
U C Frir COPT - •

' NAVAL POSTGRADUATE SCHO(L
Moterey, Califonia

j,' STATES 
4 4

00
A DTIC

SELECTEh

SNOV 1 5 MD6Z

THESIS S H D

PRELIMINARY WORK
ON THE

COMMAND AND CONTROL WORKSTATION
OF THE FUTURE

by

Frank E. Harris

June 1988

Thesis Advisor: Michael J. Zyda

Approved for public release;
Distribution is unlimited

*Original coutnn oole
100 will tndl u&a 88 11 15 006
white,



UNCLASSIFIED
SECURPTY C %ASS .C '' "O S 'GE

REPORT DOCUMENTATION PAGE ,, .
la REPORT SECURITY CLASSIFCATION lb RESTRICTIVE MARKINGS

Unclassified
2a SECURITY C..ASSIF;CATiON AuTHORTY 3 DISTRIBUTION'AVAILABILITY OF REPORT

b DApproved for public release;
2b DECLASSIFICATIONDOWNGRADING SCHEDULE Distribution is unlimited

0 4 PERFORMING ORGAN!ZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S)

6a NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATION
(if ap licable)

Naval Postgraduate School Code 52-CS Naval Postgraduate School

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Monterey, California 93943-5000 Monterey, California 93943-5000

Ba. NAME OF FUNDING. SPONSORING 8b OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

8c ADDRESS(City, State, anid ZIP Code) 10 SOURCE OF FUNDING NUMBERS
+PROGRAM PROJECT TASK [WORK UNIT

'4i:. J ELEMENT NO. NO NO ACCESSION NO

11 TITLE (Include Securit) Classification)

PRELIMINARY WORK ON THE COMMAND AND CONTROL WORKSTATION OF THE FUTURE

12 PERSONAL AUTHOR(S) (,-

Harris, Frank E.
13a TYPE OF REPORT '3b TIME COVERED 114. DATE REPORT (Year, Month, Day) 15 PAGE COUNT

Master's Thesis ;:ROM TO 1988/ June 153
16 SUPPLEMENTARY NOTATION t
The views expressed in this thesis are those of the author and do not reflect
the official policy or position of the Dep artment of Defense or the U.S. Goveln-
17 COSATI CODES 18 SUBJECT TERMS (ContiI(ue on revese if necessary and identify by block number) mett

FIELD GROUP SUB-GROUP Windows, multiple windows, 3-D animation,

J DMA Terrain Elevation Data, user interface.

Y9 ABSTRACT (Cor,tinue on reverse if necessary and identify by block nomber)
--!The modern! tactical commander has a flood of sensory and intelligence infor
mation at his disposal. A tool is required to sort that information, allowin
the commander to choose the information that is most pertinent to the decisio s
he must makd at that time. This e i-f the preliminary work on the command
and control,.workstation of the future. The focus of this effort is in two ar aE
One is a user interface using multiple windows and a mouse controlled cursor.
This interface allows the user to set up the display to give him the informat or
he needs in a way that is easy for him to interpret. The second focus is pre
liminary work on a real-time display that presents the user with a three-dime-
sional picture of the situation. This initial display uses three resolutions

t to display large areas of Defense Mapping Agency Digital Terrain Elevation
Data with near real time animation. ., . , ; iJt." ,( ' "

20 D STRIBUTiON,'AVALABLITY OF ABSTRACT 21- ABSTRACT SECURITY CLASSIFICATION

5 UNCLASSIFIEDIUNLIMITED 0 SAME AS RPT -'DTIC USERS Unclassified
22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) ,2c OFFICE SYMBOL
Prof. Michael Zyda (408) 646-2305 Code 52ZK

DO FORM 1473, 84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE
A!I oter editions are obsolete * U.& Governm Wni Prifl "s office: 11-4 .24.

UNCLASSIFIED
~i



Approved for public release; distribution is unlimited.

PRELIMINARY WORK ON
THE COMMAND AND CONTROL WORKSTATION

OF THE FUTURE

by
Frank E. Harris

Lieutenant, United States Navy
B.S., University of Utah, 1980

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL

June 1988

Author: ___

Frank E. Harris

Approved by: l- e A

/ M - _/"' LCo.+ L3^

Robert B. McG g Chairman
Departmn tComputer Science

Dean of ormatioAdP cy Sciences

PoIi *



ABSTRACT

The modem tactical commander has a flood of sensory and intelligence information

at his disposal. A tool is required to sort that information, allowing the commander to

choose the information that is most pertinent to the decisions he must make at that time.

This study is the preliminary work on the command and control workstation of the future.

The focus of this effort is in two areas. One is a user interface using multiple windows

and a mouse controlled cursor. This interface allows the user to set up the display to give

him the information he needs in a way that is easy for him to interpret. The second focus

is preliminary work on a real-time display that presents the user with a three-dimensional

picture of the situation. This initial display uses three resolutions to display large areas of

Defense Mapping Agency Digital Terrain Elevation Data with near real time animation.

AC069SiOZI For

OTIS QRA&I

DTIC TAB
Uneanouneeod 0
3ustifleatio"

BY
Distribution/

AvoLlabilltY 00405
ava il /or

bo ,:f';"



TABLE OF CONTENTS

1. OVERVIEW ..................................................................................................... 1
A. THE COMMAND AND CONTROL WORKSTATION ......................... I

1. Discussion ........................................................................................ I
a. Color ......................................................................................... 2
b. Networing ............................................................................... 3
c. W indows .................................................................................. . 3
d. Three-Dim ensional V iew ......................................................... 4

B. SCOPE OF THIS STUDY ........................................................................ 6
1I. FOCUS ............................................................................................................. 8

A . PRELIM IN ARY RESEARCH ................................................................ 8
B. W INDO W S .............................................................................................. 9
C. THREE-DIMENSIONAL DISPLAY ....................................................... 9
D . SUM M ATION ......................................................................................... 12

I . W INDOW S AS A USER INTERFACE ........................................................... 13
A . W INDO W DISPLAYS ............................................................................. 13

1. M ultiple W indows ............................................................................ 13
2. M ice and M enus ................................................................................ 14

3. M ice in M ultiple W indow s .............................................................. 14
B. W INDOW S ON THE IRIS ....................................................................... 15

1. Multiple Exposure Window Management System ........................... 15
a. The Event Queue ..................................................................... 15
b. Pop-Up M enus .......................................................................... 16
c. W indow M anagement .............................................................. 18

C. IM PLEM ENTATION ............................................................................... 18
1. M enus in a Simple Interface ............................................................. 19

a. M ultiple M enus ........................................................................ 20
b. A V irtual Control Panel ............................................................ 21

2. An A bstract W indow M anager ......................................................... 23
a. M ultiple W indow s .................................................................... 23

(1) Data Structures ................................................................. 24
b. The W indow s ............................................................................ 28

(1) Selecting Items From A Window ................... 28
(2) NTDS W indows ................................................................ 29

3. An Altgmative to the Abstract Window Manager ............................ 32
D. CON CLUSIONS ....................................................................................... 33

iv



IV . DIGITA L TERRA IN DATA ........................................................................... 35
A . DEFENSE M APPING AGENCY ............................................................ 35

1. Digital Landm ass System Database .................................................. 35
a. Resolution of Data .................................................................... 36
b. Cultural Data ............................................................................. 36
c. Terrain Elevation Data .............................................................. 37

B. DIGITAL TERRAIN ELEVATION DATA ............................................ 37
1. The NPS Japan Database .................................................................. 38
2. Form at ............................................................................................... 38
3. Reading the DM A Standard Tape ..................................................... 40
4. The Elevation Data ........................................................................... 41

V. A THREE-DIMENSIONAL TERRAIN DISPLAY .................... 43
A . PROBLEM S ............................................................................................. 43
B. DRAW IN G TH E TERRAIN .................................................................... 45

1. Scale .................................................................................................. 45
2. V isibility ........................................................................................... 46
3. The Ocean ......................................................................................... 47
4. Shoreline ........................................................................................... 48

C. THREE LAYERS OF RESO LUTION ..................................................... 49
1. Im plem entation ................................................................................ . 53

a. The W orld ................................................................................ . 53
b. M ultiple Cells .......................................................................... 54
c. The Cell ..................................................................................... 54

(1) Initialize the Structure ....................................................... 55
(2) Drawing the Terrain .......................................................... 56
(3) Array Structure ................................................................ 57
(4) Pointer Structure ............................................................... 58

d. Resolution Transitions .............................................................. 61
e. Z-buffering ................................................................................ 62

D . CON CLUSION S ....................................................................................... 67
1. Data Structures .................................................................................. 67
2. Z-buffering ....................................................................................... 67

VI. CON CLUSIONS ............................................................................................... 71
A . THE USER INTERFACE ......................................................................... 71
B. THREE-DIM EN SIONAL DISPLAY ....................................................... 72
C. FUTURE W ORK ...................................................................................... 73

APPENDIX A - DEFENSE MAPING AGENCY TAPES ..................................... 76
APPENDIX B - DIGITAL TERRAIN ELEVATION DATA FORMAT .............. 77
APPENDIX C - ROUTINES TO USE DMA DIGITAL TERRAIN DATA ......... 95

V



APPENDIX D ROUTINES TO DRAW TERRAIN POLYGONS ............. 100
APPENDIX E - ROUTINES TO DRAW THE TERRAIN ... ................... 103
APPENDIXF - MULTIPLE ARRAY DATA STRUCTURE ............................... 113
APPENDIX G - HIERARCICAL DATA STRUCTURE WITH POINTERS

........ I......... .................. ......... .......... ... ............... .............................................. 124

LIST OF REFERENCES .......................................................................................... 143
INiTIAL DISTRIBUTION LIST ............................................................................. 144

vi



LIST OF FIGURES

Figure 3.1 MEX System Menu MEX User Defined Menu ..................... 17
Figure 3.2 The NTDS Virtual Control Panel ....................................................... 22
Figure 3.3 Tiled Windows ................................................................................... 25
Figure 3.4 Layered Windows ............................................................................... 26
Figure 3.5 NTDS Window ................................................................................... 29
Figure 3.6 Information Box ................................................................................. 30
Figure 3.7 Shifted Grid Display ........................................................................... 31
Figure 4.1 Maps of Japan Database ..................................................................... 39
Figure 4.2 Diagram of Cell Data Storage ............................................................ 41
Figure 5.1 View Area Covers a Maximum of Four Cells of Data ....................... 44
Figure 5.2 Visibility Triangle .............................................................................. 47
Figure 5.3 Area Between Data Points as Planar Triangles ................. 49
Figure 5.4 Shoreline Polygons ............................................................................. 50
Figure 5.5 Sample Shoreline ............................................................................... 51
Figure 5.6 Contrast Single and Multi Resolution ................................................ 52
Figure 5.7 Multiple Cells Drawn With View Bounds ......................................... 55
Figure 5.8 Calculation of Level One and Level Two Data ................................. 59
Figure 5.9 Pointer Data Structure ........................................................................ 61
Figure 5.10 Resolution Boundary .......................................................................... 63
Figure 5.11 Z-buffer Changing Coastline .............................................................. 65
Figure 5.12 Picture With Corrections to Z-buffering ............................................ 66
Figure 5.13 Color Photos of the Terrain Display ................................................... 69
Figure 5.14 Color Photos of the Terrain Display ................................................... 70

vii

44.,



I I EU I -

V

-. - .'~t; .tIM~jrizt



I. OVERVIEW

A. THE COMMAND AND CONTROL WORKSTATION

The amount of information that the modem day commander must assimilate is

staggering. There are inputs from a multitude of sensors: NTDS, radars, sonar. There are

situation reports, intelligence reports and messages of various types continually arriving.

On top of this, the commander has at his disposal a database of intelligence information

made up of charts and publications that cannot be quickly accessed. The commander

needs a tool that gives him instant access to this information, presenting it in a way that

allows him to quickly grasp the facts and make a decision. He should be able to easily

manipulate the data to show only the information pertinent for the situation at hand and

that data should be up to date and instantly intelligible. It should be easy to display new

or amplifying information as situations change and evolve.

This study is the preliminary work for the design and implementation of a tool to

provide the commander easy access to command and control information, the Command

and Control Workstation of the future (CCWF). The goal of this work is the

development of the visualization tools and techniques required to build a prototype

workstation with a flexible user-friendly interface and a real-time, three-dimensional

display that possesses the characteristics described above. The CCWF is implemented on

inexpensive workstations available in the Graphics and Video Laboratory of the

Department of Computer Science at the Naval Postgraduate School.

1. Discussion

The graphical and computational power of low cost workstations can be

utilized to build a effective system that meets or exceeds our goals for a command and

1 li |ll illllll



control workstation. Areas that we have explored are: networking between multiple

workstations and mini-computers, the use of multiple windows to help provide an easily

managed, user friendly interface, and a real time three-dimensional display.

a. Color

Due to expense, color graphics have not been utilized in the development

of current command and control displays. The advent of inexpensive graphics

workstations has made the use of color not only possible but a cost effective means to

make the display easier for the user to interpret. The user must read and decode the

textual information before he can extract the information he requires. With such

systems, it is hard to find the particular bit of information needed from a screen full of

text. The textual representation can be improved by coding the information. In coding,

the original stimulus or information is converted to a new form and displayed

symbolically. Coding can make the information easier to find and interpret than direct

representation. Current command and control displays use a special military symbology

to represent information but do not use color as a coding medium. Color is an effective

dimension of coding that has been shown to improve human response time. (Ref. 11

Color is particularly effective in searching tasks where one is scanning through data

looking for information of a specific type, such as scanning a command and control

display for enemy aircraft. With the dropping cost of color displays, it no longer makes

sense to utili'e only monochrome when the combination of current symbology with color

can increase the effectiveness of our displays. Color will particularly improve

performance for the monitor who has other tasks besides watching the scope. The radar

operator whose job is tracking contacts on the radar screen knows what each contact is.

Color will make it easier for the supervisor to occasionally glance at the screen and

quickly comprehend the information presented.

2



b. Networking

A command and control workstation has to rely heavily on networking. It

has to handle several thousand contacts from tactical datasystems such as NTDS, as well

as entries from various intelligence sources. These contacts have to be continuously

updated over the network to insure that the information that is displayed is as up to date

as possible.

The network can be used to allow multiple workstations to access a

common database of intelligence and amplifying information that allows the user to

display digitized intelligence photos or provide parameters on weapon systems and

platforms. The displays can obtain and display fixed land based objects of interest like

surface to air missile sites or targets for an air strike. This ability makes the workstation

useful for planning and training purposes as well as command and control in the heat of

battle.

The network also has to handle any communication between the

workstations. Along with an exchange of information at the system level, a mail system

can help a user more effectively manage his time by evaluating an incoming message

and informing the user that mail has arrived by displaying the message's precedence and

subject line. The user can then, at his convenience, open a message window and examine

his mail.

c. Windows

The user interface is an important design decision in any system,

especially when designing a command and control workstation. The purpose of

command and control workstations is to assist the user by displaying needed information

quickly, in a manner that is easy to understand. The user interface needs to be easy to

operate and quick to change, allowing the user to manipulate the display with a minimum

3



of fuss and bother. A technique that has become common on commercial workstations

and personal computers is the use of windows. A window is simply a virtual display. One

or more windows can be open and displayed on a computer monitor at one time.

Operations that are fairly standard on all window systems allow the window to be moved

about the screen and the size changed. The windows can be tiled so all windows can be

seen or stacked where one window overlaps all or part of the other windows. Push and

pop commands cause a window to be drawn on the bottom or top of the stack. Most

window interfaces use a mouse controlled cursor to make these operations even easier

but a "track ball" familiar to users of current naval command and control systems can be

used with equal ease. Multiple windows allow the user to set up his display depending on

the current situation and his particular preferences. This set up can be easily changed as

the need of the user changes. A possible window set up for a command and control

workstation might be: one small window displaying information such as time, own ship's

position, course and speed; two windows with two dimensional radar type displays, one

set up with a short range showing surface tracks, the other long range air tracks; another

window set up with a chart of the area showing map information as well as contact

information; and finally a simulated three- dimensional view that gives the user a "real

world" perspective on the situation. By using a mouse, amplifying information can be

shown on objects in any of the windows simply by pointing and clicking. As the situation

changes, windows can be opened, closed, moved, and the size modified to form a display

that presents the required information in a manner that can be easily understood and

acted upon.

d. Three-Dimensional View

There is a saying that a picture is better than a thousand words. This is not

only true because we can get more than a thousand words of information into one picture

4



but because a human user can extract the information quicker and easier. We have spent

our whole lives evaluating situations in three-dimensions. Every time we drive a car or

walk across the street, our mind instantly evaluates what we see and determines the

appropriate action. Up to now, that has not been possible in the command and control

environment. We have relied on two dimensional displays and written status boards that

present a picture of the situation that our mind must interpret before making a decision. If

the information can be presented in the three-dimensional form that a user is used to

dealing with, he can more intuitively grasp the situation and act accordingly. As usual,

the science-fiction writers have lead the way for technology to follow. In the final battle

scene of the movie "STAR WARS", the commanders coordinating the attack are all

observing and making their decisions based on a large three-dimensional holographic

display. Current technology isn't quite to that point yet but we can present excellent,

real-time, three-dimensional animation on current graphics workstations.

How useful can such a three-dimensional display really be? The modem

day commander has to keep thousands of facts and figures in his head about weapons

platforms, sensors, weapons, effective ranges, what is on what ship, what planes have

what capabilities, etc. He then has to apply this information to the current situation,

picturing in his head the weapons envelopes relative to himself and other contacts. How

much easier would it be if he could look at a three-dimensional representation showing

contacts and selected weapons envelopes? He could almost instantly assess the situation

and act.

An amphibious landing is another instance where this three-dimensional

view is valuable. Landing areas and boat lanes can be marked. By using a digital terrain

database, the land can be accurately displayed. Landmarks, friendly assets and enemy

positions can be displayed. Such a display gives the commander an accurate picture of



the situation to which he can immediately understand and react. Solutions might even

seem more obvious when he can actually look the situation over. A three-dimensional

display of this nature can give the commander more understandable information in a

shorter time then status boards, two-dimensional displays and contour maps ever will.

This three-dimensional display has more uses than just tactical situations.

Planning and training are two other areas where this display is useful. To plan an air

strike against a land target, we can first enter all intelligence information on radars,

weapons installations, airfields, and possible targets. We can then display weapons and

radar envelopes and look for the best possible route. After plans are made, the display

can be used to brief the air crews who will be flying the mission. They can get an

accurate picture of what they can expect to see as the mission proceeds. The simulated

display can be supplemented with digitized intelligence photos, if available. The display

can then be used to monitor the actual mission in progress.

Three-dimensional displays with real time animation have a place in the

command and control environment. Such a display gives the user a more intuitive grasp

of the conditions, making it easier and faster for him to interpret the situation. Current

low cost graphics workstations are capable of producing a quality three-dimensional

display that can greatly aid command and control.

B. SCOPE OF THIS STUDY

The scope of this effort is clearly quite broad. It builds upon previous work

bringing us a step closer to the ideal command and control workstation. The focus is in

two areas. The first area is to provide a user interface that is consistent with the overall

goals for the system. We use an interactive system of multiple display windows

controlled with a mouse. The second area is to start development of a realistic, real-time,

6



three-dimensional display using Defense Mapping Agency Digital Terrain Elevation

Data. The goal of this system is to provide the data structures and algorithms required to

realistically display the sea/land environment with real time motion simulation.



I. FOCUS

A. PRELIMINARY RESEARCH

Two computer graphics research projects at the Naval Postgraduate School have

lead directly to the research on the current command and control workstation [Refs. 2,3].

Adams developed a two-dimensional command and control display using standard NTDS

symbology with color coding added. This system received track information over a local

ethernet from another workstation. Adams' work looked at the networking capabilities

of graphics workstations as applied to a command and control system and showed that

the workstation can be effectively used as a color NTDS display handling the standard

operations [Ref. 21. What remained was to improve the user interface and test the

practicality of using windows to provide multiple, separately controlled displays on one

workstation.

The second project "FOG-M" started the groundwork for a three-dimensional

display, by using graphics workstations to develop a flight simulator using actual digital

terrain elevation data [Ref. 31. The FOG-M system, while producing excellent images,

had several limitations which had to be overcome before it could be used in a command

and control display. An important factor in the design of a simulator is for it to look

realistic but it is often not important for it to be accurate. Graphics "tricks" can be

employed to produce a realistic looking image with a minimum of work for the

computer. In the FOG-M system, the terrain is only drawn out to a distance of two

kilometers from the viewing position, although it gives the appearance of being much

farther. For use in a real time command and control system, the terrain must be depicted

! 8



accurately and enough of it must be drawn to show the area of actual visibility. At a

height of eye of only two meters, visibility to the horizon is three miles [Ref. 4].

B. WINDOWS

There are many windowing systems available on graphics workstations. They are all

the same in principle and provide about the same operations but differ in the actual user

interface. No industry standard has yet emerged but any system's operation can be

simulated by writing an abstract system over the top of the resident system. This

conforms to good software engineering practices by making the code more portable since

changes to the resident system only effect the procedures that make up the abstract

window system. Griggs developed a window manager abstraction that modeled the

window systems popular on some personal computers [Ref. 5]. This windowing system

can be modified to meet the needs of the command and control workstation by providing

multiple window capability to the work done in [Ref. 21. By adding an extra layer of

software, some of the performance of the host workstation is lost. The degradation of the

system is not significant in the two-dimensional system but for the three-dimensional

display the performance of the host computer needs to be pushed to its limit to provide

the best possible animation of complex scenes involving thousands of filled polygons.

For this purpose, the native window manager on the IRIS 4D graphics workstation is

utilized to provide the user interface.

C. THREE-DIMENSIONAL DISPLAY

It is important that a tactical three-dimensional display render the scene accurately

and respond quickly. It is relatively easy to draw a complete and accurate picture when

time is no object but a tactical display must be real-time to convey the required

information. In a tactical environment, the situation can change in a short period of time.

If the information is several minutes old before it is displayed, it loses much of its

I



usefulness. Enough information must be displayed to depict all aspects of the situation so

speed cannot be achieved by leaving out information. The display must update often

enough to give the user a sense of movement. This animation provides some of the

intuitive information that makes this type of display especially useful.

Thie-dimensional scenes are normally rendered using filled polygons to

approximate curved surfaces. This cuts down on the computation time required to show a

scene but accuracy is lost with the resolution of the polygons. In general, the more

polygons you draw the better the scene looks. It also takes a proportionally longer time to

draw the scene. The power of a graphics workstation is generally quantized by the

number of z-buffered, Gouraud shaded polygons that can be drawn in one second. Since

each manufacturer measures this value differently, comparisons are not definitive,

although it is a good indication of the capabilities of an individual model. The power of

graphics workstations is increasing at a fantastic rate with each new model that comes

into production. The graphic workstations in the Naval Postgraduate School's Graphics

and Video Laboratory have kept up with these advances, staying on the leading edge of

current technology. The IRIS 2400, released in 1985 can draw 650 z-buffered, Gouraud

shaded polygons per second. The current models in use, the 3120 and 4D/70G have rates

of 1,000 and 5,500 respectively. The next upgrade to the 4D is to be released in May

1988 and is advertised to draw 60,000 z-buffered, Gouraud shaded polygons per second.

For a further comparison of these machines, see Table 2.1 [Ref. 61. With new

experimental architectures and multi-processor systems, the future is even brighter. Each

new advance makes the rendering of more complex scenes possible and the need for even

more powerful machines more apparent. Even with the advances of the near future,

machines will be pushed to their limit with real-time three-dimensional displays. Each

new advance's additional graphical and computational power is quickly utilized. The key

i 1@



Table 2.1 COMPARISON OF SILICON GRAPICS' WORKSTATIONS

Machine Z-Bvfle ed, Z-Buffee OAU MPS R t-Shaded, Non- lst-Shadcd, Non-
Gounwed saded Goomaud shuded Z-Bffend Po- Z-Bffred Po-
Polygons per Polysom per ISh lygon per second lygons per 15th
second second second

B1l1-3120 1.000 67 2 5.000 333

UiS-4Dt70O 5,.500 367 10 25,000 1.667

3JS4Df700T 60,00 4,000 13 32.500 2,167

*IIS._4rM 200,000 13,333 120 300.000 20,000

* unde lopneft

to producing a good, three-dimensional display still depends upon the programmer

writing efficient code to draw the best possible picture with the fewest possible polygons.

The FOG-M and VEH visual simulators, developed at NPS, used Defense Mapping

Agency digital terrain elevation data from Fort Hunter Liggett California for their

displays [Refs. 3,7]. There are graphic techniques or "tricks" that can be used to make a

scene look realistic with fewer polygons. Some of these tricks were used in FOG-M and

VEH to draw exceptional scenes with a minimum number of polygons. Some of these

techniques sacrifice accuracy for performance. Unlike a simulation, a tactical three-

dimensional display must be both realistic and accurate. New methods must be found to

reduce the number of drawn polygons without giving up the accuracy. Images in FOG-M

and VEH were only drawn to a maximum distance of two kilometers reducing the

number of polygons that must be drawn. The appearance of greater distance was

achieved by using perspective settings like different lenses on a camera. Setting a wide

field of view in the perspective call gives the same effect as a wide-angle lens. Objects

that are in the background appear much farther away. Since the vertical resolution is not

affected by this technique, an additional scaling of the actual elevations gives a realistic,

although not always accurate, display of terrain. Since a tactical display must also be

accurate, all the terrain that can be seen must be drawn in the correct perspective and the

elevations must be accurately represented. It requires a tremendous number of polygons

11



to represent the visible terrain if all the terrain is drawn at the same resolution. Since

things in the distance cannot be seen as clearly as close by things, they do not need to be

drawn at the same resolution as those that are closer. The number of polygons drawn to

represent the terrain can be reduced if more polygons ae used to represent the terrain

closest to the viewpoint while the terrain in the distance is drawn at a lower resolution

using fewer polygons.

D. SUMMATION

This study brings the command and control workstation of the future a couple of

steps closer. Both user interfaces with windows and techniques for drawing terrain in a

three-dimensional display have been studied and implemented. The focuses are to

provide a user-friendly program framework for future work on the command and control

workstation and to make an accurate and realistic real-time three-dimensional display of

digital terrain elevation data.

12



ll. WINDOWS AS A USER INTERFACE

The command and control workstation of the future (CCWF) is a tool designed to

present tactical information in a way that the user can easily interpret. Like any tool, its

only as good as its user interface. The CCWF must be designed with the user in mind. A

device that is complicated, or hard to use is likely to go unused even if it is functionally

perfect. Windows have been used to improve the interface of personal computers and

commercial workstations. Their use can also enhance the user interface of the command

and control systems used by the Department of Defense.

A. WINDOW DISPLAYS

Windows are the basis of the user interface for the CCWF. They provide flexibility

and the effect of many displays for the price of one. The technique of multiple windows

as a user interface is still maturing in the computer industry. There are many diverse

window management systems on the market but no industry standard has yet emerged.

The services provided by all the systems are similar and a viable user interface can be

developed under any of these systems.

1. Multiple Windows

The CCWF uses multiple windows on a single screen. Each window is used to

provide a particular type of information in a format that is easy for the user to

understand. There are windows for two-dimensional radar display, chart display, three-

dimensional display, and auxiliary information. All these windows cannot be shown on a

screen at one time. The user can select which windows to show, where on the screen it is

displayed and how big it is. The windows can interactively be opened, closed, moved, or

13

. ... .. .. . . .- Iw m immi l m / p m mi•m



resized. They can be pushed or popped in order to be drawn under or over the other

windows. These operations allow the user to change the display according to the

particular needs of the current situation. The window -system must know where the

window is to be drawn, what size to make it, what to draw in the window, and how it

should be drawn, relative to the other windows.

2. Mice and Menus

The standard computer interface is the typewriter-type keyboard. Even with

special function keys, the user has to remember special codes and it takes multiple

keystrokes to accomplish simple operations. With a mouse or track ball controlled cursor,

an operation can be executed simply by pointing the cursor at a selection displayed in a

menu on the screen and hitting a button. The menu presents choices in easy to understand

text. All the user has to remember is how to get the menu and how to press a button.

The mouse controlled cursor can also select certain objects from a window. For

example, the user can bring up amplifying information about a contact by pointing at the

contact on the NTDS screen and pushing a button. This technique is currently used on

standard NTDS displays. The CCWF expands on this idea by having different cursor

modes. The user changes the cursor by pointing at a menu in the display. Each cursor has

a separate function relative to the window it is in.

3. Mice in Multiple Windows

Using a mouse with multiple, overlapping windows is a much more complex

problem then with a single window or tiled window structure. The system must

determine what window the mouse event occurs in. It would be nice for this operation to

be transparent to the user. The user points and the system Krnows which is the referred to

window. On a multi process system, the window system must also be able to determine

with which process the user is interacting.

14



B. WINDOWS ON THE IRIS

The IRIS graphics workstations from Silicon Graphics Inc. were selected as the

primary graphics device for the NPS Graphics and Video Laboratory. These are

inexpensive, high power, high resolution, color computing systems for two-dimensional

and three-dimensional computer graphics. The IRIS provides a powerful set of graphics

primitives and custom VLSI circuits combined with conventional hardware and

software (Ref. 8]. The heart of the system is a special VLSI chip called the Geometry

Engine. A set of these chips make up a geometry pipeline that accepts points, vectors,

polygons, characters, and curves in user defined coordinates and transforms them to the

screen coordinate system. The pipeline does all rotations, transformations, clipping, and

scaling to draw the objects the correct size at the correct location. The IRIS has the

capability to use multiple user interface devices. Besides the standard keyboard, the unit

has a mouse with three control buttons. Optional equipment includes button and dial

boxes. A window management system is included as standard software on the IRIS.

1. Multiple Exosure Window Management System

The Multiple Exposure Window Management System (MEX) is a user

interface environment that controls multiple windows [Ref. 9]. This system is a standard

part of the operating system on the IRIS 4D and an optional program that can be run on

the earlier models. It provides multiple windows, mouse controls and a pop-up menu

system. Multiple windows can be controlled by one process and several processes can

have windows open on the display at one time. This is a very powerful system that can be

used to design an exceptional user interface.

a. The Event Queue

The user communicates with the computer system through input devices.

He pushes a function key, types a message on the keyboard, uses a mouse, etc. There are

15



two ways for the input device to communicate with a process. The first is for the process

to read the value of every device. This is done every time through the main program

loop, even though the value of the device has not changed. This is known as polling the

devices. Another method is to send the controlling process a message whenever a change

in a device has occurred. The message is placed on a queue and the controlling process

checks to see if any messages have arrived. Polling a device is less efficient when values

are not frequently changing. Why read the device and act on the input when no change

has occurred? With an event queue, the system places a message on a queue each time a

change in state occurs on selected devices. The process can check for any and all input

by simply using a while loop to read and act upon all the messages in the queue.

while ( queue not empty ) do
I
process message
I

This way the process only takes time to act on changes and not on checking all the

devices every cycle through the loop.

This study is concerned with communication to a single process but is

implemented on a multi-process system. The window manager on IRIS is designed to

work in a multi-process environment where several processes running concurrently might

have displays open on the screen. One process must be designated to receive input. This

is called input-focus on the IRIS system and can be changed interactively using the

mouse and MEX menus. All events are placed on the queue of the process with input-

focus assigned.

b. Pop-Up Menus

Menus are provided by the IRIS window manager to make the interface

between the user and the system as easy as possible. These menus are controlled by the

16

L!



mouse and appear at the cursor location when the right mouse button is pressed [Ref. 9].

Keeping the right mouse button pressed and moving the mouse highlights the different

menu selections. When the correct menu selection is highlighted, the mouse button is

released. The selection is then executed and the menu disappears.

The MEX system uses a predefined pop-up menu to control window

operations. Figure 3.1 shows the oerations that can be executed from this menu. This

menu is activated by placing the cursor in the title box of the window that requires the

action and holding down the right mouse button.

There are also user defined menus. These menus are defined in the

application program. When this menu is executed, a message is placed on the

applications event queue. Input from the mouse and menu goes to the process with input

focus.

-- mex -"=command-

attach help

select new window 0" NTDS windo

moveTDS cant chart window

reshape 3D window

pop

kill

Figure 3.1 MEX System Menu MEX User Defined Menu

17



c. Window Management

The IRIS window manager has an excellent set of routines to manage

windows from within a user application. The application program can open and close

windows, changing the display based on the program or user input. For example, if the

application receives a message from another unit, it can open a window and display a

message telling the user what has happened. The user can then close the window with

some predefined command, mouse button, return key, etc.

Whenever a window is opened, the system returns an identifier to that

window. The graphics window identifier (Gi)) is a long integer that is used to identify

what window is being referred to in a program. This value is used to close a window or

set the window to receive graphic input. Only one window at a time can be set to receive

graphics input. Most of the MEX procedures act on the window that is set to receive

graphics input.

The system allows the programmer to set certain constraints on a window.

Maximum and minimum size can be specified, the X to Y aspect ratio can be set, or the

window position and size can be fixed. All these commands can be changed by the

program after the window has been opened. If constraints are set, the user cannot violate

these constraints from the MEX interactive menu.

All the operations in the MEX command menu can be executed from

within the program, allowing the programmer to devise a window control system that

meets the needs of a particular application.

C. IMPLEMENTATION

MEX was designed to run on a multi-processing system and works best with many

processes, each with one graphics window. This study is primarily looking at a system

18



where one program, the command and control workstation, is controlling multiple

windows. The built in functions of MEX need to be expanded to keep track of the

different windows.

Enhancing the program manager to meet the needs of the command and control

workstation can be done in two ways. An abstract window manager can be constructed

I using the software engineering principle of information hiding. This abstract window

manager would consist of procedures that would call the appropriate MEX functions and

keep needed information in its own data structures. The programmer calls procedures in

the abstract manager and does not deal with MEX directly. A basic abstract manager was

developed by Larry Griggs in [Ref. 5]. The other method would be to develop a data

r structure that would maintain the information needed to control the windows using MEX

calls directly. This method does not make the software easily portable, but it is more

efficient. By removing a layer of procedure calls between the user application and the

system window manager, performance is improved and the complexity of the program,

as a whole, is improved.

The MEX pop-up menu system is not always the best way to present choices to the

user. If there are many possible choices, pop-up menus can become confusing and hard

to manage. To keep the interface simple, multiple menus are used with each menu

designed to present its choices in a way that makes it easy for the user to make his

selections.

1. Menus in a Simple Interface

Operation of the command and control workstation allows the user to make

many choices about the configuration and operation of the workstation. Placing all the

choices in one MEX menu with roll-over submenus presents the user with a menu that is

too complex to be easily used. Another problem is with the MEX system. There is no

19



way to select several things from a menu at once. There are two parts in the solution to

these problems. The first is to modify the menu depending on the possible choices the

user can make from his current state and which window the cursor is over at the time of

the call. This allows the user to see only the choices that make sense for his current state

and window. The second part of this solution is to take infrequent choices, such as

configuration and set-up options and options that don't work well in the pop-up menu

system, and place them in other menu systems that present the choices in a better way.

a. Multiple Menus

Presenting different menus for different situations and windows requires

that the program be able to tell which window the cursor is over when the user calls a

menu. This is not a built in function of MEX but is fairly easy to do. The windows are

drawn in a stack. When a new window is opened, it is placed on the top of the stack.

When a push is ordered for a particular window, it is moved to the bottom of the stack

where it is drawn under all the other windows. A pop operation moves the window to the

top of the stack. The main program needs to keep track of where each window is on the

stack. When a menu is called, the program starts at the top of the stack and checks each

window to see if the coordinates of the cursor position falls inside the window boundary.

The first window that succeeds is the window the user is referring to in his request. The

following code shows a C function that returns the GID of the window where the cursor

is or a -I for error.

•/* array of graphic window identifiers /
/* windows[O] is the top window /
GID windows [I];

/0 function whichwindow returns the GID of the top
widow where the input X/Y parameters lie inside
the window boundary */

GID whichwindow(mousex,mousey)

20



found - FALSE; /* initialize *
i W 0;

wbile((not found)or(i <= number of windows))

/0 make window to be checked current graphics window
so following procedures will refer to correct window O/
winset(windows(i]);

/* get window coordinates *I
setsize(sizex,sizey);
getorigin(originx,originy);

if (mousex > originx) and (mousex < originx + sizex) and
(mousey > originy) and (mousey < originy + sizey) then
found - TRUE;

else
i =i+1;

/ while */
if (i > number of windows)

return(-l); /" not in any of the windows */
else

return(windows[i]); /* the GID of the first window found
"/

b. A Virtual Control Panel

A typical NTDS display has the capability to filter out contact types. This

simplifies the display by only showing the contacts that the user wants to see. This

feature is controlled by a panel of hardware switches on the console. The command and

control workstation of the future can show multiple NTDS displays on one screen. The

controls for multiple displays are too varied and complex for a hardware control panel.

Interactive menus must be used to control the different features of the workstation. A

virtual control panel is used to set up an NTDS display window. The user positions the

cursor over the NTDS window he wishes to change. The pop-up menu for this window

has NTDS control as one of the selections. When this selection is executed, a new

window is opened as a virtual control panel (see Figure 3.2 ). The cursor is bound to the

inside of this window and no other action can be executed until the user is through setting

the controls. The virtual control panel is a table of boxes, each box is labeled according

21



Figure 3.2 The NTDS Virtual Control Panel

to its function and color coded to indicate its setting. Red is off and blue is on. The

"switch" is toggled by pointing the cursor at the appropriate box and clicking the left

mouse button. The color changes indicating a new setting for that switch. Changes to the

panel can be made until the exit box is pressed. The window is then closed and any

changes are entered into the user record of the window where the execution of the pop-up

menu occurred. This allows each of the NTDS displays to be controlled separately and

display a variety of information. One window can show the air picture, one the surface

and another can be set to display only hostile units.

22



2. An Abstract Window Manafer

The purpose of this preliminary version of the command and control

workstation is to demonstrate the functionality of using multiple windows and menus in

developing the user interface. The starting point of this program is the commander's

display system developed by Rodney Adams [Ref. 2]. The commander's display system

uses color graphics to display a single NTDS radar display. Windows are not used in this

program. A simple abstraction of a window management system was developed by

Larry Griggs for his network monitor [Ref. 5]. Griggs' window manager simulates the

user interface used in some popular personal computers. The windows are controlled by

clicking the mouse in certain predefined regions in each window. For example, holding

the mouse button down in the lower right corner of the window then moving the mouse

to a new position, changes the size and shape of the window. This is in contrast to the

MEX system, where windows are controlled with a special pop-up menu. Many of the

procedures used in this abstraction are direct calls to MEX procedures.

The current version of the CCWF uses parts of the NTDS display from Adams,

and an expanded and modified version of the Griggs window manager. This program

runs on the IRIS 3120 under the MEX window management system. This preliminary

program demonstrates the operations required by the user interface for the command and

control workstation.

a. Multiple Windows

The abstract window manager solves some of the problems in the MEX

system. It keeps track of each window, its size, position, and content. It has procedures

that evaluate in which window a mouse event occurred. Additions have been made to

allow constraints to be placed on each individual window. Predefined constraints can be

set by the programmer for maximum size, minimum size, and X/Y aspect ratio. The

23

. . ..-.-. .. V p= s . .mmn



aspect ratio is used for the NTDS display to keep the scale the same in the x and y

direction. This keeps the perspective constant so the display looks "right" when the size

of the window is changed. The shape of the window remains constant. The information

to be displayed in the window is scaled to match the window size. Multiple open

windows can be shown tiled, Figure 3.3, or overlapped, Figure 3.4, and moved around to

give the user a picture that is easiest for him to interpret.

(1) Data Structures. Window information needs to be saved when

multiple windows are used in one program. The abstract window manager hides this

information in a package of procedures that can be called by the programmer to control

the multiple windows. The following is the data structure used in this abstraction.

/* structure used to record information on each window *f
typedef struct WindowType

/* the user provides these fields when he opens a window */

char title[50]; /* title to be displayed in title bar */
Object *obj; /* ptr to the object to be drawn in window */
short BackgroundFlag;/* boolean: does window always stay in

backgnd? if so, it can't be moved,
popped or resized and should be as
large as the screen to avoid losing
a normal window beneath it */

long refConl,refCon2; /* user uses these for any purpose he
likes. Refcon one is used as pointer
to user structure */

/* bMI keeps these fields current */

int wid; /* IRIS-mex-provided unique window id */
long wx,wy; /* xy dimensions of the window */
long orgx,orgy; * screen coords of lower left corner of window*/
short max,min,aspect; /* are constraints set /
long maxx,maxy; P constraint values */
long minx.miny;
float aspratio;

I Wi ndow;

24



Figure 3.3 Tiled Windows

25



Figure 3.4 Layered Windows

26



This record contains information that can only be accessed by the procedures in the

window management package. When the process needs to know what window a mouse

event occurred in, a package procedure called whichwindowO returns the information.

Another requirement imposed by multiple windows is keeping track

of what the user wants in each window. This information is application dependent and

should not be part of the abstract window manager. Each window has a user record that

has information about what the user wants drawn in each window. The following

structure is the user record format used in the CCWF implementation.

/* Data structure used to share user interaction
information, one user record is assigned to each
window. A record for an open window will be marked
as used */

typedef struct I
Object user-object; /*the object for this window*/
int win_type; /*int: type of window*/
Window *wind; /*pointer to window record*/
short used; /*boolean: is this window in use*/
int center; /*index of contact at grid center*/
short info_boxfNMS'TOLS]; /*which contacts show info box*/
short grid; /*boolean: show grid or not*/
short modifiers; /*boolean: display or not*/
short dr; /*display dr updates*/
short relative; /*relative or true display*/
short zoom; /*number to indicate zoom status*/
short updown; /*number to indicate shift left right*/
short leftright; /*number to indicate shift up down*/
short cursor; /*user can select 6 different cursors */
float grid-radius; /*user selected NTDS grid size*/
float scale; /*"zoom" is used to alter this value*/
float xoffset; /*user-selected display offset*(
float y.offset; /*user-selected display offset*/
short Fair; /*friendly air*/
short Nair; /*neutral air */
short Uair; /*unknown air /
short Sair; /*suspect air */

Nlre Boolean Flags to filter contact types
one entry for each possible contact designation

Juserstruct;

These records are modified by the user through the use of various menus. There is a

maximum effective number of windows that can be open at one time. The data structure

27



for the CCWF implementation is arbitrarily set at ten windows. The number of windows

that can be effectively handled depends on the complexity of the window contents. More

then four NTDS windows slows the system to an unacceptable level on the IRIS-3120.

In order to know which user record to change, the window system

must know what window the cursor is over and what user record is associated with that

window. Pointers bind the window structure and the user structure together when a new

window is opened.

b. The Windows

The current system uses five types of windows. A window is used to

display the NTDS control panel, another is used to display an intelligence photograph of

a selected contact type. These two windows are only open for a short time and must be

closed before work continues. There is a background window that cannot be closed or

sized. This window just provides a background for the display. It can be used to display

help information or the three-dimensional view can be implemented in this window. The

two remaining are window types which show information, a 2-D radar and a chart

window. Other types of information windows can be easily added to the system,

Multiple numbers of each of these windows can be used. The functionality of this system

can be demonstrated with only one type of information window, the NTDS window. A

chart window selection is presented in the menu but its selection opens an empty

window.

(1) Selecting Items From A Window. The IRIS graphics library

routines allow the user to select objects from the screen. This is controlled with the

cursor and the left mouse button. When the left mouse button is pressed the system is put

in "pick" mode. Pick mode allows the program to determine what designated objects are

within a defined region around the cursor's location. This process is used by the abstract

28



window manager to determine if the user is trying to move or reshape the window. It is

also used to pick certain objects from the contents of the window.

(2) NTDS Windows. The NTDS window shows features that can be

used in any of the windows. Besides the virtual control panel, there are three different

cursor modes, and 6 control boxes that act as a permanent menu. The different cursor

modes are selected by picking the cursor from the permanent menu on the right side of

the window (see Figure 3.5). Any of the cursors can be used to manipulate the windows

......................... . . ....................... .:.:................

Figure 3.5 NTDS Window

29



or select items from the permanent menu. The top cursor, an arrow, is the default cursor.

When the arrow cursor is active and a contact symbol is picked from the window, an

information box shows the contact's course, speed, etc. The middle cursor, the one that

looks like a picture frame, displays a picture of the contact. This is just an example. This

cursor could be used to show any amplifying information. For exampk, it could display

a menu and allow the user to select what type of amplifying information he wants to see.

The menu choices would vary depending on the information available about that

particular contact type. The third cursor looks like a sight and changes the window

origin. The center of the grid becomes the contact selected by the user. All movement is

Figure 3.6 Information Box

30



displayed relative to this contact's course and speed. The remainder of the permanent

menu allows the display to be shifted in the window to show the part of the area that is of

interest. Figure 3.7 shows an NTDS window that has been shifted up and to the right.

There are also zoom-in and zoom-out controls that focus on the

center of the display. The techniques used in the NTDS windows can be used in other

windows to give the user quick and easy control over the display.

0 A NTDs DISPLAY

Figure 3.7 Shifted Grid Display

31



3. An Alternative to the Abstract Window Manager

Window controls are application dependent and can not be easily generalized

into an abstract manager. The application and the host computer define what information

needs to be saved about the windows. The two data structures used in the abstract

manager are bound together by pointers. The complexity of the program is improved if

the structures are combined and an application specific window manager is used. A

structure used in the prototype of the three-dimensional display places information

required by all windows in one record type.

typedef struct
I
/* the user provides these fields when he opens a window /

char title[50]; /* title to be displayed in title bar */
int Wintype; /* int representing window type, NIDS, Chart,

3D, etc. Will determine what type of
information is to be drawn in the window.*/

short BackgroundFlag; /* boolean: does window always stay
in backgnd? if so, it can't be moved,
popped or resized and should be as
large as the screen to avoid losing a
normal window beneath it */

int Gid; /* IRIS-mex-provided unique window id */
long pointer; /* pointer to window specific record,

record will contain information
that is specific to the window type 4/

/* these values can also be obtained from bEX calls */

long wx,wy; /* x,y dimensions of the window */
long orgx,orgy; /* screen coords of lower left corner of window*/

/* individual constraints for each window */

short maxmin,aspect; /* are constraints set /
.long maxx,maxy; /* constraint values /
long minx,miny;
float aspratio;
I Window;

Information that is window specific is placed in another structure that is pointed to by a

field in the main window record. The following record is the window type specific

structure used for the three-dimensional display.

32



typedef struct

mt lat; 1* lower left whole latitude of po /

int longg; /* lower left whole longitude of pos */
float posx; /* position relative to-lat longg in yards*/
float posz; /* position relative to lat longg in yards*/
float posy; /* altitude in yards above sea level ./
float crs; / motion of viewpoint 4/

float spd; P motion of viewpoint */
float lookdir; /0 Chg view direction without course chg /
float lookang; /* angle down from vis horizon */
float max-vis; /* set maximum range, current 60 D/
int attached; /" contact number attached to 0 if free *I
short gridlines; /* show grid lines ? */

Iviewpoint;

The MEX system controls windows with a pop-up menu that is called from the

window title bar. The window manager abstraction used in this study controls the

windows with the cursor in certain defined, but unlabeled, regions of the window. Both

techniques work and provide an easy to use interface. If an application specific window

manager needs to be implemented on top of the native window manager, performance

and complexity are improved if the applications window manager is as close as possible

to the native window manager. All the MEX system functions except push and pop can

be used directly from the MEX menu. There is no way to keep the window stack straight

if the system executes pushes and pops directly. The MEX system menu cannot be

changed by the application programmer to remove the unwanted functions. An

application menu system can be developed that calls the MEX routines from the

application program and stores the needed window information. Menu controlled

windows are easy to use and provides more flexibility then the method used in the Griggs

abstract manager.

D. CONCLUSIONS

Multiple windows with mouse controlled menus form a very powerful and flexible

user interface for the CCWF implementation. There is no real industry standard for

33



window management systems. Each manufacturer has designed their window interface to

work efficiently with specific hardware and applications in mind. Until a standard

interface emerges, different techniques should be considered. Design decisions should

not be based on the system used by some subset of the window oriented computers. By

programming a window manager that is application specific and that uses the native

window manager, a user interface that meets the needs of the program can be developed

on any of the window systems. A production model of the CCWF will be a special

purpose computer. An efficient window manager for a special purpose computer must be

designed to take advantage of the hardware and provide all the functions required by the

specific application. The MEX system is an excellent window manager and will work

very well in this application. The new release of the IRIS window manager in the IRIS

4D/GT places a token on the event queue whenever a window is pushed or poped. A

function is also provided that will indicate where a particular window is in the stack. The

CCWF, implimented on the IRIS 4D/GT, can use the native window manager directly.

The only information the application program needs to save is the GID of each window

and the information about what should be drawn in each window.

34



IV. DIGITAL TERRAIN DATA

To model the terrain over a particular area of the earth's surface, a database

representing the actual terrain is required. This database should consist of a set of points

covering the area to be modeled and show the actual elevation of the terrain at these

points. In addition it would be nice to know more about the terrain at each of these

points so that future applications can add man-made structures, vegetation or color to

make the images more accurate and informative. The data used in this study is from the

Defense Mapping Agency's Digital Terrain Elevation Data (DTED).

A. DEFENSE MAPPING AGENCY

The Defense Mapping Agency (DMA) was established in 1972, combining the

mapping, charting, and geodosy functions of the defense community into one

organization. Its mission is to provide Department of Defense users with "complete,

credible and effective mapping, charting, and geodetic products, services, and

training" [Ref. 101. The DMA Combat Support Center in Brookmont, Maryland is

primarily responsible for the distribution of DMA products to the military services. The

product of primary interest for use in a three-dimensional display is the Digital Landmass

System (DLMS) Database maintained by the DMA Aerospace Center, St. Louis,

Missouri.

1. Digital Landmass System Database

The DLMS database is in two parts, cultural features and terrain. The terrain

files have elevation data in meters above mean sea level. The cultural files have

information about the terrain. These two files are compatible. The horizontal position of

35

.



the cultural data matches the terrain data insuring that features in the cultural files

coincide with the proper terrain elevation locations.

a. Resolution of Data

The DLMS database is available in two resolutions, level 1 is intended for

broad worldwide coverage and level 2 is intended to cover small areas of interest. The

interval between data points for level 1 resolution is three seconds of latitude arc or

approximately 100 yards. Level 2 data is presented in finer detail with a data interval of

one second of latitude arc. The corresponding interval of longitude changes with

increasing latitude. See Table 4.1 for exact intervals [Ref. 11].

b. Cultural Data

Cultural data is a generalized description and portrayal of planimetric

features. In other words, what the terrain looks like. This file is a complex data structure

that uses digital codes to describe a feature or area. Special codes are used to represent

the predominant surface material of a feature or area. A few of the categories used are

stone/brick, water, rock, soil, marsh, asphalt, and trees. In addition to the general surface

makeup, unique significant features are also stored. These features are divided into three

categories: areal features, liniear features and point features. Point features are unique

features less then 150m by 150m in size for level 1 resolution and 30m by 30m in level 2

Table 2. Terrain Data Interval
Zone Latitude Level I Level 2

lat. long. lat. long.
1 00 - 5 0 0 N-S 3 x 3 seconds I x I second

11 50' - 7 0 ° N-S 3 x 6 seconds I x 2 second
11 70'-750 N-S 3 x 9 seconds I x 3 second

IV 75 - 8 0o N-S 3 x 12 seconds 1 x 4 second
V 80N- 9 0  N-S 3 x 18 seconds I x 6 secod

NMT: All values in secmond we in terms of mr messue.

36



resolution. Objects such as isolated structures, radar reflectors, tall buildings, aids to

navigation, etc. fall in this category. Linear features are less then 150m in width for level

1 resolution and less then 30m for level 2. This category includes features such as

canals, streams, rivers, roads, railroad tracks, walls, fences, etc. Areal features are too

large to be considered in either of the other two categories. Included in this category are

parking lots, squares, mud flats, storage areas, etc. The cultural data file is very complex,

containing much information not touched on here. The data obtained from this file can

render a very accurate picture of the chosen area.

c. Terrain Elevation Data

Elevation data is stored in separate files from the cutural features file.

Both level 1 and level 2 data are stored as 16 bit integers representing the elevation in

meters above mean sea level at each data interval. Level 1 terrain elevation data is the

information used in this study to develop a three-dimensional display. The content and

specifications for level I terrain elevation data are covered later in this chapter.

B. DIGITAL TERRAIN ELEVATION DATA

A command and control workstation for use in a tactical, sea/land environment must

have a wide area of coverage. The area of interest for a commander can easily be a circle

a 500 miles in radius from his position. The three-dimensional display for this

workstation must be equally far reaching. The digital terrain elevation data used in the

FOG-M and VEH visual simulations is not sufficient for this application for two reasons.

The data does not cover a large enough area. The Fort Hunter Liggett database is an area

35 km x 36 kin. This is not sufficient to show the feasabiiity of managing and displaying

the quantity of terrain data required for a tactical display. The second reason is that the

Fort Hunter Liggett area is uninteresting for a sea/land environment. There is only a

small stretch of straight coastline, containing no bays, inlets or islands. The southern

37



islands of Japan are an area with both interesting terrain and interesting coastlines and

islands. It is that DMA data set on which this study relies.

1. The NPS Japan Database

A 10,800 square mile database of level I digital terrain elevation data was

obtained from the Defense Mapping Agency. The area of interest is the southern part of

Japan. This area has many islands and interesting coastal features which make it ideal for

testing a three-dimensional display of a land/sea environment. See Figure 4.1 for a map

of the covered area.

2. Format

World coverage of DMA level I terrain elevation data is divided into blocks, or

cells, of one degree latitude by one degree longitude [Ref. 1 I]. The Japan database used

in this study consists of 30 of these cells, distributed on four half inch magnetic tapes.

Appendix A contains a list of the latitudes and longitudes of the individual cells on each

tape. A map showing the position and coverage of these cells is in Figure 4. 1. Each tape

contains multiple cells of information. The cells are identified by the latitude and

longitude of the southwest corner of the cell (cell origin). The data for each cell consists

of three files, a header file, a data file, and a trailer file. The format of the header and

trailer files is very simple and uninteresting. Complete format information for the DMA

Digital Terrain Elevation Data is presented in Appendix B. The data file consists of three

record types:

* I Data Set Identification Record (DSI)
This record contains 648 bytes of information about the data classification,
resolution, position and orientation.

* I Accuracy Description Record (ACC)
This record contains 2700 bytes of information about the horizontal and
vertical accuracy of the data. The cell can be divided into one to nine
subregions. Accuracy data is presented for the overall cell as well as each
subregion individually.

38



* ea of apan

Ktrea an
3SN

............. i .. ... ... ... ..

Database Region

35N* * 30

Database Cell

Fiue .2ap5fJaaEatbs



* Data Record
There is one record for each line of data points of equal longitude. These
records contain the actual elevation data for the cell. A full cell of level
one terrain data has 1201 data records. One for every three seconds of
longitude.

The area covered by each cell provides an ovedap of points having positions of

whole degrees of latitude or longitude. For example the elevation data for the point 3 IN

131E is included in four cells. It is the southwest comer of cell 31N 131E, the southwest

comer of 31N 130E, the northeast comer of 30N 131E and the northwest corner of 30N

130E. The content and format of these records is covered below.

3. Reading the DMA Standard Tape

Digital data from the Defense Mapping Agency is delivered on large magnetic

tapes. It takes 90 megabytes of disk storage to hold the files for the 30 cells of data

obtained for this project. The only machines with enough permanent storage to keep this

data are the ISI workstations used in the Multiple Backend Database project at NPS.

Each of these machines has a 500 megabyte disk drive. A 125 meg partition on ISIVI

was set aside to store and manipulate the Japan terrain database.

The network of ISI computers has a tape drive capable of reading the DMA

standard tapes. Readone.c is a simple program that reads one file at a time from the tape.

The output filename is passed into the program as a command line argument. Each

successive call to the program reads the next file on the tape. The program is written in C

and runs on the ISI workstations.

I Appendix C

40



4. The Elevation Data

Each cell of level 1 terrain data has sample intervals of thre seconds of

latitude arc by three seconds of longitude arc for longitudes between 0 and 50 degrees

north and south. These points are divided into data records of equal longitude. To provide

an overlap, cells points of whole degree latitude and longitude are shared by adjoining

cells. A full data record consists of 1201 data values stored sequentially by ascending

latitude. 1201 of these records make up the cell. They are stored sequentially by

longitude starting with the point of origin (see Figure 4.2).

4 byte Data Records
checksum

Last data
value

northeast
corner of

First data value 1 D R c r

Is southwest 1 D e
corner of cell
data values ' 1201 Data
are two bytes %values in

each record

listed In
7 Bytes of . order of
header ascending
Information

WI latitude

First byte is a sentinel
Value is AA bex Data records are stored in order of ascending longitude

Values in each record are for the same longitude
Each record Is incremented by 3 seconds of longitude

Figure 4.2 Diagram of Cell Data Storage

41



The Data Record has eight bytes of header information before the data and a

four byte checksum after the last data point. The header information consists of:

* I byte recognition sentinel, AA hex

* 3 byte Sequential count of the block within the file

* 2 byte Longitude count, a sequential count of the number of data records
from the origin (southwest corner of the cell).

*2 byte Latitude count, the starting latitude of the record in units of
the data interval. Normally zero for a full cell of level
one data.

The data values are 16 bit signed magnitude binary integers representing the

elevation in meters above mean sea level. The sign is the high order bit. Negative values

are not complemented. This gives a value range of +32767 to -32767. The actual range of

values is +9000 to -12000 meters. The checksum value is the algebraic sum of all the

eight bit values in the record.

The data is easier to use and store in the form of a two-dimensional array of

data points without the extra information. Extract.c2 is a program that takes a data file

from one cell and writes only the elevation data to an output file for later use. The data is

written sequentially, starting with the first data record from the file. This allows it to be

easily read into a C array. The filename for the output file is the latitude and longitude of

the southwest comer of the data. For example, 31N131E is the file name for the cell with

southwest comer at 31 degrees north latitude 131 degrees east longitude. This

information is extracted from the cell's data set identification record. The complete

format information from [Ref. 12] is provided in Appendix B.

2Appendix C

42



V. A THREE-DIMENSIONAL TERRAIN DISPLAY

A real-time, three-dimensional, animated display provides more information and is

easier to interpret then a traditional two-dimensional presentation. It is also much more

difficult to draw. A scene that shows enough information to be useful is complex. It

requires many polygons to accurately depict even simple situations accurately. The

command and control workstation is interested in the sea/land environment. The first

step to providing an accurate and useful three-dimensional display is to draw land and

ocean scenes in a near real-time display.

A. PROBLEMS

Real-time animation is considered to be 30 frames per second. At this rate, the

human eye cannot detect the change of frames and the animation appears smooth. It

would be nice for a three-dimensional, tactical display to update that fast, but it is not

necessary. An update rate of two or three frames per second looks jumpy, but it conveys

a sense of motion to the viewer and shows the appropriate, up to date information. A

very large area is seen from an altitude of 300 ft. Assuming a field of view of 45 degrees,

visibility of 20 miles and DMA level one digitel terrain elevation data, this area has

67,916 data points. It requires 135,832 filled triangles to represent the terrain and takes

the IRIS 4D/G about 90 seconds to draw using z-buffering. This is improved upon by

drawing the land with filled polygons and drawing the ocean as an underlying blue plane.

It requires 54 seconds to draw one frame. Computer upgrades will improve these times

but not enough to give an acceptable animation rate. A new method must be found to

draw the terrain faster without a loss in accuracy.

43



Each cell 3 of terrain elevations has 2.8 megabytes of data. Assuming a maximum

visibility of 60 miles, four cells of data is the maximum that is required for any one

scene. (see Figure 5.1 ). Four frames contain 11.2 megabytes of data. This data must be

available to the program for each frame that is drawn. The digital terrain database being

used in this project consists of many islands and a lot of water. The ocean is represented

as zero elevation. Space complexity can be improved by compressing the data, i.e. not

storing all the zero data.

The third problem addressed in this chapter is actually a set of problems dealing

with drawing the terrain. The terrain data is a set of discreet points 100 yards apart. The

ocean is represented by points of zero elevation while land is any elevation

View Directi )a

Four Cells 160NM
of Digital Terrain

Elevation Data C Me\

Poijlt"% Max Via
60 NU

Figure 5.1 View Area Covers a Maxinmum of Four Cells of Data

3Represents one degree latitude by one degree longitude area (Chapter 4)

44



greater then zero. How is the shoreline drawn between these points? Other problems that

are covered are concerned with drawing in z-buffer mode and how to transition between

different drawing resolutions.

B. DRAWING THE TERRAIN

The terrain in a tactical three-dimensional display must be drawn in correct

proportion to the actual view. Not only must the vertical and horizontal scale model the

real terrain but the area displayed must match the area that can actually be seen.

1. Scale

The data interval for digital terrain data is in seconds of arc latitude ,nd

longitude. One minute of arc latitude varies between 6,046 ft and 6,108 ft. This

corresponds nicely to the use of nautical miles (NM) as the basis for a scale. One NM is

1852 meters or 6076.11 feet [Ref. 11]. A general rule of thumb used in navigation is one

nautical mile equals 2,000 yards. The longitudinal scale is dependent on the latitude. At

the equator, the distance between whole degrees of latitude and longitude are both equal

to about 60 NM. As latitude increases, the interval for degrees of latitude stays about the

same but the arcs of longitude converge. At 30 degrees N, the start of our data, the

distance between adjacent arcs of longitude is 52 NM. The data point interval for the

DMA data base4 is three seconds of latitude and three seconds of longitude. This equates

to approximately 100 yds between points north or south and 86 yards between points east

of west. For simplicity, the initial implementation of the three-dimensional display uses

the value of 100 yds as the interval between all data points.

*The database of Southern Japan used in this study (Chapter 4)

45



The first chapter of [Ref. 111 states that "Relief information to DMA standard

digital format is on a three seconds of latitude (approximately 100) meters matrix".

Using 1852 meters as a close approximation to one degree of latitude, the actual value is

92 meters for three seconds of latitude. A much better approximation is 100 yards for

three seconds of latitude. The actual value is 101.25 yards.

The DMA digital terrain elevation data values are in meters above mean sea

level. To keep the scale constant, this value is converted into yards. The relationship, one

yard is equal to .9144 meters is used as the conversion factor. This correction is applied

when the data is preprocessed into a form that is compatible with the data structure used

to store the data.

2. Visibility

Visibility is determined by the curvature of the earth. At an eye height of 6 ft,

visibility is three miles. This distance increases with the height of eye of the observer.

The area that can be seen is approximated by drawing the area from the view point to the

horizon. Since items with an altitude greater then zero can be seen past the visible

horizon, a minimum visibility of 10 NM is used to insure that land and objects relatively

close are seen. Objects further away that can be seen over the horizon are indistinct and

generally are not of interest. A maximum visibility of 60 nm is assigned to simplify

determining what data cells are needed. The following formula, derived from, [Ref. 4]

is used to calculate the visibility (VIS) in yards given the height of eye (HE) in yards.

Vis = 3962.8 xW

The visibility is used to calculate the area that can be seen in one scene or

frame, the visibility triangle (see Figure 5.2 ). This triangular area is computed using the

view point, the direction of view from the view point, the visibility, and the field of view.

46



Area Inside Triangle

is Visible from the View Point
NVlew Direction

V o Computed boundaty points

Angle is half the field
3 ' Dogma .. .of view in the X direction

It is used to compute the
_ _ _ _ __ boundary points

Computed distance of visibility

to the Horizon

Figure 5.2 Visibility Triangle

3. The Ocean

The ocean can be approximated as a fiat plane and drawn as one filled polygon

at zero elevation. An area with data values of zero elevation is not drawn as many

separate polygons. Instead, a blue base is drawn at zero elevation and only polygons

with elevations greater then zero are drawn overlaying the blue base. This method

allows scenes with a large proportion of water to be drawn much more quickly. This

technique speeds up the the drawing process but causes a problem with the z-buffering.

This problem and and the techniques used to correct it are discussed later in the z-

buffering section of the chapter.

A sense of movement is detected over terrain by the changing relief of the

ground. This can be enhanced by artificially checkerboarding the terrain with two colors.

The ocean generally has no relief and can be drawn as a single blue polygon. A sense of

motion cannot be derived from a checkerboard pattern since a fill pattern is generally

47



drawn in screen coordinates vice world coordinates. Such a fill pattern does not show the

effects of the view point moving in the world coordinate system. To provide a sense of

movement over the water, a set of grid-lines is drawn on the ocean approximating

latitude and longitude lines on a chart. The grid-lines are drawn dependent on the altitude

of the view point. The ocean and grid-lines are drawn in procedure draw terrain5.

4. Shoreline

The data can be viewed as a two-dimensional matrix of elevation data. These

data values are the elevation of discrete points and do not show what conditions are

between the points. The terrain is drawn by assuming that the area between the points

can be represented as small planar triangles6 with the data points as vertices (see Figure

5.3 ). Since a blue base is drawn first at zero elevation, triangles that represent ocean are

not drawn. The land is drawn in alternating colors of green to give a checkerboard effect.

Knowing nothing about the transition between points, it is hard to decide where to draw

ocean and where to draw land when the adjacent points indicate there is a transition

somewhere between them. The resulting picture must show a smooth transition that

represents the actual shoreline. The database is converted into polygons by taking four

adjacent data points that form a square and drawing it as two adjoining triangles. When

all four data points are either zero or greater then zero both triangles are drawn the same,

as either both ocean or both land. The problem is when the four points are mixed. One

solution that works nicely is to draw a transition or shore when there is only one of the

four points that is greater then zero. If two, three or all four of the points are greater then

both triangles are drawn as land. This leaves four different ways to draw one triangle

SAppendix E

*Mrangles are used to insue that the resulting polygon is always convex.

48



O Data Point

Four adjacent data points
are used as the verticies of

two planar triangles

Figure 5.3 Area Between Data Points as Planar Triangles

land and one water (see Figure 5.4 ). Figure 5.5 shows a picture of a typical shoreline

drawn with this method. Procedure drawpoly.c in Appendix D correctly draws the

triangles for four adjacent points given as parameters.

C. THREE LAYERS OF RESOLUTION

Drawing terrain out to the horizon requires too many polygons when all the data

points are used. The natural perspective of a three-dimensional scene causes objects in

the distance to appear small and indistinct. A three dimensional display has this same

property. A polygon drawn at a distance might map to only one pixel in screen

coordinates. Because of this difference, objects in the background do not need to be

drawn in the same resolution as those in the foreground. The terrain data is converted to

three resolutions. The foreground is drawn in level three resolution, data points 100 yards

apart. This is the same resolution as the original data. The second level of resolution is

49



OLand Data Point
elevation > 0

0 Ocean Data Point
elevation = 0

Land

Ocean

All four points water both triangles are water

Three of the points are water one triangle land one water
Any other combination both triangles are land

Figure 5.4 Shoreline Polygons

so



". "s. i I II i

... ... ... ... ... . .

.• . ...... .

Figure 5.5 Sample Shoreline

for the middle-ground. Data points are 1200 yds apart. This resolution has one data point

for every 144 level one points. Level one data is for drawing distant terrain. There are

100 level two points for one level one point and the data points are 12,000 yards, six NM,

apart. This data can be preprocessed to fit one of two proposed data structures. By using

different resolutions to draw out different distances, the number of polygons can be cut

by. an order of magnitude without degrading the display. Figure 5.6 shows two pictures,

the first is drawn completely with high resolution, the second with a three-tiered

structure.

Sl

L l l tla i i



Figure 5.6 Contrast Single and Multi Resolution

52



1. Imalementation

Large amounts of data are required to accurately display terrain in a three-

dimensional view. Access to the data needs to be fast if near real-time animation is

expected. The data structure that is used should be optimal in both space and time. Two

possible data structures are examined to hold the terrain data required for three tiers of

resolution. One uses a hierarchical structure with pointers. This structure also

compresses the data. The other uses three two-dimensional arrays and simplifies the

program to display the terrain at the cost of more storage space. There are problems with

the transition between different resolutions and the use of z-buffering to display the

terrain over the water base. Most of the problems have been solved but work is still

needed to refine the techniques and speed up the algorithm. This section is written to

explain the implementation to readers who might not be familiar with the "tricks"

commonly used in the C language.

a. The World

The database used in this study is divided into cells. Each cell is an area

one degree latitude by one degree longitude. More then one cell can be displayed at one

time and as the view point moves the system must be able to change cells. The earth can

be divided into octants. Each octant consists of 8100 cells in a 90 by 90 array indexed by

latitude and longitude. This implementation uses one octant indexed from 0 to 90

degrees north latitude and 90 to 180 degrees east longitude. This matrix is sparsely filled

with only 30 cells in the database. The array starts out as all null pointers. Pointers to

individual cell data structures are added as required. The drawing routine checks the

array for a needed cell. If the pointer is null, the routine initterrain7 is called with the

'Appendix F. Appendix 0

53



latitude and longitude of the requested cell as parameters. This procedure checks to see if

the appropriate file is in the database. If not, the cell is assumed to be all ocean with zero

elevation at all data points.

b. Multiple Cels

The procedure draw_terrain8 first calculates the area that can be viewed in

the scene. Draw_terrain then sets the view bounds, maximum and minimum coordinates

in the X and Z direction. The coordinates of the view bounds are relative to the lower left

comer of the cell containing the view position. The cell containing the view point is

always drawn. Any view bounds that fall outside the cell area indicate that another cell

must be drawn. There are 12 possible cases that are checked with a maximum of four

cells that are drawn for any scene. Figure 5.7 shows an example where four cells will be

drawn. The procedure drawcell' is called once for each cell. The position of that cell

relative to the cell with the view position is passed as a parameter and is used to adjust

the view bounds to the coordinates of the new cell. The procedure adjust_bounds1 ° is

called by draw_cell to do the conversion.

c. The Cell

All the actual data for all three resolutions is stored in cells. The data

structure of the cell is the controlling factor that dictates the efficiency of the drawing

algorithms.

'Appsdix E

'Apendix F, A"enx 0

'Appendix E

54#



evel we bounding boaT View Bounds for each resolution areLevl oe bundng oaView Triangle based on the view triangle.

The view triangle is partitioned into

three areas , one for each resolution.
The view bounds are the max and

Level Two min values that form a square around

Bounds -Y / the resolution triangle.

A

Bounds -m

t ~ ~~view point '

Level Three Level Two

View Triangle View Triangle

Figure 5.7 Multiple Cells Drawn With View Bounds

(1) Initialize the Structure. The data structure for cell data starts out

empty. When data from a particular cell is first requested, the data must be read from the

database and inserted into the appropriate structure. The display must pause and wait for

the data to be entered. The first attempt to read just the raw data into an array took four

minutes. This is clearly unacceptable. There are a couple of ways to speed-up this

process. Block reads and self buffering improve the performance, cutting the time down

to seven seconds.

In order for block reads to be effective, the database needs to be in

the same form as the structure it is being read into. The initial data works very well when

assumptions are made about the way the programming language stores the data. The

initial data consists of sequential lists of data points. Each list has 1201 two byte integers

listed sequentially according to ascending latitude. The lists are then stored in order

according to longitude. The C language stores arrays in this same manner. The name of

55



an array is the address of the first element in the array. The elements in the array are

stored sequentially in adjacent memory locations. The following line of code read 1201

two byte words from an input file and stores them sequentially starting at the address of

Arrayname.

nbyte = fread(Arrayjiane,2,1201,fdi);

In this way a whole array can be filled with one read. This also works with two-

dimensional arrays. Array[2], of a two dimensional array, is the address of the starting

location of the third column in the array. Experiments were conducted to determine the

most effective buffer size to read this particular data. A buffer size of 28672 bytes was

chosen.

The data needs to be in a form that conforms to the data structure

before it is read. Additional preprocessing can also aid the performance. For instance, the

conversion of data from meters to yards can be accomplished at run time or calculated

and stored, ready for the program to read. Polygon normals, used for lighting, are another

example of information that can be preprocessed.

(2) Drawing the Terrain. Only the procedures that actually access the

elevation data are dependent on the data structure. The procedure that controls the

drawing of the scene is drawterrainO) This procedure performs the structure

independent tasks and calls the procedure drawcell()12 to access the data and cause the

proper polygons to be drawn. DrawcelO is structure dependent and is covered in the

following sections on the specific data structures. The procedure draw-terrain:

",1Appendix E

12 Appendix F or Appendix G depending on the data atctw,

56



* Calculates the visibility

* Sets the drawing perspective

* Draws the sky

* Draws the ocean to the horizon

* Calculates the area to be drawn in each of the three resolutions

* Determines what cells to draw

* Calls the procedure drawcell0 for each of the cells

Most of the work done by this procedure is in calculating the view bounds that tell the

procedure draw-cellO what part of the cells to display.

(3) Array Structure. Two-dimensional arrays have properties that

make them an ideal structure for this application. Each data point can be indexed

according to its world coordinate location and is accessed in constant time without

traversing a complicated data structure. The following structure is used to store the data

for each cell.

typedef struct(
short level3[1201 [1201];
short level2[101][101];
short levell[li](11];
I cell;

Each resolution is stored in a matrix that can be accessed separately. When a cell not

already in memory is requested for a scene, the procedure init terrain13 allocates

memory and reads the data into the structure.

n3See Appendix F

57



The procedure 3a.c14 preprocesses the raw terrain data and writes the

processed data to a file that can be easily read into the array structure. The data values

for the different resolutions are calculated in this procedure. Level three resolution is the

initial data. It is stored as a 1201 by 1201 array. Figure 5.8 is the code that calculates the

values for the levels one and two data. The level two data is an array 101 by 101 points.

Each value is the average of the level three points around it. The level one data uses the

previously calculated level two data to further process the data into the coarser resolution

of an I by I 1 matrix. Because the data points at the cell boundaries are shared between

cells, the level one and two points at the cell boundary must have the same value as the

corresponding point in the adjacent cell. This is achieved by using the original data value

for points around the boundary instead of the averages. The data is written to a sequential

file in order to make reading the data quick and easy.

Init terrain reads in the new data file in the same order it was

written. The level three data is read first, one column at a time followed by the level two

and level one data. This structure displays one new frame every four to five seconds on

the IRIS 4D/70G workstation. This time depends on the amount of ocean in the scene.

More ocean means fewer polygons and less time.

(4) Pointer Structure. The cells that are of interest in a typical naval

situation include large areas of ocean containing data points with zero elevation value.

Polygons are not be drawn for this data when an underlying plane is drawn to represent

the ocean. It would be nice to preserve the direct access of the array structure and cut

down the space required to store the data structure by not saving all the zeros. The

following data structure is used to accomplish this.

"See Appendix F

58



/ Level Two Data Calculation */
for (i--O.j<=100--i++)

for (j=O;j<=100j++)

/* cell boundary points get the value of the underlying point */
/* if cell boundary */

if((ioj= )(i- -1000)j100))
I
level2[ijUj-leveD[i*12]j* 12];

else
1 the level three points within 12 data points of the level two

point are averaged to find the value of the level 2 point */

sub=O;/* subtotal */
for(s((i- 1)* 12);s<((i+ 1)* 12);s++)

sub = sub + level3[s][t];

level2[i]U] = sub/576;/* final value avg of 576 points checked */

/* Level One Data Calculation */
for (i=0;i<--10;i++)

for (j=O;j<=l0;++)

/ if cell boundary actual value of underlying point*/
if((i=O)ll(j-=O)ll(i=lO)IIljl10))

level 1 [i]U]=level2[i* lO]j* 10];

else
/ level 1 value is average of underlying level 2 values */

sub=O;/* subtotal */
for(s=((i-l )*10);s<((i+ I)*10);s++)

forQt((j- )*l);t<((j+1)*lO);t++)

sub = sub + level2[s][t];

Ilevelliil sub/400;/* final value avg of 400 points ~

Figure 5.8 Calculation of Level One and Level Two Data

59



typedef struct(
short data[13J[13];
}Ievel3_rec;

typedef level3_rec *ptr3;

typedef structi
ptr3 level3ptr[ll][ll];
short level3val[1][11] ;
short all-zero;
flevel2_rec;

typedef ievel2_rec *ptr2;

typedef struct(
ptr2 level2pt r[ 11][11] ;

short level2val[11][11];
short all-zero;
}levell_rec;

typedef levellrec *ptrl;

Each level of data has a separate structure. The octant that points to

the individual cells holds pointers to only the level one structure. The level one and level

two structures have two arrays. One contains the actual data values for the resolution

while the other contains pointers to the structures for the next level. If an underlying

structure is all zeros, the structure is not allocated and the pointer is null (see Figure 5.9).

Preprocessing data for this structure is more complex. The data is

first read into a 1201 by 1201 array. This data is then used to fill in the data structure.

The level one and two data value can be calculated as either the minimum or the average

of the points below it in structure. As the data structure is filled, any subcell with all zero

values is marked not to be saved. The program 3T.c initially uses the raw data to create

the data structure and then writes it to a file in an order that can be quickly read into the

structure while the program is executing.

The level two and three data is basically converted from one large

array to many smaller arrays. The cell boundaries share data points with adjacent cells.

This duplicated data is needed in each cell to allow polygons to be drawn to the edge of

the cell. The same is true of the sub-cells of level two and three data. The data points on

60



Pointer to cell

Level one structure 11 points by 11 points
each position has a value and a pointer
to the next lower structure

Boundary points are
duplicated in adjoining Level two
structures on all t 11 points by 11 points
three levels. Level two subcell. One structure

for each element in the level one
structure. Subcells with all zero
values are not allocated and the
corresponding pointer in the level
one structure is null. L three

S 13 points by 13 points
Level three is the high resolution /

data. There is one structure for every

point in a level 2 structure.

Figure 5.9 Pointer Data Structure

the edge of the sub-cells must be duplicated in the adjacent subcells and the values must

be equal. This is done when the data is initially set up in the program 3T.c.

The values for the level one and level two data were calculated and

displayed as both the mean value and the low value. There was no discernible difference

in the display. Since the level one and two polygons are drawn in the distance, a small

difference in altitude is not significant.

d. Resolution Transitions

The transition between resolutions is not smooth. The level one transition

to level two is in the distance and not noticeable but the line between level two and three

61



shows noticeable gaps where the level three data meets the level two polygon at its end

points but not at the level three points in between.

This was solved by drawing a "skirt" around the level two boundary with

level three. The procedure draw_skirt15 draws a vertical green plane from the two points

passed in as a parameter to zero elevation. This procedure is called from the procedure

drawcell when a level two polygon is drawn that boarders level three. (see Figure 5.10)

e. Z-buffering

The use of z-buffering as a hidden surface technique has caused several

problems in this implementation. The first problem is speed. Each time a pixel is to be

drawn to fill a polygon its z value must be compared with the pixel value already in the

z-buffer. If the z value in the buffer is closer then the new point, the buffer stays the same

and the new point is not drawn. In this way a pixel is only changed if the new pixel value

is in front of the old one. This comparison each time a pixel is written is very expensive

and time consuming but the algorithm is simplified because the order that the polygons

are drawn is unimportant. New hardware is supposed to greatly increase the speed of z-

buffering to a point where it is much faster then trying to keep track of the individual

polygons. A quick port of the terrain display to the IRIS 4D/GT resulted in an order of

magnitude improvement.

Z-buffering caused another problem that affected the resolution

boundaries. You cannot draw one resolution over another resolution and depend on the

high resolution polygons always being shown. The low resolution data will cover low

spots or valleys in the high resolution terrain. Since the boundaries cannot overlap, the

1SAppendix D

62



: - • 
! | ~ i | I 

, ..... . . . . . . . .

Resolution Boundary Gap.... .i! .i! ........

Skirt Drawn To Fil The Gap
Figure 5.10 Resolution Boundary

63



lower resolution must be drawn out to the boundary of the next higher resolution. The

bottom line is that more polygons must be drawn, and the program must do more

calculation to compute the boundaries.

Z-buffering does not always work correctly when two parallel planes are

drawn close to each other. When the terrain is drawn over one blue polygon representing

the ocean, the shoreline and the ocean are basically two parallel planes that often map to

the same pixel and z-buffer location. The pixel value that is drawn is unreliable. The

effect is popping blue splotches on the terrain as the view point changes. Figure 5.11

shows two pictures of the same area taken at different elevations. As you can see, the

shape of the shoreline changes and is not regular.

There are two solutions to this problem that don't require that more

polygons be drawn. Drawing the ocean before or after the terrain has no effect. The z-

buffering seems to work better close to the near clipping plane. Moving the near clipping

plane forward as far as possible helped some but did not solve the problem. Another help

was changing the far clipping plane to be one and a half times the visibility. This in

effect decreases the resolution in the z direction but the picture quality is improved

slightly. It was suggested that at least 20 bitplanes are required for the z-buffer [Ref. 131.

The IRIS 4D/70G has 24 bitplanes but due to a software problem only 16 can be

accessed. The new IRIS 4D/6T can now access all 24 bit-planes. Preliminary tests on the

new machine indicate that the z-buffer resolution is not the cause of this particular

problem. The final part of this solution was to lower the water a distance that is about one

pixel below the land. This causes enough separation to insure that the land is drawn over

the water. A distance of six yards worked well for the level two and three data. There is

still some problems in the background but the overall picture is good (see Figure 5.12).

64



.. > ... .....

Figure 5. 11 Z-buffer Changing Coastline

65



Figure 5.12 Picture With Corrections to Z-buffering

There is another way to solve this problem if you don't need hidden

surface elimination for anything drawn under the water. Turn z-buffering off before

drawing the ocean plane. Then turn z-buffering on, clear the z-buffer, and draw the

terrain. This insures that everything will be drawn over the ocean plane. This won't cause

a problem unless the intention is to draw additional objects that might lie partially under

water, i.e. ships.

Another solution to this problem requires that polygons be drawn for the

ocean. This separates the sea and land so they are not drawn as two parallel planes. This

solution takes more time to draw the extra polygons. If the hierarchical structure is used,

the complexity of the program increases because of the null pointers. The program must

66



determine what size the polygons are and where to draw them when a null pointer is

encountered. This is still better then drawing all the water polygons for the standard

resolution because only one polygon needs to be drawn for each null pointer.

D. CONCLUSIONS

1. Data Structures

The Array structure requires about 3 megabytes of data. The pointer requires

about 0.8 megabytes for an average cell, about half water half land. The procedures for

the initialization and drawing the structure are much more complex with the pointer

system. The time required to draw one frame is three to five seconds for the array and

one to five for the pointers. At worst case, when the scene is all land, performance is

about equal. The pointer system excels when the viewpoint is over water and null

pointers are encountered when drawing. The performance of the hierarchical pointer

structure is at worst the same as the array. The improvement when drawing both land and

water make the increased complexity of the hierarchical pointer version of the program

worthwhile.

2. Z-bufferina

Z-buffering is not always the best solution to the hidden surface problem.

Many of the problems with displaying the terrain would be greatly reduced if the

painter's algorithm was used instead. If the end use of this research was to just display

terrain the painters algorithm would be acceptable. The difficulty comes when you want

to add objects to the display, i.e. ships, tanks, buildings, etc. The painter's algorithm relys

on the drawing order of the polygons. The polygons closest to the viewpoint are drawn

last covering any objects farther away. Any objects that are drawn in addition to the

terrain must have their polygons sorted with the terrain polygons to insure that all the

67



polygons that represent the final picture are drawn in order, far to near. See [Ref. 71 for

a better discussion of this technique. If the problems with z-buffering can be overcome,

it is well worth the effort for a three dimensional display.

Black and white images are used throughout this chapter to illustrate points

about the display. Figures 5.13 and 5.14 are color photographs of typical views seen in

the three-dimensional terrain display. They are added to help equate the black and white

images to the views actually seen on the system's color display.

68



Figure 5.14 Color Photos of the Terrain Display

69



Figure 5.15 Color Photos of the Terrain Display

70

-- . . . .. m m nlmm ( 
m m

-- .[



VI. CONCLUSIONS

A commander's workstation that provides useful information in a way that is easy to

understand and control is not only feasible but essential for managing the vast amount of

information a commander needs to make speedy, well informed decisions. This study

focuses on two preliminary issues in the development of the command and control

workstation of the future (CCWF), a user interface with multiple windows and a three-

dimensional display of the sea/land environment.

A. THE USER INTERFACE

Multiple windows is a necessity. Separate, physical displays for each type of

information is not practical. The use of multiple windows as virtual displays allows the

user to quickly and easily arrange the screen to show the information that is required.

A mouse or track-ball controlled cursor is an easy way to control the entire

workstation. The user can "point and click" to perform any operation without having to

fumble with unfamiliar switches and dials.

Controls that are presented on the screen in pop-up menu form are easier to

understand and execute. After the selections have been made, the menu disappears until

it is needed again. The menus are changed according to the situation. Only the

executable subset of actions is presented to the user. This gives the user fewer choices to

sort through before making a selection. The selections are presented on the screen in

simple easy to understand English. Operations that are infrequently executed are

presented in a separate menu that is called from the main menu. This is an effective way

71



to change default system settings. Menu driven controls increase the effectiveness of the

user interface with the CCWF.

B. THREE-DIMENSIONAL DISPLAY

A three-dimensional display is very complex. It requires a very powerful computer

capable of drawing on the order of 100,000 polygons per second. This study focuses on

the display of digital terrain elevation data in a three-dimensional display.

Data from the Defense Mapping Agency standard tapes is used. Appendix C shows

the routines developed to extract files from the DMA standard tapes and also the routines

developed to extract the needed information from the files.

The terrain is drawn by passing elevations for four adjacent points to a routine that

draws two triangles representing the area between the four points. An acceptable

approximation of the actual shoreline can be generated by assuming that any square with

three of the points at zero elevation has one triangle land and one water. Any square with

all zero elevations is all water and any other combination is all land.

Objects in the distance are seen in less resolution then objects that are close. A

technique that models this natural fact is to use three resolutions of terrain data. A high

resolution data with points close together, is used to draw terrain in the foreground. A

medium resolution has points that are farther apart and a low resolution is used to draw

things far away.

A hierarchical structure with pointers works very well to store three resolution

terrain data. The data is stored in small structures starting with low resolution on top and

working down three layers to the high resolution data. The value of each low resolution

point is based on the values of all the higher resolution points below it in the structure.

This technique also compresses the data. A command and control workstation for the

72



Navy is primarily concerned with the area of sea and land. Many of the data values for

these cells are zero in elevation, indicating ocean. Any sub cell with all zero values is

not stored. The structure that represents this area is not allocated and the pointer to this

section is null. When a null pointer is encountered while drawing the terrain the system

knows all values below this point are zero.

Z-buffering was used as the means of hidden surface elimination. This method

makes drawing many polygons very easy but is very costly in time. It is hoped that

future hardware improvements will overcome the problems and allow z-buffering to live

up to its potential.

C. FUTURE WORK

The next step in the development of CCWF is to combine the multiple window

interface with the three-dimensional display. New hardware, the IRIS 4D/GT, provides

the computation and graphics power needed to provide multiple, separately controlled

windows, showing two and three-dimensional views in near real-time. The two-

dimensional version of the command and control workstation needs to be ported to the

new hardware and changed to conform more closely with the native window manager.

The three-dimensional terrain display should be included in the new system.

Enhancements needed in the two-dimensional display include information on the closest

point of approach, track history and other common NTDS functions. The ability for the

user to enter information directly into the system should also be added. This can be used

to enter contacts into the system or show special marks or boundary areas on the display.

73



A new display showing a map of the region needs to be developed. Terrain elevation

data is available and cultural data can be obtained from DMA. NTDS symbology should

be shown on the display indicating contacts.

All three of these displays need to be tied together, sharing the same information.

The database of contact information needs to be expanded to include a three-dimensional

graphics representation that can be displayed and selected in the three-dimensional

display. The view point of the three-dimensional display should be set by selecting a

contact or a point in the NTDS or chart display.

Work is needed in the three-dimensional display to take advantage of the additional

power provided in the IRIS 4D/GT. A lighting model should be added to provide more

realistic views with Gouraud shading. Contacts, buildings and special features should be

represented by special three-dimensional icons that resemble the actual objects. More

accurate drawing bounds can be computed, cutting the number of polygons that are

drawn.

The user should be able to attach to a contact and see the view from the perspective

of someone on a ship's bridge or in a plane's cockpit. The view-point should also have

the ability to be free floating, where the user selects a position and then moves about at

Vill. The user selects a contact in formation to attach to. While attached, the view shown

n the three-dimensional display is based on the position, course and the height of eye of

the contact. The user then detaches from the contact. He can assign a course and speed

to the view point and move about, observing the formation from any angle.

Tactical information, such as weapons and sensor envelopes, can be added to the

three-dimensional display. The user selects a contact and asks for the weapons systems to

be displayed. A window opens with a list of weapons and sensors. The user then asks to

74



see the envelopes of all or some of the systems. The area that is effected on the three

dimensional display is overdrawn with a transparent color showing the effective area.

The information available in Defense Mapping Agency cultural files can be added to

both the two and three-dimensional displays. The chart display can show features

commonly found on maps and charts, i.e. cities, landmarks, buildings, towers,

navigational aids, etc. The three-dimensional view can use three-dimensional icons to

represent these same features.

A system with all of the features listed above is a major effort. In fact we foresee

that even greater graphics capabilities are needed to completely carry out our desires for

the three-dimensional display. Fortunately, we see near future graphics workstations that

will give us an order of magnitude increase in polygons per second in the next two years.

Before that time we need to prototype and explore three-dimensional capabilities with

the hope that we are able to provide a prototype of the command and control workstation

of the future, as the new hardware arrives.

75



APPENDIX A - DEFENSE MAPING AGENCY TAPES

Tape I Tape 2

six cells six cells

30N 129E 32N 128E

30N 130E 32N 129E

30N 131E 32N 130E

3IN 129E 32N 131E

31N 130E 32N 132E

31N 131E 32N 133E

Tape 3 Tape 4

eight cells nine cells

33N 126E 33N 125E

33N 127E 33N 126E

33N 128E 33N 127E

33N 129E 33N 128E

33N 130E 33N 129E

33N 131E 33N 130E

33N 132E 33N 131E

33N 133E 33N 132E

33N 133E

76



APPENDIX B - DIGITAL TERRAIN ELEVATION DATA FORMAT

This is the file discription for the Defense Mapping Agency digital terrain elevation
data used in this project. It was extracted from the Defence Mapping Agency publication
"Product Specifications for Digital Landmass System (DLMS) Database", stock number
SPEXDLMS2.

CHAPTER 4 -- DIGITAL FILE DESCRIPTIONS

SECTION 100 -- TERRAIN

Paragraph Page

101 General 81
102 File Characteristics 81
103 Record Formats 86
104 Explanation of Records and Fields (DTED) 96

101. General

The DMA Standard Terrain Format is DMA's standardized system of recording
terrain elevation data on magnetic tape. The format is intended for the purposes of
production, storage and exchange of terrain elevation data.

102. File Characteristics

A. Physical Characteristics of Magnetic Tape

1. Length: 2400 feet

2. Width: .5 inch

3. Nine track recording format

4. Odd parity

5. Density/recording method:

a. 1600 FPI/Pnase encoded. This is preferred by DMA for storage and
data exchange and will normally be expected from generators and provided to requestors.

b. 800 FPI/NRZL This is not preferred by DMA but will be provided to
or accepted from e -, requestors or generators unable to accept or generate 1600 FPI,
phase encoded dat-

c. 6250 FPI/CCR. Future preferred DMA data exchange format. Will
not be used unless agreed to by sender and receiver.

6. Inter-Record gap: .6 inch (6250 FPI: .3 inch)

7. Physical end-of-tape markers at *the beginning (beginning-of-tape
marker) and end of the tape (end-of-tape marker).

77



B. Record Characteristics

1. Recorded Labels: American National Standard Magnetic Tape Labels for
Information Interchange X3.27 - 1969. Recorded in ASCII code.

2. Data Records:

a. Record size: variable length, maximum 14414 frames, minimum 14
frames, modal (average) 2414 frames.

b. Blocking factor: 1:1 (block size = record size)

3. Record Sequence:

VOL 1 (Volume Header Label)
HDR I (File Header Label for file A)
UHL I (User Header Label for file A)

(f i

DSI (for file A)
ACC (for file A)
Data (for file A)

EOF I (End of File for file A)

UTL I (User Trailer Label for file A)

HDR I (File Header Label for file B)
UHL I (User Header for file B)

DSI (for file B)
ACC (for file B)
Data (for file B)

EOF I (End of File for file B)
UTL I (User Trailer Label for file B)

N"'E: In the above sequence, a Tape Mark (hardware end of file) is denoted by an "'.

78



4. Logical Characteristics: (Level 1)

a. Data File Structure: Arranged into I degree by 1 aegree
geographic areas. Each data file will contain data falling within a single one
degree square. The reference origin for each data file will be the Southwest
corner of the degree square. ultiple data files will be arranged primarily by
ascending latitude bands (-900 South to +900 North), secondarily by ascending
longitude (-10O West to +1790 East).

b. File Extent: To provide overlap between adjacent data files,
the degree square coverage in this standard includes the even degree values on
all sides of the area. Each data record has one point of overlap with the
square above and one with the square below (if the record extends to the
degree square limits). Entire data records lying on integer degree longitude
values will also exist in the adjacent degree square.

c. Terrain Elevation Intervals: The horizontal plane spacing of
the elevation array will be in whole second intervals for intervals of
1 second and above and in 0. 1 second intervals for intervals less than
I second.

d. Data Value Sequence: The elevations within a data record have
a constant longitude value. The first data value is the southernmost known
elevation and the last is the northernmost. Unknown values internal to the
record are indicated by the null state condition of all one-bits. No two data
records will have the same longitude value.

e. Data Record Sequence: Within a data file, the records are
arranged in order by ascending longitude.

f. Hash Control Total Information: The last four frames of each
type data block contain a 32 bit value which is a checksum computed algebraic-
ally by summing all elevations and header words in that block, as 8-bit values
using integer arithmetic. Each frame from tape is considered as an 8-bit value
for checksum calculation.

5. Field Characteristics:

a. Numeric Value: All elevation values are signed magnitude
binary integers, right justified, 16 bits. The sign is the high order posi-
tion. Negative values are not complemented.

b. Permissible Elevation Value: +32767 meters

NOTE: This is the maximum allowable elevation yalue. However, this value will
not exceed +9000 meters or -12,000 meters.

c. Null State Condition: Blank data will be all one bits.

6. Explanatory Diagram: In order to more fully explain the file
structure, figure 4-100-1 is included.

79



FIGURE 4-100-1

TERRAIN EXAMPLE
F OUR I ° CELLS

12' LONGITUDE SPACING
(NON STANDAMD)

DATA DATA DATA DATA
STRUCTURE STRIUCTURE STRUCTURE STRUCTURE
SEQUENCE TYPE SEQUENCE TYPE

I VOL 1 32 HDR 1
2 HDR 1 33 UOHL 1 310N, 40ow
3 UHL I 300N, 40OW 34
4 * 35 DSI
5 DSI 36 ACC

6 ACC 37 Data Record 12
7 Data Record 1 38 Data Record 13
a Data Record 2 39 Data Record 14
9 Data Record 3 40 Data Record 15

10 Data Record 4 41 Da ta Record 16
11 Data Record 5 42 Data Record 17
12 Data Record 6 43 *

13 * 44 EOF 1
14 EOF 1 45 UTL I
15 UTL 1 46 *

16 * 47 HDR 1
17 HDR 1 48 UHL 1 310N>, 39OW
18 ULHL I 300N, 390 W 49 *

19 * 50 DSI
20 DSI 51 ACC
21 ACC 52 Data Record 17
22 Data Record 6 53. Data Record 18
23 Data Record 7 54 Data Record 19
24 Data Record 8 55 Data Record 20
25 Data Record 9 56 Data Record 21
26 Data Record 10 57 Data Record 22
27 Data Record 11 58 •
28 * 59 EOF 1
29 EOF 1 60 UTL 1
30 UTL 1 61 *

31 * 62

NOTE: - Tape Mark

80



Figure 4-100-1

TERRAIN Example (Continued)

44 Cell 3 Cell 432°N + +•

w 1w 1w W w% w. $W 0 -

- , . , . q - -, -, . - N C l C

O 0 0 0 0 0 0 0 0 0 0
0 U U U U U U * 4, 0 4 6 6 4, 4, 4, 4,

0 00 0 
oJ 4 a a a a aJ a J

31°N • . + 4 • +

31oN 4 17 l 2.4 3P 3k + .

- N M1 1 UL %D %0 1 w 0

.4 a . . * * .

ha~ wa wa 1w wa 1. a ha h aO 0 0 0 0 0 0 0 0 0 0 0

.3 .

30oN +1 7 13 lp 2? l + 12' 1
Cell 1 Cell 2

NOTES: (i) In above example (non-standard 12' Latitude/Longitude spacing),
each Data Record contains 6 elevations. A 3W standard 10 square
Data Record contains 1201 elevations.

(2) Elevations along 10 boundaries are repeated for each 10 square.

81



103. Record Formats

Digital Terrain Elevation Data. See Section 104 for further explanation
of Records and Fields.

In the following record formats, a character requires one frame or
8 binary bits.

Ak. VOL Hader Label

Field Length
Field Contents In Characters Description

VOL 3 Recognition sentinel

1 1 Fixed by standard

6 Reel Number
Six alphanumeric characters
identifying the physical reel

Blank or Nonblank 1 Nonblank indicates restricted
access, as the tape reel is

privately owned

Blanks 26 Unrequired available space

Account Number 14 *Account number of owner of
this tape reel (DMA uses a
maximuft of 12 characters
left-justified, space filled)

Blanks 28 Fixed by standard

1 1 Fixed by standard

"Thesep fields, to be defined by the producer, may be left blank.

- B. HDR Header Label

Field Length
Field Contents In Characters Description

HOR 3 Recognition sentinel

1 1 Fixed by standard

Filename 17 *Left-justified filename. The
first 12 characters are
reEerenced by the Executive
System for comparison with the
filename portion of the
external filename.

82



Field Length
Field Contents In Characters Description

UNIVAC 6 *Fixed as set identifier when
referenced by system.

0001 4 *Reel sequence number within a
file.

0001 - NNNN 4 File sequence number within a
" reel.

0001 4 *Generation and version numbers
00 2 which are fixed at I and 0.

bYYDDD 6 Creation date of tape. A blank
followed by two characters for
the year followed by three
characters for the day (001
through 366) within the year.
(date tape was written)

bYYDDD 6 'Expiration date of tape. Same
format as creation date field.
The date after which this tape
reel may be considered as avail-

able for reallocation.

A space indicates unlimited 1 *Accessibility
access to this reel

158 - This reel is catalogued
(on tape).
358 - This reel is catalogued
with read key.

558 - This reel is catalogued
with write key.

758 - This reel is catalogued
with read and write key.

Block Count 6 *Fixed at zeros.

Qualifier 13 'Used by the Executive Operating
System (DMA uses a maximum of
12 characters left-justified
space filled).

Blanks 7 Fixed by Standard.

'These fields to be defined by the producer may be left blank.

83



C. User Header Label

Field Lencrth
Field Contents In Characters Description

UHL 3 Recognition sentinel

1 1 Fixed by standard

DDOMMSSH ,. S Longitude of origin (lowr left
corner of 10 Square-full
degree value). H is the
Hemisphere of the data.

DDDMMSSH Latitude of origin (lowr left
corner of 10 Square-full
degree value). H is the
Hemisphere of the data.

SSSS 4 Longitude data interval in
seconds (Decimal point is

implied after third integer).

SSSS 4 Latitude data interval in
seconds (Decimal point is
implied after third integer).

* 0000-9999 or NA 4 Absolute Vertical Accuracy in

meters. With 90% assurance that
the linear errors will not exceed
this value relative to mean sea
level. (Right justified)

T - Top Secret 3 Security Code (Left justified)
S - Secret
C - Confidential

U - Unclassified
R - Restricted

Unique reference 12 *Unique reference number (provide
number pointer to file containing detailed

file description)

Number of longitude lines 4 Count of the number of longitude
(profiles) lines

84



Field Length
Field Contents In Characters Description

Number of latitude 4 'Count of the number of latitude
points points per longitude line. Since

the current implementation allows
for variable record size, this
field has very limited use.

Multiple accuracy 1 0 - Single
I - Multiple

Reserved 24 Unused portion for future use
*These fields to be defined by the producer may be left blank.

D. Data Set Identification (DSI) Record
Fixed Length - 648 -characters (Bytes)
Each Character - I Tape Frame - 8 Bits

Field Length

Field Contents In Characters Description

DSL 3 Recognition Sentinel

T - Top Secret I Security Classification Code
S - Secret

C - Confidential
U - Unclassified
R - Restricted

2 Security Control and Release
Marking. For DoD use only
(DIAM 65-19)

27 Security Handling Description
Other security description

26 Reserved for future use

DTEDI or 5 DMA Series Designator for
DTED2 product type

15 Unique reference number (For
producing nations own use or
zero filled)

Reserved for future use

01-99 2 Data Edition Number (01-99)

A-Z l Match/Merge Version (A-Z)

YYM9 4 Maintenance Date (Zero filled
until used.)

85



Field Length

Field Contents In Characters Description

YYMM 4 Match/Merge Date

4 Maintenance Description Code

(All zero filled)

CCAAABBB 9 Producer Code (DIA Country Codes(Country Agency Branch) used for first 2 characters)

16 Reserved for future use

9 Product Specification Stock
Number (SPEXDLMS2)

00 or 01-99 2 Product Specification

Amendment and Change Number

4YMM Product Specification Date

(Currently 8304)

MSL 3 Vertical Datum (Mean Sea Level)

WGS72 5 Horizontal Datum Code
(World Geodetic System 1972)

10 Digitizing Collection System

YYMM 4 Compilation Date (Most
descriptive month/year)

22 Reserved for future use

ODMMSS.SH 9 Latitude of origin of Data.
H is the hemisphere of data.

DDDMMSS.SH 10 Longitude of origin of Data.

H is the hemisphere of data.
DDMSSH 7 Latitude - Sw corner of bounding

rectangle. H is the hemisphere
of the data.

DDDMMSSH 8 Longitude - SW corner of bounding
rectangle. H is the hemisphere
of the data.

86



Field Length
Field Contents in Characters Description

DDMMSSH 7 Latitude - NW corner of data,
bounding rectangle. H is the hemi-
sphere of the data.

DDDMMSSH 8 Longitude - NW corner of data,
bounding rectangle. H is the hemi-
sphere of the data.

DDMISSH 7 Latitude - NE corner of data,
bounding rectangle. H is the hemi-
sphere of the data.

DDDMMSSH Longitude - NE corner of data,
bounding rectangle. H is the
hemisphere of the data.

DDMSSH 7 Latitude - SE corner of data,
bounding rectangle. H is the
hemisphere of the data.

DDDMMSSH a Longitude - SE cozaer of data,
bounding rectangle, IR is the

hemisphere of the data.

DDDMMSS.S 9 Clockwise orientation of data with
respect to true North (will usually
be all zeros for DTED).

SSSS 4 Latitude interval in tenths of
seconds between rows of elevation
values (Decimal point is implied
after third integer).

SSSS 4 Longitude interval in tenths of
seconds between columns of eleva-

tion values (Decimal point is
implied after third integer).

0-9999 4 Number of Latitude lines
Actual count - Number of

latitude points. (rows that

con tain data)

0-9999 4 Number of Longitude lines
Actual Count - Number of
longitude -oints (columns
that contain data)

87



Field Lenath
Field Contents In Characters Description

' 00 or 01-99 2 Partial Cell Indicator
00 = Complete 10 square
01-99 - % of coverage completed.

101 Reserved for DMA use only.

100 Reserved for producing nation
use only.

156 Reserved for future use.

E. Accuracy Description (ACC) Record
Fixed Length - 2700 characters (Bytes)
Each Character - 1 Tape Frame -8 Bits

Field Length

Field Contents In Characters Description

%CC 3 Recognition Sentinel

0000-9999 or NA 4 *Absolute Horizontal Accuracy
of Product in meters. NA if
not specified.

0000-9999 or NA 4 *Absolute Vertical Accuracy
of Product in meters. NA if
not spec if ied.

0000-9999 or NA 4 *Relative Horizontal Accuracy
of Produc-t in meters. NA if
not specified.

0000-9999 or NA 4 *Relative Vertical Accuracy
of Product in meters. NA if
not specified.

4 Reserved for future use.

1 Reserved for DMA use only.

31 Reserved for future use.

00 or 02-09 2 Multiple Accuracy Outline Flag
00 - no outline provided
02-09 - number of accuracy
subregions per 10 square
(maximam 9)

If Product has subregional accuracies, the overall accuracy of the product will be
the worst accuracy.

88

S - m -'----i rl



Field Length
Field Contents In Characters Description

Start of Accuracy Subregion Description. Repeat
to maximum of nine times. Blank fill all unused
accuracy subregions.

* 0000-9999 or NA 4 Absolute Horizontal Accuracy
A of subregion in meters. NA

if not specified.

* 0000-9999 or NA 4 Absolute Vertical Accuracy
of subregion in meters. NA
if not specified.

* 0000-9999 or NA 4 Relative Horizontal Accuracy
of subregion in meters. NA
if not specified.

* 0000-9999 or NA 4 Relative Vertical Accuracy
of subregion in meters. NA
if not specified.

* 03-14 2 Number of coordinates in accu-
racy subregion outline. (Maximum
of 14 coordinate pairs. Coordinates
are input clockwise. Implied
closing from last to first
coordinate pairs. )

Start of Coordinate Pair Description. Repeat to
maximum of fourteen times to outline subregion.
Blank fill all unused accuracy subregions.

DDMMSS.SH 9 Latitude. H is the hemisphere
of the data.

DDDMMSS.SH 10 Longitude. R is the hemisphere
of the data.

End Coordinate Pair Description

End Accuracy Subregion Description

18 Reserved for DMA use only.

* 69 Reserved for future use.

89



F. EOF Trailer Label

Field Length
Field Contents In Characters Description

EOF 3 Recognition Sentinel

Fixed by standard

(See HDR header label for remainder of EOP fields.)

G. UTL Trailer Label

Field Length
Field Contents In Characters Description

UTL 3 Recognition Sentinel

1 1 Fixed by standard

(See user header label for remainder of U= fields.)

H. Data Record Description

Each element is a true elevation referenced to mean sea level datum
recorded to the nearest meter. The horizontal position is referenced to specific
longitude-latitude locations in terms of the World Geodetic System (WGS), deter-
mined on each file by reference to the origin at the Southwest corner. The elements
are evenly spaced in latitude and longitude at the interval designated in the user
header label in South to North profile sequence.

Field Length
Field Contents In Characters Description

2528 ICA 1 Recognition sentinel

Data block count 3 Sequential count of the block

within the file, starting with zero
for the first block (Fixed Binary)

Longitude count 2 Count of the meridian. True
longitude - longitude count X data
interval + Origin (S.W. corner)
(Fixed Binary)

90



Field Length
Field Contents In Characters Description

Latitude count 2 Count of the parallel. True latitude =
latitude count X data interval + origin
(S.W. corner) (Fixed Binay)

Elevation I 2 True elevation value of point I of
meridian in meters (Fixed Binary)

Elevation 2 2 True elevation value of point 2 of
meridian in meters (Fixed Binary)

Elevation N 2 True elevation value of point N of
meridian in meters (Fixed Binary)

Checksum 4 Algebraic addition of contents of
block. Sum is computed as an
integer summation of 8-bit values
(Fixed Binary)

NOTE:Fixed Binary denotes signed magnitude, right-justified binary integers.

91

i



104. EXPLANATION OF RECORDS AND FIELDS (DTED). The following explanation
of Records and Fields supplements, where necessary, the descriptions shown in Section
103.

A. VOL Header Label.

This record is required for labeled tapes in accordance with ANSI standard
X3.27-1969 Magnetic Tape Labels for Information Interchange.

B. HDR Header Label.

This record is required for labeled tapes in accordance with ANSI standard
X3.27-1969 Magnetic Tape Labels for l.:ormation Interchange.

C. UHL User Header Label.

1. ANSI standard allows an oDtional user header label in the first file of a
labeled tape. Several computer manufacturers have implemented tape labeling in such a
way that the user header label in the first file of the tape is inaccessible. This record is
maintained for minimum impact to users not desiring to use the DSI record, but all
information in it is in the DSI record as well.

2. Fields.

a. Longitude of Origin Origin is always a full degree value even
though the format allows values to be expressed to the second.

b. Latitude of Origin - Origin is always a full degree value even though
the format allows values to be expressed to the second.

c. Seconds Longitude Interval - A square of DTED is North-South
oriented with columns of elevation posts running from south to nortn. The longitude
interval is the East-West distance between the columns expressed as tenths of seconds.

d. Seconds Latitude Interval - The spacing between the elevation posts
within a column (i.e., the distance between the rows) is the latitude interval.

e. Accuracy - The accuracy of the product in meters.

D. Data Set Identification (DSI) Record (DTED).

1. This record provides all identification and security information relatedto the product except accuracy information. It duplicates information from the Header
Record so that users may process the data using only the information in the DSI record if
desired.

92



2. Fields.

a. Security Control and Release Markings - The two character
codes are from DIAM 65-19.

b. DMA Series Designator - Five character code identifying the
product in DMA Area Requirements and Product Status (ARAPS) file.

*c. Unique Reference Number - to be determined.

d. Data Edition Number - The number assigned to the data
indicating either original compilation (Edition 1) or subsequent replacements
of the data (Editions 2, 3, etc.) to achieve accuracy requirements (recompi-
lation) or currency/specification requirements (revision). The data edition
number does not reflect the number of replacements made to the data to effect
boundary matches.

e. Match/Merge Version - The number of times an edition of the
data was changed to effect boundary continuity with adjacent data in the
Cartographic Data Base (CDB).

f. Maintenance Date - The date existing data was either revised
(updated) to meet the currency requirements (or to effect specification
changes), or recompiled to meet accuracy requirements. When the existing data
is only revised (horizontal position or vertical values are not significantly
changed) the maintenance date will reflect the date of the revision, but the
compilation date will not be changed -- it will continue to reflect the date
of the original compilation. However, when the data is subjected to a major
recompilation, the Compilation Date and the Maintenance Date will both be
changed to reflect the date of the recompilation.

g. Match/Merge Date - The latest date the data was changed to
effect continuity with adjacent data. This data corresponds to the Match/Merge
Version Code.

h. Maintenance Description Code - to be determined.

i. Producer Code - The first two characters (left justified)
indicate the producing nation and are from DIAM 65-18 - Geopolitical Elements
and Related Files. The last six characters are to be used at the discretion of
the producer. Blanks are acceptable.

Belgium BE Netherlands NL
France FR Norway NO
Germany, Federal Republic of GE United Kingdom UK
Italy IT bnited States US

J. Product Specification Stock Number - Identifies the product

specification containing the compilation and accuracy requirements used to
produce the data. Currently SPEXDLMS2.

93



k. Product Specification Amendment and Change Number - Indicates
the highest numbered amendment and change used to produce the data (Amendment
0, change 1 -- 01; Amendment 2, change 2 -- 22; etc.).

1. Vertical Datum Code - Currently MSL.

m. Horizontal Datum Code - Currently WGS72.

n. 'Digitizing Collection System - Identifies the equipment used
to collect the cartographic values from the source material used, i.e., AGDS,
LIS, UNAACE.

o. Compilation Date - The date the data was either originally
compiled (Edition 1) or the date existing data was subjected to a major
recompilation which involved significant changes to the horizontal positions
and vertical values. (Edition 2, 3. 4. etc.)

p. Latitude of Origin - Expressed in degrees, mirutes, seconds
and tenths of seconds with N or S to indicate hemisphere.

q. Longitude of Origin - Expressed in degrees, minutes, seconds
and tenths of seconds with E or W to indicate hemisphere.

E. Accuracy Description Record.

The accuracy record gives the accuracy of the product. The record
allows space for the delineation of u to nine accuracy regions within the
product should the accuracies of various portions of the product differ. Each
outline may have up to fourteen coordinate pairs. Coordinates are input
clockwise. The record is a fixed length record. Urnsed coordinate pairs are
blank filled.

94



APPENDIX C - ROUTINES TO USE DMA DIGITAL TERRAIN DATA

The two programs in this appendix are for manipulating Defense Maping Agency
digital terrain elevation data. The first, dted.c, reads one file at a time from the standard
DMA magnetic tape. The name of the output file is passed as a command line argument.
The program is repeatedly called with new names until the entire tape has been read.

The second program takes a data file extracted from the DMA tape and extracts the
just the data from the file and writes it to a file whos name is the Latitude and longitude
of the southwest comer of the cell.

/*************** ** ***********

* FnName: dted.c
* Author: FRANK HARRIS
* Date: jan 88
* Purpose: to read dma dted tapes onto isivI
************ ********** *** W* ** *1/

#include <sys/file.h>
#define maxsize 3000
#define FALSE 1
#define TRUE 0
main(argc,argv)
int argc;
char *argvl;
I

int fdi, fdo, nbyte;
char buf[maxsize];
short endfile;

/* open tape */
/* tape not reset after each call */
/* will open the tape where it was last stopped */
if((fdi=open("/@isiv8/dev/snrnt0",O_RDONLY)) < 0)

printf("cannot open tape0);
exito;

/* open output file, filename passed into program as argv param */
if((fdo=creat(argv[l], 0666)) < 0)
I

printf("cannot open data file0);
endfile = FALSE;
exito;

95

L mm m.mI~mmmmm a V. | I)



1* read the next file file on the tape *
while( !cndfile)

nbyte=read(fdi,bufmxsize);
if(nbyte < 0)

printf("read errorO);
if(nbyte == 0)

printf("end of flleO);
endfile = TRUE;
exito;

nbyte = write(fdobufiibyte);

close (fdi);
close (fdo);

L'



*FnNamne: extract.c
*Author: FRANK HARRIS
4Date: jan 88
4Purpose: to extract terrain data from DMA file

#include******** .......

#include <stdio.h>

#include <sys/types.h>
#define maxsize 3000
#deflne FALSE 0
#define TRUE 1
#define buf size 28672
char 4'BUF, 4'BUFO;
int row,ij;
char 4'malloco;
FILE 4 'fdi,*fdo;

main(argc,argv)
int argc;
char 4'argv[];

int j,i,nnbyte;
char name (9];
char c[2];
char buf[maxsize];

/4' open input file */
if((fdi=fopen(argv[1I],"r")) < 0)

printf("cannot open ific)
exito;

/4' set up input buffer /

if ((BUF--malloc((bu..size )+I)) =NULL)

fprintf(stderr,"out of rnemory0);
exit( );

setvbuf(fdiBUFjOFBF,bufsize)

/4' skip to lat long4!
fseek(fdi,1 85,0);
/4' extract lat long for filenamne /

97



/*" use bytes 185,186,193,194,195,196,203 *
C[11--' ';
nbyte=fread(c, 1,1,fdi);
nazn[0I=c(O;nm[l]='
nbyte=fread(c,1 ,1,fdi);
strcat(namn,c);
fseek(fdi,193,0);
nbyte--frad(c,1,1,fdi);
strcat(namne,c);
nbyte=fread(c,1 , I,fdi);
strcat(nwme,c);
nbyte-fread(c,1 ,1,fdi);
strcat(name,c);
nbyte=fread(c,l ,l,fdi);
strcat(nam,c);
fseek(fdi,203,O);
nbyte=fread(c,1 ,1,fdi);
strcat(name,c);

/* skip to first data record *
fseek(fdi,3348,0);

/* open output file *
if((fdo=fopen(name,'w")) < 0)

printf("cannot open output file0);
exitO;

/* allocate space for buffered 1/0 *
if ((BUFO--malloc((bufsize )+I)) =NULL)

fprintf(stderr,"out of mernory0);
exit(1);

setvbuf(fdo,BUFO,_1OFBF bufLsize)

for(i-l ;i<=-1201 ;i+4)

/* skip recog sym and record header /

nbyte=fread(buf,1 ,8,fdi);
/* read & write data */
nbyte=fread(buf,1 ,2402,fdi);
nbyte=fwrite( buf, I,2402,fdo);
/* read checksum 1/
nbyte-fread(buf,l1,4,fdi);

99



fclose - Ni

fclose (fdi);



APPENDIX D - ROUTINES TO DRAW TERRAIN POLYGONS

These routines are used to draw the actual polygons. They are independent of the data
structure used to store the terrain data.

* FnName: make_.polly.c
* Author: FRANK HARRIS
* Purpose: to draw two triangles that are the correct

orientation and color for the terrain display
** *** **** ** *** **** *** ********

makepolly(col,ij,a,b,c,d,level-size)

short col;/* a flag to indicate what color to draw square */
int ij;/* world coord location of lower left point "a" */
int a,b,c,d/* elevation points */
int level-size;* tells what size each side of the polygon is */

if(col=l)
color(GREEN I);

else
color(GREEN2);

if ((a==O)&&(b--O)&&(c=O)&&(d==O))

else if ((a!--O)&&(b=---O)&&(c==O)&&(d---O))
I
pmvi(i,aj);
pdri(i,bj-level size);
pdri(i+levelsize,dj);
pclos0;

else if ((a=O)&&(b!--)&&(c---O)&&(d---O))

pmvi(i,aj);
pdri(i,bj-level-size);
pdri(i+levelsize,c,j-level size);
pclosO;

else if ((a=-O)&&(b---O)&&(c --O)&&(d==O))

pmvi(i,bj-level size);

100



pdri(i+level-size,cj-level size);
pdri(i+Ievel..size,dj);
pcloso;

else if ((a-=O)&&(b=O)&&(c=-O)&&(d=O))

pmvi(i,aj);
pdri(i+level....size,cj-leveLsize);
pdri(i+level-size,dj);
PCloO(;

else

pmvi(i,aj);
pdri(i,bj-level size)-
pdri(i+level-size,cj-level-size);
pclosO;
pmvi(i,aj);
pdri(i+Ievel-size,cj-Ievel-size);
pdri(i+level-size,dj);
pclosO;

101



* FnName: draw-skixt.c
* Author: FRANK HARRIS
* Purpose: this routine is used to draw a vertical

plane to be used as a gap filler between
resolutions

draw-skirt(xI ,zl ,yl ,x2,z2,y2,ceilsize)
int xt zlyl x2,z2,y2,celLsize;

if((yl !=O0)II(y2!=O))

color(GREEN 1);
pnivi(xI *cell size,yl,zl *celsize);
pdhi(x2*cel--size,y2,z2*cel-size);
pdri(x2*cell-size,O,z2*celi~size);
pdri(x I *cell...size,O~z I *celli_size);

10~2



APPENDIX E - ROUTINES TO DRAW THE TERRAIN

These routines calculate the structure independent information requued to draw the
terrain. The main procedure in this section is draw terraino. This proceudure controls
the drawing process and calls the structure dependent code to actually draw the terrain.
The second procedure adjusbounds) is called by the structure dependent code to adjust
the input parameters to match the cell coordinates for the particular cell being drawn.
#include "terrain.h"

octant myworld;
int min4(),max4,min3C),ax3C);

* FnNane: draw_terrain.c
* Author: FRANK HARRIS
* Date: feb 88

/* 3d terrain display */

draw._terrain(view)
viewpoint view;
I
int ij;

I* boundray points for three resolutions*/
/* farthest points of view triangle for each resolution

the third vertex is the view position */
float level lx I,level Izl ,levellx2,levellz2;
float level2x I ,level2zl ,level2x2,1evel2z2;
float level3x I ,Ievel3zl ,evel3x2,1evel3z2;
float angl,ang2,vis;
float levell ,ldir,lookx,looky,lookz;
float nearfar;
/* bounding boxes for 3 levels */
int max3xmax3z,min3x,min3z;
int max2xmx2zmin2x,min2z;
int max Ix,maxlzjminlx,minlz;
int gridxgridz;

/* for timer routines */
long ttime,cpuelapse;
struct tins ctime;

103



/* number of yards to the horizon *
vis = (VISCOIF~qrt(vitw.posy));
levellI = visISlN.YOV;
if (vis > viewjnaxys)

1* compute visability triangle *
/* triangle has verticies of current position and the line following

the course out a distance of the computed visibility based on
the height of eye and the area. FOY degrees on either side of
that line. */

angi =view.lookdir - FOV;
if (angl < 0.0)

anglI= ang I + 360.0;
ang2 =viewlookdir + FOV;
if (ang2 > 360.0)

ang2 = ang2 - 360.0;

1* compute points to draw to for all three levels *
levelixi = view.posx + (levell * sin(DtoR*angl ));
levelizi = (-view.posz + (levell *cos(DtoR*angl)));
levellx2 = view.posx + (levell * sin(DtoRang2));
levellz2 = (-view.posz + (levell * cos(DtoR'ang2)));

levei2xlI view.posx + (LEVEL2 * sin(DtoR'ang 1));
Ievel2zl = (-view.posz + (LEVEL2 * cos(DtoRangl)));
level2x2 = view.posx + (LEVEL2 * sin(DtoR*ang2));
level2z2 = (-view.posz + (LEVEL2 * cos(DtoR~'ang2)));

level3xI =view.posx + (LEVEL3 * sin(DtoRangl));
level3zl = (-view.posz + (LEVEL3 * cos(DtoRangi)));
level3x2 = view.posx + (LEVEL3 * sin(DtoR*ang2));$ level3z2 = (-view.posz + (LEVEL3 * cos(DtoR~ang2)));

P* find max and min values for bounding box on all three areas '
max lx = (max3(levellxl ,evellx2,view.posx) I CELL....SEZEI);
maxlz = (max3(levellzl ,evellz2,-view.posz)/ CELL....SIZEI);
mix = (midn3(levellxljlevellx2,view.posx) / CELL...SIZE1);

mintz = (miin3(leveliziljevel 1z2,-view .posz)/ CELL...SIZEI);

max2x = (max3(level2xlI level2x2,view.posx) / CELL._SIZE2);
max2z = (max3(level2z I level2z2,-view.posz)/ CELL...$IZE2);
min2x = (min3(level~x I level2x2,view.posx) / CELL...SJZE2);
min2z = (min3(ievel2z 1 level2z2,-view.posz)f CELL.._SIZE2);

1.4



max3x = (max3(level3x I level3x2,view.posx) /CELL_SIZE3);
max3z = (max3(level3z I level3z2,-view-posz)/ CELL._SEZE3);
min3x = (niin3(level3x I leveI3x2,view.posx) / CELL._SJZE3);
min3z = (midn3(level3zl leveI3z2,-view.posz)/ CELL_SIZE3);

pushmatrixO;
/* compute vierwpoint for perspective *
looky = view.posy - lO.*(tan(DtoR*view.lookang));
lookx = view.posx + 100.O*(sin(DtoR*view.lookdir));
lookz = view.posz - IO.*(cos(DtoR*viewlookdir));

far = vis * 1.5;
near = far/1OOO.O;

perspective(FOVY,ASPECT,near,far);
lookat(view.posx,view.posy,view.posz,lookxjlooky,lookz,O);

color(SKYBLUE);
clearO;

zbuffer(TRUE);
zclearO;

/* start the timier ~
set_timer(&ttime,&ctime);

/* draw sea to horizon *
I"' sea drawn 6 yards below horizon to solve z-buffer problem *
color(LUE2);
pmv(view.posx,-6.O,view.posz);
pdr(levellxl ,-6.O,-levellz 1);
pdr(level 1x2,-6.O,-Ievellz2);
pclosO;

/* draw grid lines
if(view.gridlines = TRUE)

color( WHMT);
setlinestyle(SOUD);
linewidth( 1);
if(view.posy > 300)

gridx = view.posxfCELLSIZEI;



gridz =view.posz/CELL.-SIZEI;

for (i=0O;i<5;i++)

movei((gidx+i)*'CELL. SIZE1 ,-2,(gridz+5)*CELL-SIZE 1);
drawi((gridx+i)*CEL... SIZE1 ,.2,(,gridz-5)*CELL._SIZE 1);
,novei((gridx-i)*CELL. SIZE1 ,-2,(gridz+5)*CELLSUIZ1);
drawi((gridx-i)CELL3_IZE1 ,-2,(gridz-5)*CELSIZE 1);

for (i=-O;k<5;i4-+)

movci((gridx+5)*CELL..SIZE1 ,-2,(gridz+i)*CELL_ SUIZ1);
drawi((gridxc-5)*CELL_.SIZE1 ,-2,(gridz4i)*CELL_-SIZEl);
movei((gridx+5) 4 'CELLSIZE1 ,-2,(gridz-i)*CEL.L_SIZE 1);
drawi((gridx-5)*CEL..SIZE1 ,-2,(gridz-i)*CELLSIZE 1);

if(view.posy > 150)

gridx = view.posx/CELLSEZE2;
gridz = view.posz/CELL..-SEZE2;
settinestyle(DASHED);
for (i=0O;i<1I5;i++)

Ioe(gjxi*E~IE,2(rd+15CLIE)
drawi((gridx+i)*CELL-SIZE2,-2,(gridz15)*CELL ,SZE2);
movei((gridx~i)*CELL..SIZE2,-2,(gridz+ 15)*CELL.,_SIZE2);

drawi((gridx-i)*CELL.,.SIZE2,-2,(gridz 1 5)*CELL_SIZE2);

for (i=0O;i<15;i++)

movei((gridx+ 15)*CELL...SIZE2,-2,(gridz+i)*CELL_ .StZE2);
drawi((gridx- 15)*CELL-SZE2,-2,(gridz+i)*CELL ,SI:ZE2);
movei((gridx+15)*CELL..-SIZE2,-2,(gridz-i)*CELLSI:ZE2);
drawi((gridx- 15)*CELLSZE2,-2,(gridz-i)*CELL SIZE2);

if(view.posy < 200)

gridx = view.posx/CE~l...$ZE3;
gridz = vicw.posz/CELL .SIZE3;
setlinestyle(DO1TED);
for (i=-O;i<30;i++)

I
movei((grid+i)*CELL51ZSE3,-2,(gridz+30)*CELL .SIZE3);

106



drawi((gridx+i)*CELL.-.SIZE3,-2,(gridz-30)*CELLSIZE3);
movei((gridx-i)*CELL SIZE,-2,(gridz+30)*CELLSI:ZE3);
drawi((gridx-i)*CELL SIE3,-2,(gridz-3O)*CELL,_SIZE3);

for (i=0O;i<30;i++)

movei((gr+30)CEL..SZE3,-2,(gridz+i)*CE.LL_SIZE3);
drawi((gd-30)CELLSZ,-2,(gridz+i)CELLSIZE3);
movei((.grdx+30)*CELL....SIZE,-2,(gridz-i)*CELL_.SIZE3);
drawi((gridx-3O)*CELL...SIZE3,2,(gridzi)CEL.L._SIZE3);

/* draw any terrain *
/* always draw the cell your in ~
draw-cel(CELL,view.latviewlonggxmax lxpminlx~maxlzp~miz,

max2x,min2xmax2zjmin2z,
max3xmniin3x,max3z~nmin3z);

if ((nmalx > 10)&&(innlx < 0)&&(maxlz >10))

drawc.ell(ABOVE,view.lat+1 ,view.Iongg ,naxlxiinlx,max lzjminiz,
niax2xjmin2xniax2z~Min2z,
max3xpniin3x,max3zpmin3z);

draw-sell(RTJP,view.lat+1 ,view.longg+1 ,maxlxpminlxjnax lzminlz,
max2x~mn2xjmazmn2z,
max3xjnin3xpm3z~niin3z);

draw-ell(LTUP,view.lat+1 ,view.Iongg- 1 max lx~minlxnax lzjninl z,
max2x,min2x,max2z~iin2z,
max3x~iin3x~Ma3zjnin3z);

else if ((maxlx > 10)&&(niinlx < 0)&&(mmilz <0))

drawcell(BELOW,view.lat- 1,view.Ionggjmaxlx~minlx,max lz,minl z,
maxxin2x,nax2z,mni2z,
max3xpmin3x,max3zinin3z);

draw-pel(RTDN,view.1at-1 ,viewilongg+1 ,maxlxjninlx,maxl zjnimlz,
nm2xmih2xmx2zmi2z,
max3xpmin3x,max3zxminz);

draw-dli(LTDN,view.lat-1 ,view.Iongg-1,mlxjminlxjnaxlzjminlz,
maxaxjmin2xmmx2z~i2z,
max3xpmin3xgm3z~min3z);

else if ((maxlz > 10)&&(minlz < 0)&&(maxlx >10))

197

L



drawsei(RIGHT,view.lat,view.longg+ I znalx~mnlx,maxlzjminlz,
max2xmax2z~i2z,
max3xpdnn3xmax3z~minz);

drawsdll(RTDN,view.lat-1,viewlongg+l1 mlxpminlxmalz~minlz,
ma2xmxAx2zmn2z,
max3xpmin3xma3zjmin3z);

draw__eli(RTUPviewlat+1 ,viewlongg+1,mxzninlxpmlzjminlz,
maxxiiaxzninz
mux3xmih~xmA=3zjmin3z);

else if (Qnaxlz > 10)&&(minlz < 0)&&(minlx <0))

draw ~cel(LEFT,view Iatzviewilongg- 1,maxlxpniinlxpmlz,minlz,
ma2x~Mn2x,max2z,nihi2z,
max3x~min3x,znax3zjnin3z);

drawsel(LTUP,view.lat+I ,vicw.longgI ,mlx,minlx,xnalzjminlz,
max2xmdnn2x,max2zmiin2z,
max3xmin3x,max3zminz);

dmwcell(LTDN,view.lat-lI,view.longg-1 ,maxlxpnix,maxlz,minlz,
max2x,mk2x~max2z,min2z,
max3xjmin3x,max3z,minz);

else if ((maxlx > 10)&&(maxlz > 10))

draw cdl(ABO VE,view.lat+lI,view.longgjrnax lx~minlxpmlzpminlz,
max2x~iinUx~m2znin2z,
max3xpiin3x,max3zjnin3z);

draw...el(RTUP,view.lat+l ,view longg+l ,mlxjninlx,maxlzjninlz,
max2xiin~xmmnx2z,min2z,
max3xpminxpma3zpiin3z);

dravwsel(RIGHT,viewlat,viewiongg+1 ,xnaxlx~rmix,max lz,minlz,
maxi~2z nin2z,
max3x~Min3x,max3z,min3z);

else if ((maxix > 10)&&(mnilz < 0))
I
draw~el(BELOW,view.laz-1 ,view.longg~nialxjninlxjmaxlzjninlz,

max2xxiin2xmax2zmuna,
max3xjnin3xma3zmik3z);

draw...celi(RTDN,view.lat-1 ,view.longg+1 ,max xninlxmAxlz,niinlz,
max2x,in2xjnax2zpdtn2z,
max3xjmin3xmsx3zpniin3z);

draw~se(RIGHTf,viewlat,viewiongg+ I malxpminl xjnalzjninlz,

leg



maxaxm2x~m2zmun2z,
max3x~min3xjmax3zmnin3z);

eLse if ((n-dnlx <O0)&&(minlz < 0))

draw..ceil(BELOW,view.lat-1 viewlonggpmlxpminlxmaxlzjminlz,
max2xpdnn2xpmixUzuni2z,
nmx3xpdin3x~maxzpiin3z);

draw ceil(LTDNview-lat- Iview.Iongg-1iaxlxmmlxMaxlz,minlz,

max3xA~minmax3zjnin3z);
draw...cell(LEFT,viewlat,viewlongg-1 ,m lxinlxpmlz~minlz,

max2amunn2xix2zjnin2z,
max3x,mn~x,max3zjmin3z);

else if ((n-dlx < 0)&&(nmxlz >10))

draw..celi(ABOV'E,view.lat+1 ,view.longg,maxlxpminlx,maxlz,minlz,
max2miiaxm2zmunn2z,
max3xmin3x,znax3zpmin3z);

draw celi(LTUP,view.lat+1 ,view.longg-linax lxminlx,max lz,n-inlz,
max~l2x,axa~zn2z,
max3xmiin3x,max3zjnin3z);

draw..cell(LEFT,view.lat,view~longg- 1,max lx,minlx,maxlz,minlz,
max2x~min2xmax2zjmin2z,
max3xmin3x,max3zpmin3z);

I

drawscl(RIGHT,view.lat,view.longg+l1,maxlxpminlxmaxl z,minl z,
max2xjmin2xmiax2zjnin2z,
max3xjmin3x,tnax3zxminz);

else if ((mix < 0))
I
draw....cel(LEF,view.lat,view.longg- 1,mnaxlx~mmilx,maxlz~Minlz,

max2xmdn2xmiax2z~nin2z,
max3xmiin3xmax3zpmin3z);

else if ((maxlz > 10))



draw cell(ABOVE,view.Jat+I ,view.Ionggjmalxjminlxmalzminlz,
max2x~Min2x,max2z,min2z,
max3xjnin3xjmax3zjmin3z);

else if ((niinlz < 0))

draw_cell(BELOW,vicw.lat-1 ,viewlonggmalxxriinlx,maxlzjninlz,
max2x,min2x~Max2z~niin2z,
max3xpmin~xjax3zminz);

zbuffer(FALSE);

poptnatrixo;

elapse = read-timner(&ttizne,&ctiune,&cpu);
printf(" time: elapse %d cpu %d",elapsecpu);

Ito



adjust-bounds(size,cellinaxximinximaxz,minz)
int sizecel,*maxx,*maxz,*xniinx,*minz;
I

if ((cell=RIGHT)H(ceUl==RTUP)II(cell=RTDN))

*maxx =*maxx - size;
*'minx =0;

else
I

*mx size;

else
if ((ce]Ui=RIGHT)II(ceI==RTUP)II(cell==RTDN))

=mxx0;
*mnx0;

if(*maxz>size)
if ((cell=ABOVE)NI(cefll=RTUP)II(cefll=LTUP))

=mx *maxz - size;
=mnz0;

else
I
*'maxz =size;

else
if ((cell==ABOVE)II(cell=RTUP)II(cell=LTUP))

*maxz 0;
=mnz0;

if(*min<0)
if ((celi=LEFr)II(celi=LTUJP)II(cel=tLTDN))

*minx * minx + size;
=mx size;

else



*minx = 0

I

else
if ((ceil=LEF)II(cell=LTUP)II(ceil=LTDN))
I
*maxx =0;
*minx =0;

if(*minz<0)
if ((celi=BELOW)H(celi=RTDN)l(cdll==LTDN))

*jfljln *mlflz + size;
*maxz =size;

else

*'minz =0;

else
if ((cell==BELOW)II(cel==RTDN)II(cetl=LTDN))

*maxz =0;
mi~nz =0;

112



APPENDIX F - MULTIPLE ARRAY DATA STRUCTURE

These are the structure dependent routines used with the multiple array data
structure discussed in Chapter five. The procedure 3a.c is used to preprocess the DMA
digital terrain elevation a-, and place the processed data in a file format that is easily
read by the application program. The terrain data is initially read into the application
program s structure by the procedure get terrain(). The final structure dependent
procedure is drawcellO. It is used to actuaily access the data structure and draw the
visible terrain.

" FnName: 3a.c
" Author: FRANK HARRIS
" Date: mar 88
* Purpose: make 3 tier data structure file

for display terrain.
uses structure of three seperate
arrays.

#include <stdio.h>
#include <string.h>

#include <sys/types.h>
#define maxelev 10000/* in yards higher the everest */
#define FALSE 0
#define TRUE I
#define buf_size 28672
char *BUF,*BUFO;
char *mallocO;
short level3[1201][1201];
short level2[101][101];
short levell[I1][11];

main(argc,argv)
int argc;
char *argvO;
I

int rowj,i,s,t,n,subnbyte;
char *name;
char c[2];
short *Platjog;
FILE *fdi,*fdo;

/* open input file */
if((fdi=fopen(argv[1],"r")) < 0)

113

L



printf("cannot open ifieO);
exitQ;

/* set up input buffer */
if ((BUF=malioc((buf size )+1)) - NULL)
I
fprintf(stderr,"out of memory();
exit(l);

setvbuf(fdi,BUF,_jOFBF,bufsize);

/* read 1 colume of data at a time and put in an array
the first index is the colume number "longitude"
the second is for the row or latitude
index [0)[0] is the lower left comer of the cell*/

for (i=0;i<= 1200;i++)

P = &level3[i][0];
nbyte = fread(P,2,1201,fdi);

/* close input file no longer needed */
free(BUF);
fclose(fdi);

f* make output file name */
name = argv[lI];
strcat(name,".3a");

/* open output file */
if((fdo=fopen(name,"w")) < 0)

printf("cannot open output fileO);
exito;

}

/* setup output buffer */
if ((BUFO=malloc((bufsize )+1)) = NULL)

fprintf(stderr," out of memory");
exit(l);

setvbuf(fdo,BUFO,_IOFBF,buf_size);

114



/*' convert lat long in file name to short int values *
if (name...onv(&lat,&log,argv[l])))

printf(" filename not propper LAT/LONG");
exit(l);

/* start the file with lat long of lower left cornier *
nbyte=fwrite(&lat,2, 1 fdo);
nbyte--fwrite(&log,2,l ,fio);

for (i=0O;i<=l00;i.-i)
for ("-0j<=100;j++)

/* cell boundary *

level2[i]Ilevel3[i* 12]U*12];
else

sub=0;

for(t=-((j- 1)*l 2);<((j+l )*j 2);s++)

I

level2[i]UI sub/576;

for (i=0O;i<=10;i++)
for 0(jOj<=10;j++)

f* cell boundary *

levellI [ilUjlevel2[i* 10] Ij* 10];
else

sub=0;
foi(s=((i-l )4 0);s<((i+ 1)* l0);s++)
fof(t-((j- 1)* l0);t<QJ+ 1)* l0);t+i-i)

sub = sub + level2[s][t];

level I[I)Ul subI400;



P* write out the arrays ~
for (i=0;i<=-1200;i++)

P = &leveI3[i][0];
nbyte = fWrite(PZ21201,fdo);

for (i=0O;i<=-100;i4-+)

P = &level2[iJ [0]
nbyte = fwrite(P,2,l0l,fdo);

for (i=0O;i<=lO0;i++)

P = &IevellI[i][0];
nbyte = fwrite(P,2,1 ,fdo);

P* clean up *
fclose (fdo);
firee(BUFO);

int name-conv(lat,lognamfe)
short *lat,*log;
char *namefl;

short temp;
/* assume all lats and longs are north and east respectively ~

temp=(short)naine[0]-48;
if ((temp<0)1I(tcnip>9))

return(-l);
*lat = temnp * 10;
ternp=(short)name[l 1-48;
if ((temp<0)II(temp>9))

return(-l);
*lat = *lat + temnp;

tenip=(shorft)name[3j-48;
if ((1emnp<0)N(temnp>9))

return(-1);
*log =temnp* 100;

116



temp=(shon)namef4]-48;
if ((temp<O)II(twwn>9))

retum(-1);
*lIog = ((temp* 10) + *log);
temp=(short nam[5J-48;
if ((tmp<0)II(zcmp>9))

retum(- 1);
*log = (temp + *log);
retum(0);

117



#include <stringh>
*include <sys/paratn.h>
#include <sysftypes.h>
#include <syshimnesh>
*include "gl.h"
#include "device.h"
#include "constants.h"
#include "typedefh"
#include "stdio.h"

*define maxelev 100001* in yards higher the everest *
#define buf-size 286721* for input buffer *

char *maI1oc);
char 'B UP;

octant myworid;

*FnNarne: getterrain.c
*Author: FRANK HARRIS
*Date: feb 88
*Amended:

*Purpose:

*Params:

*Returns:

getjerain(latjlongg)
short latIongg;

int rowj,in,nbyte;
char namie[ I0J,filenam[l1001;
short buf[5 12];
FILE *fdi;
cellptr ptr;
cell P;
short *ptr1,*ptr2,*tptr3;

narne-conv(latIongg,narne);
strcpy(filenam,'Wsr/work/ffis3t-workt');
strcat(filename,narne);
strcat(filename,".3a");

/* open input file */

I1a



if((fdi=fopen~filename,"r")) < 0)

fprintf(stderr,"cannot open filcO);

else

1* set up input buffer *
if ((BUF--malloc((buLsize )+I)) =NULL)

fprintf(stderr,"out of menioryO);

else
I

sevuf(fdiBUFJOFBFbujLsize)

1* get lat long first 2 items in file ~
fxead(buf,2,2,fdi);

/* make structure put pointer in wold structure ~
myworldllat]Ilongg-901 = (celiptr)malloc(sizeof(celi));

/* read in the arrays */
ptr=- myworldllatJ]longg-90];
for (i=-O;i<=-1200;i++)

ptr3 = &(ptr->level3[i1[0]);
nbyte = fread(ptr3,2,1201,fdi);

for (i=-O;i<=-100;i++)

ptr2 = &(ptr-Aleve12[i1[0]);
nbyte = fread(ptr2,2,l01,fdi);

for (i=O;i<=l0;i++)

ptrl = &(ptr->levellI[i][01);
nbyte = ftead(ptrl,2,1lfdi);

/* clean up *
fclose (fdi);
ftee(BUF);

LI



/* pass in lat/long will return filenamew

name-conv(lat~longg,namne)
short latjlongg;
char nam[lOI;

/* assume all lats and longs are north and east respectively I
char c[2);

cI1II' '

name[1]=' '

namellol = (char)((lat/10)+48);
c[O] = (charX(Iat%l0)+48);
strcat(nan-te,c);
c[O] = 'N';
strcat(name,c);
d[O] (charX(longg/100)+i48);
strcat(nanie,c);
longg--longg% 100;
c[0] =(charX(Iongg/10)+48);
strcat(namne,c);
ciOl = (charX(Iongg% 10)+i48);
strcat(namm,c);
c[O] = 'E';
strcat(name,c);

120



* FnNaine: Draw-cli
* Author: FRANK HARRIS
* Purpose: Draws on e celi of terrain based on the

input parameters:s version uses the
multiple array data structure

draw cefl(celjlat,longgpmlxjminlxjmax lz~minlz,
max2x,minax,max2z,inin2z,
max3xm~in~ax3zmninz)

short celjlatjlongg;
int maxlx~niinlxrmaxlztnkilz;
int max2xjmin2xmax2zmuin2z;
int max3xjmin3xmrax3zmin3z;

int maxsub2xmaxub2z~minsub2xmuninsub2z;,/* overlap bounds ~
int maxsub3xmaxsub3zininsub3ximinsub3z;
int stx 1 ,stz l,spx l spzl f;/ start stop points for dif resolutions *
int stx2,stz2,spx2,spz2;
int stx3,stz3,spx3,spz3;
imt iist,uv;
cellptr ptr;

1* get cell record *
if ((ptr = myworld[lat][longg-90]) =NULL)

getjerain(lat,longg);
ptr = myworld~latJ[longg-90];

if(ptr!=NULL)

1* adjust bounds depending on what cell were drawing *
adjust...bounds( 1,cel,&maxlx,&miinlx,&maxlz,&minlz);

adjustbounds(l 00,cel,&max~x,&min~x,&niax~z,&min~z);

/* calculate overlap boundaries *'/
maxsub2x = (max2x/1O);/*'evel2 boundary with level I*/
maxsub2z = (max2zl 0);
minsub2x = (minW10);
niinsub2z = (minWzll);

maxsub3x =(max3x/12);/*level3 boundary with 1evel2.*/

121



niaxsub3z = (max3z/l 2);
minsub3x = (min3x/12);
minsub3z = (midn3zll2);

/* adjust so will draw correctly when looking south and west *
/* stops the loop from accessing out of the array/

if(maxlx--lO)
maxlx =9;

if(maxlz=IO0)
maxlz =9;

1* draw level I area with all three resolutions *
for(i-- nin Ix; i<--nux Ix; i++)

for(i -1 m Inz J< -maxlIz j++)

if( !((i>=-misub2x)&&(i<maxsub2x)&&(j>=minsub2z)&&(jemaxsub2z)))
/* draw level 1 square *

inake__polly((i+j)%2,(i*CELL.SIZEI ),-(j*CELLSIZEI),
ptr->level I [i]U],ptr->'level Il[iJ U+ 11,
ptr->levellI i+ IJU+11,ptr->levelI [i+l1(jI,
CELLSIZE 1);

I/* level I area ~

,draw level2 area ~
for(s=(minsub2x*1I );s<(maxsub2x*1I );s++)

for(t--(linsub2z*1O);t<(maxsub2z* lO);t++)
I
if(!((s>--misub3x)&&(s<maxsub3x)&&

(t>--minsub3z)&&(t<maxsub3z)))

makejpolly( (s+t)%2,(s*CELL SI:ZE2), -(t*CEILLSIlZE2),
ptr->level2(sJ[t],ptr->level2[s][t+l 1.
ptr->level2[s+ 1Jft+ljj,ptr->level2[s+l1(t],
CE1,,SI:ZE2);

/* to cover up diffrences in resolution boundaries
don't need between level 1 and 2 too far to be noticeable *

if((s---minsub3x)Ql(s==inaxsub3x))

draw-skirt(s,-t,ptr->level2[s][t],
s,-(t+l ),ptr->level2[sJ[t+ 1],

CELL_SIZE2);

122



if((t--minsub3z)i(t--maxsub3z))

draw-skixt(s,-t,ptr->level2[sJ[t],

CB.LLSIZE2);

Ilevel 2area/

/* draw level3 aa
for(u=(minsub3x*1 2);u<(maxsub3x* 12);u++)

for(v=(minsub3z*12);v<Qnaxub3z*12);v++)

makej,pofly( (u+v)%2,(u*CELL..StZE), -(v*'CELL-SJZ3),
ptr->evel3[uJ[vJ,ptr->leveI3[u][v+1 1,
ptr->leveI3[u+l][v+1J,ptr->level3[u+I][v],
CELL...SZE3);

J*level 3 area */

/*if cell has value *

123



APPENDIX G - HIERARCICAL DATA STRUCTURE WITH POINTERS

These are the structure dependent routines used with the multiple array data
structure discussed in Chapter five. The procedure 3t.c is used to preprocess the DMA
digital terrain elevation data and place the processed data in a file format that is easily
read by the application program. The terrain data is initially read into the application
program's structure by the procedure get rerrainO. The final structure dependent
procedure is drawcell). It is used to actually access the data structure and draw the
visible terrain.

**** .*..********.**********

* FnName: 3t.c

* Author: FRANK HARRIS
*Date: mar 88
* Purpose: make 3 tier data structure file for

display terrain. Uses a hierarchical structure
with pointers to store the terrain.

*********** *********** ***** *

#include <stdio.h>
#include <string.h>

#include <sys/types.h>
#define maxelev 10000/* in yards higher the everest /
#define FALSE 0
#define TRUE I
#define bufsize 28672
char *BUF,*BUFO;
char *mallocO;
short terrain[1201][1201];

typedef struct I
short data[13][131;

}level3jrec;
typedef level3_rec *ptr3;

typedef stnict {
ptr3 level3ptr[ll][11];
short level3val[l1][11];
short allzero;

} level2_rec;
typedef level2_rec *ptir2;

typedef structf
ptr2 level2ptr[l ][11];
short level2val( I11[11 ;

124



short all-zeo;
)levelljrec;

typedef levelec *'ptrl;

typedef ptrl octant[90X[90];
octant myworid;
ptin do-levellO;
ptr2 do-evel2O);
ptr3 do-evel3O);

inain(argc,argv)
int argc;
char *argvO;

int rowj,innbyte;
char *nlame;
char c[2];
short *P,1Mtlog;
FILE *fdi,*fdo;

/* open input file */
if((fdi=fopen(argvI~l],"r")) < 0)

printf("cannot open ific)
exito;

1* set up input buffer *
if ((BUF--maloc((buf-size )+Il)) =NULL)

fprintf(stderr,"out of mnemory0);
exit( 1);

setvbuffdi,BUFjOFBF,bujtsize)

P read I colume of data at a time and put in an array
the first index is the volume numnber "longitude"
the second is for the row or latitude
index [01(01 is the lower left corner of the cell*/

for (i=0O;i<=1200;i++)

P = &terrainfiJ [0];
nbyte = firad(P2,1201,fd);

P close input file no longer needed *

125



free(BUF)
fcose~fdi);

/* nake output file name ~
name = argv[1];
strcat(name,".3t");

1* open output file *
ff((fdo=fopen(name,"w")) < 0)

printf("cannot open output flleO);
exito;

/* setup output buffer *
if ((BUFO--maloc((buf...size )+I)) = NULL)

fprintf(stderr," out of memory");
exit( 1);

setvbuf(fdo,BUFOjOFBF,buf~size)

f* convert lat long in file name to short it values ~
if (name-conv(&lat,&og,argv[1]))

printf(" filename, not propper LAT/LONG");
exit( 1);

/* start the file with lat long of lower left comer ~
nbyte=fwrite(&lat,2,1I,fdo);
nbyte=fwrite(&log,2,l ,fdo);

/* make structure put pointer in world structure ~
myworld~latl[log-90] = do-levellO(;

1* put overlap data in each cell */
insert-overlap(myworldglatlllog-90]);
outj-erain(myworld[latjgog-90]);

/* writeout the structure to reuseable file *
writeit(fdo,tnyworld[lat][log-901);

1* clean up "

126



fclose (fdo);
free(BUFO);

Out~terrain(pt)
ptri pt;

mnt st,ij;
ptr2 pt2;

printfC" levell )
for(i=-1O;i>=-O;i--)

printf("")
forfj=-Ojd Il;j++)

printf("%5d ",pt->level2valU][iI);

printf(" )

for (i=-O;i<1 ;i++)
f or(j=-O;j< I1 ;j++)

pt2 = pt->1cvel2ptr[i]U];
if (pt2 =-- NULL)

printfC' null level2 i %d j %d ",ij);
else

f
printf(" level2 i %d j %d ",ij);

for(s=1O;s>=-O;s--)

printfC ")
for(t=-O;t<l I ;t++)

printf("%5d ",pt2->level3val[t)[s]);

I

insert...overlap(ptr)
ptrl ptr,

127



-x--_

if (ptr != NULL)

int ij,st;
ptr2 12,top2,rt2;
ptr3 13,top3,rt3;

/* put in overlap for level I*/
for (j=0;j<10;j++)

ptr->level2val[ lOllj = terrainli 200]U* 120];
for(i=0O;i<1Il;i++)
ptr->level2val[iJ 110] = terrainti* 120111200];

ptr->level2val[10J[ 10] = terrainl 12001112001;

P* overlap for leve12 ~
for (i=0;i<10;i++)

foroj=0;jz1 0;j++)

12 = ptr->Ievel2ptrfi]U];
if (12 I= NULL)

top2 = ptr->Ievel2ptrllilj+l];
if (top2 ! = NULL)

for (s=0;s<10;s++)
12->level3vallsltI 0] = top2->level3valls] [01;

else
for (s=0;s<10;si+)

12->level3val[s][l0] = 0;
rt2 = ptr->level2ptr[i+1I]UJ;
if (rt2 != NULL)

for (s=0;s<l0;s++)
12->level3val[10][s] = rt2->level3val[0][s];

else
for (s=0;s<10;s++)

12->level3val[s][10J = 0;
rt2 = ptr->level2ptr[i+ I]Uf+ 11;
if (nt2 != NULL)

12->level~val[10][10] = rt2->level3val[0J[0j;
else

12->level~val[10lll0] = 0;

for (i=0O;i<9;i++)

12 = ptr->level2ptr[iI[9];

128



if (12 I= NULL)
I
for (j=Oj<lOj++)

/* for outside border *
l2->leveI3valUjJ[l0J = terrain[i*'120+j*121[1200J;

/* for right side with adjacent subceli *
zt2 = ptr->level2ptri+1[91;
if(rt2 I= NULL)

l2->level3val[1Ollh] = rt2->level3val[OJU];
else
12->IeveL3val[IOllJ = 0;

12->Ievel3val[10][10J = terrain[i*1I20+120][1 2001;

12= ptr->level2ptr[9][i];
if (12 I= NULL)

for (j=0;j<10;j++)

/*' for outside border *

12->level3vaIOI] = terrain[1200][i*1 20+j* 12];

/* for top side with adjacent subcell "
rt2 = ptr->level2ptr[91 [i+1I];
if(rt2 I= NULL)

12->Ievel3valIl][0 = rt2-A2evel3valU[[0;
else

12->level3valIj][10] = 0;

12= ptr->Ievel2ptr[9] [91;
if (12 I= NULL)

12->level3val[10][10] terrainli 200J[1 200];

writeit(fdojllptr)
FILE *fdo;
ptrl llptr,

ptr2 l2ptr,
ptr3 l3ptr,
short Allzeroedge;
short value,

129



int ii,st,uv;
allzero = -1;
edge = -2;

if (I lptr->alLzero) /* entire cell is 0 all ocean

fwrite(&allzero,2, l,fdo);,/' write a -1 for allzeros ~

else /* need to check cell *

value = 1/* 1 means data -I means allzero *
fWrite(&value,2,1 ,do);
for (i=0O;i< 11 ;i++)/* loop through level 1I*
for 0j=Oj< I Ij++)

l2ptr = llptr->evel2ptr[i]l;

printf(' 1 edge i %d j %d ',ij);
fwrite(&edge,2,1 ,fdo);
fwrite(&(I lptr->level2val[i]UD,2,1I,fdo);

else if(l2ptr==-NULL)/* subceil is empty, all zeros ~

fwrite(&allzero,2,1 ,fdo);

else/* subcell has value, not all zeros/

fwrite(&(l lptr->level2val[i]U]),2,l ,fdo);
for(s=0O;s<l I ;s++)/I' loop through level2 *
for(t=0O;t<l l;t++)

13ptr = l2ptr->level3ptr~sJ[tJ;
Wf(s=l10II-==0))

printf(" 2 edge i %d j %d s %d t %d ",ij,st);
fWrite(&edge,2,1 ,fdo);
fwrite(&(l2ptr->level3vallslltl),2,l ,fdo);

else if(13ptr==NULL)/* subsubcell is empty, all zeros ~

fwrite(&Allzero,2,l ,fdo);

else/* subsubceil has value, not all zeros ~

130



fwrite(&(l2ptr->level3val[s][t]),2, 1,fdo);

I

ptrl level;
ptr2 ptr;
int ij;
short allzero;

1* allocate structure ~
level = (ptrl )malloc(sizeof(level lrec));
P* make the formattred output ifie
1* loop through the level 2 data *
for(i=-O;i<1O;ie+)

for(j=-O;j<lO;j++)

* ptr = dojlevel2(ij,&(level-Aevel2val[i]U]));
if(ptr! =NULL)
allzero = FALSE;

level->level2ptr[i1UJ=ptr;

level->ali_zero = allzero;
retum(Ievel);

ptr2 dojlevel2(ijvalue)
int ij;
short *value;

ptr2 level;
ptr3 ptr;
int st;
short mmd;
short alizero;

131

L



P* allocate structure ~
P~ allocate leveI2 data record *
mini = maxelev;
level = (ptr2Xnalloc(smzof(level2jrec));
alizero =TRUE;
P loop through getting level 3 data *

for(s=O;s<1O;s++)
for(t=-O-t<lO;t++)
I
ptr = dojve3(ij,st,&(evel->evel3vafs][tI));
if(ptr I= NULL)

alizero = FALSE;
level->level3ptrjs][t]--ptr;
if (level->level3valls][t] < min)

mini = level-MIevel3val[sI[tI;

if (alizero)

P* all zero don't need the data *
*vle=0;

free(level);
retum(NULL);

I

P* pass back pointer to the record and mini value of area ~
level->all-zero = allzero;
*value mnun;
return(level);

ptr3 do -level3(ij,s,t,value)
unt ijslt;
short *value;

int uv;
level3_rec *level;
short mmntempallzero;

min = inaxelev;
P* get data record for 3rd level /
level = (ptr3)malloc(sizeof(evel3..re));
ulizero = TRUE;/* initialize .
1* loop through terrain *

132



for (u=-O;u<13;u++)
for (v=-O;v< I3;v++)

tem = terrain[i*120+s*12+u]U*120+t*12+v];
level->daiau][v]= temp;
if (temp!=O)

allzero = FALSE;
if (temp<min)

min = temnp;

if (uzero)

1* all zero don't need to keep the points around *
*vle=0;

free(level);
retum(NULL);

else
P* return the pointer to the record and the min value of the points *

*vle= min;
return(level);

int name_conv(latjlogname)
short 4'lat,*log;
char *namne;
I
short temp;
/* assume all lats and longs are north and east respectively *

temp=(short)namne[0]-48;
if ((temp<0)II(temnp>9))

return(-,1);
*lat =temp * 10;
temp=(short~utme[l]-48;
if ((temp<0)II(temp>9))

retumn(-l);
*lat = *lat + temp;

temp=(short)rname[31-48;
if ((temp<0)II(temp>9))

return(-1);

133



*log =temp *100;

temp=(short)narm[4]-48;
if ((temp<0)U(temp>9))

retum(-l);
*log =((tenip 10) + *log);
temp=(short~namL5]-48;
if ((Iemp<O)Itemp>9))

retum(-1);
*log =(temp + *log);
retumn(0);

134



14

#include <strin.h>
#include <sys/param.h>
#include <sysftypeshb>
#include <sysftimesh>
#include 'gl.h"
#include "device.h"
#include 'constants.h"
#include "typedefhb"
#include "stdio.h",

#define maxelev 10000/* in yards higher the everest *
#define buf size 28672/* for input buffer *

char *ma1lo;
char *BUF;

extern octant myworid;
ptrl makeJevellO);
ptr2 makejevel2O);
ptr3 make-level3O);

*FnName: getjerrainxc
*Author: FRANK HARRIS

Date: feb 88

get-erain~latIongg)
short latjlongg;

int rowj,innbyte;
char name[lO]1,filenamne[ 100];
short *P,buff5 12];
FILE *fdi;

flwwlc.Vofv(at,oMg~AMM);
stYVpy(flefan,"usr/wokfarris3tdatat');
strcat(flenwaame);
strcat(filenarne,".3t");

/* open input file/
if((fdi=fOpcn~filenam,"r")) < 0)

printf("cannot open filcO);

135



myworld~lazlllongg-90] =NULL;

else

/* set up input buffr/
if ((BUF=malioc((buf size )+ 1)) = NULL)

fprintf(stderr,"out of memoryO);
myworld~latj[Iongg-90] = NULL;

setvbuffdiBUFJOFBFbufsize)

prmntf(" before first read")

1* get lat long first 2 items in file *
fread(buf,2,2,fdi);

/* make structure put pointer in world structure ~
myworld~lat][Iongg-90] makejlevell(fdi);

/* clean up/
fclose (fdi);
free(BtJF);

ptrl make-levell (fdi)
FILE *fdi;

ptrl level;
ptr2 ptr;
int ij;
short buf[5 12],allzero;

/* allocate structure */
level = (ptn )malloc(sizeof(level lrec));
/* loop through the level 2 data *
fread(buf ,2,l ,fdi);
if(buf[O]=-l)

Ievel->alLzero = TRUE;
else

level->all__zero = FALSE;
for(i=O;i<l l;i++)



foffj=Oj<1 I j++)

level->level2ptrill] = makejevel2(fdi,&(evel->evel2val[i]U]));

retum(level);

ptr2 make~level.2(fdi,value)
FILE *fdi;
short *value;

ptr2 level;
ptr3 ptr;
int st;
short min;
short allzero;

fread(value,2,1I,fdi);
if (*value ==-1)

I
*value = 0;
return(NULL);

else if (*value = -2)

fread(value,2,l ,fdi);
return(NULL);

I

1* allocate leve12 data record *
level = (ptr2)malloc(sizeof~level~rec));
P* loop through getting level 3 data *
for(s=O;s<l1 ;s++)

for(t=-O;ted I ;-t++)

I

retumnlevel);

ptr3 makeilevel3(fdivalue)
FILE *fci;

137



short *value;

int uv;
leve3_ rec *level;

fread(value,2, 1 ,fdi);
if (*value = 1)

*value = 0;
retum(NULL-);
I

else if (*value = -2)

ftead(value,2,l ,fdi);
return(NIJLL);

else

P~ get data record for 3rd level /
level = (ptr3)malloc(sizeof(level3 rec));
fread(level->data,2,169,fdi);
return(level);

P~ pass in lat/long will return filename ~

namne-conv(latjlonggname)
short lat,longg;
char narne[lO];
I
/* assumne all lats and longs are north and east respectively *
char c[2);

nanie[J (char)((lat(IO)+48);
c[0] = (charX(lat%l0)+48);
strwa(namn,c);
C[01 = 'N';
smrat~naine,c);
c[0J = (charX(longg/I00)+48);
strcat(namne,c);
longg-longg% 100;

138



c[OJ = (charX(Iongg/1O)+48);
strcat(name,c);
c[Ol = (charX~longg% 10)+48);
strcat(nam,c);
c[OJ 'E=
strcat(name,c);
prmntf(" %s"nm);

139



* FnNane: Draw_ccli
*i Author: FRANK HARRIS
* Purpose: Draws on e cell of terrain based on the

input pararneters.s version uses the
pointer data structure

draw...cl(celijatonggpmalx~iinlxpmlz~ininlz,
max2xrnxjax2zninU,
max3xjmin3xma3z,nxin3z)

short celillat~longg;
int maxlx,minlxmiaxlz~niinlz;
int max2xmin2x,max2zmin2z;
int max3xjinin3x,max3zjinin3z;

int maxsub2x,maxsub2zmiinsb2xminsub2z;/* overlap boundsdi
int maxsub3x,maxsub3z~niinsub3xMininub3z;
int stx l,stz l,spx l,spzl1;/* start stop points for dif resolutions ~
int stx2,stz2,spx2,spz2;
int stx3,stz3,spx3,spz3;
int ij,s,t,u,v,count;
ptrl ptr;
ptr2 cptr;
ptr3 sptr;

/* get cell record f
if ((ptr =myworld[lat][longg-90]) =NULL)

geterain(lat,longg);
ptr = myworld[latlllongg-90];

if(ptr!=NULL)

/di adjust bounds depending on what cell were drawing /

adjust-bounds(1O,ceil,&maxlx,&rninlx,&maxlz,&minlz);
adjust.bounds(1OO,cell,&max2x,&min2x,&max2z,&min2z);
adjust-bounds(12O,cel,&max3xc,&miin3x,&max3z,&inin3z);

/di calculate overlap boundariesdi
,naxsub2x = max2x/10O/*level2 boundary with levellI. in levellI coorddi
niaxsub2z = inax2z/1O;
minsub2x =min2x/1O;
minsub2z = min2zllO;

140



maxsub3x = max3x/l 2;/*'level3 boundary with level2. in level2 cuid *
maxsub3z = max3z/12;
minsub3x = min3x/1 2;
minsub3z = min3z/12;

1* adjust so will draw correctly when looking south and west *
/*' stops the loop from accessing out of the array *

if(maxlx= 10)
inaxlx =9;

if(maxlz=-10)
maxlz = 9;

count = 0;
/* draw level 1 area with all three resolutions *
for(i--minlx~i<-niaxlx;i++)

fbr(j--milz~j<--maxlz~J++)

if((i>--minsub2x)&&(i<--maxsub2x)&&(j>-minsub2z)&&(j<=maxsub2z))
P* in level 2 areadraw level2 resolution *

cptr = ptr-Aevel2ptr[i] U];
if(cptr!=NULL)
I
for(s=0;s<O;s+e)

for(t=0O;t< 10;t++)

if((((i* l0)+Is)>--munsub3x)&&(((i* 1 )+s)<=-maxsub3x)&&
(((j*10)+t)>--minsub3z)&&((0*1 0)+t)<=miaxsub3z))

P* check if overlap level3 data draw level 3 resolution*/
I
sptr = cptr->level3ptr[s] It];
if(sptr!=NULL)

for(u=0O;u<l 2;u++)
for(v=O;v<l 2;v++)
I

make_..poliy( (u+v)%2,
((i*CELL -SIZEI) s4'CELLSIZE2)+(u *CELL_SI:ZE3)),
.(j*CELL..SIZEI)+(t*CELL_ SIZE2)+(v*CELL_-SIZE3)),

sptr->data[uJ[v],sptr->data[u][v+ 1],
sptr->data[u+l][v+l1],spt->datatu+ l][v],
CEL.L_SIZE3);

141



else
/* draw level 2 resolution *

make...polly( (s+t)%2,(i*CELLSUIZE1+s*CELL..SIZE2),
-Q*CELL .SIZEl+t*CELL_SIZE2),

cptr->level3val[s](t],cptr->level3val[s]t+ 11,
cptr->level3val[s+11[t+l1,cptr->level3val[s+lI [t],
CELLSIZE2);

/* to cover up diffrences in resolution boundaries
don't need between level I and 2 too far to be noticeable *

jf((((j* lO)+s)=-minsub3x)I(((i* 1O)+s)==(maxsub3x)))

CELLSIZE2);

if((((j* l)+t)==mins'ub3z)I(((j* l)+t)==(maxsub3z)))

draw...skirt(((i* I O)+s),-((j* 1O)+t),cptr->level3val[s] [t],
((j* 10)+s+ 1 ),-((j*1O)+t),cptr->level3valfs+ I )[t],
CELL_SIZE2);

else
/* draw level I resolution *

count = count + 1;
make-polly((i+j)%2,(i*CELL-SIZEl ),-(j*CELLSIZEI),

ptr->level2val[il]jI,ptr->level2val[iJU+l J,

CELL..SIZE 1);

1/level I area ~
if cell has value 4

printf(" polly count %d ",count);

142



LIST OF REFERENCES

1. Sanders, Mark S. and McCormick, Ernest J., Human Factors in Engineering and
Design, sixth edition, McGraw-Hill, 1987.

2. Adams, Rodney M., A Software Architecture for a Commanders Display System,
Master's Thesis, Naval Postgraduate School, Monterey, California, April 1987.

3. Smith, Douglas and Streyle, Dale, An Inexpensive, Real-Time, Interactive, Three-
Dimensional, Flight Simulation System, Master's Thesis, Naval Postgraduate
School, Monterey, California, July 1987.

4. Shufeldt, Henry H., The Calculator Afloat, Naval Institute Press, Annapolis,
Maryland, 1980.

5. Griggs, Laurence W., An Interactive Computer Graphics Network Monitor for a
tactical Communications Network, Master's Thesis, Naval Postgraduate School,
Monterey, California, August 1987.

6. Zyda, Michael J., Inexpensive, Real-Time, Interactive, three-Dimensional, Visual
Simulators, Lecture Notes for a talk given at Princeton University, Princeton, New
Jersey, May 1988.

7. Oliver, Michael and Stahl, David, Interactive, Networked, Moving Platform
Simulators, Master's Thesis, Naval Postgraduate School, Monterey, California,
Febuary 1988.

8. IRIS User's Guide, Version 3.0, v. 1, Silicon Graphics, Inc., Mountainview,
California, 1987.

9. Using MEX, The IRIS Window Manager, v. 1, Silicon Graphics, Inc.,
Mountainview, California, 1987.

10. Office of the Federal Register, National Archives and Records Administration, The
United States Government Manual, Government Printing Office, Washington,
D.C., June 1987.

11. Bowditch, Nathaniel, American Practical Navigator, DMA PUB no. 9, v. 2,
Defense Mapping Agency Hydrographic/lopographic Center, Washington, D.C.,
1981.

12. Product specifications for Digital Landmass System Database, Defence Mapping
Agency, Washington, D.C., 1983.

13. Rogers, David F., Procedural Elements for Computer Graphics, McGraw-Hill,
1985.

143



INITIAL DISTRIBUTION LIST

No. Copies

I. Defense Technical Information Center 2

Cameron Station
Alexandria, Virginia 22304-6145

2. Library, Code 0142 2

Naval Postgraduate School
Monterey, California 93943-5002

3. Chief of Naval Operations

Director, Information Systems (OP-945)
Navy Department
Washington, D.C. 20350-2000

4. Department Chairman, Code 52 2

Department of Computer Science
Naval Postgraduate School
Monterey, California 93943-5000

5. Curriculum Officer, Code 37

Computer Technology
Naval Postgraduate School
Monterey, California 93943-5000

6. Professor Michael J. Zyda, Code 52Zk 2

Computer Science Department
Naval Postgraduate School
Monterey, California 93943-5000

7. LCDR John M. Yurchak, Code 52Yu

Computer Science Department
Naval Postgraduate School
Monterey, California 93943-5000

8. Lt Frank E. Harris 3
SWOSCOLCOM
Dept. Head Class 105
NETC
Newport, Rhode Island 02841-5012

144


