S

e

/

/
/

AN
AN

e

/

N

N\

N\

t

’
‘N
N
/ \
/ AN
N\
N\ /

il

Technical Report
CMU/SEI-88-TR-3
ESD-TR-88-004

Carnegie-Mellon University
Software Engineering Institute

ISTAR Evaluation

Marc H. Graham
Daniel H. Miller

July 1988

#

Technical Report

CMU/SEI-88-TR-3
ESD/TR-88-004
July 1988

ISTAR Evaluation

Marc H. Graham
Daniel H. Miller

Evaluation of Environments Project

Approved for public release.
Distribution unlimited.

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, Pennsylvania 15213

This technical report was prepared for the

SEI Joint Program Office
ESD/XRS
Hanscom AFB, MA 01731

The ideas and findings in this report should not be construed as an official DoD
position. It is published in the interest of scientific and technical information
exchange.

Review and Approval

This report has been reviewed and is approved for publication.

FOR THE COMMANDER

M} CS%\.-;_VQ;_N

Karl Shingler
SE! Joint Program Office

This work is sponsored by the U.S. Department of Defense.

This document is available through the Defense Technical Information Center. DTIC provides access to and transfer of
scientific and technical information for DoD personnel, DoD contractors and potential contractors, and other U.S.
Govemment agency personnel and their contractors. To obtain a copy, please contact DTIC directly: Defense Technical
Information Center, Attn: FDRA, Cameron Station, Alexandria, VA 22304-6145.

Copies of this document are also available through the National Technical Information Services. For information on
ordering, please contact NTIS directly: National Technical Information Services, U.S. Department of Commerce,
Springfield, VA 22161.

ISTAR is a trademark of Imperial Software Technology Ltd., London. UNix is a registered trademark of AT&T Bell
Laboratories. Sun is a trademark of Sun Microsystems, Inc. Use of any other trademarks in this report is not intended in
any way to infringe on the rights of the trademark holder.

Table Bf Contents

1. Introduction
1.1. Summary of the Report
1.2. Description of the Method

2. Architecture

2.1. Contract Model
2.1.1. Project Organization
2.1.2. Data Organization

2.2. User Interface

2.3. Analysis
2.3.1. Contract Model
2.3.2. User Interface

3. Functional Areas
3.1. Project Management

3.1.1. Planning Process and Products
3.1.1.1. Work Breakdown Structure
3.1.1.2. Resource Management Centers
3.1.1.3. Schedules

3.1.2. Task Management
3.1.2.1. Assignment
3.1.2.2. Acceptance
3.1.2.3. Update, Cancel
3.1.2.4. Deliver

3.1.3. Tracking
3.1.3.1. Timesheets
3.1.3.2. Monitoring and Cost Control Centers

3.1.4. Quality Checklists

3.1.5. Analysis and Critique
3.1.5.1. Planning and Tracking
3.1.5.2. Accommodating Change

3.2. Configuration Management

3.2.1. Successor and Variant Control

3.2.2. User Defined Relationships

3.2.3. Problem Reporting

3.2.4. Libraries

3.2.5. Recorded System Building

3.2.6. Analysis and Critique of Configuration Management

3.3. Ada Workbench

3.3.1. Description of Ada Workbench
3.3.2. Analysis and Critique of Ada Workbench

4. Other Workbenches and Tools

4.1. UNIX/C
4.2. Pascal

NOoOrov On N = =

15
15
16

19
19
19
19
24
25
27
27
28
29
29
29
29
30
30
32
32
34
36
36
39

47

49
49
54

57
57
&7

CMU/SEI-88-TR-3

4.3. APCR
4.4. SX1

4.5. SDL

4.6. VDM

4.7. RGURGT

5. Overall Quality and User Experience
6. Conclusions
Bibliography

Appendix A. Generic Experiment Steps

A.1. Configuration Management
A.1.1. Configuration Management Experiment #1
A.1.2. Configuration Management Experiment #2
A.1.3. Configuration Management Experiment #3

A.2. Project Management
A.2.1. The Experiment Setup
A.2.2. The Customers
A.2.3. The Manager for Product Maintenance
A.2.4. The System Analyst
A.2.5. Team 1
A.2.6. Team 2
A.2.7. Team 3
A.2.8. Documentation Group
A.2.9. QA Group

A.3. Design and Coding

A.4. System Administration
A.4.1. System Management Experiment #1
A.4.2. System Management Experiment #2
A.4.3. System Management Experiment #3
A.4.4. System Management Experiment #4

Appendix B. Phase 4:
Develop Environment-Specific Experiments
B.1. Introduction
B.2. Configuration Management
B.3. Project Management
B.4. Design and Coding
B.5. System Administration

Appendix C. Phase 5
Execute Environment-Specific Experiments
C.1. Checklists
C.2. Configuration Management
C.2.1. Functionality Questions
C.2.2. Performance Questions

58
59
59
59
60

67
7
73

75
75
75
78
80
82
83
88
89
91
92
93
94
94
94
95
102
102
104
105
107

109

109
111
118
150
154

1587

158
165
165
170

CMU/SEI-88-TR-3

C.2.3. User Interface Questions
C.2.4. System Interface Questions
C.2.5. General Questions
C.3. Project Management
C.3.1. Functionality Questions
C.3.2. Performance Questions
C.3.3. User Interface Questions
C.3.4. System Interface Questions
C.4. Design and Coding
C.4.1. Functionality Questions
C.4.2. Performance Questions
C.4.3. User Interface Questions
C.4.4. System Interface Questions
C.5. System Administration
C.5.1. Functionality Questions
C.5.2. Performance Questions
C.5.3. User Interface Questions
C.5.4. System Interface Questions
C.5.5. General Questions

172
173
174

174
174
183
188
191

193
193
195
196
200
200
200
202
205
206
209

CMU/SEI-88-TR-3

CMU/SEI-88-TR-3

iv

Figure 2-1:
Figure 2-2:
Figure 2-3:
Figure 2-4:
Figure 3-1:
Figure 3-2:
Figure 3-3:
Figure 3-4:
Figure 3-5:
Figure 3-6:
Figure 3-7:
Figure 3-8:
Figure 3-9:

Figure 3-10:
Figure 3-11:
Figure 3-12:
Figure 3-13:
Figure 3-14:
Figure 3-15:
Figure 3-16:
Figure 3-17:
Figure 3-18:
Figure 3-19:
Figure 3-20:
Figure 3-21:
Figure 3-22:
Figure 3-23:
Figure 3-24:
Figure 3-25:
Figure 3-26:
Figure 3-27:
Figure 3-28:
Figure 3-29:
Figure 3-30:
Figure 3-31:

Figure 4-1:
Figure 4-2:
Figure 4-3:
Figure 4-4:
Figure 4-5:

List of Figures

Contracts and the Contract Hierarchy
A Summary of ISTAR Data Movement
A Framework Display
Another Framework Dispiay
Project Management in ISTAR
Work Breakdown Structure Activity View
Work Breakdown Structure Product View
Work Breakdown Structure Resource View
Estimation Tool Activity Definition
Estimation Tool Results
Resource Definition
Resource Control
Schedule Summary After Time Analysis
Task Definition
A Timesheet
Monitoring Tool Actuals Report
Successors and Variants
Version History Report for a Cl
Status Report for a Cl
Version History Report for an XI
Status Report for an XI
Users Taking a Copy of a Cl
A Display of the Reports Attached to a Cl
The Relationships Involving a Given ClI
All the Relationships Within a Contract
Example Problem Report
A Library Notification Form
A Library Scan Listing

Listing of the Elements Within a Work Area

The Filter Menu

Initial Screen for a Newly Declared Body
A Skeleton Procedure Body

A Partially Entered Procedure Body

A Compilation with Errors

The Result of Pressing HELP in Figure 3-30

The Data Model of a Contract Database

The Data Model of a Contract Database contd.

The Description of a Report
The Report Generated by Figure 4-3
The Fields on the First Line

10
13
13
20

SRRR

23
25
25
26
28
29
31
37

2888

41
41
42

8&5& KR

50
51
51
52
52
53
61
62
63
64
65

CMU/SEI-88-TR-3

Figure 4-6:
Figure A-1:
Figure A-2:

Figure A-3:
Figure A-4:
Figure A-5:
Figure A-6:
Figure A-7:
Figure A-8:
Figure A-9:

Figure A-10:
Figure A-11:
Figure A-12:
Figure A-13:
Figure A-14:

Figure C-1:
Figure C-2:
Figure C-3:
Figure C-4:

The Constraints Used in Producing Figure 4-4
Evaluation System Model

Configuration Model Resulting from Performing Steps in

Experiment #1
Version History of Ul Subsystem
Version History of CLI
Version History of SM
Customer Deliverable
Organizational Structure
Initial Global Plan
Preliminary Package Design
Object-Operation Model
Objects and Operations
Subprogram Interdependencies
Vector Multiplication Test Hamess
Matrix Multiplication Test Harness
Configuration Management Functionality Checklist
Project Management Functionality Checklist
Design and Coding Functionality Checklist

System Administration Experiment #1 Functionality
Checklist

65
76
79

84
85
85
86
86
87
96
97
98
99
100
101
158
160
162
164

vi

CMU/SEI-88-TR-3

ISTAR Evaluation

Abstract: ISTAR is an integrated project support environment produced by Im-
perial Software Technology, Ltd. This evaluation of ISTAR is intended for soft-
ware technologists considering the adoption of an integrated project support
environment. Researchers and others interested in environments and evalu-
ation methods will also benefit from this report.

1. Introduction

This report, primarily descriptive in nature, is the result of our evaluation of the integrated
project support environment ISTAR. In the report, we present a factual description of the
facilities offered by ISTAR so that readers can draw their own conclusions. We also offer
our own conclusions and opinions of ISTAR in subsections entitled "Analysis and
Critique.” A brief summary of the report and the methodology used follows.

1.1. Summary of the Report

ISTAR is a software development and project management environment that integrates
management and technical development activities. It is based on the "contract model,”
whose primary objective is that every individual in the organization know what is ex-
pected of him or her. To accomplish this, the relationships among the individuals of the
organization are modeled as contracts. Each contract has a specification of the work to
be performed under it, a person to whom it has been assigned, and a person for whom
the work is being done.

In Chapter 2 we describe the contract model both as a project management structure and
as a data storage structure. We find that the emphasis on project hygiene leads to a
strict separation of user data spaces which causes excess data storage requirements
and data movement operations. This, in tum, may make data sharing and cooperative
work more difficult. ISTAR's user interface is also described in Chapter 2. That interface
has a high degree of consistency because all user interaction is mediated through Im-
perial Software’s proprietary editor, E, which is window- and menu-oriented.

Chapter 3, which forms the bulk of the report, deals with the functional areas (that is,
those tool sets supplied with ISTAR) which were of most interest to us. The remaining
tool sets are described in Chapter 4.

ISTAR's project management tool set (ISTAR uses the term “workbench” rather than
"“tool set”) contains tools for project estimation, description, scheduling, resource alloca-
tion, and tracking. These tools are well integrated at the data level; that is, with the
exception of the estimation tool, the output of one tool feeds naturally into the next tool in
the planning cycle. They do well at tracking resources against a schedule as a project is
executed. -

The tools are not as well integrated at the tool level. This makes moving from phase to
phase unnecessarily difficult, a phenomenon which is particularly unfortunate during
replanning activities. The tools do not support group planning activities at all well and
should not be used for that purpose. The most serious criticism which can be made of
ISTAR's planning tools is that they do not react well to change, particularly change which
occurs during project execution, such as reassignment of personnel or responsibilities.

CMU/SEI-88-TR-3 1

ISTAR's configuration management support can best be described as rudimentary. There
is support for version control and little else. There is no system modeling capability as
such; there is no check in/check out paradigm; there is no support for release manage-
ment. ISTAR provides a sophisticated problem-reporting mechanism but no automated
support for tying a software module version to the problems it repairs.

The ISTAR editor, E, has a syntax-directed editing mode which facilitates the entry of
Ada source code. The editor is sensitive only to static syntax; it is not aware of semantic
constraints such as type consistency and undeciared vanables. Thus, a compilation unit
which passes the editor's syntax checks may not compile. ISTAR provides a window-
and menu-oriented front end to the Alsys Ada compiler, which is a considerable improve-
ment over the text-oriented command language of the compiler itself.

ISTAR is an emerging product, not a completed one. A software development organi-
zation wishing to introduce an integrated support environment into its operation has a
variety of implementation choices. It may decide to handcraft an environment from exist-
ing and newly developed tools, or it may acquire an environment framework upon which
to build. To our knowledge, there are no environments currently available that can be
installed and used unmodified, and it is unlikely that any such environment will appear in
the near future. An organization wishing to build on an existing framework should con-
sider ISTAR a candidate system.

1.2. Description of the Method

Our evaluation of ISTAR was guided by the environment evaluation methodology de-
scribed in [Weiderman 87]. This methodology is organized by the functional areas sup-
ported by an environment. For each functional area, an evaluation proceeds through six
phases:

1. Identify and Classify Key Activities. Activities within the area are identified,
categorized, refined, and classified into primary and secondary functions.

2. Establish Evaluative Criteria and Assoclated Questions. Specific evaluative cn-
tena are established and a list of questions evaluating each criterion is assembled.

3. Develop Generic Experiments. Environment-independent evaluation experiments
are developed whose execution on a specific environment provides data for the an-
swers to the questions developed in phase 2.

4. Develop Environment-Specific Experiments. The generic experiments developed
in phase 3 are instantiated for the object environment. The result is a sequence of
operations to be performed on the environment.

5. Execute Environment-Specific Experiments. The operations defined in phase 4
are executed. The data collected are used to answer the questions of phase 2. The
answers to those questions are the resuit.

6. Analyze Results. Information collected from the prior phases is assimilated. The
environment is described and analyzed.

2 CMU/SEI-88-TR-3

The first three of these phases are independent of any environment; the last three are
specific to the environment being analyzed. We used the results of [Weiderman 87] and
[Feiler 88] for the environment-independent phases. The functional areas addressed are:

» Project Management
» Configuration Management
» System Management

» Design and Development

To make this report self-contained, we have included as an appendix the outputs of
earlier phases of the evaluation methodology. Appendix A contains the generic experi-
ments, reproduced from [Weiderman 87] and [Feiler 88]. Appendix B contains the experi-
ments instantiated for ISTAR. We have attempted to include in that section our reason-
ing for implementing the generic steps as we did. Appendix C contains the output of
phase 5, the answers to the questions produced in phase 2. The questions are included
as well. The body of the report can be read without reference to the appendices. Only
readers with interest in details of ISTAR or the evaluation methodology need consult the
appendices.

Some of what we say in this report is specific to the ISTAR release we examined
(Release <2, 11, 3>); hence, if the reader acquires ISTAR, some of the statements in this
report may not be true of that release. However, we have generally avoided low-level
details of ISTAR and trust that the bulk of what we say will remain true for later ISTAR
releases.

CMU/SEI-88-TR-3 3

CMU/SEI-88-TR-3

2. Architecture

This chapter presents an overall description of ISTAR, concentrating on its underlying
principle—the contract model—and its user interface.

2.1. Contract Model

At the heart of ISTAR is the contract model of project organization. This model views
work assignment as the central fact in the organization and process of software devel-
opment. The goal of the model is to ensure that each member of the organization has a
well-defined set of tasks which have well-defined termination criteria.

2.1.1. Project Organization

As its name implies, a contract is an agreement between two parties about a piece of
work to be performed. The client of the contract, for whom the work is to be done, issues
the contract to a contractor who is to perform the work. A contractor may perform the
work specified in the contract by subcontracting pieces of it to other contractors. The
terms client and contractor reference roles played by individuals, rather than the in-
dividuals themselves.

The acts of contract and subcontract assignment and acceptance force the collection of
all contracts within an ISTAR installation to form a tree. (See Figure 2-1, which is adapted
from [Dowson 87].) The topology of this tree is recorded locally; that is, each contract
maintains a record of its subcontracts and of its parent contract.

Specifi_cationd Deliverables
Inputs: Reportingand ouipyts:
P Acceptance Criteria ~~ """ Reports
Contract
‘ contract
contract contract ‘
il , I
contract contract contract ' contract

Figure 2-1: Contracts and the Contract Hierarchy

CMU/SEI-88-TR-3 5

On the other hand, ISTAR does not require or even suggest a software development
methodology. The division of a contractual obligation into subcontracts can be along any
lines deemed appropriate. An individual subcontract may require the execution of a life-
cycle phase (design, coding, etc.) for the entire product; it may require the execution of
multiple phases for a piece of the product (functional decomposition). Different contracts
may be handled in different ways. The essence of a contract is that it is the contractor’s
responsibility to decide how to fulfill it, subject to any constraints imposed by the contract
specification or management directive [Dowson 87].

Although the collection of all contracts forms a tree, the mapping of that tree onto the
collection of ISTAR users is arbitrary. Any ISTAR user can assign a contract to any other
ISTAR user, including himself, at any time. ISTAR does not record the organization's
reporting or management structure except insofar as that is recorded In the contract
structure. There is no notion in ISTAR of a user’s having authority to assign contracts to
other users. Therefore, when the hierarchy of Figure 2-1 is mapped onto the individuals
within the development organization, the result is a graph of arbitrary topology. ISTAR
insists that the work be decomposed hierarchically; it does not require the development
organization to be managed hierarchically.

An ISTAR contractor receives asynchronous notification of a new contract assignment;
he or she must accept this contract without being able to read it. (No capability is pro-
vided to reject contract assignments.) Essentially, an ISTAR contract assignment is the
formal, recorded counterpart to an informal assignment of work. Communications within
or between organizations mediated by ISTAR are generally meant to supplement infor-
mal communication channels, not to replace them. The value added by ISTAR comes
from the recording of these communications. This provides a basis upon which the con-
tractor, the client, and their management can understand, discuss, and track work in
progress.

As shown in Figure 2-1, the input to a contract consists of specifications and other infor-
mation; the outputs are deliverables that fulfill the contract specifications and reports on
work in progress. All of these data flows can be incremental. A contract specification can
be updated after initial assignment; a deliverable can be transmitted in pieces over time.
Transmittal of a deliverable does not terminate a contract. Contracts can be canceled by
the client, in which case the contractor is informed of the cancellation. A contract can be
destroyed by the contractor at any time, without administrative control or intervention.
However, contracts are not meant to be destroyed. In fact, information on a project
should not be discarded, even after project termination. In order to save secondary
storage, ISTAR offers an archival facility. (This was not implemented in the version of
ISTAR which we examined.)

ISTAR makes no attempt to enforce any rules or standards on the data flows into and out
of the contract. When a contract is assigned, something must be transmitted as a specifi-
cation. When a delivery is made, something must be delivered. The identities of the
specifications and deliverables are recorded in the parent contract. Beyond this record-
ing, nothing is done to determine whether the specification is acceptable or the delivery
conforms to it. This philosophy has been called “a liberal policy, strictly enforced.” The
enforcement occurs in ISTAR'’s requiring that a specification be provided. It is worth
noting that ISTAR “freezes” the specification at the time it is transmitted, thereby making
it impossible for either party, client or contractor, to alter the specification. (This does not
affect the client's ability to update the contract with subsequent specifications, but it does
prevent the text of the original specification from being modified. These comments apply
equally to deliverables.) This philosophy is justified in the following discussion of the
support an environment should give to a software process.

Most of the processes that are currently employed within our industry would be
completely unworkable were it not for human ingenuity and flexibility. In prac-

6 CMU/SEI-88-TR-3

|

tice, people follow the ‘defined’ process until it breaks down, and then find ways
of getting round the problem. Any attempt to strictly enforce a specified process
in all its aspects is therefore likely to be counter-productive—the process will
probably emerge as unworkable [Stenning1 87].

Although ISTAR enforces no requirements on the content of specifications, it does pro-
vide tools for their construction. These tools are encapsulated in the Project Management
workbench and are fully described in a subsequent chapter of this report. They include a
software cost estimation tool, work breakdown and scheduling tools, and a resource
management tool. Through the use of these tools and a task definition tool, a client may
construct a specification that includes schedule constraints and resource lists as well as
development objectives, standards to be adhered to by the contractor, and termination
critena to be met. These termination criteria take the form of checklists which the contrac-
tor is meant to fill out, indicating that required quality assurance steps have been carried
out. The completed checklists are returned, with the deliverable, to the client. In keeping
with its philosophy, ISTAR does not verify the completion of these checklists: that must
be done by the client, who may examine the state of the checklist when it is retumed.

The Project Management workbench also contains tools for monitoring the progress of
contract fulfilment. The contractors submit time sheets which record effort and resources
(time and material) expended on the contract and an “estimated completion” percentage.
These time sheets can be summarized and sent up the contract hierarchy. The contractor
may indicate contract completion in a time sheet, but ISTAR does not verify that anything
has been delivered.

~ ISTAR supports a problem reporting mechanism which can be thought of as a method of

work assignment parallel to the contract assignment mechanism. Any ISTAR user can
raise a problem report at any time. These reports are predefined forms containing prob-
lem descriptions, sevenity, impact, etc. Problem reports have controllers, individuals who
presumably are responsible for taking corrective action. Having raised a problem report,
a user may send the report to another user, optionally passing controllership of the re-
port. In effect, the reporter has assigned work to the recipient. However, for this trans-
mission to take place, the sender must know not merely the name of the recipient, but
also the name of the contract under which the maintenance and repair work will be car-
ried out. Although the specific task has been assigned outside the contract model, the
model still controls the assignment of responsibilities, e.g., maintenance, to individuals.
The problem reporting tools have their own methods for recording completion and inform-
ing the original reporter; these are separate from the methods of time sheets and
deliverables used in contract completion. This separation recognizes that, although a
specific problem has been repaired, the maintenance activity is on-going.

2.1.2. Data Organization

We have been discussing the contract model as a means of organizing the work of a
software development organization. We will now turn to a description of the model as it
affects ISTAR's data organization and storage and its model of tool usage.

When a contract is accepted by a contractor, a new contract database is created. This
database is a large piece (actually, three pieces) of the UNIX file space which is man-
aged by ISTAR. Each contract has its own database that the contractor (the owner) alone
can modify. .

The data model of a contract database is a variant of the “binary data model” [Tsichritzis
82). Objects within the database are typed and are related to one another through named
binary relationships. Users may declare relationship (but not object) types of their own
and relate objects using these user relationships. ISTAR provides a report writing facility
with which the user may create specialized reports from the database. The description, or

CMU/SEI-88-TR-3 7

schema, of much of the data in these databases is available on line to assist in the
creation of these reports.

For the most part, however, ISTAR users need not be concerned with, nor even aware of,
the organization of the contract databases. Access to the database is usually done
through tools which encapsulate the database interface and present a higher level inter-
face to the user.

The purpose of the contract database within ISTAR is to be the repository of controlled
project knowledge. Information within a contract database is subject to version control,
may be “frozen,” and may be moved from contract to contract. When data is moved in
this way, a record is kept of that movement, making it possible to track the source of
information.

The data stored in a contract database is originally created by some other means: either
an ISTAR tool or a UNIX program. Generally, an ISTAR tool will organize and maintain
data within a special purpose work area. These work areas are specific to the tool and to
the user, but generally not to any contract. Thus, a user has access to the same infor-
mation within a work area, no matter what contract he is working on. No other user may
access that information in any way. It is as though the data within a work area is the
user's personal property, whereas the information within the contract belongs to the or-
ganization.

The user transfers information from his personal work areas to one of his contract data-
bases via an EXPORT operation.? The unit of transfer is called the transfer item, ab-
breviated XI. Each XI| has a type which identifies the tool that exported it, although some
tools can export items of more than one type. The type of X| exported by the Ada tools,
for example, will indicate whether the item is an Ada specification or an Ada body. The
typing of Xis is used to prevent importation of an item by a tool which is not prepared to
deal with it.

Within the database, transfer items are gathered into sets called configuration items,
abbreviated Cl. This gathering into sets is not recursive, in the sense that Cis may not
appear as elements of other Clis. A given XI may appear as an element of more than one
Cl.

An individual XI may contain, for example, either a single program, from the Ada or
Pascal tools, a schedule, from the scheduling tool, free text, from the text tool, or a quality
checkiist, from the quality assurance tool. ISTAR provides a mechanism whereby any
UNIX file may be exported as an Xl to a contract. The collection of Xls within a Cl will
form some logical entity: a specification for a contract, a baseline of a system, etc.

Associated with each Xl and with each Cl is a successor number and a variant name.
Any Xl or Cl may thus appear within a contract database any number of times. More
accurately, any number of Cls or Xls within a contract database may have the same
name, provided they differ in either the variant name or successor number. The collec-
tion of all instances of an XlI or Cl will form a tree, in which each root to leaf path
represents a parallel line of development and each node is a successor, or variant, of its
parent. ISTAR will track the relationships of vanation and succession that form the edges
of such a tree. ISTAR will not, however, allow variants to be merged back into a mainiine
of development. The graph must remain a tree.

"This description is based on the version of ISTAR which we examined. Future versions of ISTAR are
planned which will implement an entity-relationship data model.

2The inverse data movement is accomplished by an iIMPORT operation.

8 CMU/SEI-88-TR-3

As the Xl is the unit of transfer between the tools and the contract, the Cl is the unit of
transfer between contracts. The specification which must accompany the assignment of a
contract is a Cl, as are the deliverables retumed in fulfilment of a contract. These are not
the only mechanisms by which information may be transported between contracts. Pro-
vided that a user knows the exact name, including the successor number and variant
name,® of a Cl in another user’s database, he may issue a request, called RETRIEVE c, for
a copy of that Cl. The owner of the CI, which is to say, the owner of the database in
which the Cl is stored, must have taken action to allow such access, which is disallowed
by default. Optionally, the owner may have ISTAR record the identity of any user taking
such a copy of the Cl. These options are on a Cl-by-Cl basis.

ISTAR supports the concept of a library. Structurally, a library is a contract database.
Operationally, it serves not to record information for a specific task, but to act as a
publicly accessible repository. An ISTAR library may impiement a library of programs,
standards, regression tests, or any collection of information at the user's discretion. The
process of copying information from a library is a simplification of the process described
in the prior paragraph. ISTAR provides to the requester a list of the Cls contained in the
library. The requester “points” to the Cl he wants to copy and makes his request through
a menu selection. He thus needs less a priori knowledge of the contents of the library
then he does in the case of RETRIEVE Cl. It is worth noting that every XI and every Cl has
an associated free text description which is created when the item is created. However,
the user of the library retrieval system does not have access to that description.

There is a specialized process for entering Cls into a library. Any ISTAR user may initiate
the process by sending a notification to the owner of the library. Recall that an ISTAR
library is a contract database and thus has an owner, as does every such database. The
owner of a library effectively serves as a librarian. The librarian reads the text of the
notification, which is a predefined form containing descriptions of the item and may con-
tain information concerning the standards, quality assurance procedures, and tests which
have been applied to the item, and decides whether to accept or reject the item for
inclusion in the library. Therefore, the contents of a library are necessarily subject to
some degree of human quality control. This is consistent with ISTAR's liberal enforce-
ment policy.

A summary of the movement of data within ISTAR among contracts, work areas, and
libraries is given in Figure 2-2.

There is yet another mechanism whereby ISTAR users may share information. The
owner of a contract may elect to allow other users to share the contract. The users
sharing a contract may each access and modify its contents as though they owned it.
ISTAR ensures that no two sharers of a contract access it simultaneously. It is worthwhile
to note at this point that an ISTAR user can access an ISTAR tool only while signed on to
or working on a contract. Therefore, no two sharers of a shared contract may be working
on the contract in any way, that is, with any tools, at the same time. A user working on a
shared contract locks out other users sharing the contract for long periods of time. Those
users may, of course, work on other contracts during those periods.

The staff of Imperial Software have indicated in conversations that they do not favor the
concept of the shared contract. Indeed, the shared contract violates the principle that the
contract is an agreement on a task to be done. However, we have seen, in the library
facility, that contract databases serve functions other than that of recording purely con-
tractual information. The library is not the only example of such usage. The resource

3ISTAR recognizes two symbolic successor numbers: #L (latest) and #P (preferred). These may lower the
burden of knowledge on the user in this context.

CMU/SEI-88-TR-3 9

client contract

tool work area

Ci k;gj
assign deliver
contract contract
o
X export
E(retrieve ci = i import(N

Cl

|7C§I_|

notify

library

scan

il

Cl

Figure 2-2: A Summary of ISTAR Data Movement

10

CMU/SEI-88-TR-3

management tools, used in project planning and management, store information concern-
ing resource usage and availability in contract databases called resource management
centers or RMCs. These RMCs are, like libraries, repositories of publicly available infor-
mation and, like libraries, have individual owners, called resource managers.

We have been unable to determine with precision Imperial Software's motivation for in-
cluding shared contracts, but it would appear to have been done at customer demand.
The sharing of information through shared contracts can be simpler and quicker than the
other methods previously described. ISTAR's locking mechanism for shared contracts
makes that sharing somewhat less effective. We do not have enough knowledge or expe-
rience to have formed an opinion on the issue of shared contracts.

The databases, work areas, and ancillary files in which ISTAR stores its data are organ-
ized into a higher level structure, known by the names datatree and host. The name
“datatree” conveys an accurate impression of the structure of these objects; they are
subtrees of the UNIX file space. Each ISTAR user has a subtree of the datatree within
which his databases and work areas appear as files and subtrees. ISTAR prevents ac-
cess to the datatree by non-ISTAR programs by creating fictitious owners for the files
within the tree and preventing non-owner access through the UNIX file protection
mechanisms.

The term "host” conveys an accurate impression of the intended use of these structures;
they are used in the support of distributed operations. There is nothing to prevent an
individual UNIX file space from containing more than one datatree. A user specifies the
identity of his or her datatree through an environment variable which may be set by
appropriate shell or login procedures. However, the essential purpose of the host or
datatree construct is to implement inter-machine communication.

ISTAR allows its system administrator to specify the mechanism by which communication
between a given host and any other is to be accomplished. This mechanism can be any
UNIX program. This general mechanism can support local and wide area networks, e-
mail or other file transfer protocols, or physical transport using magnetic tape. ISTAR
users within different companies can use the ISTAR communication facilities. The au-
thors have used them to communicate with Imperial Software. Such communication is
possible only if the companies have agreed to use ISTAR communication facilities, have
determined the protocols to be used, and know the names of each other's hosts.

The specification, from the user's perspective, of inter-host communication is not identical
to that for intra-host communication, but the differences are minor. When doing contract
assignment or inter-contractual data movement, the user must specify the target host
name, if it is not the local host. For contract delivery, the identity of the parent contract is
locally recorded, so this information is unnecessary. The specialized procedures for
library retrieval described earlier are not available when the library is remotely stored, and
so the requester must have complete information concerning the identity of the requested
item. These differences are not significant and not unexpected. ISTAR does not maintain
a user-datatree mapping function. Maintenance of such a map might require inter-
organizational cooperation, in the area of user name assignment in particular, that may
not be desirable.

The inter-contractual information transfer mechanisms within ISTAR have been designed
with remote communication in mind. For example, the request a user makes for infor-
mation from a library, as described earlier, does not effect the transfer directly, even in
the intra-host case. The transfer is done by a background process or demon,
asynchronously. The requester is notified when the transfer is complete and must then
install the item in his database via a separate operation. The delay involved in these
operations is unavoidable for remote communication, but annoying in the local case. In
our own experiments, in which only local communication occurred, we found the transfer
occurred quickly.

CMU/SEI-88-TR-3 11

2.2. User Interface

ISTAR presents its users with a uniform user interface in the sense that every tool and
interface expects input and returns output in roughly similar ways. ISTAR accomplishes
this by having all user communication done through its proprietary editor, called “E.”
This editor and the interface it presents is the subject of the following section.

The interface is modeled on the capability of a DEC VT100. It can therefore be used with
any device capable of emulating such a terminal. Imperial Software has also imple-
mented a version of the interface under SunTools. The additional features of that imple-
mentation are noted as appropriate. The editor is configurable at the level of key bind-
ings, thereby accommodating the differing interpretations of the function keys on various
terminals. This feature can also be used to make the editor more nearly resemble an
editor with which the user may be previously familiar. We have ourselves used it in that
way.

The interface is window- and menu-oriented. The display may contain any number of
windows simultaneously. These windows can serve various purposes. Some of them
contain menus. A user selects a menu item by positioning the cursor at the item, using
the cursor movement keys, and entering either a carriage return or space. Alternatively,
the user can move the cursor directly to the menu item by entering its first character, a
system which works less well for menus in which multiple items have the same initial
character. Because menu interaction, like all other interaction, is under the control of the
editor, the editor’'s positioning commands (e.g., “bottom of file” for selecting the last item
in a menu) are available. Menu interaction is identical for all tools, as they all use the
editor to accomplish it. In the SunTools implementation, cursor positioning, and item se-
lection can be done directly with the mouse.

In addition to windows, the display also contains a command line. (It will generally also
contain an area reserved for the display of system status information.) Much of menu
interaction results in the execution of a command, either by the editor or the tool. Many of
these commands can also be entered on the command line, which a knowledgeable
ISTAR user may prefer, particularly when the menu interaction requires multiple level of
submenus. There is a powerful abbreviation mechanism available for the command line
and a history mechanism as well.

Figure 2-3 contains an example ISTAR screen. This particular screen is displayed by the
ISTAR framework. The framework is the highest level of control in ISTAR, which the
user enters after logging on to ISTAR. The command line appears at the top of the
display, at the point where the “greater than” sign (>) appears. The narrow window di-
rectly below is the initial menu. In the example, the user has selected the contract opera-
tion from that window, which displayed the large window in the lower right of the screen;
this window contains a list of the user's contracts. The user has selected and opened
one of those contracts (CMEXP), resulting in the display of the menu on the lower left of
the screen. Selection of the workbench operation in that menu produces the display
shown in Figure 2-4. The new pop-up menu shown there lists the workbenches currently
available in ISTAR. Workbenches are collections of related tools and their local work
areas. All work in ISTAR is performed in workbenches which are initiated through this
menu. As the display indicates, workbenches are accessible only through an open con-
tract. Therefore, all work done by ISTAR users is necessarily done for some contract.

Some of the windows popped up by ISTAR contain forms. These are created and manip-
ulated by the ISTAR editor. The ISTAR tool set contains tools for the creation of form
templates, the descriptions of forms. Therefore, the forms system is directly available to
ISTAR tool builders.

12 CMU/SEI-88-TR-3

TSTAP (ISTA®_2,10.1) T3
b
,]
| USER: marc HOST: cmexp SESSION STARTED AT 10:3¢ [+ rsonal db occupancy h
| contrace adnin nail 1ogour ~ g
| CONTRACT: CHEXP @53 full) | | CURRENT CONTRACTS: K
|Morkbench ops starus close | | CHEXP neu rransfer(s)
| | | CHEXP2
| | | CHEXP4
| | | |
| | |
I | |
| | I
) l
|
|
|
|
|
|

Figure 2-3: A Framework Dispiay

ISTAR (ISTR2_2.10.1)

*
+
B
»e

| USER: marc HOST: cmexp SESSION STARTED AT 10:3¢ (2% personal db occupancy)
| contract adnin mail 1 ogout

| CONTRACT: CHEXP @52 fulld | | CURRENT CONTRRCTS:

1 close | CHEXP new transfer(s)
| 1R general | | CHEXP2

|1 technical development | | CHEXP4

|| configuration managsnent | |

|| Project management | |

|1 resource management | |

11 QR nanagement | |

t| tool development e

Figure 2-4: Another Framework Display

As the name implies, forms are electronic representations of paper forms. They have
fields containing constant information, for display purposes only, and fields containing
user modifiable information. For such fields, the form designer can specify a prompt
string which the editor will display when the form user is entering information into the
field. This string can be used by the designer to convey a brief description of the meaning
and purpose of the information to be entered into the field. The forms system inciudes a
validation capability for information entered into form fields. This takes the form of a
regular expression match. The form designer can specify an error string to be displayed
by the editor when the user enters information which does not conform to the reguiar
expression. The designer can, optionally, have the validation strictly enforced, in which
case the user will not be allowed to leave a field containing non-conforming data. If this
option has not been chosen, the ISTAR allows the user to leave such data in a fieid, but
displays the error message.

All ISTAR tools use the forms system for capturing parameters to commands. This in-
cludes such things as the names of Xls for transport between a work area and a contract,
for example. Some tools use it for the entry of structured data of larger volume than
command parameters. The use of this system by all tools provides a high degree of
consistency to ISTAR in this regard.

CMU/SEI-88-TR-3 13

The ISTAR editor can also act as a general purpose, syntax-directed editor. ISTAR
uses the editor in this way in the Ada workbench, among others. The language in which
the syntax is written is documented and available to the ISTAR tool builder. It is an
extension of the well known BNF (Backus Naur Form) notation for describing program-
ming languages. The most important extensions are “layout directives,” which describe
and control the appearance of the document. Thus, an Ada program edited in this way
will always be “pretty printed.”

A syntactic document, that is, one using syntax-directed editing, may contain “stubs,”
generated by the editor that stand for syntactic categories. For example, the empty
Pascal program will appear as the stub program. The user replaces the stub with text
and the editor ensures that the replacement conforms to the appropriate category. The
user may enter part of a syntactic element. For example, he may replace the stub
statement with the term for and the editor will automatically supply the concrete syntax
and stubs making up a for-loop. The editor can also “fold” a syntactic construct, replacing
the text with the stub.# This can be useful for program scanning.

The syntax direction supplied by the ISTAR editor in this mode is limited to that which can
be described in BNF. This limitation can be called “static syntax”; it is the syntax which
can be checked locally. Items such as variable declarations and type constraints do not
fall in this category. Therefore, a program entered in this way may not conform to the
language and may not compile without error.

Many of the functions of the editor are bound to function keys. The exact set of func-
tions so bound varies from terminal to terminal. In the Sun implementation used in this
experiment, the functions bound to function keys include some used in form and syntax-
editing, as well as frequently used functions of simple text editing. The availability of
these functions on keys was extremely useful.

The most frequently used and useful of the functions are, in the Sun case, bound to the
top row of keys.> The utility of these keys is such that they are worth discussing in-
dividually.

¢ POP. This key is used to discard windows. It is particularly useful for aborting inter-
actions in midstream.

¢ WIDE. This key is used to control the size of windows.

e LOCAL and HOUSEKEEPING. These keys cause the display of menus of commands. The
contents of these menus depend upon the context in which the keys are pressed. The
housekeeping menu contains commands specific to a given workbench. No matter
what the user is doing within in any tool of the workbench, this menu's display
remains constant. The menu varies from workbench to workbench. Generally, the
command to exit the workbench appears in the housekeeping menu.

The commands in the local menu vary with the tool being used. The commands are
also specific to the state of the user's interaction with the tool. For example, in the

component management tool, which is concerned with the elements of a contract:

database, the local menu contains a command to create a new Cl when the inter-
action is in a state in which no Cl| has been selected. In a state in which a Cl has

“The difference between a folded construct and one which has not yet been entered is made clear on the
display.

Sin the SunTool case, these appear as mouse selectable buttons on the display. They are also available as
escape sequences, even on terminals without function kays.

14 CMU/SEI-88-TR-3

been selected, the local menu contains a command to create a successor of the
selected ClI.

¢ HELP. This key invokes the context-sensitive help system.

® VALIDSET. This key is used for filling in form fields. It causes the display of a menu
containing items which can validly be entered into the field. For exampie, during the
specification of an import operation, the VALIDSET key will display a list of all Xls which
can be imported from the contract into the work area. The user may use menu selec-
tion techniques to select an item from this list.

* CONTEXT. The project management tools use this key to switch between different
views of their database. For example, the structure of a product within an activity can
be displayed by focusing on the product (that is, moving the cursor to it) and pressing
the CONTEXT key.

2.3. Analysis

An analysis of ISTAR's contract model and user interface follows.

2.3.1. Contract Model

The contract model is designed so that each user operates within an environment that
cannot be changed without his knowledge and acquiescence. Furthermore, this environ-
ment (which is to say, the information available to the user and the names by which that
information is known) is organized, in part, according to the tasks the user performs. The
organization which implements this strategy leads to a degree of fragmentation which has
unfortunate consequences.

For example, an Ada programmer creates compilation units within the Ada workbench.
The name of the compilation unit, within the workbench, is identical to the Ada name of
the compilation unit. The workbench’s work area is completely private to the user, so in
order to make the compilation unit publicly available, he must export it to a contract
database. This causes a copy of the unit to be made. The syntax of names within a
contract database does not conform to Ada name syntax. Thus the unit is likely to have a
different name when exported. The date and time of the export is recorded in the contract
database, but it is not recorded in the workbench. It is relatively easy for the work area
version and the database version of the unit to diverge inadvertently. The fact that ver-
sion control is available only for items in the contract database makes it more difficult for
an Ada programmer to work on several versions of a system simultaneously® or to pro-
duce experimental versions of a unit. In order to use the version control facilities, the
programmer must pay the penalty of exporting and importing. The division of an indi-
vidual user's storage into contracts and work areas results in excess data storage, ex-
cess data movement, and an excessively large name space.

The same can be said of the separation of the individual user's storage from each
other's. The sharing of information becomes more difficult. Recall that all work in ISTAR
is done within work areas which can be accessed solely by their owners. For control of a
product or document to be transferred from one user to another, the following steps must
be taken: The owner of the item must export it to a contract database and must make the
item publicly accessible. The owner must inform the recipient of its name and location.

Sin the case of Ada, variants of a system will need separate Ada libraries. The ISTAR Ada workbench
supports that concept rather well.-

CMU/SEI-88-TR-3 15

The recipient must then issue a request for a copy of the item, and then wait for the copy
operation to take place.” The recipient must then install the item into one of his contract
databases and, finally, export the item into the appropriate work area. The recipient is
now able to begin work on it.

In the case of local transfer, that is, within the same ISTAR host, the above steps take
very little time. There is, however, a good deal of manual intervention and of data replica-
tion involved. In the case of remote transfer, much of that intervention, and certainly the
data replication, is unavoidable. Local transfer would seem to be much more prevalent.

The separation of users’ storage has an effect on global project knowledge. In the above
scenario, the fact of the transfer will be recorded in the recipient’'s database, as a prop-
erty of the transferred item. Optionally, the original owner may have that fact recorded in
his or her database as well. Suppose that item must be forwarded to a third user. As it
turns out, ISTAR does not record the identity of the original owner in the new recipient’s
database. The history of movement of this item, and of its modifications at each location
as given by the version trees, is recorded by the system as a whole. It cannot, however,
automatically be gathered into a single location or report. This is because each contract
is accessible only by its owner. No report, including those defined by the users, can
access databases owned by anyone other than the person running the report. This
makes the production of ad hoc, user-defined management reports difficult if not impos-
sible to accomplish.

The ISTAR model works best when a development project is well planned in advance
and the resulting plan is executed without modification. Planning is certainly a vital com-
ponent of successful development projects; however, few plans, particularly for large
projects, are ever executed without modification. Unforeseen events necessitate re-
planning. Engineers often find their responsibilities change in mid-course. This may not
be desirable, but it is often unavoidable. The scenarios just described are realistic imple-
mentations of such mid-course changes in ISTAR.

2.3.2. User Interface

We have described the consistency of the ISTAR user interface. We must also describe
the interface’s inconsistencies. These are annoying, but not inimical to the successful use
of ISTAR. The claim that ISTAR has a consistent user interface is justifiable. Still, the
inconsistencies are worth reporting.

The presence of two function menu pop-up keys, the “local” and “housekeeping” keys
described earlier, has unwanted side effects. We found that the we frequently forgot in
which of these menus, or their submenus, a given operation was to be found.

We have reported that many of the commands available from menus are also available
on the command line. Not all such commands are so available and it is frequently impos-
sible to guess which are and which are not. Also, the same command is handled differ-
ently in different tools.

The validset and help keys are not implemented everywhere they might be. This is not a
comment on the user interface but rather on the state of development of the tools.

We should point out that our pattem of using ISTAR may have made these inconsis-
tencies more obvious than they would be to an average ISTAR user. As our use of
ISTAR was experimental, our interest was solely in ISTAR, with no interest in the prod-

"This happens asynchronously, in the "background.” The recipient is free to do other work while waiting for
the transfer.

16 CMU/SEI-88-TR-3

ucts being developed in the experiments. Movement from tool to tool was more frequent
and less time was spent in each tool than would be spent by a production-oriented user.
As mentioned, these inconsistencies are merely annoying and have no significant effect
on the use of ISTAR.

CMU/SEI-88-TR-3 17

CMU/SEI-88-TR-3

18

3. Functional Areas

This chapter describes the ISTAR tool sets that were of greatest interest: project man-
agement, configuration management, and the Ada Workbench.

3.1. Project Management

Project management is one of ISTAR's major strengths. ISTAR's support of project man-
agement includes estimating effort, developing plans, assigning personnel to perform
work, tracking progress, and verifying quality. ISTAR provides linkages between these
elements to provide coherent project-level management support.

3.1.1. Planning Process and Products

The project management process can be described by roles and products. The project
manager manages the development of the work breakdown structure and schedule.
The resource manager controls the use of resources within resource management
center’'s. The cost controller monitors on-going projects.

The project manager creates the work breakdown structure, creates the schedule, and
issues tasks from the schedule. The project manager interacts with the resource man-
ager by asking for resources to fulfill schedule activities. The resource manager assigns
resources so that there are no conflicts among plans submitted by project managers.
The cost controller interacts with all the people assigned contracts and tracks their efforts
on particular assignments.

The following are quick summaries of the products processed during project manage-
ment. More detailed descriptions appear later in the report.

e Work breakdown structures specify the hierarchy of activities that need to be per-
formed to complete the project and the product flows between the activities.

¢ Resource management centers store physical resources to fulfill assignments within
work breakdown structures. The centers record resources which have been allocated
and resources which are still available.

¢ Schedules are processed work breakdown structures that specify the calendar time
and resources to be allocated for each of the work breakdown structure activities.

¢ Task assignments are the results of assigning scheduled activities to people selected
from the resource management center.

o Timesheets are the raw data used to track project progress.
* Monitoring reports are consolidated timesheet submissions.

A pictorial representation of the interaction of these products, and the tools which process
them, is given in Figure 3-1 which is adapted from [Imperial Software Technology 87].

3.1.1.1. Work Breakdown Structure

The project manager specifies in the work breakdown structure the project's activities in
terms of what is to be completed, without specifying who will actually be performing it, or
when it will be done.

The work breakdown structure is a hierarchy of parent and child activities. These activi-

CMU/SEI-88-TR-3 19

Specification From Client
Report to Client
AN

Work Breakdown
Structuring Tooi

Work Breakdown Structure

\7

Resource
Mgmt
Center

} Scheduler Tool

Schedule } Monitoring Tool
Task Definition ~ A
Tool
Contract Specifications Rg”t"s ':’°'“ Tnasmets
to Contractors OINracuns l
Figure 3-1: Project Management in ISTAR l
20 CMU/SEI-88-TR-3 '

ties logically partition large tasks into smaller units whose union forms the solution. Each
activity in the work breakdown structure specifies (paraphrased from [Dowson 87)):

e A small prose description of what the activity is supposed to accomplish.
* A list of products the activity requires to produce its products.

* A list of products produced.

e The types of resources needed to perform on the activity. The specification in the
work breakdown structure is an abstract request for resources that have specified
attributes.

Activities are entered one at time into the activity hierarchy. Each activity’s definition is
entered onto a few panels or “views.” Movement from view to view is accomplished via
cursor movement and the CONTEXT key.

The activity view (see Figure 3-2) describes the activity, names the products produced
and needed by the activities and the resources it requires.

Product descriptions are entered into product views, an example of which appears in
Figure 3-3. Like activities, products can be decomposed hierarchically. The product flow
from activity to activity is used by the scheduler to find an executable sequence of activi-
ties.

The resource view defines the properties of the resource necessary to accomplish the
activity (see Figure 3-4). These properties are attribute, effort, utilization and tag infor-
mation. This detailed information will be matched by the scheduler against similar
descriptive information of available resources in the resource management centers.

activity name | InsBantiation |

jparent activity 'PM Expe=iment System i

child activities

WBS version 2.6 [Conzrac:z: CMEXP]: Rctivity V.ew
>

activity description

|Transform the Analysis into ar experiment
|Instanziated for ISTAR

|
|
[
!

|
|
|
|
|
|

r
|ProgramCreste
|Steplnstantiste

products needed products produced resources required

Analusis ZxInput

r
|
I
|
|
!

e e e

|
|
|
|
|

Figure 3-2: Work Breakdown Structure Activity View

A resource attribute defines the capability and level of experience that are needed to
accomplish the activity. Attributes have the form [skill, rating] where, for example, skill is
knowledge of UNIX, and rating is a level from 1 (novice) to 10 (expert) of how well the
person knows UNix.2 The attribute panel includes [unix,5] if a person with moderate
knowledge of UNIX is needed on the activity.

81STAR allows any text string to be entered as a rating. We felt that a number scale, as reflected here, was
more appropriate.

CMU/SEI-88-TR-3 21

product type ;local product |

iparent producri i

WBS Version 2.6 [(Consrac:: CMEXP): P-oduct View
>

product name |Bxlneut i product description

Inputs needec for the experiment executisn

i
|
[
|
1
d

S g ——

child products

r
|NeyStroke
HdaCode

producing activity activities using product

"’
| Instantiation | Ixecution

.
| r
| |
| |
| |
| |
| |
| |
‘l |

e e}

g[ee

Figure 3-3: Work Breakdown Structure Product View

LBS Version 2.6 (Contrac:: CHMEXPl: Resource Vi.ew
>

resource requirement |Bocer | required by activity |ProgramCreate)
anount wits named resource | 1
;20 :nan-hou'-s i
. " o ———
Jutil 1100 resource tag |marc |
e L
resource attributres requirements Uith same tag
;Cuda.O) lrﬁnalust

e e e

| cnstantistecr

|
|
|
|
|
.

s
*

L]

Figure 3-4: Work Breakdown Structure Resource View

Effort is the number of man-hours necessary for the resource to complete the activity.
Effort differs from calendar time because a resource can be utilized part time. (Note the
“%util” field in Figure 3-4.) Specification of effort instead of actual time permits the
scheduler to determine the actual time the activity will take. An initial estimate of an
activity’s actual time is effort times 1/utilization.

Estimation of the effort required to complete activities is provided by a tool based on the
COCOMO model. Currently there is no automated connection from that tool to either the
database or to the WBS. Figure 3-5 shows an activity in an embedded system that has
been assigned a given number of delivered source instructions. The body of the input
consists of the levels of the different cost-drivers. Boehm's book [Boehm 81] describes
the meaning of each of the drivers. The derived person-months in Figure 3-6 can be
entered by hand into the work breakdown structure effort specification.

The resource name given in the “resource requirement” field of Figure 3-4, is unique to
the activity. No two activities in the structure may require the same resource. However, a
resource requirement may be given a tag and a name. A resource tag is used to collect a
set of requirements into a family. All requirements with the same tag, which are automat-
ically listed in the appropriate panel of Figure 3-4, will be assigned to the same physical
resource. The identity of that resource will be determined when the structure is proc-

22 CMU/SEI-88-TR-3

e

1EST V3.4: plavPasc

Activity ~ame

| MODE: Embedded
|Current Rctivity: [H1 Level: 2 DSi: 20000

|

IRELY: high DATR:* rominal CPLX: Frigh

ITINE: hagh STOR:¥ romiral VIRT: low TURNSX nominal
|RCAP: high RAEXP % riominal

IPCRP:R nominal VEXP:I® nominal LEXP:® romiral

IM0OP: high TOOL: haigh % rom:ral

1
|
|
|
1
1

|
IPOCOST: Kk# 10,00 DOCOST: ke 105,00 CUTCOST: ke 10.0¢ ITCOST: Kk® 10,00

Figure 3-5: Estimation Tool Activity Definition

1

;ST V3.4: playPasc

>

| HODE: Embedded

N
|

ICurrent RCrivity: proi Level: 1 0S1: 25000 |
| |
IRE |Brase Ferson-Montns (Cost kw Months Starf) |
ITI |Product Design 26.6 250.4 4.2 6.3iminal |
| | | |
|PC|Deta.led Desigr 40,2 378.3 ===l | |
im0y | - 5.1 15.6| |
|Ccde & Unit Test 39.4 368.1 === | |
PO | 0,00 |
tem|Irtegrate & Test 36.2 337.0 2.9 12, 5| m—mmeed

____________________ I

|Teta. 142.4 1333.8 3% |

Figure 3-6: Estimation Tool Results

essed by the scheduler against the resource management center. The name of a
resource in a resource requirement of a work breakdown structure is the name of a
physical resource in the resource management center. By naming a resource in this way,
the project manager makes the resource allocation himself, rather than allowing the
scheduler to do it from the pool of available resources. Tags and names are facilities by
which the project manager can restrict the allocation of resources by the scheduling tool.

The work breakdown structure tool provides a collection of reports. These include:

e Hierarchy reports giving the structures of the activity and product hierarchies.

« Dependency reports, giving the product flows from activity to activity, organized either
by product or by activity.

» Summary reports, giving all information on activities, products or resources and a full
report which combines the three summary reports.

e A consistency report.

The consistency report contains such information as activities which do not have a parent

CMU/SEI-88-TR-3

23

(there should be exactly one of these); activities which either do not produce or do not
consume any products; and products which are either not produced or not consumed by
any activity. The project manager can examine this listing and determine whether the
information it contains represents errors in the structure definition.

The work breakdown structure tool is rather cumbersome to use. The user interacts only
with a small piece of the structure, a single activity, product, or resource, and never with
the structure as a whole. IST recommends that the work breakdown structure (WBS) be
sketched on paper before being entered into the tool [Imperial Software Technology 87].
Movement from item to item can only be accomplished navigationally. There is no way to
move directly from one item to another. For example, to move from a product to a
resource description, it is necessary to first move the cursor to an activity producing or
consuming the product, press the CONTEXT key to select an activity panel, find an activity
requiring the resource (VALIDSET helps here), move the cursor to the resource name, and
press the CONTEXT key again. This is an annoying procedure.

3.1.1.2. Resource Management Centers

Resource management centers contain physical details of available resources. The
work breakdown structure contains the abstract specification of the needed resources to
accomplish activities. The scheduler matches the two.

A resource manager is assigned responsibility for each resource management center.
The creation of resources to be placed initially into the resource management center is
accomplished with the definition tool. The acceptance of requests and arbitration be-
tween conflicting requests is performed with the control tool.

Definition (see Figure 3-7) involves assigning names to physical resources, categorizing
them as either RATE or TOTAL resources, and assigning them attributes in the same
manner as in the work breakdown structure entry. RATE resources are non-consumable
and available in units such as 8-hour days. People are RATE resources. TOTAL
resources are consumables that are available in units such as 10000 sheets of paper.
Attribute matches during scheduling result in resource allocation.

An internal allocation is an assignment of personnel to non-project activities. It is the way
in which training and vacations are accommodated.

Resource requests (see Figure 3-8) are sent to the resource management centers where
the resource manager uses the control tool to first read the requests, provisionally accept
them to examine the new request’s introduction of conflicts over resources, and accept
them as assigned to the schedule that requested them. Conflicts arise if more than one
schedule requests use of the same physical resource for the same time period and the
total effort exceeds 100%. Full acceptance is not performed in the presence of conflicts.

There is no mechanism to report to the project manager that a resource request has
been denied. The resources required by a project must either be granted or denied as a
whole. The resource manager does not have the freedom to grant some of the requested
resources to a project while denying others.

Creating a resource management center is an expensive operation. [t took 33 seconds
to create a resource management center, while it took only about 20 seconds to enter the
tool on a center when it already existed.

24 CMU/SE!-88-TR-3

[RDF v2.1/CMxF: Pesource View
>

1

i

resource name resource type anount units available fron until

iBan Miller | [RATE 18 Iman-hours 187/01/02 (7722732 i
resource artributes internal ailocation name

I'tIst.ar.IOJ

| Cada.10]

Figure 3-7: Resource Definition

rianie

kesource Allocat:cn Cont~ol V2.0 (cmexpimarc:MEXP]
\

Cconfirmed bookings

print details

|
|
|
.

detrails Of ’Cmexpimarc:CrMEXP 88/03/10_16:14” (S allocarion requests)

| | e

! | IRarc G-aham Analysis 87/01-02 87,01/08 100
| | |Marc G-sham ProgramCreate 87/02,20 87702724 100
| | |Marc G-aham WriteUo 87/34-03 87,0610 100
| | |Dan Miller Executior 87/02/23 87,04/07 100
| | IMarc G-aham Steplnstant.ate 871,30 87702719 100
| |

ey

Figure 3-8: Resource Control

3.1.1.3. Schedules

Scheduling matches work breakdown structure activities and available resources in the
resource management centers. Schedules first determine the begin and end dates of a
project as if there were no resource limitations. Physical resources and people from the
resource management centers are assigned to perform each activity in the work break-
down structure.

The dates permissible for the begin and end of the project are limited to those defined to
ISTAR in its global calendar. The calendar information is specified by the ISTAR system
administrator using an E structure-editor template. The work day’s duration is input along
with work and non-work time. Work time for each year, for example, would be the normal
5 work days in the U.S. but could be different in other countries. Weekends and holidays
for each year are allocated as non-work days. Non-work durations are correctly passed
over by the scheduler.

The following detailed steps produce a schedule (derived from [Imperial Software Tech-
nology 87]):

Activity Network Formation: The activity network is formed automatically when the work

CMU/SEI-88-TR-3 25

breakdown structure is read into the scheduler's work area from either the WBS work
area or the contractual database. The network records the dependencies among the leaf
activities of the work breakdown structure, which are derived from the product flows
among those activities. The leaf activities of the work breakdown structure are those
which do not have children. The non-leaf activities are discarded by the scheduler and do
not appear in the activity network or in any subsequent outputs of the project manage-
ment tools.

Time Analysis: The user supplies the earliest start and latest finish dates for the project
and, optionally, for each of the activities in the network. The time analysis tool then
schedules the project in conformance with those dates, if possible. This is resource-
unlimited scheduling in that it assumes all resources will be available when needed. The
output of this step is available in a variety of forms including a Gantt chart, critical path
analysis, and a summary which is illustrated in Figure 3-9.

e

Sched V3,WIMEX®: Schedule summary view
>

Scheduls surmary view

tine analysis srart mnm anaiysis end mmmeuled start | | scheduied end r_-_-_-}
ativity W e start e Flhnlsh “1—;nrr 1 flnlm slack free siack s!ippage
(Bralysss t 15 2nd Jan 87 [[Bth Jen 37 | 2nd Jan 87 .[Bth Jan B7 (|0 (o i
:Steplnstantiltz : |15 9zh Jan 87 29th Jan 87 | 9th lan 87 :29th Jan 87 |10) !
:Pro[remCre:te : 3 9zh Jan 87 13th Jan 87 27¢h Jan €7 :29th Jan 87 12 Il."‘ i
:Execuexon : 30 30th Jar 37 ||12th Mar 87 | 30th Jan €7 }12ch Mar 87 |10 o]

:Ur‘.teUn E 45 13¢h Mar 37 1dath May 87 o] o]

]
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
|
|

|

|
I
1 |
| |
| |
| |
| | |
| 13th Mar €7 |1dth May 87 |
| |
| |
| |
1 |
| I
| |
| |

]
Il
Il
I
I
I
I
I
Il
I
A
I
I
Il
]
Al

It
I
I
I
I
Il
I
I
t
I
I
t
I
N
N
N

|!F

Figure 3-9: Schedule Summary After Time Analysis

Resource Limited Scheduling: This is the final type of scheduling and involves matching
the work breakdown structure against the resources in the resource management center.
Resource limited scheduling results in a more constrained schedule than that of time
analysis. Adding resource constraints only serves to limit capability to accomplish tasks.
The scheduler is given the names of resource management centers that it is allowed to
draw upon. A request for physical resources to the resource management centers is
initiated and results in the creation of a resource pool, local to the scheduler, of those
actual resources whose attributes match those of activities' requirements. Scheduling
may then be done in either interactive or batch mode. Even if time analysis results in an
acceptable schedule, resource limited scheduling may not. The scheduler offers two
techniques for dealing with this situation: resource modification and interactive schedul-
ing.

The attributes of resources required by the project may be altered. That is, the user
performing the scheduling task may decide that a particular resource need not have a
particular attribute or skill or need have it to a lesser degree. The user can neither delete
resource requirements nor alter the effort estimates. He or she can edit the descriptions
of the available resources in the resource pool. Specifically, he can:

« Alter the availability of the resource (e.g., allow for overtime).
o Alter the attributes of the resource.

o Alter existing allocations of the resource.

26 CMU/SEI-88-TR-3

These modifications are all hypothetical. They are not automatically entered in the
resource management center. Such modification requires communication with the
resource manager outside of ISTAR.

If a work breakdown structure is scheduled by the scheduling tool in batch mode, the
attributes of resource requirements will be exactly matched and the constraints imposed
by resource tagging and naming will be observed. The scheduler's interactive mode
allows the person performing the scheduling task the freedom to modify this behavior.
The scheduler will display resources having the necessary skills, but not necessarily
matching the ratings. An interactive choice among these resources can then be made.

Once a schedule has been constructed, the resource management centers are sent re-
quests for the matched resources. The resource management center control tool is used
to mediate multiple requests, as describad in Section 3.1.1.2.

3.1.2. Task Management

The task definition tool transforms scheduled activities into executing contracts. The
schedule contains information derived from the work breakdown structure, resource man-
agement center, and scheduling processes. The tool will display this information so that it
can be used when an activity is issued as a task. The issuing of a task is exactly the
assignment of a contract. Contracts are accepted by the contractor, who eventually
responds to the contract with a delivery. During contract execution, assignments can be
updated or canceled by the client. During execution, the contractor sends timesheets to
the issuing contract, for consolidated reports in combination with other timesheets. Com-
pletion of contracts is often verified with quality assurance checklists. The quality man-
agement workbench can be used to accomplish the review and check off of itemized lists
of required quality factors.

3.1.2.1. Assignment
The natural method of executing a plan is via task assignments derived from the

schedule. The schedule is the central input to the task definition tool.® The following
fields shown in Figure 3-10 are added to the assignment in the task definition tool:

¢ Task ID, job code (interactively specified): Unique numbers which identify the assign-
ment. The job code is used for timesheet reporting.

o Activity (from work breakdown structure): An activity name from the schedule. This
field is most easily input via VALIDSET. VALIDSET provides a list of activity names from
the schedule, one of which can be selected.

e Start and end dates (from schedule): Retrieved from schedule upon selection of acti-
vity.

e Status fields: Cannot be altered by user,; filled in by system. Date raised and issued.
Whether it has been superseded, canceled, or signed-off (completed). Also indicates
whether the contract was assigned to oneself, or sub-contracted to someone else.

« Reporting: List of expected reporting by the contractor to the client. May include
timesheets. '

» Standards: List of expected standards to be adhered to in fulfilling the contract.

*The task definition tool may be used without the work breakdown structure and scheduler tools.

CMU/SEI-88-TR-3 27

* Objectives: List of objective to be achieved in fulfilling the contract.

o Verification: List of conditions that must be true before the contract can be considered

complete.

The standards, objectives, and verification items may take the form of references to qual-

ity assurance checklists. See Section 3.1.4, below.

e

TD V2.5:errars

| pemume SR . L g™ gl
task id (301 | start date |02°01/37 | jraiseo ud, U g7
B et S fm—em———’ |isSUEd 04/09/87)
e ——— e peemee—ee=y | superseded |
Jjobcode 5301 | end date |26°02737 | |cancelled |
e fee—e————ed | S1gned-off |
- v | subconzractec &S|
ctivity |Fl_tesn [o
reporting standards objectives verificarion

i r
|weekly timesheet|qa team
|

{
{

r r
|correstress |98 team

| (|

| | |

(|

| |

((

| |

L —

S e

|
|
|
|
.

yGol

Figure 3-10: Task Definition

Task assignment is performed after the information in the above described fields .has
been entered. The LOCAL function “issue task assignment” prompts for the fully qualified
name of an transfer item into which the information from Figure 3-10 will be placed. The
configuration item within which that transfer item appears will have already been con-
structed and contain whatever documents and information the contractor will need to
complete the assignment. These might be code, test cases, checklists, requirements,
specification or design documents, etc, or references to such things. The “issue task
assignment” local function also prompts for the name of the ISTAR user to whom the
contract will be assigned. The configuration item mentioned above is sent to that user as
the specification of a contract.

The task definition tool user is the client of the newly assigned contract. The client
names the contract, and the contractor is free to choose a different name when accepting
the contract. The task definition tool allows a client to assign a contract to himself. This
provides a mechanism for partitioning work. A sub-contracted or self-assigned contract's
status is maintained at the client. Possible statuses include issued but not begun, begun,
complete, and canceled.

3.1.2.2. Acceptance

After the contractor is notified of the appearance of a new contract, he may accept and
rename it. He may not read the contract before acceptance and has no ability to reject it.
ISTAR assumes that contracts do not appear spontaneously but rather are anticipated by
the contractor.

A copy of the configuration item sent By the client is placed in the newly created contract
as the contract specification. The contractor accesses the information from the work
breakdown structure, the scheduler, and the task definition tool through the task definition
tool.

28 CMU/SE!-88-TR-3

3.1.2.3. Update, Cancel

The contractual relationships between clients and contractors are formed once an initial
assignment has been accepted. ISTAR permits updates to the formal task definition or
total cancellation of the contract. The contractor can not terminate the contract from his
end.

Updates to a task are specified by using the same jobcode and activity name, but a
different task id. Existence of an incoming update to the contractor is flagged in the
framework, against the original contract's name. The contract registers acceptance in the
framework.

Cancellation is also performed from the task definition tool and is registered by the con-
tractor in the framework.

3.1.2.4. Deliver

Assuming the contractor has performed the technical aspects of the contract, completion
is signaled by the delivery of a configuration item to the client. Acceptance of the delivery
in fulfiliment by the client is acknowledged with a signoff in the task definition tool. This
concludes a formal contract.

3.1.3. Tracking

Once projects begin execution, clients wish to track how resources are being used and
how progress is being made toward completion. Timesheets sent by contractors to the
clients gather raw data. Monitoring tools at the client consolidate multiple timesheets into
reports. Summary information can also be sent to superior clients.

3.1.3.1. Timesheets

Timesheets are filled out by contractors using the timesheet reporting tool. Timesheets
are submitted weekly in the ISTAR model, and specification of the expected timesheet
submission data is stored in the ISTAR's startup script for each installation.

Timesheets are entered on a E editor form. There are columns for<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>