
'I UNCL*SSF F/G 12/3 "L

140 1112.0

11I1L25 = =

o'rlcrnpy
FINAL REPORT OF THE

DTIC
JOINT LOGISTICS COMMANDERS' 'TE

WORKSHOP AUe 1 I1B

ON Hb -

POST DEPLOYMENT SOFTWARE SUPPORT
[POS]

i FOR

01 MISSION-CRITICAL COMPUTER SOFTWARE
4:
I

VOLUME II - WORKSHOP PROCEEDINGS

JUNE 1984

T L

THIS-18 NOT AN APPROVED JLC DOCUMENT

Anneved for publo mbiw

PREFACE

Nowhere can the speed of advancing technology be better exemplified than
in the area of computer resources. Our country's weapon systems are inextricably
linked to computer hardware and software. Annual Department of Defense
expenditures in this technology continue to increase.

> The Joint Logistics Commanders' Joint Policy Coordinating Group on
Computer Resource Management (CRM) has been striving since 1977 to achieve
sensible triservice policy and standards in the acquisition of computer software
in weapon systems where that software is mission critical. The well known
Monterey I and Monterey II Workshops have led to Department of Defense software
development standards, a tri-service software development policy, and data item
descriptions (DIDs) that are expected to be formally implemented in late 1984.
Pilot applications of these_-aew-dore~ments are currently underway. In addition, a
draft policy siarrdnd -'nDID on software quality is available. The anticipated
implementatlon date for these documents is late 1985.

The CRM group have broadened their area of concern to the entire life
cycle of weapon system software by sponsoring an important workshop on software
support (often misleadingly called software"maintenance1. This significant
workshop, called Orlando I, focused on the issues of modification of software to
support mission requirements changes and to improve performance after the
development of the initial computer programs and/or after the deployment of the
weapon system. This volume outlines the workshop organization, summarizes the
speeches of the honored guests of the workshop, and provides the complete reports
of the six panels addressing the Post Deployment Software Support (PDSS) issues of
government/industry workforce mix, independent verification and validation, cost
of ownership, software support environments, the software change process and
configuration management.)

Accession For

NT!5 JRA&I

7 ! i l , ts L-1

AV51i dility Codes

Av.&l and/orDist Spscial

TABLE OF CONTENTS

PAGE

Preface
Table of Contents
List of Figures

iv

1. Workshop Agenda
I-1

2. Workshop Organization
2-13. Guest Speaker Presentations 3-1

3.1 Relationship Between PDSS and AdvancedTechnology (Dr. Edith VNartin) 3-23.2 Software (Maj. Gen. Monroe T. Smith) 3-7

4. Workshop Panels
4

A Tndustry/Government Workforce Eix 4-1-i
Table of Contents

B IV&V by Support Personnel
Table of Contents

4-2-1i
C Cost of Ownership 4-3-i

Table of Contenis 4-3-ilD Software Support Environment 4-4-i
Table of Content&

4-4-1iE Change Implementation 4-5-iTable of Contents 4-5-iiF Configuration Management 4-6-i
Table of Contents

iii

LIST OF FIGURES

1.1 Agenda 1-2
1.2 Agenda 1-3
1.3 Agenda 1-4

LIST OF TABLES

2.1 Orlando I Panel Objectives 2-2
2.2 Administrative Organization 2-3
2.3 Panel Co-Chairpersons 2-4

iv

1. WORKSHOP AGENDA

Orlando I began at 1330 hours on 31 October with a welcoming by the
general chairman of the conference, Mr. Bill Egan of the Naval Material Command.
He introduced the Executive Chairman, Col. John Marciniak and the Executive
Committee. (Workshop organization is described in Section 2 of this volume.) The
Honorable Dr. Edith Martin, Deputy Under Secretary of Defense for Research and
Advanced Technology, was then introduced. She delivered the keynote address which
is summarized in Section 3 of these proceedings. Following Dr. Martin's address,
the status of Monterey Workshops I and II was reported by LCDR Mike Gehl,
chairman of the JLC-CRM/CSM subgroup. The program chairman, Mr. Wayne Sherer,
introduced the panel chairmen and the workshop topics. The panel chairmen then
summarized to the workshop at large the subjects which they were going to discuss
and some of the key issues to be resolved. Individual panel orientations then
followed. The agenda for the first day of the workshop is shown in Figure 1.1.

The next three days of the workshop followed an agenda of essentially a
similar format. Panel chairpersons met with the executive committee early each
morning to report progress, bring forth problems, and receive guidance. Following
nearly four hours of panel and subpar-! discussion and documenting activity, there
was lunch including an interesting and important luncheon speech. Following a two
and one half hour afternoon session within panel. and subpanels, a joint 60-minute
session of all panels was held during which panel rnnclusions for that day werc
summarized.

On Wednesday evening a banquet tor participants was held. The guest
speaker for the banquet was Maj. Gen. Monroe T. Smith, Commander of the Air Force
Acquisition Logistics Division and Deputy Chief of Staff for Acquisition
Logistics, HQ AFLC.

On the last day of the workshop a morning long joint session was
conducted where thc week long panel activities were summarized.

The agendas for the last four days of the conference are shown in
Figures 1.2 and 1.3.

1-1

Joint Logistics Commanders

Joint Policy Coordinating Group or~ Computer
Resources Management

SOFTWARE WORKSHOP - OR~LANJDO I
an

Post Development Software Support

AGENCIA

Monday, 31 October 1 98-3

1 OCO- 1330 Registration Check-in (Lobby. Ulungford Hotel.
Winter Park, Fl

1330-1400 Welcome

1400-1430 Keynote Aodress: Or. Edith Martin, Dteputy Under
SecrEtary of Defense for Research & Advanc-cd
Technology

1430-1500 Otatus Report - Monterey I and 11

1500- 1600 Panel lntroduct'o -s

A. irndustry/ Go-vernment Workforco NIx

B. NV by Suppcrt Person,21
C. Cc~it of Ownership

0 Software Support Environment
E, Channe Implemnentation

F. Ccrifiguration d.Inagemerit
1600-1615 Brcak

1615-1730 Panel Critntat!on7,

-18011 Workshop Reception (hors d'oeuvre .. no-host. bar,
wa teshow)

Figure 1.1

1-3

Tuesday, 1 November 1 983

0730-0800 Panel Chairpersons/ Exe.Utve Cnnimttee Meeting

0800-0945 Panel Sessions

0945-1000 Coffee Break

1000-1200 Panel Sessions

1200-1330 Luncheon: GLuest Speaker- Dr. Rcbert Mathis,
ADA Joint Program Offik;er

1330-1500 Panel Sessions

1500-1515 Coffee Break

1515-1615 Panel Sessions

1115-1630 Break

1630-1730 Joint Session (Panel Summaries)

Wednesday, 2 November 1 983

0730-0800 Panel Chairperson /F ecutive Committee Meeting

0800-0945 Panel Sessions

0945-1000 Coffee Break

1000-1200 Panel Sessions

1200-1330 Luncheon: Guest Speaker- Capt. Jamei Van Metre,
USN

1330-1500 Panel Sessions

1500-1515 Coffee Break

1515-1615 Panel Sessions

1615-1630 Break
1630-1730 Joint Session (Panel Summaries]

1830-1930 No-Host Bar

1930- Banquet Guest Speaker: Maj. Gen. Moroe T. Smith

US Air Force

Figure 1.2

1-4

Thjrsday, 3 Nover >ber I ,933

0730- 08 L5 Pniel Chp;rpe:' ' -F,7x e c tive Cr "-littc2 I 1,:w. ng

0900-,0045 Pane; S.-,i;s,

13945-1000 Coffee Brem'

1000-1200 Pane; Se...n-

120C 33A) Luncheon Gje,'.c; ker. Col Jamns- V. Broron,
I JSM C

1330-1500 Panel Sessions

1500-1515 Cfffc C, edk

1515-1615 Panei Sessions

1615-1630 Break

1630-1730 Joint Sessior (Pare SummqriesJ

Friday, 4 Novernber 1 983

3730-0800 are ChairPpane-l -:ttivp Cnrnmrtte(. ztn

OFjr-0945 Joir" Fless;on (Panei S! mMaries)

0945-1000 Coffee Oreak

1000-1200 Joint Sesson/Wrap- Jp

Special Thanks to Wang tor its ,vord processing equipmern,. 3nd
services during the conference and tc IBM Cernorat on for ue of
copyinq machine.

Figure 1.3

I c

2. WORKSHOP ORGANIZATION

As indicated in Section 1,the Orlando I Pzst Deployment tfLware Support
workshop was organized into six separately functioning panels. The objective of
each panel is shown in Table 2.1. Each panel was co-chaired by government and
industry chairpersons. Table 2.2 presents the names, affiliations, addresses and
phone numbers of these chairpersons. The chairpersons were responsible for the
daily panel summaries and the panel reports which were assembled in rough draft
form prior to the end of the workshop. During the months since the workshop the
panel reports have been reviewed by each panel member, corrections have been made
and the final panel reports have been prepared. These reports are in Section 4 of
this volume.

In addition to the technical organization of the conference, there was
considerable planning and other administrative activity involved. Committee
chairpersons and managers are listed in Table 2.3.

2-1

ORLANDO I

Mission-Critical Post Deployment Software Support (PDSS) Workshop

PANEL OBJECTIVES

Panel A - INDUSTRY/GOVERNMENT WORKFORCE MIX
Develop policy recommendations for cost-effective staffing of
software support agencies using appropriate mixes of government and
industry personnel.

Panel B - INDEPENDENT VERIFICATION AND VALIDATION (IV&V)
Determine when and how much IV&V should be used in software
development and during Post Deployment Software Support (PDSS).

Panel C - COST OF OWNERSHIP
Clarify the basis of large projected costs of future software
development and support while identifying approaches to reducing
software cost.

Panel D - SOFTWARE SUPPORT ENVIRONMENT
Discuss the requirements for establishing an effective, generic post
deployment software support environment establishing feasibility,
advantages and disadvantages.

Panel E - THE SOFTWARE CHANGE PROCESS
Develop the framework for a joint services PDSS "Change Policy
Manual."

Panel F - CONFIGURATION MANAGEMENT
Determine a common definition and scope of "software configuration
management" whirh is suitable t be promnlgated by the JLC.

Table 2.1

2-2

ADMINISTRATIVE ORGANIZATION

Executive Chairman:
Colonel John Marciniak, USAF

Executive Committee:
Capt. Dave Boslaugh, USN
Col. Ken Nidiffer, USAF
Lt. Col. James Harrington, USAF
Col. H. R. Archibald, US Army
Maj. K. R. Ptack, USMC

General Chairman:
Mr. Bill Egan, Naval Air Systems Command

Program Chairman:
Mr. Wayne Sherer, U.S. Army Armament Munitions & Chemical Command

Facilities Chairman:
Capt. Tom Smith, US Marine Corps

Publications Chairman:
Maj. Ed Stevens, HQ AFSC/ALR
Capt. Lee Cooper. HQ AFSC/ALR

Special Arrangements:
Mr. Mert Batchelder, HQDARCOM

Protocol Officer:
Lt. Sunny Riley, HQAFLC/MMEC

Administration/Business Manager:
Ms. Roxy McCarter, HQNAVMAT

NTEC Liaison:
Mr. Frank Jamison, Naval Training Equipment Center

Workshop Manager:
Ms. Michele Foley, PIM Group

Planning Support:
Ms. Dreama Fumia, Veda, Inc.

Treasurer:
Mr. Daniel Kvenvold

Table 2.2

2-3

PANEL CO-CHAIRPERSONS

Panel A - Government/Industry Workforce Mix

Lt Col Frank J. Sisti Mr. R. Dean Hartwick
HQ DA (DAMO-C4L) Pentagon Logicon, Inc.
Washington, DC 20380 255 West 5th St.
(202) 697-4539 San Pedro, CA 90731
A/V 227-4539 (213) 831-0611

Panel B - Independent Verification and Validation (IV&V)

Cdr D. (Dave) Southworth Mr. John W. Sapp
HQ, Naval Material Command (MAT 08Y) Software A&E, Inc.
Washington, DC 20360 1401 Wilson Blvd., Suite 1220
(202) 692-3966 Arlington, VA 22209

(703) 276-7910

Panel C - Cost of Ownership

Lt Col James Riley Mr. G. (Gene) Sievert
HQ AFSC/DLA Teledyne-Brown Engineering
Andrews AFB 300 Sparkman Dr.
Washington, DC 20334 Huntsville, AL 35807
(301) 981-2482 (205) 532-1500

Panel D - SofLware Support Environment

Mr. Jim Hess Mr. Jerry Raveling
HQ DARCOM/DRCDE-SB Sperry Corporation
5001 Eisenhower Avenue Computer Systems, M.S. UIEl3
Alexandria, VA 22333 P.O. Box 43525
(202) 274-9318 St. Paul, MN 55164
A/V 284-9318 (612) 456-3545

Panel E - The Software Change Process

Mr. Joe Black Mr. Jack Cooper
WR-ALC/MMRR CACI, Inc.
Robins AFB, GA 31098 Federal Penthouse
(912) 926-5948 1700 N. Moore St.

Arlington, VA 22209
(703) 276-2826

Panel F - Configuration Management

Mr. C. (Cal) Showalter Ms. Antonia D. Schuman (Toni)
Naval Air Systems Command TRW Systems Group

(AIR-543C) 1 Space Park, Bldg. 134
Room 620, JP-2 Room 6079
Washington, DC 20361 Redondo Beach, CA 90278
(202) 746-0650 (213) 217-4079

Table 2.3

2- $

3. GUEST SPEAKER PRESENTATIONS

The keynote address was delivered

by Dr. Edith W. Martin. Prior to her
appointment as Deputy Under Secretary of
Defense for Research and Advanced
Technology, Dr. Martin was an executive
with Control Data Corporation and director
of Government Systems, Atlanta operations.
Previously, Dr. Martin was director of the
Computer Science and Technology Laboratory
at Georgia Tech's Engineering Experiment
Station. In both of these positions, she
was involved in Defense-related research
and development activities. Recipient of
numerous awards for her leadership and
contributions to the defense/industrial
community, she has also served as a member
of the Defense Science Board Special Task
Force on Embedded Computer Resources and as
chairman of a large number of technical
review committees.

Dr. Martin's address was entitled "The Relationship Between Post
Deployment Software Support and Advanced Technology." The script for this
address is presented in Section 3.1 of this volume.

The banquet speaker was Maj. Gen.
Monroe T. Smith, who is Commander, Air
Force Acquisition Logistics Division, and
Deputy Chief of Staff for Acquisition
Logistics, Headquarters Air Force Logistics
Command, Wright-Patterson Air Force Base,
Ohio. Previously the general was Deputy
Chief of Staff/Maintenance at HQ AFLC,
Wright-Patterson Air Force Base. Prior to
that he was commander of the Defense
Contract Administration Services Region in
Los Angeles, Director of Materiel
Management for the Sacramento Air Logistics
Center, and Director for Plans and
Industrial Resources at HQ AFLC at
Wright-Patterson. Prior to the above
assignments, General Smith was a research
associate for the Fletcher School of Law
and Diplomacy and functioned as Chief of
Executive Services and Maintenance Staff
Officer in the Aircraft Systems Division,
Office of the Deputy Chief of Staff for
Systems and Logistics, HQ USAF in
Washington, D.C.

General Smith's banquet address is entitled "Software" and is presented

3-1

in Section 3.2 of this volume.

The luncheon speakers were Dr. Robert Mathis, Technical Director of the
Ada Joint Program Office (AJPO) in the office of the Deputy Under Secretary of
Defense for Research and Advanced Technology; Captain James Van Metre, U.S. Navy,
Project Manager for the Submarine Advanced Combat System; and Colonel James V.
Bronson, Commanding Officer, Marine Corps Tactical Systems Support Activity.

3.1 RELATIONSHIP BETWEEN PDSS AND ADVANCED TECHNOLOGY (Dr. Edith Martin)

THE RELATIONSHIP BETWEEN PDSS AND ADVANCED TECHNOLOGY

It's a pleasure for me to address you today for several reasons. First, because I
am the DOD principal responsible for MCCR policy--the implementation of the Warner
Amendment to the Brooks Act. Clearly, PDSS and the way that we manage our
mission-critical software are very important to me. Second, because of my
responsibility for the technology base in computer systems and software--including
Ada and STARS. Third, because it brings back memories of an important workshop
that I co-chaired in Orlando several years back on Ada and Nebula--before either
of these important standards was solid. And fourth, because, unlike, for example,
addressing an audience on fuels or lubricants, where I can't find anybody I know,
here I see many old friends and familiar faces.

Today, I would like to talk about the relationship between PDSS and advanced
technology. Both are worlds of change--sometimes very rapid change. PDSS
presents an important challenge to technology: providing the capability to create
software and systems that are truly dynamic--adaptable. Technology, on the other
hand, challenges PDSS: accept and integrate advances into existing PDSS functions
and structures as quickly as possible.

REQUIREMENTS FOR EFFECTIVE SOFTWARE

All of us I'm sure will readily admit that we are not happy with the state of
affairs of the software life cycle. I think we should start by stating what are
we really looking for. Then we can keep asking the question--What are we doing to
satisfy these requirements? Are we making any progress?

I see that we have requirements in two categories--technical and management.
Technical--the desired properties of software, and second, the desired management
situation. I will not focus at this point on differences in life cycle
emphasis--all of the phases are equally important.

If you tell me that PDSS deserves more emphasis because it consumes 70% of the
life cycle costs, then I will tell you--the way we do that 30% or whatever of
development has tremendous leverage on the rest of the life cycle--both positive
and negative. If you tell me that development is where it's at, then I'll say
that the whole purpose of development is to provide the evolutionary flexibility
we need in PDSS. You can almost guarantee that if development is done well, then
PDSS will be facilitated, and if development is messy then PDSS is going to be a
problem. Too often software development and PDSS are treated as separate
universes. Those that are primarily concerned with PDSS see the world from that
vantage point and those that are involved only with development frequently have a
similar narrow focus. We should view these sometimes separate activities as a
continuum.

3-2

In reality, support is done during development and development is done during
support. It's only a difference of emphasis. The primary issues that we face in
software exist in both of these worlds.

TECHNICAL REQUIREMENTS

Software should be responsive to the system specifications driving it. It should
also have sufficient inherent adapatability to facilitate correction of errors as
well as redesign as needs evolve due to changes in the threat or changes in
hardware. Software should be reliable--meaning it shouldn't cause system
failures. It should be general enough so that it could be used in other
applications or in future versions of the current application. Finally, it should
be transportable to a new computer, whether or not the same architecture is used.

MANAGEMENT REQUIREMENTS

Looking at software from a management perspective, we w3nt effective means to
control schedule and costs. We need an adequate supply of software professionals
with the appropriate level of training and expertise to carry out the software
function. We must be able to accomplish development in the most appropriate way
and do the same for PDSS--and we must have policies and mechanisms for
transitioning between the two in the most efficient manner.

The approaches we set up in PDSS operations to correct problems and to evolve
software must be highly responsive and cost effective. Perhaps most important,
our management structures should not allow us to lose sight of the "total system."
We must not forget that we are engineering systems of which the software is a
part. When we change software we are, in effect, making engineering changes to
the entire system and while the software change may be easy, the consequences may
be catastrophic. We should be careful not to separate the software too far from
the remainder of the system. And we should never allow software and system
management to be at the same level. When we do, we really have nobody in charge.

EXPONENTIAL GROWTH OF SOFTWARE

The growth of software cost and demand has been and continues to be exponential.
Because of this, complexity of the type of software in DOD desire has increased to
the point where our practices are now incapable of producing software without a
litany of problems.

CURRENT SITUATION

The main problems we have been experiencing in software are listed here. Software
has, all too frequently, been the cause of major slips in weapon system schedules.
Software costs are now increasing out of proportion to other system costs. The
EIA has predicted that annual mission critical software costs can be expected to
be 10% of the defense budget by 1990 if current productivity levels continue. We
are all familiar with cases where software errors have caused system failures even
though the hardware was working perfectly. Software is difficult to modify and
finds little reuse elsewhere. Last but not least, we don't have enough softwarc
people. It's been estimated that the need for software professionals is
increasing at the rate of 12% annually, yet the supply is increasing at only 4%

3-3

per year. We assume that productivity would normally increase by 4% annually.
This leaves a yearly shortfall of 4%. If nothing changes the current trend, this

number will grow to almost one million by 1990.

NO SIMPLE SOLUTION

There is no single or obvious solution to the "software problem." We expect that

we will have to do all of these things at a minimum.

THE SOFTWARE ENVIRONMENT

T;e software environment is where many things come into focus. If we view

development and PDSS as a continuum, which I think we should, even though there
may be a "handover" in most cases, then that which is required during initial
development is also needed for PDSS.

The PDSS environment also includes the interface to operational systems so it, in

effect, is a superset of the development environment.

Well, most of the software is developed by contractors. The government functions
prLmarily in a monitoring capacity. During PDSS, the government has more of an

operational role.

Should the environments be different or the same? The answer to this is not
straightforward. If we say these environments should be the same, then this type
of reasoning would lead us to conclude that we should have standard environments
in each service. Extension of this reasoning would lead to a single standard
environment in both government and the defense industry. This would be a mistake.
The field is moving too quickly and we should not take any action to stifle this

progress toward the solution of our problems. The worst thing we could do would
be to cast our first successful Ada environment in concrete. What we should seek
is commonality and standardization where it makes sense to have them--and to
evolve standards in the normal fashion--and to allow rapid technological growth in

those areas where standardization does not make sense.

COMMONALITY IN TilE SOFTWARE ENVIRONMENT

The benefits achievable through the use of a common high order language are well

known. This is standardization at one level of interface. The interfaces of the
kernel Ada programming support environment, or KAPSE, is another level. This
level will facilitate the movement of software tools and data between APSE's
without conversion or reprogramming. This will extend the advantages of Ada into
the environment. Work in this area is being carried out under the AEGIS of the
AJPO by the KAPSE interface team, or kit, which is government, and the KAPSE

interface team from industry and academia, or KITIA. The end product is the
common APSE interface set or CATS, version 1.0 of which is now not out for public
review.

My message then is that we should seek to standardize at levels which will benefit

us and avoid standardizing at levels which will impede our progress.

ADA COVER

Now I'd like to give you a brief status update on the Ada Program.

3-4

THE ADA PROGRAM

I'm sure that most of you know that Ada is now both an ANSI and a MIL standard.
Technical features of the language such as exception handling and concurrent
processing directly address the needs of mission critical and real time systems
and permit us to avoid most embedded code.

Congressional support for Ada has been very strong to the point where Congress
wants us to accelerate the entire effort. This, along with our conference on the
maturity of the language, has motivated our recent policy which contains mandatory
dates for the introduction of Ada.

Pending issue of DOD Directive 3405.XX, which will replace DOD instruction
5000.31, the dates that have been established are 1 January 1984 for systems
entering advanced development and 1 July 1985 for systems entering full-scale
engineering development. A compiler validation capability now exists and ha- hpn
used to certify the NYU interpreter and both the ROLM/Data General and the Western
Digital Ada Compilers.

THE STARS PROGRAM

The STARS program will have a tremendous positive effect on the entire software
life cycle. Its goal is to reduce the labor-intensiveness of the software process
and thereby reduce costs and improve quality. Complexity will be reduced and
adaptability enhanced. We seek order-of-magnitude improvements in both
productivity and reliability by 1990. All of this is in recognition of the fact
that software technology has become critical to U.S. world leadership.

STARS will be a specially managed joint service and OSD program for seven years.
We now have a STARS joint program office alongside the Ada joint program office in
our new Directorate for Computer Software and Systems.

STARS SUBGOALS

In order to satisfy this goal, we will have to make significant improvements in
the human resource area, in the technical practices we employ to develop and
support software, in the computer systems within which such software will execute,
and in our acquisition and project management practices.

STARS TASK AREAS

Shown here are the task areas identified by the STARS task force within which
STARS work will be done.

WATERFALL

This chart is intended to indicate the relative scopes of Ada and STARS. Ads's
primary impact will be on those phases of the system life cycle shown in the
shaded area. Ada is a tool primarily for program or module development. Since
its level is higher than that of most other languages, it will also be valuable in
detailed design, for example, as a program design language. It can also be
expected to have a positive impact on the software integration phase. STARS,
however, encompasses all of the phases of the life cycle within its scope.

3-5

STARS EMPHASIS

The most critical product of the STARS program is tne "integrated" software
environment, a highly automated computer system containing a wide range of
advanced software tools. This product--or set of products-will function at the
heart of the software development and post deployment software support processes
for every defense/weapons system that contains a computer. Its purpose is to
serve as the principal mechanism for engineering the military software.
Automation of many of the software functions promises to increase productivity and
reduce the probability of errors.

Today, we do not have "integrated" software environments. Instead, we use
primitive systems that are largely manual and highly error prone. The automated
tools that do exist support only a small portion of the life cycle. Extension of
these environments into cohesive systems of software tools employing advanced
methodologies and techniques that collectively automate a high percentage of the
software development and support processes will be a key element of the solution
of the software crisis.

STATUS OF THE STARS PROGRAM

The STARS program is now being staffed both within OSD and the services and
defense agencies. STARS was kicked off in FY 83 through reprogramming and I
expect many in this audience are now involved in executing various portions of the
program. For FY 84, we survived authorization but are not all the way through
appropriations. Presently, we are developing a detailed implementation plan that
will build on the STARS strategy document of this past March.

ENDORSEMENTS OF SUPPORT

STARS has received strong statements of support from the organizations shown here.
We also have the support of Mr. Weinberger, Mr. Thayer, and Dr. Delauer. Many
industrial and academic organizations have also expressed strong support for the
program.

PRODUCTS

If one is to be successful in an undertaking, one must have both top-level goals
and detailed expectations. At this point, and I caution that we are still quite
early in the program, we have delineated this set of products as output. It is
general now but it will become much sharper during the next year.

RESULTS

Similarly, one should be able to express a state of well-being that one would hope
to be in when the program is declared successful. Will we accomplish all of this?
We believe so. As in the case of products, as time goes on we will focus each of
these better. It is a difficult undertaking. We welcome your advice and
assistance.

NO SCREEN

Back to Orlando I--the work you do here on workforce issues, IV&V, the cost of

3-6

discipleship, the software environment, change implementation, and configuration

management will form the basis for policies and software practices in the future.
You have all been invited based on your known contributions to either software
technology of software management. You have undertaken a significant challenge.
I too am strongly committed to making things very much better in software.
Therefore, I wholeheartedly endorse what you are about to do and I wish you every
success.

3.2 SOFTWARE (Maj. Gen. Monroe T. Smith)

SOFTWARE

Good evening ladies and gentlemen. I am supposed to say how pleased I am to have
this opportunity to talk with you about post development software support of
mission critical computer resources. Let me tell you how pleased I am. Yesterday
morning I was up early at 0430 to catch a plane for Washington, DC...spent the
last two days discussing software and reliability, maintainability and
availability of the advanced tactical fighter with the scientific advisory
board...folks who are basically concerned with how far, how high, and how
fast...got out of there just in time to catch an aircraft to come down here...and
will catch an aircraft 2300 tonight for California to a Commanders'
Conference...it's not a pleasure to be here...it's a minor miracle! I would have
liked to spend some time here.. .I was raised about 60 miles from here.. .would have
liked to revisit some of the strawberry fields I worked in as a boy.

If you are here from one of the other services, you may or may not recognize the
unique position I hold within the Air Force. My job as the Commander of the Air
Force Acquisition Logistics Center, reporting both to General Mullins, AFLC/CC,
and General Marsh, AFSC/CC, allows my organization to form a bridge between system
development and long term support. The logisticians I have, both AFLC and AFSC
resources, are embedded in the SPO doing the logistics job the SPO needs done, and
that includes ensuring that mission critical computer software does its intended
job...and that once acquired...it is supportable. A rare opportuihity to excel.

Every time I use the word opportunity, I am reminded of a story about the devout
Christian who lived along a flood-prone area. When P' ked what he would do if a
flood came--he was always quick to point out he didn't have to worry about
that...the Lord would take care of him. Well, the inevitable flnod c-ame...and he
was sitting on his roof as the water swirled around his house...but he was the
epitome of calm...almost serene...he knew the Lord would take care of him. About
then a rescue boat came up...the devout man said, "Save the others...the Lord
would provide."...so the boat went on and saved others in the neighborhood. The
river continued to rise...and a helicopter appeared...threw down the lifting
device...but he shunned it...Lelling the crew to "save the others...the Lord would
provide." The river continued to rise...and took the devout man under...and he
drowned! Standing before the Lord, the devout man cried..."My Lord why did you
forsake me...I kept your commandmends...I lived my life for you...Why did you
forsake me." The Lord shook his head...forsake you...first I sent a boat...then I
scrounged up a helicopter...man, I just couldn't get you off that rooftop! I
guess the moral of the story is...observe carefully the things that come your
way...one of them may be the opportunity of a lifetime...and you may not get
another...

My new command is sort of like that...I always wanted to work for a 4-star

3-?

general.. . never dreamed of working for two 4-star generals at the same
time.. .maybe this is the opportunity of a lifetime.

We have gone a long way in post development software support. As you well know,
computers and computer software are an integral part of almost all of our modern
defense systems. The successful operation of these systems hinges upon the
performance and flexibility of the computer. In a very real sense, software is
the "glue" that holds our weupon systems together. Software that does not
function correctly could result in the failure of a weapon system to successfully
complete its assigned wartime task. Software thaL zannot keep up with the changes
around us could also result in the failure of a weapon system to meet new
objectives. Software that is so unique, so different, or so difficult to maintain
that it requires excessive resources to sustain...is also a monumental failure.

Our advancing technology and modern system design practices are resulting in
flexible weapon system designs-flexible in the sense that by just changing the
software, we can effectively counter new threats or add new combat capability to a
weapon system. These entities: the weapon system designer...the system dand
subsystem designer...the computer designer...and the software logistician must
work together. They must...one...ensure support is considered in the initial
design; two...ensure proper capabilities are in place to provide post development
software support; and three...provide post development software support to the
user. Are we doing that to the best of our ability? Are we attacking problems
head on...forgetting i-terservice and intraservice rivalries? Art we getLing rid
of the "not invented here" syndrome? Let's see.

When we start categorizing the various kinds of mission critical computer
resources, we in the Air Force Acquisition Logistics Center find it useful to
separate the computer resources into five categories (You may categorize them
differently...the principle will remain the same)...Avionics; command, control,
communications, and intelligence (C31); automatic test equipment; electronic
warfare; and automatic training devices.

Avionics software which equates to the other service operations software is our
first category. This category includes such things as weapons delivery computers
on our fighter aircraft. Here the post development software support must be
responsive to the users' unique changing roles, missions, tactics, threats, etc.

How smart are we being here? A fully integcated digital weapon system must have
an integrated software support center...a center to do diagnostics and tests...to
integrate changes into the software whether a result of imbedded "bugs" or changes
in requirements. Have we truly thought through the initial and long-term costs of
such a facility? Does the contractor build one at his facility to do the initial
work and later we build another at an organic site? Are we so "loose" with our
individual systems architecture we cannot describe concrete interfaces which might
allow for less elaborate software support centers?

A secoid category of mission critical computer resources addresses those computer
systems embedded in our command C31 systems. The recent employment of the E-3A
sentry to monitor Libran operations is an example of our reliance on a C3 system.
A unique problem here is the ability of the post development software support
capability to maintain system inoperability among the various C3I systems h~in
c,,pported. What I'm saying here is have we structured a system so complex...and

3-8

so large...with so many players having the capability to input changes...I'm
wondering if we have true control over the software. Have we truly put aside all

the us--them...whoever us and them are.. .to get a handle on systems such as that?
Have we insisted on designs that can be compartmentalized when they're
needed...and if not.. .insisted upon a real software support manager who has real
authority? This will become more and more difficult as the infrastructure of
various C3I systems becomes more complex.

Automatic test equipment is probably the least glamorous of all the embedded
computer systems categories.. .and may be our biggest problem. Any of you out in
the audience who had anything to do with bringing the F-15/F-16 intermediate test
stations into being ought to be ashamed of yourselves. To have fio 1'ter systems
that must deploy and fight all over the world...and be tied to from 3 to 6 C-141
loads of test equipment at squadron level is unacceptable. If we can't have

avionics that lasts for 2000 hours...that has finite built-in test...Lhat has
graceful degradation when it does begin to fail...and then a suitcase tester for
flight line work...then you don't have true combat capability. If we don't get on
with the development of generic testers...common across the services ...then we
deserve the "forced marriages" that OSD gives us from time to time when we cannot
agree on courses of action.

The electronic warfare category of embedded computer systems is an extremely
v'n-t' 1 n -- . T 5:1icvc Wc have arrived at the point where, unless we can

effectively perform the post development software support mission for electronic
warfare systems, we will be at an extreme disadvantage in a combat environment.
In this category, probably more so than the othei, the intelligence community, the
software support community, and the man in the cockpit must work together to
assure mission accomplishment. If we are not careful, the bureaucrats will
institutionalize a business as usual effort in the arena that insures we do not
react in a timely manner. This area, more than any other, needs innovative
thinking.., amongst the services... to insure we can incorporate changes to threat
changes.

The last of our five categories is the training device category. We are heavily

reliant on automated training devices for training our aircrews, i.e., our
sophisticated flight simulator, and for training our maintenance people, i.e.,
maintenance trainers, a couple of the unique problems that have to be addressed in
this category and we haven't done a good job here: how you maintain a high degree
of similarity between the prime systems and the training device? And how do you
maintain control (or do you maintain control) of the consLantly changing
configuration of the general purpose computer systems that dominate these training
device systems? Some of our trainers are so far behind, the training is worse
than none at all...because it does not reflect what really happens in the system.

Basically, the post development software support capability for each of our five
categories can be stated in two common terms. First of all, the post development
software support capability must be able to fix bugs and/or correct design
deficiencies. Secondly, it must be able to perform design enhancements (req -
design - code - test). There are problems common across all categories but there

are also some problems that are unique to each category. Some of the common
problems include some of the issues that this group addressed at Monterery I and
II. For example, appropriate design considerations, use of standards, and

adequate documentation.

3-9

I understand in your previous two sessions, Monterey I and Monterey II, that you
concentrated on acquisition of weapon systems computer resources--that you
developed an acquisition policy which will be implemented through joint service
regulation and associated standards. I'm not convinced this group really believes
in standards. Do we all believe in 1750? In 1553? Or any number of standards in
existence for years? If so, why do we have weapon systems coming off the drawing
boards with waiver after waiver...each to require a unique set of talent and
equipment to maintain. Without standards, it will be impossible to ensure that
appropriate post development software support capabilities are acquired and
installed in sufficient time to meet the most demanding weapon system
requirements.

I am well aware that to accomplish acquisition of critical post development
software support capabilities, a thorough understanding of unique software support
requirements is essential. This is where you folks come in--in your deliberations
here in Orlando, I would expect that you will lay the foundation for the
"logistics support" for future embedded software.

For those of us in the Dcpa:tme.,t of Defense, if our 4-star bosses were here, I
believe they would urge us and our industry counterparts to proceed in the same
spirit of the first two sessions. That spirit being one of trying as best we can
to ignore individual service parochialism and internal servize command
parochialism and the tendency to think our way is the best way.

I'm convinced that we face common problems and we can capitalize on each other's
knowledge in this forum and this country will come out ahead. We don't have the
time or the resources to continue to go it alone while giving the appearance of
cooperation.

The structure of your panels indicates to me that you know some of the key issues
and problems that have to be addressed if we are to provide the kind of post
development software support that our operational forces deserve.

For those of you working on the Configuration Management Panel, you should
remember that it hasn't been that many years ago that we didn't know how to manage
software. I would hope in your deliberations on configuration management for post
development software support that you would take a fresh look at the four
functions of configuration management. Look at how we, the services, and our
industry suppliers, can most effectively accomplish the configuration management
job.

Configuration identification, control, status accounting, and audit are the
configuration management jobs that have to be done (in spite of the engineers) to
ensure a successful program. Configuration management maintains interoperability,
provides a smooth transition from developer to supporter, guarantees the ability
to upgrade systems, and avoids high support costs of lost configurations. Your
effort in this area is to consider technologies and tools which will facilitate
these four tasks.

In your working on the Software Support Environment Panel in some respects, you,
more than the other panels, are more closely tied to the acquisition initiatives
covered at Monterey I and II and other acquisition related initiatives that have
begun in the last 2 years. You will have to factor into your deliberations the
decisions related to Ada. The Ada decision is a common thread that has now woven

3-10

all the DOD together. In some areas, it has become practical for the svrvices to
pursue standardization in different directions. However, this common thread we now
have may allow you to address the software support environment in a new light.
For example, some quote--economics of scale--unquote similar to ones used in the
hardware support may be appropriate in the Ada software support environment.
Remember we should maintain our uniqueness if dictated by our operational
requirements, but we should also pool our resources and rely on one another where
it makes sense.

The Change Implementation Panel has some real challenges that need to be tackled
at this conference. When I spoke earlier about the electronic warfare category, I
commented on the EW's need for rapid changes in direct support of operations. I
have also briefly talked about the need for configuration management. I see the
requirement for rapid changes spreading into areas other than electronic warfare.
It is a fine line that has to be walked between this rapid change requirement and
the configuration management tasks. I believe that if we can design our systems
for rapid changes and properly structure our configuration management schemes, we
can do both jobs faster and better. The change implementation panel must keep in
mind that for operational readiness, change turnaround is the key to successful
mission accomplishment, and that configuration management is the chain that keeps
that key from being lost.

In the Cost of Ownership Panel, you really have your job cut out for you because
we don't really know how to estimate in this area. Remember to put cost in its
proper perspective. In order to make decisions on where, by whom, and on what
post development software support should be made, managers need to get a handle
on what our current costs are and on what the future cost of ownership will be. T
believe your discussions will probably lead you into areas such as interservice

support and contractor or organic support. You should also discuss the factors
and tools related to cost accounting: applying them to software support and how
much software support really costs us. The cost of ownership panel should
consider cost as a variable in post development software support, not as the
solution. I want you to remember that the most cost effective capability does us
no good if it doesn't do the job. Similarly, if we have to open the door to Fort
Knox, that's not a viable solution either.

The Industry Government Workforce Mix Panel has the unenviable job of addressing
the people problem. You need to consider how we allocate the scarce resource of
software engineering talent within the government. We in DOD have to acquire and
maintain the proper staffing to do the post development software support job. We
have to consider the competition (especially from video games) and our ability to
recruit and retain the required talent to do the job. The government and
government related industries have a challenge acquiring and retaining the
software engineers-and let's not kid ourselves, this gets tougher every day. We
should make it our goal and the challenge to the industry government workforce mix
panel to discuss and recommend an environment where we can not only make the most
of this scarce talent, but also, make the career of scftware engineering in DOD
and DOD related industry both desirable and gratifying. Have we gotten so many
little pockets of experts in the major commands doing their thing?

Those of you on the Independent Verification and Validation (IV&V) Panel will be
discussing a fairly well-proven acquisition concept. IV&V by support personnel
has worked well on several DOD acquisitions. For post development software
support, the question is, "Who does the IV&V if the support personnel are doing

3-11

the changes." We should consider the organizational independence and other
factors normally assocLated with IV&V activities. Questions that need to be
answered include: Should one service perform IV&V of hardware and another service
review software changes? Should separate organizations within the service perform
the IV&V functions? And how does the service or organization performing IV&V get
funded for their efforts? We should also consider maintaining consistent sets of
definitions about why we do IV&V during acquisition and why we need it in post
development software support environment. The IV&V panel should keep in mind that
although IV&V is being used on several systems today, the administration and
implementation of the IV&V processes are still in their infancy. Guidelines are
in existence for the application of IV&V, but the details to implement thnse
guidelines need to be worked out and should be the goal of the IV&V by support
personnel panel.

The six panels established here at Orlando I have some unique post development

challenges that must be addressed. Many of the challenges have common threads
from panel to panel. No one panel will be able to operate in a vacuum, so

communication among panels is essential. We need your best efforts operating as
individual panels but always keeping in mind that each panel is a part of the
total conference. I'm confident your efforts will give us the edge we will need
in the post development software support environment.

Let me leave you with a conversation I overheard at a party...of engineers--all
kinds.. .and a software engineer was berating an architectural Pngineer about the
cost of housing--and how they have let the costs get out of hand.. .very pompously
the software engineer related how it the housing industry had improved or the cost
of storing a bit of memory on software the house would cost less than 10.00 today.
After thinking about that for a while the AE replied that if they designed houses
like software engineers designed systems--one wookpecker could destroy
civilization.

Thank you very much for asking me to speak and for your attention.

3-12

4*WORKEHOF PANELS

'4-i

ORLANDO I

FINAL REPORT

PANEL A

INDUSTRY/GOVERNMENT WORKFORCE MIX

Co-Chairman: Frank J. Sisti, Lt Col
HQ DA (DAMO-C4L) Pentagon
Washington, DC 20380
(202) 697-4539
A/V 227-4539

Co-Chairman: Mr. R. Dean Hartwick
Logicon, Inc.
255 West 5th St.
San Pedro, CA 90731
(213) 831-0611

4-1-i

TABLE OF CONTENTS
Page

4.1 Panel A - Industry/Government Workforce Mix --
4.1.1 Objective . 4-1-1
4.1.2 Scope 4-1-1
4.1.3 Approach 4-1-1
4.1.4 Discussion 4-1-a

4.1.4.1 PUSS Background 4-1-4
4.1.4.2 Definition of PDSS 4-1-5
4,1.4.3 Description of PDSS Environment 4-1-7
4.1.4.4 WorKforce Utilization Assessment. 4-1-8
4.1.4.5 Taxonomy of Mission Critical Computer Resources . 4-1-9
4.1.4.6 Software Support Activity Drivers 4-1-10
4.1.4.7 Conclusions 4-1-12

4.1.5 Recommendations 4-1-16

Appendix A - Panel A Participants 4-1-A-1
Appendix B - Bibliography 4-1-B-i
Appendix C - Letter to Panel A Participants4-1-C-I
Appendix D - Panel A Briefings 4-1-D-i
Appendix E - Workforce Attribute Analysis 4--E-i
Appendix F - Taxonomy of Mission Critical Resource Software 4-I-F-i
Appendix G - Attributes Driving Workforce Selection 4-1-G-1

4-1-ii

LIST OF FIGURES

Page

4.1-1 Interrelationship of Government/Industry Parameters 4-1-3

LIST OF TABLES

4.1-1 PDSS Transition Points 4-1-6
4.1-2 PDSS Driver Attributes 4-1-6
4.1-3 ASPJ Model Analysis 4-1-13
4.1-4 B-52 Weapon System Trainer Model Analysis 4-1-14
4.1-5 AN/TSQ-73 Model Analysis 4-1-15

4-1-iii

4.1 PANEL A - INDUSTRY/GOVERNMENT WORKFORCE MIX

4.1.1 Objective

For the Joint Logistics Commanders Joint Policy Coordinating Group (JLC-JPCG)
on Computer Resource Management, develop recommendations on the policy that
should be followed to cost-effectively staff software support agencies using a
mix of government and industry personnel.

4.1.2 Scope

Currently each service has taken its own approach to determining personnel
mixes for post-deployment software support agencies. Although many of these
approaches use arbitrary percentages as guidelines, there do not seem to be
any widely accepted criteria for arriving at the appropriate mix. The appli-
cation of criteria which have a substantial technical basis will aid the soft-
ware support activity and improve the utility of automated data processing for
mission-critical computer resources.

4.1.3 Apjroach

The panel consisted of the 22 members named in Appendix A and Dan Kvenvold of
the Computer Software Management subgroup. The panel had been informed of
panel issues by a letter from the co-chairmen, and members had been requested
to prepare position papers on aspects of the charter issue (Appendix C).
Twenty position papers were prepared and used by the panel. Following the
workshop opening session, the panel convened and discussed organization,
schedule, and the panel charter.

The following day, the panel heard presentations from the different services
during which the post-deployment software support (PUSS) environments were
discussed for mission-critical computer resource applications. These presen-
tations emphasized factors that currently drive the services' allocation of
personnel. The panel then divided its broader issue into the following ques-
tions:

1. What is the definition of PUSS?

2. What are problems in the PDSS environment that arise from cur-
rent funding/procurement practices?

3. What are the qualitative distinctions between classes of per-
sonnel who support PDSS?

4. What is the taxonomy of DOD systems, and how do different taxo-
nomic elements impact personnel assigment?

5. What are the attributes of PDSS that drive the selection of
personnel?

4-1-1

The panel conceived tie selection of government /industry worKforce mix to
be an application of a model represented by the tnree-aimensional Jrawing in

Figure 4.1-1. For each system being considered, elements within the three-
dimensional space must be analyzed against the attrinutes along eacn dimension
(as the attributes are either generally true or not true for that specific
application/environment). From a consideration of this information, a trade
can be conducted to select the optimal workforce composition. The analysis of
these three axes in effect constitutes answers to questions 3, 4, and 5.

Ihree subDaneis were convened to analyze tnese questions. Eacn panel selecteo
a chairman ano a scrioe. These s ADpariels and tne questions they considered
were:

POSS Definition, Procurement Practices, Personnel

uesti ons , 2, 3 Mark Levin, Chair
Frank Moss, Scribe
Pete Beck
Dave Daniel
jan Grimes
cohn LaVeccnia
Larry Lindley
jim Steenwerth

TaKonomy of DOD Software

Questions ?, 4 Dan Kvenvold, Chair
Steve HudaK, Scribe
Jonn Benson
Ihor Hapij
Karl Ipson
Lou NaglaK

PDSS Attributes

uestion D wes Babcock, Chair
Ed Kutchma, Scribe
Don Crocker
Ray Day
Roy Oldhan
Bill Paine
Dick Rubrecht

Thiese ,ubpanels researuhed tle issues and prepared the discussion, conclusions,
and recommendations that follow. Summary interim reports of panel results
were presented to the entire workshop using the briefing materials containea
in Appendix D. Reference material used by the panel is contained in Appenoix

4-1-2

Personnel

Technical POSS D'ivers

User

ADPJicaiion l te

IDSSse aoo mplemenwaicin Civilian Classes of Personnel
POSS yste TaxnomyMilitary

Figure 4.1-1. Interrelationship of Government/Industry Parameters

4-1-3

4.1.4 Discussion

4.1.4.1 PDSS Background

The entire system life cycle must be accountea for throughout all phases of
the developmental process of a weapon system. Life cycle information must
be prepared just after the conceptual stage commences. Usually the office
which prepares such system information is that of the program/project manager.
In a generic sense each service approaches this requirement in a similar fash-
ion. The "plan" of action to accomplish the mission of developing/producing/
fielding/ maintaining a system includes, if appropriate, a segment/plan on how
the computer resources of the system will be acquired and managed. Each serv-
ice has a regulation that purports to describe this plan. A new DID is being
developed to prepare a common pan for all services in conjunction with MIL-STD-
SDS. This plan is the Computer Resources Life Cycle Management Pldn (CRLCMP).
(The CRLCMP is the new MIL-STD-SDS term, and currently has counterparts in the
Army's CRMP, the Navy's SLCMP, and the Air Force's CRISP.) The CRLCMP speci-
fies the elements for both software development and PDSS of the system. It
reflects all schedules, source allocations, organizational interactions, and
activity responsibilities associated with the project's life cycle.

What is apparent from a review of service management procedures is that there
exist various regulatory mechanisms to accomplish the creation of a computer
resource document. However, all services have problems in doing this work
well:

0 Generally the dociment simply does not cover all the informa-
tion it should.

0 The document either is not required early enough in a system's
life cycle so as to impact on the resourcing of the system or
is generated early and never updated.

o The regulations which require computer resource documentation
do not provide for sufficient discipline in the management
process to ensure that the document is submitted as required.

0 The potential document users do not understand that such an
early (in the system life cycle) management document must be
a true living document, and hence do not plan for its being
updated.

To properly plan a workforce mix that is attainable and achieves all goals for
a given support system, the computer resource document must be on hand and
must be used. Such a document, even as it evolves from one life cycle phase
to another, must exist and must have widespread distribution among impacted
activities/agencies. Coordinated and approved modifications to that document
must, therefore, receive equal visibility and distribution.

4-1-4

The current DIDs that provide for PDSS are associated with CRLCMP, CRMP, SLMPC,
or CRISP. There seems to be no modification of these DIDs that is required to
organize and manage the PDSS. However, the panel unanimously concluded that
these documents, if generated or developed, are thereafter either ignored or
never updated as a program progresses. The result is that the PDSS tends
never to be properly considered or planned at the time of system deployment.

Conclusion 1: The PDSS enabling documents (CRLCMP, CRMP, SLCMP,
CRISP) should be properly filled out, with adequate consideration
of the PDSS needs, and maintained throughout system acquisition.

What is the nature of PDSS? PDSS is a set of interrelated activities, prod-
ucts, and plans which differ from other life cycle activities, products, and
plans because they focus on ensuring that software continues to satisfy its
initial requirements after fielding. Proper support is essential to accom-
plish continuing satisfactory functional performance, continuing system reli-
ability, and continuing supportability. This means that the error detection
and correction process must be handled properly (not patches, but configura-
tion-managed changes with compile and run). It also means that modification,
for whatever reason (mission upgrade or enhancements), must not diminish the
system integrity.

The word "deployment" in the term PUSS is of special concern because deploy-
ment marks the time at which software management responsibility is supposed to
shift in most services. This time of responsibility shift is a function of
system delivery, development completion, and other considerations. PDSS is
not an activity that begins at a single point in time; but rather it is a col-
lection of activities, each of which may begin at a point in time or which may
be phased in over a period of time. While pre- and post-deployment technical
activities are essentially the same, the management of these activities is
different. Table 4.1-1 illustrates the gradual nature of the transition from
pre- to post-deployment.

4.1.4.2 Definition of PDSS

As the government identifies the need for and procures an ever-increasing num-
ber of mission-critical computer systems, post-deployment software support
must have a high priority in original planning. This is crucial if weapon
systems which perform as intended are to be deployed. The panel concluded
that a precise definition of PDSS was necessary to form the basis of a con-
sistent policy on government/industry workforce mix, and it developed the
following:

Conclusion 2: Post-deployment software support is the sum of all
activities required to ensure that, during the production/deploy-
ment phase of a mission-critical computer system's life, the imple-
mented and fielded software/system continues to support its original
operational mission and subsequent mission modifications and prod-
uct improvement efforts.

4-1-5

Table 4.1-1. PDSS Transition Points

Factor Pre-Deployment Milestone Post-Deployment

Customer Variable Deployment User

CM Developer Product baseline Government

Money R&D Prod. decision or R&D/prod.
deployment R&D/prod./O&A

Proj mgt Acquisition Transition Support
agency

T&E Agency DT&E Variable OT&E

Training Developer Variable Government/
support

4-1-6

The term "software maintenance" was considerea to be inadequate to conve'

true nature of software support. Maintenance consists primarily of the acti -
ities and methods of restoring something that is broken to its originai
"unbroken" form. It is a term, derived from hardware, that conveys an erron-
eous picture of the true nature and complexities of software support. Soft-

ware support is directed both at software redesign to correct softvae ,r.

and at software design to enhance current features or to add totally nt f nc-

tions. "Software maintenance" simply does not convey either of '. se f~nctions
properly and therefore should not be applied to PDSS.

4.1.4.3 Description of PDSS Funding Difficulties

A problem of how PDSS is funded occurs commonly across the services. P6SS
funding is almost always fragmented, making it difficult to manage proper'y.
For example, Air Force system acquisition and IDSS are nuageted and fundea

through separate channels and processes (AFSC and AFLC). Even after prcgra i
transfer, hardware and software are budgeted, funded, and prioritized by sepa-
rate processes (BP 12, modification program and EEIC 583, engineering), M.3 -
tiple budgeting and fundin3 procedures exist for the same item, as opposed to

separate budget and fund codes for separate but related items. Multiple pro-
cedures and fund codes can oe used to acquire hardware, such as BP 8400, PRfk
program, Project LIFT, capitalization of industrially funded operations, the
Air Force Equipment Management System, and certain hardware and software sup-

ply fund codes. This creates cnnfisjion a4 to the proper acquisition process,
clouds actual cost tracking, and requires careful coordination of one-year
software money with three-year nardware money for the system modification. in
some instances the PDSS responsibility is subdivided to both depotand field-
level activities. This presents funding difficulties when planning to change
the support base from organic to contract support. The problem is one of oeing

unable to define the dividing line between depot and field responsibilities,
and consequently the total funding and subsequent contracting responsibility
default to the depot.

The Navy has similar problems in that a large portion of development and func-
tional enhancement to a weapon system is done using Operational Maintenance,
Navy (OMN) funds and Advance Procurement, Navy (APN) funds. If some funds are
marked for multiple years and others must be obligated or outlaid witnin one
year, contracting for PDSS tasks must be partitioned to accommodate tnis fund-
ing cycle. Task coordination and schedule interfaces become difficult, and

delay or cost growth results. The proper allocation of dollars to functiunal

tasks would improve the contracting posture and scneaules of the PDSS function.

Conclusion 3: Streamlined policies and procedures are -eeeo for
budgeting and funding the development, acquisition, and support of
mission-critical computer resources are neeUed. These snould pro-
vide common budgeting and funding procedures among the services fur

presentation to the President and Congress, identification of appro-
priations, budget programs, program elements and specific fund
codes to weapon systems, a single prioritization process, and sim-
plification of procedures.

- t - 7

4.1.4.4 Workforce Utilization Assessment

The workforce elements used to perform PDSS are:

o Government military personnel

o Government civilian personnel

o Original industrial software developer

o Support services contractors that provide specific categories
of personnel to perform engineering and technical services
within the scope of a statement of work or under a level-of-
effort or delivery order/tasking type of contract

o Independent support contractor (independent of the original
developer) that may be contracted with to provide total support
of the software after deployment

The various permutations and combinations of industry/government workforce
mixes can be summarized in three "most likely" PDSS organizations. There are,
of course, many exceptions, including other non-US PDSS. The three that ap-
pear most viable are organic support, developer support, and independent sup-
port contractor (ISC) support. For organic support, PDSS is assigned to an
organic activity within one of the military departments. The organic support
activity reports to a ystem project manager and employs an optimum mixture of
military, civil service, developer contract support, and/or support services
contractors to accomplish the PDSS mission under the direction of the organic
support activity. For developer (only) support, PDSS is contracted to the
original developer for total PDSS support. The developer is contracted with
by the system project manager, who directs the developer's PDSS efforts. In
the final alternative, PDSS is contracted to an independent support contractor
for total PDSS support. The ISC is contracted with by Lhe system project man-
ager, who directs the ISC's PDSS efforts. In all cases, regardless of which
strategy is selected, the government must retain technical and managerial con-
trol of the PDSS.

Each of the classes of personnel was analyzed by the panel to determine how
the mix impacts personnel attributes. The following attributes were used:

A. Cost E. Training I. Control
B. Stability F. Experience J. Security
C. Flexibility G. Availability K. Deployability
D. Relevant Knowledge H. Continuity

To ultimately select the optimum PDSS workforce, many considerations should
be addressed, each of which may favor a particular workforce option. An
analysis was conducted for each of the above attributes. The results are
given in Appendix E.

4-1-8

Conclusion 4: All system programs should analyze the specific
system/mission requirements in the light of taxonomic and workforce
option considerations. The analysis should identify the minimum
set of management and technical functions which must be reserved
to the government to assure PDSS control, to include:

- Project Management
- Findncial Management
- Contract Management
- Technical Direction
- Acceptance/Rejection of Product
- Configuration Management
- Design Control Review and Approval

The output should be documented in the appropriate software life
cycle management plan (e.g., CRLCMP) and reviewed and updated
throughout the system life cycle.

4.1.4.5 Taxonomy of Mission-Critical Computer Resources

A strawman description of mission-critical ;oftware taxonomy was developed by
the panel. It follows the six categories of software applications included
under mission-critical system as prescribed in DoD Directive 5000.29 and the
Warner Amendment.

The taxonomy hierarchy, structured into three levels to provide visibility to
specific design applications that may require a particular support approach,
is described in Appendix F. The Level I (general) category (i.e., weapon
systems, intelligence systems, crypto and national security, command and con-
trol, direct support, and logistics) is further expanded to define the generic
kinds of systems and software developed by the services within these cate-
gories. The Level 2 indenture describes the basic categorization of software
according to its purpose (i.e., application, diagnostic, control, system-
specific support, and vendor supplied). Level 3 identifies the implementation
process by either software or firmware.

The initial planning phase for PDSS must consider the application categories
in conjunction with the "attributes" to arrive at an efficient and cost-
effective military, government-civilian, industry workforce mix. In general,
pure taxonomy does not imply a specific workforce mix, with exceptions at
Level I and with the general exception that any system that could require
changes under combat conditions (e.g., submarines) may require military PDSS
personnel. At Levels 2 and 3, there appears to be no generic reasons why a
specific workforce mix is required, other than the obvious one of vendor
software in Level 2.

The following system design trends will impact future mission/system tech-
niques and methods. Their impact should be considered and planned in the
design of PUSS concepts, facilities, and techniques.

4-1-9

o Integrated and interoperable systems used for large data acqul-
sition and fused information systems will require a wore cen-
tralized PDSS for the integrated system. rather than support of
individual subsystem software.

0 Standardized languages, software design tools, environments,
and test tools will allow a generic POSS to be used for several
similar systems, resulting in utilization of common facilities
and resources.

o Commonality of software modules and software subsystems, re-
sulting in reusable/validated software, will require an inter-
section ano interface of the common module PDSS and eacn syste ii

o Introduction of personal computers for use in the field, 4itn
users constructing their own software, will create an uncon-
trolled support problem. Configuration control must oe ad-
dressed by some manner at system PDSS. Software snould be
properly documented and reviewed relative to its usage and
limitations.

0 Artificial intelligence (AI)/expert systems will impact syste;;
design and result in crew function replacement oy more inte-
grated and interoperable software. This will in turn require
more integrated and realistic approaches to software support,
particularly the associated data interfaces and configurations.
AI technology will also impact the automation of PDSS functicr>
and facilities and should be planned for in a structureo, auto-
mated life cycle environment.

4.1.4.6 Software Support Activity Drivers

The attributes that drive the selection of PDSS personnel were categorized
into tne following groups:

o User Oriented
o Logistics Oriented
o Technically Oriented
o Personnel and Resources Oriented
o Administrative/Politically Oriented

For each group, subattributes were identified and a.ialyzed for their impact on
tne workforce mix. The analysis of these subattributes is contained in Ap-
pendix G. The suDattributes themselves are summarizea in Table 4 1-2. It ws
felt tiat the driver attributes are a complete list. in application, some ot
tnem overlap, but this was not considered a problem for present purposes.

I- -

Table 4.1-2. PDSS Driver Attributes

User Logistics

1-1. Wartime Support L-l. Number of Unique Users

J-2. Geographic Location L-2. Deployment
U-3. Embedded Doctrine/Tactics L-3. Length of Life Cycle

U-4. Responsiveness L.-4. Ancillary Requirements

U-s. interoperability
U-6. Field Support Personnel and Resources

U-7. Training PDSS Personnel
U-8. Criticality of System P-I. Special Facilities
U-9. Implementation Media P-2. Personnel Turnover

U-10. Change Process P-3. Availability of Qualified Personne

Technical Administrative/Political

T-l. S/W Configuration Management A-I. Funding

T-2. S/W Quality Assurance A-2. Directed Procurement

T-3. S/W Test Bed A-3. Competitive Procurement

T-4. Programming Languages A-4. Personnel Ceilings

T-5. Proprietary Software A-5. Traditional Roles & Missions

T-6. Adequacy of Documentaton A-6. international Support

T-7. System Complexity A-7. Security
T-8. Software Engineering A-8. Acquisition Management
T-9. Software Maturity A-9. ContinuLiLy of Operations
-lu. Technical RisK A-l. Commoniality of Applications

T-11. Built-in Test A-ll. Use of IV&V
T-12. Adaptability

4-1-11

4.1.4.7 Conclusions

The combined panel met to consider the usefulness of the above-described three-
part analysis. It was decided to try a trial case on the model by selecting
very different examples of the system taxonomy and seeing how applicable the
attributes of support personnel and PDSS drivers would be. Three systems were
selected:

o Automatic Self Protective Jammer (ASPJ): A battlefield envi-
ronment, operational system that is now being developed as a
joint USN/USAF program.

o USA Missileminder (AN/TSQ-73): A command and control system
that has been operational and undergoing POSS for several
years. It employs a special-purpose computer and assembly
language. Battlefield support is required (the special-purpose
computer and language result in only a very small population of
knowledgeable software people to do PDSS).

0 B-52 Weapon System Trainer: A support system being developed
by the USAF using general-purpose computers and a common HOL.

Each of these three systems was evaluated using a metric of "+" to indicate
that a particular class of personnel is either mandatory or highly desirable
to satisfy the POSS driver in question, and a metric of "-" to indicate that a
particular class of personnel is either prohibited or is very undesirable to
satisfy the PDSS driver. Where neither strong metric is applicable, the rat-
ing was left blank, indicating that this particular driver could be satisfied
by any class of personnel. Tables 4.1-3, 4.1-4, and 4.1-5 summarize the panel
findings for the three test cases. Several conclusions may be obtained from the
three tables. First, an overwhelming number of attributes have no strong
metric ("+" or "-") for the three projects. With a few exceptions, this indi-
cates there is no a priori attribute that drives the assignment of a workforce.
Second, a few attributes tend always to have the same result. For example,
those attributes reflecting control (e.g., T-1, configuration management)
would appear always to require either military or government civilian partici-
pation, independent of system taxonomy. Third, the less mature and more com-
plex the system, the more participation is required by the original developer.
Fourth, industrial participation by other than the original developer is driven
only by either the need for additional staff (where military/civil service
cannot be supplied) or by the need for lower cost (either original developer
or civil service). From these observations, the following conclusions are
drawn.

Conclusion 5: A low-level military presence is required to provide
continuity and user influence and to govern embedded doctrine.

Conclusion 6: Government civilian personnel are required to pro-
vide technical capability as necessary to maintain government con-
trol and to provide an enduring corporate memory.

4-1-12

Table 4.1-3. ASPJ Model Analysis

Key: + Mandatory or nignly desirable
- Prohibited or very undesirable

ass SuoDDo'

,O VtQ nal I Su " z rt
Military Ivli~an Develooer I ntr aCtO-

S-[. eoqraon)ic ocatio
_-3. Embedded Doctrie/Tactics +

*-4. Responsiveness
-. Interoperability
-. Field Support

Training PDSS Personnel
U-8. Criticality of System
j-9. Inplementation Media
U- O. Change Process

Logistics Drivers
-!. Unique User
_-2. Deployment
L-3. Life Cycle Length
L-4. Ancillary Requirements

Tecnnical Drivers
;-I. S/W Configuration Mgmt
T-2. S/W Quality Assurance
-3. S/W Test Bed

T-4. Programming Languages
T-. Proprietary Software

T-6. Documentation Adequacy
-7. System Complexity +

T-8. Software Engineering +

T-9. Software Maturity +

T-10. Technical Risk +

'-11. Built-in Test
T-12. Adaptability + +

Personnel Drivers
P-I. Special Facilities +

P-2. Personnel Turnover +

P-3. Qualified Personnel
Available

Administrative/Political
A-1. Funding +
A-2. Directed Procurement

A-3. Competitive Procurement
A-4. Personnel Ceilings +

A-5. Traditional Roles/Missions + +
A-b. International Support

A-7. Security + + +
A-8. Acquisition Momt
A-9. Operations Continuity + + +

A-10. Applications Commonality + +

*-II. Use of IV&V

4-1-13

Table 4.1-4. B-52 Weapon System Trainer Model Analysis

Key: Mandatory or nignly desirable
- Pronibited or very undesirable

Class of Support
Dr ivers

Govt Original Supoort
Military Civilian Develope- Contricto'

JStr Drivers
j-1. 4artime Support
U-2. Geograpnic Location
L-3. Embedded Doct'ine/Tactics
u-4. Responsiveness +

-. teroperabiilty
U-6. Field Support
U-7. Training PDSS Personnel
J-3. Criticality of System
J-J. Implementation Media
U-lO. Change Process

-ogisti:s Drivers
L-1. Unique User
L-?. Deployment
.-3. Life Cycle Lengtn

L-4. Ancillary Requirements

Tecnnical Drive-s
T-1. S/W Configuration Mgmt
T-2. S/W Quality Assurance
'-3. S/w Test Bed
T-4. Programiing Languages

--D. Proprietary Software
T-6. Documentation Adequacy

'-7. System Complexity
7-8. Software Engineering
7-9. Software Maturity +

T-10. Tecnnical Risk +
T-11. Built-in Test
T-12. Adaptability + 4

Personnel Drivers
O-l. Special Facilities
P-2. Personnel Turnover
0-3. Qualified Personnel

Available

Administrative/Political
A-l. Funding +
A-2. Directed Procurement
A-3. Competitive Procurement +

A-4. Personnel Ceilings

A-5. Traditional Roles/Missions +
A-6. International Support
A-,. Security +
A-8. Acquisition Mgmt
A-9. Operations Continuity + +
A-10. Applications Commonality

A-11. Use of IV&V

4-1-14

- Table 4.1-5. AN/TSQ-73 Model Analysis

Key: Mandatory Or nighly desirable
- Prohbited or very undesirable

Class of Support
Drivers

Govt Original Support
Military Civilian Developer Contractor

User Drivers
J-.. Wartime Support

U-2. Geographic Location
U-3. Embedded Doctrine/Tdctics +
U-4. Responsiveness

U-5. Interoperability
U-6. Field Support
U-7. Training PDSS Personnel
U-8. Criticality of System
U-9. Implementation media
U-ID. Change Process 4

Logistics Drivers

L-1. Unique User
L-2. Deployment

L-3. Life Cycle Length
L-4. Ancillary Requirements

Technical Drivers

T-1. S/W Configuration Mqmt

T-2. S/W Quality Assurance
T-3. S/W Test Bed +
T-4. Programming Languaqes + +
T-5. Proprietary Software
T-6. Documentation Adequacy
T-7. System Complexity
T-8. Software Engineering
T-9. Software Maturity
T-10. Tecnnical Risk
T-I. Built-in Test

T-12. AdaPtability

Personnel Drivers

P-i. Special Facilities
P-2. Personnel Turnover
P-3. Qualified Personnel + +

Available

Administrative/Political

A-1. Funding
A-2. Directed Procurement +

A-3. Competitive Procurement
A-4. Personnel Ceilings
A-5. Traditional Roles/Missions
A-6. International Support
A-7. Security

A-8. Acquisition Mgmt
A-9. Operations Continuity
A-ID. Aoplications Coemmonality
A-Il. Use of IV&V

4-1-15

Conclusion 7: The original developer's participation is always
required at fairly high levels on complex and immature software,
and then dwindles as the software matures.

Conclusion 8: Support contractors provide services to obtain adai-
tional technical services not available through the government ano
to lower the cost of PDSS.

It is noted that the panel's determination of how government/industry personnel
should be allocated does not markedly differ from the way the allocation is
now generally made by the services. Certiin minimum requirements exist that
generally require on the order of 20% of the PUSS staff to be government and a
number of staff to be supplied by the original developer (this number decreases
as the software matures). The majority of the PDSS staff (approximately 80%)
are then assigned from either civil service or industry based upon the particu-
lar needs/availability/funding or political outlook of the manager.

4.1.5 Recommendations

Recommendation 1: The JLC should enable procedures that ensure
that the PDSS provisions in the new CRLCMP or its existing counter-
parts (US Army-CRMP, US Navy-SLCMP, and US Air Force-CRISP) are
complied with at the outset of all software acquisitions, and en-
sure that the PDSS provisions are upgraded throughout program ac-
quisition. This plan should be included at all service and DOD
program reviews, including system acquisition review councils
(e.g., DSARCs). (Refer to Conclusion 1.)

Recommendation 2: The JLC should streamline policies and procedures
for budgeting and funding the development, acquisition, and support
of mission-critical computer resources. (Refer to Conclusion 3.)

4-1-16

APPENDIX A
PANEL A PARTICIPANTS

4-1-A-I

PANEL A - INDUSTRY/GOVERNMENT WORKFORCE MIX

CO-CHAIRMAN: Sisti, LTC F. (Frank) USA (202) 697-4539
HQ DA (DAMO-C4L) Pentagon A/V 227-4539
Washington, DC 20380

CO-CHAIRMAN: Hartwick, Mr. R. D. (Dean) (213) 831-0611
Logicon, Inc.
255 West 5th St.
San Pedro, CA 90731

MEMBERS: Ipson, Mr. K. (Karl) (201) 532-5830
USA CECOM A/V 992-5830
DRSEL-SDSC-OD, Bldg. 1210
Ft. Monmouth, NJ 07703

Beck, Mr. P. (Pete) (201) 724-4472
AMCCOM/DRSMC-TSB(D) A/V 880-4472
Dover, NJ 07801

Hapij, Dr. I. (Ihor) (201) 544-4741
USA ERADCOM (DELSD-SSC) A/V 995-4741
Ft. Monmouth, NJ 07703

Kutchma, Dr. E. (Ed) (619) 939-5230
Naval Weapons Center (Code 05) A/V 437-5230
China Lake, CA 93555

Lindley, Dr. L. M. (Larry) (317) 353-3979
Naval Avionics Center (Cuae D/072.2) A/V 724-3979
Indianapolis, IN 46218

Naglak, Mr. L. (Lou) (215) 441-2314
Naval Air Development Center (50) A/V 441-2314
Warminster, PA 18974

Steenwerth, Mr. J. K. (Jim) (619) 725-2607/2585
Marine Corps Tactical Systems A/V 993-2607/2585
Support Activity
Camp Pendleton, CA 92055

LaVecchia, Mr. J. (John) (912) 926-4611
WP-ALC/MMRR
Robins AFB, GA 31098

Babcock, Mr. W. (Wes) (916) 643-4056
SM-ALC/MMC
McClellan AFB, CA 95652

A-2

Hudak, 1Mr. S. (Steve) t513) 256-7491
ASD/YWL A/V 785-7491
Wright-Patterson AFB, OH 45433

Levin, Dr. M. (Mark) (904) 882-8505
AD/ENE A/V 872-8505
Eglin AFB, FL 32542

Crocker, Mr. D. (Don) (205) 532-1416
Teledyne Brown Engineering
Cummings Research Park
Huntsville, AL 35807

Day, Mr. R. (Ray)
Intercon Systems
9400 Viscount, Suite 115
El Paso, TX 79925

Moss, Mr. F. (Frank) (805) 987-8831
Advanced Technology Inc.
1000 Paseo Camarillo, Suite 215
Camarillo, CA 93010

Benson, Mr. J. L. (John) (817) 280-3856
Chief of Airborne Software
Bell Helicopter, TEXTRON Inc.
P.O. Box 482, Dept. 81, M/S-6
Ft. Worth, TX 76101

Oldhan, Mr. R. (Roy) (912) 929-1876
TRW
708 Elberta Rd.
Robins, GA 31093

Grimes, Mr. D. (Dan) (703) 281-2000
ADR Services Inc.
800 Follin Lane
Vienna, VA 22180

Rubrecht, Mr. R. (Dick) t607) 772-3917
Flight Simulator Division
Singer Company
Binghampton, NY 13902

Paine, Mr. B. (Bill) (213) 354-4284
Jet Propulsion Laboratories
Pasadena, CA 91109

Daniel, Mr. D. (Dave) (305) 646-4491
Naval Training Equipment Center (N-74) A/V 791-4491
Orlando, FL 32813

A-3

APPENDIX B
BIBLIOGRAPHY

Bibliography Items:

1. AFLC Regulation 66-75, Subject: DeDot Maintenance Source -f
Repair Decision Tree Analyses, 2S May 1979.

2. AFLC Regulation 400-26, Subject: Organic Versus Contract
Decisions for Commercial or Industrial Activities, lq December

3. Army Regulation 18-1, Subject: Army Automation Manaqement,
15 August 1980.

4. Army Regulation 70-1, Subject: Army Research and Develoo-
ment, 1 May 1973.

5. Army Regulation 70-17, Subject: Svstem/Proqram/Project/
Product Management, 11 November 1Q76.

6. Army Reaulation 380-380, Subiect: Automated Systems
Security, 14 October 1977.

7. Army Reaulation 1000-1, Subject: Basic Policies for Systems
Acquisition, 1 May 1981.

8. Army Pamphlet 11-25, Subject: Life Cycle qystem Management
Model for Army Systems, 21 May 1Q7s.

9. Briefing Reoort, Subject: DoD Digital Data Processina Studv
- A Ten-Year Forecast, undated.

10. DARCOM Regulation 11-16, Subject: Program/?roiect/Product
Management, 3 April 1979.

11. DARCOM Regulation 70-1A, Subject: Manaaement of Comouter
Resources in Battlefield Automated Systems, 16 July]q7q.

12. DoD Directive Number 5000.1, Subject: Major Systems
Acquisitions, 2Q March 1q82.

13. DoD Directive 5000.39, Sublect: Acquisition and Management
of Integrated Logistic Sunoort for Systems and Equioment,
17 January 1980.

14. Military Standard Defense System Software Develooment,
30 July 19R3, (Draft).

15. National Council of Technical Service Industries Reoort,
Subject: Reliance on the Private Sector by the Federal
Government for Data Processing Services, November 1974.

B-2

16. NAVAIR Instruction 5230.9, Suhlect: Policy and Procedures
for the Establishment and Operation of Naval Air Systems Command
Systems Software Support Activities, 14 June 1q81.

17. OMR Circ,,lAr NMimhpr A-1OQ. -,h 4- M zr + oem

Acauisition, 5 April lqT7.

18. Report of the DOD Joint Service Mask Force on Software
Problems, 30 July 1981.

19. USACSC Guidance for Softwa-2 Development Contractinq,
undat ?d.

20. USACECOM Regulation 70-16, Subject: Policies nn Procedures
for Computer Resource Manaqement (CRM) in Battlefield Autoat-ed
Systems, Auqust 1981.

21. USACSC Technical Bulletin, Subject: Resource Estimatinq
Procedurec f-r qoftware, 16 Auqust !q82.

B-B

APPENDIX C
LETTER TO PANEL A PARTICIPANTS

C-I

DEPARTMENT OF THE ARMY
OFFICE OF THE DEPUTY CHIEF OF STAFF FOR OPERATIONS AND PLANS

WASHINGTON. DC 0310

RL"LY TO
0.A ,o '.! -'- L 2 9 AUG 1983

MEMORANDUM FOR MEMBERS OP THE INDUSTRY/GOVrRNMFNT WORKFORE 'T ly
PANEL OF THE JOINT LOGISTICS COMMANDS (JLC) 5OFT-
WARE SUPPORT CONFERENCE, ORLANDO I, ?l OCTOBFP
lQ8" THROUGH 4 NOVEM9EP IQ8P

SUBJECT: Panel Charter

We welcome you to the Industry/Government Workforce
Mix P - of Crlando I and thank vou for havinu avreed to serve
as a panel member. As you are aware, the workshoo officially
beg~ins at 1:00PM cn Monday, 31 October and continues throuOh th-
week to a final session on Friday morning, 4 November. We will
be the co-chairs of the Industrv/Government Workforce Mix Panel.

Our panel has an ambitious topic for discussion. It is the
gcdl of Orlando I that each panel should develop recommendations
.4biIh w-1, d rv-ntualv be oresented t, the JLC for policy im-le-
mentation. To attain that goal we will have to focus on our
panel charter and prepare positions on the important q'estions
rior tso Crlando I.

We have taken the liberty of asking vou to direct vour
attention to one of several major questions so that you can focus
your thoughts and have a draft position on the question orepared
to present to the panel at our first session on 31 October. This
will mean some research will be in order, and we will need 23
copies of your draft position for the other panel members. Do
not limit yourself only to the question to which you have been
assigned. If vou wish to prepare additional positions feel free
to do so, but aqain bring ?3 copies so we can all review them.

During the course of the week the panel will clarify and
refine the positions which will then be molded into a ccoherent
set of recommendations which will be presented during the
November wrap-up. We have attached a draft of our panel's
charter which includes the basic issues, a r',imher of questions
and assigned position developers. We have tried to team up panel
members on the questions so that the positions start with a broad
base.

C-2

DAMO-C4L 2 9 AbG 1983
SUBJECT: Proposed Charter

Contact between subgroup members prior to Orlando I is highlv
recommended and contact with either or both of your co-chairs is
also recommended. The more we use each other as sounding boards
-prior to Orlando I, the more we will be able to accomplish during
the actual workshop.

Again, please accept out thanks for your participation and
we are eager to hear from you and to work with vu in Orlando.

FRANK SISTI DEAN HARTWICK
LTC, GS LOCTCON Inc.
HQDA, PEN'rAGON 255 W. rth Street

DAMO-C4L San Pedro, CA 07'1
Washington, DC 20710 (2!) 8 1-06!!
(202)6QT-41 'q

AV 227-45'O

C:-3

CHARTER OF PANEL ON
INDUSTRY/GOVERNMENT WORKFORCE MIX

IN
POST DEVELOPMENT SOFTWARE SUPPC71 (PDSS)

FOR
EMBEDDED COMPUTER SOFTWARE

ISSUE: Once embedded computer products are developed and since

the minimum governmental responsibilities include:

o The performance of software configuration management

o The retention of the respective software baseline

o The review and approval of all change proposals for a
systems's software

o Monitoring all applicable contracts,

What is the mix of government and industry participation in the
PDSS of an embedded computer system?

SUB-ISSUES:

a. System Taxonomv - Each service approaches the cupport of
automated systems based on specific parameters. An acceptable
system taxonomy, based on agreed upon parameters, will greatly
aid in establishing the Industry/Government Work Force Mix for
system support.

b. Current PDSS Practices - PDSS is accomplished reDendent
on service and industry methodologies. A centralized listinv of
appropriate driving documentation and policies is required.

c. Roles in PDSS - The government and industry roles in PDSS
for a system will define the appropriate Workforce Mix. The
identification of an accepted role listing is required.

QUESTIONS: The following questions have been drafted for the
purpose of generating panel discussion and clarification of the
overall issue. They have been assigned to panel members (see
list following questions) for research prior to the Orlando I
Workshop. The questions are not listed in any order of priority.

1 What is the definition of PDSS, is it really a "Post
Deployment" question?

2 What is the existing PDSS environment by service or
industry.

3 What are the minimum role(s) of the government in PDSS
beyond those given?

N Is there a taxonomy of systems which lead to groups of
systens that require separate developmental/sustainment,
governmental/industry mixes?

C-4

What are the roles of the original ecuipment manufar7urer
and the initial support contractor in PDSF?

6 What current Government practices impact the balance -f
industry/government workforce mix; e.g., type of resou~'-
dollars, propriatarv software and classified software.

7 What appropriate resource estimation tools/technioueF

exist for identifvinR required PDS7 manpower/facili~ie ?

Can industry "Fix-Forward", outside of the continental

United States?

Where should PDSS be performed; e.g., in-theater, Govern-

ment facility, contractor facility (responSe time is an
important considerate).

10 How does the government ensure continued contract comne-
tit-on and new technolozv infusion?

11 Is a single workforce mix policy attainable?

12 Should the PDSS contractor be the OEM or an indevendnt
contractor not associated with the original

PRIOR RESEARCH

Assignments

QUESTION PANEL MEMBER(S)

I Mark Levin & J. Steenwerth ,

2 Dr. Ed Kutchma & Dennis -urner

3 John LaVecchia

4 Wayne Bates, Steve Hudak,

Lou Naglak, Thor Hapi.1

5 Roy Oldhan

6 Mickev Kincade, James Macronell

7 Pete Eeck

8 Mel Dickover &
Terri Pavton

9 Ray Day & Frank Moss

10 Bill Paine

11 Dan Grimes

12 Don Crocker

C-5

PANEL PRODUCTS:

o A recommended system ti enomv for use in the catep-ri-
tion of embedded computer systems.

o A compilation of the various PDSS efforts on-goina in the
services and applicable industry approaches.

o A recommended policy on the Industrv/Workforce Mix in
PDSS of a system.

Panels will consist of membersfip assianed to the questions for
initial sessions:

Panel A - Questions 1 & 4

Panel F - Questions 2, 3, 6, 7, 10

Panel C - Questions 5, 8, Q, 11, 1?

C-6

ORLANDO I PANEL ON

INDUSTRY/GOVERNMFNT WORKFORCE MIX

IN

POST DEVELOPMENT SOFTWARF SUPPORT (PDSS)

PROPOSED AGENDA

31 October IQ% (Monday)

o (AM) Registration

o (PM) Key note address

o (Evening) Joint Mixer

1 November 198? (Tuesday)

o Joint chairs meet

o (AM) Panel meeting

o (Lunch) Guest speaker

o (PM) Definition of issue consensus

o Assignment of issues to sub panels

o b:?0-5:3OPM Joint Panel meeting

2 November 1084 (Wednesday)

o Joint chairs meet

o (AM) Sub panel meetings

o (Lunch) Guest Speaker

o (PM) Sub panel meetings

o 4:30-5:?OPM Joint Panel meeting

o (Evening) Joint Dinner

(-7

3 November 1983 (Thursday)

o Joint chairs meet

o (AM) Sub panel 1, 2, 1 presentations

o (Lunch) Guest speaker

o (PM) Collective sub panel meeting

o Panel consensus meeting

o 4:30-5:-OPM Joint Panel meeting

4 November 1983 (Friday)

o (AM) Joint meeting to present final panel recommendations

C-8

APPENDIX 0PANEL A BRIEFINGS

D-1

~r.

- N2

2-

a'~
~

D - -
7-

-~ <
_ ~

-~ 2~ U - -
- ~

;~: ~2
- U 2- -

- U U Y ~ U -~~ ~ cz2- I~ U ~ -~

- -2

22 - I I

-~ I

22

2 2

zf~

U

22

F-

D-3

- . a.. a . .- -.

-~ 0

F-

~
0 (9

0
- 0 -

O - (9 :1;
0 ~ >- (9 (9 -

(9 F- (9 (9 - (9
(9 0 0 - 0

(9 ~ (9 - (9
(9 - F- 0 > -
H (9 (9 0 (9 i~ *r~ ~ (9

> (9 Z~ (9 0 (9 (9 0 (9
- F- (9 zfl (9 ~ ~ -~

(9
0 0

I I I (9 0

(9 (9 '- (9
Zn -
Zn (9

- - Zn 0
- (9 (9 Zn

(9 -~ 0 (9
(9 Zn -

- - (9 4-

H 0 (9
(9 (9 Zn 0 (9 0

0 (9 0 0

D-4

U
w

C-)

U 2:
2:

2:

_ 2:
2:

2: 2:
- C

L~2H

~ 2:2: 2 < Cf Cf

C E- 2: 2:
2: 0 0 2:

2: Cf - -

U ~ L Cf 2:
0 Cf Cf ~2 C

Cf - -

2: >< 2: Cf Cf Z-. Cf Cf Cf
Cf Cf

Z A~ 2: ~
Cf 0 ~- ~ 1-

2: 2: ~2 ~ 2:
2: - -~

I 2: 2:
2: - _ 2: ~ -

Cf -: Cf Cf II Cf Cf

C C C L~ L~ '....-

- C C - -
C' CN ~ ~ -C

I I I I I I I

o -~ o o
~- - <K c :-n C C C -
< 'C 01cc ~' N
0- Cf0 - - - 2:0 C - - - -

2: n

D- 5

D-

CA
~CA

CA CA CA

CA

CA

CA - CA

CA

CA -

CA -

CA CA CA

CA - CA
CA CA

CA CZ CA CA CA - CA

- CA CA

- - CA
CA

CA I I I

CA =

CA

CA

CA

CA

D- 7

0

0

2:
0

0 2:
0

0
2: 2: 2:

0
2: ~ 2:
2: L~22: 2: -

0

<2:

2:
2: 2:

0
0 0 2:
0 0

2:
2: (9
< 0 _

2:

p

DS

0

* 0 0

_ 2: 0
2.- ,

I
H

0 -

~fj

- - - _

<

~ CJ~.

~ -,- -~

- -~ t -. -

PC

-P --

- C 2

- ~- - E- <

- -~

C -

P - P C

z

I)- 1 U

C

* - - m

* -

C >

ii
- r

* - -

* -

*ftp
I,

mI~.4ddV

-, -~ - -~

C>

C
U.. -~

H

D-1 I

.- r"- <

7:-- .2

-- : Z 0 -

o 0 00_

7: 7:

-1 2

2:
2:

2: -

2: - - 2: -

2: 2: 2:
2: - -

2: 2:

-,,~ - :2
2:

- 2: -

- 2: 2: - - c-Z 2:
2: > 2: 2:2: 2: ~

2: 2 - - - - - -

2: -~ - - 2: 2:~ 2: 2: >- 2: 2:
-, r I - --

- I I 2:

9- 1 3

cz

r0

0 7:
4 -7

U -uJ

I r, -0

- 7- 0

--<D c 0-

r 0

7: : 7

0- ~ 0 -<4

I
* _____________

__________________________ I

I I

*I~dv - i_____________________

I) - 1 ~

r,3

C L

C4 CCH

S 00 ,

D-16

-0 0 0 0 Z 0 0 2 2 0 '- 0 C 22

a222

22,

- , < .. f0 0 'J > -'j2 2<

D -1

* 2:
2: ~- U

2: .2
.2 U

U
0

0
~-, U

2:
.2 .2 ~
o ~ U

2: '-'

2: 2: H
U 0 ~-

- 2: :n 2:
U

- 0 ~

2: 2: ~-

- U H
~- ~- 2:

2:
0 0 ~n - 0 2:
- H U
H ~fl 0 2: U

~ 0 0
0 0 - o
2: a. H

2: ~2
2: 2: ~ 2:
2: 0 ~ 2: 0 -
0 2: ~ H
U 2: 2: I -
U 0 0 - -~

U U 2: 0

2: H
2:

- a. a.
- 0 0-~ 2:

2: 2: ~ a. U
U

a.
U U~ 2:

U U 0 0U -

D-17

b

p

- -r

0
2:

2:

- 2: .~2j> ~- - -

- 0 2: a:021
2

era: 0 a:
a:
- - a: - NC -

- -2 - >- - -

r I I - --

- 02:- - - - ~ a:-
- 2: - .- '

= U - 2:2:
- - U > 00

a: -,

zr. a: UU
- I I I a:
a: -

x

-2

_ a:
a:

D-18

fT

LUL

D-1

Iz 77 __

D)-20

H

E H H
- <

~ H - -

:3
H

H ~ 0
0 H -

0
0 0

0
0
H 0 - ,

0 0

0 F- -

- - >- :3
H '- -

0 ~ 0 -~ H
~ 0 -

-

- H H 0 -

~ > 0 0 LZ

C-

0
O <

~ H
0 -

H
- :i; -~

Z~~)

1) 21

-f

:12

212
- r.

2:

2:

212

- - -f
2:

2:

:12 --

2:
2:

212

D-22

17-1

D-23

!'0

H

r,,- -

ZJ - "

r 0D . Z9:.'

0. .- ,'
,z:: H Ou -

0 -2

- I

I -

I)-2

0

..

D)-28

APPENDIX E
WORKFORCE ATTRIBUTE ANALYSIS

WORKFORCE ATTRIBUTE ANALYSIS

A. Cost: Cost is usually the major consideration in organizing to perform
= and must be weighed carefully against each of the other PDSS factors.

Costs vary across the major categories of the PDSS personnel sources,
i.e., government military and civilians, the domestic software industry in
the United States, a mix of both government and industry personnel. In
addition, there are lesser, but significant and growing, sources outside
the United States.

In determining the best source or mix of personnel, the annualized total
life cycle costs of these personnel must be determined rigorously and pro-
jected across the expected PDSS years. The PDSS years may extend, depend-
ing on the system and mission, from eight to over thirty years.

0 Government: In determining the POSS costs for government-
military and government-civilian personnel, the life cycle
costs of an engineer at the doctoral level vary significantly
from a technician's. Using averages that cross the knowledge
and skill levels for simplicity of computation, then spreading
these figures across thousands of personnel and several decades
can lead to costing errors in the billions of dollars!

0 Industry: In determining the costs of employing contract per-
sonnel, equally misleading cost projections can De developed by
unnecessarily:

- Using estimates when firm bid figures can be solicited from
industry

- Requesting bids from only a single contractor or a small
set of contractors

- Lumping all PDSS into one very large, long-term contract

o Mix: It can be expected that a mix of government-military and
civilian and one or several US contractors will frequently
yield lesser PDSS cost figures than either a dedicated govern-
ment center or a sole-source contract. To ensure satisfactory
performance, the least-cost mix will need to be adjusted so
that all other factors are satisfactory.

In summary, cost projections must identify ful' life cycle costs associated
with the different professional and technical levels in the government.
Costs to be incurred by PDSS activities using contract support should be
derived from real bids submitted by firms to perform specific PDSS tasks
or to provide personnel with specific expertise over the systems life.
Thesp same principles should be applied whenever PDSS can be supported by
other (non-US) sources. With realistic cost figures, POSS managers can
plan and organize for least cost and equally effective support.

I

B. Stability:

o Government: Military rotation problems and enlistment termina-
tion are problem areas. Civilians would appear to be the most
stable, but current competition from industry and promotional
opportunities lead to employee mobility. Thus stability is not
in fact assured. Also government recruitment and retention are
problems.

o Industry: The original developer personnel are in general
unknown, but as development is usually a company thrust, per-
sonnel initially supporting the system in an interim support
period capacity may tend to return to the home base for a sub-
sequent development program. Many independent software support
contractors are beginning to surface, and their capabilities
are becoming significant. This may provide a stable workforce
element, especially for companies that are totally service ori-
ented. An important consideration is the competitive posture
of the government. If the goverment competes periodically for
the software support, alternate ISCs may win, thus leading to
support instability. However, personnel working for one ISC
may elect to change companies in lieu of moving. In this case
both the winning ISC and the individual win as the cost and the
pain of relocation is avoided.

o Mix: Government management control retention, corporate tech-
nical knowledge, technical direction, and facility and baseline
ownership with varying degrees of support provided by industry
(depending on immediate circumstances) appear to be best for
ensuring "continuity," though stability can still not be quan-
tified nor assured. There are essential roles that the govern-
ment must retain in order to ensure continuing support capabili-
ties at reasonable cost.

C. Flexibility: Flexibility incorporates the ability to increase or decrease
the number of qualified people in response to increases or decreases in
the workload.

o Government: Flexibility is low, due to difficulties in hiring,
firing, promoting, or demoting people. These difficulties are
due to personnel and grade level ceilings, salary structures,
additional personnel goals (such as protection against political
pressures, EEO, refraining from competition with industry,
etc.), and other similar factors.

o Industry: Flexibility is higher, due to the factors noted
above, and also due to greater ease in letting subcontracts and
using contracted temporary help.

E-3

o Mix: The greater flexibility inherent in industry is also
available in a mixed environment, since the tasks which are
most variable in workload (designing, making, and testing soft-
ware charges) are those which are generally assigned to the
contractor.

D. Relevant Knowledge: Knowledge of the software system and the total
mission-critical system is required for effective PDSS. Knowledge is re-
quired in technical areas, as well as an understanding of the software and
the system performance, operational use, and support.

o Government: Technical knowledge level can be high with an in-
vestment in theoretical and "hands-on" training on the system
and the software at the original developer's plant. Operational
knowledge concerning use and support of mission-critical systems
is resident within the military forces and, to a lesser extent,
in the civil service workforce. The military must provide final
guidance in this area.

o Industry: Technical knowledge of the original developer is
high. Technical knowledge of independent support contractors
or support service contractors in the specific system to be
supported is highly variable. Developers possess a variable
level of operational knowledge depending on the original aevel-
oper's experience with similar operational systems. Support
service contractors often have high levels of operational
knowledge, since many are often heavily staffed by former mili-
tary personnel who collectively possess a wealth of operational
knowledge. Caution is required to prevent these contractors
from usurping military decisions regarding operational use and
support.

o Mix: Requisite technical knowledge of specific systems may
best be provided by a judicious mix of Government, original
developer, and support service contractors. Operational knowl-
edge must be provided by military user community representa-
tives, with the option of augmentation by qualified support
service contractors.

E. Training:

o Government: Training for military personnel, especially for
enlisted personnel, is a time-consuminq and costly process with
a high attrition rate. GS personnel.(engineers and computer
scientist types) are usually hired with fundamental training
completed. Further training with long-term payoffs is con-
sidered to be money well spent.

o Industry: Industry personnel theoretically arrive on site
trained for their specific functions. Further training occurs

E-4

on the job; and for professionals, personal development gen-
erally follows due to self-motivation.

0 Mix: A mix allows training of an essential cadre of government
s-cialists to provide management and technical direction for
continuity and to maintain a sound government competitive pos-
ture with a supply of talent for task performance from industry.

F. Experience: PDSS requires both varied experience factors in multiple dis-
ciplines and the sustaining of a critical mass of experience factors and
professional and technical expertise related to the evolving system soft-
ware.

o Goverment: Experience in using the mission-critical system in
military operations must be organic to the PUSS organization.
Recent or current experience can only be provided by military
personnel across the enlisted, company, and field grade levels
and across the occupational specialities associated with the
system as it evolves. Experience in operations and technical
areas is brought to PDSS by the government civilian worKforce.
Experience and knowledge in working with service formal and in-
formal command, support, and information channels are almost
unique to government civilians. The technical and professional
experience in many of the disciplines required to perform PDSS
are also resident in the government workforce. However, PDSS
requirements exceed the military and government resources which
can be devoted to PDSS over the system life cycle.

o Industry: By drawing on personnel who have served in the mili-
tary, industry can provide relevant operational experience to
most systems. However, industry contribution in operational
experience ib not as certain as that in the active military.
Industry can provide the most experience in all technical and
professional disciplines required to perform PDSS. Industry
can move experience as required across systems, subsystems, and
the services as required. Because contractors operate in a
highly competitive environment, they have to maintain state-of-
the-art knowledge of the widest range of hardware and software
products and evolving concepts in, and coming into, the marKet-
place. This experience facilitates system evolution and tech-
nology insertion in PDSS activities.

o Mix: To provide the multiple operational and technical experi-
ence factors required to cost-effectively perform PDSS over a
system's life, a mix of personnel drawn from each of the work-
force options will generally be required. The composition of
the mix will have to be carefully derived for each PDSS to
optimize:

E-5

- Reusability of software already inventoried
- Redesign
- Testing

Software performance in operation

In deriving the mix, the PDSS manager must identify in detail a
comprehensive list of operational and technical experience factors
to perform PDSS over the system's life. Generally, to conserve
government resources, technical experience should be drawn from
industry. Operational experience factors will have to be drawn
from government sources. Positions must be described using the
specific required expcrience factors. These should describe in
detail the mission, functions of the hardware, and all of the sys-
tems and subsystems requiring software and their specific architec-
ture, versions, or releases.

The development of the requisite experience factors to perform a
particular PDSS should be performed before costing or other PDSS
decisions are finalized. Personnel to meet these requirements can
be drawn from government or industry. It can be expected that a
mix including military and government civilians will be required
just to provide the necessary operational experience. Industry can
provide the mass of the technical expertise required. Identifica-
tion of the specific, detailed experience factors is the first and
driving consideration in establishing an organic PDSS workforce.

G. Availability: Availability of workforce personnel having the requisite
skills is a continuing problem. Critical software engineering and systems
engineering skills shortages will continue throughout the 1980s. The
ability to attract and retain a workforce with these requisite skills is
highly dependent on the workforce option.

o Government: The military and civil service communities have
experienced severe difficulties in attracting and retaining
"working-level" software engineers, computer scientists, and
systems engineers. Upcoming changes in the civil service
retirement structure will exacerbate this problem. Another
constraint on some government activities is the availability of
billets or ceilings, or grade-point average limitations which
prevent optimum civil service staffing. The availability of
properly qualified military personnel to fill open military
billets is a continuing problem.

o Industry: The original developers have the greatest success in
attracting the critical technical skills, primarily because
they can outbid all others. Support services contractors also
can attract and retain these critical talents, but to a lesser
extent than the developer since they must be price "competitive"
with the civil service workfurce.

o Mix: The availability of sufficient requisite Skills is best
assured by providing a mix of military, civil service, and in-
dustry personnel.

H. Continuity: Continuity implies an ability to remember past mistakes ano
Sground to recall insufficiently documented reasons for thie rejec-
tion of possible solutions. Stability enhances this process, but is not
necessary for it. A lack of stability can be compensated for by careful,
complete documentation, or by continued access to personnel no longer
actively working on a project.

o Government: Continuity varies from organization to organization
but tendsto be relatively high due to fairly high stability.

o Industry: Continuity varies even more than for government, due
not only to variations in stability, but also to variations in
corporate practices. If a corporation is the original devel-
oper, significant additional continuity is obtained.

0 Mix: In general, continuity will be dependent on the continuity
Tn the government participation and the presence or absence of
the original developer in the mix. It is also dependent on the
stability of the mix itself, in terms of what companies are
involved.

I. Control: All actions necessary to manage, direct, monitor, or control
PDSS activities are encompassed within this workforce consideration. The
key attributes or characteristics of effective PDSS control are:

o Project Management
o Financial Management
o Contract Management
o Technical Direction
o Acceptance/Rejection of Product (Acceptance Agent)
o Configuration Control
o Design Control (Design Review/Approval---Design Agent)

It is suggested that the characteristics listed above are a minimum set of
"features" which are necessary to ensure effective PDSS control.

0 Government: The government must reserve to itself the control

of all activities during PDSS.

o Industry: Control may not be delegated to industry.

o Mix: Not allowable.

1 L- 7

J. Security:

o Goverment: Military personnel provide the most confidence, due
to screening, controls and indoctrination penalties, and super-
vision at total military facilities. For the same reasons,
civilian personnel rate higher under this attribute.

0 Industry: Original developers also rate high, especially if
they have developed the original system. For support contrac-
tors, security is lessened because additional people know ibout
the system functions, vulnerability, etc. Thus there is a bet-
ter chance for leaks just due to numbers alone.

0 Mix: A mix could permit s.4bstitution of unclassified generic
test data in lieu of classified data during modification ef-
forts. Critical mission software could perhaps be modified
only by government personnel or only by the original developer
(already having the basic information).

K. Deployability: In the course of evaluating, testing, or distributing sy,-
tems, it may be necessary for PDSS personnel to go to military environ-
ments, such as on-board a ship or aircraft or to a forward military base.
Security, training, and physical safety must be considered. Qualifica-
tions to fly in a combat aircraft, for example, are quite rigorous.

o Government: Government, especially military, personnel who are
already appropriate for a given situation can oe more easily
obtained if the government involvement is high.

o Industry: While industry representatives can and do work in
these environments, having them do so is generally more diffi-
cult, and sometimes more costly (for example if additional
training is involved), than using government personnel.

0 Mix: The use of mixed personnel may enable the use of govern-
ment personnel in military environments, but only if the tech-
nical qualifications match the jobs to be done.

E-8

APPENDIX F
TAXONOMY OF MISSION-CRITICAL COMPUTER RESOURCE SOFTWARE

i---

SYSTEM TAXONOMY HIERARCHY

Level 1 - Application Categories

Weapon Systems

Tactical
Air
Sea

Surface
Subsurface

Ground
Mobile
Transportable
Fixed

Space
Strategic

Air
Sea

Surface
Subsurface

Missile

Intelligence Systems
Tactical

Collection
Analysis
Fusion

Strategic

Collection
Analysis
Fusion

Crypto and National Security
(Listed for reference purposes only)

Command and Control (Including Multiple Weapon Systems)
Tactical

Fire Control
Maneuver Control
Communications

Strategic

Fire Control
Maneuver Control
Communications

Direct Support
Direct Mission Support

Mission Planning/Preparation
Data Acquisition/Transfer

Test Systems
Automatic Test Equipment
Test Program Sets

System-Specific Test/Simulation Systems
Training Systems

Maintenance Training Devices
Operator/Crew Training Devices
Computer-Based Instruction/Management (CBiCBM)
Weapon System S.imulation

Software Support Systems (PDSS Resourccs)
Development tools
Integration and Test Tools
Baseline Configuration Management Tools

Logistics

Local
ILS Support Systems
Personnel/Administrative

Global
ILS Support Systems
Personnel/Administrative

Level 2 - Software Categories

Application Software
Online, Time -Critical

Offline

Diagnostic Software
Built-in Test (BIT)
Online
Offline

Control Software
Real-Time Executives
Process Control
Computer-Aided Design/Manufacturing (C DMIfM)

System-Specific Support Software
Translators
Custom Compilers/Msseiolers

Vendor Software (Proprietary)
Standard Operating Systems
Compilers
Utilities
Data Base Management Systems

..

a AL99 169 GCOAJ~NM~ /

I UNCLASSIFIED F/C Im HL

I 1.0

111L 11 11. 40

tt.25 Iflf~ I J 1.

nll-= -u22

Level 3 - Implementation

Software
High-Order Language
Assembly Language
Microcode

Firmware

High-Order Language
Assembly Language
Microcode

F-4

APPENDIX G
ATTRIBUTES DRIVING WORKFORCE SELECTION

I 4---I

USER-ORIENTED ATTRIBUTES

U-i. Wartime Support

Definition: Ability of the workforce mix to sustain required PDSS
activities in a period of global or localized hostilities/national
emergencies.

Impact: Systems that are expected to have their mission-critical
software substantially modified during hostilities (e.g., EW sys-
tems) iust have a PDSS workforce that is reliable in such situa-
tions. This requirement is especially acute if PDSS support for
such systems is located in a theater of operations. These system
PDSS facilities must have their peacetime workforce structured with
sufficient qualified military software personnel and a sustained
personnel pipeline to ensure continuity of operations during hos-
tilities.

U-2. Geographic Location (PUSS facility)

Definition: The location of the selected systems PUSS capability
can be in a government CONUS facility, a CONUS contractor's facil-
ity, or a facility located in an overseas theater of operations.

U-3. Embedded Doctrine/Tactics

Definition: In many cases complex computerized weapon systems have
established doctrine and tactics built into the system software.
In effect, the established methodology for fighting the war is pro-
vided to the "user" through software, as is optimized system (and
interfacing systems) performance.

act: A PUSS facility workforce must be formulated based on the
Ueirbility of having continuous support from the user community.
The user personnel must be experienced in the doctrine and tactics
of weapon system employment so that they can provide advice and
guidance to PDSS professionals. Because many software changes that
occur during PDSS can have a substantial impact upon established
doctrine and tactics, the software designer must have access to
sound user advice during the entire change process to avoid mis-
direction and costly mistakes.

U-4. Responsiveness

Definition: A PDSS concept for a system must be formulated with
the requirement to be responsive to the "user" as one of the high-
est priorities. Accordingly, the workforce mix and staffing levels
must be based on timely provision of the total spectrum of software
services required by the user. It must be recognized that the user
has unique requirements in a dynamic environment.

G-2

Impac: The PDSS staff must be based on identified tasks that in-
v not only software changes to programs, but also other serv-
ices that may be required. To be completely responsive to user
requirements, a PDSS staff might be formulated to provide:

o Systems engineering support
o Field service support
o Training support
0 Interoperability support
o Etc.

If an inadequate workforce mix does not allow for sufficient per-
sonnel with the required technical expertise, the PDSS provided to
the user may be incomplete arid lack in responsiveness.

U-5. Interoperability

Definition: Many systems rave a requirement t) interoperate with
other systems to successfully accomplish theii mission. Not only
is the user of a system concerned with the operation of i specific
system, but he is also vitally concerned with how his system oper-
ates as a member of a family of systems.

Impact: Interoperability integration and testing and periodic par-
ticipation in special interoperability exercises of test beds may
place significant burdens upon the staff. Unless the QA and test
staff is adequately constituted, critical test activities cannot be
properly supported by the PDSS facility.

U-6. Field Support

Definition: Software field support services include such tasks as
technical assistance visits, troubleshooting assistance, training
assistance, new software version delivery, support of tests and
joint exercises, and providing continuous software technical exper-
tise to the user.

Impact : To maximize effectiveness, software field service support
services must be an extension of the professional staff of the PDSS
center. This need arises because of the detailed knowledge that
must be available to accomplish software field support tasks. The
PDSS staff should be constructed based on the expected commitment
to support the user's unique field requirements, in addition to
fulfilling the more traditional role of the PDSS center. If this
is not accaplished. valuable programmer/engineering resources may
be periodically diverted to thE fi2ld sinoort role.

G-3

U-7. Training POSS Personnel

Definition: This is the activity required to provide initial and
continuing training to POSS personnel.

act: The purpose of training is to develop employee skills and
TTdge in order to increase proficiency in current or projected

assignments. Training is an integral part of mission accomplishment
that must be planned and budgeted. The initial tra;ning of PDSS
staff for system software support should include formal and on-the-
job training. The training should be in concert with the incre-
mental assumption of system software into the PDSS activity.

Formal courses can provide additional language and technology skills
for computer professionals on the current PDSS staff and for per-
sonnel with system experience transitioning to the software field.
A predeployment overlap with the software developer will provide
on-the-job training for PDSS staff.

U-8. Criticality of System

Definition: A critical system is one that is essential to the com-
bat mission of the using organization. Functional inadequacy of a
critical system's software may cause a serious degradation of oper-
ational capabilities or even non-operational status.

act: The mission criticality of the system may govern the size/
m workforce and location of the PDSS facility and may lead to
redundant PDSS activities.

U-9. Implementation Media

Definition: Software changes are usually incorporated into an up-
dated baseline configuration, then distributed to the user in the
field. The media for implementation of these changes can be tapes,
disks, or firmware.

act: Some high-density software-intensive systems are employed
i6r4hout the world with US Forces. Implementation responsibility

for frequent software changes to these systems can be a significant
drain upon POSS facility resources; this is especially true if
firmware is the medium of change. PDSS workforce structures must
make allowances for mobile imolementation teams to deliver and in-
stall new software versions to fielded systems. Planning must also
allow for the ancillary functions these teams are often required to
perform, i.e., new software version training, staff briefings, veri-
fication, etc.

G-4

U-IO. Change Process

Definition: The change order process is a key element of configu-
ration management and is the machinery for incoporating changes
into the baseline software. The user, via trouble reports, is usu-
ally instrumental in the establishment of the priority assigned to
the changes.

Impact: The PDSS workforce mix must include a representative that
can speak for the user community in matters concerning each change.
This should be a military officer who has had practical experience
with the system being supported or a similar system.

LOGISTICS-ORIENTED ATTRIBUTES

L-1. Number of Unique Users

Definition: The number of unique users will determine the number
of unique software configuration baselines. Also, each unique user
will probably have unique support requirements, i.e., tactics, geo-
graphical location, response requirements, etc.

L-2. Deployment

Definition: In addition to the environment (e.g., global, a sea
environment, or a hostile environment), deployment includes loca-
tions and numbers of systems at each location.

Impact: Each environment presents unique support requirements.
For example, a hostile environment may require a totally military
support facility. Deployment to several locations may also require
several software baselines, and these present special configuration
management considerations. Deployment to allies may present addi-
tional support and configuration management problems. The deploy-
ment of a system may also require special change dissemination
considerations.

L-3. Length of Life Cycle

Definition:: This is defined as the expected operational life of a
system.

Impact: The expected operational life of a system will determine
the expected volume of modifications to the software. The longer
the expected life, the more modifications we can expect due to
changing mission requirements. These modifications are really new
design and therefore require the appropriate support personnel.

G-5

L-4. Ancillary Requirements

Definition:: This refers to such things as computer operations,
the requirement for software libraries, and hardware maintenance.

act: Failure to consider ancillary requirements means that the
t5 support requirements will not be defined and the proper re-
sources (personnel and equipment) will not be identified. In addi-
tion, the proper equipment, configuration management tools, devel-
opment tools, and rights to proprietary software may not be included
in the procurement contract.

TECHNICALLY ORIENTED ATTRIBUTES

T-1. Configuration Management of Software

Definition:: This is the process of controlling versions of soft-
ware elements and systems to support the integrity of the system.

Impact: Absence of effective CM at any time in the software life
cycleinevitably leads to a degree of functional disarray. The
impact can range from minor delays to a total loss of capaoility.
Any self-disciplined trained person or agency should be able to
perform the CM function. Normally the CM function is done by the
agency responsible for the software in the current phase of its
life cycle. With close interfacing of agencies, it could be done
by a second agency.

T-2. Quality Assurance of Software

Definition: Quality assurance of software includes those technical
and management methods needed to provide developer-independent
assessments to responsible management that software quality re-
quirements are being (and have been) met. Existing software QA
standards include MIL-STD-52779A and MIL-STD-SDS (draft form).

act: On any significant software development project a lack of
a equate software QA effort inevitably leads to an unacceptable
combination of low quality, late delivery, and cost overrun. To
the extent that the PDSS effort includes any software modifica-
tions, a corresponding software QA effort is required to maintain
project quality goals. Due to its independent nature, QA can be
performed by any available qualified agency. If done by the same
agency responsible for development or modification, QA should have
an independent management path to the responsible manager.

G-6

T-3. Software Test Bed

Definition: A software test bed is usually a specialized test
facility which generally includes special hardware and software
needed to test software in an environment as close as possible to
that of the intended application. Effective test beds can range
from fairly small and simple ones which might be easily duplicated
to extremely large and complex ones which cannot be rea6ily dupli-
cated.

Impact: Test be~s are important to almost all embedded software
systems. They often form the environmental basis for providing
functional qualification tests needed to accept the software for
end use. Effective use of a test bed generally requires serious
participation by experienced personnel. The impact on the PDSS
effort will generally require that the PDSS agency must use a test
bed. The sophistication of the test bed may dictate the use of a
PDSS agency.

T-4. Programming Language

Definition:: A given embedded weapon system will include one or
more processors, each of which may execute instructions originally
coded in one or more programming languages, such as Ada, Fortran,
assembler, etc.

Impact: Not all computer programmers are equally proficient in the
major programming languages. During routine maintenance, programmer
proficiency may be significantly enhanced through good detailed
design documentation. In PDSS strong consideration must be given
to the number of available programmers having a sufficiently high
level of language proficiency in the language(s) in use and to the
available detailed design quality.

T-5. Proprietary Software

Definition: Proprietary software is software developed and owned
by a commercial supplier. It is generally maintained by this de-
veloper and either not made accessible to others or only provided
in some restricted manner (such as lease) in a form which prac-
tically prohibits any modification by the user.

Impact: If there is proprietary software included in a given sys-
tem, some provision may be required for its continued maintenance
by its original developer. Extensive interaction between the pro-
prietary software and other software in the system may practically
dictate the use of the proprietary software developer for mainte-
nance of the complete system.

G-7

T-6. Adequacy of Technical Documentation

Definition: Acceptable minimum docume*ntation standards are aefined
by various military standards (MIL-STD-SDS, MIL-S-1679A, MIL-STD-
490, MIL-STD-1644).

Impact: Lack of adequate documentation inevitably leads to in-
creased life cycle costs and reduced levels of reliability and
maintainability. Documentation is usually the first part of a
developer's responsibility which suffers from (unbearable) budget
and schedule pressures. Such "compromises" simply postpone costs
and propagate delays (in an amplified form) into the maintenance
phase. Well-documented software can be far more easily maintained
by an agency other than the developer than can inadequately docu-
mented software.

T-7. System Complexity

Definition: The man-machine interfaces, number of computers, net-
working, parallelism, architecture, number of lines of code, tim-
ing, computer loading, environment, and many other factors affect
the complexity of the system.

act: The more complex the system, the more critical the PDSS
ixTdecision. For example, in the aircraft area the addition of
new missiles, displays, electronic equipment, etc., increases sys-
tem integration requirements and thus mandates use of more skilled
manpower to implement software support activities.

T-8. Software Engineering

Definition: The use of modern techniques such as modular pro-
gramming, design-for-change approach, disciplined configuration
management, etc., constitutes the state of the art of software
engineering.

impact: The use of modern software engineering techniques makes
software less personality dependent, more understandable, and ulti-
mately easier to enhance or support. It impacts the ability to
complete contract efforts and reduces support costs. Good design
and documentation reduce the skill level requirement of the support
work force.

T-9. Software Maturity

Definition: This is the degree of experience achieved with the
software code and logic, in terms of operational use and low rate
of discovery of latent defects.

G-8

:act There is an inverse relationship between software maturity
an support difficulty. Systems that have established logic and
math flows, have well-known requirements, and/or are next-generation
follow-ois to existing embedded systems tend to have fewer unknowns
and thus become easier to support. A mature software system can be
supported, on a relative basis, with fewer personnel and therefore
is less costly or risky to support.

T-1O. Technical Risk

Definition: The technical risk involves the number of unknowns in
the system (tools, skills, experience, technology, complexity,
state-of-the-art applications).

Impact: The greater the technical risk or the more unknowns in a

system, the greater the requirement for specialized skills.

T-11. Built-in Test (BIT)

Definition: BIT is inherent software, firmware, or hardware logic
7T17ch checks the validity and integrity of processing flow and
output.

Impact: The effective use of BIT can result in significant improve-
m in system and subsystem reliability. However, BIT also adds
another dimension to the complexity of the support process. Sys-
tems with extensive use of BIT will require specialized personnel
and facilities to support the BIT implementation in the system.

T-12, Adaptability (Reprogramming Ability)

Definition: The ease with which the configuration of an embedded
system can be changed.

:act Systems which charge configuration frequently will impose
TF-eiedous strain on support systems. Associated with frequency of
change is the issue of responsiveness in making the change. Sys-
tems requiring frequent short-lead-time changes will involve the
creation of extensive deployed networks to accommodate the changes.
This will probably mandate support structures that are dispersed,
organic, and highly flexible.

PERSONNEL AND RESOURCES-ORIENTED ATTRIBUTES

P-l: Special Facilities

Definition: Special facilities (weapon system support facility/
integration support facility) include buildings, equiment, and

G-9

ranges required to develop, test, change, exercise, or integrate
software products.

act: The existence of special facilities may be a determining
a as to where all or a portion of PDSS should be accomplished.
A predetermined government/contractor staffing mix may be innerent
in the special facility. Special facilities may be located at the
development contractor's facility and may be required for system-
level activities. To avoid costly duplication of the facility, OEM
PDSS may be indicated. Other facilities may be located at govern-
ment installations and be staffed by government or support contrac-
tor personnel with special knowledge or skills pertinent to the
operation of the facility.

Special facilities are a constraint on government/industry staffing
mix. Special facilities should be considered during PDSS planning,
and PDSS should be considered during facility planning and acquisi-
tion of special facilities.

P-2. Personnel Turnover

Definition: This is the rate at which personnel become associated
with and then leave a company, project, organization, or activity.

Impact: Computer and software personnel are in great demand ano in
short supply. Opportunities for advancement often exist outside
the computer professional's current organization. The 1981 indus-
try turnover rate for computer professionals was approxiately 28%.
Although the turnover rate for government employees in 1981 was
less than half the industry rate, transfers within the government
could drive that rate towards the industry rate within a project or
activity.

Th)e turnover rate is most significant in PDSS staffing mix when the
development contractor is expected to provide PDSS. The likelihood
of that contractor's maintaining the development staff is low,
nullifying many perceived advantages. The turnover rate of govern-
ment employees in the PUSS activity may currently be as high as in
industry. However, this turnover rate may be lowered by assuring
an adequate grade structure. Military personnel policies limiting
the length of an assignment push the PDSS staffing mix away from
miiitary.

P-3. Availability of Qualified Personnel

Definition: This is the number and location of personnel possessing
computer, engineering software, and/or system-specific knowledge
and skills available for assignment to a PDSS effort.

G-1O

Impact on PDSS: Technical requirements should drive the PUSS
staffing mix, and the mix should be made available through proper
planning and implementation. PDSS is, and will continue in the
near future to bp, a labor-intensive activity. The availaoility of
that qualified labor force is a determining factor in now a PDSS
effort will be staffed. Currently all services are building PUSS
staffs with the required computer skills. To ensure that system-
specific knowledge is acquired by that staff, key PDSS personnel
should be involved in the system development.

PDSS staffs consist of both government ario contractor personnel.

To ensure that the desired staff will be available for a system
after deployment, proper and timely funding and staffing requests
must be initiated early in the system development.

ADMINISTRATIVE/POLITICALLY ORIENTED ATTRIBUTES

A-I. Funding

Definition: Money provided for contracting support is designateo
by Congress under public law in specialized categories, i.e., pro-
duction, operational, and maintenance and development. These are
restricted to being applied within a weapon system category. Mul-
tiple types of money are required for support of some systems at
different levels of need.

pact: Decisions as to contractor/government support levels at
P are directly affected by the kinds and quantity of funds pro-
vided in a timely manner. Unless funding is matched against the
planning documents, technical decisions will be made by administra-
tive fiat.

A-2. Directed Procurement

Definition: Because of a number of factors (i.e., contractor tech-
nical expertise, proprietary data, test facilities,) it is cost-
effective and timely to sole-source to a particular vendor. The
statement of work can be somewhat general because the requirements
are fully understood by the vendor.

Iact: Sole-sourcing greatly reduces the flexibility in decision
making as to mix of personnel. The major problem is the availabil-
ity of required funds for this manpower approach.

A-3. Competitive Procurement

Definition: In an attempt to reduce costs and comply with the
strong emphasis for competition, the number of competitive con-
tracts is being increased. A competitive contract statement of

c,-]I

work needs to be very detailed; therefore, a high level of exper-
tise of government personnel is required for development and moni-
toring.

Impact: At minimum, a staff of experienced government personnel
must be planned for when this type of contract support is utilized.
This contracting may be viewed more as a level-of-effort extension
rather than full support.

A-4. Personnel Ceilings

Definition: Most government agencies have restrictions on the num-
ber of civilian employees, their grade levels, and job series. The
military has equal constraints on billets and number of qualified
personnel.

act: Planning for government personnel in the mix may be un-

realistic if the required positions in actuality cannot be filled.

A-5. Traditional Roles and Missions

Definition: Within the services, organizations want to maintain or
obtain control of software, not because of time-effectiveness but
because of perceived response to changed requirements, existing
structure, or glamour of new technology.

Impact: These purely political decisions preclude effective plan-
ning of manpower utilization.

A-6. International Support

Definition: The services must provide support to Foreign Military
Sales (FMS) and other programs that supply military stores Lo
friendly countries.

Impact: These positions are included in the manpower ceiling of
the military services, thereby competing for the technical manpower
needed for US programs. Government personnel must be provided as a
mix for all of these programs.

A-7. Security

Definition: Certain systems contain software which is sensitive in
'its nature, application, and/or origin. The sensitivity can be so
intense that knowledge must be limited to a select few people.

Impact: The ramifications of security upon the government/contrac-
tor manpower mix are proportional to the decision about limiting
the need to know. If, for example, an OEM completes a system and
its associated software, the maximum limit of need to know could be

G-12

to the OEM and the cognizant service authority. Many "black orio"
projects are controlled in this manner, with the OEM providing
software support. Conversely, software support for battle-area-
deployed systems may be 100% supported by the government due to
(1) limited contractor presence or (2) desirability for service-only
support. In summary, the ramifications of security upon the man-
power mix for supporting a system depend upon considerations of
need to know, cost-effectiveness, availability of personnel, man-
agement decisions, and battle area proximity.

A-8. Acquisition Management

Definition: Implementation of acquisition activities can influence
software support manpower mix dependent upon sequence, timeliness,
deliverable items, adequate funding, and schedule.

It is possible to constrain an acquisition process to such a com-
pressed schedule or meager budget that an unsupportable software
product results. If one assumes that adequate funding and sched-
ules are available, then the sequence of acquisition activities may
indicate a manpower mix. For example, if a support facility is
required for software support, then the facility may be developed
in parallel with the software product. The facility turnover to
the government might enable govenment support of the acquired soft-
ware. Software cannot be supported without adquate engineering and
technical data. If the timeliness of data delivery is not commen-
surate with acquired software, then the government could not pro-
vide support until such time as the data are available. In certain
instances the quality of deliverables (software and data) prohibits
easy software support.

act: Adequate acquisition planning and management must be en-
Toed to assure that software is delivered with adequate descrip-
tions and resources to provide support at the desired manpower mix.

A-9. Continuity of Operations

Definition: This term applies to the extent that failure-free
software must operate. Factors involved are the extent of redun-
dancy, degradation for component or software failure, and the
strategic/tactical urgency for an operative system.

The requirement for continuous operation means that if a failure
occurs it is detected and corrected or some substitute capability
fills in the deficiency. Extremes go from self-correcting software
to various levels of redundancy (or backup) to real-time failure
fixes.

act: PDSS manpower mix depends upon the degree to which one
stives for continuity of operation and the concept to provide the

G-13

continuity. Systems requiring high continuity of operation are
usually associated with space or forward battle areas. In each
case the manpower mix will vary widely.

A-10. Commonality of Applications

Definition: This is the extent of commonality that specific soft-
ware has from system to system.

act: The main factor that would influence the total manpower
or SS is the software complexity. For very simple software
which applies to multiple systems, the PDSS manpower requirement is
likely to be low and PDSS probably would be most cost-effective as
a government-operated activity. As the complexity increases and as
the multiple-system applicability narrows, the tendency is toward a
more sophisticated, single support capability. The mix of manpower
would be dependent upon a government decision as to the extent of
contractor involvement.

A-ll. Use of IV&V

Definition: Independent verification and validation (IV&V) is more
effectively applied during full-scale development. Effectiveness
is gained simply because it is cheaper to implement a software
change as early as possible in the design/development phase. If
discoveries of deficiences are made in the later stages of software
development, it may or may not be cost-effective to implement
changes. On the other hand, noncomplex software does not warrant
full-scale IV&V because it is not cost-effective.

Impact: A decision should be made before project development as to
whether to use IV&V. Using IV&V has a tendency to reduce overall
PDSS manpower requirements for a system but appears to have little
effect upon the actual mix. The mix is simply a matter of where
the government wants PDSS accomplished: contractor or government.

G-14

ORLANDO I

FINAL REPORT

PANEL B

INDEPENDENT VERIFICATION AND VALIDATION (IV&V)

MARCH 19, 1984

CO-CHAIRMAN: CDR D. (Dave) Southworth
HQ, Naval Material Command (MAT 08Y)

Washington, DC 20360
(202) 692-3966

CO-CHAIRMAN: John W. Sapp
Software A&E, Inc.
1401 Wilson blvd., Suite 1220
Arlington, VA 22209

(703) 276-7910

4-2-i

TABLE OF CONTENTS

Page
4.2 Panel B - Post Deployment Software Support (PDSS)

Independent Verification and Validation (IV&V)4.2.1 Objectives
4-2-1

4.2.2 Scope
4-2-1

4.2.3 Approach
4-2-2

4.2.3.1 Preparation 4-2-24.2.3.2 Panel Organization and Issues 4-2-2
4.2.3.3 Panel Operation 4-2-34.2.4 Discussion

4-2-7
4.2.4.1 The Effectiveness of IV&V Subpanel 4-2-7

Report
4.2.4.2 Criteria for the Use of IV&V Subpanel 4-2-12

Report
4.2.4.3 IV&V and the Software Life Cycle 4-2-15

Subpanel Report
4.2.4.4 IV&V in the Organization Subpanel Report 4-2-224.2.5 Recommendations

4-2-34

Appendix A - Participants 4-2-A-iAppendix B - Bibliography
4-2-B-iAppendix C - Panel Presentations 4-2-C-IAppendix D - IV&V Benefit Interdependencies 4-2-D-1Appendix E - IV&V Experience 4-2-E-IAppendix F - IV&V Case Study 4-2-F-iAppendix G - Model Descriptions 4-2-G-1Appendix H - Quantitative IV&V Cost/Benefit Analysis 4-2-H-iAppendix I - Proposed JLC Policy Statement Concerning IV&V 4-2-I-iAppendix J - IV&V Criteria: Supporting Material 4-2-J-IAppendix K - Life Cycle Chart 4-2-K-I

4-2-ii

FIGURES

Page

4.2-1 Computer Software Development Cycle 4-2-16

4.2-2 Program Manager - Model I 4-2-27

4.2-3 IV&V Entity - Model 2 4-2-30

4.2-4 Relation Between IV&V Levels and the Software Life

Cycle 4-2-35

4.2-K-i IV&V and the Software Life Cycle 4-2-K-6

TABLES

4.2-K-A IV&V Data Delivery K-4, K-5

4-2-iii

4.2.1. OBJECTIVES:

Over the past decade there has been a dramatic increase in the number of
planned and deployed Mission Critical Computer Systems (MCCS). These are
systems which are of significant importance and which are integral to the
effectiveness of today's military combat and support systems. This includes
airborne, fixed and mobile ground, surface and sub-surface naval, and space
systems which are required to operate in both hostile and benign
environments. MCCS's are generally characterized as ruggedized programmable
devices which exhibit high speed, accuracy and reliability in the processing
and manipulation of data, performance of computations and in the exercising of
system control. These features have and will continue to contribute to the
development of military systems which meet or exceed performance, reliability
and maintainability requirements and which demonstrate flexibility when
responding to new requirements. MCCS's implement or aid in the implementation
of systems and subsystem performance characteristics and serve to integrate
the various elements into highly responsive and effective systems.

The embedded computer executes software. Thus, MCCS performance should be
easily modified and/or enhanced by modifying (or replacing) the software.
Normally software can be modified much faster and at a fraction of the cost of
that which would be required to implement a comparable change in hardware.

The challenge to the panel has been to determine when and how much Independent
Verification and Validation (IV&V) should be used in software development and
in post deployment software support (PDSS). This is an extremely complex
issue because of the overlapping roles of test, quality assurance, systems
engineering and the service evaluation test departments. Too much checking is
expensive and wasteful; too little is more wasteful yet.

What distinguishes IV&V from other areas, when to empLoy IV&V and the extent
and amount of IV&V will vary as projects vary in size, complexity,
criticality, staffing, acquisition mode and other factors. Very often, the
project management is besieged with pressing problems. Any guidance to them
on the use of IV&V should be as clear and definitive as possible.

The panel's objective was to sift through a wide range of positions,
experiences, and issues to produce recommendations for changes and additions
to JLC policies, procedures and standards with regard to IV&V. A secondary
objective was to raise and define IV&V issues for further consideration which
arose as part of the panel deliberations and which could not be adequately
resolved during the workshop.

J.2.2. SCOPE:

The basic charter of the Independent Verification and Validation Panel was to
recommend a Joint Logistic Commanders Policy that will clarify the use/non-use
of IV&V in software development and in Post Deployment Software Support
(PDSS). The policy should do the following:

a. Cite the benefits vs costs of IV&V. This should include specific
instances of beneffts, quantified if possible.

4-2-1

b. Specify general criteria for the use of IV&V. The criteria should
consider, as a minimum, the following factors: types of systems,
software applications, software complexity, type of acquisition and
type of organization.

c. Describe the use of IV&V during each of the phases of the life cycle
including what products should be IV&V'd, such as documents, systems
software, software modules, design, etc. Describe any specific IV&V
issues in the development phase which will ensure the software is more
supportable in the POSS phase. Also included should be any "Rules of
Thumb" for its use (e.g., percent of development cost for IV&V.

d. Clarify the role of IV&V with software QA, test, systems engineering
and other functions.

e. Define organizational relationships to the IV&V process, who is

responsible and what are the responsibilities.

f. Identify areas where more study/data is required.

4.2.3. APPROACH:

4.2.3.1 Preparation

Prior to the workshop each of the panel members was sent packages
containing background material pertinent to IV&V and to the panel's function.
This material included:

a. The IV&V Panel Charter which defined the objectives and scope of
the panel and raised a number of significant issues to be addressed by the
panel in the workshop.

b. The Management Guide for Independent Verification and Validation
(IV&V), August 1980, from Space Division, Directorate of Computer Resources,
Los Angeles Air Force Station.

c. Pertinent portions of Air Force Regulation 800-14 and AFSC

Supplement 1 to AFR 800-14.

4.2.3.2 Panel Organization and Issues

The charter identified the following subpanels and allocated the
known issues among them for their deliberation and resolution:

a. Subpanel 1 -- The Effectiveness of IV&V. Issues:

Is IV&V beneficial to the overall softvare life cycle cost? How
does it affect reliability and maintainability? How does it
affect ease of maintenance during PDSS?

What problems have been experienced with the use of IV&V? What
are the lessons learned?

4-2-2

b. Subpanel 2 -- Criteria for the Use of IV&V. Issues:

What is IV&V? Independent? At what organizational level?
Verification? Validation?

How should the extent of use of IV&V depend upon the application,
complexity, software size, contract type, project office size?

What range of IV&V should be done for each of the following
during development and PDSS: user requirements, system
requirements, software requirements, algorithms, top-level
design, detailed design, code, test, documentation, etc.

What "Rules of Thumb" exist (percent of total cost for IV&V,
criteria)?

What are the criteria for the use of IV&V in development and in
PDSS?

c. Subpanel 3 -- IV&V and the Software Life Cycle. Issues:

How does IV&V fit into the software life cycle? At what specific
points is it employed? What is the relationship of IV&V to test,
integracion, QA, system engineering, technical assistance,
software maintenance?

d. Subpanel 4 -- IV&V in the Organization. Issues:

Who should do IV&V? Can it be done "in-house"? Should PDSS
personnel be involved in development IV&V? Who should do IV&V of
PDSS software maintenance efforts?

What are the roles, relationships and responsibilities of the
project office, accreditation/test organizations, prime
contractor, corporate structure with respect to IV&V?

Each subpanel was also asked to address the question of what areas

require further study or data concerning the role of IV&V.

4.2.3.3 Panel Operation

The full IV&V panel held two sessions at the beginning of the workshop
to discuss administrative details and the method of operations for the panel.
At the conclusion of the first session, subpanel interest survey sheets were
collected from the panel members.

Based on the survey sheets the co-chairmen finalized subpanel
memberships and selected a chairman for each of the subpanels.

The second full panel meeting was held on Tuesday morning from 0800 to
1000. The subpanel assignments were announced, and a discussion ensued on
fundamental definitions of IV&V and the software development cycle.

4-2-3

The panel then divided into the four subpanels to meet in parallel
sessions for the remainder of the workshop. The panel co-chairmen and
subpanel chairmen met at the conclusion of each day to review and summarize
progress. The results of the review activity provided cues for needed
coordination among subpanels, as well as providing material for the daily
briefing to the general membership of the workshop.

A final full panel session held Thursday afternoon from 1630 to 1730
provided a forum for each of the subpanel chairmen to report on the results
achieved in his area. The results of these briefings and the comments they
engendered were used as the basis for the summary briefing held Friday morning
and for this report.

The following section summarizes the procedings of the full panel
session on 1 November and describes the Plan of Action and Milestones (POA&M)
initially developed by each subpanel:

4.2.3.3.1 Summary of 1 Nov 83 AM Full Panel Session

Purpose: Obtain consensus on an acceptable definition of software development
life cycle and of IV&V.

Approach:

1. Recommend use of the software development life cycle described in
DOD-STD-SDS, and the definitions of IV&V from AFR 800-14, Vol I, AFSC Sup 1,
14 Dec 82.

2. Presentation and discussion by Dr E. R. Baker on MIL-STD-SQAM and the
relation of IV&V to Software Quality Assessment and Measurement.

3. Presentation and discussion by Marshall Potter on available documentation

and references concerning IV&V.

Issues and Resolutions:

1. There were no objections to the use of the MIL-STD-SDS definition of the
software development life cycle by the panel.

2. A lengthy discussion of IV&V and SQAM concluded with an agreement to
tentatively accept the AFR 800-14 definition of IV&V, but to consider, in the
appropriate subpanel, definitions from JLC draft documentation and from the
National Bureau of Standards.

3. A key issue raised during the discussion was: does the result of the
panel deliberations -- recommendations for JLC policy, recommended changes to
standards, and other documentation, etc., -- address existing military
standards or should they address draft JLC standards which represent moving
targets? It was felt that it is reasonable to target the panel's
deliberations to the draft JLC standards.

4-2-4

4.2.3.3.2 Subpanel's POA4s

SUBPANEL 1 - THE EFFECTIVENESS OF IV&V

Tuesday

- Develop plan of attack

- Evaluate availability of data for quantitative considerations
- Evaluate quality of data (fidelity of prediction)

Wednesday

- Develop framework for data collection/modeling/sensitivity analysis
- Begin discussion of qualitative assessments

Thursday

- Complete qualitative assessments
- Examples of IV&V's success
- Wrap-up review; summary

SUBPANEL 2 - CRITERIA FOR THE USE OF IV&V

Tuesday

- Draft of Range of IV&V Activities

Wednesday

- Drafts of

- Rules of Thumb
- Extent of IV&V
- Criteria for Using IV&V
- Definition of IV&V
- Additional Issues for Study

Thurs jay

- Final version of documentation on all areas above

4-2-5

SUBPANEL 3 - IV&V AND THE SOFTWARE LIFE CYCLE

Tuesday

How does IV&V fit into software life cycle?

- Define the total life cycle
- Identify the IV&V tasks
- Define the IV&V products

At what point is IV&V employed?

- Do we need IV&V in PDSS?
- Criteria for employment?

Wednesday

What is the relationship of IV&V to:

- Testing
- Integration
- Quality assurance
- System engineering (also software engineering?)
- Technical assistance (also education of managers)

Thursday

- Software maintenance
- Software maturation

- What are the ar as for further study concerning the role of IV&V?

SUBPANEL 4 - IV&V AND THE ORGANIZATION

Tuesday

- Review issues
- Identify factors which affect the issues
- Begin development of organizational models

Wednesday

- Refine models
- Firm up set of factors
- Assess factors vs the models

Thursday

- Resolve differences in individual assessments
- Refine and organize conclusions
- Prepare final report

4-2-6

4.2.4 DISCUSSION

The following paragraphs summarize the subpanels' deliberations, discussions
and conclusions.

4.2.4.1 EFFECTIVENESS OF IV&V (SUBPANEL 1)

1. Approach

The approach used by the subpanel was to identify generic costs and
benefits; determine which of these could be quantitatively stated and
conversely, those which could only be realistically stated in qualitative
terms; determine if there were existing methodologies and models and data
bases available to support a quantitative expression of the benefit/cost
ratio; if so, reinforce the calculations with case studies and with a
subjective expression of the costs and benefits; describe the
interrelationship of IV&V with reliability, maintainability and other related
factors to more precisely define cause-effect relationships, and provide a
list of lessons learned to optimize the benefits of using IV&V.

The capstone question addressed was, "Is IV&V cost effective? If so, can
it be expressed in terms to support the routine acceptance of its value?"
Initial secondary questions revolved around the impact of IV&V on other
programmatic areas such as reliabilty and maintainability. Derivative
questions surfaced during panel deliberations. Those questions involved the
issues of where directed use and supporting analytical models to support the
direction were appropriate and/or feasible.

The primary goal was to reach consensus on whether IV&V is beneficial.
Secondary goals were to determine if benefits and costs could be quantified
and to interrelate the effects of IV&V to life cycle program sub-elements such
as Reliability, Maintainability and Availability (RMA). Derived goals were to
provide a starting point for more precise estimating tools for PMs to support
IV&V activities and to develop a forceful but pragmatic policy statement on
the requirement for IV&V in programs.

2. Issues Considered

- Is IV&V cost effective?
- Can benefits/costs be predicted?
- Can resourcing required for IV&V be protected?
- Does IV&V provide benefits/costs to the software system as a whole or only

to selected portions of the system?

3. Findings

IV&V is beneficial and appears to be cost effective. It's impact is felt
in potential improvement of the total software system subcomponents and
activities throughout the life cycle. The cost benefit ratio can not be
absolutely measured because the introduction of IV&V into a program changes
the very nature of the systems under investigation resulting in no pure
baseline for comparison. Databases ind methodologies exist to parametrically
estimate the cost/benefit ratio. The precision and confidence of the estimate
is not known due to several factors. The databases were constructed some time

4-2-7

ago for purposes other than for quantifying IV&V bene, ts. Methodologies and

models have not been validated in a controlle i environment. Future work in

data collection, modeling, and validation areas show great potential for

improving the precision of the estimate. The resources required to do this

work have not been estimated. A more detailed discussion is contained in

Appendix D.

There are numerous substantial subjective benefits resulting from the use

of IV&V. Professional judgment of panel members, gained from extensive
experience both in government and industry, was used to evaluate the impact on
the decision process to use or not use IV&V. The consensus was that, in many

cases, these qualitative factors would carry as much or more weight as the
quantitative factors. A more detailed discussion is contained in Appendix E.
Although controlled experiments have not been conducted to deterministically

predict IV&V benefits, actual use of IV&V on different programs provides some
insight into the qualitative benefits of IV&V. A limited number of "case
studies" were hastily analyzed to summarize a common perception in some
documentation that IV&V is a beneficial processs. As in most complex systems,
the cause-effect relationship of IV&V and system improvement cannot be
absolutely determined, although, a pragmatic assessment of the "case studies"
shows that a cause-effect relationship does exist. This summary is also
included in Appendix F.

The quantitative methodology investigated by the panel has utility for
predicting IV&V resourcing requirements. If the deciion is made to apply
IV&V, the program manager could use the model to determine funding
requirements. There are additional heuristically based models which also have
that capability. Some of the models and their descriptions are included in
Appendix G.

4. Conclusions.

Independent Verification and Validation (IV&V) is an established means of
analyzing software programs which has been shown to be beneficial to the
development and entire life cycle quality of virtually all mission-critical
computer systems software.

The benefits derived from IV&V are many. Some benefits can be measured and

quantified in terms of time, dollars, or resources. Some benefits are, by
necessity, unmeasurable and can be addressed only in qualitative terms. A
summary of the benefits of IV&V during a development effort, based on the
experience of the subpanel members, follows:

A. Quantifiable Benefits

1) Earlier detection of software errors, which reduces the impact of

repair. The earlier software errors are discovered and identified the more
adequately the ,;orrection time and resources can be planned for.

2) Program risk is reduced, both in terms of the development effort and
of weapon performance. In the development effort, IV&V can directly influence
schedule and cost by reducing schedule slippages and cost overruns.

4-2-8

B. Qualitative Benefits

1) An IV&V program raises the level of confidence for the PM and his
entire staff.

2) The IV&V program provides an independent, second evaluation of key
ingredients to the software development.

3) Better software documentation evolves during the development cycle,
positively affecting both the development and cost to document.

4) With proper management the prime contractor, as well as government
agencies, can work in cooperation with an educated IV&V entity to solve
problems as soon as they arise. The IV&V team embodies a resident knowledge
of the software that can equal that of the prime contractor.

5) IV&V supports the PM in management reviews by providing independent

data and assessment.

6) The products of IV&V facilitate later CM tasks, such as FCA.

7) IV&V improves technical performance, schedule, cost, and CM
visibility during all phases of the development.

8) IV&V provides data and advice on freezes, baselines, and cutoffs at
major and minor milestones during the development.

9) IV&V can reduce the "black magic" aspect of the Project Office's
understanding of the software development by being available to explain ideas,
problems, and events in everyday language.

10) IV&V is a motivation to the prime contractor to do the best job
possible. The presence of an IV&V contractor has demonstrably changed the
prime contractor's methods in several instances.

11) In the case of multiple computer program configuration items (CPCIs)
for one weapon system, each developed by a different subcontractor, the IV&V
contractor often has the best knowledge of the total, integrated software and
the entire set of program interfaces.

12) Error corrections are evaluated for accuracy. This amounts to
closed-loop evaluation with its associated confidence.

In a post deployment software support (PDSS) environment, IV&V plays the same
roles as above, as modifications or improvements are formulated and executed.
In addition, IV&V before and during PDSS carries thesw benefits:

1) In the transition to PDSS, proper development IV&V guarantees a set of
software documents that are complete and correct -- a must for timely and
reasonably-priced PDSS.

2) PDSS IV&V facilitates a continuous operational capability in the face
of modification or enhancement by reassuring correctness and providing insight
into software changes.

4-2-9

C. Benefits vs Cost for IV&V

Where the benefits of IV&V can be quantified, many models have been
proposed and used to show benefit in real dollars. An example of such a model
is described in Appendix H.

Where the benefits of IV&V cannot be quantified, the PM or entity
responsible for the software must evaluate each non-quantifiable benefit in
light of his or her particular situation and asses how much benefit they
expect to receive in terms of program stress, morale, and expectations.
Obviously, these factors will vary from person to person and from project to
project, but in all cases, the benefits should be considered to be over and
above the resource savings gained from the quantifiable benefits.

D. Lessons Learned in IV&V

The group experience of subpanel members led to agreement on lessons
learned. It is believed that these items can be of benefit to others involved
in IV&V.

1) It is beneficial to begin IV&V as early as possible. Ideally it
begins analysis tasks as soon as a system level specification is available.

2) Whether or not resources for IV&V are limited, the effort should be
thoughtfully prioritized and tailored to the critical areas of the software.

3) It is very beneficial to incorporate provisions in the developer's
contract or charter that facilitate IV&V. This requires involvement by an
IV&V expert in the formulation of the prime contract.

4) The IV&V program (and its IV&V management plan) must be made and
considered flexible, so that schedules and manloading can be made to follow
and respond to the "real world" of the development program.

5) IV&V accomplishments and successes should be recognized and publicized.

6) Records should be kept of all IV&V analyses and findings, both formal
and informal, to guarantee both IV&V performance tracking and data
availability for future programs.

7) Both formal and informal change procedures need to be established
early and maintained to provide timely and correct data flow to and from the
IV&V team.

8) An IV&V manager should work to establish and carefully maintain a
smooth, orderly, and diplomatic relationship between the IV&V contractor, the
project office and the prime contractor.

9) The IV&V staff's skill and qualifications are a more critical
ingredient than the IV&V tools used.

4-2-10

It is worthwhile to to postulate a JLC policy statement (even though not
supported by the subpanel charter). There is strong evidence that
cost/benefit analysis is feasible, that implementation mechanisims exist
(resourcing prediction) and the directive channels are available (DODDs, AFRs,
etc.). The subpanel, therefore, formulated the policy statement in
Appendix I. The main point made in the policy statement is that IV&V is as
important as other parts of the development/PDSS activity and should be
seriously considered.

5. Recommendations.

- Subpanel policy in Appendix I be issued in an IV&V policy directive.

- JLC endorse further data collection model improvement, model exercise
and calibration activities to provide a more precise resource prediction
capability to PMs for solicitation of resources for total program
implementation and to decision makers to insure that programs have
seriously considered the use of IV&V.

4-2-11

4.2.4.2 IV&V CRITERIA (SUBPANEL 2)

1. Approach

The IV&V Criteria subpanel was chartered to develop a definition of IV&V,
define criteria for the use of IV&V, and develop an approach for identifying
an appropriate range of IV&V activites. The subpanel considered alternative
perceptions of IV&V, ranging from the type of IV&V typically associated with

mission critical applications to a set of activities embracing all checks that
might be performed to enhance software life cycle planning, reliability, and
supportability. These disparate perceptions of IV&V became a key issue as
they impact the definition of IV&V criteria, the role of IV&V in the life
cycle, and organizational issues being addressed by other subpanels.

The subpanel adopted the IV&V definition contained in the JLC Policy on

Computer Resource Management as the basis for further discussion. Next the
subpanel examined the potential range of IV&V activities that might be
performed during development and PDSS, including IV&V of

o System Requirprments
o Software Requirements
o Algorithms
o Top-Level Design
o Detailed Design
o Code
o Test
o Documentation
o Reviews/Audits

Each of these IV&V activities was further subdivided into constituent
subactivities that would accomplish the corresponding IV&V activity.

The subpanel next determined the conditions under which these various IV&V

subactivities would be appropriate. This analysis led to a consensus that a
small set of discrete IV&V levels could be identified and that criteria could
be developed to guide the Government project manager in determining the
appropriate IV&V level for his project.

2. Findings and Conclusions

2.1 Definition of IV&V. The subpanel considered current JLC, Air Force,
National Bureau of Standards (NBS) and other candidate definitions of IV&V.
The most suitable definition of IV&V was found in the JLC Software Quality
Program policy. However, this definition contained minor terminology
inconsistencies and minor changes are recommended in paragraph 1 of Appendix J.

2.2 IV&V Levels. Four levels of IV&V were identified ranging from (for
lack of more appropriate names) "bare bones" through "full blown" IV&V
efforts. The subpanel recognized that early IV&V activities result in
greatest payoff, therefore less intensive IV&V levels should focus resources
on these high-payoff activities. The goals of each of the four IV&V levels,
shown in paragraph 2 of Appendix J, were defined with this principle in mind.

4-2-12

2.3 IV&V Criteria. Criteria are needed to determine which level of IV&V
is applicable to any given project. Although the AFSC Space Division
"Management Guide to IV&V" provides an excellent foundation, it was found
deficient in that it considers only a minimum number of factors. A more
suitable concept was found in the JLC Software Quality Program Policy's
criteria for determining SQAM independence (paragraph 3 of Appendix J).

The subpanel suggested that a numerical rating system serve as a means of
determining the level of IV&V. This numerical rating system could be
developed Trom the SQAM criLeria, dS follows:

o Each criterion could be assigned a numerical weight, indicating its
relative importance within the system

o Each criterion could be assigned a numerical risk rating (replacing
the current risk ratings of high, moderate, and low)

o A score could be calculated as the sum of each criterion's weight
multiplied by its risk rating

The total score would indicate which IV&V level should be employed, ranging
from no IV&V to full blown IV&V. The criteria, weighting schemes, and risk
ratings remain to be formulated.

The subpanel recommended that studies should be performed to augment the
SQAM criteria as necessary and develop a numerical rating system. The
subpanel further recommended the following modifications to JLC documents:

o Software Quality Program Policy - add the augmented criteria,
rating system for assigning IV&V levels, and definitions of IV&V levels in
terms of their constituent subactivities.

o MIL-STD-SQAM - Incorporate revised definition of IV&V and add IV&V
task statements for each IV&V level.

o Software Quality Program Guidebooks - add suggested assignment of
tasks to IV&V levels in Volume II.

2.4 Range of IV&V Activities. Major IV&V activities were identified as
System Requirements Verification, Software Requirements Verification,
Algorithm Verification, Top Level Design Verification, Detailed Design
Verification, Code Verification, Test Analysis/Validation Testing,
Documentation Analysis, and Participation in Reviews and Audits. For each of
these major activities, constituent subactivities were identified. Then, the
subgroup determined the subactivities applicable to each IV&V level. The
results of this analysis, shown in paragraph 4 and 5 of Appendix J, reflects
the goals established for each IV&V level.

3. Recommendations

2.1 Definition of IV&V. Modify the definition uf IV&V in the JLC Policies
on Computer Resource Management and Software Quality Program in accordance
with paragraph 1 of Appendix J.

4-2-13

3.2 IV&V Criteria. The following recommendations for further study were
made:

a. The following factors should be studied for possible inclusion as
criteria for the extent of IV&V.

(1) Programmatic complexity (type of procurement, schedule
constraints, etc.)

(2) Environment for use (application, i.e., weapon system, ATE,
et.)

(3) Overall cost (total program cost)

(4) Hardware limitations (memory constraints or ability to rehost,
etc.)

(5) Program Office resources (funding, personnel, etc.)

(6) Modifiability of original baseline (to be considered for
enhancements or add-ons to an existing program)

b. In order to develop a numerical weighting system, schemes need to
be formulated for:

(1) Assigning numerical risk ratings (to replace "high, moderate,

low")

(2) Weighting each criteria to indicate its relative importance.

(3) Calculating a numerical score which can be mapped into the
appropriate IV&V level (ie. bare bones, low, moderate,
full blown).

4-2-14

4.2.4.3 IV&V IN THE LIFE CYCLE (SUBPANEL 3)

The subpanel on IV&V and the life cycle considered ideas on how and where the
IV&V tasks fit into the software life cycle. In addition, this subpanel
described the relationship of IV&V to various facets of software development
and PDSS. The method of work was to address ourselves to various questions
and their component parts with the overall goal of producing a graphic
representation of how and when IV&V fits into the software life cycle.

We considered several items:

- How does IV&V fit into the software life cycle?
- What is the total life cycle?
- What are the IV&V tasks?
- What are the IV&V products?
- At what point are the various IV&V tasks applied?
- Do we need IV&V in PDSS?
- What is the relationship of IV&V to testing, integration, quality

assurance, system engineering, technical assistance, software
maintenance, and software maturation.

We also considered areas in IV&V that require further study.

We concluded that the total life cycle was a continuing loop of the
MIL-STD-SDS (draft) model for system and software development (Fig. 4.2-1). Post
deployment software support includes in some degree or other, all of the same
steps in that development cycle.

Fiqure 4-2-K-i in appendix K is a graphic representation of how and where IV&V
fits into the software life cycle, including PDSS. The following paragraphs
further discuss and report our findings and conclusions to the previously
mentioned questions.

While discussing IV&V in PDSS we discovered some additional areas that might
require IV&V efforts since they are often encountered in PDSS but are not
necessarily within the pre-deployment software life cycle. These areas are:

- An upgrade in hardware using the same system.
- An optimization of a compiler.
- Rtinuving patches and incorporating them into the source code.
- Optimizing the source code (removing dead code, un-needed routines short of
a redesign).

- Checks for the actual system performance boundary.
- The education of program management staffs and other IV&V contractors for
continuity.

Findings and Conclusions

The following series of statements represent the findings and conclusions
of subpanel 3. They are not purely a single set of conclusions derived from
the above discussion but are a series of observations generated by subpanel
members during discussions on the assigned topic. They are not tightly
restricted in subject matter, nor are they in total agreement. They do
however, offer specific insight into the application of IV&V across the life
cycle of a system that incorporates software.

4-2-15

~ ~0

WII

'PI '-r

~~LK 1<-7:

'0 C-0

414

N- 5P,

<02:~~~~ 00202vIHFi
,ouEX -4 *- Pi 0 L)4

C)i Lo0 41

U--l

1. IV&V is difficult, labor intensive, expensive, and impacts program

schedules.

2. It is better to do IV&V than not with respect to mission-critical systems.

3. Decision-making with regard to development of mission-critical systems
tends to be driven by schedules rather than by best technical approach.

4. As a consequence of finding 3, the need for IV&V increases as confidence
in the product decreases due to schedule-driven compromises in approach.

5. The cost of post deployment support can be reduced by adequate IV&V
prior to deployment.

6. However, since mission-critical systems characteristically have a long
life cycle with continuing system modification in response to changing
mission requirements, "development" never really ends. Thus, the
pre-deployment life cycle activities are all continued after deployment of
an initial version of the system.

7. A consequence of 6 is that pre-deployment IV&V activities are also
appropriate during POSS.

8. There is a potential for supplementary IV&V activities required for
PDSS. Examples include:

- Verification of the compatibility of the software engineering
environment used during development with that used for post-development
support (i.e., will the delivered baseline be maintainable using the
standard tools available to the post deployment software support activity?)

- Code retirement validation (i.e., assuring that exactly all of the code
required to be retired from a deployed system is, in fact, excised).

- Verification of patch replacement (i.e., does the executable software
built from revised source code perform the same as the previous, patched
program? Also, has appropriate documentation revision been performed?)

- Verification that factors affecting post-development support are
addressed during development (for example, verifying that machine-dependent
and operating system-dependent functions in the software are minimized and
encapsulated so that the post-deployment introduction of improved standard
processors will be facilitated).

9. Automated support tools for IV&V should be incorporated in software
engineering environments under development within DCD.

10. IV&V is applicable not just to deployed software, but also to
simulation/stimulation software, test scenario generators, and other
software products that directly support the development and maintenance of
the deployed product.

4-2-17

11. IV&V data produced during development of the application product must
become part of the product baseline. Such data provides historical
perspective for post-deployment software support. Further, availability of
such data is a valuable asset for test, integration, quality assurance,
system engineering, and software engineering teams involved with product
development.

12. One of the best ways to train personnel for post-deployment software
support is to involve them in IV&V activities.

13. IV&V must include checks on CM to ensure adherence to CM and library
control procedures.

14. There is a need for IV&V in the maintenance environment (PDSS). There
is also a need for IV&V during the development phase to ensure the software
product is maintainable using a standard maintenance facility.

15. Confusion exists between the software development process and the

software life cycle.

The process is the translation of requirements into code.

The life cycle consists of serial iterations of the process. With each
iteration some portion of the previously developed software is carried
forward and integrated into the new version. Post Deployment Software
Support is characterized by the fact that each version consists largely of
software carried forward from the previous version.

16. The development process (which repeats and repeats throughout the life
cycle) always requires some form of verification and validation.

17. Experience has demonstrated that independence is an essential
characteristic of successful verification and validation. It is not
effective or fair to ask or allow the individual or group who develops a
product to evaluate that product.

18. The allocation of verification and validation tasks to government
agencies or contractor resources is primarily a question of availability of
qualified personnel.

19. Few software developments actually begin from scratch. Most use some
previously existing software, if only a compiler and an operating system
(OS). The tendency in the future, as software becomes more and more reusable
will be that "new" developments incorporate more "off-the-shelf" code. Thus,
the differences between post deployment software development and
pre-deployment software development will decrease.

Software development and software management involve a wide range of
disciplines. System engineering, systems analysis, software engineering,
configuration management, test engineering and quality assurance are all
involved in producing a successful software product.

4-2-18

The developing contractor employs all of these disciplines in a development
role, the acquiring project manager employs personnel from the disciplines
in a management role. In addition, he may utilize resources in a third role
-- independent verification and validation.

A possible analogy that clarifies the relationship of the IV&V effort to the
functions listed above is that of a doctor's patient, who, faced with a
recommendation for major surgery, calls in another doctor and asks for a
second opinion. That is, an independent analysis of symptons, test results,
and procedures aiming at an independent conclusion that either supports or
challenges the original recommendation. Given competency on the part of
both doctors, the second opinion will either provide the patient with the
confidence to proceed with the operation or alternative choices to be
considered. The IV&V activity, like the second doctor, is hired to provide
an expert opinion on the status of the software development process. Unlike
the second doctor, the IV&V agency generally operates in a continous manner,
providing an ongoing assessment of the software development process. The
IV&V agency forms its opinion by applying the methodologies of software
engineering in a cost effective manner. Thus it uses a mix of system
engineering methods, quality assurance methods, test and evaluation methods,
and configuration management methods as necessary in addition to assessing
the results of such activities already performed. The degree to which the
IV&V agency repeats or duplicates the activities already performed under
such disciplines, depends on the criticality of the software in question and
the adequacy of the data developed. Shortages of resources, however, have
often resulted in the IV&V agency being the principal evaluator or collector
of data in these areas. IV&V must be tailored to be cost effective.
Therefore, some division of tasking between contractor resources, project
manager resources and IV&V resources will always occur. This does not mean,
however, that there exists some natural division between QA and IV&V or that
there is some clear distinction between IV&V and test and evalution. The
disciplines of systems engineering, software design engineering, quality
assurance, configuration management and test engineering are all necessary
for successful software development. Likewise the IV&V agency must consider
and evaluate all of these in forming an independent assessment of the status
and condition of the software product under development and in generating
recommendations for actions by the program manager.

Relationship of IV&V to Test, Integration, and QA

IV&V activities during software development and software maintenance
encompass similiar activities to those of test, integration, and QA; the
primary difference is in the independence and the degree of involvement
based on criticality of the software.

For testing, both QA and IV&V are involved in reviewing and evaluating test
plans and procedures. QA activities are primarily for verifying
completeness and conformance to standards while IV&V is more concerned with
verifying adequacy and traceability of requirements. The involvements of
IV&V becomes more intensive as the testing progresses from unit test to CSCI
validation, integration, and system level testing; QA activities during test
conduct involve monitoring and witnessing testing for compliance with
procedures while IV&V is concerned with evaluating adequacy of test cases
and test results. In addition, IV&V may conduct tests for critical software
of critical functions. IV&V also supports government agency testing by
assisting in preparation of test procedures and test conduct as required.

#-.2 -/9

QA and IV&V of the software development and maintenance process are already
related; many of the activities are similar in nature but differ in intent.
Review of software documentation by QA is focused on completeness and
compliance to standards and procedures while review by IV&V is focused on
adequacy, traceability of requirements, and identification of deficiencies
from a user/mission point of view.

QA is also focused on auditing the development process for compliance to
approved plans, such as the software development plan and the software CM
plan. IV&V is focused on the adequacy of such plans.

(Note: A minority opinion held that the above discussion implied a
definition of QA, while the original JLC approach was to define appropriate
functions required to evaluate the software product, associated
documentation, and processes, leaving the allocation of these functions to
the commands or program managers. These evaluation functions, including
both assessment and measurement tasks, encompass what IV&V, Test & QA
organizations are thought to perform.)

Areas Where Further Study is Required

1. Should "reused" or "retained" units of software be treated differently
for IV&V? If so, how? To what extent does software reutilization mitigate
against the need for IV&V?

2. What set of IV&V tools are appropriate to build into emerging standard
software engineering environments? Are different tools required according
to whether the SEE has an orientation to Ada or to some other languages?

3. If a standard set of tools is not identified or developed, what
criteria should be used for selecting from anong alternative offerings of
IV&V tools?

4. How does the expansion of the use of microprocessors and firmware affect
I V&V methodology?

5. How should IV&V of distributed processing systems differ from that of
centralized applications?

6. What contractual mechanisms will assist in assuring adequate IV&V is
performed? Do these differ if the application is under development by a
prime contractor and several sub-contractors?

7. What documentation is necessary for the IV&V deliverables in order to
put them to their proper use?

8. What IV&V procedures are required to deal with gode optimization options
(e.g., use of optimizing compliers, suppression of run-time checks, etc.)?

9. What IV&V procedures are appropriate for determining, during post
deployment software support, that the accumulation of software modifications
has consumed the original system design and that it would be better to
redesign the whole system than to further modify the deployed software?

//- 2-

10. What, if any, additional formal reviews should be established as part
of post deployment software support?

11. What specific IV&V functions are required for security requirements of
software systems?

Recommendations

1. That the JLC publish the information in Appendix K in a policy document.

2. That the issues raised under areas of IV&V that require further study be
considered for the next JLC software workshop.

4-2-21

4.2.4.4 IV&V IN THE ORGANIZATION (SUBPANEL 4)

INTRODUCTION

1. Subpanel Objectives/Products

Identify issues and alternatives as guides to DOD commanders and program
managers addressing allocation of V&V or IV&V tasks t.. their organizations
or contractors for software development and PDSS.

2. Questions to be addressed

a. Who should do IV&V? Can it be done "in-house"? Should PDSS
personnel be involved in development IV&V? Who should do IV&V of
PDSS software maintenance efforts?

b. What are the roles, relationships and responsibilities of the project
office, accreditation/test organizations, prime contractor, and
corporate structure with respect to IV&V?

c. What are the areas that require further study/data concerning the
role of IV&V?

The questions regarding IV&V and its allocation to organizations are
extremely complex and depend upon numerous factors, some of which are
outside the control of the Program Manager.

One of the factors is the extent of V&V tasks or functions. For example,
IV&V could include work efforts by the developer, program manager, product
assurance, testers and users depending upon the definition of IV&V. Thus,
allocation of IV&V tasks to particular organizations, particular projects,
particular commands, or particular services depends upon that definition.

Another factor affecting allocation of V&V tasks is the regulatory
constraints placed upon the project, command or service. Such constraints
constitute the "business" structure of that entity and may dictate which
organizations perform V&V.

Interrelated to the definition of V&V and the business structure is the
meaning of independence, for interpretation of "independence" may determine
who is assigned V&V responsibilities within a specific project, command and
service.

For those and other reasons it is difficult to mandate a general, joint
service policy as to which specific organizations should perform IV&V.
Instead, only issues which should be considered by a service in deciding
allocation of IV&V tasks will be addressed. Secondly, management models will
be described and evaluated against the issues in terms of advantages and
disadvantages for each management model.

4-2-22

DEFINITIONS

The definition of elements of IV&V are, as discussed earlier, critical
factors for the allocation of IV&V tasks to organizations within the software
development community. Under the philosophy proposed by the Joint Logistics
Commanders, verification and validation is a set of tasks whose ultimate goal
is to evaluate, assess and measure (test) the software development process,
products, and associated documentation and provide feedback of the evaluation
to PM, commander, or service as appropriate. (Here the word "development" as
used for software includes the development in the PDSS environment.)

Assignment of the evaluation tasks (IV&V) to organizations is left to the
individual service implementation.

The definitions used by this subpanel were those developed by subpanel 2
(see Appendix J).

ISSUES FOR COMPARISON

The IV&V subpanel discussing IV&V in the Organization decided to
investigate a limited number of organizational models and compare them against
each other by using a list of issues. Six major groups of issues were
initially agreed upon by the members of the subpanel. These issues,
capability, resources, time, criticality, side benefits, and independence were
not understood by any members of the subpanel to be orthogonal to each other.
There are several interrelationships among the different issues. These
interrelationships are discussed in some detail.

The issue of capability of the IV&V group to accomplish their mission was
subdivided into two subcategories; (1) Functional Capability and (2) Training
and Skills. IV&V is a process where an independent group of computer system
professionals are assigned the responsibility to provide a continuous
oversight to assess, review, analyze, test and verify correct system
performance of the software. Capability of the group is divided into
functional capability to use the facilities and tools available in an
effective manner and the overall capability of the IV&V group to assess the
problem space effectively. Two separate backgrounds are needed by the IV&V
professional. One is an understanding of the specific problem space (e.g.
command and control, communications, navigation, intelligence gathering, air
traffic control etc.) and the other is associated with the tools and methods
of software IV&V. In both cases it is understood that the IV&V group will
have to provide training to keep the skills and talents of the established, as
well as new members of the IV&V organization, up to a level of excellence so
that they can effectively perform the IV&V mission.

The issue of resources was divided into five subcategories. The first
was one of funding. The perspective the subgroup took was, if the function of
IV&V was required, what organization would be able to accomplish the mission
successfully with the minimum amount of financial resources. Some members of
the group expressed concern that management would potentially use an IV&V
organization that was equipped to do only a minimal amount of IV&V. This
concern was relieved by the fact that another subpanel was addressing the
degree of IV&V required and had made models for IV&V from "bare bones" to
"full blown" and was investigating when, where and how to apply these
different levels of IV&V.

4-2-23

The next resour-e addressed was people and skills. The following points

were discussed. Do the people with the requisite skills exist in sufficient

quantity today to meet our needs? If people are available, would they lose

their skills and talents in some organizations faster than in others (e.g.

Headquarters versus a field activity or service laboratory)? Would the IV&V

organization be able to make maximum use of the skills mix within the overall

organization better than another organization (this is related to the concept

of "economy of scale")? Does one organization have a better "environment"
that would help recruit and hold IV&V personnel?

Under the resource subcategory of facilities the subpanel looked at two

perspectives, one was how close the organization was geographically to both

the PM and the Developer (i.e. location). The other perspective looked at the
quality of the facilities in order to attract quality personnel and make the
work enjoyable.

The subcategory of resources relating to tools also had two perspectives.
Are the tools adequate to accomplish the mission? This is important in that
new tools can not be easily integrated into the organization if experience on
their effectiveness is not already in place. An additional perspective
addressed the capability and potential costs of acquiring the data rights to
all IV&V tools. a

The final Resource subcategory was security. In the main, this issue
addressed the capability of an IV&V group to acquire a sufficient number of
cleared billets to accomplish a job and to secure the work environment from
unauthorized access. Most Mission Critical Systems (MCS) are of sufficient
importance to DOD to require some concern for security, even if no classified
information is involved. Some MCS deal with extremely sensitive classified
information that is very tightly controlled on a need to know basis. In all
cases the effectiveness of the IV&V organizations' capabilities in regard to
security have to be addressed.

The third major issue was Time. Time is associated with schedule. Two
important points were addressed by the panel. One was, how long it would take
to get an.IV&V group up and working. The other perspective was, what effect
would the different prototype IV&V organizations proposed have upon the
schedule if there were problems or difficulties involved in the delivered
projects? It should be noted at this point that one organization may be easy
to get started yet have a high negative impact on schedule. As a result of
this internal interdependency, the views of the members of the subpanel were
somewhat divergent.

The issue of Criticality addressed the effectiveness of a particular
organization upon the most critical DOD systems. Is one organization more
"robust" in meeting its mission if a highly important and critical system is
placed under its authority? Another pertinent question addressed the fact
that a critical system may require extensive IV&V. Is one organization better
equipped to accomplish this task than another?

The subpanel addressed the issue of Side Benefits (effects) in some unique
ways. The most obvious side benefit was a potential training of the POSS
organization in advance of its mission of maintaining the software. Other
side benefits such as corporate memory, enhancement of the IV&V tool set and

4-2-24

effective on-the-job training (OJT) for IV&V personnel under IV&V masters were
discussed. In some cases, some organizations had very strong negative side
effects. These were also addressed. Some of these included poor morale,
tools that are not known or understood, and the wrong use of a tool in
specific situations.

The final issue addressed the Independence of the IV&V group from the PM.
In all cases the IV&V group was assumed indepeident of the software
developer. It was the general consensus of the subpanel that independence
from the PM was a positive factor. For the most part PM's are concerned with
several factors that may blind them in analyzing the effects of problems
discovered by the IV&V group. Noting that there are several perspectives, the
capability of the IV&Y group to independently raise problems to higher levels
of management was considered a significant benefit. This situation would only
occur if the IV&V group is independent of the PM in the chain of command.

As mentioned earlier, there are several interpendencies among these
factors. The financial resources available effect the capability of the IV&V
activity. Critical DOD programs require additional IV&V and thus require more
financial resources and highly skilled IV&V personnel. Highly critical
programs have a need for the IV&V agent to discuss problems with management
above the PM if the IV&V group's recommendations are ignored due to other
pressing issues in the eyes of the PM. This analysis is not meant to be
exhaustive. It was written to provide a better understanding of the analysis
that the IV&V subpanel on IV&V in the organization accomplished during the
workshop.

ALTERNATE MANAGEMENT MODELS FOR IV&V

Numerous organizational structures exist for the accomplishment of IV&V.
To address all such structures in detail would be impossible. However, most
of those structures may be described generically from the standpoint of a
limited number of management models. Two management models, relating to IV&V
efforts, are briefly addressed here in terms of the basic issues described
above and the associated control methods such as command, operational, and
funding control. Most other management models are variants on the two models
discussed.

The intent of this section is to offer the program manager examples of
specific management models and associated advantages or disadvantages in terms
of the basic issues discussed above. He, then, may extrapolate from these
models a method to attack his specific situation and, ultimately, facilitate
his decisions to allocate IV&V tasks to particular resources available to
him.

4-2-25

PROGRAM MANAGER MODEL

Model I (Fig 4.2-2)

This model is based on the assumption that the IV&V effort is totally
under the control of the Pro-, am Mandyer (PM). The PM will decide the levels
of IV&V to be performed, the agency (or agencies) to perform the IV&V, and how
the results are used. Various options exist for selection of IV&V personnel
(direct staff, Matrix, Test Activity or Contractor) but all share the common
trait that the personnel are directly responsible to the PM and have no
external reporting vehicle.

This model is basically the "Status Quo" in many organizations. The IV&V
activities are thus dependent on the PM's view of its importance and budget
considerations. While policy and training could raise the level of PM's
awareness of the need for IV&V, it would still have to fit within the overall
budget, and be subject to PM action to operate on the IV&V results.
Independence is only measured from the developer/contractor and not from the
developing agency.

CAPABILITY

IV&V functional capabilities and personnel training and skill levels are
an integral part of this issue. Based on this model, the ability to respond
to this issue area was ranked low to medium. Rationale for this decision
centers on the assumptions that the IV&V group is temporary, may lack
experience in the test arena, is task driven by the PM and may not have access
to adequate software support tools.

Personnel training may cover a period of 2 to 3 years depending upon the
embedded computer system (ECS) complexity. The PM must therefore plan far
enough in advance to staff the IV&V group enabling the group to be
functionally capable to perform IV&V tasks.

RESOURCES

Resources include funds, personnel, facilities, facility location, tools
and security. Since scope, objectives and goals of the IV&V effort are set by
the PM, the span of resource development could range from maximum to minimum
depending upon the PM V&V philosophy. This issue was therefore ranked
medium.

Funds are the primary resource with personnel, facilities, facility
location, tools and security being secondary and dependent upon funds.
Generally, when program funds are short, the IV&V level of effort will be
reduced.

The PM must actively seek personnel to be matrixed into the Program
Management Office (PMO) to support each IV&V effort. This problem is two
fold. The PM may have difficulty in funding qualified individuals and then,
if found, qualified personnel may be reluctant to work under an inflexible
model where the PM sets policy and procedure.

4-2-26

Fig .2-2ControrAut-iorlty Responsiomty

-- Fund i rg

Program Manager Model

4-2-27

Facilities, facility location and tools can be grouped together. Under
this management model, the PM is solely responsible for establishing facility
location, specifying facility requirements and then defining the software
support tools to perform the IV&V effort.

The PM must also specify security requirements. If a secure environment
is required, the PM must budget for and develop a secure facility.

TIME

Response time and schedules are grouped into this issue. Time has been
viewed from two points in this model. When viewing time as a PM one
conclusion is reached which is totally different from time as viewed by the
IV&V group.

When considering time as a PM, it is ranked medium to high. That is, the
PM has a high degree of control over response times and schedules. As an
example, software delivery dates are normally not slipped as a result of not
completing the test phase. Instead, the scope of testing is varied to meet
the shipping date.

This in turn causes the time issue to be ranked low by the IV&V group.
This group has no control over response time and schedules. Their hands are
essentially tied by the PM.

CRITICALITY

This had little differential impact between the two models. The only
difference would be the view of the criticality of the software (and its IV&V)
to the overall project. A PM without background in software acquisition may
not understand the importance of IV&V to the process. In this case the PM
model would have a low rating.

SIDE EFFECTS

This model results in a medium level of side benefits to the Government.
Depending on implementation, learning curve benefits may not be available to
either the next project or to the POSS. The need to "Re-invent the wheel"
during the IV&V process is a real possiblity. Transfer of IV&V tools and
corporate knowledge to the PDSS agency is not facilitated.

On the other hand, with the IV&V effort totally under the control of the
PM, integration of the IV&V effort into the overall plan can reduce asset
utilization and its cost. Duplicative testing may be reduced. This model
provides potential short term side benefits at the expense of the longer
term.

INDEPENDENCE

This model has a low level of independence from an overall Government
standpoint. In the best case, the IV&V personnel would be given adequate
resources and importance to accomplish the task. Financial and programmatic
considerations could force a reduction in the effort or repression of the
results. Without any independent appeal to a high authority, the goals of an
IV&V effort are easily lost.

4 -2-28

IV&V ENTITY MODEL

Model 2 (Fig 4.2-3)

The PM/PDSS organization receives guidance, responsibility, and authority from
a higher manager or commander. The PM/PDSS organization also receives
adequate funds to perform his function. The PM/PDSS organization provides
guidance, responsibility, authority, and adequate funding to a doing
organization. In most cases during development the doing organization is a
contractor, but could also be internal.

The IV&V entity. At the same level of command as the PM/PDSS organization is
a group identified as the IV&V entity. This formal, in-house entity is
responsible for performing IV&V on multiple projects. IV&V is performed by
this in-house entity or an appropriate mix of government/industry workforce
responsible to the in-house IV&V entity.

The IV&V entity, because of its formal structure has a staff function
which includes generating IV&V policy, research and d v offtools
techniques, facilities, and training to advance the sn-e-art of IV&V.
Funding for the IV&V entity is twofold. The bulk of the funds are provided by
th individual PM/PDSS organizations to support their individual projects. As
such, guidance, responsibility and authority are provided with this funding.
Independent assessments of the doing organization are provided to the PM. The
IV&V entity also receives guidance, responsibility, authority and the
remaining portion of its funding from the higher manager or commander.

Assessments, independent of the PM are provided directly to the higher
manager or commander. This feedbck loop is not expected to be used routinely
but must be there to assure that the PM is giving adequate management
attention to the IV&V entity. Otherwise the PM could bury findings/problems
until later in the life cycle when they would be more costly to remedy.

The IV&V sub-contractor/government entity. The IV&V
contractor(s)/government entity(ies) are the appropriate mix of government and
industry workforce to support all work efforts the IV&V entity is responsible
for performing. These entities have specific statements of work similar to
mission/functions of in-house entities. These entities are transparent to the
PM. Guidance, authority and funding are received from the IV&V entity.

CAPABILITIES

In terms of capability, this management model is generally more powerful
than other models in that the IV&V entity can usually .attract and train
talented individuals who have or will obtain IV&V experience. Secondly,
variations of workload and complexity of projects can be more readily
accommodated because the work effort can be distributed within the IV&V entity
or contracted to companies which can handle the workload complexity problems.

4-2-29

DEVELOER SUCNTRTOR

Fig 4.2-3Cotro/Athr't'~spos77t

....uf.....

EVELIV&V EntityTRModel

..... 4-2-3.

The functions performed by the IV&V entity can be tailored to a project
within the overall constraints (capabilities, tools, approach, methodologies)
of the IV&V entity. This tailoring makes the IV&V activities specific for
each project and consistent for multiple projects within a command or
service. In addition, this consistency is supported by the corporate memory
provided by the IV&V entity. This corporate memory includes the task,
facilities and potential for training across multiple projects.

On the other hand, tailoring of the capabilities or functions of the IV&V
entity which make up its corporate memory may not be as efficient for a
specific project as having a totally dedicated, program manager group
performing IV&V.

RESOURCES

In this model the IV&V support to the Program Manager (PM) is under
funding control of the PM. The amount of effort for a specific project can be
tailored by the PM who in turn, negotiates with the IV&V entity for the amount
of effort and cost of the effort commensurate with the project goals and
objectives. There is a possibility that the IV&V entity, which enjoys a
second funding source, could supplement the PM if project funding is
inadequate to perform requisite IV&V functions.

As with capabilities, resources benefit from the ability to accommodate
varying workloads.

The additional funding source allows the possibility of research and
development within the IV&V entity to enhance the state-of-the-art of IV&V
techniques, tools and facilities while permitting exploitation of internal R&D
efforts of contractors without regard to data rights. Here also, is the
potential for competitively selecting only those contractors who are leading
the state-of-the-art.

Disadvantages for this issue include the possible loss of control of the
PM if the IV&V entity forces higher management intervention to obtain IV&V
objectives. There is also a chance that the separate funding for the IV&V
entity is derived from a tax or burden on multiple PM's, thereby taxing the
PM's twice. It is recommended that a funding line separate from the PM's be
sought to provide partial independence for the IV&V entity.

Security, location, and data rights do not appear a problem within the

model.

TIME

This management model has the capability to be more responsive to the PM
with regard to turnaround time and reducing the learning curve. This is
because the formally established IV&V entity has existing skills, techniques,
tools, etc., in place that could be readily applied to a specific project. On
the other hand, a specific PM may not receive as quick a response as he would
like because the skills, techniques, tools, etc. must be balanced against the
requests of many PMs.

4-2-31

CRITICALITY

Variations of workload and complexity of projects can be more readily
accommodated because the work effort can be distributed within the IV&V entity
or contracted to companies which can handle the workload complexity problems.
This allows appropriate work effort to be assigned to individuals or groups
with the talent to most efficiently perform the work.

SIDE EFFECTS

There is a good opportunity, because an IV&V entity remains in existence
for multiple projects, to offer training to organic DOD personnel by exposing
those personnel to contractor techniques and tools. This training may be
extended to PDSS groups if they are involved with the IV&V activities during
development.

INDEPENDENCE

Independence is essentially two fold in this management model. At the
lowest level, the IV&V entity performs and provides independent assessments of
the doing organization and provides it to the PM. At the highest level, the
IV&V entity performs an independent assessment of the PM which is provided to
the higher manager or commander. This feedback loop is not expected to be
used routinely but exists so appropriate management attention is provided to
IV&V findings and problems. The obvious disadvantage of this model is that
the PM loses some control of his project because of the IV&V link to the
commander. This may force the PM to use a standard amount of IV&V. The other
disadvantage is that it is difficult for the IV&V entity to divide its
assessment responsibilities, and can lead to antagonism between t;.3 IV&V
entity and the PM.

In terms of advantages and disadvantages, model number 2 appears to be
superior to the first model from the perspective of the IV&V entity, program
manager, and service. Most of the advantages to this model are retained when
the project transitions to PDSS environment and the PM position is replaced by
the PDSS manager.

CONCLUS ION

The "IV&V in the organization" questions can be grouped into two broad
categories:

o Management concepts for actually doing IV&V efforts

o How these concepts affect the relationships between the various
entities involved in a software development.

Any organization with the requisite level of competence can conduct IV&V
provided it is not part of the software development, organizationally or
contractually. There is no reason that IV&V efforts cannot be done
"in-house", in fact, the primary positive attributes for doing IV&V is
experience in doing IV&Vs and access to IV&V tools and techniques, neither of
which is confined to "in-house" or external organizations.

4-2-32

In general, PDSS personnel should be involved in both the software
development and accompanying IV&V efforts. This involvement must be at some
minimum level of effort and continuity to be worthwhile. The details of these
involvements must be determined jointly among the PM, the PDSS and the primary
IV&V manager. PDSS activity should be allowed to place the same amount of
emphasis on IV&V involvements as on ongoing POSS efforts.

The necessity to provide for IV&V of the PDSS efforts is primarily
dependent on the scope of the "support effort" being undertaken. In general,
PDSS efforts can provide a portion of the V&V activity from within the PDSS
organization, or via some combination of the PDSS organization and the user.
User involvement in V&V requires that individual support effort be carefully
scoped prior to its initiation.

The roles, relationships and responsibilities of the various entities
involved in a software development are as varied and complex as the
developments themselves. It is easy to become buried in organizational
details and/or peculiarities that may be successful or unsuccessful depending
on the situation or individual perception. There do appear, however, to be
two basic conceptual "management models" that can be reasonably addressed as
concerns IV&V. These two models differ by whether one considers IV&V to be
essentially a program function, to be the responsibility of the program or
project manager; or whether it is believed that software IV&V is an activity
sufficiently specialized, and with sufficient "independence" requirements as
to require an independent organizational place and an independent function.

The first concept is in concert with the idea of providing a PM all he
needs to do a particular job, and holding him totally accountable. The second
concept recognizes that IV&V can easily be regarded as a burden by a
particular PM, and that a properly managed IV&V "organization" could
theoretically attain IV&V expertise ("corporate memory") and tools that could
reasonably be applied across program boundaries.

An analysis of the advantages and disadvantages of both concepts as
applied across service boundaries, led to a group consensus that the separate
IV&V organization entity offered the best hope for true independence and
excellence in the IV&V arena.

RECOMMENDATION

1. That the JLC endorse the need for separate IV&V responsibilities within
acquisition commands.

2. That the JLC recognize that to reduce duplication of expensive test
facilities, the PDSS facility should be the preferred agent to conduct the
IV&V for both development and PDSS phases.

4. That during PDSS, the PDSS agency must also set up a separate IV&V process
to ensure independence of that process.

4-2-33

4.2.5 PANEL B CONCLUSIONS AND RECOMMENDATIONS

The following broad conclusions and recommendations have been derived from
the subpanels' deliberations:

CONCLUSIONS

1. Independent Verification and Validation is beneficial based on a
cost/benefit analysis. These benefits are quantifiable and should be
considered in all programs.

2. It is beneficial to begin the IV&V effort as early as possible.

3. IV&V can and should be used an all phases of the software development

life cycle. IV&V activities are the same in PDSS as in other phases of the
life cycle. The level of activity should be determined using the same
criteria in all phases.

4. The level of effort for IV&V can be measured on discrete levels based
on specific criteria and levels of risk. Models can be developed which will
give the PM specific guidance on how much IV&V to use.

5. IV&V must be adequately financed to support the level of effort
decided upon.

6. IV&V can be done by a separate contractor or "in-house" as long as the
IV&V agent is independent of the developer.

7. Experience in IV&V and possession of and experience with the proper
tools is the best predictor of an organization's future success in an IV&V
effort.

8. The PDSS activity should be involved in the IV&V effort as early in
the development cycle as possible. The preferred agent to conduct IV&V is the
PDSS activity.

9. The descriptions of IV&V activities by level identified by subpanel 2
in Appendix J should be merged with the material on the software development
life cycle prepared by subpanel 3 and presented in Appendix K. Figure 4-2-4
illustrates the resulting relationship.

RECOMMENDATIONS

1. Modify the definition of IV&V in the JLC policies on Computer Resource
Management and Software Quality Program in accordance with paragraph I of
Appendix J*

2. JLC policy should state that PMs should determine the extent of IV&V
effort to be used in their program as part of an overall program trade-off
analysis. This policy should be incorporated as part of a DOD Directive or
Instruction and made part of the acquisition process as a check off item for
ARBs, DSARCs etc. Adopt the policy statement specified in Appedix I.

4-2-34

0..1

U,4-

z. C6'L
cm'

hi Ub.
9- -O)

h(A

C.w Qn w

9-hi~~I Cd- 0

gn U3

Oz z C

0 CA

C6C

.8a

99-

ta UhIh5

ti 0 a. t
0) tdI ' o . 0g a0 M.

w.. CAO

U3U
U4-

9- N

C4B. 41 . P..
hi hiO

hi a-4 u 0 - 39

CAI9-. %. 'A W an

hi hi 4U00 0 U ~ 9-hi 6

~I -4 94-2-35

3. A PM guidebook should be developed to help the program manager

o Complete a cost/benefit analysis
o Determine the level of IVMV to be done
o Determine what IV&V effort: should be accomplished during various

phases of the life cycle

4. JLC endorse further data collection for the cost/benefit model
improvement and calibration activities to provide the PM with a more precise
resource prediction capability.

5. JLC endorse further data collection for the refinement of the
criterion model for selection of the levels of effort for IV&V. Further
research is necessary in the areas of weighting schemes for levels of risk,
weighting schemes for the criteria employed, developing a methodology for
mapping the weighting results to levels of effort.

6. JLC endorse the need for separate IV&V responsibilities within the
acquisition commands.

7. JLC endorse the need for further study as specified in each subpanel
report and make these subjects of follow-on JLC workshops.

4-2-36

APPENDIX A

SUBPANEL PARTICIPANTS

1. The Effectiveness of IV&V

Steve Habblett - Chairman
Ed Records
Ron Emberton
Lynn Redington
Raymond Rubey
Jim Clark

2. Criteria for the Use of IV&V

Adam Shirvinski - Chairman
Marilyn Stewart
Manny Baker
Ronnie Martin
Jose Ramirez
Ralph San Antonio

3. IV&V and the Software Life Cycle

Mike Carlin - Chairman
Bob Berri
Allen Irwin
Frank Bartosik
Roger Scholten
Tom Conrad

4. IV&V in the Organization

James Sides - Chairman
Marshall Potter
Greg Stratton
Bob Sutphen
George Neeman
Matt Fisher

4-2-A-I

APPENDIX B

BIBLIOGRAPHY

1. Management Guide for Independent Verification and Validation (IV&V), Space
Division (AFSC), August 1980

2. Joint Regulation, Managemet of Computer Resources in Defense Systems
(Draft), Joint Logistics Commanders, 15 June 1983

3. Joint Policy, Software Quality Program (Draft), Joint Logistics
Commanders, I October 1982

4. Softfair: A Conference on Software Development Tools, Techniques, and

Alternatives, Proceedings of conference held 7/25-28/83, Arlington VA.

5. A Guidebook to Independent Verification and Validation, Logicon, Aug 81.

6. Software Validation, Verification. and Testing Technique and Tool
Reference Guide, National Bureau of Standards Special Publication 500-93,
Sep 82.

7. Planning for Software Validation, Verification, and Testing, National
Bureau of Standards Special Publication 500-98, Nov 82.

8. The Role of a V&V Contractor in the Development of Data Systems,
WP-SD-10-78-838, Teledyne Brown Engineering, Huntsville AL, Feb 79.

9. Reifer, D. J., Verification and Validation and Certification: A Software
Acquisition Guidebook, TRW-SS-78-05, TRW, Redondo Beach CA, Sep 78.

10. Baker, E. R., Fisher, M. J., "A Software Quality Framework," Concepts,
Vol. 5, No. 4, Autumn 82, pp 95-107.

11. A Software Engineering Environment for the Navy, Report of the NAVMAT
SoftwareEngineering Environment Working Group, Naval Material Command,
Washington, DC, 31 Mar 82.

12. Analysis of IV&V Data, RADC-TR-81-145, Jun 81.

13. Proceedings of the Sixth Annual Software Engineering Workshop, Goddard
Space Flight Center, Greenbelt MD, 2 Dec 81. (In particular, paper by J.
Page of CSC on "Evaluating the Effects of an Independent Verification and
Validation Team").

14. Independent Verification and Validation of Computer Software: Methodology
NASA/JPL, 9 Feb 83, JPL D-576

4-2-B-i

APPENDIX C

PANEL PRESENTATIONS

1. Presentation by Dr. E. R. Baker on MIL-STD-SQAM
and the relation of

IV&V to Software Quality Assessment and Measurement.

4-2-C-1

C7

V) J-

-J-

CLL
nU 0 0

0) u ~

0C-2

00C

L

C,

w- :: <tz

U--
LA- Ln L

-4 4D

-3-

00

CL
C-)

LU~

V) C-
LLU

Cl LUJ

<o :

< LLU

(- -L CD ~ a.

C-)

1J 0 I
-~LUJ 00
I- (LL- Li-

< -

wU LU

LLLU

0

IL'

C-4

CC

LLU

I-L
-JJ

C-)

z j LU

LALU

LLU

COD oS
LU4

cm L

C-5 L

z

0

-I-

LU

LLU

(~) 0
LUJ

LU

0 L0

Q- 2 L)
-JJ _L

C.-) < c
LUJ CA C-)

C-C,

LLJ

< <

COO_

LUJ
C00

C-6

Lij 0
LL.

Cr))
-J)

c.Dcc

LUI

oL 0

00
< -

LL~ 0
zC -J0

o ~ -J
- 0L

CAL 00 L

0 I&&J-

CD,

C-7

z

-JL

LUJ

LL-

LLU

LLL)

LLU

u ~LU
< 0~

LLLU

00

LLI LL.

0

LLU

C03~

CODI

C-8

Il

'mll

LL.
LL-
LUJ

Ln) Ca- CL
V) - LLU CL

cm LUJ

S LLU LLU
< LL- 0

-) LU

LLJ

LU C

LUU

C-9

APPENDIX 0

Benefit Interdependencies of IV&V

This diagram shows the interdependencies of potential benefits using MVV from
the inception of a project to its conclusion. The (+) signifies that an
improvement can be realized or assistance can be gained. A (*) signifies that
a cost reduction (S or time) can be realized or that a potential problem can
be reduced.

Written Test

+_______ 'CORPORATE" KATNTFAC

V EM;ORY R

& + D OC UMI~ + 0

v QUALITY J
6 +

E

+ CONFIGURAT EON
%1ANAGEMENT C

A P RuJ',. (-T DEVE LOP>?ENT+

C V I S 1L L !1y

T +

I Ci

+ DFIE7LOPE:Z

T~ ItI) I K

K ,A E

APPENDIX E

IV&V Experience

Appendix E represents a subjective quantification of several IV&V projects and
efforts which panel members have participated in. The data collected is based
on specific projects, although, the identification of the project is not
included in this report. The chart represents a matrix of IV&V "factors"
related to the IV&V project. In addition, each "factor" is "referenced" to
qualitative benefits listed in Attachment One. The net results of the panel's
review of specific projects is that very positive qualitative benefits have
generally been demonstrated. It was also concluded that quantitative methods
for evaluating IV&V efforts on the sample projects did not exist.

The qualitative benefits listed in Attachment One are based on the subjective
evaluation of members of the panel and are related to IV&V experience on
specific projects.

4-2-E-1

P- 2

ATTACHMENT ONE TO APPENDIX E

Benefits of IV&V

1. Warm and Fuzzy (confidence)
2. Earlier detection of errors
3. Latent errors become patent errors
4. Better documentation-requirements, design, code, test
5. Independent approach (2nd opinion)/technical evaluation
6. Sovernment/prime/IV&V synergism
7. Corporate memory can be resident in IV&V team
8. Reduce risk
9. Evaluation of schedule and cost
10. Reduce schedule slippage - management insight into control process
11. Better structure for management reviews
12. Supports CM early audit (especially evolutionary development)
13. Improves management visibility
14. Helps the baseline freeze process
15. Reduces "black magic"
16. Motivation to prime
17. Helps decision makers make better decisions
18. Facilitates interoperability/integration

E-3

APPENDIX F

IV&V Case Study

The case study reflects an attempt to quantify the benefits of IV&V, with the
end objective being a benefit to cost ratio. The system in the case study is
an actual system which is near IOC and which represents actual quantified data
collection. Very ea-ly in the project, software design problems created the
need for IV&V and an IV&V contractor was hired. The IV&V contractor was able
to influence software design philosophy and eliminated a forecasted six to
nine month slip. Based upon a team of 50 software design engineers in place
with the prime contractor at the height of the software design effort, a cost
avoidance of $1.8M was realized reflecting a benefit to cost ratio of 7.2.
Thus, the government was able to save a minimum of $1.8M by spending $250K on
an IV&V contractor. This case study is unique and certainly may not be
applicable to all design efforts. However, it does represent one quantifiable
example of very positive benefits for software IV&V. It also exhibits that
program/project histories are a feasible approach for quantifying IV&V
benefits.

4-2-F-i

ACTIVITIES IV&V LEVEL

ATTACHMENT ONE TO APPENDIX F

Results of a Case Study

Automatic Satellite Utility System

- Planned Schedule 38 Months
- Predicted Cost $6M

- Software Development

-- 20K lines
-- Front end problems
-- Forecasted 6-9 month program slip

- IV&V Contract

-- Began 6 months into the contract (32 mo)
-- Force new design philosophy on prime
-- Prepared computer resources management plan
-- Identified software development voids (manpower)
-- Identified specific design flaws

- IV&V Results

-- Prevented 6-9 month slip
-- IOC on time

- Cost Impact

-- Saved 25 maryears ($1.8M)
-- Cost $250K

- Benefit/Cost Ratio - $1.8M/$250K = 7.2

F-2

APPENDIX G

Model De-criptions

A number of models informally exist in industry which allow managers to estimate

the amount of program resources to allocate to IV&V. The JLC should ,-pport

further data collection, data reduction, model developme:nt and model (- ;bra-

tion to provide a higher fidelity model for resource planning. A typical model

is depicted below.

1.0

IV&V Effort 1teasure of rginal
(Expressed in i" 'y /Dollar Spent
Order of Magni-

tude Compared
to SW Develop-

rent) 0.5

0.4

0.3

0.2

0.1

0

0 1 2 3 4 5 6 7 8 9 i0 11 12

Com.plexity lndex. of Program

Complexity is a quanitative expression of software size, application, acquisi-

tion sLrategy risk, conscquenses of a SW failure, etc. :oeSt progra fall

between coiplexity indexes of 3 to 6.

4-2-G-1

APPENDIX H

Quantitative IV&V Cost/Benefit Analysis

An IV&V cost/benefit tradeoff analysis must consider both the quantitative and
qualitative benefits. Quantitative benefits include both a reduction in the
number of the software errors in the product during operational use and the
earlier discovery of errors during the development phases. IV&V will be
justified if the total cost of the IV&V effort is less than or equal to
earlier error discovery plus the cost avoidance in operational use due to a
more reliable software product. Stated in another form, the following
relationship should prevail:

1. (Cv)"(CE)+(CR)

Where:

CV = Cost of IV&V effort
CE = Cost avoidance in development due to early error discovery
CR = Cost avoidance in operation due to software product reliability

An estimate of CE can be obtained in the following manner:

Nxy = Number of errors made in phase x and found in phase y by the
developer (where phase 1 is Requirements Definition, 2 is Design,
3 is Coding, 4 is Testing, and 5 is PDSS).

Exy = Number of errors made in phase x by the developer and found in
phase y by the IV&V organization.

Cxy = Average cost to correct an error made in phase x and found in
phase y.

2. Ct = Cost without IV&V = - f (Nxy)(Cxy)%' yM

3. CT = Cost with IV&V f f (Nxy - Exy) Cxy

Several existing studies indicate that a significant cost increase is
associated with errors that are made early but discovered late in the
development program. The following relationship is an expression of this
cost growth:

4. Cxy = (Cx)(1O 2P)

Where p = fraction of development time elapsed between when
error was made and when it was discovered.

5. CE =Ct - CT

In many cases, because of the cost growth factor expressed in equation 4
the early discovery of errors is by itself a sufficient justification for
IV&V.

4-2-H-1

An estimate of CR, the cost avoidance due to the increased software
reliability achieved because of IV&V, can be obtained as follows:

6. CR = Catastrophic error cost + serious error cost + moderate error
cost.

7. Catastrophic error cost = K1 x (mission value + system value) x
probability of an error occuring x Ec.

8. Serious error cost = K1 x (mission value) x probability of an error
occuring x Es .

9. Moderate error cost K1 x (mission value) x probability of an error
occuring x Em

Where Ec, Es, Em are the number of latent catastrophic, serious,
and moderate errors respectively. K1 is the fraction of mission
objectives achieved.

Sane of the factors in the above expressions can be approximated as follows:

11. Probability of - Number of missions planned
an error occuring Number of system functions, inputs and outputs

12. Mission value System Cost

Number of missions planned

13. Nt = Ec + Es + Em (without IV&V)

14. NT = Ec + Es + Em (with IV&V)

Where Nt is the number of latent errors without IV&V and NT is the
number of latent errors with IV&V.

The effect of an IV&V effort is to reduce the number of latent errors (Nt is
reduced to NT). If this reduction is substantial and especially if the IV&V
concentration is on catastrophic and serious errors, IV&V is justified for
high-value systems and for "one-mission" systems (e.g., space boosters).

Each program can use the model, developing their inputs tailored to their
system. A CV factor less than or equal to the value of CE + CR supports
the use of IV&V. Sensitivity analysis should be performed when changes in
assumed inputs will change the decision to use IV&V.

H-2

APPENDIX I

Proposed JLC Policy Statement Concerning IV&V

The PM shall, as a part of the PMD/PMP, determine if IV&V is to be
applied to the software development activities. This determination shall be
based cn a cost/benefit analysis of the potential IV&V effort.

The potential IV&V effort shall be tailored to the software development
environment and application.

For the purpose of this policy, the functions of the QA organization
and the IV&V entity are not considered to be a duplication of effort.

.- - I-I

APPENDIX J

IV&V Criteria - Supporting Material

1. Definition of IV&V

Independent Verification and Validation. The verification and validation of

computer software performed by an organization that is managerially and
financially independent from the developing organization.

Validation. The evaluation, integration, and test activities carried out at
the system level to ensure that the finally developed CSCI satisfies the
user's and supporter's requirements set down as performance and design
criteria in the system and software requirements specifications.

Verification. The iterative process of determining whether the product of
each step of the computer software development process fulfills all
requirements levied by the previous step.

Note: IV&V Definitions have been modified from draft Joint Policy, Software

Quality Program, dated 1 October 1982.

2. Goals of IV&V Levels

Bare Bones

1. Establish good requirements baseline.

2. Establish good development standards, procedures, and controls.

3. Perform thorough analysis of test program.

Low Set

1. Bare Bones, plus

2. Establish confidence in the development process.

3. Establish confidence in the Top Level Design.

Moderate Set

1. Low Set, plus

2. Establish confidence in Detailed Design.

3. Establish confidence in implementation of critical functions.

Full Blown

1. Establish high level of confidence in every aspect of the system.
(Note: A minority opinion held that IV&V addresses software only, hence

full blown IV&V would "establish a high level of confidence in every aspect of
the software.")

4-2-J-1

3. Criteria for Extent of Application of IV&V

The extent to which IV&V will be implemented on a program or project is based
upon the extent to which the system (or the software, for a software project)
is influenced by the criteria listed below. Note H stands for high risk, M
for moderate risk, and L for low risk.

Degree
Criterion of Risk Definition of Risks

a. Safety H Failure of software may cause catastrophic
equipment damage or loss of
life--includes: nuclear safety, range
safety, flight safety of nonrated
avionics, etc.

M Failure of software may contribute to
equipment damage or personnel
hazards--includes: controls and display
indicators that may prompt incorrect
commands, etc.

L Failure of software does not affect
personnel or equipment.

b. Mission Essentiality H Potential error impact: mission failure.

M Potential error impact: degraded
performance.

L Potential error impact: inconvenience.

c. Technical Complexity H Numerous interfaces, inputs, outputs, or
system states; difficult-to-implement
algorithms.

M A significant number of interfaces,
inputs, outputs, or system states;
moderately difficult to implement
algorithms.

L An average or below average number of
interfaces, inputs, outputs, or system
states; algorithms not difficult to
implement .

d. Type H Real-time, operational software.

M Non-real-time, operational software.

L Non-real-time, non-operational software.

J-2

e. Size H Over 100,000 lines of higher order
language source code.

M Over 10,000 but less than 100,000 lines of
higher order language source code.

L Less than 10,000 lines of higher order
language source code.

f. Technology Required H Requires an advance in the state of the
art or application of existing state-of
the-art to a new environment.

M Requires application of new requirements
on an existing system.

L Transferring existing software to new

hardware.

g. Degree of Generality H Very flexible: able to handle a broad
range of inputs on different equipment;
able to generate a broad range of outputs.

M Flexible input and output format.

L Restricted range of inputs or outputs.

h. Extent of Use H Defense Department, Worldwide, or Multi-
Command.

M Single command or component command.

L Local or utility.

i. Supportability H No established support structure,
considerable resources required for
support, organic support.

M Support concept broadly defined but not
specific to the system, moderate support
resources required, organic support.

L Support concept specifically defined,
stable.

j. Potential Cost/ H Large program; complex, on critical path
Schedule Impact or may become critical path.

M Small program; complex or moderately
complex, may or may not be on critical
path.

L Off-the-shelf or noncomplex.

J-3

k. Security H Potential unauthorized access to
classified data or unauthorized
modification to CSCI or data base.

M Inadvertent loss or contamination of

classified data base.

L No classified data involved.

1. Change in Requirements H Changes in requirements or objectives are
continuous or frequent.

M Changes in requirements or objectives are
occasional or infrequent.

L There are no changes in requirements or
objectives.

4. Description of IV&V Levels

I. Bare Bones

A. Activities

o Analyze system requirements, focusing on system requirements
related to information processing.

o Analyze software requirements, including interface requirements,
for functional, performance, and qualitative adequacy.

o Analyze the software development planning and procedures; -,pot
check the developer's compliance with plans and procedures.

o Analyze the software developer's software test plans and
procedures to ensure that the developer's software testing is
adequate.

o Participation in technical interchange meetings and all Formal
Reviews (SDR, SRR, SSR, PDR, CDR, TRR, FQR).

o Develop IV&V plan

B. Typical Inputs

o SDP, CM Plan, SQAM Plan

o System/Segment Specification

o Software Requirements Specification

o Interface Requirements Specification

o Software Test Plan

o Software Test Descriptions

J-4

o Software Test Procedures

o Materials for Formal Reviews (SDR, SRR, SSR, PDR, CDR, TRR, FQR)

o Access to Unit Development Folders

C. Typical Outputs

o IV&V Plan

o Technical Memoranda - evaluation of SDP, CM Plan, SQAM Plan

o Traceability Matrices

- System Requirements to Software Requirements

- Software Requirements to Software Test Plans, Descriptions, and
Procedures

o Discrepancy Reports documenting anomalies in System
Requirements, Software Requirements, Software Test Plans.

o Technical Memoranda - evaluation of each Formal Review.

o Final Report documenting IV&V findings and conclusions.

II. Low Set

A. Activities

o All activities of "Bare Bones"

o Analyze Software Top Level Design for completeness and adequacy in
implementing Software Requirements.

o Spot check detailed design and code walkthroughs

o Spot check test conduct by witnessing selected software tests and
analysing results.

B. Typical Inputs

o All typical inputs of "Bare Bones".

o Software Top Level Design Document.

o Access to walkthroughs and test conduct.

C. Typical Outputs

o All typical outputs of "Bare Bones".

o Traceability Matrix - Software Requirements to Software Top Level
Design.

o Discrepancy Reports documenting anomalies in Software Top Level
Design and software test.

J-5

III. Moderate Set

A. Activities

o All activities of "Low Set".

o Analyze Software Detailed Design for integrity and adequacy in
implementing Software Top Level Design.

o Extend System Requirements Verification to analyze system
architecture.

o Analyze code for integrity and compliance with design structures
and standards; perform design reconstruction of critical code.

o Perform independent tests of critical functions.

o Verify accuracy and correctness of critical algorithms.

o Participate in Formal Audits (FCA, PCA).

B. Typical Inputs

o All typical inputs of "Low Set"

o Software Detailed Design Document

o Data Base Design Document

o Interface Design Document

o Preliminary code listings from Unit Development Folders

o Object Programs for testing

o Software Product Specification

o Materials for Formal Audits (FCA, PCA)

C. Typical Outputs

o All typical outputs of "Low Set".

o Traceability Matrix - Software Top Level Design to Software
Detailed Design, plus update to reflect Software Product
Specification.

o Discrepancy Reports documenting anomalies in Software Detailed
Design, and Coding/Execution of critical functions.

o IV&V Test Plan/Procecures for independent tests of critical
functions.

J-6

o IV&V Test Report for independent tests of critical functions

o Technical Memoranda - evaluation of each Formal Audit.

IV. Full Blown

A. Activities

o All activities of "Moderate Set" except IV&V organization
typically does not monitor software development contractor's
testing because IV&V contractor performs extensive independent
testing.

o Confirm capacity requirements for software by independent sizing
and timing of software requirements.

o Extend code analysis to include design reconstruction to all
developed code.

o Extend independent testing to include all software functions.

o Extend algorithm analysis to include all algorithms; perform
tradeoff studies and constraint analysis for critical algorithms.

B. Typical Inputs

o All typical inputs of "Moderate Set".

C. Typical Outputs

o All typical outputs of "Moderate Set".

o Discrepancy Reports documenting anomalies in Coding/Execution of
all software functions.

o Expanded IV&V Test Plan/Procedures for independent tests of all
software functions.

o Expanded IV&V Test Report for independent tests of all software
functions.

5. Strawman Correlation of IV&V Activities to IV&V Levels

The following table indicates activities performed in IV&V and their
constituent subactivities. Also indicated is the IV&V level to which each
subactivity is appropriate.

Key

B = Bare Bcnes
L = Low
M = Moderate
F = Full Blown

,J -7

In certain cases, the IV&V level is indicated as °m/n", which means level
"im" is appropriate for critical functions and level "n" is appropriate for
all functions. In other cases, the IV&V level is indicated as "m, not n",
which means that level "°m" is the lowest level that is appropriate but at
level "n" the subactivity is no longer appropriate.

ACTIVITIES IV&V LEVEL

System Requirements Verification

Consistency B
Traceability B
Interfaces (other systems) B
Data Flow B
Architecture M
Quantitative Requirements B
Testability B

Software Requirements Verification

Traceability B
Functional Allocation B
Control Flow B
Data Flow B
Sizing and Timing F
Completeness B
Consistency B
Testability B
Error Tolerance and Accuracy B
Interfaces B

Top Level Design Verification

Structure L
Interfaces L
Traceability L
Control Flow L
Data Flow L
Sizing and Timing L
Completeness L
Consistency L
Error Tolerance L
Global Data Definition L
Accuracy L

Detailed Design Verification

Compliance with Standards and Conventions M
Modularity M

Interfaces M
Traceability M
PDL Analysis M
Control Flow M
Data Flow M

J-8

ACTIVITIES IV&V LEVEL

Sizing and Timing M
Data Structure M
Accuracy M
Consistency M
Completeness M
Supportability M
Walkthrough Evaluation (spot check) L

Code Verification

Standards Compliance M
Design Compliance M/F
Timing and Sizing M
Accuracy M
Traceability M
Data Flow M
Control Flow M
Walkthrough Evaluation (spot check) L
Unit Development Folders (spot check) B

Validation Testing

Independent Testing M/F
Evaluate Integration Testing B, not F
Evaluate Stress Testing B, not F
Traceability B
Monitoring (spot check by witnessing) B, not F
Review plans, descriptions and procedures B
Evaluate Performance Test B, not F

Algorithms Verification *

Derivation M/F
Comparison with Standard Models M/F
Tradeoff Studies F/none
Accuracy Analysis M/F
Constraint Analysis F/none

Note: If program office expcitise/staffing is limited, these levels may
be more appropriate to the "low" level, particularly if system engineering
has not been extensive.

Documentation

Software Development Plan R
CM Plan B
SQAM Plan 3
ECPs, SPCRs B

J-9

ACTIVITIES IV&V LEVEL

Review and Audit Participation

SDR B
SRR B
SSR B
PDR B
CDR B
FCA M
PCA M
FQR B
TRR B
Technical Interchanges B

S-10

APPENDIX K

LIFE Cycle Chart

1. Overview

Figure K-1 shows the various JLC approved activities of the software
development life cycle to which the system development life cycle activities
of system requirements analysis (A), system integration testing (H), and
OT&E (1) have been appended. Each block is lettered. Those letters will be
utilized in the following discussion and in Table K-A which shows the data
required to be delivered by each activity block.

Figure K-1 is also divided into two parts, the upper part sAowing the
activities peformed by the developing agency or contractor for software, and
the lower half showing the corresponding activities to be performed by the
IV&V function. No attempt has been made to identify agency responsibility
for IV&V or to what degree the IV&V is being performed (see subpanel 2 for
degree of IV&V). The "evaluation" activity is more clearly defined by
subpanel 2 and by the IV&V data delivery, Table K-A.

An assumption is made in Figure K-1 that the IV&V activity must acquire or
develop new tools and that these tools must be produced in time to be
utilized in the evaluation of the application software being developed.
Therefore, the IV&V activities reflect also a compressed development cycle
with the same activities as those required to develop the application
software. There also may be a need for hardware tools, but Figure K-1 does
not reflect that need. The asterisks show those repeated in a major change
during the PDSS era (with no new tools required).

2. System Requirements Analysis (A)

Column A lists the typical activities of the development contractor during
the demonstration and validation phase of the life cycle. These activities
will culminate in a system design which will be approved as the allocated
baseline for the system. The IV&V activities, e.g., evaluation, are further
described in detail in the report of the subpanel report on "Criteria for
the Use of IV&V". The IV&V agent will at this time determine the need for
tools required to assist him in carrying out his evaluation activities. If
such tools are not readily obtainable from a commercial source or perhaps
from his own inventory, then he will necessarily have to specify and develop
those tools.

3. Software Requirements Analysis (B)

The JLC software requirements analysis activity centers on completing the
software requirement specification (SRS). In this process it is necessary
to complete the related system engineering documentation and project plans
that might be impacted by changes in the requirementS stated in the final
version of the SRS. The activity culminates in the software specification
review (SSR). The IV&V activity is concerned with review of the SRS, the
document updates, and the adequacy of the SSR. In addition, the
requirements for new IV&V tools are finalized in specifications (SRS and
related hardware B-specs).

4-2-K-i

4. Preliminary Design (C)

Column C lists those activities of the the deveiopment contractor which lead
to the preliminary design. In so doing, he will continue the evaluation of
specifications from the software requirements specification to the software
top level design document. During this process, he will identify the tools
necessary to adequately test the design, and to define the environment in
which testing will occur. These activities will culminate in the preliminary
design review (PDR). The IV&V agent's evaluation activities during this
period (see report from subpanel 2) will include the active design of tools
identified in the previous activity columns, and the participation in the
preliminary design review.

5. Detail Design (D)

During detail design, the preliminary design is extended and documented in the
Software Detailed Design document. This document is sufficient to permit
coding to start. Other documents (some optional) include manuals, unit
development folders, data base design (if required), and the software test
description. The design and the supporting documentation are reviewed at the
critical design review (CDR). The IV&V activity evaluates these detail design
products (see subpanel 2), and supports the CDR. In addition, tool
construction and testing is accomplished (probably with some overlap to the
development activities).

6. Code and Unit Testing (E)

The activities in column E will be conducted to translate the baselined
specifications into code and to begin the testing process to ensure that the
code actually performs as intended by the specifications and to initiate the
development contractor's configuration maragement of the code being generated
at the conclusion of this phase. The IV&V agent will engage in the evaluation
activities (see report from subpanel 2) using the tools he has previously
identified as being necessary to the process.

7. Integration and Test (F)

Each computer software configuration item (CSCI) within the system must be
integrated and tested. Prior to starting this testing, an informal review is
held to ascertain that the developing agency is prepared to conduct the
activity. The testing is often formalized at the computer program component
(CPC) level (when specified in the SRS) for critical modules or algorithms.
For each of these, a preliminary qualification test (PQT) is conducted. The
IV&V activity supports the review and monitors PQT testing. Independent
testing also may be required. A general evaluation of the integration process
(see subpanel 2) also is conducted. Formal delivery of IV&V tools can be
effected in this area as required to support IV&V on the application software.

K-2

8. Software Performance Test (G)

These activities (column G) comprise the formal qualification testing (FQT)
performed to demonstrate that the software system, as a whole, performs as
intended by the specifications. Prior to starting this testing, a Test
Readiness Review (TRR) is held to ascertain that the developing agency is
prepared to conduct the activity. Results of this testing will ordinarily
require that documentation be updated to reflect the consequent changes. The
IV&V agent will, in addition to the evaluation activities listed in the report
of subpanel 2, conduct some measure of testing independently to address
particular aspects of the development which are deemed worthy of additional
investigation or scrutiny, depending on the level of IV&V applied (see
subpanel 2 and Appendix J)).

9. System Integration Test (H)

Subsequent to FQT of configuration items, these components are assembled into
the system and the system-level tests are conducted by the development
agency. Since software configuration items are developed in environments
which do not fully reflect all system interfaces or conditions, it is possible
to unveil errors in design or requirements during this period of testing.
Prior to the start of system testing, a functional configuration audit (FCA)
is conducted on the test results of the software performance test. The FCA
results, plus problems encountered during system integration test, can
establish a need to modify the CSCI. Subsequent to successful system
integration test, each CSCI can be authenticated by the government through the
physical configuration audit (PCA). The IV&V activity witnesses the system
test, supports the PCA and tracks the successful incorporation of the required
changes.

10. Operational Test and Evaluation I)

In OT&E, the development contractor is principally interested in correcting
any defects that, from the user's perspective, result in the system not being
able to be used effectively in performing its intended mission. The principal
role of the IV&V agent will be to evaluate the correction process to ensure
that the corrected code performs as intended.

K-3

Development Data IV&V Data

A Final System/Segment Spec o Reports on eval/assessments of
B Specs (prelim) (including SRS) A-spec (Partial)
DSARC PLANS SRS
SDP SDP
CMP RTM (Partial)
QAP (SQAMP) Test Plan (Software)
ICD/RTM Prototypes (e.g. algorithms)
System Test Plan Ops Concept (Software)
Ops Concept Reviews (SRRs/SDR)
ILSP (CRLCMP)
LSA/RLA Plans o Report on tools on hand and new
Parts Control tools required.
Reliability/Maintainability Plans
Cost Estimate
TEMP

B SRS (completed) o Reports (subset) as in A
Updates to A as required (add sizing and timing anal)

o Hardware and SRS specs (tools)

C Top Level Design Doc (Software) o Reports (subset) as in A
Test Plan (Software) (add software manuals top level
Preliminary Manuals design doc software test plan)
Update to A as required o Same as Dev C for tools

D Sfw test descrip o Reports (subset) as in C
Sfw detail des doc add new Dev D items
Data base des doc o Same as Dev D for tools
Test procedures (ITDTP) o Same as Dev E for tools
Firmware manuals o Same as Dev F for tools
Manual updates or new
UDFs
Updates to A as required

E Test results (reports) o Reports on independent tests
(optional) o Report on dev test doc

CM status o Reports on code analysis
Source/object code

(for IV&V)
Preliminary sfw test procedures
Updates to A as required

F Test reports (optional) o Reports on dev-add
FQT test procedures - Test results
CM status - PQTS

- TRR
o PQT (independent) results

Table 4.2-K-A IV&V Data Delivery (Page 1)
K-4

Development Data IV&V Data

G Product spec (SPS) o Reports on dev
Test reports add Dev G products
VDD o Dev G products for tools
Final manuals

H Updates to all documents as o Reports on dev updates
required o Updates to tool documents as required

I Same as H Same as H

Table 4.2-K-A IV&V Data Delivery (Page 2)

K-5

:C31, Q- C In

oCD 0

r: C> C)
C> . J - 2

a.~ Ln > I c. C

4L~ O .x-D.w= v) -" C: (x v) L

C) w 0v
0 cl. LI

j u.) C), LI) I-

w Lo1 LI) cL E~ LI

L/) cL- u

CD 4ILJ0-

I- L) 0 /I ~-~1- Z L.CAI
(A3

L~j CD I) =wt

-W a .f-4

-1- 2.- -

00 LI) ~

- I-CD 0A
UL)U

LI) LI L.) u1 /

0 =1- LI *

=U~EL)~ . - IC)

U)L Ll 0) WI-

LI) 2c L.)V)

8O AJ V) LI - m-=- :

t.2 () -) c

w v L- L I) I.-

LI) La Cj LO -O W ww:

_j I-- L^.C _jU L.) t I- L) I- .

(D c c c m. Q. 0Z)

8 LI)
LA~I:~ 4 L*I v

v) I -x 0LnC 1- kn C

I~V 3:0LI~

S- 6ju j-z

ORLANDO I

FINAL REPORT

PANEL C

COST OF OWNERSHIP

MARCH 12, 1984

CO-CHAIRMAN: Lt. Col James Riley

HQ AFSC/DLA
Andrews AFB
Washington, DC 20334

(301) 981-2482

CO-CHAIRMAN: Mr. G. (Gene) Sievert
Teledyne-Brown Engineering

300 Sparkman Dr.

Huntsville, AL 35807

(205) 532-1500

4-3-i

TABLE OF CONTENTS

Paragraph Page

4.3.1 Introduction and Executive Summary. 4-3-1

4.3.2 Background 4-3-2

4.3.3 Panel Approach 4-3-2

4.3.4 Significant Discussions and Issues 4-3-3

4.3.4.1 Discussions On The Validity of the EIA Cost

Software Prediction 4-3-3

4.3.4.2 Discussions On The Use Of R&D Verses O&M Funding

To Support PDSS Activities 4-3-6

4.3.5 Results and Conclusions 4-3-6

4.3.5.1 Estimated Total Costs Of Embedded Computer

For DoD Systems By 1990 4-3-h

4.3.5.2 The Use of R&D and O&M Funds For PDSS Activities 4-3-7

4.3.5.3 Current Service Approaches To Post Deplovment

Software Support (PDSS) 4-3-7

4.3.5.4 A Strawman PDSS Charter 4-3-10

4.3.5.5 Facilities Required For Post Deployment Software 4-3-11

4.3.6 Recommendations 4-3-11

4.3.6.1 Recommendations Resulting From Panel Discussions4-3-11

4.3.6.2 Recommendations Resulting From Sub-Panel Discussions . . 4-3-12

4.3.6.3 Cost-Saving Recommendations 4-3-13

4-3-ii

APPENDICES

Appendix Page

A. The EIA Study: DoD Digital Data Procession

Study, A Ten-Year Forecast 4-3-A-i

B. Strawman PDSS Charter 4-3-B-i

C. Facilities Required for Post Deployment Software

Support 4-3-C-i

D. List of Panel Members Arranged By Subpanel 4-3-D-i

4-3-iii

4.3.1 INTRODUCTION AND EXECUTIVE SUMARY

The Cost of Ownership panel was chartered with getting a handle on the
true life cycle cost of ownership of DoD software; with identifying actions which
can be taken under JLC auspices to make it possible to identify, track and control
those costs; to investigate the utility and feasibility of a common DoD PDSS center
charter and draft such a charter if appropriate; and to recommend to the JLC actions
which, if taken by the services, might significantly reduce software ownership
costs. The panel succeeded in meeting these goals. The approach initially
described in the charter was closely followed, and resulted in several outstanding
products and recommendations.

The point of departure for both panel and subpanel discussions was a
series of four briefings on software ownership cost. Pat Mellin presented a
briefing which was prepared in 1980 as a result of a study sponsored by the
Electronics Industry Association (EIA) on the cost of DoD digital data processing.
The conclusion of most interest to the panel was that the total annual cost of
ownership of DoD embedded computer software would rise to approximately $32 billion
by 1990. This briefing was followed by three presentations on software costs within
the services. The estimates based on Army and Navy data, presented by Gene Sievert
and Bill Smith respectively, were arrived at by parametric analysis and were
generally consisteut with the EIA forecast. The Air Force presentat 3n by Jerry
Schmidt, on the other hand, reflected actual POM submissions based .i projections of
systems to be supported by both AFLC and the using commands (SAC, TAC, etc.). When
these figures were adjusted for inflation and extrapolated to account for AFSC
development costs, the Air Force number was significantly lower than the EIA
projections would indicate.

This variance among estimates triggered a lively discussion which
pervaded all further deliberations at the panel and subpanel levels and in fact
spilled over into casual conversation. This intense concentration on the cost
prediction issue ultimately enabled the panel to reach consensus in addressing the
two panel-level goals:

- determine the credibility of DoD 1990 predicted embedded computer
costs

- determine the cost of maintaining post-development embedded software
systems.

The panel finally agreed unanimously that while the growth rate in embedded software
in the short term will be as high as implied by the EIA study, that growth rate will
not be sustained through the 1980's. Thus the $32 billion estimate for 1990 is
probably high. We also agreed that we do not currently have the data to offer an
alternative figure to the $32B, but that the PDSS portion of that cost would
probably be between $5B and $7B in 1990. The panel wrote a recommendation to the
JLC to sponsor activities to enable accurate tracking of future total life-cycle.

All major subpanel goals were achieved. One subpanel compared the
current service approaches to many detailed PDSS activities, and concluded that
despite some different views relative to management and funding procedures there is
enough internal similarity to make a common PDSS center charter useful. A second
subpanel drafted an excellent strawman for a common PDSS center charter. The third
subpanel agreed upon and documented the physical facilities required by a generic

4- 3-1

PDSS center, including requirements to address security considerations. Finally, a
subpanel produced several outstanding recommendatons for actions which can be taken
during the system acquisition process to reduce the eventual overall cost of
ownership.

4.3.2 BACKGROUND

The most common manifestaticn of "the software problem" is the rapidly
rising cost of ownership, including both software acquisition cost and the expense
of Post Development Software Support (PDSS). While estimates of future cost vary
widely, the most publicized is that of the Electronic Industry Association, which
predicted in 1980 that by 1990 the annual cost of ownership of software for DoD
embedded systems could rise to $32 billion. This would represent an order of
magnitude increase over the decade. Moreover, some of those who participated in the
ETA study have indicated that they believe that their estimate in 1980 was extremely
consertative, and that th number nay in fact exceed $40 billion.

Many Army, Navy, and Air Force experts have taken exceptions to the--,
estimates, but to date have offered little substantiated alternative data. The
reality is that we will probably never know who was right, because there is very
little chance that the EIA predicted level of funding will be made available for the
purpose. The bottom line is that unless we can find ways to reduce software costs,
we could lose some of the mission capabilities which drive us to digital systems.

Because of these divergent views, it it apparent that the ETA prediction
must be analyzed and the underlying causes understood. Upon this basis, the
accuracy of the prediction can be ascertained and ways to present an accurate update
identified.

A secondary but related issue is the growing cost of maintaining
developed software after it enters to DoD's inventory. The growing volume of
software already developed is impacting the DoD's software budget now and if the
ETA's predictions are correct, the cost of maintaining e\i more software will grow
dramatically over the next few years.

At issue also is the role of the individual service's Post Development
Software Support Centers (PDSSC". Software maintenance is traditionally assumed to
be a combination of error correction and software enhancements starting after the
software is developed. In terms of PDSSCs, this view causes unique problems.
Traditionally in the United States, software maintenance is performed by a subset of
the original group of programmers who developed it. In the case of the PDSSC
however, a new group of programmers must maintaia the software and frequently, they
must do this function using inadequate documentation and without the benefit of the
insights of the original developers.

Software enhancements performed in these centers may approach the level
cf effort of the original effort. This raises issues of the type of money used (R&D
or O&M) and of the relationship with PDSSC should have with agencies which perform
specialized funtions (i.e., system testing, during the acquisition process).

In summary, the major goal of the cost-of-ownership panel was to assess
the credibility of the 1980 EIA estimate. Important secondary goals were to
determine an appropriate charter for PDSS Centers and to use this charter as a basis
-or determining the estimated cost of PDSS Centers in terms of the relative levels

13/9

UNCLASSIFIED F/G 12/5 "L

l1IL25 1. 4

of O&M and R&D funding. A final goal was to identify innovative appraoches which

can potentially reduce these costs.

4.3.3 PANEL APPROACH

The approach used by this panel was to address the EIA cost prediction
issue at the panel level and to utilize subpanels to achieve the secondary goals.

The EIA software cost projection was addressed using a two-step approach.
The first step consisted of fact finding. This was accomplished by tasking
individual panel members to research and estimate software costs throug'i 1990 for
each of the individual services. Another panel member was assigned to research the
original EIA briefing. During the panel sessions, the original EIA briefing was
repeated to the full panel, followed by briefin6s documenting the independent
studies. The second step in the approach consisted of discussions of the briefings.
Significant discussions are presented in Section 4.3.4 and the conclusion about the
EIA cost estimate are documented in Section 4.3.5.1. The secondary goals of the
panel were accomplished using subpanels. Each subpanel was assigned one of the
secondary goals as a task and guided with a series of questions. The questions
arranged by subpanel are as follows:

Subpanel 1: Current Service Approaches

How does each Service approach PDSS? What are the apparent advantages
and disadvantages of each approach?

Subpanel 2: PDSS Charter

Is it possible to agree on a general PDSS charter? When in the acqui-
sition life cycle should PDSS begin to play a role? Is there a PDSS life
cycle which can be related to the product life cycle? What roles should
PDSS play? Should these roles include system engineering and software
development in support of ECPs?

Subpanel 3: Facilities Required

What PDSS facilities are required to support fielded systems? How
realistically should PDSS facilLties duplicate the real world?

What is the impact of security requirements (TEMPEST, software security,
etc.,) on overall cost of ownership? Can technology help us?

Subpanel 4: Cost Saving Recommendations

Are there novel ways in which the costs of system acquisition or PDSS can
be reduced?

Should funds be added during acquisition to increase the likelihood of
competition for PDSS? Are such approaches cost effective?

Should PMOs (or SPOs) continue in existence after a system is fielded
to play the role of the overall system manager or should PDSS take on
this role?

4-3-3

4.3.4 SIGNIFICANT DISCUSSIONS & ISSUES

4.3.4.1 DISCUSSION ON THE VALIDITY OF THE EIA SOFTWARE COST PREDICTION

The discussions on the validity of the Electronics Industry Association
(EIA) cost prediction occupied the panel throughout most of the week. The
discussions had been preceded by a series of briefings on software ownership cost.
Pat Mellin presented the EIA Lriefing which was originally prepared in 1980 and
contained the conclusion that the total annual cost of ownership of DoD embedded
computer software would rise to approximately 32 billion dollars by 1990. This
briefing is presented in Appendix A. The briefing was followed by three
presentations on software costs within the services. The estimates based on Army
and Navy data, presented by Gene Sievert and Bill Smith respectively, were derived
from parametric analysis and were generally consistent with the EIA forecast. The
Air Force presentation by Jerry Schmidt, on the other hand, reflected actual POM
submissions based on projections of systems to be supported by both AFLC and the
using commands (SAC, TAC, etc.). The POM data was used as a basis for estimating
the overall Air Force ECS budget based on DoD data that projects that software
maintenance represents 70-75 percent of the cntire software budget. The data was
further adjusted to account for AFSC system developments scheduled for completion
post 1990 and inflation (a factor of 1.9). This approach resulted in a forecast
which was less than half of the EIA projections.

The variance among estimates triggered a lively discussion. Initially,
the discussion focused on the Air Force briefing which was at variance with the
conclusion of the other briefings. The thrust of these discussions revolved around
two basic themes:

1. The completeness of the approach; the panel was afraid that major
software development efforts had been missed.

2. The validity of the 30/70 rule (maintenance is 70 percent of the
software budget).

In the case of the first theme, the panel did identify potentially missed
software development but no where near enough to account for the discrepancy of the
projection. In the case of the second theme, the panel concluded that there was no
hard evidence to either substantiate or disprove the 30/70 rule.

Discussions on the other three briefings yielded the following points:

I. The three studies were all parametric based on assumed exponential
growth rates.

2. The studies all included inflation as part of the growth. This effect
increases precieved growth. It was noted that when normalized back
to constant 1981 dollars, the EIA cost prediction for 1990 was closer
to 17 billion dollars instead of 32 billion dollars.

3. The parameterLc studies all neglect the realities of the congressional
budget process and the availabilities of skilled people. These
realities suggest that software growth can not continue exponentially.
More realistically, the true curve is "S" shaped (see Figure 4.3-1)
which will flatten into a growth rate approaching the growth rate

4-3-4

of the overall DoD budget. (It should be noted that the EIA study
recognized these factors but did not directly factor them into the
cost predictions.)

4. It was not clear in any of the briefings exactly what costs were
included as "software" cost.

S---

T M-

Figure 4.3-1 - Most Likely Growth Curve for Software Costs

Based on these discussions, the panel's attention began to focus directly
on the ETA study. The key question was: What growth rate was assumed and what was
its basis? The ETA study gave no indication of the answer. By normalizing the ETA
software cost data in terms of constant 1981 dollars, it was observed that the
average growth rate assumed for software costs was approximately 16 percent. It was
hypothesized that the growth rate for the software budget was chosen on the basis of
the hardware growth rate. Since software costs can be equated to the number of
instructions produced, the two growth rates would in fact be nearly equal if
software productively remained fairly constant and the average number of software
instructions generated per computer also remained consistant with previous (before
1980) levels.

The key to the ETA prediction seemed to be the effect of the growth in the
purchase of micro-computers in the DoD's budget. At the time of the ETA study, the
growth in the purchase of micro-computers could have been accurately forecast. The
panel reasoned that their use might not have been as evident. The following points
came from the discussion:

I. Micros are being used as a substitute for engineering applications
which were previously designed purely as hardware. That is, micros
are being used to replace specialized hardware. Software is in-
creasing but this may include a lot of "one time" software develop-
ment. This growth is occuring because it is cost effective in the
long run.

4-3-5

2. Micros are permitting a large number of new applications (i.e.,
digital displays, signal processing, etc.)

3. The number of software instructions developed per micro processor is
considerable less than the number developed per larger machines.
This is true even without considering the fact that the same software
will be used many times over in the embedded computers during the
production run of the system.

All of the previous discussions led the panel to the conclusions
presented in Section 4.3.5.1 of this report. One of these conclusions, the
conclusion that the EIA forecast was probably high, led to the final panel
discussion on the cost of software ownership.

This discussion occurred when the panel was challenged to predict what
the -ost of qoftwqre for embedded zptt- would be in 199U in light of previous
discussions. The panel discovered that it could not answer the challenge. In order
to make a reasonable prediction against the hypothesized "S" shape curve, it would
be necessary to accurately define DoD software costs in at least 4 years. The panel
could not even begin to answer this challenge. When asked by the panel chairmen
what the DoD had spent in fiscal year 1983, the panel concluded it did not know. As
one panel member stated: "The DoD buys and predicts the costs of systems, not
hardware or software. Software and hardware cost data is not kept but instead is
rolled up into system cost data." The panels also admitted that contractors are not
required to separate and report software costs and that the DoD did not know what it
spent internally for software (i.e., DoD did not know how many of its own employees;
hence their total salaries, travel, etc; were involved in contributing to the cost
of software.) The panel concluded that thedata did not exist for anyone to forecast
the cost of software ownership. This discussion led to the recommendations
presented in Section 4.3.6.1 of this report.

One final discussion was held to determine if the panel could predict the
cost of providing post deployment software support in 1990. This discussion lasted
less than one-half hour and the result is presented in Section 4.3.5.1 of this
report.

4.3.4.2 DISCUSSION ON THE USE OF R&D VERSES O&M FUNDING TO SUPPORT PDSS ACTIVITIES

The full panel conducted a bricf but spirited discussion regarding
problems within the services in determining proper funding appropriations for PDSS.
Neither R&D nor O&M funding seems fully appropriate for PDSS function because PDSS
is really evolutionary software development, but conducted after the formal system
R&D had been completed. The services approach this dilemma in different ways, but
it poses problems for all. The Navy and Air Force generally fund PDSS using O&M
funds except in the case of a major system modification, in which case they often
revert to a new R&D cycle. The Marine Corps used R&D funds throughout the life
cycle. The Army uses a plethora of tunding, ranging from numerous types of O&M,
procurement, and R&D dollars. The problem appears most acute for the Army, but PDSS
activities in all services frequently come under criticism for questionable use of
appropriated funds for PDSS.

An additional problem is that of tracking PDSS funds. Using either
R&D or O&M funding, funds are allocated for specific weapon systems, but are not

4-3-6

identifiable as PDSS funds unless specific procedural provisions are made within the
weapon system program to do so. A third problem discussed (although no solution was
offered) was the difficulty PDSS managers face in forecasting PDSS requirements
seven years in the future in order to make realistic POM submittals.

4.3.5 RESULTq AND CONSLUSIONS

4.3.5.1 ESTIMATED 'EOTAL COSTS OF EMBEDDED COMPUTER SOFTWARE FOR DOD SYSTEMS BY
1990

The panel agreed that the ETA projection calcualted as approximately 16%
annual real growth in software is probably high over the long run. While we did not
have sufficient data to prepare a credible estimate of total 1990 software cost, the
panel agreed that the PDSS portion of that cost should be in the $5B - $7B range in
opportunity to reduce the total cost of 6ystems by using software in their
implementation. Thus, software will continue to grow as long as opportunities to
reduce total systems cost are present.

In addition to implementation of previous hardware functions using
software, several other factors will also drive accelerated software cost growth in
the near term. Some of these are:

- Increased system complexity and flexibility

- Cheap memory resulting in larger programs

- Implementation of brand new functions (e.g. digital displays)

- Control of increasingly integrated functions and many others.

In contrast, there are at least two major factors which will tend to
limit the software growth rate in the long term. One of these is the reality of the
budget process, which, as the above facLors become less dominant, will cause the
rate of software growth to adjust to be aore consistent with the growth rate of the
DoD budget. There was some disagreement regarding the relative impact of this
factor in consideration of the small propertion of the overall DoD budget visible as
software funding. The other factor which should limit the rate of software cost
growth is evolution in software development technology to increase productivity and
quality.

Regardless of the true rate of software growth, even the most optimistic
estimates represent a significant upward trend which requires measurement and
management.

4.3.5.2 THE USE OF R&D AND O&M FUNDS FOR PDSS ACTIVITIES

There was unanimous agreement that a large part of thp problem would be
solved if we could receive common, officially sanctioned guidance to use either R&D
or O&M funds for PDSS, if this guidance was clearly understood thoughout DoD and
supported by the Congress.

It was also agreed that an even better solution would be to initiate a
new category for appropriation devoted to the evolutionary development of software
systems. This would solve the problem of tracking PDSS funding requirements for the

4-3-7

p.

POM years by allowing aggregate funding of PDSS across weapon systems. The panel
lost consensusidifficulty of justifying and establishing a new appropriation for
evolutionary development might outweigh the advantages. These members were willing
only to recommend that such an action be studied.

4.3.5.3 CURRENT SERVICE APPROACHES TO POST DEPLOYMENT SOFTWARE SUPPORT (PDSS)

To provide understanding, the following descriptions of PDSS Centers were
used:

Army: The Army PDSS Center is a center within a DARCOM subordinate command
established to support the software subsystems of all battlefield automated systems
for which that command has logistics support responsibility. Each center normally
supports numerous systems.

Navy: The Navy PDSS centers' functions and staffing are provided for as a sibst
of the In-Service Engineering Activity assignee life cycle support responsibility
for the system. Note: that system may be an aircraft avionic package, a shipboard
navigation system, or a shorebased C31 type system.

Air Force: The Air Force provides for a PDSS center as a part of Integration
Support Facility (ISF) which is used to provide all hardware and software
engineering support. This £2F is located in the engineering division or branch
whi-h supports the system program director (SPD).

Marine Corps: The Marine Corps has established a single PDSS center completely
separate from hardware maintenance facilities. This center provides support for
designated Marine Corps Software programs.

1. Organization Chain:

Within the services PDSS centers are located either in a logistics chain,
a R&D chain or a combination of the two. The Navy has a combination chain with a
single boss. The Air Force PDSS center is in the R&D chain, but receives direction
from a logistics boss via the R&D chain. The Army established 11 PDSS centers
located at the development commands, but funded by the readiness organizations
within combined commands. Overall management of the PDSS effort is performed by
DARCOM.

Coordination between R&D and logistics is always difficult. Having a

single boss reduces the difficulty to some degree.

2. Development of Policy and Compliances:

Policy is developed at high level headquarters publish implementing
instructions and ensure compliance by the PDSS (centers within their individual
commands.

3. How Funded:

The Air Force is O&M funded unless a major rebuild is required; then the
system goes back to the developer and R&D funds are used. The Navy primarily uses
O&M funds, but would also send major modifications back into a R&D cycle. The
Marine Corps uses R&D funds. The Army uses a plethora of funding ranging from

4-3-8

numerous types of O&M, procurement and R&D dollars.

A standard approach to funding and a better definition of maintenance
would help reduce some of these overly burdensome requisition and accounting
functions.

4. Acquire Software Eaivironment:

In all services, the PDSS centers, in conjunction with the developer,
identify support requirements. In the Navy and Air Force the acquisitia;i manager is
responsible for procuring the initial suites of equipments, and the PDSS center is
responsible for updating/replacing that equipment. In the Army, no defined
responsibility exists which ensures, that the developer acquires the support
environment, including mockups and simulators.

5. How Location Is Determined:

The Air Force locates the PDSS centers within the system program
directorate where sustaining engineering is also located. The Navy collocates the
PDSS centers with the activity responsible for in-service engiteering support. The
Marine Corps only has one PDSS center whose command has the logistics responsibility
for the system or has computer resources. In the event that the system is a command
and control system, the PDSS center is collocated with the battlefield functional
area school.

6. How System is Learned:

The Army and Air Force PDSS centers become involved at the beginning -f
the development cycle through either participation in the developmental process or
by being the IV&V agency. The Navy may follow the same procedure, depending on when
the PDSS center is designated. The Marine Corps PDSS center has previously been
involved as part of the development responsibility and replace it with more of an
IV&V type responsibility.

The involvement of the PDSS centers throughout the development cycle,
commencing with Milestone I, is considered to be critical to the successful
execution of performing PDSS work.

7. Use Of The PDSS Center For IV&V:

There is currently no stated requirement to perform IV&V in any of the
services, and there is a wide variance of how the services accomplish IV&V. In
those programs where there is a requirement for IV&V, the PDSS center is the most
logical activity to do it and should be used to the maximum extent possible.

8. Software Configuration Control:

The PDSS centers of all services perform configuration control, but none
are tasked with performing configuration management.

9. Type Of Changes:

There are basically three types of changes: those brought about by latent
defects; those brought about by enhancement requests from the users; and major

4-3-9

product improvements. In all Services, the PDSS centers do the changes brought
about by the first two. Changes brought about by the third are usually accomplished
by a contractor, however, the PDSS center provides background and support.
Currently, there is a need to establish common terminology to facilitate discussion
and to aid in mutual problem solving.

10. Evaluation Of Complaint:

The Army maintenance directorate sends logistic support representatives to
the user activity to investigate complaints. Once the problem is identified and
verified to exist, the maintenance directorate notifies the PDSS centers who attempt
to duplicate the problem. In the other Services, the PDSS centers receive the
trouble report directly from the user and attempt to duplicate the problem.
Responses back to the complaining user vary from periodic status reports about the
complaint to not providing any follow-up informaion.

There should be some type of follow-up process in all Services.

11. Develop Software Engineering Change Solution:

In all Services, once the problem has been identified, the cause is
explored by software engineers within the PDSS center. Solutions are developed and
testing is conducted. This testing is to ensure that the original problem has in
fact been solved and that additional problems have not been created.

12. Integration Testing:

In all Services, integration testing is performed when the PDSS center has
completed system testing. With the exception of the Navy, testing is always
performed upon the actual equipments which are being integrated. In the Navy, the
size of the integration problem often prevents the PDSS center from conducting the
integration testing in a totally real environment. The software which has been
modified is run on actual system hardware, but those systems with which it
communicates (i.e., integrated) may be simulated. The limitations upon integration
testing of Navy shipboard combat systems due to the availablity of actual systems
are recognized and organic integration facilities have been or are being
established. These facilities are outside the PDSS centers responsibility and
control, but are available to the PDSS center for use.

13. Interoperability Testing:

All Services PDSS centers conduct interoperability testing to ensure that
changes made to correct problems will in no way interfere with the capabilities of
any systems to communicate with other systems.

14. Documentation Update:

All Service PDSS centers update documentation for every change made.

The major problem being experienced is the inadequacy of standards and
resulting initial documentation. Standards must be published (SDS) that meet the
needs of all services and contracts must be written to require documentation in
accordance with these standards. Waivers must not be permitted.

4-3-10

15. Distribution Of Software Corrections To Users:

For systems where there is limited distribution, changes are
hand-delivered and accompanied by sufficient instruction to allow the user to
execute a smooth transition. In those cases where there is a large number of
equipments in which changes must be installed, they are supplied through a
distribution process along with a written instruction package.

4.3.5.4 A STRAWMAN PDSS CHARTER

A general PDSS charter is possible (See Appendix B) as a multiservice
directive to establish roles, authority, responsibilities and lines of
communication. The PDSS should begin playing a role in the acquisition life cycle
as early as possible in the conceptual phase. To support this role, the PDSS must
be designated officially as a PDSS not later than the decision point to go to full
scale development. There is a PDSS life cycle which consists of phases, tasks and
products that is similar to and supports the system product life cycle. The various
roles of a PDSS should be specified by a PDSS charter which would be part of the
official designation and consist of designation of PDSS manager, mission, authority
and responsibilities, resource control, standardization for interoperability,
communication channels, and location and support. The PDSS should include roles in
systems engineering and software development to support analysis of discrepancies as
to hardware vs. software, priority of the discrepancies (i.e., levels of
mission/system criticality) also, to support membership onconfiguration control
board (CCB) or engineering review board (ERB). Systems engineering and software
development support to ECP's is a valid concept for those occasions when the PDSS
has sufficient capability to support both maintenance functions and ECP development
and the ERB/CCB has authorized he used of this capacity for ECP's.

4.3.5.5 FACILITIES REQUIRED FOR POST DEPLOYMENT SOFTWARE SUPPORT:

Ine tackiities subpanel concludea that all service PDSS centers had
common facility requirements. Their major conslusions were:

1. The PDSS Facility is an integral part of the mission critical
_vsieis

2. PDSS Centers should duplicate real world as close as possible.

3. Security requirement planning will increase PDSS facility costs in
the short run but may reduce facility costs over its lifecycle.

A description of these facilities is presented in Appendix C of this
report.

4.3.6 RECOMMENDATIONS TO THE JLC

4.3.6.1 RECOMMENDATIONS RESULTING FROM PANEL DISCUSSIONS

4.3.6.1.1 Software Life Cycle Cost Determination

The deliberations of the Cost of Ownership panel made one point
embarrassingly obvious - that the full cost of ownership of embedded computer
software in the DoD budget process makes these costs extremely difficult to

4-3-11

identify, especially during the R&D phase of the life cycle. Work breakdown
structures adequate for attribution of development and support costs to software are
rare. Contractor and government cost reporting systems are seldom structures to
enable software cost determination.

The result is that software cost determination for any fiscal year and,
consequently, accurate trend analysis, are impossible. The major impact of these
inadequacies is that we lack the cost data base to confidently predict tuture
software costs. To rectify this shortfall, the Cost of Ownership panel recommends
that the JLC sponsor :

a. A tri-service effort to identify the real cost of software for a
near-term future baseline fiscal year.

b. Changes in procurement regulations to force the use of work break-

down structures which clearly separate all software and system engin-

eering tasks from hardware related tasks.

c. Changes in contracting methodologies and procurement regulations
to require contractors to report costs against these WBS'S.

d. Changes in DoD accounting practices to make it possible to ascer-
direct DoD software costs.

4.3.6.1.2 R&D vs. O&M Funding

As a result of the discussions of using R&D vs C&M funding for PDSS (see
Sections 4.3.4.2 and 4.3.5.2), the panel makes the following recommendations to the
JLC:

To solve the problem of multiple appropriations (R&D vs O&M) and funding
lines to support software evolution after transition, a new funding
line to provide for evolutionary support after transition should be
establishing.

A mincrity of two panel mccLors agreed that a new funding lina for
evolutionary sottware development would be the ideal solution, but fplt that the
difficulties in establishing a new appropriation could well outweigh the benefits.
The recommendation of this minority was that the JLC sponsor a tradeoff study to
balance the cost of justifying and establishing a new avDropriatioi against its
potential benefits.

4.3.6.1.3 Nature Of the "Software Explosion".

A recurring theme of the full panel discussions involved the nature of
the predicted exponential increase in embedded computer software, and the extent to
which this explosion should be viewed as an opportunity rather than as a threat. It
was generally agreed that a large portion of the near term increase should be
attributed to software implementation of functions which have formerly been
implemented in hardware. The distinction is drawn against new functions which have
only been made possible by advances in programmable digital systems. The point is
that increasing software costs are not always deterimental, because conversion nf
functions from hardware to software implementations may well lower overall system

4-3-12

N!

cost of cwnership (or drammatically increase system effectiveness, flexibility, or
readir.ess) while raising software costs. In these cases, increasing software cost
might be desirable if the positive impact on the overall system is recognized. The
panel recommended that the JLC highlight this positive aspect of software cost as
tollows:

DoD should direct its efforts to optimizing the expenditure of DoD
resources even if it means rapidly expanding software growth rates.

4.3.6.2 RECOMMENDATIONS RESULTING FROM SUB-PANEL DISCUSSIONS

The following recommendation was proposed by the Charter Subpanel and
approved by the entire panel:

The panel recognized the requirements for organic post/develop-
ment software (PDSS) within all the services. There is a need DoD to
promulgate standard functions and responsibilities of a post/ develop-
ment software support activity (PDSSA) that can be fully impleme,.Lud
in each of the services. It is recommended by the panel that the
JLC require the implementation, within all the services, for the
PDSSA charter in Appendix B for the development, acquisition and support
of embedded computer resources, including computer/processors, soft-
ware and related hardware.

The following recommendation was proposed by the Facilities Subpanel and
approved by the entire panel:

PDSS Facilities should incorporate e-iqtinv or planned support com-
ponents whenever cost effective over the lifecycle or when necessary for
readiness.

4.3.6.3 Cost-Saving Recommendations

One sub-panel of the Cost of Ownership Panel was chartered to concentrate
on ways to reduce software cost. This sub-panel produced the set of
recommendations, approved by the entire panel which follow.

In general, the issues impacting software cost of ownership are much the
same as those impacting software development cost, because the process of software
maintenance is for the most part a process of continued development. Whatever
improved the cost effectiveness of delivered software will usually improve the cost
effectiveness of its maintenance.

Therefore, it is important that mechanisms which contribute to reduced
cost of ownership be addressed as early as possible in the software life cycle and
not later than contract requirements time.

Further, software cost reduction will never be a fully controllable and
observable process unless all developments take place with full software cost
accounting and menasurement procedures in place and working.

There are many facets to software cost reduction which have been
addressed under DoD STARS and other Service programs, and there is no advantage to
discussing them all here. However, there are a number of issues relating to

4-3-13

software cost of ownership reduction that deserve attention because, from the
perception of the Panel, they are of fundamental importance, and within the capacity
of DoD and industry to tackle in the near term, and tend to be overlooked in the
push to institue advanced technology programs in DoD.

ISSUE: Front End System/Software Acquisition Requirements

Most of software life cycle cost is determined by requirements laid down
at development inception. Therefore, the start of a program must include all
considerations for the life cycle support of that system. While sound acquisition
principles governing system/software life cycle are expounded in theory within the
material organization, they are frequently neglected in practice leaving the PDSS
phase of the system holding the bag.

The request for proposal should identify all items needed for continued
support throughout the total life cycle. Continued software support and evaluation
requirements must be a key evaluation factoi in making decisions regarding who is
awardpd given system contracts.

The cost/work breakdown structure must include the capability to track
programs throughout the entire life cycle. All components must be planned for to be
delivered as a part of the proposal -- either the support environment is furnished
by the government or is deliverable under the contract. LiKewise, all necessary
test tools and development tools must be furnished or deliverable. In other words,
a complete system must be obtainable from the contract which will allow full life
cycle support and sustainment.

Further, the system hardware and software architecture must be configured
to accommodate modular change or expansion over the full predicted life cycle of the
system.

Investing front end resources in this way will definitely decrease the
total life cycle cost.

Recommendation: JLC review policies governing acquisition requirements for
adequate coverage of software life cycle support requirements and tighten procedures
for promoting adherence to these policies.

ISSUE: Cost Data Collection, Cost Accounting And The Use Of Predictive Models
For software Costs

Much controversy is associated with the validity of the EIA prediction of
$34B to be spent on software support in 1990. In order to make any realistic
projectons, one must have more formalizedand routine cost tracking and predicting
mechanisms. The suggestion here is that coEts be tracked by system (hardware end
items) both with respect to efforts relating to softwate error correction, as well
as software enhancements/modifications. These software efforts should be tracked by
program element, e.g., OMA P2, R&D, or procurement appropriation account, whichever
is applicable. A suggested format for this tracking system is given on the next page:

4-3-14

System/ AN/UYK-XXX AN/UYK-XXY TOTALS

Budget
Category

PROC APP $ or man-hours

RDTE

OMA P2

OMA P7M

TOTALS Historical Cost Figures For FY XX

Additionally, the current literature should be searched to determine how
much work has been done to date and published in such journals as the IEEE Computer
Magazine, the Journal of the ACM, NTIS, university theses, and other commonly
available sources.

This issue is also directly related to the issue of proper funding
policies within the Services. Additional work should be sponsored, either to be
done in-house (by one of the Services or by OSD) or contratually, to develop/adapt
analytical predictive models for estimating software costs as a function of system
complexity, lines of code, life cycle phase of end item, etc. Models currently
available include some based on the Raleigh-Norden distribution, various
multivariate regression analysis models, the COCOMO model, etc. The use of these
models should either be encouraged as predictive tools or new variants should be
developed.

It is only through accurate data collection and extensive use of these
analytical models will we ever get a thorough understanding of the future software
support cost within the DoD.

ISSUE: Applications Software Reusability

The surest way to avoid software cost is to avoid developing new
software. Reusability of existing software has the potential for significant
software cost reduction (development and maintenance). In order to achieve maximum
cost reduction benefits, a well disciplined approach to implementation must be
followed.

Standards of module structure, as well as documentation (requirements,
input/output, processing description) must be adhered to. Module function
descriptions must be clear and concise so that libraries can be established to
accomplish the clearinghouse functions needed to ensure maximum publicity. System
architecture guidelines for improving reusable module insertion should be developed.
Incentives should be provided for contractor/organic use of existing software
modules and for the generation under reusability guidelines of modules not
previously filed in the library.

4-3-15

This activity should dovetail with other ongoing standardization
activities (e.g., Ada, documentation, ASPE, etc). A method of achieving this
compatibility is by placing the definition/implementation/library functions under
the software technology improvement efforts and assigning it to a centralized
functional office for managment.

The sucess of reusable software will be a function of how well the
modules are documented, structured and how well the synopsis of module functions are
publicized. An automated catalog (perhaps via ARPA net) must be considered.
Definitions of incentives and requirements for use should be in the RFP. System
architecture shocld be adapted for use with reusable software (where perfromance
permits it).

Software reusability has been the subject of much discussion and study
but little coordinated action has ensured.

Recommendation : JLC institutes a program to develop procedures, organization
elements, policies and support tools necessary for reusablility, and identify
program areas of high software reusability potential to participate in such an
initiative.

ISSUE: APSE Standardization

The EIA study predicting exponential increases in the cost of software
has the attention of both DoD and industry. Whether one agrees or not with the
dollar amounts, the concensus is that software cost trends must be changed and the
costs brought under control.

As Dr. Martin has pointed out, one of the cheif management requirements
is effective control of costs and schedule.

One method of cost control has long been recognized. That method is
standardization. The original intent of the development of Ada High Order Language
was cost reduction through the control of HOL's and associated environments that
would be reliable, adaptable, responsive, reusable and transportable.
Unfortunately, it appears that DoD is about to lose control of its original intent
-- cost control, through standardization -- as it attempts, to implement the Ada
Environment.

Two of the three Services, the Army and Air Force have already embarked
on full scale development of two different Ada environments: (1) Ada language system
(ALS) by the Army, and (2) Ada Integrated Environment (AIE) by the Air Force. The
Navy is adopting the Army ALS as the baseline for its environment.

Industry is rapidly gearing-up a proliferation of company-unique Ada
environments.

Thus, the proliferation and non-standardization of Ada environments has
already begun.

OSD and AJPO have recognized the potential problems associated with
different environments and saw fit to establish interface teams with DoD and
including industry and academia.

4-3-16

The situation and potential therefore exists for more fuel to be added to
the exponential fire associated with escalating software costs rather than having a
dampening effect.

The extensive development costs for multiple environments and the support
costs to maintain those environments could well obviate most of, it not all, the
anticipated cost savings and economic benefits envisioned or projected by the use of
Ada. And while improved efficiencies may be generated via the STARS program, these
efficiencies may well be lost in the additional expense of having to maintain and
use separate non-standard environments.

Certainly the human element is the most costly aspect of software
development and maintenance. DoD has justified STARS on the basis that if STARS is
successful, the DoD will be able to decrease the human element somewhat and can
reduce the projected exponential cost growth to one that is geometric. If separate
Service teams must divert manpower and economic resources to the control and/or
maintenance of multiple unique environments, not to mention having to, potentially,
adapt to many incompatible industry Ada environments, the reduction of the cost
growth scope from expontial to geometric is placed in jeopardy.

Recommendation : That OSD regain control and seriously examine the issue of Ada
environments to determine the most cost effective method of continuing with the
original intent of cost reduction through an Ada standard implementation.

ISSUE: Automation of Software Development Functions

The primary cost of software is people cost. There has been much
attention given to trying to improve the efficiency of programmers in the software
developemnt process through training, structured code and other programming
improvement mechanisms. However, there are limits to the degree of efficiency that
can be achieved by individual programmers at developing each line of source HOL in a
delivered system.

A direct and potentially much more effective approach to reduction of
software cost is to eliminate, as much as possible, human involvement in the
software production process through what are known as non-programming options such
as reusable software, automated system generators, and very high level
problem-oriented-language systems.

The Services should evaluate in-house and commercial tool developments
that could be applied to automation of portions of the software development process
from requirements through final testing. There are several areas which could benefit
from this approach in the near term.

* Requirements specification/validation/tracking. A number of requirements
statement languages and associated support tools of varying levels of maturity are
available in industry. Thses systems help manage this highest cost leverage portion
of the software life cycle.

* Applications generators/problem-oriented-languages. Such systems in
well-defined application areas allow one or more stages of program specification,
coding, and testing to be evoided along with the error attendant in the human
element. Application generators go hand in hand with software reusability where
predeveloped software building blocks can be used in the automated system generation

4-3-17

process.

* Documentation. Automated doucment generators can also generate test data

sequences which check out system software components individually and in groups.

More ambitious solutions over the long term involve complete systems
generation and testing directly from generalize "natural language" descriptions.
While such approached deserve continuing research, there appears to be little
probability that they will impact life cycle cost prior to the 1990 time frame.

Recommendation : JLC identify specific program development areas which could
benefit from application of available or near mature automation tools and begin to
utilize these in specific applications hand in hand with cost data tracking and
management.

ISSUE: Personnel Qualifications Should Meet (and not exceed) Minimum Accep-
table Levels for the Approproate Software Support

The thesis here is very straightforward. Commands should not use highly
qualified system engineers to do routine coding and programming tasks. Likewise,
they should not require these highly skilled personnel of their contractor support
personnel for routine tasks.

This is not to diminish the importance of highly skilled systems
engineering personnel, but only reinforce the commonly held management precept that
one should accurately match the skills of the employees to the job or task at hand.

We have seen large discrepancies in the average "loaded" cost of software
support personnel across PDSS centers and this is partly due to variations in the
avability of certain skilled personnel in different parts of the country, but it is
also due, in part, to requirements for personnel with skill levels higher than is
absolutely necessary.

ISSUE: Coupling the Tech Base to Software User Requirements

There currently does not exist a formal mechanism for people in the
support and sustainment of software to translate to the research and development
community their needs for tools. A technique for tool development requirements
needs to be started. We need a mechanism to allow these people to write a statement
of need and for it to be evaluated and considered for research and development. A
large payoff is available in the develoment of standard tools to be used in this
area yet no mechanism exists for those "users" to pass on thier needs in some kind
of requirements document which becomes to some extent a formal requirement on the
tech base community.

4-3-18

DOD
DIGITAL DATA
PROCESSING

RSTUDY

A
TEN-YEAR
FORECAST

Appendix A

The EIA Study: DoD Digital Data

Processing Study, A Ten-Year Forecast

4-3-A-i

DOD DIGITAL DATA PROCESSING STUDY

A TEN YEAR FORECAST

Executive Summary

The "DOD Digital Data Processing Study - a Ten Year Forecast" was
performed by an industry team under the auspices of the Requirements
Committee, Government Division, Electronics Industries Association
(EIA). The results of the year-long study was initially presented at
the EIA Fall Symposium, "The DOD Electronics Market - Forecast for the
80's," which was held in Los Angeles on October 7-9, 1980.

The hypothesis behind the study was that an ever-increasing share of
the DOD electronics budget is being earmarked for digital computers.
The industry team, with representatives from Control Data Corporation,
IBM, Intel, ROLM Corporation and TRW performed an analysis of the
digital computer portion of the broader DOD electronics segment. The
study included both Automated Data Processing (ADP) and the Embedded
computer area; it included both hardware and software/services.

The study team used multiple sources to obtain and verify information
including DOD budget data; congressional testimonies; over 40 personal
interviews with experts in industry, DOD, congressional staff, OMB
and GSA; periodicals; industry market research publications including
Frost and Sullivan, DMS, Quantum, et al, and published data from several
government sources including OMB, GSA and GAO.

The quantitative and qualitative results of the study are prescnted in
this report. In summary form, a few of the highlights from this report
are: (Unless otherwise stated all dollars are current in billions.)

o Defense Electronics will increase from $20.1 in FY80 to
$75.7 in FY90. Defense computers will increase from $6.7
in FY80 to $45.8 in FY90 - from 33 percent of Defense
Electronics in FY80 to 60 percent by FY90.

o Software and Services will increase from $4.6 in FY80
to $37.2 in FY90 - from 69 percent of the total Defense
computer expenditures in FY80 to 81 percent by FY90.

o Software hourly rates have nearly tripled since 1965 and
are projected to be over five times the 1965 base by 1990.
However, the cost of computer hardware is decreasing
dramatically. By 1990, the cost of large mainframe
computers and the cost of mini/micro computers are
projected to be one-fifth and one-tenth respectively
of the 1965 base.

4-3-A-I

o in 1955, there were approximately 1000 computers and 10,000
programmers, a 1:10 ratio in the U.S. Today, there are
approximately 900,000 computers and 240,000 programmers,
a 9:24 ratio. Even with productivity improvements, the
shortage of qualified software personnel will not end;
software costs will continue to rapidly escalate.

o During the 1980's:

- The total DOD budget will increase 2.8 times,
- The DOD Electronics budget will increase 3.8 times,
- The DOD Computer budget will increase 6.8 times,
- The DOD Software budget will increase 8.1 times.

o ADP computers in Federal inventory will increase from 16,513
in FY80 to 58,070 in FY90. ADP computers in DOD inventory
will increase from 6,435 in FY80 to 27,700 in FY90. During the
1980's, minicomputers will comprise a large portion of the
Federal/DOD inventory. DOD's ADP hardware budget is forecast
to increase from $.8 in FY80 to $2.7 in FY90; during the same
period, the DOD software and services budget will increase
from $1.8 to $5.2.

o The ever-increasing DOD ADP budget combined with nearly
constant in-house personnel levels results in an increasing
percentage of DOD's ADP budget going to the private sector,
as shown below:

DOD ADP $ To % Of Total ADP $
FY Private Sector To Private Sector

1978 S 926 M 48
1979 1,224 M 53
1980 1,482 M 57
1981 1,688 M 59

o Embedded computers are defined in the study as specially
designed, for example, designed to satisfy MIL-Specs, and
are acquired as part of a total weapons package, thus
"embedded" in a weapons system. It is not gencrally
recognized by most personnel in the computer field that
embedded computers presently represent over 60 percent of the
DOD computer budget, and the percentage is projected to increase
to approximately 75 percent by 1985 and 83 percent by 1990.
Microprocessors will have an ever-increasing influence in the
embedded area; much more so than in the ADP area.

A-2

0 Single chip microprocessors capable of performing a million

instructions a second (IMIP) are forecast to be developed
during the early 1980's.

0 It is forecast that in the coming decade, nearly every
weapon system will have an embedded computer (or computers)
somewhere in itz control subsystem and/or C3 1 subsystem.

0 A larger portion of the embedded buaget is returned to
industry than from the ADP budget. An estimated 87 percent
of the 1980 embedded budget was contracted to industry,
most of which came from RDT&E accounts with smaller
portion from O&M and procurement accounts. There is a
definite trend for the services to function more and more
as program managers executing contracts to industry in the
embedded area as opposed to performing computer design/
development tasks in-house.

A-3

CONT, LDATA DAVE STEPHANCORI)RATION

intel DICK DAVIS

. BILL BARBAZETTE
RUhn! LINDA JOHNSON
CORPORATION

TRW BILL MURPHY

The study team consisted of Dave Stephan from Control
Data Corporation, Dick Davis from Intel, Bill
Barbazette from IBM, Linda Johnson from ROLM Corporation
and Bill Murphy from TRW.

A-4

STUDY INCLUDES:
" ADP & EMBEDDED

" COMPUTER HARDWARE, SOFTWARE & SERVICES

" FUNDING; RDT & E, PROCUREMENT, 0 & M

NOT INCLUDED:
o CLASSIFIED

o OFFICE EQUIPMENT eg WORD PROCESSING,
CALCULATORS, ETC.

o EXPENDABLE SMALL MUNITIONS

The study includes: both Automated Data Processing and the
Embedded computer area, computer hardware and the labor-intensive
activities referred to as software and services. DOD funding
sources identified in the study include RDT&E, Procurement

and O&M. Emphasis has been given to the Army, Navy, and Air
Force.

The scope of the study has been limited by NOT including
classified programs, office equipment such as word pro,-essing
and calculators, and small expendable munitions, although
missiles and torpedoes are included.

A-5

DEFINITIONS

AUTOMATED DATA PROCESSING
* COMMERCIAL OFF-THE-SHELF

* "INFORMATION TECHNOLOGY"

" GENERAL PURPOSE

* ACQUISITION BY GSA UNDER BROOKS LAW

EMBEDDED
* SPECIALLY DESIGNED (eg MIL-SPEC)

" ACQUIRED AS PART OF WEAPONS PACKAGE

Therc are a few terms used in this presentation that need to
be dEfined. "ADP" and "Embedded" are two terms in DOD which
have ceveral definitions. For purposes of this report, we

have used the simplistic definitions as follows: ADP is
characterized by computers generally thought of as commercial -

off the shelf. There is a new term "information technology"
which was coined by the President's Federal ADP Reorganization
Project, and is synonomous with ADP. ADP usually conjures
thoughts of computers that are "general purpose." And ADP
products are usually acquired by the GSA functioning under
the Brooks Law (PL 89-309). "Embedded" computers, on the
other hand, are specially designed, for example, designed
to meet MIL-Specs, and are acquired as part of a total
weapons package, thus "embedded" in a weapon system.
Embedded computers are program managed by the 5000.XX
series of directives.

A-6

HW - COMPUTER HARDWARE RELATED

S&S - SOFTWARE & SERVICES e.g.

SOFTWARE

SYSTEM DESIGN

MAINTENANCE

TRAINING

ETC.

We use the term "HW" to denote computer hardware-related

activities and the term "S&S" for software and services
which includes software, system design, maintenance,
training and other labor-intensive activities.

A- 7

MICRO PROCESSOR - ASSOCIATED WITH "COMPUTER-

ON-A-CHIP TECHNOLOGY

MINI PROCESSOR - SMALL COMPUTER, USUALLY

16-BIT, BOARD OR BOX

MAXI PROCESSOR - LARGE MINI, USUALLY 32-BIT

WITH MORE MEMORY

LARGE SCALE PROCESSOR - CLASSIC BEHEMOTH OF
THE INDUSTRY

"Microprocessor" refers to computer-on-a-chip technology.

"Miniprocessor" is a small computer, usually 16-bit word

length, packaged on a board or in a box with associated

memories, power supply, etc. A "maxiprocessor" is a

more powerful mini, usually 32-bit word length with more

memory. Finally, "large-scale processor" is the classic

behemoth of the industry such as the IBM 370 or CDC

CYBER class of computers.

A-8

SOURCE OF INFORMATION

* DOD BUDGET DATA

" CONGRESSIONAL TESTIMONIES

" PERSONAL INTERVIEWS (INDUSTRY, DOD,
CONGRESS STAFF, OMB, GSA)

" PERIODICALS

" INDUSTRY MARKET RESEARCH (F&S, DMS,
QUANTUM, ET AL)

" PUBLISHED GOVERNMENT DATA
(OMB, GSA, GAO, ET AL)

Ihe study team used multiple sources of information including

DOD Budget Data; Congressional Testimonies; more than 40
personal interviews with experts in industry, DO),

Congressional staff, oMB and GSA; periodicals, industry

market research publications from F&S, DMS, Quantum,
et al and published data from several government sources
including OMB, GSA, GAO, et al.

A-9

PRESIDENT'S REORGANIZATION PROJECT-
FEDERAL DATA PROCESSING
REORGANIZATION PROJECT COMPLETED
APRIL 1979-11 VOLUMES AVAILABLE
FROM NTIS

One sich published document is the President's Reorganization
project completed in April 1979. There are eleven volumes
in the final report aid these are available from NTIS. I
would like to share a few quotations from this report as
a preface to our study:

A-10

"THE FEDERAL GOVERNMENT IS IRREVERSIBLY

AND INCREASINGLY COMMITTED TO THE USE OF

INFORMATION TECHNOLOGY TO MANAGE ITS RE-

SOURCES, PROVIDE ITS SERVICES, AND PROTECT

ITS CITIZENS."

. . . AN URGENT NEED TO EXPLOIT AND ACCELERATE THE

APPLICATION AND DEVELOPMENT OF INFORMATION TECH-

NOLOGY TO REDUCE THE COST OF GOVERNMENT, IMPROVE

SERVICE DELIVERY, PROTECT OUR PRIVACY, IMPROVE OUR

INDIVIDUAL AND MILITARY SECURITY, AND MAINTAIN WORLD

LEADERSHIP IN A TECHNOLOGY THAT HOLDS THE KEYS TO A

NEW ERA."

A-11

"THE FEDERAL GOVERNMENT IS, IN GENERAL, MISMANAGING

ITS INFORMATION TECHNOLOGY RESOURCES AND HAS NOT

DEVELOPED A PLAN FOR EXPLOITING THE OPPORTUNITIES

OF THE FUTURE WITH RESPECT TO INVESTMENT, SERVICE

DELIVERY, PROTECTION OF CITIZENS, OR NATIONAL SE-

CURITY."

"INFORMATION TECHNOLOGY IS OF GREAT IMPORTANCE TO

THE DOD MISSION. NEARLY ALL MISSION-ESSENTIAL DOD

OPERATIONAL AND MANAGEMENT PROCESSES ARE NOW

DEPENDENT UPON INFORMATION TECHNOLOGY, AND ENOR-

MOUS RESOURCES ARE EXPENDED ON THEM."

A\-I

"THE TOTAL DOLLAR VALUE OF THE
COMPUTER RESOURCES WITHIN DOD
IS UNKNOWN."

"The total dollar value of the computer resources within
DOD is unknown." This then is the springboard into the
results of our study. The next chart is in your handout
and we will comment only briefly on it, because the
following charts will graphically depict the contents.

DOD BUDGET FORECAST ($BILLIONS)

FY 80 81 82 83 84 85 86 87 88 89 90
TOTAL DOD

CURRENT $ 141.7 167.0 190.4 214.2 236.8 260.8 2852 311 2 339.3 3693 4014

DEFLATOR 90.9 100.0 109.0 117.7 126.5 135.7 145.2 155.3 166.2 177.8 190.2

TOTAL 000
1981 S 1559 167.0 1748 1820 1872 192.2 196.5 2004 204,1 207.7 211 1

DEFENSE ELECTRONICS (ITOA)
CURRENT $ 20.1 25.4 29.6 34.0 38.5 42.9 47.9 53.9 600 67.6 75.7

1981 $ 22.1 254 27.2 28.9 30.4 31.6 33.0 34.7 38.1 38.0 39.8

DEFENSE COMPUTER
CURRENT S 6 7 89 106 128 153 184 22 1 265 318 382 458

1981S 74 89 9.7 109 121 136 15.2 171 191 21.5 24.1

% OF ELECTRONICS 33% 35% 36% 38% 40% 43% 46% 49% 53% 56% 60%

COMPUTER CONTENT
HW 31% 29% 27% 26% 24% 23% 22% 21% 20% 19% 19%

CURRENT S 21 2.6 29 33 3.7 43 49 56 65 74 86

S&S 69% 71% 73% 74% 76% 77% 78% 79% 80% 81% 81%

CURRIENT S 46 6A 77 95 116 141 172 209 253 308 372

I would like to point out that the first line is the EIA
estimate of where the total DOD budget is going. The second
set of numbers is the EIA ten-year forecast for Electronics.
The third set of numbers is our estimate of the total DOD
computer budget and the bottom of the chart highlights
the computer budget by hardware and Software and Services
Content. All dollars in this report are current dollars
unless otherwise noted.

A-14

DIGITAL COMPUTERS AS% OF DEFENSE ELECTRONICS
($ CURRENT BILLIONS)

%

100 $20.1B $42.9B $75.7B

90

80

70

60

50

40

30

20

10

FY80 FY85 FY90

It appears that "DOD Digital Computers" and Defense

Electronics are becoming synonomous. As shown here,

computers are 33 percent of Electronics in 1980, 43

percent in 1985 and 60 percent in 1990.

A-15

50 DEFENSE COMPUTERS
($ CURRENT BILLIONS)

$ BILLIONS

40

30
i 3o TOTAL

20

10

0
80 81 82 83 84 85 86 87 88 89 90

As we might suspect, the Software and Services portion of
Defense computers is growing much faster than hardware,
growing from $4.6B (69 percent) in 1980 to $37.2B or
81 percent of the total in 1990.

A-16

DEFENSE COMPUTERS
HARDWARE vs SOFTWARE & SERVICES

100

90

80

70 & S&S
do I

60

50

40

3020
10

0
FY80 FY85 F9

Or shown differently on this chart, S&S is rapidly on the
path to becoming the most significant portion of the DOD
computer budget. What are some of the underlying factors
causing this deveiopment?

A-17

COST TRENDS
500

400 HOUSING

300

SOFTWARE (HOURLY RATE)
200

RATIO SCALE

100
90
80
70
60
50

40 LARGE MAINFRAME COMPUTERS

30

20
MINI MICRO COMPUTERS

10 - - -

1965 1970 1975 1980 1985 1990

Plotted here on a logarithmic ratio scale are several cost

trends we can all relate to. The price of gasoline and

housing in the past ten years. Hardware decreases for both

large mainframe computers and more significantly, in mini

and microcomputers. And, of course, the cost of labor

which directly impacts labor-intensive activities such as

software shown here.

A-18

SOFTWARE IMPACT
1.0

0.9

0.8

RELATIVE
INFLUENCE
ON SYSTEM
DESIGN AND 0.6

DEVELOPMENT
0.5

0.4

0.3

0.2

0.1

1950 1960 1970 1980 1990 2000

A6, Fill C-5, P3 F15, E3A, F18 MPA

In fact, the cost of software now exceeds the cost of

hardware in most ADP and embedded systems. As shown here,

this trend is likely to continue.

A-19

COMPUTERS & PROGRAMMERS IN U.S.
1200

1000 THOUSANDS

100-

1980

900,000 COMPUTERS
10- 240,000 PROGRAMMERS

1 - - I -, , - 1 - -

1955 1960 1965 1970 1975 1980 1985

Another factor is the shortage of computer programmers.
There were approximately 1000 computers and 10,000 programmers
in t955; by 1980 there are approximately 900,000 computers
installed in the U.S. with only 240,000 programmers. We
predict that the shortfall in programmers will become worse
and create additional pressure to the spiraling cost of
software and, of course, the Federal government and DoD are
vying for the same software resources as industry.

A -? 9

DURING THE '80's

DOD BUDGET INCREASES 2.8 TIMES

DOD ELECTRONICS INCREASE 3.8 TIMES

DOD COMPUTERS INCREASE 6.8 TIMES

DOD SOFTWARE INCREASES 8.1 TIMES

To summarize this data, during the 80's:

- The DOD budget will increase by a factor of 2.8,
- The DOD Electronics portion will increase by a

factor of 3.8,
- DOD computer costs will increase by a factor of

6.8 and,
- 1)OD software costs will increase by nearly an order

of magnitude (8.1 times)!

A-2 1

AUGUSTINE'S LAW NUMBER VIII

TREND OF INCREASING COST
OF TACTICAL AIRCRAFT

17F 1

F 11
F 0 F 10 1 A If

10 6
F 10A 11

AVERAGE UNIT COST F ... 00OF All

(THEN-YEAR DOLLARS) Fo 5 . ,6
P41 * - A0

10 5
P38 * 18r

P1S,* * FSO

104_ MORAS4
*S!'AD

4A 004AOAR1 I

.. RtGI"T MODEL A

10 3

1910 1920 1930 1940 1950 1960 1970 1980 1990

YEAR OF INITIAL OPERATIONAL CAPABILITY

Most of you have probably seen Augustine's Law Number Viii.

Plotted here is the then-year cost of various aircraft -
from a few thousand dollars for the Wright Model A to the
$20 million per unit for current aircraft.

A-22

AUGUSTINE'S LAW NUMBER VIII
CALVIN COOLIDGE'S REVENGE

ONE QUINTILLION

GROSS NATIONAL PRODUCT

o ONE QUADRILLIONCC

DEFENSE BUDGET ' """

cr(N TILO -= -" - ,-
0

13 ONE BILLION

p,. • /"AIRCRAFT UNIT COST
ONE MILLION

.4....

ONE THOUSAND

1900 1950 2000 2050 2100 2150

YEAR OF INITIAL OPERATIONAL CAPABILITY

Extending these costs trends, one can conclude that the cost
of a single aircraft by the year 2050 will consume the entire
DOD budget, and by the year 2130 it will take the entire GNP
to purchase one aircraft! Unfortunately, there's an analogy
to computer software that looks like this.

A-2 3

STEPHAN'S COROLLARY TO
AUGUSTINE'S LAW NUMBER VIII

IF AIRCRAFT UNIT COST INCREASES ONE

ORDER OF MAGNITUDE EVERY 20 YEARS,

AND SOFTWARE COSTS INCREASE ONE

ORDER OF MAGNITUDE EVERY 10 YEARS,

THEN BY YEAR 2015, SOFTWARE WILL CONSUME

THE ENTIRE DEFENSE BUDGET.

If aircraft unit cost increases one order of magnitude every
20 years, and software costs increase one order of magnitude
every 10 ,ears, then by year 2015, software will consume the
entire defense budget! And there won't be any money for
aircraft, or tanks, or ships...

\'- 4

DEFENSE

ADP

FORECAST

Let's now examine the ADP and Embedded markets in greater
detail.

Let's look first at the ADP market.

A-2 5

FEDERAL AND DOD AUTOMATIC DATA PROCESSING ADP
($ BILLIONS)

F v 75 76 77 78 79 80 81 82 63 84 85 86 87 88 89 90

FED ADP BUDGET 310 329 375 412 477 530 576 643 719 803 897 100 1119 1250 13.96 1559

% GROWTIII/ YEAR 165 61 140 98 158 11.1 8.7 117 117 117 117 117 117 1 7 117 117

- CPUS 8983 9870 11518 13181 14984 16513 18125 21234 24090 27307 30966 3511S 39821 46157 51208 58070

% GROWTH / YEAR 152 100 166 144 13.8 102 13.4 134 134 134 134 134 134 134 134 134

000 AP FIUDGET 152 155 191 193 231 2.60 283 317 356 399 448 500 561 626 699 781

% GROWTH I YEAR 96 20 232 10 197 126 80 120 123 I11 123 116 122 116 11 7 117

AS%OF FED AOPBUD 490 471 509 468 484 490 49.1 493 495 497 499 500 0.1 501 501 501

CPU's 4245 4425 5059 5513 6306 6435 7072 8281 10137 11414 13594 15696 18118 20907 24118 27699

%GROWT4 / YEAR 59 100 143 90 144 20 99 170 224 125 190 155 154 153 154 148

AS % OF FEf D CPU S 473 447 439 418 421 390 378 390 421 418 439 447 455 463 471 477

HW - 84 99 108 121 136 1 52 170 191 813 238 286

S&S 176 185 209 235 263 296 330 370 413 461 515

ItW HARDWARE

S 7. SrOF TWARI & SERVICES

This is another "busy" table of data, included in your
handout. The following charts will present the salient
points of this set of data. Note that the total Federal
ADP forecast and the DOD ADP forecast is included here.

A-26

FED & DOD # OF CPU's
60 THOUSANDS (000'S)

50

40

30

20 El%
10

FY75 FY 80 FY85 FY90

First, the number of computers or CPUs. There were 8983

CPUs in the Federal inventory in 1975 with 47 percent of
4245 belonging to DOD. In the post-Viet Nam era, DOD's
ADP inventory increased to 6435 CPUs by 1980, a decline in
percent of the total Fed. We are predicting that this
trend will reverse and DOD will have 13,594 CPUs in
inventory by 1985 and 27,699 CPUs (many of these will be
minicomputers) by 1990 which will be about 48 percent of
the total in Federal inventory.

A-27

FED & DOD ADP BUDGET
16 $ BILLIONS ($ BILLIONS CURRENT)

141

12

10 lo TOTAL
FED

8

6

4

2

0
FY75 FY80 FY85 FY90

Budget-wise, DOD's ADP is running at about 50 percent of the
Federal ADP budget. From $1.5B in 1975 to $2.6B in 1980 and
our forecast calls for a continuation of the 50 percent trend
for a DOD budget of $4.5B in 1985 and $7.8B in 1990.

A-28

DOD ADP BUDGET ($B) TOTAL
8 $ BILLIONS 7.81

7

6

5 TOTAL
54.48

4

3

2

0
80 81 82 83 84 85 86 87 88 89 90

The DOD ADP budget forecast is shown on this chart.
Hardware is forecast to increase to $1.5B by 1985 and to
$2.7B by 1990, but S&S will increase more rapidly to
nearly $3B in 1985 and to over $5B by 1990.

A-29

DOD ADP BUDGET ($ MILLIONS)

FY 80 FY 80 FY 81 FY 81
S &S 1tW S & S HIW

I CAPITAL INVEST. (PROCUREMENT)
A. PURCHASE OF NEW CAPACITY 206.8 208.7

B. PURCHASE TO EXPAND/REPLACE
EXISTING CAPACITY 108.1 1467

C. PURCHASE OF SOFTWARE 11.4 140
D SITE CONSTRUCTION 20.3 292

II OPERATIONS (0 & M), (RDT&E)

A. PERSONNEL (57.000 PEOPLE) 1.146.6 1.1625
B. EQUIPMENT RENTAL, ETC.

1. ADPE RENTALS 387.0 457.8

2. SPACE 9.4 9.3

3. SUPPLIES 129.2 145.3

C. COMMERCIAL SERVICES

1. ADPE TIME 33.8 34.3
2. OPERATIONS 31,9 38.6
3. SYSTEM ANAL. & PROG. 250.6 262.2

4. ADPE MAINTENANCE 166.3 186.2

5. ADP STUDIES 114.5 1566

TOTALS 1,755.1 (67%) 860.8 133%) 1,854.4 (65%) 997.0 (35%)

HIW - HARDWARE RELATED 2.615.9 2.851 4

S & S - SOFTWARE & SERVICES RELATED

This chart shows the DOD ADP budgets for FY80 and FY81 by
category. Capital Investment (procurement funding) includes

purchase of new capacity, purchase to expand/replace,
purchase of software and site construction. The preponderance
of funding is for operations (with most of the funding coming
from O&M) and operations includes personnel (constant at
about 57,000 people), equipment rental and commercial

services. The S&S versus HW content for FY80 and FY81 is
indicated.

A-30

...

TOTAL DOD ADP BUDGET
($MILLIONS) MARINE

COFF F
$8 4. RI

MARINE 22% 6

CORPS

$56.5

NAY2RM $2

MARINE $

CORPS 2

$49
2 1%

2I dARFOC FY81 $2,831

A FY80 $2,600

FY79 $2,278

The split between services is indicated here for FY79,
80 and 81. Navy and Army ADP budgets are growing
percentage-wise while Air Force ADP is showing a
slight decrease percentage-wise.

A-31

DOD ADP $ TO PRIVATE SECTOR
53%

57%

53%

48%

FY78 FY79 FY80 FY81

The ever-increasing DOD ADP budget combined with nearly
constant in-house personnel levels is reflected here.
Forty-eight (48) percent of the FY78 budget went to
industry whereas 59 percent ($1688M) of the FY81 budget
will go to industry.

A-32

FY81 PRIVATE SECTOR PORTION OF ADP
$1,688M TOTAL

The $1.7B consists of $400M (24 percent) for purchase,
$612M (36 percent) for rental and $678M (40 percent) for

services. "Services" include ADPE time, operations,
system analysis and programming, ADPE maintenance, and
ADP studies.

A- 33

Th 17 ossso 40 (4pret o ucae$62 3 ecn)frrnalad$7M(0pret o

SOFTWARE TRENDS

e MORE LINES OF CODE + MORE MAIN-IENANCE

X LABOR SHORTFALL = RAPID INCREASE IN COSTS

0 STANDARDIZATION: EFFORTS TO ACCELERATE

1. TOOLS eg Ada HOL

2. MODULES eg REUSE OF PACKAGES

BUT ... DOD VERIFICATION/CERTIFICATION (QA)

WILL ADD TO COSTS UNTIL LATE '80'S

9 NATURAL LANGUAGE EXTENSION TO HOL

BY END OF '80's (VOICE INPUT/OUTPUT)

0 CAD/CAM - LIKE SOFTWARE PRODUCTION
FROM SYSTEM DESIGN SPECIFICATION

I would like to conclude the ADP portion of this presentation

with a few predictions and trends which seem apparent. In
software, more computers mean more lines of code; this fact

plus more maintenance costs times the programmer shortfall

is going to continue to force software costs up. Currently

software costs about $50 per line of code, and nearly two-
thirds of software expenditures go for maintenance. To

counter this trend, there will be new efforts placed on

standardization - in two primary initiatives:

1. There will be greater emphasis placed on software
tools such as the Ada HOL effort aimed at
increasing programmer productivity.

2. There will be efforts to standardize on reusable

software modules such as operating systems and
application packages. Some of these wiil be "burned"

into hardware modules. But, standardization costs

money and efforts to standardize won't decrease overall

software costs until late in the decade. Look for
extensions to the Ada HOL to include natural language
by the end of the 80's with use of direct voice

recognition as computer I/O. We will see automated

production of software evolve during the decade.

A-34

HARDWARE TRENDS

" MINI'S AND MICRO'S WILL PROMOTE DECENTRALIZED

ARCHITECTURES TIED TO SMART MASTER

" VLSI WI!LL YIELD GAINS IN RELIABILITY,

PERFORMANCE, REDUCED COSTS

" STANDARDIZATION WILL OCCUR AT INTERFACE

LEVEL

BUT...
THESE HARDWARE TRENDS WILL ADD

FUEL TO THE SOFTWARE FIRE.

In the hardware aren: mini's and micro's will promote
decentralized architectures tied to smart hosts or
masters. VLSI will yield gains in reliability, performance
and reduced costs. Standardization will tend to occur

at the interface level. But, these hardware trends will
only contribute to higher software costs in the near
future.

A-35

ACQUISITION TRENDS

FACT: DOD ADP CPU'S ARE 12% LEASED

88% OWNED.

FACT: AVERAGE AGE OF CPU'S IS 7-9 YEARS
AND INCREASING.

HIGH COST OF MAINTAINING AGING

INVENTORY WILL TREND TOWARD MORE

LEASING WHERE LIFE CYCLE COSTS JUSTIFY.

DOD currently owns 88 percent of its ADP inventory and
leases 12 percent. The average age of the inventory is
seven to nine years and increasing (about six years
older than the private sector). The high cost of
maintaining this aging inventory will force DOD to
lease new equipment where total life cycle costs
justify. Lowest Total Overall Costs (LTOC) will be
emphasized with recognition for the large software
conversion costs.

A-'36

*ADP- 10% SOLE SOURCE
90% COMPETITIVE BID

1. GREATER PRESSURE TO

COMPETE BIDS

2. GSA WILL ISSUE FEWER

DELEGATION OF PROCUREMENT

AUTHORITIES (DPA'S)

- THRESHOLD WILL BE RAISED

- PRESSURE TO COMPETE

Purportedly, 90 percent of Federal ADP procurements are
competitive. This percentage is much smaller in DOD for
a variety of reasons. There will, however, be increased
pressure to acquire ADP products on a competitive basis
and GSA will issue fewer waivers (or DPA's) for two
reasons: the acquisition threshold will probably be
increased from $300,000 to $500,000 or higher, and
Congress will apply pressure to compete. Currently any
sole source procurement or any competitive purchase
over $300,000 goes through GSA unless a DPA is issued.
There was 346 DPA's issued in 1979: the average
competitive was $3.6M and the average sole source was
$700,000.

A--1 7

PRESIDENT'S REORGANIZATION PROJECT -

(COMPLETED APRIL'79) NATIONAL SECURITY

TEAM RECOMMENDATION WILL BE IMPLEMENTED:

A NEW OFFICE OF INFORMATION TECHNOLOGY

WILL BE CREATED AT HIGH LEVEL IN DOD:

- STAFF & POLICY ROLE FOR ADP &
EMBEDDED AREAS

- DOD FINANCIAL OVERVIEW

- DEAL WITH CONGRESS

Finally, the last point in the ADP portion of this
presentation relates to the previously mentioned
President's Reorganization Project. The National Securitv
team, in this project, recommended that DOD should create
a new high-level organization to deal with information
technology (both ADP and Embedded). We believe that this
office will be established at the OSD level with responsi-
bility for:

- Staff and policy for both ADP and Embedded.
- DOD financial overview.
- DOD computer dea] ings with Congress.

,\38

DEFENSE EMBEDDED

COMPUTER FORECAST

Now, let's take a closer look at the)OD Embedded computer
area. The forecast addresses the U.S. military and
aerospace market for militarized digital computers which
are applied in real-time equipment operations to solve
ttict ci-i , strit c-ic, -iid opera- tioni proble'- .

The major computer resource elements are broadly
_._categorized into two groups - hardware and software. -

Hardware

In this study, the computer is considered to consist of
the central processing unit (CPU), the input/output unit,
and the main memory unit. The computer, embedded within
each system surveyed, is basically a device that is
capable of accepting information, applying prescribed
processes to the information, and providing the results
of these processes.

Software

The computer software resources are functional support
software which provides direct support to major software
activities, operating system services, post-deployment
support software, and applications software.

The excluded markets are:

- Classified Programs
- Data Base Management Systems
- Test Equipment
- Training Simulators

End users in this marketplace are the Army, Air Force, Navy
and Marines.

A- 19

DOD EMBEDDED COMPUTERS

80 "1 '82 '83 '84'85 '86 '87 '88 '89 '90

NO. OF
COMPUTERS 10110 11270 12110 14645 18017 20109 23095 26996 31673 37297 44347

CUMULATIVE
TOTAL 10110 21380 33490 48135 66152 86261 109356 136352 168025 205322 249669

BUDGET

($ BILLION)

HARDWARE 1.28 1.58 1.81 2.08 2.36 2.75 3.20 3.73 4.34 5.06 5.89

SOFTWARE 2.82 4.49 5.62 7.16 8.95 11.17 13.90 17.16 21.20 26.15 32.10

TOTAL 4.10 6.07 7.43 9.24 11.31 13.92 17.10 20.89 25.54 31.21 37.99

The contents of this table will be graphically presented
in succeeding charts. Note that the number of embedded
computers is included here as well as the budget which
has been subdivided into hardware and software content.
The average rate of growth in the number of computers is
16 percent. The average yearly growth for hardware
dollars is 17 percent while software has an annual growth

rate of 28 percent.

A-40

DOD EMBEDDED COMPUTERS
260
250 THOUSANDS OF COMPUTERS
240
230
220
210
200
190
180
170
160
150
140 CUMULATIVE TOTAL
130
120
110 NEW PURCHASE
100
90
80
70
60
50
40
30
20 N

80 81 82 83 84 95 86 87 88 89 90

Microprocessors will have an ever-increasing influence in
the embedded area - much more so than in the ADP area. As
indicated here, the cumulative total of delivered embedded
computers will grow from approximately 10,000 in 1980 to
about 250,000 in 1990. Nearly every weapon system in the
future will have an embedded computer or computers somewhat
in its control subsystem or C31 subsystem.

A-4 1

DOD EMBEDDED COMPUTER MARKET
SOFTWARE/HARDWARE

34 BILLIONS
37-99

32

30

28

31.21

24

22 25

20

16

14 17.1

12 1392

10 11.31

8 9.

60

2

0
80 81 82 83 84 85 86 87 88 89 90

Budget-wise, embedded computers accounted for $4.1B in
1980 with $2.82B for software and $1.28B earmarked for
hardware. As you can see, the software content is fore-
casted to grow to some $32B by 1990 with hardware increasing,
on a smaller scale, to about $6B. In 1980, software was 69
percent of the total budget; in 1981 software will grow to
71 percent, and our projection shows that software will
increase to 85 percent by 1990.

A-42

EMBEDDED COMPUTERS HARDWARE vs SOFTWARE

81985 $13,920M

1980 $4,100M

he embedded pie equal to $4,100M in 1980 consisted of a
software piece of 69 percent and a hardware piece of 31
percent. The total pie will grow to nearly $14B by 1985
with software content increasing to 80 percent, and the pie
will grow to $38B by 1990 with software accounting for 85
percent of the total.

A-43

1980 DOD EMBEDDED COMPUTER MARKET
CAPTIVE vs OPEN MARKET

1OPE

$4,100 MILLION

In 1980, 61 percent of the total embedded market was
captive with 39 percent open. The "captive" market consists
of those programs that have had contract awards or fall

under the standard computer programs of a particular
service. The "open" market then represents new opportunities
for industry. Software has a much larger open market than
hardware. The "open" market should increase as technology

advances.

A-44

EMBEDDED COMPUTERS BY PLATFORM

1980 $4,M
1981 $6,070M

The chart shows the embedded computer budgets for 1980 and

1981 by platform. Airborne platforms account for 46 percent

of each budget whereas land-based platforms are growing

slightly from 23 percent in 1980 to 27 percent in 1981.

Sea, surface and subsurface platforms budget is growing

in absolute terms but a slight decline is forecast

percentage-wise. Land represents ground-based systems

including vehicle mounted systems.

A-45

EMBEDDED COMPUTERS BY SERVICE

1980 $4,100M

1981 $6,070M

The Navy has the largest budget - 46 percent in 1980 and

44 percent in 1981. The Army is playing catch up with abudget forecast for 1981 of $1578M (26 percent of the total)

up from $902M (22 percent) in 1980. The Air Force forecast
calls for a slight decrease in 1981 percentage-wise.

A IROC IF

1980 EMBEDDED DOLLARS RETURNED TO INDUSTRY

$410 MILLION

A more significant portion of the Embedded budget is re-
Eurned to industry than from the ADP budget. An estimated
87 percent or $3567M of the 1980 budget was contracted out.
Most of this funding came from RDT&E accounts with a
smaller portion from O&M and procurement accounts. There's
a definite trend for the services to function more and
mcre as program managers executing contracts to industry
in the embedded areas as opposed to performing computer
design/development tasks in-house. There are 55 industry
suppliers of militarized embedded computers, dominated
by five or six major companies, most of whom have a standard
computer. The "in-house" portion of the budget is
primarily mainLenance and software support, data configura-
tion management, logistic support, and post-deployment
support.

7

EMBEDDED DOLLARS RETURNE 3

3 $BILLIONS TO INDUSTRY
27.2

22.2

20 18.8

14.915

12.1

10 9.8

6.5

80 81 82 83 84 85 86 87 88 89 90

our forecast for the 80's indicates that the embedded
computer dollars returned to the industry will increase
substantially as virtually every weapon system now in
planning or under development will require embedded

computers. An ever-increasing percentage of these computers
will be microprocessors. In fact, the terms "embedded

computer" and "Software" need redefining as we enter the

microprocessor era. The personnel shortfall in the

services will necessitate even more of the in-house software

budget to be returned to industry.

A-48

LSI IN MILITARY SYSTEMS

e EMBEDDED COMPUTERS HAVE BECOME AN INTEGRAL PART OF VIRTUALLY

EVERY MODERN MILITARY SYSTEM, LARGELY MADE POSSIBLE BY PROGRAM-

MABLE MICROPROCESSORS

e LARGE SCALE INTEGRATION (LSI) AS TYPIFIED BY MICROPROCESSORS ARE

BECOMING DOMINANT IN MILITARY SYSTEMS AT THE EXPENSE OF TRADITIONAL

SSI/MSI MICRO CIRCUITS, e.g., TTL

* IN ABOUT 1981 WE CAN EXPECT TO SEE A 50/50 USAGE OF LSI vs SSI/MSI BY

DOD WITH LSI DOMINANT THEREAFTER

Large Scale Integration (LSI) is having a significant im-
pact on military systems. Embedded computers have become
an integral part of virtually every modern military system,
largely made possible by programmable microprocessors.
LSI as typified by microprocessors is becoming dominant
in military systems at the expense of traditional Small
Scale Integration/Medium Scale Integration (SSI/MSI)
microcircuits such as Transistor-"r,:nsistor Logic (TTL).
In 1981 or shortly thereafter, we can expect to see a
50 percent usage of LSI and 50 percent SSI/MSI within
DOD - with LSI dominant thereafter.

A-49

MICROPROCESSOR TYPES IN USE TODAY

* MICROPROCESSORS ARE TAKING OVER FUNCTIONS PREVIOUSLY PERFORMED

BY MINI-COMPUTERS

* BY MID-80's VLSI WILL ALLOW MICROPROCESSORS TO OFFER MAINFRAME

COMPUTER PERFORMANCE IN MILITARY SYSTEMS

e TWO DISTINCT FORMS OF MICROPROCESSORS ARE IN USE BY MILITARY:

- SINGLE CHIP CPU (MOS, 12 L, CMOS)

-- BIPOLAR BIT-SLICE FAMILIES

Particularly in the embedded area, we see microprocessors
taking over functions previously performed by minicomputers.
By the mid 80's, Very Large Scale Integration will allow

microprocessors to offer mainframe computer performance
in military systems. Two distinct forms of microprocessors
are in use within military systems today: single chip
CPL's using MOS, I 2 L and C1OS technology and bipolar bit-
slice families which are the building blocks of current
military compute .;uch as the Navy's staitdard airborne
computer - the AN,/AYK-14.

MILITARY IC MARKET 1070

1000 MILLIONS (EXCLUDING CAPTIVE SALES)
940

830
800

730

620

600
6

520

400f

200 , I/
M

1

0
1979 1980 1981 1982 1983 1984

Shown here is the estimated military integrated
circuit market in millions of dollars. Note that KSI
devices represented 32 percent of the 1979 market and
will increase to 50 percent by 1981 and will soar to
65 percent of the SI bi]1ion forecast for 1984.

A-S I

/

FUTURE MICROPROCESSORS

* BY EARLY '80's. WE WILL SEE A SINGLE CHIP MICROPROCESSOR (OR CPU)

CAPABLE OF A MILLION INSTRUCTIONS PER SECOND "A MIP ON A CHIP"

* NEXT YEAR INTEL WILL INTRODUCE A MICRO MAIN-FRAME (MULTI-CHIP)
32-BIT MACHINE (THE 432) THAT:

- PROVIDES MULTI-PROCESSOR PERFORMANCE EQUAL TO IBM 370/158

- HAS ARCHITECTURE THAT SUPPORTS Ada

- IS IN A MICRO-COMPUTER FORM FACTOR AND AT A MICRO-COMPUTER COST

Microprocessor technology is changing rapidly. By the early
80's, we will see a single chip microprocessor (or CPU)
capable of performing a million instructions per second -
"A MIP on a chip."

An example of things to come - next year Intel will
introduce a micro mainframe (multiple chips) 32-bit
machine (the 432) that will provide multiprocessor per-
formance equal to the IBM 370/158. It will have an
architecture designed to support Ada and will be in a
microcomputer form factor at a microcomputer cost.

A - : 2

VHSIC PROGRAM

* DURING MID TO LATE '80's. PROGRESS IN LITHOGRAPHY AND PROCESSING WILL
ALLOW CHIP DESIGN AT 100,000 GATE LEVEL OF COMPLEXITY OPERATING AT 100
MEGA HERTZ OR FASTER

* VHSIC (6 YEAR $210 MILLION EFFORT) IS DESIGNED TO MEET DOD NEDS IN LATE

'80's AND BEYOND

* GOALS OF VHSIC PROGRAM:

- DEVELOP SUBSYSTEMS ON CHIPS USING FABRICATION GEOMETRIES OF 1.25
MICRONS (EVENTUALLY .5 TO .8 MICRONS)

- EMPHASIS ON INCREASING SYSTEM THROUGHPUT - ULTIMATELY REAL-TIME
SIGNAL PROCESSING

- EXPLOITATION OF HIGH CHIP COMPLEXITY, SUCH AS ON CHIP TEST, FAULT

TOLERANCE, ERROR CORRECTION, ETC.

ACHIEVE ARCHITECTURAL CONCEPTS TO MINIMIZE NEEDS FOR

CUSTOM DESIGNS

A few words on [)0)'s Very High Speed Integrated Circuit
(VHSIC) program. During the mid to late 80's, progress
in lithography and processing will allow chip design at
100,000 gate level of complexity operating at 100 megahertz
or faster. V1SIC - the six year $21M effort - is designed
to meet I)OD needs in the late 80's and bc\oad. (uals of
the VHSIC program include:

- Develop subsystems on chips using fabrication
geometries of 1.25 microns (eventually .5 to
.8 microns).

- Emphasis on increasing system throughput -
ultimately real-time signal processing.

- Exploitatiou ot higth chip complexity, such as
on-chip test, fault tolerance, error correction,
etc.

- Achieve architectural concepts to minimize needs
for custom designs.

VHSIC TECHNOLOGY CHOICES

PROBABILITY OF
CIRCUIT TYPE DENSITY SPEEDS IMPROVEMENT

ECL LOW HIGH LOW

TTL MODERATE MODERATE LOW

111L HIGH MODERATE MODERATE

NMOS HIGH LOW HIGH

CMOs MODERA"TE MODERATE HIGH

GaAs HIGH HIGH HIGH LONG

TERM

Shown here are the teclhnoiog v choices which are being
evaluated by the VHSIC program. They include IICL, ITL,
Ill, NMoS , 010S, and GaAs. Tb is chart shows the salijent
features of each in density', speed and probabil ity for
improvement.

TRENDS IN DIGITAL PROCESSING APPLICATIONS
24-

r
w
I- 16-

12 F-15

a-

0

1955 1960 1965 1970 1975 1980

L))

Lhis chart depicts just one type of military platform

- aircraft - which typifies whlat is happening in embedded
computers. Plotted here on a time scale is the number
of on-board digital computers. The F-J 8 has no less than
12 digital computers.

A-

GROWTH IN MILITARY AIRCRAFT SOFTWARE REQUIREMENTS

4000- E-3A

o 1000

C 500 AIRFORCE * F-18
_ 5 NAVY> P-36
0 400
Z>

300-
06-1 NF-15

:-C*mEW/RADAR PSP0
o 200- 0 5-3A

cc B-52 OAS
=F16 UPDATE

0
ca
z 100P
0 FIFB-IIIG C5AF-1

I=F5-11 if

0 - 1 -1_ _ _ ___1 I I . I I I I I 1 1
1965 1970 1975 1980

An indication of the software impact can be translated
from the amount of on-board computer memory cells - shown
here in thousands of computer memory words plotted on a
time scale. The F-16 has about 150,000 memory words; the
F-15 has over 200,000 words and the F-18 has nearly 500,000

words of on-board computer memory. And, of course, every
memory word has data or software instructions associated
with it.

A-56

"MAJOR NEW EMBEDDED SOFTWARE TECHNOLOGY INITIATIVE"

* OBJECTIVE
- DAMPEN THE SOFTWARE COST SPIRAL

* RATIONALE
- RISING SOFTWARE COSTS

- NEW TOOLS NEEDED FOR SOFTWARE PROBLEMS
ANTICIPATED BY MID 80's

- PECULIAR SOFTWARE NEEDS OF DEFENSE
- NECESSARY TO REALIZE POTENTIAL BENEFITS OF ADA, i.e.:

1. REDUCED DUPLICATION
2. INTEROPERABILITY

* TWO THRLJqTq

SHORT TERM - REALIZE BENEFITS OF ADA
- LONG TERM - IMPROVE EFFECTIVENESS OF AUTOMATED SOFTWARE

TECHNOLOGY

- COMPLEMENT MID-80's HARDWARE

You have seen evidence in this presentation indicating
that software is becoming very expensive indeed. To
dampen the software cost spiral, we may see a "major
new embedded software technology initiative."
Rationale behind such an initiative includes:

- rising software costs
- new tools are needed for software problems

anticipated by the mid 80's
- defense has software needs different from industry
- necessary to realize the potential benefits of

Ada, i.e., reduced duplication and interoper-
ability.

This initiative could have two thrusts: in the near
term - emphasis on realizing benefits of Ada. In the
longer term - improved automated software effectiveness
and to complement mid-80's hardware capabilities.

A- 57

The following trends are foreseen:

Competition - We see greater pressure from Congress to

increase competition in all embedded and ADP procurements.

Life Cy ce Costs - Will receive more attention in the

acquisition process.

Reduced Timetable - The weapons acquisition process is

beiag looked at now to try to reduce the amount of time

it takes to field a new weapon system.

Price/Performance - The trend toward reduced computer

price/performance will continue to improve at approximately

16 percent per year and computer system reliability will

improve at approximately 14 percent per year.

Training - Computer proliferation in the military inventory

has created a training and logistics support problem.

Software Personnel - The continuing proliferation of economic

computer systems and the development of more sophisticated

and complex systems will cause the demand for software
personnel to become acute. At present, the escalatino

demand for computer systems personnel in the private

industry and the all-volunteer force concept has begun to

create manpower shortfalls in the military services.

Faced with more attractive compensation by private

industry, keeping qualified software personnel in the
military is a serious problem.

In embedded computer hardware, there is a trend to move

from standardizing at the "box" level to higher, non-

hardware levels such as Instruction Set Architectures

(ISA's) which could include accreditation/certification
of hardware devices at a higher level.

Software is moving toward high level programming languages.

In logistics, the trend is toward hardware box level re-
placement.

LEVELS OF STANDARDIZATION

In coneclusion, effIorts to -,tandard ize in the umeue

computer area have r ociisedI in the past on hardware devices
such as the AN/t-jYK-210 or AN /AIK- I. Ihe next level of
standardization dleals with the Instruction Set Architecture
with hardware imp I emen tat ion /standard izat ioui of SOC Ondarv
importance. 'thle t rcnd , o1 course-S, is to stan1dard izc al
higher levels such as tile Ada HLul and as-oCiated operat in, ,
system suftware. kWith the appropriate set of tools it is
conceivable that tile 1-1(1. level could he implemented with
a variety of ISA's and hardware devices.

TIids conclu tdes our "DPi Dit ,i ta 1 Data i'rocessioc''" report.

This "DOD Digital Data Processing Study--- a ten-year forecast"
was performed under the auspices of the Requirements Committee,

Government Division, Electronic Industries Association by an

industry team. The results of the study was presented at

the EIA Fall Symposium "The DOD Electronics Market---Forecast
for the 80's" held in Los Angeles on October 7-9, 1980.
David G. Stephan of Control Data Corporation chaired the

study team, and Control Data Corporation has published and
printed this copy of the study. Comments should be directed

to Mr. Stephan at CDC, P.O. Box 0, Minneapolis, MN 55440,

telephone (612) 853-5263.

A-60

Appendix B

Charter For The Post Development Software Support Activity

4-3-B-i

I. DESIGNATION OF ACTIVITY MANAGER

(Name of Individual) is designated as the (Nare of Major

Service Support Organization) Post Development Software Support Activity

(PDSSA) Manager effective (Date) The PDSSA Manager reports to

the Commanding General/Admiral (Service Command).

II. MISSION

The PDSSA Manager is responsible in accordance with Department

of Defense (DoD) Directive0 (list as appropriate); Army, Navy, Air Force

regulations (list as appropriate); and other pertinent regulations for:

A. Providing software life cycle support, within the scope of

this charter, for all assigned systems.

B. Assessing and providing concurrence with the System Concept

Paper (SCP)/Decision Coordinating Paper (DCP) and

Acquisition Plan for Defense System Acquisition Review

Council (DSARC) and (List corresponding service specific
material acquisition decision process documentation) for

adequacy of software life cycle support planning and

executability.

C. Supporting the System Acquisition Manager or his/her func-

tional representative prior to transfer of responsibility

for the operational life cycle support phases.

III. AUTHORITY AND RESPONSIBILITIES

A. The Activity Manager has been delegated the full line

authority of che Commanding General/Admiral Service Command for the

centralized management of the (Name of Major Service Support

Organization) Post Development Software Support Activity.

B. Responsibilities

1. During the concept exploration phase, the Activity
Manager is responsible for advanced software support planning, including

system studies to assist/advise the acquisition manager or his

functional representative in specifying broad bands of software

supportability and support goals/requirements. Additional

responsibility includes but is not limited to:

a. Identification and plannifig for compliance with

existing Tactical Embedded Computer Resources (TECR) policy and

standardization requirements pertaining to software supportability and

support.

4-3-B-1

b. Analysis of Statement of Need and other available

data for potential impact on software supportability and support

(threat, mission, feasibility, risk, cost, trade-offs, etc.).

c. Determination of software logistic support

requirements for inclusion in the system specification (or its

equivalent).

d. Preparation of a draft Software Support Plan.

e. Coordination with the Integrated Logistic Support

(ILS) function.

f. Software supportability and support requirements
relative to currently defined interfaces between interfacing systems and
subsystems.

g. Preliminary estimate of software support cost
(including acquisition of any software support resources not otherwise
projected to be available, and provision of software support over the
projected operational life).

2. During the demonstration and validation phase, the

Activity Manager is responsible for:

a. Completing and updating the Software Support Plan.

b. Coordination with the ILS function.

c. Performing software support studies to refine and
define software support requirements, including security and software
logistic support requirements in particular.

d. Determining software supportability requirements
to be included in software performance specification (or equivalent).
Examples include reliability, modularity, programming language/Ada
compiler variant, etc.

e. Updating and refining software support cost

estimates.

f. Determining the requirements (types, character-
istics, numbers of and availability schedule) for PDSSA equipment, to
include the following types:

(1) Computers (operational; trainer; ATE; com-
pilation; integration and test; etc.).

(2) Simulators.

(3) Selected weapon system equipment items (e.g.,
sensors).

g. Coordination of assignment of PDSSA functions to

the PDSSA organizational, intermediate and depot maintenance levels;
contractors; and other organizations (including inter-command and inter-
service organizations).

h. Estimating PDSSA support personnel requirements
(types, skill levels, numbers of each) for the following:

(1) Software Engineering (test, configuration
management, quality assurance, requirements definition, design, etc.).

(2) Equipment Operators (computers, simulators,
etc.).

(3) Maintenance (installation of replacement

computer program units or modification to in-place units; failure
verification; fault isolation; checkout of installed computer programs
after replacement/modification; etc.)

i. Assuring that software supportability requirements
are adequately defined and put in the contract, including the contract
requirement for software supportability.

3. During the Full Scale Developmenc Phase, the Activity
Manager is responsible for:

a. Technical review of the system/subsystem
contractor's engineering and development effort for continued software
supportability.

b. Review the developing software and related
hardware configuration items (Cl's) to become prepared fo- assuming full
post deployment support responsibility. As a minimum, this should
include review of all software and related hardware technical data,
safety requirements and the participation in reviews and audits. In
particular, the reviews should include such design elements as:
functional partitioning, coding, execute/operating system, structure,
data base, intermodule communications design, etc. Additionally, the
software production and maintenance facility requirements, and choices
of programming languages and all related support software will be
included, as well as the adequacy of the contractor's quality assurance
system and configuration management procedures. These reviews and any
appropriate recommendations will be coordinated with the cognizant
contract administration office.

c. Provide requirements to the acquisition manager or
his functional representative concerning necessary equipment facilities,
support software, and other material necessary to place the PDSSA
software/hardware facility in full operation. Provide budgetary
information for all items recommended, and obtain assistance as required
from the weapon system/subsystem contractor, software developer, and
other contractors to provide details and supporting information.

d. Participate in software and related hardware
engineering change impact analysis as appropriate, to ensure that
proposed changes do not adversely affect supportability. The PDSSA will
normally continue to perform this task throughout the life cycle of the
system.

e. Participate in systems contractor software T&E
program through the review of test plans arid procedures, as well as
acting as an observer during testing. The PDSSA may provide support to
technical evaluation/operational evaluation test programs as requested,
and upon completion of the development phase, will normally participate
directly in the acceptance testing and audit of the software and related
hardware CI product baselines. These tasks are performed as an agent of
the acquisition manager or his functional representative.

f. Prepare or participate in the preparation of, the
weapon system computer resource life cycle management plan (CRLCMP).

g. Plan for and, as specifically directed by the
acquisition manager or his functional representative, initiate action to
build up facilities, equipment, and manpower (suitably trained) to the
extent necessary to assume full responsibility for the system computer/
processor software and related hardware support program.

h. Plan for, arrange, and conduct appropriate
training for PDSSA personnel. In order to provide the capability for
the PDSSA to meet all system computer/processor software and related
hardware operational and support problems, and adequately support the
user, extensive training is required. For major systems, experience
indicates that a training period of at least two to three years is
necessary. Training should begin as early in the system full-scale
development phase as feasible, and on-site location training of certain
PDSSA personnel at the system contractor's facility will normally be
required. The detailed requirements, plans, and schedules for PDSSA
buildup and training must be included in the computer resource life
cycle management plan (CRLMP) and other life cycle planning documents.

i. As directed by the acquisition manager or his
functional representative, participate in computer/processor software
and related hardware configuration management procedures in accordance
with the CRCMP. During the later stages of the system full-scale
development phase, the computer/processor system software and related
hardware may undergo frequent changes to correct deficiencies which
become apparent during T&E. Proper configuration management is
mandatory in order to ensure validity of tests and fully define the
configuration of the software and hardware that are finally delivered to
the user. While this phase of configuration management normally falls
under the direction of the Design Agent (DA), the PDSSA may be required
by the acquisition manager or his functional representative to closely
monitor the contractor's configuration management procedures during this
period to ensure effectiveness and also to become thoroughly familiar
with the computer/processor software and related hardware
configurations. During this period, the PDSSA will develop suitable
configuration management procedutes for in-house service use so that

they may be activated when the PDSSA assumes full software/related
hardware support responsibilities. The PDSSA configuration management

procedures must comply with the service requirements and will be

scheduled for implementation in accordance with the plan indicated in

the CRLCMP. It is important that the PDSSA monitor configuration
management, and support the software configuration review board during

the full-scale development phase, so that software configuration
management can be properly transitioned in accordance with the CRLCMP.

j. Conduct appropriate review of software

documentation contract deliverables as they become available to
determine their quality, suitability, and acceptance based upon contract
requirements and their true reflection of the software being delivered.
The accuracy of the software documentation is extremely important as it

becomes the baseline for use by the PDSSA, T&E activities, the service,
and the user as well as for future software/hardware improvements and
changes. The PDSSA will develop a detailed documentation management
plan which will define procedures for receipt, verification storage,
duplication, distribution, inventory control, maintenance, and update.

k. Develop and prepare a detailed plan which will
define procedures for assumption of responsibility for life cycle
support of system computer/processor software and r-lated hardware.
This should include requirements and procedures for software inventory
management, cross-indexing, storage, contrAl, rapd retrieval.

duplication, quality assurance. distribo1t ,,n rmod i Lc to- and , tatus
account ing.

1. During the latt-r st - f , 111. i -scale

development phase, a limited number ot sv - to the

user. The PDSSA will normally partic; i - : . ::r : t, at t i s

Cime to prepare for assming /- ..1in the
computer/processor software and r,lat d .. nt to

deployment. During this time. the- PIJ.-SA i
for accomplishing submittal -id na1" -.prt .(.

The PDSSA will distribute tipda t.d t
documentat ion.

M III prf'1p i' ,

responsibility, the PDSh)A mry p rt 1 -"
solving in support 0f th1 DA , t' ,, A
troubleshoot i ng and ::ia dev , , n 3 c

problem, providing ch slut : n i-

problem correct Ion.

4. Di -i n-s-iv , , t

cycle, tne PDSSA wi1I:

-I S l ~ sV G (0 TP1 , , nt ,) r, ,s : : , i t 5 r- !7 :, j. , < , ,
,t aIssign',d svstvte c mpiter pri. .s.r C

1 ' . .. , ,[~ ?h,

:D r ing the in- , rvi e phas, I

I re'e nt tS r L , I t w :pp t .

- -qonsih f,)r !it, pp; te . [it

tha1t- h,1 I e cnterm to 'It rl 1! C -I.

with other system functional areas and managers that might be impacted.
The PDSSA will ensure that computer/processor software in-service

engineering support is responsive to the needs of the user. The PDSSA

will perform all of the following functions.

(1) Rapid response to user software/hardware

problems.
(2) Problem tracking.
(3) Problem analysis, including failure verifi-

cation and fault isolation.
(4) Problem resolution and impact analysis.
(5) Development of corrections.

(6) System enhancements through software changes.
(7) Software configuration control
(8) Verification, validation, functional integra-

tion testing, and performance assurance

testing
(9) Software production, distribution, and

control

(10) Determine where and how installation of

changes will be accomplished
(11) Software status accounting

(12) User introduction training
(13) Software documentation maintenance.

b. Be responsible for investigation of
software/hardware problems and the initiation of corrective action.
Prioritization of software problems and software trouble by degree of
severity shall be performed. Approved software changes will be tested
and verified prior to reproduction and distrib,,tion to receiving
activities. These procedures will be in accordance with the information
contained in the CRLCMP. Interface control documents are required to
define relationships between the computer/processor system and other
related systems. The PDSSA will review and recommend approval of all
changes that affect these interface areas. The responsibility of the
PDSSA extends to participation in problem solving at the interface
level, and the testing of proposed solution that impacts the interface.

c. Assume responsibility for in-service engineering/
logistics support of weapon system computer/processor software and

related hardware.

d. Maintain and improve the software/hardware
integration and test facility.

e. Frovide continuing primary support to the
acquisition manager or his functional representative and the user for
assigned computer/processor software and relaLed hardware as long as the
system/subsystem remains in operation (until disposal).

IV. RESOURCE CONTROL

A. The Activity Manag,-r will ensure that dollar and manpower

requirements to accomplish the above responsibilities are developed and
submitted in accordance with established manpower/funding channels and
procedures for inclusion in the Program Objective Memorandum (POM) for
applicable target program years and that RDTE, procurement, operation
and maintenance, and stock funds requirements are compatible at all
times with the life cycle progression of assigned systems and provided
in appropriate Work Breakdown Structure (WBS).

B. Monetary resources approved to accomplish the above
responsibilities will be provided to the Activity Manager as direct
mission funding for systems in the operational life cycle phase or by
the participating organization having prime mission or task
responsibility utilizing established funding channels and procedures.
The Activity Manager will, in turn, provide the necessary funding,
direction, or guidance, as applicable, to participating organizations
for support provided in accordance wtih current regulations, policies,
and procedures.

C. The Activity Manager will insure that the acquisition
manager or his functional representative provides for two facilities
f arly in the life cycle of the weapon system project: (1) A software
production and maintenance facility; and (2) A software/hardware
integration and test facility. These two facilities must be eventually
located at, and operated by, the PDSSA.

D. PDSSA activities will ensure that the acquisition manager
provides the facility with sufficient user equipment of all current
versions being supported, to equip thb software/hardware integration and
test facility. The PDSSA facility will be considered as a field/fleet
unit and will be assigned the highest Force Activity Designator
justifiable under service guidelines.

V. LOCATION, SUPPORT AND STANDARDIZATION

A. Location and Support:

The (Major Service Support Organization) PDSSA is located
at (Organization and Address) with necessary facilities and
administrative support being provided by the organization.
Liaison/field offices may be created by the Activity Manager within
authorized funding as required without change of character.

B. Standardization:

The Activity Manager will:

1. Ensure that developing software systems will be
designed with standardized interfaces for most efficient wartime
software support and most cost etfective use of established facilities
and expertise.

2. Actively seek out and pursue opportunities for

promoting standardization and interoperability of assigned equipment(s)
within PDSSA.

3. Incorporate interoperability requirements for all

hardware and software to the maximum extent possible. (Pursue
particularly electrical compatibility; mechanical interface; data and
information transfer; and logistical supportability.)

4. As a minimum, review for applicability all relevant
Standardization Agreements.

VI. COMMUNICATION CHANNELS

Direct communication is authorized among all participants
involved in implementation of the development and support of assigned
systems to ensure timely and effective direction and interchange of
information among participants.

S-

ANNEX A - LIST OF ASSIGNED SYSTEMS

(List of systems assigned to the Activity Manager)

Appendix C

Facilities Required For Post Deployment Software Support

4-3 -C- i

C.I CENERAL DESCRIPTION: A PDSSA facility is an engineering

laboratory established for the evolutionary support of mission critical

software.

The PDSS is made up of people, generic equipment, physical,

environmental and communications facilities, data, documentation, and

procedures. These facilities provide the capability to evolve software,

simulate the operational environment, evaluate digital systems or

subsystems, test software, integrate hardware and software, and address

man/machine interfaces. PDSS facilities also provide the capability to

maintain configuration "baselines" and manage activities and

configuration items developed in the facility.

C.2 CAPABILITY AND FEATURES: the PDSS facility should have the

following features and capabilities:

1) Support multiple mission critical systems within an
integrated facility, including systems with multiple computers;

2) Support multiple functions with common modules;

3) Support harmonious interconnections of systems with

dissimilar architectures, languages, program structures, and

input/output requirements;

4) Support extension and reconfiguration, as the number of

systems within the PDSS are increased or decreased;

5) Support mission critical software evolution through

preplanned product improvements;

6) Support life cycle management and systems engineering cost

objectives;

7) Incorporate existing support assets into the PDSS facility;

8) Meet physical, technical, and administrative security

requirements.

9) Support rapid response to mission critical reprogramming

requirements.

4-3-C-1

The PDSS facility must be capable of suplicating the operational

environment as nearly as possible. In order to verify the interfaces

with other systems, processors, or hardware components, the PDSS

facility must these devices or be capable of being configured to access

them at other PDSS sites or remote locations.

Exercising a system in the real world environment is the only

true test of its effectiveness. When navigation, detection and tracking

capabilities are exercised such that a target is detected, a weapon is

launched and the target is no longer a threat - this is the most

realistic measure of a weapons system effectiveness. This, however, is

not possible in most cases since political, economic, environmental,

humanistic, or operational constraints usually prohibit real world

exercises. Simulation has proven to be the next best avenue. It is

used during development and testing of the original system and is also

used to train and exercise operators. The simulation used in such

training d>.vices have become an essential requirement for successful

system deployment.

The same real world requirements placed on those mission

critical system trainers must be extended to their respective PDSS. In

fact, the integration of a system trainer and its PDSS could prove

economically and programmatically beneficial.

C.3 SUPPORT TOOLS: To maximize the productivity of personnel,

enhance the quality of delivered systems and improve responsiveness to

changing requirements, PDSS facilities should have a set of standard

automated tools with predefined interfaces to allow inter-tool

communication. These tools should be capable of supporting specific

PDSS processes in concert with generic support processes. Automated

PDSS tools should support the following functions:

i) Data Base Management.

2) Configuration Management.

3) Information Management.

4) Requirements Analysis.

5) Specifications Definition.

6) Software Design.

c-2

7) Documentation.

8) Software Development.

9) Software Test.

10) System Integration.

11) Simulation.

12) Validation and Verification.

13) Project and Cost Management.

These tools must be provided in concert with high order languages

preferably Ada and their automated support environments for the

managemnent, development, reengineering, test and integration of mission

critical software.

C.4 PHYSICAL FACILLITY: To prevent prematre technical obsolescence,

the POSS facility should hav, an open core design, rai sed floors,

relocatable walls, floor to floor chases, environental and electrical

distriLbution systems. Building flexibility into the initial design will

allow the PSS facility to be reconfigured to meet future tasks. The

electrical system must meet the reqthrements of commercial computer

systems, i'vionics and niqi e waapon svst,,.ns aind where securitv is a

requirement, all power must be filtered. Varfois special requirements

must he ,nvt has.-d on spcif ic appl i -at L Ms, such as requiring

geographical heochmarks, ueMal fi:-a pr, t n:1 won, spec ial grounding or

security nmuulr. Gener-lI 2015 t 1Kv cccli un,,ot< occlude:

i) 9 L(fce space for , ..- O ,rs. ,,npurer 7'i ,ntists and support
per sonnA. 1

2) Lwcat area andt laon i, 'l:i l ,Jr. u s,

3) Power and ,oanol ng ,q"Qu ,n,.t for ;i s, i,', ict I a,-c war

systams and PUSS support qyqt-Ms.

4) Vaults for scnurity INi 'h0siW'O 1 pr ,il,':t 'n.

5) Jibraries for 'n ':ti pi or , t. : J . .

6i UiPr1 w 1 t , I trl. Al' - ar-rI'

7) (rw~ I.: rm, I pa (-e, -

C.5 SECURITY PLANNING REQUIREMENTS: Supporting mission critical

software has major security related cost impacts. Although the

classification requirements can vary from unclassified to compartmented

sensitive, only a thorough risk analysis can determine the extent of

physical, technical, and administrative security measures which should

be employed within the PDSS. Security protections must be considered

for systems that contain or process classified information or interface

with other systems that do. PDSS facilities must be designed to

accommodate the current security requirements of the system and be

upgradable to provide higher levels of protection to satisfy future

requirements of the system and its interfaces. The following security

considerations must he included in all PDSS FACILITIES:

1) Security accreditation requirements of cognizant
authorities to operate PDSS facility.

2) Use of cryptographic systems for data transmission outside
the facitity.

3) Administrative controls to select, evaluate and monitor the
personnel to whom access will be granted.

4) Physical controls as determined by the risk analysis.

5) Technical controls for all computers, displays and
peripheral equipment such as TEMPEST, multi-level security, software
access controls, etc.

I-4

-Xpp' ndix D

)i~ f '31 Il Munbt-rs Art-r @ i iipi

PANEL C - COST OF OWNERSHIP

CO-CHALR EN: Riley, LTC J. (Jim) USAF Sievert, Mr. G. (Gene)
HO AFSC/DLA, Andrews AFB Teledyne-Brown Engineering
Washington, DC 20334 300 Sparkman Dr.
(301) 981-2482 Huntsville, AL 35807
A/V 858-2482/7164 (205) 532-1500

SUBPANEL 1: CURRENT SERVICE APPROACHES

CHAIRMAN Pollard, LCOL R. L. (Ray) USMC

Requirements & Programs Br.
Developmental Coordination Div.

Development Center, MCDEC

Quantico, VA 22134
(703) 640-2873

A/V 278-2873

MEM E[RS: Goldsmith, Mr. L. (Len) Stewart, CDR J. C. (John) USN
AMCCOM/DRSMC-TSB(D) Naval Sea Systems Command
Dover, NJ 07801 (PMS-408)

(202) 328-3320 Washington, DC 20360
A/V 880-3320 (202) 692-8204

A/V 222-8204

Schmidt, Mr. J. (Jerry)
LOC/CF

Wright Patterson AFB, OH 45433

(513) 257-6637
A/V 787-6637

SUBPANEL 2: PDSS CHARTER

CHAIRMAN Branyan, Mr. E. (Elmer)
General Electric Company
Military Programs Dept.

P.O. Box 8048

Philadelphia, PA 19101

(215) 962-4735

MEMBERS: Hofer, Dr. R. (Ron) Bremhorst, CDR J. (Joe) USN
PM Trade, DRCPM-TND Nival Air Systems Command
Naval Training Equipment Center (AIR-5432)
Orlando, FL 32813 Washington, DC 20360

(305) 646-5779 (202) 746-0650
A/V 791-5779 A/V 286-0605

4-3-D- I

SUBPANEL 2: PDSS CHARTER (Continued)

Woods, Mr. D. (Dennis) Gordon, Mr. C. (Chuck)

Software Enterprises Corp. CACI Inc., Federal Penthouse

31220 LaBaya Drive, Suite 110 1700 N. Moore St.

Westlake Village, CA 91362 Arlington, VA 22209

(213) 889-7814 (703) 276-2838

SUBPANEL 3: FACILITIES REQUIRED

CHAIRMAN: Steele, Mr. R. (Russell)
TRW
P.O. Box 1058
North Highland, CA 95660

(916) 920-2613

MEMBERS: Forsythe, Mr. R. (Roger) Simpson, CDR R. J. (Dick) USN

Naval Electronic Sys. Command Chief of Naval Operations

(PME-120-3) (OP-945D)

Washington, DC 20363 Pentagon, RM. 5E572

(202) 433-4581 Washington, DC 20350

A/V 288-4581 (202) 697-6494
A/V 227-6494

SUBPANEL 4: COST SAVING RECOMMENDATIONS

CHAIRMAN: Smith, Mr. W. (Bill)

OASN (RE&S), Pentagon, 5E785

Washington, DC 20350

(202) 694-4691
A/V 224-4691

MEMBERS: Renfro, COL R. (Ron) USA Solomond, Dr. J. (John)

U.S. Army Artillery School & HQ, DARCOM/DRCDE-SB

Center (DRCPM-TF-FS) 5001 Eisenhower Avenue

Ft. Sill, OK 73503 Alexandria, VA 22333

(405) 351-4200 (202) 274-9318

A/V 639-6850 A/V 284-9318

MacDonald, Mr. B. (Bobby) Mellin, Mr. J. P. (Pat)

WR-ALC/MMRR Control Data Corpnration

Robins AFB, GA 31098 (M/S HQNIDT)

(912) 926-4525 3101 East 80th St.

A/V 468-4525 P.O. Box 609
Minneapolis, MN 55440

(612) 853-6639

ORLANDO I

FINAL REPORT

PANEL D

POST DEVELOPMENT SOFTWARE SUPPORT (PDSS)

SOFTWARE SUPPORT ENVIRONMENT

Co-Chairman: Mr. Jim Hess

HQ DARCOM/DRCDE-SB

5001 Eisenhower Avenue
Alexandria, VA 22333
(202) 274-9318

A/V 284-9318

Co-Chairman: Mr. Jerry Raveling

Sperry Corporation
Computer Systems, M.S. UiEl3
P.O. Box 43525

St. Paul, MN 55164
(612) 456-3545

4-4-i

UPOCLASSZFID UNMUZ3 NrOI F/G 12M MLI

u 6

HIH ~ 1" L.5III* 111112.0

11111= .

TABLE OF CONTENTS

Report of the Panel on Software Support Environment

Page

Table of Contents
List of Figures
List of Tables
Appendices

4.4 SOFTWARE SUPPORT ENVIRONMENT 4-4-1
4.4.1 OBJECTIVES 4-4-2
4.4.2 SCOPE 4-4-3
4.4.3 APPROACH 4-4-3
4.4.3.1 Preparation 4-4-3
4.4.3.2 Panel Organization and Operation 4-4-4
4.4.3.3 Issues 4-4-4
4.4.4 DISCUSSION 4-4-4
4.4.4.1 Subpanel 1 - Definition of the Support 4-4-4

Software Environment

4.4.4.1.1 Introduction 4-4-4
4.4.4.1.2 The PDSS Environment 4-4-5
4.4.4.1.2.1 Description and Characterization of the 4-4-5

Environment
4.4.4.1.2.2 Environment Architectural View 4-4-5
4.4.4.1.2.3 Life Cycle View 4-4-9
4.4.4.1.2.4 Tool Set Viewpoint 4-4-9
4.4.4.1.2.5 Other Perspectives 4-4-12
4.4.4.1.3 Definition of PDSS Baseline Requirements 4-4-12

Discussion
4.4.4.1.4 PDSS Description 4-4-14
4.4.4.2 Subpanel 2 - Management Support Systems 4-4-19
4.4.4.2.1 Management Support Systems 4-4-20
4.4.4.2.2 Security Implications/Requirements 4-4-21
4.4.4.2.3 Provisions of the Support Environment 4-4-22
4.4.4.3 Subpanel 3 - Contractual Provisions 4-4-23
4.4.4.3.1 Project Data Base 4-4-24
4.4.4.3.2 Testing Processes Development and History 4-4-25
4.4.4.3.3 PDSS Environment Acquisition 4-4-25
4.4.4.3.4 PDSS Reference Manual 4-4-28
4.4.4.3.5 Tools Which are Unique to the PDSS 4-4-28
4.4.4.4 Subpanel 4 - Application Area Unique Criteria 4-4-33
4.4.4.4.1 SSE Requirements 4-4-33
4.4.4.4.2 Operational Environment Considerations 4-4-34
4.4.4.4.3 Impact of Generic SSE on Resources 4-4-34
4.4.5 Conclusions and Recommendations 4-4-35
4.4.5.1 Subpanel 1 - Definition of the Support 4-4-35

Software Environment
4.4.5.1.1 Environmental Architecture View 4-4-35
4.4.5.1.2 Life Cycle View 4-4-35
4.4.5.1.3 Other Perspectives 4-4-35
4.4.5.1.4 Definition of PDSS Baseline Requirements 4-4-36

4-4-ii

TABLE OF CONTENTS (continued)

Page

4.4.5.2 Subpanel 2 - Management Support Systems 4-4-36
4.4.5.2.1 Security Requirements 4-4-36
4.4.5.3 Subpanel 3 - Contractual Provisions 4-4-36
4.4.5.3.1 Project Data Base 4-4-36
4.4.5.3.2 PDSS Environment Acquisition 4-4-40
4.4.5.3.3 PDSS Reference Manual -4-41

4.4.5.3.4 Tools Which Are Unique to the PDSS 4-4-41
4.4.5.4 Subpanel 4 - Application Area Unique Criteria 4-4-41

Recommendations

4-4-iii

LIST OF FIGURES

Page

Figure 4.4-1 STARS View of the Software Environment 4-4-6
4.4-2 Post Deployment Software Support Environment 4-4-7
4.4-3 The Environment 4-4-8
4.4-4 Life Cycle View of the SEE 4-4-10
4.4-5 Tool Set View of the Software Engineering 4-4-11

Environment
4.4-6 Accommodating Non-Generic Tools in a Generic 4-4-13

Framework via MIL-STD-SDS
4.4-7 PDSS Facility 4-4-15
4.4-8 PDSS Facility Capabilities 4-4-16
4.4-9 Ideal PDDS Host Computer System 4-4-18

LIST OF TABLES

Table 4.4-1 PDSS Manual Outline 4-4-29
4.4-2 PDSS/SEATECS Mapping 4-4-37

APPENDICES

Appendix A Panel D Participants 4-4-A-i
B Bibliography 4-4-B-i
C Panel Presentation Summaries 4-4-C-i
D A Software Engineering Environment (SEE) for

Weapons System Software 4-4-D-1

4 -4-iv

Sa

4.4 SOFTWARE SUPPORT ENVIRONMENT

Over the past decade there has been a dramatic increase in the number of
planned and deployed Mission Critical Computer Systems (MCCS). A MCCS is a
system which is of significant importance and which is integral to the effec-
tiveness of today's military combat and support systems. They include air-
borne, fixed and mobile ground, surface and sub-surface naval, and space
systems which are required to operate in both hostile and benign environments.
MCCS's are generally characterized as ruggedized programmable devices which
exhibit high speed, accuracy, and reliability in the processing and manipula-
tion of data, performance of computations, and in the exercising of syste
control. These features have, and will continue to contribute to the develop-
ment of military systems which meet or exceed performance, reliability, and
maintainability requirements, and which demonstrate flexibility when responding
to new requirements. MCCS's implement or aid-in the implementation of system
and subsystem performance characteristics, and serve to integrate the various
system elements into highly responsive and effective systems. MCCS's, through
their programmability features, provide military systems with improved flexi-
bility to respond to changing operational requirements. The embedded computer,

in most instances, executes software. Thus, MCCS functions can be easily
modified and/or enhanced by modifying (or replacing) the software. Normally
software can be modified much faster and at a fraction of the cost of that
which would be required to implement a comparable change in haidware.

With the continued improvement in the cost/performance ratio for computer
hardware, and improvements in computer software capabilities, the military
services are able to develop and deploy more-and-more complex systems. At the
same time, this dramatic expansion in the use of MCCS is creating new and
continually expanding logistic support requirements. All of the Services are
confronted with the problem of supporting a rapidly expanding number of unique
computer based systems. Each unique MCSS, brings with it its own Instruction
Set Architecture (ISA), hardware spare parts requirements, and related support
and applications software. Further, because of the inherent complexity and
interdependence of current classes ot MCCS, support requirements extend beyond
the MCCS itself to encompass supporting or interfacing systems; for example,
the Automatic Test Equipment (ATE) and the training simulator which support/

interface with a combat weapons system.

The logistics support problem for MCCS has been further exacerbated in recent
years through the introduction of microprocessor based embedded subsystems/
systems. These systems are also normally reprogrammable. Inherent to the
microprocessor-based applications, however, is the increasing tendency to
substitute hardware functionality for software functionality. The growing use
of firmware requires additional development, support, and test environments
above and beyone the software environmental requirements.

4-4-1

4.4.1 OBJECTIVES

MCCS software serves to modify, enhance, and integrate the processing system
into a functional system, the MCCS software controls the capability of the

system. Thus, the MCCS relates directly to the system's mission availability

and accomplishment. Today's military, in most instances, cannot perform their
mission without full reliance upon the MCCS software which is inherent t,

their operational systems.

To effectively and efficiently modify MCCS soft.are and in-general provic'

engineering support for the MCCS requires specialized facilities, skills, anr
equipment. After the acquisition of the operational (or test, training, etc.
systems has been completed and the system has been deployed to its operation
environment, the Military Services commands/organizations assume responsibilit.

for post development engineering and support. Often this (post development
phase of the MCCS life cycle will encompass a period of from ten (10) to
twenty (20) years, or more.

Each of the Services, the commands within the Services, and other government
agencies have established and operate unique MCCS support facilities. These

facilities have been designed and configured to meet Service, command, or
system unique requirements. The facilities range in size and sophisticatior,
dependent on the support requirements of each MCCS and the number of separate
MCCS's to be supported at each facility.

The principal difference in post development Software Support Environment

(SSE's) is related to the basic maintenance concept established for a syste
and its major subsystems; i.e., will support be centralized or decentralize
and what level of system (or subsystem) support will be provided. Within each
basic maintenance concept category, there are significant variances in ap-

proach: e.g., the system or subsystem may be managed as individual entities oi
in some combination, by equipment function, by tactical function, etc. Other
unique differences in support environments can usually be traced to the basic
maintenance concept adopted by the Services.

With the development of Ada1 , and the emphasis placed on tools by the cur-
rent DOD STARS2 program there has been increased interest expressed in
establishing common SSE's. The assumption is that a reduction in the number
of Service, Command and project unique environments would lead to greater cost
efficiencies and improved productivity.

The panel's basic objectives were to define the requirements for a generic
PDSS software support environment (SSE), aad to assess the commonality of
requirements with DOD-sponsored, development-oriented software environments.

1 Ada is a trademark of the U.S. Department of Defense.

SSu;Lware iecnnology for Adaptable, Reliable Systems.

4-4-2

4.4.2 SCOPE

The panel was assigned to discuss selected aspects of a generic PDSS environ-
ment. These aspects were addressed to the panel in the form of a series of
questions which dealt with:

o Requirements for defining a core SSE generic equipment/software suite.
o Management support systems requirements to include criteria for GFE/

CFE, security, and PDSS versus development environments.
o Major contractual considerations which must be addre9sed ;n t6e s=yr'tem

acquisition and post development phases of the life cycle.
o Whether the type of software to be supported by the PDSS facility

places unique requirements on the SSE.

4.4.3 APPROACH

4.4.3.1 Preparation

The key to effective workshops lies first and foremost in the selection of
panel participants. The success of Panel D was assured by the quality of the
personnel selected for the panel. The individuals identified in Appendix A of
this report represented some of the best that the government and industry
could provide to discuss SSE issues. Prior to the workshop each member of the
panel was solicited for suggestions on the panel charter, planned approach.
and to provide reference materials which would promote/support the panel'
discussions. Through this methodology, and through the independent work of
the Co-Chairs a library of contemporary SSE material was assembled for use V
the panel. See Appendix B, Bibliography for a list of this data.

Early in the panel planning process it was determined that the work of the
panel would be enhanced if an overview of current DOD/Services PDSS environ-
ments was presented. The panel Co-Chairs made arrangements for five briefings
to be presented on the first full day of the workshop. Briefings presented
were :

o "A Builders Guide to Software Engineering Environments", Mr. William
E. (Bill) Riddle, Software Design and Analysis, Boulder, Co.

o "A Modern Facility for Software Production and Maintenance", Mr. H.G.
(Hank) Stiebing, Naval Air Development Center, Warminster, Pa.

o "Electronic Warfare Avionics Integration Support Facility, Mr. J.J.
(John) La Vecchia, AFLC Robins AFB, Ga.

o "United States Army, Post Deployment Software Support (PDSS) Study",
J. (Jim) Hess, DARCOM, Alexandria, Va.

o "A Software Engineering Environment (SEE) for Weapon System Software",
H.G. (Hank) Stuebing, Naval Air Development Center, Warminster, PA.

See Appendix C, Panel Presentation Summaries for a synopsis of each of the
five briefings.

4-4-3

4.4.3.2 Panel Organization, Topics and Operation

At the conclusioc; of the above briefings, the Panel broke into four sub-panels.
Subpanel topics were refined (based on the questions listed in Section 4.4.2
SCOPE) and Subpanel Leaders and Recorders were selected by the subpanel mem-
bers:

Subpanel 1: Barry Boehm (TRW)--Co-chair

George Sumrall (US Army)--Co-chair/Recorder
Topic: Definition of Support Software Environment (SSE)

Subpanel 2: John Cole (US Army)--Chair
Bob Sauer (USMC)--Rc-order

Topic: Management Support Systems Considerations
Subpanel 3: Skip Meiers (USCG)--Chair/Recorder

Topic: Contractual Provisions
Subpanel 4: John Martinsen (Boeing)--Chair/Recorder

Topic: Application Area Unique Criteria

Subpanels discussed their assigned topic areas, prepared written notes on
major items of discussion, and developed subpanel conclusions/recommendations.

The subpanels reformed for full panel sessions late in the morning on the
second day (Wednesday) and again on the afternoon of the fourth day (Thursday).
Subpanel Leaders provided a brief review of the subpanels deliberations, an,'
reported on the preliminary recommendations developed by the subpanel.

The Co-Chairs prepared, based on these subpanel reports, an SSE Panel summai
for presentation at the full workshop joint sessions on Tuesday and Wednesda,
afternoons, and on Friday morning. These briefings summarized the panel's
work, provided a review of the panel's conclusions/recommendations, and summa-
rized other germane/salient information.

4.4.3.3 Issues

A svmmary of the four Panel D subpanels is presented in the following para-
graphs. The subpanel summaries address the basic issues identified in the
Panel Charter as described in paragraphs 4.4.1 and 4.4.2 above, and provide a
synopsis of the subpanels discussions. Major subpanel/panel conclusions and
recommendations are presented in the final (paragraph 4.4.5) section of this
report.

4.4.4 DISCUSSION

4.4.4.1 SUBPANEL I - Definition of Support Software Environment (SSE)

4.4.4.1.1 Introduction

The subpanel's objective was to define the requirements for establishing an
effective generic PDSS environment. Early on, the subpanel determined that

4-4-4

the PDSS environment should be addressed in the large framework (super-struc-
ture) of the total system life cycle and its environments (see Fig 4.4-1). In

the process of analyzing PDSS requirements within this super structure, the

subpanel determined three key points: I) there are a set of generic functions
that are common across the environment; 2) that requirements specification and

development engineering (H/W S/W) functions also occur (albeit with a different
emphasis) in the post development cycle; and 3) "products" produced in up-

stream engineering cycles were critical to effective post-deployment support.
Thus, the subpanel believes that the JLC/CRM should strive for a generic
engineering environment that supports not only the PDSS but the entire system
life cycle. This "goal system", however, should be developed in a block
evolution building on work which is already underway (see Section 4.4.4.1.3)
and on initial requirements that are clearly understood.

4.4.4.1.2 The PDSS Environment

The term "environment" in the PDSS context refers to an integrated, coherent
collection of tools (mostly software) which support activities encountered in
the post deployment software support process. It is the opinion of the PDSS
environment panel that this environment is not substantially different from
the software engineering environment (SEE) being addressed by the STARS pro-
gram*. In fact, if the PDSS needs are addressed in the STARS SEE definition,
then that environment would provide a consistency of operation across the life
cycle.

4.4.4.1.2.1 Description and Characterization of the Environment

To understand the characteristics of the software support environment (SSE) ii

is useful to view the SSE from different perspectives. Fig 4.4-2 suggests three

different view points for discussion/understanding the environment:

o The environment architectural view
o The life cycle view
o The environment tool set view

4.4.4.1.2.2 Environment Architectural View

The SSE as seen from the architectural viewpoint is shown in Figure 4.4-3. This
view presents to the various classes of SSE users (system engineers, program-
mers, system testers, managers, etc.,), the overall layout of the SSE functions
and a concept of how these functions would be used.

As indicated in Figure 4.4-3, the SSE includes not only software tools and
entities, but also the communications interface equipment and protocols neces-
sary to link the software and host-machine capabilities to the various target
machines, target environments, test drivers, and instrumentation capabilities.
In this form the SSE supports the software/system integration and test func-
tions required for PDSS as well as the standard software development and
modification functions.

* See Appendix C, briefing number 5.

4-4-5

CD, Loi1-

Lii Oi D)

En) 0

I I
LLJ=u_

-3j: crm i-c

Lii - w0

En 1- w W~Z

0.. w L Lo -

-z 0Qz' -c Li

I.. .. -UU).. (0m

cr-

-- oa

I- Cl

C-,7

C

-3-

4-4-7

Cl:)

m ~LL
I- 0r L L

ZLLJ

u0W
EnU

(n LJ

JLAJLAJ
Cl. -L~Jrn-

(n ~ ~ ~ to = LACJ >

Lii

LiJ

ii

I--

CoC

C.3J LLJ aJ
CCJ Lii

f-Ci2z
I-w L

UJ
:>-I-8

The overall concept of operation indicated in Fig 4.4-3 involves the ability of
each user or class of users to develop a tailored, personalized mix of basic

SSE commands and macro-commands which best help perform their PDSS functions.
Thus, a programmer's commands would focus on retrieving program or design

entities, and invoking combinations of editors, formatters, static analyzers,
compilers, linkers, loaders, and execution monitors which help him develop,
test, and document his program. On the other hand, a system test engineer's

commands would focus on configuring target computers and associated hardware

or simulated equipment with test-driver and instrumentation equipment, retriev-

ing and loading programs and data, and invoking a test scenario involving the
exercise of various system capabilities, the monitoring and analysis of test
results, and the presentation of test results in desired reporting formats.

In this concept of operation, the command interpreter in Fig 4.4-3 operates on
the user's commands to produce a sequence of internal commands to the SSE's
DBMS, utilities, and communications interface to perform the functions desired
by the user.

4.4.4.1.2.3 Life Cycle View

Another useful view of the SSE is the life cycle as defined in MIL-STD-SDS and
shown in Fig 4.4-4. This view indicates that the environment consists of func-
tions and capabilities which support each of the life cycle phases, and a set

of functions and capabilities which span the entire life-cycle.

One issue which can be addressed from this view is the extent of commonalitv
between a development SSE and a post development SSE. As indicated by rt.
cross-hatching and brackets in Fig 4.4-4, the commonalities vastly outweigh the
differences.

4.4.4.1.2.4 Tool Set View Point

As stated earlier, the SSE consists of a consistent, coherent collection of
tools, structured so as to promote communication between tools from a data and
control standpoint. Fig 4.4-5 shows the SSE as seen from the tool viewpoint.

Tool sets are grouped into a number of layers. The core set of tools consist
of the more generic basic tools which support the host computer operation.
including the routine system, system administration, user interaction data
management, access rights, security, etc.

The core also supports and allows additional tool sets to be "expanded" in
providing for a multiple language capability, methodology dependent tools,

tools specific to specific applications (e.g., EW, avionics) and management
support tools. These higher level layers provide the capability to accomodate
multiple languages, multiple methodologies and to "tailor" the environment to
particular applications.

4-4-9

C)

/

cm

/t (nc

- L

UJ cn

CD CM

LoI

cn -- ,

LLii

4-4- 0

rn I

Jn 0

- II

a..

CD La w U U)La V

CDc w- LI

LiL Li. ir4

I-u L&.iJI

- I-.

uZ -ic

CD L. LD-CC)
0.M LiJ - >-

cn _3O-j U C

4-4-11

4.4.4.1.2.5 Other Perspectives

Besides the SSE views shown in the preceding figures, there are some other
views which provide useful perspectives. One is the DOD-level ownership views
shown in Figure 4.4.1, which expands on the layered view of the SSE shown in Fig
4.4-5. The view in Fig 4.4-6 shows that, across the DOD, there will be SSEs which
contain different combinations of:

o Several different requirements specification languages (RLs): PSL,
RSL, Parras A-7, etc.

o Several different design languages (DLs): PDLs, Ada PDLs, structu',

charts, HIPOs, etc.
o Several different programming languages (PLs): Ada, JOVIAL, FORTTJ.A

CMS-2, etc.
o Different Integration and Tetr (I&T) tools.

c Several types of management support systems (C/SCSC, C/SSR, OSCAR,

PERT/COST, etc).

From a DOD-level ownership view, it will be extremely important to facilitate

the interoperability and commonality of SSEs containing different ccnbinations
of the above languages and tools. It is valuable to consider the columns it,
Fig 4.4-6 as sources of variation whose details (following the principles of

information hiding) should be hidden as much as possible from each other. A
good start in this direction is provided by MIL-STD-SDS. For example:

o Variations between details in the content of requirements language
are hidden by the MIL-STD-SDS provision that each itemized requiremen"
have a unique identifier. Thus, one can perform requirements tracc
ability functions in a manner independent of the detailed content of
each itemized requirement.

o Variations between details in the content of design languages
similarly hidden by the MIL-STD-SDS provisions on the identification
of individual Computer Software Components (CSCs) and units.

Similarly, a good set of interface definitions and conventions can promote:

o Host-target interoperability via standard network-interface protocols.

o Management support interoperability via standard WBS element defini--
tions, milestone definitions, etc.

o Common support of data base, documentation, and CM functions via
standard data base object definitions and conventions.

o Consistent user-interface conventions and procedures via a tool exten-
sion paradigm: a set of standards for keyboard semantics (control -C

always does the same thing), error handling, help messages, menu

management, forms management, etc.

4.4.4.1.3 Definition of PDSS Baseline Requirements Discussion

The Software Support Environment sub-panel reviewed several documents with the

intent to extract useful portions to define an initial PDSS baseline require-
ment. The documents surveyed included:

4-4-L2

C/)

LUJ CD _ __ _ _

C/) --

c)Z. LLzI/
-) L- I)

<rc wLLJ ', *C)
FFI- F- I IkD V)

~j>

2U) LUL L-

C - 'L .C/) U
<r LC)

I- H- H- LU - L

LU) 7 L.-

C) C

H--- LL LU t_

CC).
C) -

C/) 1L L 0

1 . 0 , H- Z, H

0- 0 0- CC' LU- 0.-

m___ H- LU - C C
C/) (L)

CD

H-0

U-~ C/

LJ U) L-) 4--
LUH UC/) C)L i,

H-- 1-7Ur)- LU- T
=)U ro

LULJ
LUJ CH-- LC) 0
CU) C/) <-LUJ Ca-

LL. C)

LUJ

U/)

LLU C

U)) Z- - LC

C) ><- w

4-4-13

o Software Engineering Automation for Tactical Embedded Computer Syscems
(SEATECS) Top Level Requirements, 11 August 1982, Naval Ocean Systems

Center
o Air Force Integration Support Facility, no date, Sacramento Air Logis-

tics Center
o Long Range Plan for Embedded Computer Systems Support, October 1981,

TRW Corp.

o A Software Engineering Environment for the Navy, 31 March 1982, Soft-

ware Engineering Environment Working Group, Naval Material Command

Review of the documents began only after several days of work had been devoted

to definition and agreement on:

-What is a PDSS?
-What might a PDSS physically look like?

-What are its functional characteristics?
-What portions could be made generic?

The evaluation of the documents was heavily weighted towards those that dis-
played a philosophy compatible with the SSE views which evolved from the
discussions. See the following paragraph (4.4.4.1,4) for detail on thi-
discussion.

The investigation found the SEATECS document mapped well to the SSE views and
provided a subset of specific detailed requirements for the PDSS. (There wer

omissions in certain areas, e.g. system test, external communication, etc.)
The format of the requirements as listed in the document also seemed appro-

priate for a top level requirements definition.

The panel decided to map the SEATECS requirements to the PDSS functional
capabilities in order to determine what additional requirements must be adde.
This mapping plus the added requirements are defined in section 4.4.5.1.4.

4.4.4.1.4 PDSS DESCRIPTION

o SCOPE. The Software Support environment must be designed to facili-
tate all functions of the PDSS as outlined below:

a. GENERAL: A PDSS is an engineering facility established for the
evolutionary support of mission critical software.

The PDSS facilit, is made up of people, generic equipment, physical
environmental and communications facilities, data, documentation,
and procedures. These facilities provide the capability to perform
software development, simulate the operational environment, evalu-
ate digital systems or subsystems, test software, integrate hard-

ware and software, and address man/machine interfaces. PDSS
facilities also provide the capability to maintain a configuration
"baseline" and manage activities and configuration items developed
in the facility. (see Figure 4.4-7).

b. CAPABILITY AND FEATURES: The PDSS facility should have the follow-

ing features and capabilities (see Figure 4.4-8):

4-4-14

CAC

cc 3b -. c

-j-
m .
US ~~M C

(/ n

>. 3... Cc

USO4 1 LA

zl z

C/,a

UU

UAU

< wi

uj U,

aCC
x m I.- C6

4-4-15I 0

(I)

c a 0 Cl

EE Q-. C
0)a 0L C

cm L-- 3: 20
0U 0.C Lu U

-z L C L-) L(U

+C .cl C (Us 0m1-C
0 0 4- C C 4--0).

a) - - -) 0 0 LCDU-W
L) + +j = L .- C CL-Dic

C(mUmUa 0 -H U)-Hj
(ZC- 4- - 0C(U (12n 0CC)
a)cm a)C.CD a. cz - -0 L- Lz E>

= - (D U>C-E E+

C.)C

U).-~

0U E . 4-1

cis
+jH

Cl) i-I -'c12

-0 ch 0 -H +j (U -0
0 CD (D U C)d L)C(U

0. - m CLC)E~ 06 0
cuU 0((U 4- U c u 4-=

u-Ilc (UC) L) E 0 0 LGcu uc C
1- 0 ~C - Q) C ' C4L. -J U) CUa)
=U (U9d 4- -4CUm-H 4 czc E E
Om (D +HE- -0 E (U -1 L. 3:- C C

CL = 0 wL 0L- L -J C -+- IC0
a.C CC 0 L -0 (fla. 4- L-n -4ri

= od M 4)-9- > I-0 a.4- a) C Ca >- ICD CU
U C L cr. - -- f-4)JCh O c2> >
a) M oCd (-J c 0 0- m- (NC =Ia) w a

uWI -- -r- C C 0.- -w . 0 ~ C CD CL L- = ~

<0) + (-HD =:) CD a) C -J -(UCZ 0 - 1 Ca)cu
3:- CL (z+i En C --- J CL a_. (U 3C Cd L L

-W O L M w -H(Uc 0 = L U O..- U a-cis(U

L-cn r4 n a, c W), r--4 (n aCD (C C 0 3

C2> >- +J U 0 411 > (U > j L- a, -- L.
C C>C C>CD CJ OCCU

~uW u-W = -- I= ~
LD cr. ICC-

i . . *. * = * "

4-4-16

1) Support mission critical systems within an integrated facility,

including systems with multiple computers;

2) Support multiple functions with common modules;

3) Support harmonious interconnections of systems with dissimilar
architectures, languages, program structures, and input/output

requirements;

4) Support extension and reconfiguration, as the number of systems
within the PDSS are increased or decreased;

5) Support mission critical software evolution through preplannec
product improvements;

6) Support life cycle management and systems engineering cost
objectives;

7) Incorporate existing support assets into the PDSS design and
throughout its life cycle;

8) Meet physical, technical, and administrative security require-
ments;

9) Support rapid response mission critical reprogramming require
men t s.

c. SUPPORT TOOLS: To enhance the productivity of PDSS personnel

these facilities should have a set of standard tools with prc
defined interfaces to allow inter-tool communication. These tools

should be capable of supporting specific PDSS processes, as w&).
as in concert with generic support processes. Automated PDSE

tools should be included to support the following functions (see
Figure 4.4-9):

1) Data Base Management.
2) Configuration Management.
3) Information Management.
4) Requirements Analysis.

5) Specifications Definition.
6) Software Design.
7) Documentation.
8) Software Development.
9) Software Test, Test Data Collection, Reduction and Analysis.
10) System Integration.
ii) Simulation.

12) Validation and Verification.

13) Project and Cost Management.

These tools must be provided in concert with high order languages and their
automated support environments for the management, development, re-engineering,
test and integration of mission critical software.

4-4-1 7

61-

C6-j 0
3~V~U1NI Vkl3HdWI3d -

2 55

o Lo

o -x FE
(A30VIS31I 33V~IO31MI<u

Cd,
= 3sn 3ve viv

ata cc2J
6"4

Cma

CAwtC
='"

4-4-1

d. PHYSICAL FACILITY: To prevent premature technical obsolescence,

the PDSS facility should have an open core design, raised floors,

relocatable walls, floor to floor chases, environmental and elec-

trical distribution systems. Building flexibility into the initial
design will allow the PDSS facility to be reconfigured to meet

future tasks. The electrical system must meet the requirements of

commercial computer systems, avionics and unique weapon systems.

Where security is a requirement, all power must be filtered.

Various special requirements must be met based on specific appli-

cations, such as requiring geographical benchmarks, special fir(

protection, special grounding or security needs. General PDS."

facility requirements include:

I) Office space for engineers, computer scientists and suppor
personnel,

2) Local area and long haul network nodes,

3) Power and cooling equipment for mission critical hardwait-

systems and PDSS support systems,

4) Vaults for security and physical protection,

5) Libraries for magnetic and printed media,

6) Equipment maintenance areas,

7) Growth/storage space, and

8) Security planning.

e. SECURITY PLANNING REQUIREMENTS: Requirements for ADP system

security mode and the security classification of the PDSS will be
determined by the classification and use of the system being

supported and the operating requirements. Planning must include
sufficient lead time to comply with the approval requirements of

cognizant agencies. (For additional data on PDSS security see

paragraph 4.4.4.2.2.)

4.4.4.2 Subpanel 2 - Management Support Systems Considerations

Subpanel 2 discussed these basic areas:

o Management Support Systems

o Security Implications/Requirements for SSE

o Advantages and Disadvantages of a GFE an/or CFE support environment

4-4-19

4.4.4.2.1 Management Support Systems

Management support systems for a generic post deployment support system erivi-
ronment have a set of unique requirements in addition to the requirements of a
management support system for a generic development environment. The require-
ments unique to the PDSS stem from the requirement to manage the reproduction,
distribution, implementation, and trouble reporting of multiple versions of
the software product. In addition, for certain types of mission-critical
systems the final portion of operational testing may only be accomplished when
the entire system is operational; for example, a command and control system
which supports the National Command Authorities and requires the transfer of
information between service organizations and the unified and specified com-
mands. Following are some areas of consideration for requirements for PDS?
management support systems.

a. System Test

Specific tools may be required to perform system testing, capture
system test results, and to perform system test result analysis. The
availability of these tools becomes critical when the system supported
interfaces with a system, (or systems) supported by a different PDS _
activity.

b. Security

Because of the nature and use of the deployed software and system
there may be implications on the security category of the PDSS arA
the trustworthiness of the software support environment so ftwa
which is not inherent in the development process. An example might
be where a non-classified program fails when utilizing classified
data and the program can only be recreated with classified date.°

These factors impact personnel security, physical security, ADP
system area controls, ADP system access controls, and transmission
controls. Tools are required for monitoring and enforcing security
especially in the area of ADP system access controls. These require-
ments may be more rigorous than those for the development ADP systems.

c. Deployment Monitoring

Information must be collected regarding the distribution of the
product to where it is to be installed. This information must be
readily accessible for ad hoc queries. For example, if the product
is distributed via registered mail, information of the following type
must be collected: date of shipment, contents of the shipment,
registry number or numbers of the shipment, date of receipt, person
signing for receipt, etc.

d. Operational Installation Monitoring

Information must also be collected regarding the installation of the
product in the specific operational facility (e.g., aircraft by tail
number). Again, the information must be readily accessible for ad

hoc queries.

4-4-20

e. Trouble Reporting and Analysis Systems

Although the development process requires the collection of similar
information, the amount of data processed for deployed systems is
usually larger and the reporting procedure itself may be more complex
due to the dispersement of the product. Considerations should be
given to timely reporting, timely feedback to the reporting instal-
lation as to receipt of the trouble report, and analysis results.

Consideration should be given to providing trouble reporting infor-
mation to all installations and on-line trouble reporting.

4.4.4.2.2 Security Implications/Requirements

The ease of implementing security requirements in a software support environ-
ment is directly related to the environments rehosting philosophy. This is

particularly true in the case of the current government efforts to develop Ada

programming support environments (based on the use of a wide variety of commer-

cial computers and associated (vendor-supplied) operating systems). The basic
philosophy is to isolate machine/operating system dependencies to one easily
managed and controlled area (KAPSE) with the major portion of the environmen
being machine/operating system independent (APSE). Rehosting of the APSE thet,

only requires changes to the KAPSE to satisfy unique machine/OS dependencie

of the new host.

The difficulty in designing the APSE to meet ADP security requirements is mad.
more complex because of this rehosting philosophy. Because the security u
the SSE involves the identification and control of both SSE users and SS5
information, it is clear that the sophistication of the system resource
available to manipulate these data plays a large part in the ease or diffi-
culty in implementing security measures.

Also, these resources are typically implemented in the machine itself, or the
operating system, or both. It follows that, ideally, security measures should
be implemented in the machine and/or operating system, as opposed to the

APSE. However, the majority of existing machines and operating systems that
will be used to host the APSEs have not been designed and developed to meet

security requirements. The security measures required for a specific SSE
must, therefore, be implemented within the APSE (assuming no changes will be
made to vendor-supplied operating systems used to host the APSEs). The diffi-

culty in developing "secure" APSEs, based on the present APSE rehosting philo-

sophy, is readily apparent. One solution is to develop a security "interface"
to isolate the APSE (secure) from the host operating system. Obviously, this

can be accomplished by "encrypting" secure data that passes from the APSE to
the host operating system, and de-crypting the data as it passes from the host

operating system to the APSE. Equally obvious is the (potentially) extensive
overhead (performance, space, etc.) necessary to implement this security

interface.

4-4-2]

4.4.4.2.3 Provision of the Software Support Environment

a. GFE

A uniform GFE Software Support Environment has the potential of

significant total life cycle cost savings.

o Common hardware (CPU's, peripheral equipment and special equipment)

can be purchased at less cost due to economies of scale.

o A common SSE will reduce the numbers of SSE's in the DoD inventory,
reduce SSE ownership costs and result in more effective use of
scarce personnel resources.

" A common GFE environment implies that similar operational proce-
dures could be used at the PDSS's. This means that continuity of
procedures and operations could be easily maintained across diffe-
rent MCCS's within a PDSS and from PDSS to PDSS. Also, workload
leveling can be accomplished between separate PDSS's during peak
or critical times at each center.

" A common environment will tend to reduce both hardware and software
maintenance costs for that environment (for example, an operating
system change could be installed and verified on a central bet2
test PDSS and then deployed to all PDSS's). Training both govern
ment and contractor personnel in the use of the PtqS hardware al
software (task) is simplified. Unified training p.)grams could bt
developed and given at each PDSS.

o The generic SSE lends itself to open bidding. There would be no
proprietary data (contractor) or hidden technical expertise re
quirements.

o The government would buy all source and data rights.

b. Non-GFE

Factors related to a non-GFE environment are:

o The "standard" SSE implies some obsolescence because of its neces-
sarily longer life.

- Contractors would have to merely accept (and charge for) ineffi-
ciencies inherent in a generic SSE.

- If a contractors newly developed tools were distributed to all
future developers there would be no incentive for industry to
develop new tools.

- There are not many examples of non-GFE PDSS SSE's, excent perhaps

for the defacto standard VAX computer with VMS or UNIX.

4-4-22

- It is difficult to define an environment that would satisfy the
needs of the developer. The government has limited experience in
this particular area.

o Higher project costs could result from the potential inefficiencies
of a GFE SSE. (The reverse could also, of course, be true, e.g.,
lower project could result.)

c. GFE/Non-GFE Mix

Is it feasible/realistic to define a generic SSE tool set? What is
Generic? A generic environment is defined as being:

o Hardware independent.

o Language independent.

o Specific tool independent - This is a major issue related to
generic environments. The services desire that to the fullest
extent feasible the exact set of tools used in the original
development of the software for the MCCS be used in the PDSS of
that system. Industry however desires that the PDSS environment
be defined (i.e., data base format, types of information required,
interfaces to tools, etc.), and that the contractor be required
to only ensure that developed code be supportable on the specified
PDSS environment.

d. General Discussion

Sub-issues in this area which require further consideration are:

o The complexity and multiplicity of MCCS's make it very diffi--
cult to envision one PDSS environment that is capable of

supporting multiple systems.

" The burden is on the initial RFP and proposal writers/approvers
to require support details, assurances, and risk probability
on a defined "specific" PDSS environment. Can and will this
be accomplished?

o Technically, can contract rs/vendors assure supportability on
a PDSS environment that is similar in functionality but which
differs in exact tools?

o Application independent criteria which must be considered when
defining the PDSS requirements.

4.4.4.3 Subpanel 3 - Contractual Provisions

The Contractual Provisions subpanei of the Support Software Environment Panel

focused on two major areas. The first area was the nature of the environment

4-4-23

(both development and the PDSS) in which major new focuses are seen as "project
data bases" and "testing process" development. The second area dealt with the
"environment, acquisition and use" in which discussion and guidance was postu-
lated in "acquisition of the environment," "user aids for the environment" and
specific unique "PDSS tool needs." A discussion of eacl. of these topic areas
follows.

4.4.4.3.1 Project Data Base

The project data base is the collection of information generated as the soft-
ware evolves from requirements to termination of support. It is not to br
confused with the system software data base which may be included in the
project data base. The purpose of the project data base is to provide machir
manipulation of the tremendous volume of information necessary to economicall,
support the evolution of the system software throughout the life cycle.

The support activities, including the developer, must have common accessibility
to the data base, either by use of common host computer and tools, or by the
specification of the data base and the procurement of the necessary manipula-
tive tools. It is the opinion of this subpanel that this data base possesses
the same attributes throughout the life cycle differing only in the emphasi5c
and focus. It is recognized that the data base evolves during the initial
development effort.

The data base should be consistent with the specification (e.g., MIL-STD-SDS "

used for the initial procurement and with the PDSS facility to be assigric
final responsibility (if known). A DID needs to be developed to provide
guidance in the definition of the contents of the data base. Sources for ti.
initial set of elements for use in the DID are referenced in Appendix B -.

Miscellaneous. In addition, the DID should consider the requirement for the
data base to include module definition, module interfaces and support referen
tables. The data base shall support the automation of traceability from
requirements through design to implementation.

The tools for the manipulation of the data base shall include the ability to
access by a selected parameter(s) in a timely manner. The traceability fea-
tures shall be bidirectional and shall facilitate the evaluation of the impact
of proposed changes and facilitate the design and development of new capabili-
ties in the MCCS. The data base shall be such that it can be economically
validated against the implemented MCCS. The data base must include the intra-/
inter-system intoz-aces providing the description of modules, subroutines,
tests, data sets, etc. These Elements are critical to the effective management
of the software structures.

The specification of the project data base will shift the key support elements
from the traditional delivered documents. The traditional documents are
development tools and those portions of these documents which are provided in
the project data base are the elements of the life cycle support. The tradi-
tional documents are still necessary to insure that the understanding of the
software is correct and current. Configuration control of this data base is
required.

4-4-24

A properly designed project data base and related support tools will provide

improved configuration management capabilities, simplify the quality assurance
process and provide significant management insight into the status and effec-
tiveness of the MCCS throughout the life cycle.

It is emphasized that the data base must be automated. That is, the tools
necessary to access and manipulate the data base to provide the requisite
engineering and management information in a timely manner are critical to the
efficient support of MCCS, both during development and at PDSS.

The documentation for supporting the tools is important, for the documentation
should include that information which is necessary to provide adequate 'main-
tainability' and also user information sufficient for PDSS personnel to effec-
tively use the tools.

The procuring activity shall ensure that the project data base is specified
for delivery to the PDSS. If the data base environment and/or tools are not
GFE or GFI (I = Information), then the data base must be completely defined
and accurately specified. The tools required for the manipulation of the data
base must be specified and the PDSS environment clearly defined such that the
data base and tools will be utilized to the PDSS personnel as delivered.

4.4.4.3.2 Testing Processes Development and History

Testing is the primary method for insuring high quality software. Differen.
types of testing are performed during the life cycle. Additionally, the

thoroughness of the testing is a variable since it is impractical to perfor,-
100% testing; i.e., exercising all combinations of data states and programu
paths. Therefore, it is recommended that:

o During acquisition the type and thoroughness of the testing must be
explicitly stated in the contract and all documentation and test data,
specifically test inputs, test directives, and test results, shall be
delivered in the project data base. The PDSS facility shall have all
tools, or their equivalent, necessary to duplicate and repeat the

acquisition testing.

o The PDSS facility shall have the additional tools and capabilities

necessary to perform the remaining types of testing to an arbitrary
degree of thoroughness.

4.4.4.3.3 PDSS Environment Aquisition

It has been asserted that the environment required for the PDSS is largely
identical and in fact a superset of the project development environment. This
assertion is true in either an Ada environment or a non-Ada environment (which
the PDSS world must continue to support for multiple decades). Appendix D
attempts to portray an assessment of one major PDSS facility with some gross
estimates of focus shift between development engineering focus and the PDSS

4-4-25

focus. Note that in gross summary the functions are similar, but in detail
functions the PDSS is presented with added management and performance optimiza-
tion requirements which in fact do add new support requirements and associated
tools and procedures (hence the superset).

Given that the PDSS environment is at least equal to (possibly a superset of)
the development engineering environment, the following question must be posed:
How can the acquisition process insure that the development environment (or
its functional equivalent as a minimum) is available for the PDSS facility and
can be effectively integrated into the operational doctrine of the intende'
PDSS?

The following paragraphs address the issue: The first and the easiest solutin:
is to direct the developer to use GFE/GFI facilities and environment either
located at the PDSS or a copy of that environment which is or will be added to
the PDSS.

- The Naval Air Development Center's Facility for Automated Software
Production (FASP) is one example.

- PDSS capability comes early.

- Ownership of the environment and its process and procedures reside with
the PDSS or its parent agency.

- New human interfaces need not be developed (familiarity).

- Fewer environments are needed (divergent proliferation for converge
purposes).

The second approach is to provide GFI the environment and supporting system tc
the developing agency mandating their use and an acquisition agency interface
to the process for monitoring and development sequence control. In this case,
the environment is essentially specified by the GFI package - ownership of
which resides with the Government. PDSS facility preparation can be carried
on in parallel and probable PDSS readiness for turnover is enhanced.

- rhe Navy's Machine Transferable Support Software (MTASS) is an example
of a limited environment.

- Current GFI packages are limited in capability.

- Environment development and maintenance is already in long term planning
vice new dollar requirements.

- Control of procedure is nearly equal to GFE approach.

- Cost is reduced.

4-4-26

The third approach which supports the PDSS objective is to allow the developer
to use an environment that is neither GFE nor GFI (or possibly an extension of
a GFI), but rather some commercially available or licenseable environment set
which is compatible with a proposed PDSS facility. In this event the acquisi-

tion agent must acquire the identification, full specification and system
dependencies of the environment and insure that sufficient resources are
in-place at the proposed PDSS to support the environment in use. Basically,
this approach will install a new environment at the PDSS which is a copy of
the development enviroronent. This installation accompanied by necessary
training and augmentation of PDSS resources as appropriate must be done early

(12-16 months before turn-over) to insure effective PDSS operations.

- RSL Revs is an example.

- IR PDS II at Trident is an example.

- Does not interfere with developer's desires.

- Requires careful monitoring to control environment stability.

The fourth option is to allow a developer to use a proprietary internalizc
environment that is optimized for the developers institutional processes. Ir

th:s event, the a.quisition agent must insure the establishment of formal
turn-over points for the project data base, the data base format, content an.
the support tool functions which are critical to the development sequence oi
the project (i.e., Macro P Procs, table drum dB generators, etc.).

In all of the above approaches there are three principles that must b-

followed by the acquisition agent.

o Require control points consistent with the environment in use through;
the development of the project. Through the data base, "automatically"
validate the data base against the appropriate level of systems imple-
mentation and plan the traceability of the system requirements through

the current level of system implementation.

o Require the cost of PDSS preparation, whatever option is selected, to
be an evaluation factor in the total acquisition of the system. In
this way. an efficient new development environment, which is not part
of the PDSS current capability, can be fairly off set against the cost

of upgrading the PDSS facility and vice versa.

" Mandate ownership, transportability or rights in use, or licensing and

life cycle support of proprietary software used in the development
environment and which will support PDSS operations. Ignore all other
proprietary software.

4-4-27

4.4.4.3.4 PDSS Reference Manual

The acquisition agent should acquire during the development phase a documented
design approach to the PDSS operation called a reference manual. The purpose
of the PDSS reference manual, and of possible supplemental training courses,
is to convey to the PDSS staff specific knowledge that the developers have
that will make it easier to maintain and enhance the software system. It
should be required as a contract deliverable in addition to the standard
required specifications, etc. It is not intended to further specify the
delivcred software; iu is an operationally-oriented guide sp.cificlly addres
sing the activities to be performed by PDSS personnel in maintaining the
software.

The outline found in Table 4.4-1 describes the types of material the PDSS manual

should include. Other organizations may be equally appropriate, and additional
contents may be desirable, depending on the particular situation; the outline
is intended to convey a general view of the manual's function.

It may also be desirable to procure training courses covering the same kinds
of subject matter. This decision depends on several factors, including com-
plexity of the system, quality of the documentation, and initial availabilit-
of enough of the PDSS staff to make training worthwhile. The PDSS manual is

considered essential; the need for additional training is discretionary.

4.4.4.3.5 Tools Which are Unique To The PDSS

The PDSS activity requires the basic set of software development tools used I
the development activity - they are not enumerated here. In addition, PDS
activities require additional tools that may not be provided in the
development environment. The procurement activity should ensure that thesc
tools are acquired.

The need for additional tools in the PDSS stems from the different orientation
of the PDSS; its primary orientation is to respond to change. Hence additional

tool requirements derive from the need to manage, control, analyze the impact
of, and adapt to changing requirements. Specific tools that these functions
require are:

1. Configuration Control Tools

a. Tools to manage multiple versions and releases.

b. Tools to distribute (e.g., perhaps by electronic means) multiple
versions and releases.

c. User information release and management tools.

2. Impact Analysis Tools

a. Tools to query project data base(s) to assess impact/magnitude.

b. Tools to assist in cost assessment.

4-4-28

Table 4.4-1

PDSS MANUAL

OUTLINE

I. INTRODUCTION

1.1 Purpose and Scope

1.2 Assumptions

- What level of knowledge and training is assumed for users of
the manual?

- What tools and equipment are assumed to be available at the

PDSS in order to carry out the procedures described.

1.3 Reference Documents

- Should include relevant software design specs. tool and

methodology manuals, etc.

2. Environment Susmary

This section gives an overview of the environment to be used in maintain-
ing the software and lists and briefly summarizes applicable tools, data
base, applicable methodologies, etc. It does not replace the documentation

for these items, which should exist independently. It should reference
this documentat ion.

3. Software System Summary

This section gives a brief summary of the software system to be maintained.

It is not intended to replace any of the software specs, and should refe-
rence them for detail. It should include:

- Brief discussion of what the software does (functional sum-
mary).

- Top-level structure of the software (what components; how
they fit together).

- Description of the hardware configuration.

Ideally it should provide a roadmap for using the system and software
spec ificat ions.

4-4-29

Table 4.4-1 (cont)

4. Project Data Base

Assuming that an online, automated project data base is used, this section

should describe it. If the data base is separately documented, a summary

and references to the document are sufficient. Otherwise, this section

must document the specific contents and use of the data base.

If the project data base is not automated, this section of the manual

should contain (or reference) the on-paper information that takes its

place. This includes tabular information such as traceability matrices,

interface lists, etc.

5. Dependencies on Other Software

This section documents any known dependencies that the software system has

on other software. In particular, this includes:

- Operating system (OS) dependencies, if the software makes use

of a vendor-supplied OS.

- Compiler dependencies. (Everything is dependent on the speci-

fic code generated by the compiler; this section should

highlight aspects expected to be particularly vulnerable to
new compiler releases.)

- Interoperating systems.

The best presentation here would present a "cookbook" approach to what to

do when a new release of the OS, compiler, or whatever is received; i.e.,

what to look for, what is likely to change, etc.

6. Dependencies on Hardware

This section contains practical advice for adapting to hardware changes.

The hardware in question would include the processor(s) on which the
software executes as well as any peripheral devices or equipment with
which it interfaces.

6.1 Processor Dependencies

If the processor is upgraded or modified, what are the likely
impacts?

If the processor is replaced by a different kind of processor,
what are the likely impacts? (This assumes the use of an HOL

such as Ada. While programs may be generally portable, they will

contain processor dependencies that must be documented here.)

4-4-30

Table 4.4-1 (cont)

6.2 Device/Equipment Dependencies

This subsection should enumerate each device that the software
interfaces with, identify the software component(s) that contain
the dependency, and discuss what action should be taken if the
device is modified, eliminated, augmented, or whatever is likely.

7. Performance Maintenance

A continual function of the PDSS is to maintain software performance as
the system evolves (if not to improve it initially). This section should
present:

- processor utilization data

- known critical areas (i.e., "any change here should be done
very carefully -- it will have major performance implica-
t ions")

- description of any available measurement/tuning tools and
techniques

- hints for further performance tuning (perhaps things the
developer knows about but didn't get to)

8. Memory Utilization

Another PDSS problem is keeping the software in memory as it grows and
evolves. This section should assist with that problem by providing:

- memory maps

- description of any overlay or memory management strategies in
use

- known "break points" that would permit additional overlaying,
off-loading to another processor, or whatever

- any other hints as to how space could be saved (e.g., tables
that could be compressed, in-memory data that could be purged,
etc.)

9. Envisioned Changes/Enhancements and How to Make Them

Many of the changes and enhancements that might be required for a given
software system can be predicted. This section should identify these and
give "cookbook" procedures (insofar as possible) for responding to them.
This would include such things as:

4-4-31

Table 4.4-1 (cont)

- how to add an "x", where "x" is a new, e.g., communication

protocol, user terminal, radar type, whatever

- how to expand capacities

- how to alter limits, protections, etc.

- how to change anything that's been parameterized

- how to adapt to an enhanced user interface (e.g., graphics
terminal replaces teletype)

- how to extend security (probably impossible unless its been
planned

10. Functional Scenarios

The environment/tool manuals document the use of the tools. This section
documents sequences of actions the PDSS personnel would perform to accomp-
lish particular functions. For example, such scenarios might include:

- how to process a user trouble report

- how to conduct a system regression test

- how to evaluate a change proposal

These scenarios would explicitly step through the tools and procedures
required.

11. Additional Maintenance Hints

This is the place for the developer to provide any other advice he may
consider useful.

4-4-32

3. Management Control Tools

a. Multiple subsystem resource planning and management tools.

b. Additional management and utilization reporting tools (because

there are additional reporting requirements in the PDSS environ-

ment).

4. Performance Maintenance Tools

a. Performance measurement/monitoring tools.

b. Optimization tools.

5. Testing Tools

a. Tools to determine which tests test which system functions (and

hence which must be redeveloped or re-executed if the function
changes).

b. Tools to determine which tests test which modules (and henc

which must be re-executed if the module changes).

c. Path coverage analysis tools.

d. Automated regression test tools.

e. Test results comparison (i.e., to expected results or to previo.

results).

f. Data collection, reduction and analysis tools.

6. Simulation Tools

a. Interoperability/external system interface simulators/stimulators,

4.4.4.4 Subpanel 4 - Application Area Unique Criteria

4.4.4.4.1 SSE Requirements.

A generic software support environment (SSE) or a post-development software
support (PDSS) facility could be established to support all types of DOD

software including operational software, ATE software and training software.

The establishment of a generic SSE is possible because the basic components

that comprise an SSE are the same for any SSE. Differences between the

environments come from differences in emphasis of the environment towards ATE,
training or operational software. This difference in emphasis results in an

environment that differs in specific hardware make-up, personnel make-up, size
and complexity. For example, an SSE to support ATE software will have the

same types of components as one which supports operational software but it may

have different compilers, computers, support software, etc.

4-4-33

However, it is generally impractical to develop a fully generic SSE with the
capability to support all types of software. The impracticality could be
caused by facility size restrictions which would cause the ineffective use of
resources. In these cases grouping the software support into PDSS facilities
could be accomplished by function such as Electronic Warfare (EW), avionics,
training, communications, etc., by weapon system/platform such as aircraft,
ship, etc., or by specific hardware such as radars, etc. The selection should
be accomplished based upon economies of scale.

4.4.4.4.2 Operational Environment Considerations

The intended system operations environment (air, land, sea, or space) of the
system being supported does not by itself place special or unique requirement-
on an SSE (or PDSS facility). However, the target computer and associate
interfacing hardware must be available in (or available to) the SSE for inte-
gration and test regardless of the operational environment.

4.4.4.4.3 Impact of Generic SSE on Resources

A generic SSE serves to share resources. The generic environment reduces the
amount of support software to be maintained, can improve the sharing of per-
sonnel resources, and enhances transportability and interoperability. Thc
generic SSE concept can be carried too far. If the generic concept grows to"
large, management of resources will become too complex and conflicts of pri o--
rity will arise.

A generic SSE will serve to consolidate support software. Many support sofL
ware tools can be effectively utilized across many programs within the SST
These tools might include such items as automated configuration managemen;
documentation, and program management/status software packages. These items
would be more fully utilized if spread over many programs. In addition, ug (
of these tools would tend to form a "standard" which would increase efficiency
and productivity.

A generic SSE can serve to improve the use of personnel resources. Personnel
expertise in specific areas can be used across many programs. In addition,
sub-specialities can be developed to allow more effective utilization of
employees when workloads shift. There are two potential drawbacks to the use
of these personnel. First, is the danger of expertise being spread too thin
which would cause a lack of responsiveness to requirements. In addition,
management of large numbers of personnel could cause an unwieldy bureaucracy
to grow which would not be responsive to PDSS needs in a timely fashion.

A generic SSE could enhance transportability and interoperability of soft-
ware. Depending upon the systems being supported it may be possible to develop
software packages that are used in multiple systems. Packages such as digital
communications, weapon control and tactics, and tracking algorithms may be
examples of such multiple use. In addition, if the systems being supported
must be interoperable on a digital communications net, the sharing of communi-
cations software packages may enhance the interoperability of such systems.

4-4-34

4.4.5 CONCLUSIONS AND RECOMMENDATIONS

4.4.5.1 Subpanel 1 - Definition of the Support Software Environment

4.4.5.1.1 Environmental Architecture View

Reference: Paragraph 4.4.4.1.2.2

This SSE architecture and concept of operation implies the following:

- Conclusion: The commonality factors and economics of scale of a sing,
unified SSE for a referenced system outweigh the advantages of havin,,
several SSEs supporting different phases of the software life cycle.

- Recommendation: PDSS environments for defense systems should utilize a
single unified architecture such as the one indicated in Fig 4.4-3.

4.4.5.1.2 Life Cycle View

Reference: Paragraph 4.4.4.1.2.3

- Conclusion: Other than the distribution management functions require.
for PDSS, there are no significant differences between the generic func-
tions required for a development mode SSE and a post development mod
SSE. Any SSE function which provides effective support in one mode als
provides effective support in the other mode.

- Conclusion: The development SSE and the post development SSE ar
almost identical. Primarily, the post development SSE must grow i
support distribution management and many defense system functions and
capabilities not identified during development.

- Recommendation: The CRLCMPI should identify the directions f
evolution which the SSE will need to support, identify the organization
responsible for supporting the post development evolution of the SSE, and
provide a clear transition plan between the development SSE and the
post-development SSE.

4.4.5.1.3 Other Perspectives

Reference: Paragraph 4.4.4.1.2.5

The current state of the art in understanding the nature of interface standards
and conventions is incomplete, leading to the following:

1 Computer Resources Life Cycle Management Plan

4-4-35

- Conclusion: From a DOD ownership standpoint, it is extremely important

to establish interface definitions between components of the Software

Engineering Environment (SEE) to promote commonality, interoperability,
and evolution among SSE's. However, the current state of the art does

not support a complete definitive specification of these interfaces.

- Recommendation: The current STARS SEE effort should develop in initial

definition of these interfaces, conventions, and paradigms, and support

further R&D toward a more complete definition.

4.4.5.1.4 Definition of PDSS Baseline Requirements Discussion

Reference: Paragraph 4.4.4.1.3

Recommendation: We recommend that the additional requirements items be added
to the basic SEATECS document, and that document be adopted as the starting
point for the Top Level Statement of Requirements for the PDSS.

Products: The system architects view of the PDSS consists of a number of
subsystems upon which functional requirements can be mapped. Table 4.4-2 illus-

trates the panel's suggested mapping between the SEATECS requirements and t1,
PDSS subsystems. Requirements not included in the SEATECS document are indi

cated by an asterisk and are defined after the table. A key to the tables

entries is found at the end of the table.

NOTE: It is recommended that the Navy's SEEWG and STARS SEE documents I
examined to determine if they rather than the SEATECS document shouli'

be revised.

4.4.5.2 Subpanel 2 - Management Support Systems

4.4.5.2.1 Security Requirements

Reference: Paragraph 4.4.4.2.2

Recommendation: PDSS centers should analyze their security requirements and
obtain a host computer with the security features that support those require-

ments. As a minimum the level of certification of the host computer should 1e
known. This means that proposed host systems should have been evaluated by
the Computer Security Evaluation Center.

Further, it is recommended that the JLC sponsor a study of long term PDSS
security requirements with emphasis on Ada run-time environments, and other
PDSS unique requirements.

4,4.5.3 Subpanel 3 - Contractual Provisions

4.4.5.3.1 Project Data Base

Reference: Paragraph 4.4.4.3.1

4-4-36

Table 4.4-2

PDSS/SEATECS MAPPING

PDSS Subsystem SEATES Functional Requirement

Kernel OS Service 3-1.9; 3-4; 3-5; *P-I

Command Interpreter 3-1.1 thru 3-1.8

User Interface 3-2.1; 3-2.2

DBMS 2-1 thru 2-6; 3-3

Utilities 1-10.1; 1-10.8

Tools/Programs/Documentarion/Mgmt 1-1; 1-2; 1-3; 1-4; 1-5; 1-6; 1-7; 1-8;
1-9; *P-2

Communications I/F 1-10.9; 1-10.10; *P-3

H/W Test Drivers/Target Systems/ 1-7; *P-4

Instrumentation

P-I

Allow multilevel security access to the PDSS data base.

a. Discussion/Example: The PDSS will have multiple types of users. Soi.
users require extensive access to the PDSS data base while others require
minimal access. The data base also has different security classifications

which must be protected.

b. Criticality in PDSS Environment: Productive

c. Technological Feasibility: Experimental

P-2

Support Distribution of software releases to operational sites/systems/

agencies.

a. Discussion/Example: The system will interface with or be a part of

the overall CM system so that site addresses, configurations, etc., are joined
to aid in or mostly automate the software distribution process.

b. Criticality: Immediate

c. Technological Feasibility: Available

d. Implementation Priority: 1

4-4-37

Table 4.4-2 (cont)

P-3

Support and interface to all commonly used communications standards and proto-

cols.

a. Discussion/Example: Download developed software to a target system

via MIL-STD-188C (or other) interface.

b. Criticality: Immediate

c. Technological Feasibility: Available

P-4

System Test Capability

a. Discussion Example: A system mock up must be provided that will allow

easy final system test. The mock up should include support devices tho3
permit software download, test monitoring (break and trace), data collectio.
results comparison, and environmental simulation.

b. Criticality: Immediate

c. Technological Feasibility: Available

KEY

o Criticality is defined as:

Immediate. Capabilities which current support systems provide; capabili-
ties without which the most basic mission cannot be performed effectively.

Productive. Capabilities which would have notably positive effects on
productivity; capabilities without which the PDSS can function initially but
which will become necessary as the workload increases.

Desirable. Capabilities which will enhance the PDSS's ability to perform

their mission but whose absence will not be detrimental to mission performance.

o Tectinical Feasibility is defined as:

Available. Capabilities which can be purchased off-the-shelf today and
with little or no adjustment be usefully employed in an SSE for the PDSS's
includes capabilities requiring rehosting.

4-4-38

Table 4.4-2 (cont)

Convertible. Capabilities which are technologically available today but

which do not precisely fulfill PDSS needs, thus requiring some addition,
modification, rewriting, retargeting; includes more adequate engineering,

control, and/or support for operational use.

Experimental. Capabilities which exist today in a limited and/or experi-

mental automated form whose use is still considered to entail risk; includes

incompleteness of theory and incompleteness of implementation; could be intro-

duced into an SSE for use by those projects which understand and could accept

the potential risk.

4-4-39

RE COMMENDAT IONS

All MCCS acquisitions be required to include the project data base and asso-
ciated tools in the software development process.

Develop a Data Item Description to define the content of the project data base
an,' the minimum set of wr.nipulative c.,pbilities required.

Require the project data base to be automated. The magnitude of the informa-
tion to be accessed in the project data base is such that manual techniques
would not be effective.

Develop management guidelines and procedures for the effective use of Lhc
project data base. Include Configuration Management, Quality Assurance, and
Verification and Validation use of the project data base.

4.4.5.3.2 PDSS Environment Acquisition

Reference: Paragraph 4.4.4.3.3

RE COMMENDAT IONS

Modify current directives to formally recognize the types of environment
development as described in paragraph 4.4.4.3.3.

Change acquisition policy guidance to mandate the three principles develop,
as described in paragraph 4.4.4.3.3.

Incorporate in MIL-STD-SDS, or other acquisition guidance the concepts of
project data base delivery/program ccntrol and the test process and histcoy
and the PDSS reference manual approach.

Maintain a clear focus of the unique performance shift between the development
facility and the PDSS task even though strong similarities now require requi-
site tools and environment exist. Tools that exist in a PDSS that exceed the
nominal functional requirements of a development facility are:

- Multiple version release/distribution management.

- Performance monitoring/analysis/optimization tools.

- Extended test tools (i.e., regression).

- Interoperability/external system interfae stimulators.

- Impact analysis/change assessment.

- User information release and management.

- Multiple subsystem resource planning and management tools.

- Management and utilization report variances (controlling to different
principles).

4-4-40(

4.4.5.3.3 PDSS Reference Manual

Reference: Paragraph 4.4.4.3.4

Recommendation: JLC consider adding the PDSS Reference Manual DID to the
post-development support upgrade of MIL-STD-SDS. See Table 4.4-1 for the recom-
mended manual format.

4.4.5.3.4 Tools Which Are Unique to the PDSS

Reference: Paragraph 4.4.4.3.5

RECOMMENDATION

Insure that all of the necessary unique PDSS tools are acquired during th,

development phase as well as the development environment data bases needed.

4.4.5.4 Subpanel 4 - Application Area Unique Criteria Recommendations

Reference: Paragraph 4.4.4.4

RECOMMENDATION

Generic PDSS environments should be established to take advantage of common
resources necessary to perform PDSS. The generic PDSS concept should tc
established based upon logical groupings of systems requiring support. ThY
logical grouping should be based upon the principle of economies of scale.
PDSS should be large and broad enough in scope to allow effective utilizatic-
of existing resources and be responsive to support needs. Yet if the PDS
environment becomes too large it may not be able to effectively respond to the
support needs of the supported systems.

The JLC (or other appropriate agencies; e.g., DCA, USCG, etc.) should periodi-
cally review PDSS facilities and the systems supported by these facilities to
assure that systems are supported in the most responsive and economical manner.

Of particular interest in this review would be the systems supported: Do they
all belong here? Is there a system (or systems) supported here that could be
better supported at some other facility? Such a review would provide recommen-
dations for consideration by the individual services, commands, or agencies.

PDSS facilities should be encouraged to communicate with each other in order
to share success stories and lessons leared. This communication could also
lead to the sharing of tools, techniques, and practices.

4-4-41

APPENDIX A

PANEL D

PARTI CI PANTS

Co-Chairs

Jim Hess - U.S. Army

Jerry Raveling - Sperry

Subgroup I Subgroup 3

Howard Klien - TRW Chris Braun - SOFTECH

Barry Boehn (Co-Chair) - TRW Hank Stuebing - USN

Jim Winchester - Hughes Skip Meiers - USCG (Chair/Recorder)

Oscar Staudt - USAF Russ Eyers - USN

Dave Boslaugh (days 1-2) - USN

Dan Burton - USAF

Ajimel Dulai - USAF Subgroup 4

Jim Williams - ROLM* *To subpanel Brian Goldiez - U.S. Army

Bob Sacks - GRUMMAN* 2 on Wed PM Ed Tognola - U.S. Army

Joe Batz - DOD* and Thurs John Martinsen (Chair/Recorder) - Boeing

Frank Campbell - IDA

Ed Williams - USN

Al Patterson - USAF
Pat Haverty - Burroughs (SDC)

George Sumrall (Co-Chair) - U.S. Army

Subgroup 2

Caral Giammo - DCA
John Cole (Chair) - U.S. Army

Owen McOmber - USN

Bob Sauer (Recorder) - USMC

4-4-A-1

PANEL D - S/W SUPPORT ENVIRONMENT

CO-CHAIRMAN: Hess, Mr. J. (Jim)
HQ DARCOM/DRCDE-SB (202) 274-9318
5001 Eisenhower Avenue A/V 284-9318
Alexandria, VA 22333

Replacement For: Lieblein, Dr. E. (Ed)
Director, CCS, DUSC (2-&AT) (202) 694-0208
Room 32139 (400 A!N) Pentagon A/V 224-0208
W:ashington, 'C 20301

CC-CHAIRMAN: Raveling, Mr. J. (Jerry)
Sperry Corporation (612) 456-3545
Computer Systems, M.S. UIE13
P.O. Box 43525
St. Paul, MN 55164

MEMBERS:

A Sumrall, Mr. G. (George)
CENTACS/DRSEL-TCS (201) 532-1004
Ft. Monmouth, NJ 07703 A/V 992-1004

A Tognola, Mr. E. (Ed)
AVRADA/DAVAA-SS (201) 544-4201
Ft. Monmouth, NJ 07703 A/V 995-4201

A Cole, Mr. J. (John)
CECOM/DRSEL-TCS-SIO (201) 544-2759
Ft. Monmouth, NJ 07703 A/V 995-2759

Goldiei, Mr. B. (Brian)
PM. Trade, DRCPM-TND-EM (305) 646-5761
Naval Training Equipment Center (50C) A/V 791-5761
Orlando, FL 32813

Stuebing, Mr. H.G. (Hank)
Naval Air Development Center (215) 441-2314
Warminster, PA 18974 A/V 441-2314

N McOmber, Mr. O.L. (Owen
HQ, Naval Material Command (MAT 08Y) (202) 692-3966
Washington, DC 20360 A/V 222-3966

N Eyres, Mr. R. (Russ)
Naval Ocean Systems Center (619) 225-7069

San Diego, CA 92152 A/V 933-7069

MC Sauer, Mr. R.E. (Bob)
Marine Corps Tactical Systems (619) 725-2617/2618
Support Activity A/V 993-2617/2618
Camp Pendleton, CA 92055

AFLC Patterson, Mr. A. (Al)
SMALC/MME (916) 643-6316
McClellan AFB, CA A/V 633-6316

A- 2

PANEL D (CONTINUED)

AFSC Burton, MAJ. C.D. (Dan) USAF
ESO/ALL (617) 861-2002
Hanscom AFB, MA 01731 A/V 478-2002

AFSC Dulai, Mr. A. (Ajmel)
ASD/AXT (513) 255-5941
Wright Patterson AFB, OH 45433 A/V 785-5941

AFSC Staudt, Mr. 0. (Oscar)
AFCCPC/SKXD (405) 734-7145
Tinker AFB, OK 73145 A/V 735-7145

CG Meiers, CDR E.J. (Skip) USCG
U.S. Coast Guard (301) 871-3615
5307 Foxborough Ct.
Alexandria, VA 22310

D Giammo, Ms. C. (Caral)
Defense Communications Agency/JDSSC (703) 437-2338
11440 Issac Newton Sq. N. A/V 364-2338
Reston, VA 22090

D Batz, Mr. J. (Joe)
OUSD (R&E), Pentagon, Rm. 3DI079 (202) 695-7756
Washington, DC 20301 A/V 225-7756

A Winchester, Dr. J. (Jim)
Hughes Ground Systems Group (714) 732-5576
P.O. Box 3310, Bldg. 618
Fullerton, CA 92634

A Braun, Ms. C. (Chris)
Softech (617) 890-6900
460 Totten Pond Road
Waltham, MA 02154

A Boehm, Dr. B. (Barry)
TRW Systems Group (213) 393-4206

1 Space Park
Redondo Beach, CA 90278

A Campbell, Mr. F. (Frank) (IDA)
Institute for Defense Analyses (703) 845-2284
1801 N. Beauregard St. A/V 289-1948
Alexandria, VA 22311

N Sacks, Mr. R.M. (Bob)
Grumman Aerospace Corp. (516) 575-7255
Mail Stop B38-035
Bethpage, NY 11714

N Martinsen, Dr. J.L. (John)
Space & Mil. Appl. Div. (206) 575-5149
Federal Systems Group,
Boeing Computer Services
P.O. Box 24346 (M/S 9C-24)
Seattle, WA 98124

A-3

PANEL D (CONTINUED)

AFLC Klein, Mr. H. (Howard)
TRW (916) 920-2613
P.O. Box 1058
North Highlands, CA 95660

AFSC Williams, Mr. J. (Jim)

Rolm Corporation (408) 942-7657
MSC Division (M/S 110)
1 River Oak Pl.
San Jose, CA 95134

0 Haverty, Mr. J.P. (Pat)
Burroughs Corporation (213) 820-4197
2500 Colorado, Blvd.
Santa Monica, CA 90406

NTEC Williams, Mr. E. (Eddie)
Naval Training Equipment Ctr. (N-401) (305) 273-6184Orlando, FL 32813 A/V 791-4111

A-4

APPENDIX B

BIBLIOGRAPHY

DoD Directives

DoDD 5000.29, "Management of Computer Resources in Major Defense Systems"

26 April 1976*

DoDD 5000.31 (Draft), "Computer Programming Language Policy"

June 1983*

Regulations and Instructions

AFR 800-14, Volume I, "Management of Computer Resources in Systems"*

AFR 800-14, Volume II, "Acquisition and Support Procedures for Computer Resour-
ces in Systems"*

AFLCR 800-21, "Management and Support Procedures for Computer Resources Used
in Defense Systems"*

DARCOM-R-70-16, "Management of Computer Resources in Battlefield Automated
Systems" 25 May 1982

SECNAVINST 5200.32, "Management of Computer Resources in the Department
Navy Systems," 1 March 1979

NAVAIRINST 5230.9, "Policy and Procedures for the Establishment and Operation
of Naval Air Systems Command Software Support Activities," 14 June 1983

Manuals

DoD5220.22M, "Industrial Security Manual"

Studies/Reports/Papers

Hdqtrs. U.S. Army, "Post-Deployment Software Support (PDSS) Concept Plan for
Battlefield Automated Systems," May 1980

TRW, "Air Force Embedded Computer System Support Improvement Program," October
1981

Naval Material Command, "A Software Engineering Environment for the Navy," 31
March 1983

Naval Ocean Systems Center, "SEATECS - Software Engineering Automation for

Tactical Embedded Computer Systems - Top Level Requirements," 31 August 1982

* Revision in progress

4-4-B-I

APPENDIX B
PAGE 2

DoD, "Software Technology for Adaptable, Reliable Systems (STARS) - Support
Systems" 30 March 1983

AFLC, "Air Force Integration Support Facilities; Their Total Utility," Paper

by Alton E. Patterson, Sacremento Air Logistics Center (NAECON 80)

Military Standards

MIL-STD-SDS (Draft), "Defense Systems Software Development Standard"

August 1983

DoD-STD-1679A (Navy), "Software Development"

22 October 1983

ANSI/MIL-STD-1815, "Ada Programming Language"

February 1983

Miscellaneous

NOSC Technical Note 932, The Project Development Data Base: The Core of 82

Automated Sofware Engineering Environment, Patricia A. Santoni, Code 8324.
dated October 1980

NADC, Facility for Automated Software Production Methodology Handbook

APPENDIX C

PANEL PRESENTATION SUMMARIES

This appendix provides a brief summary of the briefings which were made to the

Panel on Tuesday, November 1, 1983.

o "A Builder's Guide to Software Engineering Environments"

Mr. William E. Riddle, Software Design and Analysis, Inc.

Mr Riddle discussed:

o What is a software engineering environment?
o What tools could be provided by a software engineering environment?

o Why bother getting and using a software engineering environment?

o How can a software engineering environment be obtained cost effec-

tively?

The briefing served to provide:

o An overview of environments and appropriate environment terminology.
o An understanding of the various environments that currently exist.
o A more detailed description of several existing environments.
o Arguments on the value of environments.

o A discussion of how to plan for constructing an environment froin

purchased and self-developed parts.

o "A Modern Facility for Software Production and Maintenance"
Mr. H.G. "Hank" Stuebing, Naval Air Development Center, Warminster, PA

Mr. Stuebing described the Facility for Automated Software Productir.

(FASP) which has been designed, developed, and is in use for life-cycle
support of weapon system software. This facility consists of a software
system which runs on a commercial multicomputer configuration at NADC. For
additional detail on FASP, see Appendix D of this report.

o "Electronic Warfare Avionics Integration Support Facility (EWAISF)"

J. J. (John) La Vecchia, AFLC EW Management Division, Robins AFB, GA

Mr. La Vecchia provided an overview of the EWAISF in terms of its:

o Purpose

o Scope of Responsibility
o Physical Facilities
o Hardware Structure/Processor Network

o Languages and Computer Architectures Supported

o Basic Change Process.

The EWAISF supports all USAF airborne electronic warfare equipment including

radar receivers, jammers, and tactical reconnaissance systems.

4-4-C-1

APPENDIX C
PAGE 2

o "United States Army Post Deployment Software Support (PDSS) Study"
J. "Jim" Hess, DARCOM, Alexandria, VA

Mr. Hess discussed the results of a recent U.S. Army study on PDSS. The
report developed a plan for Army PDSS for battlefield systems. The plan
identified eleven (11) PDSS centers and recommended policy to improve the
PDSS environment both before and after deployment.

The briefing discussed the purpose of the PDSS centers, background of Army
battlefield system support, alternative approaches investigated by the
Army, and the status of the current Army PDSS approach.

o "A Software Engineering Environment (SEE) for Weapons System Support"
H.G. "Hank" Stuebing, Naval Air Development Center, Warminster, PA

Mr. Stuebing discussed the current Software Technology for Reliable Adapt-
able Systems (STARS) task entitled, "Definition/Preliminary Design of
Software Engineering Environment." This task, begun in June of 1983, has
the objective of developing a Joint Service definition of a SEE. A SEE is
an integrated system that supports embedded computer software over the
entire life cycle. The common definition will assure the interoperabilitk
of tools while offering the advangages of an integrated environment.

C-2

APPENDIX D

A SOFTWARE ENGINEERING ENVIRONMENT (SEE)

FOR WEAPON SYSTEM SOFTWARE

H.G. Stuebing

Naval Air Development Center

Warminster, PA

4-4-D- 1

A SCFTWARE ENGINEERING ENVIRONMENT (SEE) FOR
WEAPON SYSTEM SOFTWARE

H.G. Stuebing
Staff Consultant

Software and Computer Directorate
U.S. Naval Air Development Center
Warminster, Pennsylvania 18974

United States of America

SUMMARY

A Software Engineering Environment (SEE) has been designed. developed, and used for the life-cycle support of weapon
aystem software. This SEE consists of two types of facilities; software production and integration. The soitware pro-
duction facility consists ot a software system that runs on a commercial multicomputer confi juration. The approach
features increased management visibility of the software development process, increased programmer productivity
through automation, reducing the cost-of-change during maintenance, and the use of automated regression testing
to improve software quality.

These facilities have been used for seven years to develop and maintain weapon ystem software for several pro-
jects. This paper describes accomplishments, refinements to the code and test functions, and a general approach
to extend the capabilities into the requirements and design phases. Techniques are described that simultaneously
allow different methodologies, programming languages, and target computers to be implemented on the same host
computer. Also discussed is the implementation of a SEE in a distributed computer network.

1. INTRODUCTION

"'Software engineering" is concerned with developing software systems that satisfy the requirements of the user ov r
the life of the system; a SEE assists the accomplishment of software engineering thiough sets of computer facilities,
integrated software tools, and uniform engineering procedures. The term "weapon system software" inherently i-
plies a concern with software for embedded computer systems and support over the entire life-cycle.

A generic view of the weapon system software life-cycle phases is shown in figure 1. This fiqure emphasizes the view
that weapon system software is redeveloped several times during maintenance, the time after the initial version i
delivered. The development process has overlapping phases, each with a measurable input and output. The phases
overlap to show that there is an interaction between them. Within esci phase, a set of activities is defined to systematical-
ly achieve the goals; the functions of management, quality assurance, and configuration management are included
as activities in each phase. There are iterations horizontally, between activities of a particular phase, and vertically,
between phases. During initial system development the work progresses through all phases. During maintenance the
point of re-entry is determined by the scope of the intended change.

At the U.S. Naval Air Development Center (NADC), Warminster, Pennsylvania, facilities have been constructed to assist
software engineering for weapon system software. Two types of facilities were built: software production and integra-
.ion. The Integration Facilities were built for each project and consist of laboratory hot-mockups of the embedded com-
puters with realistic simulation of external inputs. The software production facility is an integrated software environ-
ment hosted on a large-scale commercial muitlcomputer configuration. The host .onfiguratlon consists of five Control
Oata Corporation (CDC) mainframes, a CYtER 175, CYBER 720, CYBER 780, and two CDC 6600's. This software pro-
duction facility is called the Facility for Automated Software Production (FASP) and it is described in (STUEBING, H.G.,
1980) and (FASP. 1979). The conceptual and architectural ideas of the FASP were strongly influenced by (BAUER, F.L.,
1971) and (SOFTECH, !NC., 1974). The FASP became operational in July 1975 and was the first integrated environment
to be used for weapon system software and among the first integrated environments. The FASP supports the activities
shown in figure 1 from Mission Requirements to Code and Test; however, only the Code and Test phase is supported
by an integrated environment. In the earlier life-cycle activities the support is provided by loosely-coupled sets of tools,
an important distinction discussed later.

2. ACCOMPLISHMENTS

In this section the accomplishments of the FASP are discussed; the reported period of operation is July 1975 through
March 1982, nearly seven years. These accomplishments are given to set the context for the discussion that follows
and to give encouragement to those who are contemplating establishing such facilities regardless of scale. In judging
these accomplishments one must consider the methods that were used before the introduction of the FASP. General-
ly, before July 1975 the software development was done on the target computer itself. Sometimes the same target
computer was used for development and integration. The state of support software and peripheral devices for these

D-2

target computers was primitive compared to the state of ccnmercial computers. Nevertheless, a large industrial-based
work force had established a way of "doing business" with these facilities and produced large amounts of weapon
system software. The software problems of those days are well documented.

2.1. Integrated Environment Hosted On Commercial Computers

The FASP experience has shown that the concept of an integrated environment hosted on iarge-scale commercial com-
puters can be used as a true production facility. True production means that the availability and performance are ade-
quate to produce weapon system software. The FASP was contractually specified as government-furnished equipment
with guaranteed performance; the usage was almost entirely contractor personnel located at remote sites. A table
of data is shown in figure 2. The data shows in summary form some of the key parameters measured with the FASP. The
amounts of software shown are larger than the software delivered to the flet since some projects keep several ver-
sions active at any given time. Also, the data refers to on-line software and does not include the amount of archived
software.

This approach used a one-time development of support software that not only eliminated such tasks from the contrac ,

but also used less in-house personnel than supporting separate facilities for eacn project.

2.2. Management Visibility And Control

The FASP provided the dual functions of an advanced programming system and a management information system;
this allowed management visibility into the software development process at a detailed level. Data base controls allow-
ed configuration management to be enforced from the beginning of projects, a welcome benefit. Also, the FASP was
a natural way to have work standards uniformly enforced over a group of projects. The NADC was able to serve in
various roles with regard to weapon system projects; these roles included System Prime, Validation and Verification,
and Life-Cycle Support Activity. The FASP, with its remote terminals, could be used by contractors or other govern-
ment laboratories regardless of geographical location.

An advantage of having software developed in the FASP is that there was no transition required when the project was
transferred to the maintenance phase. Further, since the software was in a government operated facility with all manage
ment information, test data, and oocumentation in hand, the maintenance of the software could be competitively pro-
cured in a realistic way, a major change from the times of being captured to one vendor for the life-cycle.

When software was not developed in an integrated environment it was found to be poorly organized and impossib'
to recreate without the original developers. The development of interface control documents proved invaluable whei
such software had to be transferred to the FASP from another development facility. When the deveiooed software dic.
not follow the interface control documents, the effort to transfer the software was sometimes large. Transition efforts
took a few clays when the interface standards were followed and varied from a one-half of a man-year to seven man-
I/ears when they were not.

2.3. Productivity

In (STUEBING, H.G., 1980) the productivity, measured in delivered source lines per man-month, was well over 400. This
data was measured before significant interactive features were added to the FASP. The data was a two-fold increase
over published industry data for real-time embedded computer software; the productivity data is believed to be greater
with interactive features. The data before the FASP was sparse and was not consistently measured. There are local
examples of turnaround time varying from one to several days with target computers being used for the development
facilities. These times also do not include the courier travel time to and from the facility. With the FASP the turnaround
time is measured as viewed from the remote terminal. The FASP speed improvement and the complete eliminatinn
of courier travel time reduced turnaround time by a factor of twenty.

With the FASP we have had examples of sharing large amounts of software between projects. The sharing is made
easier because both projects are in the same facility and it is simply a matter of copying a data base. Further, the
usa ot a common facility by a large group of people tends to result in bette communication among the group as a
natural byproduct.

2.4 Quality

The quality of the software produced by the FASP is significantly better than previously. Some of the reasons are: com-
prehensive unit testing with software emulators; enforcement of standards; better tools; and improved management
visibility into the software development process.

Consider the following example. The FASP was being used to support a Verification and Validation effort on weapon
system software that was developed by a contractor in a separate facility. An interface control document was in effect
and the software was scheduled to be delivered as functional increments each delivery adding t?) the previously delivered
software abd giving additional functional features. Figure 3 shows a plot of the delivered source lines (not counting

D-3

comments). This software was quickly installed in the FASP and subjected to many unit tests, using the FASP in the
regression testing mode with path coverage analysis. As new deliveries were received, additional tests were addea
and run with all the previous tests. Figure 4 shows the number of software errors that were recorded after each delivery;
at the end of the effort 89% of all paths were tested. Figure 4 is significant for several reasons.

First, before the delivery to the FASP the contractor believed the software to be suitble for fleet use; however, the con.
tractor had not used an integrated facility with regression testing or path coverage analysis to test the software.

Second, the errors were reported to the contractor while the development team was still in place and the resultant
error data was a factor in the computation of the contract award fee. This resulted in the correction of many of the errors.

Third, all the error corrections were done before fleet delivery. Clearly, this was more cost effective than waiting until

the errors were reported from the fleet.

2.5. Technology Transfer

The FASP has been used to support projects in several of the Naval System Commands for airbornie, surface, and sub-
surface applications, a much broader scope of use than originally expected. This usage has all been on the central
computer facilities at the NADC.

The entire FASP software system was successfully transferred to a major aerospace corporation. They plan to use
it for all Navy software that they develop. Today, the full FASP system is only portable to other CDC CYBER computers.

A version of the FASP was rewritten using the UNIX operating system on the Digital Equipment Corporation VAX 111780
computer system (UNIX is a trademark of Bell Laboratories). This version of the FASP supports several popular
microprocessors; comporwnts that are appearing rapidly in weapon systems. It is planned to bring the UNIX version
to the same level as the CYBER version, forming a product that will be easily portable to many other users.

3. "TO THE SEE"

3.1. The Software Problem

The hardware (the physical embedded computer resources of the weapon system) is generally considered less 0; 3
problem than weapon system software. The "software problem" has been covered extensively in the literature; howevr-,
different aspects of the problem have been emphasized over time.

In the early 1970's there was great concern over the quality of weapon system software. The performance, reliabilily,
and user-friendliness were poor, most errors occurred during coding and remained undetected after testing and in-
tegration. This condition has significantly improved through better design methods and comprehensive testing; most
errors are now traceable to erroneous requirements, not coding.

Today's paramount issue about software is productivity; that is, the achievement of a true economic increase in pro-
ductivity over the life-cycle, (MORRISSEY, J.H., 1980) and (MUNSON, J.B., 1981). It is well known that software is a
labor-intensive field and that the life-cycle costs are both high and rapidly increasing. For a given weapon system
about 25% of the software life-cycle costs are for development and 75% for maintenance. Software productivity, in
an economic sense, has only increased modestly when measured over the life-cycle. Most of the available labor is
devoted to maintenance and the amount is rapidly rising because more and more systems are being deployed. The
demand for labor with software skills has exceeded the supply, a trend expected to continue through the 1980's. As
the balance of labor continues to shift to maintenance, less and less labor is available for development. Therefore.
to reverse this trend in the future, it must be cheaper and faster not only to develop software but also to change it
during maintenance.

A SEE consists of sets of computer facilities, integrated software tools, and procedures that support a weapon system
over the life-cycle. A SEE serves as a unifying element to assist software engineering and forms a basis for attacking
the software problems of quality and productivity. Testing remains the primary method for assuring software quality;
a SEE can provide many automated aids to minimize the labor required for testing. Productivity is improved with a
SEE not only by automating the testing of software but also by aiding all steps in the development process, including
making it easier to reuse large amounts of software.

Each phase of the life-cycle employs different engineering methods. Within each phase there is usually a choice of
several methods for each activity. The term "methodology" refers collectively to a selected set of engineering
methods. Ideally, one methodology consisting of uniform methods would exist to cover the life-cycle. The transitions
between phases would be smooth as well as the transitions between activities of a particular phase. An ideal SEE
would be highly integrated, both horizontally and vertically. However, such an ideal state is some time in the
future. Therefore, the issue of today is choosing a way to evolve toward the ideal SEE; it is a matter of implementing
what is practical while continuing research into improved methods.

D-4

A key to success is to create a framework where new tools and techniques can be continually superimposed on ex-
isting work activities in a nondisruptive manner. Further, it is better to allow multimethodoiogies, to the extent possi-
ble, than to attempt to select the one "true" methodology. For example, in the Code and Test phase instead of building
facilities that implemented only the Chief Programmer Team approach, it would be better to chose a way that allowed
several methods, one being the Chief Programmer Team. The activities concerned with Code, Test, and Integration
are better understood than the remaining phases; therefore, they offer a natural starting point. There is considerably
more variability to the methods and techniques currently available in the requirements and design areas; thus, a loose-
ly coupled collection of tools is more appropriate for those phases.

3.2. SEE Versus Programming Support Environment (PSE)

Several terms have appeared in the literature that are similar to "SEE." They are: programming environment, pro-
gramming support environment, and software environment. These terms have been generally used to describe the
Code and Test activities, although frequently mention is made to the requirements and design phases. Further, these
terms have usually been restricted to the software concerns of a system and not the system as a whole. Therefore,
the distinction is that the term "SEE" is more general and incluces the above terms. A SEE refers to the support
over the life-cycle including aspects other than purely software.

Of course, the term "environment" itself can be somewhat confusing in this context. This term is so general it is
difficult to determine its limits in some texts. In this paper the term refers to the '"-ork environment" for the phases
of the weapon system life-cycle. The emphasis is on the facilities that support the work of each phase and the inter-
face between the engineer and the computer. It is recognized that organizational and social factors are an important
part of the work environment. These factors must be considered in the design of any computer-based support system
but they are not the main points discussed in this paper. An important point is to recognize that the engineer's detail-
ed view and use of the support facilities is different depending on the phase of the life-cycle. The needs are different
between coding, unit testing, and integrating the weapon system software with the embedded computer. Likewise,
the detailed view of the software is different between "development" and maintenance. The term "meta-environment'"
has been-used to describe the aspects of environments that depend on the user's view of the system and the organiza-
tionai and social setting (ELZER, P.F., 1979).

In industrial engineering there has been considerable work on facilities, both in concept and implementation. There
are many valuable observations in this field that caai be applied in part to a SEE. However, there are also some impor-
tant limitations. For example, in industrial engineering the production facilities are oriented to rapid and automated
replication of physical devices, devices that have been previously designed. Thus, there is an area called Computer-
Aided Manufacturing (CAM) where the computer has been applied to the task of automating the production of physical
devices. Separately, there is an area called Computer-Aided Design (CAD) where the computer has been applied to
assisting the designer, making, for example, integrated circuit layouts. In the software field the work of coding and
testing bears a similarity to production in the industrial engineering sense. This was the main theme in the develop-
ment of the FASP. Now as we attempt to extend these facilities into the requirements and design phases it is impcr-
tant to note that the analogy must be to "CAD" and not to "CAM." In these phases the facilities must support botth
the cognitive processes of the designer and the more clerical aspects of recording the results of the pro-
cesses. Therefore, the theme of the SEE in the early phases is to assist the engineer during the cognitive processes
and to automate the clerical aspects of recording information and generating documentation.

3.3. An Integrated System

The term "Integrated system" is also frequently used in the literature. Now, the dictionary definition of "Integrate"
is clear. "to make whole or complete by adding or bringing together parts, to put or bring parts together into a whole;
unify." Thus in creating an integrated system, the designer would do tradeoffs between the parts to achieve a unified
whole. A SEE is referred to as an integrated system; it appears to the user as a unified whole that assists the accomplish-
ment of software engineering. The users include both engineers and managers; the work activities vary over the life-
cycle and the user interface and capabilities vary accordingly. Conceptually, the SEE may be considered as a single
entity that presents to the user different views and capabilities according to the phase of the life-cycle. The implemen-
tation is most likely to be several computer-based facilities that have similar user interfaces but different specific
capabilities depending on the phase of the life-cycle.

The two types of users, engineers, and managers, means that their individual needs must be tradedoff such that the
final system represents a unified whole. The software engineers need advanced programming capabilities for the Code
and Test phase and the managers need relevant, consistent Information, and a means to control the cost and schedule
of the effort. The software engineers need compilers, linkers, system generators, and simulators to accomplish their
work; these components are called "tools." The managers need a means of identifying the end-items that are to be
built, a way of monitoring progress, and a way of insuring that the agreed-on procedures are being followed. The data
base concept is a natural way of collecting such management information; it also provides a way of meeting many
functions of the engineer.

Clearly, if an engineer were given just a tool set, the work could be completed. If the tools were compatible with one
another, forming an integrated set, the work would be easier to accomplish. However. such a tool set usually relies
on the host operating system and the engineer is thus free to create any set of files that is felt to he appropriate. If

D-5

msany englneecs are working on the same project, the chances of them all retaining the same type of information in
lhoir tiles is small. In such a case the manager has no easy way to determine what end-items are being produced
or what progress has been made. Of course, this hypothetical team could agree to follow a set of standards; but changes
in personnel, deadlines, design changes, etc., would quickly destroy the good intentions. Also, the end-item produc-
tivity of this team Is lower because .xperience has shown that a large part of their energy is diverted to handling the
file system and writing support programs.

The c,.mputor is the natural and convenient place to integrate the needs of the engineer and manager and provide
an ini gratod system to accomplish the work. A SEE is an integrated system in the above sense; it is much more than
a tool set, it is a unified system thit meets the nieeds of both engineers and managers.

4. CODE AND TEST

In this section the characteristics of an integrated system to support the Code and Test phase are briefly described
((STEUBING, H.G., 1982) contains a more detailed description). The system that is described is not specifically the
FASP, but one that has been generalized and refined based on seven years of operational experience with the FASP. Dur-
Ing the seven-year period, three major evolitions took place along with extensive feedback from the users.

4.'. A Dual System

The s-,,stem should provide the dual functions of an advanced programming system and a management information
syston. The needs of the manager must set the top-level framework of the system. This requires a selection of the
eng hioering methods and procedures and deciding what information should be saved; it implies choosing a method
or alloing only certain methods to be supported by the system. The methods must have a sound engineering basis
and fit the organization's business methods. With the FASP it was a conscious decision to support severrf methods
with the same system. The FASP facility is owned and operated as a government facility and used by weapon system
contr ztors to develop and maintain software. Each contractor had different methods and procedures for doing business.
yet aach was able to effectively use the FASP. Some contractors have used the Chief Programmer Team approach.
others a different team approach. All use some form of structured programming, although the details are different. Thus
as a government facility, it was important to impose only reasonable constraints on the contractor and allow for the
different ways of doing business

An Important concept In software engineering is incremental development. The Idea is to first complete the software
design and then to build the software in stages, or increments, such that each successive increment adds a new func-
tional feature. This appro.ach breaks the work into smaller pieces that are easier to manage. Thus, it is easier to judge
progress on the total project and it has the additional benefit of allowing users to gain some early experience with
the software system. Incremental development has proven to be valuable on large-scale software projects and should
be supported by the SEE.

An important management need is the enforcement of configuration management principles. Configuration manage-
ment principles consist of identification, control, status accounting, and the establishment of baselines. Decisions
must be made regarding what software elements will be subject to configuration management. This involves deciding
what is the smallest unit of software that will be configuration managed. Is it a "line" of code? Is it a -module?" Is
It the basic compilation unit of the compiler? Is there more than one language to be supported and is the definition
of a compilation unit the same for both? These decisions have a significant impact on the final system and must be
made at the outset.

Along with structured programming came the Idea of include segments. Include segments are fragments of code that
are used in many modules without change. The programmer identifies these segments by name and places them
in the data base; In the source code of a module the segment Is referenced by name. The system automatically locates
the segment and "Includes" It Into the source stream before compilation. Since these segments are fragments of
code, they cannot be separately compiled without errors; however, they are useful to the programmers. In the FASPduring a typical month the data bases contained 48,000 modules and 28,030 Include segments, showing the wide ac-
ceptance and use of include segments. Therefore, although Include segments add to the configuration managem.snt
burden, they are recommended for a SEE. Another related area is access control. Management level decisions are
needed regarding what aspects of the system are subject to access control. In the FASP there are three dimensions
of control; control over access to the software end products, control over software tools, and control over access to
the computer system Itself. In the latter case this implies cost control over the use of the computer system.

4.2 The Data Base

The data base Is the most critical component of the SEE since It serves as the unifying element for all other com-ponents. The data base contains not only the weapon system software but also related technical and management
Informatlon that contains the genesis and status of the total effort. Furthermore, the data base has a significant in-
fiuence on the performance of the SEE, an Important consideration in obtaining a true production environment.

D-6

Here the term data base refers to a fixed number of libraries that are encapsulated and managed as a whole rather
than distinct parts. The software for a particular weapon system is contained in several "data bases." E3ch data base
contains the following libraries:

* The source library, containing either the source code for modules or the source code for include segments. or both;

The object library, containing the object code corresponding to the source library;

The test library, containing test input dat, previous test results, test directives, and system generation directives;

The interface data library, containing information such as linkages to external object programs or to shared source
code;

The production data library, containing modification histories, and a variety of management information; and

* The documentation library, containing all documentatiofn about the weapon system software.

The encapsulated data base is the basic unit that the SEE deals with. Several libraries are included because the rela-
tionship between those libraries must be strictly enforced. Thus, source and object code must have a one-to-one cor-
respondence with no exceptions. A consequence of this relationship is that if compilation errors occur the data base
(source and object libraries) will not be updated! Likewise, test data and test results are synchronized. Most impor-
tant, at any time in the development schedule the management data is consistent with the rest of the data base; thus,
managers always have access to accurate information.

An important feature of the SEE for large-scale projects is the automatic recompilaton of dependent modules when
certain software is modified; for example, if an Include segment is modified then all modules that use that segment
will be automatically recompiled.

Commands are available that allow software to be shared between the data bases, allowing the total effort to be divided
among several data bases and teams. Similarly, commands allow data bases to be divided into smaller ones or cor-
bined into larger ones. Other commands allow the data bases to be copied.

The integrity of the data base. must be assured. therefore, during interaction with the SEE the system automatcifly
creates a backup copy of the data base permitting instantaneous fall-back to the previous version. Additionally, ¢ -
mands allow archive copies to be made on magnetic tape for off-line storage. This level of protection is over and above
that offered by the host operating system.

4.3 Procedures, Tools, Commands, And Processing

The use of the SEE involves sequences of tool and data base interactions. To simplify the use of the system a set
of procedures is defined that are invoked by user commands. A procedure is a set of computer directives that automates
a par icular work task, invokes the proper tools in the proper sequence, provides all data base manipulations and cor-
respondences, and automatically records statistics of all activities.

The software tools are programs that do certain functions for the software engineer. Examples are: editors, translators
(compilers and assemblers), system generators, test analyzers, software emulators (target computer instruction level
simulators), data extractors, report generators, and documentation aids. A tool or set of tools are automatically invok-
ed as part of the execution of a procedure. Some tools are visible to the user, such as the editor, and require com-
munication in a language unique to the tool. Other tools are invisible to the user. such as the librarian, and are
automatically invoked when certain actions take place with the data base. In the latter case input and output data
may be processed by other programs but all such actions are hidden from the user.

User commands cause procedures to be invoked. A command is a procedure tame followed by parameter values. These
values give the user flexibility in directing the procedure to accomplish the specific desired function. All commands
are validated before being executed. The commands can be grouped into two categories, Immediate and Queued,
depending on whether the data base is modified or not. In batch mode, there is no distinction and all validated com-
mands are executed in the order received. In interactive mode an "Immediate" command is executed at once; all
others are placed on a command queue. Once activated, the system executes the queued commands.

As an example of the power of commands, consider the FASP command Modify Software (MODSW). This command
is used to create or modify software in data base. In thee FASP on the CDC CYBER computers, MODSW causes
315 job-control-language commands to be executed; in the FASP on the VAX computer it causes 262 UNIX shell-scriot
commands to be executed. These operating system level commands are all hidden for 'he user.

A general set of procedures has been developed and is described in (STEUBING, H.G., 1982). Figure 5 shows a list

D -7

of these general proc3dures. The procedures are divided into functional groups and are described by process flow
diagrams. These diagrams use a structured Englisn description of the control flow for a procedure and a data flow
diagram showing the process performed, the tools used, the data base contents used and produced. and other infor-
mation required by the procedure. When a procedure is performed a certain amount of standard processing is done
before and after the main processing for that procedure. The standard processing for each procedure is shown in
figure 6 using sructured Engiisn. Two process flow diagrams are shown in figures 7 and 8.

4.4 Testing

Testing remains the primary method for determining the quality of software. The SEE should support four distinct
types of testing during the code and test phase. They are:

* Progression testing that evaluates new or modified software operation;

* Regression testing 'hat identifies changes to previously attained software operation;

* Automated test analysis that measures the effectiveness of a test by identifying the software source code paths
exercised; and

* Trial testing that provides for testing proposed software changes without modifying the data base.

Progression testing is used during the development of new software or modifications to existing software. This form
of debugging is frequently an intense creative process best performed interactively. It usually will involve interactive
use of the software emulator to make experimental changes to initial conditions, data or instructions, and immediate
rerunning of the test.

Regression testing is used once proper operation is achieved. It insures that the software does not deteriorate (regress)
due to subsequent progression changes. Two forms of regression testing are used, explicit and automatic. In the ex-
plicit form the user specifies the tests that are to be performed. In the automatic form tests are automatically run
whenever certain modules are modified. Test data, test results, and test directives are accumulated in the data be se
during the life of a module; also, an index is kept that relates tests to modules. A change to the module triggers 1-ie
automatic running of all associated tests and a comparison of all results. The user is able to identify those portions
of the test results that are important.

Automated test analysis is provided to check the quality of the tests themselves. In this form of testing a tool called
Automated Test Analysis (ATA) scans the source code and inserts software probes at program decision points. This
allows the decision-to-decision paths to be identified. When the instrumented code is run on the software emulator
with the test input data, the system reports how many times each path was executed, flagging those not executed. Thus,
the percar.L;g. oi total paths tested is available along with indications of "dead code" and code paths most frequently
executed. This data allows the user to devise changes to existing tests or to develop more effective tests. The data
on tle most frequently executed paths is valuable when optimizing the speed of the program.

Trial testing consists of syntactic and semantic checks before the software is entered into the data base. This type
of testing is used when changes are made to large existing bodies of software. In such cases there may arise uncer-
tainty about the interactions between changes to the software and to tests. Also, uncertainties about the optimum
changes that could be made may require that several different changes be tried before deciding on the best.

4.5. InteractivelBatch

In many ways the differences between interactive computer jobs and batch have disappeared; however, there are some
fundamental differences that are important to the operation of a SEE. A batch job consists of a stream of user com-
mands with all parameters and input data previously determined; an interactive job must have these items supplied
on-line. Since the system is to be user-friendly, the interactive job must prompt the user for such items and provide
some helpful information when incorrect data has been input Thus the SEE must distinguish between the two types
of operation and provide some extra software for interactive usage.

In a SEE for weapon system software it is unlikely that all the tools will be interactive, especially the compilers. Therefore.
it is a matter of judgement to determine what functions are best performed interactively; all functions should operate
in the batch mode. There are three areas that should allow both interactive and batch operation: they are editing, debug-
ging with the software emulator, and generating management reports.

With the editor there is a clear benefit to the user to be able to quickly inspect and change the software. Full screen
editors appear to offer the best advantages. When debugging, particularly during progression testing, there is also
a benefit to the user. Here errors tend to be discovered more frequently and once observed the remaining parts of
the tests can be terminated, saving computer time. Management reports, especially the smaller ones, tend to be the
most useful when they can be quickly and easily obtained by the manager whenever desired.

b - -

Just as interactive mode is best for progressive tasting, batch mode is best for regression testing. Here the total run-
ning time increases as the project software grows, a case best left for overnight turnaround when computers are liigntly
loaded and costs are frequently reduced. For example, when the FASP has been used for maintenance of large bodies
of software the ratio of interactlve-to-batch commands is about 3 to I on the average; however, in times of intense
regression testing the ratio becomes 1 to 2. If one considers tool invocation during the same period then the ratio
of interactive-to-batch is about 1 to 3 on the average; during intense regression testing the ratio becomes 1 to 12.

4.6 Multilanguages and Multitarget Computers

The design of a SEE is greatly simplified if there is only one programming language to be supported for a single target
computer. For weapon systems this is rarely the case. Figure 9 shows the matrix of languages and target computers
in the FASP. The difficulties begin with the languages themselves. A SEE is dependent on the programming language,
a point not generally understood. One problem is the defir.:t!on of a module is different in all the languages. Also,
there are different dependencies on the data base between the languages. For example, if one language nas struc-
tured programming constructs with an include segment feature built into the compiler, and another language does
not, then clearly there is a significant difference in the way that a SEE woula support each language. In the latter
case it may be desirable to provide the capabilities by way of preprocessors: however, the way the SEE supported
each language would still be different.

Other problems arise owing to structural differences in the languages. For example, the versions of the CMS-2 language
have an order dependency on the appearance of declarative statements and executable statements. The declarative
statements are dispersed throughout the program in blocks followed by blocks of executable code with an order
dependency on the referencing of data. In this night-marish state any change normally would mean that the eni-e
program would have to be recompiled. However. in the FASP a special modular compilation feature has been added
such that the system keeps track of the dependencies and only the appropriate blocks are recompiled. This example
might appear extreme but It is characteristic of the difficulties that can arise.

With weapon system software there is likely to be several high-order languages and several assembly languages that
must be supported. It is. perhaps, best to present the SEE to the user as an integrated string of tools that appl, to
a language and target computer. This would correspond to the vertical columns of figure 9. During the log-on proce-ss
the user identifies the desired string, actions remain with that string because only those tools have meaning with one
another. Internally, the system may use many common tools such as an editor or librarian; however, to the user '*e
system appears as a unified set of tools.

The consequence of having strings of tools is that there are in effect several different SEE's. In the FASP there re
four such systems concurrently operating in the host computers at any given time. From a maintenance standp- i.
the FASP is maintained in a FORTRAN FASP. About 75% of the code is common across the four, the remaining ur,:.,e
to each language dependent environment. The language unique portions are maintained separately from the common
portion and combined when a new version is desired.

4.7. Management

The success of a SEE depends on the degree that management is satisfied. Although a SEE brings many advanced
tools to the user and makes the job of producing or maintaining software easier, it also constrains the user to work
in a somewhat rigid framework, a point the user is sometimes quick to make. However, the benefits in productivity,
improved quality, and stability over the life-cycle are great compared to any perceived loss of freedom by the user.

The degree to which management is satisfied depends to a great extent on the amount of involvement by management,
the degree to which the system is understood by management. and how smoothly the SEE fits into the current methods
ot doing business. As with any management information system, the SEE requires that management become more
involved with the operation at a deeper level than previously. However, once this commitment is made the gains are great.

The management view of the SEE is through the reports; therefore, it is dousirable to generate clear, concise reports
in terms that managers can understand. Reports that measure work progress and expenditures against planned pro-
files are interesting to management. For example, to report that the effort is on schedule and within funding regarding
the number of modules, lines of code, storage size, and target computer execution time is obviously valuable to managers.

There is no general agreement across the industry on what precise software measures should be made: therefore,
each organization must establish such measures and slowly refine them based on experience. It is important to allow
a high degree of flexibility for SEE management reports.

Software complexity measures have been somewhat disappointing as absolute measures of software quality (PARISEAU.
R.J.. 1979). However, some are useful as relative measures and can be used for management control pur-
poses. Generally, care must be taken in the selection of such complexity measures.

A promising area appears to be "earned values" reports and other related measures. These reports can be easily

D-9

established in a SEE and have the benefit of being based on impersonal data directly from the software development
or maintenance environment. Of course, considerable experience is needed to select the particular "value:' that is
earned; however, there is a reasonable expectation that this can be accomplished.

5. THE EXTENSION TO REQUIREMENTS AND DESIGN PHASES

It has been stated that the SEE should support a weapon system over the entire life-cycle as shown in figure 1. it
is intentional that the term "system life-cycle" has been used rather than "software life-cycle." Today, software is
so important that it must be taken into consideration at tne system level. Here the term "requirements" is used
somewhat loosely to cover the phases in figure 1 from Mission Requirements to Software Requirements; perhaps. the
terms system requirements and system design are more accurate.

The requirements phase begins with high-level statements about the mission of thee weapon system. During a sub-
phase called concept formulation a set of requirements is evolved that begins to express the requirements in technical
terms. The activities at this point are not highly structured. The system designers used high-level tools such as analytic
simulations and the methods of Operations Research to do tradeoff studies and to verity thee conceptual design.

Once the system requirements are expressed in technical terms the system architecture must be determined in
detail. The critical issue is the allocation of the system functions to hardware or software implementation. The system
designers need tools to assist the tradeoff analysis. This activity is probably the most difficult of the entire process
since the final system's cost and performance are largely determined by these allocations. Once the allocations are
made, any changes become not only increasingly difficult but also increasingly expensive as the system moves toward
operational deployment.

When the hardware and software allocations are completed the system development splits into two paths; the resul-
tant hardware and software efforts come together at system integration time. The software requirements should be
expressed in a formal requirements language so automated tools can analyze them for completeness and consistency,
the two major sources of errors. At the end of the phase the requirements should exist in a computer data base so
all formal documentation can be automatically generated.

The software design process begins with the formal software requirements and results in a specific software design. This
design is a specification for the code. During this process the designers synthesize a software system that satisfies
the requirements. This involves considering several different designs and evaluating them according to performarce.
cost, and ease of change. A major output of the design process is information that will guide the unit and systcr,
level testing of the software.

There has been considerable work done in both the requirements and design areas; however, a uniform and consisteint
set of methods has yet to be developed that covers the entire proess. To date, somewhat singular efforts have been
pursued that usually focus on one small step. For example, there are several software design methods that have been
developed. The result is that the individual methods do not fit smoothly together, particularly at the boundaries bet-
ween phases. There are two primary reasons for these problems.

First, the efforts to date have attempted to address the software issues, ignoring the distinction between software re-
quirements and design and system requirements and design. Thus, system design remains a hardware oriented pro-
cess and there is - ::rodr-,ly better interfacr between system design and hardwarp design.

Second, there has been a lack of thorough understanding of the requirements and design process. Recent work
(LEFKOVITZ, 0., 1982) suggests that if one forms a model of the work that identifies the cognitive processes that are
used, then virtually all present methods have serious omissions. Further work utilizing this concept would seem to
have good potential.

From a practical standpoint it is best to view the present state as a time of change. There are certainly tools and methods
that can be profitably applied to the requirements and design phases; however, they do not fit well together and it
is likely that new ideas and refinements will continue to emerge. It would be ideal to have methodological strings of
tools to apply to the requirements and design phases; tools that assisted the engineers with the cognitive processes
and the automated the recording of relevant information and generation of documentation.

A recommended approach to a SEE for requirements and design is to start with a highly integrated environment for
Code and Test as previously described. Next, simplify figure 1 to reflect just the software concerns, as in figure 10. New
weapon system developments would start at the top and progress through all the phases: each phase would have a
support environment as shown in figure 11. It Is understood that in the requirements and design phases that the tools
and methods would be loosely coupled, although relationships between the phases can be determined and recorded
in data bases for tracing purposes. The tools and methods are chosen off the shelf and then force fit together: several
methodological strings should be implemented to gain experience with each. This approach is judged to be the most
practical in the short term. As new, better integrated methods are developed they can be superimposed on this struc-
ture. The same approach can be used to extend the capabilities to the system design phases.

D-10

6. INTEGRATION FACILITIES

Integration facilities consist of a hot mockup of the weapon system computers with realistic simulation of external
inputs. These facilities are used for hardware-software integration at the system level, evaluation of man-machine in
erfaces, and evaluation of hardware engineering change proposals. Typically, they form the hardware configuration
baseline for the computer and associated subsystems. The simulation of realistic inputs allows the total system to
be tested in a laboratory where sophisticated instrumentation can monitor the tests. This minimizes costly flight or
shipboard testing.

Originally the integration facilities used special equipment or groups of minicomputers to simulate the external inputs;
the capabilities of the test engineer were limited. Today, these facilities can take advantage of commercial computers
to create an integrated test environment that both speeds the testing and takes it to greater depth. Modern integration
facilities are full integrated environmets and are electronically linked to the software development and maintenance
computers for rapid loading of the mission software. Interactive capabilities allow symbolic debugging to be done on
the target computer;, extensive capabilities for storing test inputs and saving test outputs are now available.

Experience has shown that it is Uetter to use separate computers to run the integration facilities than to attempt to
use the host computer of the software production facility. This is because the Central Processor Unit (CPU) and In-
putiOutput (110) utilization can be high in the integration facility computer during intense periods of real-time debugg-
ing. Further. the target computer and its subsystems frequently require extensive hardware checkout, particularly when
new hardware is being developed.

7. SEE ARCHITECTURE

The goal of the SEE is to support the weapon system over the entire life-cyc!e. There are. of course, many ways to
implement such facilities. The approach taken at the NADC was to coalesce the functions of figure 11 into two facilities
as shown in figure 12. At the NADC there are large central facilities capable of supporting these activities and several
integration facilities distributed throughout the Center. Therefore, one approach is to form clusters as shown in figure
13 and to interconnect the software production facilities by communications networks. Similarly, the software produc-
tion facility could support just one integration facility with less capaole host computers. It is important that the
production facilities be interconnected regardless of size because this communications capability will ultimately per-
mit software sharing to take place between weapon systems projects.

Alternately, the functions of figure 11 could be allocated to separate host computers that are interconnected. I Ile
choice may be dictated by the scale of the available host computers, a judgement that may vear- depending on t.e
expected workload. However, a word of caution; the software tocls of today do not efficiently use computer resourc; s,
thus, it is easy to underestimate the size of the host computers. Software emulators used to unit testing take a large
amount of computer resources, for example.

An emerging factor in SEE architecture is the availability of microprocessors and the expectation that networking is
close at hand. An excellent example of a workstation for a software engineer is (WIRTH,N., 1981). With this technology
the problem becomes how to distribute the functions to retain the dual aspects of an advanced programming system
and management information system. On the one hand powerful microprocessors appear to have the power for editing,
compilation, document generation, etc., but will they be capable of efficiently executing software emulators of target
computers? Further, how will configuration management be enforced and how will consistent management reports
be generated in such a network? A large-scale computer may still be needed to collect the software for configuration
management and other management reports, as well as for executing unit testing efficiently. These problems appear
to be solvable and the direction toward microprocessors seems the way of the future.

8. REFERENCES

BAUER. F.L, 1971, "Software Engineering," Proceedings of the IFIPS Congress, pp 1-267, 1-274.

ELIZER, P. F., May 1979, "Some Observations Concerning Existing Softwarf, Environments," DORNIER Systems, GmbH,
Postfach 1360, D-7990 Friedrichshafen, Germany, Defense Advanced Research Projects Agency.

"FASP Management Summary," April 1979, U.S. Naval Air Development Center.

"FASP Software Production and Maintenance Methodology," July 1979. U.S. Naval Air Development Center.

"FASP Handbook." December 1979, U.S. Naval Air Development :enter.

LEFKOVITZ' 0., 1982, "The Applicability of Software Development Methodologies to Naval Emoedded Computer
Systems," University of Pennsylvania, Contract N622S9-1-C-0455.

D-11

MORRISSEY, J.H. and WU, L.S. Y.. 1980, "Software Engineering...An Economic Perspective." Proceedings 4th Interna-

tional Conference on Software Engineering, pp 412-422, Munich., Germany.

MUNSON. J.B. and YEH, R.T., March 1981, Report by the IEEE Software Productivity Workshop, San Diego. California.

PARISEAU. R.J., 1979, "A Screening Criterion for Delivered Source in Military Software." Report No. NAOC-79163-iO,
U.S. Naval Air Development Center.

SOFTECH, INC., March 1979, "Support Software Planning Study," Contract N62269-74-C-0289. U.S. Naval Air Develop-
ment Canter.

STUEBING, H.G., "'A Modern Facility for Software Production and Maintenance." AGAROograph No. 258 Guidance and
Control Software, May 1980, pp 3-1, 3-14. Military Electronics Defense Expo 'SO Conference Proceedings, Wiesbaen,
Germany, October 1980, pp 828-845, and Proceedings of the IEEE COMPSAC '80, October 1980. pp 407-418.

STUEBING, H.G., August 1982, "A Software Engineering Environment (SEE) for Weapon System Software - Functional
Zescription for the Code and Test Phase," Report No. NAOC-82183.50. U.S. Naval Air Development Center.

WIRTH, N., March 1981, "Lilith: A Personal Computer for the Software Engineer," Proceedings of the 5th International
Conference on Software Engineering, pp 2-15, San Ciego, California.

5 - 12

45-10

,NITIAh. VERSION VERSION VERSION

SYSTEM 2 N

OEVELOPMENT

MISSION REQUIREMENTS SYSTEM REQUIREMENTS HIARDWARE DEVELOPMENT

SYSTEM REOUIREMENTS

R SOFTWRE REQUIREMENTS

SOFTWARE DESIGN

CODE & TST

I ' LOCAL s Ys T TE s ~

OPERATIONAL SUPPORT

Figure 1. Generic System Develooment Process

FISCAL CPU TAT SOURCE LINES GBJECT CODE
YEAR PROJECTS ACCOUNTS JOBS HOURS) (HOURS) j MILLIONS) MILLIONS)

FY-75. 7T 3 10 57.686 197 0.53 1.6 1.6
(JUL 75 - SEP 76)

FY677 20 104.652 907 2.0 2.0 2.0
(OCT 76 - SEP 77)

FY-78 13 70 110.360 1.035 2.2 2.9 2.9
(OCT 77 - SEP 78)

FY-79 28 236 105.032 1.344 3.65 3.7 3.7
(OCT 70 - SEP 79)

FY-40 35 299 118,960 1449 0.66 72 8.2
(OCT 79 -SEP 80)

FY-1 41 438 135.265 1.055 0.93 12.8 12.9
(OCT 80 - SEP 81)

FY-82 47 492 67.445 1.153 0.88 14.8 16.3
(OCT 81 - MAR 82)

Figure 2. Key Parameters Measured With The FASP

D-13

50 INC 7
AVIONICS OPERATIONAL PROGRAM

INAC
40-

THOUSANDS 30 INC

OF

SOURCE

IJAI41FE131MAFIAPRINIAYIJU14 JULIAUGISEPIOCTINOVIECIJANIYFEBJ MAR APRI MAYJJUNI

1980

Figure 3. Delivered Source Lines

AVIONICS OPERATIONAL PROGRAM

4-

3
NOOF

ERRORSIN
PER 1000

JANIFEBIMARIAPRIMAYI.JUN[JULIAUG SEPt0CTINOV JDECIJAN IFE81 MARIAPRi MAY IJUNI

is"9 ism

Figure 4. Number Of Software Errors Recorded

D-14

45-12

SOFTWARE DEVELOPMENT PROCEDURES

CREAT!)COPYI'SAVEIRESTORE A DATA BASE

DEVELOP SOFTWARE

INSTALL EXTERNAL SOFTWARE

SIEAREICOPY SOFTWARE

CREATE LOAD IMAGESITAPE

PRINT REPORTS

SOFTWARE TESTING PROCEDURES

ANALYZE SOURCE CODE

DEVELOP TESTS

INSTRUMENT CODE

EXECUTE TESTS

DEBUG TESTS

REGRESSION TEST

ANALYZE TEST RESULTS

USER ASSISTANCE PROCEDURES

LIST BULLETIN

LIST NEWS

LIST HELP

LIST USER MANUAL

CONTACT SPF PERSONNEL

SOFTW ARE MAANAGEMENT PROCEDURES

CONFIGURE A PROJECT

CONTROL ACCESS

PRINT PROGRESS REPORTS

IDENTIFY SOFTWARE CONFIGURATION

RELEASE SOFTWARE

TRACK ST~in. SCPs. SEPs

CONFIGURATION STATUS ACCOUNTING

GENERAL PROCEDURES

DOCUMENT PRODUCTION

CONTEXT CONTROL

LOGGING ONIOFF

dLoA. PARAMETER HANYDLJNG

COMMAND QUEUE HANDLING

DATA CREATION

OUTPUT H4ANDLING

Figure S. List Of General Procedures For Code And Test

D- 1 5

4S-13

Verify user access rights for this procedure
IF verification fails
THEN raise abort flag
* Notify user
ELSE

* (unique process flow for procedure)

ENDIF
IF abort flag is not raised
THEN save production data
* Make "saved" files permanent
ENDIF
Save job Statistics
Make job statistics permanent

Figure 6. Standard Processing For Procedures

0OW141LE nio LOGOFF command received
D OWHILE me riadd LOGOIS command received
- Read and identity command P
**IF maot WOGO
-* 114R nify use that LOGON is requited
**ELSE invew LOGON oraessiat

! see proces flow tar -L --G--
p atailraofl .4-1.1

**ENOIF
" E11OOG uwe is now dmntifieel
" Read and identity command
" IF milt identiiabl POCED

THIN uooty, userFIE
" ELSE 1aldate command

**IF errr
T 14EN notify riser

ELSECOMN
0 Affemid default value at unsoiecifted parameters

* IF an immediate commandQUE

0 T 14EN ezeOcute the commandCOMN
. . . ELSE put the command on :t Command queue EEU~

** ENOIF
*EOIF

ENCO

Figure 7. Command Processing Diagram

45-14

w .. q j ruNo~o

m ,

* 'LS ccc. ,011101

4(1 ,cce cra s

*1 cc. ' .w1 -'..-

ehxeA

:.- .. a~l, eicacl e ".,.cN~

S• a ft" Ii€ UI 1 __ - t l a

I ccc . 0-

* .. , Z WC*"*

Figure 8. Process Flow Diagram

COMPUTER ANIUYS-1 ANIAYK-14 ANIUYK-7 CYBER

COMPILER SPLI CMS-2M CMS-2Y FORTRAN

ASSEMBLER SPL MACRO 20114 ULTRA 32 COMPASS

SYSTEM GENERATOR "oo

AUTOMATED TEST ANALYZER - -

SOFTWARE EMULATOR - -

MANAGEMENT REPORTS M- . - I
-PRESENT IN SYSTEM: - NOT PRESENT

Figure 9. Matrx Of Languages And Target Computers Of The FASP

NEW OEVEOPMENTS

REQUItRMENT

CODE F: TESTMAINTEGRATION

Figure 10. Simplified 0evelooment Process

D- 17

L~ MSSION

REOUREM REQIREENT

USERPHSTOL

SYSTESM

cRil DOCUMENTATIONAT1

DATABAS

Fiue1. eaae aliie o ac hs

DESIG DEIG

45.16

PRO7fl.oN
FACILITY -OCLS

-A TA WAES

I'dTECRAPON TOOLS

OPEPATIGNAL

DATA WAE SOFTWARE

Figure 12. The NAOC Two Facilities System

I Occf~ C

- gure Interornecc;cf C

ORLANDO I

FINAL REPORT

PANEL E

THE SOFTWARE CHANGE PROCESS

CO-CHAIRMAN: Mr. J. (Joe) Black

WR-AFLC/MMRR

Robins AFB, GA 31098

(912) 926-5948

A/V 468-5948

CO-CHA11MAN: Mr. J. (Jack) Cooper

CACI Inc., Federal Penthouse

1700 N. Moore St.

Arlington, VA 22209

(703) 276-2826

4-5-i

TABLE OF CONTENTS

Page

4.5 PANEL E The Software Change Process

4.5.1 Scope 4-5-1

4.5.2 References 4-5-2

4.5.3 Definitions 4-5-2

4.5.4 General Policy 4-5-2

4.5.4.1 Management 4-5-6

4.5.4.2 Configuration Management 4-5-6

4.5.4.3 Change Engineering 4-5-6

4.5.4.4 Testing 4-5-6

4.5.4.5 Software Quality Assessment and

Management (SQAM) 4-5-8

4.5.5 Change Requirements 4-5-8

4.5.5.1 Introduction 4-5-8

4.5.5.2 Requirements for Change Definition 4-5-9

4.5.5.3 Management of Change Definition 4-5-10

4.5.5.4 Management During The Change Process 4-5-11

4.5.6 General Management Controls 4-5-12

4.5.6.1 System Manager 4-5-12

4.5.6.2 Software Support Activity 4-5-12

4.5.6.3 Software Manager 4-5-12

4.5.6.4 Use/User Representative 4-5-12

4.5.6.5 Internal Interfaces 4-5-13

4.5.6.6 External Interfaces 4-5-13

4.5.6.7 Task Identification and Control 4-5-13

4.5.6.8 Change Requirements Review 4-5-14

4.5.6.9 Systems Requirements Review 4-5-14

4.5.6.10 Top Level Design Review 4-5-15

4.5.6.11 Test Plan Review 4-5-15

4.5.6.12 Detailed Design Review 4-5-16

4.5.6.13 Test Procedures Review 4-5-16

4.5.6.14 Test Report Reviews 4-5-17

4.5.6.15 Independent Test Readiness Review 4-5-17

4.5.6.16 User Test Readiness Review 4-5-18

4.5.6.17 Acceptance Review 4-5-18

4.5.6.18 Status Review 4-5-18

4.5.6.19 Priority Change Process 4-5-19

4.5.7 Technical Controls 4-5-20

4.5.7.1 Scope 4-5-20

4.5.7.2 Software Engineering Change Process 4-5-20

4.5.7.3 Test Function 4-5-21

4.5.7.4 Software 4-5-25

4.5.7.5 External Interface 4-5-28

4.5.8 Pre-Deployment Responsibilities of the

Software Support Activity (SSA) 4-5-29

4.5.8.1 General 4-5-29

4.5.8.2 Concept Phase 4-5-29

4-5-ii

TABLE OF CONTENTS (Cont)

Page

4.5.8.3 Design and Development Phase 4-5-30
4.5.8.4 Acceptance Phase Activities4-5 4-5-31

Appendix - Panel E Participants A-i

4-5-iii

4.5.1 SCOPE

The purpose of this publication is to provide a uniform policy structure
within which all Department of Defense support agencies can function to provide
efficient and timely software change support for deployed weapon systems. The
guidelines herein are intended to cover all categories of operational equipment and
attendant and/or embedded software that are furnished to using commands and
supported by DOD logistics support agencies. It is understood that any policy
manual providing guidance for equipment as diverse as submarines, tanks, and fighter
aircraft must address the most generic of the required policy areas and allow
reasonable flexibility in the delineation of specific policy statements intended to
cover various DOD organizational structures and diverse equipment requirements.
Though not specifically directed as a part of this policy, it is highly recommended
that every department of defense agency review the entire scope of software support
required with a view toward structuring equipment and weapon systems support
taxonomies which provide reasonable economies of scale, standardization and facility
utilization. Ensuring a chain of command reporting sequence that provides the
software support agency an adequate voice in the control of resources control and
allocation methodologies is mandatory.

This manual has been derived by applying analytical techniques intended to
subdivide the software change process into generic segments without regard to
organizational make-up or functional allocation within any particular service.
Multiple services and agencies have contributed lessons learned and experiences
gained. The techniques utilized in supporting deployed weapon systems where
significant capability is derived from the software embodied therein represent the
experiences gained to date and reflect only a minor subset of those anticipated to
be experienced within the coming decade. As such, it is intended that this manual
be reviewed and updated on an annual basis to keep pace with the shifting support
requirements generated by the increasing knowledge base of the using and supporting
commands and the on-going technological innovations that continue to materialize
from the industrial base which supports Department of Defense activities.

The beginning point for all policy generated herein has been a generic
software change implementation model which subdivides the change process into its
fundamental discipline based requirement areas. These are management controls,
configuration management, software engineering, software quality assessment, and
management and technical controls. In addition, the key interface areas for
requirements derivation as a beginning point and user acceptance as a configuration
stabilization point have been addressed. To apply this manual appropriately, it is
necessary to understand that software maintenance is a term brought about by usage
which distorts the understanding of the software change process itself. From an
overall viewpoint, the software change model appears to be a development cycle with
different acronyms and descriptions of the software development life cycle. In
terms of management controls, facility requirements (including hardware and software
support environments) and the operating environment context, this analogy leads to a
poor understanding of the extensive requirements of an efficient post deployment
support capability. Unlike the well structured requirements process which governs
any major systems acquisition where significant software is involved, the software
support activity is faced with the delayed accumulation of changed requirements
which exceed the resources base available. These facts make necessary a very active
management control process with significant interface to the organizations who
generated the change requirements. In addition, a significant degree of real time
assessment by the management control structure, including the using organization, is

4-5-1

required to exercise decision processes geared to include or exclude specific change

request during the active portion of an: on-going software change cycle.

4.5.2 REFERENCES (to be developed)

4.5.3 DEFINITIONS (to be developed)

4.5.4 GENERAL POLICY

Planning for accomplishing the software change process during the post
deployment phase will commence during the Concept Definition phase of the system
life cycle as defined by DODI 5000.1. This planning will identify all internal and
external interfaces, the responsible software support organization and the estimated
resources (manpower, facilities, support environment and documentation) required to
adequately perform PDSS. To insure that the change process is implemented in a
complete, timely, cost effective, and orderly manner, each service will create a
standard change process following the DOD generic software change model described in
this section. The five major functional areas will be addressed as identified along
with critical external interfaces. The service level implementation of this policy
contained in Appendices A through D shall identify the change policy for each
category of software, e.g., operational, support, trainer, etc., and their
interrelationships.

Figures 4.5-1 through 4.5-4 are constructed as follows: blocks represent
discrete functions/activities of the change process; lines indicate a product which
could be a decision, a document, or a product. Figures are not scaled with respect
to time; however, functions a-e in time sequence. The figures identified herein are
generic in nature and serve as an implementation guide for each element of DOD in
structuring internal policy (see appendices).

Figure 4.5-1 identifies the top level activities required in the generic
software change process. It separates in a simplified manner the chief functional
purpose of each activity to one of five major functional areas. Complex
interrelationships are required hetween the various functional areas as highlighted
indicating the necessity for adequate pre-planning implemented by reasonable and
limited organizational divisions within the overall software change process.

No intent is expressed as to correct or accept organizational methods
since considerable tailoring is necessary to allow optimum processes for the various
DOD components and/or equipment taxonomies.

Although the MIL-STD-SDS was prepared for and organized around original
development activities, the ability to correlate specific activities and the
progressive baseline formulation process is equally valid during the follow-on
support life cycle. Figure 4.5-2 serves to provide corre'ation between the software
process change model activities and the MIL-STD-SDS documentation products and
reviews. The iterative nature of the PDSS activities serves to reinforce the
requirements for usable valid software baseline documentation.

Figure 4.5-3 is the same as Figure 4.5-2 with additional emphasis on the
software change products represented as data deliverables time phased with the
software development process specified in MIL-STD-SDS. Specific products should be
developed and delivered with a continuing software change process envisioned. All
documentation should be delivered in a format and on a media providing maximum

4-5-2

0 I I

I'~ C4 l -4 C - -t0

CC

0~ *~ I I
~-,2 UD

L.]-- E.1 -I

E-4 uI

I _ _ _ _ _ _ _ _ _ _ _ _ _co

I4-5-3

/) 46

) Qj

cz C:

-H~

.1-

> -4 -.

> a H)- tca . ,

~~II

U 4. to) -

o ii

-- a

m~ CCf C

cnUC tn(a

rw 7 N

4-5-4

DCO D
1. 71 r -0 1--D li,

/11 /7-1 FIN

IN

long-term utility to the PDSS activity.

Figure 4.5-4 is a detailed generic flow of the software change process in
the post deployment phase. This detailed flow model is provided to serve as a guide
in developing service specific software change processes. The model in conjunction
with this policy outline is intended to guide those agencies and organizations
initially establishing or assessing the adequacy of its software support
infrastructure.

Figure 4.5-4 is intended as a very detailed identification of functions
and sub-functions. It serves as a guide for each service in their facility planning
and implementation and as a "checklist" in the conduct of the individual change
process. The formal detailed change process functions and controls shall be
commensurate with the complexity of the change.

Implementation of and operational use of the model is dependent upon: (1)
clearly established interfaces with the product user for change request definition,
priority, and urgency, and (2) interface with the acquisition community for Planned
Product Improvements or technology insertion which require support system
modification/upgrade/update.

Implementation of the model interfaces with logistical support in the
acquisition/development of facilities (brick and mortar) and equipment and tools,
and in the acquisition and training of human resources. Other interfaces exist
with: (i) operational field/fleet/flight test ranges or facilities, (2) publication
and distribution of products and associated documentation, and (3) training of
operational support personnel necessary to implement changed products and associated
documentation.

4.5.4.1 MANAGEMENT

A close and continuous interface with the product user shall be
established and maintained. The interface shall be institutionalized in mission
statements of pertinent organizations.

Adequate planning shall be performed and controls emplaced to insure
sufficlent resources are available, program visibility is maintained, schedules and
costs are monitored, and all administrative functions are performed. Specific
tasking shall be levied to all participating organizations.

4.5.4.2 CONFIGURATION MANAGEMENT

Configuration management function shall be performed throughout the change
process to adequately control all the baselines during the change process.

4.5.4.3 CHANGE ENGINEERING

The software development portion of the change engineering process shall
include the techniques and control methods specified in MIL-STD-SDS.

4.5.4.4 TESTING

A test philosophy commensurate with the software type and the criticality,
complexity, and scope of the change forecast shall he developed during initial

4-5-6

facility development. Resources shall be programmed to support the implementation
of the test program during the change process. Requirements for contractor and
organic software test beds must be addressed early to minimize duplication.

Test requirements shall be coordinated with the user community. Test
requirements shall be generated concurrently with change requirements. Need for
IV&V shall be determined during change requirements evaluation.

Test plans and procedures shall be generated as required throughout the
software change cycle for each software change cycle.

4.5.4.5 SOFTWARE QUALITY ASSESSMENT AND MEASUREMENT (SQAM)

A SQAM program shall be planned during the initial change facility

development and implemented throughout the change process.

4.5.5 CHANGE REQUIREMENTS

4.5.5.1 INTRODUCTION

PDSS is the performance of those activities required to keep a software
system or software controlled system operational and responsive after it is accepted
and placed into operation. PDSS, then, refers to the set of activities which result
in changes to the originally accepted (baseline) product set. These changes consist
of modifications created by correcting, inserting, deleting, extending, and
enhancing the baseline system. Generally, these changes are made in order to keep
the system functioning in an evolving, expanding user and operational environment.

4.5.5.1.1 Source of Changes

Changes to existing software can be initiated by the designated user
representative, the software support activity or by external influences. Regardless
of the source, maximum coordination between affected organizations is required in
order to maintain system effectiveness, and to ensure user acceptabililty. The
decision to alter a systems' software shall remain with the organization that
exercises operational control over the system.

4.5.5.1.2 Categories of Change

Software changes can be divided into four categories:

a. Corrective Changes - Corrective changes are those changes made to
correct errors in the current software baseline. These errors may be inherent in
the software design logic or in the actual coding.

b. Enhancements - Enhancements are changes which are made to improve
software performance, maintainability or understandability. Enhancements are
generally made to augment or fine tune the software. Optimization of code to make
it run faster or take less memory is an example.

c. Adaptive Changes - Adaptive changes refer to modifications made to
satisfy or accommodate changes in the environment in which a software system must
operate or to add a capability not originally envisioned or required in the current
baseline. Adaptive changes enhance the useful life of the software and the overall

4-5-8

system. Modifications of the software add interfaces with other systems or add new
logic features to accommodate an operational change.

d. Emergency/Urgent Changes - Emergency and urgent changes will interrupt
any on-going software changes and will be incorporated into the baseline that is
currently being used. The priority of the change will dictate the expediency placed
on all points during the software change process.

4.5.5.2 REQUIREMENTS FOR CHANGE DEFINITION

A system for reporting proposed software changes of any of the three types
discussed in Section 4.5.5.1.2 shall be established and documented in the Computer
Resources Life Cycle Management Plan (CRLCMP). The reporting system shall include
the technical, sc:eduling and management considerations listed below.

4.5.5.2.1 Technical

Requirements must define the required operational capabililties in terms
of inputs, processing, outputs, accuracy and load. A detailed evaluation of the
software requirements can play a major role in ensuring that they possess
characteristics that contribute to a quality product. Requirements validation may
require a wide range of activities, including the conduct of extensive traceability
analysis and the development or use of detailed models and analytical simulation to
evaluate both functional and performance aspects of requirements. Criteria shall be
established to determine emergency requirements.

4.5.5.2.2 Schedule

The responsible organizations involved shall develop a schedule that is
mutually agreed upon which consolidates routine changes, maximizes resource
utilization, meets all organizations' needs, and allows for adequate training.
Emergency changes shall take precedence over routine changes.

The final decision in scheduling requirements implementation must,
however, be that of the activity which exercises operational control over the
system.

Because of the ever increasing complexity of interoperability
requirements, both intra- and inter-service, it is essential that software
modifications be scheduled in such a manner as to preclude disruption of established
capabilities. In this regard, it may be necessary to postpone implementation of a
validated requirement in one system until a compatible requirement(s) can be
inserted into others. Another in.portant criteria to be considered in scheduling
changes is that of training. Except for those changes that are transparent to the
operator, all scheduled releases must coincide with the ability of the responsible
training activities to retrain users, and to provide the necessary modifications to
operator and training manuals.

4.5.5.2.3 Miscellaneous

In some cases failure to implement a software modification can result in a
critical operational deficiency which may adversely affect the effectiveness of the
total system. In these cases, it shall be necessary to document the impact these
situations will have on the affected operations. Specifying and maintaining

4-5-9

established standards shall be a major consideration in requirements generation
activities. Adherence to applicable DOD software standards will significantly
enhance operational and interoperability capabilities.
4.5.5.3 MANAGEMENT OF CHANGE DEFINITION

4.5.5.3.1 General

Each requirements generation activity shall develop and maintain
management procedures which defines the controls, coordination and documentation

necessary for PDSS. This section discusses the policy and procedures for the change

requirements specified in Section 4.5.5.2.

4.5.5.3.1.1 Management Controls

The change requirement management procedures shall specify the controls
needed to effectively evaluate, assign, and prioritize the software change requests.
The procedures shall also define controls necessary for approving/rejecting a
software change. Change requirements shall adhere to established standards and
performance criteria.

4.5.5.3.1.2 Coordination

The procedures shall specify the organi7ational activities and procedures
for coordination of proposed modifications. As a minimum, all activities which

operate or maintain interfacing systems must be included in the plan.

4.5.5.3.1.3 Documentation

The policy shall specify the type and content of the documentation
necessitated by software change, and enforce existing documentation standards and
procedures.

4.5.5.3.2 Organizational Responsibilities

The organization responsible for the management of change requirements has

the responsibility to keep all systems functioning and responsive to user requests.
This includes the establishment of standards, guidelines and procedures which
describe in broad terms the responsibilities, authorities, functions, and operations
of the SSA, USER and any other external organization involved with or affected by i
change to the software.

in order to maintain responsiveness, it is essential that the
establishment of procedures for the submission, review, approval or rejection of
change requests be developed. These procedures shall delineate the specific
authorities of the responsible organizations.

This shall include. but not be limited to procedures for designating the
responsibility for:

- Preparation and submission of formal change requests.
- .imiting changes processed to only those approved.
- Evaluation of type and frequency of change.

Org;anizationa] res ponsihilities shall also in r lade S ifc iicat [o)f

a-- (

procedures by which all of the gtoups involved with or affected by a software change

must coordinate.

4.5.5.3vl Resources

Proper allocation of resources to the activity generation requirements
will significantly enhance the software change process. The organization generating
the requirements shall have identified procedures for requesting the proper
resources, such as tools, personnel and facilities, to accurately define system and
system software requirements. Detailed simulations and computer driven models
should be considered as a necessary expedient in pre- and post-deployment phases and
should be made available to the requirements generation activity as early in the
cycle as possible where justification for their acquisition is adequate.

4.5.5.3.4 Schedule

During the process of defining the change requirements, the anticipated or
required schedule should be developed. This schedule should address significant
milestones in the change process and significant external events such as required
dates for interoperability with other systems. The schedule should also address the
combination of proposed changes in block cycle format to ease the duplicative
management functions, if the priority of the proposed changes permit.

4.5.5.3.5 Acceptance Criteria

After joint agreement regarding the requirements which will be addressed
by the software modification, the organizations shall determine the criteria for
acceptance. At a minimum, the criteria shall include performance criteria and the
methods and agencies responsible for verification that the requirements are
achieved.

4.5.5.3.6 Intertace Procedures

Interface procedures shall be established to ensure that all affected
organizations are included in the change definition review process so that the total
impact of the change is known when the final change determination is made. Affected
organizations shall commence actions necessary to complete required changes on
schedule.

4.5.5.4 MANAGEMENT DURING THE CHANGE PROCESS

4.5.5.4.1 General

This subject is discussed in greater detail in Section 4.5.6 of this
manual. This section addresses the planning required during the requirements change
definition process needed to ensure that management during the actual change process
will progress smoothly.

4.5.5.4.2 Management Controls

'7he organization making the change shall ensure that a system of periodic
reviews and audits is established to manage the change process. An internal
ba'eline management system shall he established to ensure adequate tracking of the
change requirements through the change process.

,- I- i

4.5.5.4.3 Release Acceptance Criteria

Planning for acceptance criteria of the changed software shall begin at
the time the requirement for the change is identified. Specific elements such as
schedule, operational and functional capabilities, required testing, and training
packages shall be included in the acceptance criteria. A mechanism for
certification of the changed software to ensure that the change requirement has been
adequately resolved and procedures for final sign-off acceptance shall be developed.

4.5.6 GENERAL MANAGEMENT CONTROLS

This section focuses on the management controls which, of necessity,
overlay the entire software change process. In order to gain the required focus,
the software change process and the software manager are addressed as distinct and
separable entities.

This is recognized as being a simplifying assumption. Hardware and
software -ire integraited systems and are typically inseparable from a management and
engineering control standpoint. Moreover, in any bureaucratic system there are
multiple levels of management, each retaining some level of authority and control.
Control is, therefore, addressed functionally with overriding emphasis on the system
management function and the software management functions, irrespective of the
number of indentures characterizing any given Service's implementation. Each
service shall insure procedures and controls are adequate to provide administrative
control in the host organizational structure.

4.5.6.1 SYS'TM MANAGER

Withii any generalized support structure there must be a system manager to
serve as focal point for all change activity on the system. As herein used, a
system defined as any major defense system detailed in DODD 5000.1 and 5000.2. All
changes (hardware or software) initiated will be directed to this system manager,
and he shall accomplish appropriate actions to acquire and control necessary
resources to accomplish updates and changes to the system.

4.5.6.2 SOFTWARE SUPPORT ACTIVITY

Based on varying levels of system complexity and integration, there may
exist one or more software support activities which retain subsystem level support
responsibilities for individual weapon systems. Organizationally, these activities
may be placed with a variety of different government service or contractor agencies;
however, to the extent that the software support activity is engaged in a change to
a given weapon system, it is ultimately responsible directly to the system manager.

4.5.6.3 SOFTWARE MANAGER

Within the given software support activity there must exist a software
manager responsible for control of the change process. This individual is delegated
certain responsibilities and authorities by the system manager and within that
framework is ultimately responsible to produce and deliver changes as tasked and
approved by the System Manager.

4.5.6.4 USER/USER REPRESENTATIVE

4-5-12

The user is defined as that individual or organization whose operational
mission establishes the requirements which the software is designed to satisfy. In
this context, the user is a critical element in defining and prioritizing changes to
the requircments baseline. The user, or user representative, must interface closely
with both the system manager and the software manager throughout the system life
cycle to coordinate the software change process.

4.5.6.5 INTERNAL INTERFACES

By its nature, the management function must interface with each of the
o'her major functions involved in the software change process. The majority of the
internal interfaces are accomplished by the software manager as integral parts of
the change management and resource control function.

4.5.6.6 EXTERNAL INTERFACES

To be effective the software change process must blend together the
technical resources controlled by the software manager, with financial resources
controlled by the system manager and operational requirements controlled by the
user.

These represent the two major external interfaces for the software support
activity. These two external activities in turn provide the linkages required by
the software manager to indirectly interface with the operational environment and
the resource allocation and control environment.

Additional external interfaces shall be directed through the system
manager. As a minimum all external interfaces shall receive copies of the proposed
updates to baselines for which there is an interface impact.

4.5.6.7 TASK IDENTIFICATION AND CONTROL

All change requests shall be directed to the system manager. In turn the
system manager passes the formal change request to the software manager of the
software support activity and jointly they assign a control number. The software
manager then distributes copies of the change request to configuration management,
engineering, test and quality control to generate the preliminary change
requirements and estimate resources needed. An assessment of the change priority
shall also be conducted by the system manager, the software manager of the software
support activity and the user of the applicable system.

Inputs from the originator of the change include copies of the change
request which are distributed to the disciplines of th- ooftware support activity
and a ranking assigned based upon other changes. After the accomplishment of task
assignment has passed from the system manager to the software manager, it is passed
to the engineering and test organizations. Normal task controls are then passed to
the next management control point, the Change Requirements Review.

The system manager passes on the change request to the software manager of
the software support authority. They work together to assign a task control number
for tracking purposes and with the user of the applicable system to assess the
priority of the change in relation to other identified system changes. The software
manager then passes the change request and task assignments to the other disciplines
in the software support activity.

4-5-13

As the engineering organization begins processing and clarifying the
change requirements, they complete initial classification of the type of
modification to the system that would be most mission effective. If this evaluation
determines that the most effective modification would be to the hardware, the
initial evaluation is fed back through the software manager to the system manager
for further task assignment.

4.5.6.8 CHANGE REQUIREMENTS REVIEW

Prior to directing a software change, management must insure that the
requirements are baselined and that an adequate estimate of resour:es and schedule
have been accomplished.

After a task is received, it must be analyzed to insure t0at it is
completely stated and understood. An in-depth study is made of all proposed
software changes to determine the system elements affected as well as the different
systems which the change affects. These changes and the resources necessary to
accomplish them are provided to the requirements review.

All requirements are stated in a user friendly language and in enough
detail to insure that the exact same requireiient is understood by both user and
software personnel. All requirements must be stated completely to include any
interoperability impact so that all aspects of change can be prioritized for
assignment of resources. Estimates of man/machine requirements as well as time
constraints need to be expressed. If a limitation of resources prevents all
requirements from being accomplished then it is imperative that a priority list of
changes or other possible options be provided.

It is the responsibility of the software manager to ensure that all
requirements are properly analyzed, reviewed, and prioritized. This is accomplished
by having all concerned agencies review and approve the requirements list prior to
management deciding to commit the necessary software effort.

After the engineering analysis and the requirements review, the estimated
cost and schedule, along with any options are provided to the system manager. The
system manager has to determine if adequate resources may be expended to accomplish
the primary request or other option.

4.5.6.9 SYSTEMS REQUIREMENTS REVIEW

The systems manager will review the degree and manner in which his system
will be altered or affected by the proposed software change. A refined cost and
schedule estimate must be identified for the proposed software change. The software
manager must ensure that sufficient resources will be available, including any
peculiar subsystem components to completely execute the change process.

The system manager will receive a report from the software manager
identifying the proposed software change and the change in functional system

performance expected from implementation of the change. The system manager and the
user representative will jointly review the change request and will either approve
or disapprove the change. In cases where the system manager and the user
representative disagree, the decision to change the software shall be made by the
user's representative. Once approved, the system manager will attempt to secure

.3-5-1 4

appropriate funding for the software manager to implement the change.

Once a software change has been approved, the system manager is

responsible for providing funding and any required system components to the software
manager. He is also responsible for ensuring the coordination of the software
change with all other sub-system managers.

The engineering, test and CM resource requirements will be integrated and

converted to costs by the software manager. The software manager will provide the
final and official position for costs and schedules for the proposed change to the
system manager for approval. The system manager will provide required funding and
will maintain a system schedule that includes all major system changes. He will
distribute this schedule to the software manager and user.

4.5.6.10 TOP LEVEL DESIGN REVIEW

The top level design baseline package will be reviewed by all concerned
agencies to determine its acceptabililty. The software manager will coordinate
inputs from the engineering manager and the QA manager.

The software manager will use the system manager's approved cost and
schedule data with the engineering manager's performance package to establish the
top level design baseline. The output of this effort will be either an approved or
rejected top level package by the software manager. This package will also be

provided, if approved, to the CM manager.

The software manager is responsible for implementing approved changes to
the software baseline. This action sets the stage for the development of a proposed
detail design. The software manager must direct commencement of detail design to
the engineering, test and C managers. In addition, an information package should
be provided to the system manager and the user representative. A final review of
the impact the approved change will have on the system level schedule and the
adequacy of resources must be made by the software manager. Resource or scheduling
problems must be reported to the system manager and user representative for
resolution.

4.5.6.11 TEST PLAN REVIEW. Each change of the software system must be tested to
insure that the system has not been degrdded and that the system performs to
specification as well as for interoperability impacts. This is provided for in the
test plan.

Each new requirement must be tested. To insure that all requirements are

tested, there must be j trace from the requirements list as well as any changes to
the top level design. The test plan must be reviewed and approved before effort is
continued on preparation of test procedures. The review will include representation
from all systems that have identified as having intercperability impacts.

The test plan should provide the overall concept of te test. It should

have a detailed list of personnel and hardware requirements and other unique
requirements should be identified. All software changes being made should be
clearly traceable. The test plan should provide input for preparation of detailed
test procedures, and it provides The manager with planning time to request any
additional assets required for the test.

4-5-1 5

It is the responsibility of the software manager to insure that all
changes to the systems are adequately tested prior to reloase for independent
testing. A test director is normally appointed and given the authority to access
whatever activity that is necessary for the successful conduct of the test.

Any inputs affecting the cost and schedule that were not previously
identified should be stated.

4.5.6.12 DETAILED DES[GN REVIEW

A review of the detailed software design by all concerned agencies to
determine suitability to commence coding of the software change. This action will
lead to the initiation of user manual updates.

The data and information provided to the software manager for decision
making will include an acceptable test plan and a performance package identifying
the detail design. The output of this review, if approved, will be an approved
detail design baseline.

The software manger has the authority to approve or reject the
performance package which establishes the detail design baseline. He is responsible
for providing authorization for the CM manager to commence with a detail design
baseline change and initiation of user manual update. He is also responsible for
authorizing engineering manager to commence generation of code reflecting the
software change. The software manager must inform copy approval of the change to
system manager and the user community.

If the design is approved the software manager does not need to take
action in terms of cost and schedule unless changes are expected at this time. If
the design is rejected a proposed revised cost estimate needs to be developed. This
must be transmitted to the system manager and user community.

4.5.6.13 TEST PROCEDURES REVIEW

The detailed test procedures must be reviewed to insure that every
requirement change being implemented is traced to a test procedure. The test
procedures should provide for a degree of testing to insure that the overall system
has not been degraded. The procedures must be reviewed for completeness and
accuracy. The procedures should also be reviewed to insure that parametric testing is
accomplished, that incorrect entries are also tested and
maintainability/supportability has been evaluated.

Personnel preparing test procedures must be a part of the design process
and have access to all meetings and documentation which dictate how the software is
to be written. The requi-rements list and top level design changes must be written
in a testable manner if test procedures are to be meaningful. Test procedures should
be reviewed to insure that the sequence can be followed during the test. Being able
to repeat the sequence allows for a problem to be reproduced as necessary to provide
additional information for debug efforts.

It is the responsibility of the software manager to insure that the test
procedures are validated prior to the system test. The test director should be
provided adequate personnel, equipment, and time to test all procedures. All
identified deficiencies must be corrected or dispositioned by the software manager

4-1;-16

prior to acceptance of the subject test plan.

Adequate personnel and time should be planned to provide for any
additional retesting of procedures caused not only by software but also by hardware
failure or operator error. If additional resources are needed, the software manager
shall get approval from the system manager prior to the start of the test phase.

4.5.6.14 TEST REPORT REVIEWS. There are three levels of test reports that shall be
generated as part of every software change process to aid in the tracking of the
test program. The first report is generated after the internal module testing and
integration is completed. The second report is generated after the independent
system performance testing is completed. The final test report is generated after
the user acceptance testing is completed.

During the review of each test report all test procedure results are
analyzed to determine validity and completeness. In addition, recommended changes
to the user manuals are also reviewed.

In order to conduct test report reviews a complete copy of the change
request definition, approved test procedures, and all test reports are needed.
Copies of the recommended user manual changes and the baselined user manuals are
also used. Recommendations of the completeness of the test results are provided to
the system manager through the software manager to approve release for the next test
activity, either independent testing, user testing or operational use.

As the needed documents are made available, each discipline in the
software support activity and the user of the applicable system review them for
validity and completeness in preparation for the formal test report review. The
software manager then holds a formal review discussing each discipline's comments
and prepares a recommendation to be presented to the system manager at the
appropriate test readiness review or the acceptance of the change.

As each phase of the test process is completed, the software hi~anager
updates the utilization of resources and redistributes, as needed, the remaining
cost and schedule parameters. A summary of this utilization and redistribution
effort is presented to the system manager at each test readiness/acceptance review.

4.5.6.15 INDEPENDENT TEST READINESS REVIEW

This review will determine the acceptability of the software change
package for release to an independent test agency for system performance testing
(not acceptance).

Inputs to this review will consist of internal test plans and the results
of the internal tests, i.e., the test reports and their evaluation. Also reviewed
will be the change documentation package, to include users manual updates and
training requirements. Successful completion of this review authorizes the
establishment of the preliminary operational baseline and release of the baseline
for performance testing.

Deficiencies identified during the internal tests should have been
evaluated and corrected or if determined to be outside the scope of the current
change requirements, communicate to the user and system manager for a determination
of the handling of the deficiencies. The independent test agency should have

4-5-17

available for review by the software manager its test plan and should ensure the
availability of resources to conduct the independent test. The system manager is
responsible for approving the release of the change package for independent testing.

Significant cost and schedule impacts can occur due to the decisions made
at this review. If it is determined that the change package is not ready for
performance testing. The independent test agency may incur losses due to the
realignment of resources necessary to accommodate the revised schedule. The
implementation date requested by the user may be significantly affected.

4.5.6.16 USER TEST READINESS REVIEW

This review will determine the acceptability of the change package for
user testing.

Inputs - Preliminary operational baseline, user manual updates,
installation instructions, internal/independent test reports, user test
plan/procedures, and the results from the Test Plan Reviews are used to determine
readiness for user test. Output will be approval for the change package to enter
testing by the user.

The system manager decides if the independent test phase is complete and
the change implementation is ready for user test. The user is responsible for
identifying the resources required to conduct the testing and must decide if the
change package contains all of the resources needed for the conduct of his test.

Funding for user test should be provided by the user, with the level of
test effort and compatability with change development schedule coordinated with the
software manager in previous activities. The software manager should provide a
complete prototype change package for integration into the test system.

4.5.6.17 ACCEPTANCE REVIEW

This review will result in user acceptance of the change package. The u,;er
must be satisfied that the change fully meets the stated requirements. The user will
certify his acceptance of the change for distribution to the field and forward thal
certification to the system manager.

Inputs are user test reports, deficiencies identified during test with
plan for corrective action, complete change documentation package, user manual
updates, implementation requirements and constraints and evaluation of the test
reports by the software support activity. Outputs are user certification and system
manager approval.

All deficiencies discovered during user testing will be reviewed to
determine further course of action. All administrative and technical activities
required for implementation of the change package must be complete. When this is
accomplished and the user has advised the system manager of the certification or the
change package, the system manager will accept the package and provide to the user
for implementation. The user and software mnanager must come to an agreeme,,t on
implementation schedule and distribution requirements. The authority for
implementation of the fully developed change package lies with the user.

4.5.6.18 STATUS REVIEWS

In addition to the formal management reviews detailed in the foregoing
there is an ongoing status review function which must occur to ensure against
"surprises" at one of the major milestones or decision points. Of paramount
importance an accounting of resources expended against programmed and time used
against scheduled. The system developed to provide this oversight may be as formal
as an automated management system or as informal as a weekly manager's review.
Irrespective of form, however, the process used must be well understood by all
involved, must be accurate enough to objectively measure critical parameters and
must be tailored to the complexity of the system it tracks.

Inputs to the status review function consist of parametric data dealing
with cost, schedule, percent completion, and the like. Inputs are defined based on
the nature of the status accounting system, e.g., automated or manual. Outputs are
in the form of variances from projected standards or norms and are used to flag
management attention to unwanted situations.

Responsibility for routine status reviews rests with the software manager
and it is incumbent upon him to analyze out of tolerance conditions, take corrective
measures, and notify the system manager of problems beyond his control.

4.5.6.19 PRIORITY CHANGE PROCESS

In the event that priority change is identified certain formal management
controls need to be bypassed to meet schedule constraints. As focal point for all
system changes the system manager must classify any priority change with user input.

4.5.6.19.1 Task Identification and Control

The system manager must identify each priority software change to the
software manager who in turn passes the change request on to the engineering
organization to define and scope.

4.5.6.19.2 Change Requirement Review

After informal coordination with the user a change requirement is
identified by engineering including initial design concepts/constraints and resource
allocations. The software manager reports back to the system manager for go ahead.
The system manager provides resources as needed.

4.5.6.10.3 Status Reviews

Informally, the software manager will check on progress of the design,
implementation and test of the change.

4.5.6.19.4 Formal Testing

The magnitude, level, and complexity of testing for a priority change
varies as a function of the time available to the maximum extent practical, internal
and user test sho-ild be integrated. Based on the results of such integrated tests,
the user, in consultation with the software manager, may wave independent user tests
and proceed directly for formal release.

4.5.6.19.5 Management Clean-u2

4-5-19

After release of the emergency change and acceptance by the user certain
management documents need to be updated to reflect the change. The software manager

is responsible to assure that these documents and the baselines they define are

modified to reflect the new configuration.

4.5.7 TECHNICAL CONTROLS

4.5.7.1 SCOPE

This section contains the policy for the exercise of technical controls
during the software change process. These controls fall into throe general areas:
change engineering, testing and software quality assurance.

At this time, this policy is limited to the change process for a single
deployed system which is supported by a software support activLty. Multiple system
impacts and changes to the software made outside the SSA are not covered under this
policy.

4.5.7.2 SOFTrWARE ENG[NEERfNG CHANGE PROCESS. The followiig paragriphs etablish
the policy for the software engineering change process functions. The functions are
depicted in the several software change process functional model Figure 4.5-1. Each
function establishes the policy required to preserve software design integrity of
the product and to manage changes to software during operations and software
enhancement of the software life cycle.

4.5.7.2.1 Change Notification Function. This function shall review the change
request.

4.5.7.2.1.1 Inputs. The change request shall be reviewed to determine that all
information is complete and in order that planning for the change can be
accomplished.

4.5.7.2.1.2 Outputs. The output from this function shall provide the data for
preparation of the preliminary technical package for the change and problem
definition. Preliminary assignment of task and priority for the change shall be
recommended to management. Notification shall be forwarded to SCM of implementing
changes.

4.5.7.2.2 Preliminary Change Requirements Function. This function shall
determine the change requirements based on the problem definition preliminary, task
assignment, the priority of the change and the baseline package.

4.5.7.2.2.1 Inputs. The problem definition shall be reviewed as to impact on cost,
schedule, resources, performance and baseline documentation. An analysis shall be
with these data to determine if the change is a routine change, the change is an
emergency change and if the change might require hardware change. Based on the
analysis and problem definition, effective, retrofit and priority for the change
shall be established and recommended to management.

4.5.7.2.2.2 Outputs. This function shall provide the design change concept, and an
estimate of resource needs, the estimated cost to design and implement the change,

the schedule for design and implementation of change, the expected performance and

impact to status accounting.

4-5-20

.5.7.2.3 Top Level Design. This function shall accomplish the top level design.

4.5.7.2.3.1 Inputs. The inputs to accomplish this function shall be based on the
design concept, user's input, management changes and design deficiencies (trouble
reports) received during various levels of testing. The design and document shall
be in accordance with standards for software.

4.5.7.2.3.2 Outputs. The outputs of this function shall be the top level design
for the change, updated documentation package, and details for preparation of test
plans. In addition, identified problems/changes in status, schedule, and resources
shall be reported.

4.5.7.2.4 Detail Design Function. This function shall accomplish the detail
design.

4.5.7.2.4.1 Inputs. Based on the approved top level design and associated
documentation, the detail design shall be accomplished. Furthermore, updates to
detail design documentation shall be made upon receipt of deficiencies reports. The
design and documentation shall be in accordance with applicable standards.

4.5.7.2.4.2 Outputs. The outputs of this function provide a performance package
for detail desig, review, data for preparation of detail test procedures and code
gener it ion.

4.5.7.2.5 Code Generation. This function shall generate the zode for the change.

4.5.7.2.5.1 Inputs. Based on the approved detail design, associated design
4.... r ti, a ad P a ogT-a' n-4 nrd- the code shall be generated for the change.

Code deficLencies reported shall be evaluated and corrected.

4.5.7.2.5.2 Outputs. The outputs of this function provide inputs to the test
function, and updates for documentation.

4.5.7.2.6 Test Deficiencies Evaluation. This function shall accomplish test
deficiencies evaluation of module, module integration, system integration,
independent performance, stress, and users acceptance testing.

4.5.7.2.6.1 Inputs. Inputs to accomplish function are provided by test
deficiencies reports. Inputs shall be evaluated and analyzed to determine where the
deficiencies are.

4.5.7.2.6.2 Outputs. From the evaluation and analysis of the test deficiencies, a
report shall be forwarded to management control and the function or functions that
shall accomplish the correction of the deficiencies.

4.5.7.3 TEST FUNCTION.

4.5.7.3.1 Scope of Test Requirement

4.5.7.3.1.1 Description. This function will address the technical aspects of
testing the change within the management guidelines provided in order to produce
test requirements.

%-%-2 I

4.5.7.3.1.2 Inputs. This function has the following inputs: task assignment from
management; configuration baseline documentation packages; problem definition; and
originator change notification/block change notification.

4.5.7.3.1.3 Outputs. The concept of test is the output from this step.

4.5.7.3.1.4 This Step Precedes. It is envisioned that this function spans the
change concept determination functions. Since block changes will be accumulated,
they will appear as only one change administratively.

This function must be complete prior to preparation of a test plan outline
and prior to review of requirements baseline.

4.5.7.3.2 Test Plan Outline

4.5.7.3.3 Draft Test Plans

4.5.7.3.3.1 Description. This function will address the preparation of an outline
delineating principal objectives, criteria, data requirements, analyses
requirements, and resource requirements.

4.5.7.3.3.2 Inputs.

a. Performance Package.
b. Concept of Testing.

4.5.7.3.3.3 Outputs.

a. Test Outline.
b. Cost and Schedule Package.

4.5.7.3.3.4 What This Function Precedes.

a. Management decision to allocate resources.
b. Update of Requirements Baseline.

4.5.7.3.4 Draft Test Plans

4.5.7.3.4.1 Description. This function will be the preparation of test plans
tailored to the top level design that addresses the subsequent levels of testing.

4.5.7.3.4.2 Inputs.

a. Top Level Design Performance Package.
b. Test Outline.

4.5.7.3.4.3 Outputs.

a. Test Plans
1. Module test plans
2. Module integration test plans
3. Systems integration test plans

b. Evaluation Plans
1. Code evaluation plans

4-5-22

2. User manual change evaluation plans

4.5.7.3.4.4 What This [unction Precedes.

a. Update of Top Level Design Baseline
b. Commencement of Detail Design

4.5.7.3.5 Detail Test Procedures

4.5.7.3.5.1 Description. This function will address the detailed test execution
procedures and evaluation procedure necessary to perform the myriad levels of
software test and evaluation from guidance provided as input.

4.5.7.3.5.2 Inputs.

a. Detail design performance package
b. Test or evaluation plan

1. Code evaluation plan
2. Module test plan
3. Module integration test plan
4. System integration test plan
5. User manual change evaluation plan

c. Review approval

4.5.7.3.5.3 Outputs. Evaluation procedures or test execution procedure.

a. Code evaluation procedures
b. Module test execution procedures
c. Module integration test execution procedures
d. System integration test execution procedures
e. User manual change evaluation procedures

4.5.7.3.5.4 What This Function Precedes.

a. Update of system detail desi- ba-sline
b. Update of user's manual

4.5.7.3.6 Test and Evaluation Execution

4.5.7.3.6.1 Description. This function addresses the execution of actual tests
and/or evaluation reuluirod by the specified procedures.

4.5.7.3.6.2 Inputs

a. Evaluation procedures or test executLon procedure
1. Code evaluation procedures
2. Module test execution procedures
3. Module integration test execution procedures
4. System integration test executive procedures
5. User's manual change evolution procedures

b. New code or user's manual
c. Review ipproval
d. Managenent probletr statuis guidance

* A ~IfI 0 T IMOM. 5/6

UPOCL*S SFIKD F/G L2/5 LE

Hll ,.o o.-
"i1.0

14. .2

t2,
1.5 A 1

w m -m mlm m - I | l-l m m • * m i .

4.5.7.3.6.3 Outputs.

a. Test and evaluation reports
1. Code evaluation reports
2. Module test report
3. Module integration test report
4. System integration test report
5. User's manual changes

b. Software change package
c. Test and evaluation deficiencies
d. Advise management of problems

4.5.7.3.6.4 What This Function Precedes. Release for independent system testing.

4.5.7.3.7 Independent System Performance Testing

4.5.7.3.7.1 DescriptLon. This function will. address the testLng performed on the
entire system, both hardware and software, tc determine the systems performance
bounds and the impact of the change of established performance.

4.5.7.3.7.2 Inputs.

a. Software change package
b. Release approval for independent system testing
c. Management guidance on project problems
d. Changes to user manuals

4.5.7.3.7.3 Outputs.

a. Systems software change package
b. Test report
c. System performance deficiencies
d. Problems/changes in project elevated to management

4.5.7.3.7.4 What This Function Precedes.

a. Approval for user testing
b. Update of operational baseline

4.5.7.3.8 User Acceptance Test and Trial Installation

4.5.7.3.8.1 Description. This functLon will address the operational testing
performed on the entire system by military personnel in an operational environment.
The acceptability of the change to the user will be assessed.

4.5.7.3.8.2 Inputs.

a. System software change package
b. Release for user testing

4.5.7.3.8.3 Outputs.

a. User test report
b. User test deficiencies

4-5-24

4.5.7.3.8.4 What This Function Precedes

a. Publication of documentation
b. Release of change

4.5.7.4 SOFTWARE

4.5.7.4.1 Problem Definition

The problem definition function analyzes the change request in order to
translate it into a system problem definition. The problem definition will form a
basis for subsequent testing of the system to determine if the problem has been
corrected. [f the change request required modification due to an inability to
define the problem, the originator will be contacted to redefine or clarify the
change request.

4.5.7.4.1.1 Input to this function is the change request.

4.5.7.4.1.2 Outputs from this step include the status report. The problem
definition, and a technical package consisting of the change request, notes, and the
problem definition. A report shall be issued for status accounting. The report
shall include the change request, the problem definition, add results of
conversations (if any) with the originator.

4.5.7.4.1.3 This step must precede decisions on change and test requirements.

4.5.7.4.2 Design Change Concept Review

The design change concept, schedule, and resource requirements shall be
reviewed to determine if the defined problem will be corrected within originator and
management established constraints. The change will be prioritized using
established guidelines.

4.5.7.4.2.1 Inputs shall consist of the preliminary technical package and the
performance and schedule package.

4.5.7.4.2.2 Outputs shall consist of a cost and schedule package for management
review, a requirements package for configuration management, and a technical package
combining all these products. Status reports summarizing the review shall be
submitted for status tracking.

4.5.7.4.2.3 This review produces critical management and configuration control
inputs. It must be completed prior to any software design.

4.5.7.4.3 Technical Package Approval

The technical package shall be reviewed in accordance with the approved
cost, schedule, and resource constraints established by management.

4.5.7.4.3.1 Inputs shall consist of the technical package and a management package
consisting of cost, schedule, and resource approval and constraints.

4.5.7.4.3.2 Outpu* shall be an approved technical package. Reports on the status

4-5-25

of the technical packages shall be generated for sLatus tracking.

4.5.7.4.3.3 This step must be completed prior to the top level design review.

4.5.7.4.4 Top Level Design Review

The top level design shall be reviewed against the problem definition and
other constraints contained in the technical package. Design problems shall be
reported to management for resolution.

Once the top level design is approved, it will be merged with the
technical package to form the top level design package.

Baseline changes from the approved top level design will be reported to
configuration management.

4.5.7.4.4.1 Inputs shall consist of the performance package and the approved
technical package.

4.5.7.4.4.2 Outputs shall consist of an approved top level design package and the

top level design baseline changes.

4.5.7.4.4.3 This step must be completed prior to detail design commencement.

4.5.7.4.5 Test Plan Reviews

Test plans shall be reviewed against the performance established in the
top level design package. The revie, shall answer two primary questions: Is the
test satLsfactory to show that the problem has been corrected; and is the test
sufficient to detect undesired system behavior introduced by the change.

Problems encountered during thLs review shall he reported to maiigemnent
for resolution.

The approved test plan shall be incorporated into the top level design
package to form the test plan package.

4.5.7.4.5.1 Inputs shall consist of the test plan and the top level design package.

4.5.7.4.5.2 Outputs shall consist of the approved test plan and the test plan
package.

4.5.7.4.5.3 This step shall be completed prior to the developmeit of detail tcst
procedures.

4.5.7.4.6 Detail Design Review

The detail design shall be reviewed against the top level design (part of
the test plan package).

Design deficiencies shall be reported to management.

Status reports will be issued to report design progress.

4-5-26

.............. ~~ a ...- e--*.b. m

After the detail design is nonroved. changes to the detail design baseline
shall be reported to configuration management.

4.5.7.4.6.1 Inputs shall consist of the performance package containing the detail
design, and the test plan package.

4.5.7.4.6.2 Outputs shall be the approved detail design attached to the test plan
package to form the detail design package and the detail design baseline changes.

4.5.7.4.6.3 This step shall be completed prior to code generation and the detail
test procedures review.

4.5.7.4.7 Detail Test Procedures Review

The detail test procedures shall be reviewed against the test plan
contained in the detail design package. The primary purpose of this review is to
assure that the test procedures are necessary and sufficient to satisfy the test
plan. A secondary purpose is to assure that the test procedures are realizable
within established physical, resource and schedule constraints. If the detail tpo-
procedures arc Zcficient a problem report shall be submitted to management for
resolution.

4.5.7.4.7.1 Inputs shall include the detail test procedu-es and the detail design
package.

4.5.7.4.7.2 Outputs include the approved test procedures and the detail test
procedures package which combines the detail tcst procedures with the detail design
packdge.

4.5.7.4.7.3 This step shall be completed prior to software testing.

4.5.7.4.8 Engineering Test Report Review

Engineering test reports shall be reviewed to determine when the approved
testing has been satisfactorily completed and the software has been shown to be
functioning properly. At this time, changes to user manuals shall also be reviewed
for content.

The primary result of this step is to recommend the release of the
software for independent system performance tests.

Reports documenting thLs release recommendation shall be submitted for
status tracking.

4.5.7.4.8.1 Inputs to this step will consist of the detail test procedures package,
the test reports and the recommended changes to user manuals.

4.5.7.4.8.2 Outputs from this step include a recommendation to management for
release of independent system testing, the test reports and the operational baseline
and manual changes.

4.5.7.4.8.3 This step shall precede independent system performance testing.

4.5.7.4.9 Release for User Testing

4-5-27

Test reports from independent system performance testing shall be reviewed
to determine if the desired system performance has been achieved. [f it Las, a
recommendation for technical release shall be issued for management action.

4.5.7.4.9.1 Inputs to this step are the previously approved test reports and
independent system performance testing.

4.5.7.4.9.2 Outputs include the recommendation for release for user testing and the

approved collection of test reports.

4.5.7.4.9.3 This step shall precede user installation and testing.

4.5.7.4.10 Final Test Report Review

User acceptance test reports shall be reviewed and combined with the
overall technical package. The approved reports and baselinc documentation shall be
submitted to configuration management, and a recom, nendatLon for change release made
to management.

4.5.7.4.10.1 Inputs will include the approved technical report package and the user
acceptance test report.

4.5.7.4.10.2 Outputs shall include the baseline documentation and the final report
package. A final report will also be issued for status tracking.

4.5.7.4.10.3 This step will precede change release.

4.5.7.5 EXTERNAL INTERFACE. Following deployment of systems, operational needs
will dictate software interface which could not be anticipated from front-end
design. Software change requirements may occur which require an enhanced
performance which may dictate hardware change or expansion to accommodate
implementation of user specified needs. When this determination has been made,
software change may be developed but deferred for action/implementation until the
hardware can accommodate such change.

4.5.7.5.1 The input for such a determination of hardware constraint may not occur
until the scope of the change requirement is completed as a preliminary change
design.

4.5.7.5.1.1 The output following a determination of hardware constraint or
limitation shall be an exit from the model pending management solution and decision.

4.5.7.5.1.2 This action shall be on additional functional design box added to the
model prior to establishing design change concept and estimate of resource needs.

4.5.7.5.2 Below the functional design box entitled "Review Design Concepts with
originator and establish baseline and priority of Change" shall be added on
interface box entitled "Other Systems Interop." Approval or disapproval of the
proposed software change by such other systems shall be made by that system/manager.
Approval allows continuation of change process by re-entering the exited box.
Disapproval required return to functional box entitled "Determine Preliminary Change

Requirements."

4.5.7.5.2.1 Interoperability requirements shall be established and agreed upon by

4-5-28

affected systems prior to the development box of "Perform Top Level Design" for this

system.

4.5.7.5.2.2 Output shall be an agreed upon intelface specification which affected
system prior to the development box of "Perform Top Level Design" for this system.

4.5.7.5.3 There is a requirement to support training required to perform user
acceptance testing of new/changed software. This shall be added to the model based
upon final design wheu operator manuals can be developed and when training can be
provided for designated testing personnel.

4.5.7.5.3.1 Immediately underneath the box entitled "General Code," a box shall be
added to the model based up :) Final design when operator manuals can be developed
and when training can be provided for designed testing personnel.

4.5.7.5.3.2 Input shall be a description of functional capability to be provided by
the software change plus instructions for accessing and utilizing the information by
operating personnel.

4.5.7.5.3.3 Immediately prior to the box entitled "Review Detail Test Procedure" a
box shall be added entitled "Initiate Instructor and Key Personnel Training."
Follow the new box with a box entitled "Train Operational Test Personnel."

4.5.7.5.3.3.1 Re-enter model on line labeled "Approved Test Procedures."

4.5.7.5.3.4 Exit model on line labeled "Approved Test Pro-edures."

4.5.7.5.3.4.1 Re-enter model on line labeled "Test Reports and Baseline
Documentation for Technical Release."

4.5.7.5.3.4.2 Input to final manual page changes shall come from operating test
personnel where they evaluate printed operator instruction at the same time they
evaluate system performance.

4.5.8 PRE-DEPLOYMENT RESPONSIBILITIES OF THE SOFTWARE SUPPORT ACTIVITY

4.5.8.1 GENERAL

The SSA has a vested interest in ensuring that proper attention is
directed towards the software design and development process and the support system
environment early in the acquisition cycle. The program manager must select the SSA
early in the planning cycle. The SSA should be actively involved in all phases of
the acquisition cycle to optimize its capability to perform life cycle support. The
utilization of the SSA in RFP production, design reviews, audits, IV&V , and
configuration control will enhance project effectiveness, reduce the effort required
to prepare life cycle support and ensure a smooth transition of the product software
from the developer to the government. The SSA is responsible for preparing the
support organization to ensure funding, training and procedure plans are in place at
transition. Specific responsibilities to be assigned to the SSA for each acquisition
cycle phase are addressed in the following paragraphs.

4.5.8.2 CONCEPT PHASE

4-5-29

4.5.8.2.1 Planning Activities

The SSA must begin preparation for the support role as soon as the SSA is
designated. SSA key personnel must prepare a Computer Resource Life Cycle
Management Plan (CRLCMP) which will become a living document, revised as needed
throughout the life cycle. Staffing, based on complexity of the system to be
supported must be justified. Training for the staff must be identified based on the
realities of the available manpower pool skill level. Sufficient staff must be
assigned to the project immediately to ensure continuity throughout the acquisition
phase and into the support phase.

The Software Support Environment (SSE), including physical facilities,
computer and other GFE equipment, communications, software tools, and security
requirements must be identified.

Strong justification for each of the requirements must be developed by the
SSA staff and submitted as refinements to the budgetary process.

4.5.8.2.2 Solicitation Preparation Activities

The SSA shail assign personnel to the procurement team to ensure that the
solicitation (RFP) includes all requirements necessary to acquire supportable
software. Issues such as equipment and software compatability, future expansioa or
change needs, deliverable support software, hardware, documentation,
interchangeability requiremets aad legal issues such as proprietary software oust
be considered. The SSA personnel must ensure that supportability requirements will
be given significant weight in the selection process. The SSA shall bring the fuLl
weight of lessons learned (including system commonality vs system unique features)
to bear on this acLivity. Interface requirements with other support elements such as
ATE, trainitig simulator, or ground support for embedded computers shall be included
in this activity.

4.5.8.2.3 Software Support Activity (SSA)

The SSA will provide membership to the source selection evaluation process
and will be a voting party in its recommendation to the source selection authority.
The SSA representative(s) shall evaluate each part of the proposal which directly or
indirectly affects the future supportability of the system being procured.

4.5.8.3 DESIGN AND DEVELOPMENT PHASE

During the design and development phase of embedded computer systems
software, the SSA shall be assigned responsibility for ensuring that all software
end items are produced in accordance with governing specifications. Designation of
the SSA as the development activity's verification and validation agent and as the
agent responsible for other monitoring and auditing roles during this phase
satisfies this requirement. This designation has the desired effect of providing a
highly motivated but independent source to act as the project's IV&V agent. In
addition, the SSA must also be responsible for completing preparations for assuming
post deployment software support as specified in the approved CRLCMP. Specifically
the SSA responsibilities entail the following activities.

4.5.8.3.1 VV Activities

4-5-30

The SSA shall undertake verification and validation activities independent
of the development activity design and development process, of sufficient magnitude
to provide a thorough and unbiased evaluation of the product(s) under development.
The degree of independence and scope of the V&V
effort will vary depending on product complexity; however, the SSA or IV&V
contractor under the direction of the SSA shall as a minimum perform the following
IV&V functions.

1. Review software development plans, CM and QA plans.
2. Review all design documents.
3. Perform code analysis.
4. Review test plans and specs.
5. Review test results.
6. Report all results to the PM along with recommended

corrective actions.

4.5.8.3.2 Support Environment Establishment Activity

The SSA will assume responsibility for preparation of the support
environment required by the CRLCMP to provide all post deployment support for the
embedded computer software and firmware. These activities include acquisition and
installation of hardware and software, training of SSA personnel, developing
procedures and technical controls and the procuring of appropriate contractor
support personnel. These activities shall be accomplished during the Design and
Development phase to ensure availability of a SSA support facility coincident with
the deployment (responsibility transfer) of the system.

4.5.8.3.3 Configuration Management Monitoring Activity

Configuration Management of the software becomes one of the major
responsibilities of the SSA upon product transition; therefore, the SSA must become
cognizant of an an expert in the configuration management requirements of the system
software. The SSA must insure that, upon transition, configuration management can
be assured. The SSA shall establish a software configuration control group to
monitor all software Configuration Management activities during the design and
development phase to ensure effectiveness qnd also to become thoroughly familiar
with the CM data base prior to assuming post deployment life cycle responsibilities.
During this p_-iod the SSA will develop suitable configuration management procedures
to be activated upon deployment of the system. The SSA shall serve as a member of
the Configuration Control Board and will monitor the disposition of all approved
changes.

4.5.8.4 ACCEPTANCE PHASE ACTiVIrrES

4.5.8.4.1 Supportability Audit Activities

The SSA shall be responsible for conducting 3 Supportability Audit for the
purpose of certifying all system software, as delivered by the development activity,
can be fully supported in the SSA environment. Successful completion of the
Supportability Audit constitutes a further refinement of the Operational Baseline
(OBL) in that programs generated at the SSA site are certified as physically and
operationally equivalent to the OBL. The SSA conducted Supportability Audit shall
consist of the following activities.

4-5-31

a. A physical audit of all system and support soft ware deli' i ,red bL
the development. a(tivity.

b. The exercise of alt support software tools against the
operational baseline l ibrarv in accordance with PM
approved test plans.

c. The building of all program variants using SSA faclit ies

and personnel.
d. The exercise of all program variants in target computers in

accordance with SSA written, PM approved test plans.
e. The reporting to the PM of the SSA's assessment of tihe 5,It,,,re

systems supportability.

4.5.8.4.2 Acceptance Test Activities

The SSA shall serve as an official member of the acceptance test team.
Participation in these act ivities has the dual purpose of supporting the PM in the
acceptance process and of providing the SSA with a t rue pi ct ure of the soft ware he iju
del ivered.

4-5-32

PANEL E - CHANCE PROCESS

CO-CHAIRMIAN: Mr. J. (Joe) Black (912) 926-5948

WR-AFLC/fMlR A/V 468-5948
Robins AFB, GA 31098

CO-CHAIRMAN: Mr. J. (Jack) Cooper (703) 276-2826

CACI Inc., Federal Penthouse
1700 N. Moore St.

Arlington, VA 22209

MEMBERS:

A Ms. D. (Donna) Brock (205) 876-8309

USA MICOM (DRSMI-RGG) A/V 746-8309/

Redstone Arsenal, AL 35898 4440

A Mr. B. (Bob) Niveson (301) 278-2775

USA TECOM/DRSTE-AD-S A/V 283-2775

Aberdeen Proving Ground, MD 21005

A Mr. D. (Dean) Gunn (804) 727-3271

USA TRADOC (ATCD-CB) A/V 680-3271
Ft. Monroe, VA 23651

A Mr. T. (Troy) Madison (405) 351-6089

Field Artillery School and Center A/V 639-6089/

(ATSF-CT) 4867

Ft. Sill, OK 73503

N Mr. G. M. (Jerry) Wrout (805) 982-8865

Pacific Missile Test Center (1220) A/V 351-8865

N Mr. W. D. (Don) Balmer (619) 22-7021

Fleet Combat Direction Systems A/V 933-7021
3.;pport Activity

San Diego, CA 92147

N LCDR M. (Mike) Gehl (202) 692-8484
(JLC-CRM-CSM Cbairman) A/V 222-8484

Naval Electronic Systems Command

Washington, DC 20363

MC MAJ J. H. (Joe) Burney (619) 725-2421/

Marine Corps Tactical 2288

Systems SuppoLt Activity A!V 993-2421/

Camp Pendleton, CA 92055 2288

AFLC Mr. G. (George) Montagno (904) 882-8814

TAWC/EWER A/V 872-8814

Eglin AFB, FL 32542

AFLC Mr. G. (Gaylen) Pederson (801) 777-7108

00 ALC/MME A/V 458-7108

Hill At':,, UT 84053

4-5-A-I

/

PANEL E (cont'd)

AFLC Mr. Y'j'.k vandenBroek (513) 257-6751
I L,,FE A/V 787-6751

-AFB, OH 45433

AFSC Ms. K. (Karen) Bausman (513) 255-2885
ASD/YWE A/V 785-2885
Wright-Patterson AFB, OH 45433

AFSC LTC R. H. (Robert) Brown (402) 294-2892
SAC/LGY A/V 271-2892

Offutt AFB, NE 68113

N Mr. C. (Cal) Carrera (805) 485-6535
Veda Inc.

1317 Del Norte Rd.
Camarillo, CA 93010

N Mr. R. D. (Bob) Buck (703) 367-3266

IBM Federal Systems Division

9500 Godwin Drive
Mail Code 887-035

Manassas, VA 22110

A Dr. W. (Wilson) Talley (415) 422-9787
University of California-Davis

Lawrence Livermore Laboratory

P.O. Box 808 L794

Livermore, CA 94550

A Mr. L. (Lee) Whitley (405) 355-9280

TELOS Federal Systems

P.O. Box 33099

Ft. Sill, OK 73503

AFLC Mr. L. D. Parriott (213) 217-3077

TRW
1 Space Park

Redondo Beach, CA 90278

AFSC Mr. Harold David Hall (214) 462-5497

Texas Instruments, Inc.

P.O. Box 405 MS3407

Lewisville, TX 75067

0 Ms. W. (Wilma) Osborne (301) 921-3545
NBS

Institute for Computer Science & lechnology
Bldg. 225, Rm. B266

Washington, DC 20234

Ms. J. (Joan) Spaulding (202) 426-8634

FAA

800 Park Crest Dr.

Silver Spring, ME 20910

A-2

PANEL E (cont'd)

NTEC Mr. P. (Paul) Byrley (305) 646-5354

Naval Training Equipment Ctr (N-213) A/V 791-5354

Orlando, FL 32813

Dr. Kirt Fisher (703) 237-2000

Computer Science Corp. ext 6966

6565 Arlington Blvd

Falls Church, VA 22046

A-3

ORLANr, I

FINAL REPORT

PANEL F

SOFTWARE CONFIGURAT[ON MANAGEMENT

MANRCH 15, 1984

CO-CHAIRPERSON: Antonia D. Schuman (Toni)

TRW Systems Group

1 Space Park, Bldg. 134

Room 6079

Redondo Beach, CA 90278

(213) 217-4079

CO-CHAIRPERSON: Mr. C. (Cal) Showalter

Navel Air Systems Command

(AIR-543C)

Room 620, JP-2

Washington, bC 20361

(202) 746-0650

4-6-i

TABLE OF CONTENTS

Paragraph Page

4.6 SOFTWARE CONFIGURATION MANAGEMENT 4-6-1

4.6.1 Introduction/Objective 4-6-1

4.6.2 Scope 4-6-1

4.6.3 Approach 4-6-2

4.6.3.1 Preparation 4-6-2

4.6.3.2 Panel Organization and Operation 4-6-3

4.6.3.3 Issues 4-6-3

4.6.4 Discussion 4-6-3

4.6.4.1 Subpanel A: Baseline Definition 4-6-3

4.6.4.1.1 Turnover Products 4-6-4

4.6.4.1.2 Transition of CM From Developer to SSA 4-6-5

4.6.4.2 Subpanel B: Configuration Management

Scope and Requirements 4-6-7

4.6.4.2.1 Definition of PDSS Configuration Management Scope 4-6-7

4.6.4.2.2 PDSS Configuration Management Interface and Influence 4-6-9

4.6.4.2.3 Computer Software Configuration Item (CSCI) 4-6-11

4.6.4.2.4 Computer Program Identification Numbers (CPIN) - USAF 4-6-12

4.6.4.3 Subpanel C: Security 4-6-13

4.6.4.4 Subpanel D: Configuration Status Accounting 4-6-16

4.6.4.4.1 What CSA Information is Stored, Tracked, and Reported? 4-6-17

4.6.4.4.2 How Should CSA Information be Stored, Trac' ed, and

Reported 4-6-19

4.6.4.4.3 To Whom Should CSA Information be Available? 4-6-20

4.6.4.4.4 Where Should CSA Information be Stored? 4-6-20

4.6.4.4.5 What Developer Contractual Constraints are Required . . 4-6-21

4.6.4.4.6 Summary 4-6-21

4.6.5 Recommendations 4-6-22

4-6-ii

ATTACHMENTS

4-6-I: Page

4-6-I-i Guide for Selecting Configuration Items (CI's) 4-6-25

4-6-1-2 Computer Program CI (CPCI) Consideration 4-6-26

4-6-1-3 Computer Program CI (CPCT) Consideration (cont.) 4-6-27

APPENDICES

A Participants 4-6-A-1

B Bibliography 4-6-B-1

C Briefing Charts 4-6-C-1

T Orlando I - Configuration Management Panel Charter4-6-D-1

4-6-iii

4.6 SOFTWARE CONFIGURATION MANAGEMENT

4.6.1 Introduction/Objective

Defining the role of Configuration Management in the post

deployment phase has been tried a number of times with limited success. Each
of the three services approaches PDSS Configuration Management (CM) from
slightly different perspectives. Possibly this has resulted from an attempt
to apply reasonably mature hardware CM practices to software. The elements of
CM: configuration identification, control, and status accounting are all as
important in the software world as in the hardware world. Configuration
control is even more important when the software is firmware in a Read Only
Memory device. Changes to firmware installed in a piece of equipment could
change the hardware configuration of the equipment.

One normally thinks of CM starting with a contract award and
continuing through to the end of the system development cycle. One rarely
thinks of CM beginning at the start of the development cycle an
ending.. .maybe never ending.. .as long as the system is deployed, maintainel,
modified and enhanced.

However, if it is indeed CM's responsibility to maintain the system
configuration from beginning to end, then end could be infinite.

CM is a primary focal point for communication within the

acquisition program, the support functions, the customer and the user. It
identifies the system configuration at specified points in the software life
cycle, processes the changes to the established configuration - it controls
and communicates those changes, it accounts for the status of the
configuration and the changes that have been made and finally audits the
delivered products to ensure that what was designed is what was built.

Maintaining configuration control in the deployment phase of a
system's life cycle is vital. Changes are a continual process, and mission
effectiveness must not be compromised by incorrect identification of the
embedded software or inadequate controls over the change process from request
to release.

Then, what is CM's role in the post deployment environment? It is
simply this. It carries on from where it left off: it is a continuance of
the CM function in the development of the system ,utilizing the deliverable
products (per SOW and CDRL) as a basis for handling corrective changes,
modifications and enhancements to the system's hardware and software.

4.6.2 Scope

The issues which the panel addressed all -elated to the scope of
software configuration management in the post-deployment phase. The role and
influence of the PDSS agency in the development phase (to make CM in the
deployed phase easier) was also addressed in the context of DoD 5000.29 and
MIL-STD-SDS.

4-6-I

Desired products were to be:

* Baseline definition and recommendation for dealing with
multiple, parallel baselines

* C4 transition plan

* Recommended configuration identification and numbering system

with policy statement on the need (pro or con) for commonality

* Recommended policy statement on the role of the software support
agency in the development phase

Policy recommendation on storage and tracking methods

Policy recommendation concerning software security processes,
classification determination, verification, handling procedures,
etc., for inclusion in DoD/indivickial services security manuals,
directives, etc.

During the Workshop, the Configuration Management Panel addressed
all questions on the Charter with particular emphasis on the expected
products. However, we digressed slightly from the original charter and stated
objectives rsee Appendix D) because of the magnitude of some of the issues and
the limited time available. Specifically, the Security Subpanel determined
that the issue was larger than could be resolved in three days and chose to
highlight the critical questions which needed JLC attention.

The Subpanel on Storage and Trac'king Methods addressed the more

general questions of configuration status accounting which include, besides
tracking and storing CM data, reporting, configuration control and auditing.

!.6.3 pp c h

4.6.3. Preparation

Prior to the Workshop, all participants received copies of the
Charter and a questionnaire on which they were asked to provide comments on
the Charter and select a subpanel of interest. They were also invited to
address the full panel on relevant topics. Four briefings were given:

a. Baseline Software Configuration Management: An Automated
Approach. Naval Training Equipment Center Software Support
Facility. Presented by John Ruckstuhl.

b. USAF Computer Program Identification Number (CPIN) System
(AFLC). Presented by James Wagoner.

c. Air Force Data Systems Design Center Mission Briefing.

Presented by Al Mayhan.

d. Operational and Maintenance Configuration Management
(Procedures). Presented by Ron Berlack, Sanders Associates.

4-6-2

Copies of the briefing charts are in Appendix C. Material of

general interest was also collected as notel in the bibliography (Appendix
B).

4.6.3.2 Panel Organization and Operation

The list of panel members is given in Appendix A. The panel

divided into four subpanels based on the four principal issues in the
Charter:

* Baseline Definition
" Scope and Terminology
* Secur ity
* Storage and Tracking Methods

The full panel met every morning and evening to exchange

preliminary findings and cross-pollinate. Several deep-seated concerns about
the validity of MIL-STD-SDS and associated revisions to other MIL-STDs were
raised. Some of the critical differences between the services also
contributed to the liveliness of the general discussions. In the end, each
subpanel addressed every question in the Charter and produced reports which
met the basic objectives of the Workshop. Section 4.A.4 contains the subpanel
reports.

4.6.3.3 Issues

The issues to be addressed by the panel are given in the Charter
(Appendix D).

4.6.4 Discussion

The following paragraphs contain the individual reports of each

subpanel. Specific issues are covered in detail, with analytical discussion,
conclusions and recommendations for each topic.

4.6.4.1 Subpanel A: Baseline Definition

The subpanel consisted of:

Ms. Frances Soskins (Chair)
Mr. Max Bushey (Recorder)
Mr. Gerry Anderson
Mr. Joe Faranellio
LTC Dusty Rhoades (first day)
Mr. Al Mayhan

Mr. David Maibor

We addressed the questions provided in advance of the workshop. A

fundamental conclusion reached relative to the "operational baseline" was that
it is not appropriate for the configuration management organization to
determine when a baseline system becomes operational. Our products are based
on the assumption that the PDSS activity begins at a point defined for reasons
unrelated to configuration management.

4-6-3

Our products consist of three reports:

a. What products should be turned over fran the developing activity

to the support activity?

b. How should the transition of configuration management from the

development activity to the SSA be controlled?

c. How to deal with multiple parallel baselines.

4.6.4.4 .1 Turnover Products

4.6.4.1.1.] Background and Discussion

The software support activity (SSA) performing post deployment

software support (PDSS) manages the product baseline fran the point of

transfer when the SSA formally accepts responsibility and accountability from

the development activity. The SSA updates the product baseline as

modifications are made to the system software throughout the remaining life of
the system.

4.6.4.l.1..2 Conclusion

In addition to the software itself in all forms and meaia in which

it exists, the following should be turned over from development activity to
SSA:

Engineering Documentation

System/Segment Specification
Software Requirement Specification
Interface Requirement Specification
Software Product Specification
Unit Development Folder*

Test Documentation

Software Test Plan
Software Test Document
Software Test Procedures
Software Test Report

Management Documentation

Canputer Resources Life Cycle Management Plan
Software Stanlards and Procedures Manual
Software Development Olan*
Software Configuration Management Plan*
Software Quality Assurance Plan*

Version Description Document

4-6-4

Support Documentation

Operational Concept Document

Computer System Diagnostic Manual
Software Users Manual
Computer System Operator Manual
Firmware Support Manual
Software Programiiers Manual

*Optional

Note that in some contracts the Software Development Plan contains
the Software Standards and Procedures, whereas in others it is a separate
document. The Standards and Procedures are not optional and, if part of the
Development Plan, then the Development Plan becomes not optional.

4.6.4.1.1.3 Recomnendation

Items identified in 4.6.4.1.1.2 should be reviewed for consistency
with the planned configuration management approach. They should all be turned
over in magnetically readable forms, if available, as well as hard copy.

4.6.4.1.2 Transition of CM From Developer to SSA

4.6.4.1.?.1 Background and Discussion

Transition of configuration management responsibility from the
Development Activity to the SSA shall occur during the Production and
Deployment Phase. It usually occurs during deployment, ootentially in the
interval during which production and deployment activities overlap. Before
transition, the Development Activity shall remain responsible for management
and control of computer resources, including computer software. During this
time the SSA may be tasked to support the Development Activity.

4.6.4.1.2.2 Conclusion

A plan should be developed to transition configuration management
responsibility from the Development Activity to the SSA.

4.6.4.1.2.3 Recommendation

The Transition Plan should be developed by both the Development
Activity and the SSA and should include*

By the Development Activity

a. Identification of scheduled dates for computer software delivery
to the SSA.

b. Identification of the product baseline to be transferred. This
is to include all components.

c. Disposition status of open problems and assigned -esponsi..... y
for their resolution.

4-6-5

d. Identification of the required configuration management support

equipment, associated training, and applicable documentation.

e. Status of completion of the system, subsystem or fanctions that
impact computer software.

f. Status of Documentation to he transferred.

By the SSA Activity

a. Ilentification of plans for the conditions and contingencies
which may dictate possible revisions to the scheduled delivery
da te.

h. A description of how the PDSS Configuration Management Plan from

the CRLCMP will be adopted.

Prcvision for Configuration Management training.

d. A plan for the audit of the software transition package (product
baseline).

The Development Activity will be responsible for the production of
the Configuration Management Transition Plan.

4.6.4.1..3 Multiple, Parallel Baselines (MPB)

4.A.4.!.3.1 Background and Discussions

MPB situations occur:

a. When a product baseline is deployed to an operational
environment while further development and/or modification to the
product baseline is in process after the PDSS.

b. When more than one version is deployed to an operational
environment.

c. When both of the above exist concurrently.

4.6.4.1.3.2 Conclusions

The essence of multiple baseline management is the application of

standard configuration management principles (identification, control and
status accounting) to each baseline.

4.6.4.1.3.3 Recommendation

Include in the Computer Resource Life Cycle Management Plan
provisions fcr handling multiple, parallel baselines by establishing an
estimate of the probable proliferation of baselines, establishing
configuration management resource requirements in accordance with that
estimate, and monitoring actual baselines and associated activities.

4-6-6

Estimate need to he revised as necessary throughout the life

cycle, and changes should be implemented to handle increased complexity as

soon as it appears that they will be needed (not delayed).

4.6.4.2 Subpanel B: Configuration Management Scope and Requirements

The subpanel consisted of:

Mr. Ron Berlack (Chair)
Mr. Norm Taupeka (Recorder)
Mr. Leo Gonzalez

Mr. Bob LaVergne
Ms. Dreama Fumia
Mr. Lew Eichert
Mr. Jtmes Wagoner

LTC Dusty Rhoades (second day)

Four major issues were addressed:

a. Definition oi PDSS CM Scope over individual systems and in

regard to related and interfacing systems

b. PDSS CM interfaces and influence throughout the life cycle

c. Definition of computer software configuration items, who
identifies them and when

d. Computer program identification numbers: should there be a DoD

sta ndard?

Conclusions and recommendations on these issues were reached

following considerable discussion.

4.6.4.2.1 Definition of PDSS Configuration Management Scope

The role of PDSS in system life-cycle management has not been well
recognized or articulated as evidenced by incomplete planning for PDSS for
systems as they enter the production/deployment phase. In addition, the
practice and criticality of configuration management to a large degree is not
always well understood or appreciatd by the development, support and
operational communities. As systems are being fielded and made operational
with greater amounts of software, the continuing need for software change
necessitates the expenditure of vast amounts of resources for increasingly
complex systems. Even more critical is the ever increasing need to make
accurate and timely changes for these fielded systems. Thus, in order to

accomplish the fielding of reliable software for operational systems, the
practices of configuration management during the deployment phase must be
maintained and strengthened in a cost-effective manner.

4.6.4 . 2.1.1 Discussion

The configuration management of an automated military system is

complicated by multiple interfaces, computers, displays, weapon mix and
software components.

4-6-7

- _"hmmmummum e im-mmdlhmmm nnd P- /

Marging the configuration of software when various versions are
deployed compounds the problem an increases the complexity of the
identification of each software version.

The interactive deployment of automated systems creates hardware
diversity. Software changes compound this diversity. The relationship of the
development program management offices to the PDSS agency under such
conditions is not well delineated.

PDSS, in reality, is the continuation of the software development
process. User modifications and enhancements to counter new threats, changes
in doctrine, and introduction of advanced technology, fosters the evolutionary
growth and increases capability in systems having embedded computer resources.
In addition, errors requiring correction, interface and protocol conversions,
modifications and enhancements are a part of PDSS. All of the above aspects
therefore require configuration mangement.

During the development process the number of deliverables produced
in the SOW per the CDRL serve as a basis for implementing CM in the PDSS
phase. In addition, other products of the development phase such as software
tools are required to strengthen the ability of the PDSS activity to
effectively manage the software configuration.

Configuration management of interfaces among systems, especially
when they are in different phases of the life cycle or are maintained by
different agencies, services or nations, is a perplexing and ill-defined area
with overlapping and sometimes conflicting responsihilities whose scope needs
to be defined for the PDSS phase.

Within a given service, two or more systems having requirements for
interface and interoperabi lity must retain compatibility. CM is essential if
t ese systems are to remain as such in a dynamic environment.

In addition, between and among the services, there is a need to
interoperate compatible systems. With respect to NATO allies, a higher level
of interoperabi lity is required. To ensure interoperations of these systems,
suitable levels of CM are required.

Another important aspect of CM is the need to assure appropriate
interface and cooperative efforts with the ieveloper(s) and other PDSS
activity(ies) in order to influence the related generation of viahle,
deliverable products to the operational environments. Specifically, the
software support environments, including compilers, link loaders an other
tools, should also be configuration managed in order to simplify the transfer
of the development software products between PDSS activities.

4.6.4.2.] .2 Conclusions

The Scope of CM in PDSS for Given Systems. PDSS configuration
nanagement should be a continuum of the CM function in the development of the
system, utilizing the deliverable products (per SOW/CDRL) as a basis for
handling corrective action changes, modifications and enhancements to the

n ftwa r-.

4-6-8

The Scope of CM in PDSS for a Network of Related Systems. The

scope should include the review ard identification of impact on the subsystem
aid system interface, as well as the integration and interoperability of the
interfacing systems.

4.6.4.?.i .3 Recommendations

a. The JLC/CRM should initiate action to incorporate provisions for
PDSS CM in applicable regulations, directives, MIL standards,
and guidebooks to ensure the recommended continuation of

configuration management in the PDSS phase.

b. It is strongly recommended that the proposed joint regulations
and procedures for configuration management of systems (HW & SW)

be continued by the software support activity as transferred
fran the development phase to the deployment phase.

c. Further, it is recommended that configuration management
encompass all related, interfacing systems at al appropr-iate
levels and be rigorously enforced.

4.6.4.:.2 PDSS Configuration Management Interface & Influence

Presently, PDSS/CM interface to the developer's CM activity as well

as inter/intra service PDSS activities i-s not defi ned nor practiced. In

addition, PDSS/CM influence during the levelorinent .vcle iS nonexistent.

To date, little attention has bee1n paid to defining and

implementing a PDSS interface into the development activity such as is done

for Tntegrated Logistics SuDport (TLS). Little is to b found in current MIL-

STDS, directives or regulations pertaining to PDSS planning, interface or a

path for any level of PDSS activity in'luence to enable a vaiahl e operation

iur ng the deployment phase. Thus, PDSS ba. 2fttie or no input or right of

concu,'r-ence in what configuration a gven product will be Jeveloped or how ti-e

transfer will take place.

4.6.4.7.2 .1 Discussion

The configuration marngement of embedded computer systems software

during the PDSS phase must he a planned element throihout a system's life
cycle.

PDS3 configuration management must he considered during the

development phase. Aq a continuum of the configuration management in the

development phase, PDSS configtuation management must take an active role in

the initial ,evelopment phase as well as possible subsequent interfacing

levelopment to assure optimal standardization of resources, techniques, and

prodiucts and to provide for an effpctive transition of configuration
marngement functions.

A single, integrated confi guration mangement methodology for a

suite of embedded computer system software is essential in the PDSS phase.

The software in many complex weapon systems controls and integrates the

functions of multiple subsystems to achieve the system's performance

4-6-9

requirements, and, in many cases, the software will even define the system
configuration. Thus, the software configuration management must be a coherent
subset of the parent system's configuration management to assure the
maintenance of the essential hardware/software integration.

The configuration management of a software suite must also provide
vital links with the configuration management of interfacing networks or
systems to assure continued interoperability.

PDSS configuration management must be enhanced with increased
attention and initiatives to achieve these goals.

4.6.4.?.?.2 Conclusions

If PDSS/CM is to be effective, then it must interface with and be
part of, as a minimum, the following activities during the development
phase:

* Established Interface Control Working Group (ICWG)
* The Software Configuration Control Board (.SCCB)
* Formal Design Reviews: SDR, PDR, CDR

* Developer Internal Design Reviews
* Review of Upper Level Testing

* FCA, PCA, FQR

in addition, the PDSS CM activity must be able to ensure that the
deveLopment GM activity has the deployment phase delivery as its primary
objective in order to ensure an orderly and effective transfer of CM from one
phase to the other. It also must have the ability to assure that
interoperability factors are defined and in place, that applicable
standardization of resources have been provided, such as aM automation tools,
in order to provide development - deployment integrated CM activity.

B.6. Recommendations

The following paragraph has been submitted for inclusion in the
MIL-STD-SDS draft of 31 August 1083:

The contractor shall specify PDSS parameters appropriate for the
support of all the delivered and deployed software as part cf the S/W
Development Plan. These parameters, as a minimum, shall include the
requirements for a support facility, work force mix, IV&V, cost of ownership,
support environment and configuration management with details for change
processing. These assessments, by necessity, are considered iterative in
nature, shall be reviewed at CSCI design reviews and provide the basis for a
PDSS plan to be implemented not later than establishment of the product
baseline.

It is recommended that the JLC/rSM support th-i inclusion.

It is further recommended that appropriate interface guidance be
included in applicable directives and regulations, and that a PDSS CM plan
data item description be generated for implementing CM during the PDSS
phase. Such a plan must provide for pre and post CM action as well as the
interfacing that will be carried out with other PDSS activities in order to
achieve appropriate CM for multi system deployment.

4-6-10

If these recommendatLons can be achieved, then the PDSS activity

can and will be most effective and hopefully a persuasive influence over the
complete system life cycle. This must also be concurrent with appropriate
funding for optimun performance.

4.6.4.2.3 Computer Software Configuration Item (CSCI)

The basic question addressed: What is a CSCI and who defines it
and when?

4.6.4.2.3.1 Discussion

CSCI designation is a fundamental building block for PDSS. CTs are
a unit of management during development and support and are usually the level
of effective marngement visibility throughout the life cycle. CI desigration
usually results in the following: separate development and product
specifications, discrete identlfication, separate design reviews, testing,
status accounting records, etc. Since CI definition and selection drives a
significant number of attendant activities and p-oducts over the life cycle,
care ad good judgement must be exercised in the selection process.

During the systems engineering process begun in the concept
exploration phase, elements of the systems are identified, requirements
(functions) are allocated to them, and trade-off amlysis performed to
optimize the system as a whole. These system elements become elements in the
work breakdown structure (WBS), but more importantly, when Type B design-to
specifications are written for these elements on the basis of functional
requirements allocated to them, they become configuration items. This results
in a natural correlation between the WBS and the specification tree. As a
result of the systems engineering process, the system is partitioned and its
elements identified as manageable units, CIs.

As development proceeds and the design is iterated, understanding

of the system and its functions evolve, resulting in changes in both the
rLimber and size of CIs, as well as in the functions allocated to than.
Configuration management is an explicit recognition of the need to identl'y
(document), control and maintair status of the process.

4.6.4.? .. 2 Conclusion

CI selection, both CSCIs and hardware CIs, is a product of the
systems engineering process begun in the concept exploration phase and usually
completed in conjunction with the system design review in the
demonstration/validation phase. CI selection is an iterative process composed
of inputs reflecting all program requirements a,- dcoided on the bIais of both
technical and management concerns.

•..4.2.3.3 Recommendations

MIL-STD-483, Notice P, Appendix 17 (XVII), is a guide for selecting
CIs. The proposed MIL-SrD-483 changes included in the SDS "package"
significantly weakens the guidance for selecting CPCIs (CSCIs). Therefore,
the guidance in Notice 2 must be retained and changes to Appendix 17 notices
confined to the administrative, i.e. - CSCI vice CPCI. Additionally, all JLC
policy guidance on CI (CSCI) definiton and selection should be consistent with
that presently in Notice 2, MIL-STD-483. (See Atachment 4-6-I)

4-6-11

4. 6.4. .4 Computer Program Identification Numbers (CPIN) - USAF

Is it desirable for all DoD to settle on a standard or common
computer program identification number (CPIN)? Can or should the CPIN fit
into the hardware automated iJentification systems, and what is the content
(not format) of a CPIN record?

The configuration management process requires that each

configuration item, specifically each computer program configuration item
(CPCI), be identified, that changes to the CPCI be controlled ard managed, and
that status accounting be maintained for the baselined CPCI and each change
during the life cycle of the CPCI. Today there is no standardized number used
in DoD for the identification of a CPCI. The CPCIs have been identified with
a variety of numbers, such as manufacturer's part numbers, national stock
numbers, technical order numbers, project numbers, and specially developed
numbers. These CPCIs and related descriptive information are usually not
indexed or announced in a publication. In most situations, users requirements
for a CPCI and the number of copies required are maintained by the individual
software manager. The distribution of a baselined CPCTI is usually a "pull"
type distribution where the user must requisition the CPCI through supply or
equipment channels. Follow-on distribution of updates to the CPCI is
incomplete. Few management reports are available and are usually compiled
from manual records and documents on an "as required" basis.

4..)4.?.4.1 Discussion

The Air Force has an automated CPIN data system centrally
controlled and operated at Oklahana City Air Logistic Center, Tinker AFB,

OK. This system supports all embedded computer systems (ECS), software
manager's and software users within the US Air Force, and foreign governments
supported through the Security Assistance Program. The CPIN system assigns a
unique, sight recognizable identification number to each CPCI and related
engineering documentation package. The CPIN identifier is incremented with a
revision number each time the CPCI is updated. CPIN version numbers are
assigned to CPCIs used on multi-weapon systems or support equipment.
Consolidated i ndexes (CPIN conpendiums) and cross-references are produced in
mi crofi che, and copies are disti ibuted mont dy to software managers and
users.

The CPIN system collects, stores and maintains data elements
related to the CPCI, the software managers, CPCI changes, Configuration
Control Board's approval dates, cost information, applicable weapon system amd
subsystem, control computer, support computers, suppo-ting programs,
p-ogramming language, type of deiverable media unit, contractor information,

user canputer operator manual, and a complete list of CPCI related engineernp,
documentation. The system collects, stores anJ maintains software user
requirements for- each CPCI and produres mailing labels a rr software media
labels for the "push" dist-ibution of CPCIs 'and changes) to each etablished
software user. The system also produces management information products and
reports for various levels of software maragers anJ users.

4..Li.?.4.2 Conclusion

A "CPN" type system is necessary to acchieve a standard approach
for software identi fication, trackinq CPCI chinges, status accounting

information, and tx ensii-e "push" distribution of CPCIT an! sibsequent ohang-.

,4-0-1 2

to ECS software users for deployed or operational weapon systems and support
equipment. Tri-service application is achievable throgh the use of common
data elements. Also, the "CPIN" numbers should be assigned and controlled
through a data systems for software, and should not be included in existing
hardware or supply systems.

4.6.4.2.4.3 Recommendation

It is recommended that common data elements be defined for a
standard DoD software data system, using the USAF CPIN system as a guide. The
common data elements could be identified and issued in a separate standard, or
included in MIL-STD-48? to achieve DoD wide implementation.

4.6.4.3 Subpanel C - Security

The subpanel included:

George Kelly
George Smith
LTC Jim Harrington (first day)
Cal Showalter (Panel Co-Chair)

Issue: The proliferation of software intensive embedded computer resource
based operational systems, the advances in micro chip memory technology and
the emphasis on software language efficiencies have resulted in the increased
potential for various kinds of security compromises and associated
configuration management deficiencies that require policy attention by the
JL C.

4.6.4.3.1 Scope: Security requirements demand that devices within or as
elements of an embedded computer system be marked to reflect the status of
that device/medium as to whether or not it contains classified data. Tapes
must be marked and handled to reflect the highest level of classification
contained within the entire tape. Fusible link programmable read only memory
(ROM) must be marked (by etching, paint colors, etc.) to reflect the level of
classification burned-in. Electrically erasable (EEl ROM's present a more
difficult problem since the data which is loaded at. one time may be classified
and at a later time may be unclassified. Further an EEROM which has been
removed from an equipment may have been only pa-tially erased ar may contain
residual classified data.

Digital data which exists in any software medium is subject to
reverse engineering which can yield derived sensitive data and this data may
reqtire security protection. The extent of compromise which can occur should
be addressed in the context of both added complexity (uring. employment and

restrictions in overall fleet responsiveness if overclassification is
imposed. The new generation of reprogrammable equipments in weapon systems

was specifically designed to permit ihange in certain parameters. This
capability to make rapid changes is new ar may provide our armed forces with
a combat edge. These on scene, combat adaptations could not have been
accomplished in hard-wired systems of the past. These changes are often made
by the insertion of software programmed into fusibe link programmable ROMs.
7requently these parametric changes make use of highly classified enemy weapon
system performance data.

4-6-13

As a related matter, the absolute needs of configuration management

require that a PROM will be fully identifiable as to the host equipment,
location, data status, etc. Using reverse engineering, it is possible to re-

create portions of the source code from which the programmable ROM data was
obtained. The source code reveals our weapon system performance and is
normally classified, frequently at the secret level and the installed
programmable ROM must be classified at the same level. The issue becomes
"What is the classification of the programmable ROM after it has been
programmed and identified for installation in the system when the programmable
ROM is physically separated fran that system?" The programmable ROM contains
object code which yields source code which provides system performance
information that has been classified. A further issue is "What is the
classification of a programmable ROM which contained superseded threat data,
after it has been removed fran the system as a first step in accomplishing a
threat data change or update?"

Lt.6.43.1 .1 Discussion: The problenm of essential use of classified
information in the form of software as an integral part of the routine use of
most of the equipments/systems in service inventory today is real. Procedures
arr] safeguards for classified information, if not fully reflected in total
system concepts, can begin to impede the operational flexibility of our forces
and directly affect responsivesness ary combat capability.

4.6.4.3.1.2 Conclusions: The problem warrants bringing together a multi-
disciplined tri-service group to develop policy recommendations to govern the
security ani associated configuration management of operational software. Six
preliminary guidelines or conclusions are capsulized here as a basis for
tasking such a roup:

a. All nonvolatile mmnory devices/elements can retain
classified data even when removed fra their host operational system, but the
classificatior level generally cannot be determined by physical inspection.
Electrically programmable memories (EAROM, EEROM, Core, etc.) can be
reprogrammed many times with classified data at any level, so that the highest
level of intened classification seems to be the one of security
significance.

h. Major weapon system operational programs may contain some
parameters which are classified, but when those parameters are removed from
the operational program and replaced with "dummy" values, the overall program
becomes unclassified. This sanitized program permits simplified control and
handling and greatly reduces potential for compromise.

c. Military equipments/systems containing software may be
designed with integral, "permanent" data which incorporates clas3ified
information. When this is done the entire equipment/system, in the strictest
sense, must be handled/ safeguarded in accordance with procedures prescribed
for the highest level of classified material it contains. It is possible to
determine during the design phase the mix of data which an equipment will
require in operation and to design the hardware such that the area which will
contain the classified software data is well defined, partitioned, and
segregated from the area which will operate with unclassified software data,
maintenance actions, handling procedures, etc.. Such a design would provide a
simpler means and an effective means for returning the equipment/system to an
unclassified status after use.

4-6-14

d. It has been demonstrated that software in object code can be
reverse engineered to source code which will re-create the level of classified
performance information which a system manifests.

e. Since a system classification can be directly affected by
the classification of the software loaded into it, and because there is
normally no visible evidence of what software configuration is in memory, it
might be concluded that the system must bear the classification of the highest
level of software that is available for load. This conclusion should be
modulated where the design of an automatic power down system sanitizes the
software and provides verification of that sanitization event.

f. In all of these preliminary conclusions the paramount goal
must he the deployment of systems which provide the maximum canbat usefulness
and flexibility of use consistent with the minimum security requirements which
must be accommodated. Our military forces must be provided systems which can
win despite essential security restrictions. Absolute security must not be an
end within itself.

4.6.4.3.!.3 Recommendations:

It is recommended that a tri-service group having expertise in the
areas of hardware design, software design and support, security, configuration
management and operational employment of forces be commissioned to develop JLC
policy recommendations and guidelines for the security aspects of current and
future operational systems. In accordance with the preliminary conclusions
above, the following candidate areas are offered for consideration and policy
recommendations by such a follow-on tri-service group:

a. Classification of nonvolatile memory devices/elements.
Categories for consideration are: media as received from vendors, ready for
issue, maintenance bench stores, installed and as removed from installation.

b. Marking of memory media. Categories for consideration same as
in 1. above.

c. Configuration control policy

1. levels of S/W change to be reflected
2. master control vs local, on-site deployed control
3. master base-line change versus ephemeral change

d. Design/development policies to facilitate security requirements
canpliance

1. architecture/partitioning of software to isolate classified
from nonclassified software regions

2. dummy load/sanitizing policy for classified software systems
3. crew insertion/removal of classified mission software on

each mission basis

e. Program considerations relative to the above
1. increased cost in design/development to reduce operational

canplexity

4-6-15

2. increased cost if non-reuse policy of media is adopted to
avoid risk of compromise thru storage and re-use of
previously used media

f. Operational considerations due to the spectrum of increased
complexity necessary to safeguard classified software media in daily
ope rati ons.

4.6.4.4 Subpanel D - Configuration Status Accounting

The subpanel consisted of:

Mr. Rich Pariseau (Chair)
LTC Jim Harrington (second day)
Maj Ken Savage
LTC Bill Sanders
Mr. John Ruckstuhl

The major issue addressed by the configuration management (CM)
panel was determining the scope of software CM (SCM). Among the targeted
products of the CM panel was a multiservice definition of SCM.

Subpanel D was initially requested to address methods of tracking
the configuration and the need for a central backup/repositiory for
software. Specific initial areas of consideration included the hazards of
single site storage, automated methods of tracking the configuration, physical
control of the data base, and CM of the technical data as it relates to
releases of the software. Suggested initial products for the subpanel
included definiton of the physical CM products, policy recommendation on the
neel for backup, identiftcation of what must be transferred from the developer
(government or contractor) to the post deployment software support (PDSS)
agency, and gound rules for an automated tracking and status accounting
system.

Following the first day's meetings and discussions, Subpanel D
became aware that the other Subpanels of Panel F were already addressing the
issues of defining the CM products (configuration identification), controlling
those products (configuration control), and assuring the quality of those
products (configuration auditing). Subpanel D decided, therefore, to
concentrate on issues involving tracking of the CM products. In CM
terminology, this area is called configuration status accounting (CSA).

The subpanel established its major issues to be the definition of

CSA and the determination of its scope. The subpanel addressed five
q ue sti ons:

a. What CSA information is stored, tracked, and reported?

b. How should CSA information be stored, tracked, nd reported?
c. To whom should CSA information he available?
d. Where should CSA information be stored?
e. What developer contractual const-aints are required?

The subpanel established the following definition for CSA:

4-6-16

CSA is the function which tracks, stores in a generic data base,
and reports upon the results of configuration identification, configuration
control, ar-u configuration auditing.

In the following paragraphs it should be noted that storage of CSA
information and tracking of CSA information are interrelated. To effectively
track CSA information, it must be stored in some form of a data base. If
there is no requirenent to track CSA information, there is also no requirement
to store it in a data base.

4.6.4.4.1 What CSA Information is Stored, Tracked, and Reported

From the point of view of the CSA process, there are three classes
of information to be stored and tracked:

a. The results of the configuration identification process.
b. The results of the configuration control process.
c. The results of the configuration auditing process.

It is Emphasized that the CSA data base consists of information
relating to the software product as opposed to the actual configuration
items. The product software, its documentation, change proposals, minutes of
meetings, and other pertinent information would be stored in other data
bases. The CSA information that is reported consists of formatted excerpts
from the CSA data base.

4.6.4.4.1-1 Information Stored and Tracked in the CSA Data Base

Results of the configuration identification process consists of the
identification of all configuration items (CIs) comprising the product
baseline configuration, including subsequent changes. Results of the
confiQuraticn control and auditing processes consist of a record and audit
trail of all significant CM events that occur from the moment that
configuration control of a CI is assuned by the goverrment. This inclutdes
information concerning:

a. Trouble Reports (TRs).
b. Change Requests (CRs).
-. Document Discrepancy Reports (DDRs).

d. Engineering Change Proposals (ECPs).

e. Configuration Audit Results.
f. Release Notices.
g. Configuration Control Board (CCB) Meetings.

The collection of information in the CSA data base nust be
sufficient to describe the history, the present status, and anticipated
configuration control events relating to the pror'uct baseline CIs.

4..4.'.2. Information Reported from the CSA Data Base

The subpane! identified five reports to be provided bv the PDSS

agency as standard CSA reports. These are described below.

4-6-17

4.6.4.4.1.2.1 CSA Data Base Top Level Sum ary

The purpose of this report is to provide a summary overview of the
project baseline's configuration status. Context of the report includes:

a. Identifying information (project, date, agency, location).
b. Baseline information summary

(1) Identification information (release, users, location).
(2) Configuration identification (upper level CIs).
(3) Statistics on CIs.

c. Change information summary.
(1) Statistics (number open, deferred, in process, closed).

(a) Provide the statistics for TRs, CRs, DDRs, and ECPs.
(b) Indicate the change in total number for each category

since the last report.
d. Historic Information.

(1) For the TRs, Cs, TDRs, and ECPs indicate the oldest and
the most recent for the categories of open, deferred, in
process, and closed.

4.6.4.4.1.?.2 CCB Minutes Summary

The purpose of this report is to provide a sLmary of a CCB
meeting. Context of the report includes:

a. Identifying information (date, location, purpose).
b. List of official CCB actions taken.
c. Information required to obtain copies of the complete CCB

minutes.
d. Anticipated date of the next CCB meeting.

4.6.4.4.1.2.? CCB Minutes Summary Directory

The purpose of this report is to identify all available CCB Minutes
Summary Reports. The context of the report includes a listing of the
identifying information from all of the CCB Minutes Summary Reports.

4.6.4.4.1.P.4 Configuration Control Status Summary

The purpose of this report is to provide summary information
concerning TRs, CRs, DDRs, and ECPs. The context of the report includes:

a. Idfnti fi cation.
b. Description (short form).
c. Status (analysis, approved, implementation, testing, completed).
d. Baseline impact.

(1) Affected CIs.
(2) Schedule for inclusion.

4.6.4.4.1.2.5 Configuration Item Summary

The purpose of this report is to provide summary information
related to releases of the product. For each baseline product configuration,
the context of the report includes:

4-6-18

a. Identifying information (CI number, dates, release notice,
users).

b. Change information fprevious baseline, ECPs incorporated).
c. Location of product items and procedures for obtaining them.

4.6.4.4.1.3 Recommendation

The subpanel recommends that DoD establish the policy that all
services store and track the same elements of CSA information. Additionally,
the subpanel recommends that DoD establish the policy to standardize
generically the information cctext of commonly used reports while allowing
the flexibility of producing more specialized reports and data access to
accommodate the needs of specific users of CSA information.

4.5.4.4.? How should CSA Information be Stored, Tracked, and Reported

The subpanel concluded that all services should utilize a common,
automated data base system to store, track, and report CSA information.

b.6.4.4.?.3 Storage ard Tracking

The subpanel concluded that all services should utilize the same
methods for storage and tracking of CSA information. This may be achieved
through a sequence of steps. Initially, DoD should require that all PDSS
agencies store and track the same elements of CSA information and utilize the
same generic format for that information. For example, a common DoD
configuration identification system should be used, dates should use a common
format, and the information concerning CRs, TRs, DDRs, and ECPs should be
identical across all PDSS agencies.

Initially, DoD should not restrict the methods utilized for storage
and tracking. In some cases, manual methods will be sufficient for the amount
or CSA information required to track the product. In other cases, data base
systems of varying degrees of complexity will be necessary. The long range
objective, however, should be to fully automate the storage and tracking
methodology. In this automated system, changes to any CI should result in
automatic generation of data for the CSA data base. A current example of this
kind of automated storage and tracking of CSA data is the Naval Air
Development Center's Facility for Automated Software Production (FASP).

4.6.4.4.2.2 Reporting

The subpanel concluded that with the exception of the handling of
classified information, the common, automated CSA data base system should
distribute all CSA reports via electronic communications. Receivers of
electronically transmitted reports should have hard copy capability at their
sites or should have the capability of requesting hard copy CSA information
from the PDSS agency. CSA reports should be generated by the CSA agency in
response to specific CM events, periodically, and in response to requests from
interested parties.

4.6.4.4.2.3 Recommerlation

The subpanel recommends that DoD develop a common, automated CSA
data base system and require its use by all services. Analysis should be
performed to establish the best approach (e.g., centralized, distributed) and

4-6-19

then that approach should be implemented. It is recommended that DoD
immediately establish a comman definition across all services for the elements
of CSA information to be stored and tracked and for their formats. Initially,
the medium of storage and tracking and the methods of entering data and
updating the information in the CSA data base should reflect the capabilites
of existing PDSS agencies. As DoD develops its autanated CSA data base
system, manual entry of data should be replaced by automated entry. Because
the CSA activity is an activity that lends itself to electronic transmission
of information, it is recommended that the developed CSA data base system
utilize various transmission linkages that would be determined based upon the
data requirements of the specific PDSS agency.

4.6.4.4.3 To Whom Should CSA Information be Available

CSA reports fall into two categories:

a. Reports instigated by the PDSS agency responsible for CM.

b. Reports requested by activities requiring CM information
(sponsors, users, contractors, researchers).

4.6.4.4.3.1 Reports Instigated by the PDSS Agency

The CSA data base top level s1rnary report should he provided to
CCB members prior to CCB meetings. The CCB minutes sumnary report should be
provided to all interested parties (CCB members, support agencies, users,
sponsors) immediately following the CCB meeting. The configuration ccntrol
status summary report should he provided periodically to all interested
panties (users, support agencies). The period should be frequent enough to
assure that the interested parties have a ar,"-nt understanJing of ongoing
PDSS events. The CI sumnary report should be provided to all interested
parties (users, support agencies, sponsors) whenever a formal release of a
baseline occurs.

4.6.4.4.3.2 Reports Requested by Activities

The subpane! concludel that the PDSS agency should pursue the
objective of full disclosure of any CSA infor,nation to any interested
requester. With the exception of classifi ed material, all CSA information
should be available to any authorized requester upon formal request fran tl-e
PDSS agency.

4.6.4.4.3.3 Recommendation

It is recommended by the subpanel that DoD policy allow the widest
d 1ssemi nation of the CSA information. The DoD policy for controlling access
to CSA information should he delegated to the government agency that controls
the related CIs.

U. .4.4.4 Where Should CSA Information be Stored?

The CSA data base shoull he conveniently accessible to the PRX'S

agency responsible for configuration control of the product. In the -,ase of

electronic transmission capability, it is not necessary for the data base to
be phy.s3ically located at the PDSS agency site. In the case of a manual
implemented data base (written records, files), the data base should he

lct.ated at the site of the PDS3 agencv.

4-6-20

The subpanel concluded that the CSA data base should be backed LP
in at least one location physically separate from the primary storage site.
The backup data base should be periodically updated on a medium that will
allow reestablishment of the primary daLa base in a reasonable time. At each
time of creation, the backup data base must be certified identical to the
primary data base.

4.6.4.4.4.1 Recommendation

The subpanel recommends that DoD establish a policy for creation of
backup CSA data bases, certification of these data bases, and physical storage
in at least one location physically separate from the primary storage site.

4.f.4.4.5 What Developer Contractual Constraints are Required?

The development contract must specify that. the identification of
the configuraticn items canprising the product baseline configuration and a
record of significant confi'guration control events be provided to the
goverrinent in a form conpatible with the goverrment established configuration
status accounting data base (written format, machine readable, directly
entered into a data base as pertinent). It is desirable that the developer
provide configuration status accounting information to the government in a
form canpatible with the goverrment established CSA data base rather that
accept different developer's methods. Once DoD has developed a common,
autmated data base capability for CSA, it is recorrended that the development
contractor be required to utilize that capability in order to facilitate the

transfer of CSA information to the goverrment.

4.6.4.4.5.1 Recommendation

Upon development of a DoD common, automated CSA data base system,

all contractors involved in major software developments should be required to

utilize that system. 'ntil the development is achieved, all contractors
involved in major software developments should be required to provide CSA
information in a form compatible with the government defined CSA data base.

4.6.4.4.6 Summary

The DoD should develcp a coranon, automated CSA data ba3e system.
All agencies and contractors involved in major software development should be

required to utilize that system. Information transfer in the system should be
performed electronically. The CSA data should he backed up by a certified,
redundant data base stored at a site phyically separate from the PDSS agency
site and created frequently enotgh to allow reestablishment of the CSA data

base in a timely fashion. With the exception of classified data, the DoD
should establish the poliqy of full disclosure of CSA information to all
interested parties.

As an interim measure, the DoD should establish standard
identification, format, and reporting of all elements of CSA information. All

agencies and contractors involved in major software development should he

required to utilize and/cr deliver to the goverrtnent CSA information in tie
prescribed format. Delivery should he contractually required in a format and

medium canpatible with the PDSS agency's interim CSA data base system.

4-6-21

4.6.5 Recommendations

4.6.5.1 Policy Recommendations

It is recommended that the JLC develop a PDSS CM policy document
which requires that DoD/service directives, military standards ani guidebooks
relating to software margement, acquisition an support contain the following
PDSS CH considerations:

a. Participation by the PDSS activity in the development phase to
influence development phase configuration management practices
and assure continuation of these practices into the deployment
phase (see section 4.6 .9.2(a) for implementation
recomenation).

b. A definition of software related products which must be
developed by the development agency and turned over to the PDSS
agency. These software related products are detailed in section
4.6.4.1.1 of this report.

c. The development of a transition plan, jointly prepared by the
development activity and the PDSS activity with the development
activity having primary responsibility for generation of the
plan. Minimum content nequirements for the transition plan are
contained in section 4.6.4.1.?.3 of this report.

d. The establishment of a DoD wide requirement for a standard CPIN
system. A proposed numbering system has been developed by the
USAF and is contained in Appendix C.

e. Computer Resources Life Cycle Managemert Plans must include
provisions for handling multiple, parallel baselines.

f. The establishment of a DoD wide requirement that all services
store and track the essential designated elements of CSA
information. Paragraph 4.6.1;.? describes the actions required
to allow implementation of this policy (see implementation
recommendation section ".6.5.2(b), (c)).

g. The requirement for storage of all CSA data bases in at least
one location physically separate from the primary storage
site.

4.6.5.2 Policy Implementation Recommendations

a. The JLC direct the inclusion of the following paragraph in MIL-
STD-SDS draft of August 1983:

The contractor shall specily PDSS parameters appropriate for tie
support of all the delivered and deployed software as part of the
S/W Development Plan. These parameters, as a minimum, shall
include the requirements for a support facility, work force mix,
IV&V, cost of ownership, support environment and configuration

4-6-22

management with details for change processing. These assessments,

by necessity, are considered iterative in nature, shall he reviewed
at CSCI design reviews and provide the basis for a PDSS plan to be
implemented not later than establishment of the product baseline.
(see 4.6.5.1(a) above.)

b. The JLC establish a tri-service group to address the
implementation of the CSA system including at least the
following:

* identification of the essential designated elements

which comprise the CSA.
* standardize the information content of these elements.

trade analysis on centralized versus distributed
approach to CSA.

* determine optimum data t-ansmission linkages.
* investigate and recommend reporting formats and

d istribution.

c. The JLC, based on the above, support the development of a
common, automated CSA data base system for use by all services
during development and PDSS. ((b) and (c) above support the
policy of 4.6.5.1(f).

d. The JLC support the definition of CSCI as now included in
Appendix XVII of NIL-STD-483, Notice-?.

4.6.5.3 Special Recommendations

Subpanel C, during its deliberations, determined that the software
security issue during PDSS was greater in scope than could be resolved at this
workshop and accordingly the following special recommendation is offered: A
tri-service group having expertise in the areas of hardware design, software
design and support, security, configuration management and operational
employment of forces be commissioned on an urgent basis to develop JLC policy
recommendations ad guidelines for the security aspects of current and future
operational systems. Items for consideration by this group are uontained in
section 4.6.4.3.1.3.

4-6-23

q -
I 5 - -jc

o~ a0

0 cc -~U . z

CD:
L) 00 &uU u U

Z' U i L L , U J

0 wuwo 4c- U

oUW O 4c #-- - I
-l 1j) 0 z 0

6 0

iu m~ W 000i
Z OLIJC)

0iC C .z0UJ ~ u~ cca. (Az i0 0
v * 0 0 c ucn L& c -j &J C Cc=

25..

.ME 0 l U

w uj~u

U ~ ~ Z 0241 z U

C.)O >.20
Z 0 z UJ U

cn 5 a U
U. ~ ~ L 0=z O

z0 0u
ow = C

OW C Z~~ *Cfl

LU 4 50j z

0 UJ 'J0 Wj z LU) aA

cc =Q - 0 .c.u
gn CL w cc

0 2i 2c

w z U) z

bn -

4c 2 C
20 0

I~z w

0 CC(Oo j wCh

o w
z' U . r

0 Cc L.w CL

o: .0 zw

CC 1
<-- (n

APPENDIX A

PARTICIPANTS

CO-CHAIRMAN: Showalter, Mr. C. (Cal) (202) 746-0650
Naval Air Systems Com-and (AIR-543C) A/V 286-0650
Roon 620, JP-2
Washington, DC 20361

Cfl-CHAIPMAN: Schuman, Ms. A. (Toni) (213) 217-4079
TRW Systems Group
1 Space Park, Bldg. 134 Rn. 6079
Redondo Beach, CA 9027A

A Savage, MAJ K. (Ki) USA (703) 664-4878

U.S. Amy Conputer Systens Cormand A/V 354-4878(ACSC-TE)

Ft. Belvoir, VA 22060

A Sonzalez, Mr. L. -eo) (915) 568-1056/2810
HO USAADASCH (AT7A-CDS-R) A/V 978-1056/2810
Ft. Bliss, TX ;9916

A Taupeka, Mr. H. (Horn) (201) 532-2319
USA CECOM (DPRSEL-TCS-ED) A/V 992-2319
Ft. Monmouth, NJ 07703

F! Anderson, fir. G. (Gerry) (619) 225-7615
Plaval Ocean Systems Center (9133) A/V 933-7615
San Diego, CA 92152

N Pariseau, fir. P. J. (Pich) (904) 234-4113
Naval Coastal Systems Center (310) A/V 436-4113
Panama City, FL 32407

N Smith, Mr. G. (George) (805) 982-8981
Pacific Missile Test Center (4020) A/V 351-8981
NAS Pt. Mugu, CA 93042

MC Sanders, LTCOL B. C. (Bill) USMC (202) 695-5170
HQ US1C (LMC-3) A/V 225-5170
Washington, DC 20380

AFLC Wagoner, Mr. J. (James) (405) 734-2227/5355
fnC-ALC/MMEDUC A/V 735-2227/5355
Tinker AFB, OK 73145

AFLC LaVergne, fir. P. (Bob) (916) 643-3154
SM-ALC/Mt1P, (AFLC) A/V 633-3154
McClellan AFB, CA 95652

4-6-A-I

AFSC Faranello, Mr. J. (Joe) (617) 861-2922
ESD/ALEQ A/V 478-2922
Hanscom AFB, MA 01731

AFSC Rhoades, LTC D. (Dusty) USAF (703) 664-3477

PSMC/SE-T A/V 354-3477

Ft. Belvoir, VA 22060

AFSC Mayhan, Mr. A. (Al) (205) 279-4462

AFDSDC/SC A/V 446-4462
Gunter AFS, AL 36114

A Soskins, Ms. F. (Frances) (213) 450-2424
TELOS Computing
3420 Ocean Park Blvd., Suite 3050
Santa Monica, CA 90405

A Fichert, Mr. L. (Lew) (201) 741-5008
Teledyne Brown Engineering
78S Shrewsbury Avenue
Tinton Falls, NJ 07727

Kelly, Mr. G. (George) (7C3) 237-1333
Conputr' Science Corporation X341
6521 Arlington Blvd.
Falls Church, VA 22046

flaibor, Mr. V. (David) (617) 65P-6100
Dyramics research Corporation
60 Concord St.
Wilmington, M A 01887

Furia, Ms. P. F. (Dreana) (703) 979-27DC

Veda inc.
1755 S. Jeff Davis Rwy., Suite 700
Arlington, VA 22202

AFLC Bushey, fir. M. (Max) (316) 526-4571/3415
Boeing Military Airplane Company
3801 South Oliver (M/S r31-26)
Wichita, KS 67210

AFSC Berlack, Mr. R. (Ron) (603) 885-5170
Sanders Associates, Inc.
95 Canal St. (M/S NCA 1-4222)
Nashua, NH 03061

NTEC Ruckstuhl, Mr. J. (John) (305) 273-4891
Naval Training Equipment Ctr (N-401) A/V 791-4891
Orlando, FL 32813

t%-2

APPENDIX B

BIBLIOGRAPHY

- 1. MIL-STD-SDS "Defense System Software Develop-
ment," 30 July 1983, and associated
Data Item Descriptions

2. MIL-STD-483 (USAF) "Configuration Management Practices
for Systems, Equipment, Munitions,
and Computer Programs" (old and JLC
versions)

3. MIL-STD-1679 (Navy) "Weapon System Software Development,"
1 December 1978

4. MIL-STD-490 "Specification Practices" (old and
JLC versions)

5. Final Report of the Joint Logistics Commanders Software Work-

shop (Monterey I), 1 October 1979.

6. Final Report of the Joint Logistics Commanders Software Work-

shop (Monterey II), 1 November 1981.

7. MIL-STD-480A "Configuration Control - Engineering
Changes, Deviations and Waivers,"
12 April 1978

8. DoD Directive 5000.29 "Management of Computer Resources in
Major Defense Systems," 26 April 1976

9. DoD Directive 5010.19 "Configuration Management," 1 May 1979

10. SECNAVINST 5200 "Manacement of Computer Resources in
Department of Navy System," (undated)

11. NAVELEXINST 5200.23 "Computer Software Life Cycle Manage-
ment Guide," 1 March 1979

12. AFLC Reg. 800-21 "Management and Support Procedures
for Computer Resources Used in
Defense Systems," 21 January 1983

13. DARCOM Reg. 70-16 "Management of Computer Resources in
Battlefield Automated Systems,
16 July 1979

14. NAVAIRINST 5230.9 "Policy and Procedures for the
Establishment and Operation of Naval
Air Systems Command Systems Software
Support Activities," 14 June 1983

4-6-B-I

APPENDIX B: BIBLIOGRAPHY (CONTINUED)

15. AR 380-380 "Automated Systems Security,"
14 October 1977

16. Note to CRMP Preparers, CECOM Publication (undated)

17. DoD Joint Services Configuration Management Regulation,

1 July 1974. Implementing Instructions are: AR 70-37,

NAVMATINST 4130.1A, MCO 4130.1A, AFR 65-3, DSAR 8250.4,

NSA/CSS 80-14, DCAC 100-50-2 and DNA INST 5010.18

B-2

APPENDIX C

BRIEFING CHARTS

(PUBS COMMITTEE HAS THE ONLY COPIES)

4-6-C-1

IJJM

Nw I-i

w w 0 u

z

C-2

LJ
z

~zJ Uz
U0

yjL

w 0 NM0
U) NJ

- ,Z w

ww

0 U U,

0 z 0
i..iL0 >I

w U,

0 Z c

o 0
ow W C6

a. 0

C-3

0

-zz

U4 zzu-II
94e Wo ia

LI C U 0Oc
vI 2:6

5;E z0U U.OlI

L6(

o~ 0 0

w z w

LL-L - - -

0 -4zL u = u 0

LIJ I.

:0 -&J0

UU
0Z<

0<.J LiJ0ILU

UUJUam

CI 0 UJ <o0

D %WU
0<0 (IJ o

a."~C 5nZ

uuj
W I--

OLI-

cc0mJ U U<mhJ

<500 WO4I OL(A

I- I-
00

U3 u (Z uB

ti~ C-6

(CID
Mu

M M L M M
M qe o MC

z N "le q CM p "-

UL V U

ZI- x
zw Z Uw Lu z Uw

0
AP-) C4 1000

NNWU~ M CoCc C
0.w4 0.w

IN W NI

0i 0 o0 0uo

0~~~~~~; V)NNUwNNU7 4C

ZI-

0..

z z z

z UJ..j

wL w z

mim

0 x-Z

~ +
I-u

U) 1 *J
0 z

U + w

0 z'

o0 wIo-

C,)L

C-9

Iu

UL NUUu

uwz C4C4CN N N-N

> z2

LL, u u

1 I-
<0

-~L cc UUL

-

0 <_
_ oNN N> N

~ FLL0
OWN u rtC4 en U.

~~l qe
is 10Ux 0

-J~~ Z u O~

U

0

00

u u (U

00

U.U

Now

(me)

C-I I

U C

O0

w _

0 m Mw

C-1

-- - - - - - -' - - -- - -

0 .,O

LLJ6

z
00

z-~

ft V_ god~

oPoo

<0z

o ~o < 5
I m

z L6U

~. ZZ wI cg 0
cc P

oWL As%~

'c(13

LUU

z Z 4,

z' LL.

zo Lm 0

zz
ILL.RZ 0:

LLJ 00 LP

z >
000

0

w F-z

(,V)

z

0
C, 1

LU

oUz

C- 16

a.aU zU
0U 0 c

-A-3

-9 mM 0

c-1

-ml z

zL

z ~ LL M U
Mi i 0 Z 0 Mi

z: P -A
LA am 4 4 Wi

4 LLMi ,. p Z
Mi. Lu a

0 a a - -

N 0
Mi1- L ~A.24U 0 AC

~ a MiU -

U, U6

0 L

C- 18

-'U

bL6

LLad

LU "a ID

MWZ

w0

(-1

low-,

zz

z-z

w II-04
LU 0 z

L16 z
UU- I-A

LAA LAW

U ha

z ZU z zZ

C- 20

__M
z

LU 0

I-LIU

zLU LU

zzZI LU

a U

CI-U goU
0 Z LU

a a. L
LU a

2a 0 L

*iI LU Lu LA

ZU in

LU

-ILU)I-L

z ZU LL. L

LULU

Cm -21

z

0z

z

U'

z

C-2z

z

II~0 A
z Im

I- z
LAA m

'U

C 1-. 0
0z z

z zC0 0

LU I- U
'A'A

LA- zA z 1 LI,

z =M L U CL LA Iac Z~ ZZZ3%JJ
CL LA 111111c

* 0U 0

0(-% Z

17

z

I- 4 Z 4

zu z
4j I-. - ,

a U -0 I-j Li

Z -24u

z

z

z

(25

zA
zlm

LA.

I-d z
ZJ

LU z

z1 h v~ z

L&AJ

4% C

cm <

I--

LUL

LU Ca

I-

LUU

V) C)

-~ LU _ ______

C---,

C-27

LAJ

00

I-A

C-C,

La..Lai

LA-A

C-2

I"6

z~L __ __ __ _

o o

0 - s
a. I- V e

U- MI t^

z z-

LJJJ

0 ~ - meu U

& z 4 W
cy C~E

C-29 L U

LAd

400 <

o z -

4 I-A

0 kA
)I 'U~~or0

4V z z

4

c-30

OOM
W-

.
oxI I..

zM zO

hU

aa)I3-

I- 0a 0
L16 qa c %

ox .I in-
I/b%A f4

- m = IW

Cie 44L&.a Z

0a =~ z zi~

= L-3

Z Ub
cz

CID o E M-

Lm, IL I j
'L SL w SA Lu C

aC-%

LLIM

C060
'UU

CD a.

low pLuAI-
CD ma <~u a

CD 0 0C9L

z FC2
en, 44 a n

P- ::! z %A M

44 1

L"

10

C-32

17-

z 0 L16

z o

Z '~Z a. ;
p-J CL cc u

U CL 4

aU -a-

UU U

20

09 in

ag1

Z~ ~C 33n N-"

Mal

C

o
C SM z

w z

z z-
-II cn a.

C-3

L'U

0 LU0

oz

U-

0 z

LIU > 14 .0 < ==a

w 0L
'UU

zz

z(
IJCD

o 0

zz

00J 0

La 444&
0 z ol z-U

II- pC-36-

z
oz

>1'
z

~L. -

oA z
CZ-

-- IhJ CL

0 o

00

'C-3

"A

LU LU

LU am
aI-I- $-

fl-LU LU =Uz~ >,-U
woU LU

a U LU

LU J LU

FE ~ LU LUI-

cr.-
>0 44U L

o 0 2'o U,

um 1
U% z LU

LU" xLU

KLU 4

LuLU

LA L

0D z
oD

z>
z

S'-

> LA.4

000

z

z -)l

0 00
z z LA

P o

~I Z Z

a.I U OF V
Z o

LI . LU

za.
a 4c -'A

-m U,
Z ag~

UO 14 z W

0- 0 0j~

>, >In
SM fi a

AM 1= SMZ

= A L L
wM ~U

aU

z

b& J LAJ~ L Id

IJ. LAJ

LA L(LA- A-

1.. 0
0a L"

0A

LA LLmJ

0 0 m.&J
c) S.- 0I

S0 L 0

- I-

F . -~- .

zV

I8~z lz.

<~ 5

&.=) 5Z z

w - 9 , -. < -o

0I C) 0 0

500
-4z

U- w-t~ww0
Fq u 0

C) > a

Cb

u z

I-

z Cz

zzo 0k

-P

I- a>

IILI
>p"

CXC

LU C
z&

w* L~ ai

< FE

00 0000 00 0

AJ6
o

C~ N C4 C 4

LUJ

LU

z

C-

La z

LJ

LUd

Lai CA
I.'. LA =h.j =

LaLai

cr. Lai~ Laik^ .0

CE., 0

C~4

a am

z

CDC

o

ca4

z
0
I-

I-

z

a-

(7-49

Lh.J

LAJ

-

ILA-c/C)
LALJ 0&

0 =

. .AC)A

CC

%. La

c))

zz

I.- .J

00

Lu L"

I.%A
zz w

La 13-

C0 Cl

CD CS

CD 4

0%4 4Aa
CP% oU IC2n

cc
SM 0

a- ___

> 0 44L Ii ~ *

LU~- ago 02 AC L "

4u 4' 0 1- U6.a
IIz @~ ~

W6-S 44. 4

0n Z 4

0 0v
0E -= SM Z

ca~i

Z -a ti4
o 0 0 0 u SM S

Lb. OZ i z 4

LI

aSm

4C

am~~~ 6/6fNp ~ "

UNCLASSIFIED F/c. LV ML

11111 1.012.0
- L I .

1.ll25 1.4 1.6

z
.JJ

2

z 0

zzoAL LALoe!aILa Lai~r
~zZ0 ~ ~ ~ ~
LL. = - ~ u O ~

z -I

La LU -m LJ
e.I.IIIII 11111
Z -

0 0 & C

C-A 53

~\OCwl

UL

C-55

• .-

c0

Soo

c-

0

OC lw

z 4
M a :NI

~~0 I n i IIw w cmm

CA- 4M c I

- 5S

cc 0 0

Z6W

zz
ii

U Z

acu Z LAz

C- 57

N6 cl Q i

I
vb =

* \\)\) c~b.h 1;

II\

/ 1,

,, I,, , ""

: / , , ,// / " ") ,

-ai
C -

C-58

w~mEI

Z -a

If @c z
%qh)P

COD Co
qr S

SM O)q
o LIJ Iw

Qrs In ~u NE

C, w a
U 00

U)q4

ox 9

o o

wIwi

CA_ 00 - 0
0 J

am.i

* ow

IL 0w w wz
0 30I

low~~- cc Wj46

0 W

Wc I I v

*0 0 0 0 0 0 0 0 0

C-60

L5

I"w
CA 4

=I
MA

4A a ,

I.- w .

I-w,

~A 2c~ - &

19 W Cb W

Laa

40I 3

4&W d, I I.-ah.1

.~ C-61

WA~

4L --e
CL.. cco.

I-.-
Lai

- ~ ma', CA 3w
-lo

B.d

6"'
ZE o.A !2n

C3 - -
C= U ~

LU ~J . *~ug ~-
w

cm 41

I" IMPJ =P

47

Lai

bw

*

ma oo

C-6 2

pi
0 0

LU

zz
/ IL

w

z
aIla

C-63

I.W
lo

0
0
W

011

I.,

z

acc

z COP m

C-64

09

wz z

2I- (AJOC

Ood-

z z
P miz 4

WCD O hi.

I --

L5 hc65~U

zC L

C) ua. .

LUU

CO) Iow

zz

lii IoIIi
U I ll

C -66

zi

z

z

0

C)I

C-6 7

0

z

Z W(A

zo

z 66

< 0.

z

00

Pz

0 I

2

cf)

C-6O

LU

z
2- u-

z 0

C..).

z z

0

LL

z
0

C -69

00

zi z

cr C,P.C
zx 0. Cflh L fl w L

<D j
z

CLC.

- z U'

z). w

o 0 o Mc
- U' -

C-io

CL

z -j 0

U) C < Z

0U Q) Z 0zr z w L C

uiLU u LU ' LU>
-jC -j LUo)t

z cn >--

< iC
04 4 4 4 4 4 4 4 4u

< U

z < uI

c-71

LUz

0

U 0 Z

~LUW.

i mL

= Lu L)

I~LU LUC

LLI C/) Lw

0z

S j
I

C-72

-I wc)LJUJU

P = -LJU Z uwj 0

LLm 00 0C

W0

LLJ u I

C-73

UJ

CL
UUu

o wcc

LU -0-

owu

(A CL.r 0

UL
LU V

Z u 0
Uj CL

(4>
CL

wZ

>E
C-74i

-Z

tS i

0:1 =
I VA

10 1.

2 29
I 4cA.

c c

M E -11

Z D-

im-i -

2440
121

IS c t

x c c

I C

-,
i

II C 33 Ic o

2 ~j*=
3u

I- C K
S

C-75

A

.4 -

S j

I I - 4

-C-7

C..

0 ~~ (AW 0

-ww

-J&
0j 2

w Z-
4cU U

w 0
L0

w r-

00

0 0

0

C&LL

zSz

C-77

mmml z

z z

LUzuz

0~s* u-I
0Lu

ZLU-zL

00

C:-78

z

uJL

LUU

LUL
LLLL > <U

E. gCZU

CECL
QJ C),

uLo

C-79

zzL
00

>J z

z~uz

0ieO

c-0

LLJLJW

L) z

LLDI

c-)

APPENDIX D

ORLANDO I

CONFIGURATION MANAGEMENT PANEL CHARTER

1. ISSUE

Each of the three services approaches PDSS Configuration

Management (CM) from slightly different perspectives.

Possibly this has resulted from an attempt to apply reason-

ably mature hardware CM practices to software. The elements

of CM: configuration control, identification and status

accounting are all as equally important in the software world

as in the hardware world. Configuration control is even more

important when the software is firmware in a Read Only Memory

device. Changes to firmware installed in a piece of equipment

could change the hardware configuration of the equipment.

The major issue which the panel will addruss is determining

the scope of Software Configuration Management. A multi-

service definition to be promulqated by the JLC will be one

of the products of our efforts.

Specific issues which this panel will address are:

1.1 Issue A. Baseline Definition - Different services

treat the transition from development to operational status

differently. The question of when a system becomes opera-

tional needs to be resolved. The nonstandardization of

requirements and procedures for transition to PDSS agency

needs to be resolved. When multiple services are involved

in the same program or when a single service delivers produc-

tion items to two or more services 'for use, baseline defini-

tion and control is confusing.

In the operational phase of the life cycle, multiple base-

lines may exist. Configuration management is critical at this

time.

4-6-D- I

1.2 Issue B. Configuration Management Scope and Terminology -

Automated military systems frequently have multiple computers,

systems, displays, weapon mix and software components. Config-

uration management is done individually on hardware components

of the system. Software changes can cause the system capabil-

ity to change which alters the configuration but may not change

the nomenclature or identification of the entire system.

Managing the configuration of software when varicus versions

of a system are deployed is a problem. Identification of each

version is important. The evolving development of deployed

automated systems creates hardware diversity. Software changes

compound this diversity. The relationship of the development

Program Management Office to the PDSS agency under such condi-

tions needs to be clarified.

Configuration management of interfaces among systems, espe-

cially when they are in different phases of the life cycle or

are maintained by different agencies, services or nations, is

a perplexing and ill-defined issue.

1.3 Issue C. Software Security - Different projects, even

within individual services, treat the classification of object

code, source code, storage media (including RAM and ROM) in

different ways. Facility security is also treated differently

between projects. Software security is not understood by

security-type people. Clarification, guidance is required.

1.4 Issue D. Methods of Tracking the Configuration and Need

for a Central/Backup Repository for Software. Generally, the

only repository for software (tapes, documentation, source/

object code) resides with the Software Support Activity (SSA).

Consideration should be given to the hazards of this single

site storage.

Automated methods of tracking the configuration and the

physical control of this data base needs to be addressed.

D-2

Configuration management of technical data (manuals, drawings,

etc.) must be addressed, especially as it relates to releases

of the software.

2. QUESTIONS

The purpose of these questions/discussion points is to stiLu-

late discussion of as many facets of the issues as possible.

They are certainly not all inclusive and others will be posed

by the panel as they explore their areas. Some may not be

germane.

2.1 Issue A. Baseline Definition

1. Purpose of baselines - who uses them?

2. What do they contribute to PDSS process?

3. What is the operational baseline?

4. What should be turned over to the SSA from the

developer?

5. What should be the situation for declaring that

a baseline is operational?

6. How can CM deal with multiple baselines during

the operational phase?

7. When should the SSA take over baseline management?

2.2 Issue B. Configuration
Management Scope and Terminology

1. What role should the PDSS activity perform in order

to support the configuration management of the

military system as a whole?

2. How should the nomenclature of systems be defined

to reflect differences in software?

3. How can the PDSS agency influence changes caused

by development of new systems that affect the CM

of a deployed system under control of the agency?

D-3

4. How is configuration management to be performed

on interfaces among systems?

5. To what level must the decision on interface

changes be raised?

6. How can division of responsibility among PDSS

agencies for support of different components of

a system be defined and maintained?

7. What can the PDSS agency do to influence the

development process to make PDSS easier?

8. Who defines the software CI and when?

9. What comprises a software CI?

10. Is it desirable for all DoD to settle on a

standard/common CPIN?

11. Should/can the CPIN fit into the hardware

automated identification systems?

12. What is the content (not format) of CPIN record?

2.3 Issue C. Software Security

1. How should source code be classified?

2. How should object code be classified?

3. How about equipments which contain classified

software in ROM, RAM, etc.?

4. Physical security requirements for host systems?

5. How is classification to be determined and marked?

(System, chips, tapes, etc.)

6. How is security to be verified?

7. Facility security requirements?

D-4

2.4 Issue D. Tracking and Storage Methods

1. How will software CM tracking be done?

2. Is an automated data base necessary?

3. Where should this data base be located? Redundancy?

4. Is software CM tracking different from hardware or

could the same methods be used for both?

5. Is it desirable to transition the developer's CM

methods to the PDSS agency?

6. Should all PDSS agencies use the same method?

7. Does this require constraints on the development

contract?

8. What gets transferred from the developer to the SSA?

9. What backup is necessary to the primary software

repository and under what conditions?

10. Where should it be: DoD activity, contractor

(original or other) or both?

11. What is to be maintained under configuration

control (technical data, software, other)?

12. How is configuration control to be implemented?

3. WORKSH 'P MFTHODOLOGY

3.] First Day

After the openinq Workshop General Session on Monday afternoon,

the six Workshop panels will meet in their assigned rooms for

the first time.

NOTE: For purposes of this outline, meetings of all Workshop

participants wilJ be referred to as "General Sessions" while

meetings of all rrmlrs of our panel will be referred to as

"Group Sessior,."

1)- '

The purpose of the initial Group Session will be:

* To review the Panel's objectives and purpose;

* to stress the requirement to provide objective,

well-defined recommendations to the JLC/CRM on

the issue of Software Configuration Management;

" to discuss general approach to the Panel's opera-

tion, schedule, administration detail, room

locations, etc.);

* to discuss the planned approach to use subpanels

and the group sessions;

* to allow the Co-Chairs and each member of the Panel

to introduce herself/himself to the group.

Further, it is planned that selected members of the Panel, or

invited guests (if appropriate) will be contacted prior to the

Workshop and requested to present briefings on selected topics.

Briefings would be from 15-20 minutes in length and would

provide:

* NTEC presentation on Trainer CM;

* Descriptions of how PDSS CM is presently done by

various services and selected industries;

* Current governing MIL-Standards, regulations and

directives;

" Known problems and proposed solutions.

Suggestions for other briefings will be welcome and shoul] be

provided on the survey form to be returned.

3.2 General Panel Operation

Beginning Tuesday morning, we will divide into four subgroups,

each with a leader, to address the following issues:

Subgroup A - Baseline Definition

Subgroup B - Configuration Management Scope

and Terminology

Subgroup C - Software Security

Subgroup D - Tracking and Storage Methods

Wherever possible members will be allowed to select the sub-

panel/topic area of their choice. Subpanel leaders and

recorders will be selected by the subpanel members in coopera-

tion with the panel co-chairs.

Subpanels will discuss their assigned topic areas, identify

planned recommendations in accordance with this outline, and

prepare written notes on major items of discussion/decisions.

Issues of a general nature, or those which may have the

potential for impacting another subpanel and/or panel, will be

identified by the subpanel leader and reported to one, or both,

panel co-chairs. The co-chairs will facilitate/coordinate

required interaction.

Subpanels will meet all day on Tuesday, Wednesday, and Thursday.

3.3 Daily Afternoon Workshop
Group Sessions

The subpanels will reform for a short group session late in

the afternoon on each day (Tuesday, Wednesday, Thursday).

Subpanel leaders and/or recorders will provide a brief

(3-5 minute) review of the panels deliberations, and report
on the preliminary recommendations developed by the panel.

The co-chairs will prepare, based on these subpanel reports,

a panel summary for presentation at the following General Session.

3.4 Daily Afternoon
General Session

The Workshop body will meet in General Session each after-

noon on Tuesday, Wednesday, Thursday, and for a final session

on Friday morning. At these sessions, each Workshop panel

will provide a brief report on their deliberations and prelim-

inary recommendations. These presentations will be made by

the panel co-chairs.

The General Sessions are designed to provide the Workshop

Committee, the Co-Chairs and all Workshop participants with an

assessment of progress, to surface requirements for inter-panel

coordination, to provide information required to redirect or

reinforce panel focus (if required), and to provide all Work-

shop participants with a view into the total Workshop activi-

ties.

3.5 Final Workshop General

Session - Friday

For the final Workshop Session, each of the panels will pre-

pare and present a 15-20 minute briefing. This briefing will

summarize the panel's work, our recommendations, as well as

providing other salient information.

This briefing and the summary written report will be prepared

by the panel co-chairs and subpanel chairs Thursday night.

3.6 Written Report

The subpanel chairs will prepare reports on their efforts

and the panel co-chairs will coordinate these and write the

preliminary report of the panel's activity. This will be

distributed to all panel members for their comments

(including minority reports) before being submitted to the

JLC.

Based on comments from the JLC, the panel chairs will prepare

a final Configuration Management Report which will present

details on the Panel's Charter, deliberations and recommenda-

D-8

tions. The full Workshop report will be distributed to all

participants.

4. SUGGESTED PRODUCTS

One major product of our panel will be a definition of the

scope of PDSS Configuration Management.

4.1 Subpanel A. Baseline Definition

1. Definition of operational baseline;

2. Definition of when the software becomes

operational;

3. Recommended CM transition plan from developer

to SSA;

4. Recommendation for dealing with multiple,

parallel baselines;

5. Other.

4.2 Subpanel B. Configuration Management
Scope and Terminology

1. Definition of PDSS configuration management scope;

2. Policy recommendation statement of inter- and

intra-PDSS configuration management relationships;

3. Recommended CPIN system and identification of

implementing standard;

4. Recommended policy statement on extend of PDSS

configuration management influence in the develop-

ment process.

5. Recommended guidelines on S/W configuration item
definition.

6. Other.

D-9

4.3 Subpanel C. Security

1. Policy recommendation concerning software security

processes, classification determination, verifica-

tion, handling procedures, etc., for inclusion in

DoD/individual services security manuals, directives,

etc.;

2. Other.

4.4 Tracking and Storage Methods

1. Definition of the physical CM products and what must

be maintained under configuration control;

2. Policy recommendation on the need for repository for

backup storage of software and pertinent documenta-

tion;

3. Identification of what must be transferred

from developer CM efforts to the PDSS agency;

4. Groundrules for an Automated Tracking and Status

Accounting System (when and under what conditions

would it be necessary);

5. Other.

I)-10

Am8

MANAGEMENT CONTROL
CONT

(RESOURCE CONTROL
ACE

FUNCTION) PRi

DOCUMENTATION am

CONFIGURATION MmI

MANAGEMENT

ENGINEERING
FUNCTION

RECEIPT OF

CHANGE
j ORIGINATOR

CE-NERI

_SlI TASK

WNTROL AND TASK CONTROL

•CEs. ChANgE

PRIORITY

AE AVAIMLE

--YATh - BASELINE PACKAGES

AM INITIATE

TRACKINS

0UTAT 1W

I ACCUMULATE

DETERMINE ROUTINE ROUTINE CHANGES
.HANKI /I $ ISA ll

PRELIMINARY
____ imuimOIAN

IC SOFTWARE

REFINE COST

AND SCHEDULE/

ALLOCATE MIINFW

_______ NECESSARYRW

REQUIREMENTS -E EMU

BASELINE

NEWET FOR VSE DIRECTIONS ______

Dua offlo

ESTASLIN SH PERFO
ATUOGIN CONCET 9 ERF

MD ESTIMATE CHNECNETTOP

KSOUM NEEDS

IANQ PR.OCES

MONITOR PROGRES

AND RE

I " TTUAI

UPDATE

SYSTEM

FORMOR

OP GENERATE

TVTO LEM on oVEL M)

W1.DETAILlN

@r , m

- --,ss FJ -- O\ A

APPRI
ARESS AND ADJUST COST, SCHEDULE, RELE

DECISION PAKAM NiD ITATUS O MUO
FOI

U RESOURCES AS REQUIRED I NDEPEJ

NPROME.h VAS OHMEA , T
ID RSOURM UTILIZATION TEST

UPDATE

SYSTEH

D DETAIL

D DESION NEW outgo DAM.INE

BASELINE

AND
USER IANUALS

EM.qUA"ID OFIOIENOIRS

EVALUATE

I ~TEST___
OWSE0 PAORASI

OVE APPROVE Wm-M 71m2
LL UPwasmi

E RELEASE - TummIm

R .E016Nt. 0 ,AW DS FOR Oc K PAOCE mTT rTU M

SDENT USER ##a FA

TESTING mm re

UPDATE PILRt SYSTEN

OPERATIONAL OPEUTIOIU

N P BASELIN4E - W. INtAND USEA BMJIWM I nRM.izD DOCMTA
B DOCUMENTATION

AND USER

MANUALS MAN.L

- -I fv

ON FOR--

%=ISO

DISTRIBUTE

CHAMgE

TEST

FUNCTION

SOFTWARE QUALITY
ESTABLISH

ORIGINATOR
ASSESSMENT INTERFACE

AND ACCESS

AND PROBLEM

DEFINITION

TECHNICAL REVIEWS
KD"INC/OLAlROt IAFCN IIMEST

STATUS
_ (AOK TO ONAT~t OACTTICC Ni ACCOUNTING

CHANoE WnI aommm,

REQUIREMENTS ONMO9 INITIATE HARDWARE I .IO MTMINE Mc

CHANGE PROCESS _.l, -

0
WA

DETERMINE TEST RESOURCES NEEDED

SCOPE OF CONCEPT OF TESTING

TEST

REQUIREMENTS

" I
PRELIMINARY TECHNICAL PACKAGE

ORTIM. KY19IW PT

! TISS6D .,,,OWm,, JLEVEL
DETERMINE ACCOUNTINS

SDESIGNF j, I*"INOTIFICATION Of
IWAOTS ON

AND TRAININO

PREPARE TEST I
PLAN OUTLINE

- AdD ESTIMATE .- _ TEST OUTLINE

E TEST RESOURCES

AND MANHOURS I
I Iw~un I

REVIEW DESIGN

CONCEPTS WITH I ADJUST

ORIGINATOR

__ AND ESTABLISH TEoWIOAL SCHEDULE O

REQUIREMENTS AND RESOURCES pAOI

BASELINE AND FANS

PRIORITY OF AS DIRECTED

CHANCE

LO,

DESIGNCODE

PREPARE PREPARE

DRAFT TEST "I DETAIL TETPAEM

TEST TEST

PLANS PROCEDURES

i

RE~iEW Top REVIEW DETAIL URVE
LEVEL DES1IGN-- E E J RVIE

ESTABLISH ACCEPTABLE AWBE DESTIS AANDPTABLE DETAIL
jo TOP LEVEL TOP LEMS TU EMTAIL

DESIGN FAKKDETAIL DESIGN to TS

BASELINE BASELINE PROCEDURES

___DEFICIENCEES

MODULE TESTIN-
INDEPENDET

EV~ALUATE CHANGES TO

USER MANUALS8 ES 9

all Is

IEVIEW V -

DETAIL ACCPTAKE DETAIL TEST RWH.E.JUW.D r tlEPM WORTS

TEST PROCEWJS PAEASE losoomUT NU TN

OCEDURES Pi.'i'my

IPOTWA1 l. SAIIiNg

16

USER ACCEPTANCE I
ONAK PAOK.A K ,TEST AND

TRIAL

I'IINSTALLATION

REVIEW TEST MVE IA
REPORTS TEST M TS

AUTHORIZEAUHRZ
TECHNICAL R T

RELEASE imAs " AEPN DT

FOR USER

TESTING AND UT I.I SYSTEM

TRI AL OEAIA

INSTALLATION @AM IS0 - --- _

TO USER

