B R R T R Y TXE - e D n
LSO W DA R A AR WA LU W WU U N R R o R O O e O Ty T T v Y IXOY YO 3
K O ") ? h 4 Y, ..

- W

““\‘, \:\\.E mpt ‘ 5

f -
i

7

LT X .

.]
LIS
.

NPS52~88-027

~ NAVAL POSTGRADUATE SCHOOL

Monterey, California

T A
‘S n
"l "
<

2

Fid:

*

"y e ¥
f'.t'l-f g
Ze

s v ¥

’
' -‘i 'l'l"
L4 ®

P4
I 4

et
'

AL
“
) §

e

AD-A199 545

i ".
Y IV
PRELIMINARY WORK ON Q.,
THE COMMAND AND CONTROL WORKSTATION ::{ft
OF THE FUTURE b
"
SN
. L)
Frank E. Harris ol
John M. Yurchak ‘f§€
! Michael J. Zyda 4E{f
| . Zi{:.
August 1988 :ﬁ{:
RS
o
‘ Approved for public release; distribution is unlimited. R
Prepared for: ®
Naval Postgraduute Schoul G
Monterey, CA 93943 ¢ ﬁﬁ
) %
Dk
W

88 10 18 157 &

el 2V et ta¥ Pl 4V T4Y al, g8, @V. Biogle’ ‘$Ya 0Va 4% 3% 0% $7g,0%, 0% ' 050 et B’ 80 0at IRt ot 0a? 2t Sotat 0)8 ga* Ba® 0pY x-.- ..'.' ¥ ‘“"'l.."“."'
'|
{
.0

s

a1y

b ph gl dd

b

NAVAL POSTGRADUATE SCHOOL
Monterey, California

I IS

Rear Admiral R. C. Austin Harrison Shull
Superintendent Provost

Lo

\ v
2

This report was prepared in conjunction with research conducted for the Naval Ocean
Systems Center and the Naval Underwater Systems Center and funded by the Naval
Postgraduate School.

AR

/

Reproduction of all or part of this report is authorized.

This report was prepared by:

PSS
P T T fen’s v

"

v

MICHAEL J. Z\DA 7
Associate Professor
of Computer Science

u"‘.fﬁfﬁtl"l.

Pe
9%

el BN

50

-

e
o
Reviewed by: Released by: ':_E
o
QD % T M o
M \ . ':‘ N
ROBERT B. MCGHEE KNEALE T oy
Chairman Dean of Information)
Department of Computer Science Policy Science Ry

2 A A IO M 0 AT I T n T W LA AT 0 T NS TR T AT AT T T AT e T A e A AT e NN WA BN AT NN e
gm -l.ln * MY SN . D o . ad W W

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS 0nGE

REPORT DOCUMENTATION PAGE

1a. REPORT SECURITY CLASSIFICATION
UNCLASSIFIED

b RESTRICTIVE MARKINGS

< 2a. SECURITY CLASSIFICATION AUTHORITY

3 DiSTRIBUTION ' AVAILABILITY OF

2b. DECLASSIFICATION s DOWNGRADING SCHEDULE

REPORT

Approved for public release;
distribution is unlimited.

L)

4. PERFORMING ORGANIZATION REPORT NUMBER(S)
NPS52-88-027

5 MONITORING ORGANIZATION REPORT NUMBER(S)

52 NAME OF PERFORMING ORGANIZATION b OFFICE SYMBOL
Naval Postgraduate School (f 35"’2’”“”’9)

7a NAME OF MONITORING ORGAN

IZATION

1) Naval Ocean Systems Center
2) Naval Underwater Systems Cconter

6c. ADDRESS (City, State, and 2IP Code)
Monterey, CA 93943

San Diego, CA 92152
Newport, RI 02841

7o ADDRESS (City, State, and ZIP Code)

8a. NAME OF FUNDING SPONSORING 8b OFFICE SYMBOL
ORGA - /ATIC A (tf applicable)
Naval Postgradu:zte School

0&MN, Direct Funding

3 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

8¢. ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943

10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT
ELEMENT NO NO

TASK WORK UNIT
NO ACCESSION NO

11. TITLE (Include Security Classification)

-

PRELIMINARY WORK ON THE COMMAND AND CONTROL WORKSTATION_OF.THE FUTURE--(U)

12 PERSONAL AUTHORE) haRRTS, Frank E., YURCHAK, Jokn M., ZYDA, Michael J.

) B user interface., ."Qvuu“;é_.__
J

13a. TYPE OF REPORT 13b TIME COVERED é’ 14 DATE OF REPORT (Year, Month, Day) |15 PAGE COUNT
Progress FROM 87/10 10O B 1988 August 147
16. SUPPLEMENTARY NOTATION /
A
17 COSATI CODES 18 SUBJEM/[ERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP Command and control, three}aimensional visual simulation,

\\\J

19 ABSTh\ACI (Continue on reverse if necessary and rdentify by block number)

'The modern tactical commander has a flood of sensory and intelligence information at his dispo-
sal. A tool is required to sort tht information, allowing the commander to choose the information
that is most pertinent to the decisions he must make at that time. This study is the preliminary
work on the command and control workstation of the future. The focus of this effort is in two
areas. One is a user interface using multiple windows and a mouse controlled cursor. This inter-
face allows the user to set up the display to give him the information he needs in a way that is
easy for him to interpret. The second focus is preliminary work on a real-time display that
presents the user with a three-dimensional picture of the situation. This initial display uses three
rescltions to display laig: areas of Defense Mapping Agency Digital Terrain Elevation Data
with near real time animation. the < LT

¥ 27 DISTRIBUTION /AVAILABILITY OF ABSTRACT /7
A uncLassiFEouNLMITED (R SAME AS ReT [0TIC USERS

UNCLASSIFIED

21 ABSTRACT SECURITY CLASSIFICATION

22a. NAME OF RESPONSIBLE INDIVIDUAL
Michael J. Zyda

22b TELEPHONE (Include Area Code)
(408)646-2305

22¢ OFFICE SYMBOL
227k
R

DD FORM 1473, 8a mar 83 APR edit.on may be used until exhausted SECURITY C

All other editions are obsolete

¥
R A L A A R Y W WL . e LY ; -V R W
B e o T e o e e e N e T T A e

8% W W, %,

LASSIFICATION OF THIS PAGE

@ US Government Printing Oftice: 1986—606-24)

UNCLASSIFIED

1
b

Ny 7 I P
P
..'I..}q"‘_‘

,I"..l'l;l' ‘g ».¢~ _.i (A% AY, ottt 4,!.1 "'Q v"'v " ¢, "un Ha® ' KIRK AR AA R, 9, " \"lr'" " a4, \ » v l.!"l.!" .l! _‘_ *

)
<\
‘ ?‘
[4
"i
o
&80
Y
o]
. »
o
>
p
’ N : !
Preliminary Work on the Command and Control Workstation o
of the Future -~
Pyt

Frank E. ilariis, John M. Yurchak and Michael j. Zyaa * o
Naval Postgraduate School -1:

Code 52, Dept. of Computer Science, 7
Monterey, California 93943-5100 .
W
ABSTRACT b
(4

The modern tactical commander has a flood of sensory and intelli-
gence information at his disposal. A tool is required to sort that infor-
mation, allowing the commander to choose the information that is most
pertinent to the decisions he must make at that time. This study is the
preliminary work on the command and control workstation of the future.
The focus of this effort is in two areas. One is a user interface using
multiple windows and a mouse controlled cursor. This interface allows
the user to set up the display to give him the information he needs in a
way that is easy for him to interpret. The second focus is preliminary
work on a real-time display that presents the user with a three-dimen-
sional picture of the situation. This initial display uses three resolu-

-

‘rr‘r{ﬂ‘ ;:‘-,'r" - (’n"f P

\
tions to display large areas of Defense Mapping Agency Digital Terrain ;‘
Elevation Data with near real time animation. R

.-""' _,)_;“ N h

{) Ry
{7 Cos.])
* Contact author, MR o

N >
*+ This work was supported by the Naval Ocean Systems Center, San Diego, the]
Naval Underwater Systems Center, Newport and the Naval Postgraduate School’s N
Direct Funding Program. ¢
Accession For ; Bt
b - . - - L
NTIS GRAXI e
DTIC TAB

Unannounced]
Justifieation

By

_Distribution/ =
Availability Codes
“Avafl and/or

Dist Specisal

A-/

PEITEAT et e]

53
4

P

R ST A R CI
WUV VWV TR ¥ T IW'ES)

P P N N AR A RIS RTAR

IV. DIGITAL TERRAIN DATAooovvvviririeevictre v ssreestasenseessvessnnesssnssnnsreons 35
‘ A. DEFENSE MAPPING AGENCY ...ccooiiiiiiiirr et 35
1. Digital Landmass System Databaseccccoovvvinninnencnnnnns 35
R a. Resolution of Datac.oooviivieiiiiiiiiiee e 36
b, Cultural Dataocooooiiiieeiiciiiee ettt e rae e e eseannes 36
c. Terrain Elevation Dataccocoooviiiiviiiiniiee e, 37
B. DIGITAL TERRAIN ELEVATION DATA ..o, 37
1. The NPS Japan Database ..o 38
2. FOIMAL oot es et ee e e s ae e e e rnnae e e e 338
3. Reading the DMA Standard Tapeccc.ovvvinieiniiiniiennine, 40
4, The Elevation Datacccccvveeiiiiiieieieecciieee e cseereieeeessinrereaeessannes 41
V. A THREE-DIMENSIONAL TERRAIN DISPLAYcccooooveiiviiercneecireennen, 43
A. PROBLEMS ...ttt ettt et et ssaessras s e an s saeesrstaseraesane s 43
B. DRAWING THE TERRAINcccooiiiiiinneerinceemiererreensreecvnesneesnsnnenns 45
L S CALE ettt et et a e s et ae s e sa et e e e nrrraveens 45
2. VIiSIDIlItY oo e s 46
3. TRE OCEANoveeeveeeieeeeeeeee ettt et ae s erar e e e s e serr e seeeeasbraeee e en 47
G, SRHOTEIINEcoovvveeieeiee et tscte et e eeeeecsvveressbbesastsresabreserenreesnenees 48
C. THREE LAYERS OF RESOLUTIONcccooviieiiiiie vt e, 49
1. Implementation ...ttt 53
A The World ...ttt e e e e e s 53
b. Multiple Cellsccooiiiiviiiiiiiiii 54
C. TRECell ..ot rrrr e cs bt s e s e s e re e e assesaanes 54
(1) Initialize the StrucCturecccoeevviiieeer e eceeree e, 55
(2) Drawing the Terrainccccoceeiiiiniiienie e, 56
{3) Array StIUCIUIEcooiiiiiiiiiiiiiie et rereren e eeseiee e e 57)
(4) POINEr SIIUCIULE ...oovvveiiiiiiieeceeietrtie s eseeene e e e e eabreereeas 58 }:
d. Resolution Transitionsc..cccccevvririeeriisiscserrniirierrereererene e e 61 -"\
€. ZDUFTELING «.oooooveicveeeeeeeeeeee e ese st 62 T
D. CONCLUSIONSoocoooriiremeereeeieseeseeseeeeseessssssseeesssssseessesessessssssesesesseeene 67 o
L. Data StIUCIUTEScoviiiiieiitee e cerctr e e e rrtte e e e e s ssrsa e e s ssaneaeas e aees 67 v
2. Z-DUFFEMING ..ottt ettt 67 3]
VI, CONCLUSIONS ...cococve st 71 N2
A. THE USER INTERFACE ...covovvvoecoereoreeeeeeeeeseseeeeeeesessesssesesessssssensnenes 71 ot
B. THREE-DIMENSIONAL DISPLAYcccooooiiiviiiiieeeecee e, 72 ,%f
) C. FUTURE WORKoooiooooioeeeoeeeeeos oot 73 0
APPENDIX A - DEFENSE MAPING AGENCY TAPESccoccoeiviieievreen, 76 t*
APPENDIX B - DIGITAL TERRAIN ELEVATION DATA FORMAT 77 :_
APPENDIX C - ROUTINES TO USE DMA DIGITAL TERRAIN DATA 95]
ot
Ky

N -,-"r'[:- N MO AV IS N ARSI R R ST IR I U TS W SR . .";'.'.‘
o~ by ¢ oy m&kﬂ&{inﬁt\f\ﬂ\ . .\\;}J\.',\'. At e e T T

APPENDIX D - ROUTINES TO DRAW TERRAIN POLYGONScccccoeuc
APPENDIX E - ROUTINES TO DRAW THE TERRAINccccooiveninrencninnnn
APPENDIX F - MULTIPLE ARRAY DATA STRUCTUREcccoovvrrrnn
APPENDIX G - HIERARCICAL DATA STRUCTURE WITH POINTERS

...

LIST OF REFERENCEScccoviitiiicnmniie vttt sssnasscns
INITIAL DISTRIBUTION LISTcociiiiiiiininniiincniisr e

-
'

85 e
.{.

>
x

s

-
s

vi

L
o

8 '.j' ‘—'-.g}'s

l.'

3
‘e
.
.

L« .;“'.l"',"‘.‘ls. ;‘. !‘H " 2t abat v N L7 L ‘.'l " V' -) 9, ‘ v _,v “i” e ¢ Ju‘ 7 d ., \ v da W h_ - \\‘- . “.(,‘- v ‘ K \ “-‘-.-~~.‘- ‘.
b
-\.'1
4
4
’ h
’
a
9
o~
i »
LIST OF FIGURES 7
3
| 3 ,,:- ¥
| Figure 3.1 MEX System Menu MEX User Defined Menu 17 0y
’ Figure 3.2 The NTDS Virtual Control Panelcccoocvevvcnnireninerensrncrrnrinranns 22
. Figure 3.3 Tiled WindOWSccociiiiiininiiiniiiiniiinenicitinseeceee s e 25 o
| Figure 3.4 Layered WindOWwsccoeunviimiiininiiiiiiencinenc i 26 ~
Figure 3.5 NTDS WINAOWo.covvvernrerirnieesnsssseeeessssesscssssessssaesessssesssesseessseeee 29 Y
Figure 3.6 Information BOXccccociniiiiniiciinininccie et ste e eve s eens 30 : ‘
Figure 3.7 Shifted Grid Displaycccccoiviiiininicniiinie e e 31 !‘
Figure 4.1 Maps of Japan Databasec.cccoeviiincncnncnininicecse e 39 :r\- '
M
Figure 4.2 Diagram of Cell Data Storagecccoevvivervnnineninivnieneeiereenenns 41 ol
Figure 5.1 View Area Covers a Maximum of Four Cells of Data 44 % X
Figure 5.2 Visibility THANGIEco..vvumvrereeeeieeeeeeers e er e sesaes e 47 ;:-
Figure 5.3 Area Between Data Points as Planar Trianglesccccccovvienenennn. 49 o
Figure 5.4 Shoreline POLyGONScccoccvviiuiriiiniiiieiiiiesiceeie e ertecressecvesaesne e 50 h
Figure 5.5 Sample Shorelineccoccvviiiiiiiiiiiiiniiiniiceesr e eree s 51 -'r
Figure 5.6 Contrast Single and Multi ReSOIUtionccccoeeuevvvivveenieieeeerenenenns 52 _'t
Figure 5.7 Multiple Cells Drawn With View Boundsc...c.ccocevverirerinerennann. 55 y
Figure 5.8 Calculation of Level One and Level Two Datacccceevevirneennenenne. 59 Dy,
Figure 5.9 Pointer Data StUCIUIEccooviviiiiiverereiieee et ssesesseneseees 61 e,
] Figure 5.10 Resolution BOUNAArycuvvecvveeieriesinreceincseneisees e sesssessenees 63 Y
. Figure 5.11 Z-buffer Changing COBStLNEcoovevursvereeeesseeserssereseeesenes 65 W
Figure 5.12 Picture With Corrections to Z-bufferingccoecvvveveericcrievennnn.e. 66 '!}
Figure 5.13 Color Photos of the Terrain DiSPIaycovovvemeveeereerrerreressnenns 69 3
Figure 5.14 Color Photos of the Terrain Displayc..cccooereninineiiinncrenenanns 70 e
J
&
i)
4 =
\ .
t 3
l\ ‘
Bt
. =
g - -\
))
b
vii Ny

“9.8% . &° NS IPRLUNINA LN % N N WYL " " - 7 - Y -
IR PO PO PO MO N M TR NI Y VX VY U AR X OO RN M TN T U N e T R DX PRI 2 ¥ Vo SO Vv T TRINETFE T TOTTIVR Val

o o &~

I. OVERVIEW

T

>y
"
.

-

A. THE COMMAND AND CONTROL WORKSTATICN
The amount of information that the modem day commander must assimilate is

staggering. There are inputs from a multitude of sensors: NTDS, radars, sonar. There are

e e e e A

situation reports, intelligence reports and messages of various tyres continually arriving.
. On top of this, the commander has at his disposal a database of intelligence information

made up of charts and publications that cannot be quickly accessed. The commander

- e

needs a tool that gives him instant access to this information, presenting it in a way that
allows him to quickly grasp the facts and make a decision. He should be able to easily
manipulate the data to show only the information pertinent for the situation at hand and

5 that data should be up to date and instantly intelligible. It should be easy to display new

P
g or amplifying information as situations change and evolve.
K This study is the preliminary work for the design and implementation of a tool to
~‘ provide the commander easy access to command and control information, the Command
N and Control Workstation of the future (CCWF). The goal of this work is the
; development of the visualization tools and techniques required to build a prototype
. workstation with a flexible user-friendly interface and a real-time, three-dimensional
1 display that possesses the characteristics described above. The CCWF is implemented on
) inexpensive workstations available in the Graphics and Video Laboratory of the
Department of Computer Science at the Naval Postgraduate School.
. 1. Discussion

The graphical and computational power of low cost workstations can be
utilized to build a effective system that meets or exceeds our goals for a command and
:
i 1
I

¥
\.
{

-

B 0 - Ty T M e e = - O Ry Sy
A A A N O A T A LA e A ARG AS IR OIS A W v. oy f " . -(‘ W N , Lo "Hj‘-f\.i}'..-“'.bj\;h ‘Jﬁ‘-""f*":. 3 :“" !

control workstation. Areas that we have explored are: networking between multiple
workstations and mini-computers, the use of multiple windows to help provide an easily

managed, user friendly interface, and a real time three-dimensional display.

a. Color

Due to expense, color graphics have not been utilized in the development
of current command and control displays. The advent of inexpensive graphics
workstations has made the use of color not only possible but a cost effective means to
make the display easier for the user to interpret. The user must read and decode the

textual information before he can extract the information he requires. With such

systems, it is hard to find the particular bit of information needed from a screen full of

text. The textual representation can be improved by coding the information. In coding,
the original stimulus or information is converted to a new form and displayed
symbolically. Coding can make the information easier to find and interpret than direct
Iepiescitiaiiuin. Current couunand and coitrol displays use a special military symbology
to represent information but do not use color as a coding medium. Color is an effective
dimension of coding that has been shown to improve human response time. [Ref. 1]
Color is particularly effective in searching tasks where one is scanning through data
looking for information of a specific type, such as scanning a command and control
display for enemy aircraft. With the dropping cost of color displays, it no longer makes
sense to utilize only monochrome when the combination of current symbology with color
can increase the effectiveness of our displays. Color will particularly improve
performance for the monitor who has other tasks besides watching the scope. The radar
operator whose job is tracking contacts on the radar screen knows what each contact is.
Color will make it easier for the supervisor to occasionally glance at the screen and

quickly comprehend the information presented.

I T Y N A A N A T T T T N Oy T P

"I %] } e S 3 . A
2K N P _- ‘ .n~ %y L

3 b

Lt

-

r

T
P %)

A e

L

“‘Iv 1]

]
%
R
&)
:\ (
»
’
v
X

\J
U

Yoy

gl

4,09 Vol 6 g%, 5 dab vay 1.0 Y0 Myl Fan <y el U N TR Y IR I SIS T T 80 3% 50 iV Ata 8% ‘ghad Ya g% %2 4% TN Y Y YR

oy A

-

|~ N
]
>
.
w4
b. Networking Pl
@
A command and control workstation has to rely heavily on networking. It : X
has to handle several thousand contacts from tactical data systems such as NTDS, as well Q:
.h
)
as entries from various intelligence sources. These contacts have to be continuously g
updated over the network to insure that the information that is displayed is as up to date o
2r]
. [, ")
as possible. i
KRt
R
The network can be used to allow multiple workstations to access a g
®
common database of intelligence and amplifying information that allows the user to :-
et
display digitized intelligence photos or provide parameters on weapon systems and :E:
&
platforms. The displays can obtain and display fixed land based objects of interest like EhY
®
surface to air missile sites or targets for an air strike. This ability makes the workstation <
useful fci planning and training purposes as well as command and control in the heat of ':"f
RS
X
battle. o
*
The network also has to handle any communication between the e
G
. 2,
workstations. Along with an exchange of information at the system level, a mail system o
s
. - . . : ey
can help a user more effectively manage his time by evaluating an incoming message 2N
®
and iiforming the user that mail Las arrived by displaying the message’s precedence and ?" 3
, A2
=
subject line. The user can then, at his convenience, open a message window and examine :‘;
Ny
. . s
his mail. 0
c. Windows -
The user interface is an important design decision in any system, ::_-}
-
especially when designing a command and control workstation. The purpose of 2
.._.G 2
command and control workstations is to assist the user by displaying needed information byl
L} '\
’
quickly, in 2 manner that is easy to understand. The user interface needs to be easy to f'
.) ":.
operate and quick to change, allowing the user to manipulate the display with a minimum
.‘:-. ¥
Y
3 =
:"v\.
N
\ LY
LR
s
AT AT AT A AT AT - A SUSAR LY N

A T N Y T T e e S
WP AT RS PN A AL PSR T IS R PO &

¥

rRPTRIT 9a a0 8 0a"sTa"Aba Yot 2ot TR

of fuss and bother. A technique that has become common on commercial workstations
and personal computers is the use of windows. A window is simply a virtual display. One
or more windows can be open and displayed on a computer monitor at one time.
Operations that are fairly standard on all window systems allow the window to be moved
about the screen and the size changed. The windows can be tiled so all windows can be
seen or stacked where one window overlaps all or part of the other windows. Push and
pop commands cause a window to be drawn on the bottom or top of the stack. Most
window interfaces use a mouse controlled cursor to make these operations even easier
but a "track ball" familiar to users of current naval command and control systems can be
used with equal ease. Multiple windows allow the user to set up his display depending on
the current situation and his particular preferences. This set up can be easily changed as
the need of the user changes. A possible window set up for a command and control
workstation might be: one small window displaying information such as time, own ship’s
position, course and speed; two windows with two dimensional radar type displays, one
set up with a short range showing surface tracks, the other long range air tracks; another
window set up with a chart of the area showing map information as well as contact
information; and finally a simulated three- dimensional view that gives the user a "real
world" perspective on the situation. By using a mouse, amplifying information can be
shown on objects in any of the windows simply by pointing and clicking. As the situation
changes, windows can be opened, closed, moved, and the size modified to form a display
that presents the required information in a manner that can be easily understood and

acted upon.

d. Three-Dimensional View
There is a saying that a picture is better than a thousand words. This is not

only true because we can get more than a thousand words of information into one picture

TP e

.,{:’.,(._’-{'\:’.‘. N A N e ',_',_;_:’;,- R NN

- AU AT - * < ,,"’,‘. AL Lo S

f.

—¥ »
o

e
.. [

TR
.‘ |' < l. 5.

S

L e
<

’

2L SIS,
- - - I

oy

o
l‘ J

b
/"I‘.ISI v

5

VeSO
_‘1

e

2
I
"1‘1.

N
“x
N

U |
)

.
L

Tul
Pl
<

".’l'l""
o~ ",{"“)
— ’ e

3N
o
o

Loy g
YA
s

Pd

5

l'.‘
)

-
3
I~
)
«
Z 3
4
'
-
2
a
!
‘74
’.
’l
4
"l
pl
’
.
3
"‘
v
‘g
o
»
»
X
»
2
4
P2
4
[
o
[4
s
>4

&

o,
""";'1*-‘

'~.""'s;~'o

x

toss

but because a human user can extract the information quicker and easier. We have spent

]

l".

v

our whole lives evaluating situations in three-dimensions. Every time we drive a car or

Pt

walk across the street, our mind instantly evaluates what we see and determines the

appropriate action. Up to now, that has not been possible in the command and control

X .&\.":5

environment. We have relied on two dimensional displays and written status boards that

T
AR
.

« s e
1l

present a picture of the situation that our mind must interpret before making a decision. If
the information can be presented in the three-dimensional form that a user is used to
dealing with, he can more intuitively grasp the situation and act accordingly. As usual,

the science-fiction writers have lead the way for technology to follow. In the final battle

scene of the movie "STAR WARS", the commanders coordinating the attack are all Yo
. . . . o
observing and making their decisions based on a large three-dimensional holographic o
ol
. KT
display. Current technology isn’t quite to that point yet but we can present excellent, f.:
“rd
)
real-time, three-dimensional animation on current graphics workstations. -::
LS
[J
How useful can such a three-dimensional display really be? The modem '.1
-
day commander has to keep thousands of facts and figures in his head about weapons ,‘:2
-~
~
platforms, sensors, weapons, effective ranges, what is on what ship, what planes have :’:
o
what capabilities, etc. He then has to apply this information to the current situation, -
A
picturing in his head the weapons envelopes relative to himself and other contacts. How :.':
-'. -
. AT
much easier would it be if he could look at a three-dimensional representation showing R
. . . ®
contacts and selected weapons envelopes? He could almost instantly assess the situation NG
b
and act. \
>y
An amphibious landing is another instance where this three-dimensional W
. . . . 13 . .
view is valuable. Landing areas and boat lanes can be marked. By using a digital terrair. 7
l-'.u ‘
database, the land can be accurately displayed. Landmarks, friendly assets and enemy o
. positions can be displayed. Such a display gives the commander an accurate picture of S
L 4
."\.
ey
IJ:
A
R
&0
-‘"

IR SR R L TP SO
AN A AL IS . BN
PR T, P R T A O P

the situation to which he can immediately understand and react. Solutions might even
seem more obvious when he can actually look the situation over. A three-dimensional
display of this nature can give the commander more understandable information in a

shorter time then status boards, two-dimensional displays and contour maps ever will.

This three-dimensional display has more uses than just tactical situations.
Planning and training are two other areas where this display is useful. To plan an air
strike against a land target, we can first enter all intelligence information on radars,
weapons installations, airfields, and possible targets. We can then display weapons and
radar envelopes ana look for the best possible route. After plans are made, the display
can be used to brief the air crews who will be flying the mission. They can get an
accurate picture of what they can expect to see as the mission proceeds. The simulated
display can be supplemented with digitized intelligence photos, if available. The display

can then be used to monitor the actual mission in progress.

Three-dimensional displays with real time animation have a place in the
command and control environment. Such a display gives the user a more intuitive grasp
of the conditions, making it easier and faster for him to interpret the situation. Current
low cost graphics workstations are capable of producing a quality three-dimensional

display that can greatly aid command and control.

B. SCGPE OF THIS STUDY

The scope of this effort is clearly quite broad. It builds upon previous work
bringing us a step closer to the ideal command and control workstation. The focus is in
two areas. The first area is to provide a user interface that is consistent with the overall
goals for the system. We use an interactive system of multiple display windows

controlled with a mouse. The second area is to start development of a realistic, real-time,

x
P4

three-dimensional display using Defense Mapping Agency Digital Terrain Elevation
Data. The goal of this system is to provide the data structures and algorithms required to

realistically display the sea/land environment with real time motion simulation.

..\. ey LAYy AR SR

e e e e N e N T AT AT N

et vae e
e S T BN T AT

. -\. W~

o0t

. ALY
_-0 xl’;'\n':. '\n‘

-l
-

-~

,_
X,
(v
o

ik

b

e

S

WP,
-

@ S
A

b

2 ® B

o P Y 4
L

o e

2L
UM

LA

¢
hEN

-

AN

Ve ¥ i g) -y N~ - ;- -y .
".n’! l'!’t‘!‘:.!.l.!".- [.‘(’! l'!‘l‘?'tt!l‘- A w v | .a .bl .Q. .0. " f'-'(v IR N S N Y e

LT WG A WY AN T ARR RN RN '~1'v.h et Bab B et Bes ‘, -'r- Vate” 8" % a0yt "'.'l‘i"o.'l..u v -'qvq

. FOCUS

A. PRELIMINARY RESEARCH

Two computer graphics research projects at the Naval Postgraduate School have
lead directly to the research on the current command and control workstation [Refs. 2, 3].
Adams developed a two-dimensional command and control display using standard NTDS
symbology with color coding added. This system received track information over a local
ethernet from another workstation. Adams’ work looked at the networking capabilities
of graphics workstations as applied to a command and control system and showed that
the workstation can be effectively used as a color NTDS display handling the standard
operations [Ref. 2]. What remained was to improve the user interface and test the
practicality of using windows to provide multiple, separately controlled displa ’s on one

workstation.

The second project "FOG-M" started the groundwork for a three-dimensional
display, by using graphics workstations to develop a flight simulator using actual digital
terrain elevation data [Ref. 3]. The FOG-M system, while producing excellent images,
had several limitations which had to be overcome before it could be used in a command
and control display. An important factor in the design of a simulator is for it to look
realistic but it is often not important for it to be accurate. Graphics "tricks” can be
employed to produce a realistic looking image with a minimum of work for the
computer. In the FOG-M system, the terrain is only drawn out to a distance of two
kilometers from the viewing position, although it gives the appearance of being much

farther . For use in a real time command and control system, the terrain must be depicted

YR

Ry
3
accurately and enough of it must be drawn to show the area of actual visibility. At a ..‘
) height of eye of only two meters, visibility to the horizon is three miles [Ref. 4]. :& X
|
| B. WINDOWS 1:
There are many windowing systems available on graphics workstations. They are all L.
the same in principle and provide about the same operations but differ in the actual user “'
interface. No industry standard has yet emerged but any system’s operation can be .::
simulated by writing an abstract system over the top of the resident system. This !
conforms to good software engineering practices by making the code more portable since .:::‘:"
changes to the resident system only effect the procedures that make up the abstract ::::
window system. Griggs developed a window manager abstraction that modeled the "i
window systems popular on some personal computers [Ref. 5]. This windowing system ;.rh
can be modified to meet the needs of the command and control workstation by providing '{*.
multiple window capability to the work done in [Ref. 2]. By adding an extra layer of 1
software, some of the performance of the host workstation is lost. The degradation of the ?
system is not significant in the two-dimensional system but for the three-dimensional t)
display the performance of the host computer needs to be pushed to its limit to provide ::;
the best possible animation of ccmplex scenes involving thousands of filled polygons. ;
For this purpose, the native window manager on the IRIS 4D graphics workstation is :'E%
utilized to provide the user interface. .:
N

C. THREE-DIMENSIONAL DISPLAY ‘(:
It is important that a tactical three-dimensional display render the scene accurately ":‘

and respond quickly. It is relatively easy to draw a complete and accurate picture when \
time is no object but a tactical display must be real-time to convey the required }::\:
information. In a tactical environment, the situation can change in a short period of time. _\‘;:'\.
If the information is several minutes old before it is displayed, it loses much of its .v.'
",
9 ,‘:
g

\‘..I
PNANY 2 WY ~ W e e e > e . N T ")
e A N A N T A AT A A A AT T W NS G A

” f '\‘.“II ' '."-f.'f;\(.‘-:\(_'r\(‘f. ‘-_‘. ‘.-r w .-1.\1 ", WA .."- AT
2t o g » {1 o al ot A

‘A AR Vol 62l VAt 2 010 Wk gl Vel Sak 0ap Oa) Pat anl Wel R WA U N MUY

usefulness. Enough information must be displayed to depict all aspects of the situation so
speed cannot be achieved by leaving out information. The display must update often
enough to give the user a sense of movement. This animation provides some of the

intuitive information that makes this type of display especially useful.

Three-dimensional scenes are normally rendered using filled polygons to
approximate curved surfaces. This cuts down on the computation time required t¢ show a
scene but accuracy is lost with the resolution of the polygons. In general, the more
polygons you draw the better the scene looks. It also takes a proportionally longer time to
draw the scene. The power of a graphics workstation is generally quantized by the
number of z-buffered, Gouraud shaded polygons that can be drawn in one second. Since
each manufacturer measures this value differently, comparisons are not definitive,
although it is a good indication of the capabilities of an individual model. The power of
graphics workstations is increasing at a fantastic rate with each new model that comes
into production. The graphic workstations in the Naval Postgraduate School’s Graphics
and Video Laboratory have kept up with these advances, staying on the leading edge of
current technology. The IRIS 2400, released in 1985 can draw 650 z-buffered, Gouraud
shaded polygons per second. The current models in use, the 3120 and 4D/70G have rates
of 1,000 and 5,500 respectively. The next upgrade to the 4D is to be released in May
1988 and is advertised to draw 60,000 z-buffered, Gouraud shaded polygons per second.
For a further comparison of these machines, see Table 2.1 [Ref.6]. With new
experimental architectures and multi-processor systems, the future is even brighter. Each
new advance makes the rendering of more complex scenes possible and the need for even
more powerful machines more apparent. Even with the advances of the near future,
machines will be pushed to their limit with real-time three-dimensional displays. Each

new advance’s additional graphical and computational power is quickly utilized. The key

10

YeR ettt

MgV ARR Rt 0 B §¥0 0%5 400 9u8 Bu® oV et Sa¥ Bo¥ SavoBe® gac Vie®

Table 2.1 COMPARISON OF SILICON GRAPHICS’ WORKSTATIONS

Machine Z-Buffered, Z-Buffered, CPU MIPS Flat-Shaded, Non- Flat-Shaded, Non-
Gouraud shaded Gouraud shaded Z-Buffered Po- Z-Buffered Po-
Polygons per Polygons per 15th lygons per second lygons per 15th
second second sccond

IRIS-3120 1,000 67 5,000 333
IRIS-4D/70G 5,500
IRIS-4D/70GT 60,000 4,000
*IRIS-4D/MP? 200,000
* under development

to producing a good, three-dimensional display still depends upon the programmer

writing efficient code to draw the best possible picture with the fewest possible polygons.

The FOG-M and VEH visual simulators, developed at NPS, used Defense Mapping

ST

Agency digital terrain elevation data from Fort Hunter Liggett Califomia for their

displays [Refs. 3,7]). There are graphic techniques or "tricks" that can be used to make a

'L...q'-‘g- -,

scene look realistic with fewer polygons. Some of these tricks were used in FOG-M and

VEH to draw exceptional scenes with a minimum number of polygons. Some of these

5

techniques sacrifice accuracy for performance. Unlike a simulation, a tactical three-

" - -

dimensional display must be both realistic and accurate. New methods must be found to
reduce the number of drawn polygons without giving up the accuracy. Images in FOG-M

and VEH were only drawn to a maximum distance of two kilometers reducing the

number of polygons that must be drawn. The appearance of greater distance was

achieved by using perspective settings like different lenses on a camera. Setting a wide

T]
»

WX

field of view in the perspective call gives the same effect as a wide-angle lens. Objects

that are in the background appear much farther away. Since the vertical resolution is not

affected by this technique, an additional scaling of the actual elevations gives a realistic,

e
> 2

although not always accurate, display of terrain. Since a tactical display must also be

T T

accurate, all the terrain that can be seen must be drawn in the correct perspective and the

T

elevations must be accurately represented. It requires a tremendous number of polygons

11

By TN PTG I P 3 I A LA LA TS Py MWW v W By Wy » - - LS I S T I WV MW
B R e T A e e S L o R R L X N I QR N Ly

O | O o0 U

PNy

i 0'® 28,0 ¢, 8% 8 0V8 20 %40 P 0.0 0 000 4" 0.0 8 0% 5400 0 4" 0% WX _ A o N 0 M ¥ ‘ ‘l.‘ e “ ‘ * "‘ !" .“"0“ N .'

to represent the visible terrain if all the terrain is drawn at the same resolution. Since
things in the distance cannot be seen as clearly as close by things, they do not need to be
drawn at the same resolution as those that are closer. The number of polygons drawn to
represent the terrain can be reduced if more polygons are used to represent the terrain
closest to the viewpoint while the terrain in the distance is drawn at a lower resolution

using fewer polygons.

D. SUMMATION

This study brings the command and control workstation of the future a couple of
steps closer. Both user interfaces with windows and techniques fo: drawing terrain in a
three-dimensional display have been studied and implemented. The focuses are to
provide a user-friendly program framework for future work on the command and control
workstation and to make an accurate and realistic real-time three-dimensional display of

digital terrain elevation data.

12

o
>

.- (. Ja -

¥

AL L,

sf..“:

rr,

JORR
NN

.
’,

PEETEXRAY
ol ulh -
s

ok e et

-~ ® e e

T PR R R N R T AR RN N N T T O @at R P et §a® Wat ¥ a% at Buc 02" 0" Uat Ba¥ Mav bal¥ Gut Bab §40 g2 et fa® $2° G4t Na La? be?,

A
2

o

III. WINDOWS AS A USER INTERFACE

The command and control workstation of the future (CCWF) is a tool designed to
present tactical information in a way that the user can easily interpret. Like any tool, its
only as good as its user interface. The CCWF must be designed with the user in mind. A
device that is complicated, or hard to use is likely to go unused even if it is functionally
perfect. Windows have been used to improve the interface of personal computers and
commercial workstations. Their use can also enhance the user interface of the command

and control systems used by the Department of Defense.

A. WINDOW DISPLAYS

Windows are the basis of the user interface for the CCWF. They provide flexibility
and the effect of many displays for the price of one. The technique of multiple windows
as a user interface is still maturing in the computer industry. There are many diverse
window management systems on the market but no industry standard has yet emerged.
The services provided by all the systems are similar and a viable user interface can be

developed under any of these systems.

1. Multiple Windows

The CCWF uses multiple windows on a single screen. Each window is used to
provide a particular type of information in a format that is easy for the user to
understand. There are windows for two-dimensional radar display, chart display, thiee-
dimensional display, and auxiliary information. All these windows cannot be shown on a
screen at one time. The user can select which windows to show, where on the screen it is

displayed and how big it is. The windows can interactively be opened, closed, moved, or

13

T o O G L v S o T iy T L R A T U R R R R RS

-
'~

W

....-“.
x, . -
-,

M AP AR O

'(l
.

- e, 1?‘& ..

AN

P ;u‘ "n"l"." [3

-~

5
o

Y aia s ap i i a8y gty ot gheT Pt e gt Wit e At BT 0 010"t 075 0 0 0 1 AN NI IR R ER i flecdin 475 470 Taet]

resized. They can be pushed or popped in order to be drawn under or over the other
windows. These operations allow the user to change the display according to the
particular needs of the current situation. The window system muét know where the
window is to be drawn, what size to make it, what to draw in the window, and how it

should be drawn, relative to the other windows.

2. Mice and Menus

The standard computer interface is the typewriter-type keyboard. Even with
special function keys, the user has to remember special codes and it takes multiple
keystrokes to accomplish simple operations. With a mouse or track ball controlled cursor,
an operation can be executed simply by pointing the cursor at a selection displayed in a
menu on the screen and hitting a button. The menu presents choices in easy to understand

text. All the user has to remember is how to get the menu and how to press a button.

The mouse controlled cursor can also select certain objects from a window. For
example, the user can bring up amplifying information about a contact by pointing at the
contact on the NTDS screen and pushing a button. This technique is currently used on
standard NTDS displays. The CCWF expands on this idea by having different cursor
modes. The user changes the cursor by pointing at a menu in the display. Each cursor has

a separate function relative to the window it is in.

3. Mice in Multiple Windows

Using a mouse with multiple, overlapping windows is a much more complex
problem then with a single window or tiled window structure. The system must
determine what window the mouse event occurs in. It would be nice for this operation to
be transparent to the user. The user points and the system knows which is the referred to
window. On a multi process system, the window system must also be able to determine

with which process the user is interacting.

14

Y e e o o Y 7 L B AT T T A S s £ L L T
Ca 5 b S &S A I I 3 '~ n - ' oa) . ', (l . 3 - ’

T o s Ay oy

3"

A

st a2%a 9 204" 0" 08" 00" WAt 02" 2% 10a* 2% €2% 1a0 Ral ol ‘Bt ot -t I t” a7 Uat g% Ga® 2 Ba® $a? 0at § 0 Bt Bl dad Rt So0 R0 G0 a0 000 RA RN A SRS

B. WINDOWS ON THE IRIS

The IRIS graphics workstations from Silicon Graphics Inc. were selected as the
primary graphics device for the NPS Graphics and Video Laboratory. These are
inexpensive, high power, high resolution, color computing systems for two-dimensional
and three-dimensional computer graphics. The IRIS provides a powerful set of graphics
primitives and custom VLSI circuits combined with conventional hardware and
software [Ref. 8]. The heart of the system is a special VLSI chip called the Geometry
Engine. A set of these chips make up a geometry pipeline that accepts points, vectors,
polygons, characters, and curves in user defined coordinates and transforms them to the
screen coordinate system. The pipeline does all rotations, transformations, clipping, and
scaling to draw the objects the correct size at the correct location. The IRIS has the
capability to use multiple user interface devices. Besides the standard keyboard, the unit
has a mouse with three control buttons. Optional equipment includes button and dial

boxes. A window management system is included as standard software on the IRIS.

1. Muluple Exposure Window Management System

The Multiple Exposure Window Management System (MEX) is a user
interface environment that controls multiple windows [Ref. 9). This system is a standard
part of the operating system on the IRIS 4D and an optional program that can be run on
the earlier models. It provides multiple windows, mouse controls and a pop-up menu
system. Multiple windows can be controlled by one process and several processes can
have windows open on the display at one time. This is a very powerful system that can be

used to design an exceptional user interface.

a. The Event Queue
The user communicates with the computer system through input devices.

He pushes a function key, types a message on the keyboard, uses a mouse, etc. There are

15

o & o 5d

S T o T N X P
'e 3

A A4

I AL T,

V. abs at gva aty gin @iagte §V0 4% A¥0 %8 8%0 00 R 00 0" 00 008 0¥ B2 Ba® Bat $a® 0a® G2 0a1029 020 02° 0ot 0y, .‘ .01"'-:“-'.- v

two ways for the input device to communicate with a process. The first is for the process
to read the value of every device. This is done every time through the main program
loop, even though the value of the device has not changed. This is known as polling the
devices. Another method is to send the controlling process a message whenever a change
in a device has occurred. The message is placed on a queue and the controlling process
checks to see if any messages have arrived. Polling a device is less efficient when values
are not frequently changing. Why read the device and act on the input when no change
has occurred? With an event queue, the system places a message on a queue each time a
change in state occurs on selected devices. The process can check for any and all input

by simply using a while loop to read and act upon all the messages in the queue.

while (queue not empty) do

{

process message

)

This way the process only takes time to act on changes and not on checking all the

devices every cycle through the loop.

This study is concerned with communication to a single process but is
implemented on a multi-process system. The window manager on IRIS is designed to
work in a multi-process environment where several processes running concurrently might
have displays open on the screen. One process must be designated to receive input. This
is called input-focus on the IRIS system and can be changed interactively using the
mouse and MEX menus. All events are placed on the queue of the process with input-

focus assigned.

b. Pop-Up Menus
Menus are provided by the IRIS window manager to make the interface

between the user and the system as easy as possible. These menus are controlled by the

16

P

Lo 2N 2% 2 oP L gt o} i‘.'\-‘hf'n"
M B B r

P10 St it B PR L A L P S I I I L O L U P S L S T Ca -
N M W e o & W P Lo o P ol S T VPO AL SO A S P, 2 .

AR,

2 ¥ P

1%
o

AL P

L

a7 g0

P Ay

3

.r-‘-

'4‘. :}l

a ‘l‘.,‘.'r"ln' ‘

DB IR
2

At

(@5

¥

P

NI IR PR
* 4@ 2
‘!'"'{'_' '.'l.‘t;‘ \',&".\‘r

»

® i

C &)

X

PPy

AR
:- .'-
‘84

$

P S P
LIV 0 R
- .‘~.|..'l‘

R AL

I %8060 10 6 A A A A Rt gty W W AT WL W M L e e W T T U UL O X e g% Y o Patit st A Sl _And

2 @ A

AE2ENS
-t.‘- -,

mouse and appear at the cursor location when the right mouse button is pressed [Ref. 9].
_Keeping the right mouse button pressed and moving the mouse highlights the different

menu selections. When the correct menu selection is highlighted, the mouse button is

released. The selection is then executed and the menu disappears.

@ {4 NI @

The MEX system uses a predefined pop-up menu to control window

o

q:‘

operations. Figure 3.1 shows the operations that can be executed from this menu. This -
o
menu is activated by placing the cursor in the title box of the window that requires the :ﬁ,
action and holding down the right mouse button. >
o
There are also user defined menus. These menus are defined in the PG
application program. When this menu is executed, a message is placed on the "
applications event queue. Input from the mouse and menu goes to the process with input !_‘,
.
focus. \]
.‘:
’
<
el
S
-
== mex = = command=" .
attach help B

select new window » | NTDS window]
move NTDS cont chart window P :d
reshape I 3D window
pop
push
kitl

)
'

A a7

2

3.
b

w ,"l. Sl A
3 r

Figure 3.1 MEX System Menu MEX User Defined Menu

c. Window Management

The IRIS window manager has an excellent set of routines to manage
windows from within a user application. The application program can open and close
windows, changing the display based on the program or user input. For example, if the
application receives a message from another unit, it can open a window and display a
message telling the user what has happened. The user can then close the window with

some predefined command, mouse button, return key, etc.

Whenever a window is opened, the system retumns an identifier to that
window. The graphics window identifier (GID) is a long integer that is used to identify
what window is being referred to in a program. This value is used to close a window or
set the window to receive graphic input. Only one window at a time can be set to receive
graphics input. Most of the MEX procedures act on the window that is set to receive
graphics input.

The system allows the programmer to set certain constraints on a window.
Maximum and minimum size can be specified, the X to Y aspect ratio can be set, or the
window position and size can be fixed. All these commands can be changed by the

, program after the window has been opened. If constraints are set, the user cannot violate

these constraints from the MEX interactive menu.

; All the operations in the MEX command menu can be executed from
within the program, allowing the programmer to devise a window control system that

meets the needs of a particular application.

C. IMPLEMENTATION
MEX was designed to run on a multi-processing system and works best with many

processes, each with one graphics window. This study is primarily looking at a system

18

Attt L P R Ry B e BT LAY 1 e R g

“y

v *,".‘-'n

.

)]

SR

4 &5

A

v

'@ x
L)

Yy

v
"'i

PaCALs

AL

94

—~

- ya"

¥

BRA 0,000 1V an ol U VAl e Vel D Valh dad v ~ O Y N I

where one program, the command and control workstation, is controlling multiple
windows. The built in functions of MEX need to be expanded to keep track of the

different windows.

Enhancing the program manager to meet the needs of the command and control
workstation can be done in two ways. An abstract window manager can be constructed
using the software engineering principle of information hiding. This abstract window
manager would consist of procedures that would call the appropriate MEX functions and
keep needed information in its own data structures. The programmer calls procedures in
the abstract manager and does not deal with MEX directly. A basic abstract manager was
developed by Larry Griggs in [Ref. 5]. The other method would be to develop a data
structure that would maintain the information needed to control the windows using MEX
calls directly. This method does not make the software easily portable, but it is more
efficient. By removing a layer of procedure calls between the user application and the
system window manager, performance is improved and the complexity of the program,

as a whole, is improved.

The MEX pop-up menu system is not always the best way to present choices to the
user. If there are many possible choices, pop-up menus can become confusing and hard
to manage. To keep the interface simple, multiple menus are used with each menu

designed to present its choices in a way that makes it easy for the user to make his

selections.

1. Menus in a Simple Interface

Operation of the command and control workstation allows the user to make
many choices about the configuration and operation of the workstation. Placing all the
choices in one MEX menu with roll-over submenus presents the user with a menu that is

too complex to be easily used. Another problem is with the MEX system. There is no

19

W W T W Y ¥ T AT R R aT T
Vit VP 2 0 % DS 2{2’1}:{& WV }:' }:R'. 1':;(7:&1 \\L x’:;:’;:‘x .? ST

LI

x‘-LV}“'\

b L g ol b g
D K XXX

¥ P

>
B Lol

b .l“’“ - :’::'_\-

>]
-
L

ciol e

#

u."'.

s
RS

L}

O T Y T g
S S

; ‘.. A

Y
s -

- sl Y . - - - 9 - e > g o Balb'bel’ .
oot ad N tar A LTSRS L tal ALt Se b ot & AV 2 AR LS S ARAN AL A ERA SR AU AU A G AT Gl i ot Syt 4yt &s.
,

2 '
& .‘

b "2 W P W W ¥ 13-

way to select several things from a menu at once. There are two parts in the solution to
these problems. The first is to modify the menu depending on the possible choices the . .
user can make from his current state and which window the cursor is over at the time of
the call. This allows the user to see only the choices that make sense for his current state

and window. The second part of this solution is to take infrequent choices, such as

configuration and set-up options and options that don’t work well in the pop-up menu iy
3.
system, and place them in other menu systems that present the choices in a better way. N
i
: a. Multiple Menus z
¢
Presenting different menus for different situations and windows requires et
L}
. . . [
that the program be able to teli which window the cursor is over when the user calls a ;
)
menu. This is not a built in function of MEX but is fairly easy to do. The windows are -3
drawn in a stack. When a new window is opened, it is placed on the top of the stack. -'
When a push is ordered for a particular window, it is moved to the bottom of the stack :
. . . .)
where it is drawn under all the other windows. A pop operation moves the window to the bt
top of the stack. The main program needs to keep track of where each window is on the iy
[§¥
.-
stack. When a menu is called, the program starts at the top of the stack and checks each !
. - .)
window to see if the coordinates of the cursor position falls .isice the window boundary. i
0
The first window that succeeds is the window the user is referring to in his request. The ::
. . . o
following code shows a C function that returns the GID of the window where the cursor e
L
r is or a -1 for error. '
< %
y /* array of graphic window identifiers */ .
: /* windows[0] is the top window */
{ GID windows [10]; 3
/* function which_window returns the GID of the top !. _
! widcw where the input X/Y parameters lie inside -::N
the window boundary -~/ ~

4

-

GID which_window(m..usex,mousey)

PR

APWLE SPENPAEIOA] WO PP SOMCAON 2 OO U R W R RO U RN IO I AR AT Y N LY O U I NN TR Y Y IV VN IV SN TN TSN Y Y LY DN WYY Y Y.

! found = FALSE; /* initialize */
i=20;

while((not found)or(i <= number of windows))

{
/* make window to be checked current graphics window
so following procedures will refer to correct window */
winset(windows([i]);

e e de

/* get window coordinates */
4 getsize(sizex,sizey);
getorigin(originx,originy);

- -

if (mousex > originx) and (mousex < originx + sizex) and
(mousey > originy) and (mousey < originy + sizey) then

found = TRUE;
else
i=i+1;

M

}/* while */
if (i > number of windows)
return(-1); /* not in any of the windows */
else
return(windows[i1}); /* the GID of the first window found

; -

; b. A Virtual Control Panel
0 A typical NTDS display has the capability to filter out contact types. This
simplifies the display by only showing the contacts that the user wants to see. This
feature is controlled by a panel of hardware switches on the console. The command and
control workstation of the future can show multiple NTDS displays on one screen. The
controls for multiple displays are too varied and complex for a hardware control panel.
Interactive menus must be used to control the different teatures of the workstation. A
virtual control panel is used to set up an NTDS display window. The user positions the
cursor over the NTDS window he wishes to change. The pop-up menu for this window
has NTDS control as one of the selections. When this selection is executed, a new
. window is opened as a virtual control panel (see Figure 3.2). The cursor is bound to the
inside of this window and no other action can be executed until the user is through setting

the controls. The virtual control panel is a table of boxes, each box is labeled according

21

) L Sy
% N R AT T T A AT TN N T AT

TR RN AU BV VO W7 Wt T T PO TON U PO 0 M e T KW PR Yoe 0 O Y TR Y I I VO O e s T O

Figure 3.2 The NTDS Virtual Control Panel

to its function and color coded to indicate its setting. Red is off and blue is on. The
"switch" is toggled by pointing the cursor at the appropriate box and clicking the left
mouse button. The color changes indicating a new setting for that switch. Changes to the
panel can be made until the exit box is pressed. The window is then closed and any
changes are entered into the user record of the window where the execution of the pop-up
menu occurred. This allows each of the NTDS displays to be controlled separately and
display ;1 variety of information. One window can show the air picture, one the surface

and another can be set to display only hostile units.

PN e

Saf "2l “' "

Sl

AR

|

LA LA O Y

r S N)

5 R L R
oy .f-,.'.. T

-

® SRR

l"‘
LA

L
2 _s_s
AP

‘s

.

s ; .- ..‘:,l:.

:&‘t'i

o
ST

phf o

w - v
5
}—

o
TR
Cm el -
a2’

-“

T,

N YT YU

e

o~

N P

R B N B NN e e

A

2Tae AATS A

e A

HEIFFXEE

-
-

LFRN TR

L TR]

2. An Abstract Window Manager

The purpose of this preliminary version of the command and control
workstation is to demonstrate the functionality of using multiple windows and menus in
developing the user interface. The starting point of this program is the commander’s
display system developed by Rodney Adams [Ref. 2]. The commander’s display system
uses color graphics to display a single NTDS radar display. Windows are not used in this
program. A simple abstraction of a window management system was developed by
Larry Griggs for his network monitor [Ref. 5]. Griggs’ window manager simulates the
user interface used in some popular personal computers. The windows are controlled by
clicking the mouse in certain predefined regions in each window. For example, holding
the mouse button down in the lower right corner of the window then moving the mouse
to a new position, changes the size and shape of the window. This is in contrast to the
MEX system, where windows are controlled with a special pop-up menu. Many of the

procedures used in this abstraction are direct calls to MEX procedures.

The current version of the CCWF uses parts of the NTDS display from Adams,
and an expanded and modified version of the Griggs window manager. This program
runs on the IRIS 3120 under the MEX window management system. This preliminary
program demonstrates the operations required by the user interface for the command and

control workstation.

a. Multiple Windows
The abstract window manager solves some of the problems in the MEX
system. It keeps track of each window, its size, position, and content. It has procedures
that evaluate in which window a mouse event occurred. Additions have been made to
allow constraints to be placed on each individual window. Predefined constraints can be

set by the programmer for maximum size, minimum size, and X/Y aspect ratio. The

23

L R U W W MU U MU U VU NG R YU U WG TUW S TS ® 08" 0t Rt e ®als a0y gat fak Sa la® 02" 0a¥ §a*
- (54 o8 M

P A 2

] -
SO

e s R N R N e A e A N R P N A S W R

S ASaRTe 4V T h L it gy @a9 Bt gat faen ol VR atg aie TN 20 0 8.0 P "84 a8 Eah 60 Pal ad 0h g 40t ei gV et gty gl rghe qVn gF e gra’

aspect ratio is used for the NTDS display to keep the scale the same in the x and y
direction. This keeps the perspective constant so the display looks "right” when the size
of the window is changed. The shape of the window remains constant. The information
to be displayed in the window is scaled to match the window size. Multiple open
windows can be shown tiled, Figure 3.3, or overlapped, Figure 3.4, and moved around to

give the user a picture that is easiest for him to interpret.

(1) Data Structures. Window information needs to be saved when
multiple windows are used in one program. The abstract window manager hides this
information in a package of procedures that can be called by the programmer to control

the multiple windows. The following is the data structure used in this abstraction.

/* structure used to record information on each window */
typedef struct WindowType
{

/* the user provides these fields when he opens a window */

char title[50]; /* title to be displayed in title bar */
Object *obj; /* ptr to the object to be drawn in window */
short BackgroundFlag;/* boolean: does window always stay in

backgnd? if so, it can’t be moved,

popped or resized and should be as

large as the screen to avoid losing

a nomal window beneath it */
long refConl,refConZ; /* user uses these for any purpose he

likes. Refcon one is used as pointer

to user structure */

/* MIWM keeps these fields current */

o 00 8'0.0'0.0%0 0"
et b, Pp" ot P

int wid; /* IRIS-mex-provided unique window id */

long wx,wy; /* x,y dimensions of the window */

long orgx,orgy; /* screen coords of lower left corner of window*/
short max,min,aspect; /* are constraints set */

long maxx,maxy; /* constraint values */

long minx,miny;
float aspratio;
} Window;

24

.

-
- - -

v NG
pF >

P
l;.l

ST

ey

Apvava #p°

)

G\

oy e At

- 8 . e o A 5
PRI IRERAR, Bk S e R A RIS

ssb gL BREINGE

S

[

e

Y e

T LS AL AP Ay

Figure 3.3 Tiled Windows

T

e e e

25

e =R

-
e)

'

-

c N

Ty

LA)
% e '

5&'}*

SARA LRGN N

o e >
| 'Y

PO

A

o AE

l‘ ’1*)
o ag W

O T W
.07,

U

“pp
w 2 A%,

- T

AN LN AN K

-

-
AL LT]

Figure 3.4 Layered Windows

26

) « ,
S L S S

-
v,

’l.{l:. l:":' ’, J

2i@

7

L VLY » : - - - - N
Y \-'- ‘~'O.n -l- .' \." A ..-.l.

This record contains information that can only be accessed by the procedures in the

window management package. When the process needs to know what window a mouse

event occurred in, a package procedure called whichwindow() returns the information.

Another requirement imposed by multiple windows is keeping track
of what the user wants in each window. This information is application dependent and
should not be part of the abstract window manager. Each window has a user record that
has information about what the user wants drawn in each window. The following

structure is the user record format used in the CCWF implementation.

/* Data structure used to share user interaction

information, one user record is assigned to each

window. A record for an open window will be marked

as used */

typedef struct {

Object user_object; /*the object for this window*/
int win_type, /*int: type of window*/

Window *wind; /*pointer to window record*/

short wused; /*boolean: is this window in use*/

int center; /*index of contact at grid center*/
short info_box[MAXSYMBOLS]; /*which contacts show info box*/

short grid; /*boolean: show grid or not*/

short modifiers; /*boolean: display or not*/

short dr; /*display dr updates*/

short relative; /*relative or true display*/

short zoom; /[*number to indicate zoom status*/
short updown; /[*number to indicate shift left right*/
short leftright; /*number to indicate shift up down*/
short cursor; /*user can select 6 different cursors */
float grid_radius; /*user selected NIDS grid size*/

ftoat scale; /*"zoom" is used to alter this value*/
float x_offset; /*user-selected display offset*/

float y_offset; [*user-selected display offset*/

short Fair; /[*friendly air*/

short Nair; /*neutral air */

short Uair; /*unknown air */

short Sair; /*suspect air */

More Boolean Flags to filter contact types
one entry for each possible contact designation

Juser_struct;

These records are modified by the user through the use of various menus. There is a

maximum effective number of windows that can be open at one time. The data structure

27

TN OV O R R R A O TN) S0 a AT N e AN AN R EN 40008y (% A 0 et B0 gt T N i g g :i-
"n
)
o |
!
a 3
o
for the CCWF implementation is arbitrarily set at ten windows. The number of windows 2
that can be effectively handled depends on the complexity of the window contents. More ’,
then four NTDS windows slows the system to an unacceptable level on the IRIS-3120. "
ol
In order to know which user record to change, the window system ‘

must know what window the cursor is over and what user record is associated with that

window. Pointers bind the window structure and the user structure together when a new

. :
window is opened.
4
b. The Windows f;
The current system uses five types of windows. A window is used to %
“
display the NTDS control panel, another is used to display an intelligence photograph of :’
a selected contact type. These two windows are only open for a short time and must be -
-\ \
KN
closed before work continues. There is a background window that cannot be closed or ':‘_:
ol
sized. This window just provides a background for the display. It can be used to display :>

* o
1

help information or the three-dimensional view can be implemented in this window. The

g

e I gPX
A

two remaining are window types which show information, a 2-D radar and a chart

\
X
window. Other types of information windows can be easily added to the system. *. :
Multiple numbers of each of these windows can be used. The functionality of this system j:.
can be demonstrated with only one type of information window, the NTDS window. A E“{: ;
chart window selection is presented in the menu but its selection opens an empty :::\?
window. 7]
A
(1) Selecting Items From A Window. The IRIS graphics library E\
routines allow the user to select objects from the screen. This is controlled with the “. ‘
cursor and the left mouse button. When the left mc .se button is pressed the system is put ::{
in "pick" mode. Pick mode allows the program to determine what designated objects are :;‘,r '~
within a defined region around the cursor’s location. This process i> used by the abstract "3' '
i)

28

LI GEAB Le d N R Rttt o PR 010000 0010 0 €0 S0 0 B A Ot e ath g gt aty gUh are iatR. oiR aty ate g h gt gty atatalnt 0" i aia aRyV Rg bt byt gee

[

gt
3

P
™ X

window manager to determine if the user is trying to move or reshape the window. It is

also used to pick certain cbjects from the contents of the window. d

-

(2) NTDS Windows. The NTDS window shows features that can be

Pl

used in any of the windows. Besides the virtual control panel, there are three different

e

cursor modes, and 6 control boxes that act as a permanent menu. The different cursor

modes are selected by picking the cursor from the permanent menu on the right side of

R A
RN

the window (see Figure 3.5). Any of the cursors can be used to manipulate the windows

R,

S

_1 &= KTDS DISPLAY

e e -

- -
9L A

K AL A

R X X
C S o B ¥ v 3"

-
%t

IR LR

l‘J»J

-

Figure 3.5 NTDS Window

« s s a_m_ e -

" 29

e e -

g NN B T N) A Ty P S N N CS NP AP ARy
AAS A A RGP PN WIS PO

-,-\. v’- f-.’-.'-.’ '\.\ \ -. N ~. ~ »- L ' f.hff ..'

'\

TR YU NI RN Y T TR RO LSBTt aatada s JEatais AVAT R aTh gV g B gVl giientt g LN A, 10 Ao 0 Bt iR R AR il Bl Bl AL S0 TR 8 S0f, Sl ¥ad oSt Sai S iR

5

-

T

:
\j
v
(
: or select items from the permanent menu. The top cursor, an arrow, is the default cursor.
1
, When the arrow cursor is active and a contact symbol is picked from the window, an
#
! information box shows the contact’s course, speed, etc. The middle cursor, the one that
L4
X looks like a picture frame, displays a picture of the contact. This is just an example. This

- T

-
-

cursor could be used to show any amplifying information. For example, it could display
a menu and allow the user to select what type of amplifying information he wants to see.
Y The menu choices would vary depending on the information available about that

particular contact type. The third cursor looks like a sight and changes the window

origin. The center of the grid becomes the contact selected by the user. All movement is

W B

iy a8

[J

Figure 3.6 Information Box

30

e .

N g o e, e P T (o T o™ o Tt VT N R S T T AT A

IR A R A OO R, W B W R N i 2T 00 D nh a¥8 a0 % n i a s ate” 100" L tatlla® 840, 00 RV AT RY Yy ~ val_ 2 Voral say

’ .
* R
‘" “
0

' -
By ;
3 o
)

{

'

]

displayed relative to this contact’s course aad speed. The remainder of the permanent

menu allows the display to be shifted in the window to show the part of the area that is of

L

Y

j: interest. Figure 3.7 shows an NTDS window that has been shifted up and to the right.
t

)

: There are also zoom-in and zoom-out controls that focus on the
;: center of the display. The techniques used in the NTDS windows can be used in other
' windows to give the user quick and easy control over the display.

A

.

1

K)

i

W

i

[}

)

%

i

I‘ A

W

y ' Figure 3.7 Shifted Grid Display

k) | ‘

-’_‘f.'/.'c"-f‘\"?‘-'.-I"J'--"-f,'f“-‘ -'_-’-':-.'- v

A AOACINC N OV e T e T
& 6 A N A, S W L, P R R, Tl S P Sl B, TV 0, 0 N, T, Tl S, M0, S, S T Y R

W T P TR TN T T e e T e
R S Il A n L

. v e gt 2y, (AR TR LR G AR AR WS ATt Pal Sl Al R N B S B S Sl O) SR e ™
- - - - - » - - - . -

3. An Altemative to the Abstract Window Manager

Window controls are application dependent and can not be easily generalized
into an abstract manager. The application and the host computer define what information
needs to be saved about the windows. The two data structures used in the abstract
manager are bound together by pointers. The complexity of the program is improved if
the structures are combined and an application specific window manager is used. A
structure used in the prototype of the three-dimensional display places information

required by all windows in one record type.

typedef struct
{

/* the user provides these fields when he opens a window */

char title[50}; /* title to be displayed in title bar */
int Wintype; /* int representing window type, NIDS, Chart,
3D, etc. Will determine what type of
information is to be drawn in the window.*/
short BackgroundFlag; /* boolean: does window always stay
in backgnd? if so, it can’t bewmoved,
popped or resized and should be as
large as the screen to avoid losing a
normal window beneath it */
int Gid; /* IRIS-mex-prrvided unique window id */
long pointer; /* pointer to window specific record,
record will contain information
that is specific to the window type */

/* these values can also be obtained from MEX calls */

long wx,wy; /* x,y dimensions of the window */
long orgx,orgy; /* screen coords of lower left corpner of window*/

/* individual constraints for each window */
short max ,min,aspuct; /* are constraints sct */
long maxx,maxy; /* constraint values */
long minx,miny,;

float aspratio;
} Window;

Information that is window specific is placed in another structure that is pointed to by a
field in the main window record. The following record is the window type specific

structure used for the three-dimensional display.

32

.y ~o » - L) LT R A A B L R Ty 4 AT AT AN e .
k\‘f&'ﬁaﬁf\mﬁi;f'f\ﬁﬁﬁnﬁﬁ'Liﬁ*ﬁﬁﬂﬁ\iﬂ.aﬁ'.&xf ot B T W S T

T VY

& o
-
[p¥s WhepS

AASS

D NN

N

"2

s

-3

@ ARt

70 e

Ty 3

e

"y

.':‘/
A TR GG

x
LS

P

XTI

Je o,

~rr
A
-

Ty
N s
0

-

'l

MY

Pl Tl

-,

1,8°9,3 %2% ot Va0 "

R A AN A A U Y Y N Y Y Y N N AN S UN Y VWD Y I N W TN YWY " Y Y Y OO

typedef struct

int lat, /* lower left whole latitude of pos */

int longg; /* lower left whole longitude of pos */
float posx; /* position relative to lat longg in yards*/
float posz; /* position relative to lat longg in yards*/
float posy; /* altitude in yards above sea level */
floai crs; /* motion of viewpoint */

float spd; /* motion of viewpoint */

float lookdir; /* Chg view direction without course chg */
float lookang; /* angle down from vis horizon */

float max_vis; /* set maximum range, current 60 NM */

int attached; /* contact number attached to 0 if free */

short gridlines; /* show grid lines 7?7 */
Jviewpoint;

The MEX system controls windows with a pop-up menu that is called from the
window title bar. The window manager abstraction used in this study controls the
windows with the cursor in certain defined, but unlabeled, regions of the window. Both
techniques work and provide an easy to use interface. If an application specific window
manager needs to be implemented on top of the native window manager, performance
and complexity are improved if the applications window manager is as close as possible
to the native window manager. All the MEX system functions except push and pop can
be used directly from the MEX menu. There is no way to keep the window stack straight
if the system executes pushes and pops directly. The MEX system menu cannot be
changed by the application programmer to remove the unwanted functions. An
application menu system can be developed that calls the MEX routines from the
application program and stores the needed window information. Menu controlled
windows are easy to use and provides more flexibility then the method used in the Griggs

abstract manager.

D. CONCLUSIONS
Multiple windows with mouse controlled menus form a very powerful and flexible

user interface for the CCWF implementation. There is no real industry standard for

33

Fa.t

7

SRl ~ e

-
P

“w ¥

PTG

£S5 85855

e ¥
v V)
A

window management systems. Each manufacturer has designed their window interface to
work efficiently with specific hardware and applications in mind. Until a standard
interface emerges, different techniques should be considered. Design decisions should
not be based on the system used by some subset of the window oriented computers. By
programming a window manager that is application specific and that uses the native
window manager, a user interface that meets the nceds of the program can be developed
on any of the window systems. A production model of the CCWF will be a special
purpose computer. An efficient window manager for a special purpose computer must be
designed to take advantage of the hardware and provide all the functions required by the
specific application. The MEX system is an excellent window manager and will work
very well in this application. The new release of the IRIS window manager in the IRIS
4D/GT places a token on the event queue whenever a window is pushed or poped. A
function is also provided that will indicate where a particular window is in the stack. The
CCWEF, implimented on the IRIS 4D/GT, can use the native window manager directly.
The only information the application program needs to save is the GID of each window

and the information about what should be drawn in each window.

34

.,, ‘._._._.
LAREF R

I‘-

=

Ly T
";(4" '

'.';.‘('t e

»
4

® Sy

) C oo
s’«;a' I, 3 “a

’._"_1,".;‘.

-
.
»

R ,-(_p/‘l .?.:f‘:'
L0 LA

-9

N N R
v R,

Pstall s

A L,

o]
s

i o™

s

\

IV. DIGITAL TERRAIN DATA

To mode! the terrain over a particular area of the earth’s surface, a database
representing the actual terrain is required. This database should consist of a set of points
covering the area to be modeled and show the actual elevation of the terrain at these
points. In addition it would be nice to know more about the terrain at each of these
points so that future applications can add man-made structures, vegetation or color to
make the images more accurate and informative. The data used in this study is from the

Defense Mapping Agency’s Digital Terrain Elevation Data (DTED).

A. DEFENSE MAPPING AGENCY

The Defense Mapping Agency (DMA) was established in 1972, combining the
mapping, charting, and geodosy functions of the defense community into one
organization. Its mission is to provide Department of Defense users with "complete,
credible and effective mapping, charting, and geodetic products, services, and
training” [Ref. 10]. The DMA Combat Support Center in Brookmont, Maryland is
primarily responsible for the distribution of DMA products to the miljtary services. The
product of primary interest for use in a three-dimensional display is the Digital Landmass
System (DLMS) Database maintained by the DMA Aerospace Center, St. Louis,

Missouri.

1. Digital Landmass System Database

The DLMS database is in two parts, cultural features and terrain. The terrain
files have elevation data in meters above mean sea level. The cultural files have

information about the terrain. These two files are compatible. The horizontal position of

35

PN Ry B W -}-*!“v,n’- y}- ')l‘*"-)."'b 1- n -f‘ﬁ-f"q".*.f-frn'- -f'-‘. v-*-‘ n,w* -!
A s N LM N v W WY 90 W W Wh W 2 0%, »

0T NN R TR N TR TN 8 B W AT X 05 IR 1 0N 15)Y [X

25 085 00 a0 6y iataiia? WY Rt EaT faV AV HR¥ 2V, Y0 0" eV IRV AP 00t B Rat it St Fab Gab ot e Dot Qat got Gt 0at ot Pav fad G St R0 §ol (el Bab Gt ga¥ fot Sot faf S0 gt AW

the cultural data matches the terrain data insuring that features in the cultural files

coincide with the proper terrain elevation locations.

a. Resolution of Data
The DLMS database is available in two resolutions, level 1 is intended for
broad worldwide coverage and level 2 is intended to cover small areas of interest. The
interval between data points for level 1 resolution is three seconds of latitude arc or
approximately 100 yards. Level 2 data is presented in finer detail with a data interval of
one second of latitude arc. The corresponding interval of longitude changes with
increasing latitude. See Table 4.1 for exact intervals [Ref. 11].
b. Cultural Data
Cultural data is a generalized description and portrayal of planimetric
features. In other words, what the terrain looks like. This file is a complex data structure
that uses digital codes to describe a feature or area. Special codes are used to represent
the predominant surface material of a feature or area. A few of the categories used are
stone/brick, water, rock, soil, marsh, asphalt, and trees. In addition to the general surface
makeup, unique significant features are also stored. These features are divided into three
categories: areal features, liniear features and point features. Point features are unique

features less then 150m by 150m in size for level 1 resolution and 30m by 30m in level 2

Table 2. Terrain Data Interval

Zone Latitude Level 1 Level 2
lat. long. lat. long.
I 0°-50° N-S 3 x 3 seconds 1 x 1 second
I 50°-70° N-S 3 x 6 seconds 1 x 2 second
II 70°-75° N-S 3 x9seconds 1 x 3 second
v 75°-80° N-S 3 x 12 seconds 1 x 4 second
V 80°-90° N-S 3 x 18 seconds 1 x 6 second
NOTE: All values in seconds are in terms of arc measure.

LR R AY

wr s =
LY
T

Loa e a) 00 000 570 4 R70 ivp ¢} RV TUVUNIOW v AR ARt atyral Vab oal Al SR inl s LSl Sb oA i il bttt o .-l\,.Aanqnqha.:qdnnQ-q.sag.‘

. resolution. Objects such as isolated structures, radar reflectors, tall buildings, aids to

; navigation, etc. fall in this category. Linear features are less then 150m in width for level

)) 1 resolution and less then 30m for level 2. This category includes features such as

canals, streams, rivers, roads, railroad tracks, walls, fences, etc. Areal features are too

large to be considered in either of the other two categories. Included in this category are

parking lots, squares, mud flats, storage areas, etc. The cultural data file is very complex,

; containing much information not touched on here. The data obtained from this file can
render a very accurate picture of the chosen area.

c. Terrain Elevation Data

Elevation data is stored in separate files from the cutural features file.

Both level 1 and level 2 data are stored as 16 bit integers representing the elevation in

meters above mean sea level at each data interval. Level 1 terrain elevation data is the

: information used in this study to develop a three-dimensional display. The content and

specifications for level 1 terrain elevation data are covered later in this chapter.

B. DIGITAL TERRAIN ELEVATION DATA
A command and control workstation for use in a tactical, sea/land environment must

have a wide area of coverage. The area of interest for a commander can easily be a circle

o o W s e e

a 500 miles in radius from his position. The three-dimensional display for this
workstation must be equally far reaching. The digital terrain elevation data used in the
FOG-M and VEH visual simulations is not sufficient for this application for two reasons.
' The data does not cover a large enough area. The Fort Hunter Liggett database is an area

35 km x 36 km. This is not sufficient to show the feasability of managing and displaying

the quantity of terrain data required for a tactical display. The second reason is that the
; Fort Hunter Liggett area is uninteresting for a sea/land environment. There is only a

small stretch of straight coastline, containing no bays, inlets or islands. The southem

37

- -

D)
b)

e - , . , A A P o A R B 7R Lk A AN AR = x = n - x s -
I s Y T TN e R A A O o D T A M X MR e M L o DN o o ¥ NG AN N e R T T

- = W
P :
S e T S T

islands of Japan are an area with both interesting terrain and interesting coastlines and

islands. It is that DMA data set on which this study relies.

1. The NPS Japan Database

A 10,800 square mile database of level 1 digital terrain elevation data was
obtained from the Defense Mapping Agency. The area of interest is the southemn part of
Japan. This area has many islands and interesting coastal features which make it ideal for
testing a three-dimensional display of a land/sea environment. See Figure 4.1 for a map

of the covered area.

2. Format

World coverage of DMA level 1 terrain elevation data is divided into blocks, or
cells, of one degree latitude by one degree longitude [Ref. 11]. The Japan database used
in this study consists of 30 of these cells, distributed on four half inch magnetic tapes.
Appendix A contains a list of the latitudes and longitudes of the individual cells on each
tape. A map showing the position and coverage of these cells is in Figure 4.1. Each tape
contains multiple cells of information. The cells are identified by the latitude and
longitude of the southwest corner of the cell (cell origin). The data for each cell consists
of three files, a header file, a data file, and a trailer file. The format of the header and
trailer files is very simple and uninteresting. Complete format information for the DMA
Digital Terrain Elevation Data is presented in Appendix B. The data file consists of three

record types:

* | Data Set Identification Record (DSI)
This record contains 648 bytes of information about the data classification,
resolution, position and orientation.

* 1 Accuracy Description Record (ACC)
This record contains 2700 bytes of information about the horizontal and
vertical accuracy of the data. The cell can be divided into one to nine
subregions. Accuracy data is presented for the overall cell as well as each
subregion individually.

38

".b' &\ . " W N, i N 1 3 3 g AV Y™
MO A IO T S T At et o e W W S

3% T AN R R N - e
N RGP, RGN NN MY o, P B

'y

u’ s
.

@
R T

[~ oy _oa
SRRSO

el

o

55 @ e
oL A 43

o

P IRII

PR

Can oy o aB e

A NS

[
i

fy

f o pr e R L A .
O T WY ; o Wi w*, A " W W W N o Jet ML 5 ¥ S
S N N T VA T 0 T N L S R L Y R P S GV CL I T S SR AN SN L N PR PSR S RS, e RN

i s 7 v'n;:""j'd TN P AL RN ANRN AR AR TR et ARV VA% Batavava i bl av ¥V v " ‘9 8¢ "9’ § 8 .8

N Seaof Japan T

.
.
.
0
.
’
.

creeverneenpierrrnesenes s dlom— e Pacifid. 20

X Ocean
"125B

.
.
. . .
. . .
.
.
_______________'..ﬁ.........-.s.......-..........l..................l...............-..J..................

Database Region

" 35N

1]’"

30N . . .
.. N : . R

Database Cells
Figure 4.1 Maps of Japan Database

39

Y

P N R R N R R R R X O O R AT AN NP RO RN P R T MW M K S ™

* Data Record
There is one recoru for eaci line of data points of equal longitude. These
records contain the actual elevation data for the cell. A full cell of level
one terrain data has 1201 data records. One for every three seconds of

longitude.

The area covered by each cell provides an overlap of points having positions of
whole degrees of latitude or longitude. For example the elevation data for the point 31N
131E is included in four cells. It is the southwest corner of cell 31N 131E, the southwest
comer of 31N 130E, the northeast corner of 30N 131E and the northwest comner of 30N

130E. The content and format of these records is covered below.

3. Reading the DMA Standard Tape

Digital data from the Defense Mapping Agency is delivered on large magnetic
tapes. It takes 90 megabytes of disk storage to hold the files for the 30 cells of data
obtained for this project. The only machines with enough permanent storage to keep this
data are the ISI workstations used in the Multiple Backend Database project at NPS.
Each of these machines has a 500 megabyte disk drive. A 125 meg partition on ISIV1

was set aside to store and manipulate the Japan terrain database.
The network of ISI computers has a tape drive capable of reading the DMA

standard tapes. Readone.c! is a simple program that reads one file at a time from the tape.

The output filename is passed into the program as a command line argument. Each
successive call to the program reads the next file on the tape. The program is written in C

and runs on the ISI workstations.

! Appendix C

AT AR N

MImmmwmm:~M@mmmx T NS AT A AN AT A N 8 T KL A ML 4 A R A ML ROUN e A A

(IR

> _E_a_W_o_»

ol et B

o 50

ST A R N N T W

P

Ay
L}

""‘\ ’

”'ﬁ*ﬁ

»

L S e

"

L B

@ Ll
‘(‘- Sy Ry Ay

{111’{"{
g

722,

L]
o
&
K

¥

4. The Elevation Data

>~

Each cell of level 1 terrain data has sample intervals of three seconds of

'
'
K latitude arc by three seconds of longitude arc for longitudes between 0 and 50 degrees
it
3 north and south. These points are divided into data records of equal longitude. To provide
¥ an overlap, cells points of whole degree latitude and longitude are shared by adjoining
&
: cells. A full data record consists of 1201 data values stored sequentially by ascending
1‘ .
R latitude. 1201 of these records make up the cell. They are stored sequentially by
. longitude starting with the point of origin (see Figure 4.2).
,
¢
,
0
N
1]
K Data Records
) 4 byte
s\: checksum vﬁ* r\ r\ f\ r\
‘: Last data
:. value
P
northeast
[4 coraer of
b cell
: First dats valne
“ Is southwest 1201 Data Records 1 1
® 00

corner of cell

data values \ 1201 Data
“ values In
® are two bytes each record
" listed in
Ny 7 Bytes of > order of

header ascendling

information R
, latitud
P A J e S U

: First byte Is a sentinal
A Value Is AA hex Data records are stored in order of ascending longitude
Values in each record are for the same longitude
. Each record Is incremented by 3 seconds of longitude
;. Figure 4.2 Diagram of Cell Data Storage
B
1
"
¢
K
;‘ 41
“
‘4
¥
: o]

SIS N',\ -. \.!\", '.';,‘-. ~ '-,'~. " ,.'» _\' T AN i RN Ny \'_’*._\ -..-:.\' WGPV '.'-.'_\ A A

& LN o LN A
» N . L) . B d I e N

The Data Record has eight bytes of header information before the data and a

four byte checksum after the last data point. The header information consists of:

* 1 byte recognition sentinel, AA hex
* 3 byte Sequential count of the block within the file

* 2 byte Longitude count, a sequential count of the number of data records
from the origin (southwest corner of the cell).

* 2 byte Latitude count, the starting latitude of the record in units of
the data interval. Normally zero for a full cell of level
one data.

The data values are 16 bit signed magnitude binary integers representing the

elevation in meters above mean sea level. The sign is the high order bit. Negative values

are not complemented. This gives a value range of +32767 to -32767. The actual range of ”: 1
-
values is +9000 to -12000 meters. The checksum value is the algebraic sum of ail the j:'.:’,
~
eight bit values in the record. h
The data is easier to use and store in the form of a two-dimensional array of
data points without the extra information. Extract.c? is a program that takes a data file
from one cell and writes only the elevation data to an output file for later use. The data is o
written sequentially, starting with the first data record from the file. This allows it to be \:
easily read into a C array. The filename for the output file is the latitude and longitude of :.:f_
the southwest comer of the data. For example, 31N131E is the file name for the cell with :;
southwest comer at 31 degrees north latitude 131 degrees east longitude. This ‘;E
information is extracted from the cell’s data set identification record. The complete E‘;.E
]

format information from [Ref. 12] is provided in Appendix B.

2Appendix C

R D B a0 0 0 el Tl 6.0 8% 010,010 020" 0v 4078 08 000028 0.2 0 0 6 0 0 R Ria %t va' Rty gt ary ath" 1R-200 ats ota ate ot atar et ig"

;-

90 BT ad o
|.~l~l .-

V. A THREE-DIMENSIONAL TERRAIN DISPLAY

A real-time, threc-dimensional, animated display provides more information and is
easier to interpret then a traditional two-dimensional presentation. It is also much more
difficult to draw A scene that shows enough information to be useful is complex. It
requires many polygons to accurately depict even simple situations accurately. The
command and control workstation is interested in the sea/land environment. The first
step to providing an accurate and useful three-dimensional display is to draw land and

ocean scenes in a near real-time display.

A. PROBLEMS

Real-time animation is considered to be 30 frames per second. At this rate, the
human eye cannot detect the change of frames and the animation appears smooth. It
would be nice for a three-dimensional, tactical display to update that fast, but it is not
necessary. An update rate of two or three frames per second looks jumpy, but it conveys
a sense of motion to the viewer and shows the appropriate, up to date information. A
very large area is seen from an altitude of 300 ft. Assuming a field of view of 45 degrees,
visibility of 20 miles and DMA level one digitel terrain elevation data, this area has
67,916 data points. It requires 135,832 filled triangles to represent the terrain and takes
the IRIS 4D/G about 90 seconds to draw using z-buffering. This is improved upon by
drawing the land with filled polygons and drawing the ocean as an underlying blue plane.
It requires 54 seconds to draw one frame. Computer upgrades will improve these times
but not enough to give an acceptable animation rate. A new method must be found to

draw the terrain faster without a loss in accuracy.

43

R TLR T PO VLN "1
342ty aleved

P G A o P S N T OV A o o Ay o A T T n, AT AT PR M TR Tt K

S"y0atatat gy

-

iy e A J

-

P TR I ga e s fur 8 Qg

B AA0N

L ar At al Sy

-~

'\ﬁl‘f‘r" - -

4’_-' e

Pt e e e S N

e 8+ o

E’.Mi‘md&i&

‘5 a8 g4 g8 ga8 G fat ¥ §av daV b’ AT Vs 212" VA ath all ot ati ot aMCorE o' BtH 844 0" 0" a0 Vel D" ! "y N

Each cell® of terrain elevations has 2.8 megabytes of data. Assuming a maximum
visibiiity of 60 .iles, four cells of data is the wnaxunum that is required for any one
scene. (see Figure 5.1). Four frames contain 11.2 megabytes of data. This data must be
available to the program for each frame that is drawn. The digital terrain database being
used in this project consists of many islands and a lot of water. The ocean is represented
as zero elevation. Space complexity can be improved by compressing the data, i.c. not
storing all the zero data.

The third problem addressed in this chapter is actually a set of problems dealing
with drawing the terrain. The terrain data is a set of discreet points 100 yards apart. The

ocean is represented by points of zero elevation while land is any elevation

60 NM
| «— |

View Directipn

Four Cells 60 NM
of Digital Terrain
. Y, \
Elevation Data -4 —
View /
Poim\w‘A Vis
V(60 NM

Figure 5.1 View Area Covers a Maximum of Four Cells of Data

3Represents one degrec latitude by one degree longitude area (Chapter 4)

44

Sty R N AT N A N T T T

‘
N el Y T AT TN N T T T T W S N N

P A, B A, Yyt Yy

ryovsy v

7 447,

AR RS

=2

Kot K e

z

a4 e

¥ L8

® “x A1 @
A= :

'/"l',:

{', &% 9

»

R U AN A A R AR A RN R R AN AN R N A N L UMY YO WUV SRRSO LK A

greater then zero. How is the shoreline drawn between these points? Other problems that
are covered are concemed with drawing in z-buffer mode and how to transition between

different drawing resolutions.

B. DRAWING THE TERRAIN
The terrain in a tactical three-dimensional display must be drawn in correct
proportion to the actual view. Not only must the vertical and horizontal scale model the

real terrain but the area displayed must match the area that can actually be seen.

Scale
The data interval for digital terrain data is in seconds of arc latitude and
longitude. One minute of arc latitude varies between 6,046 ft and 6,108 ft. This

corresponds nicely to the use of nautical miles (NM) as the basis for a scale. One NM is

1852 meters or GC75.11 feet [Ref. 11]. A general rule of thumb used in navigation is one
nautical mile equals 2,000 yards. The longitudinal scale is dependent on the latitude. At
the equator, the distance between whole degrees of latitude and longitude are both equal
to about 60 NM. As latitude increases, the interval for degrees of latitude stays about the
same but the arcs of longitude converge. At 30 degrees N, the start of our data, the

distance between adjacent arcs of longitude is 52 NM. The data point interval for the

DMA data base* is three seconds of latitude and three seconds of longitude. This equates

to approximately 100 yds between points north or south and 86 yards between points east
or west. For simplicity, the initial implementation of the three-dimensional display uses

the value of 100 yds as the interval between all data points.

“The Jatabase of Southem Japan used in this study (Chapter 4)

'/-‘."r}.':'-f"'f\."v‘-'fd‘.\-"‘fJ“.'-':-' NN AT RIS --_’.’:?‘.."-, A

o e ST 0 Y e T T Ty i
- AL "B, MY R A (9, ' a o i

a3 a = 2= 2 62 00 00 0.0 6.0 8 L LB G h 6 A6 0 A BB R €0 0 Gh b St P AR AT LA LA Sn 1 det Jod SR R AN Vb ST LA Sot A R f.)‘a"
A

e
4
’
<)
Yy
N
The first chapter of [Ref. 11] states that "Relief information to DMA standard -
>
digital format is on a three seconds of latitude (approximately 100) meters matrix". :
Using 1852 meters as a close approximation to one degree of latitude, the actual value is A
92 meters for three seconds of latitude. A much better approximation is 100 yards for > '
three seconds of latitude. The actual value is 101.25 yards. '_
The DMA digital terrain elevation data values are in meters above mean sea :Z:j
level. To keep the scale constant, this value is converted into yards. The relationship, one
yard is equal to .9144 meters is used as the conversion factor. This correction is applied ' \
:
when the data is preprocessed into a form that is compatible with the data structure used W
Yo
oy
to store the data. oy
®
<
2. Visibility o
Pt
Visibility is determined by the curvature of the earth. At an eye height of 6 ft, Ind
|’~
N
visibility is three miles. This distance increases with the height of eye of the observer.)
4
. . I3 . . ’
The area that can be seen is approximated by drawing the area from the view point to the :"-
o , : . -3
horizon. Since items with an altitude greater then zero can be seen past the visible ::"
N !
horizon, a minimum visibility of 10 NM is used to insure that land and objects relatively .‘
e
close are seen. Objects further away that can be seen over the horizon are indistinct and it
]
generally are not of interest. A maximum visibility of 60 nm is assigned to simplify _f}-
.r < .
determining what data cells are needed. The following formula, derived from, [Ref. 4] .'
is used to calculate the visibility (VIS) in yards given the height of eye (HE) in yards.
‘ . o
| Vis = 3962.8 x VHe 2
\ h
e . °
The visibility is used to calculate the area that can be seen in one scene or N
-_'.p
frame, the visibility triangle (see Figure 5.2). This triangular area is computed using the NN
I‘ ‘A 3
view point, the direction of view from the view point, the visibility, and the field of view. o
o
=
. '\
46 '.'”:
~::\ A
)
YN
L L
~
ot
i
SeMNTAIN NN TGN BN N O Y B N I A A O N I N E T TN IO o A S ARN TS NP S NN ol

AU A R AT A T AU UN VY LU DY U IV UM TR UM UNY VLN WU HLW LY ta gia gve gla §'e 4 R O a0 8 0 0.8 Wb YAy R RYE o * 0ot _Bu’ >ty

»
Y,
"
.
»
]
\ e
Area Inside Triangle N ;t A
is Visible from the View Point .'\
Vlew Direction
h,
:
)
™ Computed boundaty points : "
View Point !,‘
- —Z — Angleis half the field o
\ \\] 30 Degroes of view in the X direction .‘“
It is used to compute the =
l L - I boundary points \-_.
Computed distance of visibility :::
to the Horizon ~
' -
."_'
Figure 5.2 Visibility Triangle -
3
\: »
3. The Ocean)
The ocean can be approximated as a flat plane and drawn as one filled polygon :.,
. . . . ok
at zero elevation. An area with data values of zero elevation is not drawn as many A
)
. . '\A \
separate polygons. Instead, a blue base is drawn at zero elevation and only polygons »
with elevations greater then zero are drawn overlaying the blue base. This method b
i
. . . . s
allows scenes with a large proportion of water to be drawn much more quickly. This i
!
technique speeds up the the drawing process but causes a problem with the z-buffering. >
”;,.')
This problem and and the techniques used to correct it are discussed later in the z- NEY
)
buffering section of the chapter. o
2
A sense of movement is detected over terrain by the changing relief of the
. . , . o
ground. This can be enhanced by artificially checkerboarding the terrain with two colors. o
“at
>
The ocean generally has no relief and can be drawn as a single blue polygon. A sense of o~
B
motion cannot be derived from a checkerboard pattem since a fill pattem is generally
o~
N
47 2
Yy
\
"y
AN
LY .l
- C ", W, * \

" 8 7 AT T AT AT Y o ANt e T a T T T A A T Y A T T A T e TR W e T i AT S S o W ® ¥ ¥, »' of "
AN A E e A e A Y e g e A e A T T T T A

drawn in screen coordinates vice world coordinates. Such a fill pattern does not show the

effects of the view point moving in the world coordinate system. To provide a sense of
movement over the water, a set of grid-lines is drawn on the ocean approximating

latitude and longitude lines on a chart. The grid-lines are drawn dependent on the altitude

of the view point. The ocean and grid-lines are drawn in procedure draw_terrain5 .

4. Shoreline
The data can be viewed as a two-dimensional matrix of elevation data. These
data values are the elevation of discrete points and do not show what conditions are

between the points. The terrain is drawn by assuming that the area between the points

can be represented as small planar triangles® with the data points as vertices (see Figure
5.3). Since a blue base is drawn first at zero elevation, triangles that represent ocean are
not drawn. The land is drawn in altemating colors of green to give a checkerboard effect.
Knowing nothing about the transition between points, it is hard to decide where to draw
ocean and where to draw land when the adjacent points indicate there is a transition
somewhere between them. The resulting picture must show a smooth transition that
represents the actual shoreline. The database is converted into polygons by taking four
adjacent data points that form a square and drawing it as two adjoining triangles. When
all four data points are either zero or greater then zero both triangles are drawn the same,
as either both ocean or both land. The problem is when the four points are mixed. One
solution that works nicely is to draw a transition or shore when there is only one of the
four points that is greater then zero. If two, three or all four of the points are greater then

both triangles are drawn as land. This leaves four different ways to draw one triangle

SAppendix E

Triangles are us=d to insure that the resulting polygon is always convex.

48

CE PR A VA SIS W Vo T T P4 Taite LTe T Te te T TR ey Rt e At e et a > - - - ~ .
\ n, b..'-‘.'4.{‘-{\'--.{\._\-,..,‘.“ .,.-’:-.:J. -‘_.-:-.,.-.A,.-’ e N AR e . "p. VAT _,~_-._ - - ‘1" S8 _.’_- ..f_- ‘. o, ¥ -

¥ TS

s

PN

2022,

x)f‘.f,’{ .‘f.'l | _J

AP
N~

e o

e
. %N “'1'

“a T, "8 w
I‘,l -
>

.
o
'y Ay

,A .
-‘h;-;) o

v (-'J? P

y i
« "L
[l. '. l. "

O Data Point

Four adjacent data points
are used as the verticies of
two planar triangles

Figure 5.3 Area Between Data Points as Planar Triangles

land and one water (see Figure 5.4). Figure 5.5 shows a picture of a typical shoreline
drawn with this method. Procedure drawpoly.c in Appendix D correctly draws the

triangles for four adjacent points given as parameters.

C. THREE LAYERS OF RESOLUTION

Drawing terrain out to the horizon requires too many polygons when all the data
points are used. The natural perspective of a three-dimensional scene causes objects in
the distance to appear small and indistinct. A three dimensional display has this same
property. A polygon drawn at a distance might map to only one pixel in screen
coordinates. Because of this difference, objects in the background do not need to be
drawn in the same resolution as those in the foreground. The terrain data is converted to
three resolutions. The foreground is drawn in level three resolution, data points 100 yards

apart. This is the same resolution as the original data. The second level of resolution is

49

Land Data Point

elevation >0

O Ocean Data Point
elevation =0

All four points water both triangles are water

Three of the points are water one triangle land one water
Any other combination both triangles are land

Figure 5.4 Shoreline Polygons

50

P A A
nflf;ﬁf:li-.' :‘.:I:Aﬂ:‘

T AR NN A VN UH LN UN LN VR LW L ety ‘aitatal Vet Pag tan oy . » ¥ - u v ~ RAvA
UNUN LY tadat AR VGUILT RN ; i O LACARTR AN Mg W e N T TV W

»
he
-

RS

-

- &
- -

PN

PRI

o X, 4

-

Figure 5.5 Sample Shoreline

for the middle-ground. Data points are 1200 yds apart. This resolution has one data point
for every 144 level one points. Level one data is for drawing distant terrain. There are

," 100 level two points for one level one point and the data points are 12,000 yards, six NM,

apart. This data can be preprocessed to fit one of two proposed data structures. By using
different resolutions to draw out different distances, the number of polygons can be cut
by an order of magnitude without degrading the display. Figure 5.6 shows two pictures,

the first is drawn completely with high resolution, the second with a three-tiered

structure.

51

;

T 08 G o e P T 0 R L PR L P AT

Figure 5.6 Contrast Single and Multi Resolution

. .

e

|t oy

", P P

- - -

A/

YRR RS

1. Implementation

Large amounts of data are required to accurately display terrain in a three-
dimensional view. Access to the data needs to be fast if near real-time animation is
expected. The data structure that is used should be optimal in both space and time. Two
possible data structures are examined to hold the terrain data required for three tiers of
resolution. One uses a hierarchical structure with pointers. This structure also
compresses the data. The other uses three two-dimensional arrays and simplifies the
program to display the terrain at the cost of more storage space. There are problems with
the transition between different resolutions and the use of z-buffering to display the
terrain over the water base. Most of the problems have been solved but work is still
needed to refine the techniques and speed up the algorithm. This section is written to
explain the implementation to readers who might not be familiar with the "tricks"

commonly used in the C language.

a. The World

The database used in this study is divided into cells. Each cell is an area
one degree latitude by one degree longitude. More then one cell can be displayed at one
time and as the view point moves the system must be able to change cells. The earth can
be divided into octants. Each octant consists of 8100 cells in a 90 by 90 array indexed by
latitude and longitude. This implementation uses one octant indexed from 0 to 90
degrees north latitude and 90 to 180 degrees east longitude. This matrix is sparsely filled
with only 30 cells in the database. The array starts out as all null pointers. Pointers to

individual cell data structures are added as required. The drawing routine checks the

array for a needed cell. If the pointer is null, the routine init_terrain7 is called with the

Appendix F, Appendix G

53

A

T o e e T T T

L VU U A S TR W W R N T O O R R R R R W A TV T N N O O O O O R S W R TV TV DR OY Y Y

P IR

R RN P R R R A N AR A AN A N S TR (LY Xy Ry FOOW O oW W ™ LN NauPo IXF RV .J‘.A»‘J).-.'J' D%

- v

)
P
l} 3
"’
"
w
latitude and longitude of the requested cell as parameters. This procedure checks to see if w
the appropriate file is in the database. If not, the cell is assumed to be all ocean with zero 4 ‘
elevation at all data points. v
e
g Q
b. Multiple Cells _
"
The procedure draw_terrain® first calculates the area that can be viewed in 2
w
the scene. Draw_terrain then sets the view bounds, maximum and minimum coordinates ;
o
in the X and Z direction. The coordinates of the view bounds are relative to the lower left .
comer of the cell containing the view position. The cell containing the view point is -f‘
i)
. . o 0
always drawn. Any view bounds that fall outside the cell area indicate that another cell 0
N
must be drawn. There are 12 possible cases that are checked with a maximum of four .
®
cells that are drawn for any scene. Figure 5.7 shows an example where four cells will be By
drawn. The procedure draw_cell’ is called once for each cell. The position of that cell "]
relative to the cell with the view position is passed as a parameter and is used to adjust ":
the view bounds to the coordinates of the new cell. The procedure adjust_bound.rw is '}‘
l.': 4
called by draw_cell to do the conversion. ;.;\
,-‘l
]
c. The Cell e
All the actual data for all thuee resolutions is stored in cells. The data .,r
o
. N
structure of the cell is the controlling factor that dictates the efficiency of the drawing)
a3
algorithms. °
%G
3
o~
o
SAppendix E »
N
Appendix P, Appendix G . ;::Ju)
10Appendix E N
“

54

R o N o Tl A, (PO T 0" a0 n " AT LT AL A" B M A% M T P " MRS ML 67 A M) IR e LY Ry

N

e an o

N

o

P RN

Level one bounding box) View Bounds for esch resolution are
~—a View Triangle based on the view triangie.
The view iriangle is partitioned into
/ three aress , one for each resolution.
The view bounds sre the masx and
Level Two min values that form a square around
Bounds the resolution triaagle.
= /
A
Level Three
Bounds - Q
P 1
view paint /
Level Thres Level Two
View Triangle View Triangle

Figure 5.7 Multiple Cells Drawn With View Bounds

(1) Initialize the Structure. The data structure for cell data starts out
empty. When data from a particular cell is first requested, the data must be read from the
database and inserted into the appropriate structure. The display must pause and wait for
the data to be entered. The first attempt to read just the raw data into an array took four
minutes. This is clearly unacceptable. There are a couple of ways to speed-up this
process. Block reads and self buffering improve the performance, cutting the time down

to seven seconds.

In order for block reads to be effective, the database needs to be in
the same form as the structure it is being read into. The initial data works very well when
assumptions are made about the way the programming language stores the data. The
initial data consists of sequential lists of data points. Each list has 1201 two byte integers
listed sequentially according to ascending latitude. The lists are then stored in order

according to longitude. The C language stores arrays in this same manner. The name of

55

AN AAL T

B

¢ S P S

1

¢ <

PRI DA LR T TR R P L R R T TR U X) et oamd e e el Il AR) AFNLAA RN 40,5 a0s" 45g 4Kosh 0 A 000", .;u; oM At ‘ al 03 . ._\v_ﬂ-;.u u,‘.(
oy

)

-

Pt

an array is the address of the first element in the array. The elements in the array are "

stored sequentially ir adjacent memory locations. The following line of code read 1201 :
two byte words from an input file and stores them sequentially starting at the address of §
Array_name,. Y
nbyte = fread(Array_name,2,1201,fdi); '
b]

In this way a whole array can be filled with one read. This also works with two- 5:'
St
dimensional arrays. Array[2], of a two dimensional array, is the address of the starting N

L]

location of the third column in the array. Experiments were conducted to determine the

o
£
T

"5
L g

e
-y,

most effective buffer size to read this particular data. A buffer size of 28672 bytes was

chosen.

Jevss

The data needs to be in a form that conforms to the data structure

=
'..I.
el

v

I

before it is read. Additional preprocessing car also aid the performance. For instance, the N
"
Y
conversion of data from meters to yards can be accomplished at run time or calculated *i-
°
and stored, ready for the program to read. Polygon normals, used for lighting, are another ‘;‘f\
PN
. NN
example of information that can be preprocessed. o
N
(2) Drawing the Terrain. Only the procedures that actually access the L 3
elevation data are dependent on the data structure. The procedure that controls the ',::::
drawing of the scene is draw_terrain()" This procedure performs the structure :':\'
- .ﬁ\
independent tasks and calls the procedure draw_celi()12 to access the data and cause the .'J
':'-?' d
proper polygons to be drawn. Draw_cell() is structure dependent and is covered in the a1y
following sections on the specific data structures. The procedure draw_terrain : ::'-'.3','
e
T
2Ny
"" Appendix B ;":
-".‘r’
2 Appendix F or Appendix G depending on the data structure ”’ ._‘:

56

mwmmmﬂmaﬁﬁﬂwmﬁﬁﬁﬁﬁym:s:‘a-i-:h:.-a-mxx-;}x::.s;rm;u:-:m.-;t.-;-'

et

PO
O I

s

5 > o T

- e e A
e -

- .
- m A -

A

a0, B0, 3 V0¥

LR

MAKTKAMS NN S 000, 00 R A R R e DA N R R A A R 1 M L e et e e e e 2% ot atat Agv byv

* Calculates the visibility

* Sets the drawing perspective

* Draws the sky

* Draws the ocean to the horizon

* Calculates the area to be drawn in each of the three resolutions
* Determines what cells to draw

* (Calls the procedure draw_cell() for each of the cells

Most of the work done by this procedure is in calculating the view bounds that tell the

procedure draw_cell() what part of the cells to display.

(3) Array Structure. Two-dimensional arrays have properties that
make them an ideal structure for this application. Each data point can be indexed
according to its world coordinate location and is accessed in constant time without
traversing a complicated data structure. The following structure is used to store the data

for each cell.

typedef struct|
short level3[1201][1201];
short level2[101][101];
short levell[I1l1][11];
} cell;

Each resolution is stored in a matrix that can be accessed separately. When a cell not

already in memory is requested for a scene, the procedure init_terrain” allocates

memory and reads the data into the structure.

3See Appendix P

57

T IR AR Y PR N L g S e N T T R e TR e P Y S e N W () e
ML&@«'&W&JM‘-‘&?&M ;.{.Jf.:'ﬁ_f prﬂ'hfh"&'&.‘fmﬁd.&{;y L'I:\.':&.

.-

N e I

-, .

- o b0

PN

&

The procedure 3a.cM preprocesses the raw terrain data and writes the

processed data to a file that can be easily read into the array structure. The data values
for the different resolutions are calculated in this procedure. Level three resolution is the
initial data. It is stored as a 1201 by 1201 array. Figure 5.8 is the code that calculates the
values for the levels one and two data. The level two data is an array 101 by 101 points.
Each value is the average of the level three points around it. The level one data uses the
previously calculated level two data to further process the data into the coarser resolution
of an 11 by 11 matrix. Because the data points at the cell boundaries are shared between
cells, the level one and two poiuts at the cell boundary must have the same value as the
corresponding point in the adjacent cell. This is achieved by using the original data value
for points around the boundary instead of the averages. The data is written to a sequential

file in order to make reading the data quick and easy.

Init_terrain reads in the new data file in the same order it was
written. The level three data is read first, one column at a time followed by the level two
and level one data. This structure displays one new fraiue every four te five seconds on
the IRIS 4D/70G workstation. This time depends on the amount of ocean in the scene.

More ocean means fewer polygons and less time.

(4) Pointer Structure. The cells that are of interest in a typical naval

situation include large areas of ocean containing data points with zero elevation value.
Polygons are not be drawn for this data when an underlying plane is drawn to represent
the ocean. It would be nice to preserve the direct access of the array structure and cut
down the space required to store the data structure by not saving all the zeros. The

following data structure is used to accomplish this.

' See Appendix F

A LR A A

T e

*]
<4

A

s

x

e g
*

T

4’}":1

'

Lo
Ve

RSN E
X5 Y L

"

“N 3P
. s >
g

o

R RTTRN A AR KN ER AR AN KA NN IR AR RN LY M FU N YWN L WL WA N WA WU WU W W I T Y R VOV W LY vy WU XTI LA At 2% 40 3 g 0 5

2 - Pt
i]
a; t
3 ;
‘e? iy
:;‘ : !
S' [
2
i: a
o /* Level Two Data Calculation */ ;
Y X for (i=0;i<=100;i++) :
o for (j=0;j<=100;j++) .:
N { J
/* cell boundary points get the value of the underlying point */
; /* if cell boundary */ 9
] if((i=0M(j=0)M(i==100)li(j==100)) 4
) { ;
}:' level2[i][jl=level3[i* 12]{j*12};
/ }
*: else
/* the level three points within 12 data points of the level two
O point are averaged to find the value of the level 2 point */ N
iy l <
" sub=0;/* subtotal */ ;
;o for(s=((i- 1)*12);s<((i+1)*12);5++) !
X for(t=((j-1)*12);t<((j+1)*12);t++) .
{
. sub = sub + level3[s]t]);
}
level2[i}{j] = sub/576;/* final value avg of 576 points checked */
o } :
) } 4
3 !
{ /* Level One Data Calculation */ 3
: for (i=0;i<=10;i++) b
,_, for (j=0;j<=10;i++) 3
o { ‘
b /* if cell boundary actual value of underdying point*/
if((i=0M(j==0)IKi==10)li(j==10))
N {
b~ levell[i][jl=level2[i* 10]{j*10]; :
@ }
\ else ,
3 /* level 1 value is average of underlying level 2 values */)
{
sub=0;/* subtotal */
S for(s=((i-1)*10);8<((i+1)* 10);5++) i
for(t=((j-1)*10);t<((j+1)* 10);t4++) N
, { ,
Y sub = sub + level2[s](t];
f I .
levell[i][j] = sub/400;/* final value avg of 400 points */ -
. \ } -
\ .
M)
W
> Figure 5.8 Calculation of Level One and Level Two Data
o :
) :
) 59]
Y X
l'. ’y
& hy:
f v
v
»
I R N A N T D N PR PR P N g g N g S A o T e A e _'. A A A AN AT A AT N AT

RN A A T R L. Y A..\.L'l,&(Ny

. R ARA A 8R alh aNA ald ANl alR abh alh aSE o lA e % ks wlid 468 nth ‘a8 el nta: i el ntn s 08 2l a " ot 2P0 "
R N AN R L P AN NN A XS _ WL O A A DO LA AT G 6 A s e A Lt o, SelSulo Tall el Sl Sl ol a0 Nyl W

5
®
.
N"I‘
o
o
¥)3
typedef struct{ :4,
short data[13][13]; .'
}level3_rec; o
typedef level3_rec *ptr3; ,:f
2
typedef struct| ’ Y,
ptrl level3ptr[I11]7[11]; vh Yy
short level3val[I11][11]; :
short all_zero; RO
Jlevel2_rec; .
typedef level2_rec *ptr2; BOs,
typedef struct| :j}
ptrz level2ptr|1t]iil]; .
short level2val[fI1][11}]; ool
short all_zero; N
Jlevell_rec; boy
typedef levell_rec *ptrl; %‘f

Each level of data has a separate structure. The octant that points to

le 5@.

#1

the individual cells holds pointers to only the level one structure. The level one and level ;;;
¢
two structures have two arrays. One contains the actual data values for the resolution E§)
while the other contains pointers to the structures for the next level. If an underlying H':
-
structure is all zeros, the structure is not allocated and the pointer is null (see Figure 5.9). :'_ t
la Ry
Preprocessing data for this structure is more complex. The data is E‘E
first read into a 1201 by 1201 array. This data is then used to fill in the data structure. :-
-
The level one and two data value can be calculated as either the minimum or the average :\'_E
of the points below it in structure. As the data structure is filled, any subcell with all zero ::
values is marked not to be saved. The program 3T.c initially uses the raw data to create _\;'_-
':;: g

the data structure and then writes it to a file in an order that can be quickly read into the

structure while the program is executing.

-

& O. {

The level two and three data is basically converted from one large o

array to many smaller arrays. The cell boundaries share data points with adjacent cells. :::'_‘-:.
S

A

This duplicated data is needed in each cell to allow polygons to be drawn to the edge of ‘-‘”

the cell. The same is true of the sub-cells of level two and three data. The data points on

60

'b}\ :\[: :‘l‘,’\c'\'.\

RIS T T Y U I N N R U N R DV N UN NN Y Y YOO YO O R Y YOO R WWWWMW“W““

Pointer 1o cell %

~
..I
Level one structure 11 points by 11 points -
cach-position has a value and a pointer N
N
S

to the next lower structure

S - N
. S NN
N ~ N S SN
Boundary points are N N SN
duplicated in adjoining \ Level two
structures on all 11 points by 11 points
three levels. Level two subcell. One structure
for each element in the level one %
structure. Subcells with all zero
values are not allocated and ihe

corresponding pointer in the level
one structure is null.

=2

13 points by 13 points
Level three is the high resolution

data. There is one structure for every
point in alevel 2 structure.

Figure 5.9 Pointer Data Structure

»
-
F
r
”
)
N
&
P
Level three "
~
e
K
L)
Y
.
1]
~
A
(S
l‘
o
Ry,

the edge of the sub-cells must be duplicated in the adjacent subcells and the values must

be equal. This is done when the data is initially set up in the program 3T.c. L
~
The values for the level one and level two data were calculated and E

displayed as both the mean value and the low value. There was no discemible difference

P

in the display. Since the level one and two polygons are drawn in the distance, a small

.
1

»

difference in altitude is not significant. o

d. Resolution Transitions 0

The transition between resolutions is not smooth. The level one transition

to level two is in the distance and not noticeable but the line between level two and three %
l.‘.
Fn¢
6l N
»
r

f(l‘d"d‘-

- P - . s e oa PUS - .‘-
TN N AT AT AT T S L £ Nl A N AR AR TR AN VSIS N

N o aae g

shows noticeable gaps where the level three data meets the level two polygon at its end

points but not at the level three points in between.
This was solved by drawing a "skirt" around the level two boundary with

level three. The procedure draw_skirtl 5 draws a vertical green plane from the two points
passed in as a parameter to zero elevation. This procedure is called from the procedure

draw_cell when a level two polygon is drawn that boarders level three. (see Figure 5.10)

e. Z-buffering

The use of z-buffering as a hidden surface technique has caused several
problems in this implementation. The first problem is speed. Each time a pixel is to be
drawn to fill a polygon its z value must be compared with the pixel value already in the
z-buffer. If the z value in the buffer is closer then the new point, the buffer stays the same
and the new point is not drawn. In this way a pixel is only changed if the new pixel value
is in front of the old one. This comparison each time a pixel is written is very expensive
and time consuming but the algorithm is simplified because the order that the polygons
are drawn is unimportant. New hardware is supposed to greatly increase the speed of z-
buffering to a point where it is much faster then trying to keep track of the individual
polygons. A quick port of the terrain display to the IRIS 4D/GT resulted in an order of

magnitude improvement.

Z-buffering caused another problem that affected the resolution
boundaries. You cannot draw one resolution over another resolution and depend on the
high resolution polygons always being shown. The low resolution data will cover low

spots or valleys in the high resoiution terrain. Since the boundaries cannot overlap, the

13 Appendix D

62

(W™ W] q " AL A
SR S -'(- LA -

n o & €

T pEsssas

‘I !l .Y .l. ‘I

T e

- '{{‘.‘v".-

- f];’.:' "l ': .'-r

"

AN Pk

e

rﬁ/_\{,{-’-{ . '..’-,.
NI

.,‘,,.
(51

PR,

l‘{ ,I

RN
san s

./I}\
".‘l

AR

~
- e e oD

o en e v e ek A e A M As e wm M AR W e e e e M e e

- e e Ak —a o e N dm h A A e e e e am e e A A e

Aag) - -
% VDI RRU. IR S
e e, m ~ cn

NN
2 -

; -
I et il

Skirt Drawn To Fill The Gap
Figure 5.10 Resolution Boundary

63

T 8P FBA LSSy /7@ "+ 0

e

lower resolution must be drawn out to the boundary of the next higher resolution. The

bottom line is that more polygons must be drawn, and the program must do more

calculation to compute the boundaries.

Z-buffering does not always work correctly when two parallel planes are
drawn close to each other. When the terrain is drawn over one blue polygon representing
the ocean, the shoreline and the ocean are basically two parallel planes that often map to
the same pixel and z-buffer location. The pixel value that is drawn is unreliable. The
effect is popping blue splotches on the terrain as the view point changes. Figure 5.11
shows two pictures of the same area taken at different elevations. As vou can see, the

shape of the shoreline changes and is not regular.

There are two solutions to this problem that don’t require that more
polygons be drawn. Drawing the ocean before or after the terrain has no effect. The z-
buffering seems to work better close to the near clipping plane. Moving the near clipping
plane forward as far as possible helped some but did not solve the problem. Another help
was changing the far clipping plane to be one and a half times the visibility. This in
effect decreases the resolution in the z direction but the picture quality is improved
slightly. It was suggested that at least 20 bitplanes are required for the z-buffer [Ref. 13].
The IRIS 4D/70G has 24 bitplanes but due to a software problem only 16 can be
accessed. The new IRIS 4D/GT can now access all 24 bit-planes. Preliminary tests on the
new machine indicate that the z-buffer resolution is not the cause of this particular
problem. The final part of this solution was to lower the water a distance that is about one
pixel below the land. This causes enough separation to insure that the land is drawn over
the water. A distance of six yards worked well for the level two and three data. There is

still some problems in the background but the overall picture is good (see Figure 5.12).

[

e s mge e
LSS LY
""-"J‘c'-'

R

LA LN\ L LA LA LA U U 1000 L R R R G A o s e T T R A M R » e T W e va s it Bt b

G TSR RIS T

o o a2
a

Lol gl gy el

S S A

S LI

Pl
x

© x . "

=t

o 2n 30 gy »

Gyl T

Pl
3

Figure 5.11 Z-buffer Changing Coastline

L LS

o L

65

e o S A L

MU WU TR WL RN X W N M W R W W N WS ™ O M O WY 4 SN W A Y ..."..'.'." N A

el D

" .rh"Y'I

5

« s
f?'#(

",

FC Rt T FUNLN
T y Pas
o LR, - 3

» 2 e
5y
P

r.‘:h;) “w W
-

Figure 5.12 Picture With Corrections to Z-buffering

<" £ o
%@
s

There is another way to solve this problem if you don’t need hidden

10 27,

surface elimination for anything drawn under the water. Tum z-buffering off before

xS

i s

drawing the ocean plane. Then tum z-buffering on, clear the z-buffer, and draw the

22l
l. A

terrain. This insures that everything will be drawn over the ocean plane. This won't cause

P
L8

a problem unless the intention is to draw additional objects that might lie partially under

e
PIreP,

v o, -
L
~

water, i.e. ships.

2,
7

LN Wy}

Another solution to this problem requires that polygons be drawn for the

v
s

)
&

Je
2

ocean. This separates the sea and land so they are not drawn as two parallel planes. This

Sy
S

s

solution takes more time to draw the extra polygons. If the hierarchical structure is used, .

" L,
LR
PR RS

the complexity of the program increases because of the null pointers. The program must

3

¥
's:'s'
ATSN

66

o Y
rd

RN A LT AR A RN O g B Y) Vel]) . " Y R T

determine what size the polygons are and where to draw them when a null pointer is
encountered. This is still better then drawing all the water polygons for the standard

resolution because only one polygon needs to be drawn for each null pointer,

o e o

D. CONCLUSIONS

-

Data Structures

-

The Array structure requires about 3 megabytes of data. The pointer requires
about 0.8 megabytes for an average cell, about half water half land. The procedures for
the initialization and drawing the structure are much more complex with the pointer
system. The time required to draw one frame is three to five seconds for the array and
one to five for the pointers. At worst case, when the scene is all land, performance is
about equal. The pointer system excels when the viewpoint is over water and null
pointers are encountered when drawing. The performance of the hierarchical pointer
structure is at worst the same as the array. The improvement when drawing both land and
water make the increased complexity of the hierarchical pointer version of the program

worthwhile.

2. Z-buffering

Z-buffering is not always the best solution to the hidden surface problem.

i 2 30 s v Tu Ty R4

Many of the problems with displaying the terrain would be greatly reduced if the
painter’s algorithm was used instead. If the end use of this research was to just display

terrain the painters algorithm would be acceptable. The difficulty comes when you want

YRR

to add objects to the display, i.e. shiyp 3, tanks, buildings, etc. The painter’s algorithm relys

on the drawing order of the polygons. The polygons closest to the viewpoint are drawn

fF B w A e~

last covering any objects farther away. Any objects that are drawn in addition to the

‘e

terrain must have their polygons sorted with the terrain polygons to insure that all the

67

AR

W I s S A A R e ol AT AT e e T -.",-.\"\"-t,“ NS AL '\f‘\‘\'_ NS LL TR AN
. Wiyl) b A S AU . \ . o DR T N T Y A AP N AT

polygons that represent the final picture are drawn in order, far to near. See [Ref. 7] for
a better discussion of this technique. If the problems with z-buffering can be overcome,
it is well worth the effort for a three dimensional display.

Black and white images are used throughout this chapter to illustrate points
about the display. Figures 5.13 and 5.14 are color photographs of typical views seen in
the three-dimensional terrain display. They are added to help equate the black and white

images to the views actually seen on the system’s color display.

.‘._.-‘.‘
AR

: . .v"':‘
|

4
e,
"‘l f_4

l'
3

+

7/
.4

.i',l

68 N

At C el w A o o il o T ol e o I,

Rl NP B N CaR Uag) Vel BB 0 2¥al el LS a8 g R JORC) ¥ I R OTROTRT O R R O O K S R O MO R &8 8ok Sal g ¥,

LAl A

v

1

Figure 5.13 Color Photos of the Terrain Display 9

69 "

£ ACESCELCS] O ARSI |

e
L
“»

rd

. P L N - " . - " W, ')
e ot -, =, -,
.(“-:. _‘.’.‘;.f::‘ \.-A.l. 2, n'.k;\ O A"‘\ ‘. A.Au,{';;))f}l‘}l\n-ll_\nhl -J('.Au\.).;\. %ﬂ?fm-’}.&:‘.&‘."’bﬁ

LR LAY
,m.r'“.r'.r'.rz.r

T}'

IO TSR T LR) sato ool ~aVe 2 B'E VA7 826" 28 Bat ‘Bat Bat S IR aVD%aTR 0 ava At 0 8" IS,
. . 3 ‘ d %

Y NIEFIAL LS
ARA

vt

r'.)f

A

“y e

L3

g’

P

x

¥

Y
-t

'

el

ey

N X

TRy

hY

T

\
{\{{'f({

Figure 5.14 Color Photos of the Terrain Display

[]
h}
<

E

Yo

VI. CONCLUSIONS

A commander’s workstation that provides useful information in a way that is easy to
understand and control is not only feasible but essential for managing the vast amount of
information a commander needs to make speedy, well informed decisions. This study
focuses on two preliminary issues in the development of the command and control
workstation of the future (CCWF), a user interface with multiple windows and a three-

dimensional display of the sea/land environment.

A. THE USER INTERFACE
Multiple windows is a necessity. Separate, physical displays for each type of
information is not practical. The use of multiple windows as virtual displays allows the

user to quickly and easily arrange the screen to show the information that is required.

A mouse or track-ball controlled cursor is an easy way to control the entire
workstation. The user can "point and click” to perform any operation without having to

fumble with unfamiliar switches and dials.

Controls that are presented on the screen in pop-up menu form are easier to
understand and execute. After the selections have been made, the menu disappears until
it is needed again. The menus are changed according to the situation. Only the
executable subset of actions is presented to the user. This gives the user fewer choices to
sort through before making a selection. The selections are presented on the screen in
simple easy to understand English. Operations that are infrequently executed are

presented in a separate menu that is called from the main menu. This is an effective way

71

“h',-_-f-.'(\"\.-,--\,{\fﬂnlzh\:\j\? w-\.’wv_ ,{",""' _)l

.&_.'u.'k -1"& VAP, SN SR B S

P 4

Auaa sy :

v r .\T. o

L
.

PRI
A

s A

s
.

.
AP R
.

R L P A R ST .---.u"\b:'-""-'A-'.:.‘;J;.JU.NH.M‘

to change default system settings. Menu driven controls increase the effectiveness of the

user interface with the CCWF.

B. THREE-DIMENSIONAL DISPLAY
A three-dimensional display is very complex. It requires a very powerful computer
capable of drawing on the order of 100,000 polygons per second. This study focuses on

the display of digital terrain elevation data in a three-dimensional display.

Data from the Defense Mapping Agency standard tapes is used. Appendix C shows
the routines developed to extract files from the DMA standard tapes and also the routines

developed to extract the needed inforination from the files.

The terrain is drawn by passing elevations for four adjacent points to a routine that
draws two triangles representing the area between the four points. An acceptable
approximation of the actual shoreline can be generated by assuming that aiiy square with
three of the points at zero elevation has one triangle land and one water. Any square with

all zero elevations is all water and any other combination is all land.

Objects in the distance are seen in less resolution then objects that are close. A
technique that models this natural fact is to use three resolutions of terrain data. A high
resolution data with points close together, is used to draw terrain in the foreground. A
medium resolution has points that are farther apart and a low resolution is used to draw

things far away.

A hierarchical structure with pointers works very well to store three resolution
terrain data. The data is stored in small structures starting with low resolution on top and
working down three layers to the high resolution data. The value of each low resolution
point is based on the values of all the higher resolution points below it in the structure.

This technique also compresses the data. A command and control workstation for the

72

L 4
A

i e fin e 2l
f-’f{fv"

P 4

N S U WU T VAR O R R O O GO O IR TR T Y Y A E T RN N NUTON Y] hob ¥ et Ra¥, gl W W ¥ 0

e
P

+ e

Navy is primarily concemed with the area of sea and land. Many of the data values for

these cells are zero in elevation, indicating ocean. Any sub cell with all zero values is :

! 4
::, not stored. The structure that represents this area is not allocated and the pointer to this -
? section is null. When a null pointer is encountered while drawing the terrain the system
2 knows all values below this point are zero.
:' Z-buffering was used as the means of hidden surface elimination. This method '
! makes drawing many polygons very easy but is very costly in time. It is hoped that
K future hardware improvements will overcome the problems and allow z-buffering to live .-
;: up to its potential. i
; :
: C. FUTURE WORK .
b The next step in the development of CCWF is to combine the multiple window i
h interface with the three-dimensional display. New hardware, the IRIS 4D/GT, provides :
the computation and graphics power needed to provide multiple, separately controlled ’
' windows, showing two and three-dimensional views in near real-time. The two- A
N dimensional version of the command and control workstation needs to be ported to the \C
3 new hardware and changed to conform more closely with the native window manager.
',,f The three-dimensional terrain display should be included in the new system.
E Enhancements needed in the two-dimensional display include information on the closest !
R point of approach, track history and other common NTDS functions. The ability for the »
! . user to enter information directly into the system should also be added. This can be used _
N to enter contacts into the system or show special marks or boundary areas on the display.
g :
‘ {
i)

n"_’.*"f NCAS .-

| n %
]

T B T A

'-:'f"-‘:r"'.r“'f_".-_ el AN I T N

'\ w e " '\ o I %
R N R R A M N N AN N I N NN A T g

12, 223" $. %00 0 B A L A a0 athe' L 0P 0"80:070.0 0 0" 3 > ey .‘ W K. - ¥ w 7 \) “ ‘ A-IJAK;, Q'..- _‘\.__ e

A new display showing a map of the region needs to be developed. Terrain elevation
data is available and cultural data can be obtained from DMA. NTDS symbology should

be shown on the display indicating contacts.

All three of these displays need to be tied together, sharing the same information.
The database of contact information needs to be expanded to include a three-dimensional
graphics representation that can be displayed and selected in the three-dimensional
display. The view point of the three-dimensional display should be set by selecting a

contact or a point in the NTDS or chart display.

Work is needed in the three-dimensional display to take advantage of the additional
power provided in the IRIS 4D/GT. A lighting model should be added to provide more
realistic views with Gouraud shading. Contacts, buildings and special features should be
represented by special three-dimensional icons that resemble the actual objects. More
accurate drawing bounds can be computed, cutting the number of polygons that are

drawn.

The user should be able to attach to a contact and see the view from the perspective
of someone on a ship’s bridge or in a plane’s cockpit. The view-point should also have
the ability to be free floating, where the user selects a position and then moves about at
will. The user selects a contact in formation to attach to. While aitached, the view shown
on the three-dimensional display is based on the position, course and the height of eye of
the contact. The user then detaches from the contact. He can assign a course and speed

to the view point and move about, observing the formation from any angle.

Tactical information, such as weapons and sensor envelopes, can be added to the
three-dimensional display. The user selects a contact and asks for the weapons systems to

be displayed. A window opens with a list of weapons and sensors. The user then asks to

74

WIS I ERENT TSR A LS ST R

T e O W T N A_-‘;, T T Ay S A S A g e A T L PR R A BT R AT AP IR

o W

g
-

W Ly SR

s !, .
o

>, W

“x
x

X

DA

"‘s-
R

Xy

e
y

A N
WA
.",-p_r

&P

|'.
]

Fals '.":.* @ N

’
e ta e *

L ORI

'y
4
s

2o f

o
2

P A

et
x

r

"'{'l

«
[3

]
iy

ot A AT PREI RN W L G T Y,

NN YN UNUNY

B0.0%0. 0% 8% 8/ 0% 8 0§D "R ATR B R N 0 0 Pt 60 0500 VR0 DU A Bl B 0 g€ N 06 b Rt ok v b ol folt Bt jav .

see the envelopes of all or some of the systems. The area that is effected on the three

dimensional display is overdrawn with a transparent color showing the effective area.

The information available in Defense Mapping Agency cultural files can be added to
both the two and three-dimensional displays. The chart display can show features
commonly found on maps and charts, ie. cities, landmarks, buildings, towers,
navigational aids, etc. The three-dimensional view can use three-dimensional icons to

represent these same features.

A system with all of the features listed above is a major effort. In fact we foresee
that even greater graphics capabilities are needed to completely carry out our desires for
the three-dimensional display. Fortunately, we see near future graphics workstations that
will give us an order of magnitude increase in polygons per second in the next two years.
Before that time we need to prototype and explore three-dimensional capabilities with
the hope that we are able to provide a prototype of the command and control workstation

of the future, as the new hardware arrives.

75

T A S

<
]

Pl A

APPENDIX A - DEFENSE MAPING AGENCY TAPES

Tape 1 Tape 2
six cells six cells
30N 129E 32N 128E
30N 130E 32N 129E
30N 131E 32N 130E
3IN 129E 32N 131E
¥ 3IN 130E 32N 132E
E 3IN131E 32N 133E
. Tape 3 Tape 4
” eight cells nine cells
33N 126E 33N 125E
33N 127E 33N 126E
33N 128E 33N 127E
33N 129E 33N 128E
33N 130E 33N 129E
33N 131E 33N 130E
! 33N 132E 33N 131E
. 33N 133E 33N 132E 7
33N 133E \

76

"y St £a® hy® Fat fa¥ a0 ga¥ ot ‘2t 34 Ha?’ fatt” 00 8 S) e Bl Ut ol el Bl Bt P O g T K ANV R X" =
- - 54 W) a4 S o : - - " N

APPENDIX B - DIGITAL TERRAIN ELEVATION DATA FORMAT

This is the file discription for the Defense Mapping Agency digital terrain elevation

q data used in this project. It was extracted from the Defence Mapping Agency publication

' "Product Specifications for Digital Landmass System (DLMS) Database”, stock number
SPEXDLMS2.

CHAPTER 4 -- DIGITAL FILE DESCRIPTIONS
SECTION 100 -- TERRAIN

Paragraph Page
101 General 81
102 File Characteristics ‘ 81
103 Record Formats 86
104 Explanation of Records and Fields (DTED) 96

101. General
The DMA 5iandard Terrain Format is DMA's standardized system of recording
terrain elevation data on magnetic tape. The format is intended for the purposes of
production, storage and exchange of terrain elevation data.
102, File Characteristics
A. Physical Characteristics of Magnetic Tape
1. Length: 2400 feet
2. Width: .5 inch
3. Nine track recording format
4. Odd parity
5. Density/recording method:

A a. 1600 FPI/Pnase encoded. This is preferred by DMA for storage and
) data exchange and will normally be expected from generators and provided to requestors.

b. 800 FPI/NRZL This is not preferred by DMA but will be provided to

or accepted from data requestors or generators unable to accept or generate 1600 FPI,
phase encoded data.

c. 6250 FPI/GCR. Future preferred DMA data exchange format. Will
not be used unless agr=ed to by sender and receiver.

6. Inter-Record gap: .6 inch (6250 FPI: .3 inch)

7. Physical end-of-tape markers at ' the beginning (beginning-of-tape
marker) and end of the tape {end-of-tape marker).

77

IR
‘{l‘(

r ¢ -‘-"-'.

MO YA

ol AN

LA AT LR AL SR S
<, » '

ot

T RN

AL

e LR AANN W
2l EErELLL L

AW e a4,
A = Kol i

B Nk Y

P
e

sy ey,
.«

RN
/1'l‘l

WA NI I 'I:.‘ - -,.'-‘. Y O -'.‘:, > ") -,.:f R A PR :_, ;'-.; ,) -.-.-‘.‘._.) L .'l'.{‘o{‘-'-_\{'\"-' . "..‘-:ﬁ:-.‘:"'..’\;‘;'..v’\ hY

TR J‘:-':q‘_'l‘
- DRI

N i 1 v ataate'ate A¥a 20 . -al e AY, 9", e 460 BV l. _ A - "" ", *-'"h - (] N ¢ v eu.'
[e 8 ‘
]
s
&
[]
o/
A
Y
N
B. Record Characteristics []
7
1. Recorded Labels: American National Standard Magnetic Tape Labels for A
Information Interchange X3.27 - 1969. Recorded in ASCH code. _‘,',‘
P
2. Data Records: 2
-3
a. Record size: variable length, maximum 14414 frames, minimum 14 ro
frames, modal (average) 2414 frames. N
. N
b. Blocking factor: 1:l (block size = record size) :"
-
3. Record Sequence: Rty
®
VOL 1 (Volume Header Label) -9
HDR 1 (File Header Labe! for file A) el
UHL | (User Header Label for file A) -
l."K
* ‘:
DSI (for file A) !
ACC (for file A)
Data (for file A) :'_
. KoK
I\I
AN
EOF 1 End of File for file A)]
UTL 1 (User Trailer Label for file A) o
-‘ﬁ
» ::
R,
HDR | (File Header Label for file B) el
UHL | (User Header for file B) ."
-
* -"\-
-"\-
o

&

DSI (for file B)
ACC (for file B)
Data (for file B)

A",

3 ® I'-:"-‘{'.‘ o

*

[

EOF | (End of File for file B) o
UTL 1 (User Trailer Label for file B) SN
* :.;
. ®
NCOTE: In the above sequence, a Tape Mark (hardware end of file) 1s denoted by an "*", -")
i
ey _‘1
NN
e
78 N

’ f_:v'. v
lALA L

oy

s Ll

Tt a VAR A B S N R AR R 01600 n e e i i 1 4207, AN AN AN S o Rt e AV OV ¥ 4% HaT ot N ipvaBav i ® Rl N ¥ 08 10 8. AR Y TV O TV IR TR AW IV

rEL AT

4. Logical Characteristics: (Level 1)

a. Data File Structure: Arranged into 1 degree by 1 degree
geographic areas. Each data file will contain data falling within a single one
degree square. The reference origin for each data file will be the Southwest
corner of the degree square. Multiple data files will be arranged primarily by
ascending latitude bands (-90° South to +90° North), secondarily by ascending
longitude (=180 West to +179° East).

.+ b. File Extent: To provide overlap between adjacent data files,
the degree square coverage in this standard includes the even degree values on
all sides of the area. Each data record has one point of overlap with the
square above and one with the square below (if the record extends to the
degree square limits). Entire data records lying on integer degree longitude
values will also exist in the adjacent degree square.

c. Terrain Elevation Intervals: The horizontal plane spacing of
the elevation array will be in whole second 4intervals for intervals of
1 second and above and in 0.1 second intervals for intervals legss than

1 second.

d. Data Value Sequence: The elevations within a data record have
a constant longitude value. The firs: data value is the southernmost known
elevation and the last is the northernmost. Unknown values internal to the
record are indicated by the null state condition of all one-bits., No two data
records will have the same longitude value,

e. Data Record Segquence: Within a data file, the records are
arranged in order by ascending longitude.

f. Hash Control Total Information: The last four frames of each
type data block contain a 32 bit value which is a checksum computed algebraic-
ally by summing all elevations and header words in that block, as 8-bit values
using integer arithmetic. Bach frame from tape is considered as an 8-bit value
for checksum calculation.

S. FPield Characteristics:

a. Numeric Value: All elevation values are signed magnitude
binary integers, right justified, 16 bits. The sian is the high order posi-
tion. Negative values are not complemented,

b. Permissible Elevation Value: :32767 me ters

NOTE: This is the maximum allowable elevation yalue. However, this value will
not exceed +9000 meters or -12,000 meters.

c. Null State Condition: Blank data will be all one bits.

6. Explanatory Diagram: In order to more fully explain the file
structure, figure 4-100-1 is included.

79

A AT G e T Ly A R o VR O v A T G R L T i A (L Bt T R R R

v “ AR Wl O W WU M W WY WU WA N NN N Wi T P LT w Y a Ta S M
PIGURE 4--100-1
TERRAIN EXAMPLE
FOUR 1° CELLS
12' LONGITUDE SPACING
{NON STANDARD)

DATA R DATA DATA DATA
STRUCTURE STRUCTURE STRUCTURE STRICTURE
SEQUENCE * TYPE SEQUENCE TYPE

1 voL 1 32 HDR 1

2 HDR 1 33 UHL 1 319N, 40°W
3 UHL 1 3098, 40°W 34 .

4 hd 35 DSI

5 DSI 36 ACC

6 ACC 37 Data Record 12
7 pata Record 1 38 Data Record 13
8 Data Record 2 39 Data Record 14
9 Data Record 3 40 Data Record 15
10 Data Record 4 41 Data Record 16
11 Data Record 5 42 pata Record 17
12 Data Record 6 43 *

13 * 44 EOF 1

14 EOF 1 45 UTL 1

15 UTL 1 46 d

16 - 47 HDR 1

17 HDR 1 48 UHL 1 319N, 39°W
18 UHL 1 309N, 39°w 49 -

19 » 50 DSI

20 DSI 51 ACC

21 ACC 52 Data Record 17
22 pData Record 6 53. Data Record 18
23 bata Record 7 54 Data Record 19
24 Data Record 8 55 Data Record 20
25 Data Record 9 56 Data Record 21
26 Data Record 10 57 Data Record 22
27 Data Record 11 58 b

28 hd 59 EOF 1

29 EOF 1 60 UTL 1
30 UTL 1 61 .

31 . 62 .

NOTE: * = Tape Mark

gt 0"

T LU
LA S,

A

-

'5-'34 "-.'l' u':_t{'_

~

e

LA

Y00

NN

»
¥

4

AP A T4

el '.'n R !

R

ﬁffb-_. f). -hxfrﬁ e Y ¥a 2 ﬁ..'h‘u- ‘..J.J.....-.f..f. - ‘.h. ﬁ-v~LxU‘-\4K$- "2 A5 -L..L -l 1 RN AP,M.-..,ﬁr? Y ﬁw\. J--u...\.ﬂ\ P wa.- u.- poet _. . .\\\ a* \ -l .. i .\n
: ..\.
.\..
N 9
'-\ K3
| 2 m .
, S8 ¢ 4
+ * IT "paooay° ejeq - + o+ Ll "PpIoddY’ w3le@ * ,ZL + MSE w..s b x
. - P4
0 N
b N - m. A
4 ° * 1T °paoday- wejeq ° * * 0l “-pioday- e3eq ° - .m.. m L) .H
=l -
o o
w5 i X
4 ¥
= - * 0T -proday-” weaeq * cot * 6 °pioday’ wejeq ° - £ 4l ® R
5 5 3 ¥
® Y o " 9 A
Q (6] .m .,
‘ * 6l "PlODAY" ejeq R * 8 "pIooay° e3jeq ° . o= .m o
- .
- P . 5
0 3 g & o
2 ° ° 81 piocdoay* we3jeq * A L *piooey° wvieq ° . Ao @ v
o ~Hoe R
- o - " 0o o r
v £ > 9 o el
o 8 o LA o s
e + ° LL "paoday° eleq ° + 4+ 9 *paooay- ejed * + Mo6E w o w » LR
: 8 g v b D
M a S % W = .
o po ;
4§ * T Lb pIoddy” ejeq - + o * 9 ‘pioosy" ejeq - S oMot W B- T i
m, |51 « Mu Mo~ m
- gL~ 8 “
e z ln.\ m L] 1)
m . * 91 °pioday-° ejeq °* -2 - g ‘prooay - ejeq ° o °oE o x
x \m_ o m o .v-
w afe ¢ v
& ~T. O\ 4 m w o] .\-
. * Gi c"paodsy* ezeq ° "~ S *pacodY° w3aeq ° a 78 o)
— - 4 "o s
d Y] u M « w5
o o . - © g J 9 5 4
. * PL °piroddy‘’ ejeq °* - * © € ‘piaoHay* e3eq ° “ 2 3 8 3 o
o
o [
53 &
. * gL °pxoddy° eaeq ° - S 4 *pIoo9dYy* w3jeq ° ~ ~od8 @ ..~_
. ” n .--r
wy < m ~ ~ ~ =~ ..-.
+ * VL ‘Ppioday- ejeq ° + 9 Y *p1029Y- ejeqg ° + MoOv "
2 :
g & & é] o
[} ~ i o i
] M o ” M b
-4 e

DB ot o

| ik At a 400 -a7, AR ava ety a) gt AR LAL Gty R, i .
R G A A LA LA SRR LA G D A L AR C A YA i AT R

103. Record Formats

Digital Terrain Elevation Data.
of Records and Fields.

In the following record formats,
8 binary bits.

-

A. VOL Header Label

Field Length

Field Contents In Characters

VoL 3
1 1

6
Blank or Nonblank 1
Blanks 26
Account Number 14

28

Blanks

*These fields,
B. HDR Header Label

Field Length

Field Contents In Characters

HOR 3

Filename 17

82

A S N A A BB A A < e e
ul.l'm‘l. ’*"ﬁ\"”"\ WA s %

See Section

a character

to be defined by the producer,

AT P

104 for further explanation

requires one frame or

Description

Recognition sentinel

Fixed by standard

Reel Number

Six alphanumeric characters

identifying the physical reel

*Nonblank indicates restricted
access, as the tape reel is
privately owned

Unrequired available space
*Account number of owner of
this tape reel (DMA uses a
ma ximum of 12 characters
left-justified, space filled)
Fixed by standard

Fixed by standard

may be left blank.

Description
Recognition sentinel

Fixed by standard

*Left-justified filename. The
first 12 characters are
referenced by the Executive

System far comparison with the

filename portion of the
external filename.

.
f-' S '- ~" . LGOI O . "‘,' W

LS

"

. ‘: - ‘-.", " 'ﬂ »

= VIR TR VLT

A

2*
A

v e
s

2l

PR AR

ER NN gy

RS
LN LA N L A ‘n

Py
0.3

“xoww st
27z

@ s

S v A
NSNS
“‘ ’ » R

Py

]
x
2 4

e
Al

El l
® "-'¢

a
2

4 ‘?,{,

® L2

Lo ot
S5

’

-
-

x

R RS R MR R R R A R T I B TR X R L Y K OOV R AR R R N o O T R OO O Ty S Y v Ll Gl) S g g~

Field Length

- Field Contents In Characters Description
~
UNIVAC 6 *Fixed as set identifier when

referenced by system.

0001 4 *Reel sequence num™~v within a
file.
0001 - NNNN 4 *File sequence number within a
- reel.
0001 4 *Generation and version numbers
00 2 which are fixed at 1 and 0.
bYYDDD 6 Creation date of tape. A blank

followed by two characters for
the year followed by three
characters for the day (001
through 366) within the year.
(date tape was written)

bYYDDD 6 *Expiration date of tape. Same
format as creation date field.
The date after which this tape
reel may be considered as avail-
able for reallocation.

A space indicates unlimited 1 *Accessibility
access to this reel

15g - This reel is catalogued
(on tape).

35g - This reel is catalogued
with read key.

55g - This reel is catalogued
with write key.

75g - This reel is catalogued
with read and write key.

Block Count 6 *Fixed at zeros.

Qualifier 13 *Used by the Executive Operating
System (DMA uses a maximum of
12 characters left-justified
space filled).

Blanks 7 Fixed by Standard.

*These fields to be defined by the producer may be left blank.

Puf e,

83

S
-
7
]
Y
N

&

YT A AN AT R TR - T TN o
s ININS, -t‘wr"dhnuxu.a‘:-e.‘- WWM\ Ao ‘\K\u.pm'}'}‘-_;‘- A R R A L L L O

T W

Field Contents

UHL

DDDMMSSH -

DDDMMS SH

Ssss

8sss

* 0000-9999 or NA

- Top Secret
Secret
Confidential
Unclassified
- Restricted

vCOLY
]

Unique reference
number

!

e N g LT LN T L N M e e e e oW Nyt e a s
-, - P
I‘ iy’ _'. -o‘ -“f.'-(J'-r by .-_-.r -(-‘..r&r_\m_..-\ n

C. User Header Label

Number of longitude lines

Field Length

12

In Characters

84

- c e S~
S SN

s
ot .

Description
Recognition sentinel
Fixed by standard

Longitude of origin (lower left
corner of 1° Square-full
degree value). H is the
Hemisphere of the data.

Latitude of origin (lower left
corner of 1° Square-full
degree value). H is the
Hemisphere of the data.

Longitude data interval in
seconds (Decimal point is
implied after third integer).

Latitude data interval in
seconds (Decimal point is
implied after third integer).

Absolute Vertical Accuracy in
meters. With 90% assurance that
the linear errors will not exceed
this value relative to mean sea
level. (Right justified)

Security Code (Left justified)

*Unique reference number (provide
pointer to file containirfg detailed
file description)

Count of the number of longitude
(profileg) lines

.'--\.’. ~‘-..-"\.-‘-.'_‘-’\-‘\- \- o’ LR ,'..“‘- W T ‘.-;", - v "~ \
- i - - a 0 » e . " »

T__._m,mmumwmmxummmnmw.wmwvrwx'mmwwvﬂm X

2T S

PO
a0 Ay

I
Rl
-

LN

82

h

'q-i. P B |
ﬂ\ ~,v.x %

Pl
4N

o ?--‘;f P o

PN X
- . -‘

o
=% 4

> o

o0,
-
-

’..". s s

X

¥
A

's‘\"r
o a

"
270

Y

.,{.

'
b5 h N
et
Sl
o '
o N R

'.
b

« 3

-ll‘{l.{l.’l .rA . ‘;’
" .

Field Length

i Field Contents In Characters Description
Number of latitude 4 *Count of the number of latitude
points points per longitude line. Since

the current implementation allows
for variable record size, this
field has very limited use.

Multiple avcuracy 1 0 - Single
Iz 1 - Multiple

Reserved 24 Unused portion for future use

*These fields to be defined by the producer may be lef: blank.

D. Data Set Identification (DSI) Record
Fixed Length = 648 characters (Bytes) .
Each Character = |1 Tape Frame = 8 Bits

Field Length t
Field Contents In Characters Description :,\
Ly
DSL 3 Recognition Sentinel ®
I-"-
T - Top Secret 1 Security Classification Code ;:‘."
S - Secret o
C - Confidential I
U - Unclassified Ol
R - Restricted At
2 Security Control and Release g‘
Marking. For DoD use only ~."','_-
(DIAM 65-19) hy

s
vy s
..

27 Security Handling Description
Other security description

v
I
"

26 Reserved for future use .!_.
oo
DTED1 or 5 DMA Series Designator for 9
DTED2 : product type ':'-'
0

15 Unique reference number (For ~

producing nations own use or ._

zero filled) ,:\‘.
o~
8 . Reserved for future use
01-99 2 Data tdition Number (01-99)
A-Z 1 Match/Merge Version (A-Z)
YYMM 4 Maintenance Date (Zero filled

until used.)

Field Contents

YYMM

CCAAABEB
(Country Agency Branch)

00 or 01-99

WGS72

DDMMSS .SH

DDDMMSS . SH

DDMMSSH

DDDMMSSH

Field Length
In Characters

)

4

16

10

22

10

Description

Match/Merge Date

Maintenance Description Code
(All zevro filled)

Producer Code (DIA Country Codes
used for first 2 characters)

Reserved for future use

Product Specification Stock
Number (SPEXDLMS?2)

Product Specification
Amendment and Change Number

Product Specification Date
(Currently 8304)

Vertical Datum (Mean Sea Level)

Horizontal Datum Code
(World Geodetic System 1972)

Digitizing Collection System

Compilation Date (Most
descriptive month/year)

Reserved for future use

Latitude of origin of Data.
H is the hemisphere of data.

Longitude of origin of Data.
H is the hemisphere of Qdata.

Latitude - SW corner of bounding
rectangle. H is the hemisphere
of the data.

Longitude - SW corner of bounding
rectangle. H is the hemisphere
of the data.

P ok i .
I -

f

.
n

o g e

Rl A

o

a2

4

»

g Ny (e

T ™
S

']
14

PEIARL Pt

¥
o~ %

Py

f oAl
/RN

ra
et

S e
WX

h]

s
P
. £
-l

F L

L TR Th T N 2
¢ 4

f J

“y

.,
v

"J‘

1
‘S

>
S

%Y
.

- - .o

(AR e

Pl

PR S Rt

AR R TR O RA RN vagon

Field Contents

DDMMSSH

DDDMMSSH

DDMMSSH

DDDMMSSH

DDMMSSH

DDDMMSSH

DDODMMSS .S

SSSs

SSSs

0-9999

0-9999

Field Length
ln Characters

7

87

Description

Latitude - NW corner of data,
bounding rectangle. H is the hemi-
sphere of the data.

Longitude - NW corner of data,
bounding rectangle. H is the hemi-
srhere of the data.

Latitude - NE corner of data,
bounding rectangle. H is the hemi-
sphere of the data.

Longitude - NE corner of data,
bounding rectangle. H is the
hemisphere of the data.

Latitude - SE corner of data,
bounding rectangle. H is the
hemisphere of the data,

Longitude - SE corner of data,
bounding rectangle. H is the
hemisphere of the data.

Clockwise orientation of data with
respect to true North (will usually
be all zeros for DTED).

Latitude interval in tenths of
seconds between rows of elevation
values (Decimal point is implied
after third integer).

Longitude interval in tenths of
seconds between columns of eleva-
tion values (Decimal point is
implied after third integer).

Number of latitude lines
Actual count - Number of
latitude points. (rows that

, Contain data)

Number of Longitude lines
Actual Count - Number of
longitude points (columns
that contain data)

P R AR LI L I e I PR R S I PRI N - “
N N A P P S s oS AN AT AT N f‘r‘a‘ftf‘r*jff R T A R
E - - - 3 . - »

Field Contents

Field Length

* 00 or 01-99 2

Field Contents

101

100

156

E. Accuracy Description (ACC) Record
Fixed Length = 2700 characters (Bytes)
Each Character = 1 Tape Frame = 8 Bits

In Characters

Field Length

ACC 3
* 0000-~9999 or NA 4
* 0000-9999 or NA 4
* 0000-9999 or NA 4
* 0000-9999 or NA 4
* 4
hd 1
* 31
* 00 or 02-09 2

If Product has subregional accuracies, the overall accuracy of the product will be

the

L
-l

worst accuracy.

In Characters

88

N AT A T AT

Description

Partial Cell Indicator
00 = Complete 1° square

01-99 = % of coverage completed.

Reserved far DMA use only.

Reserved for producing nation
use only.

Reserved for future use,

Description
Recognition Sentinel

*Absolute Horizontal Accuracy
of Product in meters. NA if
not specified.

*Absolute Vertical Accuracy
of Product in meters. NA if
not specified.

*Relative Horizontal Accuracy
of Product in meters. NA if
not specified.

*Relative Vertical Accuracy
of Product in meters. NA if
not specified.

Reserved for future use,
Reserved for DMA use only.
Reserved for fuiLure use.
Multiplebhccuracy Outline Flag
00 - no outline provided

02-09 = number of accuracy

subregions per 1° square
(maximum 9)

A R PR A AT AN A RN

A A

- o -
ars i e M B

j

22LL

4

PR o B Y
’

LY
adliaf

¥ s

id

¥
>

A I}
]

IS

e S A

.‘.’n‘:vr

Ja e ey

P A

P

R VR AR AR S8

AR

‘:',.—‘;—‘.

* Field Length
. Field Contents In Characters Description
Y3 :A!

4 Start of Accuracy Subregion Descripticn. Repeat
to maximum of nine times. Blank fill all unused
accuracy subregions.

‘AR X X

) * 0000-9999 or NA 4 Absolute Horizontal Accuracy
N of subregion in meters. NA
if not specified.

ol

b2
L%,

* 0000-9999 or NA 4 Absolute Vertical Accuracy
of subregion in meters. NA
if not specified.

P

* 0000-9999 or NA 4 Relative Horizontal Accuracy
of subregion in meters. NA
1f not specified.

B
il

K4 * 0000~9999 or NA 4 Relative Vertical Accuracy
of subregion in meters. NA
- if not specified.

* 03-14 2 Number of coordinates in accu-
racy subreqgion outline. (Maximum
of 14 coordinate pairs. Coordinates
are input clockwise. Implied
closing from last to first

3 coordinate pairs.)

Start of Coordinate Pair Description. Repeat to
N maximu of fourteen times to outline subregion.
> Blank fill all unused accuracy subregions.

DDMMSS . SH 9 latitude. H is the hemisphere
’ of the data.

DDDMMSS . SH 10 Longitude. B is the hemisphere
‘ of the data.

End Coordinate Pair Description
N End Accuracy Subregion Description

18 Reserved for DMA use only.

ll;}‘)
[]

. » 69 Peserved for future use.

LA
ZE kAL AA

89

v R FE,
%1 oy R

VDN e 3

-

1 A U w Lt . : - - o - oy
N L N G e e e o oy : A O L S "‘!::q
X " %, . - > ~ b % AW T ri oo g TN,

b
L)
\

F. EOF Trailer lLabel

Field Length

Field Contents In Characters Description
EOF 3 Recognition Sentinel
' 1 Fixed by standard

(See HDR header label for remainder of EOF fields.)
G. UTL Trailer Label

Field Length

Field Contents In Characters Description
UTL 3 Recognition Sentinel
1 1 Fixed by standar

(See user header label for remainder of UTL fields.)

H. Data Record Description

Each element is a true elevation referenced to mean sSea level datum
recorded to the nearest meter. The horizontal position is referenced to specific
longitude-latitude locations in terms of the World Geodetic System (WGS), deter-
mined on each file by reference to the origin at the Southwest corner. The elements
are evenly spaced in latitude and longitude at the interval designated in the user
header label in South to North profile sequence.

Field Length

Field Contents In Characters Description
252g Qe 1 Recognition sentinel
Data block count 3 Sequential count of the block

within the file, starting with zero
for the first block (Fixed Binary)

Longitude count 2 Count of the meridian. True
longitude = longitude count X data
interval + Origin (S.W. corner)
(Fixed Binary)

AL LR MR AL ALK SRR AS G as b A ieds o heb A SEAAASS A 0 4. 0 0. PR 10,270 26,

v % %
L e

L
[

54

vre

S

(A A
h e

® 2/
i)

PN y s 4 R ‘ - 4, . - . . . < - N . - . -] - N o 7 o Y -
RSN R KGR TR UM RS RO T OO R T RN VO O MR T T N Ll W R R R g T W P WV I ey

[ou
- r
C)

Iy

AL W
T l.“‘-..:,l

Lot R e

.)

% "y
e

Field Length
Field Contents In Characters Description

Latitude count 2 Count of the parallel. True latitude =
latitude count X data interval + origin
(S.W. corner) (Fixed Binary)

LA

Elevation] . 2 True elevation value of point | of
meridian in meters (Fixed Binary)

Z2 ¥

Elevation 2 2 True elevation value of point 2 of
meridian in meters (Fixed Binary)

S

A e WY
. L 1.‘1;

Elevation N 2 True elevation value of point N of
meridian in meters (Fixed Binary)

&3

Checksum 4 Algebraic addition of contents of
block. Sum is computed as an
integer summation of 3-bit values
(Fixed Binary)

SL%

¥

£ d

.
(4

NOTE:Fixed Binary denotes signed magnitude, right-justified binary integers.

PN
ool

R

<y
.‘{"l

14
v

¥y X r
a2
5

“

IR

oy
s
o

Y
PP,

(o Y

2

91

g het | |
-

»
s

..."'/
)

/7

P

e e o A L A et e e e
N Y R e e e T v

R P . .- :
O SO0 N A R Ty .-.,\" A A AT W T A NN ~

Mt et Y
SR L RN

N TR T S I RN T g P S LY 0

104. EXPLANATION OF RECORDS AND FIELDS (DTED). The foliowing explanation
of Records and Fields supplements, wnere necessary, the descriptions shown in Section
103,

A. VOL Header Label.
This record is required for labeled tapes in accordance with ANSI standard
X3.27-1969 Magnetic Tape Labels for Information Interchange.

- e L e

B. HDR Header Label.

This record is required for labeled tapes in accordance with ANSI standard
X3.27-1969 Magnetic Tape Labels for Iniormation Interchange.

C. UHL User Hcader Label.

1. ANSI standard allows an optional user header label in the first file of a
labeled tape. Several computer manufacturers have implemented tape labeling in such a
way that the user header label in the first file of the tape is inaccessible. This record is
maintained for minimum impact to users not desiring to use the DSI record, but all
information in it is in the DSI record as well.

A e et g B L e i

2. Fields.

a. Longitude of Origin - Origin is always a full degree value even
though the format allows values to be expressed to the second.

’: DS AES

A

b. Latitude of Origin - Origin is always a full degree value even though
the format allows values to be expressed 1o the second.

L,

-

¢c. Seconds Longitude Interval - A squaire of DTED is Norih-Soutn
oriented with columns of elevation posts running from south to north. The longitude
interval is the East~-West distance between the columns expressed as tenths of seconds.

d. Seconds Latitude Interval - The spacing between the elevation posts
within a column (i.e., the distance between the rows) is the latitude interval.

R A EPX LA AN

e
PN

[

e. Accuracy - The accuracy of the product in meters.

P
3

D. Data Set Identification (DSI) Record (DTED).

l. This record provides all identification and security information related
to the product except accuracy information. It duplicates information from the Header
Record so that users may process the data using only the information in the DS! record if
desired.

)
»
P

l.{k.
)
Ll]

XL IR

et

.,,
7.
%

sl J

RS FINS

PPN

‘ ."{..::.:’lv { J f

- - »

NI T R R x Ve W N L W o P W W N e A T R AT ST A T)
O G At KR A AT O MOt P M A L N S L '(' T, ""\‘\\ NI PTIN N T L

[x s

T s M

N WU P N WS A T TS W LRV T AR R X YA R S ga® $a% Jat §ab jat §ao fat

2. Fields.

a. Security Control and Release Markings - The two character
codes are from DIAM 65-19.

b. DMA Series Designator - FPive character code identifying the
product in DMA Area Requirements and Product Status (ARAPS) file.

*c. Unique Reference Number - to be determined.

d. Data Edition Number - The number assigned to the data
indicating either original compilation (Edition 1) or subsequent replacements
of the data (Editions 2, 3, etc.) to achieve accuracy requirements (recompi-
lation) or currency/specification requirements (revision). The data edition
number does not reflect the number of replacements made to the data to effect
boundary matches.

e. Match/Merge Version - The number of times an edition of the
data was changed to effect boundary continuity with adjacent data in the
Cartographic Data Base (CDB).

£. Maintenance Date - The date existing data was either revised
(updated) to meet the currency requirements (or to effect specification
changes), or recompiled to meet accuracy requirements. When the existing data
is only revised (horizontal position or vertical values are not significantly
changed) the maintenance date will reflect the date of the revision, but the
compilation date will not be changed -- it will contimie to reflect the date
of the original compilation., However, when the data is subjected to a major
recompilation, the Compilation Date and the Maintenance Date will both be
changed to reflect the date of the recompilation.

g. Match/Merge Date - The latest date the data was changed to
effect contimiity with adjacent data. This data corresponds to the Match/Merge
Version Code.

h. Maintenance Description Code - to be determined.

i. Produwer Code - The first two characters (left justified)
indicate the producing nation and are from DIAM 65-18 - Geopolitical Elements
and Related Files. The last six characters are to be used at the discretion of
the producer. Rlanks are acceptable.

Belgium BE Netherlands NL
France FR Norway NO
Germany, Federal Republic of GE United Kingdom UX
Italy 1IT United States US

j. Product Specification Stock Number -~ Identifies the product
specification containing the compilation and accuracy requirements used to
produce the data. Currently SPEXDLMS2.

93

A S D o N R O R R R AN O X S s

%,

g
1

'
£ JCa %

AL NN S S

s v
P

-

A L

BN I

"

'f'-:f" N

r s

P

AN A

Y
S
)

»
i
;.-

>
v
“
\'
o
)
1t
A
-~
LS

P
L

el

R
'\rf"q"\' -‘\‘- é'v}'\.

T A R R I T T T OO A

k. Product Specification Amendment and Change Number - Indicates
the highest numbered amendment and change used to produce the data (Amendment
0, change 1 -- 01; Amendment 2, change 2 —- 22; etc.).

1. Vertical Datum Code - Currently MSL.
m. Horizontal Datum Code ~ Currently WGS72.

n. Digitizing Collection System - Identifies the equipment used
to collect the cartographic values from the source material used, i.e., AGDS,
LIS, UNAMACE.

o. Compilation Date -~ The date the data was either originally
compiled (Edition 1) or the date existing data was subjected to a major
recompilation which involved significant changes to the horizontal positions
and vertical values. (Edition 2, 3, 4, etc.)

p. Latitude of Origin - Expressed in degrees, mimites, seconds
and tenths of seconds with N or S to indicate hemisphere.

g. Longitude of Origin - Expressed in degrees, mimutes, seconds
and tenths of seconds with E or W to indicate hemisphere.

E. Accuracy Description Record.

The accuracy record gives the accuracy of the product. The record
allows space for the delineation of uwp to nine accuracy regions within the
product should the accuracies of various portions of the product differ. Each
outline may have up to fourteen coordinate pairs. Coordinates are input
clockwise. The record is a fixed length record. Umised coordimate pairs are
blank filled.

A PP R LR SR

a2 ¥ Y
b, (3

T g

N
g,

“
>

P e
a

.';.V;‘ ".{ f f‘:.‘,

",

’d
a

7,

4Y 5

R

>

el

"\’,*‘—,‘
-
-~

o %3 ;

4 l. '.
s

A

L
-

-

S

\‘4‘:-;?

PR TN MO AN AN M AT A RN S WA UN N LR UNL R v sag Sad val €49 @ g v i Sl o on® il v B v e AN SN g oAl Na 2N 20 A LadiaBar o Aar et ~ry

-
)
‘- g
",
-
)n
J
APPENDIX C - ROUTINES TO USE DMA DIGITAL TERRAIN DATA "\
)
1’ .
The two programs in this appendix are for manipulating Defense Maping Agency R
digital terrain elevation data. The first, dted.c, reads one file at a time from the standard X
DMA magretic tape. The name of the output file is passed as a command line argument. o
The program is repeatedly called with new names until the entire tape has been read. o3
, The second program takes a data file extracted from the DMA tape and extracts the -
p just the data from the file and writes it to a file whos name is the Latitude and longitude I\
! of the southwest corner of the cell. & '
/*#********#*#***#****#*#***t :
* FnName: dted.c y
* Author: FRANK HARRIS
1 * Date: jan 88 A
! * Purpose: to read dma dted tapes onto isivl N
*##********#**#**************/ A
#include <sys/file.h>)
. #define maxsize 3000
: #define FALSE 1 0
y #define TRUE 0)
main(argc,argv) ;
int argc; N
char *argv(]; o
X { 2
y int fdi, fdo, nbyte; -;
) char buf[maxsize]; o
short endfile ; X
‘ N
\ /* open tape */
. /* tape not reset after each call */ N
/* will open the tape where it was last stopped */ o
if((fdi=open("/@isiv8/dev/snrmt0",0_RDONLY)) < 0) ;
{ .
, printf("cannot open tape0); o
* exit(); .
§ ’ : 4
*
. /* open output file, filename passed into program as argv param */ G
_ if((fdo=creat(argv([1], 0666)) < 0) '\
s (l.‘ ¥
. printf("cannot open data file0); P
X endiiic = FALSE; 3
) . exit(); >
J
\ oy
"' 95 d
: :3:

- T -p o A AP B T e Tk et A M a e e e
N AN RS MR W, (v‘} Wi ‘ (PAWAA Y 'r ."-"

close (fdi);
close (fdo);
96
M M e e T e e e N LN T Y % o N AP At U T AR Tty
N I A N N R AN N D R A N I N ¢

/* read the next file file on the tape */
while(lendfile)

nbyte=read(fdi,buf,maxsize);

if(nbyte < O}
printf("'read error0);

if(nbyte == 0)

{
printf("end of file0),
endfile = TRUE,
exit();

}
nbyte = write(fdo,buf,nbyte);

)

RN
SO o4

»
n

’

l"'v 5

|
.'n.

Xt
Kl ”
<

Il:“.n' "

P
h

e
oo

Saxn

)‘3‘

-

A

€ . ?’Y
".'.

AT N] b
e @
ENENE Y

»
.

?
TR

Ly

LN "-‘ A :I

‘o

. .. O R T D R T T
"]
;l >
Q']
! ;
l. ’
:' /*******#*****#**********t#***
* FnName: extract.c i
;’: * Author: FRANK HARRIS by
2 * Date: jan 88 By
K * Purpose: to extract terrain data from DMA file 3
B, Ao e ke ek ol ko ok ok g

L) 4
0 #include <stdio.h> ‘
: #include <string.h> t
g #include <sys/types.h> !
;: #define maxsize 3000 f
o ftdefine FALSE 0 b

#define TRUE 1
4 #define buf_size 28672 .
» char *BUF,*BUFO;, N
. int row,i,j; '
\ char *malloc();

' FILE *fdi*fdo; »
b, 7
[main(argc,argv) .
o int argc;
N char *argv[]; .
s“ (:
. int j,i,n,nbyte; .
4 char name[9]; .
W char c[2];)
¥ char bufmaxsize}; J
A /* open input file */

if((fdi=fopen(argv[1],"r")) < 0) w

) { 7
: printf(“cannot open file0); X
E:Q } exit(); :
X
) J

: /* set up input buffer */ .
. if (BUF=malloc((buf_size)+1)) == NULL)

[{ By
2 fprintf(stderr,"out of memory0); 3
exit(1);

, [}
- setvbuf(fdi,BUF,_IOFBF, buf_size),
!
) /* skip to lat long */
4 fseek(fdi, 185,0); '-'\
: /* extract lat long for filename */ W
s |
c. r
i 97
‘l
)
;.. : \
K R
R N R e s A A M OO L O oA

/* use bytes 185,186,193,194,195,196,203 */
cfil="
nbyte=fread(c,1,1,fdi);
name[0]=c[0};name[1])=" ’;
nbyte=fread(c,1,1,fdi);
strcat(name,c);
fseek(fdi, 193,0);
nbyte=fread(c,1,1,fdi);
strcat(name,c);
nbyte=fread(c,1,1,fdi);
strcat(name,c);
nbyte=fread(c,1,1,fdi);
strcat(name,c);
nbyte=fread(c,1,1,fdi);
strcat(name,c);
fseek(£di,203,0);
nbyte=fread(c,l1,1,fdi);
strcat(name,c);

/* skip to first data record */
fseek(fdi,3348,0);

/* open output file */
if((fdo=fopen(name,"w")) < 0)
{
printf("cannot open output file0);
exit();
}
/* allocate space for buffered /O */

if (BUFO=malloc((buf_size)+1)) == NULL)

fprintf(stderr,"out of memory0);
exit(1);

}
setvbuf(fdo,BUFO,_" "BF,buf_size);

for(i=1;i<=120 ++)

{
/*skip r - v and record header */
nbyte=fre {(but, 1,8 fdi);
/* read & write data */
nbyte=fread(buf,1,2402 fdi),
nbyte=fwrite(buf,1,2402 fdo);
/* read checksum */
nbyte=fread(buf,1,4,fdi);

98

w9 G W "~ ST R AN AT N R 8y, Ry ~ ~ S T N T S L. .
¢.‘.c‘0>|.-.0.| ,n‘ .5 OO) ..‘ D L AL RN RO

M N b

K

R LA ST A

A R A A AN

.“-1("’"'-

o e JE. 4
~ Y 'tj‘.- ¢

AT A N

Nt
S

Tt IAANT SN

-

B Ey A %y
e

e
T

T cx
“"’/‘-"J ‘.. ?

A

1 4 . e SN
,,J Iond

W

O

':":'\-’

2R
(NS

»
-

5 d
IR

LN @
T & e,

TXE A e N

o

XA

)

fclose (fd

i);

fclose (fdo)

- VPEEEE T E

G X G NS ¥
PN S St

iR

§

I L St R I

20

O

x

I AR e L

99

-*\\-r -

»

L% \(\i‘

N

Ly
»

o W)
Rl

O

L 'lf'Nf

D
-

WY, .'.;_J' TG LS
Yo ! o h A

TR UN A O R TR AU T R L I RS it tAS R S A R APAREARA S A SR S S A B Mt AV gt b0 S AC T AT AL »,

’
f
P,
L
i
b o
RS
APPENDIX D - ROUTINES TO DRAW TERRAIN POLYGONS "‘
vV
v
These routines are used to draw the actual polygons. They are independent of the data tf A
structure used to store the terrain data. o !
/******************#****#***** :
* FnName: make_polly.c —
* Author: FRANK HARRIS 53
* Purpose: to draw two triangles that are the correct 7
orientation and color for the terrain display -]
Ak kK K K R K R K R K A R Kk K kR kK[,;:‘
]
make_polly(col,i,j,a,b,c,d,level_size) L'__
short col;/* a flag to indicate what color to draw square */ 4
int i,j;/* world coord location of lower left point "a" */ f.': f
int a,b,c,d;/* elevation points */ :
int level_size;/* tells what size each side of the polygon is */ ~;
l &
if(col==1) :f.-
color(GREEN1); R,
else g
color(GREEN2); »
'.‘F g
&
if ((a==0)& & (b==0)& & (c==0)& &(d==0)) o
| ;
5 ()
else if ((a!=0)& & (b==0)& & (c==0)& & (d==0)) ;" \
(
pmvi(i,a,j); o
pdri(i,b,j-level_size); non
pdri(i+level_size,d,j); :'.-'_.‘
pclos(); A
) L
else if ((a==0)& & (b!=0)& &(c==0)& & (d==0)) "]
(o
pmvi(i,a,j); e
pdri(i,b,j-level _size), R
pdri(i+level _size,c,j-level_size); '.'\
pclos();)
) 3
"
else if ((a==0)&&(b==0)& &(c!=0)& &(d==0)) Aot
{ o~
pmvi(i,bj-level_size); o
o
100 \.$
Py

1% TS | g o g™ AV ST > - I{I ,“-.~M-~.--‘R-..- .._'.-".'-‘

e Tt AN R ;
LI ACAY IO S AN I S SO » W% ' 7% TN :

DORGEULS R0 St Gilis b0 b0 A0S DA S0 e’ LN S St S e b U Lt

pdri(i+level_size,c,j-level_size);
pdri(i+level _size,d,j);
pclos();

}

else if ((a==0)& & (b==0)& &(c==0)& &(d!=0))
{
pmvi(i,a,j);
pdri(i+level_size,c,j-level _size);
pdri(i+level_size,d,j);
pclos();
}

else
{
pmvi(i,a,j);
pdri(i,b,j-level _size);
pdri(i+level_size,c,j-level_size);
peclos();
pmvi(i,a,j);
pdri(i+level_size,c,j-level_size);
pdri(i+level_size,d,j);
pelos();
)

101

.........

S

ST A A A e

.......... o

S 'J‘.;.'

-
St

At

Wil AN
i ."_ r {

K IR

A
R oA

LAY

AR R PERY

»

4 &

PRy

LS

a8

’

AR IR

‘-

v
-

2

e P

REEET

/#********************#*******

* FnName: draw_skirt.c

* Author: FRANK HARRIS

* Purpose: this routine is used to draw a vertical
plane to be used as a gap filler between

resolutions
AR R R R R L L R Y

draw_skirt(x1,z1,y1,x2,22 y2 cell_size)
int x1,z1,y1,x2,22,y2 cell_size,
{
if((y1'=0)I}(y21=0))
{
color{GREEN1);
pmvi(x 1 *cell_size,yl,z1*cell_size);
pdri(x2*cell_size,y2,z2*cell_size);
pdri(x2*cell_size,0,z2*cell_size);
pdri(x1*cell_size,0,z1*cell_size);
pclos();
}

102

-‘-

-‘-(‘ul‘--"

O R N L T A

AR WA A

v bfeial ol el
| .’-‘-“-‘ 7. _;

=4

eyttt

- r_a
L3

B N]
L3

R A s

Wil dUul g8 L R

« ¥ x

TYYS ST

<

AT AL LA ST R

R e

-

;:...:' Pl ¢

PRl
LA

P
-

S A g

-

L

." st .

A T e A ® A AN LN Y
N ‘V\' N 1 2

RN AN SRR AR NN AN RN N X U NL Y WO W. WOV AN N TN R IR Y R WV M Y AR AT Ay N s

APPENDIX E - ROUTINES TO DRAW THE TERRAIN

These routines calculate the structure independent information required to draw the
terrain. The main procedure in this section is draw_terrain(). This proceudure controls
the drawing process and calls the structure dependent code to actually draw the terrain.
The second procedure adjust_bounds() is called by the structure dependent code to adjust
the input parameters to match the cell coordinates for the particular cell being drawn.
#include "terrain.h"”

octant myworld,
int mind(),max4(),min3(),max3();

R R R R R R R R R R R R R A

* FnName: draw_terrain.c
* Author: FRANK HARRIS
* Date: feb 88

**************##*#****#**t#*#l

/* 3d terrain display */

draw_terrain(view)
viewpoint view;
{

int ij;

/* boundray points for three resolutions*/

/* farthest points of view triangle for each resolution
the third vertex is the view position */

float levellxl levellzl,levellx2 levellz2;

float level2x1 level2z1 level2x2 level 222;

float level3x1 level3zl level3x2 level3z2;

float angl,ang2,vis;

float level 1 1dir,lookx,looky lookz;

float near far;

/* bounding boxes for 3 levels */

int max3x,max3z min3x,min3z;

int max2x,max2z min2x,min2z;

int max1x,max 1z minlx,minlz;

int gridx,gridz;

/* for timer routines */

long ttime,cpu,elapse;
struct tms ctime,

103

. \ A'.‘ . ‘ ’ V’\"V'.I"'-,'-"i"" « -.,V- 'f'f 'I.q{ ~, -'_-{:.. -"-'.-‘_:J_-.’.-'_..f A A S R AT AR IR

.
P A

L
S ™ 0

| W YRR
h

-

N AL s I I

DA

PER LI T L

& IS

At S G N

T o e Sl e i e ol P 2 e e L el R -

]

T CaaA

ot <
Dot

“h s

NN

n|

e

) ..l

“
4

/* number of yards to the horizon */ ¢ N

vis = (VIS_COIF*sqrt(view.posy)); ®

levell = vis/SIN_FOV; ; '

if (vis > view.max_vis) w

vis = view.max_vis; 8;

/*********#****************#*t***#********t***#**#*#*###**#**/ ﬂq. h

/* compute vicability triangle */

/* triangle has verticies of current position and the line following =
the course out a distance of the computed visibility based on ~::{,
the height of eye and the area FOV degrees on either side of -
that line. */ '_';-“

angl = view.lookdir - FOV, o

if (angl <0.0) P

angl = angl + 360.0;

<

ang2 = view.lookdir + FOV; :::
if (ang2 > 360.0) nh
ang2 = ang2 - 360.0; './:'::
/* compute points to draw to for all three levels */ .
levellx1 = view.posx + (levell * sin(DtoR*ang1)); e
levellzl = (-view.posz + (levell * cos(DtoR*ang1))); iy
level1x2 = view.posx + (levell * sin(DtoR*ang2)); ,:_.";
levellz2 = (-view.posz + (levell * cos(DtoR *ang2))); A
)
level2x1 = view.posx + (LEVEL2 * sin(DtoR*ang1)); b)
level2z1 = (-view.posz + (LEVEL2 * cos(DtoR*ang1))); o
level2x2 = view.posx + (LEVEL?2 * sin(DtoR *ang2));)
level2z2 = (-view.posz + (LEVEL2 * cos(DtoR *ang2))); "},
AT
level3x1 = view.posx + (LEVEL3 * sin(DtoR*ang1)); ;’;\
level3zl = (-view.posz + (LEVEL3 * cos(DtoR*ang1))); ‘-'r;:.‘

level3x2 = view.posx + (LEVEL3 * sin(DtoR*ang2)), 29

level3z2 = (-view.posz + (LEVELS3 * cos(DtoR *ang2))); o
W
/* find max and min values for bounding box on all three areas */ ®
maxIx = (max3(levellxl,levellx2,view.posx) / CELL_SIZEl), o
max |z = (max3(levellzl levellz2,-view.posz)/ CELL_SIZEl); ;}};
minlx = (min3(levellx1 levellx2 view.posx) / CELL_SIZE1), :C— 'i
minlz = (min3(levellzl levellz2 -view.posz)/ CELL_SIZEl), ":;. Ay
max2x = (max3(level2x1 level2x2,view.posx) / CELL_SIZE2), Rosh

max2z = (max3(level2zl level2z2,-view.posz)/ CELL_SIZE2), -.';
min2x = (min3(level2x1 level2x2,view posx) / CELL_SIZE2),
min2z = (min3(level2z1 level2z2, -view posz)/ CELL_SIZE2),

104

".\fl-" - '..'.,'_.',P'. - ¥ Tl T LS I I N R . | s - - P
LaX

ot ’ AT , ;
7 YRR Y T Wrgh PR i I, PR R N S LTSS TSGR T AT L ETE R ST BT RV P SR

IR R LA W LT AP LW N M TN TR LN o LN VT T YO T Y W T T O R O MR T R

max3x = (max3(level3x1,level3x2,view.posx) / CELL_SIZE3);
max3z = (max3(level3z1 level3z2,-view.posz)/ CELL_SIZE3);
min3x = (min3(level3x1,level3x2,view.posx) / CELL_SIZE3),
min3z = (min3(level3zl level3z2,-view.posz)/ CELL_SIZE3),

/*#***#******##***#***#****#*#********t**##**#*#**###t#**###*/
pushmatrix();

/* compute vierwpoint for perspective */

looky = view.posy - 100.0*(tan(DtoR *view.lookang));

lookx = view.posx + 100.0*(sin(DtoR *view.lookdir));

lookz = view.posz - 100.0*(cos(DtoR *view.lookdir));

far =vis * 1.5;
near = far/1000.0;

perspective(FOVY ,ASPECT near far);
lookat(view.posx,view.posy,view.posz,lookx looky,lookz,0);

color(SKYBLUE);
clear();

zbuffer(TRUE);
zclear();

/* start the timer */
set_timer(&ttime &ctime);

/*##*###*****#***t**##*********#********#t#**###**#**#‘*#**#‘/

/* draw sea to horizon */

/* sea drawn 6 yards below horizon to solve z-buffer problem */
color(BLUE2),

pmv(view.posx,-6.0,view.posz),

pdr(levellx1,-6.0,-levellzl);

pdr(level1x2,-6.0,-level 122);

pclos();
/********ﬁ#*******#*#*****##***###**#*###*****t*##****‘tt#t#*/
/* draw grid lines */

if(view.gridlines == TRUE)

{

color(WHITE);
setlinestyle(SOLID),
linewidth(1);

if(view.posy > 300)

{

gridx = view.posx/CELL_SIZE},

Al Ll

A T BT T S,
s . .

sy

ot LA L Vs
Iu LT S)

XA

gridz = view.posz/CELL_SIZEl,

for (i=0;i<5;i++)
{
movei((gridx+i)*CELL_SIZEI,-2 (gridz+5)*CELL_SIZEl);
drawi((gridx+i)*CELL_SIZE]1,-2 (gridz-5)*CELL_SIZE1);
movei((gridx-i)*CELL_SIZE! -2 (gridz+5)*CELL_SIZE1l),
drawi((gridx-i)*CELL _SIZEIl,-2 (gridz-5)*CELL_SIZE1),
)

for (i=0;i<5;i++)
{
movei((gridx+5)*CELL_SIZE]1,-2,(gridz+i)*CELL_SIZE1),
drawi((gridx-5)*CELL_SIZE]1,-2 (gridz+i)*CELL_SIZE!),
movei((gridx+5)*CELL_SIZE! -2 (gridz-i)*CELL_SIZE1),
drawi((gridx-5)*CELL_SIZE]1,-2,(gridz-i)*CELL_SIZELl),
}

)

if(view.posy > 150)

{

gridx = view.posx/CELL_SIZE2;

gridz = view.posz/CELL_SIZE2;

setlinestyle(DASHED);

for (i=0;i<15;i++)
{
movei((gridx+i)*CELL_SIZE2,-2 (gridz+15)*CELL_SIZE2);
drawi((gridx+i)*CELL_SIZE2,-2 (gridz-15)*CELL_SIZE2),
movei((gridx-i)*CELL_SIZE2,-2 (gridz+15)*CELL_SIZE2),
drawi((gridx-i)*CELL_SIZE2,-2 (gridz-15)*CELL_SIZE2),
)

for (i=0;i<15;i++)
{
movei((gridx+15)*CELL_SIZE2,-2,(gridz+i)*CELL_SIZE2),
drawi((gridx-15)*CELL_SIZE2,-2(gridz+i)*CELL_SIZE2),
movei((gridx+15)*CELL_SIZE2,-2 (gridz-i)*CELL_SIZE2),
drawi((gridx-15)*CELL_SIZE2,-2 (gridz-i)*CELL_SIZE2);
}

}

if(view.posy < 200)
{
gridx = view.pasx/CELL_SIZE3;
gridz = view.posz/CELL_SIZE3;
setlinestyle(DOTTED);,
for (i=0;i<30;i++)
{
movei((gridx+i)*CELL_SIZE3,-2 (gridz+30)*CELL_SIZE3),

106

C o TR AT AT SRR, A S ML ML XN s AT AT AT e " CPTE R
ST AT I TN N INE A NN A N AN R A NN IR SN N0) :

St DT

e

oA

et W
-.c

5 R

Pridea

I's
s &

’

R

5 4
AP A
A J/ Sy X

Pyl
-

NS

CNVOW O VU

WL W MG WL WU “alat Ng’ Ba" 6% $a% Gt Pa¥ ow Sa a0 a0 e 00 0a® Yol ot fot o et §

drawi((gridx+i)*CELL_SIZE3,-2 (gridz-30)*CELL_SIZE3),
movei((gridx-i)*CELL_SIZE3,-2,(gridz+30)*CELL_SIZE3); i
drawi((gridx-i)*CELL_SIZE3,-2 (gridz-30)*CELL_SIZE3), b
) ;
for (i=0;i<30;i++)]
(:
movei((gridx+30)*CELL_SIZE3,-2 (gridz+i)*CELL_SIZE3),
drawi((gridx-30)*CELL_SIZE3,-2 (gridz+i)*CELL_SIZE3);

movei((gridx+30)*CELL_SIZE3,-2,(gridz-i)*CELL_SIZE3),
drawi((gridx-30)*CELL _SIZE3,-2 (gridz-i)*CELL_SIZE3);

J

P RO X, Xy X N

- ——

P o Sy ¢

- - —~—
O X]

s LA

/******************#************#*******#***#t*##**##*t##*t*‘/
N /* draw any terrain */ 3
/* always draw the cell your in */ p
draw_cell(CELL, view lat,view. longg max1x,minlx,max1z,minlz, ‘
max2x,min2x,max2z,min2z,
max3x,min3x,max3z,min3z);

if ((max1x > 10)&&(minlx < 0)&&(max1z >10)) ,
{ o
draw_cell(ABOVE, view lat+1,view. longg,max1x,minlx,max1z,minlz, '

v max2x,min2x,max2z,min2z,

3 . \

o max3x,min3x,max3z,min3z);
' draw_cell(RTUP,view lat+1,view.longg+1 ,max1x,minlx,max1z,minlz,
. max2x,min2x,max2z,min2z,
max3x,min3x,max3z,min3z),
draw_cell(LTUP,view.lat+1,view.longg-1 max1x,minlx,max1z,minlz,
3 max2x,min2x,max2z,min2z,
) max3x,min3x,max3z,min3z); A
))

else if (max1x > 10)&&(minlx < 0)&&(minlz <0)) 3
{
draw_cell(BELOW ,view lat-1,view.longg,max1x,minlx,max1z,minlz, y

max2x,min2x,max2z,min2z, X
max3x,min3x,max3z,min3z);

) draw_cell(RTDN,view.lat-1,view.longg+1,max1x,minlx,max1z,minlz, ”
max2x,min2x,max2z :nin2z, A
max3x,min3x,max3z,min3z); -

draw_cell(LTDN,view.lat-1,view.longg-1, max1x,minlx,max1z,minlz, k
max2x,min2x,max2z,min2z, K

M max3x,min3x,max3z,min3z); :

A

}
else if ((maxiz > 10)&&(minlz < 0)&&(max1x >10)) ’

107

*

1 T L A N A N A A v NSNS

P I R R R A LR T U R U LU VS S T N Y L Y T U W N N T W LN LW WO T W AN TR ALY W LY N g 0at 8a%ata® 0s® 0..0..

o
o
’.
b,
h ':
(]
draw_cell(RIGHT ,view.lat,view .longg+1,max1x,minlx,max1z,miniz, .
max2x,min2x,max2z,min2z, P
max3x,min3x,max3z,min3z); A
draw_cell(RTDN,view.lat-1,view longg+1 max1x,minlx,max1z,minlz,
max2x,min2x,max2z,min2z, ‘ .‘
max3x,min3x,max3z,min3z); al
draw_cell(RTUP,view lat+1,view.longg+1 ,max1x,minlx,max1z,minlz, :
max2x,min2x,max2z,min2z,]
max3x,min3x,max3z,min3z); " \
) ¢
else if ((max1z > 10)&&(minlz < 0)&&(minlx <0)) Do
(,
draw_cell(LEFT,view.lat,view.longg-1,max1x,minlx,max!z,minlz, . v
max2x,min2x,max2z,min2z, .'::f
max3x,min3x,max3z min3z); ; ::
draw_cell(LTUP,view.lat+1,view.longg-1,max 1x,min1x,max1z,miniz, B!
max2x,min2x,max2z,min2z, oy
max3x,min3x,max3z,min3z); 4
draw_cell(LTDN,view.lat-1,view.longg-1 ,max1x,minlx,max1z,minlz, -;Zj ;
max2x,min2x,max2z,min2z, N
max3x,min3x,max3z,min3z); ":
) o
else if ((max1x > 10)&&(maxlz > 10)) by
(pr
draw_cell ABOVE,view.lat+1,view.longg,max 1x,minlx,max1z,minlz, ':t
max2x,min2x,max2z,min2z, & X
max3x,min3x,max3z,min3z); ’ ::.o
draw_cell(RTUP,view.lat+1,view.longg+1,max 1x minlx,max1z,minlz, N
max2x,min2x,max2z,min2z, .,
max3x,min3x,max3z,min3z); P
draw_cell(RIGHT ,view.lat,view.longg+1,max I x,min1x,max1z,minlz, & "
max2x,min2x,max2z,min2z, i\ J
max3x,min3x,max3z,min3z); ’ 4
®
} 4 |.:
else if ((max1x > 10)&&(minlz < 0)) - :
()
draw_cell(BELOW,view lat-1,view.longg,max1x,minlx,max1z,minlz, N
max2x,min2x,max2z,min2z, i
max3x,min3x,max3z,min3z); :
draw_cell(RTDN,view lat-1,view longg+1,max1x,minlx,max1z,minlz, LY,
max2x,min2x,max2z,min2z, ! "f
max3x,min3x,max3z,min3z); A
draw_cell(RIGHT ,view.lat,view . longg+1,maxix,minlx,max1z,minlz, Y

108 3

i

}1
N
b
X
'!"
R
max2x,min2x,max2z,min2z, Ny
‘ max3x,min3x,max3z,min3z); >
A :
) P
else if ((min1x < 0)&&(minlz < 0)) o
draw_cell(BELOW,view.lat-1,view.longg,max1x,minlx,max1z,minlz, ’
max2x,min2x,max2z,min2z, b,
max3x min3x,max3z,min3z); :
draw_cell(LTDN,view lat-1,view.longg-1,max1x,minlx,max1z,minlz, W
max2x,min2x,max2z,min2z, "
max3x,min3x,max3z,min3z); “
draw_cell(LEFT,view lat,view.longg-1,max1x,min1x,max1z,minlz, " <
max2x,min2x,max2z,min2z, o
max3x,min3x,max3z,min3z), N
' ,:;‘.‘.
s
“.
else if ((minix < 0)&&(maxiz >10)) »
{ ¥
draw_cell(ABOVE,view.lat+1,view.longg,max1x,minlx,max1z,miniz, ¥ ;
max2x,min2x,max2z,min2z, 3
max3x,min3x,max3z,min3z); N
draw_cell(LTUP,view lat+1,view.longg-1,max 1x,minlx,max1z,minlz, s g
max2x,min2x,max2z,min2z, _'\
max3x,min3x,max3z,min3z); Cr:j.
draw_cell(LEFT,view lat,view.longg-1,max1x,minlx,max1z,minlz, oy
max2x,min2x,max2z,min2z, 0
max3x,min3x,max3z,min3z); ‘\ !
) 23
else if (max1x > 10)) ¢
{ k
draw_cell(RIGHT ,view lat,view.longg+1,max1x,minlx,max1z,minlz, ;‘ ";
max2x,min2x,max2z,min2z, .
max3x,min3x,max3z,min3z), ' 1
S
) NS
else if (minlx < 0)) i)
{ N
draw_cell(LEFT,view lat,view longg-1,max1x,minlx,max1z,minlz,
max2x,min2x,max2z,min2z, R

max3x,min3x,max3z,min3z), AN

S5

else if ((maxlz > 10))

109

LINCH O 34 i SO A O L A A A, S 20, S A YR I, DO 2o MY MO AN O W B P A S AN N S

SRUELE AR ch L)

}
i
1
h
4

{

draw_cell(ABOVE, view lat+1,view.longg max1x,minlx max1z,minlz,
max2x,min2x,max2z,min2z,
max3x min3x,max3z,min3z);

v o

a_w
.

ZELZ

o

else if (minlz < 0))

draw_cell(BELOW,view lat-1,view.longg,max 1 x,minlx,max1z,minlz,
max2x,min2x,max2z,min2z,
max3x,min3x,max3z,min3z);

--.«-
bl

21 @ s

LR T
P L
R LR G A S
-

/***************************t*******#**#*************#****t**/

zbuffer(FALSE);

.q?)

P
Yo 2o

popmatrix();

e
P,

elapse = read_timer(&ttime,&ctime,&cpu);
printf(" time: elapse %d cpu %d" elapse,cpu);
}

® g

b A

-~ 4',_,4. = &_‘
® R A
K- Ky

1....‘,
? (‘{‘-r,’.

710

o,

{lf'-.;.:,
27

b s

110 =

AT LG O Pl CE VRS Y e e e U kU TR R AT . . , . e e A -
L AN A ... la..v"- .!- ‘-. A AL AN n ‘ul;..- bt L M AN X X (A N, M M L MR M M o i Bt a ARl p X Mo

PRREE FORR PR Nt P P N O S TR W P W R a M a aA T RS L A T R R R R R R T

. adjust_bounds(size,cell, maxx,minx, maxz,minz)
int size,cell,*maxx,*maxz,*minx,*minz;
{
if(*maxx>size)
if ((cell=RIGHT)li(cell==RTUP)il(cell==RTDN))
{
*maxx = *maxx - size;
*minx = 0;
}
else
{
*maxx = size;
)
else
if ((cell==RIGHT)li(cell==RTUP)il(cell==RTDN))
{
*maxx = 0;
*minx = 0;

}

if(*maxz>size)
if ((cell==ABOVE)li(cell==RTUP)li(cell==LTUP))
{
*maxz = *maxz - size;
*minz = 0;
)
else
{
*maxz = size;
}
else
if ((cell==ABOVE)ll(cell=RTUP)li(cell==LTUP))
{
*maxz =0,
*minz = 0;

}

if(**minx<0)
if ((cell==LEFT)li{cell==LTUP)li(celi==LTDN))
{
*minx = *minx + size;
*maxx = size,

else
111
RO I‘.i‘.‘l'. 9.5, l‘n 2 l'n ' l.(l Ad A "l‘."“.. L"lh (X l .“’."I ’ b ; ...Q

/****t#***#***4'#****#*#*#*#***lll#**##***#************#*#**t*#lll/

A VH NP R HIATRXVR

(d
3

e e

-
.
x

x ‘(J'

AT L TeE

v

S

-

..
]

a

«_v_x
. :l.~

¥ iy

(: 'l."-. PR

Lo os L BN
l.‘. ‘*’\ N [

A 1"

X
.-

s

o
»
.
.,\

o e e ¥,
P L o o T S W W P AR Y N o -
e iyl G A R LI A o

ey,

4 y ; —— e e mr A et h e T e A "
g die 0 dns 4uaguy a0 aty- gt AL AR AR AL Bl G LA YRR AL A LR AL LALSA N AR LLE AL GERLACOEARELES LA CATAL A EREASA

P I
»

{
*minx = 0,
)

else
if ((cell==LEFT)li(cell==LTUP)li(cell==LTDN))
{
*maxx = 0,
*minx = 0;

if(*minz<0)
if ((cell==BELOW)ll(cell==RTDN)lI(cell==LTDN))
{
*minz = *minz + size;
*maxz = size,

else
if ((cell==BELOW)li(cell==RTDN)li(cell==LTDN))
{
*maxz = (;
*minz = 0;
}
}

112

A Y L% "y LN A LS TR | P e o, T AS . T “a- - R L ' 0
”\“.l"?\"‘.l’ ...,I‘_- ! -.' | A\ X - vy 'H"“ ’ n. ARG 5 V0 Ve S) .. > » % -'l‘-'l‘ 0 o> o y al A

AL

Y

e]

® LT, @ S
- . -

{

PLpy

;“' { _.‘ f.’(‘1"

Xl

® S50
-, -

Pl
sl
.,

J

Al
N

y
1o .
2t

g Ay
o

X

-

o355

PR
. "y Y
APy LI

- -

n"')

VAT

' w

APPENDIX F - MULTIPLE ARRAY DATA STRUCTURE

These are the structure dependent routines used with the multiple array data
structure discussed in Chapter five. The procedure 3a.c is used to preprocess the DMA
digital terrain elevation data and place the processed data in a file format that is easily
read by the application program. The terrain data is initially read into the application
program’s structure by the procedure get terrain(). The final structure dependent
procedure is draw_cell(). It is used to actually access the data structure and draw the
visible terrain.

/***t****#***#*#*#*#******t#tt

* FnName: 3a.c

* Author: FRANK HARRIS

* Date: mar 88

* Purpose: make 3 tier data structure file
for display terrain.
uses structure of three seperate

arrays.
**************#******###***#*l

#include <stdio.h>
#include <string.h>
#include <sys/types.h>
#define maxelev 10000/* in yards higher the everest */
#define FALSE 0

#define TRUE 1

#define buf_size 28672
char *BUF,*BUFO,

char *malloc();

short level3[1201]{1201};
short level2{101][101];
short levell[11][11];

main(argc,argv)
int argc;
char *argv{];
{
int row,j,i,s,t,n,sub,nbyte;
char *name;
char c{2];
short *P lat log;
FILE *fdi, *fdo;
/* open input file */
if((fdi=fopen(argv(1]1,"r")) < 0)
{

113

I Y ,~' P “.:". oA .'-.\- R R T R S R S -P- .; \".-.-\. \..\q . \...‘.._....‘.._.., . '-'.'\.

il Ut ok g o »

R ARy

» Dl ol of SRS SN RAY Ly Ve
q’; .lJn.l,“\r Pa,

2 n_r_a

Lt g BN 9%)
«

RIS

’.’.‘ 1.‘,!.‘,5’[r,_n.,-'_-‘ -

by 200 o |

printf("cannot open file0);
exit();

}

/* set up input buffer */
if (BUF=malloc((buf_size)+1)) == NULL)
{
fprintf(stderr,"out of memory0);
exit(l);
)
setvbuf(fdi,BUF,_IOFBF,buf_size);

/* read 1 colume of data at a time and put in an array
the first index is the colume number "longitude”
the second is for the row or latitude
index [0][0] is the lower left comer of the cell*/

for (i=0;i<=1200;i++)
{

P = &level3[i}[0];

nbyte = fread(P,2,1201,fdi);
}

/* close input file no longer needed */
free(BUF);
fclose(fdi);

/* make output file name */
name := argv{l};
strcat(name,".3a");

/* open output file */
if((fdo=fopen(name,"w")) < 0)
{
printf("cannot open output fileQ);
exit();

)

/* setup output buffer */
if (BUFO=malloc((buf_size)+1)) == NULL)
{
fprintf(stderr,” out of memory");
exit(1);
}
setvbuf(fdo,BUFO,_IOFBF buf_size);

114

a Ay &y .'i.:n' lx:-"n'l,u"_' A4

-

| S A

)
AN

.'i.;.<

x

—~

o Sy

- a

) ':'.".'}"’," T

e

o v a
‘.!..ft"._'.-

=
L4

Ty

) '::'; oY

P4

ALNCNESENEY b
aay s R

AL iy
® S ®

1

P

h %'] o
L

.‘.’

Y

Fe . .-
. 5 Ry L
S

K
L)
3
\
! /* convert lat long in file name to short int values */
; if (name_conv(&lat,&log argv([1]))
3 {
K printf(" filename not propper LAT/LONG");
' exit(1);
A
_ /* start the file with lat long of lower left comer */
i nbyte=fwrite(&lat,2,1,fdo);
p nbyte=fwrite(&log,2,1,fdo);
\ for (i=0;i<=100;i++)
?: for (j=0;j<=100;j++)
: i
o /* cell boundary */
k] if((i==0)li(j==0)li(i==100)li(j==100))
" level2[i][jl=level3[i*12](j*12];
_E- else
} (
2 sub=0;
o for(s=((i-1)*12);5<((i+1)*12);5++)
for(t=((j- D*12);t<((+1)*12);t++)
LY
A sub = sub + level3{s]{t];
. }
X level2[i](j] = sub/576;
s ,
) }
\ for (i=0;i<=10;i++)
3 for (j=0;j<=10;j++)
{
/* cell boundary */
' if((i==0)l(j==0)(i==10)li(j==10))
levell[i]{jl=level2[i*10][j*10];
', else
: l
- sub=0;
for(s=((i-1)*10);s<((i+1)*10);s++)
i for(t=((j- 1)*10);t<((j+ 1)*10);t++)
y {
f sub = sub + level2[s]t];
X)
levell[i]{j] = sub/400,
115
N
B A A R A A A A R o R

}
)

/* write out the arrays */
for (i=0;i<=1200;i++)
{
P = &level3[i][0];
nbyte = fwrite(P,2,1201 ,fdo);
)
for (i=0;i<=100;i++)
{
P = &level2[i][0];
nbyte = fwrite(P,2,101,fdo),
)
for (i=0;i<=10;i++)
{
P = &level 1[i][0];
nbyte = fwrite(P,2,11,fdo);
}
/* clean up */
fclose (fdo);
free(BUFOQ),

)

/*************#********#**********************#***#**t#*/

int name_conv(lat,log,name)
short *lat,*log;
char *name,;

{

short temp;

/* assume all lats and longs are north and east respectively */

temp=(short)name[0]-48,

if ((temp<0)li(temp>9))
retumn(-1);

*lat = temp * 10;

temp=(short)name[!]-48;

if ((temp<O)ili(temp>9))
retum(-1);

*lat = *lat + temp;

temp=(short)name[3]-48;

if ((temp<0)li(temp>9))
retum(-1);

*log = temp * 100;

et " . Y. .8

»

)

e N
»)

v

T
b, ‘\.

- “.- -

®

At et m

S A N P A s T e T T
5 ‘

X
S

-
s

COK_ S W LA, e a e v
_"{l o

NS

) i',.'f .{'.‘,'.',' .',. -

)
2
'y
o

P

3
L4

x
71,

i

o

' ‘-" .. 1:1 [4 -,'-"a,'t‘- ’.{5

PP
4

S

s

-4 x N fe e Sm
P SI"‘,i

" L & " or e
1@ A AP 1@

»
""
.

s

R ST VR A U R R AN A T N AR R Y R TN AN LY U LU AT R SD I s iy sah vallobat b "0 Yy ¢ PRI RNT ¢ do¥ p) e aba - ' abd Y

g o -

temp=(short)name[4]-48;
if ((temp<0)li(temp>9)) '
retum(-1); J
*log = ((temp*10) + *log);)
temp=(short)name[5]-48;
if ((temp<0)li(temp>9)) i
return(-1);
*log = (temp + *log); =
return(0); .
) N

. s

b -
-.JL

-‘-ln il R o o X
LA T S SAS S T

v «"w" a £

® S N e

e o A

CAA R N, N

117

-
(rrr_f

AP T L TP L I DR DT I I e PR R I . ., " - ..
b L S N A AN A Tt P T e TR e

-

A A A N N AP R A P o a

P AT AN

5 d ath ath a'® atdie N R N R R e Ly .., BV VA W o N

#include <string.h>
#include <sys/fparam.h>
#include <sys/types.h>
#include <sys/times.h>
#include "gl.h"
#include "device.h"
#include "constants.h"
#include "typedef.h"
#include "stdio.h"

#tdefine maxelev 10000/* in yards higher the everest */
#tdefine buf_size 28672/* for input buffer */

char *malloc();
char *BUF;

octant myworld;
/***************#***********##
* FnName: get_terrain.c

* Author; FRANK HARRIS

* Date: feb 88

* Amended:

* Purpose:

* Params:

* Returns:
#*****#*******#***********#*t/

get_terrain(lat,longg)
“hort lat longg;

int row,j,i,n,nbyte;

cha. name[10],filename[100}];
short buf{512};

FILE *fdi;

cellptr ptr;

cell P,

short *ptrl,*ptr2, *ptr3;

name_conv(lat,longg,name);

strcpy(filename,” fusr/work/ftharris/3t_work/");
strcat(filename ,name);

strcat(filename,".3a");

/* open input file */

,-'.-‘.-_u;‘.-'.-‘.-;.-J-‘.-‘. AR e

e AN S A N NAC NN

A

SRR ®

'@ -
e

A S

s

E

@

7L
oL

RN

«y
L oLy

e P T
Pl
IENS

4 B

N e o P Al oSy g N T T 1 S T S

if((fdi=fopen(filename,"r")) < 0)

{
fprintf(stderr,"cannot open file0);

else

{
/* set up input buffer */

if (BUF=malloc((buf_size)+1)) == NULL)
{

fprintf(stderr, "out of memory0);
}

else
{
setvbuf(fdi, BUF,_IOFBF,buf_size);

/* get lat long first 2 items in file */
fread(buf,2,2, fd1);

S
e

14

] 1D

NN -

A A A

/* make structure put pointer in world structure */
myworld[lat]{longg-90] = (cellptr)malloc(sizeof(cell));

/* read in the arrays */
ptr= myworld[lat]{longg-90];
for (i=0;i<=1200;i++)
{
ptr3 = &(ptr->level3[i][0]);
nbyte = fread(ptr3,2,1201 fdi);
I
for (i=0;i<=100;i++)
{
ptr2 = &(ptr->level2(i][0]);
nbyte = fread(ptr2,2,101,fdi);
}
for (i=0;i<=10;i++)
{
ptrl = &(ptr->levell[i][0]);
nbyte = fread(ptrl,2,11 fdi);
}

/* clean up */
fclose (fdi);
free(BUF);
}

)

119

o~ - - A A ALt~ LY O G TP T PO
’ ".‘.' .l.'-! ... ™ S S .'b\-"t'y.-\'\ -aﬂ'_\ > ;

Lo alals alslalalnlal

PRTIT S WL LAY

PO L
I N I O

‘l -

N
R R AL

5 v

h)

AT S,

...... AR TG \:_\-...\- ‘-;\"-\. LSS ‘....'-

s ”
U AW

o0 & TN A N N N N N N N N I S N I I S NN

T T O O T I O U O PO S ™

}

/****************************t***#***#********“*****#**/
/* pass in lat/long will return filename */

name_conv(lat,Jongg,name)

short lat,longg;

char name[10];

{

/* assume all lats and longs are north and east respectively */
char c[2];

clil="

name[l]=’ ’;

name[0] = (char)((lat/10)+48);
c[0] = (char)((lat%10)+48);
strcat(name,c);

c[0] = 'N’;

strcat(name,c);

c[0] = (char)((longg/100)+48);
strcat(name,c);
longg=longg%100;

c[0] = (char)((Jlongg/10)+48);
strcat(name,c);

cl0] = (char)((longg% 10)+48);
strcat(name,c);

c[0]="E’;

strcat(name,c);

}

120

y 5

.

,
e 1{
Vsl d

22 s @

P s

.l PR s
® ;':’4": NS

P

."".'.Ar‘\"ff'
AL e S

A

L
1

XA

1N PLALS
) §
[

’ 551 @

e TR B it Rt Va2t faf ¥t ¥a? (2% 9u¢ dav s Sa® Sa® 0a? 3 Ba” 0a¥ a¥ Ba¥ hav 20 4.7 dat Bab Wa¥ ¥ a0 8 0 @0 et g0 ga0 B

/*****#*****************#*****

* FnName: Draw_cell

* Author: FRANK HARRIS

* Purpose: Draws on ¢ cell of terrain based on the
input parameters.s version uses the

multiple array data structure
:ll*****t***#*t****t*#**#******/

draw_cell(cel lat,longg,max1x,min1x max1z,minlz,
max2x,min2x,max2z,min2z,
max3x,min3x,max3z,min3z)

short cel lat longg;

int maxlx,minlx,maxlzminlz;

int max2x,min2x,max2z,min2z;

int max3x,min3x,max3z,min3z;

{

int maxsub2x,maxsub2z,minsub2x,minsub2z;/* overlap bounds */

int maxsub3x,maxsub3z,minsub3x,minsub3z;

int stx1,stz1,spx1,spzl;/* start stop points for dif resolutions */

int stx2,5tz2,spx2,5pz2;

int stx3,stz3,spx3,spz3;

int i,j,s,t,u,v;

cellptr ptr;

/* get cell record */
if ((ptr = myworld{lat](longg-90]) == NULL)
{
get_terrain(lat,longg);
ptr = myworld{lat]{longg-90];
)

if(ptr!=NULL)
{
/* adjust bounds depending on what cell were drawing */
adjust_bounds(10,cel,&max1x,&minix,&max1z,&minlz);
adjust_bounds(100,cel,&max2x,&min2x,&max2z,&min2z);
adjust_bounds(1200,cel,&max3x,&min3x,&max3z,&min3z);

/* calculate overlap boundaries */

maxsub2x = (max2x/10);/*level2 boundary with level 1 */
maxsub2z = (max2z/10);

minsub2x = (min2x/10);

minsub2z = (min2z/10);

maxsub3x = (max3x/12);/*level3 boundary with level2.*/

121

.....

¥ e

hd

PN AL

Lok o8 I

d ;{.;-’-/’

ey

- P g

v - ale o e -

) A4
b "
n‘l, “'

_f La"e 'S " a4 ” Hg - --~ '\"'\- ~-‘--\- -
MR R e e e pohet %

O S S TN U S R R UR RN R T W S YOC TON O U O O R S T X N WA

maxsub3z = (imax3z/12);
minsub3x = (min3x/12);
minsub3z = (min3z/12);

/* adjust so will draw correctly when looking south and west */
/* stops the loop from accessing out of the array */
if(max1x==10)
maxlx =09,
if(max 1z==10)
maxlz =9;

/*****************ll"ll********************#************#*#**#*lﬁ/

/* draw level 1 area with all three resolutions */
for(i=minlx;i<=max1x;i++)
for(j=minlz;j<=max1z;j++)

{

if(!((i>=minsub2x)& & (i<maxsub2x)& &(j>=minsub2z)& &(j<maxsub2z)))

/* draw level 1 square */
{
make_polly((i+j)%2,(i*CELL_SIZE]1),-(j*CELL_SIZE1),
ptr->levell[i][j],ptr->level1{i][j+1],
ptr->level 1 [i+1][j+1],ptr->level 1[i+1][j1,
CELL_SIZEl);
}

}/* level | area */

/* draw level2 area */
for(s=(minsub2x*10);s<(maxsub2x*10);s++)
for(t=(minsub2z*10);t<(maxsub2z*10);t++)
{
if(1((s>=minsub3x)& & (s<maxsub3x)& &
(t>=minsub3z)& & (t<maxsub3z)))
{
make_polly((s+t)%2,(s*CELL_SIZE2), -(t*CELL_SIZE2),
ptr->level2[s][t],ptr->level2[s][t+1],
ptr->level2[s+1]{t+]1],ptr->level2[s+1][t],
CELL_SIZE2),
/* to cover up diffrences in resolution boundaries
don’t need between level 1 and 2 too far to be noticeable */
if((s==minsub3x)ll(s==maxsub3x))
{
draw_skirt(s,-t,ptr->level2[s][t],
s,-(t+1),ptr->level2[s][t+1],
CELL_SIZE2),

122

...... L N M)

L Y A SRR AR S A PR AT A S T AP AT SePa e Teny LA L
. i) N o oo 200 N o B g X o N bl

MADOOGOOOOUODOU OO W OO 00 .
d
i
3
!

..
&

-‘.

] T e A

Yoh

SA e 'l‘)‘“r‘v{t}a‘, Sl o

-~

X

S

] Y

7’8
A,

kAR
»te,

S

2PN
sl et

.
A

A
A

if((t==minsub3z)ll(t==maxsub3z))
{
draw_skirt(s,-t,ptr->level2{s]{t],
(s+1),-t ptr->level2[s+1][t],
CELL_SIZE2);
)

)/* level 2 area */

/* draw level3 area */
for(u=(minsub3x*12),u<(maxsub3x*12);u++)
for(v=(minsub3z*12);v<(maxsub3z*12);v++)
{
make_polly((u+v)%2,(u*CELL_SIZE3), -(v*CELL_SIZE3),

ptr->level3[u][v],ptr->level3[u]{v+1],
ptr->level3[u+1][v+1],ptr->level3{u+1]{v],
CELL_SIZE3),

}/* level 3 area */

}/* if cell has value */
}

« . N o ' A" o [A" 3 ¢ Va0 s .) .M UM e AA S - '
N R TR S SN A N T e e A T T AT Y

FYe B T T PO U T U T T W U W W WO O R R W WO W, Wy PN ..-.~.-.. -..‘.-..0..-!... ».'4 'u o..oo’ . .g,

N, -,)
LA AKX AN '51 A

APPENDIX G - HIERARCICAL DATA STRUCTURE WITH POINTERS

These are the structure dependent routines used with the multiple array data
structure discussed in Chapter five. The procedure 3t.c is used to preprocess the DMA
digital terrain elevation data and place the processed data in a file format that is easily
read by the application program. The terrain data is initially read into the application
program’s structure by the procedure ger terrain(). The final structure dependent
procedure is draw_cell(). It is used to actually access the data structure and draw the
visible terrain.

LR EEEE R R R R R R R R R R R R R R S

* FnName: 3t.c

* Author: FRANK HARRIS

* Date: mar 88

* Purpose: make 3 tier data structure file for
display terrain. Uses a hierarchical structure

with pointers to store the terrain.
***************************#*/

#include <stdio.h>

#include <string.h>

#include <sys/types.h>

#define maxelev 10000/* in yards higher the everest */
fidefine FALSE 0

#define TRUE 1

#define buf_size 28672

char *BUF,*BUFO;

char *malloc();

short terrain[12013[1201];

typedef struct(
short data[13]{13];
}level3_rec;
typedef level3_rec *ptr3;

typedef struct(
ptr3 level3ptr[11]{11];
short level3val[11][11];
short all_zero;
}level2_rec;
typedef level2_rec *ptr2;

typedef struct{

ptr2 level2pte(11][11];
short level2val[11][11];

124

LA LW i e AL A A L L LA LN L 1 5% U ¥ s Y x % Pk ¥ b % n " a Tn " * S m
A P T, L M AR P S A N AT AN A G N A

A%

P A A AN
R A A - .

7,

Kot Sy
e S e g

-

I ol
b e bt
..

I A X

"Ph ¥ g Pt R AR
o pirafl J

7,

er2le
¥l

h)
d

ry 'y -’.(‘.1 -
9(’1 LA p

EENP IR FAT UM WIN ILIN BCRIR TV ORI AL U U U U Lo LIS, Ll S PN WSO O N S R W Wi M MR PO Y X T PR X R RK AKX R N NN T X P E PR R R R ot ety

S
4
:
short all_zero; r’
}levell_rec; '
typedef levell_rec *ptrl; :f
3

typedef ptrl octant[90]{90]; s,

octant myworld; !

ptrl do_levell();

ptr2 do_level2(); Yy

ptr3 do_level3();)

main(argc,argv) b

int argc; A

char *argv{];)

(]
int row,j,i,n,nbyte; R
char *name; ; !
char c[2]; Yy
short *P lat,log; :
FILE *fdi, *fdo; %

/* open input file */ R
if((fdi=fopen(argv[1],"r")) < 0) "
{ "

printf("cannot open file0); !
exit(); -
) A

/* set up input buffer */ ',::
if (BUF=malloc((buf_size)+1)) == NULL)
{

fprintf(stderr,"out of memory0); L .
exit(1); »
} N
setvbuf(fdi,BUF,_IOFBF,buf_size);)
/* read 1 colume of data at a time and put in an array g
the first index is the colume number "longitude" }‘«
the second is for the row or latitude .
index [0][0] is the lower left comer of the cell*/ Z;
for (i=0;i<=1200;i++) N
{ 3
P = &terrain(i]{0]; .
nbyte = fread(P,2,1201 fdi); b
) 'o
i
/* close input file no longer needed */ it
128 -

e m e~ a-
*\i\-‘_f

290 ‘rl“ o W, .:J‘.;u'_-'v\;n'\‘.\f‘ AN s .

e R R I M RO Y ARRRR N ‘ L"U POres Uy AV 4\...“‘.(“-.\‘ \'A."J.') '-' » |'l|-. g

Lot
:
~
A
N
free(BUF);)
fclose(fdi); »
LS
/* make output file name */ 3
name = argv{1]; =
strcat(name,".3t"); S
/* open output file */ »‘
if((fdo=fopen(name,"w")) < 0) :
(~
printf("cannot open output file0); a
exit(); o4
| "
/* setup output buffer */ -f ‘
if (BUFO=malloc{(buf_size)+1)) == NULL) ,ht
fprintf(stderr," out of memory"), ’ "
exit(1); .
| 23
setvbuf(fdo,BUFO,_IOFBF buf_size); -t"]
>l
.08
/* convert lat long in file name to short int values */ ";‘
if (name_conv(&lat,&log,argv[1])) ®
{ o
printf(" filename not propper LAT/LONG"); Y
exit(1); 13
' ~
't
®
X
/* start the file with lat long of lower left comer */ {\
nbyte=fwrite(&lat,2,1,fdo); N
nbyte=fwrite(&log,2,1,fdo); >
A '*.i
/* make structure put pointer in world structure */ o
myworld(lat][log-90] = do_level1(); NG
-
/* put overlap data in each cell */ :',j:-

insert_overlap(myworld{lat][log-90]);
out_terrain(myworld[lat]{log-90]);

‘
"
-

vall@: .
™ [

A
/* writeout the structure to reuseable file */ . .-C
writeit(fdo,myworld[lat]{log-90]); N
R
“
/* clean up */ ¢
o
\::\’
126 NN
At
o
S
~
L
\
N
5%
- a A . » -p - - - [hE
L0 'J-. ' A l) 0. # .'5"'. W7, '-"' et N N s S T W R AT, A A N R AT A TN A N 1 T, P, T, Pyt

IR RTIRIIN WU R R R R R R O AR R R R T R R I o
) ' AR

3
i
9.
‘
§
s
fclose (fdo); ¥
free(BUFO);
} '
/*t*‘#****##**##*###"lt#ll*****#*Ql##"ﬁ*#‘#****“#**‘**‘##t*‘##‘/ \-
out_terrain(pt) d
ptrl pt; 4
{ .
int 8,8,i; 5
ptr2 pt2; !
printf(" levell "); ‘]
for(i=10;i>=0;i--) \
{
printf(" n); "}
for(j=0;j<11;j4++) X
(.
printf("%5d " pt->level2val(j]{i]);)
) !
} 3
printf(" "); he;
for (i=0;i<11;i++) Y
for(j=0;j<11;j++) o
{ ;
pt2 = pt->level2ptr[i](j];
if (pt2 == NULL) ;
printf(" null level2 i %d j %d " i,j);)
else :
{ .
printf(" level2 i %d j %d " ij);
for(s=10;8>=0;s--) >
{ :
printf(" "), 3
for(t=0;t<11;t++) .
l]
printf("%5d " ,pt2->level3val(t][s]);
’ ;
pl‘intf(" l'); R
} : f
) ‘
}
]
/*******#***tt####‘#‘**#t#**##**#****##*#*****#*t**#**##**#**/ '.
insert_overlap(ptr) 7
ptrl ptr, "
‘ d
127 g
.
~
-~
R e e g e T AT N e N e ;-:;-:;-:;-;1-:;:-;-:~;-:-:-;w::-:-:]

if (ptr 1= NULL)
{

int i,j,s.t;

ptr2 12,top2,rt2;

ptr3 13,top3,1t3;

/* put in overlap for levell*/
for (j=0;j<10;j++)
ptr->level2val[10](j] = terrain[1200](j*120];
for(i=0;i<11;i++)
ptr->level2val{i][10] = terrain[i*120][1200];
ptr->level2val(10][10] = terrain[1200]{1200];

/* overlap for level2 */
for (i=0;i<10;i++)
for(j=0;j<10;j++)
{
12 = ptr->level2ptr{il(j];
if (12 1= NULL)
{
top2 = ptr->level2ptr[i][j+1];
if (top2 !=NULL)
for (s=0;s<10;8++)
12->level3val[s]{10] = top2->level3val[s][0};
else
for (s=0;s<10;5++)
12->level3val[s][10] = O;
rt2 = ptr->level2ptr[i+1][j];
if (rt2 '= NULL)
for (s=0;3<10;s++)
12->level3val{10][s] = rt2->level3val[0][s]);
else
for (s=0;5<10;s++)
12->level3val(s][10] = O;
rt2 = ptr->level2ptr(i+1][j+1];
if (rt2 1= NULL)
12->level3val[10][10] = rt2->level3val[0][0];
else
12->level3val[10][10] = O,
}
)
for (i=0;i<9;i++)
{
12 = ptr->level2ptr(i](9];

128

WX

AL

FREY

.:A“‘.ﬁ" k"”."’x"‘ s Cy

D

i

o
',

\s“;ﬂ

XL ALV,

X U
Pl

-~

7
Sxx

y 3 4
Lot d

@1

AT Yl ol o b RPN
S ;_‘v(.{'v{ .lv{“

.t

e '&"'v' Sty

R

Y SOt

'({{fﬁ\‘.

-

W
Ay »

T

Pl
&, 2, %

o
R

L
L d
rd

h
¥
-

. v,
T
LY
Cem
DISOIA

»

A K e .

"

LR Py

I

n"'{h' P

‘o' ¥ 2% aly’ - . WL W S 3 PUC TV OR PO 't' -.‘|~|~ .-‘. .v.. .'- “g¥a , -5 ‘. o , all - »,

if (12 1= NULL)
(
for (j=0;j<10;j++)
{
/* for outside border */
12->level3val[jj[10] = terrain[i*120+j*12){1200];

/* for right side with adjacent subcell */
n2 = ptr->level2ptr{i+1][9});
if(rt2 1= NULL)
12->level3val[10][j] = rt2->level3val[0](j];
else
12->level3val[10](j] = 0;

)
12->level3val[10][10] = terrain[i*120+120][1200];
}

12 = ptr->level2ptr[9])[i);
if 12 '=NULL)
for (j=0;j<10;j++)

/* for outside border */
12->level3val[10][j] = terrain[1200][i*120+j*12];

/* for top side with adjacent subcell */
n2 = ptr->level2ptr[9][i+1];
if(rt2 1= NULL)
12->level3val[j}[10] = nt2->level3val[j][0];
else
12->level3val(jj[10] = O;
)
]
12 = ptr->level 2ptr[9][9];
if 12 i= NULL)
12->level3val{10](10} = terrain[1200]{1200];
)
}

/#****ttt#t***##**t****#*#********#*t*#*#**###*#**##*t###****/

writeit(fdo ! I ptr)
FILE *fdo;

ptrl llptr;

{

ptr2 12ptr;

ptr3 13ptr;

short allzero,edge;
short value;

129

N S N NERAE RIS PR I IR . RSN S

N P N PO PN T
W N R R A A AT i S

]
",
¥
]
U
!

L Vst And B b ik tal T p ok oph Sk b b tph S St Sy E PSP S0 Bt et s S A L,

,}

:]
¥ 3

b)
; -
;: int i,j,s,t,u,v;

) allzero = -1;
¥ edge = -2;

:. :
" if (11 ptr->all_zero) /* entire cell is 0 all ocean */ .
‘Q ‘ ’

' ’
3‘. fwrite(&allzero,2,1,fdo);/* write a -1 for allzeros */ Py

}
;{ else /* need to check cell */ :
] { “
value = 1;/* 1 means data -1 means allzero */ iy

; fwrite(&value,2,1,fdo);]
N for (i=0;i<11;i++)/* loop through levell */

d for (j=0;j<11;j++) 7
he ‘ [€
» 12ptr = l1ptr->level2ptr[i](j}; ¥

. if((i==10)l(j==10)) g
s (!
- printt(" 1 edge i %d j %d " i,j); =
! fwrite(&edge,2,1,fdo); ;
;: fwrite(&(11ptr->level2val[i](j]),2,1,fdo); g
3) by,
b else if(12ptr==NULL)/* subcell is empty, all zeros */ N
‘ {

: fwrite(&allzero,2,1,fdo); N
w ’ i]
! else/* subcell has value, not all zeros */ -j
| ! J
¢ fwrite(&(11ptr->level2val{i](j]),2,1,fdo); '

- for(s=0;s<11;s++)/* loop through level2 */ L
: for(t=0;t<1 ;t++) o

; (-

13ptr = 12ptr->level3ptr{s][t]; '::
if((s==10)I(t==10)) e
{)
printf(" 2 edge i %d j %d s %d t %d " i,j,s,t); -'
fwrite(&edge,2,1,fdo); }

; fwrite(&(12ptr->level3val(s][t]),2,1 fdo); 2
0 ' '~\n '

' else if(13ptr==NULL)/* subsubcell is empty, all zeros */ o

{ p
; fwrite(&allzero,2,1,fdo); <
) ;
) -
{ else/* subsubcell has value, not all zeros */ o
{]
)
)
130 o~
o
.

RN N AN LA N X VUX LN R el ala™d¥s J0a $%9 03,0 B et Ba0 Ua ot Pt AV ole= taatitata gth gtk o¥ 8 aTh ate gt 8 o 8.8 Saf o
o
)
A
"
"
‘1
fwrite(&(12ptr->level3val[s][t]),2,1 fdo);
. {
¥ fwrite(13ptr->data,2,169,fdo);
e)
k) }
B)
,)
; }
> }
& }
[
. /********#*************t#**t*##**#*****t**t*t###*#‘#*###/
" ptrl do_levell()
) {
: ptrl level;
3 ptr2 ptr;
:} int ijs
) short allzero;
o
o /* allocate structure */
P level = (ptri)malloc(sizeof(ievell_rec));
A /* make the formattred output file */
) /* loop through the level 2 data */
for(i=0;i<10;1++)
N for(j=0;j<10;j++)
> {
8 ptr = do_level2(i,j,&(level->level2val[il[j]));
k. if(ptr 1= NULL)
allzero = FALSE,
level->level2ptr[il{jl=ptr;
: }
5 ; level->all_zero = allzero;
~ retumn(level);
,__ }
: /*##*****‘l**********ll'*#****#*********t#**##******#**##*#/
v ptr2 do_level2(i,j,value)
<, int ij;
. short *value;
{
W ptr2 level;
ptr3 ptr;
] int st
short min;
short allzero;
Wy
I 131
h
A

aw -
-

o e e S e AT e T e e e e
B B A - O > 'y " W o

X .. --., \-_:'-»--'.-""n{ .f:'..r’ 7

- A Bab B b PTTTTIT - S—
O o M W W o VW W (W g A P

)

o

-~

»

N

5. f
/* allocate structure */ N

/% allocate level2 data record */ ;
min = maxelev, o
level = (ptr2)malloc(sizeof(level2_rec)); .::'_
allzero =TRUE; -l
/* loop through getting level 3 data */ ::,.
for(s=0;s<10;s++) !
for(t=0;t<10;t++)

{ o
ptr = do_level3(i,j,s.t,&(level->level3val[s][t])); s
if(ptr != NULL) e
allzero = FALSE; o
level->level3ptr{s](t]=ptr; pi

/1]

if (level->level3val[s][t] < min) K
min = level->level3val[s](t]; /

if (allzero) LN
B4
‘ a
/* all zero don’t need the data */ .
*value = 0, \.‘; Y
free(level), <
\J
retum(NULL); X
) hO%
e
else @
{)
. . _-:._
/* pass back pointer to the record and min value of arca */ >
level->all_zero = allzero; ::
*value = min,]
-
retum(level); et
} ®
) e
I,
N
/*****#***#*#***********#*****####***#**#**#*#*‘##***##*/ ';:!
9
ptr3 do_level3(i,j,s,t,value) \-.":
int i,j,8,1; N
short *value; °
(i
o)
int u,v; "
level3_rec *level; L\.(._
short min,temp,allzero; ;-.-;“
[y gt

|
L}
|

min = maxelev;

/* get data record for 3rd level */ ;..:,
level = (ptr3)malloc(sizeof(level3_rec)); o
allzero = TRUE;/* initialize */ g
/* loop through terrain */ b

ANAN AR AR A AR R N N R R A R RANK SR AW X 8] * et eV lnY e 0" B2 0af et e’ Pa 42% 02" Wa' ot tat Ba¥. drv 0a’ &at _Bak. (Y . v v -
A AR AKX (A NN WU W WU WU WU U g8 W WU N e, . v ol W W W, Sa~ Sa* R0 a0 Pa ol ia” e

1y
¥ 4
K 'w
4

g
;0

{

:a

J ¢

for (u=0;u<13;u++)

* for (v=0;v<13;v++)
b { 2
A temp = terrain[i*120+s*12+u][j*120+t* 12+v}; 3
:'. level->data[u][v]= temp; v
? if (temp!=0) \
allzero = FALSE; :
;’ if (temp<min)
:: | min = temp, 3
%) if (allzero) \
{
/* all zero don’t need to keep the points around */ .
B *value = 0; :
R free(level); 3
! retum(NULL); R
:) 2
else
5 /* return the pointer to the record and the min value of the points */ N
» { N
K. *value = min; A
>, retum(level); :
LS) I
X l w
) ‘v
;: /******#*#*******************##**#***&****#****##***#*##/ ::
‘.‘ int name_conv(lat,log,name) N
4 short *1at,*log; y
char *name,
R {
| short temp;
M /* assume all lats and longs are north and east respectively */ 1
)
~ temp=(short)name[0]-48;
X if ((temp<0)li(temp>9)) ,
\ retum(-1); o
o *lat = temp * 10, N
v temp=(short)name[1]-48; :
0 if ((temp<0)li(temp>9)) X
, retum(-1);
P *lat = *|at + temp; -
N
N temp=(short)name(3]-48;
" if ((temp<0)li(temp>9)) ;
return(-1); 4
I ;
"
2 133
X -
" "
p 3

" j W - "'.""'"'-,-"f{\"-.t"_'."r' L AN L L La"Laf LN v "
$ aw. -.-.\. rg N 4 P, _\.\\‘c\.\-_v\ WA -’\‘-\:-_\.-\-_N._ --.\\

« L

UCTCYC YGI U YON TCR TOR TUR WO YOR PR PO RN POL T W e %W M “a'altia gy, LY, u;~-‘,‘., _ et l.'A v'ﬂ. L‘-“_P‘.‘-.'-.). iy
e

:

\J

oy

hir:

*log = temp * 100; st

temp=(short)name[4]-48; >

if ((temp<0)li(temp>9)) S,
retum(-1); g :
*log = ((temp*10) + *log); o

temp=(short)name[5]-48; \ ..:

if ((temp<0)li(temp>9)) hot
retumy(-1); '

*log = (temp + *log); s,

return(0); :; ..:
} o

o

» Py

QAN

v

L0

»

! . 'R
.i(‘;"r".\-'l

o
x

®

aliay
R

»

HESN

=) 22
220

e
5

3
"4

-

’

c"_l o

7

o 47,3"?

134

U Al F AL A R A N MmN T e N T T T Y T e e T e T P e e PP TR S W L e BT, Wy 0T, P v S e
mﬁm‘ﬂ;ﬁﬁl‘b{.f AL PEe Or Lf;.'{'n:*p,fr.ts.'m.’.h'.&':b"\'l'\-':h{h"@':m‘:m':).':‘.';r. it &':ht'l' A &.\', AN RS R SN, W5 A, e,

P e O R o o oy “ad s, re 4im dta Gva ¢’n Gt g gre dre b

)
L) '1
) y i
5 ',
; 4
|‘ -
K
1) "
g R
[+ #include <string.h> -'
. #include <sys/param.h>
" #include <sys/types.h> {
;: #include <sys/times.h> F
Y #include "gl.h" Y
A #include "device.h" -
#include "constants.h"
f\' #include "typedef.h" X
A #include "stdio.h" Z
i A
R X
i #define maxelev 10000/* in yards higher the everest */ B!
p #define buf_size 28672/* for input buffer */ ’
., d
0 char *malloc();)
) char *BUF,;
: extern octant myworld;
3 ptrl make_levell(); 3
; ptr2 make_level2(); A
i ptr3 make_level3(); ¥
‘ R R A R R)
U * FnName: get_terrain.c ‘
* Author: FRANK HARRIS
* Date: feb 88)
, t**********#*********#t*#*#t#/ "’
N ;)
| get_terrain(lat,longg) 3
short latlongg;
v, | .
) int row,j,i,n,nbyte; o
» char name[10] filename[100];
; short *P,buf[512]; 4
FILE *fdi; X
« name_conv(lat,longg,name); 3
strepy(filename," fusr/work/fharris/3t_data/"); h
- strcat(filename ,name); R
strcat(filename,”.3t");
r
” /* open input file */ £
” if((fdi=fopen(filename,"r")) < 0)]
1 (¢
' printf("cannot open file0); :
s 3
h 135 4
\]
‘t
e‘. :‘

AL LT

RAASRNICE w AN ANLIA, -"r. .‘ ‘.o X .I!.', .o‘l.'.l'l \

T

myworld[lat][longg-90] = NULL;
}

else

{

/* set up input buffer */
if (BUF=malloc((buf_size)+1)) == NULL)
{
fprintf(stderr,”out of memory0);
myworld{lat][longg-90] = NULL;

}
setvbuf(fdi, BUF,_IOFBF,buf_size);
printf(" before first read ");

/* get lat long first 2 items in file */
fread(buf,2,2 fdi);

/* make structure put pointer in world structure */
myworld[lat]{longg-90] = make_levell(fdi);

/* clean up */
fclose (fdi);
free(BUF);
)
)

/****************#******#**************#***********##*#Il/

ptrl make_levell(fdi)
FILE *fdi;

ptrl level;

ptr2 ptr;

int ij;

short buf[512],allzero;

/* allocate structure */
level = (ptr1)malloc(sizeof(levell_rec));
/* loop through the level 2 data */
fread(buf,2,1 fdi),
if(buf[0]==-1)

level->all_zero = TRUE;
else

{
level->all_zero = FALSE;

for(i=0;i<11;i++)

136

o et - Wy N A VT T Wy WMy Wy ® @ o a ™ n®p
b e T gl TG O AR AL L R WO ST

b3 A M M S MLl e o

¥

LA R R e S i ¥
A Bl ale ol Dol

N

2l bt L

o e 1ot At 01 Ea®. ta* fa"ta’ta” da” aln’ ba’ s Al s A= ¥t 410 S AN g o m— .
P T T R R R U O O PR A TR AR Y

.,..--,.
e

NP W X
-

2 x 2
(9]

»
NN

L

111

Yol L

=

CULCL g e '

RN,

® s

-3

s
Y

ll.l Al"‘.
n'nf. .0
N

Paks

AE [
AN
1 NN

{1.‘..
LRAN

ol el

o a n o

e

h\ .
OGN ANENINIAC N AGYIN,

TN E N UM LYY

L alitatav, 0abadav duvatad gav pen. 60000 4 0.0 00" 5°0 §°0 4% & 4"’ * Statel eat t g« XYY

for(j=0;j<11;j++)
{
level->level2ptr(i]{j] = make_level2(fdi,&(level->level2valli][j]));
}
}
retumn(level);

}

/*************#**t**#****************‘t**##*tt*****‘ﬁ*t‘/

ptr2 make_level2(fdi,value)
FILE *fdi;
short *value;

ptr2 level;

ptr3 ptr,
int st
short min;

short allzero;

fread(value, 2,1 fdi);
if (*value == -1)
{
*value = 0;
return(NULL),
}
else if (*value == -2)
{
fread(value,2,1,fdi);
return(NULL);
}
else

{

/* allocate level2 data record */
level = (ptr2)malloc(sizeof(level2_rec));
/* loop through getting level 3 data */
for(s=0;s<11;s++)
for(t=0;t<11;t++)
{
level->level3ptr[s][t]= make_level3(fdi,&(level->level3val[s](t]));
}
}

retum(level);

}

/**##*t**t****##*#t*******###t********#******#**#*#**##*/

ptr3 make_level3(fdi,value)
FILE *fdi;

137

‘l' b 4 "-“:,;_"_5 vk'-.n -; -‘ -':"-.:v)

o

AR A

-

rard 'k?.u??Q)'

-

2

e ol SR
- -

AT S

.
L4

- - .
o §

-

s
. “\'

Ad n 3
.
O Nt s

sav . 2a% . a¥ Ba® dot ga’ da® 12" 02" $3t_Pat Jpd N A s WU WO WL W W U W W, dU W ,.

short *value;

{
int u,v;
level3_rec *level;

fread(value,2,1,fdi);
if (*value == -1)

{
*value = 0;
return(NULL);
)

else if (*value == -2)
{
fread(value,2,1,fdi);
return(NULL);
)

else
{

/* get data record for 3rd level */
level = (ptr3)malloc(sizeof(level3_rec));
fread(level->data,2,169 fdi);
return(level);
)

}

/******************#****#****t*******#**********#*******/

/* pass in lat/long will return filename */

name_conv(lat,longg,name)

short lat,longg;

char name|[10];

{

/* assume all lats and longs are north and east respectively */
char c[2];

c[il="

name[l]=" ’;

name[0] = (char)((1at/10)+48);
c[0] = (char)((1at%10)+48);
strcat(name,c);

c[0}="N";

strcat(name,c);

c[0] = (char)((longg/100)+48),
strcat(name,c);
longg=longg%100;

138

- .

AN R Y R

-

- AN ; U AN
St L St O et T =0 e WS W XA Tt R W M X

o Wae W ui AN LIS YL EPLEL SR CLA S Y
‘.

B B LS A

ll-

P N IRD PN

vy
..‘bo‘"-

Ll

P

AW I AL

-
- A

Rt

OS]

TEETRSA

-

()

, ,
e

AESLL
:—\z‘;(K4

2
L

‘.f "’
s

DRI R
',‘\ ": .'t ‘:‘ %(

£y

P
A

s

s’

c[0] = (char)((longg/10)+48);
strcat(name,c);

c[0]} = (char)((longg%10)+48);
strcat(name,c);

c[0] = 'E’; o
strcat(name,c); s
printf(" %s",name);

}

"y w

= WY '{,*;"_.‘?J

o
X 2O A A

8y G-

-

i)T KA E T a T Ty A

Yy “w-"e
W)

b

[

i % % BN}

, ’:‘

139

) Y
-c

| s . AN T ARt N A A K R . . . - . N
B T O N S s ot S A N A P ey N N L L PN AN Y o " P N O B S S i e

g o 98,

L 2

T

W T e X C e Pl W o O L o 2T
.t.’\.‘lv-l‘ 12,0 ""N\»"\' WY e

24 V2 928 %2l ", 0 N30 €28 a0, ded haRohad tal Al Sl tal Sad bad Vol gk mal

/*#***##****************t*#*#*

* FnName: Draw_cell

* Author: FRANK HARRIS

* Purpose: Draws on e cell of terrain based on the
input parameters.s version uses the

pointer data structure
***********t****t*****#t#**t*/

draw_cell(cell,lat,longg,max1x,minlx,max1z,minlz,
max2x,min2x,max2z,min2z,
max3x,min3x,max3z,min3z)

short cell lat longg;

int maxi{xminlx,maxlz minlz;

int max2x,min2x,max2z,min2z;

int max3x,min3x,max3z,min3z;

{

int maxsub2x,maxsub2z,minsub2x,minsub2z;/* overlap bounds */

int maxsub3x,maxsub3z,minsub3x,minsub3z;

int stx1,stzl,spx1,spzl;/* start stop points for dif resolutions */

int stx2 stz2 spx2,spz2;

int stx3,stz3,spx3,spz3;

int 1,j,s,t,u,v,count;

ptrl ptr;

ptr2 cptr;

ptr3 sptr;

/* get cell record */
if ((ptr = myworld[lat][longg-90]) == NULL)
{
get_terrain(lat,longg);
ptr = myworldjlat][longg-90];
}

if(ptr!l=NULL)

{
/* adjust bounds depending on what cell were drawing */
adjust_bounds(10,cell,&max1x,&minlx,&max1z,&minlz);
adjust_bounds(100,cell, &max2x,&min2x,&max2z,&min2z);
adjust_bounds(1200,cell,&max3x,&min3x,&max3z,&min3z),

/* calculate overlap boundaries */

maxsub2x = max2x/10;/*level2 boundary with levell. in levell coord */
maxsub2z = max2z/10;

minsub2x = min2x/10;

minsub2z = min2z/10;

140

------- PR R Y

AR T ‘.\‘ T AT T Y ..-\' S -_‘-

vy -,
» h.\'h'. -

g R’ g
M IR BN A R

TaahA

v Y

" .- III-.."-'
S

s B WS

Cnd

X P

S IR I i AR

e 'I’

oAt

¥y v _ 0
.'("(f

L

oV LVLIVIW Y WY IVUY ‘

"
4
! .
% .
2 maxsub3x = max3x/12;/*level3 boundary with level2. in level2 coord */ '
n maxsub3z = max3z/12; ;
0 minsub3x = min3x/12; y
i; minsub3z = min3z/12; A
A !
) /* adjust so will draw correctly when looking south and west */ ¢
/* stops the loop from accessing out of the array */
3 if(max Ix==10) %
3 maxlx =9, g
! if(max1z==10) J
R maxlz =9; !
i/ .
\ count = 0; y
w [* draw level 1 area with all three resolutions */ p
': for(i=minlx;i<=max1x;i++)
\ for(j=minlz;j<=max1z;j++) ‘
g 2
K { J
) if((i>=minsub2x)& & (i<=maxsub2x)& &(j>=minsub2z)& &(j<=maxsub2z)))
/* in level 2 area,draw level2 resolution */ R
o (»
. cptr = ptr->level2ptr{i][jl; N
5 if(cptr!=NULL) 3
o l -
. for(s=0;s<10;s++))
K for(t=0;t<10;t++)
‘. | %
; if((((i*10)1+s)>=minsub3x)&&(((i*10)+s)<=maxsub3x)& & ™
" (((j*10)+t)>=minsub3z)& & (((j*10)+t)<=maxsub3z)) N,
/* check if overlap level3 data draw level 3 resolution*/
{)
. sptr = cptr->level3ptr{s]lt]; "}
) if(sptr!=NULL) B
(!
N for(u=0;u<12;u++) '
) for(-'=0;v<12;v++) B
) ‘ "
¥ "
," make_polly((u+v)%?2, 3
» ((i*CELL_SIZE1)+(s*CELL_SIZE2+(u*CELL_SIZE3)),)
‘ -((j*CELL_SIZE1)+(t*CELL_SIZE2)+(v*CELL_SIZE3)), .
. sptr->data[u][v],sptr->datafu)[v+1],)
M sptr->datafu+1][v+1],sptr->datalu+1]{v], A
CELL_SIZE3), b,
(3
A) A
.p - ' ']
X
K 1
0 141 !
W S

;
» -’
[§

X
@ "
‘o

fi > , e T P TR . g o T Y o e B T e W R ey
O ORI A S S o O e s

rrrrr

e v da® MY gar B2t 41 @20 Lg% 29 gat 8a® e fa¥ 6 & “Ba 8048 0af ¥R 8 b} pat T P ¥ e o e W W AN LS W

W
o
.l
W)
o ;
o
i else
" /* draw level 2 resolution */
v l
I, :
i:; make_polly((s+t)%2,(i*CELL_SIZE1+s*CELL_SIZE2), _ :
K -(*CELL_SIZE1+t*CELL_SIZE2), :
o cptr->level3val[s][t],cptr->level3val[s]t+1],
cptr->level3val[s+1][t+1],cptr->level3val([s+1]{t], o
. CELL_SIZE2); 2
0 } ¢
:.‘ /* to cover up diffrences in resolution boundaries 3
don’t need between level 1 and 2 too far tc be noticeable */ N
’ H((((1*10)+s)==minsub3xII(((i* 10)+s)==(maxsub3x)))
¢ { 3
; draw_skirt(((i*10)+s),-((j*10)+t),cptr->level3val([s][t], .
4 ((i*10)+s),-((j*10)+t+1),cptr->level3val[s][t+1],
A CELL_SIZE2);)
3 } i
; if((((j*10)+t)==minsub3z)lI(((j*10)+t)==(maxsub3z))) ;
{ N
f draw_skirt(((i*10)+s),-((j*10)+1),cptr->level3val[s][t], :.
((i*10)+s+1),-((j*10)+t),cptr->level3val[s+1][t], ~
CELL_SIZE2); A
l
;) -
y) o
) | 7
else R
/* draw level 1 resolution */ :'
{ 73
count = count + |; i '
make_polly((i+j)%2,(i*CELL_SIZEl),-(j*CELL_SIZE1), :j;
ptr->level2valli][j],ptr->level2val[i][j+1], X
ptr->level2val[i+1][j+1],ptr->level2vali+1][j], .
: CELL_SIZE1); '
,)
' }/* level 1 area */ N
}/* if cell has valuc */ N
printf(" polly count %d ",count); :\ 4
) i\
H .-'\‘
4 ’:‘
3

142

10.

1.

12.

13.

LIST OF REFERENCES

Sanders, Mark S. and McCormick, Emest J., Human Factors in Engineering and
Design, sixth edition, McGraw-Hill, 1987.

Adams, Rodney M., A Software Architecture for a Commanders Display System,
Master’s Thesis, Naval Postgraduate School, Monterey, Califomia, April 1987.

Smith, Douglas and Streyle, Dale, Master’s Thesis, Naval Postgraduate School,
Monterey, Califomnia, July 1987.

Shufeldt, Henry H., The Calculator Afloat, Naval Institute Press, Annapolis,
Maryland, 1980.

Griggs, Laurence W., An Interactive Computer Graphics Network Monitor for a
tactical Communications Network, Master’s Thesis, Naval Postgraduate School,
Monterey, California, August 1987.

Zyda, Michael 1., Inexpensive, Real-Time, Interactive, three-Dimensional, Visual
Simulators, Lecture Notes for a talk given at Princeton University, Princeton, New
Jersey, May 1988.

Oliver, Michael and Stahl, David, Interactive, Networked, Moving Platform
Simularors, Master’s Thesis, Naval Postgraduate School, Monterey, California,
Febuary 1988.

[RIS User's Guide, Version 3.0, v.1, Silicon Graphics, Inc., Mountainview,
California, 1987.

Using MEX, The IRIS Window Manager, v.1, Silicon Graphics, Inc.,
Mountainview, California, 1987.

Office of the Federal Register, National Archives and Records Administration, The
United States Government Manual, Government Printing Office, Washington,
D.C., June 1987.

Bowditch, Nathaniel, American Practical Navigator, DMA PUB no. 9, v. 2,
Defense Mapping Agency Hydrographic/Topographic Center, Washington, D.C.,
1981,

Product specifications for Digital Landmass System Database, Defence Mapping
Agency, Washington, D.C., 1983.

Rogers, David F., Procedural Elements for Computer Graphics, McGraw-Hill,
1985.

143

D I P N ST I T 2

o e LT,

[
i &

SN

>
ar,

S

. .
A
2

51 G

P A S N N] JC O K _C 2 %
¥y ‘,l\'n_"". S e)
.

i Y
A AC

P 4 oE p% ¢

Wind
4 h

:‘ ':—' __' ‘1&.‘ P4

oL
s

Py

)
2ty
s
A

7

’r&. '\;;

A I =
=2

Distribution List for Dr. Michael J. Zyda

Defense Technical Information Center,

Cameron Station,
Alexandria, VA 22314 2 copies %
®
Library, Code 0142 »
Naval Postgraduate School, ;‘,‘*‘: .
Monterey, CA 93943 2 copies o~
2N
Center for Naval Analyses, :‘
4401 Ford Avenue "

Alexandria, VA 22302-0268 1 copy

Director of Research Administration,

Code 012,
Naval Postgraduate School,
Monterey, CA 93943 1 copy o
"t
Dr. Michael J. Zyda ;E"
Naval Postgraduate School, oh)
Code 52, Dept. of Computer Science e
Monterey, California 93943-5100 200 copies)

Mr. Bill West,

HQ, USACDEC,

Attention: ATEC-D,

Fort Ord, California 93941 1 copy

John Maynard,

Naval Ocean Systems Center,

Code 402,

San Diego, California 92152 1 copy

Duane Gomez,

Naval Ocean Systems Center,

Code 433,

San Diego, California 92152 1 copy

o

James R. Louder, o
Naval Underwater Systems Center, 2

, Combat Control Systems Department, vy
Building 1171/1, »
Newport, Rhode Island 02841 1 copy -

-
!

A ‘"-.\.-\.\." ‘.\"ﬁ.\."'\;"'Q"\"f".\"\"\“\"5."'\"-."-." WY

