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CHAPTER I

INTRODUCTION

Many important problems of physical geodesy are being solved by
integrals extended over the entire Earth. Some examples are Stokes'
and Vening-Meineez' formulae [Heiskanen and Moritz, 1967] and
Molodenskit's solution of the boundary value problem of physical
geodesy [Moritz, 1980]. The solution of these problems is formulated
assuming that gravity is known everywhere on the Earth's surface.
However, this is hardly ever the case. Therefore, there is a wenl
justified need for gravity interpolation and extrapolation.

The scope of this study is to investigate two deterministic methods
for gravity field approximation. The predictors are deterministic in the
sense that no stochastic properties of the gravity field are involved.
On the other hand, one feature of both methods is that any linear
functional of the disturbing potential can be used as observable and/or
quantity to be predicted.

The first method was proposed by Bjerhammar [1964]. He assumed
that observations are given at a finite number of stations. The
disturbing potential is assumed harmonic (i.e., it satisfies Laplace's
equation) down to a sphere fully internal to the Earth. The gravity
anomalies at the surface of the internal sphere are solved for by a
downward continuation process and then they are used to perform
predictions by an upward continuation integral. This formulation and
solution of the discrete geodetic boundary value problem is treated in
Chapter 2.

Secondly, Hardy's biharmonic potential technique is considered.
According to this approach the disturbing potential can be shown to
satisfy the biharmonic equation. The biharmonic sources that generate
the disturbing potential can be estimated based on observations and
then they can be used to predict gravity related quantities. The
derivation of the alternate integral for the disturbing potential, the
biharmonic equation and its solutions in terms of spherical harmonics,
as well as expressions of the gravity anomalies and the deflections of
the vertical in terms of the biharmonic sources are given in Chapter 3.

Chapter 4 includes a detailed description of the terrain and the
data coverage as well as data reduction computations for the White
Sands Test Area in New Mexico. The White Sands test data were used
to test both predictors.
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This work in continued with a detailed account of the tests
performed with both methods. Variations of the methods are tested
and the results are discussed and summarized. A comparison is
attempted with the results of the four methods tested at the same area
(Kearsley et al., 1986). The aforementioned tests are given in Chapter
5.

Finally, a summary of this investigation together with the
conclusions drawn and recommendations for future work in given in
Chapter 6.



CHAPTER II

THE BJERHAMMAR PROBLEM

2.1 Introduction

An explicit solution to the geodetic boundary value problem was
published by George Gabriel Stokes in 1849 [Heiskanen and Moritz,
1967, p. 94]. The underlying assumptions of his solution are that the
mathematical figure of the Earth (the geoid) is approximated by a
sphere; there are no masses outside the geoid; and that gravity is
known everywhere on the geoid. However, gravity is measured on the
surface of the Earth, and the application of Stokes' formula requires
on one hand the reduction of measured gravity down to the geoid and
on the other hand the absense of masses above the geoid [ibid, p.
126]. In order to solve these two problems gravity reductions must be
used. These gravity reductions not only require an assumption for the
density of the external masses [Bierhammar, 1964, p. 9], they also
introduce a change of the geoid, the indirect effect [Heiskanen and
Moritz, 1967, p. 141]. Molodenskii in 1945 stated that the geoid cannot
be determined without knowledge of the mass distribution outside it
[Bjerhammar, 1963, p. 31.

Malkin in 1939 redefined the principal problem of physical geodesy
so that the physical surface of the Earth became the unknown [ibid, p.
9].

In 1948, Molodenskii presented the solution to the problem of
determining the physical surface of the Earth from gravity
measurements (Moritz, 1980, p. 330], [Bjerhammar, 1964, p. 3]. The
problem is non-linear and the notion of the teiluroid in introduced for
its Taylor linearization [Moritz, 1980, p. 337]. Molodenskii's solution,
Brovar's solution and a solution by analytical continuation are given by
Moritz, [1980, pp. 354-388]. Bjerhammar [1963, p. 7] gave credit to
Molodenskii for his elegant solution for the distrubing potential but he
also realized that the problem of Molodenskii is continuous
(Bjerhammar, 1975, p. 185], (Bjerhammar, 1964, p. 3] and the
observations are only made at discrete points.

As a result, Bjerhammar defined the discrete geodetic boundary
value problem as follows (Bjerhammar, 1975, p. 185], (Bjerhammar, 1964,
p. 14], (Bjerhammar, 1963, p. 17], (Moritz, 1980, p. 95], (Bjerhammar,
1986, p. 1]: A finite number of gravity data is given for a

3



4

non-spherical surface and it is required to find such a solution
(gravity field) that the boundary values for the gravity data are
satisfied at all given points. The discrete boundary value problem
avoids the singularities of downward continuation (Moritz, 1980, p. 95]
and has no need for uniform approximation theorems (such as Runge's
or Kldych-Lavrentieff's) [Bjerhammar, 1973, p. 480]. Stokes solved the
geodetic boundary value problem assuming continuous data coverage on
the boundary. An error is introduced in the actual implementation of
his solution because an integral is being approximated by a finite sum.
On the other hand, Bjerhammar realized the fact that there is only a
finite amount of data and consequently he formulated the discrete
geodetic boundary value problem.

2.2 Formulation .of the Problem

2.2.1 Definition.

This study will follow well established geodetic practices in which
the geodetic boundary value problem is independent of time and the
space outside the boundary is empty [Morits, 1980, p. 330]. This is to
say that the atmospheric and the tidal effects have been taken into
account by corrections to the observed gravity (ibid, pp. 425, 330],
[Sanso', 1981, p. 13]. The Earth is assumed to be a rigid body which
rotates with constant angular velocity around a fixed axis which passes
through its center of mass [Moritz, 1980, pp. 330, 4471, (Sanao', 1981, p.
13]. An Earth-fixed rectangular Cartesian coordinate system is defined
such that the origin is at the center of mass of the Earth. Its z axis
coincides with the Earth's mean axis of rotation, the xz plane coincides
with the mean Greenwich meridian plane and the y axis is
perpendicular to the xz plane such that the system is right-handed
[Moritz, 1980, p. 2]. Therefore, the figure and gravity field of the
Earth as well as the coordinate system are assumed to be constant in
time (ibid, p. 477].

Let W be the actual gravity potential of the Earth and let U be a
normal gravity potential which is an analytic approximation to W; U is
usually taken as the potential of an equipotential ellipsoid [Moritz,
1980, p. 337]. Let us also denote by I the actual gravity vector and
by I the normal gravity vector. They are defined as follows (ibid, p.
337]:

t gradW, (2-1)

gradU. (2-2)

A point P of the geoid is projected onto the point Q of the
ellipsoid by means of the ellipsoidal normal (Figure 1). The gravity
anomaly vector At is defined as the difference (Heiskanen and Moritz,
1967, p. 83],
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At tP-
where Iti is the actual gravity vector at P and ~gthe normal gravity
vector at Q. The difference in magnitude

Ag gp - (2-3)

in the gravity anomaly [ibid, p. 83).

YQ

Figure 1. Definition of the gravity anomaly.

The disturbing or anomalous potential T is defined as [Moritz, 1980, p.
12]

T = N -U. (2-4)

The fundamental equation of physical geodesy, neglecting

.w av
-h W + 0(e')

which is smaller than 0.5 mgal [Cruz# 1985], is [Neiskanen and Moritz,
1967, pp. 86, 91]

ih *Th-+ Ag 0. (2-5)
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Introducing the usual spherical approximation, i.e., the tolerance of
a relative error in the order of 3x10- in equations relating quantities
of the anomalous field, one can write [Heiskanen and Moritz, 1967, pp.
87-88], [Bjerhammar, 1986, p. 5]:

s 2! !-S)
75 r; t ah ir' (2-6)

and therefore

- 1 = - A2 - " and 2 aT

/I ah t r y arr J4rS r ah r

Substituting in (2-5) one gets

aT + B + Ag = 0. (2-7)
r r

2.2.2 Pissetti's Formula

Lot us now introduce a sphere a fully internal to the Earth, of
radius re and with its center at the center of mass of the Earth. This
sphere is hereafter called the Bjerhammar sphere, the internal sphere,
or the geosphere.

The aim is to solve the discrete boundary value problem, i.e., given
a finite number of observed gravity data, to find a solution (disturbing
potential) with the following properties [Bjerhammar, 1986, p. 8]:

(a) T is harmonic outside w,
(b) T is regular at infinity, i.e., An(T.r) = constant, and
(c) All observations are satisfied.

If one assumes no masses outside the sphere a and denote the
gravity anomalies on w by Agx then the disturbing potential T is given
by Piszettils formula [Heiskanen and Morits, 1967, p. 93], (Bjerhammar,
1986, p. 7]:

T(r, #, X) = J'JS(r, ,)Agxde (2-8)4 w

where [eiskanen and Moritz, 1967, p. 93]

S(r, w) kA + !a - 3r'A- co (5 + 3n r-racoar+ 1 (2-9)A r r2 r a 2rJ
with cos = sinosin*, + coscoscos(A-A,) (2-10)

and j_ r2 + r2 - 2roros; (2-11)
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also, *,A are the geodetic latitude and longitude reupectivelyr and r is
the geocentric distance of the point at which T is computed and 4j, A1
are the geodetic latitude and longitude respectively of the infinitesimal
surface element do.

Let i (4E A]T. Let us also define the evaluation (Moritz, 1980, pp.
37, 2001 or Dirac "delta" functional 5 [Ejerham-iar, 1986, p. 14] by the
following relation (a'is the geosphere, R Is the set of real numbers and
f is some function on e):

f ~~R: -1fi6i~,dr~i (2-12)

The Agx in equation (2-8) is rewritten as (Bierhammar, 1986, p. 14]:

£gX(M = Lag(i 1)5(Rio (2-13)

The Ag*(i,) values are a set of fictitious anomalies that generate the
observations at the given points [Sjdo*berg, 1978, p.21, [latnambalos,
1981, p.681. The basic postulate of the Dirac Impulse method is that
£g*(i) =0 everywhere on the geosphere with the exception of n point
associated to the given observations (Bjerhammar, 1986, p.14].
Equation (2-13) is the mathematical formulation of the basic postulate.

Substituting (2-13) in (2-8) one obtains

T(r, i) = Y"1fJS(r, i, ii.) Agx(i,,)dor.
a

- f S(r, ~ .)~A~~)~5 i)e

-ro aeo(i -I ffJS (r, ii Ftm)-6 (iN-ij) do"

which by (2-12) yields (the subscript M in the above derivation was
merely introduced to denote the moving point Md on the sphere):

T(r,*,X) ro I £g*(*1,,A)Sr*A*,, (2-14)
j=1

Introducing t and d by

t La (2-15)r
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d = {1 + t' - 2tcow}l (2-16)

one gets from (2-11)

A = rd (2-17)

Letting

u = ' (1- tcosi + d) (2-18)2

the generalized Stokes' function S(r, w) in (2-9) becomes

S(r, w) = t(1 - 3d + 2 - tcosw(5 + 3n u)) (2-19)
d

Therefore, (2-14) becomes

T(r,,,X) = rot (1 - 3d + - tcosw(5 + 3*nu))agf (2-20)

2.2.3 Gravity anomalies and vertical deflections in terms of Dirac
annlies

All the quantities related to the disturbing potential, ie., all its
linear functional. such as gravity anomalies or vertical deflections can
be evaluated by applying the pertinent linear operators to T in (2-20).

(a) Gravity Anomalies:

From (2-7) one seem that Ag = LT, where

L = _a 2
ar r

IT
In order to compute 2T , the following derivatives are needed

ad t-coWE d -(2-21)at = d

a t-o - Como) (2-22)

Rewriting (2-20) as T(r, , ) = re I blhgj, with
j=1
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b= t - 3dt + - 5t'cosw - 3t2coswAnu (2-23)
d

on a ro ab Ad. (2-24)
8r rt= a r

Mow ab A ilb 4 at (2-25)ar at Wr

end = t
ar r

Thus,

g T T -r lb-t4 I.~gf - 2b1Agf~r -ro = at r r f=l

ro -ki r)Af-2tI ,ga= t r =1

or,

Ag= -t2 MAg (2-27)
1=1

where MN = 2b, _ ab,

t at

The M, coefficients can be further reduced (see Appendix A.1) to yield

H, = 1 + + 3tcos

so that (2-27) becomes

AS = - t 2 ( + t'-' + 3tcosu)Agi'

or, rearranging term

A= ft(1-t 2 ) - 3tscosm - t)Agui (2-28)ag 4=2V d2

which is of course the same equation Bjerhammar came up with by
discretizing Poisson's equation [Bjerhammar, 1986, p.81,[Bjerhammar
1964, p.20].

(b) Deflections of the vertical:
The vertical deflections north ( ) and east (q) are given by

Heiskanen and Moritz (1967, p.235]:
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64,; 6x

where [ibid, p.233]

or, upon substitution

-y Irla j (2-29)

7rcos#R-

On the other hand

ST ITl 8w !-aT aT

and (ibid, p.234]

=-coed and -cossini

therefore

().(coe") 1 IT (2-30)
it sind yr 8w

N__ 21 = rot Ag.with A I -3d+ to -3cwnua& Agj, i d tou3ceiu

The At derivatives can be evaluated (see Appendix A.2) to yield

Aa tis 8- ?_ - 3(d+1)2, 13U
A, =2tsi + 0n2a

thus

8T =do2 (~ 2 +3ndna
TW_ t ( i= - d3 3(u) + 3nujiug (2-31)

Substitution of (2-31) in (2-30) yields

LC 9 _! 2 _ - 3(d+1)2 + 31nu~sinw, fc II")Ag (2-32)
~1 I d3 2ud ~sind~

finally, using ifeiskanen and Moritz (19S7, p.113]
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= cossin(- sincoscos( j-) (2-33)

one gets

(f -I 
2  3(d1d + Un) cos*,sin(~-in) sjos(X -X) lAg(~) =- 2 2udJ) ~ cos~fsin 1 f-X)os

(2-34)

Equations (2-28) and (2-34) can be used both to compute Agf from
observations and to predict Ag, (, f.

2.2.4 A truncated sum

Given a continuous function f(x) and a constant xo, one can form a
sequence f. = f(nxo), n i N. This operation is called sampling and Xo
is called the sampling interval. Conversely, given a sequence fn, one
can construct a continuous function f(x), by an operation called
pulsing and defined as

f(x) = j f.d(x - nx.) = I f(nxo)6(x - nxo)
n o n=0

where 6 is the Dirac delta functional. The aforementioned operations
are well established in the analysis of Linear Systems and can be
found in many electrical or mechanical engineering texts such as Brown
(1961, p. 176], Aseltine (1968, p. 247] and Tretter [1976, p. 85].

Equation (2-13) is the two-dimensional analog of the above equation
defining pulsing. The only difference is that pulsing as defined above
is the superposition of an infinite number of impulses whereas (2-13)
represents a finiJt sum.

Bjerhammar realized that in applications one has only a finite
number of data, and therefore one can only solve for a finite number
of implumm. Consequently he truncated the sum in (2-13) at some
integer number n equal to the number of observations.

However, only an infinite number of Ag* values is able to
recontruct the original signal (recall that in order to recover T one
needs an infinite number of harmonics). Therefore, the gravity related
quantities predicted from n Ag* values will naturally not include the
contribution of the truncated terms beyond n. This is to say that
equations such as (2-20), (2-28) and (2-34) can only be considered as
approximations.
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2.3 Symmetric Kernel Approach

In the original approach the Dirac Impulses were located on the
surface of the sphere a. In the symmetric kernel approach the Dirac
Impulses are located at positions (Figure 2) with geocentric radii
inversely proportional to the geocentric radii of the observations, i.e.
the Dirac Impulse corresponding to the observation at ri is located at
roi, where (Bjerhammar, 1986, p. 48]

roj = r
.
2  

(2-35)ri

topography

geosphere

"reflected"
topography

I I

rl
ror ' (r1- ro)

Figure 2. Symmetric Kernel Approach.

Every observation will be associated with a Dirac Impulse at ro .
Considering n observations one will have to consider n Dirac Impulses
located, in principal, at n different geospheres. The disturbing
potential associated with the i-th Impulse will be given by (see
equation (2-14))

T,(r, #, A) = ro1 S(r, 4, A, 4, XA)Ag (2-36)

and ATj = 0 at r > r0j. The total potential will be

T(r, #, X) E roS(r, 4, A, *,, XI)Agj (2-37)
i=1
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by the superposition principle of the potential (Heiskanen and Moritz,
1967, p. 2 ]

and AT = 0 at r > max(ro,, ... , ron) rn)

min(ri, ...,r.

Introducing t by t and d by (2-16) one hasr

t = roU = r.2 (2-38)
r rri

and

S(r, w) = t(1 - 3d + 2 - tcosw(5 + 31nu)) (2-39)

d

Therefore (2-37) becomes

T(r,*,X) t roit(1 - 3d + 2 tcosw(5 + 31nu))Ag (2-40)
j=1

Similarly as in the original approach one derives

Ag [t*1-t2  - 3t3 cosw - t2 lad (2-41)

S}i t(8-- 2 _ 3(d+1 )2 +3 2nu)( cos~sin*I-sin~cos*Icos(Xj-X) )A0=d 2ud cos~jsin(X-X)

(2-42)

2.4 The Linear System

If one assumes n observations comprising the vector I then the

linear system is

I = GAg* (2-43)

In general the vector of the Dirac Impulses Ag* will be of
dimension m. The elements of G can be taken from (2-28) or (2-34) for
Ag or (, ,q observations in the original approach and from (2-41), (2-42)
for the same type of observations in the symmetric kernel approach.
Note that G is of full row rank as long as there are no two
observations 1j, Jj of the same type (e.g., Ag or ) with r= rj.

There are three distinct possibilities:
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i) Exact solution (m = n):

The Dirac Impulses and their covariance matrix respectively are
given by

AgI = a-it (2-44)

tAg;: G- E*G- T  (2-45)

(ii) Overdetermined case (m < n):

In this case the traditional least-squares method [Uotila, 1985]
applies and the solution is

Ag= (G(TE'G)-'GTEZ1I (2-46)

-ag; (GTEI'G)- '  (2-47)

The a posteriori variance of unit weight al is given by

jCTEj11 STEgIG* (2-48)

where ag is the a priori variance of unit weight.

It should be kept in mind that the property of the reproducibility
of the observations is lost in this case.

ii Underdetermined case (m > n):

In this case equation (2-43) represents a system of equations with
an infinite number of solutions since G has full row rank [Dermanis,
1985, p. 2151. From this infinite number of solutions, one particular
solution may be chosen by the minimum-norm criterion ag*T'&g* = Min.
This solution is unique in the sense that the norm of any other
solution is at least as large as the norm of Ag or larger. In order to
find the solution that minimizes the norm of Ag* and satisfies (2-43)
one needs to find Ag* that satisfies

4 = AgTAg + 2kT(Gag* - 1) = sin (2-49)

The minim= of # with respect to Ag*l is attained at

8# -2
a7 0 <> 2Ag*T + 2kTG = 0 <= Ag = GTk (2-50)

On the other hand

0 =Gg - a : GGTk - A <0 k = (G (T)-1, thus
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Ag* = GT(GGT)-is (2-51)

Obviously G in (nxm) with rank n (full row rank). Now GGT is
(nxn) with the same rank an G, thus GGT in of full rank and therefore
invertible. The covariance matrix of Ag* can be computed from the law
of propagation of covariances [Uotila, 1985, p. 4]:

lAg* = GT((GT)- l EI (GT(GGT)-I)T = GT(GGT) - l Es (GT)-1G, thus

Zm = GT(GGT)-l Ij (GGT)-1G (2-52)

It in trivial to notice that the solution (2-51) is the pseudo inverse
solution. For a full row rank matrix G one has [Uotila, 1982b]

G+ = GT(GGT) - l  (2-53)

thus (2-51) and (2-52) can be written as

ag* = 0'S (2-54)

ZAg* G= 1- (G+)T (2-55)

The uniqueness of the pseudo inverse quarantees that Ag* in (2-54) is
unique.

2.5 Propagation of Data Noise into the Predictions

Let us assume that we will perform predictions at q stations. The
vector f of predictions will be of dimension q and it will be given by

f = R*A9* (2-56)

where the elements of the (qxm) matrix R will be given by (2-28) for
Ag predictions and by (2-34) for (,,ij) predictions. The covariance
matrix Er of the prediction vector f will be given by [Uotila, 1985, p.41

Ef = R.Egs.VRT (2-57)

where EZg* in the covariance matrix of Ag$ as computed from (2-45) for
the exact case, (2-47) for the overdetermined case and (2-55) for the
underdetermined case.

2.6 On the Location of the Dirac Impulses

From the theoretical standpoint there is no reason to prefer any
location over any other for the location of the Dirac Impulses. From
the numerical standpoint however, one should prefer the location that
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yields optimal stability in the sense of maximal diagonal dominance of
the matrix to be inverted as done in Bjerhammar [1986, p. 30]. The
matrix G in (2-44) will be selected to investigate the location issue
since this issue is only numerically and not theoretically relevant. The
resulting location is going to be used regardless of the observation
type and of the solution type (ie., exact solution, adjustment solution
or minimum norm solution). The development will follow Bjerhammar's
ideas [ibid, p. 30].

Let the Dirac Impulse Ag* corresponding to some observation Ag at
r, #, X be located at r0 , 40, Ao.

The corresponding element of G in the main diagonal will be (see
eq. (2-28))

tX(l-t2) _ 3t3cosW - t2  (2-58)g= d s

with d = (1 + t2 - 2tcosw}% (2-59)

and cosw = sintsin*o + cos~cos~ocos(X,-Ao) (2-60)

She maximum of g = g(w) with respect to w will be attained at A =
a"

thus

0= = t2(lt2)S2 !- - 3t3(-sin) =

3t2(l-t2) tsinw + 3t~sinw =>

d4 d

0 = 2 = 3t'[,r 1 + lisino (2-61)

which vanishes identically for u = 0, L., o X , )o = A. This is the
argument originally given by Bjerhammar [1986, p. 30]. However, in
order for ==0 to be a maximum (a 2g/aw')(=0) < 0 must be satisfied. It
holds that

a r3= L 3ts(tx-l) t3 at-)2 8rW=aw + ds sinw = 3t cosw+3t 3 ( a, dsnJ

WCSW+3t3(t 2- ) CosW 15t" (t2-1)sin=wa = = 3t'cos + 'cs - ' (2-62)

Now for w = 0 => sinw = 0, cosu 1, hence
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d = 1 + t2  - 2tcosm] > d 1- t, thus

(,=0) =3t2 3t~~l
Z((1t)

m  , or upon simplification

A (J aa) 3t3= 0) (---- (1-t)" - (1+t)] (2-63)

Now for O<t<l => -l<-t<O => 0<1-t<l => (l-t)'(1 (2-64)

Also 0<t => 1<1+t, thus

(l-t)4<l<l+t => (1-t)4 - (l+t)<O (2-65)

which yields 2A (w=O)<0 and thus a=0 is indeed a maximm for g.

Therefore, the optimal positions for the Dirac Impulses
corresponding to gravity anomaly observations are at the nadir points
of the observation stations.

2.7 On the Optimal Radius of the Geosphere

A successful application of the Dirac Impulse method requires a
suitable choice for the radius of the internal sphere. Some
suggestions pertaining to gridded data can be found in Katmambalos
[1981, p.761 and Bjerhammar (1986, p.7].

A suggestion for spares data was made by Sjaberg (1978, p.64)
according to which

ro = RE - RE (2-66)E2
where RE is a mean earth radius (e.g. RE: 6 3 71 kin) and is the
average angular distance between neighboring points. Alternatively,
one can attempt to compute r0 from the given data if this is possible.
Two methods can be considered. The first one was somewhat
differently regarded in Bjerhammar [1986, p.20]. He considered a
least-squares solution whereas here a minimum norm solution will be
investigated. The system in (2-43) can be written as

t, = a-agf = F(Xa) (2-67)

with Xe = [rn Xo = , X = Vo .

Equation (2-67) represente a non-linear system in the unknowns.
Linearising by Taylor's theorem and neglecting terms of order 2 and
higher yields
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alr

ja = F(Xo) + F (Xo Xo), or upon letting

So =FX); I . -a AA ar-] B, one then gets

BX - S =0. (2-68)

In the case of n observations (2-68) represents a system of n

equations in (n+l) unknowns with B having full row rank, therefore
the condition XTX=min will yield (see eq. (2-49) through (2-55))

X = BT(BBT)-Ii (2-69)

with

Ex = BT(BBT)-1E,(BBT)-B. (2-70)

Now let us write B as

B = [G a], (2-71)

where a = !- is an (nxl) vector. Denoting by A., the i-th element of

are

t,, the i-th element ai of the vector a will be of = a a" In order

to evaluate a1 for Ag, t and , observations one will need the following
derivatives

(i) t = tn-i Jt =t

(i) -- -- - , (2-72)
are aro re

(ii).di. =d A#t; Iu = u t. Recalling (2-21) and (2-22) one gets

9ro  at iro  3ro  at aro

ad - t(t-co") ; u t L t-cosw cos- (2--73)

ar0  rod ; ro  2r I' d

Now, rewriting the i-th equation of (2-67) as

j a g5jAg.1 (2-74)

one has

aro J-= ro

where for gravity anomalies, from (2-28)
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d 3Z1t
2  3coa- (2-76)

and for vertical deflections, from (2-34)

(g, j 38 _d_' 3d2u , + coe

Lj _ 2 3 2dl) + Inu 1in~z ,.) (2-77)

The differentiation -of the g1 jj coefficients required in (2-75) yields
(Appendix A.3):

(1 29)0 3t(1(1-2t2t -s 4 , 9tcos&, - 2] (2-78)

for gravity anomalies. For vertical deflections it yields (Appendix A.4)

ar 'sin"4 8 3(d+1) 2 +3n -coam)r & (d4-1) 2 1

24 ro7 L d 2ud +3n+ttd 2  d3 4u2 2ud

tCOStGfd l 2u + 1] (0)d (2-79)

Equations (2-78) and (2-79) can be used to form the elements of
the vector a in (2-71). Equation (2-69) can be used to solve for the
vector X of the unknowns, the last element of which is ro.

For the actual implementation of (2-69) it is worth noting that
since G in (2-67) is of full rank, then [Boullion and Odell, 1971, p. 18]

B= I q1-b lbI
where b = (1 + (-aT-a-(-aT-

Another method of solving for ro in to separate the data in two
groups 4.1 and a: of n1 and n 2 observations respectively. Denoting by
Ag* the Dirac impulses corresponding to 181, one has the following
linear system:

*~RAg*. (2-80)

Solving (2-80) for hg* one gets

0. (2-81)
On the other hand, knowing AK* one can predict 42 as
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=Sag* (2-82)

Substituting (2-81) in (2-82) one gets

A: - sr-ll = 0 (2-83)

Equation (2-83) can serve as the mathematical model of the form
F(XO,L 5 ) = 0 in an adjustment scheme with ro as the only unknown.
Following Uotila (19851 one can write

x. = .[rS].; Xo = .rS].; X = 1 [6ro],; A. = ,284
2 (2-84)

= V = n .

Linearizing (2-83) by Taylor's theorem and neglecting powers of
(Xa-Xo) of orders 2 and higher one gets

AX + BV + W = 0 (2-85)

with

B [-SR-I; I]. (2-86)

naxn n 2xn 1 na~x

Also

A= _ i Fr = a ()s-1) (2-87)
-1 8r0- 8r- ' a aroa

From Dernanis (1985, p.187] one has that
|d =dA + dA

S (AD) =!AB+A , and (2-88)

d
It (A-,) = -A7 1 Aid -' (2-89)

where A,B are matrix-functions of the variable t such that AB and A-'
are defined. Applying (2-88) and (2-89) in (2-87) one gets

A ( J IS (2-90)
•. .r roi
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The elements of the matrices A and B are given by (2-90) and
(246) respectively. The least-squares solution of (2-85) is given by
Uotila [1985]

P =o2r_ (2-91)

W = F(Xo,Sb) (2-92)

M = ,P-,BT (2-93)

X = -(AT[W IA)-1ATWr-'W (2-94)

X. = X0 + X (2-95)

Eca = foZ(ATt4ZA) - ' • (2-96)

Since the problem is non-linear, iterations will be needed.
Following the iteration scheme described in Uotila [1982a) one can write
(for the i-th iteration) the following:

- Evaluate AB at XS = XI-1, i =A - ' (2-97)

- W1 = F(Xj, A&) + B'(b-14) (2-98)

- Mi = (B')P- 1 (BI)l; P = u £Z (2-99)

rx, = -t (A,),(.,)-,A, l(A,)T(.,)-,w,).

Vi  = _-L (Bi)T(M)-(AXt + W
i) I(2100)

A! =b .+ Vi}

X01 Xj+ X11(2-101)

In this particular case it is worth noting that

W1 =1 - Sf(R')-44 . (2-102)

Yet another method to be considered for optimal re computations is
the following. A measure s2 of the quality of the results is assumed to
be a second order polynomial in re. According to Bjerhammar, (1986,
p.17] s2 is the variance of unit weight or the RMS error of a residual
field (ibid, p.18) (note that in the case where s2 = RMS (dAg) then the
units of s2 are mgals rather than mgal2 ). Thus

82 = a + bro + cr1 (2-103)

The value of re at which s2 is an extreumo will be the root of

. . • nnmmnmilmi mnam Il S~ i n ,
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S= 0, or equivalently of 2cro + b = 0
iro

The root of this equation is

bre = - 2-C (2-104)

Furthermore, for c0, the extremum in (2-104) is a minimum.
Assuming that three different radii ra, ro., ro 3 , resulted in af, s, s
respectively, one can write from (2-103)

af = a + bro t + Cr 0 2

al = a + bro + cro2  (2-105)

s a + bra + cro2

This linear system of three equations in three unknowns a,b,c can
be solved to yield the following

a roro,(si - 81) ro,ro2(sf -X)
(ro roa)(ro2-ro ) (ro,-r, 2 )(ro,-r,.)

b (ro,+ro,)(s-s|) -(ro,+ro,)(s|-s) (2-106)
(rot-re2)(r.-ro ) (re -roa)(ro2-r 0 )

Cs - si s - sl(ro 1-re 2 )(re.-r )- (re -re) (re 3-ro)

The substitution of b and c from (2-106) in (2-104) yields

(ro-ro) (si-Si) - (r@-r.)(sf-si)
S2[(re tr,,)(si-8|)-(ro,-ro 0)(4-81)] (2-107)

If Po re-h, r*2 = rot rs = ro+h is selected, one obtains from (2-107)

o= r, - 2 2I- 4a (2-108)

which Is the original formula derived by Bjerhammar [1986, p.18] after
correcting a minus sign error.

The actual implementation of (2-107) will be to apply the predictors
three times with three different radli and record the resulting s2
values. The selection of the three initial radii is quite arbitrary.
However, in order to make (2-107) most effective one should keep in
mind that (2-103) Ia a parabola and its minimum will be beat computed
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if one has a point in the ascending part of the curve, one point in the
descending part of the curve and one point between the two.



CHAPTER III

THE BIRARMONIC POTENTIAL - HARDY'S METHOD

3.1 Introduction

The gravitational potential of a mass distribution with density a
occupying a volume U is given by (Heiskanen and Moritz, 1967, p. 3]

V = GIN du (31>

where G = Newton's gravitational constant
du= differential volume element

= distance between du and the evaluation point.

Let the volume and the gravitational potential of the Earth with
mass distribution a, be denoted by U, and V, respectively. The
gravity potential of the Earth is then given by

NJ = V, + #1 (3-2)

where 1 = %of(x2 +y2) is the centrifugal potential [ibid, p.47] and w, is
the Earth's angular velocity.

Introducing the standard notion of the reference ellipsoid with
density ea, volume U2 , gravitational potential V2 , gravity potential W2
and angular velocity wa~t, one has

V, = Of!! " du (3-3)
U I

V - Off! G ' do (3-4)
U 2

W, Z V2 + #2 (3-5)

The disturbing potential T is --fined as

T = W, - W2 . (3-6)

Therefore

24
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T =W 1 . 2 =V 1 +# 1 -V 2 -# 2 =tjj . du!j (X2+y2)-Gfffj' du-
1
--u

U21 2U 2 y2

and since w, = on one gets

T = G(t11 du - Gf9 du + 0 t 1Ldu
Ua U 2A U1-UA

It will be assumed that the integral of el over the difference of
the two volumes U, end U2 i negligible. Denoting by a the density
anomaly function, i.e., a = a&- and alao denoting U2 by 0 one finally
gets

T = 011f 1 dv (3-7)

3.2 Hardy's proposal and its consuences

3.2.1 9xistence of the biharmoni notential

The representation of the disturbing potential in (3-7) is singular
at points that induce potential since at these points 1=0. On the other
hand, since there are infinitely many mass distributions el that have
V, as their exterior potential (Heinkanen and Merit, 1967, p.17], there
are infinitely many density anomaly functions e that have T as their
exterior disturbing potential.

Hardy and Nelson (1966J proposed to select a particular family ofe
functions, namely the ones that are sero together with their normal
derivatives at the boundary. They also defined a function p such
that

p = Ua' (3-8)

where the Laplacian operator A in (3-8) is defined as usual, i.e.,

a *a aA = 4 + s

and it refers to the point that induces potential. Then they showed

that the disturbing potential T can be written an

T = Gjjjpidv (3-9)

In order to prove (3-9) one needs to show the following: Let 0 be
some volume of mass with density anomaly function a, satisfying c = 0
and a./On--0 at the boundary S of 0. The function p defined by 2p=Ae
in such that
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-phJdv = 0 (3-10)

The proof will in principle follow Hardy and Nelson [1986, p.19]. One
can easily establish that &(1/2) = 1/4 at points with 020.

We will distinguish two cases, one for exterior and one for interior
points, due to the singularity at 1=0.

(a) Bxterior Points:

If the point at which the integral in (3-10) is evaluated is outside
the volume 0 then by Green's identity for the functions 1/2 and 0 one
can write [Heiskanen and Moritz, 1967, p.11]

f~iAa- rA(-Ijjdv XI( -4' - r 2-(!Jcs = rL ! 2 - A

ut, on S, both a and ar'e zero. Therefore I jf a !- - i u
an s L2 an 2 anJ

On the other hand p = %Aw and A2J , hence

IIIJ(2 a - aA( 2 )dv = 0 <=> Ij'jpA - jdv 0 0, q.e.d.

(b) Interior points:

Let us denote by 0, the volume that will remain if one excises from
o the volume of a sphere with center at P and radius r. The
boundary of 0, is denoted by S,. A schematic representation is given
in Figure 3.

C A

B

Figure 3. Derivation of the Alternate Integral for the Disturbing
Potential at points Interior to the Mass.
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The surface ABCDA is the boundary S of 0. The surface ABCRA is
the boundary S, of Or. The surface ABC is SnS, = (points QtS: QtSr).
The surface ABC is S,-S = (points QtS,, QAS).

By Green's identity for a and 1/2 one has

J J w - °A[ ) -dv = IJ( r - - W [( ]J .ds =a! J ( °  
- ._I . =s

--r r Sr

as da, +. 1" !0 o "
SAS r a- $r  a 2 2n

The first integrr I in the above formula is zero since a = aw/an = 0
on S and SnSrCS. If one considers 0, small enough such that
(4/2)(aw/an)-(w/2)(al/an) z constant = c [Scheik, 1986] the second
integral can be written as follows:

if A an a 2 ndI = c II ds = c'41r 2

Sr-$ Sr-

which of course goes to zero like r2. Therefore

fl-dv = A 11uA[)) Hu ~ ' cr -iu c&(!Jdvr

= HE-- - fds]= 0, q.e.d.

Therefore

-jdv = 0 <=> jf&pidv = III dv <=> GJ&!pidv = Gfjf dv
(3-11)

and the representations of T in (3-7) and (3-9) are identical.

3.2.2 The biharmonic eauation

The Poisson equation

AT = -4w( (3-12)

corresponds to the representation (3-7) for the disturbing potential.
The same way as above, a potential represented by (3-9) is called
biharmonic because then it satisfies

a2T 4 T + a4T a'T + 'T + a'T a(TT +x ay ag' 2ax-- +-aaa + 2x -Mp (3-13)
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which is the biharnonic equation. However, the derivatives

I2V ij2" a2W x=S ay "'a az2 (3-14 )

must exist (Hardy and Nelson, 1986, p.19]. Outside the masses, where
p=Ot T satisfies

A2 T = 0. (3-15)

3.2.3 The biharmonic Dotential

It is shown in Appendix A.5 that the solutions of the homogeneous
biharmonic equation (A2T = 0) are

Ti(r,G,A) =-i r" I (a,,+r'c.,)comA+(b.,+rad.,)sinm ]P.,(cose)

(3-16)

T.(r,8,)= E !=[(a..+r'c.)cosu+(b..+rad.)sinA]P.,,(cose)
(3-17)

where an*, bn*, cna and dn, are arbitrary constants. Therefore a
biharmonic function T can be represented as

T = H, + r 2 H2  (3-18)

where H, and H2 harmonic. If H2 vanishes identically then T
degenerates to a harmonic function.

Equations (3-16) and (3-17) are generaL Every function which is
biharmonic inside a certain sphere can be expanded into a series (3-16)
whereas every function which is biharmonic outside a certain sphere
can be expanded into a series (3-17).

3.2.4 Further conseouences

The definition p=ae is a partial differential equation of the Poisson
type. Therefore, the above definition together with the boundary
conditions = as/an = 0 uniquely determine w [Kellogg, 1929, p.215].
Actually, since the earth is not homogeneous, one should write

+ t-[f] J+ a[t 2p

where f , f 2 , f3 are functions characterizing the inhomogeneity of the
medium (Volyskii and Bukhman, 1965, p.361.

In order to solve p = %As one can use Green's third identity
(laiskanen and Morits, 1967, pp.11-12] to get
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0* 9 Jaan in ii)

where

f4 if the evaluation point Q is inside S,
k =12, if the evaluation point Q is on S,

0 if the evaluation point Q is outside S,

aed n is the normal to S directed outward. But since a = 0 on
an

and p = %Ae one gets

f ~ ked (3-19)

For points Q inside S one gets

a=-~ 1*-J 11 dv (3-20)
ii

From equation (3-20) one can see that the singularity of T at :O is
not avoided. It is simply transfered to a singularity in a at the same
point (=0).

An obscure point in Hardy's derivation remains the existence of the
fourth order partial derivatives of T in (3-13). The reason for this is
that at least one of the second order partial derivatives of T must be
discontinuous in the region from the geocenter to infinity [Heiskanen
and Moritz, 1967, p. 5] following the discontinuities of 4.

On the other hand, the density anomaly function a is assumed to
possess properties that may not be physically reasonable. At first, the
second partial derivatives of a are assumed to exist. Since the earth's
density function is very likely to exhibit discontinuities, the density
function of the reference ellipsoid must be discontinuous in such a
manner that both a and its partials of first order be continuous.
Furthermore, the density function of the reference ellipsoid must be
such, that a together with its normal derivative vanish at the
boundary.

The aforementioned requirements of the method are not justified
from the point of view of the physics of the problem. For example,
since all the points of discontinuity of the Earth's density are not
known, one cannot construct a reference ellipsoid such that the
resulting density anomaly function a and its partials of first order be
continuous. The point of this discussion is that if the method yields
not good predictions of gravity field related quantities, this should come
as no surprise due to the aforementioned shortcomings of the method.
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3.3 Ainroximation of the disturbing potential

Let data be given at n discrete points. Let us also subdivide 0
into regions V1, i=l, 2, ... , n. The biharmonic sources (sources of
biharmonic potential) are defined as follows [Hardy and Nelson, 1986, p.
19]

a, = ff pdv (3-21)
Vt

Let P be the point at which the disturbing potential will be
evaluated, q, be one of the given data points and q be any point in
Vi. Also, let tpqj be the distance from p to q,, 11 be the distance of
q to q1 and A be the distance from p to q. The triangle inequality for
p,q,q, can be written as

I -ipqjj A ji (3-22)

Multiplying both sides by tpldv and forming the integral for V1 one
gets

GfJrfI-pqjjI'pldv d GJfJ *j1 pldv (3-23)
Vi Vi

Su-ing over all of the V's one gets

G III li-pqjjiptdv I 111 ff *IpIdv (3-24)
:1 V i=1 Vi

Now

I J G f fftp d v G f i fp q p d vj G j f f f* p d v + ...+ f j f f p d v -. f Jf p q , p d v

1=1 Vi 1=1 Vt V1  Vn V1

- VqIqVpq pdv(Vn n I

G Jdv-pdv+...+ M'Apdv - IIpq pdv,

V1 V, V Vn n

G 'j'lpdv - £|pq dvj +...+ G(IfiJpdv - jfffpq pdvj '
V1 V1 V Vn n

GuItp-pq1 'IpIdV+"+ G Apdv, hence,
&t Vn
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GJ!J~pdv - GfII~pqiPdvl -6 EII GJiP-pqjj-IP~dV

I= V1  i=1 Vi 1=1 Vi

which, upon substitution in (3-24) yields

I Jnpdv - G I IIIp ,Pd I fM1 1 I plIdv (3-25)

Now G I fffapdv =T~ from the basic integral (3-9). Also, since Jpq,

is constant for each V, (3-25) can be rewritten as

1pqA f(pd i fff1Ip~dv (3-26)

Let us denote by t1 the distance of q1 to the furthermost q in V1, i.e.,
tj )kqqj for all q c Vi. Also, let us denote by c the maximum sit i.e.,

t max(ti) for i=l,2,...,n. Then 11 a for i=1,2,...,n and recalling

(3-21), (3-26) can be written as

Tp GE tpqiaj A CG II 1p1 pdv (3-27)
I 1=1 1-1 V 1

Equation (3-27) implies that the approximation

n

T =G * ia1  (3-28)

can be made arbitrarily good by an appropriate choice of e, i.e., of the
size of the subregions Vi (note that lpq was substituted by A, in
(3-28)).

3.4 Linear functionals of the disturbinit Potential

t 3.4.1 Gravity anomalies

From tefundamental equation of physical geodesy (2-7) one has

8g T _2T (3-29)
Ig3r r 7

If one denotes by r the geocentric distance to the evaluation point, by
ri the geocentric distance to the biharmonic source a1 and by *,X,* 1 ,Aj
their geodetic coordinates respectively one has from (2-11) and (2-10)

A, (r3+rj-2rrjcos&,)' (3-30)
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cos. = sin*sin* + costcos*jcos(A-x). (3-31)

Thus

aT n asL wihA* 1
3T = I with LE r = - (2r-2rtcos.). Hencer = 1 ar r 2Ar

_T al rtcos and therefore

a,[r-r.cs + . (3-32)6g Gtla= U I, r J

3.4.2 Deflections of the vertical

Recall equation (2-30)

L aT (co sc) (3-33)

.The required derivative r isa.,

aT _s ______ __

al =G aI sa, thus, using (2-33) one gets+' =' a,, +- .I. thus,,,
+am t1 + j =1 A,

r ( ossin! - sin#cos#icos(t-). (3-34)

3.5 The biharmonic sources on the geosnhere

If one places the biharmonic sources on the surface of the
geosphere with radius ro, equations (3-32), (3-34) will become

Ag : a ,['r' + A (3-35)

(1) = 2 1costsin t - sin~cos* 1cos0.-)) (3-36)

if1= , cos*1sin(A,-x)

with

A = (r2+rS - 2rr.cosw) (3-37)

Introducing t and d by
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= ~a(3-38)

and d = (l+t2-2tcosw}% (3-39)

one gets

I = {r2+rj-2rrocosv}'a= rfl+t2-2tcosu)% rd; hence

Ag -- itow+ 2da. (3-40)

(( Gt PL 3tcos~uint - sin~cosjcos(Aj-i)j

ti, = y * d (cos~ssin(Xi-X) (3-41)

Finally, letting

Ci = Ga1  (3-42)

one can write (3-40), (3-41) as

As = - I [ltcOSe 2d1 cJ (3-43)

a (cos~sin*1 - sin*cos*icos(X,-)(344(~1= y*,d {co*sin(X,-X)

Equations (3-43), (3-44) can be used to compute c, from observed
Ag, f and nj and/or to predict Ag, f, n from previously computed ci
values. The associated linear system and its solution will be identical
to the one described in Section 2.4. Also, the propagation of the data
noise into the predictions will be performed in a manner identical to
the one described in Section 2.5.



CHAPTER IV

THE DATA

4.1 Introduction

The White Sands Test Area is located at the western outskirts of
the Rio Grande Rift System in New Mexico. The tests of the two
methods were performed with data in the portion of White Sands bound
by the parallels 32"N and 34"N and the meridians 253"3 and 254"E.
This area is mainly a plateau at a level of 1200 m to 1400 m (Figure 4).
The Oscura and San Andrea mountain chains cross the area in a
North-South direction. The geological constitution of the area is mainly
young mesozoic sediments complimented by some late tertiary volcanics
[Schwarz, 1983, p. 2].

The bulk of the White Sands Test data were made available to the
Special Study Group 4.70 of the International Association of Geodesy by
the National Geodetic Survey, NOS, NOAA, Rockville, Maryland. C.C.
Tacherning did some initial data screening and then arranged the
different files for the tests [Schwarz, 1983]. The test data used were
made available to us by C.C. Tscherning and were identical to the data
used in the collocation solution of the report "White Sands Revisited"
(Kearaley et al., 1985).

4.2 The Two Solutions

For each method two independent solutions were employed. One
for the (l'xl*) area bound by parallels 330N and 340N and called the
North Block (NB) and one for the (lx1") area bound by parallels 32"N
and 33"N and called the South Block (SB).

34
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Figure 4. Topographic Map of the New Mexico Test Area Prom a 2'x2'

DTM (CI 100m).
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4.3 Gravity Anomalies

The gravity anomaly data are free-air values referenced to the
Geodetic Reference System 1967. Their geodetic latitude and longitude
are given in the NAD27, their height is orthometric and their standard
deviation is * 2 mgals. There are 384 observations in the NB (Figure
5), 548 observations in the SB (Figure 6), 82 control values in the NB
(Figure 7) and 123 control values in the SB (Figure 8).

4.4 Deflections of the Vertical

The vertical deflection data are astrogeodetic values referenced to
the NAD27. Their geodetic coordinates are given in the NAD27, their
height is orthometric and their standard deviation is *C:3. There are
67 ((,,q) observed pairs in the NB (Figure 9), 63 observed pairs in the
SB (Figure 10), 176 control pairs in the NB (Figure 11) and 208 control
pairs in the SB (Figure 12).

4.5 Conversion of the data to an apvroximately geocentric system

The system in which all the calculations were carried out was an
approximately geocentric system with the ellipsoidal parameters of
GRS80. The datum transformation parameters from NAD27 to the new
system are [Schwarz, 1983, p. 13], [Tscherning, 1987]

Ax = -22m, Ay = 157m, Az = 176m, t = O,y -- O, w - -(Y!7, AL = 0 (4-1)

The geodetic latitude and longitude can be transformed to the new
system by

[#NEW = *NAO27+di (4-2)
ANEM = XNAD 2 7 +dAL

with [Rapp, 1981, pp.70,77]

- sin~cosA sin~sinA cos*+ esin~cos a

M+h Ax- H+h Ay+jh-Az+ W(M+h)

+ sinMcos#(2N+e'Msin2 ) (l-f)Af (4-3)

sin Ax+ coa
(N+h)cos x (N+h)cos+ Ly -

and [Rapp, 1984, pp.2 1 ,30 ,35]
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= 1-esin2*; N- a3;e2 ); N (4-4)

Also [Rapp, 1984, p.169 ]

aNAD27 = 6378206.4 a
tNaD27 = 1/294.978698
aNEM = 6378137 a

fNEM = 1/298.257222101

and As = aNEM - aNAD27

" = fNEW - fNAD27

The error in using orthometric height instead of geometric height in
(4-3) is less than 0!001.

Similarly for the vertical deflections one has

[*NEN = fNA27 + df (4-5)
'?MEN fAD27 + dQ

where [Rapp, 1981, p. 74]

(df -d*(4-6)

The relation between normal gravity computed with the GRS80 and
the GRS67 reference ellipsoid is (Schwarz, 1983, p. 13]

7i,.o 719., + (0.8316 + 0.0782sin2* - 0.0007sinl#) (4-7)

Furthermore, in Section 2.2.1 it was assumed that the space outside
the boundary is empty which implies that the atmospheric and the tidal
effects have been removed from the observed gravity. As far as the
tidal corrections are concerned it is assumed that they have been
modeled during the observation reduction process. The atmospheric
corrections will be computed by [Wichiencharoen, 1982, p. 5]

dgA = (0.8658 - 9.727xlO-s + 3.482xlO-'H2 )mgals (4-8)

where R is the orthoetric height in meters.

Therefore the gravity anomalies referenced to GRS80 and corrected
for atmospheric effects are given by

Agenseq = Ag 0 sa7 - 0.8 3 16-O.0 7 82 sin2 #NEW + O.O00 7 sin4NE" + 6gA
(4-9)

Contour maps of the observations at both the North and the South
Block of the White Sands Test Area are shown in Figures 13 through
18.
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Figure 14. Contour Map From the Observed Meridional Deflections at
the North Block of the White Sands Test Area. (CI:2").
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Figure 15. Contour Map From the Observed Prime Vertical Deflections at

the North Block of the White Sands Test Area. (CI:2").
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Figure 17. Contour Map From the Observed Meridional, Deflections at

the South Block of the White Sands Test Area. (cI=2").
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Figure 18. Contour Map From the Observed Prime Vertical Deflections

at the South Block of the White Sands Teat Area. (CI=2').
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4.6 Removal of Reference Field and Residual Terrain Model (RTM)
P]ffects

The predictors will be applied to the mid-frequencies of the
anomalous potential spectrum. The low frequency effects,
corresponding to wavelengths of about I* (111 kin) or larger will be
accounted for by the OSU86P reference field to degree and order 180
[Rapp and Cruz, 1986]. The reference field computations will be
performed as described in [Rapp, 1982b].

The Residual Terrain Model (RTM) effect is the effect of the masses
between the actual topography and a mean elevation surface, on the
gravity anomalies and the deflections of the vertical. The actual
topography is represented by a detailed DTM whereas the
aforementioned mean elevation surface, termed the reference surface, is
a coarse DTM which is usually derived from the detailed DTM by
averaging. The residual topography is modeled as an assembly of
rectangular prisms with a constant positive or negative density
depending on whether the terrain surface is above or below the
reference surface (Kearaley et al., 1985, p. 53]. The effect of the
residual topography on the gravity anomalies and the vertical
deflections is removed computationally, so that the residual quantities
refer to the reference surface rather than the actual topography
[Forsberg, 1988]. Therefore, the RTM effects account for the short
wavelength features of the anomalous potential spectrum [Kearsley et
al., 1985, p. 55].

The question of the optimal RTM computations has not been
completely answered yet. For example, Forsberg and Tacherning [1981]
used two different grid sizes as reference surfaces for testing
purposes. On the other hand, Cruz (1985, p. 74] used a spherical
harmonic expansion of the topography as the reference surface.
Moreover, Keareley et al. [1985, p. 55] performed tests using different
DTMs as reference surfaces. These tests indicated that the coarser the
reference surface the smoother the residual field. However, different
reference surfaces have an insignificant impact on the predictions due
to the remove-restore operation [ibid, p. 55].

The RTM effects used in this investigation were computed by R.
Forsberg and C.C. Tscherning (Forsberg, 1988]. The same RTM effect
values were also used in other tests with the White Sands data
[Schwarz, 1983) and (Kearsley et al., 1985]. A (30"x30") elevation grid
which extends over the area 31*30' < * < 350 rnd 252" < A < 285" was
used as the detailed DTM, whereas a (30"x30 ° ) grid was used as the
reference surface. Consequently, the majority of the signal of the
anomalous field at wavelengths of 30' (~55 kin) or smaller was removed
by the RTM computations. The remaining part of the signal (between
wavelengths 55 km and 110 kin) was left to be handled by the
predictors [Forsberg, 1988].
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Tables 1 and 2 show the results of the removal of both the
reference field and the RTM effects from the observed and the control
values respectively. The residual quantities V in these tables are
defined as

VAg = Aggs.o - AgOSU.F - AgNTH
V( = NEN - tOSU@#F - 6TN (4-10)

V NEN - OSUG&F - 'RTN

Table 1. RMS Values of OSU86F and RTM Effects on Observations.

OBSERVATION 0oUSSFi RIY RESIDUAL v)
Ag(gal) 26.59 14.86 19.64 17.68 I

(") 3.73 12.60 1.951 1.80
'() 6.42 I 4.53 I 3.34 I 4.09

Table 2. RMS Values of OSU86F and RTM Effects on Control Data.

I_____CONTROL OSU86F RIM RESIDUALV
Ag(.gal) 25.54 10.94 15.95I 19.35

| (") 3.82 I 2.66 I 1.76 1.63
y (") 6.78 I 4.65 I 3.42 4.33

Tables I and 2 indicate that the residual field is smoother than the
original field. Figures 19 through 24 show contours from the residual
observations in both the NB and the SB. Comparison of Figures 13 to
19, 14 to 20, 15 to 21 for the North Block and 16 to 22, 17 to 23, 18 to
24 for the South Block reveals that the basic signature of the
anomalous potential is not lost by the removal of the OSU86F and RTM
effects. However, some irregularities of the original field have been
smoothed out by these computations.

The CPU time required to compute reference field effects is about
0.5 sec/station and to compute RTM effects is about 0.5 sec/station on
the IBM 3081 main frame.

In conclusion, the computation scheme will be to remove the
OSU86F and RTM effects from the observations, perform the predictions
with the residual field and then restore the OSU86F and RTM effects at
the prediction stations.
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Figure 19. Contour Map of the Residual Observations at the North

Block of the White Sands Test Area. Gravity Anomalies
(CI=1O migals).
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Figure 20. Contour Maps of the Residual Observations at the North

Block of the White Sands Test Area. Meridional Deflections
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Figure 21. Contour Map of the Residual Observations at the North

Block of the White Sands Test Area. Prime Vertical
Deflections (CI:1").
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Figure 22. Contour Map of the Residual Observations at the South
Block of the White Sands Test Area. Gravity Anomalies
(CI= 10 ragalm).
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Figure 23. Contour Map of the Residual Observations at the South

Block of the White Sands Test Area. Meridional Deflections
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Figure 24. Contour Map of the Residual Observations at the South
Block of the White Sands Test Area. Prime Vertical
Deflection. (CMVl).



CHAPTER V

ANALYSIS OP THE RESULTS

5.1 Introduction

The Bjerhammar and Hardy predictors were tested with data in the
portion of the White Sands Test Area bound by parallels 32"N and 34"N
and meridians 263"3 and 2540B. For each method tested two
independent solutions were employed. One for the loxl* area bound by
parallels 330N and 34"N and called the North Block (NB) solution and one
for the l*xl" area bound by parallels 32"N and 33"N and called the
South Block (SB) solution.

Two factors that contribute greatly to the quality of predictions of
quantities related to the Earth's gravity field are the topography and
the data coverage of the area of interest. The 2*xl* area at which the
two predictors were tested presents significant variations in both of
these factors. As far as the terrain is concerned, Figure 4 reveals
relatively large valleys and rather high mountain peaks, the NB being
more irregular than the SB. In relation to data coverage, the SB is
superior to the NB in terms of gravity anomalies. It possesses more
observations the distribution of which is more even than the ones of the
NB (Figures 5 and 7). However, in terms of vertical deflections, Figures
6 and 8 show that the NB is superior to the SB as related to both
amount and distribution of data.

Furthermore, both the terrain and the data coverage vary
significantly within blocks. Therefore, in order to understand the
performance of each method better, the area was divided into eight
MMSx0'.5 sub-blocks (hereafter to be referred to as "the .5 blocks" or
simply "blocks") following Kearaley et al. [1985, p.61]. The eight M"5
blocks are shown in Figure 25.

51A.-
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Figure 25. The eight 0.5 blocks used to test the performance of the
two predictors at the White Sands Test Area.

The "goodness of representation" factor R can be defined as follows

[Kearsley et al., 1985, p.63]

R = 10-SCH (5-1)

where es is the RMS height variation with respect to the mean elevation
of the area and C in km 2/station is the average coverage of the area
defined as

C = A (5-2)

n

where A is the area and n is the number of stations in A.

A large R value indicates either few observations or highly varying
terrain or both. It is essential to realize that R is a relative quantity
for intercomparison of the eight 0*5 blocks. This is to say that an R
value of 10 for the observed deflections represents a good sub-block
whereas it may represent a very poor sub-block in terms of gravity
control stations. As a specific example, block #8 with Rj 9 = 6.1 for the
control stations is considered as representing the area well whereas
blocks 02 and 3 with RA9 equal to 5.7 and 5.3 respectively for the
observation stations is considered as representing the area poorly. The
following table shows these details by sub-block. In this table P stands
for Poor, M for Medium and G for Good sub-blocks.
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Table 3. Terrain Characteristics and Data Coverage in the Test
Area.

OBSERVATIONS CONTROL STATIONS
BLOCK TERRAIN am - C R TYPE C R TYPE

# TYPE a L I -1 lia AliaLA La A!7
1 Hilly + Flat 81 25 171 2.1 13.9 N M 184 68 14.9 5.5 M M
2 Mountainous 200 29 151 5.7 30.2 P M 135 51 27.0 10.3 P M
3 Mountainous 217 24 152 5.3 33.0 P M 81 72 17.5 15.6 M M
4 Hilly 4 Flat 128 30 144 3.8 18.4 M M 152 50 19.5 6.4 M M
5 Mountainous 176 19 173 3.3 30.5 M M 81 93 14.3 16.3 M M
6 Hilly Flat 90 22 144 1.9 13.0 G M 118 29 10.6 2.6 M G
7 Hilly 4 Flat 187 18 238 3.3 44.4 M P 69 114 12.9 21.2 M M
8 Hilly Flat 72 18 1381.3 9.91 G 84 39 6.1 2.8G G

Table 3 quantifies the differences by sub-block in terms of both
terrain characteristics and data coverage. For example, the difference
between the SE 30'x30 ° portion of the SB (sub-block #7) and the SW
30"x30" portion of the SB (sub-block #8) in terms of vertical deflection
observations is clearly demonstrated by the Rf,,1 factors which are 44.4
and 9.9 respectively. From Table 3 one can see that the SB solution
should be considered more representative of the capabilities of the
method under consideration than the NB one. Furthermore, in terms of
gravity anomaly observations, sub-blocks #2 and 3 are not anticipated to
contribute greatly to a possible good NB solution, whereas sub-blocks #6
and 8 are capable of being the major contributors to a possible high
quality of the SB solution. On the other hand, the gravity anomaly
control data coverage in sub-block #2 is poor rendering the comparison
of results not very reliable in this block, whereas block #8 is good for
this purpose. Also, reliable sub-blocks for vertical deflection
comparison in terms of control values are blocks 6 and 8.

In order to evaluate the two predictors the differences
dAg = Ag, - Ag,

df=f Pj (5-3)
dn- c 't p1

will be examined where the subscript c refers to the control values and
the subscript p refers to the results of either the Bjerhammar or the
Hardy method. The differences in (5-3) are due to errors in the
prediction as well as errors in the control data.
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5.2 Results of the Bierhammar Method

5.2.1 Attempts to Compute an Optimal Geosphere Radius from the Data

One of the most important factors influencing the quality of the
predictions with the Bjerhammar method is the radius ro of the internal
sphere. Up to a certain extent ro is a coupling factor in the sense that
the improvement of the predictions expected by a smooth terrain, by
good data coverage and by the removal of reference field and residual
terrain model effects can be easily nullified by an unsuccessful choice
of ro. More importantly, an inappropriate choice of re can render the
downward continuation impossible. Due to the aforementioned effects of
re on the predictions, efforts were made to compute it from the data.

Two methods never before tested with the Bjerhammar predictor
were attempted. The first method is the minimum norm (pseudo) solution
given by equations (2-67) to (2-70). It was tested in the NB with 384
gravity anomalies as observations. The unknowns were both 384 Dirac
Impulses and the optimal radius of the geosphere, a total of 385
unknowns. An approximate value of 6350 km for the optimal radius r0
resulted after 2 iterations in an adjusted value of 6350 * 0.17x10- 5 km.
The residuals were in the order of 10- 9 mgals, VTPV was 7x10- 1 5 and
the standard deviations of the Dirac Impulses exceeded the values of the
Impulses. Similar results were attained after two iterations when the
approximate value for r, was 6360 km. The order of magnitude of the
residuals and VTPV can be explained by the fact that no redundant
observations are present in the solution. The large standard deviations
of the Impulses stress that the values for the Impulses are evaluated
with very large uncertainty. The only peculiar result is the small
standard deviation of r 0 even though the adjusted value of re is the
same one as the approximate. At any rate this method did not seem to
have computed an optimal radius of the geosphere.

The second method to compuLe r0 from the data is to separate the
observations into two groups and to consider the first group as
observed values and the second one as control values. This type of
solution is given by equations (2-80) through (2-102). In this case we
only have one unknown, namely the optimal geosphere radius r, and
therefore we have only one normal equation. This method was tested in
the NB. The results of the solution (iteration #0) as well as some
selected iterations are shown in Table 4. In Table 4, N is the normal
matrix (of dimensions (Ixl)) and U is the right hand side vector (of
dimensions (Ixl)) of the normal equations.



55

Table 4. Data Separation Method of Computing r 0 . Bjerhammar
Predictor.

ITERATION # rg° jkm N U 8r0 (km) r.LfkmL
0 6360.000 0.000 015 520 0.045 439 743 -2.928 6357.072
1 6357.072 0.000 007 390 0.031 566 632 -4.272 6352.801
5 6346.544 0.000 001 266 0.002 313 902 -1.827 6344.717

10 6339.725 0.000 000 799 0.000 635 825 -0.816 6338.909
20 6335.527 0.000 000 578 0.000 082 876 -0.143 6335.384
30 6334.783 0.000 000 546 0.000 019 254 -0.035 6334.748
40 6334.576 0.000 000 537 0.000 003 724 -0.007 6334.569
45 6334.549 0.000 000 535 0.000 001 777 -0.003 6334.546
50 6334.536 0.000 000 535 0.000 000 948 -0.002 6334.534
52 6334.533 0.000 000 535 0.000 000 767 -0.001 6334.531
53 6334.531 0.000 000 535 0.000 000 485 -0.001 6334.530

From Table 4 one observes that the iteration criterion, the
correction to ro be less than 1 m, was met after 53 iterations.
Furthermore, the normal matrix stabilizes only at the 45th iteration and
the rate at which the correction to ro tends to zero is very low. Most
importantly, the resulting adjusted value of rg = 6334.530 km yields RMS
differences of control minus predicted values in the order of 7.73 mgals
for Ag, 2a.'53 for ( and 30:07 for ,. These differences are much larger
than the ones yielded with the same data type when an optimal radius
was computed prior to the solution as it will be demonstrated in
Subsection 5.2.2.1.

The overall conclusion from both of the aforementioned methods is
that they did not yield an optimal geosphere radius. Therefore the a'

method given by (2-103) to (2-108) will be used for optimal geosphere
radius computations.

5.2.2 The Asymmetric Kernel Approach

The predictor defined by equations (2-8) through (2-34) is called
the Asymmetric Kernel (AK) approach to be distinguished from the
Symmetric Kernel (SK) Approach given by (2-35) through (2-42). The
Symmetric Kernel Approach is given its nama by Bjerhammar [1986, p.
48]. In the SK approach, t in (2-38) is a symmetric quantity, i.e.,
invariant with respect to i and j. Recall that t of the AK is not
symmetric ( see equation (2-15)). Furthermore, if the observations are
only gravity anomalies, then the design matrix G in (2-43) is symmetric.
The Asymmetric Kernel Approach was given this name in this
investigation in order to distinguish it from the SK Approach. In what
follows the Dirac Impulses will be located at the nadir points of the
observations. In the tables that follow the differences in A, f and 'q
are control minus predicted. The notation roA9, ro and r 0 ' will be
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differences in Ag, f and il respectively as s 2 values. On the other
hand, ro will be defined as:

- = (roAg + r,, + (5-4)

Every variation of each predictor will be tested and compared with
similar results after the following cycle is completed:

(1) Perform three solutions with three different radii,
(2) Compute oAg, rof and rol by (2-107),
(3) Compute ro by (5-4).
(4) Perform the final solution with ro=ro.

5.2.2.1 Prediction Usinge Only Gravity Anomaly Data

In the case where only gravity anomalies are observed the exact
solution as given by (2-44) and (2-45) applies. The elements of the
design matrix G in (2-44) and (2-45) are given by (2-28). The results
of both the NB and the SB solutions with three different radii are
shown in Table 5.

Table 5. RMS Differences Between Predicted and Control Values
with the Asymmetric Kernel Approach and Only Ag
Observed. Bjerhammar Method.

SOLUTION rokm) Ag(mgal) )
North 6355 4.03 0.99 0.99Block 6360 3.32 0.91 0.97

6365 2.96 0.92 1.11

South 6355 3.87 1.00 1.17Block 6360 3.80 0.92 1.13
6365 3.89 0.89 1.19

Using the results of Table 5 with the 92 method (eq. (2-107)) and
the RMS differences one gets r0 = 6362.571 km for the NB and ro 2
6361.562 km for the SB solution. The results of the NB and the SB
solutions with ro ro are shown in Table 6.
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Table 6. RMS Differences Between Predicted and Control Values with
the Asymmetric Kernel, Only Ag Observed and the Optimal
Radius of the Geosphere ro, by 0.5 Block. Bjerhammar
Method.

BLOCK INS DIFFREES
SUB-BIQCK ag(Wl) W) '"M

North 3.08 0.90 1.00
1 4.27 0.91 0.81
2 2.54 0.64 0.99
3 2.84 1.26 0.70
4 2.86 0.81 1.28

South 3.79 0.90 1.13
5 3.43 1.27 1.36
6 6.22 0.94 1.28
7 3.20 0.58 0.75
8 2.23 0.74 0.89

From Table 6 one observes that the best Ag predictions were
performed at sub-block #8 and the best ( and q predictions were
performed at sub-block #7.

5.2.2.2 Prediction Using Both Gravity and Vertical Deflection Data

In the case where both Ag and (f,,q) are observed the least squares
solution applies with as many degrees of freedom as deflection pairs.
This type of solution is given by (2-46) through (2-48) and the elements
of the design matrix G are given by (2-28) for gravity anomaly
observations and by (2-32) for vertical deflection observations. The
results for three different radii are given in Table 7.

Table 7. RMS Differences Between Predicted and Control Values with
the Asymmetric Kernel Approach and Both Ag and (Q,n)
Observed. Bjerhammar Method.

SOLUTION r Ag(mgal) W
6355 3.78 0.87 0.73North 6360 3.56 0.78 0.73

Block 6365 3.76 0.77 0.77

6360 4.52 0.84 0.92
South 6364 4.34 0.82 0.91
Block 6368 5.59 1.10 1.14

Using the RMS differences of Table 7 in equation (2-107) we obtain
;0 :6360.248 km for the NB and r = 6362.312 km for the SB solution.
The results of the NB and the SB solution with ro = r0 are shown in
Table 8.



58

Table 8. RMS Differences Between Predicted and Control Values with
the Asymmetric Kernel Approach, Both Ag and (,1)
Observed and With the Optimal Radius of the Geosphere,
by 0.5 Block. Bjerhammar Method.

BLOCK RNS DIFFERENCES
SUB-BLOCK g(ual) t(") 1 an

North 3.58 0.77 0.73
1 4.04 0.84 0.58
2 2.54 0.79 0.87
3 3.47 0.91 0.57
4 .4.32 0.72 0.77

South 4.54 0.84 0.93
5 3.83 1.26 1.27
6 7.35 0.92 1.04
7 4.01 0.46 0.34
8 2.94 0.54 0.73

From Table 8 one can see that using both Ag and (Q,q) observations
one can predict Ag on the average to about 4 mgals and f and qj to
about 08. These results can vary from 2.54 mgals (sub-block #2) to
7.35 rgals (sub-block 86) for Ag, 0:46 (sub-block #7) to 1'26 (sub-block
65) for f and 0:34 (sub-block 37) to r:27 (sub-block 05) for ,.

5.2.2.3 Prediction Using Only Vertical Deflection Data

In the case where only vertical deflections are observed the least
squares solution applies with as many degrees of freedom as observed
deflection pairs. This type of solution is given by (2-46) through
(2-48). The elements of the design matrix G are given by (2-32).
Results with three radii for both the NB and the SB solutions are given
in Table 9.

Table 9. RMS Differences Between Predicted and Control Values with
the Asymmetric Kernel Approach and Only (Q,i) Observed.
Bjerhammar Method.

SOLUTION r.2 18a4 1.16
6350 18.74 1.16 1-00

North 6360 9.01 1.47 1.31
Block 6365 10.06 1.84 1.84

6340 58.57 1.18 1.14
SouthSot 6350 9.46 1.06 0.99
Block 6360 9.19 1.64 1.19
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The RMS differences of Table 9 in (2-107) yield re 6354.221 km for
the NB and r = 6350.352 km for the SB solution. Using these r0 values
one gets the results in Table 10.

Table 10. RMS Differences Between Predicted and Control Values
with the Asymmetric Kernel Approach, Only (#,')
Observed and With the Optimal Radius of the Geosphere.
Bjerhammar Method.

BLOCK ENS DIFFERENCES
SUB-BLOCK Ai(agal) Il a

North 13.19 1.25 1.06
1 11.98 1.06 0.91
2 8.15 0.76 0.74
3 16.00 1.00 0.80
4 12.85 1.79 1.50

South 9.19 1.08 0.99
5 10.62 1.58 1.25
6 7.34 1.11 0.89
7 10.20 1.00 1.35
8 7.25 0.75 0.85

From Table 10 one can see poor Ag predictions. On the other hand
was predicted to about 1'17 and qj to about 1103 on the average, with

variations from 075 to V'79 for f and 0:74 to r:50 for ,.

5.2.3 The Symmetric Kernel Apiroach

In this series of tests with the SK approach the Dirac Impulses will
be located at the nadir points of the observations. Also, the optimal
geosphere radius will be computed via (5-4) in order to use it for the
final solution as described in Section 5.2.2.

5.2.3.1 Prediction Using Only Gravity Anomaly Data

In this case the exact solution as described by (2-44) and (2-45)
applies. The elements of the design matrix G are given by (2-41). The
results of both the NB and the SB solutions with three different radii
are shown in Table 11.

Using the RMS differences of Table 11 in equation (2-107) one
obtains ro = 6366.339 km for the NB and ro = 6365.267 km for the SB
solution. The results of the NB and the SB solutions with ro = ro are
shown in Table 12.



60

Table 11. RMS Differences Between Predicted and Control Values
with the Symmetric Kernel Approach and Only Ag
Observed. Bjerhammar Method.

SOLUTION r,(km) AK(mgal) W') n(")
6360 5.31 2.03 1.42

North 6365 3.62 0.95 0.96
Block 6370 3.59 1.11 1.61

South 630-4m T9 6
Block 6365 3.82 0.95 1.13
B k 6370 , 4.78 10.99 1.58

Table 12. RMS Differences Between Predicted and Control Values
with the Symmetric Kernel Approach, Only Ag Observed
and the Optimal Radius of the Geosphere ro. Bjerhammar

Method.

BLOCK RMS DIFFERENCES
SUB-BLOCK Ag(agal) W) n.(")

North 3.29 0.92 0.97
1 4.47 0.88 0.82
2 2.56 0.66 1.00
3 3.03 1.32 0.75
4 3.33 0.80 1.15

South 3.81 0.94 1.13
5 3.57 1.36 1.44
6 5.97 0.96 1.23
7 3.30 0.58 0.79

8 2.44 0.78 0.92

In this case one can see in Table 12 that the good sub-block #8 in
the sense of Table 3 gave the best Ag predictions whereas the best f
and ,q predictions were performed at sub-block #7. Overall, with only
Ag observations the SK approach on the average predicted Ag to about
3.6 regals, ( to about M.9 and q to about r:05.

5.2.3.2 Prediction Using Both Gravity and Vertical Deflection Data

In the event that both Ag and (Q,q) are objerved the least-squares
solution given by (2-46) to (2-48) applies, and one has as many degrees
of freedom as observed deflection pairs. The elements of the design
matrix G are given by (2-41) for Ag observations and by (2-42) for ((,,)
observations. Table 13 shows the results for this case with three
different radii.
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Table 13. RMS Differences Between Predicted and Control Values
with the Symmetric Kernel Approach and Both Ag and
((E,,) Observed. Bjerhammar Method.

SOLUTION ra (km)A !iU al) I t
6363 3.29 10.86 0.726365 3.38 0.81 0.72

Block 6367 3.67 0.72 0.70

6365 4.31 0.88 0.89
South 6367 4.55 0.84 0.93
Block 6369 4.20 0.082 0.91

The application of (2-107) and (5-4) 'with the results of Table 13
yielded r0 = 6362.867 km for the NB and r0 = 6368.049 km for the SB
solution. The results of the NB and SB solutions with ro r0 are
shown in Table 14.

Table 14. RMS Differences Between Predicted and Control Values
with the Symmetric Kernel, Both Ag and. (,,) Observed
and the Optimal Radius of the Geosphere r0 . Bjerhammar
Method.

BLOCK 3N DIFFERENCES
SUB-BLOCK AK(axal) t " n("
North 3.26 0.87 0.72
1 3.90 0.67 0.54
2 2.49 0.77 0.71
3 3.25 1.15 0.83
4 3.45 0.85 0.75

South 4.33 0.82 0.91
5 3.58 1.23 1.23
6 7.01 0.90 1.01
7 3.83 0.48 0.37
8 2.85 0.52 0.72

From Table 14 one observes Ag to be predicted to about 3.5 mgals, f

to about 0'85 and t) to about (.8 on the average.

5.2.3.3 Prediction Using Only Vertical Deflection Data

When only vertical deflections are observed the least-squares
solution applies with as many degrees of freedom as observed (Q,,n)
pairs. This type of solution is given by (2-46) to (2-48) and the
elements of the design matrix G are given by (2-42). Both the NB and
the SB solutions with three different radii are shown in Table 15.
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Table 15. RMS Differences Between Predicted and Control Values
with the Symmetric Kernel Approach and Only ((,,)
Observed. Bjerhammar Method.

SOLUTION r m A .(mgal) W
6355 50.88 1.04 1.03

North 6360 22.98 1.12 1.00
Block 6365 10.19 1.36 1.18

Suh 6355 T9 .3= 1.23
South 6360 13.05 0.97 0.99

Block 6365 8.38 1.48 1.12

Using the RMS differences of Table 15 in (2-107) yields r0 =
6359.982 km for the NB and ro = 6361.017 km for the SB solution. The
NB and SB solutions with these optimal radii are shown in Table 16.

Table 16. RMS Differences Between Predicted and Control Values
with the Symmetric Kernel, Only (Q,,i) Observed and ro
r0 . Bjerhammar Method.

BLOCK W DIFFERENCES
SUB-BLOCK Ag(ugal) W) -
North 23.05 1.12 1.00
1 20.82 0.97 1.08
2 17.16 0.79 0.74
3 27.34 0.99 0.77
4 21.65 1.51 1.25

South 9.84 1.05 0.99
5 11.35 1.53 1.22
6 8.25 1.08 O.!20
7 10.69 1.01 1.33

8 7.93 0.73 0.86

From Table 16 one can see that Ag were poorly predicted with only
((,j) observations. Also, the best ( predictions were performed at
sub-block #8 whereas sub-block #2 yielded the best q predictions.

5.2.4 Comments on the Results of the Asymmetric and Symmetric Kernel
Approaches

Comparison of Tables 6 and 8 shows that in the AK approach when
(Q,,) observations are introduced vertical deflection predictions are
improved by about 0.3, whereas the gravity anomaly predictions were
downgraded by about 0.6 mgals. Furthermore, inspection of Tables 12
and 14 yields very similar comparison for the SK approach for the
introduction of ((,,) observations.
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Comparison of Tables 8 and 10 for the AK and 14 and 16 for the SK
approach demonstrates deterioration of both the Ag and the (Q,,j)
predictions when no Ag observations are used.

Comparison of Tables 6 to 12, 8 to 14 and 10 to 16 shows that the
results of the predictions with the AK and the SK approaches are
practically identical. Actually, the only difference in the two approaches
is the radius that yielded the optimal results. Table 17 shows the
optimal radii for the two approaches.

Table 17. Optimal Radii in km for the AK and the SK Approaches in
Both the NB and the SB Solutions with Different
Observation Types. Bjerhammar Method.

r Optimal radius ro (Ic.) Optiml radius ro (ic.)
Type of Asme tric Kernel S Smetric Kernel

Observations North Block South Block North Block South Block
Ag 6362.571 6361.562 6366.339 6365.267

1 gand Q,,q) 6360.248 6362.312 6362.867 6368.049
(f ,,) 16354.221 6350.362 1 6359.982 6361.017

From Table 17 one can see that larger radii yield the optimal results
in the SK than in the AK approach.

5.2.5 Dirac Impulses on a Grid

Up to this point the Dirac Impulses were located at the nadir points
of the observations. However, one potential location for the Impulses is
on a grid at the surface of the geosphere. In this case it holds that rI
in (2-38) is equal to re and therefore t is the same for both the AK and
the SK approach. Consequently their respective formulae namely (2-28)
and (2-41) for Ag and (2-32) and (2-42) for (,,q) become identical. This
scheme of computing Ag3 on a grid was tested for four different grid
sizes for both the NB and the SB. The grids were selected with two
considerations in mind. The first one was to have integer minutes in
the mesh size. The second one was to have less number of grid
vertices (unknowns) than observations so that the least squares solution
as given by (2-46) to (2-48) be applicable. Also, it should be kept in
mind that very coarse grids are not depirable since information that
exists on the data cannot be transferred to Ag$ values and the resulting
predictions become inaccurate. The selected grids are shown in Table
18.
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Table 18. Details of the Four Grids Used at the White Sands Test
Area.

# OF VERTICES # OF VERTICES TOTAL #
GRID GRID CELL SIZE IN # DIRECTION IN A DIRECTION OF VERTICES
1 6x4" 15 22 330
2 6'x6' 15 15 225
3 7'x7' 13 13 169
4 12'x12' 8 8 64

The grids of Table 18 were used in two cases. One with only Ag
observations and one with both Ag and (Q,,n) observations. In the case
of only (Q,1 ) observations two grids were used. The criteria were the
same as the ones in the selection of the grids of Table 18. The first
grid had a grid cell size of 7'x12' with 13 and 8 vertices in the latitude
and longitude directions respectively and a total of 104 vertices. The
second grid was identical to grid #4 of Table 18. The computational
scheme will be to use three arbitrary values for re and record the
resulting RMS differences of control minus predicted values for Ag, (
and ,. Subsequently, these values will be used in conjunction with
(2-107) and (5-2) to yield the optimal geosphere radius. The optimal
radius of the geosphere is used in the final solution.

5.2.5.1 Prediction Using Only Gravity Anomaly Data

In this case, the elements of the design matrix G are given by
either (2-28) or (2-41). The results of both the NB and the SB solutions
are shown in Table 19.

Table 19. RMS Differences Between Predicted and Control Values
with the Four Grids and Only Ag Observed. Bjerhammar
Method.

optimal NoRH BLOCK IGRID Optimal SOUTH BLOCK
radius(ka) ag.,al) W") #.(" I N radius(kn) Ag(mgal)LCZ 1W) ")
6347.2698.86 6.07110.691 6353.852 4.38 0.9311.20
6348.500 3.21 1.55 1.69 2 6351.250 4.39 0.87 1.10
6342.500 3.41 0.94 1.24 3 6351.250 4.82 0.80 1.08
6330.576 4.85 0.77 1.01 4 6347.500 6.49 0.831 1.49

From Table 19 one can see that gravity anomaly predictions are best
performed with grid #2. Furthermore, the best (C,',) predictions were
performed with grid #4 for the NB and with grid 53 for the SB. Most
importantly, with gravity data alone, the downward continuation on a
grid can yield similar results to the ones obtained with the downward
continuation to the nadir points of the observations (compare with
results of Tables 6 and 12).
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5.2.6.2 Prediction. Using Both Gravity and Vertical Deflection Data

In this case the elements of the design matrix G are given by either
(2-28) and (2-32) or (2-41) and (2-42). The results of both the NB and
the SB solutions with the four grids of Table 18 are shown in Table 20.

Table 20. RMS Differences Between Predicted and Control Values
with the Four Grids and Both Ag and ((,71) Observed.
Bjerhammar Method.

Optimal NORTH BLOCK GID Optimal SOUTH BLOCK
radius(ka) Ag(gal)l ("I (") I # Iradius(im) Ag(mgal) l () n(")
.6366.389 3.49 0.711 0.751 1 6350.143 3.57 0.64 0.73
6349.166 3.18 I 0.681 0.61 2 6341.548 3.94 0.63 0.86
6346.167 3.56 0.6 0.61 3 634.833 4.69 0.62 0.92
6326.624 4.39 I 0.721 0.89 4 1 6325.686 6.28 I 0.80 1.29

From Table 20 one observes that grid #2 yielded the best Ag
predictions in the NB whereas grid #1 was the favorite for the SB. As
far as the meridional deflection predictions are concerned grid #3 gave
the best results. However, in terms of ,q predictions grid #2 performed
best in the NB whereas grid #1 performed best in the SB. Comparing
Tables 19 and 20 one sees that the introduction of vertical deflection
observations resulted in improved predictions in all cases. Finally,
comparison of Table 20 to Tables 8 and 14 reveals slightly better results
from the downward continuation onto a grid. However, the downward
continuation onto a grid has the drawback of having to try different
mesh-sizes in order to get the best predictions, which is impossible in
the absence of control data.

5.2.5.3 Prediction Using Only Vertical Deflection Data

For this application the elements of the design matrix G are given
by either (2-32) or (2-42). The results of the NB and the SB solutions
are shown in Table 21.

C

Table 21. RMS Differences Between Predicted and Control Values
with Two Grids and Only (,,n) Observed. Bjerhammar
Method.

Optimal NORTH BLOCK GRID Optimal SOUTH BLOCK
radius(ka) Ax(amal) W') In(") I radius(k Ag(agal) W) N(")
6330.232 5424.63 1123.57141.82 1 6347.498 10708.15 293.05166.84
6347.420 314.77 4.98 3.66 2 6348.443 332.271 7.21[ 4.33i
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From Table 21 one observes very poor predictions for both grids
with only (,-) observations.

5.2.6 The Best Ag and (n) Predictions

The best gravity anomaly predictions were obtained with the
Asymmetric Kernel (Table 6) approach and with only gravity anomalies as
observations. The Dirac Impulses were located on the geosphere at the
nadir points of the observations.

Inspecting Table 6 in light of the representation factors of Table 3
we se that even though the SB solution was expected to be better than
the NB one this was not the case. Actually they turned out about the
same. Furthermore, from Table 3 one sees that sub-block #6 should
yield very good predictions, which was not the case as Table 6 shows.
Also, even though sub-block 12 is characterized poor in Table 3, it
yielded good predictions. These somewhat conflicting results force one
to look at the individual results at each station.

Figures 26, 27, 28 and 29 show the differences control minus
predicted value for each gravity control station at the four 0.5x0.5
sub-blocks of the NB and the SB solution respectively in the
background of the gravity data. These differences are from the AK
approach with only gravity observations and the Dirac Impulses located
at the nadir points of the observations. In these Figures the gravity
control stations are indicated by x and the convention is that a bar
above the x indicates a positive difference whereas a bar below the x
indicates a negative difference.
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Figures 26, 27, 28 and 29 indicate that the majority of the large
differences occur at areas with insufficient data coverage. However,
there are exceptions. For example, in block #2, station #7778 has a
difference of -5.85 mgals whereas for station #7777 this difference is
-0.08 mgals and these stations are only about 700 m apart. Similarly, in
block #3, station #6717 which is between stations 6716 and 6718 and only
a few km away from either one has a differences of 5.36 mgals whereas
the other two stations have differences of 0.22 mgals and -0.32 mgals
respectively. Also, Figures 26, 27, 28 and 29 demonstrate that the
method can operate fairly well in clusters provided sufficient data
coverage is present.

As far as the vertical deflection predictions are concerned, the best
results were obtained when both gravity and deflection observations
were included. The Dirac Impulses were located on grid #3 on the
geosphere (Table 20). The results of this solution, by (0'.5x0.5)
sub-block are given in Table 22.

Table 22. RMS Differences Between Predicted with Ag and (1')
Observed and the Optimal Radius of the Geosphere r,.
Dirac Impulses on Grid #3. Bjerhammar Method.

BLOCK ]MS DIFFERENCES
SUB-BLOCK WAgal) W) w(")
North 3.56 0.65 0.65
1 4.07 0.66 0.54
2 3.16 0.63 0.75
3 3.03 0.83 0.44
4 4.34 0.49 0.75

South 4.69 0.62 0.92
5 4.30 0.57 0.89
6 4.06 0.70 0.80
7 6.25 0.59 1.03
8 2.90 0.51 1.04

The results of Table 22 in light of Table 3 are conflicting in this
case also. For example the "Medium" sub-block #4 yielded the best
meridional deflection predictions and the prime vertical deflection
predictions of the "Good" sub-block #8 were the worst -q predictions.
However, the "Good" sub-block #8 yielded Lhe best gravity anomaly
predictions and the second best meridional deflection predictions.
Figures 30, 31, 32 and 33 show the differences control minus predicted
value for each vertical deflection control station at the four 0.5x0.5
sub-blocks of the NB and the SB solution in the background of the
gravity observations. These differences are from the solution where
both Ag and (,q) were observed and the Dirac Impulses were located on
grid 13 at the surface of the geosphere. In these Figures the vertical
deflection control stations are indicated by x and the convention is that
a bar above the x indicates a positive difference in f, a bar to the

- .=,ii m m• • n S n b • a
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right indicates a positive q difference whereas a bar below x indicates
a negative difference in ( and a bar to the left indicates a negative
difference in 7).

Figures 30 through 33 illustrate that the majority of the large
discrepancies between control and predicted values occur at areas poor
in data coverage and rich in terrain variations. For example the hilly
to flat sub-block #8 with good Ag and (Q,?) observation coverage
yielded the best Ag and second best f predictions. Moreover, in the
"poor" sub-block #2, station 358 had f predicted within a:.1 and q
within (1:2 due to the presence of gravity observation stations 7800,
7801 and 7802.

5.2.7 Errors of Predictions

In the solution with optimal radius of the geosphere for each
variation of the predictor the standard deviations of the predicted
values were computed according to (2-57). A close inspection of these
standard deviations indicates that they cannot be considered a safe
indicator of the quality of the predictions. This is to say that many
poorly predicted quantities are associated with small standard
deviations and many very well predicted quantities are associated with
large standard deviations.

5.2.8 Conclusions from the Bjerhammar Predictor

At first the optimal radius r0 of the geosphere could not be
computed from the data. The results of two methods to perform this
computations were discouraging. Therefore the a2 method was used at
which the RMS discrepancies (control minus predicted) in Ag, t and 7

were considered a second order polynomial in r0 .

If gravity predictions are required, then use only gravity data and
position the Dirac Impulses at the nadir points of the observations. It
is not significant whether the Asymmetric or the Symmetric Kernel is
used in terms of the quality of the predictions. The only requirement
to get the same prediction quality from both the AK and the SK is to
associate the AK with radii about 6362 km and the SK with radii about
6366 km. The exact value for the optimal r. should be dictated by the
specific data set with the s2 method. In the event that no control
data exist in an area, the observations can be separated in two groups,
one of which will play the role of observations and the other one the
role of control data so that an optimal r,, can be computed by the
s 2-method.

If vertical deflection predictions are sought, then include (,7)
observations with the gravity data and place the Dirac Impulses on a
grid. When performing computations on scalar computers select the
grid cell size keeping in mind that finer grids are more CPU time
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consuming withoug being necessarily more accurate. In the event that
a super-computer is available, the grid cell size may not introduce a
problem in terms of CPU time. This is the case with the Cray X-MP/24
which was used for our solutions. As for the grid size, the White
Sands Test Area seems to indicate that it can be about twice the
angular distance between gravity observations. A radius of about 6346
km yielded optimal results.

As far as the R factor (eq.(5-1)) is concerned, one may conclude
that it is of limited importance. For example, from Table 22 one can
see that the "Medium" sub-block #4 (see Table 3) yielded the best (
predictions, the "Good" sub-block #8 yielded the worst q predictions,
even though the "Good" sub-block #8 yielded the best Ag predictions
and the "Poor" sub-block 07 yielded very poor , predictions.

For terrain height variations from the mean height of 70 m to 220
m, gravity data density of 20 to 30 km2 per station and standard
deviations of the data in the order of 2 mgals, the method can predict
Ag within 4 regals and (,,q) within 1". If vertical deflection
observations as dense as 140 to 240 km2 per station and as accurate as
0:3 are added, then vertical deflections can be predicted to 0:7 or
better.

5.3 Results of the Hardy Method

5.3.1 Tests of Optimal Geosphere Radius Computation

The radius of the internal sphere is as important with Hardy's
predictor as it is with Bjerhammar's predictor. The coupling effect of
r0 mentioned in subsection 5.2.1 is present here also. Therefore an
optimal value for the radius was attempted to be computed from the
data with this predictor as well.

The same two methods tested with the Bjerhammar predictor were
tested with the Hardy predictor also. The first one was to use 384 Ag
observations in the NB and solve for 384 bihermonic sources ci plus
the radius re of the geosphere. An approximate value of 6350 for r0
resulted after 4 iterations in an adjusted value of 6381585.4 * 11.4 m.
The residuals were in the order of 10-' regals; VTpV was 10- 9 and the
standard deviations of the biharmonic sources c, were larger than the
c, values. An approximate value of 6360 km for r0 resulted after 10
iterations in an adjusted value of 6359324.1 * 1018.1 m. The residuals
were of the order of 10-3 mgals, VTPV was 10-' and the standard
deviations of ci were larger than the ci values. The order of
magnitude of the residuals and of VTPV can be explained by the
absence of redundant observations. The large standard deviations of
the ci values as well as the standard deviation of the adjusted r,
simply stress that the resulted adjusted values have not been
accurately determined. From the above results one cannot conclude in
favor of a meaningful re computation.
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The second attempt was the data separation method (equation
(2-80) through (2-102)). The method was tested in the NB and the
results of the solution (iteration #0) as well as the six iterations
required for convergence are shown in Table 23. In Table 23, N is the
normal matrix (of dimensions (lxl)) and U is the right hand side vector
(of dimensions (Ixi)) of the normal equations.

Table 23. Data Separation Method of Computing ro. Hardy Method.

ITERA-
TION # rR (km) N U 6ro(kiv) rR (kin)
0 6360.000 0.000 006 657 0.009 826 926 -1.476 6358.524
1 6358.524 0.000 005 277 -0.011 218 644 2.126 6360.650
2 6360.650 0.000 004 396 -0.024 550 281 5.585 6366.235
3 6366.235 0.000 027 438 -0.148 932 793 5.428 6371.663
4 6371.663 0.085 465 724 -38.874 943 956 0.455 6372.118
5 6372.118 1.708 862 581 -160.625 401 236 0.094 6372.212
6 6372.212 415.993 395 432 -106.240 406 225 0.000 6372.212

The adjustment. yielded rg = 6372.212 * 5x10- 5 km. Also, it yielded
VrpV = 5x10' and ao = 11.7. From Table 23 one observes that, after
the second iteration, both N and U are increasing in absolute value.
However, the correction 6r0 tends to zero after the third iteration.
The adjusted value of the internal sphere was greater than the mean
Earth radius of 6371 km. Using r 0 = rg = 6372.212 km resulted in RMS
discrepancies control minus predicted of 17.37 mgals for Ag, 931 for (
and 323!81 for nI. Conclusively, neither one of the two methods appears
to be able to compute an optimal r. value. As a result, the a' method
should be used for r. computations with the Hardy predictor.

5.3.2 Biharmonic Sources at the Nadir Points of the Observations

In this series of tests the biharmonic sources ci will be located at
the nadir points of the observations. The differences in the following
tables will be control minus predicted and the s2 method will be used
for optimal ro computations. The final solutions for each variation of
the method will be performed with the r0 value computed from (5-4)
based on the RMS differences resulting from solutions with three
different radii.

5.3.2.1 Prediction Using Only Gravity Anomaly Data

In the case where only Ag are considered as observations the exact
solution applies as given by (2-44) and (2-45). The elements of the
design matrix G are given by (3-43). The results from both the NB
and the SB solutions with three different radii are shown in Table 24.
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Table 24. RMS Differences Between Predicted and Control Values
with Only Ag Observed. Hardy Method.

SOLUTION ro(ka) ag(ngal) ) W")
6355 4.39 8.49 6.59

North 6360 3.58 4.72 7.24
Block 6365 3.03 5.41 13.37

6355 3.90 2.57 4.43
South 6360 3.82 2.57 7.51
Block 6365 .3.75 4.53 15.55

Application of (5-4) with rg, r, r1 as computed through (2-107)
and the RMS differences of Table 24 yielded r0 = 6363.903 km for the
NB and r 0 = 6355.948 km for the SB solution. The NB and SB solutions
with ro = ro are shown in Table 25.

Table 25. RMS Differences Between Predicted and Control Values
with Only Ag Observed and the Optimal Radius of the
Geosphere ro. Hardy Method.

BLOCK R4 DIFFERENCES
SUB-BLOCK jag(zgal) t (") (")
North 3.13 4.93 11.36

1 4.32 2.86 11.42
2 2.56 6.17 3.95
3 2.88 2.32 18.44
4 2.98 6.00 9.52

South 3.88 2.43 4.77
5 3.73 3.93 7.24
6 5.69 1.49 4.97
7 3.57 1.04 4.18
8 2.63 2.91 3.12

From Table 25 we can see that the NB iolution is slightly better
than the SB one in terms of gravity predictions. The best Ag
predictions were performed in sub-block #2. However, the SB solution
is better than the NB one in terms of vertical deflection predictions.
The best ( predictions were performed in sub-block 47 and the best ,I

ones were performed in sub-block #8.

5.3.2.2 Prediction Using Both Gravity and Vertical Deflection Data

In the event that both Ag and ((,-q) are utilized as observed
quantities the least-squares solution applies as given by (2-46)
through (2-48) and we have as many degrees of freedom as observed
deflection pairs. The elements of the design matrix G are given by
(3-43) for Ag observations and by (3-44) for (j,,q) observations. The
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solutions for both the NB and the SB with three different radii are
shown in Table 26.

Table 26. RMS Differences Between Predicted and Control Values
with Both Ag and (Q,,q) Observed. Hardy Method.

SOLUTION r A(km) Af(mfal)LC:. W
6360 6.88 2.23 2.31

Not 6365 12.73 2.43 3.09
6370 20.09 3.15 3.74

6361 7.57 2.29 2.43
Bot 6365 13.09 4.12 4.17
Block 6368 18.09 4.83 4.92

Using the results of Table 26 with the 82 method (equation (2-107))
iand the RMS differences we get r = 6365.402 km for the NB and the
ro = 6362.044 km for the SB solution. The ra value for SB resulted in
a normal matrix with numerically linearly dependent columns and
therefore non-invertible. Alternatively the value of 6361 km was
considered optimal for the SB. The results from the NB solution with
ro - ro and the SB solution for ro = 6361 km are shown in Table 27.

Table 27. RMS Differences Between Predicted and Control Values
with Both Ag and (,,q) Observed, ro 6362.186 km for
the NB and ro 6361 km for the SB solution. Hardy
Method.

BLOCK JNS DIFFERENCES
SUB-BLOCK Ag(ugal) I (")
North 13.37 2.45 3.19
1 9.12 1.65 1.79
2 5.08 2.32 3.10
3 18.55 1.84 2.43
4 10.85 3.29 4.32

South 10.13 3.70 3.11
5 8.00 2.76 1.91
6 13.84 4.85 4.30
7 10.25 1.04 0.75

8 8.73 2.69 1.86

From Table 27 we can see that Ag can be predicted from 5.08 mgals
(sub-block 01) to 18.55 mgals (sub-block #3). Also, the RMS
discrepancies vary from :04 (sub-block 37) to 4:85 (sub-block #6) for
j and from Mt75 (sub-block 17) to C132 (sub-block #4) for q. Not
surprisingly, comparison of Tables 25 and 27 reveals that the
introduction of vertical deflection observations degrades the gravity
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predictions whereas it improves vertical deflection predictions.

5.3.2.3 Prediction Using OnlF Vertical Deflection Data

In the case where only vertical deflections are observed the
least-squares solution applies with as many degrees of freedom as
deflection pairs. This type of solution is given by (2-46) through
(2-48). The elements of the design matrix G are given by (3-44).
Results from both the NB and the SB solutions with three different
radii are shown in Table 28.

Table 28. RMS Differences Between Predicted and Control Values
with Only (,,q) Observed. Hardy Method.

SOLUTION r(ku) Ag (rgal) I
North 6355 16.33 0.97 0.99

6360 15.15 1.01 1.016365 15.78 1.07 1.09

6350 29.57 0.93 1.06
Block 6355 22.90 0.91 1.01
Il 1k6360 22.03 0.99 1.05

The s2 method of equation (2-107) with the RMS differences of
Table 28 yielded r = 6354.698 km for the NB and r0 =.6355.676 km for
the SB solution. The NB and SB solutions with r, = ro are shown in
Table 29.

Table 29. RMS Differences Between Predicted and Control Values
with Only (f,,q) Observed and the Optimal Radius of the
Geosphere re. Hardy Method.

)BLOCK RMS DIFFERENCESSU-BLCK :Ag(ge lia 3(" ("
North 16.48 0.97 0.98
1 11.68 0.87 1.16
2 5.93 0.74 0.77
3 23.62 0.97 0.88
4 10.43 1.20 1.09

South 12.61 0.91 1.01
5 6.49 1.46 1.23
6 20.09 0.80 0.93
7 10.90 0.97 1.37
8 12.46 0.72 0.86

From Table 29 one can see that the best Ag predictions are
performed at sub-block #2. Sub-blocks #2, 6 and 8 did well for
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predictions as did sub-block N2, 3, 6 and 8 for t1. Comparison of Table
29 to Tables 25 and 27 indicates further improvement of the (,)
predictions and deterioration of the Ag p _.tions from the removal of
Ag observations.

5.3.3 Biharmonic Sources on a Grid

Up to this point the biharmonic sources were located at the nadir
points of the observations on the internal sphere (see Subsection
5.3.2). In the following sequence of tests the biharmonic sources will
be placed on a grid at the surface of the geosphere. The scheme for
selecting the grids was the same as previously employed (Subsection
5.2.4); the four grids of Table 18 were used. The computational scheme
will be to use three arbitrary values for r0 and record the resulting
RMS differences of control minus predicted values for Ag, t and n.
Subsequently, thuse values will be used in conjunction with (2-107)
and (5-2) to yield the optimal geosphere radius. The optimal radius of
the geosphere is used in the final solution.

5.3.3.1 Prediction Using Only Gravity Anomaly Data

In this case the least-squares solution applies as given by (2-46)
to (2-48). The elements of the design matrix G are given by (3-43).
The results of the NB and the SB solutions are shown in Table 30.

Table 30. RMS Differences Between Predicted and Control Values
with the Four Grids and Only Ag Observed. Hardy
Method.

Optimal NORTH BLOCK GRID Optimal SOUTH BLOCK
radius(km) Ag mgal ( L (. ) # N radius(km) Ag(mgal) f(") L (")
6356.965 19.80 14.19 23.91 1 6356.973 4.39 2.81 4.06
6354.388 3.21 4.21 8.61 2 6351.499 4.39 2.72 2.81
6351.746 3.37 7.17 5.93 3 6362.912 4.77 3.08 8.07
6342.176 4.91 2.70 2.88 4 6354.502 6.51 3.37 5.15

From Table 30 one sees that grids 12, 3 in the NB and grids #1, 2,
3 in the SB yield satisfactory Ag predictions. However, the vertical
deflections were predicted poorly from only gravity anomaly data.

5.3.3.2 Prediction Using Both Gravity and Vertical Deflection Data

Here the least-squares solution applies also. The elements of the
design matrix G are given by (3-43) for gravity anomaly and by (3-44)
for vertical deflection observations. The results of NB and SB
adjustments are shown in Table 31.
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Table 31. RMS Differences Between Predicted and Cortrol Values
with the Four Grids and Both Ag and ((,,q) Observed.
Hardy Method.

Optimal NORTH BLOCK GR JID Optimal SOUTH BLOCK
rdius() Ag(al) Waa ) M() # radius(km) laEal) f(") (")

6335.444 4.50 0.81 0.77 3 6334.255 5.34 0.69 1.08
6312.865 5.18 0.76 1.09 4 6326.940 6.76 1 0.931 1.591

From Table 31 one observes that grid #2 is the preferred choice
for Ag predictions at both the NB and the SB. However, grid #3
yielded best Q for the NB and best f for the SB. The best 71

predictions at the SB were performed using grid #2.

Comparison of Tables 30 and 31 indicates that the introduction of
(Q,n) observations deteriorated the Ag predictions whereas it improved
the (Q,,) predictions.

5.3.3.3 Predictions Using Only Vertical Deflection Data

The two grids of subsection 5.2.4.3 were used in this case. The
solution is of the least-squares type, and the elements of the design
matrix G are given by (3-44). The results for both the NB and the SB
adjustments are shown in Table 32.

Table 32. RMS Differences Between Predicted and Control Values
with the Two Grids and Only (Q,) Observed. Hardy
Method.

optimal NORTH BLOCK GRID Optimal SOUH BLOCK
Iradius(m)lA (a )l (") In(") I # Iradius(lm) Ag(sgal(") Ii(") I
6177.393 194.41 4.481 5.39 1 6108.834 208.57 3.95 8.25
6328.837 777.24 3.28 3.78 2 6329.203 406.48 4.66 2.05

From Table 32 one sees that gravity anomalies are predicted
unacceptably with both grids. Furthermore, the vertical deflection
predictions are poor. Also, from Table 32 one sees that the value of
the optimal radius of the geosphere for grid #1 is peculiar.

Comparison of Tables 31 and 32 indicates that removal of Ag
observations deteriorated both the Ag and the ((,,q) predictions.

------ ---.-
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5.3.4 The Sent At and U.n) Predictions

As far as the gravity anomaly predictions are concerned the best
results were obtained using only gravity observations and locating the
biharmonic sources at the nadir points of the observations. This
solution yielded RMS differences in the order of 4 mgals for gravity
anomalies and is shown in Table 25.

Inspecting Table 25, with the representation factor R of Table 3 in
mind, we see that block #8 performed well asexpected. Also, blocks
#2, 3 and 4 performed well even though they were classified as not
very good. The "promising" sub-block #6 according to Table 3 yielded
the worst results. Figures 34, 35, 36 and 37 show the differences
control minus predicted value for each gravity control station at eight
0'.5x0.5 sub-blocks. The convention for positive and negative values
is the one used in Figures 26, 27, 28 and 29.

The fact that the terrain type and the data coverage influences
the predictions greatly is also illustrated in Figures 34 through 37.
The problems of stations 7778 and 6717 mentioned at the Bjerhammar
method exist with the Hardy predictor. The difference for station #7777
is also 0.10 mgals whereas for 7778 it is -5.69 mgals and the
discrepancy for 6717 is 5.27 mgals whereas for 6716 it is 0.14 and for
6718 is -0.26 mgals.

In terms of vertical deflection predictions, the best results were
attained when both Ag and (Q,n) were observed and the biharmonic
sources were located on grid 83 at the surface of the geosphere (Table
31). These solutions yielded good Ag predictions also and are shown in
Table 33 by (0'.6x0'.5) sub-block.
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Table 33. RMS Differences Between Predicted and Control Values
with Ag and ((,,q) Observed and ro r 0 . Biharmonic
Sources on Grid #3. Hardy Method.

BLOCK IS DIFFERENCES
SUB-BLOCK 5.(agal) (" ,n(")

North 4.50 0.81 0.77
1 4.56 0.69 0.54
2 3.68 0.62 0.77
3 3.85 1.00 0.93
4 6.14 0.90 0.79

South 5.34 0.69 1.08
5 4.77 0.76 1.18
6 5.03 0.75 0.91
7 7.00 0.69 1.12
8 3.37 0.55 1.23

From Table 33 one can see that the "Good" sub-block #8 yielded
the best f predictions and the "Medium" sub-block #1 yielded the best
,q predictions. Most importantly from Table 33 one sees that
predictions below the 1" mark can be performed with the Hardy
Method. Figures 38, 39, 40 and 41 show the differences control minus
predicted value for the eight 0.5x0.5 sub-blocks. The convention for
positive and negative differences is the one used in Figures 30, 31, 32
and 33.

Figures 38 through 41 demonstrate that large differences mostly
occur at areas rich in terrain variations and poor in data coverage.
With the Hardy predictor one observes that sub-blocks #8 and 7 yield
the best and worst ( predictions respectively and that sub-blocks #1
and 8 yield the best and worst ,j predictions respectively.
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5.3.5 Errors of Predictions

For every variation of the predictor the standard deviations a of
the predictions were computed at the solutions with the optimal radii
re according to (2-57). These a values are rather smooth and cannot
indicate locations at which predictions are good or not.

5.3.6 Conclusions from the Hardy Predictor

At first, the results of the two methods to compute ro from the
data were not promising with the Hardy Predictor. As a result the s 2

method was used to compute ro.

If gravity predictions are required, use only gravity data and
place the biharmonic sources at the nadir points of the observations on
the geosphere. For White Sands, a radius of about 6356 km to 6363 km
appears to be optimal.

If vertical deflection predictions are required use both Ag and
(,q) observations and locate the biharmonic sources on a grid at the
surface of the geosphere. A radius of about 6335 km yielded optimal
results for New Mexico.

The overall result of the tests of the Hardy Predictor seems to be
that Ag can be predicted to about 3 to 4 mgals, f and , to about 0:8
0:9.

5.3.7 Comparison of Bjerhammar and Hardy Predictors

Theoretically the predictors are very different. They even assume
different behavior of the disturbing potential T. However, in practice
they yielded very similar results. The best Ag and (Q,q) predictions
were performed with identical data requirements and downward
continuation scheme and yielded similar results. A minor difference is
the value of the optimal geosphere radius. The aforementioned results
seem to stress that an improvement in the predictions of both Ag and
(,,q) even in mountainous areas may not result from a theoretical
breakthrough but from improved data coverage.

5.4 Prediction Using Least-Squares Collocation

For comparison purposes a Least-Squares Collocation solution was
tested at the New Mexico Area. The model used for the disturbing
potential covariance function was of the form [Kearsley et al., 1985; p.
50]

K(PQ) =-- p(cospQ) (5-5)n=iet (n-1)(n-2)(n+24) Irpra o
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where wpa is the spherical distance between points P and Q, rp and r 0
are geocentric radial distances to P and Q respectively, Re is the
radius to the Bjerhammar sphere and RE is the mean Earth radius.
The following values were used [Kearsley et al., 1985, p. 50].

RE = 6371 km, Re = 6369.75 km (5-6)

Te variance CVOA9 of the residual gravity anomalies as computed fr

1137 point values was (Heiskanen and Moritz, 1967; p. 253]

CVAg = Var(VA.) = 323.82 mgal2  (5-7)

where VA is given by (4-10).

For each test two solutions were performed. One for the NB and
one for the SB. The first test was to predict Ag and ((,,I) from
gravity data alone. The results of this test for both the NB and the
SB are shown in Table 34.

Table 34. RMS Differences Between Predicted and Control Values
with Only Ag Observed. Collocation Solution.

BLOCK 345 DIFFERENCES
SUB-BLOCK Ag(mel) L(" W)
North 2.84 0.76 0.92

1 4.23 0.83 0.79
2 2.59 0.63 0.91
3 2.28 1.02 0.75
4 2.65 0.61 1.10

South 3.68 0.80 1.03
5 3.01 1.00 1.25
6 6.25 0.86 1.16
7 3.36 0.57 0.79
8 1.68 0.67 0.79

From Table 34 one sees RMS differences from 1.68 to 6.25 mgals for
Ag, U.:57 to 1102 for f and 075 to 125 for , resulting from different
data coverage and terrain type within the eight sub-blocks. On the
average Ag was predicted to about 3 mgals, to about 0:8 and q to
about r.o.

The second test was to predict Ag and ( from both Ag and ((,q)
observations. The results of this attempt for both the NB and the SB
solution are shown in Table 35.
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Table 35. RMS Differences Between Predicted and Control Values
with both Ag and (,,) Observed. Collocation Solution.

BLOCK RMS DIFFERENCES
SUB-BLOCK Ag(aal) "a da
North 2.93 0.58 0.56

1 4.08 0.59 0.48
2 2.40 0.49 0.60
3 2.56 0.82 0.31
4 3.00 0.44 0.68

South 3.44 0.64 0.66
5 3.37 0.89 1.06
6 4.61 0.70 0.59
7 3.70 0.31 0.37
8 1.82 0.49 0.59

From Table 35 one sees RMS differences from 1.82 to 4.61 mgals for
Ag, 0 .31 to 0.89 for t and M.31 to r:06 for , due to the terrain type
and data coverage of the sub-blocks. On the average Ag was
predicted to about 3.3 mgals and ( and -q to about (:6.

The third test was to predict Ag and (,,) from vertical deflection
observations alone. The results of this test for both the NB and the
SB solution are shown in Table 36.

Table 36. RMS Differences Between Predicted and Control Values
with only (,,) Observed. Collocation Solution.

BLOCK RMS DIFFERENCES
SUB-BLOCK Ag(mgal) f(") j("

North 5.41 0.67 0.86
1 6.02 0.65 0.87
2 3.75 0.52 0.66
3 5.91 0.73 0.83
4 5.46 0.76 1.02

South 7.36 0.72 0.86
5 5.92 1.31 1.27
6 3.49 0.58 0.79
7 10.70 0.53 0.64
8 5.47 0.60 0.80

From Table 36 one sees RMS differences from 3.49 to 10.70 mgals
for Ag, 0.52 to r;31 for ( and 0:64 to 127 for ,q. The reason for this
variation is the terrain type and the data coverage in the sub-blocks.
On the average Ag was predicted to about 6.5 mgals, ( to about (Y.7 and
,p to about .9.
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Comparison of Tables 34, 35 and 36 shows that the introduction of
vertical deflection data alightly improved the (j,,q) predictions and
slightly deteriorated the Ag predictions. It is noteworthy that the RMS
difference of 6.25 regals at sub-block #6 was improved to 4.61 rgals by
the introduction of (tq) observations. The removal of gravity data
resulted in degradation of the Ag predictions by about 3 rgals and a
slight degradation of the ((,,) predictions. In conclusion, the best Ag
predictions were obtained from Ag data alone (Table 34). This solution
is shown by station in Figures 42, 43, 44 and 45. On the other hand,
the best (Q,,) predictions are obtained from both Ag and (Q,,) data
(Table 35) and this solution is shown in Figures 46, 47, 48 and 49 by
station.

,m ! I
m w-- -. m _J
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5.5. ComDarison of the Bjerhammar and Hardy Predictors to
Least-Squares Collocation

In the sequel a comparison between the Bjerhammar Method (BM),
the Hardy Method (HM) and Least Squares Collocation (LSC) will be
attempted. The CPU time comparison is based on times required on the
IBM 3081 computer. In the event that only Ag observations are
available the results from the White Sands tests are shown in Table 37.

Table 37. RMS Differences Between Predicted and Control from the
Three Predictors. Only Ag Observed.

Block galt (- ) 'n(") CPU Time
Sub-Block BM 11 LSC BM I1N LSC BM 14 LSC (sec)
NORTH 3.08 3.13 2.84 0.90 4.93 0.76 1.00 1L36 0.92 BN
SOUTH 3.79 3.88 3.68 0.90 2.43 0.80 1.13 4.77 1.03 NB: 512
1 4.27 4.32 4.23 0.91 2.86 0.83 0.81 11.42 0.79 SB: 1440
2 2.54 2.56 2.59 0.64 6.17 0.63 0.99 3.95 0.91 11
3 2.84 2.88 2.28 1.26 2.32 1.02 0.70 18.44 0.75 NB: 500
4 2.86 2.98 2.65 0.81 6.00 0.61 1.28 9.52 1.10 SB: 1392
5 3.43 3.73 3.01 1.27 3.93 1.00 1.36 7.24 1.25 LSC
6 6.22 5.69 6.25 0.94 1.49 0.86 1.28 4.97 1.16 NB: 638
7 3.20 3.57 3.36 0.58 1.04 0.57 0.75 4.18 0.79 SB: 1182
8 2.2312.63 1.68 0.74 2.91 0.67 0.89 3.12 0.79

From Table 37 and keeping in mind that both the observed and the
control Ag have a standard deviation of 2 mgals one sees that all three
methods can predict gravity anomalies within 3 to 4 mgals.
Furthermore, the difference in the quality of the predictions
introduced by each method never exceeded the observation error.
Also, sub-blocks that performed well or poorly with some method
behaved similarly with all methods. For instance, sub-block 36 yielded
the largest RMS difference and sub-block #8 yielded the smallest RMS
difference for all methods.

The picture is different for vertical deflection predictions. From
Table 37 one can see immediately that the HM cannot perform to a
satisfactory level. On the other hand BM and LSC performed equally
well with the exception of sub-blocks 33 and 5 at which LSC
outperformed BM at the ( predictions by about .25 which is not very
large keeping in mind that the standard deviations of the control
deflections are (.3.

In case that both Ag and ( are utilized as observations one
gets the results of Table 38.
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Table 38. RMS Differences Between Predicted and Control from the
Three Predictors. Both Ag and (t,,) Observed.
Downward Continuation on a (7'x7') Grid for Both BM
and HM.

Block Ag(agals) " -" CPU Time
Sub-Block BMI 11 ILSC BMI HM LSC BM H LSC (sec)

NORTH 3.56 4.50 2.93 0.65 0.81 0.58 0.65 0.77 0.56 BM
SOUTH 4.69 5.34 3.44 0.62 0.69 0.64 0.92 1.08 0.66 NB: 892

1 4.07 4.56 4.08 0.66 0.69 0.59 0.54 0.54 0.48 SB: 1140
2 3.16 3.68 2.40 0.63 0.62 0.49 0.75 0.77 0.60 HM
3 3.03 3.865 2.56 0.83 1.00 0.82 0.44 0.93 0.31 NB: 880
4 4.34 6.14 3.00 0.49 0.90 0.44 0.75 0.79 0.68 SB: 1128
5 4.30 4.77 3.37 0.57 0.76 0.89 0.89 1.18 1.06 LSC
6 4.06 5.03 4.61 0.70 0.75 0.70 0.80 0.91 0.59 NB: 861
7 6.25 7.00 3.70 0.59 0.69 0.31 1.03 1.12 0.37 SB: 1469
8 2.90 3.37 1.82 0.51 0.55 0.49 1.04 1.23 0.59

From Table 38 one sees that all methods can predict Ag to about 3
to 5 mgals. Also, the discrepancies of the RMS differences among
different methods are always smaller than the standard deviation of the
Ag values. LSC is favored over both BM and HM in terms of Ag
predictions.

As far as vertical deflection predictions are concerned all methods
can predict f to about (:6 to 7:8 and 7 to about 0'6 to r:o. In the
majority of the cases all methods performed equally well with the
exception of sub-blocks #3 and 4 in favor of BM and LSC, #5 in favor
of BM and #7 in favor of LSC for ( and sub-block 13 in favor of BM
and LSC, #5 in favor of BM and LSC and 16, 7 and 8 in favor of LSC
for ,. Overall, similar accuracy was obtained by all three methods.

In the event that one has ((,7j) observations only one gets the
results of Table 39.

From Table 39 one sees superiority of the LSC solution in the Ag
predictions, which, however yields rather large RMS discrepancies. In
terms of vertical deflection predictions one can observe LSC to perform
better than both BM and HM with the exception of sub-block #5 for t!.

Therefore, in this case the LSC solution is preferred.
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Table 39. RMS Differences Between Predicted and Control from the
Three Predictors. Only ( ,j) Observed.

Block Ag (mgals) I"_ ,,(") CPU
Sub-Block BM N I LSC BM IM LSC BM iHM f LSC (sec)
NORTH 13.19 16.48 5.41 1.25 0.97 0.67 1.06 0.98 0.86 BM
SOUTH 9.19 12.61 7.36 1.08 0.91 0.72 0.99 1.01 0.86 NB: 36
1 11.98 11.68 6.02 1.06 0.87 0.65 0.91 1.16 0.87 SB: 36
2 8.15 5.93 3.75 0.76 0.74 0.52 0.74 0.77 0.66 HM
3 16.00 23.62 5.91 1.00 0.97 0.73 0.80 0.88 0.83 NB: 36
4 12.85 10.43 5.46 1.79 1.20 0.76 1.50 1.09 1.02 SB: 36
5 10.62 6.49 5.92 1.58 1.46 1.31 1.25 1.23 1.27 LSC
6 7.34 20.09 3.49 1.11 0.80 0.58 0.89 0.93 0.79 NB:130
7 10.20 10.90 10.70 1.00 0.97 0.53 1.35 1.37 0.64 SB:140
8 7.25 12.46 5.47 0.75 0.72 0.6010.85 0.86 0.80

A comparison of the three methods reveals that BM and LSC
performed equally well in all cases, except the case of only (Q,'1)
observations, in which LSC performed better than BM. The HM,
however, yielded peculiar results. For example, Ag were predicted to
about 3 to 4 mgals from gravity data only (Table 37). From the same
solution, (,7) were predicted unacceptably. From only (Qm)
observations (Table 39), vertical deflections were predicted well,
whereas Ag were predicted unacceptably. These types of results from
HM come as no surprise in light of the comments in subsection 3.2.4.

The best vertical deflection predictions for all three methods were
abtained when both Ag and (,i) abservations were used (Table 38).
The downward continuation for both the BM and the HM was performed
on to a (7'x7') on the geosphere. In Table 38, only the RMS
differences of control minus predicted quantities are given. The
corresponding average differences are about 1 mgal for Ag and for
((,-) they are in the order of a few tenths of an arcsecond.
Furthermore, the predictions obtained from ie three methods agree
very well as seen from Figures 26 through 49. The RMS prediction
differences between any two methods are 2 to 4 mgals for Ag and in
the sub-second level for (Q,7). Furthermore, the corresponding
average differences are less than 0.7 mgals for Ag and for ( ,q) they
are less than two tenths of an arcsecond in absolute value. In the
North Block, the best agreement is observed between the predicted
both Ag and (Q,7) from the BM and LSC and the worst agreement is
observed between HM and LSC. In the South Block, the best
agreement is observed between BM and HM whereas the worst one is
observed between the HM and LSC. Correlation coefficients between
average (,7) differences (control minus predicted) among methods in
each sub-block ranged from 0.2 to 0.9. The average correlation
coefficient was 0.7. The corrresponding correlation coefficients from Ag
predictions ranged from 0.82 to 0.99. The average value was 0.90.



109

Examination of the differences of control minus predicted vertical
deflections at individual stations yields interesting results. For
example, in Kearsley et al., [1985, p. 68] the ( component of the
vertical deflection at station 191 was reported as a suspected error in
the control data. This appears to be the case from the results of this
investigation also. Furthermore, stations with large differences from
one method, yield large differences with all three methods (e.g. stations
376, 383, 395, 404, 286 and 305 for t and stations 199, 200, 202, 203, 128
and 29 for , to name only a few). On the other hand, there are some
stations with small differences from one method and large differences
from another (e.g. stations 378, 320 and 172 for t and 349, 355 and 127
for ,}).

As far as CPU time requirements for the three predictors, Tables 37,
38 and 39 indicate that there is no method that consistently required
less time than the others. It is worth noting that 75% of the time
estimates for BM and HM is needed to compute an optimal value for the
radius of the geosphere.

The software for both the BM and the EM was converted to work
on the CRAY X-MP/24 supercomputer. This conversion was almost
effortless. However, it will take a moderate effort to modify the LSC
software (GEOCOL) to work on the supercomputer. The CPU time
requirements for both the BM and the HM on the CRAY X-MP/24,
including an optimal ro computation, are shown in Table 40.

Table 40. CPU Time Requirements (in seconds) for BM and HM on
the CRAY X-MP/24 Supercomputer.

3M 134
Type of Observable NB SB NB SB

Ag 7.7 22.6 8.8 23.7
Ag and (Q,,) 10.4 24.8 10.9 28.8

U .4) 0.1 0.1 0.1 0.1

Comparison of Table 40 to Tables 37, 38 and 39 reveals improvement
by a factor of at least 10 and as much as 90.

Lastly, in the event that an optimal r 0 is required for the BM or
the HM and no control data exist in an area, then the observations can
be separated in two groups. The first group should be regarded as
observations and the second one should be regarded as control data.
These two groups can be used with the s 2 -method to compute an
optimal geosphere radius. Finally, the entire data set should be used
as observations to perform the solution.
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5.6 Comparison With the Four Methods Tested with the New Mexico Test
Data

In Kearsley et al. (1985] four methods to predict deflections of the
vertical from gravity anomaly data were tested and intercompared.
These methods were the Fast Fourier Transform (FFT), the Combined
Collocation-Integration (CINT), the Numerical Integration (RINT) and the
Terrain Effect Integration and Collocation (TEIC) method. In Tables 4.5
and 4.6 of (ibid, pp. 93-94] they reported RMS discrepancies, control
minus predicted vertical deflections, predicted from gravity data in the
order of 1" when height data are used.

In the sequel we will compare the results of the four methods in
[Keareley et al., 1985] with the results of this investigation. The
comparison will be based on Tables 4.5 and 4.6 of [ibid, pp. 93-94] and
on Table 37 of this work. However, the results of our LSC will be
used rather than the ones of TEIC because the results of our LSC
solution are slightly better. A summary of these results appear in
Table 41. In Table 41, the column designated AG shows the RMS values
of the vertical deflections by sub-block.

Table 41. Comparison of the Bjerhammar and Hardy Predictors
with the Four Methods Tested at New Mexico. Only Ag
Observed.

AG 3M 13 LSC FFT CINT RINT
BLOCK t0 A CA AK L a At An At A71 a A" At A'
North 4.3 7.9 0.9 1.0 4.9 11.4 0.8 0.9 1.1 1.3 1.0 1.6 1.1 2.0

1 2.8 5.6 0.9 0.8 2.9 11.4 0.8 0.8 1.2 1.4 0.8 1.4 0.7 1.4
2 4.1 9.1 0.6 1.0 6.2 4.0 0.6 0.9 1.0 1.4 0.9 1.6 0.7 2.2
3 5.1 6.6 1.3 0.7 2.3 18.4 1.0 0.8 1.2 1.3 1.4 1.5 1.8 1.6
4 4.7 8.7 0.811.3 6.0 9.5 0.6 1.1 0.811.3 1.0 1.8 0.9 2.5

South 3.0 7.1 0.9 1.1 2.4 4.8 0.8 1.0 0.9 1.2 0.8 1.2 0.7 1.6
5 4.0 7.9 1.3 1.4 3.9 7.2 1.0 1.3 0.9 1.2 0.7 1.3 0.9 1.6
6 2.8 7.7 0.9 1.3 1.5 5.0 0.9 1.2 0.8 1.110.9 1.1 0.6 1.7
7 3.4 6.3 0.6 0.8 1.0 4.2 0.6 0.8 1.0 1,511,8 1.4 0.6 1.2
8 2.4 6.2 0.7 0.9 2.9 3.1 0.7 0.8 0.8 1.10.8 1.2i0.7 1.5

From Table 41 one can see that the methods that performed best
were LSC and BM. Furthermore, LSC performed slightly better than
BM (by about 01 on the average, which is below the (j,-) noise
level).

However, the most important conclusion drawn from Table 41 is
that, when reference field and RTM effects are removed from the data
and restored at the predictions, there are at least five methods that
can predict vertical deflections to the sub-second level from gravity
data.



CHAPTER VI

SUMMARY, CONCLUSIONS, RECOMMENDATIONS

Two deterministic methods for gravity field approximation have
been investigated. The first one was the Bjerhammar Dirac Impulse
method and the second one was the Hardy's biharmonic potential
method.

Bjerhammar defined the discrete geodetic boundary value problem
as the one at which observations are given at discrete points and it is
required to find a gravity field such that all observations are
satisfied. The solution is constructed such that the disturbing
potential is harmonic outside a sphere fully internal to the Earth and
regular at infinity. The Dirac Impulses that generate the disturbing
potential are computed by a downward continuation process and they
are used to perform predictions in an upward continuation scheme.

Hardy's work was initiated by the fact that the integral
representation of the disturbing potential is singular at points that
induce potential Based on the non-uniqueness of the solution of the
inverse problem of potential theory one can assume that the density
anomaly function of the Earth together with its normal derivative is
zero at the boundary. An integral representation of the disturbing
potential can be derived which is non-singular at points that induce
potential and which satisfies the biharmonic equation. An
approximation to the fundamental integral is also derived.
Operationally, the biharmonic sources are computed as the solution of a
linear system and then they are used to perform predictions.

Both of the aforementioned methods can use any linear functionals
of the disturbing potential as observations and/or quantities to be
predicted.

Tests were performed for both methods with the White Sands Test
Data. The predictions were compared to independently observed
gravity anomalies and vertical deflections that served as control data.
Reference field and residual terrain model effects were removed from
the observations and were restored at the predicted values before any
comparison to the control data was done.

A factor that influences the quality of the results with both
predictors is the radius of the internal sphere. Two approaches to
compute it from gravity data failed for both methods. However, a

111
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technique for optimal radius computation that yielded satisfactory
results is to consider some measure of the quality of the predictions a
second order polynomial in the radius.

The Bjerhammar method, performing the downward continuation on
the nadir points of the observations and with only gravity data
resulted in RMS differences of control minus predicted values in the
order of 3 to 4 mgals Ag, M9 for ( and 17o for i. When vertical
deflection observations were introduced the RMS discrepancies became
3.5 to 4.5 mgals for Ag and .8 for j and q. When the gravity
observations were completely removed, the RMS differences became
larger than 10 mgals for Ag, and about 1" for both f and 'n. The
aforementioned results pertain to both the Asymmetric and the
Symmetric Kernel approach. In fact, the only difference between the
AK and the SK is that the optimal radii associated with the AK are
usually smaller than the ones with the SK (see Table 17).

When the downward continuation is performed onto a grid on the
geosphere, the Bierhammar method predicted Ag to 3 to 4 mgals, f to
about (.9 and n to about 1 from gravity observations alone. When
vertical deflection observations were introduced, the RMS differences of
control minus predicted values was the same (about 3 to 4 mgals) for
Ag, whereas it became about 0.7 for f and .8 for ,1. On the other
hand, the predictions from ((,,q) data alone were unacceptable both for
Ag and (f,i).

For every variation of the Bjerhammar predictor, standard
deviations of the predictions were computed according to (2-57). These
standard deviations cannot be considered a safe indicator of the
quality of the predictions. The reason for this is that there were
many well predicted quantities with large standard deviations and
there were many poorly predicted quantities with small standard
deviations.

The Hardy method, when the biharmonic sources were located at
the nadir points of the observations, gave RMS discrepancies of control
minus predicted values on the order of 3 to 4 mgals for Ag whereas
the vertical deflection predictions were very poor. When vertical
deflection observations were introduced, the RMS differences were
larger than 10 mgals for Ag and larger than 2:5 for t and q. When the
gravity data were completely removed, the RMS differences were
degraded further for Ag where". they became smaller than I" for both
( and n.

When the downward continuation is performed onto a grid on the
geosphere, the Hardy method with only gravity data, yielded RMS
discrepancies in the order of 3 to 4 mgals for Ag whereas the vertical
deflections were worse than Z'7 for all grid sizes. The introduction of
vertical deflection observations degraded the Ag predictions to 4.5 to
5.5 mgals whereas it upgraded the (Q,7) predictions to the 1" level.
The complete removal of Ag data rendered both the Ag and the (Q,j)
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predictions unacceptable.

For every variation of the Hardy predictor, the standard deviations
a of the predictions did not prove to be indicative of the quality of
the results., since in many cases large a's were associated with well
predicted quantities and vice versa.

Comparison of the two predictors (BM and HM) with Least Squares
Collocation (LSC) indicates that BM and LSC yield comparable results in
all cases with the exception of the case where only ((,,) observations
are utilized in which case LSC performed better than BM. On the
other hand, HM performed well when it predicted Ag from Ag data or
(Q,q) from (Q,,}) data and the downward continuation was performed at
the nadir points of the observations.

The most important overall result of this work is that when
reference field and RTM effects are taken into account, there are at
least five methods that can predict (Q,1) from Ag to the sub-second
level, even in mountainous areas. Furthermore, the improvement of the
predictions should not be anticipated from a theoretical breakthrough
but from data type and coverage improvement.

As far as future investigations are concerned it is recommended
that undulations and/or gravity gradients be predicted from various
data types with both predictors. Particularly for the Hardy method it
is suggested that a low degree and order spherical biharmonic
expansion (e.g. 6 to 10) be computed from the formulae given in
Appendix A.5 using 10xl0 or 5x5" global data and then be tested as
to its reliability.

Alli 
m mma m mmmmm



APPENDIX A

DERIVATIONS

1. Show that if N4  2b -b

t at
2twith bi t - 3dt + a~ - 5tacosw. - 3t2coso~inu,

then M, 1 + t2l+ 3tcosw,

Proof:

Recalling equations (2-21) and (2-22) one has

ad _t-cosc,

5t d

and

au 1 rt-cosw 0 s
d - COSUd

Therefore

Mi 2b' - -b = 2 - 6d + 10ltcoscj - 6tcoswainu-t atd

-(1l 3 (td) + 21( 0 -ltcosc, - 6tcoso,*nu - 3t cosc.

26d + - ltcosw. - 6tcosulnu - [i1 3t t-ow- 3d +d d

d t t-oj
+2d2 d - l0tcosj - 6tcoscjinu-

- 3tC9j11(t4ow-'8)

2 d d
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+ 2t! 2tcoauv + 3t'w6tw~n COso(t-Cogo) -3t2COGc 2W
+s 1Ocdstcsin 2ud 2u

I1 _ 3d+ 3t2 _ 3tcosa + j2 _ 2tcos&a + -tcs~-ow

d d d d s2ud
-3t2Cegu -

2u -

I1- 3d + 2 + 3t2 _ 6tcos, + L2 _ 2tcosa + 3tcoom +d d d d sd

+ 3t2COSO(t-COSv) -3t2COS2~

d 2u

1 [d - 3d' + 2d2 + 3t2( +2' 2tCOgo) t2t'-2c +

T3 dd -3d' + 22 +3' - 2tco so

+~~ (too1 + t2cosa + d +t -tos,- dos,

1 (ds - da + ' t - 2tcosw) + W - tcosci) +

+ 3t2ud [2u + t - cos - dcoud

123
d'- (d - 3d' 2t+c3d4+2tW-tcosw) +

+ 3tco0o 1 d ce +d + 1 t2 tcosu)tco-
2ud

tt2

A '+ t'os d-d 1 + u --- +3tos ed

3d + t2 +to~ 3tt

2. Show that A,1 I3 + -tos 3cosw~nlj
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8 ..r 3(d+l)x + 3.Jn
-snl d 2ud +.LU

Proof:

Recalling equations (2-16) and (2-18) one can show that

ad tsn au ts i + Therefore:
a d ad 2 +~ d 1

Aj = [1 3d - 5tcosw - 3tcos~dnu]

= -3 jL - l~ -2 j- -5t(-sinw) -3t(-sinw)inu -3tcos~ 1a

3t1ine 2 L '- + 5tinw+3tsin,nu _ 3tcosw tsino
d d2 d u 211+ d

=~ 3sn[ 2 3Ainu - 3tcosw - 3cs
ilf4Ld -d3 2u 2udJ

=~~~~~~ (2nw1 +Uu-A ud + 2u + tdcosw + tcosw)]
dr 2u 3

= tsinw[8 - L-+ 3Anu - ((1((I tcosw + d)d+(1 - tcosw + d) +

+ tdcosoa + tcoew)]

= tsine 18 - L+ 3inu - -- (d -dtcosw + d2 + 1 - tCOSW +

+ d + tdcoso + tcosm)]

= siu8 - d3+ 3inu - (d2 + 2d + 1)]

= 3(dn41)2 + 31nuJ q.e.d.

3.Show that if ga? t~-a -3~oo-t

with d 2 = 1 + t2 -2tcosw~ and t=
r,

___ f 2 3t(l-t2)(t-cos,)then U-" = 1 L -! 1 - W) - d'- 9tcos. -2]

aro r ds d
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Proof:

Firstly: t = > Wt) =nt"' nt"' - nt"

Secondly. d =- [((1 + t 2 
-2tcosoi)%]

-(1+tz-2tcos) (2aro rod

Hence:

[lJ-t2at 2) + tai 1t )Ids t2(1-ta)a~d:)

-3cosw a(tx) - (t2)

[- ,t, It + ta 2  t' ta(1-t2) 3d2 t(t-cos,)
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-3cosw 3ts - 2t

ro r.
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4. Show that if (f sin fc!!! (odL,

with L = fs - - 3t3(d+1)2 + 3t'AU,

121 tcoso, + d) and A and t an in A.3. theng

aro 3t'2sinw 2 _ 3(d+1)2 +3n.
Wr r07 d3 2ud + n+

ar.
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Proof:

Firstly: Ltu _c +F at d

C o s 1 (A tt -c o n w~ ) Z r oo - C o s .)

Then:

ts d3 a1t) - t3 !(d2)
= -i 8r. arg 3tS t3 -3d2 t(t-cosj) o(a) 1- T- 

e3 rd

dr' Its] rde3 rodso
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= t '(d+1) [3(d+l) + 2t(t-cosid]
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Sro, ir, r d 2 aro +ud 3- (tsinu)
?ro

=8 2s -2 [3t9 - 3t(t-cosvj)] [3t3(d+l) a +

+ 2t'(d+l)(t-coSwa) - t'( d+l)3 (t -cow-domroud2 2rOU2 d 2  - Oi-dcs)

t4(del)3(t-cosw) 1 + 2L n + 3t'(t-cosv) -
3t'coam,

roud2 J ro 2roud 2rou

3 rt3 _ 2_ 3ts(41)' + 3tamnu + 6 t*(t-coew)
;r0 d3 2ud nu rods

rqud 2 4rou'd 2

+ 3t4(d+l)a(t-co~i),+ 3t*(-t-coswd 3t4cooi

2rud3 2rud 2r -Ou

rorod2 ad 4U2J 0 2r

+ 3t'(t-cosw) d a de(l + 1,thus:

I ro 3t'sin. L8 _ 3(041 )2 + 3inu +

A204 ro7 ds 2ud
are

+ C t-cosm) __(L ~ + l) + cos Id&

q. e. d.

5. The biharmonic equation is A2V = 0. Find its solutions.

Solution:

Let the Cartesian rectangular coordinates x, y, z be expressed as:

x = X(q1, qa, q9), y =y(q1, qas q3)9 a Lmz(q1, q,, q3)

such that xc, Y, z are continuously differentiable functions and also
solvable for qj, q,, q31 i.e., the Jacobian of the transformation
does not vanish.
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For orthogonal coordinate systems LX-. ax. + !Z_ ay + az a
1q, aqj aq, 1 qj a q, q q

0, i j iJ, the Laplacian is [Kellogg, 1929; p. 183], [Heiskanen

and Moritz, 1967; p. 19):

I fh ~ V h~h1 lV ) h h. av
h1h2h 1q t h q aqf ha q2  a fh a3

where
a + fay )a + (z]l

adXYZ) IJi and J is the Jacobian of theadhthahs = l(qs,q,qFl =

transformation.

In the usual spherical coordinates which satisfy:

( x rsin~cosX
y reinhSin
z rcos@

one has
Ix _ x lx

2r = sincosA; ! = rcoscosX; = - rsinOsin
=Y sin9.inA; = rcogsinA; =Y rsincos)

ar as a).

ax az az
r = cosO; we = - rsinO; w- = 0 , hence

h, = 1; h2 = r; h3 = rsins.

With these values for qj, hi, i = 1, 2, 3, AV becomes after
differentiation [Heiskanen mad Moritz, 1967; p. 19]:

aV 2 + V + 1 a2V cot aV 1 a2V

Now

AV =A(AV)= 2i rrauin, *r V + A inO 0 ) +
r2sinO 17 r JrV) + 105. L-I

+ . 1(A-)11 = 1  [A +a+ r]
ax sinGS JaXLIJ r~ain@ Jr 19 afl
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Computing A, B, r yields:

A =rsin9 2- (AV) = rsin9 L - Vi 9 + 2sn

2sin9i a2V in aV 2co9S aV +ca
r 7092 + raG2 - r 789 araO
2 axV +1 1"?

;rn9 7 2  sin98 lraA 2

B m in@G2 (AV) = sinsG2 + - -22a2 + - -n -3

as MW r lO47r r2 a83

- 1 av +cosS 1W - 2coss l2V + 1 12V

r 2 sin29 a9 rg a92 r 2 sin28 &aX2 r 2 sinG aelA 2

sin& si71nG lA-W rais ar r2snaa9

Cog 12V + 1 23V

+ r~in ..78I rsin'9o therefore:

A2 V = ta
4 +ij + LL L! + 2 a1' L aV + 2 ____ +

ar r a4 r 4sin'9 WA r 2 1r2 92 rasin 2 9 ar2 aX2

+ 2'i' l-ev + I $ + 2Cot9 a3V - cot9 1W +
r~in9 g~X2 r ar 3  r 

2  Wasl r 4sin 29 191A 2

+ 2otOa3V Cotq aV + 4 L2V + cot@(1+2sin 29) Vj
r 4 a93 r4 892 r'sin'9 WA r'.in 29 as)

Assuming V(r, 9, A) = f(r)-Y(9, A) with Y(9, A) = g(e)*h(A) we get

A2V f()y +L 1 !'Yf faY +L 2 , ay+
-*as r' ~ rsin'O aX r 2 as

+ 2 f- 2Y +.....L.2.. f PY .L+ If() y +
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+ cotO(1+2sin28) f7
r' sin29 1



122

where the derivatives of f are with respect to r.

Now &2V = 0 <=> r'1 A2V = 0 <=>
fT

+~(" 1 a'y + !*Y + 2r~f" I a~I + 2f~r 2  1 a
2Y

<> f + VO T-$+ysin'9s ax- f V aea2 f YSin2G lX2

2 a'Y + 4r'f(3) +2r 2 f" cote aY -2cotG a3Y +
+ys-in52axla f f f-l 7e Y-uinae l~aX2

2cote a3y- cot29 aly+ 4 12y Cotg(l+Zsin2G) ffY= (1
y j- -y 99@2 ygin'9 aX2 Ysinze a1 (

Let Z, A, be defined as

Z =A1 Y 12+Ct + siLn 28T

-~ + Cote9L + a~

Also, let

l'Y 2 'Y 2cot9 asy + 2ot

a19' sin'9ax s~4iin .3)a2aX2 sin 9laeix

- ot2 s 2y + 4 !2y- 2o18(1+26"28) ayaga sin'9 aX2  Sin29 as

N r'f(') +4raf(a)f f

On the other hand:

a= a 1 +ct ay + 1 PaY

SaY iay _ 1 a + 1 '13Y - 2cos9 aly
=.03+ cote @ - gin~ 19 + ji29 79a,\2 9i~ aX and:

a'z a (2ay ~ ay 1 ay 1 ay 2COSe a2yl
J92 1 1I_ + Cote 9 i 2  9 sn 2  Ox i 2

a'y - 1 a~y + a~y 2cosG aY- 1 ay

a810 Sin2B j9-2 +Cot r -+ -- r 19 s ;in 2

-cm a~ + a..... y 2(1+2COS2 &) ±2Y _ 2cose a~y
;-JOS T@ -JA2 +;Jn 20 76-28X2 Sin'9 a.\2 *in3S al91X2
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a=as + cote a + I m nd

1a~ a9~) + Coto a ~

AZZ + 2Z = !Z+ Cote L + a2

a'Y 1 a
2 Y a3Y +2cos9 aY 1 lxy-a- -i sin, iS + Cote7- +ii 7sinaG 1r@ ;Ln29 a02*

-cs a~s + I PY 2(1+2CoS2@) ay
;ins& a~aA* Minas a921)2 i' T)2 -

-2cosS 413Y aa 1et [a o91y+

agaX + 1oe~s + +CotoMinas 191) asn3  
Sinai Te-l +1912 ~ ~

- - 2os a+2co+ -+-

1 ~ + 21 2coSR 2 a2y
si! 2  + 2)' L19a sin 2 9 I1)2

= 9a n' )~~y2) + 2co a1 32a~Y 2cotO a3Y +
as sY 4 1 +' 7[2e 702X + 2c t& - ;,na a9al

+ [Cot29 - *2 + +2a' + (2+4cos28 2cos29 + 2 !2 !..+

+ (Css +2cos9) ay.
sinG9 sinsi 197

Mio W12' l4sin2 192aX2 ass sin2e 191)2

Co 2s 2y + !2y+ cot&(1+2sin29) ayass~~ sjn'9 aks Minas a

therefore AiZ + 2Z = L

Now (1) becomnes:

N 1 2r 2 f" 1Z

M+1 (AZ+2)+2r
2f" Z

1~ 2r'f" A1y 2
M+-(MY+ 2A,Y)+ 10y (2
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If one assumes AjY cY (3)

with c a constant one gets

Afy = &1(A1Y) =A 1(cY) = ch1Y (4)

Substituting (4) in (2) one obtains

N + (c 1Y + 2AY) +2r* A- =0 which using (3) becomes:Yf y

N+1 W + Y)+2r2f" =
y f

r-sf(16) 4r'f(s) 2r 2 f"
<> f + f +-fc +c 2 +2c =0 (5)

Selecting the constant c =- n(n+l), equation (5) yields

±dI + 4 3f _2n(n+1) a2f +n(n-1)(n+l)(n+2) f 0(6
r 4 r ar r2 arar 4(6

The solutions of (6) are r", r-(n+i), 1.-+2 and r-(n-) as can be

verified by substitution. On the other hand (3) becomes:

a + Cote ay++ In+1)Y+
aea 89 sin28 aA2 n+)=0

the solutions of which are (Heiskanen and Moritz, 1967; p. 21] the

surface spherical harmonics

P,,(cou9)cos.) and Pn,(cos8)8in=X

and Pn,(cooS) are the Legendre's functions [ibid, p. 21]. Therefore,

the blharuaonic functions (solutions of A2V =0) can be represented as:

V,(r,6,A) = i rn I [(an. + r 2 C..)COsuNA +

n~ ~+ (b3a + r 2 d.)sinmX]Pn.(Cos9)

V,(r,GA) = [ (one + r2C,,)Cosuk +
n~=o 1 . l+ =0 l

+ (b,,5 + r 2d*)simA]P,, 5(coBG),

where one, b,,,, C,,* and d, are arbitrary constants.
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