
Technical Report

CMU/SE.I-88-TR-2C
ESD-TR-88-021

Carnegie-Mellon University

Software Engineering Institute

Ma$terTask:
The Durra Task Emulator

Mario R. Barbacci

July 1988

ADAWqzq

Technical Report
CMU/SEI-88-TR-20

ESD-TR-88-21
July 1988

MasterTask:
The Durra Task Emulator

Mario R. Barbacci
Software lor Heterogeneous Machines Project

Approved for public release.
Distribution unlimited.

Soltware Engineering Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

This technical report was prepared for the

SEI Joint Program Office
ESD/AVS
HanscomAFB, MA 01731

The ideas and findings in this report should not be construed as an official DoD
position. It is published in the interest of scientific and technical information
exchange.

Review and Approval

This report has been reviewed and is approved for publication.

FOR THE COMMANDER

Karl Shingler ^
SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense.

Copyright © 1988 Carnegie Mellon University

This document is available through the Defense Technical Information Center. DTIC provides access to and transfer of
scientific and technical information for DoD personnel, DoD contractors and potential contractors, and other U.S.
Government agency personnel and their contractors. To obtain a copy, please contact DTIC directly: Defense Technical
Information Center, Attn: FDRA. Cameron Station, Alexandria, VA 22304-6145

Copies of this document are also available through the National Technical Information Services. For information on
ordering, please contact NTIS directly: National Technical Information Services, U.S. Department of Commerce,
Springfield, VA 22161.

Use of any other trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Table of Contents
1. Introduction to Durra 1

2. Durra Behavioral Specifications 5
2.1. Timing Expressions 77ws section is reproduced from [1]. 5

2.1.1. Time Literals 5
2.1.2. Event Expressions and Time Windows 6
2.1.3. Timing Expressions 6
2.1.4. Restrictions on Time Values and Time Windows 8

2.2. Predefined Functions Thir> section is reproduced from [1]. 8

3. Durra Runtime Environment 11

4. MasterTask Implementation Overview 13
4.1. The Ada Task Type Specification 13
4.2. The Ada Task Type Body 14
4.3. The Main Program 16
4.4. Using MasterTask in a Task Description 17
4.5. Using MasterTask In Freestanding Mode 17

5. A Durra Example 19
5.1. Type Declarations and Type Descriptions 19
5.2. Execution Traces 21

References 25

CMU/SEI-88-TR-20

1

1

I

MasterTask: The Durra Task Emulator
Abstract. Durra is a language designed to suppor: the construction of distributed
applications using concurrent, coarse-grain tasks running on networks of hetero-
geneous processors. An application written in Durra describes the tasks to be
instantiated and executed as concurrent processes, the types of data to be ex-
changed by the processes, and the intermediate queues required to store the data
as they move from producer to consumer processes.

The tasks and types available to an application developer are described by a col-
lection of Durra task descriptions and type declaratons stored in a library. One of
the components of a task description is a specification of the external timing be-
havior of the task. It describes the sequence of inout and output port operations
and the amount of processing time spent between port operations.

This report describes MasterTask, a program that c an emulate any task in an ap-
plication by interpreting the timing expression descibing the behavior of the task,
performing the input and output port operations in the proper sequence and at the
proper time.

MasterTask is useful to both application developers and task developers. Appli-
cation developers can build early prototypes of ar application by using Master-
Task as a substitute for task implementations that have yet to be written. Task
developers can experiment with and evaluate proposed changes in task behavior
or performance by rewriting and reinterpreting the corresponding timing expres-
sion.

1. Introduction to Durra

Durra[1,2] is a language designed to support the construction of distributed applications
using concurrent, coarse-grain tasks running on network; of heterogeneous processors. An
application written in Durra selects and reuses task descriptions and type declarations
stored in a library. The application describes the tasks to be instantiated and executed as
concurrent processes, the types of data to be exchanged by the processes, and the interme-
diate queues required to store the data as they move fron producer to consumer processes.

Because tasks are the primary building blocks, we refer to Durra as a task-level description
language. We use the term "description language" rathor than "programming language" to
emphasize that a Durra application is not translated into object code in some kind of ex-
ecutable (conventional) "machine language." Instead, a Durra application is a description of
the structure and behavior of a logical machine to be s/nthesized into resource allocation
and scheduling directives, which are then interpreted by a combination of software,
firmware, and hardware in each of the processors and buffers of a heterogeneous machine.
This is the translation process depicted in Figure 1-1.

We see three distinct phases in the process of develop ng an application using Durra: the
creation of a library of tasks, the creation of an application using library tasks, and the ex-
ecution of the application.

CMU7SEI-88-TR-20 T

Status and Task requests
Get/Put data
Test port
Terminate task

V
=> r..r,v-r.v: =>

Schedule Messages

Conectivity Start task

Task names Allocate queue

Transformations Shutdown

Figure 1-1: Compilation of an Application Description

During the first phase, the developer writes descriptions of the components tasks. These
task descriptions specify the properties of a task implementation (a program). For a given
task, there may be many implementations, differing in programming language (e.g., C or
assembly language), processor type (e.g., Motorola 68020 or IBM 1401), performance char-
acteristics, or other attributes. For each implementation of a task, a description must be
written in Durra, compiled, and entered in the library.

A task description includes specifications of a task implementation timing behavior and func-
tionality, the types of data it produces or consumes, the ports it uses to communicate with
other tasks, and other miscellaneous attributes of the implementation.

During the second phase, the user writes an application description. Syntactically, an appli-
cation description is a single task description and could be stored in the library as a new
task. This allows writing of hierarchical application descriptions. When the application de-
scription is compiled, the compiler generates a set of resource allocation and scheduling
commands or instructions to be interpreted by the scheduler.

During the last phase, the scheduler loads the task implementations (i.e., programs cor-
responding to the component tasks) to the processors and issues the appropriate com-
mands to execute the programs.

Task descriptions are the building blocks for applications. Task descriptions include the fol-
lowing information (see Figure 1-2): (1) its interface to other tasks (ports) and to the
scheduler (signals); (2) its attributes; (3) its functional and timing behavior; and (4) its in-
ternal structure, thereby allowing for hierarchical task descriptions. For the purposes of this
report, the relevant components of a task description are the behavioral specifications.

"2 CMU7SEI-88-TR-20

task task-name
ports

— Used for communication between a process and a queue
port-declarations

signals
— Used for communication between a process and the scheduler

signal-declarations

attributes
— Used to specify miscellaneous properties of the task

attribute-value-pairs

behavior
— A description of the functional and timing behavior of the task

requires predicate
ensures predicate
timing timing expression

structure
— A graph describing the internal structure of the task

process-declarations
— Declaration of i-nstances of internal subtasks

bind-declarations
— Mapping of internal proc€:ss ports to this task's ports

queue-declarations
— Means of communication between internal processes

reconfiguration-statements
— Dynamic modifications to the structure

end task-name

Figure 1 -2: A Template for Tasl« Descriptions

CMU/SEI-88-TR-20

4 CMU/SEI-88-TR-20

2. Durra Behavioral Specifications

The behavioral information part of a task descriptiDn specifies functional and timing
properties of the task. It consists of a functional infornation part and a timing expression.
The functional information part consists of a pre-condilion predicate on what is required to
be true of the data coming through the input ports and a post-condition predicate on what is
guaranteed to be true of the data going out through the output ports. The timing expression
describes the behavior of the task in terms of the operations it performs on its input and
output ports.

Timing expressions are the critical piece of information used by MasterTask. The syntax
and semantics of timing expressions are described below. For additional information about
the syntax and semantics of the functional information part, see the Durra reference manual
ML

2.1. Timing Expressions THIS section is reproduced from in

Processes remove data from their input queues and sto 'e data in their output queues follow-
ing a task-specific pattern provided by a timing expression. A timing expression describes
the behavior of the task in terms of the operations it performs on its input and output ports;
this is the behavior of the task seen from the outside.

2.1.1. Time Literals

Syntax:
TimeLiteral : := Seconds { TixneBase } ,

IndeterminateTime

Seconds ::« IntegerValue ,
Realvalue

TimeBase : :«= *XDTIME'' ,
— Time since start of day

x ^ATIME' ' ,
— Time since the start of the application

* XPTIME'' ,
— Time fiince the start of the process

IndeterminateTime : := "*"

Examples:
3615.5 atlme — An application relative time: 1 hour and 15.5 seconds

— after the start of the application.

2.25 — Two and a quarter seconds relative to some previous event

* — Ar. indeterminate point in time.

CMU/SEI-88-TR-20

Meaning:
Time values are used to specify points in time. These can be either (1) absolute, in which
case they must be followed by the name of a time base (the start of the day, the application,
or the process); or (2) relative to some prior event in a timing expression, in which case a
time base is not allowed. All time values are measured in seconds.

2.1.2. Event Expressions and Time Windows

Syntax:
Event

TimeWindow

QueueOperation

::= GlobalPortName { %%." QueueOperation } ,
* *DELAY'' TimeWindow

: : = x * [' ' TimeValue x \ " TimeValue x x]' '

::= ^ENQUEUE" ,
1 *DEQUEUE''

Examples:
inl — An operation (Dequeue, by default) on the queue feeding inl.

inl.dequeue — The same operation as above,

delay[10, 15] — A delay interval lasting between 10 and 15 seconds,

delay[*, 10] — A delay interval taking at most 10 seconds.

delay[10, *] — A delay interval talcing at least 10 seconds.

Meaning:
Queue operations performed by the processes constitute the basic events of an application
description. An event expression represents a queue operation on a queue attached to a
specific port, taking a variable amount of time to complete. A pseudo-operation, "delay," is
used to represent the time consumed by the process between (real) queue operations.

The name of the queue operation is optional. If the name is not given, a default queue
operation is assumed: "dequeue" for input ports, "enqueue" for output ports.

Intervals of time between queue operations are denoted by a "delay" operation whose time
window describes the minimum and maximum time consumed by the process in between
queue operations.

2.1.3. Timing Expressions

Syntax:
TimingExpres s ion

SequentiaIEvent

P a r a 1 le IE vent

= { **LOOP") SequentialEvent

= ParallelEvent__List c#s

= BasicEvent_Listdoubl# v#rtical bar

CMU/SEI-88-TR-20

BasicEvent ::= Event ,
{ Guard "«►" } qi[(] iiequentialEvent ")")

Guard : := ^REPEAT" IntegerValue ,
* ^BEFORE' ' TimeValue , — Absolute time
* XAFTER' ' TimeValue , — Absolute time
x ^DURING' ' TimeWindow , — Tmin is Absolute time
* *WHEN'' Expression — A Boolean expression

Examples:
inl | | in2 — Two parallel input operations, starting simultaneously.

inl delay[10,15] outl —■ Three sequential operations.

repeat 5 => (inl delay[10,15] outl)
— Same as above but an a cycle repeated five times.

before 64800 DTIME =>(...)
— A sequence constrained to start before 6 pm.

(18 hours or 18*3600 seconds after the start of the day)

after 64800 DTIME =>(...)
— A sequence constrained to start after 6 pm.

during [64800 DTIME, 7200] =>(...)
— A sequence constrained to start between 6 pm and 8 pm

T „ is 2 hours counted from the start of the time window, max

When (Current__Size (inl) > 0) and (Current Size(in2) > 0) =>
((inl || in2) outl);

— A sequence that starts after both input queues have data.

loop When (Current_Size(inl) > 0) and (Cuzrent_Size(in2) > 0) «>
((inl || in2) outl);

— The same sequence as above but repeated indefinitely.

Meaning:
A timing expression is a regular expression describing the patterns of execution of opera-
tions on the input and output ports of a task. The keyword loop can be used to indicate that
the pattern of operations is repeated indefinitely.

A timing expression is a sequence of parallel event expressions. Each parallel event ex-
pression consists of one or more event expressions separated by the symbol || to indicate
that their executions overlap. Since the expressions might take different amounts of time to
complete, nothing can be said about their completion, other than a parallel event expression
terminates when the last event terminates.

A basic event expression is either a queue operation (including "delay") or a timing expres-
sion enclosed in parentheses. The latter form also allows for the specification of a guard, an
expression specifying the conditions under which a sequence of operations is allowed to
start or repeat its execution.

CMU/SEI-88-TR-20

Guard Description
repeat This guard indicates repetitions of a timing expression. The number of

repetitions is a non-negative integer value.

before This guard is followed by an absolute time value representing the latest
start time allowed. The task is terminated if a deadline has elapsed.

after This guard is followed by an absolute time value representing the ear-
liest start time allowed. If necessary, the sequence is blocked until the
deadline.

during This guard is followed by a time window during which the sequence is
allowed to start. The first value is the earliest start time allowed and
must be an absolute time value; the second value is the latest start time
allowed and can be an absolute time value or a time value relative to
the former.

when This guard describes what is required to be true of the state of the sys-
tem (i.e., time and queues; see Section 2.2) before the sequence is al-
lowed to start. It is a pre-condition for starting the sequence.

2.1.4. Restrictions on Time Values and Time Windows
Although the syntax allows both absolute and relative time values to appear in either of the
two boundaries in a time window, not all of the possible combinations make sense:

1. In the time window attached to "delay" operation, the time values must be rel-
ative (i.e., no time basis allowed) and are interpreted relative to the start of the
operation.

2. In the time window of a during guard, the first time value (Tmin) must be abso-
lute. The second time value (Tmax) can be absolute or relative. In the latter
case, the time value is relative to Tmin.

2.2. Predefined Functions ms section is reproduced from m

A small number of functions are predefined in the language. These functions are used to
obtain the current time in the various time bases, to perform computations with time values,
and to obtain the number of elements stored in a queue. These functions, together with
time and numeric literals, constitute the terms used to build expressions in timing guards
and reconfiguration conditions.

Syntax:
FunctionCall ::« FunctionName { FunctlonParameters >

FunctionName : := **CURRENT_DTIME" ,
* *CURRENT_ATIME' ' ,
* *CURRENT_PTIME' ' ,
x *MINUS TIME'' ,
1 *PLUS_TIME' ' ,
«^CURRENT SIZE''

8 CMU/SEI-88-TR-20

FunctionParameters ::« ,%(" DurraValue_LiiitcoinmA >x)")
— The type and number of pariimeters is function dependent.

Examples:
Plus__Time(Current_pTime, 9000)

— 2.5 hours; from the current time of day
Current_J5ize (Master_Process .Data__Port)

— the sire of a queue feeding a port

Meaning:
The following functions are predefined in the language: "current_dtime," "current_atime,H

"current_ptime," "minusjime," "plus_time," and "currert_size."

The functions with names like "Current_?TimeM return the current time as a number of
seconds relative to the appropriate time base.

The function call ,,Minusjrime(TimeValue1,TimeValue2)n returns the time value obtained
by subtracting TimeValue2 from TimeValue^ The following cases are allowed:

1. If both parameters are absolute times, the result is a relative time, i.e., a dura-
tion (in seconds).

2. If TimeValue1 is an absolute time and TimeValuo2 is a relative time, the result
is an absolute time with the same time base as TimeValuev

3. If both parameters are relative times, the result is a relative time.

The function call MPlus_Time(TimeValue1,TimeValue2)" returns the time value obtained by
adding TimeValue2 to TimeValue1. The following cases are allowed:

1. If one parameter is an absolute time and the other parameter is a relative time,
the result is an absolute time in the same time bcse.

2. If both parameters are relative times, the result s a relative time, i.e., a dura-
tion.

The function call "Current_Size(GlobalPortName)" returns the current number of elements
stored in the queue associated with a given port.

Calls to these functions can appear anywhere a value c f the same kind as the return value
can appear. That is, a call to a function returning an integer, a real, a string, or a time value
can appear instead of an integer, a real, a string, or a tirre value, respectively.

CMU7SEI-88-TR-20 9

10 CMU/SEI-88-TR-20

3. Durra Runtime Environment
To understand the operation of MasterTask, it is necessary to understand the components
of the Durra runtime environment. MasterTask operates like any other task implementation.
It does not receive special treatment by the runtime env ronment and, in fact, the scheduler
and servers have no built-in knowledge of MasterTask. This section provides the summary
of the runtime environment necessary to understand how task implementations are invoked
and how they can receive information contained in the task description. How MasterTask
uses this information is the subject of Section 4.4. For further details about the runtime
environment, see [3].

scheduler

<■

processor

runjask
shutdown
restart

init
finish
get_portid
getjypeid
sendjDort
getjport
test_input_port
test_output_port

processorl

server

"exec"

>k_

task2

processor

Figure 3-1: The Durra Runtime Environment

There are three active components in the Durra runtime Bnvironment: the application tasks,
the Durra server, and the Durra scheduler. Figure 3-1 shows the relationship between these
components.

CMU/SEI-88-TR-20 11

After compiling the type declarations, the component task descriptions, and the application
description, as described previously, the application can be executed by performing the fol-
lowing operations:

1. The component task implementations must be loaded in a special directory in
the appropriate processors. The directory name is known to the Durra servers
and scheduler. Since MasterTask is playing the role of a task implementation,
it too must be stored in this special directory.

2. An instance of the Durra server must be started in each processor.

3. The scheduler must be started in one of the processors. The scheduler
receives as an argument the name of the file containing the scheduler pro-
gram generated by the compilation of the application description. This step
initiates the execution of the application.

The scheduler is the part of the Durra runtime system responsible for starting the tasks,
establishing communication links, and monitoring the execution of the application. In addi-
tion, the scheduler implements the predefined tasks (broadcast, merge, and deal) de-
scribed in [1]. The scheduler operates by reading a file containing the instructions gener-
ated by the Durra compiler. For the purposes of this reports, the two relevant instructions
are taskjoad and source.

The taskjoad instruction takes three parameters: 1) the task name, 2) a processor to run it
on (either a specific processor or a class of processors), and 3) the name of the executable
file.

(task_load MAIN.PC VAX Msink_tas)c2")

The source instruction takes two parameters: 1) a task name, and 2) the value of the
"source" attribute specified in the task description, if any.

(source MAIN.DISPLAY "display.durra.TREE")

If the source attribute is not specified in the task description, the parameter is the name of
the syntax tree produced by the Durra compiler (see [3] for file-naming conventions). This
information might be used by the task implementation to examine its own Durra description.
This information will be passed to the indicated application task at startup. The significance
of the "implementation," "source," and "processor" attributes will become clear in Section

12 CMU7SEI-88-TR-20

4. MasterTask Implementation Overview

As described in Section 2.1, a Durra timing expression can contain concurrent events as
well as loops and guards that block execution until some condition is met (e.g., some
amount of time has elapsed since the start of the application, an input queue has a given
number of data elements). In this section we describe the use of Ada tasking features to
implement concurrent events. In this description, wWhenever there is the possibility of con-
fusion, we will use the term "Ada task" to distinguish it from a "Durra task." Otherwise the
context should make it clear which type of task is implied.

When MasterTask starts, it reads the Durra syntax tret* of the task it wants to emulate, lo-
cates the timing expression, and builds an internal data structure, isomorphic to the original
timing expression syntax tree, but with different information stored in the nodes. In partic-
ular, each node in the internal tree contains a reference to a task object. This task object is
responsible for performing one or more node-dependent operations: 1) execute a queue
operation (including "delay"); 2) evaluate a guard expression (including "repeat"); 3) direct
the execution of the tasks responsible for the subtrees rooted at this node.

Generally, MasterTask exhibits the same behavior as £ regular Durra task implementation,
issuing the same calls to the scheduler (see [3] for a description of the operations) in the
following order:

1. Calls the Init function to establish communication with the scheduler. This op-
eration is invoked by MasterTask's main program during the initialization
phase.

2. Calls get_portld for each of the task ports (these are the ports named in the
timing expression). These operations are invoked while building the internal
structures.

3. Calls send_port and get_port as necessary to send and receive data. In be-
tween port operations, it might wait for varying amounts of time, as indicated in
the timing expression. These operations are invoked by the Ada task objects,
operating concurrently as they interpret their assigned nodes.

4. Calls finish to break communication with the scheduler when it completes its
job. This operation is invoked by MasterTask's main program after the Ada
task object assigned to the root node has termin ated (and by implication, all of
the task objects are terminated). If the timing expression contains a never-
ending loop or a guard that is not satisfied, at least one of the task objects will
not terminate and the finish operation will not be invoked. In this case Mas-
terTask must be terminated by the scheduler.

4.1. The Ada Task Type Specification

All of the task objects assigned to the nodes are instancos of the same task type:

task type Master_Task_Texnplate is
entry Start(e: in FSA_Node);
entry Stop;

end Master_Task_Template;

CMU/SEI-88-TR-20 13

The task type specification indicates that the task objects will have two entry points, "Start"
and "Stop." All coordination of activities will be performed by calling these entries.

4.2. The Ada Task Type Body

task body Master_Task_Teniplate is
el, e2: FSA_Node;

begin
loop

accept start(e: in FSA_Node) do
el := e; —| remember the node we are responsible for

end start;

case el.kind is —I perform a node-dependent action
when FSA Event =>

when FSA_Repeat =>

when FSA__Guard =>

when FSA List =>

end case;

accept stopp-

end loop;
end Master_Task_Template;

The body of the task type implementation consists of a loop containing three steps:

1. Perform an accept "Start" statement. When the rendezvous occurs, the
parent task (the caller) is released immediately after a simple assignment
statement is executed by the entry proper.

2. Perform some node-dependent action (e.g., delay, invoke a queue operation,
start several children processes in parallel).

3. Perform an accept "Stop" statement. The entry call to "Stop" serves as a
lock to the parent task. The parent cannot continue until the child task arrives
here, i.e., until it has completed performing the node-dependent action. When
the rendezvous occurs, the parent task (the caller) is released and the child
task loops to its accept "Start" statement.

The node-dependent actions are shown in an abridged fashion. We eliminated all details
except those that illustrate the synchronization between parent and children tasks:

when FSA_Event =>
do_operation(el);

The simplest node-dependent action performs a delay or a queue input or output operation.
A delay operation is associated with a time window that specifies a minimum and maximum
delay. MasterTask draws a random number from a uniform distribution between these two
boundaries and uses it as the length of time it delays its operation (this is implemented with
an Ada delay statement).

14 CMU/SEI-88-TR-20

Normally, queue input and output operations are performed by issuing the send_port and
get_port schedulers call, as described in [3]. MasteTask can also be used as a frees-
tanding program, running without the help of the Durra runtime system (see Section 4.5). In
freestanding mode, queue operations are emulated by using a default delay duration (0.1
second).

when FSA_Repeat =>
for i in 1..el.count
loop
el.rexpression.node_task.stait(el.rexpression);
el. rexpression. node_task.. stop;

end loop;

A node that implements a "repeat" guard invokes its child task a number of times "count."
The parent task calls the "Start" entry and blocks until the child task gets there. Once they
are both synchronized, the parent is released and th3 child goes on to execute the loop
body. The parent task immediately calls the "Stop" en ry and blocks until the child task gets
there (i.e., until the child task has completed one iteration). At that point both tasks are
released. The child task goes back to the head of he outer loop to the accept "Start"
statement and waits there until the next time it is called upon to evaluate its subtree. The
parent task either loops again, or terminates the loop and goes to its accept "Stop" state-
ment.

when FSAjGuard =>
while not Do_Guard(el)
loop

delay Delay_JBetween_Retries;
end loop;
el.expression.node_task. start («:1.expression) ;
el.expression.node_task.stop;

A node that implements a guard (other than a "repeat" guard) loops evaluating the guard
expression until it is satisfied. When that occurs, the node invokes its child task to perform
the guarded timing expression. The parent first calls the "Start" entry, thus triggering the
child, and then calls the "Stop" entry and blocks until the child task gets there. To avoid
wasting resources and to let other task objects run, MasterTask delays for a period of 0.1
second before reevaluating a guard.

when FSA_List «>
if el.is_parallel then

e2 :■>•!; —I Start the branches together
while e2 /- MULL
loop
e2.this_event.node_task.start(e 2.this_event);
e2 := e2.next_event;

end loop;

e2 :«= el; —I «ait for all of them to finish.
while e2 /= MULL
loop

e2.this_event.node_task.stop;
e2 :■ e2.next event;

CMU/SEI-88-TR-20 15

end loop;

else —I Start the branches in sequence
e2 := el;
while e2 /= NULL
loop

e2 . this_event. node__task. start (e2. this_event) ;
e2 . this__event. node_task. stop;
e2 := e2.next_event;

end loop;
end if;

Finally, we have the cases of nodes implementing concurrent and sequential actions. The
structure of these nodes is the same except for a flag that distinguishes between these two
cases.

If the node implements a list of concurrent actions, it first loops issuing calls to the "Start"
entry of all of its children. Since only the "Start" entry is called, the parent does not block for
long and loops back immediately to start the next child. After starting all of its children, the
parent executes a similar loop, but this time calling the "Stop" entry of its children. Notice
that it is irrelevant in which order the children reach the accept "Stop" statement and ren-
dezvous with the parent, since the parent must eventually rendezvous with all its children.

If the node implements a list of sequential actions, the behavior is very similar to the imple-
mentation of the "repeat" guard that we saw before, except that instead of looping over a
counter, the looping takes place over the list of children tasks.

4.3. The Main Program

The main program invokes the different components of MasterTask, as described below:

procedure master is
Root: Tree_Node; —| Syntax tree structure
Header_String: String_Type ;
fnode: FSA_Node; —I Internal tree structure

begin
Init; —| Call the Durra initialization procedure

Read__Tree(Uaer__Source_Parameter/ Root, Header__String);
—| Read the Durra syntax tree

fnode := Parse_Timing(Extract_Timing(Root));
—| Generate the internal data structure

fnode.node_task.start(fnode);
—| Start the root task

fnode.node_task.stop;
— | Wait until the root task is done.

Finish;

end Master;
—| Call the Durra termination procedure

16 CMU/SEI-88-TR-20

4.4. Using MasterTask in a Task Description

To use MasterTask to emulate an implementation, the writer of the task description must
write (or modify) the real task description to look like this:

task task_name — required
ports port declarations — required
signals signal declarations — optional
behavior "" required

requires Larch predicate — optional
ensures Larch predicate — optional
timing timing expression — required

Attributes — required
implementation = "master"; — required
processor = VAX; — required
any other attributes EXCEPT "source " — opt iona l

structure structure declarations — optional
end task_name

Except for the fixed "implementation" and "processor* attributes and the absence of the
"source" attribute, any other components of the task description should be written as if the
real task implementation were to be used.

The "implementation" attribute indicates that MasterTask is implemented by a program,
"master," stored in a special directory as indicated in Chapter 3.

The "processor" attribute indicates that this program can only execute on a VAX processor.
However, since MasterTask is written in Ada, it should te easily portable to other machines,
in which case the appropriate version of the attribute should be used.

Finally, the absence of a "source" attribute forces the Durra compiler to use as a replace-
ment value the name of the syntax tree produced during the compilation of the task descrip-
tion. This is how MasterTask knows what to do. It gets the file name, reads the syntax tree,
looks for the timing expression, builds the appropriate.» internal structures, and interprets
them.

It should be fairly obvious but nevertheless worth mentic ning that MasterTask has no way of
generating "meaningful" output data or of making use of its input data. As output data, it
generates blocks of random bytes of appropriate length. All input data are dropped.

4.5. Using MasterTask In Freestanding Mode

Although MasterTask was designed to help the developers of an application emulate miss-
ing task implementations, it is also convenient to be able to "test" a task's timing expression
without having to build an "application" around it. MasterTask can be invoked directly via a
UNIX command:

dmaster task file name

CMU7SEI-88-TR-20 17

The parameter, task_file_name, is the name of the file containing the syntax tree produced
by the Durra compiler. The file name has the form "name.durra.TREE," but the user only
needs to specify name (or name.durra) since the dmaster command can supply the missing
extensions. In freestanding mode, queue operations are not performed, and instead, their
duration is emulated by using a fixed default delay (0.1 seconds).

18 CMU/SEI-88-TR-20

5. A Durra Example
This section contains a complete example of a Durra aDplication. As show in Figure 5-1, it
consists of two type declarations, three component task descriptions (and their
implementations), and the application description.

The example illustrates the use of a predefined task, broadcast, which is implemented di-
rectly by the scheduler. In this application, one task (* taska") sends out strings of data to
the broadcast task which, in turn, sends them on to two other tasks ("taskb" and "taskc").
The application description ("main") cements all of the component tasks together in the con-
figuration shown in Figure 5-2.

5.1. Type Declarations and Type Descriptions

"Byte" is the basic type (a scalar type 8 bits long). "String" is an unbounded sequence of
bytes.

"Taska" has a single output port, "out1," which produces strings. "Taskb" and "taskc" both
have a single input port, "in1," which consume strings. Not surprisingly, all three tasks are
implemented by the program "master." However, each task has a different behavior, speci-
fied by its timing expression.

"Taska" executes a simple loop three times. In each pass, it first computes for some ran-
dom amount of time between 5 and 10 seconds, and then performs an output operation on
its output port. This output operation produces the str ng to be broadcast to the other two
user tasks.

"Taskb" waits until it is 30 seconds after process star-time before executing a loop three
times, each time performing an input operation on its i iput port. This input operation con-
sumes one of the strings that were broadcast.

"Taskc" starts by trying to perform an input operation on its input port, following which it
computes for some random amount of time between 10 and 13 seconds. Notice that the
input operation is likely to take some time to complete because the producer (Taska) will
only generate its first string after some delay. The third step in Taskc is a guarded time
expression. The task waits until there are two elements in its input queue before proceeding
to remove in parallel. The removal operations take piece in two concurrent paths, each of
which waits for some random amount of time before performing the actual operation.

Task "main" is the application description. It specifies the three tasks that make up the
application, plus an instance of the predefined task broadcast. The structure part specifies
the interconnection of those four tasks.

CMU/SEI-88-TR-20 19

type byte is size 8;
type string is array of byte;

a -- Type Declarations

task tasJca
ports

outl: out string;
behavior

timing (repeat 3 => (delay[5, 10] outl.enqueue));
attributes

processor = vax;
implementation = "master";

end taska;
task taskb

ports
inl: in string;

behavior
timing (after 30 ptime => (repeat 3 => (inl)));

attributes
processor = vax;
implementation = "master";

end taskb;
task taskc

ports
inl: in string;

behavior
timing (inl.dequeue delay [10,13]

(when current_size(inl) = 2 =>
((delay [3,5] inl.dequeue) I I

(delay [1,10] inl.dequeue))));
attributes

processor = vax;
implementation = "master";

end taskc;

b -- Task Descriptions

task main
structure

process pi: task taska;
p2: task taskb;
p3: task taskc;
pb: task broadcast

ports inl: in string;
outl, out2: out string

end broadcast;
queues qlb[10]: pi.outl » pb.inl;

qb2[10]: pb.outl » p2.ini;
<^D3[10]: pb.out2 » p3.ini;

end main;

c - Application Description

Figure 5-1: Durra Type Declarations and Task Descriptions

20 CMU/SEI-88-TR-20

After all of the above files are compiled, the Durra compiler generates a file with instructions
to the scheduler. See [3] for further information about the scheduler instructions and a de-
scription of the UNIX commands that invoke the compler and scheduler-instruction gener-
ator. For this example application, these details are not important.

TaskA

Broadcast

TaskB TaskC

Figure 5-2: Application Structure

5.2. Execution Traces
Each instance of MasterTask produces a separate trase file in which each line is prefixed
with a string of the form "PID=n," where "n" is the process id number assigned by the
scheduler to the task (i.e., instance of MasterTask). A face of the execution of this example
application is shown in Figures 5-3, 5-4, and 5-5.

The first line of each trace file displays the various tine bases assumed by the task: the
application start time (AT), the process start time (PT), i nd the day time (DT).

Following the time bases, each task displays the internal data structure generated during the
initialization phase. It is a prettyprinted tree in which each node corresponds to a timing
expression construct. The structure is displayed for later identification of events in the trace.

The bulk of the trace files display each timing expression event and the time of ocurrence of
the event. Events include queue operations "Enqueue * and "Dequeue," delays (treated as
a pseudo queue operation), and guard evaluations.

Following the time stamp, each event prints some information about its operation. "Repeat"
guards have the string "l=" followed by the current iters tion number and the total number of
iterations. Other guards are identified by the guard type (e.g., "OP_AFTER"). "Enqueue,"
"Dequeue," and "Delay" operations generate two lines of trace. The first line (marked with

CMU/SEI-88-TR-20 21

the string '*->") indicates the time at which the operation started. The second line (marked
with the string "<-") indicates the time at which the operation completed. Depending on the
event type, some lines will make reference to a node in the timing expression syntax tree.
These are marked with the string "N=" followed by an integer, where the integer is the node
number, as labeled in the prettyprinted tree shown at the beginning of the trace file.

PID=1
PID=1
PID=1
PID=1
PID=1
PID=1
PID=1
PID=1
PID=1
PID=1
PID=1
PID=1
PID=1
PID=1
PID=1
PID=1
PID=1
PID=1
PID=1
PID=1
PID=1
PID=1
PID=1
PID=1
PID=1
PID=1
PID=1

198
198
198
N=
N=
N=
N=
N=
N=
N=
N=
N=
T=l
T=l
T=l
T=l
T=l
T=l
T=l
T=l
T=l
T=l
T=l
T=l
T=l
T=l
T=l

(0)

8/04/25 75548.929 ATIME
8/04/25 75548.960 PTIME
8/04/25 75548.979 DTIME
1 FSA_GUARD(0P_N0GUARD)
2 FSA_REPEAT Count: 3
3 FSA_LIST Parallel: FALSE
4 FSA__EVENT Op= FSA_DELAY P=0UT1
5 FSA_TIMEWINDOW ~
6 5.000
7 10.000
8 FSA__LIST Parallel: FALSE
9 FSA_EVENT Op= FSA_ENQUEUE P=0UT1
988/04/25 75549.359 ATIME N=
988/04/25 75549.380 ATIME N=
988/04/25 75559.280 ATIME N=
988/04/25 75559.299 ATIME N=
988/04/25 75559.349 ATIME N=
988/04/25 75559.400 ATIME N=
988/04/25 75559.419 ATIME N=
988/04/25 75564.780 ATIME N=
988/04/25 75564.830 ATIME N=
988/04/25 75564.880 ATIME N=
988/04/25 75564.900 ATIME N=
988/04/25 75564.940 ATIME N=
988/04/25 75572.359 ATIME N=
988/04/25 75572.380 ATIME N=
988/04/25 75572.419 ATIME N=

Figure 5-3: Tracing of Taska

(0)
2 1= 1 (3)
4 -> FSA DELAY P=0UT1 (0)
4 <- FSA DELAY P=OUTl (0)
9 -> FSA ENQUEUE P=0UT1 (0)
9 <- FSA ENQUEUE P=OUTl (0)
2 1= 2 (3)
4 -> FSA DELAY P=OUTl (0)
4 <- FSA DELAY P=OUTl (0)
9 -> FSA ENQUEUE P=OUTl (0)
9 <- FSA ENQUEUE P=OUTl (0)
2 1= 3 (3)
4 -> FSA DELAY P=OUTl (0)
4 <- FSA DELAY P=OUTl (0)
9 -> FSA ENQUEUE P=OUTl (0)
9 <- FSA ENQUEUE P=OUTl (0)

22 CMU/SEI-88-TR-20

PID=2 1988/04/25 75548.539 ATIME
PID=2 1988/04/25 75548.770 PTIME
PID=2 1988/04/25 75548.789 DTIME
PID=2 Na 1 FSA_GUARD (OP_NOGUARD)
PID=2 N= 2 FSA_GUARD (OP_AFTER)
PID=2 N= 5 1988/04/25 75571.780 PTIMi:
PID=2 N= 3 FSA__REPEAT Count: 3
PID=2 N= 4 FSA_EVENT Op= FSA_DEQUEUE P=IN1 (0)
PID=2 T=1988/04/25 75549.080 ATIME N=
PID=2 T=1988/04/25 75571.869 ATIME N=
PID=2 T=1988/04/25 75571.880 ATIME N=
PIP=2 T=1988/04/25 75571.909 ATIME N=
PID=2 T=1988/04/25 75571.950 ATIME N=
PID=2 T=1988/04/25 75571.969 ATIME N=
PID=2 T=1988/04/25 75571.989 ATIME N=
PID=2 T=1988/04/25 75572.039 ATIME N=
PID=2 T=1988/04/25 75572.059 ATIME N=
PID=2 T=1988/04/25 75572.070 ATIME N=
PID=2 T=1988/04/25 75572.530 ATIME N=

Figure 5-4: Tracing of Taskb

2 G= OP AFTER FALSE... looping
2 G= OP AFTER TRUE ... continuing
3 i= i ; 3)
4 -> FSli DEQUEUE P=INl (0)
4 <- FSA DEQUEUE P=INl (0)
3 1= 2 ; 3)
4 -> FSA DEQUEUE P=IN1 (0)
4 <- FSJ, DEQUEUE P=IN1 (0)
3 1= 3 3)
4 -> FSJk DEQUEUE P=IN1 (0)
4 <- FSi, DEQUEUE P=INl (0)

CMU/SEI-88-TR-20 23

PID=3
PID=3
PID=3
PID=3
PID=3
PID=3
PID=3
PID=3
PID=3
PID=3
PID=3
PID=3
PID=3
PID=3
PID=3
PID=3
PID=3
PID=3
PID=3
PID=3
PID=3
PID=3
PID=3
PID=3
PID=3
PID=3
PID=3
PID=3
PID=3
PID=3
PID=3
PID=3
PID=3
PID=3
PID=3
PID=3
PID=3
PID=3
PID=3
PID=3
PID=3
PID=3
PID=3
PID=3
PID=3
PID=3
PID=3
PID=3
PID=3

1988/04/25 75552.809 ATIME
1988/04/25 75552.890 PTIME
1988/04/25 75552.929 DTIME
N=
N=
N=
N=
N=
N=
N=
N=
N=
N=
N=
N=
N=
N=
N=
N=
N=
N=
N=
N=
N=
N=
N=
N=
N=
N=
N=
N=
N=
N=
N=
N=
N=

1
2
3
4
5
6
7
8
9
10
11
30
31
32
33
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

FSA_GUARD(OPJJOGUARD)
FSA_LIST Parallel: FALSE

FSA_EVENT Op= FSA_DEQUEUE P=IN1
FSA_LIST Parallel: FALSE

FSA_EVENT Op= FSA_DELAY P=IN1
FSAJTIMEWINDOW "

10.000
13.000

FSA_LIST Parallel: FALSE
FSA_GUARD(OP_NOGUARD)
FSA GUARD(OP WHEN)

(0)

(0)

(0)

(0)

T=1988/04/25 75553.320 ATIME N=
T=1988/04/25 75559.690 ATIME N=
T=1988/04/25 75559.710 ATIME N=
T=1988/04/25 75572.669 ATIME N=
T=1988/04/25 75572.770 ATIME N=
T=1988/04/25 75572.799 ATIME N= 15 ->
T=1988/04/25 75572.849 ATIME N= 24 ->
T=1988/04/25 75575.969 ATIME N= 15 <-
T=1988/04/25 75575.989 ATIME N= 20 ->
T=1988/04/25 75576.039 ATIME N= 20 <-
T=1988/04/25 75578.229 ATIME N= 24 <-
T=1988/04/25 75578.250 ATIME N= 29 ->
T=1988/04/25 75578.299 ATIME N= 29 <-

FSA__OPERATOR (OP_EQL)
FSAJDPERATOR(OP_CURRENTSIZE)

0
2

FSA__LIST Parallel: TRUE
FSA_GUARD (OP_NCX^JARD)

FSA_LIST Parallel: FALSE
FSA_EVENT Op= FSAJDELAY P=IN1

FSA_TIMEWINDOW "
3.000
5.000

FSA_LIST Parallel: FALSE
FSA_EVENT Op= FSA_DEQUEUE P=IN1

FSA__LIST Parallel: TRUE
FSA__GUARD (OP_NOGUARD)

FSA__LIST Parallel: FALSE
FSA_EVENT Op= FSA_DELAY P=IN1 (0)

FSA_TIMEWINDOW "
1.000
10.000

FSA_LIST Parallel: FALSE
FSA_EVENT Op= FSA__DEQUEUE P=IN1 (
3 -> FSAJDEQUEUE P=IN1 (0)
3 <- FSAJDEQUEUE P=IN1
5 -> FSAJDELAY P=IN1 (
5 <- FSAJ)ELAY P=IN1 (
11 G= OP WHEN TRUE

0)

FSAJDELAY P=IN1 (
FSAJ)ELAY P=IN1 (
FSAJDELAY P=IN1 (
FSAJDEQUEUE P=IN1
FSAJDEQUEUE P=IN1
FSAJJELAY P=IN1 (
FSAJDEQUEUE P=IN1
FSA__DEQUEUE P=IN1

(0)
0)
0)

0)
0)
0)
(0)
(0)
0)
(0)
(0)

Figure 5-5: Tracing of Taskc

24 CMU/SEI-88-TR-20

References
[1] M.R. Barbacci and J.M. Wing.

Durra: A Task-Level Description Language.
Technical Report CMU/SEI-86-TR-3, Software Engineering Institute, Carnegie Mel-

lon University, December, 1986.
Also Technical Report CMU-CS-86-176, Departnent of Computer Science, Carnegie

Mellon University, December 1986, and NTIS; Report No. AD-A178 975.

[2] M.R. Barbacci, C.B. Weinstock, and J.M. Wing.
Programming at the Processor-Memory-Switch Level.
In Proceedings of the 10th International Conference on Software Engineering. Sin-

gapore, April, 1988.

[3] M.R. Barbacci, D.L. Doubleday, and C.B. Weinstock.
The Durra Runtime Environment
Technical Report CMU/SEI-88-TR-18, Software Engineering Institute, Carnegie Mel-

lon University, July, 1988.

CMU/SEI-88-TR-20 25

26 CMU/SEI-88-TR-20

UNLIMITED nNPTAgqTTTTFn
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

1«. REPORT SECURITY CLASSIFICATION

UNCLASSIFIED
2«. SECURITY CLASSIFICATION AUTHORITY

N/A
2b. OECLASSIFICATION/OOWNGRAOING SCHEDULE

N/A

lb. RESTRICTIVE MARKINGS

NONE
3. DISTRIBUT ON/AVAILABILITY OF REPORT

APPROVED FOR PUBLIC RELEASE
DISTRIBUTION UNLIMITED

4. PERFORMING ORGANIZATION REPORT NUMBER(S)

CMU/SEI-88-TR-20

5. MONITORING ORGANIZATION REPORT NUMBER(S)

ESD-TR-88-021
6a. NAME OF PERFORMING ORGANIZATION

SOFTWARE ENGINEERING INSTITUTE! SEI

|6b. OFFICE SYMBOL
(If applicable)

7«. NAME OF MONITORING ORGANIZATION

SEI JOINT PROGRAM OFFICE
6c. ADDRESS (City. State and ZIP Code)
CARNEGIE MELLON UNIVERSITY
PITTSBURGH, PA 15213

7b. AODRESS (City, State and ZIP Code)
ESD/XRJil
HANSCOM AIR FORCE BASE, MA 01731

a> NAME OF FUNDING/SPONSORING
ORGANIZATION

SEI JOINT PROGRAM OFFICE

8b. OFFICE SYMBOL
(If applicable)

SEI JPO

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

F1962835C0003

8c. AODRESS (City. State and ZIP Code)

CARNEGIE MELLON UNIVERSITY
SOFTWARE ENGINEERING INSTITUTE JPO
PITTSBURGH. PA 15213

10. SOURCE OF FUNOING NOS.

PROGRAM
ELEMENT NO.

11. TITLE (Include Security Classification)

MASTERTASK: THE DURRA TASK EMULATOR

PROJECT
NO.

N/A

TASK
NO.

N/A

WORK UNIT
NO.

N/A

12. PERSONAL AUTHOR(S)
BARBACCI

13«. TYPE OF REPORT

FINAL
13b. TIME COVERED

FROM TO

14. DATE OF REPORT (Yr.. Mo.. Day)

JULY 38

15. PAGE COUNT

 10
16. SUPPLEMENTARY NOTATION

COSATI CODES

FIELO GROUP SUB. GR.

18. SUBJECT TERMS (Continue on revirse if necessary and identify by block number)

DISTRIBUTED APPLICATIDNS, REAL-TIME APPLICATIONS,
HETEROGENEOUS COMPUTE* NETWORKS, TASK SPECIFICATION
LANGUAGES

19. ABSTRACT (Continue on reverse if necessary and identify 6y block number)

DURRA IS A LANGUAGE DESIGNED TO SUPPORT THE CONSTRUCTION OF DISTRIBUTED APPLICATIONS
USING CONCURRENT, COARSE-GRAIN TASKS RUNNING ON NETWORKS OF HETEROGENEOUS PROCESSORS.
AN APPLICATION WRITTEN IN DURRA DESCRIBES THE TASKS TO BE INSTANTIATED AND EXECUTED
AS CONCURRENT PROCESSES, AND THE INTERMEDIATE QUEUES REQUIRED TO STORE THE DATA
AS THEY MOVE FROM PRODUCER TO CONSUMER PROCESSES.

THE TASKS AND TYPES AVAILABLE TO AN APPLICATION DEVELOPER ARE DESCRIBED BY A COLLECTION
OF DURRA TASK DESCRIPTIONS AND TYPE DECLARATIONS STORED IN A LIBRARY. ONE OF
THE COMPONENTS OF A TASK DESCRIPTION IS A SPECIFICATION OF THE EXTERNAL TIMING
BEHAVIOR OF THE TASK. IT DESCRIBES THE SEQUENCE OF INPUT AND OUTPUT PORT OPERATIONS
AND THE AMOUNT OF PROCESSING TIME SPENT BETWEEN PORT OPERATIONS.

I THIS REPORT DESCRIBES MASTERTASK, A PROGRAM THAT CA* EMULATE ANY TASK IN AN
20. OISTRIBUTION/AVAILABILITY OF ABSTRACT

UNCLASSIFIED/UNLIMITED XX SAME AS RPT. D OTIC USERS XX

21. ABSTR» CT SECURITY CLASSIFICATION

UNCLASSIFIED, UNLIMITED

22«. NAME OF RESPONSIBLE INDIVIDUAL

KARL SHINGLER
22b TELEPHONE NUMBER

tlnclud ■ Area Code)
(A12) 268-7630

22c OFFICE SYMBOL

SEI JPO

DD FORM 1473, 83 APR EDITION OF 1 JAN 73 IS OBSOLETE. UNLIMITED. UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

BLOCK 19 CONTINUED

APPLICATION BY INTERPRETING THE TIMING EXPRESSION DESCRIBING THE BEHAVIOR OF THE
TASK, PERFORMING THE INPUT AND OUTPUT PORT OPERATIONS IN THE PROPER SEQUENCE AND
AT THE PROPER TIME.

MASTERTASK IS USEFUL TO BOTH APPLICATION DEVELOPERS AND TASK DEVELOPERS. APPLICATION
DEVELOPERS CAN BUILD EARLY PROTOTYPES OF AN APPLICATON BY USING MASTERTASK AS
A SUBSTITUTE FOR TASK IMPLEMENTATIONS THAT HAVE YET TO BE WRITTEN. TAKS DEVELOPERS
CAN EXPERIMENT WITH AND EVALUATE PROPOSED CHANGES IN TASK BEHAVIOR OR PERFORMANCE
BY REWRITING AND REINTERPRETING THE CORRESPONDING TIMING EXPRESSION.

