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Connectedness of Parallel Computers
It has recently become feasible to build computers with many thousands of small
processors, and soon it will be practical to have several millions. Will further
increases in the size of such machines limit their usefulness by requiring increas-
ing numbers of connections per processor? We believe that this will not be a
serious problem in the areas of systems that use very large bodies of common-
sense knowledge because, according to our the-ry, such systems will naturally
tend to be partitioned into domains or "agencies" with relatively weak demands
for intercommunication.Accordingly, it should be feasible to assemble large such
machines from smaller ones by using relatively few additional wires. Indeed, we
conjecture that in typical applications the required numbers of connections per
processor will approach a fixed and practical bound.

In The Society of Mind we conjecture that commonsense reasoning systems
need not increase in connectedness as they grow in size and complexity, because
they will tend to evolve into clumps of specialized agencies, rather than homo-
geneous networks. Indeed, because those sub-systems work best with different,
specialized types of internal representatinns, it is neither necessary nor practical
for one of them to communicate directly with the interior of another. Further-
more, because most acquired skills will evolve from older ones by differentiation
and specialization, this will bias the largest scale connections to evolve into the
fori of tree-like (as opposed to network-like) arrangements.

If a mind is assembled of distinct agencies with so little inter-communication,
how can those parts cooperate? What keeps them working on related aspects
of the same problem? The answer proposed in The Society of Mind is that co- \"'
operative activity is less important than "exploitative" activity. Because these
specialized agencies use different internal languages and representations, they
cannot understand one another, and this means that each of them must learn to
exploit some of the others for their effects - without knowing how those effects - .
are produced. To be sure, this requires yet other agencies to manage those as- K": -- . .. .
sortments of specialists; otherwise the system will be subject to conflicts about ,. . -.
access to limited resources. Furthermore, those management agencies them-
selves cannot, directly deal with all the small interior details of what happens
inside their subordinates. They must work, instead, only with summaries pre-
pared by these subordinates. Without such constraints, the managers them-
selves will be overwhelmed. And this argument generally applies recursively
to the insides of ell those agencies, hence relatively few direct connections are
needed except between adjacent "level bands".

Exploiting Parallel Processing
The Society of Mind theory is ideally adapted to parallel processing because it is
based on large numbers of simple agents that all use similar processes. Indeed, -
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several students are adapting it to the "Connection Machine" type of parallel
computer based on an architecture in which large numbers of processors execute
nearly identical programs. Although that can constitute a serious restriction on
parallel programming in general, it is much less limiting for systems in which
most of the knowledge is represented less in the processes themselves than in
their network of interconnections. In this sense, our theory is related to - and
builds bridges between the older "semantic network" models in Al and the
newer"connectionist," "neural network," and "data level reasoning" models now
being being explored worldwide.

Present day hardware technology makes SIMD machines particularly fea-
sible. However, despite this potentiality, many computer scientists have been
repelled by their apparent limitations. We expect SIMD systems based on our
theory to be able efficiently to support the computations required to build ma-
chines able to apply commonsense reasoning to large, heterogeneous knowledge
bases. (It is no accident that Society of Mind meci.-tnisms can be supported by
the CM type of machine; both that theory and that architecture developed in
the same environment.)

Connectedness of Commonsense Knowledge Bases

We conjecture that the assemblies of representations which intcrc ,nea the
clumps of expertise inside each person's mind must form a weakly connected
network. Unfortunately, we have no formal theory, yet, of how and when large
commonsense reasoning systems will need relatively fewer connections? As I
see it, the problem is that most present-day theories of computational complex-
ity are based either on worst-case analyses or on statistical arguments - and
neither approach well represents practical reality. The worst-case theories em-
phasize only potentially intractable aspects of problems which, in their usual
forms, present no practical difficulties; the statistical theories tend to assign
equal weights to all instances, for lack of systematic ways to emphasize situa-
tions likely to be of practical interest. The Al systems of the future, like their
human counterparts, must be evolved to "satisfice" rather than optimize - and
traditional complexity theories were not designed for such requirements.

This phenomenon reminds me of Shannon's proof that, in general, Boolean
functions of several variables require switching circuits that grow exponentially
with the dimension. Again, in practical experience, that never sees to be the
case. Why not? Because functions that are "interesting"- that is, functions
which "make sense" in one way or another - seem always to be composed in
simple ways, from simpler functions, presumably because we can make complex
new ideas only by combining simpler ones. Functions that lack this character
tend to be incomprehensible, and we can conceive of few uses for them. Shan-
non's proof shows that, as n increases, the proportion of functions that can
be described as compositions of simpler ones grows exponentially small. These
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tend to be the "meaningful" functions - but are just the ones that slip through
the net of such theories. To the extent that this is a sound analogy, the germ of
a technical foundation for theories about the structure of "meaningful" knowl-
edge might already exist in the algorithmic complexity theories of Solomonoff,
Kolmogoroff, Chaitin, Levin, et al - because those theories do indeed assign
more weight to the most composite functions; indeed, this has beer proposed as
a basis for learning, induction, and common sense inference. Unfortunately, no
one has yet found practical application of those theories, but the recent work of
Rivest and his students suggests that there may Ibe a way.

Connectionism and Society of Mind

Why is there so much excitement about connectionist research today? Some
researchers simply want machines to do the various sorts of things that are
usually called intelligent. Others hope to understand what makes people able to
do such things. Yet other researchers yearn for ways to avoid writing computer
programs: how much more pleasant it would be if we could build, once and for
all, machines that learn to improve themselves. Then, whenever we want to
have something new, we would simply explain - or demonstrate - what we want,
and let those machines attempt their own experiments, or read some books, or
go to schools ; that is, to do the sorts of things that people do. Why can't we
make machines like us, that grow by learning from experience?

How can we make machines that can learn? One approach is to start at
the top, at the level of commonsense psychology: try to imagine the processes
by which a person plays a certain game, solves a particular kind of puzzle, or
recognizes a specific sort of object. Then if you cannot find a single, simple way
to do such a thing, try to break down those processes into simpler parts that
you can connect together - either in hardware or in software. This so-called "top
down" strategy is typical of the approach to Al called heuristic programming,

4which has developed productively for several decades.
To go in the other direction, we can use a complementary strategy. Begin

with parts we already understand, and work upwards in complexity to find ways
to interconnect those smaller parts to accomplish our larger scale goals. We can
start with almost anything - with small computer programs, elementary logical
principles, or simplified models of what brain cells do. This "bottom-up" type
of strategy is typical of the approach to Al called connectionism. It has only
recently started to flourish, despite a long history of successful use on smaller
scales, in various forms of adaptive network systems.

Why did the field of connectionist research start to expand only so recently
- considering that connectionistic models have been the dcminant psychological
theories for more than a century. One answer is that in the early days of
computers, heuristic methods developed so quickly that connectionist networks
were swiftly outclassed. Connectionist experiments required prodigious amounts
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of computation that only became available over the past few years. But there
were other, more fundamental reasons. We discuss this in detail in the first and
last chapters of the 1988 edition of the book Perceptrons.

Which approach is best to pursue? The answer is simple: we must use both.
In favor of the top-down side, research in Al has told us much about how to make
machines solve problems by using methods that resemble reasoning. In favor
of the bottom-up approach, the brain sciences hav.'e told us a little (but only a
little ) about what brain cells do. If we knew more about brain cells and their
connections we could use that knowledge to work directly toward discovering
how they support our higher level processes. If we understood more about
human psychology we could work toward finding out how brain cells do it. But
right now we're caught in the middle; we know too little at either extreme. The
only practical present option is to ping-pong between them, making theories
for building plausible bridges. How can we do that? One way is to focus
on inventing various ways to represent knowledge, and then to try to extend
those techniques in both directions. On the connectionist side we can try to
design neural networks which can use - and learn to use - various types of
representations. On the top-down side, we can try to design higher level systems
that can effectively exploit the knowledge thus represented. This is basically
what we have tried to do in our Society of Mind research project.

Advantages and Deficiencies of Connectionist Net-
works

The dream of the early connectionists was to start with virtually nothing at all
but a loosely connected network of parts that would somehow be able to learn
by itself; it was hoped by some that, once some modest goals were so achieved,
little more might remain to be done than enlarge those miniature networks to
have enough capacity to learn to become intelligent! Several such systems were
actually built and they learned to accomplish various things - but none of those
systems got very far. Why might one have expected them to do so much more by
themselves? There were, and still are, many reasons why weighted-connection
learning machines seem promising. They certainly resemble aspects of.what we
think we see in brains. We know that they can be designed to recognize many
types of patterns. It is clear that their redundancy can make them resistant to
noise and injury. And we know some surprisingly simple algorithms that indeed
permit them to learn - while automatically discovering certain types of general-
izations. In some of the more recent work, neural networks have been shown able
to discover certain kinds of knowledge representations spontaneously, without
these having been specified in advance. And because the units of those networks
all operate simultaneously, they promise to offer the power and speed of genuine
parallel computation. In particular, the networks and learning algorithms most
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thoroughly studied today appear to be ver) good at learning to represent pred-
icates that can be defined in terms of the addit ve influence of large numbers
of relatively independent inputs. These amount, effect, to patterns that can
be recognized by processes that match input vectors to prototype vectors, using
coi-tinuous, arithmetic matching criteria. This is very important because these
are just the sorts of predicates that are very poorly recognized by algorithms of
essentially logical character. In short, weighted-connection representations have
many virtues, including these:

* The learning algorithms, when they work, can be extremely simple.

* The networks can often automatically find useful generalizations.

* They automatically find good matches in the presence of noise.

* They tend to be redundant and insensitive to injury.

* They can operate with great speed.

Given so maiiy advantages, one might ask why ever use discrete, symbolic
schemes at all? The trouble is that all simple connectionist schemes appear to
have serious problems of their own. Not very much is yet known about this, but
we can conjecture that these problems will become increasingly serious as the
experiments are scaled up in size. In particular, we expect to find that when we
attempt to make a single, highly connected network learn to accomplish several
tasks of different character - that is, problems that require representations of
conflicting types, the internal interferences will become worse as the networks
are increased in size. Furthermore, it will be very hard to train such networks
to accomplish tasks that are basically serial or recursive in character -such as
counting the number of, or distinguishing between the features of, the different
objects in a picture. This is because such prozesses require the making of clear
separations in memory between things which are very similar. To put it epi-
grammatically, connectionist networks are good at making connections between
things, but are not so good at keeping them separate. Enthusiasts of neural
networks will disagree with this, and only the future will tell which view is more
realistic. In any case, the use of weighted numerical representations entails a
heavy price. Although such methods can yield useful types of performances,
they will also be prone to reaching intellectual dead ends. This is because it is
in the nature of numerical representations to combine components in an opaque
fashion. When you add several numbers, you can no longer recognize, in the
sum, the influences of the components that were combined. Consequently, such
systems do not lend themselves to be useful as parts of larger, more reflective
systems, except as "black boxes" to be used only for their effects. This is be-
cause the nonavailablitity of explanations makes it difficult for other systems
to explain the results; and then separate out components for constructing use-
ful new variants. For further learning, then, the credit assignment problems
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may become intractable. In short, such systems will tend to become unable to
do reasoning. Thus, clever pseudo-holistic representations become obstacles to
further intellectual growth.

I don't mean to suggest that we always can, or always should, avoid using
schemes like that of assigning weights to evidence. The conditions of real life
constantly cvrmpel us to make decisions that amount, in effect, to ceasing to
think. Indeed, since virtually every overt action we make reflects some such
decision, the results of weighted comparisons probably have a disproportionate
influence on the most immediate causes of our observable behavior.

Insulation and Interaction

We tend to think about thinking in positive terms: of assembling parts into
larger wholes by making connections among ideas. But negative connections -
call them insulations - are just as important as positive interactions. One might
say that insulations build up barriers, while interactions break them down. Too
many interactions lead to confusion and inefficiency; too much insulation leads
to incoherency. To illustrate the problem in an evolutionary context, consider
this example, from The Society of Mind.

Imagine a certain animal in which some new mutated gene produces a sub-
stance S that comes to play two different, vital roles at once - one in the heart
and one in the brain. Now that animal's descendants can do more with less, so
natural selection will tend to further improve that gene and disperse it among
t!c flock. But consider the cost of that short-term gain: that double-purpose
protein is an obstacle to further improvements in either heart and brain! Any
change in S that strengthens one would almost surely weaken the other, because
the earlier form of the gene has already evolved to constitute the best available
compromise. Now our new, mutated animal is doomed to be very slow to evolve
because each further change in S disrupts so many processes. By breaking down
the separateness of the mechanisms of the heart and the brain, S constitutes a
new constraint that keeps them from learning independently. Each such con-
straint makes it harder to change - and the short term gain from finding two
different uses for S is a long term evolutionary liability. The peak upon which
our species is stuck is actually an artifact - produced by causes that interact
only through an evolutionary accident that constrains a sum to a smaller result
than we could get by separately climbing two different peaks.

How does our evolution ever manage to escape such double-purpose deadlock
states? Our very early ancestors evolved a trick that has become an essential
part of all of our subsequent evolution. The secret lies in the simple fact that
the processes used to copy genes are prone to make duplicate strings of genes.
Then, whenever a duplicate gene mutates, its unchanged twin can still perform
its original function, while the variant gene can drift along a separate evolution-
ary track. Two versions of the gene for S could thus then manufacture different
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chemicals, one of which can improve the heart, while the other enhances the
brain. We usually think in positive terms about making wholes by combin-
ing parts. But whcr. interactions lead to inefficiency, we may need negative
connections - call them insulations - to keep things from getting confused.

It is not only in connectionist nets that multi-purpose deadlocks can be
deleterious. It can happen as well in symbolic realms. Suppose that a certain
concept C was learned in a certain context X - but now we want to apply that
skill to another, different context Y. If C attempts to continue to learn in both
contexts,then, the more that X depends on C's original details, the more X
may be handicapped when those details are modified to suit the demands of
Y. Again we could try to avoid this by providing Y with its own duplicate of
C - but if too many copies !earn different things, our system will tend to split
into incoherent accumulations of non-shareable information. Conjecture: when
a neural network learning system gets stuck, it should help to duplicate the
"hidden units" with substantial weights and change one of the copies enough to
set it on a new course. Later, remove copies that have not further distinguished
themselves. We could use even more elaborate interventions, when variation
of connection-weights leads to poor performance of a unit; the learning process
might replace that unit by rearranging its negative and positive inputs into a
pair of separate recognizers that are connected to a third, administrative unit
whose performance can later be independently optimized.

It would be prohibitively expensive to frequently duplicate entire networks.
Our decades of experience with serial computers have taught us that there is
another way: - to avoid massive duplication by using inheritance-based virtual
copies. This is fairly easy to do in systems eqlipped with enough temporary
memory. But we still know very little about how to approximate the virtues of
virtual copies in connectionist networks. One way is to use the recording units
we call K-lines to remember various features of a network's activation state.

How to combine the advantages of symbolic and connectionist methods? Re-
searchers in the symbolic area have developed good ways to constrain fruitless
search. In The Society of Mind, we propose to build systems wherein some net-
works supervise tho- experiments that occur inside some other nets. Symbolic
Al researchers have developed many powerful ways to represent knowledge - but
have not developed good ways to make machines develop good new represen-
tations; here connectionist methods will eventually help. Nor are present day
symbolic systems good enough at discovering, without external help, particular
knowledge to fill their rules and frames and scripts and semantic nets. Con-
nectionist methods could help in all these areas - but not until they get better
at search. But first we shall have to develop multi-section learning schemes in
which some sections supervise how other sections work and learn. Eventually,
as we learn more about such matters, we shall begin to attack the longer range
goal of discovering how to enable such systems to construct productive new
reformulations of problems.
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Learning and Representation

In order for a machine to learn, it must have potential ways to represent what it
may learn. What representation should we choose? Over the years researchers
in Al have made many theories about this, and done many experiments on
knowledge representation schemes, such as those called Semantic Networks,
Conceptual Dependency, Frames, Predicate Calculus, Rule-Based Productions,
Procedural Representations, and quite a few others. This is not the place to
review the features of such representations. Instead we'll contrast all of them
with the methods used in connectionist nets. The basic goal in that enterprise is
to embody knowledge into the conductivities or weights assigned to connections
among a network of nodes. The most common form of such a node consists
of a linear part that "adds up evidence" and a nonlinear part that "makes a
decision".

In principle we can construct such a network to represent any computable
function. Consequently, any of those other types of knowledge representation
could be encoded into such a network. In practice, however, the linear, addi-
tive aspect of typical connectionist nodes can lead to problems because addition
itself is so fundamentally opaque in the sense that once several numbers are
added up, one cannot recover, from their sum, the inputs that wcrc thus com-
bined. There is a spectrum of possible ways to deal with this basic problem
of opacity; in fact, this can be seen as breaking up the entire field of research
on connectionist nets. The problem of opacity becomes increasingly severe as
the density of connections grows. When each node connects only to a relatively
few others, then we have structures that resemble what AI researchers call Se-
mantic Networks: the elements of those types of kn-wledge representations are
comparatively localized. Some connectionist models are of this highly local-
ized typc, while others use networks in which a typical node sums a relatively
large number of contributions from different sources; these are called highly
distributed. It is important to recognize that we probably need quite different
learning procedures for dealing with localized and distributed representations.

In any case, once wc can represent knowledge in terms of connection weightq.
it becomes easy to formulate the problem of learning in terms of various estab-
lished techniques for "hill-climbing" or gradient ascent. To do this, we merely
need to express our evaluation of a network's performance in terms of a single
numerical success function. Then the problem of learning can be reformulated
in terms of searching to find the maximum value of that evaluation function.
The terrain to be searched is simply the vector space of the connection coeffi-
cients inside our network. Of course, this problem is simple only in principle,
because any strategy based on gradient ascent can fail by getting stuck upon
a local, isolated peak whose altitude is relatively insignificant. There simply
is no local way to ensure that any such procedure will always reach a global
maximum, instead of becoming trapped upon some local feature of topography
such as a terrace, ridge, or peak,



Sometimes one can escape from traps by making occasional random jumps -
and many people even hold that in this lies the key to creativity. One such strat-
egy is the method called "annealing", which works effectively on certain types
of problems. But we still have little insight into which classes of problems can
be treated that way; indeed, it is easy to construct examples in which annealing
leads to worse results than would come from complete, exhaustive search. Such
problems not only arise in AL: they lie at the heart of evolution itself. For ex-
ample, it seems almost a truism that most mutations are deleterious, but it is
important to see why this is so. Whenever we see a live ai.iznal, we're seeing a
system that is highly evolved: in other words, it is virtually certain already to
stand on a local peak! Because much of the nearby territory has dii.eady been
explored, the present location where it stands is likely to be quite close to the
best that lies in the structural neighborhood. Therefore, mutations will tend to
be bad because they will naturally tend to undo the work of selection that was
already done in the animal's evolution. To be sure, there is always a chance
to find a better place by making very large random jumps. But unless we do
this selectively, the results can be worse than exhaustive search. Annealing may
seem efficacious at first, when applied to systems in random states - but it won't
fare so well when applied to systems that are already in more highly evolved
states. For the more we've invested in finding this peak, the more will be wasted
of what we have learned - as soon as we jump away from it.

Contrary to many recent pronouncements, such methods can only amelio-
rate, but never can eliminate the types of difficulties that gave rise in the 1950s
to the field of heuristic programming. No matter how hard we continue to try to
extend the powers of methods based on local search, such methods can take us
just so far; that search itself will end up trapped upon some abstract, unknown
peak in the strategy space of search machines. Finding a peak is a means, not
an end; it rarely is our real goal. Instead of just seeking escapes from traps,
we might better use those peaks as clues at a deeper level of analysis. When
the problem we're solving is easy enough, it may suffice just to climb its hill.
But when our problems are deeper than that, then, in place of simply climbing
those hills, a better goal would be, instead, to ask ourselves what causes those
hills. Which of those peaks reflect inherent structural aspects of the problems
we're trying to solve, and which of them are artifacts of the representations we
happen to choose?

Intermediate Units and Significance

The problem of the double-purpose deadlock casts a shadow across the entire
realm of representations that are distributed, holographic, or generally non-local
or holistic. A Symbolist might oppose a Connectionist with an argument like
this.

"Practical representations must employ relatively compact, localized, inter-

10



mediate units, each of which has some degree of individual significance."
Consider, for example, the intermediate signals or agents called microfea-

tures in Waltz and Pollack, Massively Parallel Parsing," Cognitive Science, 9,
1, 1985. Can we expect these each to carry its own, recognizable significance?
The answer is that significance itself is a relation between a thing and an ob-
server. Even inside a human brain, only certain signals will be significant to
certain agencies. For example, few signals from other parts of the brain would
be lacking in any socially communicable significance. Lower level microfeatures
may be significant to correspondingly low level agencies, but this will not be
expressible, or even comprehensible, to the higher level agencies that exploit
what those systems do. This must apply in general to the hidden units that
appear in the literature about parallel distributed processing. See also Jerome
Feldman's Neural Representation of Conceptual Knowledge, TR198, Univ. of
Rochester, C.S. Dept, June 1986.

Similar issues arise in connection with discrete, symbolic mechanisms. Just
as we can sometimes solve problems by using massively additive representations
whose units have little individual significance, we can sometimes solve other
problems by using discrete representations composed of similarly insignificant
components; for example, when we represent a composite Boolean function as a
canonical disjunctive form. In doing that, one disperses information about the
function's internal structure and composition. At both extremes - in represen-
tations that are either too distributed or too discrete - we lose the structural
knowledge embodied in the form of intermediate-level units. That loss may not
be evident, so long as our problems are easy to solve, but those intermediate con-
cepts may be quite indispensable for solving more advanced problems of related
kinds. This is because the comprehension of a complex situation often hinges
on finding a good analogy, or on composing meaningful variations on a familiar
theme. But doing this is virtually impossible, with representations that are
too fragmentary, which is precisely what happens both when we use canonical
logical forms or when we use linear holographic transformations. Those rep-
resentations are simply too homogeneous. They have no way to represent the
significant parts and relationships. The idea of a thing with no parts provides
nothing that we can use as pieces of explanation.

None of this should be taken to mean that it is bad or wrong to build dis-
tributed systems. Valuable forms of robustness can emerge from redundant
representations, and the use of parallel and shared elements can lead to imag-
inative reformulations. My point is that unless a distributed system has some
potential ability to crystallize out important new sub-concepts and substruc-
tures, its ability to learn will eventually slow down and it will be unable to solve
problems beyond a certain degree of complexity.

But how could a machine dscover useful new intermediate elements? Our
idea is to invert the usual view that local peaks are nuisances. Instead, we'll
regard them as potential indicators of when and where we need to introduce
novel elements. We could even argue that the alternative - of further pursuit
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of other, better local peaks may be counterproductive in the long run This is
because if we try to find solutions by making compromises across many different
contexts, then the weights that are finally assigned to connections will tend to
embody average rather than peak performances. What makes this problem
serious is that it can lead to accumulations of commitments that may become
costly or impossible to repair: then the system will achieve a certain level of
ptrrifinance but then be unable to further develop. In The Society of Mind we
cast this in terms of a principle: when agencies of equal rank conflict, don't try
to satisfy them both. It's better to abandon both and try to find another one -
perhaps by appealing to agencies of higher rank.

Associations and Connections

Any machine that learns effectively must discover connections between actions
and outcomes, inputs and outputs, or causes and effects. Before a machine could
discover such connections, however, it must have some way, at least potentially,
to represent them, at least implicitly. After all, we can't connect abstractions
themselves, but only their representations. To be sure, any set of associations
could be represented, in some purely mathematical sense, by cataloging high-
order correlations or high-order polynomial coefficients. Indeed, Norbert Weiner
and Denis Gabor proposed in the 1950s to build learning machines on this basis.
However, those schemes turned out to be impractical because of exponential
growth.

Any theory of the mind must explain how the brain provides enough connec-
tions to make the mind capable of such a wide range of associations. It would
require too many wires to connect every agent to every other agent. There is no
reason to suppose that any clever coding scheme or holograp.ic principle can get
around this; the problem gets increasingly worse as the brain increases in size.
Nor has evolution itself found any efficient solution to this problem. The human
brain has so h.any connecting vires that the actual nerve-cells constitute only
a fraction of its mass. In The Society of Mind, we conjecture that this arrange-
ment of connections actually resembles an n-cube machine, within which most
of the actual work is done inside distinct agencies that scarcely communicate
at all with one another. Most pairs of agents neither need or are able to talk
with each other because they speak such different languages. The reader might
complain that this seems wrong - since a person can so easily "associate" any
two ideas or states of mind, however different they seem in character. How-
ever, when we examine those associations, we often find them to be peculiarly
indirect, often engaging seemingly arbitrary combinations of ideas and images.
This is probably because our methods for making indirect connections must use
what they can find already in our memories.
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Unifying Frames and K-lines

We made substantial progress in developing and reformulating two theories that
originally seemed quite separate: the new theory unifies the ideas of Frames and
of K-lines. This unification leads to better ideas about how a machine could
learn to formulate and use new frames that represent various kinds of knowledge.

In particular, the new theory suggests ways to coordinate knowledge repre-
sentations that apply to different realms of thought - for example, to spatial,
social, and linguistic concepts. By extending Patrick Winston's research at
MIT on reasoning by analogy, techniques like these should lead to more effec-
tive schemes for constructing and applying analogies.

Clarifying Conceptual Dependency.

The representations proposed in the Society of Mind theory also promise to
clarify and extend the representations called "conceptual dependencies" devel-
oped in the 1970s by Roger Schank's group at Yale. These were developed
for combining a variety of causal, social, and mental concepts, and have been
demonstrated to be effective in several areas. However, many critics have re-
garded them opportunistic and ad hoc, no matter that they frequently worked,
because no one could see clearly why they worked. The result has been that
few other researchers were willing to expend more effort on such systems . By
unifying several CD concepts into a more general type of "Trans-Frame" - which
also resembles the representations implied by case-grammars in linguistics, our
research suggests that such systems are sounder than they at first appeared to
be.

FUTURE RESEARCH

Cache-Memory and Consolidation

Most contemporary connectionist models are based on weight-learning algo-
rithms that are rather simple and direct. In this brief section I simply want to
challenge this. What happens after a person solves an interesting problem? I
suspect that it is no accident that it takes a long time - typically of the order
of an hour - for the records of that experience to become firmly lodged in what
psychologists call long term memory. This raises two issues. First, what sort of
mechanism is involved - and, second, what might be its evolutionary origin?

As for how that mechanism works, I suspect that what is involved is some-
thing like what computer technologists call cache memory. The traces of our
recent mental activities are buffered in a fast-write, fast-read system, of which
some, but not all, are slowly transcribed into some other, more permanent form.
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As for why, one reason might simply be the time for manufacturing structural
chemicals. But also that interval of time could be used for more careful filtering,
involving special processes designed to select out the more important events, find
efficient representations for them, attach them to appropriate retrieval cues and,
most important of all, do this in ways that assign to them appropriate credits
and responsibilities. Smart connectionist system may also have to be designed
with similar functions in mind.

In order to obtain sophisticated learning from massively parallel machines,
we have started to develop a new theory of human memory called Cache-
Transfer, which incidentally may help to explain why it takes so long to make
new records in human long-term memories. This scheme for short-term mem-
ory uses machii..ry resembling that in a computer's "cache" memory to perform
several functions which include locating suitable representations in a previously
unstructured memory network and then training them to serve as permanent
memory. In the course of that, the system should also be able to make "credit
assignment" decisions for learning, and to recruit new agents required for build-
ing more hierarchical memory systems.

Zone-Refining

The back-propagation procedure is in the class of hill-climbing procedures: each
cycle computes the partial derivative of a success function with respect to each
connection weight. This procedure has been shown able to lead to the sponta-
neous formation of significant units in the inner layers of connectionist networks.
SWhat are the practical limitations of such processes? I suspect that in order for
any such process to organize a deep network, it must proceed through stages of
development. First, some units located in layers near the input and the output
must acquire some significance. Only then can the system proceed to develop
significant units in adjacent layers. Until reached by these peripheral, growing
zones of significance, the deeper intermediate layers must remain comparatively
passive and stable. I have the sense of this happening in the recent experiments
on parallel learning that I have examined - at least in those that yielded good
results. The earliest "significant" nodes formed along short paths from input to
output. Only after the formation of these sensory and motor abstractions did
significant nodes develop in an intermediate layer.

Once some initial communication agents acquire some significance, we can
make them available for connections to, and exploitations by, additional inner
layers. The fundamental idea to represent higher level concepts in the form of
nodes that act as managers for using combinations of concepts represented by
lower-level nodes. This process can be repeated over and over again, introducing
more and more layers over the course of time. However, it is our thesis that
it will be unproductive to introduce a new layer until the previous ones have
achieved some competence. (The later layers need not be inserted physically at
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those times, but could be present from the start - provided that they provide
signal-paths that do not vary much before the phases in which they learn.

After each new layer is established, we have an opportunity to refine and
correct mistakes in the earlier layers. This is because the presence of the new,
significant, inner or "hidden" units may make it possible for the first time to
construct additional input classifiers and output actuators. But again, it seems
to me that these refinements themselves would best be done in the course of a
layer-by-layer sweep - which is why I envision the process as one of zone-refining.
Without experimental experience it is hard to propose more details. Would it
be better to sweep in one or both directions - or to sweep from both ends to the
middle? In any case, I suggest that it is best to operate on each layer separately,
while holding the others fixed. As explained in The Society of Mind there are
many virtues to networks that are roughly structured into layers, because this
facilitates the formation of the "level-bands" that may be vital to intelligent
thought.

Whenever you employ a learning machine, you must specify a great deal
more than merely the sources and destination of the data-level information. For
every learning organ needs some signals to indicate what it should learn - for
comparing results, testing hypotheses, and selecting suitable goals. Each choice
of design must somehow determine how long the learner should persist when
progress slows. How to decide when enough has been done; which particular
learning procedures to employ; when to decide that things have gone badly
wrong; how to determine the allocation of hardware, time, memory, and other

resources? When enough such things are taken into account, our sculpturing art
may look more like a weird form of management skill than anything we would
recognize today as programming. For we will have to decide which agencies
should provide what incentives for which others - and then we'll have to decide
who will watch those watchers. As in any society, every such decision about one
agency imposes additional constrains and requirements on several others - and
then we have to specify how to train those other agencies as well.

Computational Linguistics

We have also developed what we call the "Copy-duplication theory of language"
- a novel theory of language in which grammatical forms are treated as resources
that can be exploited for expressive purposes, rather than as arbitrary forms
into which communications must be forced to fit). In effect, this theory places
grammar "on tap" rather than on top. It is hard to predict how long it will
take to bring the new language theory into a form suitable for simulation and,
then, for practical application. Some students are considering the subject, but
at present we do not have suitable staff workers for a serious project of this
sort. If the linguistic community's reaction to the publication of the theory is
favorable enough, then such a project would be very plausible.
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BRIDGES BETWEEN SYMBOLIC AND CON-
NECTIONIST MODELS

Research on connectionist nets will eventually make important discoveries, but
those systems will remain too limited until we develop more versatile ways to
control them. Symbolic representations have great flexibility because of their
explicitly structured character: when you cannot find a simple way to solve
a problem or puzzle, symbolic representations help in formulating networks of
sub-problems and subgoals. This capability lends it self to the use of the top
down strategies called heuristic programming which have developed so produc-
tively for several decades. It is hard to apply such processes to distributed
representations because there is no natural way, when a problem is partitioned
into smaller parts, to make corresponding partitions of the networks. How can
we combine the merits of both approaches? We will try to develop systems
in which connectionist networks learn in goal-directed ways, so that they can
exploit what Al research has learning about goal-based reasoning. To do this,
we need to develop supervisory systems that can impel the network learning
processes toward producing more orderly representations. This could make it
possible for higher level networks to more effectively exploit lower level ones, to
form societies of networks that can exploit the knowledge embodied in them, in
quasi-symbolic ways.

Most of the knowledge in a Society of Mind system is represented, not as
symbolic expressions, but in the network of connections between various pro-
cesses

RESEARCH TOOLS FOR SOCIETY OF MIND
MODELS

Kenneth Haase has developed a test bed called NETPLAY for simulating simple
Society of Mind networks. The use of this test bed should reveal unanticipated
problems in localist networks and help sharpen our methods for analyzing and
repairing them. These tools should also help us explore how Al's traditional
explanations of mental phenomenon might be handled in the new fmamework.
For instance, it should enable us to explore the extent to which mechanisms like
frames, inheritance, and truth maintenance may be implemented in systems of
entirely local interactions.

DISCOVERY PROCESSES

The processes of skill-learning are cumulative: each skill we gain is built to
some extent on other skills gained earlier. We are trying to investigate the
nature of such accretions by considering how a computer program might invent
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new distinctions, operations, and understandings based on earlier inventions.
Following Lenat's work with the AM and Eurisko programs. Kenneth Haase will
continue work on a program called CYRANO that devises new representations,
operations, and new domains from earlier and simpler ones.

GOALS: PROBLEM SOLVING AND MEMORY

Such terms as learning, memory, thinking, and problem solving all refer to
overlapping aspects of how we change over time, with the unifying element of
improvement through experience. To make such systems more competent, their
memory machinery must become increasingly selective and sophisticated. This
requires more than simply storing new facts, connections, or rules because large
masses of memories cannot be used effectively without schemes for retrieving
them in goal-related ways. It is well known that it requires a substantial amount
of time for animals to convert short-term memories into permanent memories,
but little is known about why that is so. We are exploring the idea that a
cache-like mechanism is involved in the process of converting short-term into
long-term memories, and that this serves several functions. One function is for
locating suitable new representations; this is needed because different kinds of
experience must be encoded in different forms. Another function is for distin-
guishing different roles of memories; in the course of solving a problem we learn
both which operations are useful and which are deleterious - and these must
be stored in different ways. Furthermore, a memory system must contribute
to solving various problems of credit assignment - that is, of which operations
actually affected the final results in significant ways. For all these reasons, we
are working on a model in which both the construction and the later application
of memories are directed by their connections with goals. This model is based
on two ideas from The Society of Mind; recognizing differences by making com-
parisons, and representing defaults as assignments to level-bands. We expect
such processes to produce memory organizations that are particularly suited for
use by goal-oriented problem solving mechanisms.
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published.)
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