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well described by the Kosterlitz-Thouless-Halperin-Nelson vortex-unbinding theory.

Measurements of resistance vs. magnetic field reveal rich structure, with pronounced

minima at integer fields, as well as higher-order structure. In samples with disorder the

principal oscillations are found to decay linearly with field, after accounting for the effect

of the magnetic fie!d on the critical currents of the individual junctions. We can quantify

the destruction of phase-coherence on length-scales of order q times the lattice parameter

by defining critical fields, fc(q) - 1/A*, by the disappearance of structures at fields f =

plq, wheref 0 is the average number of flux quanta per plaquette, and p and q are integers.

Extrapolation to q = yields an estimate of the critical field, f,, for the destruction of

quasi-long-range phase coherence which is in good agreement with the theoretical

prediction of Granato and Kosterlitz. However, our experiments show no evidence for the

predicted reentrant phase transition.

Our Monte Carlo simulations of XY spin systems with positional disorder reveal

reentrant behavior in the helicity modulus Y, which is the analog of the effective superfluid

density in a junction array, in a narrow range of magnetic fields near the theoretical critical

field. .. As the temperature decreases, Y first increases, then decreases over a narrow

temperature range, and finally increases again at low temperatures. We suggest that the

complete reentrance proposed theoretically is prevented by either finite-size effects or

pinning of vortices due to the disorder.

I
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ABSTRACT

We present the results of a study of Josephson junction arrays with positional

disorder, using both experiments and Monte Carlo simulations. We have fabricated

50 x 50 arrays of Pb/Cu proximity-effect junctions, with controlled positional disorder

characterized by a parameter A*. The zero-field resistive transitions of these samples are
I

well described by the Kosterlitz-Thouless-Halperin-Nelson vortex-unbinding theory.

Measurements of resistance vs. magnetic field reveal rich structure, with pronounced

minima at integer fields, as well as higher-order structure. In samples with disorder the

principal oscillations are found to decay linearly with field, after accounting for the effect

of the magnetic field on the critical currents of the individual junctions. We can quantify

the destruction of phase-coherence on length-scales of order q times the lattice parameter

by defining critical fields, f,(q) - l/A*, by the disappearance of structures at fields f. =

p/q, wheref, is the average number of flux quanta per plaquette, and p and q are integers.

Extrapolation to q = - yields an estimate of the critical field, f,, for the destruction of

quasi-long-range phase coherence which is in good agreement with the theoretical

prediction of Granato and Kosterlitz. However, our experiments show no evidence for the

predicted reentrant phase transition.

Our Monte Carlo simulations of XY spin systems with positional disorder reveal

reentrant behavior in the helicity modulus Y, which is the analog of the effective superfluid

density in a junction array, in a narrow range of magnetic fields near the theoretical critical

field. As the temperature decreases, Y first increases, then decreases over a narrow

temperature range, and finally increases again at low temperatures. We suggest that the

complete reentrance proposed theoretically is prevented by either finite-size effects or

pinning of vortices due to the disorder.
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CHAPTER ONE

THEORETICAL BACKGROUND

1.1 Introduction

.--

Two-dimensional arrays of Josephson junctions are excellent model systems for the

study of various problems in the statistical physics of two-dimensional systems. (For a

review see Lobb, 1984.) These include the Kosterlitz-Thouless transition, the effects of

frustration on phase transitions, commensurate-incommensurate transitions, and the effects

of disorder. For example, an array in zero magnetic field provides a realization of a pure

XY magnet, and undergoes a Kosterlitz-Thouless transition, while an array in a finite field . -

is a model for the uniformly frustrated XY magnet, the critical behavior of which is far

from understood.

Since such arrays can be designed and fabricated in a very controlled way, through the

use of photolithography, for example, one has the capability to produce two-dimensional

systems with a wide variety of controlled geometries. For example one can introduce

controlled disorder by specifying that certain junctions should not be present in an

otherwise regular array. An array with junctions randomly removed provides a realization

of a dilute two-dimensional magnet, whose critical behavior may be drastically altered

when the disorder becomes sufficiently strong.

In this work we are concerned with arrays whose superconducting sites are given

random displacements from their "equilibrium" positions (Forres-er et al., 1987). This

results in a realization of tle XY magnet with disorder and frustration, which theory

suggests may show novel behavior, including a critical value of the disorder, and a

reentrant phase transition.
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Before discussing the theory for this non-uniformly frustrated XY system, it is

important to review the fundamental concepts behind the critical behavior of

two-dimensional systems. In the next section we review the topic of ordering in two

dimensions, and in the subsequent section the Kosterlitz-Thouless transition, before

moving on to the topic of XY magnets with uniform and non-uniform frustration.

1.2 Ordering in two dimensions

The critical behaviors of two-dimensional (2D) systems such as superfluid and

magnetic films are of great interest because, theoretically, such systems cannot show

long-range order (Mermin and Wagner, 1966; see also, Peierls, 1934). Consider, for

example, the correlation functions

G(r) = Superfluid (1.La)

(S(r).S(O)) Magnet (1.1b),

where N(r) is the condensate wave function for the superfluid, and S(r) is the local

moment in the magnet. In three dimensions such correlation functions can show three

types of behavior at large distances r. In the disordered state (normal state in a superf. lid,

and paramagnetic state in a magnet) correlations decay exponentially with distance,

G(r) - exp(_, (1.2),

where 4(T) is a temperature-dependent correlation length. The ordered state is

characterized by G(r) decaying to a non-zero value at large r:

a
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Urn G(r) - const. * 0 (1.3).

In a superfluid this means that one has a macroscopic quantum state, characterized by a

single phase, while in a magnet one has a spontaneous magnetization. The third type of

behavior is possible only at second order critical points, and is characterized by algebraic

decay of correlations:

G(r)~ I

rd-2-1

In two-dimensional systems with a continuous symmetry the behavior in (1.3) is

impossible, because fluctuations are extremely effective at destroying order. However,

Berezinski (1971) and Kosterlitz and Thouless (KT) (1973, and Kosterlitz 1974) have-

shown that certain 2D systems, including superfluids, crystalline solids, and XY magnets,

can undergo a finite-temperature phase transition, between a disordered state characterized

by (1.2) and a state with "quasi-long-range coherence" (QLRC), characterized by,

G(r) 1 (1.4),
rn

with 1i(T) a temperature-dependent exponent. This transition is brought about by the

unbinding of defects - dislocations in crystals, and vortices in superfluids and XY magnets

- whose interaction energy is logarithmic in their separation.

For further discussion we now specialize to a particular realization of the XY magnet -

the Josephson junction array.
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1.3 Josephson junction arrays and the Kosterlitz Thouless transition

It is well known that a 2D array of Josephson junctions is isomorphic to a 2D XY spin

system. As illustrated s .natically in Fig. 1.1, such an array consists of superconducting

islands, each characterized by a superconducting order parameter, 4Iexp(i8,), connected

by Josephson junctions. The coupling energy of a pair of such islands, i and j, is given by

E = -J(7T) cos(O - O) (1.5),

where J(T) = liiJ2e is the Josephson energy, and i,(T) is the critical current of the junction

(Tinkham, 1975). The Hamiltonian for an array is obtained by summing terms like (1.5)

over nearest neighbors on a lattice:

H = -J cos( - OP (1.6).
<is>

(When interpreting experimental data one uses an effective temperature T'--TJ(Tc)/J(T),

which enables one to consider the coupling constant J in (1.6) to be temperature

independent (Abraham ct al, 1982; Lobb et al., 1983)).The ground state of this system

clearly has all O's equal (all spins aligned in the XY magnet). This ordered state is,

however, destroyed at finite temperatures by two types of excitation - spin waves and

vortices, illustrated in Figs. 1.2a and 1.2b respectively. It is the spin waves which destroy

the long-range order (1.3) in favor of the algebraic order (1.4), while the vortices are

responsible for the phase transition to the disordered state (1.2).

The energy of an isolated vortex is given by (Lobb et al.,1983)

!r
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Figure 1.1 Schematic diagram of a Josephson junction array. The dark circles are
superconducting islands, and the lines are junctions.
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(a)

(b)

Figure 1.2 (a) Spin wave and (b) vortex excitations in a 2D XY magnet. In an array,
arrows represent the phases e5.

It~t iltl~ll I 1
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El= x Jln(R/s) (1.7),

where R is the sample size and s is the lattice spacing, while the energy of interaction of a

vortex pair is

U12 = ±27cJln(r12/s) (1.8),

where r 12 is the distance between the vortex centers. The key idea of the KT transition is

that for T < T these vortices are bound in dipole pairs of zero net vorticity, and since such

pairs are not displaced by a small transport current, there is no dissipation. Above T, the

vortices become unbound, and can be displaced by a transport current, resulting in

dissipation. However, even below T, a finite current can cause vortex pairs to unbind, and

this results in power-law current-voltage (I-V) characteristics,

V I -
'  ( 1 .9 )

below Tc. It turns out that the measurable quantitiy a(T) is related to the effective

superfluid density, n. or spin wave stiffness, as is another measurable quantity, the

kinetic inductance Lg:

a(T)- 1 cc n s(T) cc L (7) (1.10).

Nelson and Kosterlitz (1977) predicted that n s() should undergo a discontinuous jump at

Tc, with n,(T,)IT a universal quantity. In experiments this "universal jump" should be

manifested in a discontinuity in a(T), with a(Tc')=3 and a(Tc+)=l. In practice finite

voltage sensitivity and finite sample size lead to the measured discontinuity in a(T) being

[ 

_ 

*
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smeared out. Nevertheless, measurements of both a(T) from dc I-V characteristics

(Abraham et al., 1982) and L 1(T) from ac impedance measurements (Leemann er al.,

1986) seem to be in reasonably good agreement with theory.

Above T, the characteristic length for the decay of correlations was shown by KT to be

1

4+(7) = cs exp[b/(T-T) 2 ] (1.11),

where c is a constant of order unity, and s is the vortex core size. Interpreting this length

as the average distance between free vortices above Tc, so that the free vortex density nF

1/2, leads to a resistance R -n

R(T) = R.exp[-2b/(T-T) 2 ] (1.12).

This unusual temperature dependence has been verified quite well in measurements on

arrays (Voss and Webb, 1982; Resnick et al.,1982; Abraham er al., 1982), as long as data

are interpreted using the rescaled temperature T' mentioned earlier.

1.4 Junctioh arrays in a magnetic field - the frustrated XY model

In the presence of a perpendicular magnetic field the array Hamiltonian (1.6) becomes

H =-J COO(0 - 0. -4f) (1.13)<is>

N

.. .- I l ' , i " + l.. ': , W -
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f A d (1.14).

0 o

Here A is the magnetic vector potential and (0 =hc/2e is the superconducting flux

quantum, and the Vij's satisfy the constraint

= (m+J m=O,±1,±2 ..... (1.15),
S

where the summation is around any plaquette. This is the Hamiltonian of a uniformly

frustrated XY magnet, with tunable frustration parameterized byf = Bs2/Io, the number of

flux quanta per plaquette. The ground state energy and transition temperature of this

system have been shown to be extremely complicated discontinuous functions of f, as

illustrated in Fig. 1.3 (Alexander, 1982; Rammal et al., 1982; Shih and Stroud, 1983).

Measurements on both arrays of junctions (Webb et al., 1983; Tinkham et al., 1983;

Kimhi et al., 1984; Brown and Garland, 1986; Van Wees et al., 1987) and wire networks

(Pannetier et al., 1983) have shown this behavior, albeit somewhat smeared out by sample

imperfections, in measurements of T,, resistance, and apparent critical current, as a

function of field. (By "apparent critical current" we mean the current at which the sample

voltage exceeds some fixed threshold, usually limited by the sensitivity of the voltmeter.

The theoretical zero-voltage critical current is zero at finite temperatures, in two

dimensions, because there is no long-range order).

There has also been a great deal of interest in the nature of the phase-transition at

particular values of the frustrationf For example, the ground state for a square array with

f=1/2, the so-called "fully frustrated" case, has been shown to have the structure shown in

Fig. 1.4a (Teitel and Jayaprakash, 1983), where + (-) designates a clockwise

(counterclockwise) circulating supercurrent, of magnitude ihlq2. The discrete degeneracy
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Tc°-Tc

Tco

0.002-

1 1 2 1 3 2 3

0.001 435 2 534

0 1

Figure 1.3 Transition temperature of a square superconducting network or Josephson
junction array as a function of magnetic field, as computed from mean-field
theory (points), and as measured (solid line) for an aluminum network (From
Pannetier et al., 1983).
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Figure 1.4 (a) Ground state for the uniformly frustrated array with f=1/2. Plus (minus)
represents a clockwise (counterclockwise) circulating supercurrent of
magnitude iCl42. (b) Domain wall excitation (dark outline) at finite
temperature.
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of this ground state suggests the possibility of an Ising-like transition, brought about by

domain walls (Fig. 1.4b), perhaps in combination with vortices. Monte Carlo simulations

have shown that the specific heat appears to diverge at the transition, consistent with an

Ising transition (Teitel and Jayaprakash, 1983). Despite intensive theoretical study of this

problem (Teitel and Jayaprakash, 1983; Halsey, 1985; Yosefin and Domany, 1985; Choi

and Stroud, 1985; Granato and Kosterlitz, 1986a) the nature of the transition is still

uncertain, except that it appears to have both Ising- and KT-like characteristics.

Experiments have so far shed little light on this particular problem, most work being

unable to distinguish any difference between the transitions atf= 0 andf= 1/2. However,

recent results on proximity arrays suggest that excitations other than vortices, perhaps

domain walls, may be responsible for additional voltage noise atf = 1/2 (Van Harlingen

and Springer, 1987). Also, Van Wees et al. (1987) have reported evidence for a

non-universal jump in fully frustrated tunnel junction arrays, with a(T-)-4.5 and

a(T,+)=1. These authors invoke theoretical work by Minnhagen (1985) to suggest that the

transition is KT-like, despite the non-universal jump.

1.5 Junction arrays with disorder

So far we have been discussing arrays as .perfect representations of the XY

Hamiltonian. However, there are inherent limitations in sample design and fabrication

which prevent an exact correspondence between actual arrays and the XY Hamiltonian in

(1.13). For example, we have already mentioned that the coupling energy J is

temperature-dependent, necessitating the use of a rescaled temperature T'-TJ(T,)/J(T)

when comparing data to theory. In addition, real junctions are extended rather than

point-like, so that J is also a function of magnetic field. This is evident in the data
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presented in chapter three.

In addition to these fundamental limitations there are several ways in which samples

can be disordered, inadvertently, or intentionally as a means to understand real systems

such as random magnets or granular superconductors. Consider, for example, a slight

generalization of (1.13),

H = - J- cos(Oi--O-Vi) (1.16),
<is>

where we now allow the Josephson energy to vary from junction to junction. We refer to

this as bond disorder because the strengths of the bonds (the junctions) between sites (the

superconducting islands) vary. This kind of disorder is inevitable in any real array since it

is impossible to fabricate samples with all junctions identical. It can been shown

theoretically that "weak" bond disorder is irrelevant, and does not affect the critical

behavior of the system (Harris, 1974), while strong enough disorder can affect critical

exponents. The critical amount of disorder is not known for this system.

Another type of disorder is site or bond dilution, where superconducting islands or

junctions are removed at random from the lattice. The case of site disorder has been

studied theoretically (John and Lubensky, 1985), and it has been shown that weak

dilution, where only a few percent of the sites are removed, is irrelevant to the critical

behavior. On the other hand these authors showed that strong dilution, where the sample

approaches the percolation threshold, can have a dramatic effect, possibly leading to glassy

behavior, characterized by extremely slow relaxation to equilibrium. They also showed

that in this limit one can formally have a negative spin wave stiffness. The experimental

consequences of this are unknown, and this is probably the most intriguing experiment

remaining to be done on arrays. Davidson and Tsuei (1981) attempted to study bond

dilution in a tunnel junction array by destroying junctions at random with a laser.

NS CI' Zb&&& N0
.,-
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Unfortunately the properties of the remaining junctions were so drastically modified by this

process that their results could not easily be interpreted.

The third type of disorder one can introduce into the Hamiltonian (1.13) is randomness

in the N4 ij's. The natural way to achieve this is to randomize the positions of the

superconducting sites, as illustrated in Fig. 1.5. Clearly this leads to randomness in the

plaquette areas (with correlations up to second-nearest neighbor plaquettes) and therefore

to randomness in the frustrationf, giving an XY model with non-uniform frustration. This

kind of disorder is called positional disorder and is the main topic of this work.

We now review the most important results of the theoretical work on arrays with

positional disorder. Our goal is not to describe the theory in detail, but simply to justify

the main ideas, and describe the results.

1.6 Arrays with positional disorder

Granato and Kosterlitz (GK) (1986b) have considered an array with positional

disorder as illustrated in Fig. 1.5, where the superconducting sites are diplaced from their

average positions r by a random amount ur . They assumed a gaussian probability density

per unit area for ur,

2tA2 ex A2 J1

where the parameter A thus defined quantifies the amount of positional disorder.

One can separate the Hamiltonian (1.13) into spin wave and vortex contributions,

H = Hsw+Hv, where Hsw does not affect the critical behavior other than to change T,

(Ohta and Jasnow, 1979). As shown by Jose et al. (1977) one can transform the vortex

b .~'
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0

0I °
:.

Figure 1.5 Schematic diagram of a junction array with positional disorder. Crosses mark
the undisplaced positions and dark circles the actual positions of the
superconducting islands.

J1
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part Hv into a sum over variables on a dual lattice, whose sites Ri are at the centers of the

plaquettes of the original lattice. This is not unreasonable since the vortices inhabit

plaquettes rather than superconducting sites. Considering only the vortex contribution,

one can write the temperature-reduced Hamiltonian H/kBT as

H = 21r2KY (M,-fR)G(R-R') (MR,-fR.) (1.18),
kBT RR'

where K=J/kBT, andfR is the flux in the plaquette at R. The MR are integers analogous to

m in (1.15), and obey the neutrality condition IR(MR-fR) = 0. The lattice Green's

function G(R-R') is given by (Spitzer, 1964)

G(R-R') = lo I + "- (1.19),

where s is the vortex core size (in an array, the lattice parameter), c = ((3/2)log2 + y)

=1.62... - x/2 (Kosterlitz and Thouless, 1973) is a constant related to the chemical

potential of a single vortex, and y is Euler's constant. The form of the Haniltonian in

(1.18) explicitly shows the vortices to be equivalent to a set of charges q - '(J(MR--fR),

interacting through a logarithmic potential. This is the so-called "Coulomb gas analogy"

for the XY model.

In the continuum limit, s-40, one does not distinguish between the original and dual

lattices, and the area, AR, of a plaquette at R can be evaluated to lowest order in the

displacements Ur---UR as AR = A(I+VR-UR), where A, is the area of an undisplaced

plaquette. This means that the frustration fR is given, to lowest order in the displacements,

by

AR = fo(1 + VR'uR) (1.20),
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wherefo is the average flux per plaquette. Substituting (1.20) into the Hamiltonian (1.18)

one has

ik TH 7c 2 K: (M,-f f,.,,) G(R-s') (M R.-fo-fo,..,,,.)
B- R*OR R o I

-2x
2K 7. (MR-f) G(R-R') (MR-f)

RRR

-27c 2 KfOI.VR.UR G(R-R) (MR.-f)
ROR'

22Kfolo (MR-f,) G(R-R') V RU R
LRR

= 27r2KX (MR-fo) G(R-R') (MR.-fo)

.. 2KfoE V .. u G(R-R'-) (1.21),
R S2

where the integral over R is understood to have a short range cutoff at I R-R'I =s.

Substituting the expression (1.19) for G(R-R') into (1.21) we obtain

HI R-R'I
kBT 1 (MR-f) log S (MR-f)

R*R'

7 R Us R (MR'-f) (1.22).

-W dR (1.22).V *
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Because of the neutrality condition Xt(MR-fR) = 7R(Mt-fo 0 the fourth term in ( .22)

is zero, while the second term simplifies as follows:

I (MR-f) (M.,-fo) =
RiR'

I (Me-f) (MR-f) - X. (MR-f) 2
R,R' R

=-7 (M-f.)2

R

The Hamiltonian thus reduces to

H =(R-R (

+ lo(M-fd log ) (M(-f)
B ROWR

-itcKX (MR-f) 2

R

R V o(IR-I '

-2rKfO f 2 Itd R log R (MR.f) (1.23)
R, S

Finally, an integration by parts in the last term gives

H = (R- IV,
- = IK(M -f log

+ log y0 2: (Mft-f0 )2

R

0 RI 2 1R -R 'I

where, for the discussion in the next section, we have added a subscript o to K, to indicate '

that it is the unrenormalized stiffness, and have defined y .= exp(-itcK0,) exp(-ir2KJ/2).
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The quantity y. is called the vortex fugacity, while K. will ultimately be identified with the

temperature-reduced spin wave stiffness, and is a measure of the vortex interaction !

strength or the effective superfluid density. The Hamiltonian (1.24) can be viewed as

describing a gas of fractional charges q ,- (MR-fo), interacting with a quenched

distribution of dipoles PR - foUR. For the case off. an integer one has a gas of integral

charges perturbed by a random dipole distribution. The first term in (1.24) is the

vortex-vortex interaction, the second term the vortex self-energy, and the third the

vortex-dipole interaction.

+ fO8/s -f 8 /s

Figure 1.6 An example of an elementary "dipole".

The nature of these quenched dipoles can be understood by considering the pair of

neighboring plaquettes illustrated in Fig. 1.6, where one bond has been moved a distance

8 to one side. This produces an area increase (decrease) in the left (right) plaquette

proportional to 8, and thus, in the Coulomb gas analogy, a pair of charges ±f, 8/s,

constituting an electric dipole of strengthfo 8 (to lowest order in 8).

The problem of a Coulomb gas of integral charges perturbed by a random background

of dipoles has been studied in another context by Rubinstein, Shraiman, and Nelson

(RSN) (1983). We now describe the results of their analysis, couched in terms of junction

arrays with positional disorder.

-------- D



20

1.7 The Coulomb gas in a random background of dipoles

In the Hamiltonian (1.24) the stiffness K is a measure of the vortex interaction

strength, and in an array is proportional to the superfluid density, divided by temper'ture,

while y, the vortex fugacity, is related to the density of vortices (Kosterlitz and Thouless,

1973). For the pure case, with no disorder, KT demonstrated the length dependence of

these quantities due to the screening of the vortex-vortex interaction by other bound vortex

pairs. Considering only the first two terms in (1.24) they derived the recursion relations

for K and y:

dir' (/ -4n3 y 2 () (1.25a)

dldyI-[2 - x.K(/) ] y(l) (1.25b),"

where 1 = log(r/s), and r is the separation of the pair of vortices under consideration.

These relations tell how the interaction of a pair of vortices of separation r is

"renormalized" by other vortex pairs. The values of K and y in (1.24) are actually the

"bare" or unrenormalized quantities Ko= K(1=0) = J/kET and yo= y(l=O) - exp(-7x2KJ"2),

and provide the initial conditions from which the renormalization in (1.25) begins.

The physical significance of the renormalization can be seen in the flows of (1.25) in

the (Kly) plane. Near K=2/, (1.25) has the approximate solution

(2 -1e ) 2 42r y 2 = C(7) (1.26),

where C(T) turns out to be linear in T, QC!) -C 0 (1-TfTc). The curves (1.26) are

-BI11 I' '-p1 1 * 5Z
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hyperbolas, three of which are sketched in Fig. 1.7, along with the curve of initial values

yo - exp(-ir2K/2). The arrows mark the direction of increasing 1, indicating the direction

in which the renormalization proceeds. For C > 0 (T < Tc) the flows terminate on the line

y = 0, at a finite value of K- , so that there are no vortex pairs of infinite separation (i.e.

no free vortices), and the superfluid density n , K.T is finite. For C < 0 (T > Tc) the

flows go towards y = -c and K1 = -c, so that vortices are unbound and the superfluid

density is zero. The degenerate hyperbola with C--O corresponds to T = Tc, where

K(l=o*,Tc) S KR(Tc) = 2/n, a universal value, independent of the details of the system

(Nelson and Kosterlitz, 1977).

RSN have derived the recursion relations for the full Hamiltonian (1.24), taking

account of the effect of the quenched random background of dipoles on the vortex-vortex

interaction. Their results can be expressed in terms of arrays with positional disorder as

dK'1(1) =4n 3 y2 () (1.27a)

d[

dKIO) 32 2I

~JQ)- (I 2-7K(O)+4x~f AK(] (1.27b),

where A is the disorder parameter defined by (1.17). Whenf = 0 (1.27) reduces to the

result for the pure case (1.25). The quantityf0 A is effectively the measure of disorder, so

that for a sample with fixed A one can tune the effective disorder by adjusting the magnetic

field.

From (1.27b) we see that there are two special points K t- where the eigenvalue of y

vanishes,

K± = .. [1±(1-32n? 2 ) 2 ] (1.28)

0
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For K near K,, (1.27b) simplifies to

dy(/) = const. • (K'1-K,' ) y(t)

With (1.27a) this gives

dy (KI"K1)
= const. - 0

whose solutions are hyperbolas, as was the case for the pure system shown in Fig. 1.7,

but centered at K'-=K+"' instead of K'-=xI2. For K near K one has

= (K-1-K)dY = -const..

so that the Hamiltonian flows are elliptical near K.

The Hamiltonian flows are sketched in Fig. 1.8, along with the line of initial

conditions y - exp(-7r2J/2k.T). The bold line shows a special trajectory which leaves the

y = 0 fixed line at K;1 and terminates exactly at K.," . The flows inside this boundary

iterate to y(l=eo) = 0, and K 1(l=oo) finite, so that there are no free vortices and the stiffness

is finite, just as for T < Tc in the ordered array. This region is characterized by algebraic

decay of correlations (1.4), or QLRC. Outside this region all flows lead to y =- and

K-1 = 0 as 1 --+-, so that vortices are unbound and the fully renormalized stiffness

KR=K(I=eo) is zero. Actually the recursion relations (1.27) were derived using a

perturbation expansion in y, so that they are not valid as y-+*, but it can be shown that

one can integrate out to a finite value of 1, still at small y, and then use a high-temperature
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Y

y -1

Figure 1.8 Renormalization group flows for an array with positional disorder. Flows
inside the critical trajectroy (dark boundary) terminate on the critical line y=0,
where there are no free vortices, while those outside diverge towards y=--.
There are two vortex-unbinding transitions, T~ + and T =, the two points where
the critcal trajectory intersects the line of initial conditions (dashed line).

TCS
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Debye-Htickel approximation (Rubinstein, Shraiman, and Nelson, 1983). In this way one

can rigorously show that correlations decay exponentially with the same length 4, (1.11) 0

as in the pure case.

Evidently there are now two transition temperatures, T-(fo) and TC*(f), as indicated

in Fig. 1.8, at the two points where the locus of initial conditions intersects the critical

trajectory (the dark line in Fig. 1.8). Below Tc-(fo) the quenched dipoles weaken the

interaction between the mobile vortices, so that some of the vortices are unbound, and

there is no QLRC. For Tc(f) < T < Tc+(fo), the increased density of mobile vortices is 0

sufficient to screen the quenched dipoles, so that all of the vortices are bound. Finally, for

T > Tc+(f), the vortices are thermally unbound, as in a uniform array.

From (1.28) it is also evident that, for a sample with fixed A, the special values K " l S

merge whenfo reaches a critical valuefc given by

f 1 1 0.10 -(1.29) 0

C -- A A

For fields! fofc the ordered region (inside the dark line in Fig. 1.8) shrinks to zero, and

QLRC is destroyed at all temperatures. From Fig. 1.8 it is also clear that the

fully-renormalized stiffness, KR, approaches K., at both transitions. In contrast to the

uniform case this value is not universal, depending on the magnetic field, fo. Forf = 0,

one has K.= 2/n, as for the uniform case, while forfo --fc, K+ approaches the value 4/7C.

For a junction array this means that the IV exponent a should approach a value of 5 at both

transitions, asfo--fc, if the relationship between a and K (or a and n) is generalizable to

finite fields.

..



26

1.8 Summary

In summary, there are two striking predictions for the behavior of a Josephson

junction array with positional disorder, in a magnetic field such that the average number of

flux quanta per plaquette, f, is an integer. First, there should be two vortex unbinding

transitions, at T,*(f), with the system exhibiting QLRC only for T'(f) < T < TC*(fo).

Second, for fields fo greater than a critical value f , given by (1.29), the two transitions

merge, and there is no QLRC at any temperature. These predictions are summarized in the

qualitative phase diagram of Fig. 1.9, where the region marked S (for "superconducting")

is characterized by QLRC, and the region marked N (for "normal") exhibits no long-range

or quasi-long-range order. In addition, the magnitude of the superfluid jump at both

transitions is nonuniversal, depending on the magnetic fieldfo.

T

~Tc-(Q

fc f

Figure 1.9 Schematic phase diagram for a 2D array with positional disorder. Vortex-
unbinding transitions occur at Tc (f) and T-f In the region marked S
(for "superconducting") the sytem shows quasi-long-range phase coherence.
In the region labeled N (for "normal") this phase coherence is destroyed.
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CHAPTER TWO

EXPERIMENTAL DETAILS

2.1 Sample design

Josephson junction arrays have now been made by a number of groups, for studies of

the KT transition and of the properties of a weak superconducting network in a magnetic

field. Both tunnel junction (Voss and Webb, 1982: Van Wees et al., 1987) and proximity

effect arrays (Sanchez and Berchier, 1981: Resnick et al., 1982: Abraham et al., 1982:

Tinkham et al., 1983: Kimhi et al., 1984: Leemann et al., 1986: Brown and Garland,

1986) have been studied, but with proximity effect arrays in the majority due to their

relative ease of fabrication. They can be fabricated with only one critical level of

photolithography and therefore only one complex photomask.

The usual design is an array of superconducting islands, either on top of, or under, a

continuous layer of normal metal (or a superconductor above its transition temperature).

For a square array the simplest design is to have square superconducting islands, as

illustrated in Fig. 2. la. This design has the disadvantage that the junctions are extended,

rather than point-like. The junction area is an appreciable fraction of the unit cell area, so

that the junction critical current is strongly modulated by an applied magnetic field. Also,

using this design it is impossible to introduce positional disorder without bond disorder, %.N

since displacing the islands also changes the junction lengths. Cross-shaped islands (see

Fig. 2. 1b) form smaller area junctions and allow the introduction of positional disorder

without bond disorder. Figure 2. Ic shows the natural generalization of this idea to the

triangular lattice, where one has "asterisk" islands (Brown and Garland, 1986). This

design is the basis for the Sierpinski gasket arrays, preliminary results from which will be

WL0
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U...
U...

(a) 
NN

Eu..

~(b)+41

V (c)

Figure 2.1 (a) Simple square proximity effect array, with square islands. (b) Square array
with cross-shaped islands. (c) Generalization of (b) to a triangular lattice.
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(a)

(b)

I .V
Id,

Figure 2.2 (a) Distortion of a superconducting island to introduce positional disorder.
The center portion of the island (dotted outline) is displaced, while the tips of
the cross are held fixed. (b) An example of a plaquette shape (bold outline)
generated by this procedure.

If
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discussed at the end of chapter three.

Given the cross design of Fig. 2.1b we can introduce controlled positional disorder,

without bond disorder, by the scheme illustrated in Fig. 2.2a. We displace the center

portion of each island (shown by the dotted outline in Fig. 2.2a) by a random amount uij,

determined by some probablilty distribution P(uij), while leaving the tips of the crosses,

and therefore the junctions, undisplaced. Since the junction lengths are preserved we do

not change the critical currents and therefore introduce no deliberate bond disorder. Fig.

2.2b illustrates a typical plaquette formed by this scheme. The dotted outline follows the

path of strongest superconductivity, where the magnitude of the superconducting wave

function is maximum. The plaquettes are quite different from those envisioned by GK (see

Fig. 1.5) because the junctions are constrained to be on a regular lattice, rather than simply

falling on a straight line between the centers of neighboring sites. This difference actually

turns out to be unimportant, as will be discussed below.

The finite width of the superconducting crosses clearly imposes a limit on how large a

positional displacement one can have, and still leave a well-formed island. Clearly, if the

center of the island is moved far enough, the arms of the cross will be "pinched off'. The

absolute maximum displacement, as a fraction of the lattice parameter a, is (a - d - w)/2a,

where d is the length of the junction, and w its width. For our samples we have a - 13.5

Pm, d - 2 pm, and w - 3.75 pm, leading to a maximum displacement of approximately

30%. Even for somewhat smaller displacements limitations in the mask making procedure

can lead to a decrease in the junction width when the displacement is close to 30%. This

leads to weak bond disorder -- weak in the sense that changes in w lead to linear changes

in ic , as compared to changes in d, which give exponential changes in i,. For these

reasons we have used a uniform distribution of site displacements, with half-width A*,
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{2A*_A* < u.,2Y< A*
' = (2.1)

0 otherwise

and have, in practice, limited A* to 20% of the lattice parameter. In particular, we have

made samples with A* = 0.20, 0.15, 0.10, 0.05, and nominally zero.

In order to compare our results with theory, in chapter three,'we need to relate our

disorder parameter A*, which is the half-width of a uniform distribution of site

displacements, to the parameter A used in the theory of GK and RSN, which is the width

of a gaussian distribution of site displacements. In order to do this we recall that, from

chapter one, the strength of the disorder is characterized by the strengths of the dipoles Pr'

with Pr -cfo Ur" Since the mean value of Pr is zero for both distributions, we compare the

root-mean-square values for the two types of disorder. Since the rms width of a uniform

distribution of half-width A* is 2A*/412 = A*/43, while that of the gaussian distribution is

simply A, consideration of only this first non-zero moment for each distribution leads to

the relation

A*-

relating the two disorder parameters, to lowest order. In chapter four we will show that

this relation is verified quite well in our Monte Carlo simulations, which can consider both

types of disorder.

2.2 Sample Fabrication

In previous work in this group (Abraham et al., 1982: Tinkham et al., 1983), large

~b
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di

Figure 2.3 Schematic diagram of a bridge-type SNS junction, of the type in our arrays,
defining the various lengths of interest.

square arrays like those in Fig. 2.1a were fabricated without the aid of photolithography,

by evaporating Pb through a fine Ni mesh, onto a continuous Cu film. The junction

length, d, (see Fig. 2.3) was defined by the diameter of the mesh wire and was no smaller

than 5 p.m. Such long junctions were so weakly coupled that array transition temperatures

tended to be lower than could be reached in a pumped 4He cryostat. To increase the

coupling strength the mesh was lifted above the surface of the Cu film by a Mylar spacer,

so that the islands became "feathered", reducing the effective junction lengths.

Unfortunately, the feathering tended to be non-uniform, often giving a gradient in coupling

energy across the sample. This was sometimes quite noticeable under the optical

microscope, and was probably responsible for the poor results of measurements of

resistance vs. magnetic field. Such measurements generally showed few oscillations and

little fine structure compared to the results of this work and results from other groups.

To improve the quality of our samples we have turned to the use of photolithography.

This not only improves the uniformity and reproducibility of the samples, but also allows

.1p ~ .
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the fabrication of a wide variety of array geometries. We have generated masks using

electron-beam lithography and then used such masks to define arrays using a

photolithographic process. We now discuss some of the details of mask making, and then

sample fabrication.

2.2.1 Mask making--Generalities

Electron-beam lithography has now become the most flexible method for producing

masks, both for the semiconductor industry, and for research, and is gradually replacing

the use of optical pattern-generators for this purpose. The e-beam writer offers several

distinct advantages over the optical pattern-generator, including higher resolution (< 0.2

pm compared to 2 pm), the ability to expose arbitrary shapes, with lines at arbitrary

angles, and the capability of reversing tone or inverting patterns in software.

Lacking a commercial e-beam writer (typical cost > $1,000,000), we have used a

general-purpose scanning electron microscope (a Jeol JSM 35u), controlled by a

microcomputer, with two 16-bit digital-to-analog converters to control the x and y position

of the beam, and a single TTL output to control a beam blanker. The blanker switches off

the beam when not writing, by rapidly deflecting the beam off the sample.

To minimize writing time we have used a technique known as "brushfire lithography",

which allows the generation of a pattern by writing only its outline rather than exposing

areas. A simple example will illustrate the technique.

Figure 2.4a shows a simple pattern consisting of a rectangle of Cr on a glass mask

blank. The conventional technique is to coat a Cr-covered plate with e-beam sensitive

* ,i**'* !XZ"
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(a)

(b)

Figure 2.4 Comparison of areas to be exposed (hatched areas) to form a simple Cr
rectangle using (a) conventioanl e-beam exposure, and (b) the brush fire
technique.
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resist and then expose the area where the Cr is to be removed, by rastering the beam across

it. The resist is then removed from the exposed area by a chemical developer, and the Cr

etched away with a chemical etch. The brushfire method produces the same pattern by

exposing only the outline of the rectangle. By etching the Cr in this narrow "moat", as

illustrated in Fig. 2.4b, the desired pattern is isolated from the surrounding Cr. After

removing the resist, the mask is placed in a weak solution of HC. Touching any point on

the unwanted Cr with a piece of Al starts a chemical reaction which then propagates

throughout all the contiguous Cr, thereby removing it, but preserving the area which is

isolated by the moat. Obviously the technique is limited to "open" patterns, where there is

a continuous path along which the reaction can propagate. The technique can be extended

to patterns where a limited number of isolated Cr areas are to be removed, by selective

deposition of Al "seeds" by photolithographic means. Using the brushfire technique we

were able to write a mask for a 50 x 50 array in approximately 1 hour and 45 minutes, a S

short enough time that instability of the beam current was not a problem.

2.2.2 Mask making-.Specifics

We started with a 2.5" x 2.5" x 0.060" Cr/CrOx coated mask plate, available from

several suppliers (Electronic Materials Corp., Balzers, Hoya). The flatness specification

was generally 2 .tm ("Ultra" grade), with the exception of the EMC masks, which were

5 gm ("Master" grade). The blanks were coated with 6% polymethylmethacrylate

(PMMA) in chlorobenzene (available from KTI), spun at 8000 rpm for 45 seconds, and

baked for one hour at 180±5 *C. The resulting PMMA layer had a thickness of

approximately 0.1 gim, according to data sheets provided by the Cornell Submicron

Facility.

6&~ A
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The resist was exposed in the SEM, at a magnification of 60 x, with a beam voltage of

25 kV, and a beam current of 90-100 pA, as measured by a Keithley electrometer.

Exposure times were generally 1.2 msec/pixel, with a settling time (at the beginning of

each line) of 16 msec. To allow the beam to stabilize before writing the pattern, we

exposed a small rectangle (total exposure time - 30 sec) close to the desired starting point.

The microscope working distance was 15 mm and the aperture was number two.

The PMMA was developed for 45 sec in 1:3 methylisobutylketone:isopropanol

(MIBK:IPA) and then inspected under the optical microscope. The goal was to ensure that

all the exposed lines were fully developed at their centers, so that the Cr could be removed

cleanly. Any residual resist would result in a Cr short, which would allow the brushfire

reaction to propagate across the moat and remove the Cr which was to be preserved. To

ensure complete development we alternately immersed the mask in MIBK:IPA for 10

additional seconds and inspected under the microscope, until all lines were clear.

To remove the Cr in the exposed lines the mask was immersed in a standard Cr etch

(396 ml H20, 24 ml HNO3, 63g cerrium ammonium nitrate) until a small test area, where

the resist had been scraped away with a razor blade, appeared completely etched. After

inspection the mask was further etched for 10-second intervals until all lines were clear of

Cr. The resulting moats typically were 0.2 to 0.5 pm wide.

To ensure smooth propagation of the brushfire reaction it was essential that the PMMA

be completely removed from the Cr surface. We found that solvents such as acetone and

methylethylketone (MEK) left enough residual PMMA to inhibit the brushfire reaction or

even stop it completely. Tests showed that even after several hours soaking in acetone

there was enough PMMA residue to protect Cr from chemical etch. This residue was

usually visible to the naked eye, making the Cr surface appear mottled.

The best method for PMMA removal turned out to be an RF oxygen plasma etch. This

was performed in a small reactive-ion-etching chamber, in an 02 pressure of 70-100 mtorr,

?'*kA
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etching for about five minutes (although the resist was probably removed within the first

minute). After this, tests showed that masks which had been coated with PMMA could be

etched in Cr etch as well as could virgin masks, and, most importantly, the brushfire

reaction was found to propagate smoothly through the Cr.

After the 02 plasma cleaning we could perform the brushfire etch by immersing the

mask in dilute HC1 and touching the unwanted Cr with an Al pellet. We found that the etch

could be started most easily by using a wire bonder to bond small hoops of Al wire in

several locations around the perimeter of the mask, and then immersing the mask in a 2:1

solution of "concentrated" (37%) HC in water, agitating by sharp blows with a tweezer to

dislodge bubbles. Since preliminary tests had shown that the reaction was more easily

started when the CrOx surface layer was thinner, we assume that the bonder punched the

Al wire through the oxide layer and started the reaction in the Cr itself. As for the

concentration of HC1, it was found that higher concentrations tended to cause excessive

bubbling and that the bubbles clinging to the Cr would locally prevent etching. Lower

concentrations simply made the brushfire reaction harder to start and maintain.

After rinsing and drying we now had the basic mask, consisting of an array of Cr

islands on an otherwise blank field. Figure 2.5 shows sections of two masks, one for a

uniform square array (a), and one for a disordered array with A* = 0. 10 (b). Figure 2.6

shows another example - a Sierpinski gasket array of sixth order. The masks show sharp

features and excellent linewidth control.

To simplify sample fabrication we decided to make the electrical contact pads an

integral part of the structure, rather that adding them subsequent to fabrication. To this end

we used an emulsion mask to add Cr bus bars to the e-beam-generated masks, using

photolithography in the Karl SIjss aligner, depositing Cr, and lifting off. The resulting

working mask, illustrated in Fig. 2.7, has Cr areas to define both the superconducting 0

islands and the electrical contact pads. The pads are approximately 20 ±m wide. Larger

- - - .- ' ~. r-
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(a)

-1OpRm

Figure 2.5 Sections of lithographic masks used to prepare arrays with (a) A* =0 and (b)
A* = 0.10.
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Figure 2.7 Schematic diagram of an e-beam-generated mask, with contact pad structures
added by photolithography.
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pads are known to cause flux trapping (Mooij, 1986), resulting in hysteresis in

measurements of resistance vs. magnetic field, and might also contribute to magnetic field

inhomogeneity due to their partial exclusion of flux.

It was also necessary to make a mask to define the shape of the Cu/Pb bilayer, so that

the array would not be shunted by, for example, a normal metal strip. Given the array

mask this was easily achieved by a two-stage process. First the array mask was copied in

reverse tone, using Hunt HNR-120 negative resist, to give a mask with "windows" where

the islands and pads would be. Second, this mask was duplicated using positive resist,

but drastically overexposing (- 1 minute), in the "soft contact" mode of the Karl Stiss.

This caused the islands to "spread out" and fill the entire array area, leaving a rectangle
0

slightly larger I array period) than the actual array. Finally, a small square(- 2 mm on :.

a side) was etched in the Cr, to provide a test area on the sample which would not be

covered with resist, and would allow us to determine when the ion-etching of the sample

was complete.

2.2.3 Array Fabrication

The basic fabrication scheme was to prepare a bilayer of Cu and Pb on a sapphire

substrate, pattern the bilayer with photoresist (PR) using the working mask, and remove

unwanted Pb by ion-etching, as summarized in Fig. 2.8. We now discuss some of the

details of this process. A step-by-step description can be found in the appendix. ,

The first step was to define the area of the bilayer, which consists of the array and the

pads. We used a three-layer resist (PR-Al-PR) technique previously described by Danchi

(1983), to form a resist structure with an undercut profile appropriate for liftoff. The resist

was exposed using the bilayer mask described in the last section.

I. MA _
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1) Deposit Cu-PbBi-Ge trilayer without breaking vacuum

Ge (100 A)

~ PbBi(5%) (2000 - 4000 A)

Cu (2500 - 4000 A)

Sapphire substrate

2) Deposit and pattern photoresist

- Photoresist

3) Ion etch exposed Ge and PbBi

Argon ions
(35 eV)

4) Remove photoresist

A PbBi

Figure 2.8 Outline of array fabrication process.
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Evaporation of the Cu/Pb bilayer was done in a diffusion-pumped thermal evaporator,

at a base pressure of less than 2 x 10-7 torr. Separate power supplies were used to heat the

Cu and Pb sources. This allowed us to have the materials evaporating concurrently, and to

deposit Cu and then Pb in rapid succession by manipulating a three-way shutter, which

could uncover either the Cu or Pb source, or neither. In addition we had a shutter to cover

the sample stage while leaving the crystal thickness monitor uncovered, to set evaporation

rates. After melting the Cu and setting a low evaporation rate we left the shutters closed

for two minutes or more to allow lower melting point impurities to evaporate. We then

evaporated typically 2500 - 4000 A of Cu at 300 A/sec or more, followed by 2000 - 4000

A of Pb, typically at a rate of 100 A/sec. The delay between Cu and Pb evaporations was a

small fraction of a second, so that the Cu/Pb interface should be free of oxygen

contamination.

After bilayer deposition we used an acetone spray to lift off the PR, leaving the bilayer

pattern. We then deposted 100 A of Ge over the entire substrate to protect the Pb from the

PR developer in subsequent processing. (Microposit 351 PR developer etches Pb and Al,

leaving pits in the surface). The sample was then coated with a layer of Shipley 1400-25

or -27 resist (of thickness 0.6 or 0.8 pm), and baked for 30 minutes at 90 *C. Using the

working array mask we then exposed the resist-coated bilayer in the Karl S~iss

mask-aligner, usually for five seconds. We then developed in Microposit 351 developer

(5:1 H20:Microposit) for 30 - 45 seconds, and post-baked for 30 minutes at 110 *C. This

left PR protecting the Pb for the islands and pads, leaving the rest unprotected.

The next stage was to remove the unwanted Pb by ion-etching. We used a 3 cm

Kaufman-type ion gun, from Commonwealth Scientific, with non-focussed grids, awl Ar

gas. Typical beam parameters are listed in table 2.1 We found that etching at beam

voltages higher than 50 - 100 V would melt the Pb under the PR, causing it to agglomerate

into large (- 2 .tm) grains, even if the substrate was water cooled. Using the parameters
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Figure 2.9 Optical micrograph of a completed disordered array, with A*--O. 10.
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of table 2.1 we obtained controlled etching at rates of 100 - 200 A/minute. The abnormally

high accelerator voltage (VA - 5 VB, compared to the usual VA ~ 0.25 VB (Kaufman,

1984)) was necessary to avoid excessive ion impingement on the grids (accelerator

currents > 10 mA), which causes excessive wear on the grids and power supply. During

ion-etching the sample was observed through a glass window, and etching was stopped

approximately two minutes after the large test area appeared to be clear of Pb.

Table 2.1 Ion etching parameters. Commonwealth3 cm ion gun.

VBBeanm voltage 35 V
I Beam current 7-15 mA

Discharge voltage 35 V
A Discharge current 0.5 - 2.0 A

Accelerator voltage 150 - 170 VIA Accelerator current <9 mA
I Neutralizer filament current < 15 A

Neutralizer emission current IB

The final stage in sample fabrication was to remove the PR by squirting (and soaking,

if necessary) with acetone. The resist on the islands was usually reluctant to dissolve, but

that on the pads dissolved easily, allowing clean electrical contact for the measurements.

Figure 2.9 shows an optical micrograph of a completed sample.

2.3 Measurement apparatus

When making transport measurements on Josephson junction arrays it is important to

realize that the act of applying a transport current changes the properties of the system.

For example, as discussed in chapter one, the KT transition is due to the thermal unbinding

of vortices, but a measuring current can also unbind vortex pairs since it exerts opposite

-,'.,,-,, .
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forces on the vortices in a pair. If the number of current-induced free vortices is

comparable to the number of thermally unbound vortices then the details of the phase

transition can be obscured. Similarly, the complex modulation of array resistance by a

perpendicular magnetic field is due to delicate phase coherence, which can be destroyed by

large measuring currents. This sensitivity to measuring currents, along with the low

normal resistance of proximity effect arrays (- 1 m.Q), necessitates the measurement of

quite small voltages. To this end we have used either a conventional lock-in amplifier or a

SQUID to make all our measurements. Using a lock-in amplifier we have made ac

measurements with sensitivity - 1 nV, while the SQUID has enabled us to make dc

measurements with sensitivity - lpV. In this section we briefly describe the main features

of the cryogenic apparatus, and some of the details of the lock-in and SQUID measurement

techniques.

The cryogenic probe used for the conventional measurements has been described in

detail by Abraham (1983), and only its main features will be reviewed here. It has a

vacuum can and a heater, so that the temperature of the sample can be raised above that of

the He bath. Using a proportional-integral-derivative feedback system from a germanium

resistance thermometer to the heater we could maintain temperature stability of

approximately 1 inK, from the bath temperature up to approximately 15 K. The thermal

circuit appeared to be well designed, with no appreciable thermal lag between thermometer

and sample, and no evidence for differences in thermometer and sample temperatures in the

steady state. A magnetic field perpendicular to the sample was provided by a home-made

Cu solenoid, of length 10 cm and diameter 5.5 cm.

Because of concerns about magnetic field inhomogeneity some precautionary changes

were made over the design described by Abraham. Our goal was to eliminate all

unnecessary solder joints and other superconducting materials, which could distort the

solenoid's magnetic field. The original Cu sample mount had two circular solder joints, of
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diameter - 3 cm, quite close to the sample. This piece was rebuilt, eliminating one joint

entirely and replacing the other with a friction fit secured by brass screws. In addition, the

original vacuum can, which was made of ordinary brass (which contains Pb to facilitate

machining), and had solder joints at top and bottom, was replaced by a one-piece design

made from Pb-free "Naval Brass". The full benefit of these measures would most likely

be felt in measurements of larger arrays than thoke studied in this work, but we believe that

the elimination of unnecessary solder joints is a prudent precaution in the design of

cryogenic probes.

The design of the SQUID probe was also modified over that used previously by Lobb

(1980). The sample voltage leads are Cu-clad Nb-Ti of approximately 40 gauge, instead 0

of the Nb3Sn tape used previously, while the current leads are #40 Cu. The Nb 3Sn tape

had been uninsulated and therefore difficult to heat-sink without electrical shorts. The

sample is mounted on a copper block which is connected to the He bath by a two-stage

thermal link. This was intended to reduce thermal gradients and thereby reduce thermal

emfs, which can be very significant in SQUID measurents. In practice the rig suffered

from thermometry problems, probably due to insufficient heat-sinking of the thermometer

and heater leads coming from room temperature. Compared to the conventional probe

there was very little area for heat-sinking these leads. Because of these problems we made PNI

all our SQUID measurements with the sample and thermometer in the He bath, with •

temperature controlled by a Walker type pressure regulator. Since all our samples had T,

below 3.0 K this did not prove to be a limitation.

For conventional measurements we used a Princeton Applied Research model 140

lock-in amplifier with a model 119 1:100 step-up transformer. The lowest noise and%"

greatest stability were obtained by operation at frequencies of order 400 Hz, usually -

437 Hz, while operation at lower frequencies generally resulted in larger drift and

somewhat greater noise. We had no difficulty measuring signals down to I nV, with noise
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Ix 0is
Rx Rs

ie 0 IxRx =15 Rs

Figure 2. 10 Schematic diagram of the bridge circuit used for SQUJID measurements. R is
the sample resistance and R~ is the standard resistor (3 x 10-5 Q) in ltie
S.H.E. PVP or MFP unit.
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typically of order 0.2 nV with time constants of 3 secs or less. We usually set the Q of the

signal channel to its maximun' value of 100, for maximum noise rejection.

The SQUID measurements were made using a S.H.E. model 330 if-SQUID as a null

detector in a bridge circuit, as shown in Fig. 2.10. The sample, Rx, and its current supply

are connected in parallel with a standard resistor, R., and current supply, with the SQUID

magnetometer input between them. The procedure was to "reset" the SQUID with both

currents set to zero, turn up the sample current to the desired level, and then adjust the

standard's current supply until the bridge was "in balance" and the SQUID output was ',

zero. In the balanced state the sample resistance is then determined by the condition IxRx =

IsRs. To reduce noise, both current supplies were battery-powered, as were the voltmeters

used to monitor currents. The sample current was monitored by a PAR 113 amplifier and

then a voltmeter, which seemed to decrease the noise appreciably. Our standard resistor Rs

was actually the 3 x 10-5 Q resistor in the S.H.E. MFP or PVP unit, which is part of a

voltmeter circuit. We did not use the voltmeter circuit as such because it was found to have

uncontrollable offset currents (- 1 p.A), making it impossible to determine the absolute

current level in the sample.

When the bridge is balanced the contact resistances between leads and sample are

irrelevant, but these resistances can degrade the sensitivity of the measurement. Contact to

the sample was usually made by pressed In contacts, with the tip of the Cu-clad Nb-Ti S

wire stripped of Cu before making contact. Ideally the contact should be completely

superconducting but we found no noticeable difference between sensitivity above and

below the In transition at 3.4 K. Our voltage sensitivity was approximately 1 pV. 0

K;?Z I
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CHAPTER THREE

EXPERIMENTAL RESULTS

3.1 Introduction

As discussed in chapters one and two, when making transport measurements on arrays

it is important to use as small a current as possible. For example, to observe a

discontinuous jump in the exponent a(T), one must extract a(T) from the local logarithmic

slope, (I/V)dVdI, at total sample currents, I, such that the current per junction, i, is small

compared to the critical current of an isolated single junction, ic. At higher current levels
I

the discontinuity is smeared out and a falls to a value of one at a temperature higher than

Tc. As discussed by Halperin and Nelson (1979) and Kadin et al. (1983), this can be

understood in terms of a current-dependent length scale, li - ii, corresponding to the
I

separation of the tightest-bound vortex pairs which can be unbound by the current i. In

effect, the length I provides an upper cutoff on the renormalization procedure described in

chapter one, so that measurements do not probe the fully renormalized properties of the

array.

Since the I-V characteristics are still non-linear above Tc, at currents i >>ic, the "

extraction of a resistance for comparison with the theoretical result,

becomes problematic. If one defines resistance as VII or dV/dl in this non-linear regime,

one can see appreciable deviations from the behavior in (1.12) as one approaches Tc

(Abraham et al., 1982).

In this work we have studied small arrays, typically 50 x 50, compared to the

. . .. . . . .. . . . . . .. . .
.,
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1000 x 1000 arrays in earlier work (Abraham et al., 1982). This small size necessitates

the use of smaller total sample current, I, to maintain comparable current per junction, i.

Since the resistance is independent of size for a square sample the resulting voltages will be

twenty times lower for the 50 x 50 samples, given the same resistivity. Given a fixed

voltage sensitivity one must use currents, i, twenty times larger in our small arrays,

exacerbating the finite current effects discussed above.

The point of this discussion is simply that our small arrays are not ideal systems for

sudying the details of the KT transition. Therefore, any effects associated with positional

disorder must be obvious enough that we do not have to rely on detailed analysis of, for

example, the temperature dependence of the resistance, or subtle changes in the I-V

exponent a(T). Our measurements emphasize the destruction of oscillations in resistance

vs. magnetic field, as a signature of the destruction of phase coherence in arrays with

positional disorder. Most of this chapter is concerned with the analysis of such data. We

also present some data on the critical current and resistance as a function of temperature.

In the final section of this chapter we present some preliminary results from measurements

on Sierpinski gasket arrays of Josephson junctions, which provide a realization of an XY

model on a fractal lattice.

3.2 Critical currents

The critical current of a long, narrow, proximity effect or superconductor-

normal-superconductor (SNS) junction is given by (De Gennes, 1964)

(T):=ic(0) 1- exp (3.1)
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where d is the length of the junction (see Fig. 2.3), and 4N(T), the normal metal coherence

length, is given by (Deutscher and De Gennes, 1969)

1

'ly
= 6  1 << V(T) (3.2a)

"VF I >> (7) (3.2b),2xk BT  1 N

where V F is the Fermi velocity and I the mean free path. By "long" we mean d >> 4N.

while "narrow" means that the width w is small compared to the Josephson penetration

depth, X. (Tinkham, 1975):

2

= (cTcj) (3.3),

where Jc is the critical current per unit width, 8 is the thickness of the normal metal, and

dis the effective length of the junction. [For an SIS junction with a simple "sandwich"

geometry (Tinkham, 1975, Fig. 6-6) de -d+ 2XL, where d is the distance between the

superconducting electrodes, while for an SNS sandwich df , is probably less than d, due to

the proximity effect in the N layer. The correct definition for our "bridge"-type SNS

junctions is not obvious. For the sake of this discussion we simply assume djf& d]. As

observed by Abraham et al. (1982), the critical current of an SNS array at low

temperatures is well fit by the form (3.1), using the dirty limit form of 4$T), (3.2a).

Experimentally we defined the critical current I(T) as the current at which the sample

voltage exceeded some threshold, usually one picovolt when using the SQUID. Figure

3.1 shows results for sample DAIB-00 (with A* - 0), in zero field. Since the
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2

1.2 1.3 1.4 1.5

1/2 I
T

Figure 3.1 Natural logarithm of the measured critical current I (in j, A), plotted vs. /T,
for sample DA1B2-00. On such a plot the theortetical prediction of
DeGennes, (3.1) is a straight line. The two linear regimes observed may be
explained by non-uniform current flow in the sample, as discussed in the text.

'I.
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measurements cover a small temperature range, far below T,,-7 K, the temperature

dependence of I, due to the prefactor in (3.1) is insignificant compared to the exponential.

When plotted as ln[Ic(T)] vs. T112 the data should then fall on a straight line. The data

actually show two linear regimes, similar to data in other work (Clarke, 1969; Abraham,

1983). Following Clarke's work on single SNS junctions, Abraham suggested that, in his

arrays, the crossover between the two linear regimes occured when X, became comparable

to w, the width of the junction. According to (3.3), as temperature decreases, and jc(T)

increases, Xj decreases. When 2X, < w, and assuming there are no vortices in the

junction (which will almost always be true in an array at low temperature), the current does

not flow uniformly but rather decays exponentially from each edge of the junction towards

the center, with characteristic length X.. In this limit one has ic - j,.X. -J c, so that, on

a plot of ln(i) vs. 4IT, the slope should decrease by a factor of two as temperature

decreases and the current becomes non-uniform in this so-called "self-field limited"

regime. Abraham's data showed roughly a factor of two change in slope, occuring at a

current level consistent, within a factor of five, with the approximate crossover condition,

2Xj = w. For our samples, using 8 - 4000 A, def - d - 2 m, and w - 4 gm, this

crossover should occur at Ic - 2.6 mA, compared to the observed 45 - 50 A.

We believe that the crossover in our samples may be due not to current nonuniformity

in individual junctions, but rather in the sample as a whole. The appropriate penetration

depth for the entire sample is XL±. the perpendicular penetration depth. For a thin film this

is given by XL2/t (Pearl, 1964), where XL is the London penetration depth and t is the film

thickness, while for an array it is given by (Lobb et al., 1983)

26 nAcm(3X (7) = C (3.4),I x21R T
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where icR(T) is the fully renormalized critical current. Although Xz can be several

centimeters near Tc (Lobb et al., 1983), as temperature decreases )± can become less than

the sample size, so that current will flow only within a distance of order X1, from each edge

of the sample. Just as for the case of X. in a single junction we can set an approximate

crossover criterion as 2X_ =W, where W is now the width of the entire sample, which for

our 50 x 50 samples is approximately 0.065 cm. Using the measured critical current per

junction, ic(T) = Ic(T)/50, in place of the fully renormalized critical current in (3.5), we

find that the condition 2X_.=W is satisfied when Ic(T) - 40 IiA. This is quite close to the

observed crossover current of 49 giA.

This argument, however, fails to predict the temperature dependence of ic, at

temperatures below the crossover, and in fact predicts that I, . will be independent

of temperature below the crossover, contrary to what is observed experimentally (Fig.

3.1). We presently have no other explanation for this crossover behavior.

Given the uncertainty in the nature of the crossover in 1,(T) we have used a fit to the

data closest to T c to define T' = TJ(Tc)/J(T) =Tlc(Tc)Ic(T) in our analysis of the

temperature dependence of the resistance. Using this data we can also compare our results

to the theoretical value of iCR(Tc)/Tc - 27 nA/K (Lobb et al., 1983). Defining Tc as the

temperature at which the zero-field I-V exponent a(T) equals three, we find Tc = 2.385 for

the sample of Fig. 3.1, and ic(Tc)/T c - 104 nA/2.385 - 44 nA/K. Assuming the

approximate relationship ic(Tc)_ (ec +iC/8) iR(T) (Abraham, 1983), we find that the

vortex dielectric constant ec = e(Tc) should have a value of 1.1 to obtain agreement with

theory. This value is slightly lower than the results cc = 1.3 found by Kadin er al. (1983)

in Hg-Xe films, and cc = 1.5 found by Leeman et al. (1986) in proximity arrays, but is not

unreasonable.
It is worth noting that Abraham's (1983) analysis of critical current data may have

been misguided in that all data appear to be in the regime where X1 is appreciably less than
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the sample size. This would have lead to an underestimate of the rate of decrease of Ic with

increasing temperature, leading to an overestimate of ic(Tc)/T c . The average value from

several samples was ic(T)/T - 84 ± 40 nA/K, which requires c = 2.75 ± 1.5 to obtain

agreement with theory. This value seems unreasonably large compared to others in the

literature. Bunching of current near the sample edges may provide the explanation for this

discrepancy.

3.3 Resistance versus temperature

Figure 3.2 shows R(T) measured with a lock-in amplifier, with an rms sample current

of 1=10 pxA. The sharp transition at T - 6.9 K is the superconducting transition of the Pb

islands. The transition temperature is depressed from the bulk value 7.2 K by the.

proximity effect, which is particulary strong in this sample, which has 4000 A of Cu and

2500 A of Pb. The solid line is a fit to the proximity effect model of Abraham et al.

(1982), which describes the spreading of superconductivity from the Pb into the Cu. The

drop at T = 2.0 - 3.5 K is the KT transition, depressed somewhat by the high sample

current.

Using the critical current data from the previous section to define the effective

temperature T', we can fit the tail of the transition to the theoretical form (1.12), which we

restate here using T' instead of T:

-2b

R(T) = Ro e(3.5).

Figure 3.3 shows V(T) taken with a SQUID, with I = 0.5 tA, and plotted as log(V)



57

50

Sample DA1B 1-00

1=1OplA
40 -

30

V(nV)

20

10

0U

0 2 4 6 8

T (K)

Figure 3.2 Sample voltage vs. temperature for a uniform sample, measured with a lock-in
amplifier. The solid line is a fit to the proximity-effect model, which
describes the initial drop in resistance due to the gradual spreading of
superconductivity from the Pb into the Cu.
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10000

Sample DAIB2-00

1000 00 3 I= 0.5pA

V(pV)

100

10

0.0 0.1 0.2 0.3 0.4

(T'/T' -1) -1

-1/

Figure 3.3 Voltage vs. temperature, measured with a SQUID, and plotted in such a way
that the theoretical prediction of Halperin and Nelson, (1.12), is a straight
line. The solid line is a fit to the data. The deviation at high temperature (to
the left) occurs as the data enter the proximity-effect regime.
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vs. (T'IT,'- l) 1/2, so that the theoretical prediction (3.6) is a straight line. The data agree

with (3.6) over more than two decades, using fitting parameters c1 = 5.0 and b = 12.3.

The deviation at high temperature (to the left) occurs as the data enter the proximity effect

regime. Our value for c1 , which should be of order one, seems large but is not too

unreasonable. To obtain greater dynamic range in such a measurement requires a larger

sample, such as 1000 x 1000.

3.4 Resistance versus magnetic field

As discussed in section 1.3, the ground state energy and transition temperature of a

Josephson junction array are complicated oscillatory functions of magnetic field strength,

with a fundamental period corresponding to one flux quantum per unit cell of the array. In

addition to the fundamental period there are higher-order oscillations with periods

corresponding to rational valuesf=p/q, (p and q integers). This complicated structure has

been demonstrated in both Monte Carlo simulations, where one usually computes the

ground state energy, and in mean-field calculations, where one calculates Tc(f) (Rammal

et al., 1982; Shih and Stroud, 1983).

Since the resistive transition is usually quite broad (sometimes several degrees) in a

junction array (as distinct from wire arrays, which have sharp mean-field-like transitions),

it is impossible to measure Tc(f) directly. However, one can indirectly measure the

modulation of T, with field through the resistance vs. field, R(fo), or, given the difficulty

in defining R at finite current levels, in sample voltage V(f), or dynamic resistance,

dV(fo)ldl I 1=o" Ignoring the possiblility of a change in the nature of the phase transiton at

particular values of fo (section 1.3) one can simply view the modulation of Tc as a

wholesale shift of the resistive transition. At a fixed temperature one then has (Tinkham et

iI
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V(pV)
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Figure 3.4 Sample voltage vs. magnetic field for a uniform array, showing principal
oscillations and some structure at half-integer flux. The background is due to
single-junction effects.
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al., 1983)

V(f,,T) - V(o,7) AV(f,) (TA) - T (O)) - J T

dV
M AT~) d T 3.)
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Figure 3.4 shows V(f), measured with a SQUID, for one of our uniform samples.

One clearly sees the principal oscillations of period Af = 1, as well as some fine structure

at low fields. The data also demonstrate an effect alluded to in section 1.4, that is, the

modulation of single junction critical currents by the magnetic field. For a finite area

junction in a magnetic field the critical current is given by (Tinkham, 1975)

it(B) = it(B--O) -in(i/c' (3.7),

00

where 1 is the flux in the junction area. This is the familiar Fraunhofer diffraction pattern,

which has zeros at 4'=nOo (n*O). In real junctions one frequently has minima rather than

zeros at these points, perhaps due to non-uniform current flow in the junction, which can

result from asymmetries in the junction geometry, or self-field limiting (Miller and

Finnemore, 1984). The resistance maximum at fo - 12 in Fig. 3.4 presumably ,

corresponds to the first minimum in i(B), where each junction contains one flux quantum. .

For this particuiar sample the area of the unit cell is roughly (12 g.m) 2, while the area of a

junction is approximately 2 .m x 3.75 gm, so that, assuming a uniform flux distribution,

one would expect this first minimum to occur atfo = 144/(2 x 3.75) - 19. However, due

to the screening of the magnetic field by the superconducting islands, the flux is not

uniform on the scale of a single juntion but rather is "squeezed" into the areas between the V

islands, including the junction areas, so that the junctions contain more flux than naively 0

expected.

.- ....,
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Figure 3.5 Detail of sample voltage vs. magnetic field for a uniform array, showing
higher-order structure.
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Figure 3.5 shows a more detailed measurement of V(f,) over approximately one flux

quantum. The data show a strong minimum atf o =1/2, as well as secondary minima atfo

= 1/3 and 2/3, and recognizable features at 4o = 1/4, 3/4, and 5/4. The principal

oscillations require phase coherence over a distance of order the latttice parameter s, while

structure at rational values fo =p/q requires phase coherence over a distance of order q.a.

This can be understood theoretically from the structure of the ground states forfo =plq,

which consist of q x q primitive cells (Teitel and Jayaprakash, 1983b). For the array

resistance to show structure at f. =p/q these q x q cells must intefere coherently.

Experimentally, Van Harlingen and Springer (1987) have fabricated arrays with n x m

plaquettes, with n - 1000 and m = 1,2,3.... and have demonstrated that R(f) only shows

structure for q , m. That is, an n x 1 plaquette array only shows principal oscillations

while an n x 2 shows structure at integer and half-integer flux, and so on.

The rich structure in V(fo) provides information about relatively short-range

coherence, over distances of a few lattice parameters, in an array above T,. Since we are

interested in the destruction of phase coherence in arrays with positional disorder we have

taken such data for samples with various amounts of disorder. Figure 3.6 shows V(f0 )

for samples with various values of A*, for both positive and negative fields. Most of these

data (except for the A*-O trace) were taken at relatively high temperatures, where the

sample resistance is of order half the "normal resistance" (the resistance below the Pb

transition), Ro. At such a temperature dV/dT is typically at its maximum value, so that,

from (3.4), the principal oscillations are large; however the temperature is too high to

observe higher-order structure, which relies on more delicate coherence. One observes a

trend that the amplitude of the resistance oscillations decreases with increasing field,

samples with larger A* showing a more rapid decrease. For example, for A* - 0

oscillations appear to persist out tof o +9, while for A* = 0.20 only tofo - ± 3 - 4.

Figure 3.7 shows R(f) to larger fields, for samples with A* =0.10 and 0, and

A As
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Figure 3.7 Resistance vs. magnetic field, R(fo), for A* = 0.10 (upper trace) and A* =0
(lower trace), showing oscillations due to collective behavior, modulated by
single-junction effects. Inset shows definition of oscillatior. amplitude
A R (f).
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shows more clearly the Fraunhofer diffraction pattern discussed earlier, with the secondary

minimum in R (maximum in i, ) clearly visible. From the lower trace one sees that, in the

uniform sample, although the resistance oscillations are decaying as the resistance

approaches the first maximum atf - 12, they are visible again as the resistance drops into

the second minimum. Fig. 3.8a shows data taken in this region in another sample with A*

0, using the SQUID for improved signal-to-noise ratio, and shows more cleanly the

persistence of the resistance oscillations in this secondary minimum. In contrast, the

sample with A* = 0.10 (upper trace in Fig. 3.7) shows no oscillations in this region, even

in data taken with the SQUID, as shown in Fig. 3.8b.

3.5 Critical fields

To quantify the destruction of phase coherence we wish to quantify the decay of

resistance oscillations in samples with various amounts of disorder. In order to do this we

must first account for the single junction effects which modulate the resistance oscillations

(Figs. 3.6 and 3.7). In principle one could consider fitting the background to a function

which incorporates the modulation of the junction critical currents as described by (3.5).

However, as noted earlier, (3.5) apparently fails to describe our arrays in that the array

resistance does not reach its normal value, Ro, at the first maximum, where the junction

critical currents should, according to (3.5), all be zero. This is presumably due to our

samples having a distribution of effective junction areas, and, to a lesser extent, to

non-uniform current flow in individual junctions.

As a simple alternative we point out that, empirically, the amplitude of the resistance

oscillations always goes to zero at the first maximum in the background, R,,, which

0i
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Figure 3.9 Amplitude of resistance oscillations vs. f for various values of A*. The
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critical fieldsft.
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occurs atf0 = 12 for the sample of Fig. 3.7. This suggests the following approximate

procedure to compensate for single junction effects. We determine the oscillation

amplitude as a function off, AR(f), as illustrated in the inset in Fig. 3.7, and introduce a

rescaled oscillation amplitude, AR'(f0 ) a AR(f)/(R,,=a- R(f,)). (Alternatively, one could

replace R,,M with a field-dependent offset defined by a tangent line to all the observed local

maxima in the background. This would not significantly change our results).

Figure 3.9 shows AR'(f,), normalized to its value atfo = 0, for samples with varying

amounts of disorder. One sees that, empirically, AR' decreases linearly with increasingfo,

samples with greater disorder showing a steeper decrease. The lines in Fig. 3.9 are

least-squares fits assuming linear behavior. For each sample, the point at which this fit

intercepts the line AR' = 0 is an estimate of the field at which the oscillation amplitude goes

to zero. As discussed earlier, at this field we expect that phase coherence has been

destroyed on a length scale of order the lattice parameter.

We thus define an experimental critical field, f/ m', as the field at which, for a given

value of A*, the linear fit to AR'(f,) intercepts AR' = 0. Figure 3.10 showsfce-11' plotted

vs. 1/A*, and demonstrates the linear dependence predicted by (1.29), but with = "-,,

0.95/A* - 0.55/A, compared to the theoretical critical field, 0.10/A. Of course the

theoretical critical field corresponds to the destruction of long-range (or "quasi-long-

range") order, whereas the experimental critical field thus defined corresponds to the

destruction of the more robust short-range coherence. ThereforefcW1 should be larger

than the theoretical critical field.

As for the linear decay of resistance oscillations (and therefore of T, oscillations) with

field, there is no theory available for comparison since the only tractable magnetic fields are

integer values of fo, and, to a lesser extent, fo = n+l/2. The oscillation amplitudes are :.

determined by the resistance at integer fields and at the adjacent maxima, where fo is

typically approximately n±0.4, for which no theory is available. However, Benz (1987) %
"p.

Ii
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Figure 3.10 Values off, from Fig. 3.9, plotted vs. l/A*. The line is a least-squares fit
constrained to have zero intercept.

has numerically solved the linearized Ginzburg-Landau equations for an 8 x 8 array of

superconducting wires, to find the mean-field transition temperature, TC(fo), in the
A

presence of positional disorder. Considering only fieldsfo = n/8 commensurate with the

8 x 8 cell, and imposing periodic boundary conditions on the superconducting order

parameter, he found that the oscillation amplitudes, ATC(fo), decay approximately linearly

with fo, as shown in Fig. 3.11, in agreement with our experiments. However, these

calculations do show some evidence for non-linearity at low fields, which does not appear -
1**

in our data.

Although theory deals rather easily with long-range phase coherence, it is difficult, if U'.

not impossible, to find an experimental probe of such coherence, especially in a small .

sample, where finite-current and finite-size effects are important. However, we do have at

our disposal an experimental signature of phase coherence on length scales somewhat

ArN
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Figure 3.11 Transition temperature vs. field for a wire network with positional disorder,
computed using the linearized Ginzburg-Landau equations (Benz, 1987).
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larger than the lattice parameter - the higher-order structure in R(fo).

We recall that a local resistance minimum at a fieldfo = p/q is due to phase coherence

over a length of order q- s. If we can quantify the destruction of such higher-order

features with field, and define critical fieldsf,(A*,q) by the disappearance of features atfo

= p/q, then we can quantify the destruction of phase coherence over these longer lengths.

Of course, the case q = 1 corresponds to the principal oscillations already discussed.

In practice we have only attempted to quantify our data for q = 1, 2, and 3, since data

clean enough to show higher-order effects were the exception rather than the rule. Even

for q = 3 we only have data for one sample, with A* = 0.10. A further complication is the

role of single junction effects, finite measuring currents, and sample imperfections, in

suppressing these higher-order structures. From Fig. 3.4 one can see that even in a

nominally uniform sample the half-integer (q = 2) structure is destroyed at relatively low

fields. Unfortunately, the resistive transitions of the various samples are sufficiently

different that we cannot simply normalize results for A* * 0 to those for A* =0. We

simply note that such structure will be systematically suppressed by a combination of

finite-current effects and uncontrolled sample inhomogeneity. ,

Since it is difficult to define an oscillation amplitude analogous to A.R(f) for these

A.. higher-order features, we have, rather subjectively, defined critical fields fc(q=2) and

f (q=3) by noting where the last feature at irreducible rational values f. = p/2 and p13

occurs. If, in the data with the best signal-to-noise ratio, a feature is observed atfo = n +

1/2, but not atfo = n + 3/2, we definefc(q=2) = n +1, with an error ±1/2. Similarly, if a

minimum is observed atfo = n + 1/3 (fo = n + 2/3) but not atfo = n + 2/3 (fo = n + 4/3),

we definefc(q=3) = n +1/2 (f (q=3) =n + 1), again with a subjective error of ±1/2.

The data forfc(q) are presented in Fig. 3.12. Empirically we find that fc(q) .A* is a

'a linear function of 1/q 2,

.. "
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Figure 3.12 Critical fields for structures at fields f = p/q, corresponding to the destruction
of phase coherence on length scales of order q.s. Extrapolating to q=o,
gives an estimate for the critical field for destruction of long-range coherence.

fc(q).A* =c + C (3.8),
q 2

and the line in Fig. 3.12 is a least squares fit assuming this form. The origin of this

q-dependence is not known, but given our identification of q.s as a coherence distance one

is reminded of the perpendicular critical field of a superconducting film, H, c. ,

where 4 is the Ginzburg-Landau coherence length. The constant offset c, is of course a

new feature. If we assume that the form (3.8) holds for all q then we can extrapolate to q

to estimate a critical field, fc(q=o) = c,, for the destruction of QLRC. The data of

Fig. 3.12 give a valuefc(q=oo) A* = 0.105±0.010. Using our approximation A -A*/4/3

givesf (q=-o) -A 0.061 ±0.006, compared to the theoretical result (1.29),fc.A 0.10.
C-*- -i
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Given the uncertainties in our analysis, the agreement between our experimental f,(q=o )

and the theoretical result is quite satisfactory.

The sign of the discrepancy betweenf,(q=o) and (1.29) can be accounted for by the

suppression of higher-order structure due to the combination of effects discussed above,

for which we have no quantitative description. We should also reemphasize that our

conversion A c: A*/3 is only approximate, since it ignores higher moments of the

probability distributions for site displacements.

3.6 Summary

We have presented our experimental results on 50 x 50 arrays of Pb-Cu

proximity-effect or SNS junctions, with and without positional disorder. This disorder

was introduced by randomly displacing the center of each cross-shaped superconducting

island, while preserving the distance of closest approach, so as to avoid disorder in the

critical currents of the junctions. The disorder is characterized by a parameter A*, which is

the half-width of our uniform distribution of site displacements.

In zero field these arrays have properties similar to those measured by other workers.

The critical current of the array as a whole is well fitted, at low temperatures, by the

DeGennes (1964) expression for the critical current of a single SNS junction. At the

lowest temperatures we observed a crossover to a regime in which the measured critical

current increased less steeply with decreasing temperature. In previous work on arrays

(Abraham, 1983) a similar crossover was found to be consistent with the Josephson

penetration depth, X1, becoming smaller than the width of a single junction, so that current

flowed ony within a distance of order X. from each edge of the junction. In our

./ ~ -~r.4 .-. & &: **~*~*~ U,' **~~ ~ *UU9. . %%." -:' % t. :.°*%
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measurements this crossover occurs at a lower current level, probably below the sensitivity

of Abraham's meaurements. The current at which the crossover occurs appears to be

consistent with the perpendicular penetration depth, X±, becoming smaller than the width

of the entire sample, so that the current flows within a distance of order X,± from each edge

of the sample as a whole. However this explanation does not predict the correct 0

temperature dependence for I, below the crossover. Although this issue is not fully

resolved, it does seem likely that Abraham's critical current measurements were made in a

regime where the current was flowing non-uniformly in the whole array. This would 0

explain the high estimates of icR(TC)/TC obtained in that work. Our results for icR(TC)/T C

are in much better agreement with theory.

The zero-field resistive transition of our samples can be understood in terms of the two

behaviors seen in other work. The initial gradual decrease in resistance, below the Pb

transition, is well fit by the proximity-effect model of Abraham et al. (1982), which

describes the gradual spreading of superconductivity from the Pb into the Cu. SQUID

measurements of the transition to zero resistance, on the other hand, are in excellent

agreement with the theory of Halperin and Nelson (1979) for the KT transition, as long as

one uses the effective temperature T'= TJ(Tc)/J(T) appropriate for an array (Lobb et al.,

1983).

Our arrays show rich structure in their resistance vs. perpendicular magnetic field,

R(f), with principal oscillations of period 4ff = 1, and reproducible structure atfo - n = -

1/2, 1/3, 2/3, 1/4, and 3/4. We also observe a modulation of the principal oscillations by

single-junction effects, which are due to the field modulating the '.'tical currents of the

individual junctions. -

After correcting for these single-junction effects we find that the amplitude of ihe

principal oscillations, AR'(fo), decays approximately linearly with f in our disordered

arrays, samples with greater disorder showing a steeper slope. By extrapolation of a linear 0

, ,," , , ,' -..' ' :'.'': : 2€ ,'. .;. , ' .'.' , ,;, .: ., '. . '. '.: "., ," %" ,'.".',,".:'.-..; :.:i: "" "" ," --.>' ."".. ",
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fit to such data we define an experimental critical field, f"xtP-f,(q=1), as the field where

AR' goes to zero, so that the principal oscillations are completely suppressed. Plotting

fj(q=1) vs. I/A* we find the empirical form ,fj(q=1) - 0.95/A* = 0.55/A, so thatf,(q=1)

has the same dependence on disorder as does the theoretical critical field,fr = 0.10/A. We

argue thatf,(q=l) is the field at which phase coherence is destroyed on a length scale of

order the lattice parameter, s.

By quantifying the destruction of higher-order features in R(f), at rational values

f--n = p/q, we were able to quantify the destruction of phase coherence on slightly longer

length scales. We defined critical fields f(q) by the disappearance of such features, and

considered data for q = 1, 2 and 3. We found that, empirically, f,(q) followed the form

f,(q).A* = c, + c2/q2 quite closely. Extrapolating to q -cc, for long-range coherence,

we obtained a resultfc(q) (0.061±0.006)/A, in quite good agreement with the theoretical

resultf, =0.10/A.

3.7 Sierpinski gasket arrays of proximity effect junctions

Regular two-dimensional Josephson junction arrays exhibit broad, fluctuation-

dominated behavior, undergoing a Kosterlitz-Thouless transition in the absence of

frustration, while wire networks, due to much stronger couplings between

superconducting islands, exhibit sharp, Ginzburg-Landau-type transitions. Similarly,

quasiperiodic junction arrays (Springer and Van Harlingen, 1987) exhibit characteristics

which are qualitatively different from those of quasiperiodic wire networks (Behrooz et al.,
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1986). Sierpinski gasket wire networks, which have a fractal dimension of 1.585, show a

narrow Ginzburg-Landau-type phase transition, with the transition temperature as a 0

function of magnetic field, T,(B), exhibiting dilation invariance, reflecting the self-similar

geometry of the gasket (Gordon et al., 1986).

Using the same techniques as for our disordered arrays we have fabricated sixth order

Sierpinski gasket arrays of proximity-effect junctions (Lee et al., 1987). These arrays are

not expected to undergo a Kosterlitz-Thouless transition, because they are less than

two-dimensional. However, the samples show broad transitions, characteristic of 0

weakly-coupled, fluctuation-dominated systems, in contrast to the Ginzburg-Landau

behavior seen in wire arrays. Measurements of the zero-field resistive transition and the

current-voltage (I-V) characteristics appear to suggest the existence of collective behavior •

of the junctions in this system.

Our sixth-order gaskets consist of 1095 Pb islands coupled by the proximity effect.

Sections of an e-beam written mask are shown in Fig. 2.6. The smallest repetition length

is 12.7 ±m and the inter-island spacing is 2.2 tm.

We have measured resistance and I-V characteristics as a function of both temperature

and applied perpendicular magnetic field. Sample current was injected at one vertex and

extracted symmetrically from the other vertices, and the longitudinal potential differenc,'.

was measured as shoi n in the inset of Fig. 3.13a. Figures 3.13a and b show the ..

zero-field resistive transition for samples G2 and G1, respectively, the former taken with

sample current I = 20 nA, using a SQUID, the latter with I = 10 p tA, using a lock-in

amplifier. As expected, the resistive transitions for both samples are broad and

fluctuation-dominated.

As in regular 2D arrays, the temperature dependence of the resistance near the

superconducting transition of the PbBi islands fits well to the proximity-effect model (the

solid curve in Fig. 3.13b). At temperatures below the proximity-effect regime the

I 
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Figure 3.13 Zero-field resistive transitions of (a) Sierpinski gasket sample G2, measured
with a SQUID, and (b) sample G 1, measured with a lock-in amplifier.
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resistance is linear in temperature over a wide temperature range. This broad linear region

apparently has no analog in regular arrays, and it is unclear what theoretical model might

be appropriate. The data in this regime do not fit the theory of fluctuation effects such as

Aslamasov-Larkin fluctuation-enhanced conductivity (Aslamasov and Larkin, 1968),

Aa[T/(T-Tco)]( 4"Or2 , for dimension d=l, d=2, or d=1.585, the fractal dimension of the

gasket, where Tco is the fitted mean-field transition temperature.

Near the zero-resistance transition, the resistance is found to be highly nonlinear with

temperature. The temperature dependence of the resistance in this regime appears not to fit

the 2D Kosterlitz-Thouless Halperin-Nelson form (1.12), even using the effective

temperature T'=T IC(T)/IC(T) , where Tc is the zero-resistance transition temperature. The

data also do not fit the single-junction Ambegaokar-Halperin form (Ambegaokar and

Halperin, 1969), which might be expected if the junctions at the constricted areas of the

gasket, which carry the highest current, dominate the rezistance. This temperature

dependence would also be expected for series arrays at temperature not too close to Tc,

where long-range fluctuations develop. Our tentative conclusion is that the resistive

transition of this fractal system cannot be described by 1D or 2D theories.

Figure 3.14 shows the zero-field (< 1 mG) I-V characteristics for sample G2 in a

broad temperature range near the zero-resistance transition. For high currents, the I-V

characteristics become linear because the sample is driven normal. In the intermediate

current range, however, the I-V characteristics show power-law behavior, similar in some

ways to the case of regular 2D array in the current-dominated regime, where the

current-unbound vortices dominate the resistance. For low currents, the I-V characteristics

again show power-law behavior, VoI a '), but with lower powers than in the intermediate

current range. In this range, a(T) increases smoothly with decreasing temperature,

showing no clear evidence of jump from three to one in the present data. In a large array,

the absence of a jump in a(T) would rule out the existence of a Kosterlitz-Thouless
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Figure 3.14 Current-voltage characteristics for sample G2. The lines are guides to the eye
for the data in the low-current power-law regime.
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Figure 3.15 Voltage vs. magnetic field for Sierpinski gasket sample G2, showing dilation 0
invariance as the field axis is expanded by factors of four.
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transition. However, in our samples the lack of a jump might be due to finite-size effects.

As observed earlier in the arrays of wire networks (Gordoi, et al., 1986), the sample

voltage as a function of external field, V(H), reveals dilation invariance, showing similar

structure as we expand the field axis by a factor of 4 (see Fig. 3.15). We could resolve

structure in V(H) corresponding to a flux quantum in the area of a 3rd order -gasket,

implying that V(H) reflects the large-scale fractal nature of the gaskets.

In conclusion, although the Sierpinski gasket array of junctions shows a

fluctuation-broadened transition, as do regular 2D arrays, the transition does not fit the

Aslamasov-Larkin, Ambegaokar-Halperin, or Kosterlitz-Thouless-Halperin-Nelson

behavior. Current-voltage characteristics of this system are in some ways similar to those

of 2D arrays, but the apparent smooth temperature variation of a(T) makes the system

distinct from the 2D arrays.
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CHAPTER FOUR

NUMERICAL SIMULATIONS

4.1 Introduction 0

To gain further insight into the problem of Josephson junction arrays with positional

disorder, we have performed Monte Carlo simulations of an XY spin system with

non-uniform frustration. As discussed in chapter one, such a model provides a somewhat

idealized Hamiltonian, from which the theoretical predictions of chapter one were derived,

and which can serve as an input to an approximate numerical calculation of thermodynamic

quantities such as the energy, specific heat, and helicity modulus. Our goal is to calculate

such quantities for systems whose size is comparable to our experimental samples, in

contrast to the theoretical description of "fully renormalized" quantities, which is only

appropriate in the infinite-sample limit.

We begin with a review of the basic ideas behind the Monte Carlo method of

Metropolis et al. (1953), and then discuss the srzcific way in which we have applied this
.N.

method to the study of the randomly frustrated XY model. Next we present our results,

with emphasis on two particular quantities - the magnetization modulus, and the helicity

modulus. The magnetization modulus gives information about phase ordering while the

helicity modulus, the analog of the shear modulus in a solid, is related to the effective

superfluid density in an array, and is therefore a natural place to look for reentrant

superconductivity. A

V.+

0, +
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4.2 The Metropolis rule

A complete review of Monte Carlo techniques and their application to problems in

statistical physics is beyond the scope of this work. Our goal in this section is simply to

review the ideas behind the Metropolis rule, and then, in the next section, to describe how _

we have implemented this rule for our study of disordered XY models. Our discussion

follows closely the first part of the excellent review article by Binder (1974, chapter I).

Consider a system of N particles, whose interactions are described by a known 0

Hamiltonian, HN. For simplicity we assume that each particle has a single degree of

freedom. The state of the system can at any time be described by a point x in an

N-dimensional phase space, where each component xi completely describes the state of '-.'.

the ith particle. We would like to be able to calculate the thermodynamic average of some

observable, A, by numerical means. Such averages are, in principle, calculated from

fdx A(x) exp(-HN(x)kBT)

(A) =(.)

fdx exp(-HN(x)/kT)

n ,.

where the integration is over the entire phase-space volume, f0. If the xi are discrete, as in

an Ising model, the integrals in (4.1) are to be interpreted as discrete sums.

To calculate (A) we need to numerically evaluate the integrals in (4. 1). The
conventional way to do this in one dimension is to approximate the integral as a discrete

sum,

k() dx --> f(X) v X V,

V.

,N, . ,. .~ ~ :,. ...... *.. ,. ,,~.v ~ -~ fr~ ' ,af l''.f~J1~ 'f .' ,u'. . ,',:,



85

and take the xv to be the points of a regular grid. Since we are dealing with a space of

dimension N, with N - 10 - 1023, this approach is impractical. Alternatively one can

choose M phase-space points at random, rather than on a regular grid, and let M be a

"manageable" number. The problem with this approach is that many of the M sampled

points might be "unimportant", in that the Boltzman factor, exp(-HN/kBT), is much less

than one, so that the process is inefficient.

The Metropolis method (Metropolis et al., 1953) uses the idea of "importance

sampling", where instead of choosing phase-space points at random we choose them

according to some probability P(x). In calculating the integrals or sums in (4.1) we must

then correct for this bias by dividing each value A(x) by its weighting factor P(x). Then

(4.1) is approximated by

M
I A(xV) P -(xV) exp-H N (xv)/k BT)I U

(A) A = v=1 (4.2).M "1'
P P(x)V exp(-H N(X )kBT)

V-- I

If we can somehow choose our weighting function P(x,) to be equal to the equilibrium

thermal distribution, Peq( xv) c exp(-HN( xv)/k T), then (4.2) simplifies to

A- M (4.3),

so that we simply compute arithmetic averages, but at a set of phase-space points

consistent with our "biasing" distribution.

Although this procedure sounds artificial it turns out that there is a simple prescription

for choosing phase space points consistent with Peq( Xv), in the limit M-oo. The

-U]
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procedure is to execute a random walk in phase space, with the transition probability,

W(x v --+ xv.) (per unit time) for a step from x, to xv, obeying the detailed balance

condition

P e(xv)W(x v-.x X Peq(x) )W(X V-4 x

so that the ratio of transition probabilities for xv -+ x ,. and xv, - xv depends only on the

energy change 8H = H( xv.)-H( xv):

W(XV-+ %,) _XP(4H/kT) 
(4.4).

W(x,-+ x)

A simple choice of W consistent with (4.4) is

/ep(4HI/kT) SH> 0
W(X V-+ XV) otews (4.5).w~ x)= 1 otherwise 1

If, for a given step, 8H is less than or equal to zero then the step to xv,. is made, and a term

A( x .,) is added to the sum, (4.3). If 8H is greater than zero then we compare W to a

value, z, of a random variable uniformly distributed on the interval [0,11. If W > z then

the move is made and A( xv,) is added to the sum (4.3), while if W < z the move is not

made and A( xv) is added to (4.3).

In practice, it is often advisable to compute values of the observable A not after every

step, but rather after some number of steps. This helps to avoie subsequent terms in the

sum (4.3) being highly correlated, since otherwise such terms would differ only by the

state of one particle. In addition, one often discards values computed during some initial

interval, while the system "equilibrates", and the biasing function P(x) approaches Pq(X).

I"l
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Our choice of the "averaging interval" and "equilibration time" will be discussed in the next

section. -

Rather than continuing our discussion in abstract terms we will now specialize to the

case of the 2D XY model.

4.3 Monte Carlo simulation of the disordered 2D XY model

Our starting point is the Hamiltonian for the frustrated XY model, (1.13-14), which

we reiterate here:

H =-J2Id> cos(9i - 0 1 -V) (4.6)

j

2X A • dl (4.7). ,

The summation in (4.6) is over nearest neighbors on an L x L square lattice. Our gauge •

choice is the Landau gauge,

A B^ 410fo ^ A

A =Bxy -2 xy

where s is the lattice parameter. For the simple plaquettes envisioned by GK (see Fig.

4. la, where the junctions lie on straight lines beween sites i and j, (4.7) reduces to

f (x.+x.)
V I n -2 ' (4.8),

s 2 J
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where the coordinates of the eh spin, or center of the eh superconducting island, are

(x1,y1). For plaquettes of the type in our samples (Fig. 4. 1b) each Vij is simply a sum of

three terms of the type in (4.8), with endpoints (xi,yi) and (x1,yj) redefined for each of the

three "legs". To introduce positional disorder we assign random diplacement vectors u =

V

(a) (b)

Figure 4.1 Examples of plaquettes, (a) as envisioned by GK, and (b) as realized in our
experiments. For the type in (b) each 4tij is the sum of three terms.

(ux,uy) to each site, according to either a gaussian distribution of width A, (1.17), or a

uniform distribution of half-width A*, (2.1).

Although the subject of boundary conditions merits discussion in any complete review

of Monte Carlo simulations, suffice it to say that we have consistently used periodic

boundary conditions.

We now outline our implementation of the Metropolis algorithm for this system. We

first describe the general procedure, step by step, and then fill in the details of the process

as executed on a computer.

4
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4.3.1 Implementation of the Metropolis algorithm
0

Our random walk through phase space consists in making "passes" through the lattice

of spins, adjusting each spin once every pass according to the Metropolis algorithm. The

adjustment of a single spin is called a "Monte Carlo step". Rather than stepping through

the lattice in regular order, by row for example, we have used a random number generator

at the outset, to generate a random order, which was then used for every pass. The use of

a random order is generally thought to reduce correlations in the state of the system from

one step to the next (Binder, 1974).

During each pass then, for every spin, we execute the Metropolis algorithm as follows:

1) Select a spin, n, and change its spin angle by a random amount 8On, from On to

On+ O.. The choice of 8en will be discussed below.

2) Compute 8H using 4.6, and W = exp(-8H/kT).

3) (a) If 8H < 0 accept move. If desired (see subsequent discussion), compute new

value of each observable and add to sums, (4.3).

(b) If 8H > 0 generate a random number z, 0 < z < 1.

If W > z accept move. If desired, compute new value of each observable and add to

sums, (4.3).

If W < z reject move. If desired, add old value of each observable to sums, (4.3).

4) Go to step 1).

The choice of spin angle change, 80r, in step 1) above merits discussion. The

prescription we have used is to choose a maximum angle change 8 0 mX, and then choose

8@n randomly in the interval (- S0max, So.] by computing a random number ^y, from a

random variable distributed uniformly on [-1,1], and setting SOn80=S . . The value of

Omax is adjusted throughout the early stages of the random walk (usually the first 30 - 40

7
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passes) r-o that the acceptance rate for "uphill" moves (moves with 8H > 0) is

approximately one half:

Acceptance rate =No. of uphill successes 1 (47)
No. of uphill attempts 2

This is a standard prescription (Binder, 1974) which promotes efficiency by discouraging

consideration of "unlikely" moves.

As discussed in section 4.2, it is desirable to discard values of observables, A,

computed during the initial stages of the random walk, to allow the system to equilibrate,

and to avoid correlations with the initial state of the system. In practice, taking note of

work by numerous other authors on Monte Carlo simulation of XY models (see for

example, Tobochnick and Chester, 1979; Teitel and Jay prakash, 1983a; Fernindez et al.,

1986), we have discarded the first 5,000 - 10,000 passes, which we designate as the

"equilibration period". During this time we execute the Metropolis algorithm repeatedly, as

outlined in steps 1) - 4) above, but without calculating values for any observables, A. It is

during the first 30 - 40 passes of this period that Omax is adjusted according to (4.7).

After this equilibration we executed typically 10,000 - 20,000 passes, now calculating

all the quantities of interest after each pass. This is preferable to computing quantities after

every Monte Carlo step, because it reduces correlations between subsequent values of

A(x). Actually, our program allows for calculation of all quantities after every nth pass,

but we have always set n=l.

To calculate quantities as a function of temperature we have followed an "annealing

schedule" in which we started at high temperature, T/J - 2, and then gradually "cooled

down", usually to TIJ = 0.01, in 20 - 25 steps. At the highest temperature we used a

random spin configuration as initial condition, while for each successive lower temperature

we used the final configuration from the previous higher temperature as input. At each
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temperature we also used the value of 8a X from the previous temperature as an inital

guess for the maximum angle change.

At each temperature then, we executed 5,000 - 10,000 equilibration passes, and

10,000 - 20,000 averaging passes. Although it is impossible to know a priori how long

an equilibration is necessary, we note that Fernindez et al. (1986) have found from their

simulations Lhat the pure XY model appears to exhibit a size-dependent relaxation time tL,

which follows the form xL(passes) - 2L 2. For our simulations , with L = 16, this gives

TL - 500 passes, so that our equilibration times are approximately 10 TL - 20 "L. Of

course, it is quite possible that the presence of disorder could increase this relaxation un,

or lead to a non-exponential approach to equilibrium. We have found in limited trials,

however, that increasing both equilibration and averaging times by a factor of ten does not

have an appreciable etfect on the results. Extensive checks of this kind are impractical due

to the large amount of computing time required.

It is important to have some feeling for the computing time needed for the calculations

being discussed. All of the Monte Carlo results presented in this chapter were obtained

either on an Apollo DN330 microcomputer, or on a VAX 8600 minicomputer. A typical

"run" would calculate, for a single disorder realization on a 16 x 16 lattice (i.e. a given set

of site-displacement vectors), the values of the energy, specific heat, helicity modulus and

magnetization modulus, at 24 temperatures, with 5,000 passes for equilibration and

10,000 for averaging. Such a run would use 1.4 cpu-days on the Apollo or 10 cpu-hours

on the VAX. As will be discussed later, we have frequently performed a "disorder

average", where we executed runs for 2- 30 different disorder realizations (with a given

value of A or A*) and averaged the results. Even an average of five disorder realizations

takes one cpu-week on the Apollo and more than 2 cpu-days on the VAX. Our most

extensive run, results of which are presented in Fig. 4.8, averaged over 37 realizations,

and used 52 cpu-days on the Apollo! It is apparent that any more comprehensive
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numerical work on this problem will require the use of a supercomputer.

4.4 Monte Carlo results

4.4.1 Specific heat, C

We have calculated the specific heat of our L x L spin systems using the relation (Reif,

1965, p. 242)

-<T) (4.8),

where C is the specific heat per spin, E is the total energy of the system calculated from

(4.6), and N=L2 is the number of spins.

The behavior of C is actually rather uninteresting in the KT transition, showing only a

broad, size-independent peak, at a temperature just above Tc, with no divergence or cusp.

Fig. 4.2a shows results for a value of the gaussian disorder parameter A-9.974 x 10-4, so

that the theoretical critical field (1.29) is 100:

1 1 0.10 (1.29)
c = 7, A A .29)

The results forfo = 0 show a peak at TI ,- 1.1, of height C/kB - 1.5, consistent with the

results of Tobochnick and Chester (1979). The peak does not occur exactly at Tc - 0.9J

because only vortex pairs with the largest separation (in principle, infinite separation)

become unbound there, while as temperature increases more and more tightly-bound pairs
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0 100 200 '

Figure 4.2 (a) Specific heat per spin, for a 16 x 16 array, with A such thatfc = 100. (b)
Position of the specific heat peak in (a), vs. magnetic field, showing a linear
depression of the peak position.
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unbind, contributing more and more entropy to the system, until all pairs are unbound.

The maximum in C, which corresponds to the maximum rate of increase of entropy with

temperature, then occurs above T., at a temperature where many tightly-bound pairs are

being separated.

From Fig. 4.2a one sees that, as the field is increased, the peak position shifts to lower

temperatures and its amplitude decreases, indicating a depression of T, by the field. There

is however no novel behavior for fields f,,o fe, and no evidence of a second peak

associated with a second vortex-unbinding transition. As shown in figure 4.2b, the

position of the peak, Tp,,, simply decreases linearly with field, extrapolating to T = 0 atf o

= 5.2fc.

4.4.2 Magnetization modulus, ri.

A quantity which gives information about the behavior of the phases, or spin angles,

0i, is the magnetization modulus, r (Ebner and Stroud, 1982):

r' = l( (4.9).

When all the spins are aligned at T = 0, then in = 1, while at high temperatures, where the

phases are randomized, r - 1/4N, a finite-size limited value. For the pure XY model, in

zero field, this quantity is considered a reliable measure of long-range order. However, in

a finite magnetic field, it is not gauge-invariant, and therefore is not a measurable quantity.

Despite this fact, TI turns out to be interesting in its own right.

For an infinite 2D XY system, with no disorder, 1j(T) shows a gradual decrease with
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1.0
16x 16

f =100
C

0.8

0.6 f=

400

0.4 6

0.2

0.0 0.5 1.0 1.5

T/J

Figure 4.3 Manetization modulus, Ti, vs. temperature, for a single disorrier realization,
'wth = 100. One sees that increasing the field supresses TI towards its
finite-size value, 11IN -0.067, indicating that the phases are becomidng
essentially completely randomized, as f approachesf .

%A
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0.15 ,
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I
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0.00

0.0 0.5 1.0 1.5 2.0

T/J

Figure 4.4 Magnetization modulus, ri(T), in a 16 x 16 array, for fields f close to the
theoretical critical fieldf = 100, and averaged over 3 - 8 disorder realizations.
Ti becomes essentially flit for fields within a few percent off. Representative
error bars are plotted only forfo = 105 (5 realizations) for clarity.
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increasing temperature, and then a sharp drop to zero at T = Tc.The behavior for our

16 x 16 system is shown in Fig. 4.3, where the upper trace is forf o = 0, equivalent to the

pure XY model, and shows a very broad decay in il(T) in the vicinity of Tc - J.

The other data in Fig. 4.3 are again for a value of A such thatfc=100, and are for only

one disorder realization. One sees a trend that 1l is depressed more and more, at all

temperatures, as fo approaches f,. Forf, = 80, l(T) has become almost constant with

temperature, showing little development of phase ordering as temperature decreases.

Figure 4.4 shows similar data, now with an expanded vertical scale, for f0 within ten

percent off , and with each trace representing an average over 3-8 disorder realizations.

One sees that the trend of Fig. 4.3 is continued and that for f, - fc, 71(7) becomes

essentially flat, so that there is no development of phase ordering as temperature decreases.

This behavior also seems to persist for fields fJJJ but has not been checked for very

high fields.

Our interpretation is simply that, as f-+fc, the ijj's in the Hamiltonian (4.6)

essentially all become large compared to 2t, so that ltij modulo 27t become essentially

uniformly distributed random variables on the interval [0,27t] or [-it,Tt]. The spin-spin

coupling, which wants to minimize the gauge-invariant phase differences, Bi- j- VW then

orients the phases ei at random angles, so that 11 retains its high-temperature, finite-size

limited value 1/4N = 1/16 - 0.063 at all temperatures.

To investigate the nature of the disordered phase withf 0 >f, it would be of interest to

calculate gauge-invariant two-point correlation functions (cf. (1.1)), to see how

correlations decay with distance in this region. Such calculations are much more

numerically intensive than those presented here, and are presently beyond the scope of our

computing power.

The behavior of T1(7) has actually served to verify our approximate relation A = A*/q3

A*/1.73.., relating the gaussian disorder parameter for the plaquettes of Fig. 4. la, and

*W 1. .l. Jll %I
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the uniform disorder parameter for the experimental-type plaquettes of Fig. 4.1 b. As

discussed in section 4.3, by suitable definition of the 4tij's we can perform simulations for

the latter type of sample. Results for 1i(T) then show that 11 becomes independent of

temperature at a field which is approximately 1.7 times that expected from the naive

relation, A = A*, so that the effective disorder must be 1.7 times less.

4.4.3 Helicity modulus, Y.

The helicity modulus, Y, of a magnetic system is, in a sense, an analog of the shear

modulus of a solid. If we take a 2D XY spin system and cant the phases along one edge,

while holding those along the opposite edge fixed (see for example Fig. 1.2(a)), then Y

tells us the increase in free energy of the system in response to the twist induced in the

system, in the limit that the wave vector of the twist, k, goes to zero. In general Y is a

2 x 2 matrix (in two dimensions):

y Y..= tm F (4.10),

,.k-+ 0 ak.ak.

where F is the free energy per unit area. It turns out that, in an isotropic system in

equilibrium, the principal component Yr =Yyy=Y, is simply related to the stiffness, K,

discussed in chapter one, by

Y = K.kBT (4.11),

and in a square array in equilibrium is equal to the effective superfluid density, nlff=

,ID 5,.
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hi cR/2e, where 1R is the fully renormalized critical current.

To calculate Y we have not in practice applied a twist as described above, and

computed the resulting increase in free energy. Instead we have used a response-function

type approach, using an expression from Shih et al. (1984):

Ax ~ ~ _Ii) _cs8- E J Ax.: sin(0.O.-i..

BNkTT L'

where Axiy = xf-xi, and Y is the helicity modulus per spin. This expression follows from %

assuming that the twist in the phases progresses uniformly across the sample, so that one

can consider a Hamiltonian of the form

H = -J I cos(O- 0. - 4ij -kAx,)
<ij>

Using this form in the partition function, Z = 1df2 exp(-H/kBT), one can compute the free

energy from F = -kBT lnZ. Evaluating d2F/dk2, in the limit k = 0, one obtains the result

4.12. The assumption of a uniform twist is probably unrealistic, except perhaps in some 0

average sense, iwhere one considers an ensemble of samples. In effect we have tried to do

this by performing a "diso:der average" in our computations, averaging results from a

number of samples, with different configurations of site-displacement vectors. The

meaning of Y as computed by (4.12) is admittedly uncertain when considering individual

samples. L,,. ,pite this, the use of this expression, or variants of it, is quite widespread in

the literature (Teitel and Jayaprakash, 1983a; Shih et al., 1984; Choi et al., 1987)
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Universal jump
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Y/I f0 = 0
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0.0 M

0 1 2

T/J .

Figure 4.5 Helicity modulus versus temperature, in zero field, for an 8 x 8 and a 16 x 16
sample. The diagonal line is the universal jump prediciton of Nelson and
Kosterlitz (1977).
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Fig. 4.5 shows results for L=8 and 16, with fo=O. The line, of slope 2/n, is the

universal jump prediction of Nelson and Kosterlitz (1977). In an infinite sample Y should

drop discontinuously to zero when it intersects this line, so that Y(Tc)/T c = 27r, but in

small samplcs this discontinuity is smeared out, as discussed in chapter one.

In the presence of disorder Y turned out to be numerically less "well-behaved" than the

energy, specific heat, and magnetization modulus, and data for individual disorder

realizations seemed to fall into one of three classes. The first class showed wild

1.0- ,

0.5 f=98, fc 100

0.0"
y/J

-0.5 0

-1.0-

-1.5,,,

0.0 0.5 1.0 1.5 2.0
T/J

Figure 4.6 An example of pathological behavior in the helicity modulus vs. temperature,
for a single realization of a 16 x 16 sample withfo = 98 andfc =100.

fluctuations as a function of temperature, often giving negative values at some

temperatures. Although such fluctuations appeared random, they were in fact reproducible

from run to run, starting with different initial spin configurations. Similar behavior has

been seen (Chung, 1987) in a Monte Carlo study of the fully frustrated XY model with

positional disorder (which is not expected to show a reentrant phase transition) (Choi et |

al., 1987). Such behavior was occasionally seen at fields as low as 20% of the critical

r . - - -- -, . 9 . ]
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field, but became more common forf approaching f,. Figure 4.6 shows an example of

this behavior, in one 16 x 16 lattice, forf0 = 98, and A such thatf, = 100.

By contrast, many disorder realizations resulted in a second class of behavior, where

the helicity modulus was well behaved, even at some fields close to f,, with Y(T)

increasing monotonically with decreasing T, much like the results forfo=0 in Fig. 4.5, but

with a depressed T. A third type of behavior was also common, wherein as T decreased,

Y first increased, then decreased over a narrow temperature range, and then increased

again at the lowest temperatures. Figure 4.7 gives two examples illustrating varying

degrees of this "doubly reentrant" behavior in 16 x 16 arrays, both for a value of

A = 0.015, so that fc = 6.67. The data in Fig. 4.7a represent an average over four

independent runs for one disorder realization, and show a very sharp dip in Y, with a

minimum at TIJ - 0.025. The error bars, which represent the uncertainty in the mean of

the four values of Y at each temperature, are very small except in the dip. Figure 4.7b

shows results for another disorder realization, now with fo=5 and f=6.67, and showing

only a subtle dip in Y(T), at TIJ - 0.05.

Data which showed a well-behaved Y(T) (i.e. no wild fluctuations) and reentrant

behavior tended to have two common characteristics. First, the reentrance was observed at

low temperatures - usually for TIJ < 0.2, and second, Y/J was always finite and close to

one at the lowest temperature simulated (usually TIJ = 0.01). By contrast, realizations

which gave a wildly fluctuating Y(T) usually showed such behavior over a range of TIJ,

from approximately I to 0.1, with YIJ again always approaching a value close to one at the

lowest temperature.

In a sense, different disorder realizations seemed to exhibit Y(T) "fingerprints", which

fell into one of the three classes discussed, and which were reproducible from run to run,

regardless of inital conditions, and apparently independent of the annealing schedule to the

limited extent to which we were able to check. This suggests comparison with the
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Figure 4.7 Examples of reentrant behavior in the helicity modulus, for two different
disorder realizations, both with A such thatf, = 6.67, for (a) f,, = 6 and (b)

fo= 5.
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well-known magnetoresistance fingerprints (Lee et al., 1987) found in disordered

conductors (Benoit et al.,, 1987; Skocpol et al., 1987), which become most prominent

when the sample size is small compared to the inelastic scattering length. Such fingerprints

are then associated with particular distributions of scattering centers, analogous to our

particular sets of site-displacement vectors.

To the extent that constraints on computing power have allowed, we have investigated

the effect of disorder averaging, to see if the reentrant behavior in the helicity modulus

persisted. In a sense such averaging helps us to understand the behavior of large samples

from our results on small lattices. Figure 4.8 shows what we consider to be our most

important result. This figure shows Y(T) forfo = 98 andf = 100, averaged over 37

disorder realizations, along with the result for f = 0 for comparison. This is the run

alluded to in section 4.3.1, which used 52 cpu-days on an Apollo DN330. The value of

f = 0.98f, was chosen so as to approach the theoretical phase boundary, so that,

according to the qualitative phase diagram of Fig. 1.9, the reentrant transition temperature,

T-(f), should be essentially at its maximum.

The results show doubly reentrant behavior, qualitatively similar to that shown in

Figs. 4.8a and b, but with the dip in Y occuring now at T/J- 0.5, rather than at T/J = 0.05

or lower. Apparently the low temperature reentrant behavior of Fig. 4.8, which was part

of an otherwise well-behaved Y(T) fingerprint, does not persist through disorder

averaging. Instead, the disorder realizations which gave wildly fluctuating results over a

broad temperature range average in such a way as to leave a dip in Y(T) at relatively high

temperature. The large negative values present in many of the individual realizations do

not generally persist through such averaging, although some temperatures show slightly

negative values, within the one-sigma error bars. One also sees that the magnitude of the

error bars peaks near the minimum in Y(T), perhaps suggesting the possibility of a

phase-transition at that temperature. Limited runs atfo= % showed some evidence for a
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Figure 4.8 Helicity modulus versus temperature for a value of A such thatf, =100.
Upper curve is forfo = 0, where the disorder is irrelevant. The lower curve,
which represents an average over 37 disorder realizations, is forfo = 98, and
shows evidence for reentrant behavior.
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Figure 4.9 Helicity modulus vs. temperature forf = 100, averaged over 19 disorder
realizations, for (a)f, = 80, and (b)fo = 120. The overall shape is similar to
that of the background in Fig. 4.8 for fo " 98, but there is no obvious
reentrant behavior.



107

dip "TIJ - 0.3, again with large error bars, but were not conclusive.

Figures 4.9a and b show results for fo = 80 and fo = 120, respectively, again for S

= 100, and w'th each curve representing an average over 19 disorder realizations.

Although, theoretically, Y(T) should be zero at all temperatures forf, = 120 = 1.2f , the

observed behavior is quite similar to that for fo=80, showing essentially a smooth,

monotonic increase in Y with decreasing temperature. The data for fo=80 actually show

slight reentrance at very low temperature, due to the fact that two of the 19 realizations

showed behavior like that in Fig. 4.7a, with a sharp minimum at low temperature.

Figure 4.10 is a composite of the results forfo = 80, 98, and 120, with the error bars

omitted for clarity. Overall, all three curves are quite similar, except for the noticeable dip

at TIJ = 0.5 forfo--98. It appears that there is a reentrant tendency atfo=98, where we are

within two percent of the theoretical phase boundary, but that this tendency is being

counteracted by the smoothly-rising background which is common to all three values off0 .

There are at least two possible explanations for this effect: finite-size effects and pinning.

We recall that, theoretically, the reentrant phase transition at T: should be brought

about by the unbinding of vortex pairs by the quenched random background of dipoles.

However, since these vortices are thermally activated, there will be fewer of them present

at low temperatures. In a small sample it is possible that there are actually no vortices

present, at least for part of the time. However, for the helicity modulus to be zero there

must be free vortices present at all times to destroy the quasi-long-range order.

Unfortunatley it is not a trivial matter to estimate how many vortices should be in our

16 x 16 samples at a given termperature, in the presence of disorder. For the pure XY

model, Tobochnick and Chester (1979) found the vortex pair density, np(T), to be fairly

well described by the approximate expression, n,(T) - 145 exp(-9.4J/T). For a 16 x 16

sample this expression says that, on average, there will be one vortex pair present at a

temperature T - 0.89 J, while at T = 0.5 J there would be approximately 3 x 10-4 pairs

11119 ,0 'ftgtu .' .. V
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Figure 4. 10 Composite plot of helicity modulus data from Figs. 4.8 and 4.9, for fo 80,
98, and 120.
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present, on average! If these numbers were correct it would mean that there were

essentially no vortices in our samples at any temperature where we have observed 0

reentrance. Comparing the direction in which the renormalization flows progress at low

temperatures, for the pure XY model (Fig. 1.7) and for the disordered system (Fig. 1.8),

on sees that the renormalization of the vortex-vortex interaction decreases the vortex

fugacity y , and therefore the pair density, in the pure case, but increases it in the

disordered system. The pair density in the disordered system will then exceed that for the

pure system at low temperatures.

Since it is impractical to investigate the nature of finite-size effects by studying larger

samples, we have instead studied samples with L=2 and 4. The results are shown in Fig.

4.12, again for f--98, where the curves for L = 2 and 4 represent averages over 20

disorder realizations. The solid line, which is drawn to coincide with the L = 2 data at

T-0, has a slope corresponding to the leading-order depletion of Y due to spin waves

alone (Ohta and Jasnow, 1979):

Y () K

One sees that the results for L = 2 follow the spin-wave result rather closely, indicating that

vortices are not important in such a sample at any temperature studied. For L--4 one sees

some deviation from spin-wave behavior for T/J > 0.7, indicating that there may be '4

vortices present some of the time at these temperatures. However, most importantly, one

sees nn evidence for reentrance for L=2 or 4, consistent with there being no vortices

present to bring about a reentrant transition. Again, given the availability of supercomputer

time, it would be extremely valuable to investigate much larger samples, say with L - 100

or larger, to resolve the issue of finite-size effects.

An alternative explanation for the ubiquitous rising background is that, even if there

- o) ' A



0 rI S9

1104

0.2 t • -4- 16 x 16

, spin waves

Y/J 0.4 "

0.2 "

0.0

-0.2 ,' •,.

0.0 0.5 1.0 1.5 2.0 "I

T/J

Figure 4.11 Helicity modulus vs. temperature, with fo = 98 andfc =100, for 2 x 2,
4 x 4, and 16 x 16 arrays. The slope of the solid line corresponds to the
spin-wave depletion of Y.

--i- vw .. %s%~ ~'~ %'V.%
V-,.



are vortices present, they are pinned by the disorder. If the vortices are not mobile then Y

will not go to zero, just as if there were no vortices present. The strength of the pinning S

should increase with the strength of the effective disorder, which increases with magnetic

field. The behavior in this low temperature, high disorder regime may be "glassy" in the

sense that, if one waited long enough, vortices might be thermally activated out of their

pinning sites, but in practical time scales this does not happen and the vortices remain

trapped.

D. R. Nelson has pointed out that this system is formally identical to the 2D random

binary mixture of hard spheres (ball bearings) studied experimentally by Nelson,

Rubinstein, and Spaepen (1982). The disorder in this case was due to the presence of a

random admixture of larger spheres, which disrupted translational order. These authors

found that when a system with a dilute concentration of large spheres was "quenched" by

increasing the density of spheres, dislocations, analogous to our vortices, became trapped

by the large spheres. Thus, although the shear modulus of the system should have been

zero, the fact that the dislocations were not free to move resulted in the system having a

finite shear modulus.

It is possible that a detailed study of spin configurations from our simulations might

illuminate the role of trapping in our system. Experimentally one could look for evidence

of hysteretic behavior, say in I-V characterstics or resistance vs. magnetic fled, as long as

one could study a regime where pinning was not too strong. In our experiments to date we

have observed no evidence of hysteresis.
,.

It is clear that the theoretical work of Granato and Kosterlitz (1986b) provides an K,

oversimplified description of the behavior of a strongly disordered array. The importance

of pinning, and the possibility of glassy b-ehavior, were not taken into account, and it is

likely that the predicted reentrance, of which we have seen glimpses in our simulations,

may be difficult to observe experimentally.

.....
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4.5 Summary

In this chapter we have discussed the results of our Monte Carlo simulations of 2D XY

magnets with non-uniform frustration, which are model systems for Josephson junction

arrays with positional disorder. We have focussed on three quantities in particular - the

specific heat C, magnetization modulus 11, and helicity modulus Y.

Our results for the specific heat show that in an array with positional disorder there is a

single broad peak, similar to that found in the pure XY model. The temperature at which

this peak occurred was found to decrease linearly with applied field, extrapolating to T = 0

at a fieldfo - 5.2f,. We found no evidence for novel behavior as fo approached the

critical field fc, and no evidence for a second peak associated with a second,

low-temperature, vortex-unbinding transition.

The magnetization modulus, i(7T), although not gauge-invariant, proved to be a useful

measure of the degree of ordering of the phases, or spins, .a our particular gauge choice.

We found that ril() was depressed by the magnetic field, and for fields in the vicinity offc,

became essentially independent of temperature, and saturated at a finite-size limited value -

1/4N. This showed that, for such large disorder, there was no development of

phase-ordering, as measured by n1, as temperature decreased.

Our most important, though inconclusive, results were for the helicity modulus Y,

which, in equilibrium, is equal to the effective superfluid density in an array. Simulations

of individual disorder realizations showed three types of behavior with decreasing

temperature: 1) Y(T) "well-behaved" and increasing monotonically, similar to the

zero-field behavior, 2) Y(T) well-behaved but with a dip at temperatures T/J of order

0.05; and 3) Y(T) fluctuating wildly, but reproducibly, with negative values at some
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temperatures. All three behaviors shared the common trait that Y/J was finite and close to

one at the lowest temperatures, even for fieldsf, >f,, where theory says that Y should be P

zero at all temperatures.

Upon disorder averaging however, we found that reentrant behavior persisted only in

a narrow range of f close tofu. The reentrance was actually manifested as a dip in Y(T),

on a background which otherwise rose monotonically with decreasing temperature. This

background was observed for fieldsf, both greater and less than ft.

Two possible explanations for this lack of complete reentrance (Y -4 0 as T - 0), and

for the behavior of Y(T) forf, >fc, are finite-size effects and pinning. The finite-size

argument says that our small simulated samples may not contain any vortices at low

temperatures, so that quasi-long-range order will not be destroyed and Y will remain finite.

Results for smaller samples support this idea by showing that 2 x 2 and 4 x 4 arrays, for

example, do not appear to contain vortices at any temperature of interest, in as much as

their behavior is well-fit by spin waves alone.

The pinning argument says that although there may be free vortices present at low

temperatures, they are so well-pinned by the disorder that they cannot move around and

destroy the order. Such a strongly pinned phase may be glassy in behavior, with

extremely slow equilibration.

At present we are unable to rule out either of these explanations. Simulations of larger

systems would hopefully illuminate the role of finite-size effects, while experiments to

search for hysteresis might clarify the role of pinning. A sytematic search for vortices in

the simulations should provide insight into both effects, and should be a priority for future

work.

~~ 'q T *.C% W~* ,
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CHAPTER FIVE

SUMMARY

We have presented the results of both experiments and simulations on Josephson

junction arrays with positional disorder. Theoretically, such arrays are expected to show

novel behavior, including a disorder-dependent critical field, and a reentrant phase

transition, in a magnetic field. In the Coulomb-gas analogy, where vortices are described

as charges, the disorder introduces a random background of "dipoles" Pr - foUr, wherefo

is the average flux per plaquette, in units of the flux quantum, and the ur are the random

displacement vectors of the superconducting sites. For f an integer, Granato and

Kosterlitz have predicted that the critical field for the destruction of quasi-long-range phase

coherence should be given byfc 0.10/A, where A is the width of a gaussian distribution

of displacement vectors ur, and that for fields f, <fc the dipoles should weaken the

vortex-vortex interaction enough to cause a reentrant vortex-unbinding transition at low

temperatures.

We have fabricated 50 x 50 arrays of Pb/Cu proximity-effect junctions, with

cross-shaped Pb islands. We have introduced positional disorder by displacing the centers

of the Pb islands by random amounts, while maintaining the distance between the tips of

the crosses, so as not to introduce disorder in the junction critical currents. For practical

reasons, we have used a uniform distribution of displacement vectors, of half-width A*,

and have made samples with A* = 0, 0.05, 0.10, 0.15, and 0.20, in units of the lattice

parameter.

Our measurements have emphasized the observation of oscillations in the resistance

vs. magnetic field, R(f.), as a signature of phase coherence. In samples with positional

disorder we have found that the principal oscillations decay linearly with field,

. . - 7, i i- I, i I - I I " I I I .. . . l p-
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disappearing at a fieldf,(q=1) - 0.95/A* - 0.55/A. We have argued that this field marks

the destruction of phase coherence on a length scale of order the lattice paramter, s.

By quantifying the destruction of higher-order structure in R(f), at rational valuesfo =

p/q, we have quantified the destruction of phase coherence on somewhat longer length

scales, of order q times the lattice parameter. Defining critical fields f,(q) by the

disappearance of such structures, we find the empirical behavior fc(q) = c, + c2/q 2.

Extrapolating to q - cc, we estimate the critical field for the destruction of quasi-long-range

coherence to be given by fc.A - 0.061 ± 0.006, compared to the theoretical result, f, =

0.10/A. We have argued that the systematic suppression of these higher-order structures

by, for example, measuring currents and sample inhomogeneity are consistent with our

experimentalfc being lower than theoretically expected. The experiments have shown no

evidence for the predicted reentrant phase-transition.

On the other hand, our simulations of XY spin systems with positional disorder have

provided a glimpse of reentrant behavior for fields very close to the theoretical critical field.

For a 16 x 16 array, at a fieldf, = 0.98f,, for example, the helicity modulus Y shows a

narrow dip at =T/J - 0.5, on a background which otherwise increases monotonically with

decreasing temperature. For fieldsf. = 0.80fc and 1.20fc, one sees only the monotonic

background, with no evidence for reentrance. We have suggested that the finite value of Y

at low temperatures may be due to either finite-size effects or to vortex pinning.

The fact that the reentrant behavior is so subtle in finite samples means that it may be

difficult or impossible to observe experimentally. This may depend, however, on whether

the reentrance is visible only at integer fields, so that one must have a sample whose
0

disorder is such that there is an integral field value within a few (perhaps as little as two)

percent of the theoretical critical field. Theoretically, only the casefo = n + 1/2 has been

shown to exclude reentrant behavior (Choi et al., 1987).

There are several possible ways to look for reentrance. In this work we have seen no
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evidence for the reppearance of resistance at low temperatures, but we have been unable,

because of equipment problems, to make extensive measurements of I-V characteristics in

samples with disorder. Future work should emphasize such measurements because one

might find reentrance in either the critical current, or in the low-current I-V power, a(T).

The relationship between a and the superfluid density has not been established for finite

fields, but the work of Van Wees et al. (1987) on fully frustrated arrays suggests that a

may be sensitive to changes in the nature of the phase transition. Another attractive

possibility is to probe the superfluid density more directly through measurents of the p

complex ac impedance (Leeman et al., 1986). However, for such measurements one must

be aware of the effects of both the finite currents induced in the sample, and the finite

measurement frequency, both of which will affect the vortex dynamics.

Future computer simulations could be used to conduct a systematic search for vortices

in the simulated samples, to determine whether there are vortices present at the

temperatures of interest, and if so, whether they appear to be pinned by the disorder.

Tobochnik and Chester (1979) have carried out such calculations for the pure XY model,

and their results have provided very direct support for the notion of vortex-pairs unbinding

at T,. Given the availability of supercomputer time, it would also be of interest to simulate

larger systems, and to calculate two-point correlation functions to investigate the nature of

the ordering in finite systems. One could then investigate whether algebraic order was

destroyed for fields greater thanf, in favor of some disordered "glassy" phase which has

a finite stiffness over accessible time scales. The study of some kind of gauge-invarianat

order parameter, as an alternative to the magnetization modulus 71 studied here, might also

provide insight into the nature of the ordering in various regimes. The work on "gauge

glasses" by Ling et al., (1983, and references cited therein) may be of interest in this

regard.

A disordered Josephson junction array provides a rich system in which the effects of
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disorder and frustration on phase transitions can be investigated in a controlled fashion. It

is hoped that the experimental and numerical study of arrays with postional disorder will

continue to provide insight into the subtle physics of two-dimensional systems, including

the possibility of a two-dimensional glass transition.

4

I
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APPENDIX

Detailed fabrication instructions for arrays: Positive process

The positive process is used for the disordered arrays and Sierpinski arrays, whose masks

have Cr where the islands will be in the samples.

1) Substrate cleaning:

a) (Start here for used substrates). 30 mins in boiling Shipley PR remover 112A.
b) 2 hours in strong KOH solution, ultrasonic (US).
c) If metal still remains, 2 mins in 1:1 HCl:HNO3.
d) 5 mins. US in distilled water.
e) Blow dry with nitrogen or air.
f) (Start here for new substrates). 5 mins. US in Trichlorethylene (TCE).
g) 5 mins. US in acetone.
h) 5 mins. US in methanol.
i) Blow dry with nitrogen or air.

2) Preparation of PR structure for bilayer

a) Spin lower layer of PR - Shipley 1400-27 or 1400-33, 4000 rpm, 30 secs.
b) Bake 30 mins. @ 100 C.
c) Flood expose bottom layer, 15 secs in Karl Stiss mask-aligner.
d) Evaporate 500-700 A Al, for PR layer separation. Use alumina coated boat.
e) Spin top layer of PR - Shipley 1400-27, 4000 rpm, 30 secs.
f) Bake30mins.@90C.
g) Let cool - 10 rins.
h) Expose in Karl Stiss (soft contact mode), using appropriate bilayer mask, 5 secs.
i) Develop - 30-45 secs in 5:1 H20:Microposit 351 developer.
j) Rinse immediately with R 20 squirt bottle (not in standing water).
k) Blow dry with nitrogen.
1) Etch Al until - 10 secs. after it appears to be gone. Rinse with H20. Blow dry.
m) Develop bottom PR layer- 15-30 secs. Rinse with H 20. Blow dry.
n) Etch Al under undercut for about same time as step 1). Rinse with H,O. Blow dry.
o) Inspect under microscope. Develop more if necessary to increase undercut.

3) Bilayer deposition.

a) Set up diff.-pumped evaporator for Cu and PbBi(.05) deposition.
b) Mount substrates.
c) Fill boats, tungsten for both materials.
d) Make window to observe boats during evaporation. Set thickness monitor for Pb.
e) Pump down to - 5 x10-6 torr.
f) Fill LN 2 trap on diff.-pump.

-ms



124

i) Turn up accelerator to - 170 V, go to minimize accelerator current.
j) Adjust cathode current until beam current - 10 mA.
k) Turn up neutralizer until 'emission' matches beam current.
1) Turn sample into beam.
m) Etch until test area is clean Cu color. If there is no test area on the bilayer (for example

if it lifted off!) you can usually tell when you're done by looking at the array with a
flash-light.

n) Tnrn off supplies, reversing steps d through k.
o) Leave gas on, close gate-valve, and kt guns cool 20 mins. before opening chamber.
p) Remove sample from chamber.
q) Close and evacuate chamber.
r) Turn off gas, water, and power supplies.

8) PR removal,

a) Squirt sample with acetone to remove as much PR as possible. PR may be baked onto
islands, but it must be removed from pads.

b) Soak in acetone if necessary.
c) Rinse with ethanol (not methanol!). Blow dry.

P R
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g) Pump until p < 2 x 10-7 torr.
h) Turn up Cu power supply until Cu melts then turn down 25%.
i) Turn up Pb supply until Pb melts ("idle position").
j) Keeping substrate shutter closed, check evaporation rate for Pb ("evaporation

position"). Try for- 100 A/sec.
k) Turn down Pb supply to idle position (as in step i).
1) When Cu has been melted for > 2 nins, open substrate shutter, turn up Cu supply to

> 75% full power, wait - 10 secs. for evaporation to get going, then open bottom
shutter. At same time turn up Pb to evaporation position.

m) After depositing desired amount of Cu (2000 A or more) flip lower shutter to Pb
position and evaporate 2000-3000 A Pb. There should be no perceptible break
between Cu and Pb evaporations. Turn off Cu supply to conserve Cu.

n) Turn off Pb supply.
o) Let cool - 10 mins.
p) Remove substrates from evaporator and set up for Ge evaporation.4) Bilayer liftoff.

a) One substrate at a time, holding substrate slightly face-down, squirt with acetone. If
necessary let soak in beaker of acetone and then repeat until completely lifted off.

b) Spray with ethanol (not methanol!!!! Methanol will disolve Pb!).
c) Blow dry.

5) Ge depsition.

a) Evaporate - 100 A Ge. This will prevent developer from attacking Pb.

6) PR deposition. exposure. and post-bake.

a) Spin 1400-23 or -25 resist, 4000 rpm, 30 secs.
b) Bake 30 mins. @ 95 C.
c) Let cool 5 mins.
d) Mount appropriate array mask in Karl SUss and align to bilayer.
e) Expose 5 secs. in vacuum contact (HP) mode.
f) Develop - 30 secs in 5:1 H20:Microposit 351 developer.
g) Rinse and blow dry.
h) Inspect under microscope.
i) Post-bake 30 mins. @ 110 C (not 120 C),

7) Ion etching with Commonwealth ion-guns.

a) Mount sample in dual-ion-beam system, turned away from beam. Make sure
observation window is clear!

b) Pump down to - 1 x 10-6 torr.
c) Establish Ar flow of - 10 sccm through gun. Turn on water supply to guns and

sample holder
d) Turn on 'source' un Commonwealth power supply.
e) Turn up discharge - oltage to 35 V.
f) While observing. ,scharge current, turn up cathode current until ID = 0.2 mA.

Discharge light should now be steady.
g) Turn on 'beam'.
h) Turn up beam voltage to 35 V.
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