IDL run-time representations,

and an illustrative example of a DBXTOOL session.

4.2.1 The DBXTOOL Environment

When DBXTOOL is invoked, it creates a display window on the Sun screen with four

subwindows:

1. A window which displays source code; upon reaching a breakpoint, the dis-

played source changes to include the line at which the breakpoint was set.

2. An area of on-screen buttons containing DBXTOOL commands. Common com-

mands such as print, run, step, etc. appear here. A programmer executes the

command by positioning the cursor on a button and clicking the right-hand

mouse button.

3. A window for display of commands and their resulting output.

4. A window for variables which are updated each time a breakpoint is reached.

Items such as variables, lines, and filenames are selected by positioning the cursor

on them in the source window and clicking the right-hand button. Certain DBXTOOL

commands take arguments; the on-screen buttons use the currently selected item

as an argument. For example, the programmer can select a source line, then click

the on-screen button stop at to set a breakpoint at that source line. DBXTOOL

determines how to treat the selection from the command; e.g. stop at interprets

the current selection as a line number, but print (which prints a variable's value)

interprets the current selection as a variable name.

The commands print and print * display variable values; the latter, if its

argument is a pointer, displays the item pointed to.

16

For names which cannot be conveniently selected, the programmer can use the

conventional keyboard interface. To do so he must position the cursor in the com-

mand subwindow; his input and the resulting output appear there.

To reference the member of a C struct from a pointer variable, the C lan-

guage requires a dash and an angle bracket between them (making an "arrow", e.g.

ptr->member). To save keystrokes for the programmer, DBXTOOL allows use of a

period in this situation (ptr.member); this is the same syntax as for separating a

struct variable from a member field (var.member). When DBXTOOL echoes the

variable being displayed, it displays periods and arrows the way the C language

requires them.

Standard C variables are displayed in expected formats: ints in decimal, floats

in decimal with fractions, pointers in hexadecimal. If a variable is declared as a

pointer to a char, DBXTOOL displays both its address and the string found at that

address.

C structs are displayed in their entirety; that is, DBXTOOL displays all fields.

DBXTOOL even displays structs within structs, but displays only the addresses of

unions and of pointers to structs.

4.2.2 Some IDL Run-Time Representation Facts

This subsection describes most of the details a programmer needs to know about

IDL's implementation of data structures to use DBXTOOL to display them.

IDL Integers, Rationals, and Strings are represented by C ints, floats, and

*chars, respectively. Booleans are represented by char variables, with "true" and

"false" represented by their normal C meanings.

IDL nodes are represented by C structs, and IDL classes are represented by C

unions. The union for a class has one member for each subclass represented; that

member is a pointer to a struct which contains a member for each field of the

subclass.

An IDL class, in fact, has no IDL run-time representation; a variable declared as a

class in the program is a node at run-time. Each node struct has an internal struct

named IDLhidden, which contains the field TypeID. Each node type of any IDL

specification has a unique value for TypeID; both the IDL run-time and IDLVIEw

use the value to determine a node's type.

17

Structure customers Root customer-list Is

customer-list -> list : Seq Of customer;

customer ::-commercial-customer I government-customer;

customer ,> name : String,
location : address,
customer-number : Integer,
balance : Rational,
contacts : Set of String;

address city : String,
state : state-code;

state-code ::-NC I SC;
state-code ->

commercial-customer -> types : Set Of industry-code;

industry-code -> code : integer;

Figure 1: An IDL Specification Fragment

4.2.3 An Example DBXTOOL Session

Consider Figure 1, an IDL specification fragment. For this illustration, let us as-

sume a programmer is debugging IDL code based on a specification containing this

fragment, that he has declared a variable thisCL of type customer-list, and that

he has reached a breakpoint where he wants to examine this variable.

Since customer-list is a node, thisCL is a pointer to a C struct which contains

the member list. To look at the value of list, the programmer needs to know that

sequences are represented by linked lists of pointers, and that each pointer points

to a cell containing (1) a pointer to the next element and (2) the element's value.

(There are other representations of sequences, but we will only consi'er this one.)

The programmer can view the cell with the following command:

(dbxtool) print *thisCL.list
*thisCL->list - {

next a Ox2Oad8
value = <union>

}

18

DBXTOOL requires the programmer to name the member of the union value

to be displayed; he cannot view the value field without naming a member, nor

does DBXTOOL have any way of telling the programmer what members exist. Since

the component element of the sequence is customer, any member of the sequence

could be either a commercial-customer or a governmentcustomer. To determine

the type, the programmer needs to view the IDL run-time internal variable which

contains the type identifier. For this he enters:

(dbxtool) print thisCL.list.value. IDLclassCommon. IDLhidden
thisCL->list->value.IDLclassCommon->IDLhidden = {

TypeID - 8
Touched - 0
Shared - 0>

Now the programmer knows the TypeID of his sequence member. The definition

of this number as a certain node type resides in the "include" file generated when

the IDL specification was compiled. The statement in that file will be of the form:

#define K<node name> 8

The following Unix command will produce a list of all such constants, which the

programmer might print and keep around for just this purpose:

grep 'define K' <include file name>

Looking at the resulting list, the programmer could see that 8 is the definition

for the constant named commercial-customer. The union member for this variant
is therefore named Vcommercial-customer, and the following command displays its

value:

(dbxtool) print *thisCL->list.value.Vcommercial.customer
*thisCL->list->value.Vcommercial-customer {

IDLhidden
TypeID = 8
Touched = 0
Shared - 0

}
name = 0x20004 "Itty-Bitty Machine, Inc."
location = Ox2a504
customer-number = 1
balance = 11.109999656677246
contacts = Ox2a51c
types - (nil)

i}

19

Now the programmer has some useful information. The values for the name,

customer -number, and balance fields all appear in this display.

To display the value for the location field, however, the programmer needs

to enter one command to see the value of the location attribute, and another to

determine the value of the state field.

(dbxtool) print *thisCL.list. value.Vcommercial-customer.
location
*thisCL->list->value. Vcommercialcustomer->location {

IDLhidden - (
TypeID - 6
Touched - 0
Shared = 0

}
city - Ox200ld "Chapel Hill"
state = <union>

(dbxtool) print \
*thisCL.list.value.Vcommercial-customer.
location, state. IDLclassCommon
*thisCL->list->value. Vcommercial-customer-> \
location->state.IDLclassCommon = {

IDLhidden -
TypeID - 2
Touched - 0
Shared - 0}

}

The programmer can then look at the list generated with the grep command,

mentioned above, and determine that a TypeID of 2 indicates a state-code of NC.

Since list is declared to be a sequence of customer, the location field of the

value member of the list must be specified as a member of a union identified with

the node type of that member of the union (in this case, with Vcomercial.custo-

mer).

Printing out an entire set or sequence requires one command for each member.

The following set of commands and responses shows how the programmer views the

attribute contacts, which is declared as a Set of String.

(dbxtool) print *thiscustomer.Vfederal-customer.contacts
*thiscustomer. Vfederal.customer->contacts = {

next - Ox2a6b4
value - Ox2OOcf "Mr. Harpo"

20

}

(dbxtool) print *thiscustomer.Vfederal-customer.contacts \
.next
*thiscustomer.Vfederal-customer->contacts->next - {

next - Ox2a6cO
value - Ox200d9 "Mr. Chico"

}

(dbxtool) print *thiscustomer.Vfederal-customer.contacts \
.next.next
*thiscustomer.Vfederal-customer->contacts->next->next - {

next - Ox2a6cc
value - 0x200e3 "Mr. Groucho"}

(dbxtool) print *thiscustomer.Vfederal-customer.contacts \
.next. next. next
*thiscustomer. Vfederal-customer->contacts \
->next->next->next - (

next - (nil)
value - Ox200f9 ""}

The last element shows two special cases: the value of (nil) for next indicates

that there are no more elements in this set, and the display for the value attribute

indicates that its string is empty.

Note how the programmer must retype much of the "variable name" for each

command. In this example, the procedure is made simpler by application to a set

of strings (which DBXTOOL displays directly). If the component elements of a set

are nodes (or even worse, classes), the programmer needs an additional command

to view each member, since DBXTOOL automatically displays only the hexadecimal

value of a pointer variable.

IDLVIEw was written to eliminate the tedium required to view run-time IDL

data. To use DBXTOOL on IDL code, the programmer must type many commands

to view even part of his overall structure, know how each of the IDL types are

represented, and determine the node type of class attributes by searching a generated

file for their type constants.

5 IDLView External Design

A program's external design is a combination of the program requirements and the

constraints placed on the program by hardware and other resources. This section

describes the external design of IDLVIEW; the User's Guide in Appendix A describes

its use in greater detail.

5.1 Hardware and Base Software Decisions

IDLVIEw was planned as an interactive graphics tool, with IDL structure elements

appearing in boxes connected by lines to other boxes and the directed-graph nature

of the structure instance appearing as part of the display. IDLVIEw currently

performs non-graphics output, but does have workstation features such as a separate

output window and a cursor-and-mouse user interface.

The single biggest external design requirement was use of a Sun workstation. The

actual requirement was that the system support both graphics output and IDL, but

the choice was clear. The University of North Carolina at Chapel Hill has over 75

Sun workstations, most of them available to Computer Science students; there was

no other reasonable choice.

Using an existing debugging program was another primary consideration; doing

so provided many features which IDLVIEW did not have to implement, such as

use of compiler symbol table information, setting of breakpoints, displaying source

files during debugging, display of scalar variables, and display of run-time stack

information. Since the hardware choice was clear, the debugger choice was also

indicated; DBX (or its SunTools implementation DBXTOOL) is the most advanced

and most commonly used debugger on Sun workstations.

Moreover, DBX contains an interfacing feature making it especially suitable for

extension. This is the call command; it allows the programmer to execute a sub-

program with an interactive command, passing the address of a program variable

as an argument. This single feature might have been sufficient to cause the choice

of DBX over another debugger, for with it we could write our own subprograms to

execute commands to interface with our tool without modifying the debugger itself.

22

5.2 Window Management Software

With clear choices for the hardware and debugger, we next considered software

packages for window management. At the time, there were two to choose from:

SunTools and X Windows.

X Windows is the newer of the two systems, with continuing development in-

volving MIT and Digital Equipment Corporation [5]. It features portability across

different hardware and "transparent" operation across networks (with programs

managing different parts of a window application running on different machines).
Unfortunately for IDLVIEW's immediate development, only a low-level library of

routines was available at the time the choice had to be made, and not all of that

was installed and running at our location. Some features we wanted to use, such

as pop-up panels, scrollbars, and automatic refresh on window exposure, had to
be implemented by the application rather than being managed by the windowing

software. We were sure that X would have these features eventually, but it was

not certain how long it would be before a stable set of such tools were available or
whether the first set available would become a standard.

The SunView (formerly SunWindows) library, on which the SunTools environ-

ment is based, did not have some of these problems. Its use was well established

and its user interface library in place. Its features helped make IDLVIEw's user

interface similar to other SunTools programs. The following features were all sup-

ported by SunView and used by IDLVIEw: scrollbars, text subwindows, pop-up

panels, cursor and mouse positioning, window exposing, hiding, resizing, and clos-

ing, static and dynamic menu generation, menu item selection, different menus for

frame and window background, pull-right menus, and a different cursor and icon for

the display window. An additional advantage was that use of SunView enabled use

of DBXTOOL, the SunTools version of DBX, which was also in widespread use on Sun

systems.

We chose SunTools over X Windows, then, knowing that we might abandon the

older system later. We were reluctant to risk working out the problems of a newer

system which lacked features we wanted, preferring to spend our time on other

problems.

23

5.3 Overall Goals and Program Structure

While developing both external and internal design for IDLVIEw, we kept three

overall goals in mind: execution speed, expandability to a graphics version, and

avoiding changes to the user's code.

The speed of an interactive tool is an obvious issue, but how fast is fast enough

is a subjective judgement. In general, we feel that a programmer is willing to wait

longer for more and/or better information (up to a point); however, a debugger is

limited in the level of information it can display. A good debugger answers questions

like "what are the values of variables at this point in the running program?" and

cannot yet answer ones like "is there a bug in this routine?"

In debugging, the programmer must interpret the answers the debugger gives.

We feel this interpretation is easiest (as we already mentioned) when information is

presented at the same level as the source code; in other words, a debugger's job is to

present run-time information so that compile-time constructs can be made to work

correctly. If the programmer writes in C, the debugger should present information at

the level of C source code - decimal values for integers and floating point numbers,

strings displayed within double quotes (as DBXTOOL does), structs displayed as

series of fields. Likewise, if the programmer writes in IDL, he should be able to

debug by viewing IDL structures in much the same way as he programs with them.

Since a programmer typically performs many debugger actions to produce the

information necessary to find bugs, he has good reason to expect each action to com-

plete quickly. This and the interactive nature of symbolic debugging make debuggers

more sensitive to speed constraints than some other interactive programs. Elapsed

time spent calculating additional display must be considered carefully, because a

programmer will get impatient while debugging.

Typical IDL structures are so large that significant time could be spent just

calculating their displays. We decided to limit IDLVIEW's display to items selected

by the programmer, rather than generating displays he might never want to see. We

also made programmer efficiency a goal of our user interface, to reduce elapsed time

for input as well as output.

The future graphics version gave us the goal of structuring the design (and the

code) so that changing to graphics output would involve minimal change to the rest

of the program. We purposely chose a window management package with graphics

.... " '= I RMO ~l ll iii l t i i '

24

capability, so it was up to us to ensure that the graphics version development would

be an upgrade instead of a rewrite.

Our goal of requiring no changes to user code resulted from our conviction that

a programmer should not have to change code after it is debugged. Occasionally,

limitations brought about by IDL and DBXTOOL could have been alleviated by

requiring such changes, but we resisted the temptation.

These and other considerations led us to a program structure where library rou-

tines, collectively called IDLVLIB, are linked into the user's code and a separate

Unix process, called IDLVIEw, controls the display window. This offers the follow-

ing advantages:

* Most subprogram names and global variables are separate from the user's code.

Since IDLVIEw must have access to the user's memory space, the alternative

was to link all of IDLVIEW's code with the user's program. Although name

conflicts are fairly simply resolved by requiring the user to change his names,

it would be a major annoyance for the programmer to have to do even once.

e All window management restrictions are removed from the user's code. For

instance, SunView programs are not allowed to trap certain Unix signals -

the window management software depends on trapping those signals itself. If

all of IDLVIEw was linked with the user's program and the user needed to

handle these Unix signals, it is not clear how the conflict could be resolved.

e A separate process for window management allows the possibility of having

the window manager and debugged code run on different machines. Towards

this end, we used Unix sockets for interprocess communication (since sockets

can operate across a Unix network, while Unix pipes cannot).

* A future version of IDLVIEw may be able to take advantage of the separate

processes to allow debugging commands and display calculations to proceed

simultaneously.

e Since the majority of IDLVIEw code is in a different address space than the

user's program, it is harder for either to corrupt the other's address space (the

user's code, after all, is being debugged).

* Both memory and disk requirements are reduced; IDLVLIB is 20 kilobytes,

IDLVIEw is over a megabyte; if IDLVIEw were all linked with the user's

25

Fgrde 2. O IDLVIE Dat w

thtDucalrgr

whchtrnfor daa Moeresa ent daDsoew ichasoragepaeyo

Root Displam or r eret p or g s u t

althoh a soe ien a f, IDLVIEW Commands a t u r

Filename

Figure 2: Overall IDLVIEw Data Flow Diagram

code, each process and image file being debugged on any one system would be
that much larger.

Figure 2 is an overall IDLVIEw data flow diagram. Ovals represent processes,

which transform data; boxes represent data stores, which are storage places for
data; lines represent flow of data. Trapezoids represent user input, and double ovals

represent displayed output. Although a process is often a program or a subroutine,

it could be multiple programs or parts of different programs or groups of subroutines;
although a data store is often a file, it could be an internal data Structure, parts

of different data structures, or a single program variable. A data flow diagram's

purpose is to show how data changes and moves within a system; the system shownI

is presumed to "already be running", and no chronology or logic is indicated by the

symbol placement.

The CANDLE (Common Attributed Notation for the Description LanguagE) rep-

resentation of the user's IDL structures enables IDLViEw to interpret IDL struc-

26

tures in memory, as appropriate for a debugging environment. CANDLE had not

been used for this before; earlier tools for displaying IDL structure instances all de-

pended on ASCII External Representation. The IDL compiler generates a CANDLE

file as a user option.

As indicated in the data flow diagram, the CANDLE file is read by the window

display process. An advantage of splitting the processes was that the (fairly involved)

CANDLE structure and the code to interpret it did not have to exist in the user's

program.

5.4 The Command Interface

IDLVIEW's command interface was characterized by two things: its operation under

SunTools and its display of IDL structures. The former gave reasons for retaining

command input methods already familiar to SunTools users: mouse and cursor

selection, menus, scrolibars, etc.; the latter has its own structure to which to apply

these methods.

The decision to use DBXTOOL as a base has already been discussed. Two com-

mands were added: (1) IDLViev, creating and initializing an IDLVIEw window,

and (2) shownod, specifying a node in the target program for display. DBXTOOL's

call command accepts names of program variables as arguments, translating them

to their addresses in the user's address space.

DBXTOOL's interface also allows definition of on-screen buttons for command

execution. The programmer can define a button to execute a command, and op-

tionally have the command receive as its argument a variable selected in the source

code window. This interface minimizes typing, which in turn speeds debugging.

IDLVIEW's commands have button equivalents, with shovnod receiving a program

variable as an argument.

After the programmer has begun execution of his code, he uses the IDLVIEw

command to create the display window. It prompts for the name of the CANDLE file

(in the DBXTOOL window), reads that file, and DBXTOOL resumes normal operations.

When the programmer wants to display a rode, he uses the shownod command

to begin an IDLVIEw session. During the session, the programmer uses the menu

'The text contained within buttons in DBXTOOL is limited to seven characters, otherwise we

would have spelled this command out as shownode.

mas@

27

options of the IDLVIEw display window to examine selected parts of the IDL struc-

ture as they are at that program breakpoint. During the session, DBXTOOL does

not respond to commands; another option ends the session and returns DBXTOOL to

its normal command mode. The programmer may use as many sessions as he likes

during one invocation of his program under DBXTOOL; the previous session output

remains available.

The seeming limitation of suspending DBXTOOL operations during a session ac-

tually allows much of IDLVIEw's usefulness. During a session, subprograms within

IDLVLIB communicate via Unix socket with IDLVIEW itself. When the user re-

quests display of another portion of the IDL structure, the display program sends

messages requesting the necessary information from the user's program, and the

IDLVLIB routines return it. DBXTOOL is suspended because the IDLVLIB routines

which control half the communications are executing.

An alternative was to dispense with the concept of a session, and require the user

to enter a DBXTOOL command to complete communication tasks with IDLVIEw;

however, the programmer would need to understand when such communications

were taking place, and would need to execute additional commands. A session

also guarantees consistency of displayed information; if a programmer could display

a node, run through one or more breakpoints, and then request expansion of an

attribute of that node, the node might have ceased to exist or changed so that the

attribute no longer existed.

During an IDLVIEw session, there are two commands made available by posi-

tioning the cursor on an item in the window and selecting a menu option: expand

attribute and more detail.

The expand attribute option is the basic IDLVIEW user operation. The user

selects a program variable which is a root display variable for a directed graph

structure with the shownod command; all other boxes displayed in that session are

derived from that root with expand attribute. The programmer displays more

of the structure by expanding one or more attributes of the root, then expand-

ing attributes of nodes displayed by expansion of the root, etc. In this way, the

programmer displays just the parts of his IDL structure he wants to see.

The more detail option provides display of the internal representation of the

data, rather than how it is interpreted by run-time routines. Some bugs are more

easily found this way; if the values in a given structure instance appear meaningless,

28

and the hexadecimal representation of its address is "32323130", the programmer

might guess that the address had somehow been overwritten by the ASCII codes for

"2210".

The select port option (available by invoking a menu from the display window

frame) provides another menu; this one lists the IDL ports declared for the process

being debugged. By selecting one of them, the user limits the attributes displayed

for any node to those which are declared for that node under the structure associated

with the selected port.

The method for selection of items in the IDLVIEW window is not the same as

in other SunTools applications. In DBXTOOL, for instance, the user positions the

cursor on the name of the variable in the source display window and clicks the mouse

button; a reverse-video block indicates the selected variable. To do something with

the selection, the user clicks the appropriate on-screen button - print, print *,

etc.

In IDLVIEW, the user positions the cursor on the desired item, clicks the right

button, and a menu appears with a list of possible options. The user does not have

to select the variable with one click and the action with another.

The DBXTOOL method is appropriate to its environment; for example, a pro-

grammer can select a variable and then repeatedly run to a breakpoint and print

the value without having to move the cursor outside the window area containing the

buttons.

IDLVIEW, however, does not have the goal of supporting such repetitive opera-

tions, and has fewer options. Once an attribute is expanded (the equivalent of the

DBXTOOL print command), there is no point in expanding it again within that ses-

sion - its value cannot have changed. We therefore eliminated the slight inefficiency

of the DBXTOOL method for single selections.

5.5 The IDLView Display

The example display in Figure 3 shows a representation of an IDLVIEW display

window. The top line (which is normally in reverse video) names the window and

indicates that an IDLVIEW session is active, i.e. the user has selected a node from his

program to be displayed and can now select attributes of that node to be displayed

further.

29

IDLView Active

(1) customer-list is ROOT DISPLAY NODE

-7r"- list <customer> (1 element)

(2) commercialcustomer is element 1 of (1) .list

maintenance-number 111222333
name "Itty-Bitty Machine, Inc."
location [address]
customer-number 1
balance 11.11
contacts (String) (2 elements)
types (industrycode) (uninitialized)

Figure 3: An Example IDLVIEw Display

On the left side of the window is a SunTools scrollbar; at the top and bottom of

the scrollbar are scroll buttons, the grey area between them contains a white bubble

which indicates the portion of text currently visible in the window. In this case, the

bubble indicates that the first 75 percent of the text available is currently displayed.

Within the window itself are two boxes, one for a customer.list node and one

for its attribute list (which is a node of type commercial-customer). Near the

upper left corner of the window is the IDLVIEW cursor (two parallel lines with a

circle between them), designed for easy selection of text in the window. The cursor

reverts to the default shapes when positioned on the window frame or the scrollbar.

The box numbers appear in the upper left-hand corner of their portions of

the display. The node identifier for the box (i.e. the type of node, in this case

customer-list and commercial-customer) appears after the number. The user

evidently displayed a variable from his program of type customer.list, then posi-

tioned the cursor over the list attribute and invoked the expand attribute menu

option; this caused display of the elements in list (which is a Seq of customer).

The attributes of a box appear below its header. Each attribute type has its

own identifying punctuation:

Type Punctuation Example in Figure 3

Integer number without decimal customer-number

30

Rational number with decimal balance

String characters in double quotes name

Node or Class name in brackets "C[" address

Set name in braces "{}" contacts

Seq name in angle brackets "<>" types

(The character pairs used to indicate nodes/classes, sets, and sequences are the same

as those used in the ASCII External Representation.)

The header line indicates the box's source. The first box in this example is the

first box of an IDLVIEw session, and so is labelled ROOT DISPLAY NODE. The second

box was produced by expanding the list attribute in the first box; since list is a

sequence, the source portion of the header identifies it as element 1, and also shows

the name of the attribute from which it was derived. (If the expanded attribute had

been a node instead of a set or sequence, the "element <number>" portion of the

header would not have appeared.)

One can think of the box numbers as serving a function similar to lines between

boxes in the graphics version. Where the graphics version could have a line connect-

ing an attribute to the box containing that attribute when expanded, in the current

version an expanded attribute display includes the number of the box from which

it was expanded.

The remaining piece of information on the screen is the number of elements in

each set or sequence; this appears to the right of the appropriate attribute. In cases

where a set, sequence, or node is not yet initialized (as distinct from having no

elements or attributes), (uninitialized) appears in that space (as in the example

for the attribute types).

Each element of a set or sequence appears in its own box; if the elements are IDL

basic types, the header information appears as usual and the value appears below

the header. For nodes which have no attributes, only the header appears.

The display provides as much clear information as space allows, using symbols

to reduce the amount of display where this does not interfere with clarity. The use

of text to identify non-basic types was considered (such as Set Of instead of "{}",

but such text would be more easily confused with meaningful text and uses more

space than the delimiting characters. We felt that the tradeoff of forcing the user

31

to learn these conventions at first was worth the clarity it afforded later.

5.6 Summary List of Current Features

In summary, here is a list of the salient external design features. IDLVIEW:

" runs on Sun workstations, using DBXTOOL as a basic debugger;

* adds commands to DBXTOOL for creation of a display window and display of
a selected IDL node;

" uses SunView to provide an interface similar to other SunTools applications;

" permits conversion to a graphics version with minimal changes;

" manages the display window with a separate Unix process, communicating
with a set of library routines linked with the user's code via Unix sockets;

" operates in sessions: the user explores an IDL structure during one session,
and may use multiple IDLVIEw sessions during one debugging run;

" provides four commands selected by menu option in the display window:
expand attribute, more detail, select port, and end session;

* uses CANDLE to interpret the representations of the IDL structures in memory;

" uses SunTools standard options in most places, with a few changes to improve
programmer efficiency;

" displays structure instances with the dual goals of clarity and economy;

" displays only items selected by the programmer; and

" requires no changes to user code.

6 Internal Design and Implementation

The internal design of a program is the bridge between its function and its imple-

mentation, including high-level data structures, overall program structure, and the

interface with external software entities (such as SunView, DBXTOOL, and CAN-

DLE). The implementation of a program is the code written to satisfy the external

design (representing the program's function) and internal design decisions.

This section describes IDLVIEW's internal design, with some detail about the

implementation chosen for that design.

6.1 Dividing IDLVLIB and IDLVIEw Functions

One of the reasons for using a separate display window management process was to

lessen restrictions on and conflicts with the user's program. It therefore made sense

to keep IDLVLIB, the library linked with the user program, as simple as function

allowed. The following jobs were allocated to IDLVLIB with this in mind:

" Initialize IDLVIEw

This includes creating a socket for communication, creating a process to run

IDLVIEw, and obtaining the name of the CANDLE file and sending it to

ID LVIEW.

Creation of a child process by a program being debugged under DBXTOOL

requires special consideration, since a Unix fork creates two processes running

the same image file and DBXTOOL refuses to operate on such an image; the

trick is to ensure that DBXTOOL does not regain control of its program until

the child process has replaced the running image with another one. This is

one reason the user must wait 20 or more seconds for the IDLView command

to complete before DBXTOOL resumes operation after initializing IDLVIEW.

" Start an IDLVIEw Session

A session begins with the display of a node; IDLVLIB gets the node's address

from the user and DBXTOOL; the IDL run-time system maintains a 16-bit

integer which is the identifier for the node at that address, and IDLVLI3

33

sends the address and the node identifier to IDLVIEW. (IDLVLIB cannot

send the entire node because the node's length is not available from the run-

time system. IDLVIEW obtains the length from the CANDLE structure and

requests the entire node in a separate communication).

IDLVLIB then waits for and responds to messages through the socket until

a message terminates the session. IDLVIEW sends requests of the following

types:

- Send Memory Block

Given an address and a length, IDLVLIB sends that block of memory to
IDLVIEW. IDLVLIB does no interpretation of the bytes sent.

- Send String
Given an address, IDLVLIB calculates the string length and sends the
string as a memory block.

- Count Linked-list Elements
Given an address, IDLVLIB counts the number of set or sequence ele-
ments starting at that location and sends the count to IDLVIEW.

Except for the sub-task of inter-process communication, which is discussed in

its own section below, this is a complete list of IDLVLIB functions. Our success

in keeping them to a minimum made implementation faster and easier, since it

contained most of the processing and features in IDLVIEW. For instance, a graphics

version would not require changes to IDLVLIB since no display information is kept

there.

This left "everything else" for IDLVIEW. The major functional areas are listed

here and discussed in the sections which follow:

" Managing communications between the processes.

" Interfacing with SunView: display, menus, and translation of cursor position
to displayed item. This also includes translating user commands into their
correct functions.

" Tracking displayed information.

" Using CANDLE to interpret user memory locations as IDL data structures.

Figures 4 and 5 show the overall data flow of IDLVLIB and IDLVIEw, respectively.

(Data flow diagram conventions are the same as for Figure 2, discussed on page 25.)

34

- . IbiLVLM within~
User's Program

FigurFe 4 DLLB uctoa Da F l a

35

................ ID'L'V]E'W...

_ ExpandCMDLE Initialize Internal Structure Infq
Me Window CKNDLE AttntMte

item type,
length

CAME
Renarne

CAMOM add,.
new display

screen position

rm display.
Current

IDLV1113 node ackires-I
within node id

port
Start Displayed Select

User's Program Session Data Port

usaaddress, address, memory
length usa address entation

node id

nation active
block display

sd'or sequence
ad&= Get y Show

Displa MoreBox -0. Box Detailts box# of.elemexn'

box
display

..........

deftU

j
IDLVIEW

display

current portDisplay .. . 'pCg>-- VpIay

Figure 5: IDLVIEW Functional Data Flow

36

6.2 Communication Between IDLVIEw and IDLVLIB

The concept of an IDLVIEw session serves several purposes. In its external design,

IDLVIEW's display during a session is limited to a static point in the program.

The importance of this arises from the nature of IDLVIEw attribute expansion:
you must start with an existing attribute to display more attributes. If IDLVIEw

allowed the programmer to execute code between the display of an attribute and

its expansion, confusing changes to the node or the attribute might have occurred

which might not even be visible to the programmer. There are other ways to solve

this problem, but this is the simplest and fits the debugging environment.

Another reason for IDLVIEW sessions is a limitation of the DBXTOOL interface

on programs communicating with other programs. IDLVLIB is part of the user's

address space, not part of DBXTOOL itself; since DBXTOOL normally has the user's

program stopped, the only way any IDLVLIB subprogram can be executed is by user

command (as described in section 5). A session provides for IDLVLIB to be invoked

when a session is started and remain running until the session is over; if it didn't,

then each time the user entered an IDLVIEW command to expand an attribute, he

would need to enter a DBXTOOL command to invoke the IDLVLIB routine which

sent the necessary information to IDLVIEw.

The normal approach to this problem in a stand-alone application would be to

receive an interrupt when communications were received on the socket connection.
While the user's program is under DBXTOOL control, however, it runs (and can

receive interrupts) only when the user gives a DBXTOOL command for it to run.

Since the programmer would normally want IDLVLIB and IDLVIEw communica-

tion to proceed with his program halted, this solution is not workable. Requiring a

DBXTOOL user command in order to complete communications would be confusing.

Since DBXTOOL commands are disallowed during a session, IDLVLIB routines

can remain running and service IDLVIEW requests for information as necessary.

This simplifies overall design since IDLVIEw can send requests for information at

any time; the program does not have to determine ahead of time what information

may be needed, nor attempt to determine the state of interprocess communications

at a given time.

Unix socket communication provides different protocols, but only the STREAM

type is suitable for IDLVIEW (the DATAGRAM protocol, for instance, preserves

37

message boundaries but does not guarantee delivery; the application must track

messages and ask for retransmission if necessary). Stream sockets resemble regular

Unix file input and output, where messages are streams of bytes.

We next considered how to represent information in a byte stream; the two

choices were bytes copied directly from the user program's memory, and some form

of ASCII.

An ASCII form offered some advantages. It would facilitate a later version in
which IDLVIEw runs on one machine while the user's program runs on a machine

with a different architecture. Test input for IDLVIEw could be created with a text

editor. Control characters would be available to help the receiving process interpret

the byte stream.

However, converting internal representations to ASCII would require that CAN-

DLE's information about the structures in memory be interpreted in IDLVLIB,
greatly complicating its job. Also, information about the binary representation
would have to be maintained in IDLVIEW anyway, since IDLVIEw displays infor-

mation such as hexadecimal representations of data and user addresses.

With this in mind, we settled on the "memory block" as the basic unit of inter-

change between the two programs. IDLVLIB's central function is transferring blocks

of user's memory to IDLVIEW without interpreting them, and IDLVIEw requests
specific blocks based on user actions and the CANDLE structure.

Since the bytes can assume any value and the message lengths may vary, there

is the problem of delimiting messages. We used a two-message structure: messages

from both IDLVLIB and IDLVIEw consist of a fixed-length header and an optional,
varying-length additional message. If the additional message is being sent, its length

is specified in the header.

The same message header is used by both IDLVIEW and IDLVLIB; together

with the "additional message" field, the structure is as follows:

msg type constant identifying the header message

node id IDL constant identifying a node type

addr address in user's memory

block length length of requested memory block

add'l length length of additional message to follow

add'l msg additional message bytes (optional)

38

We now examine the messages exchanged by the two programs in the course of

a debugging session.

After the user enters the IDLView command and IDLVLIB has started the

IDLVIEw process, IDLVLIB sends the first communications message; it contains

the name of the CANDLE file. After IDLVIEw has read it, it returns a message

ending the communications session. The pair of messages is as follows:

sent by IDLVLIB

msg type CDLMSG

node id (unused)

addr file name address

block length (unused)

add'l length length of CANDLE file name

add' masg CANDLE file name I
sent by IDLVIEW

msg type ENDCMM

node id (unused)

addr (unused)

block length (unused)

add'l length (unused)

_add'l msg I (none)

While IDLVIEw is inactive (i.e. when there is no session in progress), it is waiting

for a message from IDLVLIB indicating the start of a session. The only message

currently implemented which does this is the one sent after a shownod command; it

sends the node identifier of the node to be displayed. Its message fields are:

sent by IDLVLIB

msg type FSTNODMSG

node id identifier for node to display

addr address of node to display

block length (unused)

add'l length (unused)

add'l msg I (none) I
From this point until the end of the session, IDLVIEw controls the communi-

39

cation by sending requests for information to IDLVLIB. IDLVLIB waits for each

request, returns the information, and waits for the next request; when the user ends

the session, IDLVIEW sends a message ending the communications. There are three

kinds of information IDLVIEw requests: blocks, strings, and linked-list counts.

A block is an area of the user process' memory which length is calculated by

IDLVIEw. For instance, the FSTNODMSG received by IDLVIEw (described above)

allows IDLVIEw to calculate the length of the corresponding node and request

that the memory containing it be sent by IDLVLIB to IDLVIEw for display. The

messages exchanged for this are:

sent by IDLVIEw

msg type BLKREQMSG

node id (unused)

addr address of node in user's memory

block length length of block in user's memory

add'l length (unused)

add'l msg [(none)

sent by IDLVLIB

msg type BLHSG

node id (unused)

addr address of node in user's memory

block length length of node requested

add'1 length length of block sent

add'l msg requested block

Block requests are not limited to nodes. For instance, when an attribute which

is a set is expanded, the information available to IDLVIEW is the address of the

linked-list header node; the header contains the address of the first element and the

address of the second element's header node. IDLVIEw obtains this header node by

requesting it as a block from IDLVLIB; then IDLVIEw can obtain the set element

with the address in the node.

A string request is similar to a block request; the difference is that IDLVIEW

does not know the length of the string it is requesting. The String type in IDL

is implemented as a sequence of bytes with a null byte terminator; on receiving

a request for a string, IDLVLIB determines its length and returns the string as a

40

memory block. The message sequence is:

sent by IDLVIEw

msg type STRREQMSG

node id (unused)

addr address of string

block length (unused)

add'l length (unused)

Iadd'l msg (none)

sent by IDLVLIB

msg type BLKMSG

node id (unused)

addr address of string

block length (unused)

add'l length length of string returned

add'l msg string

A linked-list count is requested by IDLVIEW for set or sequence attributes of

nodes which it displays; IDLVLIB calculates the desired count and returns it with

the following sequence:

sent by IDLVIEW

msg type LLSCNTREQ

node id (unused)

addr address of linked fist

block length (unused)

add'l length (unused)

add'l msg (none)

sent by IDLVLIB

msg type LLSCNT

node id (unused)

addr (unused)

block length (unused)

add'l length size of integer

add'l msg size of linked list at given address

41

The simplicity of the message structure served IDLVIEw's development well,

especially in cases where additional functions were added. Low-level communication

routines serve higher-level routines by reading a header, allocating memory for and

reading an additional message if necessary, and returning the information read to

the calling routine. These routines do not interpret the message contents, other

than the field indicating the length of an additional message. To add a new type of

message to the system, no low-level changes are necessary.

6.3 Using SunView

The overall workstation environment is complicated to manage; different processes
control different windows, the keyboard and mouse buttons have different mean-

ings depending on cursor position, windows overlap and so have a kind of "third-

dimensional" position, etc. SunView's approach to this environment is to take

main-line control itself, and to notify application code under specified conditions.

For example, IDLVIEw creates a window with customized menus and performs

user-defined operations based on menu selections. One SunView library call creates

the menu, specifying subprograms to be executed for each menu option; another Sun-

View call creates the window and associates the new menu with it. Then IDLVIEW

calls a SunView subprogram which acts as a "main program loop" and does not

return until the window is destroyed. SunView invokes the subprogram associated

with a given menu option when that option is selected by the user.

Without such a method, the application must interpret all the asynchronous

events in the window environment. For instance, cursor shape depends on cursor

position, changing for different portions of windows under the control of different

processes; each time the cursor moves, some code must track the cursor position and

determine if the cursor display must be changed. Just as Sun's overall workstation

manager tracks which programs control which windows, it is reasonable to have

SunView control global events for each process.

IDLVIEw is therefore split into portions; one portion executes at startup and

initializes the window environment, and each other portion executes in response to

an event. The events are:

reading information from the socket connection

42

* expanding a specified node attribute

o displaying more detail about a selected item

e setting a selected port as the default

* ending the IDLVIEW session

* destroying the window on user command

SunView provides several kinds of windows and subwindows. Panels are sub-

windows which can be created with text, on-screen buttons, user input areas, etc.

Canvases are graphics-oriented subwindows with provisions for drawing lines as well

as displaying text. Text subwindows allow browsing and editing of files, with default

options for saving the file, reading another file, and so forth.

IDLVIEW uses a text subwindow, which simplifies tracking of display informa-

tion by treating the display as lines and columns of characters rather than as pixels.

Since it does not provide enough function for the graphics version, IDLVIEw's pro-

gram structure minimizes dependence on the window type. For example, IDLVIEw

contains a subprogram to display a string; it currently contains one line which calls

a SunView routine with nearly identical function. This way, the implementers of the

graphics version can write their string display function in that subprogram, and will

not have to change the subprogram call in each place in IDLVIEw which displays

a string.

The menu generation procedures are some of the best documented and easiest

to use in the SunView library. We took advantage of this for the Select Port

option, in which the user selects a port from those declared in the IDL source

code. IDLVIEw reads the names of the ports for the process being debugged from

CANDLE, generates a menu containing those names, and attaches it as a pull-right

menu from an option of the IDLVIEw frame menu. The alternative was to have the

user type the name of the port; so far no IDLVIEw function except the CANDLE

file name (and possibly a root display variable name) requires any typing.

6.4 Tracking the Display - Boxes and Box Attributes

IDLVIEw stores and displays many different kinds of data types: nodes, sets, se-

quences, and the IDL basic types; more support will eventually be provided for

private types. We sought a data structure which could unify the handling of these

43

types to the extent that they would depend on common functions (such as being se-

lected by cursor position) and have common characteristics for IDLVIEw to manage

(such as their location on the screen).

We named the result of using such a unifying structure the "double-funnel effect";

multiple data types going into the single structure, and out of the single structure

come multiple displays. This reminded us of setting two funnels with their small

ends together, one of them gathering a large stream into a small one and the other

one spreading it back out again.

The external design has already introduced the concept of a display box, which

represents an IDL element on the screen; internally, IDLVIEw maintains one data

structure for each display box and one for each attribute of each box (called a

box attribute). The central programming task of IDLVIEw may be thought of as

tracking boxes and box attributes. The flexibility gained by using separate data

structures will make it easier to implement future features such as two-dimensional

graphics layout, user-assisted layout, and user-specified "collapsed" attributes.

For passing both boxes and box attributes among subprograms as parameters,

we borrow the concept of a handle from SunView and other systems; a handle is

a value (usually an address or integer) which represents one instance of a given

object. Each handle is unique, and is used to pass the associated structure as a

parameter in subprogram calls. In IDLVIEw, lower-level routines provide storage

allocation for new structures, assignment of handles, and conversion of handles to

structure pointers. These structures do not qualify as "opaque", since their internal

structure is known to subprograms; we call them "translucent" since their allocation,

storage, and handle conversion are limited to a few subprograms. The advantage to

translucent structures is that the methods for the hidden operations can be changed

without changing IDLVIEw code in general.

Although a box handle may be implemented as a pointer to the box structure in

a given address space - it fills the qualifications of being unique and of reasonable

length - we did not implement it that way and do not recommend doing so. Future

IDLVIEw versions may want to obtain a new copy of a node, for instance, and

replace the old box with the new one. If the box structure address were used for

the handle, it would be difficult to either find all the places which used that handle

(to change it) or to fit the new box into the area of memory where the old one was.

IDLVIEW's box and box attribute handles are indices into arrays which contain

44

addresses. To replace one box with another, we would replace the address in the

array, and all handles referencing that box would automatically reference the new

box.

We took particular care with the representation of a box's screen position in

IDLVIEw. SunView maintains the text in a text subwindow as one long string,

and provides library calls for determining information about it in terms of lines, etc.

IDLVIEw tracks display position of an object as an integer specifying its position

in the single text string; however, this will not be adequate for a graphics version.

Screen position is therefore treated as a separate "hidden" structure, and functions

which deal with that structure directly are limited. When the graphics version

is implemented, the structure can be changed to contain x and y positions (and

whatever else is necessary) with limited changes to the code.

The data fields stored for a box are:

" box type - node, string, integer, rational, boolean, or unknown

" box number - number displayed identifying this box

" source box attribute - the handle for the attribute which was expanded to
produce this box

* CANDLE pointer - a pointer to the CANDLE type of which this box is an
instance

" local block pointer - points to the copy of user's memory block in IDLVIEw

" user address - the address in user's memory of the memory block

" screen position - the position of the box on the screen.

" first box attribute - first pointer in a linked list of attributes for this box. The
final pointer in the list is null.

" element number - integer representing the position of this box in a sequence
or set

" next element box - handle of the box containing the next element in a set or
sequence

* linked list address - user's address of the linked list set or sequence cell. IDL
implements sets and sequences linked lists with "cells" which contain a pointer
to the next element and a value (or a pointer to the value) of the current
element.

" attribute name width - width in characters of the widest attribute name (plus
1) for tho ¢ attributes being displayed in this box.

45

e detail flag - set if detail has been displayed for this box

The data fields stored for a box attribute:

" box attribute type - atomic (i.e., one of the IDL basic types), set, sequence,

node, or unknown

" source box - handle of the box containing this attribute

" destination box - handle of box this attribute has been expanded to

" value pointer - pointer to the memory representation of this attribute; this

points into the memory block for the containing box.

* user address - address of the attribute's value in user's memory

* CANDLE pointer- pointer to CANDLE structure representing the type of which

this attribute is an instance

* next box attribute - handle of the next box attribute for this box

* screen position - screen position of this box attribute

* linked list count - number of elements of this attribute if it is a set or sequence

* detail flag - set if detail has been displayed for this box attribute.

When a root display node identifier is received from IDLVLIB and is found in

CANDLE, a box is created for it; the block of memory representing the node is

obtained from IDLVLrn, a box number is assigned, and the known fields filled in.

A box attribute structure is then created for each of the attributes in the node

(filtering out any attributes not known to the current port). Additional information

is obtained for any attributes requiring it; strings, for instance, are represented in

nodes by pointers, and IDLVIEw obtains the value of each string from the user's

program so it can be displayed with other node information.

Once all the information is obtained, IDLVIEw displays the box. The program

could display the information while receiving it, but to do so would tie the receipt of

data to its display. A later version of IDLVIEw might obtain a node, compare it to a

version from a previous session, and update the existing display. If we had mixed the

46

functions of receiving and displaying, that feature would have been more difficult

to implement. We were not concerned about the time elapsed while information

was received and the display calculated, and our lack of concern was justified: the

limiting factor on display speed is how fast SunView scrolls text, not the time taken

to calculate the display.

When the user invokes the expand attribute menu option, SunView provides

the x and y coordinates of the cursor and the text lines and columns currently

displayed; IDLVIEw calculates which item is under the cursor at that display point

and takes appropriate action. If the item is a node, set, or sequence attribute, it

obtains the user's address from the box attribute information and re-executes the

algorithm for obtaining and displaying a box.

6.5 Using CANDLE

CANDLE is an IDL structure which describes a user's IDL structure; that is, CAN-

DLE's nodes, classes, and other IDL types describe the characteristics of the IDL

structure declared by the user. Each data structure's name, type, component layout

in memory, and source code position (among other things) is specified by CANDLE.

This is analogous to a compiler that is written in the language it compiles.

The following small portion of two parts of the CANDLE specification shows
declarations for the Class node (the IDL comments are not from the Candle source):

Class => repenumerated: Boolean, --true if set or sequence
rep-nodeId: Integer, --unique id for class
repallowedOps: Set Of ClassOperation;

-- operations allowed on class

Class => sem-allattributes: Seq Of Attribute, -- attributes
sem-ancestors: Set Of Class, --superclasses
sem-subclasses: Set Of Class; --subclasses

The instance of CANDLE generated by the IDL compiler contains a Class node

for each class declared in the user's IDL specification, each with the above charac-

teristics (and more). IDLVIEw uses this instance to interpret user memory in terms

of the user's IDL specification.

For instance, the rep-nodeId field is the identifier IDLVIEw matches to deter-

mine the type of a node in the user's memory. When the user specifies a variable

47

as a root display node, DBXTOOL translates it into an address; IDLVLIB sends that

address and the integer at that address (as the IDL node identifier) to IDLVIEw;

IDLVIEw searches through the set of nodes in the user's CANDLE instance for a

matching node identifier.

When a node is found, its length is calculated from CANDLE information and

the memory block which is the node transferred via IDLVLIB. IDLVIEW then

visits each of the attributes of that node (in sem.allattributes, shown above); the

attribute's type, name, offset from the node address, etc. are used to interpret the

block of memory transferred from the user's program.

As mentioned before, a node at run-time is implemented as the union of all the

attributes declared for it in a given IDL specification; this representation of a node

is called its invariant structure. Interpretation of the memory block from the user's

program uses the invariant structure for the corresponding node.

To build a box for a node "viewed" through a port, IDLVIEW visits each at-

tribute in the invariant, then searches for that attribute in the current port. If the

attribute is found, it is processed normally; if not found, it is skipped.

In an early version, IDLVIEW visited each attribute for a port and searched the

invariant for a match. Different ports' views of a structure, however, do not always

have their attributes in the same order, so this algorithm sometimes caused node

attributes to appear in a different order for different ports. IDLVIEw, therefore,

uses the order of attributes from the invariant.

The only difficulty we found using CANDLE was its size: its IDL source is over

35 pages long, and contains much information not germane to IDLVIEw. Since

attributes for nodes could be found in different files and different places in one file,

we finally made a reference guide we call the "Candle map"; this contains all the

class and node declarations in alphabetical order by name from all the Candle source

files. With this, we could look up all the attributes for a given node at one time,

look up all the subclasses for a class at one time, and determine whether a given

entity was a node or a class. XREF, another IDL tool currently under development.

will produce such "concordances" for IDL structures automatically.

7 Conclusions and Future Work

This section outlines our conclusions about IDLVIEW and discusses possible im-

provements.

7.1 IDLVIEW's Current Status

We are pleased with the current version of IDLVIEw as a debugging tool. The

user interface is simple and requires no typing for normal operations. The speed

with which IDLVIEW displays nodes on command is quite satisfactory; the current

limitation appears to be the scrolling speed of a SunTools window. The display

matches the appearance of IDL structures as they are declared. Complete informa-

tion is presented without "noise" characters which interfere with the programmer's

view of important data. Port "views" allow the user to reduce the display in a way

related to the IDL structure.

There are limitations to IDLVIEw (covered in the next section); we did pro-

vide it to 12 graduate students in an advanced translator class, who gave us useful

comments and bug reports.

One speed issue we were unable to solve is the time it takes to create the

IDLVIEW display window. The problems are:

1. It takes a noticeable period for SunView to create a window.

2. Interesting IDL structures have large CANDLE description files, and it takes a

noticeable time for IDLVIEw to read them.

3. The IDLVLIB code which creates the IDLVIEw process must first fork its own

executable image; because DBXTOOL will not operate on an image being run

in two different processes, it is necessary for the IDLVLIB process to execute

a Unix sleep() function call while the IDLVIEw process gets started [15].

Fortunately, these operations occur once or twice during a debugging session, when

IDLVIEW is getting started; it would be worse if we had run into speed problems for

operations which occurred during, say, commands to display nodes. An improvement

49

to be considered would be to have IDLVIEw run as a process independent of the

user program, rather than being forked by it, and to have IDLVIEw be able to use

a CANDLE file for more than one session. The user would then have to wait only the

first time a program is debugged for a workstation session (unless the IDL structure

were changed). After initialization, IDLVIEW's speed is quite satisfactory.

The goal of allowing for easy expansion to a graphics version has also been met.

The following design features would make that implementation easier:

Inter-process communications protocol - The simplicity of this protocol makes it
easy to add more functions.

Screen position tracking - The separate data structures maintained for each dis-
play item will make it easier to control the display of each item in the graphics
version.

Storage of displayed items - Storing the binary copy of the user's memory provides
maximum flexibility for future display features.

User interface - The user interface can remain similar in the graphics version.

The developers of the graphics version will be able to concentrate on the problems

of directed graph display rather than on obtaining run-time data and tracking it,

just as this IDLVIEw version was able to concentrate on IDL structure display as

opposed to the debugging functions already provided by DBXTOOL.

We have been pleased enough with the current version, however, to doubt

whether the graphics version will be worthwhile. There are non-graphics ways to

provide some of its useful features; for instance, instead of a graphics window with

boxes in a two-dimensional space, IDLVIEw could provide a way for the user to

specify that an expansion was to be made in another window. With user control of

the window placement, we may be able to forego solving the two-dimensional layout

problem but still provide the user tools for arranging the output to suit himself.

We also solved IDLVIEW's problems without requiring changes to the user's

code. There were problems for which this solution suggested itself; the linker for the

C compiler, for instance, provides no way to force a library of routines to be linked

into a program unless at least one of them is called from the program. Since none

of the subprograms in IDLVLIB are called from the user's program, we had to find

another way to force the linker to include them.

50

7.2 Limitations of the Current Version

This version of IDLVIEw has the following limitations:

" Booleans attributes are unsupported. The IDL compiler encodes the CAN-
DLE instance using an assumption which is erroneous in the Sun Workstation
environment; when this incompatibility is corrected, IDLVIEw will support
Booleans.

" Private Type attributes may not be expanded.

" Only the default implementations and sizes of Integers and Rationals are sup-
ported.

" Only the linked-list implementation of sets and sequences are supported.

* Neither a Set nor a Sequence may be used as a Root Display Node. Doing
so was not part of the program external design requirements, but IDLVIEw
users have since often requested it. The IDL run-time system currently has
no identifier on sets and sequences the way it does on nodes, so the shownode
command cannot be used. A "showset" command might be implemented; it
would send IDLVIEw information about the first element in the node which
would enable IDLVIEw to obtain display information for it.

" There is a 20,000 character limit on the display window. This is a SunView
limitation; the value could be set to another fixed value easily.

" The width of the workstation screen limits the length of an individual display
line.

" Only C is supported as the target language. The IDL run-time system im-
plements IDL instances differently for different languages, and IDLVIEw was
written for the C implementation.

" The user may debug only the first process declared in the IDL source code.

7.3 Future Graphics Version Features

Figure 6 illustrates the following display features that might be implemented in the

graphics version of IDLVIEw:

1. Nodes - These are displayed with headers at the top and attributes enclosed
in their own boxes below.

2. Location window - The rectangle in the upper right-hand corner of the display
contains a small representation of the parts of the structure examined so far.
A smaller rectangle within that one shows the user what part of the entire
explored structure is currently displayed in the main window. The user moves
the "view" of displayed items by "grabbing" an edge of smaller rectangle with
the mouse and cursor and "dragging" it to a different part of the entire display.

51

customerjlist 0
list <customer> (1 element) 5

co m m erycial-custom r (lem ent 1)

maintenance _ umber 111222333
name "Itty-Bitty Machine, Inc."
location [address]
customer__number I

contacts (String) (2 elements)
types (industry-code) (uninitialized)

Figure 6: IDLVIEw Graphics Version Display Features

3. Collapsed attributes - The user has an option to collapse selected attributes,
both for one node and for each instance of a selected node type. A small blank
space remains on the screen to remind the user that a collapsed attribute exists
there.

4. Collapsed nodes - The user has an option to "collapse" entire nodes; this
constricts them to a small rectangle on the display screen, leaving more room
for other items.

5. Set of nodes - Sets and sequences appear as strings of boxes linked together.
In the figure, the set appears in the location window, but not in the main
display window.

The idea of "collapsed" attributes within a node is connected with user-specified

display formats, which is also being considered. The problems mentioned in Sec-

tion 2 concerning "writing code to debug code" would not apply if the user-specified

format were limited to the placement of attribute names and values [9]. For a user

interface, perhaps a menu option could display the default (or current) description

and allow the user to change it using the mouse and cursor; there would be a need,

however, for saving such a definition so the user does not have to define it again in

a future debugging run.

Another possibility for user-controlled display is that of node scaling: allowing

the user to specify how large the boxes which contain display items are to be.

Ai

52

A lot of these ideas address a general problem for both non-graphics and graphics

versions of IDLVIEW: economical use of space. The obvious reason this is important

is that IDL structures are too large to look at conveniently as a whole; another reason

that we did not foresee is that the workstation screen is not big enough to look at

as much as would be convenient. We believe the proper approach is to give the user

as much control as he can conveniently use to specify what is to be displayed, rather

than aim to display as much as possible at the expense of user control. An option

could be provided to output all of the structure explored so far to the TREEPR

program, so a programmer could examine the entire directed graph at one time if

he wished.

7.4 Miscellaneous Additional Features

Here we list possible features to add to IDLVIEW, with brief discussions of their

use and/or problems.

Display of declaration source - The user selects a display item and a menu option,

and receives a display of an IDL source file at the point where the selected

item was declared. This could be complicated, since the source declaration for

a given item could be spread over different places in one or more files, and it

might not be useful to display them all. Possibly IDLVIEw could display a re-

created source-style declaration composed from the run-time representation;

this would be easier to do but would not provide such niceties as comments

and context near the actual declaration.

Freezing a display window - The user selects a box from a previous session and

requests an update on the displayed item; IDLVIEw displays the current value

of that item in an additional box next to the old one. Alternately, IDLVIEw

re-displays the box and changes the appearance of items within the box which

have changed value.

Identify all instances of one node - IDLVIEw indicates all instances of a given

node type by highlighting them (e.g. reverse video).

"Stacked" set/sequence display - Instead of displaying a set or sequence of items

across the screen, display them using an arrangement such as in Figure 7.

53

(2) commercialcust element
(1) <.list> I of 15

maintenance_number 111222333
name "Itty-Bitty Machine, Inc."
location [address]
customer number I
balance 11.11
contacts (String)
types (industry-code) (uninitialized)

Figure 7: A "Stacked" Set or Sequence Display

This displays one element of a set or sequence at a time, and gives the user

on-screen buttons for choosing display of another. Perhaps this could be a

display option, to be chosen by the user for selected sets and sequences'.

Middle mouse button to expand attributes - The middle button could invoke the

expand attribute option automatically, eliminating the step of selecting it

from the menu. Since expansion of attributes is IDLVIEw's most common

operation, this would increase the user's efficiency.

In conclusion, we completed a tool which displays run-time instances of IDL

structures within a debugging environment; the display is close to the form in which

the programmer produces his IDL code. The tool can be enhanced to display the

instances graphically with minimum modification. We used the existing debug-

ger DBXTOOL for standaid dtLbugger functions, SunView for our SunTools interface

and window mangement, and CANDLE for interpreting IDL run-time data. Our

user interface is designed for IDLVIEw's specific needs, and as such differs slightly

from other SunTools applications. IDLVIEW's display is designed to provide maxi-

mum information with a minimum of characters. Features to enhance the proposed

graphics version have been explored, the problems its implementation is likely to

encounter have been listed and possible solutions suggested.

'Our thanks to James Coggins for suggesting this design.

54

References

1. Beander, B. VAX DEBUG: An Interactive, Symbolic, Multilingual Debug-
ger, in Proceedings of ACM SIGSOFT/SIGPLAN Software Engineering

Symposium on High-Level Debugging. Johnson, M.S. (Ed.), Association for

Computing Machinery, (August 1983), 173-9.

2. Brown, G. P., Carling, Richard T., Herot, Christopher F., Kramlich, D.
A., Souza, P. Program Visualization: Graphical Support for Software Development.

Computer (August 1985), 27-35.

3. Brown, M.H., Sedgewick, R. A System for Algorithm Animation. Computer

Graphics 18, 3 (July 1984), 177-186.

4. Cargill, T. A. The Blit Debugger. Journal of Systems and Software 3 (1983),

277-284.

5. Gettys, J., Newman, R., Fera, T. D. Xlib - C Language X Interface, Protocol

Version 10. MIT Project Athena, (November 1986).

6. Herot, C.F., Brown, G.P., Carling, R.T., Friedell, M., Kramlich, D., Baecker,

R.M. An Integrated Environment for Program Visualization. Automated Tools for
Information Systems Design (August 1982), 237-259.

7. Isoda, S., Shimomura, T., Ono, Y. VIPS - A Visual Debugger. IEEE Software

4, 3 (May 1987), 8-19.

8. Mateti, P., Radack, G.M. Integrating Data Structure Diagrams into Source

Level Debuggers, in ACM Computer Science Conference Proceedings. As-
sociation of Computing Machinery, (February 1986), 407.

9. Myers, B. Displaying Data Structures for Interactive Debugging.

Master's Thesis, University of California, (1980).

10. Reiss, S. P. Pecan: Program Development Systems that Support Multi-

ple Views, in Proceedings, Seventh ICSE, IEEE Computer Society. IEEE,

IEEE, (August 1984), 324-333.

11. Reiss, S. P., Pato, J. N. Displaying Program and Data Structures, in Pro-

ceedings 20th Hawaii International Conference of System Sciences. CS

Press, Los Alamitos, CA, (1987), 391-401.

55

12. Rowe, L. A., Davis, M., Messinger, E., Meyer, C., Spirakis, C., Tuan, A. A

Browser for Directed Graphs. Technical Report UCB/CSD 86/292, Computer

Science Division (EECS), University of California, (April 1986).

13. Snodgrass, R. Displaying IDL Instances. SIGPlan Notices (1987).

14. Snodgrass, R. The Interface Description Language: Definition and Use

(forthcoming). Computer Science Press, Rockville, MD, (1988).

15. Debugging Tools for the Sun Workstation. Sun Microsystems, Inc., 2550

Garcia Avenue, Mountain View, CA 94043, (February 1986).

A User's Guide

A.1 Introduction

IDLVIEw provides run-time display of IDL data structure instances using SunView'

and DBXTOOL. The user:

* compiles his code for debugging,

- links IDLVIEW routines with his own code,

* creates an IDLVIEw window with a DBXTOOL command,

* executes some portion of his code, stopping at a DBXTOOL breakpoint, and

* selects a variable containing an IDL node for display.

He can then use the mouse to select attributes of that node to be expanded; an

attribute which is a node expands into its own attributes, and an attribute which is

a set or sequence into its elements.

The reader of this manual is assumed to be familiar with IDL, with the basic

use of DBXTOOL (such as use of buttons displayed on the screen), and with use of a

Sun workstation running SunTools.

The Sun Microsystems manual Windows and Window Based Tools (part number

800-1287-03) is the introductory manual for Sun windows in general, and Debugging

Tools for the Sun Workstation (part 800-1325-03) describes DBXTOOL.

A.2 The Display

Figure 8 shows parts of an IDL specification, and Figure 9 a representation of an

IDLVIEw display based on that specification.

At the top of the display is the window header, which gives the name of the

window and indicates that IDLVTEw is active (as explained with the concept of

an IDLVIEw session, below). At the left of the window is a SunTools scrollbar;

1SunView is a set of libraries used by programs termed SunView applications; SunTools is a
graphics workstation environment under which SunView applications run; SunWindows is an older
version of SunView.

57

customer-list -> list Seq Of customer;

customer :: commercial-customer I government-customer;
customer *> name : String,

location : address,
customer-number : Integer,

balance : Rational,
contacts : Set of String,

types : Set of industry-code;

commercial-customer -> maintenance-number : Integer;

Figure 8: An IDL Specification Fragment

the black areas at the top and bottom of the scrollbar are scroll buttons, and the

grey area between them contains the bubble indicating the amount of text currently

appearing in the display window. In our case, the bubble indicates that the first 75

percent of the text is currently displayed.

The window itself contains 2 boxes; a box is an IDLVIEw display of either a

node or an element of a set or sequence. The top line header for each box shows:

" the box number in parentheses; boxes are numbered sequentially as they are

created. In this example, boxes 1 and 2 are shown.

" the type of the item displayed; for a node, this is the node type. In this

example are node types customer-list and commercial-customer.

* the origin of the displayed item; in our example, the first box shows the node

displayed first in this IDLVIEw session, indicated by the label ROOT DISPLAY

NODE. The second box shows the expansion of the attribute of the first box;

the header shows which element of the sequence is represented by the box

(element 1), which box contains the attribute expanded ((1)), and which

attribute in the source box was expanded (.list).

Underneath the header are the value(s) for a displayed item. For a node this is

the name of each attribute of the node, along with either the attribute's value (for

basic types) or its type. In the first box above, we see that a customer-list node

has only one attribute, and it is of type Seq of customer (indicated by the angle

41
.. .- -,"''-- m mr mm iWM,

58

IDLView Active

(1) customerlist is ROOT DISPLAY NODE

list <customer> (1 element)

(2) commercial customer is element I of (1) .list

maintenance number 111222333
name "Itty-Bitty Machine, Inc."
location (address]
customer-number 1
balance 11.11
contacts (String) (2 elements)
types (industry_code) (uninitialized)

Figure 9: A Typical IDLVIEw Display

brackets around customer). In the second box, the following are basic types with

their values displayed accordingly:

String (enclosed in quotes) : maintenance-expires, name

Rational (numeric with decimal) : balance

Integer (numeric, no decimal) : maintenancenumber

Attributes of non-basic types are indicated by:

Node : [brackets]

Set : <angle brackets>

Sequence: {braces}

Although the list attribute of the first node was declared as a sequence of a

class (customer), IDLVIEW automatically determines the node type of its element

commercial -customer and displays it in the header of the expanded attribute.

The following are the non-basic types in the second box of our example:

node of type address : location

Set of String : contacts

59

Set of node of type industry-code : types

IDLVIEw displays the number of elements of each set and sequence attribute.

It also indicates set, sequence, or node attributes which are uninitialized (as op-

posed to having no elements or attributes); in our example, the types attribute is

uninitialized.

When an expanded set or sequence is made up of a basic type, its boxes have no

attribute name. If the user expanded the attribute contacts above, the following

boxes would appear on the display:

(3) String is element 1 of (2).contacts

"Mr. Wright"

(4) String is element 2 of (2).contacts

"Ms. Management"

For nodes which have no attributes at all, IDLVIEW displays only a header.

Displayed text scrolls in the window, automatically adjusting for window size.

A standard SunTools scrollbar is available on the left-hand side of the window; its

use is explained in Section A.5 in this User's Guide.

A.3 Setting Up To Run IDLView

IDLVIEw runs on a Sun workstation under SunTools. After ensuring that the
version of SunTool is compatible with IDLVIEw, the programmer compiles his code

for debugging with DBXTOOL, links the IDLVIEw library routines with his code,

and initializes DBXTOOL with IDLVIEW commands.

A.3.1 Checking the SunTools Version

You must be running SunTools version 1.0 or later; this version uses walking menus

instead of stacking menus, besides having other features IDLVIEw requires. The

easiest way to determine what version is running is to look at the menu obtained

by pushing the right-hand button on the frame of a normal window; if the resize

and move options have arrows on them, then your version of SunTools is able to run

-I

60

IDLVIEW; if they do not, you need to change the default version. IDLVIEw gives

no error message indicating that the SunTools version is incompatible.

To change the default version:

1. Place the cursor on the Sun background (i.e. outside all windows) and push

the right-hand button to obtain the general Sun menu.

2. Select the "DefaultsEditor" option . A window appears on the screen for

editing the SunTools defaults.

3. The first set of defaults presented includes a rotating option for "walking

menus". Move the mouse button to the small circle made of two small arrows

next to that option and click the right-hand button. The displayed choice

changes from "stacking menus" to "walking menus", and a message appears

indicating compatibility with version 1.0 or higher.

4. Move the cursor to the "save" button at the top of the window and click the

right-hand button. This saves the current version of SunTools as the default,

so you don't have to select this option each time you log in.

You must not start DBXTOOL for IDLVIEw use until after this option is set, i.e.

starting DBXTOOL, setting the option, and then starting IDLVIEw will still fail.

A.3.2 Initializing DBXTOOL

To facilitate use of IDLVIEw during debugging, the following DBXTOOL commands

are recommended (and assumed in the remainder of this document) to be executed

at the start of a DBXTOOL session:

alias IDLView "call sndcdlwdw(\"\")"
alias shownod "call sndfstnod(!:1)"
button ignore IDLView
button expand shownod

DBXTOOL executes these lines automatically on being invoked if they are placed

in the file ".dbxinit" in either the working directory or the user's root directory (it

uses the one in the working directory if both are present)2.

2A sample .dbxinit file may be copied from /usr/softlab/uisc/dbxinit.

61

A.3.3 Compiling and Linking Your Code

When compiling IDL code, use the idlc option -C <filename> to produce a CAN-

DLE file. A common convention for the CANDLE file name is to use the name of

your IDL file with "Cdl" replacing the "idl" suffix.

Compile your "C" r utine3 with the C compiler "-g" option.

To link with the IDLVIEw library routines, add the following to the command

line which links your program3 :

/usr/softlab/lib/idlvlib.o /usr/softlab/lib/idlvlib.a

For instance, your command line might appear as:

cc -g main.o userlib.a /usr/local/lib/libidl.a \
/usr/softlab/lib/idlvlib.o /usr/softlab/lib/idlvlib.a

You are now ready to run the linked program as an image under DBXTOOL.

A.4 Initializing IDLVIEw

On starting DBXTOOL, two buttons appear for operating IDLVIEw: IDLView and

shownod.

IDLVIEW may be initialized a any time after DBXTOOL has executed some

of the program to be debugged (i.e. you cannot initialize IDLVIEw immediately

after entering DBXTOOL). Then, clicking the IDLView button creates the IDLVIEW

display window.

The IDLView command causes IDLVIEW to prompt for the name of the CANDLE

file in the DBXTOOL command window; after the filename is entered, IDLVIEw

creates its display window, reads the CANDLE file, and returns keyboard control

to DBXTOOL. After entry of the CANDLE file name, 20 seconds or more may pass
while the window is created and IDLVIEw reads your CANDLE file; wait until the

(dbxtool) prompt appears before continuing.

Should you ever restart the program by clicking the run button or executing
the run command, you must re-initialize IDLVIEw with the IDLView command,

creating a new IDLVIEw window.
3 This assumes the location of the IDLViEw library routines is /usr/softlab/lib/; change as

necessary at your installation.

62

The IDLVIEw window has all standard SunTools frame options available: close

(or open), move, resize, expose, hide, redisplay, and quit. They are selected the

same way as for other SunTools applications: by putting the cursor on the frame of

the window and pushing the right-hand button. See the SunTools documentation

for further information on these options.

A.5 Using IDLView

Once IDLVIEW is initialized, you can continue to interact with DBXTOOL normally:

set breakpoints, view files, execute code, etc. To have IDLVIEw display a node4 :

1. select the name of the variable which contains the node with the cursor and

the right-hand mouse button (the same as selecting a variable for the "print"

button)

2. click the shownod button

The node appears in the IDLVIEw window, the display window header indicates

that IDLVIEw is active, and the DBXTOOL command window displays a message

indicating that IDLVIEw is active. This is the beginning of an IDLVIEw session,

and until the session is finished DBXTOOL does not respond to keyboard input.

Now move the cursor into the window where the node is displayed; it changes

to a shape suited for selecting items in the window. In IDLVIEw, selection is ac-

complished by placing the cursor on the desired item, pushing the right-hand mouse

button (which produces a menu), and selecting a menu option for the desired item.

This is different from some other selection mechanisms; DBXTOOL, for example, has

the user click a button to select the desired item, then click the button a second

time to select the action to perform on it.

There are two options available in the menu obtained within the window; both

use the position of the cursor over either the attribute name or the type name of

the intended attribute:

1. expand attribute: display the entirety of an attribute which is a node, set,

or sequence. If the attribute is a node, it expands to its own box with its own

4At runtime, IDL classes are all resolved into different types of nodes; this manual refers to

such entities as nodes, whereas a programmer may think of some of them as classes.

63

attributes; if the attribute is a set or sequence, it expands to a series of boxes,

each containing one element of the set or sequence. Attributes displayed on

expansion are themselves available for expansion.

In our example in figure 9 above, the second box displayed was produced by

selecting expand attribute on the attribute in the first box.

As long as the end of the current text appears in the window, additional text

causes the window to scroll upwards. If the end of current text does not appear

in the window due to user positioning, additional text does not cause scrolling.

2. more detail: display more detailed information about the selected item; what

information is displayed depends on what kind of item is selected:

Integer : address and hexadecimal value

Rational : address and hexadecimal value

String : address and number of bytes

Node : address and number of bytes

Set : address of first cell and of first node

Seq : address of first cell and of first node

Place the cursor on the frame of the IDLVIEw window and push the right-hand

button, and two options appear in addition to the normal ones for a frame:

1. end session: ends the IDLV[Ew session, displays a double line at the bot-

tom of the current display, and returns keyboard control to DBXTOOL. An-

other IDLVIEW session may be started with another shownod command from

DBXTOOL; only attributes of the current session may be expanded.

2. select port: This is a "pull-right" menu, indicated by the arrow in its menu

box. Select the option, then move the cursor to the right: another menu

appears; this one has the option reset to invariant and an option for each

port declared in the IDL process being debugged.

Selecting a port causes nodes to be displayed with only the attributes declared

for the IDL structure associated with that port. Selecting the invariant, which

is the default, causes nodes to be displayed with all attributes declared for them

64

in all structures. The title of the IDLVIEw window indicates the currently

selected port, and the node header indicates the port which was active at the

time the node was selected. A port may be selected at any time after the

CANDLE file is read, whether or not an IDLVIEw session is in progress.

A.6 The Scrolibar

A standard SunTools feature included with the IDLVIEw window is the scrollbar

on the left-hand edge. This contains a grey area and a white bubble; the grey area

represents the entire text, and the bubble indicates the portion of the entire text

which is currently visible in the text window; e.g. if the bubble occupies the top

one-quarter of the grey area in the scrollbar, then the portion of the text in the

window is the top one-quarter of the text.

To move the text within the window, place the cursor on the scrollbar; clicking

the left-hand button moves toward the end of text, clicking the right-hand button

moves toward the start of text, and clicking the middle button positions the text so

that the middle of the bubble appears at the location of the cursor.

The distance between the top of the scrollbar and the cursor determines the

amount of text movement the left and right-hand buttons produce: the greater the

distance, the greater the amount of movement. To position a particular line at the

top of the window, place the cursor in the scroilbar opposite that line and click the

left-hand button.

Unlike some SunTools programs, IDLVIEW updates the scrollbar each time any

command is executed which adds text; many programs only update the scrollbar

when the cursor ib moved onto the scrollbar. The only time you need to position the

cursor on the IDLVIEW scrollbar to update it is after you have resized the window.

A.7 Removing IDLView Windows

Occasionally a bad address or other problem will cause IDLVIEw to become inop-

erable. In these cases, it is necessary to destroy the IDLVIEw display window with

a Unix command, since the exit option of the frame's menu is unavailable. To do

this, enter the command:

kill -9 <process-identifier>

65

using the process identifier displayed in the DBXTOOL window when IDLVIEw was

created or finding it with the Unix "ps" command.

A.8 Possible Problems and Solutions

The combination of DBXTOOL and IDLVIEw does not handle an invalid user ad-

dress gracefully. Should DBXTOOL get interrupted by the system because of a bad

address, either while running the user's code, IDLVIEW library routines, or while

exchanging information with the IDLVIEw display window, a "bad address" mes-

sage appears in the DBXTOOL window and DBXTOOL cannot continue execution. As

a side effect, that IDLVIEw display window can no longer be used to communicate

with DBXTOOL, and may in fact have to be removed with the Unix "kill" command

(see Section A.7 in this User's Guide).

More rarely, a bad address causes both IDLVIEW and DBXTOOL to quit func-

tioning; in this case, place the cursor in the DBXTOOL command window, use the

CShell interrupt character in the DBXTOOL command window to regain control, and

restart your debugging session with the run command.

Another case where the interrupt character is useful is if you inadvertently enter

the quit option which destroys the IDLVIEw display window during an IDLVIEw

session. DBXTOOL will not respond to normal keyboard input, so use the interrupt

character to restore control to the keyboard.

A.9 Current Limitations

The following list summarizes IDLVIEw's limitations; more complete explanations

of each item follow the list.

" Booleans are unsupported.

" Private types cannot be expanded.

" Only default implementations of Integers and Rationals are supported.

" Only linked-list implementation of Sets and Sequences are supported.

" Neither a Set nor a Sequence may be used as the root display element.

" There is a limit of 20,000 displayed characters.

* The width of the workstation screen limits the length of an individual display
line.

66

* Only C may be used as the target language.

e Only the first Process declared in the IDL source may be debugged with

IDLVIEw.

Booleans are not supported due to an IDL compiler incompatibility with the Sun

C compiler. IDLVIEw correctly handles nodes which do not have Booleans, even if

other nodes in the program do contain Booleans. If you attempt to use nodes which

contain Booleans, IDLVIEw may display bad values for other attributes and/or

generate bad addresses which cause a trap in DBXTOOL.

Private type attributes are identified in a node's display, but cannot be expanded

further.

Only the default representations of Integers and Rationals are supported: 32-

bit integers and 32-bit floating point Rationals. IDLVIEw does not determine the

implementation before attempting to display them, so using other representatiuns

will cause unpredictable displays and bad address traps.

Only the linked-list implementation of sets and sequences is supported. Attempts

to use others cause unpredictable results.

You cannot display a set or sequence as a root display element. Sets and se-

quences may only be displayed as expansions of node attributes. Most often, at-

tempts to do this produce a message indicating unknown node type; occasionally

IDLVIEw believes it is a valid node, and displays garbage and/or generates a bad

address which causes a trap in DBXTOOL.

There is currently a limit of 20,000 characters on the IDLVIEW display window.

When the display reaches its limit, it simply stops displaying any more characters;

there is no error message. There is no separate limit on the number of characters in

a string or the number of attributes in a node.

IDLView "clips" output at the edge of the display window, so the maximum

display length is the width of the workstation screen. How many characters that is

depends on the typeface being used.

Only IDL programs with the C target language may be debugged with IDLView;

this is because the run-time implementations are different for other languages. At-

tempts to use a different target language will produce unpredictable results.

67

A.1O Tricks of the Trade

This section describes ways of doing specific operations in IDLView which may be

useful but not obvious.

IDLViEw may be used with DBX instead of DBXTOOL, as long as DBX is run in

a SunTools window. The button commands described in the section on setting up

do not apply; enter the commands "IDLViei" and "shounod <variable>" in place

of using the buttons. This is also the way to display variables which do not appear

in the DBXTOOL source display window.

You can avoid typing the name of the CANDLE file at startup by including it in

the alias of the "IDLView" command. If your CANDLE file name is "test.Cdl", for

instance, you can make the alias command line:

alias IDLView "call sndcdlwdw(\'test.Cdl\")"

In this case, IDLVIEw will not prompt for the name of the CANDLE file.

The environment variable IDLVIEWNBINARY, if defined, will be used as the name
of the IDLVIEw executable file. This is useful in case the standard file does not

exist (or is not the version you wish to use).

If you wish to initialize IDLVIEw at the beginning of your program, you can

enter a break at the first executable line with the ".dbxinit" statement stop in

main; then, to start your debugging environment, click the buttons run and IDLView.

If you have already expanded an attribute and want to know the box number to

which it was expanded, expand it again - the error message gives the box number,

which helps locate it in a display containing many items.

A.11 Error Messages

Most IDLVIEw messages appear in the IDLVIEw window near the last place a

menu was invoked. If the window is obscured by another window in the place the

message would appear, it appears there anyway on top of anything in that space.

Each such message appears in a panel with a button labelled "ok"; operations on

the workstation screen are suspended until the user acknowlcdges the message by

clicking that button. Some messages appear in the DBXTOOL window; they do not

require acknowledgement.

68

Both IDLVIEW display messages and DBXTOOL messages appear in the following

list alphabetically by text; DBXTOOL messages are labelled as such. IDLVIEw

continues normal operations unless otherwise indicated.

Attribute already expanded to box <destination box>

You tried expand attribute on an attribute which is already ex-

panded. Use the box number given to find the expansion.

Attribute type unknown to IDLView;
either Candle is out of date,
or there is an unknown error

You may have tried to perform shownod on a variable which is not a

node (such as a scalar, set, or sequence), or your CANDLE file is not

up-to-date with your program. If you have an invalid CANDLE file,

IDLVIEw will have to be restarted.

Bad IDLView message type #<type number>

(DBXTOOL message) Internal error. Contact IDL support personnel.

ID LVIEw will have to be restarted.

Cannot expand IDL basic type

You tried expand attribute on an IDL basic type: Integer, Rational,

String, or Boolean. This option works only on node, set, and sequence

attributes.

Could not complete the 'expand' selection

(DBXTOOL message) You have clicked the shownod button without

making a selection in the source text window. To make a selection,

position the curser on top of the name of a variable containing an IDL

node or class and click the right-hand button.

Created IDLView, process #<process id>

(DBXTOOL message) The IDLVIEW display window process has been

created. The number is useful should you ever need the "kill" command

to destroy it (see Section A.7 in this User's Guide).

69

display of unsupported box type

This is an internal error. Contact IDL support personnel.

dspbat: INTERNAL ERROR
display of unknown attribute type

This is an internal error. Contact IDL support personnel.

dspbat: INTERNAL ERROR
display of unsupported atomic type:<type name>

This is an internal error. Contact IDL support personnel.

Error opening Candle file <filename>

IDLVIEW could not find the CANDLE filename you have given it. If

IDLVIEW did not prompt in the DBXTOOL window for a file name,

check for a name in the IDLView command of your ".dbxinit" file;

otherwise check spelling and pathname. IDLVIEW may have to be

restarted.

Error reading compilation unit;
file given for CANDLE may
not be proper format

IDLVIEw encountered some error while trying to read your CANDLE

file. Make sure the filename you've given really is a CANDLE file.

IDLVIEw may have to be restarted.

IDLView active...

(DBXTOOL message) This message appears normally after a shownod

command, and indicates that an IDLVIEw session is in progress.

DBXTOOL does not respond to keyboard commands until the session

is ended.

IDLView is reading the Candle file

(DBXTOOL message) This message appears normally when IDLVIEw

is initialized, and indicates that the IDLView display process is read-

ing the CANDLE file for your program. This may take some minutes,

depending on the size of your file.

70

IDLView: allnewbox: failed malloc

(DBXTOOL message) IDLVIEw has failed in attempting to allocate

memory for its internal display structures. Contact IDL support per-

sonnel. IDLVIEW will have to be restarted.

IDLView: Error creating window

(DBXTOOL message) An error occurred when IDLVIEW attempted to

create the display window. Hopefully a system message accompanies

this one; if not, contact IDL support personnel. IDLVIEW will have to

be restarted.

IDLView: must have 2 arguments, not <number>

(DBXTOOL message) Internal error. Contact IDL support personnel.

IDLVIEw will have to be restarted.

illegal call to idlvlib...

(DBXTOOL message) The routine "idlvlib" should never be called; there

are no calls to it in any IDLVIEW code. "Idlvlib" contains no use-

ful code and its results are unpredictable. Its purpose is to force the

linker to include the uncalled IDLVIEw library routines - contact IDL

support personnel for more information. IDLVIEw will have to be

restarted.

INTERNAL ERROR:

allnewbatO failed memory allocation

This is an internal error. Contact IDL support personnel. IDLVIEw

will have to be restarted.

INTERNAL ERROR:
Bad message header,
type <internal type number>

This is an internal error. Contact IDL support personnel. IDLVIEw

will have to be restarted.

INTERNAL ERROR
chgwdwttl: bad window title change request

71

This is an internal error. Contact IDL support personnel. IDLVIEw

may have to be restarted.

INTERNAL ERROR:

cnvbathnd() received bad box attribute handle

This is an internal error. Contact IDL support personnel. IDLVIEw

will have to be restarted.

INTERNAL ERROR:

cnvboxhnd() received bad box handle

This is an internal error. Contact IDL support personnel. IDLVIEw

will have to be restarted.

INTERNAL ERROR

setboxptr received illegal box number

This is an internal error. Contact IDL support personnel. IDLVIEw

will have to be restarted.

INTERNAL ERROR:
sndrcvusrmsg: failed additional msg socket read;
see dbx window for error code

This is an internal error. Contact IDL support personnel. IDLVIEw

will have to be restarted.

INTERNAL ERROR:

sndrcvusrmsg: Failed block request for socket write

This is an internal error. Contact IDL support personnel. IDLVIEW

will have to be restarted.

INTERNAL ERROR:
sndrcvusrmsg: failed socket read;
see dbx window for error code

This is an internal error. Contact IDL support personnel. IDLVIEW

will have to be restarted.

INTERNAL ERROR:
sndrcvusrmsg: failed socket write;
see dbx window for error code

72

This is an internal error. Contact IDL support personnel. IDLVIEw

will have to be restarted.

More detail already displayed for that attribute.

You have tried more detail on an attribute for which more detail is

already displayed.

More detail already displayed for that box

You have tried more detail on a set or sequence element box for which

more detail is already displayed.

No attribute at that location

You have tried an attribute operation in a place in the window where

there is no attribute. Set and sequence elements which are not nodes

have no attributes; for nodes, attributes are below the two header lines.

No box at that location

You have tried an operation in a screen position where there is no box,

such as between boxes or to the right of the boxes.

No box or attribute at that location

You have tried an operation in a screen position where there is no box,

such as between boxes or to the right of the boxes.

No source for value of IDL basic type

You have tried a display source option (currently unimplemented)

on a basic type. There is no IDL source available for basic IDL types.

Node is uninitialized

You have attempted an operation on a node which has a null address.

Node type is unknown to IDLView.
Candle may be out of date,
or the variable chosen may not be an IDL node

731

You have attempted a node operation on a node for which IDLVIEw

cannot find a type in CANDLE. It may be a set or sequence, a scalar,

or a variable which is not an IDL type.

Not in IDLView session;
You must enter IDLView from dbx

You have tried an IDLViEw command for which you must be in an

IDLVIEw session.

Not in IDLView session;

Use this option to end IDLView session

You have attempted to exit an IDLVIEw session when you are not in

one.

Null node address

(DBXTOOL message) You have attempted an operation on a variable in

your program which contains a null address.

possibly no image named <filename>

(DBXTOOL message) Somehow the executable image for IDLVIEw is

not where it is expected to be. If your installation has it somewhere

besides its default directory (/usr/softlab/bin/), you can set the

environment variable IDLVIEW..BINARY to the full pathname for the ex-

ecutable file, and IDLVIEW will use that name instead.

Selected node type not found in this port

The node you have indicated is not declared for this port.

setbatptr received illegal bat number

This is an internal error. Contact IDL support personnel. IDLVIEw

will have to be restarted.

Set/Sequence is uninitialized

The pointer for the indicated set or sequence is null. Note that a set or

sequence which is uninitialized but has elements will not produce this

message.

74

Source display not implemented;
Requesting source for <type name>
from file <IDL file name>

Dummy message from (currently unimplemented) IDL source display

feature. Indicates where source would be displayed from, if the feature

were implemented.

syntax error on "sndfstnod)"

(DBXTOOL message) (Although this message looks like a typographical

error, it is correct) You have executed the shownod command without

an argument. You need to supply, as an argument, the name of the

variable containing the node or class you want to display.

That display is from a previous IDLView session.

That attribute cannot be expanded now.

You have attempted to expand an attribute from a previous IDLVIEw

session. This is not allowed.

Unimplemented Llist component type

You have attempted to expand a set or sequence of a type not supported

by IDLVIEW. Currently supported are: Node, Class, Integer, Rational,

String. Currently unsupported are: private types, Boolean.

Window already initialized

(DBXTOOL message) You have attempted to execute the IDLView com-

mand twice in the same program run. If you really wish to re-initialize

IDLView, you must execute the run command first.

window: Base frame not passed parent window in environment

(DBXTOOL message) This is a message from SunTools indicating that

window creation did not complete normally. It occurs when you either

attempt to initialize IDLV[Ew before executing any code, or when you

attempt to restart IDLVIEw under some condition that SunTools does

not accept. The best action is to destroy the DBXTOOL and IDLVIEw

windows and start over.

.. . ., I i I I- ° I ! -

75

B 'man' Page for IDLVIEw

The following pages are representations of the on-line man information available for

IDLVIEw.

76

IDLView (2-IDL) UNC IDL Toolkit IDLView (2-IDL)

NAME
IDLView -- Display IDL structures from within dbx or dbxtool

SYNOPSIS
Used from within dbx or dbxtool -- not available directly from shell

DESCRIPTION
JDLView displays the run-time values of IDL instances in a SunTools window during debugging with
dbxiool (1) (or dbx (1)). It provides a mouse/menu interface for selecting portions of an IDL instance to
display.

Debugging Environment

IDLView use requires SunTools version 1.0 or higher. Change it, if necessary, by enabling
'walking-menus' under the SunView section of SunTools defaujtsedit (1).

Put the following commands into '.dbxinit':

alias IDLView "call sndcdlwdw(V')"
alias shownod "call sndfstnod(!: 1)"
button ignore IDLView
button expand shownod

Compile and Link for IDLView use

Add the following to your idlc command line, providing a name for your Candle file:

-C candlefilename

Compile your program for debugging with dbxtool (cc -g option)

Add the following to the cc command line used for linking your IDL program code:

/usr/softab/lib/idlvlib.o /usr/softlab/lib/idlvib.a

Starting and Using IDLView from dbxtool

Using a Sun workstation running SunTools, use dbxtool to debug your program. When stopped at some
breakpoint, click the button 'IDLView' (or enter it as a command), and enter your Candle filename in
response to the prompt in the dbxtool command window. Note -- you cannot enter the 'IDLView' com-
mand before executing some portion of your own code. In 15-60 seconds, the IDLView display window
appears and the 'dbxtool' prompt returns. The 'IDLView' window may be moved, resized, closed, etc. like
other SunTools windows.

Once the IDLView window is created, you may continue to interact with dbxtool normally: set break-
points, examine variables, etc.

To enter an IDLView session for viewing IDL variables in the IDLView window, use the cursor and left-
hand mouse button to select a variable (in the dbxtool window) representing an IDL node or class, and
click the dbxtool button 'shownod' (alternately, enter 'shownod nodenaine' where 'nodename' is the vari-
able). Dbxtool displays "IDLView active..." and does not respond to typed commands until the session is
endcd (described below).

The shownod argument must represent a node or class, not a set or sequence.

The lDLView window has a standard SunTools scrollbar on the left edge for positioning the displayed text.

Normally, when through with your last IDLView session, you would delete the IDLView window by
selecting the 'quit' option of the frame menu (described below under Menu Options).

Any time you restart your program with the 'run' command, you must use the 'IDLView' command to start
another IDLView window. The old window cannot execute any IDLView commands, but does not have to
be removed immediately if (for instance) you want to compare its display to something in a newer window.
When through with it an old window, you may delete it with the 'quit' frame option as usual.

Last change: 9-Mar-1988

77

IDLView (2-IDL) UNC IDL Toolkit IDLView (2-IDL)

If the IDLView window should quit responding to commands (i.e, 'hangs'), use the Unix command 'kill -9
<processid>' from another window to get rid of it. The process id is displayed in the dbxtool window when
the IDLView command is executed.

MENU OPTIONS
For options within the window, position the cursor on the target item and push the right mouse button to
invoke the window menu. For options on the frame, position the cursor on the edge of the IDLView win-
dow and push the right mouse button to invoke the frame menu. All standard Suntools frame options are
available: Open/Close, Move, Resize, Hide, Expose, Redisplay, and Quit.

expand attribute (option within window)
Expands the display of that attribute: node attributes are expanded into displays of the node's attributes, set
and sequence attributes are expanded into displays of each element.

more detail (option within window)
Displays more detail about the selected item, such as its address and/or hexadecimal value.

end session (option on frame)
End the IDLView session; dbxtool resumes normal command mode. Another 'shownod' command may be
entered, at the same or a different breakpoint, to enter another IDL View session in the same IDLView win-
dow.

select port (option on frame)
select the IDL port to be used to determine what attributes are displayed for nodes. A pull-right menu pro-
vides ports to select.

ERRORS
Most messages appear in the window with an 'ok' buUon for user acknowledgement.

Some messages appear in the dbxtool window; they do not require acknowledgement

FILES
/usr/softlab/bin/IDLView -- image file
/usr/softlab/lib/idlvlib.a - IDLView library
/usr/softlab/lib/idlvlib.o -- required for correct link
/usr/softlab/misc/dbxinit -- sample dbxinit file

SEE ALSO
idic(l), dbx(l), dbxtool(l), suntools(l), defaultsedit(l)
IDLView User's Guide

BUGS
Boolean attributes are not supported.

Private type attributes cannot be expanded.

Only linked-list implementation of sets and sequences is supported.

If the shownod argument translates to non-null illegal address, dbxtool traps on the illegal address and
refuses to execute any 'continue' commands. The only thing to do in that case a. wrt the program over
with 'run' and start anew IDLView window.

If the IDLView window is killed (with the 'quit' option) while in the middle of a session, dbxtool does not
automatically regain control. A workaround for this is to type the 'interrupt' characte; in dbxtool to regain
its control over keyboard input.

IDLView cannot tell for certain if a variable given to 'shownod' is an IDL node. For most cases, it can tell
and will report a non-node reference, but it is possible that a non-node address will appear to be a node to
IDLView, in which case it will display garbage as the values of IDL basic types.

Last change: 9-Mar- 1988 2

78

IDLView (2-IDL) UNC IDL Toolkit IDL View (2-IDL)

AUITHOR
Ralph Cook
University of North Carolina at Chapel Hill

Last change: 9-Mar-1988 3

