

A PHOTOGRAPHIC DEVICE FOR THE COLLECTION OF ANTHROPOMETRIC DATA ON THE HAND

BY

GREGORY ZEHNER VANCE DEASON CAY ERVIN CLAIRE GORDON*

ANTHROPOLOGY RESEARCH PROJECT, INC. 503 XENIA AVENUE YELLOW SPRINGS, OHIO 45387

AUGUST 1987

FINAL REPORT SEPTEMBER 1986 TO APRIL 1987

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

UNITED STATES ARMY NATICK RESEARCH, DEVELOPMENT AND ENGINEERING CENTER NATICK, MASSACHUSETTS 01760-5000

***SCIENCE AND ADVANCED TECHNOLOGY DIRECTORATE**

88 11 OF 039

DISCLAIMERS

The findings contained in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

Citation of trade names in this report does not constitute an official endorsement or approval of the use of such items.

DESTRUCTION NOTICE

For Classified Documents:

Follow the procedures in DoD 5200.22-M, Industrial Security Manual, Section II-19 or DoD 5200.1-R, Information Security Program Regulation, Chapter IX.

For Unclassified/Limited Distribution Bocuments:

Destroy by any method that prevents disclosure of contents or reconstruction of the document.

						Form Approved
			ON PAGE			OMB No. 0704-0188
a. REPORT SECURITY CLASS	IFICATION		16. RESTRICTIVE	MARKINGS		
a. SECURITY CLASSIFICATIO	N AUTHORITY	<u></u>	3 DISTRIBUTION	AVAILABILITY	OF REPOR	RT
b. DECLASSIFICATION / DOW	VNGRADING SCHEDU	JLE	Approved unlimited	for public d.	: relea	se; distribution
		E 9/61	5 MONITORING	ORGANIZATION	PEROPT	
					ALF ORT T	
NAME OF DEPEODATING		TAN OFFICE SYMADOL	NATICK/TR	-87/044		AN
Anthropology Rese	arch	(If applicable)	US Army Na	atick Resea	rch, D	evelopment and
Project, Inc.	d ZIR (ada)		Engineerin	ng Center	(Code)	
503 Xenia Avenue	g zir code)		Natick, Ma	assachusett	s 0176	0-5000
Yellow Springs, O	hio 45387					
. NAME OF FUNDING / SPO	INSORING	8b. OFFICE SYMBOL	9. PROCUREMEN	T INSTRUMENT	DENTIFICA	ATION NUMBER
ORGANIZATION		(If applicable)	Contract	DAAK60-86. C	-0128	
. ADDRESS (City, State, and	ZIP Code)		10. SOURCE OF			
			PROGRAM	PROJECT	TASK	WORK UNIT
			728012-12	OMA		
PERSONAL AUTHOR(S) Gregory Zehner, V a. TYPE OF REPORT Final	ance Deason, 13b. TIME C FROM Sep	Cay Ervin and C OVERED DL 86 TO Apr 87	laire Gordon [*] 14. DATE OF REPC 87/08/31	* DRT (Year, Monti	h, Day) 1	15. PAGE COUNT 94
2. PERSONAL AUTHOR(S) Gregory Zehner, V 3a. TYPE OF REPORT Final 5. SUPPLEMENTARY NOTAT *Affiliated with	ance Deason, 13b TIME C FROM Sep HON Science and A	Cay Ervin and C OVERED Dt 86 TOApr 87 Advanced Technol	laire Gordon [*] 14. DATE OF REPO 87/08/31 ogy Director	* DRT (Year, Mont i ate/U.S. Ar	h, Day)	15. PAGE COUNT 94 .ick RD&E Center
2. PERSONAL AUTHOR(S) Gregory Zehner, V Ba. TYPE OF REPORT Final 5. SUPPLEMENTARY NOTAT *Affiliated with 2. COSATE	ance Deason, 13b TIME C FROM Sep NON Science and A CODES	Cay Ervin and C OVERED ot 86 TOApr 87 Advanced Technol 18. SUBJECT TERMS (laire Gordon [*] 14. DATE OF REPO 87/08/31 ogy Director Continue on revers	* DRT (Year, Monti ate/U.S. Ar se if necessary an	h, Day) my Nat	15. PAGE COUNT 94 .ick RD&E Center y by block number)
PERSONAL AUTHOR(S) Gregory Zehner, V a. TYPE OF REPORT Final SUPPLEMENTARY NOTAT *Affiliated with COSATI FIELD GROUP	ance Deason, 13b. TIME C FROM Sep 10N Science and A CODES SUB-GROUP	Cay Ervin and C OVERED ot 86 TOApr 87 Advanced Technol 18 SUBJECT TERMS (ANTHROPOMET	laire Gordon 14. DATE OF REPC 87/08/31 ogy Director Continue on revers RY, COLLIM	* DRT (Year, Monti ate/U.S. Ar se if necessary an ATORS ,	n, Day) my Nat nd identif	15. PAGE COUNT 94 ick RD&E Center y by block number) PHOTOBOX,
PERSONAL AUTHOR(S) Gregory Zehner, V a. TYPE OF REPORT Final SUPPLEMENTARY NOTAT *Affiliated with COSATI FIELD GROUP ABST ACT (Continue on	ance Deason, 13b. TIME C FROM Sep 10N Science and A CODES SUB-GROUP	Cay Ervin and C OVERED ot 86 TOApr 87 Advanced Technol 18. SUBJECT TERMS (PANTHROPOME T BEAMS from the former CAMERAS J and identify by block former BEAMS former CAMERAS J	laire Gordon 14. DATE OF REPC 87/08/31 ogy Director Continue on revers RY COLLIM. DIFFUS MEASUR number)	* DRT (Year, Month ate/U.S. Ar se if necessary and ATORS > ION SCREEN EMENTS >	n , Day) my Nat nd identify P S	15. PAGE COUNT 94 .ick RD&E Center y by block number) PHOTOBOX, PHOTOMETRY: (Trs)
2. PERSONAL AUTHOR(S) Gregory Zehner, V 3a. TYPE OF REPORT Final 5. SUPPLEMENTARY NOTAT *Affiliated with 7. COSATION FIELD GROUP 9. ABST ACT (Continue on A photograph this report. The human right hand, survey. The adva methods of collec measurements can Using the ph a more traditiona were measured by crotch heights we marked. This pap to photobox silho	ance Deason, 13b TIME C FROM Sep TON Science and A CODES SUB-GROUP ic device use hand photome and evaluate ntages of suc ting hand dat be taken as m otobox, 16 ha 1 method of c sliding calip re measured A er method was uettes. Univ	Cay Ervin and C OVERED advanced Technol 18 SUBJECT TERMS (ANTHROPOMET BEAMS frote of CAMERAS, and identify by block me ad to collect an et ic system, or ed to collect an et ic system, or ed for possible th a system are ca and would pro- needed. and measurements collecting data. vers, while hand rom paper graph a developed as a variate statisti	laire Gordon 14. DATE OF REPC 87/08/31 ogy Director Continue on revers RY COLLIM DIFFUS MEASUR thropometric photobox, us use in a lar that it woul vide a perma from 30 sub In this coul length, han s on which 1 means of means cs indicated	* ORT (Year, Month ate/U.S. Ar ate if necessary and ATORS > ION SCREEN EMENTS > data of th as designed ge-scale Ar d be much for nent record jects were mparative m d breadth, andmark loc asuring har that the r	h, Day) my Nat nd identify P S ne hand for m for m aster from taken nethod, digit ations nd reco	15. PAGE COUNT 94 ick RD&E Center y by block number) PHOTOBOX, PHOTOMETRY: TRVEY is described in neasuring the hropometric than current which and compared to finger breadths length, and had been ords comparable of the methods
2. PERSONAL AUTHOR(S) Gregory Zehner, V 3a. TYPE OF REPORT Final 5. SUPPLEMENTARY NOTAT *Affiliated with 7. COSATION FIELD GROUP 9. ABSTIACT (Continue on A photograph this report. The human right hand, survey. The adva methods of collec measurements can Using the ph a more traditiona were measured by crotch heights we marked. This pap to photobox silho 0. DISTRIBUTION/AVAILABI	ance Deason, 13b TIME C FROM Sep TON Science and A CODES SUB-GROUP reverse if necessary ic device use hand photome and evaluate ntages of suc ting hand dat be taken as m otobox, 16 ha 1 method of co sliding calip re measured f er method was uettes. Univ	Cay Ervin and C OVERED advanced Technol 18. SUBJECT TERMS (ANTHROPOMET BEAMS forter for CAMERAS, and identify by block me ed to collect an eric system, or ed for possible th a system are ta and would pro- needed. and measurements collecting data. Ders, while hand rom paper graph a developed as a variate statisti	laire Gordon 14. DATE OF REPC 87/08/31 ogy Director Continue on revers RY COLLIM DIFFUS MEASUR thropometric photobox, way use in a lar that it would vide a perman from 30 sub In this could length, han s on which 1. means of means cs indicated 21. ABSTRACT SE	* ORT (Year, Month ate/U.S. Ar ie if necessary and ATORS > ION SCREEN EMENTS > data of th as designed ge-scale Ar d be much for nent record jects were mparative m d breadth, andmark loc asuring har that the r CURITY CLASSIF	h, Day) my Nat nd identify P S ne hand i for m my ant aster i from taken nethod, digit ations nd reco	15. PAGE COUNT 94 Sick RD&E Center (y by block number) PHOTOBOX, PHOTOMETRY: () TRVFY I is described in neasuring the hropometric than current which and compared to finger breadths length, and had been ords comparable of the methods
2. PERSONAL AUTHOR(S) Gregory Zehner, V 3a. TYPE OF REPORT Final 6. SUPPLEMENTARY NOTAT *Affiliated with 7. COSATION FIELD GROUP 9. ABSTLACT (Continue on A photograph this report. The human right hand, survey. The adva methods of collec measurements can Using the ph a more traditiona were measured by crotch heights we marked. This pap to photobox silho 9. DISTRIBUTION/AVAILABI GUNCLASSIFIED/UNLIMITI Ta NAME OF RESPONSIBLE	ance Deason, 13b TIME C FROM Sep TON Science and A CODES SUB-GROUP reverse if necessary ic device use hand photome and evaluate ntages of suc ting hand dat be taken as m otobox, 16 ha 1 method of c sliding calip re measured f er method was uettes. Univ LITY OF ABSTRACT ED SAME AS M	Cay Ervin and C OVERED ot 86 TOApr 87 Advanced Technol 18 SUBJECT TERMS (ANTHROPOMET BEAMS footer for CAMERAS, and identify by block me ed to collect an et a system are ta and would pro- be ded. and measurements collecting data. Ders, while hand rom paper graph to developed as a variate statisti RPT. DTIC USERS	laire Gordon 14. DATE OF REPC 87/08/31 ogy Director (Continue on reversed RY COLLIM DIFFUS MEASUR thropometric photobox, way use in a lar that it would vide a perman from 30 sub In this could length, han s on which 1 means of means cs indicated 21. ABSTRACT SE 22b TELEPHONE	* ORT (Year, Month ate/U.S. Ar ie if necessary and ATORS > ION SCREEN EMENTS > data of thas as designed ge-scale Ar d be much for nent record jects were mparative m d breadth, andmark loc asuring har that the r CURITY CLASSIFIC	h, Day) my Nat nd identify P S ne hand i for m my ant aster i from taken nethod, digit ations d reco results CATION	15. PAGE COUNT 94 Sick RD&E Center (y by block number) PHOTOBOX, PHOTOBOX, PHOTOMETRY: () TRVFY I is described in neasuring the hropometric than current which and compared to finger breadths length, and had been ords comparable of the methods OFFICE SYMBOL
2. PERSONAL AUTHOR(S) Gregory Zehner, V 3a. TYPE OF REPORT Final 5. SUPPLEMENTARY NOTAT *Affiliated with 7. COSATION FIELD GROUP 0. ABSTIACT (Continue on A photograph this report. The human right hand, survey. The adva methods of collec measurements can Using the ph a more traditiona were measured by crotch heights we marked. This pap to photobox silho D. DISTRIBUTION/AVAILABI GUNCLASSIFIED/UNLIMIT a. NAME OF RESPONSIBLE Dr. Claire C. Gor	ance Deason, 13b TIME C FROM Sep FON Science and A CODES SUB-GROUP reverse if necessary ic device use hand photome and evaluate ntages of suc ting hand dat be taken as m otobox, 16 ha 1 method of c sliding calip re measured A er method was uettes. Univ LITY OF ABSTRACT ED SAME AS M	Cay Ervin and C OVERED ot 86 TOApr 87 Advanced Technol 18 SUBJECT TERMS (ANTHROPOMET BEAMS frote of CAMERAS, and identify by block me and	<pre>laire Gordon' 14. DATE OF REPC 87/08/31 ogy Director. Continue on revers RY COLLIM. DIFFUS MEASUR UMDER) thropometric photobox, us use in a lar that it woul vide a permai from 30 sub In this con length, han s on which 1 means of me cs indicated 21. ABSTRACT SE 22b TELEPHONE (508) 651-</pre>	* ORT (Year, Month ate/U.S. Ar ate/U.S. Ar ate if necessary and ATORS / ION SCREEN EMENTS / data of th as designed ge-scale Ar d be much for nent record jects were mparative m d breadth, andmark loc asuring har that the r CURITY CLASSIFF (include Area Con 5429	h, Day) my Nat nd identify P S he hand for my aster from taken hethod, digit ations digit cations digit sations digit sations digit	15. PAGE COUNT 94 ick RD&E Center y by block number) PHOTOBOX, PHOTOMETRY: CTATOMETRY: CTATOMETRY: CTATOMETRY: CTATOMETRY: CTATOMETRY: CTATOMETRY: CATION OF THE ACT

19. Continued

were very similar; differences between means of silhouette measurements and paper caliper measurements ranged from 0.04 to 0.16 cm. Many of the larger differences were in finger breadths -- the caliper method consistently produced smaller results due to skin compression.

The repeatability of the methods was found to be very high. Though the photobox method produced consistently greater intertrial differences -- due to inexact hand alignment procedures and silhouette measuring techniques -- the differences were very small (0.2 mm to 0.3 mm). Several recommendations for improving repeatability are suggested.

The authors conclude that the photobox is an excellent alternative to other methods.

Unclassified

PREFACE

This report was prepared to fulfill requirements of contract DAAK60-86-C-0128 with the Material Systems Human Factors Branch, Science and Advanced Technology Directorate at the U.S. Army Natick Research, Development and Engineering Center (Natick). The Project Officer was Dr. Claire C. Gordon.

The authors wish to acknowledge the following people for their contribution: Mr. Michael B. Ward for the mechanical design of the photobox; Ms. Julie Heifner of Anthropology Research Project, Inc. (ARP) for assistance with data collection; Ms. Kathleen Robinette of Harry G. Armstrong Aerospace Medical Research Laboratory, U.S. Air Force, Wright-Patterson Air Force Base, Dayton, Ohio, for assistance with statistical analysis; Mr. Gary Ball for document illustrations; Ms. Jo Lynn Ross (of ARP) for preparation of trivariate plots; and Ms. Ilse Tebbetts and Mrs. Belva M. Hodge (both of ARP) for editing and preparing the document; Dr. Carolyn K. Bensel, Research Psychologist (Natick), for reviewing and commenting on the manuscript; and Ms. Brenda J. Baker, Research Anthropologist (Natick), for editing and processing the technical report. Finally, we are indebted to Mrs. Edna S. Albert, Technical Publication Editor (Natick), for her thorough editing and many helpful suggestions.

Accession For	1
NTIS GRA&I DTIC TAE Unannounced Justification	DTIC COPY
By Distribution/	
Availability Codes	
Avail and/or Dist Special A-1	

TABLE OF CONTENTS

INTRODUCTION	1
DEVELOPMENT OF THE SYSTEM	3
The Light Source The Condenser	3
The Collimator	7
The Translucent Diffusing Screen	8
The Camera and Lens	10
Paim Fictures Wand Alignment	10
Stray Light	10
Camera Release	10
VALIDATION	12
Method	12
Results	14
Multivariate Analysis	17
Hand and Digit Breadths	17
Hand and Digit Lengths	18
Crotch Heights	18
CONCLUSIONS AND RECOMMENDATIONS	20
APPENDIXES	
A. Instruction Manual for the Operation and Maintenance of the Hand Photometric System	21
B. Stem Leaf Graphs of Data Obtained from Two Hand- Measuring Methods	39
C. Stem Leaf Graphs Showing Results of Intertrial Differences Obtained in Two Hand-Measuring Methods	57
D. Multiple Analysis of Variance (MANOVA) Results	75

Page

LIST OF FIGURES

Figure		Page
1	Shadows formed by close light sources	3
2	Effect of subject height on magnification	4
3	Effect of long source/object distance on magnification	5
4	Collimation	5
5	Effect of large light source on collimation	6
6	The condenser	7
7	Principle of the Fresnel lens	8
8	Fresnel lens collimation	8
9	The photobox assembly	9
10	Hand Photometric System	11
11	Calibration rod (elevated on a round object)	12
12	Alignment grid (actual size 8 1/2" x 11")	13
13	Sample silhouette	13
14	Comparison of silhouette trials	16
A-1	Hand Photometric System: rear left view	22
A-2	Hand Photometric System: right front view	23
A-3	Arm rest shelf catch	23
A-4	Arm rest shelf and extension bar	24
A-5	Subject seated at photobox	25
A-6	Hand alignment grid	26
A- 7	Stylion indicator rod alignment	26
A-8	Nikon N2000 35-mm camera	28
A-9	Lens setting	29
A-10	Film advance mode	29

LIST OF FIGURES (Continued)

.

Figure		Page
A-11	Adjusting film advance mode	29
A-12	Audible warning switch	30
A-13	Shooting mode selector	30
A-14	Film speed rang	30
A-15	Exposure compensation setting	30
A-16	Opening the camera	31
A-17	Internal camera parts	31
A-18	Positioning the film cartridge	32
A-19	Pulling out film leader	32
A-20	Loading the film	32
A-21	Remote shutter release	33
A-22	Frame counter window	33
A-23	Film rewind button and lever	33
A-24	Film rewind crank	34
A-25	Film advance indicator	34
A-26	Removing film	34
A-27	Removing battery holder	35
A-28	Removing battery bracket	35
A-29	Installing batteries	35
A-30	Replacing battery bracket	36
A-31	Reattaching battery holder	36
A-32	Viewfinder eyepiece cover	36
A-33	Do not touch the reflex mirror	36
A-34	Do not touch the DX-contacts	37

A-35	Do not touch the shutter curtains	37
D-1	Trivariate plots of hand and digit breadths (end points represent means of both trials)	78
D-2	Trivariate plots of intertrial differences of crotch heights	85

LIST OF TABLES

Table

I	Comparison of Measurements of the Hand	15
2	Intertrial Differences of Silhouette Measurements	15
	Tables B-1 through B-16: Stem Leaf Graphs of Data Obtained from Two Hand-Measuring Methods.	
B-1	Hand Breadth	40
B-2	Digit 1 Breadth	41
B-3	Digit 2 Breadth	42
B-4	Digit 3 Breadth	43
B-5	Digit 4 Breadth	44
B-6	Digit 5 Breadth	45
B-7	Hand Length	46
B-8	Digit 1 Length	47
B-9	Digit 2 Length	48
B-1 0	Digit 3 Length	49
B-11	Digit 4 Length	50
B-12	Digit 5 Length	51
B-13	Crotch 1 Height	52
B-14	Crotch 2 Height	53

LIST OF TABLES (Continued)

<u>Table</u>		
B-15	Crotch 3 Height	54
B-16	Crotch 4 Height	55
	Tables C-1 through C-16: Stem Leaf Graphs Showing Results of Intertrial Differences Obtained in Two Hand-Measuring Methods.	
C-1	Hand Breadth	58
C-2	Digit 1 Breadth	59
C-3	Digit 2 Breadth	60
C-4	Digit 3 Breadth	61
C-5	Digit 4 Breadth	62
C-6	Digit 5 Breadth	63
C-7	Hand Length	64
C-8	Digit 1 Length	65
C-9	Digit 2 Length	66
C-10	Digit 3 Length	67
C-11	Digit 4 Length	68
C-12	Digit 5 Length	69
C-13	Crotch 1 Height	70
C-14	Crotch 2 Height	71
C-15	Crotch 3 Height	72
C-16	Crotch 4 Height	73
D-1	Hand and Digit Breadths	76
D-2	Hand and Digit Breadths by Investigators	77
D-3	Intertrial Differences of Hand and Digit Breadths	79
D-4	Hand and Digit Lengths	80

LIST OF TABLES (Continued)

Table		
D-5	Intertrial Differences of Hand and Digit Lengths	81
D-6	Crotch Heights	82
D-7	Intertrial Differences of Crotch Heights	83
D-8	Intertrial Differences of Crotch Heights by Investigators	84

A PHOTOGRAPHIC DEVICE FOR THE COLLECTION OF ANTHROPOMETRIC DATA ON THE HAND

INTRODUCTION

Dimensions of the hand have comprised only a very small proportion of the measurements obtained in previous large-scale anthropometric surveys of military personnel, although such dimensions are critical in the design of many kinds of vital military gear, from protective clothing to electronic control panels. For design purposes, the hand is essentially a collection of moving parts which must be considered individually and in combination. Since different data are often required for different design problems, a complete catalogue of hand data for known uses might include some 30 to 35 dimensions. Measuring this number of dimensions is a lengthy and costly undertaking in the context of an all-purpose body-size survey. For this reason, detailed hand data have usually been obtained in smaller special-purpose surveys of considerably fewer subjects.

The object of developing a photographic device which could reliably "record" hand dimensions for later measurement was to make it possible to collect a maximum amount of hand data on a large number of subjects in a minimum amount of time. A further benefit of hand photos is that they constitute a permanent record -- a resource to which designers or investigators can return for new measurements when they are needed for new applications.

This report describes the development and testing of a photographic system for gathering anthropometric data on the hand. This system is designed to capture the image of the right hand as a permanent record from which quick and accurate measurements of various lengths and breadths can be made as needed. A central feature of its design is the elimination of parallax, the problem of distortion or apparent change in size and shape of an object that has plagued photographic systems of the past. The hand photometric system is intended to record a shadowgram of the human right hand by the use of an optical arrangement designed to ensure that the shadow of the hand has the same dimensions as the parts of the hand casting the shadow.

Prior to initiating work on this task a review of the literature was undertaken to determine if any systems already in existence could be used (or adapted) to meet the stated goals. A few monophotometric devices have been developed and used in past anthropometric analyses. These systems have in common one of two approaches to the parallax problem: the use of equations to correct the measurements when enough information about the object's actual size and shape is available, or increasing the distance between the object and the camera to approximately 40 feet to minimize the effect of the viewing angle. Neither of these solutions was acceptable for our application. Thus, the development of a unique device was undertaken.

The first section of this report describes the optical problems encountered with photographic measuring devices of this type, and methods devised for their solution. The hand photometric system, or photobox, is fully described and illustrated. The second section describes an independent validation study of the accuracy and repeatability of hand measurements obtained through use of the system. Finally, a user's guide is attached as Appendix A. This section provides all the information necessary for a user to operate and perform routine maintenance on the system.

DEVELOPMENT OF THE SYSTEM

To measure the maximum cross-sectional dimensions of the hand, one could use mechanical measuring devices such as calipers, or various optical scanning devices. The former are slow, tedious, and require considerable operator training to ensure uniform results. The latter methods require expensive equipment and skilled operators. An alternate approach was sought that would be less costly and require less operator training. Other objectives were that the resulting data be accurate to +/-1 mm, inexpensive to record, and easy to evaluate, and that the apparatus be capable of photographing large numbers of subjects rapidly and with minimal maintenance.

The method chosen as best suited to meet the requirements of the task was based on shadowgraphy. An object such as a hand is illuminated by a beam of light. A shadow of the object is cast on a screen and the dimensions of the shadow can be measured, either on the original shadow or on some permanent record of the shadow. A photographic film lying in the shadow plane can record the shadow, or a camera can record an image of the shadow for later evaluation. In the latter case, a magnification factor would have to be applied to measurements of the image size, since the image is likely to be smaller than the object shadow to save film.

THE LIGHT SOURCE

Shown in Figure 1 is a point light source radiating light uniformly in all directions, and specifically illuminating an object and a screen beyond the object. The light source is assumed to be relatively close to the object. The rays of the light illuminate the screen except where the object blocks the rays, thus creating a shadow of the object on the screen. In this example, the shadow is considerably larger than the object due to the proximity of the light source and the diverging nature of the light rays.

Figure 1. Shadows formed by close light sources.

The size of this discrepancy could be partially corrected by introducing a magnification factor which, when multiplied by the shadow dimensions, would restore the true object dimensions. However, there are two problems with this simple approach. First, it can be seen in Figure 1 that the expanding light rays are not necessarily blocked by the parts of the object having the greatest lateral extent. This error is not corrected by use of a magnification factor. A second problem is that the parts of the object farther from the screen have different magnification factors than parts near the screen; this means that different magnification correction factors may be required for different parts of each object. These relationships are shown in Figure 2: the passenger and engine compartments of this car have the same width, but their shadows are of different widths. The two shadows have two different magnification factors:

> ^Mh=W/Sh M_H=W/S_H

For an arbitrary object such as this, these magnification factors cannot be calculated since the heights h, H are unknown.

Figure 2. Effect of subject height on magnification.

To correct the variation between shadow width and object height, the light illuminating the object and screen must be collimated. That is, the rays of light must be made parallel to one another rather than converging or diverging. This can be brought about in one of two ways. The light source can be moved to a great distance from the object so that only a very slightly diverging bundle of light rays actually strikes the object. This is shown in Figure 3. Starlight is a good example of light collimated by virtue of the distance of the source. This approach is very wasteful of light since only a small part of the light produced by the source is actually used. The immense physical size which would be required of such a device presents an additional problem.

Figure 3. Effect of long source/object distance on magnification.

A second approach, more conservative of light, is to optically collimate the beam. This was the method chosen for use in the hand photometric device. Figure 4 shows the basic concept. The focal length of a lens is defined as the distance behind the lens to the point where the lens focuses a collimated beam of light (or very distant object) into a minimum spot. The process works in reverse, as well, so that a point source of light at the focal point of the lens will generate a collimated beam on the other side of the lens. For optimum collimation, the light source should be on the optical axis (usually the axis of rotational symmetry of the lens). Another important factor is source size. All real sources of light have some finite size. Only the point

Figure 4. Collimation.

emitter at the focal point of the lens will generate a true collimated beam. Figure 5 shows this effect. Thus, for a given optical setup, the larger the source, the larger the errors in measurements of object size. For these purposes, where the maximum thickness of the hand above the screen could be about 50 mm, it can be demonstrated that the source size should not exceed about 2 mm if errors in hand size are to be less than 1 mm. Other sources of light, such as stray reflections or room lights must be reduced. For this reason, the system design incorporates various features intended to reduce interfering light sources.

Figure 5. Effect of large light source on collimation.

Requirements for the light source are that it must be:

- inexpensive
- durable
- of adequate intensity to expose film
- easily replaced
- safe for operator and subject
- and that it must generate minimum heat.

The source chosen was an incandescent bulb operating on 5 volts DC and dissipating about four watts of electrical power. The manufacturer's rated lifetime is 30,000 hours.

THE CONDENSER

A light bulb consists of a glass envelope surrounding a hot filament. The size of the filament is often too large to meet the source size criteria for collimation, but the protective glass envelope prevents masking off the excess portions of the filament. One way around this dilemma is to re-image the light from the filament and then mask the image to the proper size. This is the approach used in the hand photometric system.

To reduce stray light and to control the size of the light source illuminating the collimator, an intermediate condenser and pinhole arrangement was designed. This consists of two f/0.7 aspheric (parabolic) lenses, 50 mm in diameter. The light source is one focal length to the left of the first lens, and the pinhole is one focal length to the right of the second lens. The distance between the lenses is not very important. Figure 6 illustrates these relationships. The condenser re-images the light source in space where the source size can be accessed and limited by installing a suitable pinhole at the focal plane of the second lens. The pinhole also serves to block most of the stray light coming from reflections or alternate sources. The fast aspheric lenses provide efficient light collection, and the dual lens design provides about four times as much light as comparable single-lens designs.

Figure 6. The condenser.

THE COLLIMATOR

The collimator consists of a single lens whose diameter is sufficient to create a collimated light beam large enough to cover the transverse dimensions of all objects that are to be measured. For present purposes, this diameter would be at least 250 mm. Such a lens would be very heavy and expensive if made of glass. To avoid this, a type of lens known as a Fresnel lens was specified. Fresnel lenses are normally molded in a plastic from high quality molds. This greatly reduces both cost and weight while preserving adequate performance in many applications. In principle, a Fresnel lens can be thought of as a "collapsed" lens where most of the internal lens material has been eliminated. This is possible since the major optical activity, light bending, occurs at the surfaces of the lens. A plano-convex Fresnel lens is illustrated in Figure 7, along with a superimposed outline of the lens it duplicates. Such aspheric lenses serve to reduce certain distortions common in ordinary lenses having spherical surfaces.

Figure 7. Principle of the Fresnel lens.

The collimating lens used in the photobox is a large-diameter molded plastic aspheric Fresnel lens. To generate a collimated beam, the Fresnel lens is located at a distance equal to its focal length from the condenser pinhole. For this application, all lenses must be centered on a common optical axis and oriented perpendicular to the axis to ensure a well-collimated beam. The arrangement is shown in Figure 8.

Figure 8. Fresnel lens collimation.

THE TRANSLUCENT DIFFUSING SCREEN

To adequately image the shadow/light outline of an object illuminated by a collimated beam, one cannot simply place a camera in the beam. The portion of the collimated beam not blocked by the object will be focused to a bright spot on the optical axis at the focal plane of the camera lens. This is the inverse of the process used to create the collimated beam in the first place. An image of the hand may or may not be formed depending on other factors, such as stray light. Even if such an image forms, it will be subject to the errors discussed in the section on the light source, namely changes in magnification with distance. Therefore, a screen must be inserted to perform two functions: First, the screen forms a flat surface upon which the shadow of the object is cast by the collimated beam. The lack of height variation eliminates problems of variation in image magnification at the film plane. Second, the screen converts the collimated light into diffuse light, which is ideal for imaging purposes. Obviously, the screen must efficiently transmit the light with minimal absorption. Such a screen is called a translucent diffusing screen. Several such screens are available. These are, in order of increasing power to diffuse -- that is, to scatter light into increasingly large angles--ground glass, opal glass, and Marata screens. The ground glass gives the brightest image in the forward direction, though brightness falls off rapidly with off-axis viewing angles. The opal glass and Marata screen give uniformly illuminated but dimmer images. For the hand measuring system, the ground glass gave adequate results, with considerable savings of light. A ground glass diffuser screen is incorporated in the device.

THE CAMERA AND LENS

The camera is used to image the shadow of the hand cast onto the diffuser screen. This image is recorded on 35-mm film. Requirements for the camera were that it be reasonably automatic, but not autofocus, since the focus is constant. The camera used is the Nikon N2000 body with a 105-mm f/2.5 Nikkor lens. The lens was chosen to give full coverage of the diffuser screen at the required distance of about 1400 mm. This lens is also of good quality and provides flat focus to minimize added distortions in the shadowgrams. To reduce the vertical height of the device and make access to the camera more convenient, a folding mirror was installed just below the diffuser screen to reflect the view of the screen back up to the camera. The camera position is approximately in the plane of the diffuser screen and about 600 mm to the side. Figure 9 shows these relationships. The mirror is a large front-surface mirror designed to eliminate ghost images formed by glass front surfaces.

Figure 9. The photobox assembly.

9

Palm Pictures

A further requirement of the hand photometric system was that it provide not only silhouettes, but photographs of each hand showing such palm features as finger crotches, joint crease lines, and fingertip limits. This was accomplished by incorporating a slide mechanism to move the diffuser plate out of the field of view and by illuminating the palm with an electronic flash unit synchronized with the camera shutter. A magnetic proximity switch senses when the diffuser plate is pulled out of the way and turns on a relay that connects the flash controller to the camera. A second relay turns off the flash unit when the AC power is off, so internal battery power is not drained. The angle of illumination was chosen to highlight palm details, particularly creases, which can be used as measurement landmarks.

Hand Alignment

In order to ensure that different hand shadowgrams represent similar hand positions and finger spreads, a hand-positioning pattern is placed in a sliding tray above the hand and is illuminated by the collimated beam, thus projecting the pattern onto the subject's hand. Once the hand is positioned, the pattern is retracted by a slide mechanism so as not to obscure hand features. The pattern and diffuser plate slides are manually positioned in a predetermined sequence by the operator, and are sealed to prevent excessive light and dust from entering the interior of the photobox.

Stray Light

The interior of the photobox is painted flat black to reduce stray scattered light. A black velvet sleeve surrounds the camera lens and prevents stray light and dust from entering. In strong room light, a movable screen, such as a flap of black velvet fabric, must be provided to prevent room light from entering the interior of the system through the hand window, while at the same time allowing for visual inspection during hand alignment procedures.

Camera Release

The Nikon N2000 camera automatically advances newly loaded film to the first exposure, and again each time the shutter is pressed. Film must be manually rewound. Thus, once the hand is aligned and the slide levers are positioned, it is only necessary to press the shutter release and the camera will expose and advance the film for the next exposure. The camera has a multiple exposure mode that should not be used, as it produces several identical pictures. A remote shutter release cable is provided. A picture of the photobox is shown in Figure 10. Instructions for operating and cleaning the device are given in Appendix A.

Figure 10. Hand Photometric System.

VALIDATION

METHOD

The ability of the hand photometric system to provide accurate information was analyzed in a series of trials. Because of the variability inherent in positioning and measuring the soft tissues of the hand, metal objects such as coins and calibration rods were used as test objects in the first group of tests. A number of pictures were taken of several kinds of such objects to determine the accuracy and repeatability of the measurements, and to compare results obtained by different measurers. Because the time involved in developing prints of all the negatives would have been prohibitive, the negatives were projected through a photographic enlarger or an overhead projector onto a white background, and measurements were taken from the images with Vernier calipers.

Two things were of particular concern in this initial stage of the testing. The first was the effect of the height of an object, since the closer the object comes to the lens, the more exaggerated are the detrimental effects of poorly collimated light on measurement accuracy. The second point of interest was the effect of the location of the object on the viewing screen, that is, its placement at the center or near the perimeters of the photographic field.

These questions were addressed by repeated measurements of a metal calibration rod shaped in a series of stairsteps ranging in width from 5 mm to 35 mm (Figure 11). The rod was first placed on various objects ranging in height from 2.3 cm to 10.9 cm and photographed in these positions. The rod was then placed directly on the viewing screen and photographed in many different locations to test for any distortion caused by the structure of the Fresnel lens.

Figure 11. Calibration rod (elevated on a round object).

Results indicated that the photobox is reliable as well as accurate, with errors and retest differences ranging from 0.1 mm to 0.6 mm. These small differences might have been reduced even further had it been discovered earlier in the measurement procedure that the negatives did not lie completely flat in the enlarger tray, thus raising the possibility of distortion in the images projected by the enlarger. This potential source of trouble was later eliminated by placing a flat piece of glass on top of the negatives and using an overhead projector.

With confirmation that the system was accurately recording inanimate objects, measurement of human subjects was begun. In this phase of the study, reliability and repeatability were checked by having each of two investigators photograph and measure each subject twice. Silhouette measurements of 17 female and 13 male subjects, obtained via the photobox, were compared to data obtained by a more traditional means of measuring permanent hand records.

Hand records were collected in the following way on each subject:

A point on the subject's wrist known as the stylion landmark was located and marked by one investigator. This landmark is the most distal point of the radius (the bone on the thumb side of the lower arm).

For the photographs, the subject's hand was placed in the photobox and positioned with the aid of an indicator rod placed on the stylion landmark and a projected grid pattern for placement of the fingers. A narrow tray containing the subject's assigned number was placed next to the hand for identification purposes. The alignment grid and resulting silhouette are shown in Figures 12 and 13.

Figure 12. <u>Alignment grid (actual</u> size 8 1/2" x 11").

Figure 13. Sample silhouette.

Among the traditional methods for measuring the straightened flat hand is use of a measuring board for obtaining most length and width dimensions. The hand is placed on a paper pattern used to standardize its position, and selected points such as fingertips are marked for later measurement. This method was used in this validation study since it would most closely approximate the manner in which dimensions were obtained from photographic images.

A technique similar to that used by Garrett (1970)¹ was employed. Subjects placed their right hands on a paper copy of the hand alignment grid projected in the photobox (see Figure 12). Investigators made small marks on the paper at the stylion landmark, at the tops of all the fingertips, at the crotches between the fingers, and at the widest point on the metacarpophalangeal joints outside of the forefinger (digit 2) and the little finger (digit 5). Digit breadths were measured directly on the fingers with sliding calipers for several reasons, chiefly because the rotation of the fingers as they lay on the paper prevented investigators from obtaining accurate breadths by means of marking. This was true in virtually all cases of subjects' thumbs, in many cases of their little fingers, and in some cases of other fingers.

A total of 16 measurements were taken by both methods: hand breadth, hand length, five digit breadths, five digit lengths, and four crotch heights. Silhouettes, as noted, were projected on a wall, and the known length of the subject number tray was used to determine the scale of the projected images. For both sets of measurements, a reference line, perpendicular to the long axis of the hand, was drawn through the stylion landmark to create a baseline from which to measure crotch heights and hand length. Digit lengths were measured as the distances between crotch points and the tips of the digits. (Digit 1 was measured to the crotch between thumb and forefinger, digits 2 and 3 to the crotch between them, digit 4 to the crotch between digits 3 and 4, and digit 5 to the crotch between digits 4 and 5.)

A clear ruler was used to measure all the dimensions from the paper records, and to measure hand length from the silhouettes. All other silhouette dimensions were measured with Vernier calipers.

RESULTS

Comparisons of measurements obtained on both sets of hand records are summarized in Table 1. (The actual comparative data are presented in stem leaf graphs in Appendix B.) Measurement values in each case represent the means of 120 measurements (30 subjects x 2 investigators x 2 trials).

As can be seen in Table 1, the differences between the means for the two methods are, in most cases, very small. The somewhat larger differences in the finger breadth measurements reflect the use of the calipers directly on the fingers, and were expected since the pressure exerted by the instrument, however light, results in a slight compression of the flesh.

¹Garrett, John W. 1970. <u>Anthropometry of the Hands of Male Air Force Flight</u> <u>Personnel</u>. <u>AMRL-TR-69-42</u>. <u>Aerospace Medical Research Laboratory</u>, Wright-Patterson Air Force Base, Ohio.

	PAPER/CA	LIPER	SILHO	UETTE	Difference
	Mean	SD	Mean	SD	Between Means
Hand Breadth	8.81	0.76	8.92	0.73	0.11
Digit 1 Breadth	2.12	0.23	2.25	0.23	0.13
Dígit 2 Breadth	2.02	0.20	2.17	0.21	0.15
Digit 3 Breadth	2.00	0.21	2.15	0.21	0.15
Digit 4 Breadth	1.86	0.20	2.00	0.21	0.14
Digit 5 Breadth	1.62	0.19	1.73	0.18	0.11
Hand Length	18.97	1.63	18.93	1.55	0.04
Digit 1 Length	5.80	0.51	5.73	0.49	0.07
Digit 2 Length	7.47	0.53	7.51	0.52	0.04
Digit 3 Length	8.19	0.67	8.26	0.65	0.07
Dígit 4 Length	7.30	0.66	7.37	0.65	0.07
Digit 5 Length	5.75	0.59	5.82	0.58	0.07
Crotch 1 Height	6.72	0.81	6.83	0.81	0.11
Crotch 2 Height	10.83	1.04	10.84	1.00	0.01
Crotch 3 Height	10.78	1.05	10.71	1.01	0.07
Crotch 4 Height	9.52	1.01	9.36	1.00	0.16

TABLE 1. Comparison of Measurements of the Hand (measurements are in centimeters).

The repeatability of measuring subjects, using the silhouette method, was initially examined by looking at the frequency distribution of the differences between the trials (Appendix C, Tables C-1 to C-16). This testing reflects not only the measurers' ability to realign each subject's hand exactly, but also their ability to measure the photographic image with calipers. Combining all measurements, there were 960 intertrial differences. Of these, 72.4 percent were one millimeter or less, 17.1 percent were greater than one millimeter but less than or equal to two millimeters, and 10.5 percent were greater than two millimeters. These frequencies are broken down by measurement type in Table 2. A closer look showed 44 (4.6 percent) differences greater than three millimeters. Of these, one was a hand breadth measurement, three were digit 1 lengths, six were hand lengths, and 34 were crotch heights.

TABLE 2. Intertrial Differences of Silhoutte Measurements.

	<u>≤</u> 1 m m	>1mm, <2mm	>2mm
Hand and Digit Breadths	86.9%	11.7%	1.4%
Digit Lengths	78.7%	19.0%	2.3%
Crotch Heights and Hand Length	48.7%	21.7%	29.7%

With the exception of the crotches and hand length, the repeatability of the silhouette measures showed very good results. The great majority of the differences between trials were within 1 mm. However, the hand length and crotch height values needed further investigation. Ten silhouettes which exhibited differences of 5 mm or more in these measurements were reexamined in an effort to find the source of the errors.

The method used to examine the differences was to project the first silhouette onto a reference grid and mark the stylion indicator rod, the crotches and fingertips. The second silhouette (retest) was superimposed over the reference grid with the marks and landmarks aligned to see if the points lined up, or if they had changed.

An example of this method is shown in Figure 14. In the figure, the dotted line represents the outline of the first trial of one silhouette. The solid lines indicate the overlaid digit tips, crotch points, and stylion rod of the second trial. As can be seen when the tips of digits 2, 3, 4, and 5 and crotches 2, 3, and 4 are aligned, the tip of digit 1, crotch 1, and the stylion rod are offset.

Figure 14. Comparison of silhouette trials.

In 8 of the 10 cases the stylion indicator rod did not line up on the two silhouettes. This means that when the investigators repositioned a subject's hand for the second photograph, the rod was not aligned with the same point on the wrist (the landmark was not remarked between trials). Since this point was the baseline for all the crotches and hand length, it explains a great deal of the difference observed. While this alignment problem does not make the measurements identical, it brings eight of ten back into the 1- to 3-mm difference range. In the user's manual (Appendix A), a more exact description of how to position the hand relative to the indicator rod has been defined. There are two additional explanations for the crotch height differences. For crotch 1 height the alignment of the thumb has a great effect on the shape of the soft tissues in the crotch area (Figure 14). This is the most difficult part of the hand to align. For crotch 4 height the problem may also be in the reference line through the stylion. If this line is not exactly perpendicular to digit 3 (imagine the lines diverging slightly), the differences would be exaggerated at crotch 4.

Each of these problems will be explored further.

Multivariate Analysis

The data from these measurements and the intertrial differences were subjected to a number of multivariate statistical procedures. Of interest in the analysis was whether the investigators' results were significantly different from one another (investigator effects), whether the paper/caliper and silhouette methods were significantly different from one another (method effect) or whether the differences between methods were inconsistent across investigators (investigator/method interaction).

The results of the statistical analyses of the measurements and intertrial differences are presented in Appendix D. When an interaction was found, the investigator and method effects were invalid so only the interaction results are given. To further clarify the interactions, the analysis was repeated with investigators separated, and trivariate plots were made.

Multiple analysis of variance (MANOVA) was used as the statistical tool. For analytical convenience the variables to be included in the MANOVAS were divided into three sets, by type of measurement, and analyzed as groups. The sixteen variables were divided as follows:

<u>Set 1</u>	<u>Set 2</u>	<u>Set 3</u>
Hand Breadth	Hand Length	Crotch 1 Height
Digit l Breadth	Digit l Length	Crotch 2 Height
Digit 2 Breadth	Digit 2 Length	Crotch 3 Height
Digit 3 Breadth	Digit 3 Length	Crotch 4 Height
Digit 4 Breadth	Digit 4 Length	
Digit 5 Breadth	Digit 5 Length	

Some noteworthy findings are briefly summarized below:

Hand and Digit Breadths (See Appendix D, Tables D-1 to D-3 and Figure D-1.)

For the actual measurements, a significant investigator/method interaction effect was found. With continued analysis, it was discovered that, though both investigators were consistent in producing larger silhouette measurements than caliper measurements (as noted above), their degree of difference was not the same. Intertrial differences of the hand and digit breadths revealed a significant effect for method only. This indicates that the degree of difference between the first and second trial varied by the method. Greater differences were found in the silhouette method and may have been due to the lack of obvious landmarks (the center of the knuckle is not so easily apparent on a silhouette).

Hand and Digit Lengths (See Appendix D, Tables D-4 and D-5.)

The lack of significant results for investigator effects indicates that the investigators tended to produce essentially the same measures. The significant method effect, however, indicates that the measurements were not the same for paper and silhouette. Further analysis indicated that the difference in methods appears to be the consequence of a difference in the recording of digit 1 versus digits 3 and 5. Two sources of variability could account for this: (1) digit 1 was more difficult to mark in the paper method because the distance of the thumb crotch from the paper and the consistency of the tissues at that location made it hard to transfer to the paper, and (2) the orientation of the thumb was the most difficult alignment problem.

The results on the intertrial differences for hand and digit lengths indicated a lack of significant investigator effect, demonstrating that each investigator's degree of differences between trials was essentially the same as the other's. The lack of method effect indicates that these differences did not vary between methods, i.e., both methods appear to be equally repeatable. There was no interaction effect.

Crotch Heights (See Appendix D, Tables D-6 to D-8 and Figure D-2.)

Analysis of the four crotch height measurements indicates no significant investigator effect, i.e., the two investigators produced essentially the same measurements. There was a significant method effect which appears to be a contrast between crotch 2 and 4. Since the orientation of the hand can affect these measures, it is likely that this is an indicator of an orientation or alignment difference. In other words, the base line through the stylion landmark may have been drawn in a consistently different place for one method than for the other. No interaction effect between investigator and method was found.

Results for intertrial differences of crotch heights indicate an interaction of investigators and methods. Further analysis showed that the first investigator had lower intertrial differences than the second investigator on the paper method, but that for the silhouettes the second investigator had lower intertrial differences. It should also be noted that, for crotches 1, 2, and 3, the intertrial differences for both investigators were lower for the paper method than the silhouette method. As with previous results, this could be indicative of an inconsistency in hand orientation.

In summary, hand and digit length measurements were the most repeatable across measurers and methods. The small inconsistencies found across methods appeared to be due to misalignment of the thumb. Larger breadth measurements obtained on the silhouettes were obviously due to the lack of compression on soft tissue which occurred on the caliper measurements. Difficulty in repeating the silhouette method is possibly due to lack of visual landmarks. In measuring crotch heights, the differences between methods and trials can be explained in large part by imprecision in orienting the hand.

In short, many of the differences found between silhouette and other methods, though small, could be eliminated by improving the hand alignment procedures. It should also be noted that a more exact method of extracting data from the photographic images should be examined. Distortion of the overhead projection and the difficulty of taking measurements from a vertical plane (images were projected on a wall) are thought to have contributed to many of the intertrial differences found for the silhouette method.

CONCLUSIONS AND RECOMMENDATIONS

Overall, the data analysis suggests that the repeatability of both methods was very high. Though intertrial differences for the silhouette method were consistently greater, these differences were very small -- on the order of 0.2 mm to 0.3 mm, on the average. It appears that the repeatability of the silhouette method could easily be improved.

While caliper measurements of hand length and breadth have been satisfactory for the limited purposes to which they are put, some other measurements of the hand do not lend themselves as well to this traditional technique. For example, tissue deformation and standardization of finger positions present problems when using instruments to directly measure crotch heights.

The paper method has several important advantages over caliper measurements. It is sparing of subject time, allows for standardization of finger positions, and provides a permanent record which allows for remeasurement of doubtful points. The hand photometric system described in this report enhances these advantages even further. It is faster than the paper method -- thus, more suitable for large surveys -- and provides permanent hand records (silhouette and palm print) from which a variety of unforeseen measurements can be made from new landmarks.

Given the fine results of the measurements on the rigid objects and the reasonable retests on live subjects, the photographic system appears to be an excellent alternative to traditional methods of measuring the hand.

APPENDIX A

INSTRUCTION MANUAL FOR THE OPERATION AND MAINTENANCE OF THE HAND PHOTOMETRIC SYSTEM

APPENDIX A

INSTRUCTION MANUAL FOR THE OPERATION AND MAINTENANCE OF THE HAND PHOTOMETRIC SYSTEM

Step-by-step instructions for the operation and care of the hand photometric system follow. Several steps need to be performed only after shipping and are so indicated; others are followed routinely.

OPERATION

- 1. The hand photometric system requires a grounded (three-pronged) electric outlet. Plug in the 19-foot long electrical cord attached to the back panel (Figure A-1, A) into a normal 1100 AC outlet.
- 2. Flip the power switch up to turn on the device (Figure A-1, B). The light to the left of the switch will indicate that the power is on.

Figure A-1. Hand Photometric System: rear left view.

3. The photobox in which the subjects place their hands is accessed by a swing-down door that becomes the arm rest in its open position (see Figure A-2). The door is held in a closed position by a tension catch. To open the area, release the catch by pulling the knob out and up, simultaneously (see Figure A-3). Some sticking may occur, so pull the arm rest down slowly.

4. Adjust the arm rest so that it is parallel to the floor by raising or lowering the extension bar (Figure A-4). The end of the extension bar should be secured firmly in a notch underneath the arm rest.

Figure A-4. Arm rest shelf and extension bar.

- 5. Raise the black curtain and secure it to the velcro strip (Figure A-5, A).
- 6. The subject is seated to the left side of the device so that the right elbow rests comfortably on the arm rest (Figure A-5). The subject should remove all jewelry from the right hand and arm.
- 7. On the right side of the tall section of the box are two round knobs. The upper knob (Figure A-5, B) slides the alignment grid forward and back, and the lower knob (Figure A-5, C) slides the diffuser plate forward and back. After the subject is seated, pull the alignment grid forward so that the grid is projected onto the subject's hand.

Figure A-5. Subject seated at photobox.
8. Carefully align the subject's hand (Figure A-6) using the grid and the stylion indicator rod (Figure A-7). This is a six-part process:

Figure A-6. Hand alignment grid.

Figure A-7. Stylion indicator rod alignment.

- (a) Place the subject's hand in the center of the glass plate, moving the subject's hand forward and backward until the front side of the indicator rod is in contact with the stylion mark as illustrated in Figure A-7. There are two stylion indicator rods, one closer to the inside of the box for smaller hands and one closer to the outside for larger hands.
- (b) Keeping the stylion landmark aligned with the rod, rotate the hand side to side until the second-from-left long grid line (line B in Figure A-6) is projected directly over the third metacarpophalangeal joint and runs down the long axis of the forearm through the center of the wrist. That grid line B does not appear to be aligned with the center of the wrist in Figure A-6 is a function of the perspective from which the hand is drawn.

This illustrates the importance of looking straight down on the wrist while orienting it on the grid. If the hand is viewed from an angle, it will be incorrectly placed.

- (c) Instruct the subject to place the hand firmly enough on the plate so that all the fleshy pads are touching. No extra pressure should be exerted. Adjust the alignment grid by using the upper knob to slide the plate back and forth on the track until the two long outside lines (Figure A-5, C) are projected over the second and fifth metacarpophalangeal joints. With three fingers lined up, the fourth metacarpophalangeal joint should automatically be aligned. Not all subjects have perfectly straight hands and fingers. In such cases line them up through the third finger and average out the discrepancies between the second and fifth fingers.
- (d) Adjust the fingers so that the grid lines pass over the center of each fingertip.
- (e) The thumb is aligned so that its long axis is parallel to the grid lines. Because the thumb joint allows for a great deal of freedom of movement, the thumb can be parallel in several positions. Place the thumb so it is parallel with the first set of lines closest to the hand. That is, begin with the thumb placed next to the hand, slowly abduct it (move it away from the hand), and stop when it is parallel with the grid.
- (f) When the hand is aligned, check to be sure that the stylion indicator rod is still in contact with the stylion landmark. Instruct the subject to hold the hand still. Now, push back the upper knob (Figure A-5, B), removing the grid.
- 9. Place the subject number tray next to, but not touching, the right side of the hand (Figure A-6, D)
- 10. Lower the black curtain to shield out light.
- 11. Look through the camera lens to ensure that
 - the grid is completely out of the way,
 - the subject numbers are legible,
 - the diffuser plate is properly placed (see step 12),
 - the stylion indicator is in direct contact with the skin.
- 12. Two pictures will be taken of each subject: (a) a silhouette in which the diffuser plate is moved forward toward the subject, using the lower round knob (Figure A-5, C); and, (b) a palm picture which requires that the diffuser plate be removed by pushing the lower round knob toward the back of the device. A flash required for this picture is wired by way of a relay switch to the diffuser plate track. That is, it will flash automatically if the diffuser plate is properly removed.

- 13. After both pictures are taken, lift the curtain, pull the stylion indicator rod away from the hand, and ask the subject to remove the hand.
- 14. If there will be more than a 10-minute interval between subjects, turn the device off.
- 15. As needed (usually after use by eight or ten subjects), clean the glass plate on which subjects rest their hands by spraying glass cleaner on a lint-free cloth and then wiping the plate. DO NOT SPRAY ANYTHING INSIDE THE DEVICE. If necessary, the diffuser plate and alignment grid may be cleaned the same way.

CAMERA SETTING AND OPERATIONS

The hand photometric system uses a Nikon N2000 35-mm camera (Figure A-8), and 24- or 36-exposure 400 ASA black and white film. The camera is rigidly mounted in the photobox by means of a wing-nut screw inserted through the box frame into the camera. It should be removed only if the front settings are disturbed or if it gets out of focus. The lens is protected by a black velvet sleeve to shield out light and dust.

Figure A-8. Nikon N2000 35-mm camera.

After shipping, or in the event of its being jarred, the following settings should be checked:

1. Check focus by placing the subject number tray on the viewing plate to see if the numbers are clearly visible. Because the camera is firmly mounted and the focusing apparatus has been sealed by tape into the correct position, it should not require adjustment. If, however, it does become unfocused, reset to proper lens setting as shown in Figure A-9. If the camera is still out of focus after correcting the settings, the lens may need to be repaired or replaced. Notify the supervisor if this occurs.

Figure A-9. Lens setting.

2. The film advance mode should be set on S (Figure A-10). If it requires adjusting, pull the knob up and turn (Figure A-11).

Figure A-10. Film advance mode.

Figure A-11. Adjusting film advance mode.

3. The audible warning switch should be turned off, as shown in Figure A-12.

Figure A-12. Audible warning switch.

- 4. The shooting mode selector dial should be set on A (Figure A-13).
- 5. The film speed ring should be set at 400 (Figure A-14).

Figure A-13. Shooting mode selector.

Figure A-14. Film speed ring.

6. The exposure compensation setting should be set at 0 (Figure A-15).

Figure A-15. Exposure compensation setting.

Loading Film

 Open the camera back by pulling up on the film rewind knob until the camera back springs open (Figure A-16). See Figure A-17 for identification of parts inside the camera.

Figure A-16. Opening the camera.

Figure A-17. Internal camera parts.

2. Position the film cartridge (see Figure A-18) so that the slotted end of the cartridge is at the top; lower the rewind knob.

Figure A-18. Positioning the film cartridge.

3. Pull the film leader out to the red index mark (Figure A-19). There should be no slack in the film (Figure A-20).

Figure A-19. Pulling out film leader.

Incorrect

Correct

4. Close the back of the camera.

5. Press the top of the remote shutter release (Figure A-21) to automatically advance the film to frame "1" (Figure A-22).

Figure A-21. <u>Remote shutter release</u>.

Figure A-22. Frame counter window.

Rewinding Film

When the film has been used up, the red indicator lamp (see Figure A-8) will flash. Rewind the film in the following way:

1. While sliding the film rewind lever to the right, push the film rewind button down (Figure A-23).

Figure A-23. Film rewind button and lever.

2. Fold out the film rewind crank and rotate it clockwise (Figure A-24) until the film advance indicator (Figure A-25) stops moving.

3. Pull up on the film rewind crank until the camera back springs open and remove film (Figure A-26).

Figure A-26. Removing film.

Replacing Batteries

When the film advance begins to sound sluggish, it is time to change the batteries. This is done in the following way:

- 1. Use a quarter to remove the battery holder by turning the battery holder screw counterclockwise (Figure A-27).
- 2. Remove the bracket (Figure A-28).

Figure A-27. <u>Removing battery holder</u>.

Figure A-28. <u>Removing battery</u> <u>bracket</u>.

3. Install four AAA-type batteries (Figure A-29).

Figure A-29. Installing batteries.

- 4. Align the white dots and replace the bracket (Figure A-30).
- 5. Line up the hole in the bottom with the post in the camera base and reattach the battery holder (Figure A-31).

Figure A-30. <u>Replacing battery</u> bracket.

Figure A-31. <u>Reattaching battery</u> holder.

Precautions

- 1. Replace the view finder eyepiece cover (Figure A-32) whenever the camera is not in use.
- 2. Never touch the reflex mirror or focusing screen (Figure A-33).

Figure A-32. <u>Viewfinder eyepiece</u> <u>cover</u>.

Figure A-33. Do not touch the reflex mirror.

3. Never touch the DX-contacts (Figure A-34).

4. Never touch the shutter curtains (Figure A-35).

Figure A-34. Do not touch the DX-contacts.

Figure A-35. Do not touch the shutter curtains.

MAINTENANCE

Unless the hand photometric system malfunctions, the only reason the device should be opened is to check for broken parts and to vacuum dust after shipping. The maintenance procedures to be followed when the device is shipped to a new location are as follows:

- 1. Remove the back of the device by using a 7/16-inch socket wrench.
- Using a can of canned air (hold it vertically -- the slightest tilt of the can causes liquid to escape), dust off the mirror. CAUTION: The mirror is a very sensitive part of the mechanism and <u>should not be</u> touched.
- 3. Dust the remaining area (electronic components and floor) with a battery powered vacuum cleaner.
- 4. Replace the back panel; tightly secure bolts.
- 5. Check the camera settings (see section on camera instructions).
- 6. To ensure that the photobox is fully operational, use the Polaroid 35mm Auto Processor (which is provided) to produce instant slides.

APPENDIX B

STEM LEAF GRAPHS OF DATA OBTAINED FROM TWO HAND-MEASURING METHODS TABLE B-1. Hand Breadth.

PAPER MEASUREMENTS

SILHOUETTE MEASUREMENTS

ÆAN = 8.8l	STANDARD DEVIATION = 0.76	MEAN = 8.92	STANDARD DEVIATION = 0.	73
af	Frequency	Stem Leaf		requency
000	5	100 334		•
000000000000000000000000000000000000000	12	98 345577036667	666667	18
0000	6	96 3457891699		10
0000000	6	94 893		e
00000	2	92 114557977		6
000000000000000000000000000000000000000	16	90 2558900799		10
000000	8	88 045568936		6
000000000	11	86 000122455569	2347	17
000000000000000000000000000000000000000	14	84 145582347		6
00000	7	82 124449000022	223788	18
0000000000	12	80 59377		ŝ
000000	1	78 60667		ц С
	2	76 9		-4
	-	74		
		72		
		20		
0	2	68 4		
0	2	66 49		7
	TOTAL 60		TOTA	T 60
ly stem leaf by l	0**-01	 Multiply stem lea	f by 10**-01	
	TEAN = 8.81 af 0000 000000 000000 000000 0000000 000000	EAN = 8.81 STANDARD DEVIATION = 0.76 2af Frequency 2af Frequency 0000 12 00000 12 00000 12 00000 12 00000000 16 00000000 11 00000000 12 00000000 12 00000000 12 00000000 12 00000000 12 00000000 12 00000000 12 00000000 12 00000000 12 00000000 12 00000000 12 00000000 12 00000000 12 0000000 12 0 2 0 2 1y stem leaf by 10**-01 Total	EAN = 8.81 STANDARD DEVIATION = 0.76 MEAN = 8.92 af $Frequency$ $Stem$ $Leaf$ 0000 0000 9 3455770366677 0000 00000 9 3455770366677 0000000000 12 98 3455770366677 00000000000 99 94893 94557977 $000000000000000000000000000000000000$	Earl STANDARD DEVIATION 0.76 MEAN 8.92 STANDARD DEVIATION 0. af Eaf Eaf Eaf Eaf E E af Eaf Erequency Stem Leaf Standard Deviation 0. 0000 00000000 12 9 34577036667799999 Standard E E 0000 12 9 34577036667799999 Standard Deviation Deviation E 00000000 12 9 345770366677997 Deviation Deviation

Multiply stem leaf by 10**-01

TABLE B-2. Digit 1 Breadth.

.

	CALIPER	L MEASUREMENTS	SILHOU	ETTE MEASUREMENTS	
	MEAN = 2.12	STANDARD DEVIATION = 0.23	MEAN = 2.25	STANDARD DEVIATION = 0.23	
Sten	l Leaf	Frequency	Stem Leaf	Frequency	N 1
26	0000	4	27 79	2	
25			27 01	2	
25	00	2	26 79	2	
24			26 12	2	
24	000000000000	12	25 557888	6	
23			25 0001111	7	
23	000000000000000000000000000000000000000	00000 24	24 55566799	80	
22			24 111223333333	11	
22	000000000000	12	23 78	2	
21			23 0011344	7	
21	000000000000000000000000000000000000000	16	22 5555667799	10	
20			22 233333	6	
20	000000000000000000000000000000000000000	0000000 27	21 55555777888899	14	
19			21 0111113334	10	
19	00000000	80	20 5666777799	10	
18			20 133	e	
18	000000	6	19 5788	4	
17			19 0033344	7	
17	000000	7	18 9	1	
16			18 00333	5	
16	00	2	176	-	
15					
		TOTAL 60		TOTAL 60	
Mult	iply stem leaf by 10)**–01	Multíply stem leaf by	10**-01	

Multiply stem leaf by 10**-01

TABLE B-3. Digit 2 Breadth.

CALIPER MEASUREMENTS

.

SILHOUETTE MEASUREMENTS

	MEAN = 2.02	STANDARD DEVIATION = 0.20	MEAN = 2.17	STANDARD DEVIATION = 0.21
l				
Sten	Leat	Frequency	Stem Leat	Frequency
24	000		25 00011	ŝ
23			24 55556777799	11
23	000000000000000000000000000000000000000	17	24 1111233	2
22			23 57789	5
22	00000000000000	12	23 01111444	80
21			22 56677799	80
21	000000000000000000000000000000000000000	00 21	22 11123333	8
20			21 55577777789	12
20	000000000000000000000000000000000000000	000000 25	21 0000111133344444	16
19			20 566777799	10
19	000000000000000000000000000000000000000	18	20 1112222	7
18			19 55789	5
18	000000000000000000000000000000000000000	13	19 0011334	7
17			18 7799	4
17	0000000	7	18 02	2
16			179	1
16	000		17 11	2
15			16 78	2
15	0	1		
14				
		TOTAL 60		TOTAL 60
	(.1			
Mult	tply stem tear by tu	××-UI	Multiply stem lear by J	[0**-0]

•

•

TABLE B-4. Digit 3 Breadth.

CALIPER MEASUREMENTS

SILHOUETTE MEASUREMENTS

	MEAN = 2.00	STANDARD DEVIATION =	0.21	MEAN = 2.15	STANDARD DEVIATION = 0.21
Sten	1 Leaf		Frequency	Stem Leaf	Frequency
24 23	0		1	25 0014 24 66799	4 0
23	000000000000000000000000000000000000000		19	24 1113333333 23 888899	10 6
22	000000000		10	23 00344 22 5666777	ς, γ
21	000000000		10	22 111112233	5 G ;
20 20	000000000000000000000000000000000000000	000000000000000000000000000000000000000	38	21 5777778899 21 00011111113444444 20 555567777200	10 17 13
61	0000000000000		14	20 3333 10 5577988	
17	000000000000000		15	19 113333334444 18 779	, El u
17	00000000		6	18 03 17 9	2 2 1 1
16 15				17 16 66	2
14	000		ñ	16 2 15 8	1
14	0		1		
		TOT	ral 60		TOTAL 60
Mult	íply stem leaf by 10 [,]	**-01	_	Multiply stem leaf by l	0**-01

TABLE B-5. Digit 4 Breadth.

CALIPER MEASUREMENTS

,

SILHOUETTE MEASUREMENTS

	MEAN = 1.86	STANDARD DEVIATION = 0.21	MEAN = 2.00	STANDARD DEVIATION = 0.21
Stem	<u>i Leaf</u>	Frequency	Stem Leaf	Frequency
22	00000000	6	23 7	1
21			23 000133	6
21	000000000000000000000000000000000000000	15	22 555566677999	12
20			22 11223333	æ
20	000000000000000000000000000000000000000	0 20	21 7788899	7
19			21 0011144	r
19	000000000000000000000000000000000000000	15	20 5567779999	10
18			20 111111333	6
18	000000000000000000000000000000000000000	00 21	19 555777888	6
17			19 11113334444	11
17	000000000000000000000000000000000000000	00000 24	18 55566679999	11
16			18 01223	Š
16	0000000000	11	17 5677888899	10
15			17 0111234	7
15	0	1	16 78	2
14			16 3	1
14	0000	4	15	
13			15 012	e
			14 8	1
		TOTAL 60		TOTAL 60
Mult	iply stem leaf by 10	**-01	 Multiply stem leaf by	10**-01
	•			

.

44

TABLE B-6. Digit 5 Breadth.

CALIPER MEASUREMENTS

SILHOUETTE MEASUREMENTS

	MEAN = 1.62	STANDARD DEVIATION = $0.$	19	MEAN = 1.73	STANDARD DEVIATION = 0	.18
Sten	<u>Leaf</u>	H	equency	Stem Leaf		Frequency
2C	000000		7	22 2		l
19 19	00000000		6	21 21 0		1
18	00000000000000		13	20 55677 20 1112		v 4 v
11	000000000000000000000000000000000000000		16	19 56///888 19 11344 10 5555270		× 10 F
16 16	000000000000000000000000000000000000000	000000000000000000000000000000000000000	31	18 000113333 17 55557780		- 6 0
2 <u>2</u> 2	000000000000000000000000000000000000000	00000	24	11111111111111111111111111111111111111	122444	20 7
14	000000000		6	10 0///007 16 02222233444 15 555566600000	00.	11
1 2 1	0000000		80	15 12224 15 7778888		- v r
11	000		ñ	14 02 13 55 13		
		TOTAI	<u>60</u>		TOT	AL 60
Mult	iply stem leaf by lC:	**-01		Multiply stem leaf	by 10**-01	

Multiply stem leaf by 10**-01

TABLE B-7. Hand Length.

PAPER MEASUREMENTS

.

SILHOUETTE MEASUREMENTS

	MEAN =18.97	STANDARD DEVIATION = 1.63	MEAN = 18.93 STANDARD DEVIATION	= 1.55
Sten	<u>i Leaf</u>	Frequency	Stem Leaf	Frequency
23	6	1	23 013	m
23	244	£	22 9	
22			22	
22			21	
21			21 1	1
21	100	Ś	20 555666777779999	14
20	5556666777778999	16	20 112233333333	12
20	00133444	80	19 555668888999	12
19	5567778889999	13	19 00000111114	11
19	00000111223344	14	18 6677777788888888	15
18	5556667777889999	16	18 0000000223334444444	21
18	0001112222334	13	17 555556666688899999	17
17	5566677888888889999	18	17 12444444	6
17	11223334444	11	16	
16			1 16	
16			15	
15			15	
15			14 66	2
14	55	2	14 34	2
14	11	2		
		TOTAL 60		TOTAL 60

Length.
Digit
B-8.
TABLE

PAPER MEASUREMENTS

.

SILHOUETTE MEASUREMENTS

	MEAN = 5.80	STANDARD DEVIATION = 0.51	MEAN = 5.73	STANDARD DEVIATION = 0.49	
Stem	Leaf	Frequency	Stem Leaf	Frequency	
71	0	1	69 01	2	
70	0	1	68 23	2	
69	000	e	673	_	
68			66		
67			65 59	2	
66	0000	4	643	1	
65	00000	5	63 45568	5	
64	000	3	62 0078	4	
63	000	c	61 0244689	L .	
62	000000	6	60 22346667	80	
61	000000000	10	59 0012456689	10	
60	0000000000000	11	58 0000124446	10	
59	00000	5	57 0011122258889999	16	
58	000000000	10	56 333446888	6	
57	000000000	6	55 01144888889	11	
56	00000000000	11	54 1457	4	
55	000000000000000000000000000000000000000	13	53 1226	4	
54	0000	4	52 11447	5	
53	0000	4	51 1355777999	11	
52	0000000	7	50 458	3	
51	000	3	49 5		
50	000	3	48		
49			47		
48			46		
47	00	2	45		
46	0	1	44 7	1	
45	0	1	43 299	3	
44					
		TOTAL 60		TOTAL 60	
Mult	iply stem leaf by 10 ¹	**-01	Multiply stem leaf by 1	10++-01	

TABLE B-9. Digit 2 Length.

PAPER MEASUREMENTS

SILHOUETTE MEASUREMENTS

Multiply stem leaf by 10**-01

Multiply stem leaf by 10**-01

TABLE B-10. Digit 3 Length.

C	1	٩
2	1	1
F		ł
5		
ż	2	í
ē	_	1
	-	4
٩	2	1
		2
ç	2	
	•	1
2	-	
2		2
2		ŝ
c	1	1
1		ī
1	9	Ļ
٤	z	2
÷		ī
à	2	1
1	2	2
2		•
Ļ	2	
	٦	
	1	1
4	6	ſ
2	2	1
	2	

SILHOUETTE MEASUREMENTS

	MEAN = 8.19	STANDARD DEVIATION = 0.67	MEAN = 8.26 STANDARD DEVIATION	· 0.65
Stem	Leaf	Frequency	Stem Leaf	Frequency
100	0	Ι	98 3535	4
98	000	£	96	
96			94	
64			92 388	e
92	00	2	90 00902239	œ
60	0000000	2	88 025478	9
88	00000	5	86 11245568993478	14
86	000000000000000000000000000000000000000	16	84 045034778	6
84	000000000	. 10	82 001446666023346688	18
82	00000000000000	14	80 112455566688990237	18
80	000000000000000000000000000000000000000	0 20	78 225556000022678	15
78	000000000000000000000000000000000000000	18	76 11356799011334588899	20
76	000000000000000000000000000000000000000	12	74 9	1
74	0000000	7	72	
72			70	
70	0		68	
68			66	
66			64	
64			62 2228	4
62	0	-1		
60	000	3		
		TOTAL 60		OTAL 60
		:		
Mult	iply stem leaf by 10	**-01	Multiply stem leaf by 10**-Ul	

TABLE B-11. Digit 4 Length.

PAPER MEASUREMENTS

SILHOUETTE MEASUREMENTS

	MEAN = 7.30	STANDARD DEVIATION = 0.66	MEAN =	. 7.37	STANDARD DEVIATION =	- 0.65
Stem	Leaf	Frequency	Stem Leaf			Frequency
88	00	2	88 46			2
98	00	2	86 90			2
848 18	0000	4	84 11556	47		7
82	000000000	10	82 12948			5
80	00000	5	80 0603			4
78	0	4	78 12562	2		9
76	00000	5	76 12556	675888999		14
74	000000000000000000000000000000000000000	18	74 56679	914555777		14
72	000000000000000000000000000000000000000	0 20	72 33675	5577		6
10	000000000000000000000000000000000000000	14	70 01125	566990011889	66	19
68	100000000000000000000000000000000000000	0000000 26	68 11222	335577901113	33355555889	28
99	00000000	6	66 91588			5
64			64 6			
62			62			
60			60			
58			58			
56			56			
54	00	2	54 5249			4
52	00	2				
		TOTAL 60			F	rotal 60
Mult	iply stem leaf by 10	**-01	Multiply s	stem leaf by	10++-01	

50

TABLE B-12. Digit 5 Length.

PAPER MEASUREMENTS

.

SILHOUETTE MEASUREMENTS

	MEAN = 5.75	STANDARD DEVIATION = 0.59		MEAN = 5.82 STANDARD DEVIATION	= 0.58
Sten	Leaf	Frequency	Stem	l <u>Leaf</u>	Frequency
70	000000	Q	72	36	2
68	00	2	20	1791	4
66	000	3	68	69	2
64	0000000	2	66	2	
62	000000000000	13	64	000344611456	12
60	0000000	80	62	2312559	7
58	000000000000000000000000000000000000000	16	60	0022266781145	13
56	000000000000000000000000000000000000000	19	58	0446800111244468	16
54	000000000000000000000000000000000000000	00 21	56	233444677800222256689	21
52	0000000	7	54	1455888801224588999	19
50	000000000000000000000000000000000000000	14	52	3578889117	10
48			50	811133	9
46			48	399	c,
44			46		
42	000	e	44		
40	0	1	42	8357	4
		TOTAL 60			rotal 60
Mult	iply stem leaf by 10)**-01	 Mult	iply stem leaf by 10**-01	

TABLE B-13. Crotch 1 Height.

PAPER MEASUREMENTS

SILHOUETTE MEASUREMENTS

	MEAN = 6.72	STANDARD DEVIATION = 0.81	MEAN = 6.83	STANDARD DEVIATION = 0.81
Stem	Leaf	Frequency	Stem Leaf	Frequency
96	000	£	686	1
94			6	
92			94 23	2
90	0	1	92 3	
88			06	
86			88	
84			86	
82			84	
80			82	
78	0	I	80	
76	00	2	78 572	£
74	000000	9	76 5609	4
72	000000000000000000000000000000000000000	17	74 555670045778	12
70	000000000000000000000000000000000000000	18	72 351355788899	12
68	000000000000000000000000000000000000000	14	70 3559345799	10
66	0000000	80	68 79001135599	11
\$	0000000000	10	66 012239913345577888	18
62	000000000000000000000000000000000000000	15	64 0267714599	10
60	00000000	6	62 0346677888004	13
58	00000	5	60 02344671269	11
56	00000	5	58 845	3
54	00	2	56 1268	4
52	0	1	54 1	1
50	0	1	52 7	1
48	00	2	50 441	3
46				
		TOTAL 60		TOTAL 60
Mult	iply stem leaf by 10 ⁴	**-01	 Multiply stem leaf by l	0**-01

TABLE B-14. Crotch 2 Height.

PAPER MEASUREMENTS

•

SILHOUETTE MEASUREMENTS

	MEAN =10.830	STANDARD DEVIATION =	1.040	MEAN = 10.84	STANDARD DEVIATION =	= 1.00
Stem	Leaf		Frequency	Stem Leaf		Frequency
13	568		e	13 59		2
13	4		1	13 24		2
12				12		
12	000011133		6	12 11123333		œ
11	55567777777788888888	899999	25	11 55556666777777788	388999999	25
11	00112444		80	11 111224444		6
2	555555555555666666777	7778889999999	32	10 5555666677777778	38888889999	28
10	000000111111112222	3333333	26	10 0000111111122222	222333344444	28
6	77888899		80	9 566677788888888		14
9	2344		4	6		
80				8		
œ	0033		4	8 3444		4
٢						
		OT	TAL 60			total 60

•

TABLE B-15. Crotch 3 Height.

PAPER MEASUREMENTS

SILHOUETTE MEASUREMENTS

	MEAN =10.78	STANDARD DEVIATION =	1.05	MEAN = 10.71	STANDARD DFVIATION =	= 1.01
Stem	Leaf		Frequency	Stem Leaf		Frequency
13	7789		4	14 0 13 55		
12				13 3		• •
12	110		ŝ	12		
11	55666666677777777788	3888999999	29	12 0012		4
11	000011233444		12	11 5555556666677777	7789999	23
10	55555566666777888889	66666	25	11 0011111333444		13
10	0000000111222233344	54444	24	10 5555555666666777	77777888999	27
6	55555677888999999		17	10 00001122222333333	44444	21
9	44		2	9 556667777778888	89999	21
0 0				9 223		e
œ	22		2	8		
7	66		2	8 2334		4
			: :			
		.O.T.	TAL 60		<u>[</u>	TUTAL 60

54

TABLE B-16. Crotch 4 Height.

PAPER MEASUREMENTS

SILHOUETTE MEASUREMENTS

	MEAN = 9.52	STANDARD DEVIATION = 1.0	1	MEAN = 9.36	STANDARD DEVIATION	= 1.00
Stem	Leaf	Fre	guency	Stem Leaf		Frequency
12	6679		4	12 8		
11				12 134 11		E
	00		2			1
10	55556667777789		14	10 55566677788		11
10	1112222222333444		16	10 11222223333334		14
6	55555566666777778	666	22	9 555666667788889		15
6	0011111112222233334	444	22	9 00000001111122222	22333344444444	33
80	5666666777778888888	888899999999	31	8 55556666777777888	8899	22
8	11334		2	8 00122333444444		15
7	Ś		1	7 67		2
7	113		3	7 234		Э
		TOTAL	60			TOTAL 60

55

APPENDIX C

STEM LEAF GRAPHS SHOWING RESULTS OF INTERTRIAL DIFFERENCES OBTAINED IN TWO HAND-MEASURING METHODS

TABLE C-1. Hand Breadth.

Frequency **6 60 1 60 10 60 10 60 10** 2 TOTAL 60 -STANDARD DEVIATION = 0.08 SILHOUETTE MEASUREMENTS Multiply stem leaf by 10**-02 MEAN = 0.09000000000 00000000 0000000 000000 000000 00000 Stem Leaf 000 8 8 0 0 0 0 0 Ŷ 4 Frequency 30 19 TOTAL 60 m œ STANDARD DEVIATION = 0.08PAPER MEASUREMENTS Multiply stem leaf by 10**-02 MEAN = 0.0900000000 Stem Leaf 000 30 226 16 16 16 12 10 8 0 7 4

TABLE C-2. Digit l Breadth.

CALIPE	R MEASUREMENTS	SILHOU	JETTE MEASUREMENTS
MEAN = 0.03	STANDARD DEVIATION = 0.04	MEAN = 0.05	STANDARD DEVIATION = 0.04
Stem Leaf	Frequency	Stem Leaf	Frequency
10 0000000000000 9 9	15	18 00 17 16	2
∞ ∞ r		00 41	2
		12 00	2
o v v		10 9 000 8 0000000	ς α
4 4 4		7 0000 6 00	+ 7 +
n en en e		4 0000000 3 00000 2 000	9 N W
4 (1 0000000	Q, Q
0 0000000000000000000000000000000000000	000000000000000000000000000000000000000		
	TOTAL 60		TOTAL 60
Multíply stem leaf by l	.0**-02	 Multiply stem leaf b	y 10**-02

TABLE C-3. Digit 2 Breadth.

CALIPER MEASUREMENTS

MEAN = 0.03

Frequency STANDARD DEVIATION = 0.04 MEAN = 0.04Stem Leaf 0 Frequency 2 STANDARD DEVIATION = 0.05

SILHOUETTE MEASUREMENTS

Multiply stem leaf by 10**-02

Multiply stem leaf by 10**-02

TABLE C-4. Digit 3 Breadth.

CALIP	ER MEASUREMENTS	SILHOUETT	E MEASUREMENTS
MEAN = 0.02	STANDARD DEVIATION = 0.04	MEAN = 0.04	STANDARD DEVIATION = 0.04
Stem Leaf	Frequency	Stem Leaf	Frequency
1 0000000000	11	17 0 16 00	1
		15 0	
•		14	
• •		12 11 0	I
		10	
		6	
•		8 00	2
• •		7 00000	2
		6 00	. 2
		5 000000	9
		4 000000000	6
		3 000000	7
• •		2 00000000	œ
• •		1 00000000	œ
000000000000000000000000000000000000000	000000000000000000000000000000000000000	0 00000000	œ
	TOTAL 60		TOTAL 60

Multiply stem leaf by 10**-02

61

TABLE C-5. Digit 4 Breadth.

CALIPER MEASUREMENTS

SILHOUETTE MEASUREMENTS

	MEAN = 0.03	STANDARD DEVIATION = 0.05	MEAN = 0.05	STANDARD DEVIATION = 0.04
Stem	Leaf	Frequency	Stem Leaf	Frequency
20	0		17 0	1
19			16	
18			15	
17			14 00	2
16			13 0	1
15			12 00	2
14			11 0	1
13			10	
12			000 6	
П			8 0000	4
10	000000000000000000000000000000000000000	13	7 000	
6			6 00000	5
• °C		-	5 0000	4
) r			4 000000	2
			3 000000	7
۰ رد			2 000000	9
7			1 0000000	2
t m			0 000000	7
2				
- 0	000000000000000000000000000000000000000	000000000000000000000000000000000000000		
		TOTAL 60		TOTAL 60
+ 	inly atom leaf hy 10:	**-02	 Multinlv stem leaf bv	10**-02
שחדר	thty acciu tear vy *v	70	HULLIPIJ OLEN LEGY VJ	

•

TABLE C-6. Digit 5 Breadth.

CALIPER MEASUREMENTS

SILHOUETTE MEASUREMENTS

	MEAN = 0.03	STANDARD DEVIATION = (0.05	MEAN = 0.04	STANDARD DEVIATION = 0.04	
Stem	Leaf	μ,	Frequency	Stem Leaf	Frequ	rency
20	0		1	20 0	1	
19				19	•	
18				18 0	1	_
17				17		
16				16		
15				15 0	1	
14				14		
13			_	13		
12			~~~	12 0	1	_
11				11		
10	000000000000000000000000000000000000000		17	10 00	2	~
6				0 6	1	
ø				8 00		~
2				7 00	2	~
9				6 0000	7	-+
Ś				5 000		~
4				4 00000		
e				3 0000000	8	~
2				2 0000000	8	~
٦				1 0000000000	11	_
0	000000000000000000000000000000000000000	000000000000000000000000000000000000000	42	0 000000000 0	10	~
		Ë	k			Ir
		101	AL 00		TOTAL 60	-
Mult	inlv stem leaf bv 10 ¹	**-02		Wultinly stam last by	10**_03	
	and a second sec	25	-	MULLIPIN SLEW LEGY VJ	7007	
TABLE C-7. Hand Length.

.

	PAPER	MEASUREMENTS		SILHOUET	TE MEASUREMENTS	
	MEAN = 0.13	STANDARD DEVIATION = 0.10		MEAN = 0.17	STANDARD DEVIATION = 0.18	
Sten	ı Leaf	Free	luency St	tem Leaf	Freque	ncy
40	0		 	54 0	1	
38				52		
36				50		
34			-	48		
32			-	95		
80	00000		5	74		
28			_	42		
26			_	t0 00000	5	
24				38		
22				36		
20	000000000000000000000000000000000000000		- 9	34		
18				32		
16				30		
14				28 0	1	
12				26 000000000000000000000000000000000000	17	
10	000000000000000000000000000000000000000	00000	4	24		
ø				22		
9				20		
4				18		
~ ~		_		16	F	
>	nnnnnnnnn	-			- 1	
				12 0000000000000000	C1	
				10		
				xò		
				, Q		
				t (
				2		
				0 0000000000000000000000000000000000000	14	
		TOTAL	0		TOTAL 60	
Mul	tiply stem leaf by 10	**-02	Σ	ultiply stem leaf by l	[0**-02	

•

•

Frequency 9110 2 ŝ ŝ 4 50 2 STANDARD DEVIATION = 0.09 SILHOUETTE MEASUREMENTS MEAN = 0.10000000000 000000 00000 Stem Leaf 0000 000 000 88 C 0 00 Q 4 0 2 Frequency 15 2 2 Q 14 21 STANDARD DEVIATION = 0.13 PAPER MEASUREMENTS 00000000000000 MEAN = 0.14000000 Stem Leaf 00 00

TOTAL 60

Multiply stem leaf by 10**-02

TOTAL 60

Multiply stem leaf by 10**-02

0 9

00 Q

TABLE C-8. Digit 1 Length.

TABLE C-9. Digit 2 Length.

PAPER MEASUREMENTS

,

SILHOUETTE MEASUREMENTS

	MEAN = 0.08	STANDARD DEVIATION = 0.	60	MEAN = 0.08	STANDARD DEVIATION = 0.06	
Stem	Leaf	핀	equency	Stem Leaf	Fre	guency
40	0			22 0 21		1
8 9 9				20 00		2
34				19 0		1
32				18 0		1
30	0		1	17 00		2
28				16 0		~
26				15 0		-
24				14 13 00		ŗ
22				13 00000		7 4
20	000000					<u> </u>
18				11 0		Ţ
16				10		1
14				000 6		ŝ
12				8 000000		6
10	000000000000000000000000000000000000000	0000000	27	7 00000		ŝ
œ				6		
9				5 00000		Ś
4				4 00000000		80
2				3 00000		5
0	000000000000000000000000000000000000000	0000	23	2 000000		9
)				1 0		
				0 0000		4
		TOTAI	60		TOTAL	0
Mult	inlv stem leaf bv 10 ³	**-02		Multiply stem leaf	bv 10**-02	
1101		20	-			

.

TABLE C-10. Digit 3 Length.

PAP	PER MEASUREMENTS	SILHO	UETTE MEASUREMENTS
MEAN = 0.05	STANDARD DEVIATION = 0.07	MEAN = 0.06	STANDARD DEVIATION = 0.05
Stem Leaf	Frequenc	2 Stem Leaf	Frequency
40 0 38	1	19 0 18	1
36 37		17 0 16 0000	t
32			
30 28		13 0	
26		12	
24 27		11	(**
22 30 0	-		י בי ו
18	4	8 00	2
16		7 00000	5
14		6 000000	~ 00
12 10 0000000000000000000000000000000000	23		2
· · · · · · · · · · · · · · · · · · ·		3 0000	4
¢		2 00000	ΥΩ ΓΩ
+ ~		0 0000	4
0 0000000000000000000000000000000000000	300000000000000000 35		
	TOTAL 60		TOTAL 60
Multiply stem leaf by	10**-02	Multiply stem leaf b	y 10**-02

TABLE C-11. Digit 4 Length.

PAPER MEASUREMENTS

•

SILHOUETTE MEASUREMENTS

	MEAN = 0.07	STANDARD DEVLATION =	0.08	MEAN = 0.06	STANDARD DEVIATION = 0.05
Stem	Leaf		Frequency	Stem Leaf	Frequency
30	00		7	19 0	1
28				18	
26				17	
24				16 0	1
22				15 0	Γ
20	000000		9	14 00	2
18				13 000	3
16			_	12 0	1
14				11 0	1
12				10 0000	4
10	000000000000000000000000000000000000000	000000	25	06	
œ				8 00000	5
9				7 0000	4
4				6 0000	4
7				5 000	ſ
0	000000000000000000000000000000000000000	0000000	27	4 000000	6
				3 00000000	6
				2 000000	9
				1 000	ŝ
				0 00000	
					•
		0L	TAL 60		TOTAL 60
Mult	iply stem leaf by 10	**-02		Multiply stem leaf by	10**-02

TABLE C-12. Digit 5 Length.

Frequency TOTAL 60 5 m 2 20145000 2 2 -STANDARD DEVIATION = 0.05 SILHOUETTE MEASUREMENTS Multiply stem leaf by 10**-02 MEAN = 0.0600000 0000 Stem Leaf 888 0 80 ~ 0 2 ŝ 9 6 19 18 Q 15 4 13 11 6 œ Q 2 Frequency 32 23 TOTAL 50 STANDARD DEVIATION = 0.08 PAPER MEASUREMENTS Multiply stem leaf by 10**-02 MEAN = 0.08Stem Leaf 000 0 0 4 0 0

TABLE C-13. Crotch 1 Height.

PAPER MEASUREMENTS

.

SILHOUETTE MEASUREMENTS

	MEAN = 0.18	STANDARD DEVIATION = 0.16	MEAN = 0.24	STANDARD DEVIATION = 0.17
Ster	Leaf	Frequency	Stem Leaf	Frequency
7	0	-	7 7	1
9			7 1	_
9	0	1	6	
Ś			64	1
ŝ	00000	5	55	-4
4			5 0	1
4	00	2	48	1
ო			4 02224	ŝ
e	0	1	3 6689	4
7			3 2	1
2	000000000000000000000000000000000000000	18	2 6666789	7
-			2 000334	ę
-	000000000000000000000000000000000000000	22 22	1 5666778889999999	16
0			1 4	1
0	0000000000	10	0 5567889	7
			0 0012234	7
		TOTAL 60		TOTAL 60
Mult	iply stem leaf by 10 ^a	k *−01	Multiply stem leaf by	10**-01

•

-

•

-

TABLE C-14. Crotch 2 Height.

Frequency TOTAL 60 10422001 STANDARD DEVIATION = 0.13 SILHOUETTE MEASUREMENTS Multiply stem leaf by 10**-01 001223344 5566677777888 0223344444 MEAN = 0.166667778899 0122344 Stem Leaf 569 58 03 1 δ 00 ŝ 4 e en NN Frequency ŝ 13 28 14 TOTAL 50 STANDARD DEVIATION = 0.09 PAPER MEASUREMENTS Multiply stem leaf by 10**-02 MEAN = 0.1200000 Stem Leaf

TABLE C-15. Crotch 3 Height.

	PAPER	: MEASUREMENTS	S I LHOU	ETTE MEASUREMENTS	
	MEAN = 0.14	STANDARD DEVIATION = 0.12	MEAN = 0.20	STANDARD DEVIATION = 0.15	
Sten	<u>ı Leaf</u>	Frequency	Stem Leaf	Frequenc	ζ
50	0	1	6 4	Ι	
48			2		
46			5		
44			4 779		
42			4 34	7	
69	0	1	3 55669	Υ Γ.	
8,2			0011173 5 555580	~ F	
f) ;					
3				t 4	
32			0000 1	*	
90	000000000	10	1 12223333	× ×	
28			0 55788899	8	
26			0 01122224444	11	
24					
77	000000000000000000000000000000000000000	13			
18					
16					
12					
10	000000000000000000000000000000000000000	19			
∞ • ∞					
) - t (
0 0	000000000000000000000000000000000000000	16			
		TOTAL 60		TOTAL 60	
Mul	tiply stem leaf by 1()**-02	Multiply stem leaf by	r 10**~01	

TABLE C-16. Crotch 4 Height.

Frequency 2 TOTAL 60 25 9 0 4 ø 9 9 3 Ξ STANDARD DEVIATION = 0.18 SILHOUETTE MEASUREMENTS Multiply stem leaf by 10**-01 0012344444 55778899 111134 MEAN = 0.240000133 666679 011344 5688 Stem Leaf 012 578 55 68 0 0 Frequency 10 TOTAL 60 2 ~ 9 φ Π 19 STANDARD DEVIATION = 0.16 PAPER MEASUREMENTS Multiply stem leaf by 10**~01 MEAN = 0.20000000000000 0000000000 000000000 000000 Stem Leaf 000 00 Q e 2 2 00

APPENDIX D

MULTIPLE ANALYSIS OF VARIANCE (MANOVA) RESULTS

TABLE D-1. Hand and Digit Breadths.

INTERACTION EFFECT OF INVESTIGATOR AND METHOD

CHARAC-			CHARAC	TERISTIC	VECTOR	V'EV=l	
TERISTIC ROOT	PERCENT	Hand Breadth	Digit 1 <u>Breadth</u>	Digit 2 <u>Breadth</u>	Digit 3 <u>Breadth</u>	Digit 4 Breadth	Digit 5 <u>Breadth</u>
0.1016	100.00	0.0153	-0.5448	-0.0348	-0.1373	0.6797	0.1388

HOTELLING-LAWLEY TRACE = 0.1016 F(6,231) = 3.91

TABLE D-2. Hand and Digit Breadths by Investigators.

INVESTIGATOR 1

CHARAC-			CHARAC	TERISTIC	VECTOR	V'EV=l	
TERISTIC		Hand	Digit l	Digit 2	Digit 3	Digit 4	Digit 5
ROOT	PERCENT	Breadth	Breadth	Breadth	Breadth	Breadth	Breadth
0.6132	100.00	-0.2564	0.2960	0.1760	0.8827	-0.2828	-0.0453

HOTELLING-LAWLEY TRACE = 0.6132 F(6,231) = 11.55

PROB > F = 0.0001

. .

INVESTIGATOR 2

CHARAC-			CHARAC	TERISTIC	VECTOR	V'EV=1	
TERISTIC		Hand	Digit 1	Digit 2	Digit 3	Digit 4	Digit 5
ROOT	PERCENT	Breadth	Breadth	Breadth	Breadth	Breadth	Breadth
0.6038	100.00	-0.1804	-0.4240	0.4022	0.3008	0.5336	0.0738

HOTELLING-LAWLEY TRACE = 0.6038 F(6,231) = 11.37

PROB > F = 0.0001

.

TABLE D-3. Intertrial Differences of Hand and Digit Breadths.

INVESTIGATOR EFFECT

CHARAC-			CHARAC	TERISTIC	VECTOR	V'EV=l	
TERISTIC ROOT	PERCENT	Hand Breadth	Digit l <u>Breadth</u>	Digit 2 <u>Breadth</u>	Digit 3 <u>Breadth</u>	Digit 4 <u>Breadth</u>	Digit 5 <u>Breadth</u>
0.0876	100.00	0.6519	1.1202	0.7643	1.1215	-0.2813	-0.0480

HOTELLING-LAWLEY TRACE = 0.0876 F(6,111) = 1.62

PROB > F = 0.1480

METHOD EFFECT

CHARAC-			CHARAC	TERISTIC	VECTOR	V'EV=1	
TERISTIC ROOT	PERCENT	Hand Breadth	Digit l Breadth	Digit 2 <u>Breadth</u>	Digit 3 <u>Breadth</u>	Digit 4 Breadth	Digit 5 <u>Breadth</u>
0.2942	100.00	0.1517	1.5200	-0.0862	1.3657	0.9143	0.2912

HOTELLING-LAWLEY TRACE = 0.2942 F(6,111) = 5.44

PROB > F = 0.0001

INTERACTION EFFECT OF INVESTIGATOR AND METHOD

CHARAC-			CHARAC	TERISTIC	VECTOR	V'EV=1	
TERISTIC ROOT	PERCENT	Hand Breadth	Digit l Breadth	Digit 2 <u>Breadth</u>	Digit 3 Breadth	Digit 4 <u>Breadth</u>	Digit 5 <u>Breadth</u>
0.0503	100.00	0.1900	-1.4377	0.9232	0.6770	0.1015	0.9709

HOTELLING-LAWLEY TRACE = 0.0503 F(6,111) = 0.93

TABLE D-4. Hand and Digit Lengths.

INVESTIGATOR EFFECT

CHARAC-			CHARAC	TERISTIC	VECTOR	V'EV=1	
TERISTIC ROOT	PERCENT	Hand Length	Digit 1 Length	Digit 2 Length	Digit 3 Length	Digit 4 Length	Digit 5 <u>Length</u>
0.0138	100.00	-0.0083	-0.1975	0.1279	0.1350	-0.1065	0.0774

HOTELLING-LAWLEY TRACE = 0.0138 ' F(6,231) = 0.53

PROB > F = 0.7835

METHOD EFFECT

CHARAC-			CHARAC	TERISTIC	VECTOR	V'EV=1	
TERISTIC ROOT	PERCENT	Hand Length	Digit l Length	Digit 2 Length	Digit 3 Length	Digit 4 Length	Digit 5 Length
0.1019	100.00	-0.0725	-0.2011	0.0420	0.1725	0.0056	0.1328

HOTELLING-LAWLEY TRACE = 0.101 F(6,231) = 3.92

PROB > F = 0.0009

INTERACTION EFFECT OF INVESTIGATOR AND METHOD

CHARAC-			CHARAC	TERISTIC	VECTOR	V'EV=1	
TERISTIC ROOT	PERCENT	Hand Length	Digit l Length	Digit 2 Length	Digit 3 Length	Digit 4 <u>Length</u>	Digit 5 Length
0.0382	100.00	-0.0626	0.0350	0.2551	-0.2458	0.1685	0.0272

HOTELLING-LAWLEY TRACE = 0.0382 F(6,231) = 1.47

TABLE D-5. Intertrial Differences of Hand and Digit Lengths.

INVESTIGATOR EFFECT

CHARAC-			CHARAC	TERISTIC	VECTOR	V'EV=1	
TERISTIC		Hand	Digit 1	Digit 2	Digit 3	Digit 4	Digit 5
ROOT	PERCENT	Length	Length	Length	Length	Length	Length
0.0632	100.00	0.3003	0.1655	0.0613	0.3686	0.0300	1.3440

HOTELLING-LAWLEY TRACE = 0.0632 F(6,111) = 1.17

PROB > F = 0.3275

METHOD EFFECT

CHARAC-			CHARAC	TERISTIC	VECTOR	V'EV=1	
TERISTIC ROOT	PERCENT	Hand Length	Digit l Length_	Digit 2 <u>Length</u>	Digit 3 Length	Digit 4 <u>Length</u>	Digit 5 <u>Length</u>
0.1052	100.00	-0.3838	0.4590	0.1774	-0.5950	0.3919	0.3467

HOTELLING-LAWLEY TRACE = 0.1052 F(6,111) = 1.95

PROB > F = 0.0796

INTERACTION EFFECT OF INVESTIGATOR AND METHOD

CHARAC-			CHARAC	TERISTIC	VECTOR	V'EV=1	
TERISTIC		Hand	Digit 1	Digit 2	Digit 3	Digit 4	Digit 5
ROOT	PERCENT	Length	Length	Length	Length	Length	Length
0.0465	100.00	0.4885	0.3705	0.1099	-0.6752	0.8166	0.4863

HOTELLING-LAWLEY TRACE = 0.046 F(6,111) = 0.86

TABLE D-6. Crotch Heights.

INVESTIGATOR EFFECT

CHARAC-		CHARA	CTERISTIC	VECTOR V	'EV=1
TERISTIC ROOT	PERCENT	Crotch l <u>Height</u>	Crotch 2 <u>Height</u>	Crotch 3 <u>Height</u>	Crotch 4 <u>Height</u>
0.0235	100.00	-0.1430	-0.0486	0.1217	0.0057

HOTELLING-LAWLEY TRACE = 0.0235 F(4,233) = 1.37

PROB > F = 0.2451

METHOD EFFECT

CHARAC-		CHARA	CTERISTIC	VECTOR V	'EV=1
TERISTIC ROOT	PERCENT	Crotch l Height	Crotch 2 <u>Height</u>	Crotch 3 <u>Height</u>	Crotch 4 <u>Height</u>
0.1027	100.00	-0.0706	-0.1544	0.0220	0.1910

HOTELLING-LAWLEY TRACE = 0.1027	F(4,233) = 5.98
---------------------------------	-----------------

PROB > F = 0.0001

INTERACTION EFFECT OF INVESTIGATOR AND METHOD

				-· -
TERISTIC	Croi	tch 1 Crotch	2 Crotch 3	Crotch 4
ROOT	PERCENT He	ight <u>Height</u>	Height	Height
0 0097	100.00 -0	1568 0 0695	-0 0331	0.0689
0 0097	100.00 -0.1	1568 0.0695	-0.0331	0.0

HOTELLING-LAWLEY TRACE = 0.0087 F(6,231) = 0.51

TABLE D-7. Intertrial Differences of Crotch Heights.

INTERACTION EFFECT OF INVESTIGATOR AND METHOD

CHARAC-		CHARAC	TERISTIC	VECTOR	V'EV=1
TERISTIC ROOT	PERCENT	Digit 1 <u>Crotch</u>	Digit 2 <u>Crotch</u>	Digit 3 <u>Crotch</u>	Digit 4 <u>Crotch</u>
0.1525	100.00	0.2900	0.5549	0.1327	0.5094

HOTELLING-LAWLEY TRACE = 0.1525 F(4,113) = 4.31

TABLE D-8. Intertrial Differences of Crotch Heights by Investigators.

.

INVESTIGATOR 1

CHARAC-		CHARAC	TERISTIC	VECTOR	V'EV=l
TERISTIC		Digit 1	Digit 2	Digit 3	Digit 4
ROOT	PERCENT	Crotch	Crotch	Crotch	Crotch
	100.00	0 //1/	0 (215	0 5101	0 (001
0.3233	100.00	0.4414	-0.6313	0+5121	0.4801

HOTELLING-LAWLEY TRACE = 0.3233 F(4,55) = 4.45

PROB > F = 0.0035

INVESTIGATOR 2

CHARAC-		CHARAC	CHARACTERISTIC		V'EV=1
TERISTIC		Digit l	Digit 2	Digit 3	Digit 4
ROOT	PERCENT	Crotch	Crotch	Crotch	Crotch
0.1198	100.00	0.1502	-1.0637	-0.3420	0.7534

HOTELLING-LAWLEY TRACE = 0.1198 F(4,55) = 1.65

PROB > F = 0.1755

_____ Investigator 1 Investigator 2

Figure D-2. <u>Trivariate plots of intertrial differences</u> of crotch heights.