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A New Slant on the Distribution and Measurement of Hydrometeor Canting Angles

JAMES I. METCALF

Air Force Geophysics Laboratory, Hanscom AFB, Massachusetts

(Manuscript received 31 August 1987, in final form 27 January 1988)

ABSTRACT

. Several models have been developed in the past to describe the distribution of hydrometeor canting angles
and the resulting effects on polarimetric radar measurements. These models are reviewed to compare their
characteristics and to assess their validity under specified conditions. Of particular interest is the comparison
of the traditional two-component model and a two-dimensional Gaussian distribution. Calculations based on
the Gaussian distribution are presented and used to deduce shape distribution parameters from radar measure-

1. Introduction the projection of 0 onto a plane perpendicular to the
line of sight. For convenience, most of the following

The distribution of canting angles is one of the mi- discussion is based on the assumption that 5 = 0.
crophysical attributes of hydrometeors that affect the
polarization-dependent parameters measurable by ra- 2. Theory for the one-dimensional distribution
dar and that may therefore be deduced from polari-
metric radar measurements. Recent work on this sub- Beginning with the work of Saunders (1971) there
ject has included some inconsistencies, unnecessary has been a tradition of treating the canting angle dis-
complications, and erroneous interpretations. The tribution as one-dimensional in a plane perpendicular
fundamental issues which need to be addressed in re- to the radar line of sight. McCormick and Hendry
lation to hydrometeor canting angles are: (i) specifi- (1975) and others have adopted a two-component
cation of a form of the canting angle distribution, both model of the apparent canting angle distribution in (
in one dimension and in two dimensions; and (ii) de- which one fraction of the hydrometeors has a single
termination of reasonable values of the distribution fixed apparent canting angle and the complementary
parameters for various types of hydrometeors. In sec- fraction has a uniform random distribution. This model
tions 2 and 3 we discuss key developments in the mod- of the distribution function was used, for example, by C,
eling of canting angle distributions and describe radar Metcalf (1986) in the computation of polarization de-
measurements which support theoretical results per- pendent parameters measurable in rain. McCormick
taining to the standard deviation of canting angles of and Hendry related the effective fraction of oriented
raindrops. Concepts of a two-dimensional distribution scatterers p. to a distribution function by the equation
of canting angles are discussed in section 4, and a com- +'/2
parison of the traditional two-component model and po f cos2(a - &)p(a - &)d(a - i), (1) -

the two-dimensional Gaussian model is presented in J/2
section 5. Calculations based on the two-dimensional where p(a - i) is the distribution function relative to
Gaussian model are used in section 6 to derive esti- the mean apparent canting angle cThey did not,
mates of mean backscatter amplitude and power ratios hever, spe teaformgofnthe d .sTebutionfrom polarimetric radar measurements. however, specify the form of the distribution.

From the two-component model the reflectivity-
The angular parameters of hydrometeor canting are weighted average of the complex backscatter amplitude

illustrated in Fig. 1. We use 0 to denote the absolute ratio ve'1 2" ) defined for circular polarization is given
canting angle, which is the angle between the local ver- by
tical and the hydrometeor symmetry axis, independent
of azimuth. Following a long standing tradition, we = (2)
use a to denote the apparent canting angle, which is (McCormick and Hendry 1975) where 6 is the back-

scatter differential phase shift, p. is given by Eq. (1),
and the upper and lower signs denote the transmission

Corresponding author address: Dr. James Metcalf, AFGL/LYR, of right and left circularly polarized signals, respec-
Hanscom Air Force Base, MA 01731. tively. The quantity ve6 is approximately real for Ray-

3811 28 201
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PENIOJAR To LOS Beard and Jameson (1983) showed, on the basis of
IN VERnTICAL PLA E turbulence theory, that a Gaussian distribution of ve-

locity fluctuations would yield a Gaussian distribution
of the tangent of the apparent canting angle, from

vERTMa which one can derive p(a). [There is an error in their
RADAR a equation defining p(a), in that the argument of the

exponential function should be -tan 2a/(2aotAr), using

ISOPLETHS the present notation.] Their calculations showed that

OF peE the standard deviation or. of the apparent canting angle
is less than 4 for a thunderstorm raindrop size distri-
bution and turbulent energy dissipation rates up to 0.2
m2 s-3.For small standard deviations of apparent cant-
ing angle, the differences between a Gaussian distri-
bution of a and a Gaussian distribution of tana are
slight. However, for large values of the standard devia-
tion, the Gaussian distribution of tana yields unrealistic
results, as it does not yield a uniform distribution as

IN HORIZONTAL PLANE c',. approaches infinity and it yields zero probability
density at a = ±r/2 for all values of da... It is thereforeFIo. I. Sector of the hemisphere on which Pa is deind shwn useful to consider the properties of a Gaussian distni-

the radar elevation angle 0, the canting angle 6 of the symmetry axis
of a particle from the vertical, the projection a of the canting angle bution of the apparent canting angle. Hendry et al.
onto the plane perpendicular to the radar line of sight (LOS), and (1976) and Torlaschi et al. (1984) used such a distri-
the angle V of the symmetry axis from this plane. bution but truncatei it at ±r/2 to reflect the fact that

the distribution is physically limited to this interval.
The resulting relationship of a to p. is

leigh-Gans scatterers and is positive and negative for p= exp(-2a') Referffr/(2V .) + AF~aj} (4)
prolate and oblate spheroids, respectively. The effect
of radar elevation angle on i is included through the where a., is expressed in radians. Metcalf and Ussailis
assumption that for an individual hydrometeor the ap- (1984) suggested that the distribution in the interval
parent amplitude ratio is given by Pa = Po cos2 y, where +r/2 could be viewed as a summation of segments of
vo is the amplitude ratio of the hydrometeor when an infinite Gaussian distribution folded back on itself
viewed perpendicularly to its symmetry axis and -y is within this interval, i.e.,
the angle of the symmetry axis from a plane perpen-
dicular to the radar line of sight (see Fig. 1). If the
average orientation of the symmetry axes is vertical, P(a) = (2ira.)-' 2 exp-(Ha + nr)2/(2a, 2 )]. (5)

then 5 is equal to the radar elevation angle 4' and i n_-

= io cos2o. Because the function cos2a passes through Because the function cos2a is cyclical in this interval,
a full cycle in the interval -r/2 < a < r/2, the ran- the limits of integration in Eq. (1) can be extended to
domly oriented fraction (I - p.) contributes nothing infinity, with the result that
to the average in Eq. (2), and the effect ofthe apparent
amplitude ratio is evident only in the elevation angle p = exp(-2c2) (6)
dependence of i. The reflectivity-weighted average of
the backscatter power ratio P2 is given by which is the asymptotic limit of Eq. (4) for small o.

The approach of Metcalf and Ussailis also yields the

1., 1.CS. aesthetically satisfying result that dp(a)da = 0 at a
i=vo os4' 0+ 1- (3) =±w/2.

It should be noted that neither in the approach of
where the factor s5 results from integrating the function Hendry et al. and Torlaschi et al., nor in the approach
cos4'7 over a hemisphere of solid angle. Equation (3) of Metcalf and Ussailis is the parameter a. of the
implies an ambiguity in the two-component model, as Gaussian distrilution function exactly equal to the
the distribution over a hemisphere is inconsistent with standard deviation of the apparent canting angle dis-
the idea of a one-dimensional canting angle in the plane tribution defined on the finite interval from - r/2 to
perpendicular to the line of sight. Specifically, the +ir/2. The latter, denoted by &,, approaches the
quantity i in Eq. (2) is an average overu distribution former at small values of a., but as , approaches in-
of actual shapes, whereas the quantity v2 in Eq. (3) is finity, the resulting uniform distribution on the finite
an average over distributions of both actual and ap- interval yields a standard deviation of ir/Vi radians.
parent shapes. or about 520. Hence it may be preferable to use p.
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rather than a. as the primary descriptor of the orien- bution is not a function of 0 alone but can be expressed
tation state of a backscatter medium, as a function of a subsidiary coordinate relative to the

location of the maximum. For convenience in the
3. Measurements computations to be discussed in section 5, we assume

the maximum ofpc to be at the vertical. The angular
Hendry et al. (1987) developed a method of deriving coordinates pertinent to this distribution are illustrated

a canting parameter from measurements with varying in Fig. 1. Here the symmetry axis of a hydrometeor
linear polarization. They showed that measurement of lies at an angle 0 from the vertical, projects an angle a
the maximum and minimum linear cross-polarized on the plane perpendicular to the line of'sight, and lies
power as the linear polarization vector is rotated at an angle y1 from that plane. If & = 0, the effects of
through at least 1800 yields the parameter nonzero value of 5 are equivalent to the effects of a

+ /2 nonzero radar elevation angle 4. A nonzero mean ap-
p4 = J/2 cos4(a - ii)p(a - &)d(a - i), (7) parent canting angle, i.e., & 0 0, affects the angular

argument of certain radar-measurable parameters but
defined on the basis of a one-dimensional distribution does not affect the magnitudes of the quantities dis-
of apparent canting angle, which differs from p., de- cussed below.
fined by Eq. (1), only by the coefficient of the argument The two-dimensional distribution of O yields the one-
of the cosine. The relation of P4 to p. depends on the dimensional distribution of a by the relation
distribution function. The two-component model +.2
yields P4 = P., and a one-dimensional Gaussian dis- p(a) = I pu((a, e)) cosyd-y (8)
tribution function yields P4 = p. 4. Two other distri- ,-/2
bution functions, triangular and rectangular, which where the angles are related by
seem less realistic than the Gaussian, yield relations of
P4 and p. that differ only slightly from that ofthe Gaus- cos0 = cosa coso cosy + sino siny. (9)
sian. The distinction between P4 as a measurable pa- A two-dimensional Gaussian distribution
rameter of the canting angle distribution and p. as a
conceptual parameter highlights the importance of pa(0) = (27ras2)' exp[-02/(2 . 2)] (10)
specifying a physically realistic canting angle distri-
bution for the purpose of interpreting radar measure- is particularly advantageous, as it yields a Gaussian
ments. Measurements by Hendry et al. in rain yielded distribution of a with i = -e. Jameson ( l987) used ap4 = 0.9 14, which implies a-, = 6.1° for a Gaussian two-dimensional Gaussian distribution in calculating
distribution. This value is comparable to the theoretical radar-measurable parameters, but the utility of his re-value deduced by Beard and Jameson. suits is diminished by his arbitrary selection of, = 180,which is much larger than the values deduced by Beard
4. Theory for the two-dimensional distribution and Jameson (1983) or implied by the measurements

ofHendry et al. (1987). Jameson also presented results
The effect of canting out of the plane perpendicular based on a one-dimensional Gaussian distribution of

to the radar line of sight has until recently been included 0. Aside from the conceptually dubious merit of ap-
implicitly with the effect of a distribution of hydro- plying a one-dimensional distribution function to a
meteor shapes, as might result from raindrop oscillation two-dimensionally distributed variable, the practical
or from the presence of multiple types of hydrometeors. value of such a distribution function is uncertain at
Recent efforts (Jameson 1987) have been undertaken best, as it yields a singularity of the probability density
to analyze two-dimensional canting relative to the local per unit solid angle at 0 = 0, does not yield spherical
vertical, with the goals of(1) correctly separating the uniformity as a@, - o, and does not yield simple re-
effects of shape distribution from the effects of canting lationships between pn(O) and p(a) or among ase, &

angle distribution and (2) explicitly describing the ap- and p0.
parent changes of canting and shape distributions in
radar observations at nonzero elevation angles. The
two-dimensional distribution, defined on a hemi- 5. Comparison of canting angle models
spherical surface, must be represented by a probability a. Formulation
density per unit solid angle, here denoted by pa. The
distribution is assumed to have a maximum value at Calculations have been performed with the two-di-
a single direction, typically near the vertical, and to be mensional Gaussian distribution to compare this model
axisymmetric about the direction of the maximum. If with the two-component model described in section 2
the maximum of pa is at the vertical, then pq can be and to determine the relationship of pu(6) to p(a), the
expressed as a function of 6 only. If the maximum of effects of truncating the distribution, the mean values
Pa is displaced from the vertical, as might occur as a ofbackscatter amplitude and power ratios, the circular
result of wind shear or electric field, then the distri- polarization cross correlation measurable by radar, and
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the correct normalization of the Gaussian distribution common shape, the two-component model yields the

defined on a spherical surface. The distribution within amplitude ratio factor

the domain 0 < 9 < r/2 was approximated successively f = P. COS20 (16)
by Eq. (10), by

P(0) = (2,ro.2) - '{exp[-#9/(2Ue
2)1 and the power ratio factor

+exp-(O -
= (1)P. cOS4+(!)(I - p.) (17)

and by corresponding to Eq. (3).
+1

po) = (2r. 2 )- ' exp[-(O + nw) /(2ue 2)]. (12) b. Calculations
o--2

Within the finite domain, Eq. (10) represents a Gaus- The results corresponding to a radar elevation angle
sian distribution truncated at 0 = )/2. Equation (11) of zero and particles of a common shape are summa-
represents a Gaussian distribution truncated at 0 = ) rized in Table 1. The calculations show that at small

and folded back on itself at 6 = w/2. Equation (12) to moderate values of ao, the two-dimensional Gaussian

represents a Gaussian distribution truncated at 0 = 2w distribution of 0 yields a nearly Gaussian distribution

and quadruply folded back on itself in the interval 0 of a, with &, s a#. As ae increases, a. approaches its

< 0 5 ir/2. The successive approximations were used asymptotic limit, as discussed in section 2. Truncation

to assess the effects of truncation and to assure accurate effects, not documented in Table 1, are evident only if
results as a, increased. the truncation point is less than about 3.5 a. In other
We assume that the apparent amplitude ratio is given words, Eq. (10) is a valid approximation for a@ < 25'

by (m) = tao cosu, as in section 2. For comparison of and Eq. (11) is valid for a9 < 50*. Equation (12) should
the two distribu tion models, it is convenient to define be valid for a' < 1000, at which value p(a) varies by
the amplitude ratio factor only 0.6% between 0 and r/2. The selection of one of

these three equations to approximate the Gaussian

fA('o,) = = cos23y cos2a (13) model in the present calculations is dictated by the
magnitude of ae. All yield identical results if a# < 250;

and the power ratio factor Eqs. (11) and (12) are equally usable if a, < 500.

fp(a) = va2/Vo2 = cos 4.y. (14) At zero elevation angle the amplitude and power
ratio factors calculated from the Gaussian model are

For comparison with the measurements of Hendry et smaller than the respective factors calculated from the
al, we use their formulation to define the quantity two-component model. (Note that the parameter p. is

4-- [(Va
2
/"O

2
) cos4a(.]/o

2 ) the amplitude ratio factor for the two-component
model.) This results from integrating over the hemi-

=- oe4V c0s4a/c0S4y (15) sphere, i.e., both in a and in y, and reflects the decrease

which is, for a two-dimensional canting angle distri- of the functions cos ', and cos4 y as -f deviates from

bution, the analog of P4 , defined in Eq. (7). The overbar zero. The calculated amplitude and power ratio factors

in Eqs. (13), (14), and (15) denotes averaging over a for several elevation angles are shown in Figs. 2 and 3.
hemisphere weighted by the distribution function pp. The amplitude ratio factor based on the Gaussian

The form of p4a differs from that of P4 because the model is well fit b1 the function
distribution function pa(8 ) jointly affects both the ap- fA = exp(-30r, 2) cos 2(o) (18)
parent canting, which is specified by a, and the appar-
ent shape, which is dependent on oy. Hendry et al. for o, < 40* . The power ratio factor at 0 = 0° is fairly
(1987), in developing the parameter P4, separated the well fit by the fLnction
average of v2 from the average of cos4a. Using a two-
dimensional distribution function, with the traditional fp = exp(-4TO,2) + exp(-4ood)]. (19)
assumption that the shape and orientation ditributions
are independent, we factor the parameter P2 into two One is tempted to model the power ratio factor by
averages, one over the distribution of actual shapes and
one over the distribution of apparent shapes. In this fp = exp(-4or,2 ) cos4o + 1 - exp(-4up,2)]. (20)
case it is the average of ' over the distribution of actual
shapes which is canceled out of the ratio of maximum However, for 0 > 20 this formula is a less accurate
to minimum linear cross polarized received power, and approximation to the calculated values than is Eq. (17).
the measurements can be shown to yield p4, defined Therefore, for purposes of interpreting radar measure-
in Eq. (15), rather than p4, defined in Eq. (7). ments it may be preferable to use a value of the power

In a backscatter medium comprising particles of a ratio factor calculated from the Gaussian model rather
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TABLE I. Integrated parameters calculated from two-dimensional Gaussian distribution of absolute canting angle. Calculations pertain to
spheroidal scaterers with mean vertical orientation of symmetry axes, viewed at horizontal incidence (zero elevation angle).

(deg) (deg) P. (Gauss) Gauss 2-component Gauss 2-component

5 5.006 0.985 0.977 0.985 0.993 0.985 0.988
10 10.05 0.940 0.912 0.944 0.972 0.939 0.954
15 15.18 0.869 0.816 0.887 0.939 0.867 0.897

20 20.46 0.775 0.700 0.825 0.895 0.771 0.819
30 31.44 0.544 0.457 0.713 0.787 0.542 0.613
40 40.65 0.323 0.261 0.633 0.684 0.328 0.390
50 46.34 0.169 0.135 0.585 0.612 0.177 0.216
60 49.36 0.080 0.064 0.550 0.571 0.086 0.105
80 51.53 0.014 0.011 0.531 0.540 0.015 0.010

than to use the analytical approximations of Eqs. (19) given by sinOdOdr, is less than the incremental area on

and (20). a plane, given by OdOd , where 0 is a colatitudinal or
For backscatter from particles of a common shape, radial coordinate and is a longitudinal or azimuthal

the two-component model yields a circular polarization coordinate. As ae increases, the distribution is spread

cross correlation given by to regions of larger 0, where the area effect is more
o 4o +]8 1/2 significant, and we find that the integral yields a value

Pc = P. Cos, ,o cos4  +1)(1 - p ) . (21) approximately equal to exp(-0.30Cr, 2), with up in ra-
dians. All of the quantities derived from the Gaussian

The cross correlation from the Gaussian model is distribution and shown in Table I or in Figs. 2 and 3

the ratio of the integrated parameters ij/o and are normalized by the magnitude of the integral of the

(P'2/V0
2)1/ 2. As shown in Table 1, it is consistently lower probability density function.

than that derived from the two-component model, ex- c. Prolate spherods
cept at as = 800.

In general, the integral of pr(0), defined in Eqs. (10), The foregoing theory and calculations apply to
(11), and (12), over a hemisphere should yield a value spheroidal hydrometeors of any ellipticity, provided
less than unity. This is due to the fact that for a given
value of 0, the incremental area on the hemisphere, 1.0 -

< s 04- °o 4000 0 4 5

.- \1. 3.Pwrrai atr ,/ s cio fsadr dva

OQ8N0 (d /vinoaanigage ih aa lvto ange0 a armtr
LLI 044ID4X0 7- 02

04 02

02. 0- 1
8.00 10 0 3 0 6

20 ~ 40 0 60 FiG. 3. Power ratio factor 11/r as a function of standard devia-

mg (dog) tion of canting angles with radar elevation angle 0 as a parameter.
Solid and broken lines denote calculations from the Gaussian and

MG. 2.Ampliude raio fator i.po asa funcion o standrd derespectivelty.odhAtreancteley. ationneava glena ofl3of 31
viation of canting angles with radar elevation angle 4' as a parameter. in the two-component model the power ratio factor is independent
Solid and broken lines denote calculations from the Gaussian and of a#. In the Gaussian model the elevation angle at which this factor
two-component models, respectively, equals its asymptotic value 1/1 varies slightly with cr.
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that they have a single most probable orientation angle. and the power ratio factor
Prolate spheroids under the sole influence of aerody- (24)
namic forces tend to be oriented with their symmetry fp = cos44 + ( - 0 ) (24)
axes horizontal but uniformly distributed in azimuth.

The appropriate distribution in this case is one having which yield the cross correlation shown in Table 2.
a minimum at 0 = 0 and a maximum at 0 = i/2, i.e., The respective factors and '/a result from the fact
at the edge of the hemisphere. The resulting value of that in this case the "oriented fraction" is distributed
fA is negative, due to the dominant contribution of the uniformly in azimuth.
cos2a factor in Eq. (13) when a is near ir/2.Because
the complex backscatter amplitude ratio ve' +62=) is 6. Application of the two-dimensional model
positive for vertically oriented prolate spheroids, the
average of this ratio over a distribution of nearly hor- The quantitiesfA andfp enable the estimation of the
izontal orientations is negative. This is consistent with reflectivity-weighted mean and mean square of the ac-
the fact that horizontally oriented prolate spheroids tual amplitude ratio of a distribution of hydrometeors
appear similar to vertically oriented oblate spheroids, from measurements of the cross covariance amplitude
for which fA is positive and ie' is negative. The distri- ratio (CCAR - WIW 2 in the notation of McCormick
bution of prolate spheroids was modeled in the interval and Hendry 1975) and the circular depolarization ratio
0 < 0 < ir/ 2 by the function (CDR), respectively, if a parameter of the canting angle

)2 
U

2)] (2 distribution is measurable separately. For Rayleigh-
pu(O) = (2Tre') - exp[-( - r/2)2/(2 ) (22) Gans scatterers the mean actual amplitude ratio is given

Calculations corresponding to zero radar elevation an- by
gle are illustrated in Table 2. In this case the asymptotic I1/ = 2CCARI/ - IORTTI(CDR)'//fA (25)
value of LfA I is 0.5 as or, - 0 and that offp is 0.375;

these are the averages of cos2 , and cos4-, respectively, where ORTT, in the notation of Hendry et al. (1976,
For these calculations the quantity &. is redefined to 1987), is the measured cross correlation between the
represent the standard deviation of the apparent ver- two received signals. The mean square actual amplitude
tically oriented oblate spheroids. The parameter p. is ratio is given by
similarly redefined. The relation of p. and &. is similar
to that in the case of oblate spheroids. Because of the oo = CDR/fp (26)
broad azimuthal distribution in the present case, &. is where the elevation angle dependence of the measured
much larger than a# when or is small. As a, increases, parameters is incorporated in the values offA and fp.
&. approaches the same limit as for oblate spheroids. Equations (25) and (26) incorporate the traditional as-
The amplitude ratio factor fA is significantly less than sumption that the shape and orientation distributions
p. in this case because of the wide distribution of sym- are independent. As used here, fA and fp are weighted
metry axes in the 7 coordinate. The power ratio factor only by the probability densityp, assumed to be size-
fp increases with as to approach its asymptotic value __

of 0.533. Application of the two-component model to independent, while -0 and P0
2 are weighted by the

horizontally oriented prolate spheroids yields the am- number density and backscatter cross section as func-
plitude ratio factor tions of hydrometeor size. The variance of the actual

amplitude ratio is a,2 = P02 - p02.
) C The results shown in Table 3 are based on the pub-

2 =lished data of Hendry et al. (1987). Their parameter

TABLE 2. Integrated parameters calculated from two-dimensional Gaussian distribution of absolute canting angle. Calculations pertain to
prolate spheroidal scatterers with mean horizontal orientation of symmetry axes, viewed at horizontal incidence (zero elevation angle).

(To2/I+'o 
Pc

(deg) (deg) p. (Gauss) Gauss 2-component Gauss 2-component

1 7.95 0.972 -0.500 0.375 0.379 -0.816 -0.789
3 13.78 0.917 -0.496 0.376 0.388 -0.809 -0.736
5 17.77 0.862 -0.489 0.377 0.397 -0.796 -0.684

10 25.02 0.728 -0.457 0.383 0.418 -0.738 -0.563
15 30.39 0.605 -0.410 0.394 0.438 -0.654 -0.457
20 34.66 0.495 -0.355 0.408 0.455 -0.556 -0.367
30 40.89 0.325 -0.249 0.441 0.482 -0.376 -0.234
40 44.69 0.216 -0.172 0.468 0.499 -0.251 -0.153
50 46.95 0.150 -0.121 0.486 0.510 -0.174 -0.105
60 48.31 0.110 -0.090 0.498 0.516 -0.127 -0.077
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TABLE 3. Hydrometeor shape distribution parameters derived from radar measurements of Hendry et al. (1987).

Case

1 2 3

Precipitation type

Heavy rain Melting layer Snow
6 Jul 84 10 Nov 84 4 Mar 85

Elevation angle (deg) 4.7 16.3 7.0
P4 (Measured) 0.914 0.607 0.280
ICCARI (Measured) 0.179 0.0139 0.0222
CDR (Measured) 0.0422 0.00158 0.00631

oblate prolate

a# (Present model) 6.0°  13.7* 22.40 20.00
fA 0.961 0.777 0.631 -0.350
f 0.966 0.793 0.783 0.413

ibew -0.187 -0.0179 -0.0353 0.0634

1.2 0.0436 0.00200 0.00806 0.0153
6, 0.0941 0.0410 0.0826 0.106

P4, reinterpreted here as p4, yields a value of a# through assumption that - 7 ° . Calculations for oblate and
the two-dimensional Gaussian model. Successive cal- prolate spheroids are shown for comparison. The
culations with different values of tre were used to de- transposition of signs of the quantitiesfA and ioe' be-
termine the particular value of as that yields the mea- tween the two interpretations indicates that in either
sured value of p4G. This value of a,, in turn, yields case the average horizontal dimension of the scatterers
values of.fA and fp to be used in Eqs. (25) and (26). is greater than the average vertical dimension. The
Case 1, an observation of heavy rain, yields a mean standard deviation a, exceeds the magnitude of Poe 6

amplitude ratio equal to that of raindrops of 0.73 axial by a smaller factor in the prolate case than in the oblate,
ratio, which corresponds to 4.6 mm equivalent spher- suggesting that the prolate description is somewhat
ical diameter with a Pruppacher-Pitter size-shape re- better than the oblate, although neither is fully satis-
lation. The standard deviation a,, equal to about half factory.
the magnitude of the mean i o in this case, implies that For either oblate or prolate hydrometeors, one can
essentially all the hydrometeors are of oblate shape, hypothesize a distribution having a relatively large
which is to be expected in rain. Each of cases 2 and 3 number of nearly spherical shape and a relatively small
yields a, greater than the magnitude of Foei. Case 2 is number of highly nonspherical shape, which would
an observation of a melting layer, and the data used yield a small magnitude of i0e'4 and a relatively large
for the present analysis are from near its base, about value of a,. Such a distribution, requiring that all the
200 m below the altitude of the maximum circular hydrometeors be either oblate or prolate, seems less
depolarization ratio. At this altitude the hydrometeors realistic than a mixture of oblate and prolate shapes,
are likely to be at least partially melted, but the larger the analysis of which is beyond the scope of this paper.
derived value of or, and smaller values of other param- Measurements of cloud physical parameters by air-
eters, compared to those of case 1, imply that the hy- borne instruments are essential to the development of
drometeors cannot be approximated by a single dis- realistic shape distributions but were unavailable in
tribution of oblate spheroids. Case 3, an observation these cases. In evaluating cases 2 and 3, one must realize
of snow, yields potentially ambiguous results because that the real part of the amplitude ratio ve'" 2" is a
of a nonzero mean canting angle and because of the bipolar function, being positive if the larger apparent
more likely role of prolate spheroidal scatterers. The dimension of a spheroid is vertical and negative if it is
radar measurements yielded & = 10° , and the corn- horizontal. Hence, a combination of shape and ori-
ponent of canting relative to the plane perpendicular entation distributions may yield a magnitude of ioeli
to the line of sight, although unknown, may be of com- much less than the standard deviation a,. It is likely
parable magnitude. Hence, at the radar elevation angle that the shape and orientation distributions are not
of 70, j may lie between -3 ° and 17° , and the mea- independent, contrary to the traditional assumption.
sured value of P4G corresponds to ae between 21.80 (at It is possible that the approximation v = v0 cos 2y may
,y = 17° ) and 22.5' (at y' = 00) for oblate spheroids. not be generally valid for ice phase hydrometeors. Fi-
The tabulated quantities for Case 3 are based on the nally, the role of propagation effects, unknown in these
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cases, must be considered in the proper interpretation likely to be correlated. Future efforts must address this
of polarimetric radar measurements. more complicated analytical problem.
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