

For conversion of SI metric units to U.S./British customary units of measurement consult ASTM Standard E380, Metric Practice Guide, published by the American Society for Testing and Materials, 1916 Race St., Philadelphia, Pa. 19103.

Cover: Relationship between friction factor f[']_p and Reynolds number Re'_p (see Fig. 4).

CRREL Report 88-14

September 1988

On the pressure drop through a uniform snow layer

Yin-Chao Yen

Ę

Prepared for OFFICE OF THE CHIEF OF ENGINEERS

Approved for public release; distribution is unlimited.

88 1122 024

Ť

UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE

L

REPORT DOCUMENTATION PAGE					Form Approved OMB No 0704-0188 Exp. Date Jun 30, 1986	
1a. REPORT SECURITY CLASSIFICATION Unclassified	1b. RESTRICTIVE MARKINGS					
2a. SECURITY CLASSIFICATION AUTHORITY		3. DISTRIBUTION	AVAILABILITY OF	REPORT		
2b. DECLASSIFICATION / DOWNGRADING SCHEDU		Approved distributi	for public re	lease;		
A DEPEOPMING OPCANIZATION REPORT NUMBER	(P/C)	E MONITORING		DOOT N		
CRREL Report 88-14	n(3)	S. MONITORING	URGANIZATION R	PORT N	JWREK(2)	
6a. NAME OF PERFORMING ORGANIZATION	6b. OFFICE SYMBOL	7a. NAME OF MC	7a NAME OF MONITORING ORGANIZATION			
U.S. Army Cold Regions Research	(If applicable)					
and Engineering Laboratory	CECRL	Office of	the Chief of	Engine	ers	
6c. ADDRESS (City, State, and ZIP Code)		7b. ADDRESS (Cit	y, State, and ZIP (Code)		
Hanover, New Hampshire 03755-12	290	Washingto	on, D.C. 203	14-100	0	
8a. NAME OF FUNDING/SPONSORING ORGANIZATION	8b. OFFICE SYMBOL (If applicable)	9. PROCUREMENT	INSTRUMENT ID	ENTIFICAT	ION NUMBER	
8c. ADDRESS (City. State, and 7IP Code)	L	10. SOURCE OF F		5		
		PROGRAM	PROJECT	TASK	WORK UNIT	
		ELEMENT NO.	^{NO} 4A1611	NO	ACCESSION NO	
		6.11.02A	02AT24	S	S 021	
11. TITLE (Include Security Classification)						
On the Pressure Drop Through a Un	iform Snow Layer	•				
12. PERSONAL AUTHOR(S) Yen, Yin-Chao						
13a. TYPE OF REPORT 13b TIME CO FROM	DVERED ಗರಿ	14 DATE OF REPO Septembe	RT (Year, Month, er 1988	Day) 15	PAGE COUNT	
16. SUPPLEMENTARY NOTATION	Theywords, A Theywords, A	ie Dies				
	Voper dia	Charles and the second				
17. COSATI CODES	18 SUBJECT TERMS (Continue on reverse	e if necessary and	identify	by block number)	
FIELD GROUP SUB-GROUP	Friction coeffic	cient Snow				
	Porous media.	-	Show		150 CW	
19. ABSTRACT (Continue on reverse if necessary	and identify by block n	number)		1		
An experimental study covering	a mass flow rate	ranging from	1.62 to 67.45	g/cm ²	-s and snow	
density varying from 0.377 to 0.472	g/ćm ³ has been c	conducted. Pro	essure drops i	ranging	from 0.012 to	
2.868 gf/cm ² were recorded. A plo	t of the friction f	actor fp vs Re	f (defined as	the cla	assical Reynolds	
The least-squares analysis resulted	in an avprossion of	good represen	1.095 for any	the exp	erimental data.	
the expression $f = 64/\text{Residevelope}$	ed for fluid flow t	hrough porque	media of ran	v, ili cu domlv	nacked metallic	
and nonmetallic materials of spheri	cal and nonspheric	cal shapes.	media or ran	uomiy	puekeu metunie	
•		•				
	5.13			1.70 +		
		21 ABSTRACT SEC	CURITY CLASSIFICA	ATION		
22a. NAME OF RESPONSIBLE INDIVIDUAL		226 TELEPHONE (include Area Code,	220 0	FFICE SYMBOL	
Yin-Chao Yen		603-646-4	100		ECRL-EC	
DD FORM 1473, 84 MAR 83 AP	Redition may be used un	itil exhausted	SECURITY		ATION OF THIS PAGE	
	All other editions are of	bsolete	UNCL	A SOLET	20	

UNCLASSIFIED

PREFACE

This report was prepared by Dr. Yin-Chao Yen, Research Physical Scientist, of the Civil and Geotechnical Engineering Research Branch, Experimental Engineering Division, U.S. Army Cold Regions Research and Engineering Laboratory. Funding for this research was provided by D.^A. Project 4A161102AT24, Research in Snow, Ice and Frozen Ground, Task SS, Properties of Cold Regions Materials, Work Unit 021, Synopsis of Cold Regions Environmental Heat Transfer.

Dr. Virgil Lunardini and Dr. Yoshisuke Nakano of CRREL technically reviewed the manuscript of this report.

The contents of this report are not to be used for advertising or promotional purposes. Citation of brand names does not constitute an official endorsement or approval of the use of such commercial products.

CONTENTS

	Pag
Abstract	i
Preface	ii
Nomenclature	iv
Introduction	1
Experimental setup and procedure	2
Experimental results	3
Discussion and conclusions	9
Literature cited	10

-

ILLUSTRATIONS

Figure

L

•

.

1. Schematic of the experimental setup	3
2. Pressure drop due to friction losses as a function of mass flow rate G	4
3. Relationship between friction factor f_p and Reynolds number Re_p	8
4. Relationship between friction factor f'_p and Reynolds number Re'_p	8

TABLES

Table	
1. Summary of derived parameters as a function of snow density	4
2. Coefficients <i>a</i> and <i>b</i> and correlation coefficient γ	5
3. Summary of experimental results and calculated data	6

~

NOMENCLATURE

ī

a	constant in eq 16
Α	cross-sectional area
b	fissure width, also constant in eq 16
B	constant in eq 6, 7 and 8
a + b	fissure-to-fissure spacing
d	diameter of sphere
D	diameter of conduit
Dp	nominal particle diameter
f	friction factor defined as $2g_c D(-\Delta p)_{fQ}/LG^2$
$f_{\rm p}$	friction factor for porous media defined as
	$\frac{2g_{\rm c}D(-\Delta p)_{\rm f}\varrho}{F_{\rm f}LG^2}$
f'_{p}	friction factor defined in eq 18
$\dot{F}_{\rm f}$	friction factor coefficient
F _{Re}	Reynolds number factor
g	gravitational constant
gc	conversion factor
G	mass flow rate
L	sample length
lw _f	frictional losses per unit mass
Ν	number of tubes, in cross-sectional area A
p	pressure
$(-\Delta p)_{\rm f}$	pressure drop due to friction losses
<i>r</i> ₀	radius of capillary tube
Re	Reynolds number defined as $D_Q u/\mu$
Re _l	local pore Reynolds number
Rep	Reynolds number for porous media defined as $D_{pQ}vF_{Re}/\mu$
Re′	Reynolds number defined in eq 19
x,y,z	Cartesian coordinates
и	velocity component in x-direction
v	velocity component in y-direction
w	velocity component in z-direction
μ	viscosity
Q	density
t, to	porosity, highest porosity
δ	surface roughness
γ	correlation coefficient
ý.	sphericity

On the Pressure Drop Through a Uniform Snow Layer

YIN-CHAO YEN

INTRODUCTION

Fluid flow through a bed of contiguous particles is distinct from the flow through a conduit. Since its passage is between the particles of the bed, the flow is dependent upon the porosity of the bed or column and diameter, sphericity, orientation and roughness of the particles. The actual linear velocity of the fluid through the passages in the porous medium may be expressed in terms of "superficial" velocity (computed as the rate of flow of fluid through the entire undisturbed cross-sectional area of the bed).

The most frequently used model for volumeaveraged flow through a porous medium is Darcy's flow model. In one-dimensional flow, it can be expressed by

$$u = \frac{K}{\mu} \quad \frac{\partial p}{\partial x} \tag{1}$$

where u = velocity component in x-direction

- K = permeability of the medium
- $\mu = \text{viscosity}$
- p = pressure.

For three-dimensional flow in the presence of a gravitational acceleration vector $\mathbf{g}(g_x, g_y, g_z)$, eq 1 can be written as

$$\mathbf{v} = \frac{K}{\mu} \left(-\nabla p + \varrho \mathbf{g} \right) \tag{2}$$

where v is the velocity vector, ρ is density and K, usually expressed in units of length squared (i.e. m², cm², or ft²), can be determined by measuring the pressure drop and the flow rate. Considering the pores as a bundle of parallel capillary tubes of radius r_0 or the pores as a stack of parallel capillary fissures of width b and fissure-to-fissure spacing a+b, Bear (1972) derived the following expressions:

$$K = \frac{\pi r_0^* N}{8A} \tag{3}$$

and

$$K = \frac{b^{3}}{12(a+b)}$$
(4)

where N is the number of tubes contained on a cross section of area A.

Kozeny (1927), on the other hand, considered the porous medium as a collection of solid spheres and arrived at the following permeability expression:

$$K \sim \frac{d^2 \epsilon^3}{(1-\epsilon)^2} \tag{5}$$

where ϵ is the porosity (the ratio of void volume to the total volume of the porous medium), and *d* is the diameter of the spheres. Darcy's flow model is believed to be valid as long as the so-called local pore Reynolds number Re₁ based on local volume-averaged speed [i.e. $(u^2 + v^2 + w^2)^{\frac{1}{2}}$] and $K^{\frac{1}{2}}$ are smaller than one. For Re₁ greater than one, modification of this model has been proposed by Forschheimer (1901) as

$$- \frac{\partial p}{\partial x} = \frac{\mu}{K} u + B \varrho u^2.$$
 (6)

For three dimensions and in the presence of body acceleration, this modification becomes

$$\mathbf{v} + \frac{BeK}{\mu} \quad \mathbf{v} \cdot \mathbf{v} = \frac{K}{\mu} \left(-\nabla p + \varrho \, \mathbf{g} \right). \tag{7}$$

Ward (1964) suggested the value of B as

$$B = -0.55 K^{\frac{1}{2}}.$$
 (8)

for Re₁ exceeding approximately 10. Ergum (1952),

after conducting extensive measurements on gas flow through columns of packed spheres, sands and pulverized coal, provided the correlations for K and B as

$$K = \frac{d^2 \epsilon^3}{150(1-\epsilon)^2} \tag{9}$$

and

$$B = \frac{1.75(1-\epsilon)}{d\epsilon^3}$$
(10)

The loss due to friction accompanying the flow through porous media can be derived from expressions used for fluid flow through conduits such as

$$f = \frac{2g_{\rm c}Dlw_{\rm f}}{Lv^2} = \phi\left[\left(\frac{\delta}{D}\right)\left(\frac{D\varrho u}{\mu}\right)\right] \tag{11}$$

where f = frictional loss factor

- g_c = conversion factor (32.17 poundals per pound in English units)
- D = diameter of the conduit
- L =length of the conduit
- $lw_{\rm f}$ = frictional energy loss per unit mass δ = surface roughness
- u = superficial velocity, i.e. a linear velocity computed on the basis of the total crosssectional area.

In the case of fluid flow through a porous medium, the Reynolds number will be modified to

$$\operatorname{Re}_{p} = \frac{D_{p} \varrho \, u F_{\mathrm{Re}}}{\mu} \tag{12}$$

where D_p is the diameter of the particle, F_{Re} is a factor dependent on the value of porosity ϵ and sphericity ψ (which is defined as the area of the sphere having the same volume as the particle divided by the area of the particle) of the medium. The friction factor f_p is adjusted to include a factor F_f also dependent on the values of ϵ and ψ as

$$f_{\mathsf{p}} = \frac{2g_{\mathsf{c}}D_{\mathsf{p}}/w_{\mathsf{f}}}{Lv^2F_{\mathsf{f}}} = \frac{2g_{\mathsf{c}}D_{\mathsf{p}}(-\Delta p)_{\mathsf{f}}\varrho}{F_{\mathsf{f}}LG^2}.$$
 (13)

When all particles are of the same size, the screen size (D_{avg}) may be used. For mixed sizes, D_p is the mean surface diameter given by

$$D_{\rm p} = \left[\frac{\Sigma M_{\rm i}/D_{\rm i}}{\Sigma M_{\rm i}/D_{\rm i}^2}\right]^{V_{\rm i}}$$
(14)

where M_i is the mass fraction of a given particle size and D_i is the diameter of particles in each size fraction taken as the arithmetic average of the screen openings passing and retaining the particles. The value of F_{Re} and F_{f} can be evaluated from the graph given in Brown et al. (1953) and presentcd as functions of ϵ and ψ . The porosity is closely related to the sphericity. However, different porosities are expected with particles of the same shape through variations in spatial arrangement. Consequently both porosity and sphericity are required to define the porous medium. Although the sphericity could theoretically be calculated from the dimensions of the particle, this is often difficult or virtually impossible for randomly packed beds of uniform-sized particles. The sphericity is found to be a unique function of porosity with a slight variation due to the nature of packing (i.e. loose, normal or dense).

EXPERIMENTAL SETUP AND PROCEDURE

The test apparatus is identical to the one used in determining the effective thermal conductivity and water vapor diffusivity of the snow (Yen 1962, 1963). Figure 1 is a schematic of the experimental setup. The entire apparatus, with the exception of the manometer, the wet-test meter (to measure the air flow rate) and the Leeds and Northrup potentiometer (placed in the adjacent corridor maintained at ordinary room temperature), was situated in a refrigerated room kept at approximately -20°C. Coldroom air was compressed and then passed through a tank to minimize the fluctuations of the air pressure. A pancake-type pressure regulator was used to obtain the desired flow rate. Since the coldroom could only be maintained to within $\pm 1^{\circ}$ C, the air was passed through a constant temperature bath where the temperature could be maintained at slightly above room temperature to an accuracy of ± 0.05 °C.

The Dewar flask, 6.5 cm 1.D., 15.24 cm in height and made of double-walled glass tubing with the annular space being evacuated and the internal surface plated with silver, contained the snow sample and was enclosed in an aluminum casing equipped with a flange at both ends. The casing was made so that the flask fitted tightly into it, and the flask was coated with a low-temperature silicone grease before assembly to prevent any possible air leakage. As soon as a steady state was established, the water temperature at the wet-test meter was recorded with a Rubican potentiometer

Figure 1. Schematic of the experimental setup.

accurate to ± 0.05 °C along with the absolute barometric pressure. The wet-test meter was checked by the standard displacement method and was found to be accurate within 20 cm³ out of 3000 cm³ ($\pm 0.7\%$). The displacement capacity of the meter is 300 cm³ per revolution with 300 divisions on the dial. The snow samples for the experiments covered a range of sieve numbers, 5-10, 10-12, 14-16, 18-20 and 25-30, with corresponding nominal snow particle diameters of 0.219, 0.182, 0.129, 0.092 and 0.065 cm, respectively. The snow sample density was determined by recording the amount of snow poured into the flask to be flush with the sample container (i.e. ρ_s = weight of snow/volume of the sample container). Several determinations were made for all the specific sieve fractions and an arithmetic average snow density was determined.

EXPERIMENTAL RESULTS

A great number of experimental runs were conducted for each snow density covered in the study.

Snow density, _{Qs} (g/cm ³)	Snow porosity, +	Snow particle diameter, D _p (cm)	Sphericity of snow particle, \$	Reynolds number factor, F _{Re}	Friction coefficient, F _f
0.377	0.589	0.219	0.55	43.5	830
0.387	0.578	0.182	0.55	45.0	950
0.427	0.534	0.129	0.60	47.0	1150
0.447	0.512	0.092	0.65	47.0	1150
0.472	0.485	0.065	0.70	47.0	1150

Table 1. Summary of derived parameters as a function of snow density.

Table 1 summarizes the derived parameters as function of snow density. The porosity ϵ is evaluated as

$$\epsilon = \frac{\varrho_i - \varrho_s}{\varrho_i} \tag{15}$$

where ϱ_i is the ice density, usually taking a value of 0.917 g/cm³. The snow particle nominal diameter D_p was evaluated by arithmetically averaging the two sieve openings. The sphericity ψ , Reynolds number factor F_{Re} and coefficient F_f are taken from the graphs given in Brown et al. (1953). Since the snow density has only slightly more than 25% variation, there is merely a weak variation at the most in values of ψ and F_{Re} . However, the values of F_f were rather sensitive to the changes of ϵ and ψ . Figures 2a and b show the variation of pressure drop $(-\Delta p)_f$ vs the mass flow rate G (g/cm²-s). It can be seen that under the combination of experimental conditions (i.e. for the range of snow density and the variation of the mass flow rate covered in this study) a linear relationship exists between $(-\Delta p)_f$ and G. The coefficients a and b of the linear expression

$$(-\Delta p)_{\rm f} = a + b G \times 10^{-4}$$
 (16)

were determined from least-squares analysis and are summarized in Table 2 along with the correlation coefficients. Theoretically, the values of ashould be zero, and small values of a are indicative of the accuracy of the experimental measurement. However, for practical purposes, one can hardly

a. For $\rho_s = 0.377$, 0.387, 0.427 and 0.447 g/cm³.

Figure 2. Pressure drop due to friction losses as a function of mass flow rate G.

b. For $\rho_s = 0.472 \text{ g/cm}^3$.

Figure 2 (cont'd).

Table 2. Coefficients a and b in $(-\Delta p)_i = a + b G \times 10^{-4}$ and coerrelation coefficient γ .

Snow	Coeffi			
density, _{Qs} (g/cm ³)	a (gf*/cm²)	b (gf+s/g)	Correlation coefficient, γ	
0.377	3.671 × 10⁻⁴	31.267	0.9492	
0.387	1.582×10^{-1}	39.382	0.8130	
0.427	3.137 × 10 ⁻¹	88.425	0.8681	
0.447	8.854 × 10-1	176.95	0.9933	
0.472	8.478 × 10 ⁻²	413.20	0.9504	

* gf-gram-force.

detect that the lines in Figures 2a and b do not pass through the origin.

Table 3 summarizes the experimental data and the calculated values of Re_p (defined as D_pGF_{Re}/μ) and friction factor f_p [defined in eq 15 as $f_p = 2g_cD_p(-\Delta p)_f\varrho/F_fLG^2$]. An average value of μ based on the arithmetic mean of the inlet and outlet air temperature was used. The mass flow rate was determined on the basis of the exit air temperature and the prevailing atmospheric pressure. Figure 3 shows the variation of f_p versus Re_p. The results of a least-squares analysis of the results can be expressed by

$$f_{\rm p} = \frac{118}{{\rm Re}_{\rm p}^{1.095}} \tag{17}$$

with a rather high correlation coefficient of 0.9688. Equation 17 gives a value of f_p approaching that of $f_p = 65/\text{Re}_p$ as Re_p approaches the limit of the laminar flow region (say $\text{Re}_p = 400$) recommended for randomly packed particles (metallic or nonmetallic cylinders, rings, spheres, etc.).

Another way to represent the experimental results is by expressing the friction factor f'_p and the Reynolds number Re'_p, respectively, by

$$f'_{\rm p} = \frac{f_{\rm p} F_{\rm f} \epsilon^3}{2(1-\epsilon)} \tag{18}$$

and

$$\operatorname{Re}_{p}^{\prime} = \frac{\operatorname{Re}_{p}}{F_{\operatorname{Re}}(1-\epsilon)} .$$
⁽¹⁹⁾

The least-squares analysis of f'_p and Re'_p can be represented by

$$f'_{\rm p} = \frac{{\rm Re}_{\rm p}}{{\rm Re}_{\rm p}^{0.9093}}$$
(20)

but only with a moderate correlation coefficient of 0.8385. Figure 4 shows a plot of f'_p vs Re'_p, and it can be clearly seen that the value f'_p has a weak dependence on the snow density or porosity.

G × 10.4	(-Δp) _f	Re	f,	G × 70**	ر(dc-)	Re	f _n
(g/cm² s)	(gf/cm²)	(D _p F _{Re} G/μ)	/28 Dp(-2p) /Q/FrLG'/	(g/cm² s)	(gf/cm ²)	(D _p F _{Re} G/µ)	/2g, D, (- 2p), e/F, LG'/
						· · · · · · · · · · · · · · · · · · ·	
	a = 0.3	77 ø/cm³. D = 0	219 cm	16 73	0.069	82 7	0.82
	¥3 - 010	,, ^B , cm , ^D ^b = 0		19.43	0.075	95.9	0.66
				20.94	0.096	103.5	0.73
13.11	0.048	/5.1	1.28	29.20	0 1 18	144 5	0.46
14.02	0.051	80.3	1.19	25.50	0.105	176.2	0.54
9.11	0.032	52.2	1.77	23.50	0.103	154.2	0.54
7.57	0.027	43.3	2.16	20.92	0.083	103.4	0.42
15.09	0.051	86.4	1.03	20.92	0.083	105.4	0.83
16.20	0.053	92.8	0.92	23.03	0.061	123.7	0.41
17.80	0.062	102.0	0.90	0.77	0.051	43.2	2.21
19.52	0.062	112.0	0.74	9.07	0.051	47.0	1.81
24.70	0.085	142.1	0.64	10.73	0.061	52.9	1.77
27.09	0.088	155.7	0.55	12.39	0.068	62.1	1.43
25.09	0.078	144.2	0.57	30.93	0.150	153.0	0.52
22.68	0.070	130.4	0.62	29.72	0.135	147.1	0.51
21.47	0.068	123.5	0.68	21.50	0.091	106.3	0.66
19.98	0.067	114.9	0.77	20.26	0.089	100.2	0.72
5.66	0.019	32.4	2.72	19.46	0.083	96.3	0.73
9.70	0.033	55.6	1.61	19.33	0.081	95.5	0.72
11.63	0.034	66.6	1.15	18.33	0.077	90.6	0.76
14.14	0.041	81.0	0.94	16.84	0.072	83.2	0.85
15.82	0.052	90.9	0.95	15.94	0.066	78.8	0.86
19.77	0.057	113.5	0.67	27.80	0.106	137.6	0.46
21.75	0.068	124.8	0.66	22.72	0.088	112.3	0.57
24.02	0.075	137.9	0.59	17.50	0.102	86.0	1.11
21.91	0.066	125.9	0.63	20.93	0.123	86.5	0.94
10.61	0.031	60.9	1.26	23.27	0.137	115.0	0.84
3.71	0.012	21.3	4.00	25.54	0.145	126.3	0.74
6.84	0.024	39.1	2.35	27.27	0.157	134.9	0.70
16.60	0.058	95.0	0.96	11.75	0.070	57.8	1.69
17.70	0.055	101.3	0.80	14.24	0.083	70.2	1.36
20.93	0.070	119.8	0.73	15.41	0.085	71.5	1.19
22.57	0.075	129.1	0.67	17.52	0.096	86.2	1.04
16.02	0.051	91.7	0.91	18.20	0.100	89.8	1.01
14.70	0.047	84.0	1.00	6.39	0.044	31.5	3.60
13.29	0.042	75.9	1.08	8.00	0.048	39.4	2.50
18 36	0.054	105.2	0.73	10.43	0.063	42.8	1.93
6.23	0.022	35.7	2 60	11.89	0.065	48.8	1.53
7.86	0.024	45 1	1 78	3.39	0.026	16.7	7.56
10.70	0.029	61.5	1.16	13.41	0.076	66.1	1.41
12 34	0.038	70.9	1 14				
15 45	0.038	89.0	0.90		0.43		130
11.70	0.035	67.3	1.17		0. = 0.42	$r_{\rm g/cm}$, $r_{\rm p} = 0$.	129 cm
A 66	0.035	26.7	3.17				
12.36	0.015	76.0	0.95	3.84	0.050	14.1	6.63
15.50	0.037	70.9 90.4	0.33	16.95	0.190	62.5	1.29
19.34	0.036	104.0	0.72	9,48	0.107	34.9	2.33
10.20	0.040	104.9	0.64	4.11	0.050	15.1	5.77
19.39	0.031	111.0	0.82	5.00	0.059	18.3	4.61
				2.48	0.034	9.1	10.82
	e, = 0.38	$87 \text{ g/cm}^3, D_p = 0$.182 cm	18.04	0.201	66.6	1.21
		•		10.16	0.110	37.4	2.08
9,70	0.053	47 8	1 88	24.38	0.246	90.1	0.81
10.69	0.056	52 7	1.63	16.02	0.160	59.1	1.22
12.92	0.070	61.9	1.05	2.91	0.041	10.7	9.47
28.83	0.137	142 7	0.55	28.43	0.262	105.0	0.63
29 41	0.137	145 6	0.35	26.52	0,240	98.1	0.67
30 49	0.142	142.0	0.35	21.64	0.198	79.9	0.83
23 40	0.144	114.5	0.32	11.54	0.144	42.5	2.11
13 80	0.10/	110.4	0.00	7.39	0.099	27.1	3.55
1.07	0.000	00.0	1.04				

Table 3. Summary of experimental results and calculated data.

Table 3 (cont'd).

G × 10 *	$(-\Delta p)_{j}$	Re DE G (a)	f_p	G × 10	<i>ر</i> (−∆p)ر	Re	f _p
		PI ReCI/10	128 c Dp(-30) (0/ F) CO7	(g/cm ² s)	(gj/cm·)	$(D_p F_{Re} G/\mu)$	/2g,Dp(1p)fe/FfLG'/
5.02	0.074	18.4	5.73		es = 0.447	g/cm^3 , $D_n = 0.0$	92 cm
9.52	0.127	35.0	2.74			• • • •	
29.18	0.319	107.8	0.73	2 38	0.053	6.3	12.05
22.57	0.243	83.3	0.93	3 50	0.033	0.2	13.05
19.32	0.211	71.2	1.11	8.00	0.069	9.3	9.62
34.16	0.327	126.3	0.55	37 03	0.100	20.8	3.60
30.59	0.290	113.0	0.61	30.71	0.399	83.8	0.81
27.75	0.265	102.5	0.67	30.71	0.500	80.3	0.83
14.43	0.149	53.2	1.40	27.87	0.344	/8.2	0.84
15.43	0.150	56.9	1.23	20.04	0.307	75.0	0.86
25.50	0.212	94.2	0.64	13 34	0.425	04.9	0.96
26.98	0.226	99.7	0.61	15.34	0.224	34.8	1.75
24.68	0.202	91.2	0.65	10,95	0.281	44.2	1.37
6.90	0.096	25.4	3.94				
22.68	0.321	83.8	1.22		$\rho_{\rm s} = 0.472$	g/cm ³ , <i>D</i> _n = 0.0	65 cm
9.19	0.135	33.8	3.12			~ •	
11.91	0.172	43.9	2.37	7 79	0 279	14.2	< 12
7.98	0.121	29.4	3.71	13.69	0.377	14.3	6.13
19.77	0.266	73.0	1.33	74 10	0.007	23.2	3.50
21.74	0.290	80.3	1.20	24.30	0.617	44.8	1.86
27.53	0.357	101.8	0.92	22.21	0.017	25.2	3.23
22.46	0.271	83.0	1.05	14.60	0.909	41.1	1.79
23.41	0.283	86.5	1.01	14.00	0.553	26.9	2.55
26.10	0.310	96.6	0.89	2.04	0.140	5.2	17.06
27.37	0.320	101.3	0.84	1.02	0.098	3.0	36.89
28.64	0.311	106.0	0.74	21.78	1.142	40.2	2.36
29.31	0.316	108.5	0.72	34.31	1.755	63.5	1.46
32.42	0.313	120.1	0.58	40.89	2.122	75.7	1.25
36.38	0.340	134.8	0.50	40.75	2.016	75.4	1.19
38.82	0.358	144.0	0.46	38.14	1.8/1	70.6	1.26
26.10	0.221	96.6	0.63	10.41	0.526	19.1	4.77
20.61	0.219	76.2	1.01	44.89	2.098	83.1	1.02
3.02	0.035	11.1	7.50	42.66	1.976	79.0	1.07
18.97	0.202	70.1	1 10	40.72	1.868	75.4	1.11
20.60	0.220	76.2	1.01	7.65	0.364	14.1	6.10
23.36	0.228	86.4	0.87	45.72	2.020	84.7	0.95
17.68	0.164	65 3	1.03	30.26	1.320	56.0	1.42
25.68	0.236	95.1	0.70	31.10	1.326	57.5	1.35
26.73	0.248	99.0	0.68	31.58	1.348	58.4	1.33
28.09	0.238	104.0	0.59	67.45	2.862	125.2	0.62
28.82	0.250	104.0	0.59	52.32	2.175	97.1	0.78
30.94	0.258	114 5	0.57	17.90	0.710	33.0	2.18
24.60	0.201	91.0	0.55	47.02	1.828	87.1	0.81
		/1.0	0.02	45.59	1.753	84.5	0.83
				49.67	1.879	92.0	0.75
				55.40	2.066	102.8	0.66

7

.....

Figure 3. Relationship between friction factor f_p and Reynolds number Re_p .

Figure 4. Relationship between friction factor f'_p and Reynolds number Re'_p .

DISCUSSION AND CONCLUSIONS

As shown in Table 2, the pressure drop through the snow layer for snow with density ranging from 0.377 to 0.472 g/cm³ can be fairly well represented linearly with the superficial mass flow rate G. The least-squares analysis for each snow density resulted in correlation coefficients from a moderate value of 0.8130 to a rather high value of 0.9933. From Figure 3, it can be seen that the air flow encounters higher resistance through snow as compared to gas flow through randomly packed porous columns of metallic and nonmetallic spherical and nonspherical materials (in the latter case, there was no phase change or mass transport accompanying the flow). Since snow is very sensitive to temperature, its physical properties are constantly changing through metamorphism, which creates ice bonds among the snow grains even under isothermal conditions through the process of sintering.

Since the experiment was set up to evaluate the thermal conductivity and vapor diffusivity of the snow, a moderate temperature gradient was imposed, even though the air entering at the top of the column was saturated to prevent or to limit the mass transport between the snow grains and the fluid stream as it flowed through the interconnected pores. Though a thermal equilibrium is assumed between the snow grain and the air stream as it passes the grain surface, the air still picks up the water vapor as it flows downward and comes into contact with snow, which was maintained at higher temperature at the exit. The moist snow must exhibit more drag or stickiness to the air flow than the dry and rather smooth surfaces of metallic and nonmetallic surfaces.

In laminar flow, equations of the same form may be used for the friction loss through the porous medium as for the fluid flow through the conduits (i.e. the pressure drop due to friction losses through a porous medium) is

$$(-\Delta p)_{\rm f} = \frac{32L\,\nu\mu F_{\rm f}}{g_{\rm c}D_{\rm p}^2F_{\rm Re}} = \varrho \,l\,w_{\rm f} \tag{21}$$

and for flow through a conduit is

$$(-\Delta p)_{\rm f} = \frac{32 L v \mu}{g_{\rm c} D^2} = \varrho l w_{\rm f}.$$
 (22)

In both flows, the friction factor can be represented by

$$f_{\rm p} = \frac{64}{{\rm Re}_{\rm p}}$$
, $f = \frac{64}{{\rm Re}}$. (23)

The only difference between f_p , Re_p and f, Re is that f_p and Re_p contain factors of F_f and F_{Re} , respectively, in addition to the parameters used in defining f and Re. By rewriting eq 21, i.e. by solving for velocity u, it follows that

$$u = \frac{g_c D_p^2 F_{Re}}{32 F_f} \quad \frac{\varrho l w_f}{L \mu} = K \quad \frac{\varrho l w_f}{L \mu}$$
(24)

in which K is the air permeability of snow used in eq 1, i.e.

$$K = \frac{g_{\rm c} D_{\rm p}^2 F_{\rm R} \epsilon}{32 F_{\rm f}} . \tag{25}$$

From this, the value of K can be calculated without performing an experiment, if the dimensionless factors F_{Re} and F_{f} and the particle dimensions are known. The value of K is directly proportional to D_{p}^{2} but implicitly K depends on porosity and sphericity through the factors of F_{Re} and F_{f} .

Bender (1957) reported an extensive study on air permeability of snow and pointed out that the air flow is laminar for velocities of less than 5 cm/s for fine-grained snow (less than 0.8 mm in diammeter); 2 cm/s for medium-grained snow (0.8 to 1.2 mm in diameter); and 1 cm/s for large-grained snow. He reported that all of his results, as long as the flow is in laminar region, can be represented by a single relationship, i.e.

$$K = \frac{16.8 D_p^{1.63} \epsilon_{\epsilon_0}}{\epsilon_0 - \epsilon}$$
(26)

where K = air permeability expressed in cm/s

 $D_{\rm p}$ = average snow grain size in mm

 ϵ_0 = highest porosity (i.e. when the packing is in loosest state) attainable for the given shape of the snow particle.

Since no specific experimental data were given in terms of pressure gradient, volumetric flow rate or superficial velocity, or porosities ϵ and ϵ_0 , it was not possible to compare the results from eq 25 and 26. Furthermore, snow is so sensitive to the temperature and aging through metamorphism that it will be indeed difficult to reproduce experimental results even if identical samples and measurement techniques are used. It can be concluded from this study that the pressure drop or friction loss of air flow through a uniform snow layer can be correlated in terms of f_p and Re_p with a high correlation coefficient (0.9688) or in modified form of f'_f and Re'_p with a moderate correlation coefficient of 0.8385. In view of the complex processes of mass exchange and physical structure transformation taking place even under isothermal conditions, the results presented should provide useful information in predicting energy requirements for air to penetrate a uniform snow layer of various snow densities.

LITERATURE CITED

Bear, J. (1972) Dynamics of Fluid in Porous Media. New York: American Elsevier.

Bender, J.A. (1957) Air permeability of snow. USA Snow, Ice and Permafrost Research Establishment, Research Report 37. AD 158 193.

Brown, G.G. et al. (1913) Unit Operations. New York: John Wiley & Sons, fourth printing.

Ergum, S. (1952) Fluid flow through packed columns. *Chemical Engineering Progress*, **48**(2): 89-94.

Forschheimer, P.H. (1901) Zeitschrift Ver. Dtsch. Ing., 45: 1782–1788.

Kozeny, J. (1927) Uber kapillare Leitung des Wassers in Boden Sitzber. Akad. Wiss. Wien, Math-Naturw. Kl., vol. 136, Abt Ila, p. 277.

Yen, Y.-C. (1962) Effective thermal conductivity of ventilated snow. *Journal of Geophysical Research*, 67(3); 1091-1097.

Yen, Y.-C. (1964) Heat transfer by vapor transfer in ventilated snow. *Journal of Geophysical Re*search, 68(4): 1093-1101. A facsimile catalog card in Library of Congress MARC format is reproduced below.

Yen, Yin-Chao

On the pressure drop through a uniform snow layer / by Yin-Chao Yen. Hanover, N.H.: U.S. Army Cold Regions Research and Engineering Laboratory; Springfield, Va.: available from National Technical Information Service, 1988.

iv, 17 p., illus.; 28 cm. (CRREL Report 88-14.)

Bibliography: p. 10.

1. Fluid flow. 2. Friction coefficient. 3. Porous media. 4. Pressure.

5. Snow. I. United States Army. Corps of Engineers. II. Cold Regions Research and Engineering Laboratory. III. Series: CRREL Report 88-14.

.