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PREFACE

This lecture series co-sponsored with the Fluid Dynamics Panel of AGARD, was held at the von Kdrmdn Institute,
Rhode-St-Genése, Belgium, during the week March 16 to 2C. 1986, as a follow-up to the continued involvement n the field
of turbulent flows.

‘The intention was to make a presentation of the very latest developments in the domain of understanding and modelling
of turbulent flow which in recent years has seen the development of some fairly new ideas and hines of approach.

It was for this reason that, together with the most advanced classical concepts of modelling such as direct simulation on
super computers, large eddy simulation, solution of the Navier-Stokes equations in the spectral domain, some diffeient
approaches were presented. These included the concepts of strange atiractors, bifurcations, spatial and temporat
deterministic routes to chaos and lattice flow simulations. These concepts, already applied in some other domains of physics,
may prove to be valuable tools in the attempt to understand some of the more complex features of turbulence, and may lead
to models better adapted to the new generation of parallel computers.

Thanks to the efforts of an internationa: body of well-known lecturers, the result was very successful and the meeting a
source of lively and enriching discussions. I would like to take the occasion to present my thanks to all those who have
contributed to the organization and the success of this lecture series.

Ce cycle de conférences, organisé avec le support du Fluid Dynaniics Panel de FAGARD, a été tenu a I'Institut von
Kdrmidn, a Rhode-Saint-Genése, la semaine du 16 au 20 mars 1986, comme une suite a toute une sétie de cours donnés les
années précédentes dans le domaine de la mécanique de ia turbulence.

Le but était de présenter les tout derniers développements dans les domaines de la description et la modélisation des
écoulements turbulents, domaines dans lesquels on a assisté, ces derniéres années, 4 1a naissance et la mise en oeuvre d'un
certain nombre d'idées nouvelles. Pour ces raisons le cycle était constitué de deux parties complémentaires. La nremiére
couvrait essentiellement les concepts les plus avancés dans le domaine de la modélisation classique, tels que la sumulation
directe sur super ordinateur, la simulation des grandes structures. la solution des équations de Navier Stokes dans le
domaine spectral. Ensuite, on abordait une série de sujets en grande partie nouveaux, mais trés prometteurs et ayant déja fait
leurs preuves dans d’autres domaines de 1a physique, tels que les concepts d'attracteurs étranges, de bifurcation, de routes
déterministes, spatiales ou temporelles, vers le chaos et les gaz de réseau. Il semble possible que ces nouvelles approaches
puissent permettre une meilleure description de certaines propriétés de la turbulence at se révéler trés bien adaptées au
caicvl A 'aiGe des nouveaux processeurs vectoriels. Grace a I'effort d'un groupe de conférenciers de renommée
internitionale, ce cycle s’est révéle étre une réussite et 'ensemble de la réunion une source de discussion trés intéressantes et
enrichissantes. Qu'il me soit permis ici de remercier tous ceux qui ont contribué a I'organisation et 2 la réussite de ce cycle de
conférences.
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FUNDAMENTALS OF TURBULENCE FOR
TURBULENCE MODELING AND SIMULATION

by

W.C.Reynolds
Department of Mechanical Engineering
Stanford University
Stanford, CA 93305
USA

1. FUNDAMENTALS OF FLUID MOTION

1.1 Introduction

This chapter presents a brief review of fluid flow fundamentals pertinent to turbulence. We expect them
to be familiar to the reader, who may find our particular viewpoints, emphasis, and compact notation helpful
and interesting.

We will make extensive use of the cartesian tensor summation convention, where repeated indices imply
that the terms containing them must be summed over all possible coordinate indices. An overdot () will
be used denote a partial derivative with respect to time, and a subscript after a comma will denote partial
differentiat.on with respect to the indicated coordinate direction; for examnple,

'—.Q.E P.—-zf. 18 = Up,q F +u
P= at "= az‘ Uiy = Uy HU2,2 313 «

We will also use the isotropic tensors 6,y and ;i , defined by

1 fe=73
b=
b {0 otherwise.

—1 if ijk is from the sequence 321321
0 otherwise

Various contractions will be used frequently, including

{ 1 if sk is from the sequence 123123
€ijk =

§;5=3 €isk€ipg = Ujpbiq - b5q0xp.

Tensors are entities that, in addition to being an array of elements identified by their subscripts, trans-
form in a very special way when the coordinate system is transformed by rotation. A tensor that is totzlly
unchanged by an arbitrary rotation of the coordinate system is called isotropic. Any second-order isotropic
tensor must be a scalar times §;;, and any third-order isotropic tensor must be a scalar times ¢;,x. Moreover,
any higher-order isotropic tensor must be expressible in terms of the various possible combinations of these
two tensors, and hence they are fundamental building blocks in all sorts of physical modeling, including
viscous floww and turbulence.

1.2 The basic equations

The basic equations are derived by zpplication of basic principles to an elemental control volume {Fig.
1.2.1). The conservation of mass gives

p+ (pus),; =0 {(1.2.1)

where ; is the fluid density, and u; is the fluid velocity component in the 3** direction. This is also called
the continuity equation.
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Figure 1.2.1 Control volume for basic equation derivation

The mo:nentum equation is .
(pus) + (pusu),5 = 05005+ (1.2.2)
where gy; is the stress in the i** direction on a control volume surface perpendicular to the jt* axis, and f;

is the body force (per unit volume) in the 5** direction.
The conservation of energy requires that

(peo} + (pusen)ss = (gsets),; + fis — gz (1.2.3)

Here ¢ = e+ éV’ is the total energy per unit mass, where ¢ is the internal energy per unit mass and
V2 = w;u;, and g; is the conduction heat flz (flow rate per unit area) in the §°* direction oxtward from the
elemental control volume. The first term on the right represents the power input by the surface forces per
unit volume, and the second that by the body forces.

The entropy balance iz

(ps) + (pu;8).5 = = (g;:/T).; (1.2.4)
where s is the entropy per unit mass, T is the absolute temperature, and o is the entropy production rate

per unit volume. Here the term ¢;/T represents the entropy flux associated with the heat fux g;. The
second law of thermodynamics requires that the entropy production be non-negative,

p20. . (1.25)

These ideas are usefu! in assessing constitutive models for the stres. tensor and heat flux vector, and in
identifying the processes that produce entropy (dissipate energy) in viscous flows.

1.3 The stress tensor

The stress tensor o;; must be symmetric. This fact can be established by performing a moment of
momentam analysis on the elemental control volume of Fig. 1.3.1. The torques of the stress terms are all
of order dz;dzz, and the moments of the momentum flows and body forces are all of higher order, hence
012 = 021

Figure 1.3.1 Control volume for stress tersor svmmetry derivation

The tensor can be split into two parts:
0i; = —Pb;; + %;. (1.3.1)

The P term represents the isotropic component of the (inward) normal stress; ;5 is the deviations from tais
isotropic stress, attributed phenomenologically to viscosity. From a molecular point of view, o;; arises from
molecular transport of momentum; the isotropic part P is determined by the average using the probability
distribution for molecular velocities {e.g. Boltsmann), and r;; arises from anisotropy in the probability
distribution.
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1.4 Ta. rmodynamic properties and concepts

The internal energy ¢ reflects the randomly-oriented energy of molecular translation, rotation, vibration,
and other microscopit energy modes (cheinical bonds, etc.). In general, ¢ depends upon the thermodynamic
state (i.e. T and p), but for idealised gas and incompressible liquid models depends only on temperature,
It is soinetimes called the thermal encrgy, and is all too frequently confused with keat {g,}, which is the
trensport of energy by disordered molectlar processes. The internal energy of an object can be increased by
a transfer of energy as either heat or work, and the energy flowing as heat can come either from a source of
incernal energy or mechanical energy (kinetic, potential, or work}. The internal energy is a thermodynamic
property of matter, the heat transfer is not. The confusion between heat and internal energy is an infortunate
remnant of the caloric theory of heat, but perhaps understandable since the theory was discarded only about
a century a

The «»» ~ [y can be thought of as a measure of the degree of randomness at the molecular level, and
in modern tuer-nodynamic treatments the temperature is interpreted as a measure of the sensitivity of this
-andomness to changes in energy at constant density. Orderly microscopic exchanges of energy {e.g. as work
or as bulk kinetic energv) have no associated entropy transport. But heat, the microscopicaily disordered
transport of energy, does carry entropy with it, and it may be shown that this entropy transfer flux is g;/T.
For more discussion of these important thermodynamic concepts from this viewpnint, see Reynolds and
Perkins {1977).

It is usually assuined that as far as the thermodynamic preperties are concernud the fluid is in a state
of local equilibrium, and hence th... the usual relations between thermodynamic properties are vaiid. Thus,
the Gibbs cquat.n is used to relate entropy changes to energy and density chunges,

Tds = de + Pd(1/p). (1.4.1)

vhe -3 “alpy ki defined as
h=¢+F/p (1.4.2)

3 ! teh, cacnts the sum of the convected internal energy and flow work associated with the transport of
7 b uass of fluid across a control volume boundary. We emphasize that it is the internal energy that
appears in the basic energy balance equation.

An alternative form of the energy e._.ation is obtained using (1.3.1) in (1.2.3), moving the pressure term
to the left hand side;

(peo) + (pusho)sy = (yivd)s +Fitsi — 95- (1.4.3)

Here hg = h + %V’ is the stagnation enthalpy. Note that the enthalpy appears as the converied energy per
ut.. mass (internal energy e plus flow work P/p), but the internal energy e appears in the energy storage
rate term. A common error is the use of enthalpy in both pla- .s.

1.5 Kinematica of motion

Any deformation rate u,,, can be deccmposed into the sum of a strain rate S,; and a rotation rate Q,,,
1 1
iy = 5wy ey ) + Sl —uii ) = S + ;e (1.5.1)
Note that the strain rate is a symmetric tensor and the rotation rate is antisymmetric. They play quite

different roles in fuid mechanics, particularly in turbulence, and for this reason we prefer forms of the
equations that make their presence or absence very clear.

1.6 Mechanical and thermal energy equations

The fundamental equations may be combined to derive an equation describing the transport of macro-
scopic mechanical energy and another describing the transport of internal energy. The mechanical energy
equation is derived by contracting the momentum equation with the velocity; multiplying (1.2.2); by u;,

1, 1.
(P§V°) + (P“j'z‘ V2),5 = 05irg i + fins. (18.1)
The right hand side may be written as

(o:5%:),7 —0ujui,; + fivi

y
s
H
.
s
1\
.
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Then, using (1.3.1) to split the stress tensor and (1.5.1) in place of velocity gradients, and noting that
7,5%; = O since 1;; is symmetric and £3;; is antisymmetric (sum over both repeated indices is implied),
{1.6.1) can be rewritten as

(P%V’) + (P“:";'V’) vi = PSij — (Puj),; + fiwi + (nijui),5 — (755:5)- (18.2)

RS
e e L L A Sl

The sum on the right represents the inpst of macroscopic mechanical energy to the control volume,
which shows up as an increase in the kinetic energy of the flow. Two of these terms appear as power inputs
in the therr:al energy equation (1.6.4) but with opposite sign, and hence these terms represent exchanges

i between thermal and mechanical energy. The first is PS;;, which is the rate of energy transfer, rer unit

e

volume, from thermal energy to mechanical energy due to expansion of the fluid. The second is r,;S;,, which
represents the transfer of mechanical energy to thermal energy by viscous forces. This is the only viscous
term involved in the entropy production equation {1.7.3), and hence this is the only viscous term properly
| termed disspation. Since

/ (rju),; d°x =0 (18.3)

if the integral is taken over a volume where either the velocity or stress is zero on the boundaries, this viscous h
4 term has no global effect; it represents reversible viscous power input to vi.e control volume from surrcunding d
Buid. The term containing f; is the power input from body forces, and the (Pu,),; term represents power
p output by flow work.

The thermal energy equation is obtained by subtracting the mechanical energy equation (1.6.2) from
the total energy equation {1.2.3), and is

(P’) + (puy€),5= —PS,; + (1,5,;) = ¢35 - (18.4)

Here PS;; represents the power output from thermal energy due to expansion of the fluid, 1, S,; is the power
input to the thermal energy due to irreversible viscous effects, and gj,; is the net power output due to heat
conduction, all per unit volume.

Note that the enthalpy, which appeared in the alternate form of the total energy equation (1.4.3), does
not appear in the thermal energy equation. We have derived the thermal energy equation correctly from
first principles. One must be wary in reading literature where the thermal energy equation is developed from
a “heat balance®, because there is no such principle as the conservation of heat.

1.7 Irreversibility rate equation

Using the conservation of mass equation (1.2.1) in th: Gibbs equnation (1.4.1),
pTDs = pDe + PS;, (1.7.1)

where D denotes the substantial derivative

1 D) = () +u;(),5- (17.2)
Using the thermal energy equation (1.6.4) and the entropy balance (1.2.4), this yields an expression for the < 1
srreversibility rate,
To= _%%Tv' +£;8i; 2 0. (1.7.3)

This clearly identifies the viscous dissipation term as discussed above, and provides a neat framework for
evaluation of consitutive models for the heat flux or viscous stresses.

1.8 Constitutive equations J

The theory of linear algebra is extremely helpful in developing constitutive models for the heat flux and
viscous stresses, and also for developing turbulence models. We will use these ideas to review the constitutive
J, ' equations 30 as to set the stage for later use of these ideas in developing turbulence models. J

The most general vector f; that is a function of only one other vector v; is
f; =Cy (1.8.1)

where the coefficient C can be a function of scalars, including the invariant of the vector {its magnitude
vivy). Higher-order terms, such as v;u v, need not be added since they are represented by allowing the
coefficient to depend on the invariant of v. Thus, if one assumes that the heat flux vector g; is a function of
4 the temperature gradient vector T;, the most general form is the familiar Fourier heat conduction law,

. - . ‘:';:(.:Q' N v -t N T T

J 4 o - Moo e St e Aot 5 i 5 e = A A e o gl
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9)‘ = "kT,,‘ (1.8.2)

o

3 where k is the thermal conductivity, which depends to first approximation on the temperature and may,
in higher approximations, also depend on the scalar T)i T\x. It is generally believed that (1.8.2) describes
: heat conduction in fluids, except perhaps in regions of very strong temperature gradient such shock waves
or combustion fronts.

The most general tensor a;; that is a function of only one other tensor b;, is, in three dimensions,

: a,; = Ab,, + Bb,; + Cb%; (1.8.3)

where b?,- = bizby,. The coeflicients 4, B and C may depend on relevant scalars, including the three scalar
invariants of the tensor b, Higher-order terms such as b3; = b%bx; need not be added since, by the Cayley-
Hamilton theorem, they can be expressed in terms of lower-order terms and the invariants of b and hence
are already included in (1.8.3). Therefore, if it is assumed that the viscous stress tensor 5, is a function of
the Jocal strain-rate tensor S;j, this functional dependence must be of the form

7ij = Abij + BS;, + CS%; {1.8.4)

where the coefficients may depend on scalars, such as temperature, density, or the invariants of S. This is
called the Stokes model for viscous stresses.

The rms strain-rate § = (5:;85)/2 is a reciprocal time scale for the flud deformation. If this time
1 is long compared to molecular collision times, then the strain is considered weak and only linear terms in
(1.8.4) are used. This leads to
b f; = Ab;; + BS,, (1.8.5)

where A can depend at most linearly on the invariants of S, and B must be independent of S. If it further
assumed that P = - 1oy;, then by (1.3.1)

i 1k =0=3A+ BSix

SO 1
A= —EBSH;. (1.8.6)

For a simple snearing flow wkere the only non-gero strain-rate elements are

13y

S12=8n= 297
one defines the fluid viscosity p by
nz = Zﬂslg (1.8.7)

from which, using (1.8.5), it follows that B = 2. The resulting Newtonian corstitutive equation is

2
fiy = 208, — SHSkkij. (1.8.8)

Note that the Newtonian constitutive equation assumes only that the viscous stress tensor is a trace-free
linear function of the local strain rate; this assumption is believed to be quite adequate for many continuum
fluid flows. The model fails in strong shock waves (normal stresses are incorrect} and in flow of polymers

{rotation rates are also important).
Using (1.8.2) and (1.8.8) in (1.7.3), the irreversibility rate becomes

k 1
T = 3Ts T +2p(5:; 5, ~ 35Sk) 2 0. (1.89)

It is clear that the heat flux term is positive-definite. It is left as an exercise to demonstrate that the
strain-rate term is also positive-definite (Hint: evaluate in the principal coordinates of S;; by expressing the
diagonal elements as the components of a vector in polar coordinates).

1.9 Vorticity

Vorticity is one of the most fandamental concepts in fluid mechanics, and probably the most important
concept in turbulence. The vorticity - sctor g is defined by

Wi = €5k Ukyj (1.9.1)
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Note that €55 = 0 aad hence the vorticity, by definition, is divergence free,

Wi =0. (19.2)
By the definitions, the vorticity is related to the rotation rate,
w; = €55k 0. (1.9.3)
Taking €,4:%(1.9.3); , one finds
Qpp = %cw.-w.-. (1.9.4)

The vorticity field can be thought of as contributing to the velocity field. Forming €pq;%(1.9.1)i,q, one
finds
Epastirg = €pgi€iskUkyyg = Ugipq ~Upigq

or
Uipkk = ~€ikgWsyk sk )i - (1.9.5)

This is a Poisson eguation for the velocity, analogus to the equation for temperature in a heat conducting
medium with distributed sources. Eqn. (1.9.5) displays iwo “sources” of velocity, namely vorticity (more
specifically vorticity gradients) and flow divergence (expansion or compression). In addition to the velocity
generated by these sources, one can also Lave an additional component of velocity satisfying the Laplace
equation u;,xx = 0. From (1.9.5) we see that this component could be thought of as arising from uniform
worticity (a solid-body rotation) and sniform irrotational ezpansion, of which irrotational flow at constant
deusity is a special case.

The part of the velocity field due to the vorticity gradients may be found using the general solutica to
the Poisscn equaticn; at any instant in time, this solution is

wlx) = - / G, X Yeiytoy e (x') ! (1.9.6)

where G(x,x’) is the Green’s function for the Poisson solution in the flow domain, and dx’ represents an
element of volume for the interation over the flow domain. The Green’s function for an infinite domain is

-1
4xy/(zn — 2,)(20 — 1)

Using this Green’s function in (1.9.6), and integrating by parts to transfer the k differentiation from the
vorticity to the Green’s function, one finds

G(x,x') = (1.9.7)

u;(x) = / €isk e _‘:)_(‘:f)_ P /zw,'dsx' . (1.9.8)

This is called the Biot-Savart equation. It gives that portion of the velocity field arising from vorticity, for an
infinite flow domain. Computational methods in which markers track the motion of vorticity-bearing fluid
use the Biot-Savart equation to compute the velocity field; this is an efficient calculation if the vorticity is
highly concentrated and most of the fluid has negligible vorticity, and there are many interesting problems
mn turbulence that can be addressed in this manner.

We emphasize that all of the feacures of vorticity discussed thus far are kinematic in nature, and apply in
cither compressible or incompressible flows. In the next section we will adress the dynamie- of the vorticity.

1.10 Vorticity dynamics

Using the continuity equation (1.2.1) and the stress tensor split (1.3.1}, the momentum equation (1.2.2)
can be written as

Uy + UgUgyg = %(fk,,, ~Py+fi). (1.10.1)
Taking ;4 x (1.10.1) &,; one obtains
Wi+ U3 = =ik Yhrg Feijh [ﬁ (nase—Path)];
Using (1.5.1) and (1.9.4), the first term on the right is exactly

WeSiq — Sq-wi
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The pressure term can be expanded into two terms, one of which vanishes, and the vorticity equation becomes

Wi + ujws,; = w;S,; — Syyw; + C.‘jk[(i‘fkq,q) » +;12-P,k FNEN {,ﬁ) ¥l (1.10.2)
Note that the ieft-hand side of (1.10.2) represents the rate of change of vorticity following a fluid particle.
Thus, the terms on the right display the processes that can give rise to changes in vorticity of a fluid particle.
The first term represents the straining of vortex filaments, and is a crucial term in turbulence; in a two-
dimensional flow, this strain is always in planes perpendicular to the vorticity, and hence there is no vortex
stretching in two-dimensional flow. The second term shows that fluid compression (Sxx < 0) tends to amplify
the vorticity, and expansion to attenuate it. The term containing 7y represents viscous effects, including
diffusion. The term containing pressure gradients and density gradients shows that these may combine to
act as a source for vorticity, if these gradient vectors have a non-sero cross product: this term is important

in the atmosphere. Body force gradients can also generate vorticity; but body forces are often conservative,
i.e. of the form

Je = pdx {1.10.3)
where ¢ is a scalar potential, and (1.10.2} shows that such forces do not generate vorticity.
In a Newtonian flow where p = p(t), u is constant, and fi = pd,x, the vorticity equation becomes

Wi + By, = wiSi; — WSy + Vwiyg . (1.10.4)

This is the form to which we will refer most often in our studies of turbulence; it emphasizes the interaction 1
between strain-rate and vorticity that is so important in turbulence.

One usually sees the vorticity equation with the first term on the right in (1.10.4) replaced using an
identity derived from (1.5.1) and (1.9.4),

w,~S.-,- = WU, (1.10.5)

We prefer (1.10.4) because it makes the interaction between vorticity and strain-rate very clear.
1.11 Vortex lines and tubes

w

u; + bu;

U3

Figure 1.11.1 Velocities along a vortex line
A vortex line is a line everywhere tangent to the w vector. Along a vortex line (see Figure 1.11.1)

5::,' wy
—_—= e, JA1.1 N
53 lwl (1.11.1)
Vortex lines move as the fluid moves. For tnviscid, sncompressible flow, the vortex lines move with the {

fluid. This fact is extremely helpful in understanding fluid flows in general and turbulence in particular, and
forms the basis for an important class of numerical methods-for simulating turbulent flow.

We will now prove this important fact about vortex lines. Let & be the vorticity at the center of an 4
elemental segment &2 of a line marked in the fluid along a vortex line at tinie t. The rate of change of the
vorticity following the fluid particle attached to the center of this line given by (1.10.4). Neglecting the
viscous term, and assuming constant density (so that Sgx = 0), aud using (1.10.5), the rate of change of the
vorticity of this fluid particle is

s = Dittiyg (1.11.2)
The right hand side of (1.11.2) is evaluated at time ¢ using (1.11.1) to express §z; in terms of §s, yielding
: R
: @i = @] (1.11.3) .
i L . 5
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Since each end of the line moves with its own velocity,

d(8z,) _
% = 5. (1.11.4)
We now examine the changes in 6z, fwy:
d bz1y _ 1d(6z)) &z didy
)% T4 (1.115)

Using (1.11.4) for the first term on the right and (1.11.3) for the second, the right hand side is sero, and
hence 6z, /&, is constant in time. The same is true for the other two components. Hence, if the line was
originally a vortex line, it will remain a vortex line, as we have claimed. Moreover, since §z; = &,C, it
follows that || will be proportional to the line length.

We can form a vortex tube from a set of nearby vortex lines. In inviscid, incompressible flow, this
tube will move with the fluid, and can be stretched by strain along its length. This strain will intensify the
vorticity in the tube. Since the fluid is incompressible, and the tube is imbedded in the fluid, stretching the
tube reduces its disr.eter. The increase in vorticity can be though of in terms of the increased rotational
rate necessary to maintain conserved angular momentum as the tube decreases in diameter. These processes
of vortex convection and stretching by the flow are central in turbulence,

It is left as an exericise to show that, in inviscid, compressible flow, lines everywhere tangent to w/p
move with the flaid. This fact may be useful in simulations of compressible turbulence.

2. TURBULENCE FQUATIONS

2.1 Averaging concepts

Different kinds of averaging procedures are appropriate for different situations. In situations that are
statistically steady, the time average is useful. Denoting a random field by f(x,t}, its time average is

Fx) =T1£n:°-;,-/: flx, t)dt. (2.1.1)

The time average can not be used in fields that are statistically developing in time. But if the field is
statistically homogeneous, i.e. statistically the same at all space points, then a volurae average can be used,

_ L pL pL
() = Jim Zlg /‘; /o /; fix, t)dx. (2.1.2)

If the field is not statistically steady or homogeneous in space, but is homogeneous on planes or along
lines, averages on the planes or lines can be used. But if the field is not statistically the same in time or any
space dimension, one has to resort to the concept of ensemble averaging, i.e. averaging over a large set of
(usually hypothetical) similiar experiments:

N
Feot) = Jim -}1—'.2::1 falst). (2.1.3)

One must always be careful to choose an averaging concept appropriate to the situation. It will be
assumed that an aveiaging process has been chosen that commutes with differentiations with respect to
both time and space; the ensemble average always has this property.

2.2 Turbulence decomposition

Each variable in a random field is represented as the sum of its average and its fluctuation,

f=F+1. (2.2.1)
The averaging processes defined above are all such that
f=o. (22.2)
It follows that —
fh=fh (2.2.3)
and —
fh =0 (2.2.4)
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In compressible flows, mass-weighted averaging is often employed. The methods for doing this averaging are
simple extensions of those given above.

Most turbulence literature concerns incompressible flows. However, there is a class of compressible
flows that can be handled as a very modest extension of incompressible flows, namely flows where p = p(t)
(uniform density flows). Many practical flows fall in this class, including flow in an internal combustion
engine cvlinder. The equations for uniform density flow are much simpler than thoee of full compressible
flow, and so in the interest of simplicity much of what follows will be limited to uniform density flows with
constant viscosity u.

2.8 Governing equations
If p = p(t), the continuity equation reduces to

At puin=0. (2.3.1)

We will write the turbulence decomposition with capital letters for mean quantities and lower case letters
for the fluctuations,

p=P+p (2.3.2¢)

wi=U +u. (2.3.2)

Inserting tkese decompositions into the continuity equation (2.3.1), and averaging, we obtain the mean
continusty equation

p+pUii=0. {2.3.3)

Subtracting this result from (2.3.1) we obtain the fluctuating continuity equation,
ul, =0 (2.3.4).

Note that, for uniform denity flow, the fluctuation velocity field is divergence-free, as would be the mean
velocity field if the flow were incompressible.
For uniform density flow with s =constant and f; = 0, the momentum equation (1.2.2) reduces to

. 1
i + Uy, = —;p,; +Vuiyy . (2.3.5)

Introducing the turbulence decomposition, averaging, and making use of (2.3.4), the mean momenium equa-
tron is found as

. 1
U; + UJ U.'u' = ";Pn' +VU:'uj _Rﬁ 7} (2-3-6)

where _

R = ulu. (2.3.7)
The quantity —pR;; appears in (2.3.6) like a stress, and so is called the Reynolds stress after O. Reynolds,
who intreduced the basic decomposition.

Equations (2.3.3) and (2.3.6) would permit calculation of the mean density and velocity field 5f the
Reynolds stresses were all known. Since they are not known, we have a closure problem, which can be
addressed, but not solved, by furiher development of the equations for the Reynolds stresses.

An aiternative way of thinking about the turbulence *forces® has some physical appeal. From (1.9.1} it
f{ollows that -

wiul, = €yx),5 U (2.3.8)

Maltiplying by egip

EqipW, Up == Eqip€iskUyys Up = (Bpibek — Bprbos)uls up = ufp uj, — gl
Using (2.3.4), this produces

—_ 1 —
Eqipwiuy, = (“3“;):» ‘5("‘»"5)»1

or equivalently .
(wu)s = 5w ul) +eijnwjul. (2.3.9)
We define '
P* = P+ 3pq’ (2.3.10)
e e e B e T T T T
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where the mean square fluctuation velocity is

¢ = v, (2.3.11)
It is convenient to denote the mean-convection sybstantial derivative by

D) = () +U;0,;- (2.3.12)

Then, using (2.3.9) in (2.3.6), the mean momentum equation becomes
- 1 -
DU; = - ;P'..- +vl, 55 —€ijnafug. (2.3.13)

In this alternative representation the turbulence provides a contribution to the nornal stress in P* and a
turbulent body force, but xo shear stress. The potential of this alternative view of turbulence forces remains
to be investigated.

2.4.1 Mean vorticity equation
The turbulence decomposition of the vorticity is

w; = +wi. (2.4.3)

The mean strain rate and rotation rate are denoted by S;, and ;;, respectively, and the fluctuation strain

rate by s};. By continuity for uniform density flow, s}, = 0. Introducing the turbulence decomposition into

(1.10.4), and averaging, thc mean vorticity eguation is found to be

Da; = ;555 — S;5 + vili,y5 —{w]u)),5 twisl;. (24.2)

Note the appearance of the turbulence body force term w]u’; in the equation.

2.5 Turbulent fluctuation equations

The fiuctuating continuity equation is (2.3.4). Subtraction of the mean momentum equation {2.3.6)
from the full equation (2.3.5) gives the fluctuating momentum equation,

= _— 1
Dy} = —ujUs,; —(ulu}; - wiul),; —;p',,- +vulj. (2.5.1)

Subtraction of (2.4.2) from (1.10.4) gives the fluctuating vorticity equation

Ew,f = -Ha);-S,-,' - wfs,',' + ﬂjsf,-

=y (.5 = (wjwi — wjwl),; +wisl; — wisl;) + w5 (2.5.2)

By taking (2.5.1),; one obtains an equation for the fluctuating pressure,
1 —_—
;p',.',' = —202,,' Uj,.' —(u:-,, u_’,-,,- —us,,- u;.,.-) (2.5.3)

These equations are useful for deriving equations relating statistical properties of the turbulence and in the
study of the dynamics of turbulent fluctuations.

2.6 Kinetic energy equations
The transport equation for the turbulent kinetic energy

LY (2:6.1)

is derived by multiplying (2.5.1); by u} and averaging. After some rearranging, one obtains

5(-;-41’ =P=D-Jiy- (262)

Here
= —wuS;; (2.63)
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is the rate of turbulent energy production,

D =vuf,;ul,; (2.6.4)
is the (homogeneous) rate of turbulent energy dissipation, and

1=

1—ro 1 o
Jp= ;p’u} + Eu’uﬁu:- ~ u(-é-q’),,- {2.6.5)

is the turbulent kinetic energy fluz in the 7*» direction.

Note that P involves the product of turbulent stresses and mean strain rates, and that the mean
rotation rate does not appear explicitly in the turbulent kinetic energy equation (thcugh it may influence
the turbulent kinetic energy by altering terms in the equation). P arises from the stretching of the tangle
of vorter filaments that make up the turbulence by the mean deformation. P is almost always found to be
positive, although there are situations in which it is negative.

Since the source of turbulent kinetic energy is the mean flow, the production term should appear
with opposite sign in the evolution equation of the mean kinetic energy. Multiplying (2.3.6); by U;, and
rearranging, the mean kinetic energy eguation is

5(%0,-(1.-) = -(-}pv.-),.- +%P s — 8538y + 2o{UiSig)yy ~P ~ (Uidid)g (2.66)

Indeed, —P does appear on the right, indicating a drain from the mean kinetic energy. The two pressure
terms represent the power associated with flow work and the power transfer from internal energy due to
expansion of the flow. The first viscous term is the rate of dissipation of mean kinetic energy by viscous
effects (see 1.8.9), and the second is the reversible viscous power transfer. The last term, which integrates
to sero over a large volume of flow bounded by non-turbulent fluid, represents an internally conservative
transfer of mean kinetic energy within this volume.

We have been careful to call D the homogeneous dissipation, because (as shown in the next chapter)
only in homogeneous turbulence does it represent the true rate of energy dissipation. From (1.8.9) the true
dissipation rate is

& = vt = wsl sl = vul,; (uly 4 W ). (2.6.7)

The right hand side of the turbulent kinetic energy equation can be modified to replace 2 by ¢, with a
concuwrrent modification in the definition of the flux. This is left as an exercize.
2.7 Reynolds stress evolution equation

The evolution equation for R;; is derived by multiplying the #** fluctuation momentum equation by u,
and the 5* equation by u!, adding the resulting equztions, and averaging. The result may be written as

DRij = Py + 0ij + Tij — Dij — Jijae- (2.1.1)
Here the production term
Pj = —(RixSkj + RixSus) (2.7.2)
is the source of Reynolds stress; note that its trace is
P; =2P. (2.7.5)
The kinematic rotation term
0;; = Ry + Rin Qi (2.7.4)

is crace free {O;; = 0) and hence this term does not contribute to production of new turbulence energy, but
simply rotates the turbulence structure. The pressure strain term

1_.—..
L= +;P’ (ulss +ufi) (2.7.5)

is also trace-free and provides intercomponent energy transfer. The dissipation term

Dt') = 2”'4)k u;‘rk (2.7.6)
has a trace
Di; =2D. (2.7.7)

—- . T r————— e ——

ey

3
Y-~

.
o

/.

N ,%“‘“‘.\

- vhea



G LR

2]

L g o= LSS A Y

Y - N
R e I I e I R S SURUL R,

1-12

Finally, the fluz of R;; in the k*» direction is

Jije = ~(PPui6ix + Pul6y) + U, — VR (2.1.8)

© |-

Again we have used the mean strain-rate and rotation-rate instead of just the mean velocity gradients
to bring out the different roles played by strain and rotation. Most previous workers have included the mean
rotation term in with the production. But it is trace-free it does not add new energy (it is absent from the
turbulent kinetic energy equation), and therefore is different than production. The rotation term provides
exactly the changes that would be seen if the R;; structure were to be rotated as a solid body without
change. Only strain, acting on the Reynolds stresses, can act as a new source for additional Reynolds stress.

The R;; equation is sometimes rewritten so that the trace of the dissipation term is 2¢ instead of 2D.
with an associated modification in the flux. This is left as an exercise.

The R;; evolution equation forms the basis for many of the current types of turbulence models. 1t is
very useful in exploring the general nature of the changes that occur in turbulent flows subjected to strain.

2.8 Vorticity equation

The mean-square turbulent vorticity, sometimes called the enstrophy, is sn important quantity in tur-
bulence. Its evolution equation, deriied by multiplying (2.5.2); by w! and averaging, is useful in studying
the small scales of turbulence. Denoting

w? = wlw! (2.8.1)
on* finds 1
_D-(Ew’) = wiw}S;; — WS, — wiu ;,, +0;8] 0}
Dworg g ] 1 O 1 2
w8, = vy why + | —guwe v Sw - (2.8.2)
lig

8. STATISTICAL DESCRIPTIONS OF HOMOGENEOUS TURBULENCE

3.1 Introduction

A field in which all statistical properties are independent of position is called homogeneous. If the
statistical properties are independent of the orientation of the coordinate frame, the field is called isotropic.
Turbulence may be approximated as homogeneous and/or isotropic, although turbulence is usually homo-
geneous if it is isotropic. Few practical flows are either homogeneous or isotropic. Nevertheless, regions of
practical flows often are essentially homogeneous, and homogeneous flows provide a very important point of
departure for models and theories of turbulence. Therefore, development of good understanding of homoge-
neous turbulence is an important first step in the study of turbulence.

In order for the turbulence to be homogeneous, the terms in the equations for statistical properties
of turbulence must be independent of positicn. Since the production term (2.7.2) involves mean velocity
gradients, these must be independent of position if homogeneity is to be achieved. Therefore, a necessary
condition for homogeneity is that the mean velocity be a linear function of the coordinates. Since there are
no Reynolds stress gradients in homogeneous turbulence, the mean momentum equation (2.3.6) shows that
the mean velocity field is unaffected by the turbulence.

Since the mnean field is decoupled from the turbulence in homogenecus turbulence, almost any mean
velocity history can be imposed on homogeneous turbulence. Any mean strain-rate history can be imposed,
but the mean rotation history is determined by the imposed strain-rate history. From (1.10.5) it follows that
the last term on the right in the mean vorticity equation {2.4.2) is (wju),; which vanishes in homogeneous
turbulence. Hence, the mean vorticity equation in homogeneous turbulence is

ﬁ‘- = QJS” - ﬂ,-Sj,-. (3'1‘1)

Thus, while an initial arbitrary mean rotation can be imposed, any subsequent changes in the mean rotation
are governed by (3.1.1). This restriction is important in the analysis and simulation of turbulence distortion
by mean strain and rotation.

The statistics of homogeneous turbulence will depend upon time. Experiments on homogeneous tur-
bulence generally involve passing flow through a grid, which generates turbulence, and then through a flow
passage of varying cross section. The flow is approximately homogeneous as seen by an observer moving
downstream with the mean flow, and the evolution of this turbulence as seen by the observer is interpreted
as the time evolution of the turbulence. The behavior of turbulence under imposed mean strain can be
studied by changing the cross-sectional geometry of the flow channel. Ingeneous experiments permit great
flexibility in such experiments (Gence and Mathieu 1980). Homogeneous shear flow, in which the mean
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streamwise velocity gradient it uniform across the flow, can be produced using upstream grids of special
geometry (Tavoularis and Corrsin 1981).

Grid turbulence is not quite isotropic. However, by placing a contraction in the flow stream downstream
of the grid, essentially isotropic turbulence can be obtained {Comte-Bellot and Corrsin 1966) for study in
a subsequent constant cross-section duct downstream. One can also study the relaxation of homogeneous
turbulence after strain in such a duct.

In the period 1960-1980, a number of basic experiments on homogeneous turbulence provided a sound
data base on these flows. Since then numerical simulations of homogeneous turbulence have added consid-
erably to this data base. The insight gleaned from these experiment and simulations now allow us to paint
a useful picture of the structure of homogeneous turbulence. The next section presents this picture and
discusses the important scales of turbulent motion.

8.2 Structure and scales in homogeneous turbulence

One can think of homogeneous turbulence as a complex tangle of vortex filaments, each acting as a
“Biot-Savart source” in moving, distorting, and and straining all the filaments (Fig.3.2.1). This continual
vortex stretching concentrates the vorticity, and so the volume of vortical fluid tends to be a small fraction of
the total. Vortex filaments of the same sign tend to collect, and this provides a mechanism for the creation
of larger eddies. This is counterbalanced by the three-dimensional straining of filaments, which tend to
twist and tangle themselves to produce smaller eddies. The imposition of mean strain distort the tangle of
vortex filaments, much as the fibres in a ball of steel-wool are distored when it is stretched. This alters the
structure of the filaments, and hence the structure of the turbulence. Upon removal of the mean strain-rate,
interactions between filaments randomise their orientation, bring about a return to isotropy.

This tangle of vorticity produces a very broad range of turbulent motions. The larger scales are more
efficient in generating the Reynolds stress required to extranct energy from the mean field flow, and and
new turbulent energy appears initially at large scales. Through the complex non-linear interactions, which
are invisctd processes, turbulence energy is cascaded successively to smaller and smaller eddies, ultimately
to be dissipated by viscons straining in the sma'est eddies, where the local strain rates are the greatest.

o

Figure 3.2.1 Homogeneous turbulence as a tangle of vortex filaments

The scale of the largest eddies is set by whatever object produced them. In grid turbulence the grid
mesh determines the largest eddies, in wakes the large eddies scale on the diameter of the object, and in
pipes they scale on the pipe diameter. The scale of the smallest eddies is set by the rate at which they must
dissipate energy, provided to them by the large eddies through the cascade, through viscous stresses. The
role of viscosity in turbulence is to set the scale of the smallest eddies.

These ideas suggest that the dissipation rate is determined by the scale of the energetic large-scale
turbulence which starts the energy cascade. If we assume that g and € characterize these large scales, then
by dimensional analysis the length scale of these eddies is

t=g%le (3.2.1a)

and the time scale is
7=g%/e. (3.2.18)

The velocity scale is of course just . These scales tell us how the statistical properties of large eddies should
be non-diinensionalised to collapee data from similar flows at different scales.

The Reynolds number of the turbulence, defitied in terms of the velocitv and length scales for the large
eddies, is

Ar=Z
= P (3.2.2)

In practical flows, g is generally proportional to the vclocity difference driving the flow (velocity at the center
of 2 pipe or the velocity defect in a wake), and £ is proportional to the object dimension. Thus, Ry is usually
proportional to (but smaller than by a factor of 20-100) the flow Revnolds number.
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The scales of the smallest eddies are deiermined by the ¢ and v. By dimensional analysis, the length
scale must be

e = (VP[e)M* (3.2.30)
and the time scale

% = (v/e)M3. (3.2.3)
These Kolmogorov scales characterise the vortex filaments in turbulence, with the cores of the vortex being

of order £x and rotation time for the core scaling on rx. The corresponding velocity scale, characterizing
the velocity difference developed locally around a vortex filament, is

vk = (ve) /4. (3.2.3¢)
Using these scales, the ratio of the largest scales to the smallest scales is
L _ 3
i (3.2.4)

Thus, the range of turbulence eddies broadens as the Reynolds number increases. This wide range limits
direct numerical simulations of turbulence to low Reynolds numbers. Large eddy simulations of turbulence,
in which turbulence of smaller scale than the computational mesh is modeled and the larger scales are
computed, depends heavily on models for the small scales. It is tempting to approximate this sub-grid scale
turbulence as homogeneous, and therefore a firm understanding of homogeneous turbulence is important to
progress in large eddy sirulation.

The remainder of this chapter is devoted to the mathematics used to describe the statistical properties of
homogeneous turbulence. Subsequent chapters deal with the dynamic evolution of these statistical properties
in response to imposed mean strain.

3.8 Correlations and spectra

The statistical properties of homogeneous random fields are most often described in terms of correlations
and spectra. for example, if f and g are two random field variables, the two-point correlation of f and g is
defined as

Qro(x,x',t) =< f(x,t)g(x',2) > (3.3.10)

where the overline denotes a volume average and the brackets denote an ensemble average. Ensemble and
volume averages are usually assumed to be the same for homogeneous fields (ergodic hypothesis); the dual
averaging is therefore redundant but useful in the analysis that follows.

For hcutogeneous fields Qg depends only on the separation of the two points r = (x' — x) and ¢,

Q/G(r’ t) =< f(xr t)g(x +r, t) >. (3.3.1b)

Often the time dependence of the correlation is not expressed explicitly, but it nust not be forgotten.

There is an infinite set of other correlations of possible interest, for example the two-point correlation
with time delay, three-point correlations, etc. A complete statistical description requires knowledge of the
probability density function for all variables of interest at all space points and time, an impossible goal to
achieve. Therefore, statistical descriptions are always limited in what they can provide, and the challengs is
to provide what is really essential, with minimum effort and maximum accuracy.

In homogeneous fields, Fourier expansions can be used to represent individual realizations of the fields.
Suppose that f and g are defined within a box of interest {Fig. 3.3.1). In order to give them Fourier
expansions we have to imagine that they are periodic functions, so let

) = f(x) inside the box
- periodic repetition outside.

The Fourier representation of f at any instant of time is
fo) =3 fxr)e*"= (3.3.20)
kl

where k = (ky, k2, k3) is the three-dimensional wavenumber vector, and k -x = k,z,. Since the Fourier
modes must fit into the box with integer periods,

ki = 2xn; /L. (3.3.25)

The summation is a triple sum over all Fourier modes,




w

3= iii (3.3.2¢)

k! ki ks ks

Note that the Fourier coefficients may vary with time; we do not show this explicitly here.
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Figure 3.3.1 Box for Fourier representation

There is an important relationship between the Fourier coefficients of positive and negative wavenumbers
for a real field. Taking the complex conjugate of (3.3.2a), replacing k' by k”,

ol = 3 Fr(k")er
T

where the s denotes a complex conjugate. Letting k" = --k’,
Fle) = 3 f(-)em i, (3.3.3)
kl

Now, if f is real it is equal to its complex conjugate. Equating the Fourier coefficients of like exponentials
in (3.3.2a) and(3.3.2), X .
f(') = f*(-k')

or alternatively (for real f) ) )
f(~k) = f*(k). (3.3.4)
The Fourier coefficients are svaluated using the orthogonality property of the Fourier modes, using

integrals over the domain. In */hat follows J()d®x denotes an integral over the box in Fig. 3.3.1. Then,
multiplying (3.3.2a) by ¢* ana integrating over the box,

/ % fodx = 37 F(K') ] =K x oo (3.3.5)
kl
Since each Fourier mode that fits the box contains an integer number of cycles,

3 s 3 !
/es(k—k gy = gs g: i:' (3.3.6)

Hence all terms in the summation of (3.3.4) drop out except for the cne where k' = k. Thus, the Fourier
coefficients can be evaluated as

709 = 5 [ foaeex. (38.)

The two-point correlation of f and g can be expressed in terms of the Fourier representations. Consider
the correlation of f and g within the box of Fig. (3.3.1),

< Fojit) >= 303 < flk)ai’) > etk
k k'
The brackets indicate that the Fourier coefficients are random variables that will differ from from realisation
to realisation. Let k” = —k' and r =x' —x. Then, using (3.3.4),
< f)ilx+7)>= YD < flk)§" (k") > e~ x(k-k)Hik"r, (3.3.8)
u kll

Now we average by integrating over the box and dividing by L*, denoting this average by an overline. Using
(3.3.6), all the terms in the sum drop out except the terms where k” =k. The result is then

e SR P, Pt ————— W\ mah Wt e

w




Qrolr) =< fx)iix +1) >= Y, < fk)§* (k) > ~*. (3.8.9)
k

In computational simulations in which the evolution of the Fourier coefficients is calculated for finite-series
approximations to the fields, (3.3.9) is used to calculats tie the two-point correlation.

Theoretical treaiments take the limit as L — oo, in which case the sums become integrals. To pass to
this limit, we note that the difference between consecutive wavenumbers in the cummation is Ak, = 2x/L
for each direction, so Ak;L/2x = 1. We can multiply each term in the summation by unity three times to
i obtain

3
: Gr)= 3 < J097 0 > (£) abanare (3:3.10)
« k
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We define the cospectrum of f and 7 as

3
Epy(k) = (EL?) < f(k)g* (k) > . (3.3.11)

This is the equation used to calculate the co-sp ectrum in discrete spectral simulations of random fields.
Then,

Q‘.Ia(l‘) = E E‘,,(k)e‘l‘"AklAkgAks. (3.3.12)
k
Taking the limit as L — oo, we define the cospectrum of f and g by
Ego(k) = tim Eyy(k). (3.3.13)

E}, does not become infinite as L — oo because the Fourier coefficients of individual modes become very
small as the number of significant modes increases. As L — oo, AkyAk2Ak; becomes an elemental volume
in wavenumber space dk;dk,dks = d°k. Therefore, in {3.3.12) the two-point correlation

Qrolr) = lim Qpylr) (3.3.14)

Z=00

become. the three-dimensionel Fourser transform of the cospectrum,

Qo) = [ Br@)e*k. (3:315)

Here the triple integration is to be carried out over all wavenumbers. "
There is an inverse of the transform (3.3.15). Multiplying (3.3.9) by e=*%"* and integrating over a box
of size L in r space,

f Grole)e™ T dr =3 f < fK)3" (k) > (2K (3.3.16)
k

Each exponential in the summation will execute an integer number of cycles in each direction and hence
integrate to zero, except for the term where k = k'. Hence,

[ Qselede e = 1 < F005" ) >= (20 Byl (5.817)

In computational simulations based on finite-difference methods, this equation is used to calculate the cospec-
trum from the two-pcint correlation. Taking the limit as L — oo, and replacing k’ by k,

Egolk) = (él;)3 / Qrolr)e= . (3.3.18)

Note that Ey, and Qy, are Fourier tranform pairs.

We could have obtained the cospectrum simply by Fourier transformation of the two-point correlation.
‘We started with a finite box so that the relationships between the Fourier coefficients and the cospectrum
would be made clear, and also to derive results useful to persons engaged in discrete-representation simula-
tions of homogeneous turbulence in finite computational domains. It should be understood that the Fourier
transforms of f and g defined over an infinite region do not exist. However, because events at distant
separations are uncorrelated, Qp, — 0 as [r| — 0o, and hence the Fourier transform of @7, does exist.
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8.4 Velocity correlations and spectra

The velocity field in homogeneous turbulence can be represented in the terms cutlined above. Let f =
u; and g = u;. Then, dropping the redundant ensemble average,

Qi;(r) = uj{x)uj(x +r). (3.4.1)
Qi; is the two-point velocity correlation tensor, Note that
Qui(V) = wix)ui(x) = ¢°. (3.4.2)

Qi;(r) expresses the average relationship  “ween two velocity components measured at two locations
separated by a distance x. Qoo (repeated Greek indices are not summed) will be largest for zero separation,
fall to a fraction of this value for separations comparable with the large eddies in the turbulence, and become
sero for infinite separation. If the eddies tend to be long in one direction and short in another, this will
be reflected in the different rate at which the correlation falls off with diffeient r,. Thus, the two-point
correlation tensor can tell one quite a bit about the structure of the turbulence.

Using (3.3.18), the velocity spectrum tensor is

() = (-2-1;)3 / Qiy(r)e= " dr (3.43)

where the integrations are over all r. It is related to the two-point velocity correlation tensor by {3.3.15),

Qii(r) = / E;y(k)e"d’k (3.4.4)
where the integrations are over all k.
The Reynolds stresses R;; = ulu]; are given by
Ri; = Q:5(0) (3.4.5)
for which (3.4.4) gives
Ri; = / E,;(k)d’k. (3.4.6)

Reviewing the developments of the previous section, one sees that E;;(k)d°k represents the contributions to
R;j coming from an element of k space of volume d°k positioned at k.
For uniform density flow, the continuity equation (2.3.4) provides important constraints on @i;{r). From

(3.4.1)
3Q;  —rr——e
Br, = WO +7),;=0. (3.4.7a)
Replacing x by x’ -- 7 in (3.4.1), then differentiating with respect to r;, (2.3.4) also requires that
Qi _
o = (3.4.78)

The continuity equation (2.3.4) also constrains E;;. In terms of the Fourier expansion, continuity

requires
=) ik;a(k)e~ i = 0. (3.4.8)
x

This must hold for all x, which requires that the coefficient of each and every exponential must vanish.
Hence, for each wavenumber vector k,
kjaz;(k) =o0. (3.4.9)

Equation {3.4.9) is the continuity equation in Fourier form. It says that, for each k, the Fourier coefficient
vector 4 must be orthogonal to k in order for the velocity field to be divergence-free. This condition is used
very ofteis in analysis and simulation of homogeneous turbulence. From (3.4.9), it follows (most obviously
using the the discrete Fourier representations) that

kE;;=0 (3.4.10a)
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kiEj =0.

(3.4.108)

The correlation tensor Q;; has an important symmetry property. Noting that
Qi;(-7) = u{(x)uj(x - x)
we let x = x' +r and rewrite this as

Qii(~r) = ul(x’ +r)u} (x'}.

The right hand side is just Q;{r). Hence
Qij(-r) = Q;ilr).

The spectrum tensor E;; also has a symmetry property. Since the Fourier coefficients for real fields
obey (3.3.3), It follows (most obviously from the discrete Fourier representations) that

(34.11)

Foy(-k) = (72‘;‘;)a < a(=K)a}(~k) >

3
= (EL;) < & (k)8, (k) >= Ej (k). (34.12)

In the limit L — oo this becomes
E,;(-k) = Eji(k). (3.4.13)

The turbulence kinetic energy may be expressed as

1 1 1

-2—q2 = -2-Q”(O) = E/Egg(k)dak' (3.4.14)
Integral scales of motion may be defined in terms of @,;. For example,

- Jy° Qui(ry,0,0)dry
Lu —9—-———————Qu ©,0,0) {3.4.15)

is useful as a measure of the z; scale of the turbulence. Here ths arguments display the three components
of the separation vector,

Q;i; and E;; are the classical quantities used to describe homogeneous turbulence. They are less use-
ful for inhomogeneous turbulence because expansion functions other than Fourier modes really should be
used in directions of inhomogeneity. They are used for inhomogeneous flows when the turbulence can be
approximated as locally homogeneous over regions large compared to the integral scale.

3.5 Other statistical quantities

There are many other statistical quantities of interest in turbulence. Those that involve only quadratic ,
forms in the velocity are termed second-order. Any second-order statistical property of the velocity field can ’
be derived from the two-point correlation tensor or the velocity spectrum tensor. For example, a tensor of
interest is

Dupq == ":)p u;:r (3.5.1)
From (3.4.1),

a%;ri:r) = W, 7). (3.5.2)

Replacing x by x' ~ r in (3.5.2), then differentiating with respect to r,, une has

Pl | A ; ]
B, = e X = 2)u ). (3.5.3) 5
N tii =0 .
oW le tmg xr (] [ (azQ‘.’.(r) s5a 1
3pq — arparq Irl:o' ( X )
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The corresponding result in terms of the spectrum tensor can be derived directly by taking the derivatives
of the discrete Fourier series for the velocities, and proceding as in section 3.2 above, or by applying (3.5.4)
to (3.4 4). Either approach gives

Dijpe = /kpqu.','(k)dsk. (3.5.5)

Since gradients of all statistical quantities vanish in homogeneous turbulence,

(viu));=0. (3.5.6)
Expanding the differentiation using the continuity equation (2.3.4),
D.',',.' = uﬁ,,- u;',. =0. (3.5.7)

Note that this is consistent with (3.5.4) and (3.5.5) if the continuity constraints (3.4.7) or (3.4.10) are applied.
The dissipation rate ¢ may be expressed in general as

€ = v(Dyiz5 + Dijji). (3.5.8)

From (3.5.7), the second term does not contribute, and in homogeneous turbulence the true dissipation rate
¢ is the same as the homogeneous dissipation rate D defined by (2.6.4).

Using (3.5.8), (3.5.7), and (3.5.5), we find that the dissipation rate is related to the velocity spectrum
tensor by

e=vy / KE,;(k)dk. (3.5.9)
The factor k? means that the main contributions to the dissipation come from higher wavenumbers (smaller
eddies) than those that provide the major contribution to the kinetic energy.

8.6 Vorticity
The two-point vorticity correlation tensor is

Wi, (r) = wi(x)w}(x +r). (3.6.1)
Note that .
W;i(0) = wlw! = w?. (3.6.2)
From the definition of vorticity (1.9.1),
w? = Dyij; = Dijii (383)

so it follows from (3.5.7) and (3.5.8) that in homogeneous turbulence the dissipation is directly related to
the mean-square vorticity,
e =l (3.6.4)

The enstrophy equation (2.8.1) is therefore sometimes used as a guide in developing model equations for the
dissipation.
The vorticity can also be expanded in a Fourier representation; for the box of section 3.2,

Bf) = ) di(k)e™ ™ (36.5)
k

Because the vorticity is by definition divergence-free,
kidi(k) =0 (3.6.6)
and because the vorticity is real
&y (k) = &7 (~E). (3.8.7)

The vorticity spectrum tensor H;,(k) can be developed following the approach above. It is of course
the Fourier transform of the two-point vorticity correlation tensor, and can be related to the velocity tensor.
Because the vorticity is divergence-free,

kiHi;(k) =0 (3.6.80)
and
ij.','(k) =0 (3.6.86)
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and because it is real

Hij(—&) = Hy; (k). (3.6.9)
The Fourier coefficients of the vorticity are related to those of the velocity. Using (1.9.1),

&-!(x) = Z‘ipq(‘ikq)ﬁq(k)ﬂ_ik'x- (3.6.10)
k

Equating coefficients of like exponentials, the vorticity coefficients are found to be
Di(k) = ~tkpeipgity (k). (8.6.11)
From this it follows that
H,j(k) = €ipgeirokpkr Eqy (k) (38.12)

One can express Q;; in terms of the vorticity correlation tensor and E;; in terms of the vorticity spectrum
tensor. This requires the solution of the Poisson equation (1.9.5), which is easily accomplished using the
Fourier representations. Alternatively, one can multiply (3.6.10) by ¢,,;k,. The result is

. L9
(k) = e.-,,,’;qu(k). (3.6.13)

where k2 = k;k,. Substituting in the discrete representation of I?.,- and taking the limit, one finds
E;, (k) = €ipaCre "k;;Tk'qu (k)- (3.6.14)

This result finds important use in rapid distortion theory, where it is used to estimate the anisotropy in the
Reynolds stresses produced by distortion of the vorticity field due to imposed mean strain. It is also useful
in constructing models of E;; for anisotropic turbulence using models for the anisotropic H;;.

3.7 Correlations and spectra in isotropic turbulence

If the statistics are independent of the coordinate system orientation, only two types of correlations
completely characterize the velocity correlation tensor (Fig. 3.7.1). The longitudinal correlation function

f(") = %Qll(rhoro) (371)

describes the coherence of the velocity fluctuations aligned with the separation of the two points. The lateral
correlation function

3
g(r) = q—ngz('l,O,O) (3.7.2)
relates to the coherence of fluctuation velocities perpendicular to the separation axis.
A 4 o (x) (o)
1 9 vy (x) uy (x') 1 I 1
(r) ’ X
ftr o(r)
i e
r r
0 >y 0 ~ — |

Figure 3.7.1 Longitudinal and iateral correlation functions

The complete tensor Q;;(r) can expressed in terms of these two scalar functions. The tensor must be a
function of the separation vector r. The most general such function is

Qij(r) = Cibis + Cariry (8.7.3)

where the coefficients C; and C2 may be functions of the scalar invariant of the vector, r = (/ri7;. The
coefficients can be identified by expressing the longitudinal and lateral correlations:

Q22(r,0,0) = g:.-y(r) =G (3.7.4)

——— e
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2
Qu(r1,0,0) = %—f () =C1+Car®. (3.7.5)
Solving for C; and Cz, one finds
2 -
Qijlr) = -qa— [f—('-)-r—gmnr, + y(r)&-,-]- (3.7.6)

Note that f and g are scalar functions of the scalar separation magnitude r (and of time, not shown explicitly).
The continuity equation provides a relationship between f and g. Since r = /i1y,

ar _ 5

ar—k = (3.7.6)
Differentiating (3.7.6) with repect to ry,
2 - ! b g - Tk
Qij= % [(fr, g) r.-i'j-:i + (fr, g) (ribjn + rgbix) + g";] (3.7.8)

where the primes denotes differentiation with respect to r. Setting k = 5 and using the continuity condi-
tion(3.4.7), one finds

2
'+ ;([ -g}=0 (3.7.9)
This integrates readily to give .
=% / fg(F)dr. (3.7.10)
% Jo

E,; for isotropic turbnlence can be obtained by Fourier transform of Qi; as outlined in section 3.3.
Alternatively, we can construct its general form directly since, for isotropic turbulence the E;; tensor must
be a function only the vector k. The most general form is

Eij(k) = C18:;5 + Crkik; (3.7.11)

where the coefficients can depend on the scalar invariant of the vector, k = \/(k;k;). Using the continuity
condition (3.4.10),

Crk; + Czkzk,' =0 (3.7.12)
hence
Cy = -C/k? (3.7.13)
Redefining C as 4xk®E(k), we have
E(k kik;
E,k) = -4_1r£k_2)- (5;j - -EZ—J) (3.7.14}

E(k) is called the energy spectrum function. Note that it is a scalar function of the scalar k (and of time,
not shown explicitly).

k2 k

ky
ks

Figure 3.7.2 Coordinate system for k-space integration

The turuwence energy is, using (3.4.14),

%q’ = / 4—:,:—,E(k)d’k (3.7.15)

The integration of integrals of this type , in which the unknown function depends only on the magnitude of
the vector, can best be carried out in spherical coordinates (Fig. 3.7.2). We have

e
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1a 1 [ (" [ E®K,
21 T r /'::0 -/t;=0/=o %z k*sin 8dddédk. (3.7.16)

Carrying out the integrations over ¢ and 4,

1, [®
39 =, Elk)dk. (3.7.17)

We see that E(k)dk represents the contribution to the kinetic energy per unit mass arising from all the
Fourier modes in a spherical shell in k-space of radius k and thickness dk. Once E(k) is known, the entire
velocity spectrum tensor Ej; is known from (3.7.14).

In theory, homogeneous isotropic turbulence evolves in time, and one should measure the spectrum
tensor by making measurements at many space points. In reality this is very difficult {but it is what is
in fact done in a numerical simulation). Instead, laboratory experiments make use of Taylor’s hypothesis,
which assumes that the velocity pattern measured as a function of time at one point is frozen in the fluid
and being swept over the probe. The probe measurement is thereby interpreted as providing Q11(ry,0,0}.
Using (3.7.14) in (3.4.4),

ER) [, R\ i
Qu1(r1,0,0) = G(I%( —k—i)e"“ %k (3.7.18)

This integration is conveniently carried out in the coordinates of Fig. 3.7.3. We sort the Fourier contributions
according to those with the same wavenumber |k;|. Terms from both sides of the k; axis contribute, with
opposite signs in their exponentials; these are combined into a cosine:

Q11(r1,0,0) = /oo /oo 2" E(k) (1 - ﬁ)Zcos(l’clrl)kMdkdkx (3.7.19)
k1=0 Ja=ky Jo=0 47K? k2
We carrying out the ¢ integration, and define the one dimensional spectrum function E; by
o0
Eu(k) = /k N %ﬂ (1 - {;3) dk. (3.7.20)
Then, -
Qu1(r,0,0) = /k RCCLETENER (3.7.21)

One can taking the Fourier cosine transformation of the measured Q11{rs,0,0) to get E:(k;). Then,
differentiating (3.7.18) twice {a courageous step with laboratory datal),
k; 2By (ky) _ ki 3B (ki)
2 3k¢ 2 3k

E(ky) = (3.7.22)

This allows E(k) to be determined. It also shows that if E(k) varies as a power of k in some range the.r
E; (k) will vary with the same power of k;.

{ A
L )
. T
\ \ 1 ky
\ /] v ./
. 4‘ k:! —weo

Figure 3.7.3 Coordinates for one-dimensional spectrum integration

Eqn. (3.7.21) in essence defines Q1 s a one-dimensional Fourier cosine transform of E;. The inverse
transform is 5 (o
Ei(k) = 2 / @11(r1,0,0) cos(Fyr )dr. (3.7.23)
0

Noting that Q;,(0) = ¢?/3 in isotropic turbulence, the integral scale defined ty (3.4.15) is given by (3.7.23)
as

Lu=As= %121-:, () (3.7.24)
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Ay is the integral scale derived from the longitudinal correlation function f(r), and henca 1t is called the
called the longitudinal integral scale. Since it is aon-zero, E1{0) > 0, in contrast to E(0) = 0.

3.8 Dissipation in isotropic turbulence

Using the isotropic spectrum (3.7.14) in {3.5.9), carrying out the integrations using polar coordinates
as above, the dissipation rate is found as

e=v /o ” KE(k)dk (38.1)

The factor k* means that higher wave numbers (smaller scales) make more contribution to the dissipation
(and vorticity) than they do to the energy (compare 3.7.17).

Since the small-scale component of turbulence is generally throught to be very nearly isotropic at high
Reynolds numbers, isotrepic turbulence theory is used as an aid in estimating & from laboratory data. This
approach makes use of the tensor D,,,, defined by {3.5.1). In an isotropic fieid, the only tensors upon which
D;jpq can depend are the isotropic numerical tensors, hence it must be of the form

D;ypq = Cib,58p0 + C261,654 + Cabigbsp (3.8.2)

where the coefficients must be scalars. The coefficients can be cvaluated from three known constraints. First,
the definition forces = symmetry,

Dyjpg = Djsgp- (3.8.3a)
Second, continuity requires that
D;jiq=0. (3.8.3h)
Finally, we know that
¢=vDipp. (3.8.3¢)
Using these considition, one finds
2e 1
Lijog = 1_5';'[5':5P¢ = 2(5-'95:‘« +8,6,0)]- (3.8.4)

The pertin-nt quantity most casily measvred in an experiment (again using Taylor’s hypothesis) is

(uin)? = {3.8.5)

15°

This is usually the way that ¢ is estimrated in laboratory experiments.
Another important turblence scale defined in terms of the dissipation is the microscale. It can be

approached through the longitudinal correlation function f(r). The symmetry property (3.4.11) indicates

that f(r) must be an even function of r, so its expansion is

f)=1- -Zl-arz +0(Y) (3.8.6)

The interception of this osculating parabulz {Fig. 3.0.1} with f = 0 definez a scale A; = \/2/a, called the
longitudinal Taylor microscale. From (3.5.4), using (3.7.5) and then (3.8.4),

a= :—,Duu = g:—qz
so
A7 = 10vg7/e. (3.8.7)
Alternatively, the dissipation rate can be expressed as
¢
e=10v=5. (3.8.8)

At

This equation it sometimes used to determine £ from measurements of the longitudinal correlation.
TJsing (3.2.3) and (3.2.2), the ratio of the Taylor microscale to the Kolmogorov scale is

2_, = VIORMY (3.8.9)
K
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Using (3.2.1), the ratio of the energy-containing scale to the Taylor scale is

L 1 12
— e .8.10
P 7 (3.8.10)

Thus the microscale falls between the smallest and largest scales. Although it is the most commouly 1eported
turbulence scale, it is the least well understood. It has been suggested that it is a measure of the size of the
loops in the vortex filaments, but this is not at all certain.

*
r

Figure 3.8.1 The osculating parabola defines the Taylor microscale

3.9 Scaling of the spectrum in isotropic turbulence

The general form of E(k) deduced from measurements in isotropic turtulence is shown in Fig. 3.7.1. By
(3.7.17), the area under the cusve is the turbulent kinetic energy, te which then greatest contributions come
from wavenumbers arrund the peak. The vorticity and dissipation occur predominantly at high wavenumbeis.

A

E(k)
[ SRR

energy range dissipation range

Figure 3.9.1 Form of .he spectrum in jsotropic turbulenc:

It is generally thought that the small-scale moticns in any turbulent flow become isotropic at high
Reynolds numbers, 2nd therefore that the Kolmogerov scales characterize the high wavenumber region
of any turbulent dow. Moreover, if one assumer that there is a universai small-scale sprctrum, then by
dimensional analysis it must be of the form

Zk) (RO
VShak = P\ an ) (3.9.3)

The one-dimensional spectrum Ej(k;) would have to scale in the same manner. Figure 3.9.2 shows that the
data from a wide variely of flows do indeed collapse when plotted in these Kolmogorov variables. The data
flatten at low wavenumbers because thiey are cne-dimensional spectra where E{0) is given by (3.7.24).
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STREAMWISE ENERGY SPECTRA FOR VARIOUS TURBULENT FLOWS
(CHAPMAN, 1979)
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Figure 8.9.2 Spec*ta in Kolmogorov variables

Kolmogorov suggested that there should be a range of wavenumbers in which the main process is the
passing of energy from larger eddies to smaller eddies {the cascade of turbulence energy), and that the
structure of this region should depend only on th~ rate of energy cascade. Since this cascade ultimately ends
with dissipation at the small scales, the rat- ot energy cascade must be e. If one assumes that E(k) depends

) T e




only on ¢ (and of course k) in this range, by dimensional analysis

E(k)k®/26=3/3 = constant = a

or

E(k) = ac*/3k=5/2. (3.9.2)

This is the Komogorov spectrum, a cornerstone of turbulence. Measurements give a Kolmogorov constant
of about 1.5. The data of Figure 3.9.2 show the —5/3 range, with longer runs of —5/3 behavior at larger

Reynolds numbers, consistent with the broadening of scales as R;./ .

In the vicinity of the peak in E(k), the spectrum should scale on the large-scale variables (see section
3.1), and hence should collapse when plotted as

cE(E) _ G( "‘). (3.9.3)

' ¢

Where this form overlaps with the Kolmogorov spectrum the function G must be such that g drops out, and
this again establishes the ~5/3 law for the asymptotic overlap range between low and high wavenumbers.

Figure 3.9.1 indicates that E(k} — 0 as k — 0, but there is controversy as to just how. There are
good arguments supporting both k? (Saffman) and k* (Loitskianski) variation as k — 0. The k* behavior
is required if E;; is to be analytic at k = 0. The k* beliavior implies some residual preferential directions
at zero wavenumbers, which may be more characteristic of physical experiments. Numerical simulations
with delta spectra at mid-range fill-out as k* as the turbulence develops, but sim.lations initiated with k2
behavior at low wavenumbers persist as k2. Simple models of turbulence show that the rate of energy decay
in isotropic turbulence depends on the low wavenumber portion of the spectrum, and with the experimental
decay rates support the k%,

}

E(k,t)

=k

Figure 3.9.3 Evolution of the spectrum in decaying isotropic turbulence

Turbulence not subjected to mean deformation will decay as time passes. The larger eddies take more
time to change, and the smallest scales of motion adjust most rapidly. Figure 3.9.3 depicts the nature of
the evolution of E(k,t) (we now include the time variable heretofore suppressed). Note that the peak moves
to larger scales (small wavenumbers) because the smaller eddies die out faster. Thus as time progresses the
integral scale will grow.
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Figure 3.9.4 Model spectrum for isotropic turbulence

A simple model spectrum for isotropic turbulence is shown in Fig. 3.9.4. It assumes a power law
behavior at low wavenumbers, a —5/3 inertial range, and a sharp cutoff at the Kolmogorov scale:

AE™ for k <k,
E(k) = { ac®Pk=51% for ky <k < k,. (3.9.4)
0 for k > k,
Matching the spectrum at kz, gives
ae?/?\ 3/(3m+5)
ky, = ( = ) . (3.9.5)

Assuming k, > kj,,

1._[% - 1 3\,-2/3 23
39 —/o E(k)dk—a(m+l+2)kb €

from which an estimate of the peak wavenumber is obtained,

3 1 3\
!% = [2a (-ﬂ—‘ZI—l. + E)] . (3.9.6)

Again assuming k, > ki, the viscous cutoff wavenumber is estimated
® 3
€= u/o K’ E(k)dk = uzaczlak:/s (3.9.7)

from which

et \3x (3.9.8)

kA ( 4 )’/‘

It is left as an exercise to work out the one-dimensional spectrum E; for this model spectrum, and from that
to determine the integral scale. For m = 2 and a = 1.5, one finds

Ase/g® =011, (3.9.9)

This model spectrum exhibits thr , -~ver scaling for isoropic turbulence, and gives values of the scales within
about a factor of two of those fou \d frum actual spectra. It is very useful in constructing simple turbulence
models, in setting up initial fields fur turbulence simulations, and in addressing other aspects of homogeneous
turbulence.
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$.10 Third-order statistics in isotropic turbulence

Correlations involving products of three quantitiss are called third order statistics. These depend on the
relative phases of the Fourier modes, information not contained in the spectrum tensor E;;. Of particular
interest in turbulence modeling are one-point third-order statistics. For isotropic turbulence these tensors
can be worked out using the methods used previously. For example,

wiulul, = Cg 3. (3.10.1)
In dealing with the vorticity and dissipation equations, one encounters the tensor
Viikpgr = Ulop Wrg U yee (3.10.2)
This is evaluated for isotropic turbulence by first writing the general tensor
$ijkper = 8ip(C18540kr + Cabinbyr + Csb5p bk} + 8;5(Cubpgbir + Coboxbr + Cobprbyx)

+5."(C15”'5§, + Cabpxbse + 095,,,5,1,) + &k (0105,,,-50, + C1r16p¢85r + Cr26pr ,-,,)
+6ir (C138p;04k + C148pg8ik + Cisbprdy;)- (3-10.3)
There are three are three symmetry constraints,

Yiskper = Psipgke (3.10.4a)
¢u’:kp¢r = '/kal'rqp (3.10.45)
'/’u'kpqr = ¢.kjprq- (3.10.45)

Continuity also provides some constraints, but with the symmetries enforced only one is required,

Yiskipg = 0. (3.10.5)
Forming (m),.-,—k and using homogeneity conditions, one can show that

Yijhjhi = 0. (3.10.6)

With these constraints, (3.10.3) can be reduced to a form containing only one unknown coeficient. With
Cs = A, one finds

Yiskper = A[(ﬁ.'p5,'¢5kf + 6:78p8qr + 83585004k + Siqbprdik + Eikbpibar + Oitbpebir + 5.',5,,451";)

4 3 1
‘5(5-'?6:150' +8i8pg ke + bikBprbiq) — z(&cspksﬁ +6,r6p;8qx) — 3(5;,5,-,6,‘, +8iq8py Bkr +6ir 6,185} - (3.10.7)

For example,

(vin)?=4 (3.10.8)
wiwlal; = —22-5%. (3.10.9)
The derivative skewncss 7 is related to A; using (3.8.5) and (3.10.8),
— sja
7= T P/ T = 4(22) ™ (210.10)

The skewness is measured to be negative, the term given by (3.10.9) is positive. This is the turbulent vortex
stretching source term in the equation for mean-square vorticity (2.8.2), by which the turbulence tends to
enhance its own mean-square vorticity.
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4. RAPID DISTORTION OF HOMOGENEOUS TURBULENCE

4.1 Introduction

The state of homogeneous turbulence changes significantly when it is subjected to mean strain, This
occurs in practice whenever turbulence passes through a duct of variable cross-section, such as a nozzle, when
turbulence is sheared by the mean flow, or when turbulence is subjected to a mean rotation, The general
trends can be understood using vortex stretching concepts. For example, passing turbulence through an
axisymmetric nozzle stretches the vortex filaments in the flow direction and tends to align them with the
flow direction, reducing the turbulent fluctuations in the direction of flow but increasing the fluctuations
transverse to the flow.

Because of the non-linearity of the governing equations, it is impossible to develop a rigorous theory of
these processes. There are two alternative approaches to such a theory. The first is to use some sort of a
closure model to produce a set of closed equations describing the evolution of statistical properties of the
turbulence in response to the mean strain. The second approach is to simplify and then solve the exact
equations for special cases. Both approaches are useful. In this chapter we examine rapid distortien theory
(RDT), in which the exact equations for the fluctuation field are appreximated in a way that is valid for
very strong imposed mean strain rate, yielding linear equations amenable to exact solution.

It might be thought that the response to large strain rate could be calculated using the Reynolds stress
transport equations (2.7.1), neglecting the terms that do not explicitly contain the mean velocity gradieais.
However, this analysis overpredicts the changes in the Reynolds stresses, because the pressure-strain term
T;; in (2.7.1) produces an immediate effect that reduces the impact of the production term P,; by a factor
of about 50%. The Poisson equation for the fluctuation pressure (2.5.3) shows that a sudden onset of mean
velocity gradient instantly changes the fluctuation pressure field. The result is a sudden change of T;; with
the onset of applied S;;, and this must be considered in the analysis. Turbulence modelers refer to the part
of T;; that changes suddenly with a sudden change in the mean deformation rate as the rapid pressure strain
term. RDT plays a key role in understanding and modeling this term, and this chapter is intended to aid
the use of RDT in this work.

The basic idea of RDT is that when {S]g?/e > 1 the time scale of the turbulence ¢2/¢ is long compared
to that of the mean deformation, and so the turbulence does not have time to interact with itself. Thus, the
non-linear terms in the governing equations (2.5.1)-(2.5.3) involving products of flu tuation quantities are
neglected, and so the RDT equations are linear in the fluctuation quantities. The viscous terms are linear
and can be included in the analysis, but are often neglected and will be here.

These equations contain the meaxn velocity gradients, which must be independent of position for ho-
mogeneous turbulence but may depend on time. The convective operators D contain the mean velccities,
which must vary linearly with x in homogeneous turbulence. These coefficients prevent representation of
the solution as periodic in the coordinates, and this hampers direct solution by Fourier methods. However,
when transformed to coordinates marked on the mean flow at the start of the distortion, the variable co-
efficients are removed and the solution may be obtained by Fourier methods in the transformed system.
This transformation is used in the numerical simulations of homogeneous turbulence (Rogallo 1981}, where
it permits the numerical solution to be ezact for infinitely rapid distortions! The numerical simulations of
the full equations carried out using this program are useful in helping assess the range of applicability of
RDT, and it is rather surprising that, for some types of strain, RDT works remarkably well even at relatively
low strain-rates (Lee and Reynolds 1985). Thus, RDT is becoming recognized as being very important and
useful in turbulence analysis, modeling and simulation (Saviil 1987).

4.2 The RDT equations
The most general mean velocity field in which homogeneous turbulence can exist is of the form
U; = Air(t)ax (4.2.10)

from which
Ui = Au(t). (4.2.18)

Note that (3.1.1) restrices the rotational history of the imposed mean deformation, but any mean strain rate
history can be imposed.
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Substituting (4.2.1) in (2.5.1), the inviscid RDT approximation for homogeneous turbulence is
. 1
u§ + A,-kz,,uﬁ,; = —u; A,'J - ;p’,.‘ . (4.22)

The continuity equation (2.3.4) also applies. We remind the reader that these equations hold if p = p(t), so
they can be applied in certain types of compressible flow situaticns.

Solution by Fourier methods is practical only if the coefficients in the equations are independent of x.
Therefore, it is necessary to transform the equations to remove the troublesome term on the left-hand side.
The transformation is assumed to be

& = Bu(t)z: T=1t (4.2.3)

Transforming (4.2.2) to the new coordinates, the left-hand side becomes

du; |, du; - du;
a3 + 3¢, Bukzi + Ay 2k 3¢, B,,;.

Setting the coefficient of zx to zero to remove the variable coefficient,
Bu + AjxBnj=0. (4.2.4)

This defines the Rogallo transformation. The B;, can be found by solving these linear equations, although
a closed-form solution is not feasible. The transformation ties the new coordinate systems to the mean
motion, with the new grid distorting and rotating as demanded by the mean flow. The Rogallo code for
direct simulation of homogeneous turbulence operates in this coordinate system.

With this transformation the RDT momentum equations (4.2.2) become

du! 19p'
o A, —2SP g
37 uj A, 3¢, By; (4.2.50)
and the continuity equation (2.3.4) becomes
dul
52‘—;&.- =0 (4.2.5b)

The Poisson equation for the pressure fluctuation is obtained by taking the derivative of (4.2.5a) with respect
to £k and the derivative of (4.2.5b) with respect to r and combining, using (4.2.4). Alternatively, one can
simply transform (2.5.3). The result is

1 3% du;

;mBk;Bn, = —2Bk.'A,,'a€k . (4.2.56)
These linear equations can be solved to track the evolution of the Fourier coefficients of the velocity field in the
transformed coordiates. The Reynolds stresses are integrals of this spectrum function, and the integrations
may be carried out in the transformed coordinates. If the spectrum in the oriainal coordinates is involved,
the spectrum must be mapped back to x space using the coordinate transformation.

Closed-form solution of the RDT equations for a general problem is not possible. However, exact
solutions for special cases can be obtained, in some cases in closed form and in others in terms of integrals.
The general solution can be found as a power series in time. Some of thesc solutions that play useful roles
in understanding turbulence and in turbulence modeling will now be discussed.

4.3 Response of turbulence to rapid rotation

RDT can be applied to study the effect of rapid rotation on turbulence in the absence of strain. Taking
the rotation as clockwise about the zy axis, the mean velccity is

Uy =Tz, Up=~I'zgy (4.3.15)
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& = z; cos(I'r) — zz sin(Fr) (4.3.2a)
&2 = x5 c08(I'r) + zy 8in(l'r) (4.3.20)
£ =13 (4.3.2¢)
r=, (4.3.2d)
Transforming, the RDT equations become
3u1 1 ap . ap
—_— = —— —_ )om— | — .3.3
3 P [cos(l‘r) 3¢, + 8in(T'r) 7 uaT (4.3.30)
au; _ 1 . 3? ap
o =, [-— sm(I‘r)aE‘ + cos(I‘r)a& +u,T (4.3.3b)
2wy _ 15
5 PETS {4.3.3¢)
The transformed continuity equation is
o 344 o (0r) = 2% cin(or) 4 2% cofrr) + 2%
3%, cos(I'7) + 3% sin(I'r) 3%, sin{I'r) + %, cos(I'r) + s 0. (4.3.3d)

It is helpful to transform the velocity components to the rotating coordinate system. Denoting these

velocities by v;,
v = uy cos(Pr) — uzsin(l'r)
vg = uyco8('r) + uy sin(Dr)
V3 = Us.

Forming the equations for the new velocities form: the old, one finds

au;_ lap
ar — pd& e
duz _ 13dp
ar pa&+2v11‘
Gus _ 19
ar ~ pdgs
v,
—2 =0
g

The secord terms on the right are of course the Coriolis terms.

(4.3.40)
(4.3.4b)
(4.3.4¢)

(4.3.50)

(4.3.58)
(4.3.5¢)

(4.3.5d)

Now we seek the solution for the evolution of the Fourier modes in the transformed space. Following

the developments of section 3.3, we write

1): = Z 6;(5, t)e-in"t"
=

P'= bl t)eient
&

(4.3.6a)

(4.3.6b)

where g is the wavenumber in the iransformed coordinates. Equating cocfficients of like exponentials,

R .- . PR S
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(4.3.7a)
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2 _ Kz, o
T = £+ 2T'%, (4.3.70)
Ay ik,
i P (4.3.7¢)
x;0, =0. (4.3.7d)

Applying the continuity equation (4.3.7d) to (4.3.Ta-c),
20(0251 — 91%2)

ix2

1
“p= 4.3.8
pP ( )

where x? = x? + x5 + «3. Substituting (4.3.8) in (4.3.7a-c), and seeking solutions of the form (s, 1) =
a; exp(ifr), one obtains

ifa; ~ 21‘%(:1351 —a1K3) +2Fa; =0 (4.3.9a)
$fag — zri—g(am - a1K3) - 2Ta; =0 (4.3.85)
iﬂa;; - 21":—;'(0251 - aucg) =0. (4.3.96)

This linear equation system has non-trivial solutions only if the determinant of the coefficient matrix vanishes.
This condition gives

K3+ Icg 2 K3
B2 =412 (1 - —‘—Kz—) = 41'~—§ >0. (4.3.10)
Hence, except for modes with x3 = 0, the solutions are undamped oscillations in time at frequency f(x).

The x3 = 0 modes require special attention. They correspond to two-dimensional modes with their
vorticity aligned with the rotation axis. The solution for these modes is

01(m 1) = 41(x, 0) - C(x)rer (4.3.11a)
02(k,7) = D2(85,0) + Clg)mr 1 (4.3.11b)
b3 (x, 1) = 93(x, 0) (4.3.11¢)
where 6,(£,0] + 295 (s, 0)
c= 2r('°‘"‘ - ’n‘z'c’"’ £ ) (4.3.11d)

But for x3 = 0 the numerator of C is zero by continuity, and hence the Fourier coefficients of these modes
do not change under rapid rotation. Thus, these coefficients can also be regarded as undamped oscillations
at frequency f(x).

The solution for the Fourier coefficients is therefore

;= agePT +a_emPT, (4.3.12)
@11 and agy are related by (4.3.9a) or (4.3.9b),

Kik2
x3

2
K3 31
——— o= [ —— -~ . 4. _13
(:b - + )al:!: (K‘2 l)azi ( 3.13)
The coefficients a;4 are set by the initial values of the Fomier amplitudes,
tio = a;4+ + ai- (4.3.14)

where 9,0 is the initial value of 9;(x). Using (4.3.13} and (4.3.14), one finds

. K Ky . KKz, AW
a1+ = :!:tim—3 [(:Ft'f' + :‘:2)010 + (1 - ;%) vzo] (4.3.15)
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Following section 3.4, the spectrum tensor Ej; (in the rotating coordinate system) is

3
Ei(x,7) = (EI-;;) < 9(x, 1)} (8 7) > . (4.3.16)

Using the solution and a bit of algebra, one finds

2 2 2,2 2\ 2 K «2
Eulsr) = x{2(3+52) B0 +2(1- ) Bt 0+ 22 (1- B) (Bunte 0+ B0
3

k2 Tkt 2

+2 [ (ﬁi - n’;‘x%) Ey(x,0) - (1 - -:—z-)zEzz(g. 0) - 2232 (1 - :—z) (Era(k,0) + En(x, 0))] cos(24r)

-2 ["‘—::"—’En(g, 0)+ % (1 - :—z) (Era(x,0) + En (&, o))] sin(24r) } (4.3.17)

If the initial turbulence is isotropic, the initial spectrum is given by {3.7.14), and one finds that the
coefficients of the sin aud cos terms vanish; hence there is no change in the spectrum as viewed by an obsever
in the rotating coordinate system. Since the spectrum is isotropic, the spectrum seen by a stationary observer
is also unchanged. Thus, rotation of itself will not distort the spectrum of isotropic turbulence.

If the initial spectrum is anisotropic, as for example produced by prior strain and associated rotation,
the residual rotation will simply cause the spectrum to oscillate at a frequency w = 28(x). The associated
Reynolds stress (in the rotating frame), determined by integrating Ey; over all x, will oscillate in a compli-
cated manner that depends on the initial spectrum. However, using the symmetry property of the spectrum
(8.4.13), the contribution of the sin{2B7) term to the integral is seen to vanish. Hence, relative to a rotating
observer, the Reynolds stress oscillations can be expressed 2s an even power series in r arising from the
cos(287) term. Hence, the Reynolds stresses seen by a stationary observer would, to O(t), appear to rctate
in the manner described by the kinematic rotation terms, with deviations from this behavior being described
by an even power series in time.

These are important results for turbulence modeling. Turbulence models, when reduced to the same
rapid distortion approximations, should not show any effect of pure rotation (rotation without straining)
on isotropic turbulence. Morever, when applied to the pure rotation of anisotropic turbulence, the models
should shown the kinematic rotation of the Reynolds stress described by (2.7.4), plus modifications by an
even power series in time. This condition is very useful in setting coefficients in turbulence models, and we
shall use it in Chapter 6.

4.4 Rapid isotropic compression or expansion
Consider next isotropic expansion (or compression) with

U; =Tz, (4.4.1)
The RDT momentum equations are
o 1
4 + Pzul,;= —Tuf - mp',.-. (4.4.2)
The deasity is given by the continuity equation,
p=—3pI. (4.4.3)
The RDT transformation is
&=z Tt =t (4.44)
and the transformed equations are
dul 1 8p
St = ~Puf =~ o™ 446
ar T aE” (445)
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—L.~Tt -, 4.
8618 (4.4.7)

Multiplying (4.4.6) by uf, the pressure term drops out by continuity {4.4.7). Averaging, we obtain the
RDT approximation for the kinetic energy,

1dg? 2

53 =T (4.4.8)
The solution is N

g% = gde~ 7"t (44.9)

where g3 is the initial kinetic energy. Thus, the turbulence kinetic energy will decrease with expansion
(T > 0) and increas2 with compression.

The evolution of the spectrum is obtained by solving the individual component equations. Fourier
expansions are used as above. The pressure fluctuations (i.e. the rapid part) are zero by continuity, and all
Fourier modes of the velocity vary as ezp(—T't). Thus, the spectrum retains its inital shape in the stretched

coordinate system, and simply scales in magnitude with ¢g°>. As a consequence the integral scale (3.4.15)
varies in proportion to the strain,

Ag(t) = Ag(0)e™. (4.4.10)

These results are useful in constructing turbulence models for compressible turbulence. Some of the
turbulence models currently in use do not predict the proper behavior with compression, some even predicting
an sncrease in length scale as turbulence is compressed!

4.5 Response of turbulence to rapid irrotational strain

RDT analysis for irrotational mean strain is neatly handled using the vorticity equation. Under the
RDT approximations, with no mean rotation, (2.5.2) reduces to

Duw} = w}Sij — wiSkx. (4.5.1)
We work in principal coordinates of S;; and take
U, = Laft)za. (4.5.2)
Recall that Greek indices are not summed. The RDT coordinate transformation is

§a =Zafta T=t (4.5.3a.b)

where .
¢a = €xp (/(; o (t')dt') (4.5.3¢)

is the total strain in the a direction. The transformed vorticity equation is

! -
%w;"- =Tawh (4.5.4a)
where B
f,=T,-To (4.5.50)
Fo=T1+T2+T%s. (4.5.5b)
The solution of (4.5.4) is
wh(x,7) = wlhix,0)éq (4.5.6)

where

fa = exp ( /o " (t’)d:') (4.5.7)
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is a modified total strain in the « direction. This result clearly showvs the essence of RDT; it computes
the change in the turbulent state by considering Jhe rapid vortez streching iimvosed Ly the mean field. The
velocity field can be deduced from the vorticity field. In the transformed coordinates, the Poisson equation
(1.9.5) for the velocity gives

= dw} dwi 1
Vo0 = =2 — - 2 4.5.8a
e afs e ez ( )
where the transformed Laplace operator is
- 102 19% 1 8°
Vet 5=+ 5. 4.5.8b
Fog t 358 T ag (a5.88)

The equatiors for w} and wj can be obtained by permuting the indices. The solution is obtained using
Fourier expansions,

Wix, 1) =Y dilk, r)erenen (4.5.9a)

y(x, 7} = Z (%, T)c_m'c" (4.5.98)

The solution for 4 is

4 = z(szz/es - mw:s/ c2) (4.5.10)

?+%+%

The other components can be found by permutation of the indices.
The velocity sp~ctrum function E;; is related to the vorticity spectrum function H,; by

(%)2H22(5,0) + (%)21133(5, 0) - 2(52)(%£2) Hazs(x, 0)
2

Euls 1) = (4.5.11)
£11\2 2 2
[ERERE
From the solution for tke vorticity evolution (4.6,6),
Hop(5,7) = Hap(x,0)E0é5. (4.5.12)

If we assume that the initial turbulence is isotropic, the initial vorticity spectrum is given by (3.7.23),
with k replaced by x. Using this spectrum and (4.5.12) in (4.5.11),

E(x) (8)*R3(x* - o) + (%%)’n%(n’ ~ k3) +2(8282) 3n3

Enlg, ) = yewe P 5 (4.5.13)
( (¢2 + € )
The spectra ot . and E33 can be found by permuting the indices.
The Rey stresses can now be calculated by integrating E;, over all wavenumbers (see 3.4.6). The

integrations :.re inost easily carried out using spherical coordinates, and can be evaluated in closed form for
a few very simple cases, such as isotropic compression. However, the general case of irrotational strain can
be handled by power series expansion in the total strains. In {4.5.3c) we expand

)
s =expla)=1+a, + -z-a‘z, - (4.5.14)

The integrals are then expressed as power series in the g, and evalvated in spherical coordinates, wl.ere the
angular integrations can be carried out analytically. The x integraticn produces 93/3, the initial isotropic
valu~ of Ry;. Using this approach, the Reynolas stress R;;, dissipation tensor D;y, and vorticity Vi; = wiw}
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were evaluated by the author and Moon Lee (Reyuolds 1983) to O(c?). Snubsequently Piomelli used the
symbolic maripulation program MACSYMA to extenl the Reynoids stress (the most important quantity
for turbulence modeling} to O{v®) (Lee, Piomelli, and Reynoids 1986). The results are :s foliows (the other
components cax be found by permuting the indices):

N 1
Ry = ¢} [-5 - -115-(2ao + 4a;) + m(mao + 1202 - 32a2a5) + 31—-(—1203 + 48apaza3 ~ 8a% + 48ayaza)

by 65 —— (3%} + 32a30; - 48a3a? ~ 128a3az0, — 320acajazas + 364} — 32alaja + 16a2c?)

T 5( 244a] — 1440a82, + 33C0adu? — 432002, — 248845 + 1200a3e205 + 760022010205 + 4320agat

~3440agalaz0; - 880apalal + 5200a]aza; + 560aya3a3) + O(a“)} {4 5.15)
1 2 1

= === - O(a? 5.
D“ 260[3 1531+ 1500")‘ (a )] (45]6)
w? 2 .
Vi = '3— 1420, —ao+0(a ) (4.5.17)

1 2
s=¢g|l- 300 + O(a*) (4.5.18)
4 . o oy, 124 o2 o s
by = 15 -5 (a, +2a3a3) + 1575( — ajaja3) + 3765 {a3? 4 4a}%a5cs - 2a3%a57)

8 0,82 o2 ‘.) - ¢ =G -

+ 53628 615(196819«:, +25189aj43 a3 ® — 4794530} aZa3) + Ofa*") (4.5.19}

where the Reyaovids stress anisotropy tensor is

R; - 92‘711 /3

b, = 7 (4.5.20)
q
and the aniratropic strain components are
. 1
8% = q = 30a. (4.5.21)

Note that the anisotropy tensor b,; is dep.ends only on the total anisctropic strain, and 1s independent of the
strain-rate history. These results are useful in turbulence modeling where one seeks to develop models that
will be consistent with RDT when the RDT approximations are applied tc the model.

4.6 Combinations of strain and rotation

The general RDT problem for homogeneous turbulence involves combinations of strain and rotation, for
which a general solution can be developed in symbolic form (Cambon 1981). Usirg the Fourier expansions
(4.5.9) and a similar one for the pressure, (4.2.5¢c} is first solved to express the Fourier coefficients of the
pressure in terms of those of the velocity,

2ixx Bri Ay .

1
-p=- 4.6.1
o7 " Rarm BBy (4.6)
Then, the Fourier expansion of (4.2.52) gives
3u. 2I€kBk.'ICqB,,,,
~Ajjliy + ———————= A ik = Hiy G5, 4.6.2
af iy J n’cmBm.Bna 12 At (At} ( )
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Following Cambon, tle solution can be expressed using Green’s functions,
#(5,7) = Gir(x, 7)ix(x,0) (4.6.3)
where the Green’s fun.tions are given by the solution of

aG.';(r&y 7) = .k(&y T)Gk, (5, 7) Gij(&: 0) = 5i;- (4.6.4)

This allows the spectrum “ensor E;; to be expressed in terms of the initial spectrum,
E,;(£,7) = Gip(x, 7) Gy {5 7) Epq(, 0). (4.6.5)

The Reynolds stresses are then simply integrals of the spectrum function over all .

This method of solution is instructive for looking at the siructure of the <olution, but the calculations for
the Reynolds stresses require approximate evaluation of the integrals, for example by power series expansions.
Moreover, when the principal axes of the strain rate vary with time the Green’s functions are not easily
obtained, except perhaps as power series in time. If one is going to resort to series solution, a direct solution.
by power series in time is simpler. We will develop this here for future reference.

A superscript summation convention aids the analysis. We dencte a series by

o0
A=) Al = Alndgn, (4.6.5)
n=0

Any repeated superscript or power is summed over all possible values. The delimiters on the superscripts
establish the range, with { ) establishing a lowest value of 0 and [ | establishing a lowest value of unity.
Mulipticaticn of two series and sorting out of powers of ¢ is then very easily accomplished. For example,
simply replacing n by r — m in the product below collects the coefficient of ¢",

AB = AtMgnplm)gm = glr-m) glm)yr, (4.6.7)

Here the delimiters correctly establish that the m summation in the coefficient of t* is from 0 to r. The
Jeading coefficients can also be extracted,

Alr—m) plm) — 4(r) p(0) . 4(0) (=) 4 glr—m] glm] (4.6.8)
where the m sum at the end now ranges from 1 to r — 1.

We treat a general case of arbitrary strain and initial rotation as apphed to initially isotropic turbulence,
and express the velocity gradient tensor A, (see 4.2.1) as

A(t) = Sit) + %ek..,ﬂ,,(t). (4.69)

The strain-rate history described by S, (¢) and the initial rotation described by 2,(0) will be arbitrary, and
the rotation history is governed by (3.1.1).

Expanding,
S = SiPen a, =l
Ay = A By = B
= oM p=pMen, (4.6.10)

The coefficients then are generated recursively. From (3.1.1)

(r+ )0l = qlgl=a _ () glr=a) (4.6.11)
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From (4.6.11)

g1
AR =55+ Efk.‘qﬂs')- (4.6.12)
From (4.2.4)
(r= 1) B = — 4lz-9 g BY =4,,. (4.6.13a,b)

The Fourier representation (in stretched space) of (4.2.5a) gives
- 1. -2} ol
(r+ 1jal*) = —alr9 40 4 ;mkﬁ" 1 (4.6.14)

The continuity ~ondition (4.2.5b) gives
05 = 0. {4.6.15)

The Fourier representation of the Poisson equation (4.2.5¢) gives
1 - . - r—- ~l®
—-;fck:c,.ﬁ("')B,(‘: 9B\ = 2ix, B )Afj ')ug ). (4.6.16)
Extracting the leading pressure term given by r = O,using (4.6.15b),

—;ﬂﬁ(q) = %nkxmﬁ("q)ll'la,ig”’Bf,j} + 2ime B A5 (4.5.17)

where the notation 1!} forces r > 0 in the sum.

The procedure is now very simple. At each order r, one finds the rotation term from from (4.6.11}, the
velocity gradient term from (4.6.12), the transformation term from (4.6.13), the pressure term from (4.6.17),
and the velocity terras fiom (4.6.14). The svecirum censor is expressed as a similar series expansion, and its
terms are generated and integrated in spherical coordinates to calculate the Reynolds stresses, much as in
the previous section. This is a natural task fer a symbolic manipulator like MACSYMA. The result would
enable the determination of all unknown coefficients in the model for the rapid yressure strain term (see
Chapter 6); we are attempting te carry out this evaluation.

4.7 Two-dimensional turbulence

RDT of two-dimensional turbulence is useful for testing the range of performance of turbulence mod-
els. Stanford student Laura Pauley carried ont an RDT analysis of initially axisymmetric two-dimensional
turbulerce for three-dimensional irrotational strain aiong the principal axes of b,;, with by; = ~1/3. Her
resylts are

T

2
- 1 .. .
Ry = q?o{l + [a; +2ag + a3] + [z(af + 03) + ajaz + 2Gz{ay + a; +a3)J

11 5 11 101 - 2.
+|~==a} - =aZas ~ —a;03 = ——a} + d3(u? + of + 2a;25) + 233 (a1 +Zd2+a3 )| +0(=%); (47.1)
24173 8 24 13

1 45 9
S13 = é- [1 + -s-(ai’ - ag) + 'g(afa:; - a;a?,) + O(a‘)] (4.7.2)
where the total strain in the i direction is ¢; = exp{a;), 2 = az~co and z¢ = a; +42 +a3. Note that strain
aligned with the vorticity dues not affect the anisotropy, and that changes in anisotropy do not cccur until
third ordr % would be instructive and usefu! to extsnd this analysis to more general 2-D cases including
rotation . - ,rain not aligned with the principal axes of &;.
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5. MODELING SCALE EVOLUTION IN HOMOGENEOUS TURBULENCE

5.1 Introduction

This chapter and the next are devoted to one-point raodels of homogeneous turbulence. Here we deal
with modeling the evolution of the length and time scalss, assuming that whatever must be known about
the tensor character of the turbulence can be generated by an anisotropy model. Anisotropy modeling is
addressed in the subsequent chapter.

The turbulent kinetic energy equation provides the equation for the turbulence velocity scale 2. For
homogeneous turbulence (2.6.2) becomes .

(¢2) =2(P —¢). (5.1.1)

If the other model scale variable is ¢, this equation is closed. Alternatively, if one choses to use a time scale
variable r instead, a model relating € to 7 is required. There are many clues that the use of a time scale
as the sccond scale parameter would offer advantages in modeling move general flows. Where it becomes
desirable to think along these lines we will use the lar, :-eddy time scale identified in Chzpter 3,

2
L=
=L (5.1.2))

Following the most popular current trend, we shall start by using a model equation for € as our second
equation. In homogeneous turbulence (see 3.6.4) € = vw?, and so the 1,2 equation (2.8.12) yields the ¢ (care
must be taken to account for the density change when introducing v). For homogeneous turbulence with
p = p(t) and s = constant the result is

. —, 1
€= 2wl Sy - -:;-eSkk +20, 8w + wlwist - 2%, W, (5.1.3)

where 1
S5 = Sij = -55,‘,‘5,-,- {5.1.4}

is the anisotropic strain rate. The last two terms provide the means by which ¢ changes in isotropic turbu-
lence. In addition, we see that incompressible strain, isotropic volume change, and rotation will also modify
the evolution of . We shall address these issues separately.

5.2 Decay of isotropic turbulence
With no production the energy equation gives

g2 = -2 (5.2.1)

Assuming that one can make a model using only ¢2 and ¢ as variables, the form of the ¢ equation for isotropic
turbulence can be deduced by dimensional analysis,

2
é= -0.0:—2 (5.2.2)

where the coefficient Cyp can depend on the turbulence Reynolds number (see 3.2.2) Ry = ¢*/(ve). This is
the form used by all models of this type.

Insight is obtained by recognizing that the right hand side of (5.2.1) comes from the difference of the
last two terms in (5.1.3). The first of these is the turbulent vortex stretching term, which is related to the
derivative skewness by (3.10.9). The last term can be written as

—— 00
200l wl; = 2u2/ K E(k)dk (5.2.3)
°

which shows that it is dominated by the sniallest scales of mction and bence should scale on the Kolmogorov
variables. It can be estimaved using the model spectrum of Fig 3.9.4. Using the e two estimatex for isotropic

e v n mn . R

Py




B T e Ll

v e

-

P

1-40

turbulence, put in terms that resemble the model equation (5.2.1), one finds that both terms scale as /Ry,

and 3/2 §/2
. /1 3af 4 e?
é= RT[‘v?(rs) ‘E(%) ]q—z- (5:2.4)

Experiments clearly indicate that a constant coefficient Cyo does a very adequate job at high Reyno'2.
numbers, which means that the difference in the two terms within the brackets in (5.2.4) must decreas: as
1/y/Rz. Both terms are very large and they are nearly in balance (an estimate of the skewness can be m.le
from this balance). It would be unwise to model these two large terms separately when we only need their
difference, and for this reason the two are lumped together in (5.2.2).

The value of Cyp can be determined by fitting the energy decay rate for isotropic turbulence to that
measured experimentaily, and this is what most modelers have done. The exact solution of the ¢% and ¢
model equations is

¢® = (1 +tfa)™" €= eo(1+t/a){n*D) (5.2.5a,b)
2
= S0 =2
a= 260 n (C;o - (5.2.5:, d)

The subscripts 0 derote initial values. The best experimsnts suggest n should be in the range 1.1-1.3. At low
Reynolds numbers, where the turbulence is in its final period, n = 5/2 is found theoretically and confirmed
experimentally.

The model spectrum (3.9.4) can be used to find n {(Reynolds 1976) by assuming that the spectrum is
permanent below kz, i.e. that the low wavenumber spectrum parameter A is constant. Expressing € in
terms of ¢* and A using (3.9.5) and (3.9.6), then using this in (5.2.1) to find the ¢2 history, one obtains
(5.2.4a) with n = (2m + 2)/(m + 3). This clearly supportes the idea that the low wavenumber part of the
spectrum affects the energy decay rate. The k* spectrum (1n = ) gives n = 10/7, which is really too high
to fit Lhie best experiments very well. However, the k? spectrum, with m = 2, gives n = 6/5, in quite good
agreement with experim 1ts. In a finite-kourier series representation, the assignment of the same energy to
each low wavenumber Fourier mode would make E;, independent of k and hence E(kj vary like &2, and so
k? turbulence can be thought of as being equipartitioned at low wavenumbers.

With n = 6/5 as suggested by both the experiments and the k2 spectrum, C,o = 11/3, and this is the
value that we prefer. It is very close to the value of 3.84 used by many k — € modelers.

5.8 Isotropic compression

For isotropic turbulence, R, = ¢24,;/3. Denoting Skx = 3T (see 4.4.1), and assuming isotropic volume
change with p = p(t), the energy equation (2.6.2) reduces to

g2 = —20¢? - 2¢. (5.3.1)

The £ must be modified to account for the change in volume. The exact € equation (5.1.3) suggests that this

modification might be
2

é= -c,og; ~eT. (5.3.2)
For very large I' the solutione to the above equations are

¢ =gge™?"" (5.3.3a)

e=¢oe Tt (5.3.35)

The energy development matches RDT (4.4.9). If we assume that the integral scale is proportional to ¢%/e,
the large-eddy length scale, then according to (5.3.3) the length scale varies as exp(—2TI't). This says that
expanding the flow volume will reduce the length scale, which should be disturbing to anyone and is not in
agreement with RDT. Nevertheless, this modification of the ¢ equation was used for some time in i.c. engine
modeling before the problem was noted (Reynolds 1980).
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The RDT analysis suggests instead that the e equation for this problem should be
. e 4
&= —C.o;z'- - gtskk (5.3.4)
For rapid volume change this produces
£ =ege™ " (5.3.5)

for which the length scale varies in proportion to the strain, i.e. as exp(Tt).
This exanple points out the pitfalls of using the exact equation for € as the basis for its model equation.
To paraphrase Saffmar, one should model the Physics and not the equations.

5.4 Rotation

Experiments and numerical simulations show that rotation does not appreciably alter the anisotropy of
isotropic turbulence. RDT (section 4.6) showed that rotation does not affect much of the spectrum at all,
but does tend to produce a slow growth in the energy of the two-dimensional component of the t :vbulence
alignad with the axis of rotation. The simulations (Bardina et al 1985) reflect this growth as a charge in
the integral scales, with the scale in the direction of the rotation axis becoming longer than the other two as
time passes. Rotation also reduces the dissipation rate, apparently by inhibiting the energy transfer cascade.

Most turbulence models in use today show no effect of pure rotation on ¢, a weakness that has been
slow to receive correction. Bardina found that his large-eddy simulations and Wiegland and Nagib’s (1978)
experimental data could both be predicted extremely well using a simple modification of the ¢ equation,

2
£= —?-‘3 - C‘QCQ (5.410)

where 1 is the rms rotation rate
Q= /0;Q.;. (5.4.18)

Bardina found that C.q = 0.1:;/'\/5 wethed well, and we adopt this value.

The imposition of a mean strain-rate provides a source of turbulent kinetic energy through the turbulence
production term (2.6.3). We assume that the anisot opy part of the turbulence model will produce Ry,
values given ¢ and ¢, hence P need not be modeled. Thus, no modeling for the g2 equation is required for
homogeneous turbulence.

The associated changes in the dynamics of £ must be incorporated in the ¢ model equation. To date
the most effective means for doing this is to add a term proportional to P,

é= -c'..,:z—2 — CqeQt+ Cop -225 (5.4.1)

An estimate of C,p can be made using the homogeneous shear flow data of Tavoularis and Corrsin (1981).
Homogeneous shear flow apparently reaches an equilibrium structure in which the Reynolds stresses all scale
with the turbulent kinetic energy. The energy and dissipation rate both increase with time in a manner that
keeps the turbulence time scale very nearly constant at a value set by the mean shearing :ate I’ = dU, /dz,.
The equation for r, derived from (5.1.2) using (5.1.1) and (5.4.1), is

= (Cuo = 2) + Cunllr = (Cup ~2) 2 (5.42)

The experiments gave I'g?/e = 12.7, corresponding to Qr = 8.98, and P/e = 1.8, Using Cep = 11/3 and
Cen = ().15/\/5, a constant value of 7 requires C,p = 3.45. This is somewhat higher than the value that
Bardina recommended, which was based on his large eddy simulations of strained flows.

Most k — £ models used today do not include the C,q term. For plane shear flows the rotation term
and the production terms have the same form, and when these terms are into a single term expressed as in
the form of the production term the resulting combined coefficient based on the above coefficients is about
3.0, which is very close to the value of 2.88 used in many k — £ models.
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6.5 Proposal for a simple k — r model

Compared to the € equation (5.4.1), the r equation (5.4.2) is impreszive in its simplicity. When one
examines models for inhomogeneous turbulence, ¢?/e frequently appears, suggesting that the time scale
might be preferable to £ as the second model variable. The choice should be based on the ease with which
the model extends to new situations. The diffusion terms required for inhomogeneous flows are particularly
useful in evaluating various proposals.

For example, consider what happens to the terms in the & equation near a solid boundary. The 2 /¢?
term goes to infinity, but the Pe/g? tezm goes to zero. Consequently, a great deal of effort has been spent
inventing near-wall patches for these terms. One does not excape these simply by changing vaiiables, unless
a slight modification is made. In contrast, Wilcox (1986), who uses a reciprocal time scale in place of e,
achieves reasonabie near-wall solutions, even in the viscous region, with no near-wall modifications of his
model equation.

Two-equation models have been criticized because the length scales are anisotropic in anisotropic tur-
bulence but the model assumes isotropy of length scale. The success that two-equation models enjoy would
seem remarkable in the light of this objection. But suppose it is really time scale information that is carried
by ¢, and that the anisotropy of length scales is reflected by anisotropy of R;;.

Another clue is provided by the case of isotropic volume change, for which the 7 equation is

7=(Ceo—2) - %Shk‘r. (5.5.1)

Note the appearance of the strain rate term.

It is suggested that it might be better to replace the production term in the 7 2quation by a term
proportional to the rms strain rate. Some additional simplicity of form is obtained hy using the kinetic
energy k = ¢%/2 and redefining the time scale and turbulent Reynolds number by

F=kfe Rr = kifv {5.5.2a,5)
The model equation proposed is
2 . - PR
7= C;0 4+ Crfl7 — Cr5:8*F— -:;Skk'r. (5.5.3)
Here S* is the rms anisotropic strain rate
8= \/S":,S; (5.5-4¢)
determined from the anisotropic strain rate tensor
. 1
S5 =58~ §skk5i;- (5.5.4b)

Note that none of thes: terms is ill-behaved at the wall, and so there is hope that the near-wall modifications

can be much simpler. The zonstants for this model, evaluated ir the same manner as those in the € equation,
are

Cio=5/6 Cra = 0.11 Crge = 0.69, (5.5.50,b,c)

Exploration of this idea is encouraged.
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1 6. MODELING ANISOTROPY IN HOMOGENEOUS TURBULENCE

6.1 Description of anisotropy

The scale equations developed in the previous chapter are closed only for isotropic turbulence. In
general, the Reynolds stress tensor must also be determined by the model. The Reynolds stress anisotropy

tensor 3,25
bis = -RL-—%’I—" (6.1.1)
) 9
is a very convenient way to describe the deviations from isotropy. This chapter deals with b,; and its
modeling, which must be done with great care if unrealistic predictions are to be avoided.
% The anisotropy tensor has some important properties that need to be kept firmly in mind. By definition

it is trace free,
by = 0. (6.1.5)

It is often convenient to think of b,, in its principal coordinates, where only diagonal elements are non-zero.
By (6.2.1) the sum of these principal valies is zero, so only two are independent. This nicans that the
anisotropy can be characterized by two independent invariants,

1= ~b,,b, /2 11 = b, b,bs, /3. (6.1 3a,b)

If the turbulence is two-dimensional, meaning that one (principal-axis) velocity component is always
sero, by the definition (recall Greek indices are not summed)

bea = —1/3 if  Raa=0. (6.1.4)

And, if all of the energy becomes concertrated in one component,
baa = 2/3 f  Raa=4¢>% {e.1.5)
This is called one-dimensional turbulence. Note that the one non-zero velocity component could be a funccion
of the other two coordinates, say v} (z, z3, t), so that the flow would resemble a honeycomb of opposing jets.
Thus, the possible values of the two independent principal b,4, say b1; and byz, must lie within the
triangle on Fig 6.1.1. The vertices correspond to the three possible states of one-dimensional turbulence,

and the sides to states of two-dimensional turbulence. The isotropic state is the origin. The diagenal lines,
along which two principal componznts are the same, are states of azisymmetric turbulence.

=1/3,2/3>

-173,-1/3> | 2/3,-1/3>

Figure 6.1.1 Range of possible principal values of the anisotropy tensor
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Note that one can either move along an axisymmetric line away from isotropy to a two-dimensional state
{edge) or to a one-dimensional state (vertex). These limiting cases may seem extreme. However, turbulence
near a wall is two-dimensional (the normal component vanishes), and turbulence in a strongly sheared layer
moves rermarkably far towards one-dimensionality.

In homogeneous turbulence, the move towards a two-dimensional state is made by straining the tur-
bulence in one direction and contracting it equally in the other two. This stretches vortex filaments in the
direction of positive strain, aligning these filaments with the flow and thereby reducing the fluctuations in the
direction of positive strain. This is what happens to turbulence when it is passed through an azisymmetric
contraction. )

The move towards a one-dimensional state is achieved by straining the flow equally in two orthogonal
directions, and contracting it in the third, as one could do in an axisymmetric diffuser (using boundary
layer suction to prevent separation). The vortex cores are stretched out to form sheets (pancakes) and the
limiting one-dimensional case corresponds to a honeycomb of two-dimensional vorticity. We will call this
type of deformation azisymmetric ezpansion.

An equivalent and less specific way to characterize the anicotropy is through the anisotropy invariant map
introduced by Lumley. For axisymmetric turbulence we writ2 the anisotropy tensor in principal coordinates
as

a 0 O
by={0 a 0 |. (6.1.6)
0 0 ~2a
Then
11 == —3a? I = —24°. {6.1.7)
Along lines where a < 0 so that the component along the axis is more energetic than the other two (axisym-
metric expansion),
_Im\3?
NI =+2 (T) (6.1.7a)
while if a > 0 so that the axis component is less energetic (axisymmetric contraction)
_1 32
I = —2(%) ) (6.1.7a,b)

The two-dimensional boundaries can be studied in principal coordinates, writing

- 0o o
byj=| 0 & o {6.1.8)
o & =
Then 2 .
1 a a‘ -1
= 1z (1 + -5-) NI= 08 (6.1.90,8)
80 that it for two-dimensional turbulence
G=g+I+3M=o0. (6.1.10)

Using these results, the range of possible turbulence states is shown in the invariant map of Fig. (5.1.2).
The origin is the isotropic state, the upper boundary is the locus of two-dimensional states, the two sides
are the two types of axisymmetric states, and the upper vertex is the one-dimensional state. The anisotropy
invariant map is a very useful way to characterize the state of turbulence in modeling, simulations, and
experiments.

Two tensors that can be formed from the anisctropy tensor are ‘ts square,

B2, = bubey (6.1.13)
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} and its cabe,

b2 = binbnmbm- (6.1.12)
The Cayley-Hamilton theorem of linear algebra says that a matrix satisfies its own characteristic equation,
which in this instance means that
r b3, + 1b;5 — 1115 = 0 (6.1.13a)
or alternatively

1
b?, = Ebzkb', + %bzk&f' (61.13b)

Hence, b;",-, and all higher powers of the tensor, are linearly dependent on the lower powers and hence do
not contain new tensorial structure beyond that in b?,-, by, and 6,;. As we shall see, this is very important
| in turbulence modeling. Readers not familiar with this important theorem may find it instructive to verify
(6.3.13b) by writing &; in its principal ccordinates, carrying out the products using the trace-free condition
to express nne of the principal values in terms of the other two.

t (2/27,1/3)
-«
1 one-dimensional turbulence
Weam
-I oty

— axisymmetric expansion

»ﬂ

| o m

,*> (-1/108,1/12)

! axisymmetric contraction

Figure 6.1.2 Anisotropy invariant map

6.2 Evolution equation for the anisotropy tensor
Using the evolution equation ior R,, (2.7.1) and the definition of b,,, the equation for evolution of h,,
in homogeneous turbulence wit. p = p(¢) can be written as

3 2 - L] . 2 “id L
by=— 55.', - (b.ksgj +b;x8x, — sbﬂmbnm&)) + 2bnm Spm biy

1 1 €
+ bk Oy + bjxl,) + ;;{T,, - (Dy; - ngkS.',')] + 2-‘;2—6.5 (6.2.1)
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Here S, is the anisotropic sirain ra’e tensor defined by (5.5.4). Note that only anisotropic strain produces
Reynolés stress anisctropy, and that the right hand side is properly trace-free. The terms containing the
mean rotation tensor {),; represent a kinematic rotation of the anisotropy tensor. When used in conjunction
with ¢2 and £ equalions, models for the pressure-strain term T;; and the anisotropy of the dissipation tensor
D;, must be provided.

There is a class of turbulence models called algebraic two-equation models in which it is assumed that
the turbulence structure has reached an equilibrium stat-. determined by a balance of the terms on the right
haad side of (6.2.1). For example, the standard k — £ model uces an algebraic equation equivalent to

C 2
bij = _T“q?s,-,- (6.2.2)

with Cy = 0.09. A problem should be immediately apparent. The sudden imposition of a strong strain
could easily produce b;; states lying outside of the anisotropy invariant map. This is a very serious potential
problem when such models are applied in new flows.

Another weakenss of this model is that it assumes that the principal axes of stress and strain-rate are
aligned. This is not true in the most important engineering flow, namely shear flow. However, the constant
C, has been set to give the right anisotropy of the shearing stress. For example, in the homogeneous shear
flow experiment of Tavoularis and Corisin discussed in section (5.4}, b12 = —0.149 is predicted by (6.2.2), in
excellent agreement with the measurements. However, the model predicts 5;; = 0, whereas the experiments
show b;; = 0.196, so the normal stresses are badly in error. However, they do not play a significant role in
determining the mean velocity field, and so ‘his error usually of little consequence.

Algebraic models assume that the turbulence structure responds instantly to changes in the imposed
mean strain. This is reasonable for computing the slow evolution of mean fields, but not satisfactory if the
strain rates are large, i 2. if §°¢%/« 3 0, where 5* is the rms anisotropic strain rate. And algebraic models
predict instant restoration of isotropy after the removal of an applieZ mean strain-rate. Hence, if one wants
to have realistic predictions of the Reynolds stresses in these cases, a model of the b,, evolution equation be
solved in parallel with the ¢* and ¢ equatiors.

In the balance of this chapter we review the formal methods that have been applied in attempts to
develop rational models to close the b;; evolution equation. Then, at the end we will present a much simpler
mode! that achieves some of the objectives of the more complicated models at much less exnense. This new
model might be useful for engineering analysis.

6.3 Decomposition of the pressure-strain term

The Poisson equation for the fluctuation pressure (2.6.1) has two terms on the right that act as sources
for pressure fluctuations. The source involving the mean veiocity gradients will change instantly when the
gradients change, resulting in an instant change in the fluctuating pressure field and hence an instant change
in the pressure-strain term T;;. The source involving only the turbuience will change only as the turbulence
adjustes to its new cc nsitions. This suggests that the pressure fluctuations be split into rapsid and slow parts,

p' = p() 4 p2) (6.3.1a)
where the rapid term is the solution of
i?“’,u = -2}, Uiy, (6.3.18)
and the slow terin is the solution of
i—pm e = =2 Uy +2m. (6.3.1¢)

The resulting contributions to the pressure-strain term (2.7.5) will be denoted by T‘(,l) and T,-g?), respectively.
Eqn. (3.6.1b) is linear and has constant coefficients in homogeneous *vrbulence, and so can be solved
by Fourier methods. We follow the approach of Chapter 3, ard write
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p(l) = Zﬁ(k)e..iklx u:. = E ﬁi(k)e-‘k x' (6320,())
k k

The time-dependence of the coefficients is not explicitly expressed because we are solving the Poisson equation
at one instant of time. The solution of (6.3.1b} is then

1, ikp ..
~p(k) = —2U,,,, 724, (k). (6.3.3)
P k

Multiplying the pressure fluctuation series oy the the velocity gradient series, using the conjugate
symmetry properties of the Fourier modes, averaging over the box of Fig. 3.3.1, then taking the limit
as dore in section 3.3, one finds

;l"P(l)“:'xc = Wpyy Mijpg (6.3.4)
where
kokq o, .
Miypg = f Zg"l‘«:(k)ds (6.3.5)

The rapid pressure-strain term is the sum of two such terms,

TS" = 2Up,; (Mijpg + Majp)- (6.3.6)

Modeling of the rapid pressure strain term therefore becomes a tack of modeling M, ;,q, which we address
in the next section.

8.4 Modeling the M, ,, tensor

The M;j,q tensor has been modeled in various ways, all relatively simple, usually with one constant
being adjusted to fit data for the predictions of a selection of flows. Here we introduce a very different
approach; we arge that the anisotropy model, when applied in circumstances for which rapid distortion
theory would apply, should give results consistent with RDT. The RDT form of the model equation includes
only the rapid pressure strain term, the p:oduction term, and the mean rotation term in (6.2.1), ~xactly
the same terms used in RDT theory. The solution above for the rapid pressure field is exactly the same as
used in RDT. Therefore, in principle it should be possible to deterinine all of the coefficients in the rapid
pressure strain model (i.e. in M;;,,) s0 as to make the anisotropy predicted by the model equation under
RDT approximations ezactly the same as that predicted by RDT theory, for an arbstrary rapid deformation.

Following Shih and Lumley (1985), we begin by writing the general expression for a tensor M;,p, =

M;jp,/q® that is assumed to be a function of the tensor b;,, with the syrsmetries in indices required by the
definition. This is

Mi}pq =0 6-1'51"1 + 02(5ip61'1 + 6-~l5J'P) + Csﬁta‘bpq + C45mb-'1 + 05(6lpbn + 6"11’::1 + 6prw + 51!11’-9)
+Co6ib2, + Crbpgb?, + Ca(Siph%, + 8igb2, + 6;pb% + 670b2,) + Cobiybpg + Cro(bipbyq + bigh,p)
+C11bijb2, + Crabpgb?; + Cra(biph?, + bigb?, + bjpb?, + bjgbZ) + C1ab? b2, + Cis (b2 52, + b2,b2 ). (6.4.1)

137pq 6250 T Yig%p
Because of the Cayley-Hamilton theorem, higher powers of b,, are not required. The coefficients C; — Cy5
11ay be function of the invariants II and III, and of other scalars, such as Rr.

The continuity (2.3.4) equanon requires M,,i; = 0. When this condition is applied to (6.4. 1) afl

equation containing &4, bj,, and b 7o 18 obtained. Since these are independent tensors, the coefticient of each
must vanish, This produces three equations,

1
C; +4C., + bsza + gbik(cu + Ci2 + 2013) =0 (6 4.20.)

1 1
C3+Cy +5Cs + Eb,f,,(cn +C13 +4C13) + -3-1;:,‘(01. +Cis} =0 (6.4.28)

- N PR

[QTvoRaa

Paowked Cvarae




o sy PRI T ",W\*&‘{"{‘?’,‘f}'ﬂ{if‘t ?

o e IRATA PWSTAPRRPL Y Y S TN ST

Ce+Cr+5Cs+Co+ Cro+ = b 2 (Cre +3C5) = (8.4.2¢)

From its definition, M, = R,;, 80 M.,,., = bi; + 6;;/3. In the same way, this condition gives three
additional constraints,

3, + 2C; + 2,05 + -bz,‘.cls = % (6.4.30)
3C, + 4C5 + b3, (C1y + 2C13) + —bkkuls =1 (6.4.3b)
3C74+4Cs +2C10+b k(Cu +Cy5) = (6.4.3c)

These six conditions reduce the number of undetermined coefficients to nine, and ;ive

2

5 2 2 3 1 1 2
01—1—5-+b (3CQ+ECQ+'1—SC]0) +bkk(150u+ 1501: 50’1'.)

A 7
+{%.)* (1—5-014 + '5'015) (6.4.4a)
.1 2 1 1 1 1 1
Cr=-g+ b2, (—508 T 3—0'010) + b (-'{5('31 BT ‘1‘3013)
2y2f 1 7
+(bkk) "“‘014 e —Czs (6‘4'4b)
1 11 1
Cy=-3- -5-05 +b% (-——Cu - -st\ + b (——Cu - —015) (6.4.4¢)
1
Ci==- -Cs + bk (—'3-6'11 - -Cm) + bR \"‘CIS) (6.4.4d)
1
Ces = —?Cs -Cy - ;C'o -+ b:k (—gcu - ECIS) (6'4'46)
4 2 1 1
Cr=-3Cs-3C0+ b (-gcu - §C15>. (6.4.4f}

Once the coefficients are evaluated, T‘(j’) can be determined. The rebult, written in terms of the
anisotropic strain rate tensor (5.5.4) and the rotation tensor, is

(1)
2 2 =2(C; + Cg) +(C3+Cy + 205)( kbks + S;kbk.' Sm,,bmnb'.j)

+(Co+Cr + 208)( L+ SibE, ~ 33;,,,1;3,", .,) +2(Co + C1o) S, (b,.,,b,.,, s ) + 201085, bapbis

g Pt
2 - -
+{Cin+Cia+ ZCxa)Sp‘q (b;qb:j + b,'qb:‘- - éb:',""&") + 2013.9”5:‘ bi; + 20135”6.,, (b2 nn6'1)

+2(C14 + C15)S, (b,’pb?q bﬁ,bﬁ,&.j) +2C15855,83, (6% - 3 L 65)

+(Cs ~ Co}(Driby + Qybis) + (Ce - C1)(ﬂk.'b + Qk,b ;) +(Cu - Cu)ﬂm(bwb:] + bygb2. ). (6.4.5)

7 Opi
Realizability has been of much concern in modeling the pressure-strain term and other terms in the
b;; equation. The principal values b, can not be less than ~1/3, and any model that would cairy a
principal value below this amount (i.e. outside the bounds of the invariant map) then produces unrealizable
turbulence (nonsense). Truncated approximations to the series above have this danger, although the model

ot denn i =

it s e o e s e = A

B A



' ’ just dexcribed, with the infinite set of coefficients, would be realizable because RDT solutions are realizable.
[ In order to guarantee realizabilty one can enforce certain conditions. There are various ways to develop

thess conditions. Shih and Lumley {1985) get them by requiring that the Taa terms must not drive boq out
of bounde. This requires

Upy Maspa =0 when bgq = —1/3 (6.4.6)
| which produces three additional constraints,
; 1 N \
! CxTCg—-‘((/a +C+2Cs)+ 2 {CG+C1+2CR+00+CM\—-—fC.. (g 20 \4..8_1 T a1l =8 {0.4.70) F
1 1 -
% Cs ~ gcxu + 5013 =0 (6.4.78) 7
4
Cg - ‘1-013 + }'C]; =0. (6.4.76)
3 9 b
b We believe it is preferable to intpose the realizability conditions directly on the modeled tensor 2,,,,. When
the velocity component ul, is everywhere zero then 4, = 0 and consequently My,p, = 0. In the principal b
coordinates of b,, this requircs
M:111 =0 Mji22 - Myps3 =0 Miz212 =0 when b, =—l/3 (6.4.8a,b,c)
Using the fact that 53, = ~1/9 + b3, /2 on the two-dimensional line, (6.4.8a-c) give [
b

CI+ZC - '(03+C4+4r'r)+ (Cb FC7 T4Cg'r09+2c‘o)'— -"(Cn +012+4013)+_(CM +2015) =

\049&1)

t 1 )/ ! 1 {e 4 O\
§C3+§(Cc—' 9)—-':,:_;(C|| —ng)-i—gi' =0 16.4.5¢
1 1 1 N

GCS + 8 —{Cs ~ Cio) + —-C’xs =0 (6.4.5¢)

1 1 "1 1 1
Cz = =Co+ (18 +3 bkk) Cy ~ Cxo + (;7 ~ g”k::)Cm + ( et ‘l'gbzk) Cis=0. (6-4.9d)

When equations (6.4.4) are used to express the lower coefficients, (6.4.9d) 15 —1/2 (6.1.9a), and so only three
independent conditions are obtained,

1,1 1,1 1 1 1
T30 (—5 + ;bik) Cs + gb,%kco + ( 15b"") Cro+ ( =t mb,f;‘)(c,, +Cra)
N \

¢
4
’f‘( 45 + bkk) C13 + (bkk) Cl( + (Sl bkk + 'o(bkk)2) 015 - (6.4.100)
1 11 11 2,, 1 1 1 g
37 % s~§793—§ \2.. "u)Cu-*' (E""bkk)‘/n

2 .

_—bkk Cis + (81 27bkk) Cu + (243 Eb:‘;) ClS =0 (6.4-1017)
1

Cs + -—(Ca Cm) + mcxa =0 (6.4.10(:)

When these are zatisfied, the Shih-Lumley conditions will also bz satisfied. It is important (o realize that
these realizability constrainis apply only when the turbulence is two-dimensional, i.e. only on the line G =9
that forms the top boundary of the invariant map.

The equations above suggest that the coefficients will depend on the invariants and not simply be
constants. We might expand each coefficient as a power series in the invariasats,

Co = CO + 82, C:D 4 85, C13) + (53,)°CY + 82,53.C89) + (83,)%CH® + ... (6.4.11) {
M
1
i 1
i
5:
L
o . e e e e e
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We see that the first approximatione to the isotropic coeffici~ its 7] and C; are already known, and the firs
approximations to the linear coefficients C5-Cy zre determined by the first approximation to Cs.

Most turbulence models presently in use include only the terms in Mjjp, through Cy (the linear terms),
employing constant values for the coefficients. But with C5-C)s = 0 no single value of Cs can satisfy all
three realizability conditions (6.4.10), su these linea models do not satisfy realizability

The simplest set of coefficients satisfying realisability is obtained by truncating M,jpe to O(b?) and
assuming all coeflicients are constants., The truncatiois gives

Cn = Clg = Clg = Cx,‘ = st =0. (6.-2.12(1)

From (6.4.4a,b), the coeflicients C; and C; will be coustants only if Cg = 0 and Cjo = ~3C,. Then, the
realizability conditions give

Cr=2/15 Cy = -1/3C Cy=1/30 Co=1/15
Cs = —1/10 Cy; =2/10 Co =1/10 Cio = --3/10 (6.4.120)

These are the coefficients determined in a slightly different manner by Shih and Lumley (1986). Under the
rapid distortion approximations, the time-series solution of the model equations resulting from (6.4.12) match
RDT of isotropic turbulence only to O(1). The model also predicts that anisotropic turbulence subjected to
pare rotation would undergo anisotropy changes, in excess of those caused by the kinematic retation terms,
of Ofz), whereas RDT indicates that this excess change must be an cven power series in t {see section 4.3)
and hence should noc appear until O(t?). It would seem desirable to obtain a better match to RDT.

Under rapid pure rotation of anisotropic turbulence, (6.4 5) will produce an O{t) change in b;; in excess
of that produced by the kinematic rotation terms unless (C’;o) - C}o)) = 0. This condition gives

=21 ) =c =5 (6.4.13)

With these values, the RDT-equivalent model predicitions also agrees with RDT to O(t) for all srrotational
strasns (Reynolds 1983). Le Penven and Gence (1883) carried the analysis to one additional erder in ¢ for the
case of irrotational strain at a constant strain rate, and found that the coefficients could indeed be matched
tc O{t2). Hence, it reems clear that (6.4.13) gives the rational choices for the first approximations to the
linear coefficients. However, with Cs = —2/7 the realizability conditions can not be satisfied by a truncation
of M;,p, to O(b?), and one must include higher-order terms to effect realizability.

It seems clear that continued matching with RDT wc 'd determine all of the coefficients, and since
RDT predicts realizable turbulence the iesulting model would guarantee realizabihly. The RDT required for
a complete matching must be sufficiently general to allow all coefficients to be determined. The arbitrary
irrotational strain analysis given in section {4.5) is not sufficient because there the principal axes of S,; were
fixcd and hence the principal axes of S;, and b,; always remained aligned. An RDT for of isotropic turbulenze
with arbitrary initial rctation rate and arbitrary strain rate history iz required (see section 4.6). It should be
poasible to select the constants in the coefficient expansions (4.6.10) to match RDT to any arbitrary order in
a time-series solution of the RDT-approximate model equations, and then to use the realizability conditions
to truncate the expansions, maintaining full realizability. Thus, in princiral the rapid pressure strain model
should be determined completely by RDT analysis, with no adjustable constants matched to experiments.
We are attempting to complete this task.

Another approach that may be fraitful is to use RDT for initially axisymmetric two-dsmensional tur-
bulence, in conjunction with the realizability constraints, to develop expressions for the coefficients that
must hoid along the two-dimensional line G = 0. The results of section 4.7 should be useful in this regard.
These coefficients might then be expanded in power series in G in order to determine appropriate values
for thiee-dimensional turbulence, perhaps by matching to RDT. Many interesting analyses of this nature
remain to be done in turbulence modeling.

8.5 Modecling the slow terms

The negative of the slow pressure-strain term and the dissipati n ansiotropy term 2re modeled together
in (6.2.1) as
T ~ (D — Dyaiy [3) = —ei;. (6.5.1)
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Assuming that it ’s possibl> to modcl ¢,, in terms of &,,. a premise that is not supported very well by direct
numerical simulitianz, the most general form must be

. 2.
$iy = (a+ 2)b,; + ﬂ(b.z, + sno,,‘) (6.5.2)

where the ccelicients a and 8 could be functions of the invariants iT and 11l and possitly of other scalars, such
%8 R, Under these assumptions, one can in principle cvaluate the coefficients Ly raference tc experiments
and simulations on the retren to isotropy foilowiag rumoval of niean straia rate. In this case (6.2.1) reduces
1 to

. € L . 1, .
1 b,—, = —q—z'(sb.',‘ - Zb;.) = —F[ab"; + ﬁ\b‘zj - Eb:ko;,)]. (6.5.3)
«
1 If the anisotropv is weakh, a coutrols tke return and must be nositive if ther 2 is to be a return.

Using {6.5.3), the evolution of the statz point on the invariant map is described by the two equaticns

‘:—{' = —qi,(zan ~ 34, (6.5.4)
%¥=-§@dn+§mﬁ) (6.5 5)

so that the trajectory on thie map is described by

dll _ 2eII- 3411

o = . 6.5.6
dliif  3alit+ 24117 (6.5.6)
1 Therefcre, if the underlying premise of the wmodel is correct, the trajectories must be unique and the ratio

7(I1,iI") = «/B can Le determined by uke local traieciory.

There have not been many exper‘ments on the return to isctropy. Those that do exist often show very
strange behavior. Direct numerical simulatinns of Lee and Reynolds {1985) using the Rogallo code in a
128° mgsh attempted to address these questions in the hope of evaluating the parameters. Turbulence that
k¢ been strained by axisymmetric coniraction relaxed smoothly to isotropy ulong the axisyminetric line as
expected. But turbulence that had been strained by axisymmetric expansion showed very strange behavior,
in some cases moving further away from isotropy before starting the return. Turbuler.ce strained by omglex
combinations that produced states near the middle of the anisotropy map did not show convincingly unique
trajectories. A sample of the trajuctories following removal ot plane strain are shown in Fig. 6.3.1. Thn
points to the left have been strained most rapidly, and the initial states are preducted very well by RDT.
The lowermost points are in general agreement with the one experiment on she relaxaticn from plane strain
by Tucker and A. Reynolds (1968). Note th:.t one point begins its “retursn” by going substantially far in the
wrong direction. It seems impossible to incorporate thie wierd behavior within the structure of (6.5.2).
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-0.010 -0.008 0.c00 0.003 0.010
11y

Figure 6.5.1 Trajectories of the return to isotropy from plane strain (simulations)

The simulations cast doubt on the basic idea of modeling these torms using onlv the b;; tensor. But
the simulations did show that the return of the small-scales to isotropy, as reflecied by the anisotr.apy in the
vorticity and disssipation tensors, was quite well behaved and easily modeled. This suggests some directions
for future modeling research.

These simulations, as well of these of Rogallo for homogeneous shear flow, suygest very strorgly that
bi; — 2b;j as Ibl — 0. (6.5.7}.
This means thag there should be no linear return to isotropy. Careful examination of the very near'y isotropic
data of Comte-Bellot and Corrsin (1966) seems to support this behavior.
Chei (1983) perfomed experiments on the return to isotropy from ths right side of the invariant map,

and did seem to observe more consistent behavior. A fit to his data developed by the Cornell group and
reported by Shih and Lumley (1986) is

a = 12.44(9C)?(1 - 9G)*/4 g=0. {6.5.8)

The G factors provide a sort of realizability, and there is no linear return tc isotropy.
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A criticism that might be raised about this model is that it does not ailow two-dimensional turbulence to
remain two-dimensional, relaxing to an axisymmetric state. It is possitle to construct a model that does by
using the reaiisatility condition. When u!, = 0 everywhere, then Dyq =0 Ty =0, and hence &, = 2b,,,
which will sustain by = ~1/3. Thus, the realizability condition gives

1 2
= e = n
a 3,5(9 -+ 311) when G=0. (".5.9)

Sinze this constraint only need be true for G = 0, w2 can add functicns of G without destroying realizability.
A linear term suffices, with its coefficient chosen to remove the linear return to isocropy when G = 1/9 and
II = 0 and to make 8 vanish for sma!ll anisotropy,

/
= k';' P 3G) fo {6.5.10a)
B = o(1-93). (6.5.195)

The model is then
. ef/1 . y 2, 2 \
%= (5 + 211~ 3G ) Gk, + Bol1 - 9G) (8, + S116,, ) |. (6.5.11)

With this modzl, for nearly isotropic turbulence (6.5.4) becomes

while for small anisotropy (6.5.8) gives

o & §2.44(--011)3/1, (6.5 13)

Matching at - II = 0.05 suggests fy 2= 10. This modified model satisfies realizability, restores axisymmetry
in two-dimensional turbulence, displays no linear return to isotroy, and gives retura rates of the right order
of magnitude.

However, one might suspect that the slightest little three-dimensionality vsould explcde the turbulence
into a three-dimensional field, so perhaps it is unreasonable to insist on maintaining two-diraensiorality in
the model. Undecided issues likes this provide fruitful grounds for new research, and we are now explorin ;
questions like these using direct turbulence simulation.

]
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6.6 A simple anisotropy model

The gap between the eddy-viscosity models used in the simplest k ~ ¢ models and those discussed above
iy immense. There is a nced for a much simpler model that weuld protect engineering calculations from
the dangers of unrealizable turbulence, provide some indications of the trends in anisotropy for unusual
flow situations, and handle dynamic changes on roughly the right time scale, but without such calculational
complexity. The beginnings of such an idea are presented here.

We start with the idea that a large positive strain rate in one direction tends to stretch vortex filaments
in that direciior, aligning them with the flow, thereby intensifying the perpendicular fluctuation components
and reducing those along the axis. In vhe limit of very strong strair rate, the energy in the axial fluctuations
axial will approach zero. The anisotropy model must preven! negative values. And, we know that only the
it anicotropic component of strain produces anisotropy in the turbulence. A simple algebraic model with
this character is
-85

b = A Ass T

(6.6.1)
In order for realisability to be maintained, b,q should approach —1/3 as S;, — oo, for any combinations of
other Sj;. This requires that the coefficient As depend or the type of strain.

In ths principal coordinates cf S, we take Sy, as having a large positive value T', and write the
strain-rate tensor as

1 0 0
Sy=Tlo -4= o |. (6.62)
o o0 -k

Note that a = 0 gives axisymmetric contraction, a = 1 gives plane strain, and a = 3 gives axisymmetric

expansion. Then
2 Y 2
S°=r\/1+‘“;"’ + 4 4“) =r\[3+2“ (6.6.3)

For large positive [ our model must yield

bll —_— —g = ———-—Ass.r (6.6.4)
and this requires that
[ 18
As = va—;?- (6.6.5)

We need a way to represent a for an arbitrary orientation of the coordinates The structure of Sy is
charzztarized by

- . S‘
W= ___'Zsf‘)s'“ (6.6 6)
which for (6.6.2) is
— a2
W= S za)/4 (6.6.7)

(3 +?) /212

W ranges from —1/v/6 for axisymmetric expansion to 1/\/5 for axisymmetric contraction. Plane strain and
shear flow correspond to W = 0. Using (6.6.5) to express a in terms of Ag, and then in turn expressing W
in terms of Ag, we find

A As
W= Ts - (6.6.8)

This allows us to determine As from a known W. The relationship between them is shown in Fig. 6.6.1.
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Figure 6.6.1 Variation of the model parameter with strain type
The constant Ag should be chosen to produce the proper level of shear stress in shear flow, for that

is the most important engineering flow. Shear flow can be represented as a combination of rotation and
irrotational strain. Denoting U;,2 =T,

0 Lo 0o Lo
Sy=1% 00 ,=(-L o of. (6.6.9a,b)
0 00 0 00

Hence, for shear flow W =0, As = 3/v/2, and S = I'//2. With these values, Ao = 23 produces b;5 = —0.15
at I'r = 12.7, corresponding to the homogeneous shear flow experiments of Tavoularis and Corrsin.

We now have an anisotropy model that is always realizable for all types of strain, and has the right
general trend of b;; with 5,5, but assumes that a state of structural equilibrium has been attained. In order
to handle transients, we propose an evolution equation for b;, that would give (6.6.1) as its equilibrium
solution, .

b, =~-C [(Ao + AsS‘T)b,-,- + S‘;T]/T (6.6.10)

By choosing C; = 4/15, the model will agree with the initial phase of rapid distortion of isotropic turbulence,
and the rate of return to isotropy is of the right general magnitude for linear approximations. Note that the
model coitectly predicts no change in the ansiotropy of isotropic turbulence under pure rotation.

For many engineering problems the main objective of the turbulence model is to reveal important trends
This simple anisotropy model would make the important stresses change in the right gencral way, without
becoming unrealizable, and therefore it should be an attractive alternative for use in simple two-equation
turbulence models. Preliminary studies by students in the author’s turbulence class support this conjecture.
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7. NUMERICAL SIMULATIONS OF TUBULENCE

7.1 Introduction

Over the past decade, two important types of numerical simulations have become important. The
earlier work concentrated on large eddy simulations (LES), in which simple models are used for the small-
scale turbulence and a realization of the large-scale turbulence is computed. The underlying idea is that the
structure of large eddies differ greatly from flow to flow (which is why universal models are elusive), whereas
the small eddies are more universal and therefore easier to model. Large eddy simulations have provided
important information for turbulence modeling, and there is now great interest in the development of large
eddy simulations as a tool for engineering analysis. A prominent program in this direction exists in France
at the EDF.

It was argued that, since the ratio of the largest to the smallest scales of turbulence varies as R}/ ‘
(see 3.2.4), it would never be practical to do a significant simulation of all the important turbulent scales.
However, valid direct simulations of turbulent flows at Ry of the order of 160-300 have become possible. This
is the range of turbulence Reynolds numbers in turbulent shear flows with Reynolds numbers, based on the
layer thickness and the driving mean velocity difference, of about 1000, and a number of direct simulations of
channe] flows and boundary layer flows at these low Reynolds numbers have now been attained. These direct
simulations provide an important new tool for studying turbulence, particularly because they yield essentally
any data that one might desire. Already they have contributed important new insight into turbulent structure
and have aided advances in turbulence modeling, as well as new understanding of transition physics.

In this chapter we will review the fundamentals and current status of this very fast-moving area of
research, drawing primarily from the experience of the large group working in this area at the NASA/Ames
Research Center and Stanford University. At present this group involves about ten NASA scientists, three
Stanford Professors, a dozen or so graduate students, and some post-doctoral scholars and other visitors,
with the work being coordinated by the joint NASA/Stanford Center for Turbulence Research. Some of the
exciting new things going on in this group will be outlined, with details being left for the auchors to report
for themselves.

7.2 Fundamentals of large eddy simulation

In LES one needs a way to define the large-scale components of the fields. and filtering is usually used.
The filtered ficld f is defined by

Tx,t) =/G(x,x’;A)f(x',t)d3x'. (7.2.1)

Here G is a filter function, which determines exactly what fractisn of the motion is defined as being large
scale, and A is a filter parameter that implements this choice. The filter function must be normalized such
that

/G(x,x'; A)d*x' =1 (7.22)
for all x. The restdual field f' is then what is left over after filtering,
F(x,8) = F(x,t) + f'(x,¢). (7.2.3)
The filtered residual field is not zero since
F#7  Tro (7.24)
Filtering (7.2.3), -
f=f+f (7.2.5a)

so the filtered residual field can be expressed in terms of the singly and doubly-filtered resolved fields,

F=f-7 (7.2.55)
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This proves very useful in modeling the residual turbulence.
In homogeneous turbulence the filter must be of the form G(x —x’; A). Then

flx,t) = / G(x - x'; A)f (o, t)d®x’

has the Fourier transform

Y a N . . .

Tk, t) = G(k; A)fk, t) (7.2.8}

where the k argument of G is the magnstude of the k vector. Several filters ahve been explored. The sharp
cut-off filter ) .

G={C Hlk-K|<k (7.2.7)

0 otherwise
make a clean separation of large and small scales in spectral space, but *he Gibbs pheaomena in the inverse
Fourier transform make the physical-space interpretation undesirable. Smoother behavior cin be obtained
with the Gaussian filter,
G(x - x'; 4) = Ae~0\=—=)(z.-=)/a (7.2.8)

where A is a constant determined by the normalization and depends on the number of dicections in which
the filter is applied. The Fourier transform of the Gaussian filter is also Gaussian,

G(k;A) = Be~¥' 87134, (7.2.9)

Filtering is more of a problem for inhomogeneous flows . The most satisfying approach is to use
an appropriate set of expansion functions in the inhome,eneous directions and then to define the filtered
value as the n-term approximation. However, most work has instead used finite-differcnce methods in the
inhomogeneous directions with the Gaussian filter in the homogeneous directions, and taken whatever implicit
filtering is provided by the difference scheme. This is not very satisfying because it leaves the computed field
ill defined, and does not provide a systematic way for estimation of the energy content in the residual field.
This is one of the unsatisfying loose ends in LES that ueeds to be cleaned up by some good research.

The evolution equations for the filired ficld are derived by filtering the Navier-Stoles equations, so it is
important that the filtering definition ommutec with differentiations with respect to both time and space.
The Gaussian filter has this property, and so homogeneous turbulence really can b. done properly with LES
using the Gaussian filter. If p = p(¢) then vhe fitered continuity equation is

b+ pi; = 0. (7.2.19)
Subtracting this from the full equation,
gy=0 (1.2.12)

8o the residual field is divergence-free, and if p = constant the filtered field is divergence-free. Filtering
the momentum e2quations, assuming s is constant and again allowing p = g(t), the equation for the filtered
velocity field s

N a— 1
% + (@%5),; = —;P,i Ui,y - (7.2.12)

Representing the velocity as the sum of filtered and residual components,

Wy; = wu; + R, (7.2.13)
where the residual stress terms are —
Rij = %u) + wG; + u,u). (7.2.14)

In LES one needs to model R;,. Given this model, and a suitable computer, and a few little details Like
boundary and initial conditions, single realizations of turbulence fields ca1 be generated. In homogeneous
turbulence this appears to be sufficient, because volume averages cver a single realization seem to provide
good representations for ensemble averages.
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The term Wu; does not need to be modeled because it can be computed directly by filtering the product
of the filtered velocities. This is easily done in Fourier space, and we handle this term this way now. Our
earlier representation of this in terms of u;4; + L;,, where L;; was the Leonard stress, is now abandoned.

It may be noted that we have not made any mention of numerical methods and have avoided use of
the term sub-grid scale turbulence. We believe that it is important to cast the LES equations in a way that
is independent of the numerical method, and wculd lend itself to purely theoretical analysis. However, in
reality the filter width that is taken is related to the computational grid empioyed. The results depend upon
the ratio of filter width to mesh width, and the best resulis are obtained when the §lter width is twice the
mesh width.

7.8 Modeling the residual stresses in large eddy simulation

One can not afford a very complex model for the residual stresses in LES Almost all of the work to
date has been done with simple algebraic models, although {here have been some explorations with simple
one-equation turbuleace models.

It is useful to separate R,; into isotropic and anisotropic parts, as is done with viscous stresses,

1
B;= sﬂkk&j +T,. (7.3.1)

The isotropic term is absorbed with the filtered pressure by writing
1 1
' =P+ - 7.3.
P pp +3 Rk (7.3.2)

and then P* replaces 5/p and T, replaces R,; in (7.2.12).
An important element of most LES calculations is the Smagorinski model, which assumes that the
rasidual Tgy is a linear function of the anisotropic strain rate imposed by the filtered field

Tij = =2vrS,, (1.3.3)

where vy is an eddy viscosity of the residual field. If it is assumed that the length scale of the dominant
residual eddies is the filter width, and that the time scale is that set by the strain rate of the filtered field,

then
vr = (Cs8)*\/ SmaSmn. (7.3 4)

The coeflient in this model can in principle be evaluated by performing direct numerical simulations on a fine
mesh (say 128°), then filtering this data to a coarse mesh (say 8°) to define the filtered and residual fields,
and then comparing the model with the residual field from the coarse filtering. Clark et. al. (1979) were
the first to emply this technique, which is now known as a Clark test. For isotropic turbulence the results
are moderately encouraging, and do not show much dependerce on Reynolds number, a value of about 0.12
being typical. Howcver, when this test is apnlied in strained and sheared Hlows, essentially no correlation
is found between the model and the data. The model simply is inadequate under these more interesting
circumstances.

An important advance in residual stress modeling +-as made by Bardina (1985), who first proposed to
model

R;, = Cp(u%, - §5;). (7.3.5)

The basic idea was to characterize the stresses of the residual scales as being similar to that of the smallest
resolvable motions, so Bardina called this the scale ssmilarity model. By itself it was not adequate either,
because it does not dissipate sufficient energy. But it does provide energy transfer from high to low wavenum-
bers, and effect that is missing in the Smagorinsky model. When used in combination with the Smagorinsky
model (the Bardina mized model) remarkably good results are obtained in the Clark tests, with the same
values of the constant yielding correlations betwecn predicted and actual stresses of the order of 70% for
shear flow, irrotational strain, and unstrained flow!.
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The value of the constant Cp can actually be deduced from a simple theoretical argument. If one
transform to new coordinates moving linearly with respect to the original ones,

z} = — et =t ul =u e (7.3.84,b)
the equations of motion of course do not change because they are invariant under such (Galelean) trans-
formations. However, individial terms in the equations do change when transformed. For the filtering
operation,

wi=H A+ u* = ul (7.3.7a, b, ¢}

so that R,; transforms to

R;y = w*, 0t + wrtiu®, + utlu + ciuty + cjut] = Ry A4 ciul +cjul (7.3.8)

The terms modeling B;; should tranaform in the same way; the Smagorinsky model is invariant under the
transformation, and hence can not possibly represent all of Ri;. The added terms of the Bardina model
(7.3.5) transform to

R = Cp[aiu; - w*yu*; + cilu’; v R (i ?{)j. (7.3.9)
Using (7.2.3) and (7.3.7b), this becomes
Rij = Rj; + Cp(ev] + ¢;ul). (7.3.10)

Comp-ring (7.3.8) and {7.3.10), it is evident that Cp = 1. Bardina was unaware of this result at the time
he did his numerical work, on the basis of which he recommended a value of 1.05!

In recent work yet to be published, Piomelli has been reexamining LES residual modeling using the
recent direct simulatior of channel flow as the basis for Clark tests, also carrying out LES simulations with
various models. This work has shed some new light on LES modeling, which can be summarized as follows.
In coarse mesh calculations (say 16%) no real difference is observed betweer. using just the ‘magorinsky
model and the Bardina mixed model, and the results in general reflect the coarseness of the grid. However,
at 643 calculations there are important differences. The calculations are filtering has been in planes parallel
to the wall only, because as yet we do not really have any good way to do explicit filtering in directions of
inhomogeneity. Piomelli finds that the choice of filter function 18 important in determining the performance
of the residual turbulence model. The filter makes ts appearance in the calculations when the term %4, is
calculated by filtering the product of the computed filtered components. If the Gaussian filter is used with
the Bardina mixed mode), very good results are obtained. If the Gaussian filter is used with the Sinagorinsky
model, very poor results are obtained. But if the Smagorinski model is used with the sharp cut-off filter, fair
results are obtained.

The inference from this work is that the sharp cut-off filter defines a clear length scale for the residual
turbulence, whereas the Gaussian filter spreads the residual sczles out over a broader range. The Bardina
model accounts for the different scales in the residual field generated by the Gaussian filter. On the other
hand, only one length scale is carried by the Smagorinsky model, and therefore thiz model can not account
for all the scales filtered by the Gaussian filter.

One might argue that the turbulence time scale in the Smagorinsky viscosity should be a scale appro-
priate to the residual field. In isotropic turbulence the strain rate of the resolved field sets this scale, but in
inhomogeneous flows with strong mean strain rate it may be better to extract the time scale from the high
wavenumber end of the resolved field, as in the Bardina model. One possible approach is to use the velocity

scale in this range,
vr = CA (T — ) (G — Ta)- (7.3.11)

Another approach would be to use the strain rate,

vr = Cy 8%\ (Bomn = San) (B — Sam)- (7.3.12)
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In LES one probably does not. want to attempt to resolve the wall region of boundary layers, and so
some appropriate wall conditions are needed. For high Reynolds numbers, it ie through this condition that
the viscosity will enter the problem. The main thrust of Piomelli’s work has been to assess various proposals
for these conditions. At this writing about all we can say is that nothing that we or anyone else has suggested
shows up very will in Clark tests against the direct simulations of channel flow. However, we are hopeful
that a satisfactory working model for the residual wall stress will be found, and this probably will draw

upon new knowledge about the structure of the wall region that is currently being extracted from the direct
simulations.

7.4 Insights from direct simulations of hemogeneoug turbulence

Boundary conditions are a problem in turbulence simulations. The problem is avoidsd in homogeneous
tarbulence by use of periodic boundary conditions. The resulting turbulence is somewhat artificial in that
the motion on opposite sides of the computational domain is fully correlated, which of course would not be
the case in a real turbulence field. Gne must select a computational domain large enough that the statistical
correlations al separations of half the computational domain are small, and when this is done the statistical
rasults up to this separation seem to be quite like those of real turbulence.

A large number of homogeneous turbulence simulations have been carriec out by the Ames/Stanford
group, almost all using the Rogailo code. This progran: uses the cocrdinate transformacion (4.2.4), and as
a result achieves remarkable robustness in runs with very strong defcrmaticn. For a recent description of
the code see Lee and Reynolds (1985). Simulations now include homogeneous shear flow at a variety of
shear rates, many cases including scalar transport, a variety of irrotational strain flows, return to isotropy
following various strains, some rotation cases. Speciil codes have handled a funny type of homogeneous
compressible shear flow and some flow compression cases. Meshes ranging from €4 to 256 have been used,
although the 1282 cases are now the most abundant.

In a direct simulation one must capture both the energy at larg2 scales and the dissipation at small
scales, and this limits the calculations to relatively lew Reynolds numbers. One can usually tell when not
enough small-scales have been captured by a pile-up of energy at the high wavenumebr end of the spectrura.
The the model spectrum (3.9.4) can be used to estimate the fraction of energy left out of a calculation at

any given Rr. Typical 128° calcnlations miss less than 1% of the turbuience energy at Ry = 50, a typical
range for these simulations.

The initial turbulence field must be constructed in a divergence-free manner, and this is easily doae with

the Fourier representation. The spectrum can be shaped initially and scaled to contain tha proper energy
for a taiget Rr. For details see Lee end Reynolds ,1985).
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All of these caiculations sliow a remarkable amourt of small-acale anisotropy. For example, Fig.7.4.1 shows
one of Lee'’s spactra during relaxation from plane strain, with tiie different lines representing different com-
ponents. Note that the anisotropy persists throughout the ~5/2 range of the spectrum. We investigated
this issue of small scale anisotropy by extending the measures of anisotropy discussed in Chapter 8 to the
vorticity and dissipatin fields. The vorticity tensor is defined as

Vij = wiw} (7.4.1)

and the vortscity anssotropy tensor is
_ Vi ~w?6i5/3

vy = —3 (7.4.2)
The dissipation anisotropy tensor ic defined by
D,, — D},.6;;/3
&y = _'.’__D_"ML.. (7.4.3)
(3

These two anisotropy t.iecrs are characterized by their second and third invariants, defined the same way
as those for the Reynoids ztress anisotropy tenscr b, : (see 6.1.3). Their anisotropy invariant maps are the
same form as those fcr b;; explained in section 6.1. The boundary lines are the same for the b;; and d;;
invariant maps, bat on the vorticity invariant map the two axisymmeiric side boundaries are reversed, and
the uppermost point corresponding to one-dimensional vorticity corresponds to the two-dimensional velocity
field.

Fig. (7.4.2) shows the second invariants of vorticity and velocity during relaxation to isotropy from
a variety of different strain types. The trajectories on this disgram are generally down aund then to the
left. Upon the removal of mean strain rate, the vorticity anisotropy relaxes quickiy to a point, and thea
relaces slowly, locked on to the anisotropy of the Keynolds stress!. Moreover, essentially aii of the points
shewed more anisotropy of the vorticity thatn of the Reynolds ..tress! These are astonishing observations to
anyone who has grown up with the idea that the small scales become 10tropic quickly, compared to the slow
relaxation of the scale anisotropy.

It is also very interesting that the relationship between the two irva.iants in the iock-on phase returning
from: axisymmetric expansion is quite different than that when returning from axisymmetric contraction.
This suggests that there may be two types of competing structvres in turbulence. c¢he noodles formed by
axisymmetric contraction and thc pancakes formed by axisymmetric expausion, ana tha% perhaps better
turbulence models could be made by treating these structures separately.

We have mentioned that the trajectories for return 4o isotropy on the Reynolds stress invarian. map are
not well behaved, which casts doubt on the viability of modeling the slow pressure strain and diss:vation
anisotrcoy terins in terms of b;;. However, those oa the vorticity map are extremely well behaved. Figure
(7.4.3) snows these trajectories, which are well fit by the simple model

q2
O = --a-;—v.-‘.' (7.4.9)

where « depends on both the invariants of b,; and v,;. The dissipation anisotropy trajectories are quite
different, but they too are very well behaved and can be madeled quite .eatly. For details see Lee and
Reynolds (1985).

Upon reflection, the requiremens thav the vorticity field be anisotropic is obvious from the Bi..--Savart
law; if the vorticity apectzum were isotropic, the Reynolds strees specivum would be isotropic. 1t may be
that explicit consideration of this anisotropy in turbulence modeling could have some advantages. We have
been exploring some possibiiities.

In another recent study, Rogers {1986) hzs examined tne structure of homogencous turbulent shear
flow. His studies reveal that hairpin vortices of thz type fuund in wall boindary layers are alse found in
homogeneous turbulence. However, in homogeneous turbulence there are both “up” and “down” hairpins,
while in 2 boundary layer ~nz szes only one kind. He also found evidence of some transverse voriices believed
to be associated with the weak orientation of vorticity caused by mean rotatior (see section 4.6).
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Lee has extended Rogers work to (high) shear rates and Reynolds numbers comparable with the viscous
region of turbulent boundary layers. Remarkably, he finds long longitudinal streaks that familiar objects in :
the wall region, with transverse spacings that scale on the turbulent streas and viscosity in ex- .cly the same
way as in wall boundary layers. This work suggests that it is the high shear rate, and not the wall, that
[ preduces the streaks! This would be good news { .. modelers, because it would mear that models based on
homogeneous turbulence might have far more to do with boundary layer flows than one might think.
Rogers also studied scalar transport in homogeneous shear flow at three different Prandil numbers. ]
1 There aie three interesting situations corresponding to an (imposed) means scalar gradient in each direction.
ile calculated the scalar fields for all three cases at the same time for a set of common hydrodynamic
simulations. A surprising result, actually seen in experiments by Tavouleris and Corrsin, is that some
cross-gradient scalar fluxes are larger than the flux in the direction of the mean gradient!.

4 Rogers used his insight about the hairpin vortex structures and the transverse vortices to explain the 7
mechanism by which these cross-gradient transports can develop. He then went on to model the scalar
L flux in two ways, using his simulation data both as a guide in the modeling and ae the basis for coefficient |
evaluation. The models deal with ar anisotropic diffusion tensor D,,, defined by 3
4 —_— 4
n; = ulf' = -D,,0,, (7.4.5)

where §' is the scalar fluctuation and ©,, is a mean scalar gradient. The diffusivity tensor could be calculated
from his measurements, and is found to be inherently non-symmetric. However, he did find that it became
1‘ antisymmetric in a coordmnate system that is aligned with the principal axes of the Reynolds stress. This {F
led him to model the diffusion tensor in the form

Dij = C16,; + CoRyj + Cafly,y. (7.4.6a,%)

He was able to correlate his coefficients with Reynolds and Prandil numbers to witkin zbout 20%.

Rogers made another model assuming that the scalat flux is aligned with the sum of the mean gradiest
terms in its own transport equation, and thereby obtained a model of comparable accuracy with only one
free ccefficient. This model is

1 1.17 0,152 131 -0.535
-Cph, + hU,,; +R,,0,=0 Cp =1€.1 —_— A4.7a,
SO+ 0y Uy +11,0, D (1+ Pr) (H«/Tz;) (7.4.7a,})

where 7 = g2/ and Rr = ¢*/(ve). This result should be of immediate use in turbuience modeling for both
homogenecus and imhomogeneous flows. Rogers has recently checked this inodel agrinst direct simulations
(_ of turbulent channel flow at #r = i and found that it is remarkally accurate for the flux in the direction of
. the mean temperature gradient and within about 20% for the flux perpendicular to the mean temperature
. gradient.

7.5 Direct simulations of spatially-developing flows

] Some of the most exciting work at present are the boundary layer simulations of Spalart. He is using ; J
a clever stretching of the coordinate system that enables him to use periodic inflow-outflow conditions in a
growing boundary layer, and has already produced results about the structure of boundary layers in pressure
gradients of much interest te experimentalists.

In order to simulate more general turbulent flows, inflow znd outflow conditions are needed The outfiow
problem is simpler and we have had a reasonable solution for some time. The inflow problem is harder. but
we have recently made some excellent progress.

vowery (1986) simulated the spatially-developing mixing layer, including scalar tronsport. He found
that a soft convective outflow condition,

] é

- +U,—=0 7.5.1)

at + ‘3z (7.5.1)
applied to the velocity components and scalar worked quite well, wi.k minur-um upstream influence. The
convection velocity U, was taken as the average of the two free stream speeds. At the inlet ke forced the

flow with a combination of fundamental and two subharmonice of a dominant instability of the inlet layer
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(tanh profile). because the layer was forced, it responded lik: a forced layer, with parings occuring cyclicly
at fregen locations. And, the layer grows not linearly, as do natural iayers, bu’ by leaps and bonnds, as do
forced mixing layers in the laboratory.

It has been asked if the mixing layer is absoluteiy unatable, in which case if the forcing is stopped after
large disturbances have developed downstream the layer should continve to remain. When Lewery terminated
forcing, the initial region of the layer rclaininarised, suggesting that the instability was convzctive, but midway
dewn the fiow the turbulence never went away, and by the exit the flow was quite turbulent. His czlculatioa
did not include the splitter plate, which undovbtedly plays a role in promoting absolute instability, so the
matter is not really resolved. Lowery also studied the growth of three-dimensional disturbances in the layer,
finding that they grew to scales and structures cliaracteristic of the braid region of the mixing layer.

Ongoing extensions of our mixing layer simulation work by Sandham involve the use of random jitter
of the forcing to simulate mere ratural turbulent inflow condition. This produces the linear growth seen
in natural experimental layers, at growth rates in excellent agreement with experiemnts. The resulting
statistical quantitiers, including the scalar pdf, are much more like those measured for natural layers. It
now seems that this will be quite an acceptatle method for generating relativelty simple yet effective inflow
conditons for direct numerical simulations of turbulence.

Current work is concentrating on +xtensions to compressible mixing iayers, the goal being to use these
direct simulations as the basis for building betier turbulence models for supersonic flows, including comous-
tion, both for use in LES and in simpler turbulence models. There is a growing group at Ames, involving
Rogers, Moser and others, beginning to work very seriously on turbulent corabnstion s‘mulations. It seems
safe to forecast that a Jecade from now the capabilities for knowv much more about the modeling and simula-~
tion of these and Bows of technical interest will be considerably advanced, aud students who Lave mastered
these notes should b. 1eady to begin the exciting work ahead in this area.
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‘ TURBULENCE MODILLING THROUGH ONE POINT CLOSURES
'S: - APPLICATIONS ~ ENLIGETENING BY LARGE EDDY SIMULATION
N D. LAURENCE

EDF - DER - Laboratoire National d‘iydraulique
, 6 Quai Watier, 78400 CHATOU FRANCE

- SUMMARY

Reynol}ls stress, k-¢ , and Low Re models for the modelling oi fnhomogeneous flows are
considered, They are shown to provide sacvisfactory predictions for engineering tlows. Near
wall and buoyar.y effects are also inciuded. Results of Large Eddy Simulations are used as
guidance to the standard one point clcsures, especizlly for data which cannot be obtained
by experiment.

INTRODUCT1ON

The problem ~f Cowmputing tarbuleat flows arises from the non-licear term of the
Nrvier-Stokes equations and the simple fact that ''the average of a product 1s not equal to
the product of tle avergzed operands”, Hence the Reywnlds stresses appearing in the
Reynolds averusged Navier Stokes equations : Rij = ;'—11.1_'3. The Reynolds Stress transport
equaticas (RST) are also non-linear and contair third order correlations, the evolution of
which depend on still extra unknowns etc...

So the system of equatiors for the statistics of a turbulent flow is infinite. Also 1f
the spactal structure of turbulence 1s to be studied, 2 point correlations, or
equivalent?y, spectra must be consfdered. The couputationzl power at cur disposal being
finite, one has tc cnoose at what level modelli~g assumptions must be introduced, i.e. this
power it shared between the number of variables (turbulence statistics) and the number of

points in physical space (inh.mogenefty).

This situation can be illustrated by the sketch hereafter :
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pover Launder, Rodi, Reynolds, Lumley
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0
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The top and bottom of this table are illustrated in this course by Dr, Aupoix and Pr,
Reynolds while the central part, one point closures, is currently used in engineering

problems whizh we will consider here. Valuable information stems from each type of approach
to the problem and in addition to experience, enables improvement of all the other
approaches, and in particular the one point closures.

nae

For thls reason, when involved in a particular type of turbulence modelling, one must
also be aware of the work going on in all the other approaches.

We will consider here fndustrial applications for incompressible fluids. Many were
conducted earlier and have been reported more thoroughly outside of LNH. To keep the
reference 1list short, only mandatory publications are given (in which thorough lists can be
found), namely : HMathieu, Jeandel [1] for spectral analysis ; Launder, Reynolds, Rodi [2]}
1 for sccond moment practice, physics, new simulations of turbulence, and applications ; Rodi
{3] for engineering practice. Also recommended for an extended introduction : Lumley {4] ,

Arpaci, lasen ! 5] for thermal problems » Favre, Kovasnay at al [6] also consider
compressible flows.

I. ONE POINT CLOSURES

The oldest proposal is Boussinesq's Eddy Viscosity Model (1877) in which it is assumed
L that the Reynolds stresses are proportional to the gradients of mean velocity : 1

-~ ulyj = vT(_a_u_i_+_3_u_1_\-_z_k 513 (EWM)
9xj xi 3
1 —~—
k = = (uiuf)
2

This model provides good predictions provided the velocity and length scales of the
turbulence Ut and Lt are known, so that vy can be prescribed : Vyp ~ Ut L.

This is an easy task only for boundary layers where Lt (also called "mixing length") can
be defined through a ramp function :

K = 0.4 (Von Karman constant)
§ = boundary layer thickness

Y = distance to wall

Also assuming : U, = L |3 U I.
3Y

3

Prandtl's mixing length model {s obtained : Vt = L?

3y

This is not a "modern approach” but performes well and more sophisticated models coincide

J to this one when applied to boundary layers.
= 4
I, Another field where the mixing length is still used is "Large Fddy Simulation™ (LES),
f}’ vwhere the mixing length (size of largest sub-grid scale eddies) is taken proportional to
i
AT

the mesh resolution.
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I.1. TRANSPORT EQUATIONS

The state of the Reynolds stresses is a consequence of the strains of the mean flow, but
turbulence has strong memory effects. Turbulence can be considered as a set of eddies the
angular momentum of which can only be changed progressively. Status of tue Reynolds
stresses thus depend not only on the local mean flow but also on the (Lagrangian) history
of the strains which the turbulence has experienced. The rate at which the anisotropy and
level of turbulence (statistics of eddy angular momentum) can be changed depends on the
ratio of the mean train, S (dU/dy), and the time scale of turbulence k/ €( = energy /
dissipation).

Hence in modern approaches where it 1s ambitionned to model complex inhomogeneous mean
flows, introduction of transport equations for turbulent statistics, which will account for
the Lagrangian history of the turbulence, is necessary.

The most popular of these models for engineering flows is the two equation k-¢ model.
However beginners might be confused by the "varfations of the constants" often introduced
in this model. To see why this is legitimate, it is preferable to begin with the more
complex Differential Second Moment Closure (DSM) in which less assumptions are made, and
then reduce the DSM to the standard k-€ model.

1.2 DIFFERENTIAL SECOND MOMENT CLOSURE DSM

Let U, P, € be the velocity,pressure and density of the mean flow ; u, pre ' the
fluctuations ; v ind g the molecular viscosity and gravity (density variations only being
considered when associate with gravity). The exact equation for the Reynolds stresses can

be written as :

TS .(u—fuk‘_"l . u—,uk’_"_:)
it k)¢ ix Ix
1S H3 k - Pij

. B iul 3u,
JOVL P
] 3xJ xy « "

Y ou, § Tu_§
Ll fryrryr i ARG AR ) S S | a
N Q“x“;“k N A 3

x, 3xJ

Sl L ey “ii‘i)
)Xk
~el3
W U u. - su <
SR D D k. T T
IXg Xy Xy x, xy 3x}

‘The transport by mean flow and production terms Pij and Gij are computed exactly. dij

corresponds to dispersion of turbulence (vanishing for homogeneous turbulence) and n 1j is
the dissipation (transformation of kinetic energy into heat) and is assumed to be isotropic
as for fully developed turbulence : €13 = €813

A lot of works have been devoted to the pressure-strain correlations which play an
important part in wodifying (reducing ?) the anisotropy of the Reynolds stresse:. It i3
shown 12}, [6} that $1j can be decomposed into 3 parts
- $ij,1 - the non linear part depends only on statistics of the fluctuating velocivy

- 13,2 - the linear part also involves the strains of the mean fleld
- $13§,3 - accounts for buoyancy effects,

2-3
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Taese quantities are not accessible to measurements, the models have only been tested by

their indirect effects. The main assumption is that of a "return to isotropy" and damping

ox production. Moreover, near wall effects are found to be strong.

This 1s a problem for which great help is expected from LES and DS and is presently being
analysed ("Numerical data" on dij or €lj require non-homogeneous siwulations which are
only just startingsand DS which are still restricted to very low Re numbers).

The model considered is that of Launder, Reece, Rodi [6] and 18 quite cumbersome but
reduces to 4 equations in 2D flows (lﬁ-!, w22, uluZ and €),

Although it has been proposed for over a decade, progress of computers have msde it
manageable for engineering computations only recently. It is widely used by the UMIST team
(Launder at Al 7 , 1986) and is presently developed at LNH. The full model can be written

as :
T —_ 2
—_— 3 -6 €
By 'Ek{" ce u e 3‘:’?,’]] * Py +45-3%,
o, Sgy %oy Oyt Oy
— k dm8) -3¢ f- —
ETC k dud P.n 4 Giq +9 o '—Luu 6 uu]
Dt - % [°se Yt §x_,J +Pig, *Pig, ¥ P10 * Ot0 15 [ 19 %%
b, wc [P, -18 P 6. ecf6. -Ls ¢
Die ij2 :( 1j 374§ kk] 235 'C,( 1573 %, kk)
- .} . S b Sy I
Py ® z 1% 3 Py S ax g ¢ Gy E}uj 8 * U0 Bytlog = 059, + 040, + 04, * %,
= . = 5z UL, £ -a87 —eree .
Pigy = 3 ¢ Pim T TR S G Gt OB ot THRETS e <P, ¢ 40, <G

1.3 ALGEBRAIC SECOND MOMENT CLOSURE (ASM)

For a three dimensional non fsothermal flow the DSM model requires that 15 coupled
differential equations be solved. However if only the source and sink terms are considered,
the model becomes algebraIlc., To preserve some generality for inhomogeneous flows, we can
assume with RODI |{8) proportionality of the differential part of uiuj with that of k :

D wiuj - DAff (uluj) = uiuj | Dk ~ Diff (xﬂ

bt k bt

This is illustrated by Viollet in a appendix A. Applications of the ASM to a stratified
shear flow are shown to yield much better results than the standard k-g model especially
in the unstable situation, where the latter model fails to predict the rapid generation of
turbulence by buoyancy. It is only when this effect is more moderate (Froude = 5) that the
eddy viscosity assumption ylelds acceptable predictions.

It is also shown that starting from this model, one can reduce it to the standard k-&£
model but with variable viscosity, diffusivity coefficients and Prandtl numbers, Cp, Cpf
and gf as functions of Richardson number and (P+G)/¢e , (P = 1/2 Pii, G = 1/2 Gii).

For turbulence driven secondary motions, as in a square duct, the modelling must be at
DSM or ASM level. They yeild fairly good results as can be seen on Fig 1.3.1, where Reece's
f21) , and Noat and Rodi's [22] computations are compared with measurements of Launder and
Ying {23] .

The situation is different for a meandering channel where the secondary motion is induced

by inertia and pressure forces. In this case, good predictions have been found by reducing
the AS¥ to a k-¢ EVM with variable Cp (Fig 1.3.2 ; Demuren Rodi {24])
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1.4 THE STANDARD k- £ MODEL

To further reduce the computational effort, one can consider nnly the transport equations
for k = 1 uiuj and the dissipation ¢ » which still enable to prescribe turbulence scales :
2

velocity : Uc ~kl/2

, time : t~k/e, and length Lt~ kl'sle . The eddy viscosity is thus
written as : vy ~U..L, = Cy ke .

The k equation, which contains no pressure-strain terms is modeled by @

2k + U3 % o5 (v EVerrc-¢

at a3y %) 3%}

The ¢ equation, in which most of the terms are totally unknown is modeled similarly :

e +uf de= 3 Eﬁ_)*cele— E*H'cz el
3c 3x3 oxj \or X K € k

For grid turbulence, the equations reduce to

U 3k U 3¢ 2
= - ¢ and =--C €2 £ s ylelding
I x 3 x k
-n 1
k~x ,nm= » and experiments give n ~ 1.2 so Ce2 = 1,92
Cer-n

In the final stage of decay of k, n is higher, so CE:Z must be decreased for low Re flows.
When only shear is relevant in one direction, the production is

I = GV, U/ 3Y = Cu.k%/e ( U/ 3Y)
Hence Cy = (@¥/k)2. € /p

The standard value Cn = 0.09 1s taken after observations of the boundary iayer where P ~ €
and ©W/k = 0.3.

However, this formula shows that Cy can be varied in configurations where a better value
of the structure parameter I¥/k 1is known (curvature, weak jets). Alco Cp can be plotted as
a decreasing function of P/¢ (round jet, far wake). See Rcdi [2] and [3] .

Again, for the log region of a boundary layer, Ce 1 can be related to the other constants
by : Ce -Ct:z-k2
oe Veu
The standard, widely used values recommended by Launder and Spalding are

Cy = 0.09, Ce 1 = 1.44, CE 2 = 1,92,0e = 1.3

1

The boundary conditions are given by supposing that the first grid point is located in
the log region and thus one writes

vt 38 o b Jaye

3Y [4

2 t3
N S

Veu ~

715 the wall shear stress, and Uf the friction velocity.
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Appiications

when testing the model on "academic" turb flows one can have the impression that the
quality of the predictions is only fair, « . that constants adjusting is systematicaly
required, (See table II, p.10).

From practice, it seems that for the more complex industrial applications, the standard
model 18 quite satisfactory. This may be because the test cases measure the effect of
turbuleace solely (which is expected from a good test), whereas in "real 1life" problems,
the main features of a flow result from a balance between turbulence, inertia and pressure
forces, these two latter now being well represented by actual numerical schenes.
Furthermore, complex geometrics provide strong guidelines for the mean flow, whereas test

cases in unbounded space can give rise to large deviations far away from inlet conditions.

Vehicule aerodynamics

The 3D code of LNH, ESTET, using the standard k-€ model has been applied to vehicle
acrodynamics [20) . It 1s obeerved that the flow over most of the car can be predicted even
with inviscid equations, The friction stresses are not really important for the computation
of the flow in the front pa t, but the nature of the flow in the wake, especially tehind
blunt obstacles, requires a correct description of the turbulent stresses in the large
structures of the wake shown on Fig I.4.1. The rate at which these stresses develop depends
in turr on the characteristics of the turbulence in the detaching boundary layer. The
correct structure of the wake enables a good comparison of the pressure coefficients with
scperate comptutations (Chometon { 20) ). The overall pressure drag is highly dependant on
the vatues of Cp found at the back. The slight hump of Cp in the middle of the rear end is
due to the jet formed between the recirculating eddies.

For a slanted back version the pressure gradient between top and bottom associated with
1ift induces a vertical component of the flow along the side, which in the wake generates a

pair of longitudinal vortices ("wing tip vortices") (Fig I1.4.2).

1.5 NEAR WALL LOW RE MODEL

In many problems, the interest lies in the wall region : heat transfer, wall shear
stress, aerodynamics etc... It is now possible to use very fine mesh in this region so that
the viscous sublayer can be described. In this case the log law hypothesis can be
abandonned and exact boundary conditions can be prescribed :

U (wall) = 0, k (wall) = 0, T (wall) = T (solid)
The low Re version of the k-¢ wmodel must then be used. To see what modifications are

requested one can use the following devclopment of the fluctuation, consequence of the
continuity equation :

divth ) u=b, Ytc v ...
Uggrr = 0= v - o+, Y.L, (Y : wall distance)
- 2
w b3 Y+ ey ...

Using the non dimensional variables scaled by the friccion velocity Uf :
o = urut, Y ey uEsy

3
We find : W2 oeatyh2 4 pry .., €= 2t + a8t Y+, autrayt~ 1
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g-' and since the production is P+~ Y+’, while (vA k)+ ~2A+, the dissipation at the wall s

N belanced by the molecular diffusion of k, which of coursz must be included in the model.

3 This also means that further away from the wall we must have P > € .

-

Also, since &v ~ Y and E_’ _(i ~r
¢? 4y

Py

We must introduce a variation in the turbulent viscosity :

T = Cp £y k2 with the function fu=£(Y") at the wall, so that : fu -f-“lji' (see p.5)
€ Kk P
Furthermore, the standard value of Ce 2 is not suitable for the final stage of decaying
turbulence, as mantioned earlier, and C gl is related to Ce 2 and Cp so two additional
furctions f1 and £2 are introduced.

Various propositions have been made for fp, fl and f2, and a thorough review can be found
in [8] . The models of Launder ¢ Sharma and Lamb & Bremhorst have been tested for pipe
flows (Fig 1.5.1) and give similar results, although the latter is not applicable for
decaying unbounded turbulence since it uses explicitly the wall distance Y. The resulrs are

well compared tc experiment and confirms the preceeding analysis.

This is a fileld where experiment can be completed by direct simulation from which
pressure strain, turbuleuce diffusion snd dissipation terms can be computed. This type of
computation has been conducted by Kim and Moin E9] at NASA Ames and data {s now being
analysed which should soon greatly improve Low Re modelling (Kim, Mofn, Mansour).

Near wall buoyant secondary motion

The same model is now applied to an "industrial" problem : in a steam generatcr, the cold
feedwater (7°C) is brought by a horizontal cylinder immersed in hot recirculating water
(275°C). The wall temperature inside the cylinder is expected to be . 200°C. Density will
be reduced by 25 and the Prandtl number will vary by a factor 10. So a very fine mesh is
necessary in the boundary layer where a secondary buoyancy motion is expected. A 3D
elliptic computation is performed with the ESTET code. The k and wmean velocity profiles are
slightly changed and the secondary motion appears right at the entrance (fig I1.5.2). The
€all ot thc cold core of the flow is compensated by the buoyant upwards creeping motion of
the sublayer and a recirculation at the top of the duct, replacing the cold core by more
tepid water coming from downstream. The close up view shows high refinement and distortion

of the mesh near the wall (the conjugate gradient method enables convergence although the
matrix is very ill-conditionned).

A stratification develops, though not as strong as that actually observed. It {s

conjectured that the heat transfer 1s underpredicted since the model does not account for

turbulence production increase with buoyancy for a horizontal temperature gradient. This
will be analysed by LES in par. IIL.4.

Wt
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Parabolic sub-layer low Re model

The previous computation is very time consuming because of the large number of nodes for
all of which advection and pressure are computed, However this is not necessary in the
transition sub-layer (Y+-. 1 to 30) when buoyancy 1is not considered. One can assume that
near the wall, advection 1s negligeable and that the main feature is diffusion of momentum
in the noimal direction with a constant pressure gradient.

The numerical procedure is the following : an elliptic computation is performed on a
coarse mesh (A Y® .50). In the first wall cell a ID, refined mesh is set between points A

and B, on which the parabolic momentum and iow Re k—-¢ equatious are solved.

LY [} .

. . .

. . .

. . . ® = nodal pein*s for the

* . . eliiptic computallon

H H H

* A 2 3 o m nodol peints for wall model
T TI 7T T T TITT 7T 7TTITIITT I

Definition sketch for the wall treatment
~ From the elliptic computation at step n, values of U (%), k (B), & (B) are taken as
outer boundary conditions for the wall model ;

- From the wall model results, values of Bk/axn (B), au/axn (B), asﬁxn (B) are taken as
boundar; conditions for the step (n + 1) of the elliptic computation.

- Study of a simple ezample ; the wall-driven turbuleut flow in a rectangular cavity

As an example, the case of the wall-driven turbulent flow in a rectangular cavity 1is
treated : in the experiment:z from Normandin, a woving belt at the left-hand side of the
cavity entrains the fluid mction [26) . & computatio . " e SBIRE code using wall
cunctions is compsred to another one using the above Jescribed technique, with the same
mesh for the elliptic computation. In the latter, the wall models use an expanding 10
points mesh. Figure I.5.3 shows the computed streamlines for the two computations, while
table 1 shows how the higher wall stresses obtained using the local wall models enabiec
better predicticn both of the entrained flow rate and of the position of the center of the
recirculation. Figute I.5.4 shows tne comparison of velucity profiles at 2 locations frcm

the experiment and from the two computations.

1able 1 : Comparison of bulk flow parterns for the wall-driven flow

: lcw-ke wall treatment

H : Recirculated : Position of center of :
: H flow rate H recirculation H
E : : %, (cm) f Yo (cmy :
:  Experiment B 50 : 23 B 8 B
:  Computation with il B 44,5 : 35.8 : 8 :
:  functions H : :

;  Computation with local : 48.6 3 32.7 [

o)
e ve e fer e

parm ni o
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- Application to a LMFBR HOT PLENUM

The technique for wall modelling using local one-dimensional wall models, as described
above, has been applied to the two-dimensional computation of the hot plenum of the RNR
150) project, at nominal steady-state. This steady-state is non isothermal due to :

- the outlet temperature differences between different parts of the core ;
- the heat transfer with the cold plenum (below).

Figure I.5.4 shows the computed velocity and temperature fields in the whole plenum,
while figure I1,5.6 shows at two points of the redan the results of the local wall models,
in terms 'of velocity, turbulent kinetic energy and temperature. In this case, the local
wall models lead directly to the steel temperature (assuming a given temperature and heat
transfer coefficient on the cold plenum side of the redan), without any need of an

assumption concerning the heat transfer coefficient in the hot plenum.

1.6 COMENTS ON NUMERICS
DsH

The full Differential Stress Model, although proposed since over a decade has not been
widely used until receatly with both increasing computer capacity and improvement of
numerical schemes. Nevertheless it 1s still a difficult task since with the replacement of
the eddy viscosity by source terms in the momentuw equation, div ﬁ;—i‘. we lose numerical
stability. Indeced, since the modeled turbulent stresses are no longer aligned with the mean
strain rate tensor, in some situations this can result in a direct imput of energy into the
mean flow. The coupling with the mean flow is delicat and often initial data must be given
by a standard k- ¢ computation. Also, the coupling between couwponents is sensitive and a
careful decomposition between explicit and implicit terms is carried out to ensure

stability. Indeed, during transients some schemes can lead to negative normal stresses uiz.
Lode maintainance

In order to assert relfability of the code for industrial applications and simultaneously
allow modifications for improvement cf the scheme or the turbulence models, an ensemble of
test cases is maintained on which each version of the codes can be run at any time. The
simplest one is the channel flow shown in appendix B. The head loss coefficient A (Re) is
of course correctly predizted, but only at the far end of the channel. This example {is
shown here to illustrate the strong influence of inlet condition : U, k and € are given
constant across the width and only after 200 mesh steps, the equilibrium values are found.

In applications the values at inlet should be defined as accuratly as possible.

For some test cases it is known that the k-€ model fails to predict the measured values
(the backward facing step for instance). On the other hand, it has hapened that
discreptancies have been attributed to the model, and in the meantime, improvements of the
sole numerics ylelded better results. Computations are now compared in IAHR (International
association for Hydraulic Research) work-groups for a set of benchmarks. This dzfines a "k-€

consensus” solution used as reference for the codes.

The 2 and 3D Finite Element code N3S, developed at LNH now inclueds the k-£ model and
has passed the "backward facing step" test (Fig 1.6). Including such a turbulence model in
a FE code nearly doubles the CPU time requirement because the diffusion matrix must now be
re-built at each step. Also, introducing the "lcg 1law" boundary condition in the
diffusion-pressurc coupling is not straightfoward ({ 25]).
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TAHE 11 - Application exaples of k ~ & model

ot 4 k - & Prediction Trproved with
Grid Twrbulence Good Low Re model for final stage
Channel flow Good
Plane Shear Good
Round fet Spread overpredicted (30 %) Gu = £(P/E)
Axisymetric wake Good in near field Cu = £(P/g) for far field (x/D>X)
Wall jet Spread overpredicted (20 2) A, DM
Mresse pressure gradient | Stress overpredicted 1 eq (uixing length)
Favorable pressure gradfent | Good for moderate acceleration Low Re model for stronger

accelerations

Backirard facing step Length of separation btuble Nene significant

Sudden pipe expansim

Qurvature/rotation

Turbulence driven
secondary motion

Wall driven cavity

Wall heat flix in non
homogeneous situation

underpredicted

Goud for main recirculation, second
buble not reproduced

Fair

None
Recirculation “ate underpredicted

Badily underpredicted (stagnatim
point)

Cu decreased or rotation in ¢ eq.

AM or DM
Low Re model, ASM, DM

Bamdary condition accounting for
advected frec screm turbulence

11 LARGE EDDY SIMULATION

I1.1 Introduction

In the Large Eddy Simulation (L.E.S.) approach the total instantaneous velocity'v.(x,c)
is decomposed in 3 parts :

Vix,t) = ¥(x) + Flx,t) + v’ (x,t)

V(x) 1s the mnean flow component, while the fluctuating part is decomposed into a
resolvable sgcale part v (f.e : turbulent component of scale larger than the mesh
resolution) and srbgrid scale (SGS) part v*.

It is assumed that the subgrid scale contrfbution ¢o the Reynolds stresses, v'v', can be
more easily modeled by a mixing length model (Smagorinsky) since small scale turbulence is
expected to be more isotropic and geometry independant than the total Reynolds stresses.

R T T

L T 2 I P o




However, in contrast to the previous closures thers is no spectral gap betweea computed

aid modelled compenents. So the strong coupling wight not reduce tn a simple one-way energy
transfer (dissipation of resoivable scale energy). Furthermore, the cross tarm TV +v T
does not cancel if the filter T 18 rot a sharp cut-off filter in Fourier space. It was
found that adding the "scale similarity model" of Bardina, Ferziger, Reynolds {10} (B.F.R.),
which models the scales just helow cut-off using those just above (u° = T - ¥,
signj€icaatly “amproves the predictions ; especially the shapes .f the eanergy spectra near

cut-off vave number.

F.. homogeneous flows the mean component is often not included {n the computed variables
and is accounted for by a source temm ir the V equation. But this can not hold for more
complex flows wher~ Vv 1s also an wunknown. It has been noticed by several authors
(Friedricn, Schumann, Laurence [ll]) that the schemes themselves are not Galilean invariant.
Better results are obta‘ned 1y using translational computational frames where the modulus
of V is made as small as possible. The problem adressed hera is that of accurate numerical
representation of small scale fluctuations undergoing simple transport by the mean flow
(without non-linear interactfon, and thus theoreticaliy not inducing a CFL condition). This
problenm will be enhanced as che number of nodes is increased (ie ratio of larger to smaller
resolved scales).

Speaking after Dr Reynold'~ J_cture I can assume this brief introduction will suffice.
The previous remarks and numerical cote are dets‘led in appendix .. Results are presented
hereafter. The recent computations are from H. YHIUDLI who is prepariny his thesis at LM
on LES asplied to 1 peint closures ; tals work will finish by the end of 1988.

11.2 ¢:4d Turbulence

The grid turbulence decay experirzut of COMTE-BELLOT and CORRSIN 112] has been used as
benchmark for the development of our LES code. The constants of the subgrid scale models
where 1itred to match experimental results at the second station. The energy spectra at the

d
3t

scheme instead of a Gaussiay filter to retain as much information as possible. The high

station is still very well .eproduced. We use the implicit filtering 'of the numerical

accuracy of the weak formulation (in the sens of the Finite Element approach) for advection
e¢nables conscrvation of energy right up to the maximum resolvable scale. The fmplicit
filtering is thus very sharp. Results (fig 1I.2.1) are quite satisfactory since the
disc etisation 1is performed solely in physical space (the long term goal beinz LES of
high,v inhomogeneous flows). When possible, pseudospectral olvers are used to resclve the
nunerjical set of discreet equ-*ions, which 1s done very rapidly using the "Tz-t *poidon
solver" library of Schumann et A} [13) , extended to our 27 point d’scretisationr of
Laplacians and mass matrix.

Since the spectra are correct, the decreare of turbulence intensity 1s alsc well compared
to experiment on fig 11.2.2, where the {iltered (computed) value 1is cowpleted by an
evaluation of the subgrid sca : intensity usin, the defiltering proccedure proposed by BFR
{10 .

I1.3 Homogeneous shear

Tte experiment of Champagne, Harris, Corrsin [14] has beea simulated, in which the mean
flow 12duces to a constant shear : dVl/rlx3 =S, = v3 = 0, where S = 12.9 s_l.

Th2 turvulence intensity shown on fig I1.3.) is well predicted ecpecially when the BFR
deff{ltering procedure is sed, Note that both resolvable and SGS enexgies tend to be
constant at the end of tne computation, and so does :he eddy viscosity, Ve
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Sincev,r is constant with respect to time and it *y aleo observed “hat statistics do not
change 1if Vt is constant fn space, one could ask what difference there is with a direct
gimulation (D.S.) wheie v = v, In the LES the high wave nunber end of the energy spectrum
is expected to behave as k'wg. which is very different from the behaviour of the spectra
in the Kolmogorov range. A direct simulatica withy « Vo wouvld vequire a much finer
resolution, that is, much more computational power, even for 8 very woderate Reynolds
number. Also, another difference lies in the use of the scale similarity model which canrot
be expressed in terms of a viscosity. It actually enhances transfer of energy between
computed scales with a zero net drain.

The evolutions of the Reyrolds stresses cbey the folloving cquations :

Dul?/pt =22+ § 11 - g1l
U u2?/pe = ¢22-¢22
D u3*/pt = $33- €33
Dulud/bt = ~u32 S +¢ 13 - €13
D k/Dt =P -€
With the notations of par. I2, and P = - 1/2 ulu3.S. Also, isotropy of the dissipation is
commonly assused :€ i} =« 27328 1],

This experiment is often refered to as "low shear” since S is small and the producrion
time scale 1/5 is large before the cturbulence time scale k/e . This means that the
equilibrium state is not reached, Indeed in further experiments (Graham, Harris, Corrsin
[15] ) a higher shear, S = 44.5, enables to reach higher values of S.t where it is observed
that k grows linearly and the anisotropy becomes constant,

Fiow the pr.vious equations we can expect that most of the anisotropy wiil be found in
ul? and ulu3 which are directly influenced by the mean flow.

The Reynolds stress anisotropy, bij, is coupared on Fig 11.3.2 :

bij = (uluj - 2/3 k §13) /2k, k = 1 GTu]”
2

The crude LiS value <bij> slightly overpredicts the anisotropy. Very similar results were
obtained previous.y by B.F.R. [lOJ < This is not surprising since it lacks the contribution
of the SGS which are more isotropic, Assuming that they are totally isotropic

-3 5GS \ N LES LES SGS
(11u] = 2/3 kSGS 54j) we can write : bij = <biid>.r, where r = k 7/ (k + k7MY,
T L1/,

This would reduce too much the anisotropy, which means that the SGS stresses still
contain some anisotropy. Note that ir the experiment, the initial turbulence seems to be
quite anisotropic, hence the intersection of bz and bss.

If the anisotropy i. to reach a steady state, the pressure strain correlations, § 11 and
¢ 13 must be opposed to the production, while ¢ 22 and § 33 should redistribute the energy
(i.e. be positive) in order to sustain u2? and u3? despite dissipation. LES predicticn for
#1i3 confirms this fact on fig 11.3,3.

The L.R.R. model

The difference betweea u2*? and 32 can only be imposed by the pressure-strains (if
the dissipation is isotropic). The version of the Launder, Reece, Rodi {16] model
presented in 1.2. is a simplified nne since @ 1j,1 = - C1.8.2.b1j can only reduce the
anisotropy and #1j,2 are equal for che (22) and (33) components. Thus this version makes no
distiaction between u2® and u32.

MY st ramks MRelrid o




e

"y
%

%3

g

e

N

T

distinguish

GEDRILTING CLOMIALR it crrvvats « o7

B T e WUNS T VNT PU P R PPy Sy A

The initial model presented by L.R.R. [16] was :

0132 = - a.{P41 -2/3 PM;} - b.k.{?-"l + 3—"1}- c.{Dij -2/3 Psi_‘}
L axy oxi

Q>

U

Where Pij - - {uxuk —j-+ “j“k %l!*}. Dij - - {u—i'\'ik _a_U_ls+'\?h"‘ alk_}

3%y Xy axj ~ 3%y

and : a = (C; + 8)/11 , b = (30C; -~ 2)/55 , ¢ = (8C; - 2)/1}

The only constant C2 enters by a rather complex manuer because the previous equation has

been derived from tensorial properties. For this same reason we will not change the
expresgion Lut only try to fit the constant Cz. The presence of term Dij will now

oz oz
uzandu3.

Considering the presenr shear flow and ags' ming steady state for anisotropy,

D bij/bt = 0 yields :

bll = (4/3P+611) / (P -¢)
22 = (-2/3 P+ @ 22) /] (®-2)
b33 = (=2/3 P+ 9 33) / (P:€)

Now replacing ¢ i1 by the complete LRR model, we get :

b1l = (8 + 12 c2)/3:‘.x>+ , - P/(P-c4C; ¢)
b22 = (18 C, - 10)/3.8*
b33 = (2 - 30 €,)/33. P

In L.R.R. {16], tae cuc experiment is used to fit C, = 0.4 after choosing C, = 1.5, but
we can fix C2 independantly of (:1 v, considering the ratio bii/bjj (this alco enables to
use LES predictions directly since the previous defiltering factor v vanishes).

Figure 11.3.4. shows bii/bjj as functions of cz. Since we cxpect b33 < b22, and bll to be
st carsotropic, the possible ramge for C7 is 0.25 < C2 < 0.55.

Thus defining C2 independontly Irom Cl. the CHC '~w sghear experiment with b22/bil = -0,4
and b33/bil = -0.6, at St = 2.5 would yield C, = 0.3, (and consequently Cl = 1.18), whereas
the LES with b22/bli = ~-0.f£ and b33/bll = -0.2, for St = 5, gives C2 = 0,411 (and cl »

1.306) .

1f we use the high shear experirent of GHC (15] at st = 11 (publighed after the *3R
paper) we reach very nearly the same con~lusions as feom the LES. Again we presume that the
LES reaches the asymptotic ctate for b22 and b33 faster than the experiment exhibiting a

croseing of 522 and b33 due to anisotropic initia) conditions.

Fortunat=ly LRR did not use this procedure with the Ch{ experiment and the proposed
values Cl « 1.5 and c2 = 0,4 are close o the present ¢ nclusiong, Now, if we inject the
LES Reynolds stresses into the LRR nmodel for ¢#1j we get the results shown on Fig II.3.5
where ¢ 22 and @ 33 tend to reduce the difference between b22 and b33,

ot (o r——————n—— & 5
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To achleve reconciliation, we must abandon the hypothesis of isotropic dissipustion.
Indeed, the dissipation exhibited by the LES (to be precise : the production tem of the
5GS Reynolds stresses) is by far not isotropic. The deviator of ei] is shown on fig IIL.3.5.
The similarity with bij 1s striking and means that ¢ij rveduces anisotropy (more znergy ic
drained from the stronger ccmponents of \—:TG]). Since €33 < €22, the difference between
@ 33 and § 22 nust be iarge to creste the anisotropy, and to sustain it, must not venish in

the steady state.

These observations on €22, € 33, ¢ 22, ¢ 33 are in z2ccordance with the BFR [10}
simulation (PP 132 - 133, and noticing that the 2 and 3 subscribts must be swaped since
S = dUl/dxz). They furthermore propuse improvements of classical wmodels, in particular to
account for rotation effacts. Of course the LES must overpredict the anisotropy of the
dissipation, but direct simulations also show streng influence of dissipation anisotropy,
(¥oon Joo Lee and Reynolds [17) , PP 125 - 126).

To sum-up, since the LRR model performs quite satisfactorily for a variety of test cases,
only slight chawges should be carefully introduced. But we may consider that the §ij term

of the model represents not only the pressure strain term but also dissipation anisotropy.
le :

843 model = P ( 20,/ axy + 30, 2x) = C ey = 2368 ()

i

as more LES or DS data fs made available for a much larger rumber of noudes in order to

simslate very large band width of the spectra, we may expect to nodel the terms seperatly

11.4 Temperature fluctuations

As illustrated in part I, EDF is concerned by tegperature fluctuations in fluid flows.
This, in relutfon with heat discharges, heat transfers or thermal stresses in pipes and
vesrels induced by stratified flows. LES can help to model these flows since data on

temperature fluctuations and their correlation with velocity or pressure is scare.

Passive scalar in grid turbulence

The experiment of Siriwat and Warhaft [18] is simulated to test the thermal version of
the code. It consists of a decaying grid turbulence on which a constant average temperature

gradient is superimposed : dT/dx3 = ST = 3.68 °C/m. This low value ensbles to neglect
buoyancy effects,

The velocity variances shown on fig II.4.1 thus brhave as in par I1I.2. In the experiment,
various setups are used to 1rpose ST’ none of which generate zero initial temperature

variances (as done in the LFS), therefore only the final stages can be compared herafter.

The thermal fluxes are shown on fig II.4.2 uT and VT should be zero, but X/M = 200 is a
long way downstream of the grid (M grid cell size), meaning that only very large structures
are left in turbulent field, thus the sample on which statistics are computed is too small,
f.e. the number of nodes should be increased.

The previous variables are nomalised to give the correlations on fig 7I.4.3. Initially wT
is equal to -1 since the tempzrature fluctuations are solely produced by the w
fluctuations,

wT tends to - .75 while the experiment exhibits a slightly lower value. On fig 11.4.4.
the velocity-temperature timz-scale ratio is satisfactorily compared as well as the T
dissipation (fig 11.4.5). Fig II.4.6 shows that an asymtotic state ic reached for the

Production-dissipation ratio of F. meaning it grows lincarly (as k in the homogencous
shear case).

A4h m®

o ey

i
|
|
S

R e  ———




P

DRIV AT gvager prosses 1o penvin

L N

Stable - uastable stratification

Now the same computation {s re-run considering buovaucy effects in both the stable anl
unstable case. ‘tre velocity varfances are shown on fig II.4.7 : in the stable case Wi
decreases faster than fn the previous czomputation as well as the other two diagonal
components (via pressure-strain) but the anisotiopy seems tc level at a moderate valte,
whezeas in the unstable case, w2 becomes 10 times larger than u? an vZ, The thermal flun W7
associated with production, after reacting a maxigum goes back to zero in the stable case,

while it seems to be unlimited in the unstable case.

In the standard k-¢ model, the buoyancy production term G = -~ 1/2 T ST is directly
entered in the k equation while it is multiplied by gl,(tlk).(l - 23) in the € equation
(Violle:[l9]).c3 = 0 in the unstable case, (ia = 1 in the stable case, (see p.5).

Indeed, on fig I1.4.8, it is seen that the ¢ , with 1 - &3 = | balanccs the other terms
in the equation for the unstable case except in the initial state, while in the stable case
all the terms seem to go to zero so the ratio is very scattered, In the unstable case, the
buoyancy production term in the ¢ equation shculd have the same weight as in the k

equation.

"Vertical stratification”

In industrial problems, we often have to deal with cases where the temperature gradient
is perpendicular (horizontal) to the gravity, This appears in vertical buoyant jets or

vertical heated (or cooled) walls (see par. 1.5).

In this case, buoyancy production is not usually accounted for in the standard k- ¢ model

whereas the equations show indirect production.

0f course, this effect cannot be separated from shear in experiments because as soon as a
horizontal temperature gradient and buoyaucy are considered, natural convection and shear

in the mean flow appear.

In the LES, however, we can "switch off" gravity in the mean flow while keeping it in the
fluctuation. The mean velocity then stays zero while the fluctuations obey the following

equations.

du/ee =811~ ell

d ?/d( =238 u3T g+ ¢ 33 - €33,(B : thermal expansion parameter)
d 5 f/ae = - G‘I’-' Sp+ ¢ 1T = elT, (5, = dT/dx1)

du—3'f/dt --mST+BT’g+G3T- €3T

d ulu3/dt = B wTg+ g13- ¢13

Starting from an isotropic state, we will find, with ST >0

o.T L) TR - T -

“lT <0 == uyu, <0 ==> u3'r > 0 mad u; increases.

This qualitative evolution is well reproduced by the LES results shown on fig IL.3.6.
Note that u T responds immediatly due to the prcduction ul2 Spe u,T and u3z respoad more
slowly since ulu3 T2 and E;T are initially zero., At a later stage :1_2_’- and ;1? follow u32

meaning that @ 22 and @ 33 have again strong effects.

Pressure-strain and pressure-temperature correlations will be analysed and compared to

moCels as the case is rerun with a finer resolution.

Cats 'Y < 5 e TR ~
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These are only preliminary results and the runs were performed as feasability studies
since, as mentioned, it is felt that 32% point computations provide a too small sample
especially for long runs during which the turbulence scales undergo large changes. Also,

boundary conditions must be carefully reconsidered since the problem is not exactly
homogeneous.

Now being satisfied with the SGS model and numerical scheme, we have just ended speeding
up the code and are starting 643 computations, from which more thorough analysis will be
conducted. Note that changing from 32° to 64> means 8 times more nodes, and if the mesh

step is divided by 2, so should be the time step, meaning the overall computational work is
multiplied by 16 !

CONCLUSION

Computer power and numerical schemes are rapidly improving, allowing the use of more
elaborate turbulence models and simulations. As full 3D flows are considered, DSM or ASM
will have to replace the EVM eince it 1is often the Reynolds stresses that dr ve the
secondary motions (vhich in turn modify the principal mction). Near wall low Re modelling
will be very usefull for aerodynamics and heat transfer computations, and merge the
elliptic and boundary la yer approaches, We can conjecture that within a few years a
consensus will be reached concerning numerical problems and that efforts in fluid mechanics
will be devoted to the eternal problem of turbulence modelling. This tendancy is
1llustrated by recent conferences in which authors now say little about numerics and go
directly to the physical analysis of their results.

There seems to have been a gap between LES or DS computors, which have been more
interested in the physics and analysis of turbulence in terms of structures, and the more
engineering area where people have been hoping for enlightenement from LES and DS for one
point closure models (as pointed out by Rodi ) .

It must be remarked that this gap 1s being bridged but will require time since it means a
lot of work for the small teams (solitons ?) performing LES or DS. Inaeed it requires :

- elaborate numerics (accuracy and speed)

processing of huge amounts of data
- analysis of experimental data (+ guessing the uncertain "injtial conditions")
-~ analysis and use of proposed models

- comparison of numerical data, experience and models

This last item requires more w-rk to defilter the LES results (and improve the SGS
model), This might be solved by completing the spectra below ~ut off wave vumber as
proposed by Aupoix f20) or Bertoglio {27} , or using a 1 eq model in conjunction with
algebra¥c stress modelling.

"Numerical data" could be used more rapidly 1if more credit could be given to it from
other people than the computor himself, and if 1t could be widely used in conjunction with
experiment by all turbulence modelers. For this, publicat ins are not sufficient and it
might be time for LES computors to open "binary data banks®.

?inally, we hope that larger computations w111l tell whether anisotropy of dissipation is

due to too low resolution or if it is part of the turbulence characteristics, even at high
Re numbers.
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APPENDIX A

THE CONMPLETE REPORT WAS DISTRIBUTED AT THE VKI COURSE

AND IS AVAILABLE AT EDF-LNH (ref HE 44.86.21)

VIOLLETP.L.

ON THE NUMERICAL MODELLING OF
STRATIFIED FLOWS

Conference imvitée au Symposium
« Physical Processes in Estuaries »
Delft, 9-12 Sept. 1966
HE 44,86.21

Reyume

Ce papier presente une revue des modéles de turbulence
apphicable aux écoulements stratifiés, el montre comment ces

modéles réagissent vis-3-vis d'une situation de stratification ,

stable ou instable. Le cas test d’'un écoulement bicouche est
présenté en détails.

Abstract :

The paper presents a review of turbulence models for straufied
flows and shows how these models react to stable or unstable
stratification phenomena. The testcase of a two-layers flow
is described in details,

MOTS-CLES :

Mecanique des fluides [ Transfert de chaleur / Ecoulement turbulent /
Ecoulemznt stratfie /| Mesure / Resolution numérique / Modéle de
turbulence ! Modele & . epsilon.
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HOMOGENEOUS TURBULENCE
AWO-POINT CLOSURES AND APPLICATIONS TO GNE-POINT CLOSURES

B. AUPOIX

ONERA/CERT
Department of Acrothermodynamics
2 avenue E. 3elin - 31055 TOULOUSE Cedex (FRANCE)

SUMMARY

This paper deals with homogeneous, f.e. translation invarlant, turbulence. Homogeneous turbulence
iz an ideal situation in which the mean field is unaffected by the turbulent motion, so that the turbulent
motion can be studied solely with a prescribed mean field. Such a flow can nearly be achieved in very sim-
ple experivental set-ups.

FOURIER transforms are convenient to study the turbulent motion. The momentum equation shows that
the evolution of the turbulent motion is due, on the one hand, to the action of turbulence upon itself
(non linear effects) and, on the other hand, to the action of the mean field upon turbulence (linear effects).
The linear problem can be solved with the help of a GREEN function. Some important solutions are then stu-
died. The non linear problem is open and requires modelling. Various approaches are described, in the sim-
ple case of homogeneous isotropic turbulence.

The resolution of the transport equation for tle REYNOLDS stresses requires the closure of the
pressare strain terms and of the dissipation equation. Application of two-point closures to tne modelling
of these terms is studied in the last part.

Part 1 - HOMOGENEOUS TURBULENCE -~ INTRODUCTION TO TWO-POINT CLOSURES

1 - HOMOGENEOUS TURBULENCE
1.1. Introduction

We shall restrict our study to incompressible flows, without buoyancy effects, pascive scalar ...
The flow is then governed by the continuity and momentum equations which read, in a cartesian reference

frame : o
al,
— a0
3x1
3y LAy 1 38 Fu
RO N S -] ST
% bax v Wax,

The instantaneous velocity field b can be decomposed in variousways to study the turbulent motion.
The standard decomposition proposed by REYNOLDS is very suitable for engineering purpose. The flow varic-
bles (velocity, pressure) are split into a mean part defined as an ensemble average and a fluctuation as :

U =U+u U= <>
P =P+5p' P = <P
Equations for the mean and the fluctuating motions can be derived from the above continuity and
momentum cquations. They read : 3
=0
i
2
L uﬂ-—l.-ag—a’ il <ulul>
at 2 Bxl P 9xy 3x£3x2 sz 178
aui o
e
i
1 1] T
aui 3ui 1 % 32ui '301
Tt TR Vs, T W R,
% i L8 £
-2 e - <u'u
axg (uiuz <u1u2?)

The aon linear advection term couples the evolutions of the mean and fluctuating motions. In the
mean field momentum equation, the turbulent motion appeaars through the REYNOLDS stress <uiué> vhile the

mean field appears in the fluctuating fie.! momentum equation. The two fields are intercomnected and must
be studied together.

The mean field equations can be unaffected by the turbulent motion if the RCYNOLDS stresses and,
more generally, all the statistical variables, are independent of the point, i.e. if the flow is trans-
lation invariant.
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The interesting feature of homogeneous turbulence is that the mean field is decoupled from the
H turbulent motion. The mean field can then be prescribea to study solely the evolution of the turbulent
i ' . motion.
' i i
. B 1.2, Constraints on the mean field
. [ —
g A translation iavariant turbulent field can only be obtained with special mean fields. The cons-
% traints on the mean field have been pointed out by CRAYA /1/.
4 v
? The first constraint 1s that the mean flow must satisfy the continuity equation @ sx—i - 0.
g :
g The s2cond constraint can be derived by writing that any correlation is translation invariant.
2 For the sake of clarity, we just impose to the REYNOLDS stress to be translation iuvariant. The demonstra-
5; tion for a higher level, multi-point correlation, will be analogous.
% The transport equation fo: the REYNOLDS stress <u1u'> is constructed by multiplying the momentum
4 equation for ui by ui. the momentum equation for u; by ui, adding and aver.zing. After some algebrs, it
- reads @
- au
3 i}
, 3 P+ Y 5% copup> = - <ufu> o2t - cpun> 2t
4 k
3 ¢ (3u! au! du! !
~ P |1 ] - 2V i
; + <& (axj+3;-l-> 2<3"—k >
-l <ululuf> -V S curut>
T LY Y% I 1Y%
x *x
1]
+<Bo(uls, +uld )>)
vhere 611 1s the KRONECKER tensor. i ik 31k
The REYNOLDS stress must be translation invariant, i.e. Ei— <uiu3> = 0. By taking the derivative
1 of the above transport equation and using the translation invariancé of all correlations, the above equa-
tion reduces to : 2 2
U U
i 1
0= - <ulu'> - Culul> == (V' 1, §, m)
ik bxkaxm 54K 3xk3xm
Homogeneous turbulence can exist only when che mean field has constant velocity gradients.
The third constraint can be derived from the HELMHOLTZ equation. As the mean flow is unaffected
by the turbulent motion, the momentum equation for the mean flow reads :
sU 1 R
§+y.vg - <5 Vp+v VU
Sc, taking the curl of the momentum equation and taking into account the fact that the velocity
gradient is constant over space lead to the equaticn :
EBE curl Y + curt U Vb = 0
L}
{ For steady mean flows, to which we shall restrict our study, this relation imposes to the mean

field to be either a pure strain (curl U = 0) :

d [} 0
Elij ,
—3;-] = [ 0 od ¢ -
Lo o0 -@e
or a plane strain plus a rotation, the rotation axis being normal to the plane of the strain, i.c. :
0 0 0
U d strain
R [—a;) - 0 d w « rotation
L0 -w -4

An {wportant case corresponds to the equality of the strairn and rotation rates. In a reference
frame rotated by 45 degrees, the velocity gradient reduces to :

M 3
; 0o 0 o 3
i {3u =
lax] o o0 o E

{ 0 ~{dtw) 0

i.e¢. a plane shear flow. The study of sheared flow is important as shear appears in a lot of inhomogeneous
situations of practical interest such as boundary layers, wakes ...
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1.3. Nearlv homogeneous turbulence

Homogeneous turbulence, asdzscribed above, does not exist. The flow is always bounded, so there
is only s restricted domain noon which the turbulent flow is translation invariant. The turbulent motion
is thus homogeneous only for a restricted range of length scales. However, if the ..amain is large enough,
compared with the turbulence length scales, it exigts a core where the turbulent mction is hardly affected
by the boundaries and in which the flow can be d to be h

8 .

In most experiments, turbulence is generated by a grid in a wind tunnel. As the flow moves down-
stream, the turbulent field evolves continuously. Turbulence statistics are not translation invariant.
However, if the evolution length scale of the turbuleace statistics is large when compared with the turbu-
lence length scales, the turbulent flow can be assumed to be locally translation invariant. So nearly ho-
mogeneous turbulence can be obtained experimentally.

1.4. Some nearly homogeneous flow experimente

The various turbulent flow fields can be classified by locking at the REYNOLDS stress transport
equation, which reads, for homogenecous flows :

£l U
a 1,1 .l .' 1
<ulu!> + U ul> = = <ulu'> uld> ==
1%§ i <uguy 18K ak Suguy =, '
! 3u! 2
& [—+-§1]>-2v<a—u$—ui>
1 % 9%

1.4.1. Flows without mean velocity gradients

The simplest cases correspond to the absence of mean velocity gradient. The turbulent field then
decays and turbulence is converted into heat by the viscous effects.

The first case is the decay of isotropic turbulence. Turbulence is isotropic when all the turbu-
lence statistics are independent of the directjon, i.e. rotation invarfant. Therefore, <uiu3> ~ (5,./3) ¢
where q2 = <uiui) is twice the turbulent kinetic energy. The REYNOLDS stress equation then reduces to a

transport equation for the turbulent kinetic energy :

31 , 3% q? duy duy
Lo g2 4 U, s == —~—>
a2 zaxz axl

Isotropic turbulence is difffcult to obtain experimentally. A mean rlow without any velocity gra-
dient can be obtained in a constant area duct (or, more precisely, slightly diverging to account for wall
toundary layer displacement effect). The standard experimental set-up used by most experimentalists con-

sists in a turbulence producing grid placed ahead of the test section. However grids produce anisotropic
turbulence.

COMTE-BELLOT and CORRSIK /2, 3/ proposed to improve the isotropy of grid-generated turbulence with
the help of a small contraition downstream of the grid and before the test section (figure !). Besides the
extensive study of COMTE-BELLOT and CORRSIN, we can mention the works of STEWART and TOWNSEND /4/, VAN ATTA
et al /5, 6, 7, 8/ who studied energy transfer and multi-point time correlations. GAD-EL-HAK and CORRSIN
/9/ used a jet grid to improve the flow homogeneity. At last, we must mention the works by TSUJI /10, 11/

end KELLOG and CORRSIN /12/ who used rwo successive grids to produce turbulence with perturbed energy
spectra.

The d case of h flow without mean velocity gradient is the return to isotropy of
anisotropic turbulence. The :urbulence anisotropy can be due to the grid but is often enlarged through a
distorting duct. At the end of the distorting duct, a constant area duct in which there 1s no mean reloctir:
gradient is placed (figure 2). Experiments show that the turbulence decays in absence of mean velociry
gradient. The REYNOLDS stresses are then governed by the equation :

du Jdu!
a& <uu>-<L{—+—1]>—2v 5———1>

and the rdle of both the viscous term and the pressure-strain correlations is to decrease the flow aniso-

tropy during decay. Such experiments have been conducted by UBEROI /13/, TUCKER and REYNOLDS /14/, GENCE
and MATHIEY /15/, CHOI /i6/ or LE PENVEN et al ,17/.

3 <u'u'> + U

In the presence of mean velocity gradients, the transport equation for the turbulent kinetic
energy reads :

1
3= q? U au' du!
31 2 2 i i
=g+ U, ~ = - <u'u'> = - v <___ 2
ot 2 L axi 1 j J axj ij

The first term of the RHS represents the production of turbulent kinetic energy by action of the
mean velocity gradient on the REYNOLDS stresses. As the REYNOLDS stress tensor is symmetric, only the sym-
metric part of the mean velocity gradient acts to produce turbulent kinetic energy, f.e. strain produces
turbulent kinetic energy while rotation does not. So turbulence submitted to solid body rotation can only
decay. Turbulence submitted to solid body rotation is an interesting flow for two reasons : on the one hand,
rotation exists in a large variety of flows such as geophysical flows or turbomachinery and, on the second
hand, it is a very simple homogeneous flow with mean velocity gradient.
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Experiments were first conducted by TRAUGOTT /18/ in the flow betwezen two concentric cylin-
ders. Flow is set into rotation by an impeller at the entrance of the rotating annulus test section.
IBBETSON and TRITTON /19/ moved two perforated plates into & rotating water tank to generate the tur-
bulent motion and then studied the time decay of the turbulence. Unfortunatoly, homogeneity conditions
do not seem to be fulfilled in their experiment. HOPFINGER et al /20, 21/ have done an extensive study
in a rotating water tank. Turbulence is produced by a vibrating grid at ' .e boctom of the tank and dis-
tance from the grid is identified with time of evolution of the turbulence. The most extensive experi~
nents have been conducted by WIGELAND and NAGIB. The air flow is get into rotation by passing through
a rotating honeycomb and, downstream in the rotating test section, turbulence is generated by 2 grid
(figure 3). Despite important boundary layers, there remains a central core in which homogeneity is
satisfied in all the test section. Tests have been done for vacrious grids, streamwise velocity and
rotation rates. A similar experiment, with a larger and longer test section, has been performed at ONERA
by L. JACQUIN /112/.

1.4.3. Plane strain

The next class of homogeneous flows is gtrained flows. Such a flow is energy producing, so that
no term can now be suppressed in the trausport equations for the turbulent REYNOLDS stresses and the tur-
bulent kinetic energy. Energy can be decaying or increasing according to the balance between production
due to the meanstrain and dissipation by viscous effects, i.e. grossly to the ratio between the strain and
turbulence time scales.

The simplest strained flow is the plane strain in which turbulence is compressed in one direc-
tion while expanded in the other. Plane strain can be obtained with constant area duct of evolving plan
form (figure 2). The form of the duct to produce a constant strain was studied by TOWNSEND /23/ who per-
formed one of the first experiments. Further experiments have been performed by TUCKER and REYNOLDS /14,
24/, MARECHAL /25/ and GENCE and MATHIEU /26/. An interesting feature of this last experiment i{s to im-
pose successively two plane strains of different principal axis (figure 4j.

1.4.4. Three-dimensional strain

Plane strain is just a peculfar case. More generally, strained flows can be expanding in one
(resp. two) direction(s) while compressing in the other two (resp. one) directions. The form of duct which
produces such mean velocity gradients has been studied by REYNOLDS and TUCKER /24/ who performed several
three-dimensional strain experiments. Other experiments, for axisymmetric strain, i.e. having two equal
compressions, have been performed by UBEROI et al /13, 27/, RANJEE et al /28, 29/ or TAN ATICHAT /30/.

1.4.5. Shear

As shown previously, homogeneous flow can be obtained for any combination of a plane strain and
a rotation, the axis of which is normal to the plane of strain. A peculiar case occurs when the strain and
the rotation are equal, purely sheared flow is then obtained. Shear plays an important rdle as it occurs in
a lot of practical, inhomogeneous flows such as boundary layers, wakes ..., so it has been widely studied.
Various devices have been used to generate a sheared flow. ROSE /31/ first used a grid of varying solidity
to produce such a fiow. Later, he used a honeycomb with cell axes parallel to the flow direction and va-
riablecell length as a shear generator (figure 5) /32/. CHAMPAGNE et al /33/ used an .ray of parallel,
equal width channels with adjustable internal resistances made of screens (figure 6). This apparatus was
later used by HARRIS et al /34/, TAVOULARIS et al /35, 36/ while MULHEARN and LUSTON /37/ used a varying
solidity grid.

In the first experiments of ROSE, MULHEARN or CHAMPAGNE, the shear was weak, the energy produc-
tion did not balance the viscous dissipation and the turbulence decayed. In the experiments of HARRIS or
TAVOULARTS, strong shear is obtained and the turbulent kinetic energy increases.

1.4.6. Strain * rotstion

Shear is just a peculiar case of the combination of a plane strain 4 2 rotation. However, the
combination of a plane strain and a rotation of differsnt strenghts has been uscdly studied. SREENIVASAN
/38/ added a distorting duct to a sheared flow experiment to study the influence of extra rate of strain
on sheared turbulence. Another experiment with various strain/rotation ratios is under development at ONERA.

Readers interested in homogencous turbulence exneriments may also look at the review papers by
FERZIGER /39/ and GENCE /40/.

1.5. Reduction to a time problem

The continuity and momentum equations in a moving reference frame read :

an .o
&y
W, . W . 22 ~ 3%y
i i w* dr 1 3% i
=== +U, —==+2¢€ WU ~Z=-4+T  =-= + Ve
3t % axi ipq p g 2 Bxi el p 3xi axzaxl

vhere w_ are the components of the rotation of the moving reference frame ; w, its modulus ; r, the

distance between the considered point and the rotation axis ; € {412 the alternating RICCL tensor and g0
the entrainment acceleration term due to the translation of the r£¥erence frame along the x, exis. ¢

If the REYNOLDS decomposition is applied in this moving reference frame, the equations for the
fluctuation read :
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1
3u! du! 32%u! 3Y
4 1 1y 5 ,[ i ] 3 " 0t
==ty e =Rt vy el ==+ 2w, ] - T (uiu] - <ujuld)
e %, o]tV Egan T UaliE, 1]~ o (T Y

The equations for the fluctuation are thus the same in a2 fixed reference frame and in a moving
reference frame 1f the rotation of the reference frame fs added to the mean velocity gradient, in order to
recover the mean velocity gradient which exists in the fixed reference frame.

Therefore, the evolution of homogeneous turbulence can be studied as well in a fixed reference
frame as in a moving reference frame.

For a mean flow without velocity gradient, a reference frame moving with the flo. 4as suggested
by G.X1. TAYLOR, is a convenient reference frame to study the evolution of the turbulent motion. The space
evolution problem is then reduced to a time evolution problem.

When there exist velocity gradients, a reference frame moving with the mean flow along a selected
streamline is still a good candidate. The mean velocity field can be written as :
-0+ E,-& X
L 2 axm -}
where U° s the velocity of the origin which is assumed to be conveyed by the mean flow along a stream-
line, For the sake of simplicity, the reference frame is translated and not rotated. The momentum equation
then becomes, for homogeneous turbulence :

U

t 1] v L . ) 1
3\1i o 3u1 1 B 32\11 , 3U1 auiuz 9U£ Bui
t Y% 30 "o e, T Vixex, ~ Y% 8%, T ax, - *mix_ 3%

3 1 29% 3 e = 9%5,

where the LHS is the time derivative in the moving reference frame, i.e. :

L] 1.4
e R TORN A S S v B W
dt oaxi axgaxg 2 3x£ 3)& ™ me axi

The problem is so reduced to a time evolution problem in a reference frame linked to the flow.

2 ~ SPECTRAL APPROACH OF TURBULENCE

2.1. Introduction

Standard models of turbulence only deal with one-point statistics such as the REYNOLDS stresses
or the turbulent kinetfic energy. One-point statistics cannot give direct information about the characteris-
tic turbulent length scales. To get information about these length scales and to know how eddies of dif~
ferent sizes contribute to the rurbulent motion, one has to look at multi-point statistics. Lealing with
high order, multi-point correlations rapidly become cumbersome and even inextricable. Two-point correla-
tions are sufficient to get information.

As pointed out by BATCHELOR /41/, FOURIER analysis is a suitable tool to bring into cvidence the
role of the different length scales in a turbulent motion. CRAYA /1/ derived the equatfon for two-point
correlations and then transformed it in FOURIER space. We shall prefer to immediately FOURIER transform the
NAVIER equations to derive more easily the governing equation for any statistics in FOURIER s,ace.

2.2. FOURIER transform

The FOURIER trounsform of a function f(x) is defined as :

B - —,(2,‘,) Jff(z) clkx gy

where x is the position vector in physical space and k the wave vector. Reciprocally, the function £(x) can

be obtained from its FOURIER transform as :
£() -I i 'kX a3

Frcom the definition of FOURIER transform, it is obvious that, if a i1s a constant :
~ -
a f(x) = a f(k)
Moreover, if f is real : - N
£(- k) = £5(x)
vhere the asterisk denotes the complex conjugate.

Two other important properties of FOURIER transform can be found by looking at derivatives. From

the Jefinition of deravatives, it can be easily demonstrated that :

A
3f(x) -
'a—x:— =i km £(k)
LYY —~
LIS X, f(x)
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At last, the FOURIER transformation changes product in one space into convolution in the other
space. The FOURIER transform of a product then reads :

N - o~ - -
faw -Feg-[[Hw s 6 k-2 9 ey

where § is the DIRAC distribution & (k) = -(2—:‘)-31 ikx d%x which is zero vhen its argument is non zero
and infinite when its argument is zero in such a way as to make :

L om0 g SRR KTEE F}

fo o
Ye shall use the incorrect, compazted rotation :

1

N “  a
£ g(k) = I £(p) g(k - p) d%p

For the sake of simplicity, we shall now omit ~ to indicate FOURIER transform. The presence of

space coordinates x or of wave vectors k is assumed to be enough to know whether the equation is written
in physical or FOURIER space.

2.3. FOUR{ER transform of the equations for the turbulent motfon

The turbulent motfon is ruled by the continuity and momentum equations. The continuity equation :

du}
~3 .0

Bxi
is easily FOURIER transformed as :

'. '-
1)1’.111 0 or l:’_u1 [

This means that, in FOURIER space, the continuity equation imposes to the velocity ficld u(k) to be
in a plane normal to the wave vector k. This property is often used to simplify calculations.

We have expressed the momentum equatfon for the turbulent motion as :

L] L] L P v
e SO AL N S, T
dt P &:1 axlaxl £ sz axl ) axm ax”

With the sbove mentioned propertics Of the FOURIER transforaation, this equation can be written
in FOURIER space as :

du! £}

_i...gk 2:_\,]3'__1'-1;‘ ¢! (k - p) ul(p) 4° +iu_"._3_( ')
&t 10 S T g Juilk - B up(e) Sp + 5 i~ (g vy
m m
The last term of the RHS cau be developed as :
9y g su!  3U, £ du}
ity WO TP e AL St TP B
o %W T R A TR S TR RO
= w m n n m n

as the mean velocity gradient satisfies the continuity equation.

A POISSON equation for the pressure can be obtained by taking the divergence of the momentum
equation (i.e. multiplying by 1k1). With the help of the continuity equation, the POLSSON equation reads :

. av
0=k B2 -5’-‘;‘ u + kikzj ujlk - p) u(p) &

In physical space, the pressure at a given point x can be obtained, with the help of the POISSON
equation, as an integral of the velocity field over the whole space. In FOURIER space, on the other hand,
the pressure at wave victor k can be expressed in terms of the velocity rields u and u f u at wave vector k.
The pressure can tharefore be said local in FOURIER space.

The rble of the pressure term can be eniightened by looking at the momentum equation written in
compact form :

B.
A1 +1 k1 ) 0
where Ai stands for all the other terms. The POISSON equation now reads :

*
2P,
kiAi‘fik P 0

If the pressure is eliminated, the momentum equation can be rewritten as :

WU G

k k. k :
i by -
IR PR PR =) YA RYEL
The tensor A“(E) corresponds to the projection on the plane normal to the wave vector k as .

Q (k) k, = A (k) “a 0. g'h continuity equation imposes to the velocity vector u(k) to be normal to
T af X

the wave vestor k. The terams = and vk’ui satisfy the continuity constraint while the other terms %% u'

3U 3ku' and u @ u do not.
ax 3k
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The pressure term projects all these tcrms on the plane .
normal to the wave vactor k ; Lhe ole of the pressure U
is to ensure continuity. - .
1KD
du/at
/

The momentum equation can be rewritien by eliminating the pressurc term. This can be done efther
by taking th: pressure term from the POISSON equation and replaciig it in the momentum equation or directly
by multiplying the momentum equation by A (k). The final formof the momentum equaticn reads :

a! 3y k k, U U, 9k,ul
~L I | 1 AT T ' - s
AR S S A ‘E'lﬁz Nt T ke ty® 1“3(‘-‘ » v (p) &p

The advantage of this form for the momentum equation, with pressure term removed, is that the
velocizy field is now the ouly unknown. The pressure field, if needed, can be derived from the velocity
field with the help of the POISSON equation.

The womentum equation can be written, in symbolic form, as :

AN S SRR I ).
(:h:+\)x)xi DU(E) u'3x+3x ak-lk uﬁu}

By taking the divcrgence and using the relation kiAi = 0, we obrain :

3
(1+v;-2) kou! =0
dt 171
1f the flow ficld initially satisfies the continuity constraint, the solution of the xromentum
equation with pressure term removed will satisfy the continuity constraint at all times. The above form of
the momentum equation is thus the only equation to consider as it includes the continuity condition.

2.4. Linear and non linesr effects

The terms involved in the momentum equation can be separated into two distinct classes. If the
last term is removed, the truncated momentum equation reads :
3 dul(k) 3U
3 ) 1k
30 U@ F VIR =gtk e
» n

&

k. k
- g;f w+ 2 - = wmw
£

In this truncated equation, only the velocity field at wave vector k appears and all operators
are linear cperators. The influence of the viscosity and of the mean velocity gradient can therefore be
called linear effects. These effects only involve the velocity field at the given wave vector.

2 4y I “5(5 - B u(p) d® reprecents the action of the turbulent
motion upon itself. According to the product under the integral, it will be called non linear effect. An
important property of this convolution integral is that it links the evolution of varfous modes. The flow
field at wave vector k interacts with all wave vectors p and q such as k = p + g. These interactions are
B called triadic interactions. The set of wave vectors p and g which can form a
triangle with wave vector k is a restricted set. According to triangle relations,
A /_ their wmodulus, i.e. the wave numbers, must satisfy the inequalities :

p+qzk 2 |p-aqf

vhere the equalities are satisfied when the triangle degenerates into

a line segment. The wave vectors which can contribute to triadic
interactions with a given wave vector must therefore lie into a semi-
infinite rectangle limited by the lines k = p+ q, k= p -q, k =q - p.

The convolution term - 1 k, 4. (k)

It must be noticed that, according to the POISSON equation, the pressure term involves linear
and non linear efrects.

The momentur equation has been split into three terms, the viscous and mean velocity gradient
terns which correspond to linear effects and the non linear turbulence-turbulence interaction. The charac-

-1 b1

teristic time scales are (\k?) for the viscous effect and [ 3; for the mean velocity gradient action.

As concerns the turbulence/turbulence interaction, a characteristic time scale can be formed with the
energy spectrum E(k) we shall define later and the wave number which are the basic parameters. Dimensional

analysis gives a time scale of the fornm (k’E(k))_llz. With these time scales, the respective role of the
three effects can be coumpared.
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In the absence of mean velocity gradient, only the viscous and non linear effects are to be com-
pared. The time scale ratfo readsv £ The viscous effect 1s the leading effeci vhen 1 is swall compared

to the fluid viscosity, i.e. vhen the turbulent REYNOLDS number is small. This can occur st the end of the
decay process when the turbulent kinetic energy is decreasing towards zero. As the turbulence level is low,

E is small and the non linesr sffect is negligible when compared with the viscous effect. Another possibi-
11ty is to look at very large wave numbers. As the wzve number k increases, the ratio E/k decreasec, other—
wise the turbulent kinetic energy will be infinite. Therefore, at a given wavenumber, viscous effects and
non linear effects balsnce. Above this wave number, the flow is governed by viscous effects. Besides these
two cases, f.¢. low energy or high wave numbers, the non linear turbulence/turbulence fnteraction is the Jea-
Jding term.

3u.<1 In presence of mean velocity gradient, we vill only compare the mean velocity gradient time scale

f,—x) and the non linear time sc-le (k’E(k))-l . For a given turbulent field, i.s. for a given energy spec-
tyim, the balance will depend upon the strength of the mean velocity gradient.lf the velocity gradiemt is
weak, the linear effect only dominates for small wave numbers while, if the velocity gradient is strong,

the linear effect has a leading rdle over a broad part of the turbulent scales. The second case is known

as rapid distortion ; the mean velocity gradient time scale is smaller than the turbulence time scale and
the turbulent motion evolves only under the itcfluence of the mean velocity gradient This kind of behaviour
is however restricted to a short time period as the turbulence tends to adjust its time scale to the mean
velocity gradient time scales so that, in fine, linear and non linear effects will balance. However, thc
study of the rapid distortion plays an important role in turbulerce theories.

2.5. Moments

We shall now turn our attenticn to statistical properties of turbulence. Frum the REYNOLDS decom-
position of the flow into an average value and a fluctuation, it is obvious that <ui(5)> - 0.

The first interesting statistical varfable is the second order moment <u)(X) uj (p)>. According to
the FUURIER transform definition, it can be expressed as : -

1 -1k -
<u;(5) u3(2)> g < Iui(z) eTEX d’5 qus(z) e ipy d3y>

where x and y are independent varisbles, so :

ACIERR [ I wjm) ujp> HEXTRY gy a7y

The two variables x ard y can be replaced by x aud x + r. As the filow is homogeneous, the two
point correlation under the integral only depends upon the separation vector r, so :

Wik ui(p)> = '(-ZL,,\-‘ J <wjui> eTIRE 3¢ ! THERIX g3y 0 6k + p) (Tl),- f <ujui(x)> eTIRZ g3,

The homogeneity condition thus allows only a restricted gset of non zero second order moments.
For the sake of simplicity, we shall note then :
- ' []
¢gy() = <wp(p) uyk)> 6(k +p)

The tensor 0“ (k) can be interpreted as the FOURIER transform of the two-point ccrrelation
<ui(5) uj (x + x)>.

The continuity equation imposes : ki ¢1J(_l§) - kj ¢u(5) =0
The two-point correlation only depends upon the separation vector. Moreover, <ui(§) u;(z + P o
<“j (x) ui(g:_ - r)> and consequently :
50 = 0B
At last, the velocity field or the two-point correlation are real function, so :

0= B = 4@

These properties can be used to construct a simpler description of the second order moment tensor. ?
Following CRAYA's ideas /1/, we introduce a reference frame linked to the wave vector k to take advantage of
the continuity equation. We shall use a tri-orthogonal reference frame with basis vectors &, B and y; ais
parallel to the wave vector k. The two-point correlation can be expressed in this reference frame as :

TR AR T R

The continuity constraint imposes Pj = 0. anj -aJRj = 0 so that Qj and RJ can be expressed as : :

Qj'NlBj+S§ N

Rj-s'ej+N2 Yj
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The symmetry and reality constraints impose :

By(- B = N () = N %K)

- - - N %
Ny(= 1) = Ny = R*(K)
S(-k) = - s'(k) = - s*(k)
$'(~ k) = - 5(k) = - $'*(k)
so that the second order moment can be expressed as 3
%
¢ij(_k_) - N Biej + S %_Yj +§ v Bj + NZYLYj
where N and N, are real and even with respect to k while S(- k) = - S*(k) S can be real and, therefore,
¢ can be real only if <u H()> = <“1° (= x)>. This condition is fairly satisfied by grid turbulence. Thus,
1j(E_) oij(- k) = ¢j1(k) ¢ 1 *K), sooij(k) is real and symmetric.
The second order moment, wh.ch has a priori nine different components, has been reduced to three
irdependent variables with the use of a suitably chosen reference frame. CRAYA /1/ has proposed the use of

a reference frame linked to the wave vector and has derived all the algebra needed to easily use thys refe-
rence frame. This reference frame is given in Appendix A.

The interpretation of second order moment as the FOURIER transfcrm of two-point correlations en-
lightens the physical meaning of the wave vector. In homogeneous turbulence, statistics depend only upou the
separation vectors and not upon the location. Wave vectors are the reciprocal of separation vectors, f.e.
they are related to the size and the direction of the turbulent structure which contribute to the turbulent
motion. The study in FOURILR space is thus an analysis of the contribution of turbuleat structures according
to their sizes and orientations.

A similar analysis can be conducted for the third order moment <u} (k) ujg) ul(q)> /1/. Bere again
the homogeneity imposes k + p + g = 0 and this moment - 1n be interpreted as the FOURIER transform of three~
point correlation with respect totwo separation vector :Similarly, the third order temnsor can be reduced to
a restricted set of constants. We shall use the notatica :

1 <uj(k) u;(g) up(@)> = 05,(Reg) Sk + p + 9)

The continuity equatfon thus imposes :

(py +4qp) °iji(2' 9 - Pj °“1(2. = q °1j {2 =0

2.6. Evolution equatjon for the second order moment

BURGERS and MITCHER /42/ and CRAYA /1/ have derive] transport equations for the second and third
order moments. They first obtained equations for the two- ar. three-pcint correlations and then FOURIER
transformed these equations. A more convenient way, as proposed by CAMBON et al /43/, is to derive these
equatfons from the FOURIER transformed momentum equation. ‘the tra1<oort equation for the second order moment
is oktained by mult!plying the momertum equation for uj(k. by u (- k), multiplying the momentum equation for

(— k) by uy 1(k), adding and taking averages. It reads“'

! 33U 3u 3V_k
K3 - 1 . P Y 3. m
{5 6150 + 207 6 () by ® % 0330 T+ 2570 17 (kg 00,0 + Ky &, ()

+3u—“—3-(k ) +8,, (k) k [°z (p» k) &
axz 3, m O13'% 2418 Ky gy B &2

Byg00) Ky | 0 (pe 1) p

1he transport equation for the third order moment can be obtained similarly. As we shall not use
it in the gencral oasc, we rafer the reader o reference /1i/.

2.7. Connections with one-point closures

The use of FOURIER space enables us to get information on the contributions of eddies of different
scales to the turbulent motion. On the other hand, it leads to an increasing number of unknowns so that it
would require enormous computational time in complex flows.

One-point closures, dealing only with one-point statistics . physical space, are more suitable
to study complex flows. It is fmportant to know what moment to study in FOURIER space to obtain information
on the unknowns in one-point closures.

One-point closures are aimed at computing the REYNOLDS stress <ui 5) From the reciprocal FOURIER
transform, two-point correlations are obtained as :

[P -ikg
<ujul (0> -! 4 @ I o

. S
(U ST 4 S
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and so the REYNOLDS stresses can be derived, for zero separation, as :

The second order moment contains the information about the contribution of each wave vector to the
REYNOLDS stresses. The second order moments can be interpreted as the "spectrum" of the REYNOLDS stresses.
Their knosledge is a priori sufficient to derive useful information for one-point closures.

A variable used in most ome-point closure model is the turbulent kinetic energy % Q2 = i— <ujui>.
It is obvious that % q® =| 5 ¢;4(k) dk. However, it is customary not to look at the contribution of each

wave vector to the kinetic energy but to consider the contribution of each wave number. The energy spectrum
is then defined as an integral over thke sphere of radius k :

E(K) - 3 0y, dAG)
Il x|l=*

and the turbulent kinetic energy is thus obtained as :

1.2,
74 IE(k)dk

As the second order moments can be interpreted as the spectrum of the REYNOLDS stresses, it is
interesting to compare the transport equation for both quantities. With the homogeneity assumption, the
transport equation for the REYNOLDS stresses reads :

U 3y, v (9uy duj au' !
5 .o _1 - 4 B _1. 41> - —t 4
:l. J> <u£uk> <u5u"t> xk + < > l 3 ax > =2v 5% £>

From the relation between the REYNOLDS stresses and the second order moments, the time derivative
terns can be connected as :

2 <uiu3> “’—t 4y %k

and also : ( au 3
', __ - - - -—i
= ujurd> == —-1 - <ujup> a:q( Jl LI Hi. g 3xk] ek

which represents the production of turbulence by action of the velocity gradient upon the REYNOLDS stresses,
i.e. a kinetic energy exchange between the mean flow and the turbulent motion.

The connection between the viscous terms is obvious as :
(k) d%k

—2vet Ay - szz ®
X 1)

The contribution to the pressure strain correlation at wave number k can be obtained by deriviag

the presgure from the POISSON equation as :
P (k) ki 3111 “1“1
- =21 -E:&Z u! + -z ui(h -p u;.(g) da3p

The pressure strain correlation can thus be obtained as :
& —> -2t -‘Lr ¢, (0 &% - b N (2, W 4% &%k
j in' = = 3 fmi = =

Each term in the above equition is trace-free ; they redistribute the energy among the components
of the turbulent kinetic enerav. As the role of the pressure is to ensure the continuity constraint at the
wave vector level or, in other words, as the pressure is local in FOURIER space, the pressure strain terms
rcdistribute energy at the wave vector level. At last, it mus. be noticed that the contribution of the
pressure is twofold ; the first term is a linear term due to the action of the mean velocity gradient while
the second term is a non linear term due to turbulence/turbulence triadic interactions.

2.4, Iransrers

The connection between the second order moment equation and the REYNOLDS stress tramsport equation
bas brought into evidence the rdle of various terms in the moment equation. However, the terms
3y,
m_3 *
-a-x—z-sq (ln:m ¢u(}§)) and 612, ka¢£mj(2’ k) d3 + 611 km I °zn1‘2' k) d’g have not been concerned. As the

REYNOLDS stress transport equation can be derived from the second order moment equation by f{ntegration over
the FOURIER space, the integrals of these terms are zero. It is easily verified that :

]
J 5, (a 9y % =0

as k° ¢ n (k) tends tcwards zero when k becomes infinire, otheiwise correlation of high order derivatives
should be fnfinite in physical space. The physical meaning of this term will be detailed in the next chapter.
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The study of the other integral is more cumbersome and instructive. Let us start with the basic
term, i.e. :

6L£ L ui(g) u;(g) u3\£) SGL+p+gq)

In this term, the wave vectors p and q play the same rdle, so this term can be written in a

symmetric form as :

3 6k +p+ @ (ky uj(@) ullR) ul) + ik, ui() ui(@ uj(k)

If we now sum the three terms obtained by circular permutation of the three wave vectors, we get :
ko ui(@) ui(p) uj(l_s) + ko ug(p) ui(q) us(_l_c_)
Pp vy v (@ ui(p) + p, ui(@) u(k) ui(p)
q, ui(p) ui(k) u;(_q) + q_ ui(k) ui(p) u;(g)

The terms are now grouped according to the u; tern ; one of the three groups reads :

u(p) (k_ uj(@) uj'(_lg) +q uy(k) u; @)

and a symmetric group can be formed by permuting the indices i and j. Thus, from the continuity equation,
the sum :

u(p) (k ui(@) uj'(l_‘) +q ui(g) v_;(_ls))
is null as k + p + g = 0. Consequently, if we note :
1 - * 3
Tij(‘-" Q= S,k khj(p_. k) d&3p + gg kqus“j(g, k) d’p
7! 1
and Tu(l_h P 9 Tij(h. B Q)+ Tji(k. P 9
we have : Tij(k’ p gt Tij(g. 9 k) + Tij(g. k, p) = 0.
o
ThuS.J| 111(3, P> @) S(k + p + q) d3p d%k = 0, as supposed previously.

This part of the triadic interaction does not delete or create REYNILDS stresses ; it is just an
exchange of contribution to the REVNULDS stresses between wave vectors which form a triangle. We shall use
the term of detailed couservation to emphasize the fact that the conservation hoids for any arbitrary triad
of wave vectors.

The two terms we have first studied have zero integrals over the FOURIER space and do not directly
contribute to the REYNOLDS stress budget. These terms correspond to transfer of the REYNOLDS stress spectrum
between wave vectors, without creation or destruction of the REYNOLDS stress. They are called transfer terms.
The first term is due to the actionof the mean velocity gradient and is a linear effect. As will be shown
below, this term represents the drift of eddiec in the FOURIER space as they are distorted by thz mean velocity
gradient. The transfer due to linear effects ceals with neighbouring wave vectors., By contxast, the non
linear transfer concerns all wave vectors which can form a triad, 1.e. as shown previously, a band in FOURIER
space.

2.9. Conclusion

The study of the momentum equation has led us to introduce the notions of linear and non linear
effects to characterize the action of the mean velocity gradient upon turbulence and the triadic fnteractions
between turbulent modes.

The analysis of the transport equation for the second order moment has brought into evidence the
different ways this moment is altered. Production terms due to the mean velocity gradient create second order
moments. Pressure terms redistribute them among the components of the energy spectrum at a given wave vector
while transfer terms cause exchanges between wave vectors., Both pressure and transfer terms have linear and
non linear parts. At last, viscosity destroys the second order moments and converts the turbulent wmotfon into
heat.

The most striking difference lies between linear and non linear terms. Linear terms only involve
second order moments at a given wave vector. Non linear terms, due to the triadic interaction, introduce the
third order in the d order equation. An equation can be derived for the third order moment,
but the non linear term will now introduce fourth order moments and so on, ad infinitum. An infinite hierarchy
of equations can be constructed without closing the problem. Linear terms lead to a closed problem, the
golution of which can be obtained analytically while non linear terms rejuire modelling, Therefore, we shall
study these two problems separately.

e Aaet
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3 - THE LINER PROBLEM

3.1. Introduction

We have already seen that, if the mean veloclty gradient is strong enough, the non linear effects
are negligible with respect to the mean velocity gradient effect, The second order moment equation can then

be reduced to :
U v M

au
4 .- 3. e § . m 2
dc gy T 2VERGy = - by w, " Py T2 =, © (kg Gp5 + &y d9 + T, % (kg &49)

This simplified equation is known as rapid distortion model. It must be kept in mind that it is

valid over all the wave number range for only a short period of time as the turbulen: field will respond in

such a way that the turbulence time scale will become of the same order of magnitude as the mean velocity

gradient time scale and non linear effects will no longer be negligible.

Rapid distortion has already been studied by various groups. TOWNSEND /44/ and CAMBON /45/ pro-
posed to study the effect of the mean velocity gradient directly on the fluctuating motion., BATCHELOR /46/

gave the solution of the second order moment equation with viscosity term neglected for strained turbulence.

DEISSLER /47/ conducted numerical studies of sheared turbulence. COURSEAU and LOISEAU /48/ gave analytical
solution for turbulence submitted to plane shear or strain and tried to extend the method for third order

moments. LEE ¢t al /49/ guve an original solution for arbitrary strain. A recent review on rapid distortion

theory for irhomogeneous flows has been given by SAVILL /11l/.

3.2. Solution of the linear problem

For specified initial data, the above linear equation can be integrated by numerical means. Ana-
lytfcal solutions are howewer much more convenient for further theoretical studies.

We shall adopt the methodology proposed by CAMBON et al /45/ as it is more powerful. We shall just
bring into evidence the key ideas of this method. The reader is referred to the original papers /45, 50, 51/

for further details on the calculations.

The first point is to solve the linear problem not for a moment equation but directly for the
fluctuation equation. The fiuctuating fileld at a given time is expressed as a function of the fluctuating
field at the initial time, All moments can thus be constructed and developed in terms of moments at the

initial time. This method is more powerful thar the classical method which solves the linear problem

only for a given moment equation. The equation to be solved is the momentum equation for the fluctuating

motion with non linear terms discarded, f.e. :

du! U k,k, U ]
3 2,0 w o ut i i3 Uﬁ,_a
T PV Ky -y 3x2+2 X 5:&“'1“"'%51(“

302

du!
The second point is the analysis of the term< i ?Bk_ (klui). They are the FOURIER transform

i) U, du; x axm 0

of the advection tenn-§€-+ L TR in physical syace. In physical space, these terms represent the time

m 3x

(kqu})

derivative in a lagrangian reference plane, i.e. following a mean flow streamline. Similarly, in FOURIER space,
this term corresponds to a time derivative following trajectories in FOURIER space as eddies are stretched

and rotated by the mean velocity gradient. The advecrion process can be described by the deformation matrix

which links the coordinates of a particule at time t to their values at the time origine

xi(t) - Fi (t) xj (t = 0)

3
or, reciprocally, from the FOURIER transform definition

-1
ki(t) Fji(t) kj (t =0)
The deformation matrix is easily obtained as :

Fij(t =0) = §

13
dF X
Sl str @
t dng T A)

This deformation matrix is often used in direct simulations of turbulence to transform the eulerian
reference frame into a lagrangian reference frame (see e.g. ref. /49/ and /52/)

frame, the momentum equation reduces to :

du! k,k, & X
Sevey ;B B,
L %y
with v = o(Flke=0) keFlik(=0

In the lagrangian reference

The resolution of the above equation proceeds in two steps. The first step is the removal cf the
viscosity term. In the simple case without velocity gradient, the wave vector does not depend upon time and

the LHS can be rewritten as :

du! 2
i 2.0 -vk?t d
-EE-+ v k u e ac (e

ui)
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In the general case, the time dependence of the wave vector k leads to a more complicated form. The second
step is the use of a GREEN's function to solve the equation. The final solutfon reads :

vk, £) = exp (-V Vzn(t) kk) G (k, t) uj(l_L (t = 0), 0)

1]
where vln 1s defined as a time integral of a function of the deformation motion F while the GREEN's functfon
G is the solution of :

dc ki U v
i1 im m 1
3t 2T T, T %, ) S

with the initial condition G, (t=0) = A1 to satisfy the continuity equation. The use of the CRAYA's
reference frame simplifies the computation of the GREEN's function.

As the linear problem is solved for the fluctuating motion, all moments can be constructed. For
example, the second order moment reads :

O3 = exp (- 2v Voo ki) Gy (- k, £) 6y (k, ©) 9 (k (£%0))

The solution algorithm developed by CAMBON is very powerful as it can treat any mean velocity gra=
dient, any initial condition, and give information about any moment. Of course, solutions previously found
in simple cases asre verified by this method.

Let us finally mention some published solutions which can be directly used to test closures.
COURSEAU and LOISEAU /48/ gave the evolutioa of second order moments for an initially isotropic turbulence
submitted to strain or shear. Recently, LEE et al /49/ gave the evolution of the REYNOLDS stresses and vor-
ticity correlations for isotropic turbulence submitted to strain in terms of time series.

3.3. Examples of applications

Raptd distortion theory has been used by BOSCHIERC et al /53/ to study the effects of two succes=
sive plane strains on turbulence in order to design the experiments conducted by GEKCE and MATHIEU /26/.
They focused their attention on quantities which can easily be measured in an exper:iment, mainly the REYNOLDS
stresses <uiu'>. The REYNOLDS stresses can be represented by forming inmvariants, i.e. reference frame inde~

pendent scalars. The first invariant 1s the turbulent kinetic energy which is half the trace :

-;- q* - % (u'?> + <v'2> + <w'?)
The departure from isotropy of the REYNOLDS stresses can be characterized by the anisotropy tensor

defined as @ wlu’> 8

vwhich is a symmetric, second order, tracelesstensor. Due to the CAYLEY~-HAMILTON theorem, only two invariants
can be formed with such a tensor, f.e. :

11 = ¢x b? III = tr b3
where tr indicates the trace.

Rapid distortion theory does not account for non linear effects, so energy transfer and dissipation
are not included in the model. When viscous terms are omitted, energy is conserved ; when viscous terms are
included, the energy decay is poorly predicted at high REYNOLDS numbers as energy transfers are not accounted
for. Consequently, the evolution of the turbulent kinetic energy is badly predicted by the rapid distortion
theory, as shown on figure 7. However, the influence of the relative angle between two successive plane strains
is brought into evidence by the calculation. Moreover, the evolution of the anisotropy, which is less affec-
ted by the transfer, is qualitatively well reproduced by the rapid distortion theory. It must be kept in mind
that, in this experiment, the strain and turbulence time scales are of the same order of magnitude so that
rapid distortion hypothesis is not valid.

Another example desls with the study of turbulence submitted to a plane shear. In such 2 flow,
we are mainly interested in the non diagonal REYNOLDS stress <u'v'> due to the shear 3U/3y. Here again, the
rapid distortion theory is wnable to predict the REYNOLDS stiess ievel but gives a good estimate of the
time evolution of the anisotropy, when compared with experiment, as shown on figure 9.

4 - THE NON LINEAR PROBLEM
4.1, Introduction

As already mentioned, the equation for the nth order moment exhibits the (n + l)th order momeut
because of the nun linear terms. An infinite set of equations can so be derived but the problem cannot be
solved by analytical means ; modelling is required.

For the sake of simplicity, we shall restrict our presentation to isotropic turbulence without
mear: velocity gradients. The influence of mean velocity gradients on non linear terms has been recently
studied by CAMBON /45/, /50/ and BERTOGLIO /55/.

In this chapter, we shall just try to bring into evidence the various ideas used to tackle the pro-
blem. Readers interested in the clogure of the non linear problem may refer to the books of LESLIE /56/ and
LESIEUR /108/, the lcctures of ORSZAG /57/ and the papers of KRAICHNAN and ORSZAG.
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4,2, 1sotropic turbulence spectrum

Isotropic turbulence is rotation-invariant turbulence. All statistical properties dzpend only upon
the modulus of the s2paration vector, not upon its direction. As concerns the REYNOLDS stresses, the iso-~

tropy hypothesis leads to : 5.
vt 11
<u iu‘1> -3
As concerns the second order moment, the isotropy hypothesis and the continuity cinstraint give :
1

6530 = 58,,00 vkl

where U(||l_t ||) is the energy density on the sphere of radius k. The factor -;- iq used to have :
oy (0 = uclt k1D

and consequently : E(k) = 27 k? U(k)

The 1isotropy hypothesis highly simplifies the problem as the knowledge of second order moments
is reduced to the knowledge of energy spectrum which depends only upon the wave number.

Isotropic turbulence can exist only in the absence of mean velocity gradients. Strain elongates
eddies in one direction, compresses them in another so that the isotropy hypothesis is no longer valid. Simi-
larly, rotation introduces a preferred direction, the rotation axis and isotropy is broken.

Momentum equation, without mean velocity gradient, reduces to :

Ju!

__’_~ 2t = o ] - t 3 4
5+ vkiy) ik, ij(l_c)[ uj(l_c p) vl (p) &p
It is customary, and convenient too, to symmetrize the RHS ; the momentum equaiion can ther be 4
written as :
aui i
StV kzui -7y oK) I ui(l_t - uip ap 1

with
B g =k A () + Ky by0(k)

This symmetrized form has already been used to study the detailed conservation property of the
non linear transfer term.

4.3. Energy spectrum

The energy spectrum can be interpreted as the integral, over sphervs of constant wave number, of
half the trace of the second order moment. The evolution equation for the energy spectrum can be lirectly
derived from the second order moment equation. With the above symmetrized momentum equation, this equation
reads :

2 B + 2 vi? E(0) = (o) = JI Tk, p» @) d%p dA(K)
k=p+g

where T(k) is the transfer at wave number k due to the interactions with all wave vectors which form a tri~
angle. It must be roticed that the isotropy assumption implies that the detailed transfer T(k, p, gq) de-
pends only upon the magnitude of the three wave vectors k, p and g, not upon their direction. The integral
extends upon all wave vectors p and q and over the sphere of radius k, i.e. over all possible directions
for the wave vector k. At last, the detailed transfer can be expressed as @

T 2o D =3 Iy 4k p) (ithk=p+g)

where Im stands for imaginary part of the complex variable. It must be kept in mind that this detailed
transfer conserves energy, +iz :

Tk, 2» O + T(g ks p) + T(p, g, k) = O

If viscosity is turned off, the energy spectrum evolves only under the influence of he transfer
term. The transfer term does not create or delete energy so that the kinetic energy is conserved. If the
energy is initially concentrated in a narrow band, triadic interactions will immediately redistribute this
energy to all wave vectors which can make triadic interactions with an energy containing mode, i.e. triadic 1
interactions will redistribute this energy over all the space of wave vectors.

We shall now imagine that there exists a maximum value for the wave number, i.e. a minimum value
for the size of the rurbulent motion. This kind of situation seems to be difficult to realize experimentally 3 j
but is easily treated by numerical or analytical means. The rSle of the transfer is then to share energy
amcng all possible modes. After a sufficient time, a steady state is reached in which energy is uniformly
distributed over all modes. The energy density U(k) is then constant and the energy spectrum E(k) = 2nk?U(k)
behaves as k*. The density can be found from the knowledge of the kinetic energy :

L2 [ max a2 :
54 L E(k) di = 013U
%
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When the fluid is viscous, which is the real case, the evolution of the energy spectrum results
from the balance between transfer and viscous effects. The role of viscosity is to dissipete turbsulent ki-
netic energy into heat while the rdle of the transfer term is to redistribute energy among all the modes.

The analysis of the orders of magnitude of Loth terms has shown that, tor large euough wave numbers, visco-
sity plays the dominant rSle. The order of magnitude of the wave number where viscous effects are important,
can be obtained from the dissipation rate € and the viscosity v. Dimensional analysis shows that this wave
number, known as the KOLMOGORCV wave number, must be kD ~ &f; 1/4 .

Let us now suppose that eners’ is injected, at a constant rate €, in an hypothetic isotropic manner,
at a wave number small compared to the JOLMOGOROV wave number. Energy is distributed among the wave numbers
by the non linear transfer and dissipated by viscosity, mainly at higher wave numbers. After some times, an
equilibrium energy spectrum i3z fund ; energy injected at low wave number is dissipated into heat at high
wave numbers. Between the wave nudbers where energy is injected and the range of wave numbers where it is
dissipated, there may exist a range of wave numbers where viscosity plays licttle rdle and where the rdle of
the transfer is to "convey" the energy from lower to higher wave numbers. 1lhe spectrum in this region depends
upon the wave number and the energy injection rate. Dimensional analysis shows that the energy spectrum reads :

E() = K_ 213 53

This spectrum law is known as KOLMOGOROV spectrum or inertial range spectrum. This law has been
derived for a stationary sclution, in a region where viscous effacts are negligible. The equatioa for the
energy spectrum then reduces to T(k) = 0, i.e. in this wave number range, the non linear energy transfer
does not input or output energy ; the energy injected at a given wave number by some triadic interactions
is extracted by others. As energy transfers ire mainly efficient between structures of similar sizes, i.e.
close wave numbers, energy cascades down the inertial range from the low wave number r37§e in which it is
injected to the range where it is dissipated by viscous effects. The existence of a k~3/3 inertial range is
difficult to bring into evidence in usual homcgenecus turbulence experiments because the turbulent REYNOLDS
number is low and this range, when it exists, is small. However, in geophysical turbulent flows where REYNOLDS
numbers are very large, the inertial range can extend over decades of wave numbers. Experiments performed by
GRANT et al /58/ in a tidal channel have brought clear evidence of the existence of such spectrum. Such
experiments can be used to evaluate the constant Ko ~ l.4.

The KOLMOGOROV law cannot be valid over all the wave number range, otherwise the integrals :

l 00
3 Q% = [ E(k) dk
[+]

(-3
€ =2v j k2E(k) dk
(]
which give the turbulent kinetic energy and i{ts dissipation range both diverge. Viscous effects dissipate
energy and damp the energy spectrum at high wave numbers. It can be noticed that, as fluctuation derivatives
correlation read :

'y v © 2
<T-3-‘->- LknE(k) dk

the energy spectrum must be stceper than any k™ as k tends towards inf{inity, so that these correlations
should be finite. The divergence of the energy integral is due to the behaviour of KOLMOGOROV law when the
wave rumber tends towards zeyo. In the vicinity of zero, the energy spectrum can be expressed in TAYLOR
series as E(k) = AkS + o(kst ). The convergence of the energy integral imposes 8 > -~ 1. The study of turbu-
lence decay iwposes 1 S s £ 4 [59/.

The complete figure of the energy spectrum now emerges, with a growing ' spectrum, at low wave
number, a maximum corresponding to energy-containing eddies, an inertial range along which energy cascades
to be dissipated in a viscous range where the spectrum falls rapidly. Experimental measurements, such as
the ones performed by COMTE-BELLOT and CORRSIN /3, 4/ or VAN ATTA and YEH /7, 8/ confirm the image (figure 1l1).
The energy transfer can alsc be measured. The figure 12 shows the rdle of the energy transfer which removes
energy from the euergy-containing range to the dissipative range. It must be noticed that, in tnis experiment,
the REYNOLDS uumber 4s too low, no inertial range exists and the energy transfer 1s null only for one wave
number.

The existence of an inertial range only at sufficiently high REYNOLDS number can be easily ex-
plained by considering a simplified energy spectium made with two power laws : LogE

s
k < km E(k) = A km

2/3  -5/3 :
k> km E(k) Ko € km ;
which mimics real energy spectra. The turbulent kinetic energy reads : ; T
o9
o« & @
1 2, BRI S 2/3 . -5/3 _ __1 stl 3 2/3 ,~2/3
74 J; E(k) dk Ak +Jkl(°e km '—s+lAkm +2Koe km
- 1 3 2/3 . -2/3
[s it 2] X, € kp
1 38+ 3/2 €
go that km [Z(s D Ko] (1 2372
3 99
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On the other hand, the KOLMOGOROV wave number, which s characteristic of the dissipstion range
(
reads : k, = -Eé /4 so that the ratio :
G . & g3y32
b [3ses  ja2 29 Q36
km 2(s + 1) oJ (CV)3,“ =~ e

2y2
where Re - Sg;%r is the turbulent REYNOLDS number. For low Reynolds numbers, the energy-containing range

and the dissipation range overlap and, as the REYNOLDS number increases, these two ranges separate and
leave room for an inertial range in between.

4.4, Simple noa linear models

The first models proposed to estimate the non linear effects tried to model directly the energy
transfer T(k). KOVASZNAY /60/ proposed to express the energy transfer at wave number k directly .n terms
of the energy spectrum at wave number k. He considered the enmergy flux at wave nurber k, i.e.

k

W -I - T(k) dk
o

and expressed it as :

"
W= C K372 312
which is such that the energy flux is constant and equal to € in an inertial range provided that C, = K;BIZ.
KOVASZNAY mentioned that this coefficient C, could be REYNOLDS number dependent. Such a model is clearly
too simple to account for the dynamics of c§1ad1c interastions. For example, the influence of a local dis-~
turbance in the energy spectrum /10, 11, 12/ cannot be accounted for.

Let us now consider the case of a spectrum with a scale separation such as the one depicted on
figure 13. The small eddies have little energy and small scales when compared with the large eddies. They
can be viewed ac a Brownian motion superimposed on the large eddies. Su’“ a Brownian motion extracts energy
from the large scales through an effective viscosity. By analogy with the viscous effects, this energy ex-
change reads :

ky 1
L - T(k) dk = 2v_ k2% E(k) dx
X €

0 0

HEISENBERG /61/ proposed to cxtend this formula to continuous energy spectra. He assumed the ef-

fective viscosity to be wave number independent and expressed it ir terms of the energy spectrun of the sma.l

scales. The final model, dictated by dimensional analysis, reads :

k k I
W(k) -I - T(k) dk = € ,f 2k2E(k) dk Jk /Eg dk
[ o

21 .=3/2
with CH 2 Ko .

Such a model links the energy transfer at a givan wav:c number tc the energy spectrum over all the
wave number range. The HEISENBERG model can give fairly good predictions o isotropic decaying turbulence.
However, it is unable to give information about the detauiled energy trinsfer T(k, p, q) and it is difficult
to extend to anisotropic flows.

Some other simple models have been proposed using similar approaches. Recently, CROCCO /62/ re-
visited KOVASZNAY and HEISENBERG models to improve them by comparison with experimental data.

4.5. The direct interaction approximation

The best way to introduce the DIA may be to cite ORSZAG /57/ : "The direct interaction approxi-
metion, developed by KKAICHNAN, is the only fully self consjatent analytical turbulence theory yet disco-
vered. While its predictions do not accord with experiment at very high REYNOLDS numbers, the insights that
1t has given into the nature of turbulence are many and important. It is the only theory to account for non
linear scrambling and stochastic relaxation in s fundamental way."

Tke DIA was proposed by KRAICHMAN /63, €4/. However, we shalt adopt here the presentation proposed
dy LESLIE /56/ and extended by MATHIEU and JEAWDEL /65/. Let us consider isotropic turbulence submitted to a
stirring force f£. The momentum equation reads :

du; ()
dt

+ v kzui(_lg) - - %Aijz(g) I uj(l_c - vy(p d%p + £,k t)

The first idea is to introduce “he infinitesimal unit response tensor G which links the variations
of the velocity field to variations of the driving force ¢

t
6u1(£, t) = I_”cin(g. t, t') 6f (k, t') dt’
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The equation for this tensor can easily be derived from the NAVIER equation as :

d z - - -
3t Gynks £ £ +1 K5 G (K £, €7) i A“i_(k)l uyk - p) G (p) d’p+ & 8t ~t")

The problem is now to solve both momentum and response tensor equations. For this, the velocity
field and the response tensor are developed as TAYLOR series :

u=u’+ Xul+...

=6+ acl+ ...

where A is a small paraneter associated to non linear effects. The tum and r

P tensor are thus
similarly modified as :

d
dr

:_c+“) G»* AG +38(t ~t')

where symbolic notation is used now for the sake of simplicity. The equations for the first two orders read :

+0) u= Juu+f

d o ]
(:? +a)u =f

d

(]
R“’)G = §(t - ")

d 1. o 0
(d: +a)u 2uu

d 1 0 .
(dt +a) G Gu

The first equation gives the veiocity field u® only due to the driving force and the viscosity.
The second equation gives the response tensor G which does not depend upon the flow field realization and
i statistical.y sharp. This response tensor G° can be used to solve the two followiag equations :

ul = 2 6%%°

¢! = ¢%%°
so that the first two orders are completely determined.

Statistical variables can a... be obtained for the first two orders expansi.n. For that, the ve-
locity field u® is assured to have a Gaussian distribution. The third order moment reads @

<vuu> = <% + A 5 (ulu°u°> =2 A2 6° wCu® <%

as, for a Gaussian distribution, third order moments are zero and fourth order moments decompose as pro-
ducts of second order moments. Moreover, as G° is statistically sharp :

<Gu> = <6%% + 1 6O + A <6 = A 6%6° wu®
The final step is to restrict the TAYLOR developument to order one, to put A equal to one and to
identify the zeroth order terms u® and GO with the velocity field and the response tensor. The DIA equations

are so obtained ; they read :

(é% +a) <> = I G <wud> <uuwd

(% +a) <G> = <G> <G> <uw> + §

or, in a more complete form :
it
G+ K UGk, € el 2"“ kpa b(k,p,q) dpdg || G(k, €' = €") U(p, € = ) Ula, € - ") de”
- O

- ft G(p, t = t") U(q, t - t") U(k, t' = t") dt"]

t
(§+ Vk?) G(k, t - t') == 2w” kpgb{k,»,q) dpdq f'c(p, t - t") U(q, t - t") G(k, t" - t')de"
N +8(t - t")

whexe b(k, p, q) is a coefficient which depends upon the geometry of the triad.

The last statements in the derivation of the DIA, while standard in theoretical physics, may
seem quite crude. We shall try to justify them later.

The firs. important information given by this model 1s that the third order moment can be ex-
pressed as :

Cugu> = 2 I G<uu> <uud

i.e. third order moments can be expressed in terms of second order moments and of a response tensor G
which measures the time coherence of the turbulent field. This property will be used later.
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With the sabove expression for the third order moments, the contribution of each triad to the
energy transfer can be analyzed. If the geometrical coefficient b is assumea positive, which is true for
the major parts of the triads (ORSZAG /57/), the above energy equation shows that the action of wave numbers
p and q 15 to inject energy at wave number k while the action of wave nusbers k and q is to extract energy
at vave number k. The final picture of triasdic interaction is thet two wave vectors give energy to the third
one in such a way that the detailed energy conservation is satisfied.

It must be stressed that the DIA equations are not only dealing with the energy density U(k, t)
at a given time but with the two-time energy density U(k, t - t') obtained from second order moments at two
different times. Therefore they are quite heavy to use as they lead to a large amount of variables.

At last, one of the most interesting teatures of the DIA equations is that they include no adjus:
table coef{ficient.

The DIA equations can be Justified by considering dynamical systems. NAVIER equations can be ap-
proximated by the following system :

d
3t Yy VY% DAL VY

where the A g must satisfy the constraint :

13
continuity Aijj -0
syometry Aijk - Aikj
detailed energy conservation Aijk + Ajki + Aklj =0

KRAICHNAN (1966) introduces the Random Coupling Model in which the sign of Aijk is taken randomly

from triads to triads while satisfying the above constraints. He showed that the DIA equations are exact
solutions of the Random Couplirg Model as concerns the correlations <YY>. The justification of DIA equa~
tions is discussed at length by LESLIE /S6/.

The above presentation has made the name Direct Interaction Approximation a little strange. It
nust be kept in mind that the model is obtained from a small parameter expression of the non linear term.
A given wave vector k interacts with wave vectors p and g such as k = p + g. These wave vectors p and g
interact with other wave vectors which form a triangle, these wave vectors interact ... and so on ad infi-
nitum. The truncation of the non linear term expression only accounts for "direct" interactions and neglect
"indirect" influence via multiple triadic interactions.

The main consequence of this direct interaction approximation is that the rdle of the larger ed-
dies is badly represented. The rBle of larger eddies is twofold : on the one hand, they exchange energy via
triadic interactions while, on the other hand, they advect smaller eddies. As this advection rdle is not
well captured by the DIA, the DIA equations are not Galilean invariant. One of the most striking consequen~-
ces of this failure i{s that the DIA equations lead to a k~3/2 gnertial range. KRAICHNAN /67/ proposed to cure
this defect by using a Lagrangian reference frame to automa:}cally account for advection effects. The for-
malism becomes heavier, but the model is able to predict k=3/3 inertial range and to give a value of the
KOLMOGOROV constant of 1.43 veryclose to rhe experimental value 1.40 measured by GRANT et al /58/.

4.6. The Test-field Model

To keep the advantage of the Eulerian reference frame, KRAICHNAN proposes to analyze the evolution
of a fluid blob in an Eulerian reference frame. A fluid blob is distorted by advection effects but this is
a "false" distortion as it makes no sense in a Lagranglan reference frame. On the contrary, KRAICHNAN con-
siders that pressure effects cause a 'real" distortion of fluid blobs.

To restore the Galilean invariance in an Eulerian framework, one has to account for the pressure
effects only and to eliminate the effect of advection. We have previously seen that the réle of the pressure
is to improve the continuity constraint by suppressing the compressible part of the velocity field, i.e. to
impose to the velocity field to be in the plane normal to the wave vector. The idea is then to use an hypo-
thetic field with a compressible part, i.e., a component parallel to the wave vector, to measure the rdle of
the pressure. This test field is advected by the incompressible field and pressure terms are discarded in
the test fileld transport equations to obtain a compressible velocity field. This test field is used to ob-
tain the response tensor G. The test field model is simplified by getting rid of all time mewmory effects Ly
a Markovianisation. This procedure highly simplifies the model but introduces a model constant to adjust to
partly restore the turbulence memory.

The test field model was first developed by KRAICHNAN /68/ with the help of a dynamical sys:iem
and extended to anisotropic turbulence /69/. Connection with other closures is studied in /70/. Validation
of the test field model by comparison with direct resolution of the NAVIER equations at low REYNOLDS numbers
is shown in /57/ and /77/.

4.7. Gaussian approximations

The tact that velocity fiuctuations arc close to a Gaussian distribution and the peculiar proper-
ties of moments of Gaussian variables have already been used in the formulation of the DIA. Here we shall
adopt a somewhat heuristic approach to derive a closure.
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?
! The NAVIER equation can be written, in symbolic form, as :
: du
H ) 2
' 3T + vk*u = uu
So that, due to the non linear term, an infinite hierarchy of moment equations can be obtained : 1
%E <uu> + 2vk? <uw> = <uuwd

a—?-. <uuu> + v(k? + p? + q*) <uuu> = <uvuuu>

I1f the velocity tluctuations were exactly Gaussian (or normal), the third order moments should

be zero and the fourth order moment should decompose as products of second order moments. As third order

ts are responsible for the non linear energy transfer, the energy spectrum would then decrease only
under the influence of viscosity.

MILLIONSHTCHIKOV /83/ and PROUDMAN and REID /71/ proposed the quasi normal hypothesis in which
fourth order moments are still assumed to decompose as product of second order moments but third order mo-

ments are no longer null to allow energy transfer. The equations now become :

% B_Qt <und + 2vk%<uud = <uuwd E
9 +
-g—t Cuuu> +v (k2 + p2 + q2) <uuu> = <uud> <uwd>

OGURA /72/ performed numerical integration of the above equations and showed that they rapidly
lead to negative values in the energy spectrum, which is unphysical. The reason, as pointed out by ORSZAG
L /73/, is that there is no damping in the third order moment equation, so that the third order woment can
{ increase indefinitely witiout reaching an equilibrium state. ORSZAG proposed to add a damping term in the 4
third order moment equation :

% <uuud> + v(k? + p? + q?) <uuw> = <uud> <uu> - n, +nr + nq) Cupu>

in order to limit the third order moment and hence the energy transfer and to avoid negative regions in the

energy spectrum. The solution of the above equation reads :

~(p, 4 p_+ t
(o, u, uq)

t
{uuu> = { <uw> <uu> e dt

Jo
with u =0 +v&?

where time O corresponds to an initial state when the turbulence is assumed to be Gaussian. To get rid of
the time integral, a Markovianisation process is proposed in which the damping exponential function is
supposed to vary much more rapidly with time than the second crder moments so that :

=y + u,+ uq)t

t ~(u, +p_+pit _
<uuu> = <uu><uu> ] e k P T 4 = ! £ <uud><uu>
o+ p 4+
o k P q
—r <uud<uu> for large t
T +
Hk "p Dq

Another interest of this Markovianisation is that it ensures realisability, i.e. negative energy
spectra can no longer be obtained. After some algebra, the equation for the energy transfer can be obtained

A as ¢ . A
3 -
2 B + DICE(K) = [ekpq BLI CE(pEQ) - PPEMOEW) dp

where the integral holds over all triangle interactions k = , + g. The geometrical coefficient, while expres-
sed in a different way, is of course the same as in the DIA equations, x, y and z are the cosines of the angles
respectively opposite to the wave vectors k, p and g. The damping
ccefficient ekpq is the one we have already obtained, {i.e.

ekpq - m for large t. ORSZAG /57/ first proposed J
an expr:e,ssiorli/gor the damping coefficient based upon local properties of thekenergy spectrun, f.e.
n, o~ k E''". The final form for the damping term proposed by ANDRE and LESIEUR /70, 74/ is :
{ neo - A{f pE(prap) /2 ~
4

vhere A is a constant connected to the KOLMOGOROV constant.

This rodel, based on a quasi normal approximation with an additional eddy damping and rinally a
Markovianisation, is called Eddy Damped Quasi Normal Markovian or EDQNM closure.

The above presentation of the EDQNM model leads to a phenomenological model obtained as an improve-
ment of the quasi normal approach based on physical ground., This EDQNM model can also be derived from a dynua~
mical system as proposed by LEITH /76/. A taird wey to analyse the EDQNM Model is to interpret it as a Markovian
version of the DIA in which the damping of the third order moments is no longer computed as in the DIA or the
TFM but simply prescribed. Connections between the EDQNM model and the DIA or the TFM have been analysed by
ORSZAG /73/, SULEM et al /70/ or HERRINGet al /109/.
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The EDQNM model is simpler to use than the DIA or TFM model and gives good predictions of the
turbulence decay as shown on figure 14 and in reference /75/.

Finally it must be mentioned that numerical methods to solve these equations have been proposed
by LEITH /76/ and improved by LESIEUR and SCHERTZER /59/ and later CROCCO and ORLANDI /78/.

5 - CoNCLUSION

The homogeneous turbulence assumption provides a framework in which the turbulence field can be
studied solely in presence of constant mean velocity gradients.

The study of the NAVIER equation in FOURIER space has brought into evidence the distinction bet-
ween the linear action of viscosity and of the mean velocity gradients on the turbulent motion and the non
linear action of turbulence upon itself.

The linear problem only involves contribution at a given wave ;actor and can be solved by analy-
tical means.

On the contrary, the non linear problem is open and modelling is requised. Although some simple
models can give good approximations for the energy transfer, analytical theories are needed to construct
models for the detailed energy transfer. The DIA was first proposed but this model needs a Lagrangian treat-
ment to be Galilean invariant. However, it is the only model to give infcrmation on time correlations. TFM
and EDQNM are Markovian models which only give information about one-time moments ; they are therefore easier
to use. The response function is computed in the TFM with the heip of the compressible test field and pres-
cribed in the EDQNM ; the EDQRM closure is thus simpler. All these models can be derived from dynamical sys~
tem and are interrelated ; so no empirical constant has to be introduced in the models.

As the linear problem is analytical while the non linear problem needs no constant tuning , the
second order moment equations in FOURIER space can be solved without tuning any constent with respect to
experiment.

Part 2 - APPLICATIONS OF TWO~POINT CLOSURES TO THE DEVELOPMENT OF ONE-POINT CLOSURES

1 - INTRODUCTION

In quite all engineering problems, one-point closures are used to reduce the amount of turbulent
unknowns to an acceptable level. The problem is then to evaluate the REYNOLDS stresses. The transport equa=
tion for the REYNOLDS stresses can be derived from the NAVIER equation as :

w |
Bty 3 5 u 3 _ ___ __i N 1 __i
3t <uiu >+ UE 3(1 <u j> - <u;u]'(> ax <uj k + > 2v < l‘)
+ 2= [ cututut> 3 <u">+< (u! 6, + ', )>
S 14 u> 1Yy i3k ik

where the LHS represents the total derivative of the REYNOLDS stress and the RHS the production by action
of the mean velocity gradient, the redistribution by pressure effect, the destruction by viscosity and the
diffusion. Often, only the transport equation for the kinetic energy is retained. This equation 1s deduced
frem the REYNOLDS stress transport equation as

31 21 3 (1 31 'y
JUARgE P-4 JEL- T § =P ~ 2 v & g2 ——
a:z“*“zaﬁz Pretn [z‘““n? Y 2T T T
du} dul
where F= - <ui j === is the turbulent kinetic energy production and € = Vv ﬁ;;i -;3> its dissipation rate

by viscous effects. To solve the kinetic energy transport equation, the dissipation rate has to be evaluated.
A transport equation for the dissipation rate can be deduced from the NAVIER equation. It reads :

Y t
S VLN B S N f A I, S W NP B
at 2 9% Ix d9x, 9x, X %, 3%, 09X axa Bxa
% X ) k ™4 2 ’&
L} t
azu <ul ﬂ){. \)._3— [_ <u! .a—ui.a_u£>-g< 'a_k>+..a_g
Bxkax k 3xL axk k x, Bxg [ Bxi 8)& axk

The REYNOLDS stress, kinetic energy and dissipation rate transport equations are the transport
equations commonly used in one-point closure models. All these transport equations are open and terms which
include new variables require modelling. In the REYNOLDS stress transport agquation, only the production term
does not introduce new variables, the pressure strain term, the viscons dissipation term and the diffusion
term require modelling. In the kinetic energy transport equation, only the diffusion term requires modelling
while in the dissipation rate transpert equation, all terms are unknown.

In the framework of homogeneous turbulence, the diffision terms disappear due to the translation
invariance of the turbulent flow. The use of two-point closures for homogeneous turbulence can only provide
information about the pressure strain correlation and the digsipation term in the REYNOLDS stress transport
equation and the first three terms of the RHS of the dissipation equation, Two~point closvres require no
turning of ewpirical constant and can be viewed as "exact" solutions. Of course, as modelling is needed for
the non linear terms, they are not as exact as numerical simulations of the NAVIER equations. However, they
directly give information about statistical averages and can be used at any REYNOLDS number.
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2 ~ APPLICATION OF TWO-POINT CLOSURES TO THE MODELLING OF THE REYNOLDS STRESS TRANSPORT EGUATION

2.1. Introduction

The two unkuown terms in the REYNOLDS stress transport equation are the pressure-strain term and
the dissipation term.

Following CHOU's idea /79/, the pressure can also, in physical space, be decomposed to bring into
evidence linear and non linear effects. The POISSON equatrion is obtained by taking the divergence of the
momentum equation as : a3
1 % %

and, with the help of the REYNOLDS decomposition, the pressure fgzuc:uation is given by :
Y, 3u} ufu' - <ufu'>
1 32pt i ol T )
_Baiax-zaxiax X, &
1771 177 1772

The pressure fluctuation is then deduced from the GREEN formula, which reads, far from boundaries :

p'(x) s ai ii N yuiui - <uiu'>‘
) 4n ax, X, 3%,9x%, J,ﬁ' lTx ~x'[i

Finally, the pressure strain term can be dccomposed as :

' u;-_
R _Z
<p ij ? 13,1 ¢1._1,2
where . 1 I ([a_ui] [ yu;u;‘] , 825!
i;,1 4 '()xJ x L om 3 x Tx = =x'[]

is the contribution of the non linear efiects while :

W ! 3u} a3x'
$, -l _ £ & == _1] > =
13,2 T Im oy o, Jx' Lo e - =T
is the linear part where the mean velocity gradient has been extracted from the integral under the assumption
of homogeneous flow. As these two terms correspond to different phenomena, they are usually modelled separately

2.2. Return to fsotropy

The study of the decay of anisotropic turbulence in the absence of mean velocity gradient provides
a good test case to study the non linear effects. Experiments have shown that the rSle of the non linear
pressure-strain term and of the viscous dissipation ir to reduce the turbulence anisotropy as the turbulence
decays. The REYNOLDS stress transport equation then reduces to, in a reference frame conveyed by the mean
flow 3

L cutus =

I U T Yyt %ya, T By
du! du!
- _ 1 3
t:ij 2v <3"; 3x;>

As the viscous dissipation is mainly due to the smaller eddies which are supposed to be nearly
isotropic, it is customary to assume eij =-2/3 61 €. LUMLEY and NEWMAN have proposed to model together the

non iinear pressure-strain term and the anisotropic contribution of the dissipation as :

4 cetuts w - _2
ac Uvp m by -3 8ye
, .1 S A !
where °1j s @ij,l + %1’]) = + 3 611 ¢ij(<uiuj>. € ,v)
They have shown that the function ¢ij can be reduced to ¢
- 2 _1

°ij 8 bij +y (bij 3 Giju)

with B = 8(11, 111, xx) Yy = y(1II, III, RZ)
- - 2 =
11 bubij 111 t;ijbjkbk1 b1j bikbkj
<uiu'> 61 (q%)2

where bij =- T - —3'1 is the anisotropy tensor and Ri = “dve the turbulent REYNOLDS number.

The problem is to determine the functions 8 and Y. The most popular model is due to ROTTA /81/ who
assumed a linear return to isotropy (B ~ 1, Y = 0). Recently, CHOI /16/ performed a large investigation to
"measure” the B and y functions over a wide range of anisotropy and REYNOLDS numbers.
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Direct numerical simulations of turbulence can be u :d to easily study different values of the
anisotropy invariants II and III but they are restricted to low REYNOLDS rumbers (e.g. /52/, /82/).
Figure 15 ghows the prediction of two simple EDQNM closures developed by BERTOGLIO /84/ and CAMBON /43/
which both compare favourably with experiments.

Two-point closures could be an interesting complement to direct simulations and experiments, in
order to stuay the return to isotropy process in situation that cannot be easily achieved by these two me-
thods as e.g. large REYNOLDS number or to study, at low cost, the influence of one parameter (REYNOLDS number,
total strain imposed before the return to isotropy phase, strain/turbulence time scale ratio, ...). Such a
study could easily confirm or infirm the LUMLEY and NEWMAN approach over a wide range of situations.

2.3. Linear part of the pressure-strain correlation

Rapid distortion theory holds when the turbulence is submitted to a strong velocity gradient,
when compared with the turbulence time scale. The non linear effects are then negligible and the REYNOLDS
stregs evolution is governed by the production term and the linear part or the pressure-strain correlation.

LE PENVEN and GENCE /85/ used rapid distortion theory to model the pressure-strain correlation.
They considered initially isotropic, strained flow. Using the approach of the linear proplem developed by
CAMBON /43/, they showed that the anisotroupy tensor can be expanded in time series as :

4 "u

- - 4 - = p2 - 2 3
byl = = 75 Bpt Zl[ Pim = 73 sm]" +0 (lpell

Y 3y
where D, 1is the deformation tensor 1 -—&-+ =21 and that the pressure-strain correlation can also be
Lm 2 axm axl

expanded as :
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The time can then be eliminated between the two expressions to obtain the proposed expression
for the pressure-strain correlation :
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All coefficients in the model are constants as the time series have been truncated to second order.
If the time series were truncated to higher orders, these coefficients will be functions of the anisotropy
invariants I1 and XIX (GENCE, private communication).

REYNOLDS /110/ also used rapid distortion solutions for initially isotropic turbulence submitted
to strain to improve the pressure-strain term model. Instead of looking directly at the pressure-strain term,
he studied the fourth order tensor agi which appears naturally as :

N ] )
%3,27 %y x,

and can easily be expressed in terms of second order moments. Properties of this tensor and realisability
constraints are advocated to reduce the number of independent coefficients. He first studied the standard

model (REYNOLDS /87/, LAUNDER et al /107/) in which this fourth order tensor is expressed as a linear func-

tion of the anisotropy tensor b and computed the only adjustable constant to be consistent with rapid dis-

tortion theory. As the so obtained model violates realisability constraints for two-dimensional turbulence,

he extended the model for the fourth order tensor to include quadratic terms and obtained the same model as

LE PENVEN and GENCE.

TG ol et s

et




— - - - - - Al - B 2

3-23

LECOINTE et al /86/ used CAMBON's analytical solutions to extend the above procedure to tempera-
ture variance and also sheared flows.

At last, LEE et al /49/ solved the linear problem for initially isotropic strained flow in an
original way and deduced time series which can be used to calibrate pressure-strain correlation models.

It must be kept in mind that rapid distortion is valid only for large strains but for very short
times compared to turbulence time scales. As time increases, non linear effects becoms important and the
expressions for both the anisotropy tensor and the pressure-strain correlation diverge from the ~~pid dis-
tortion solution. However rapid distortion theory can provide analytical solutions which must be sacisfied
by the pressure-strain correlation model for short time. This approach, restricted for now to isotropic
turbulence, could be extended to any initial condition.

3 ~ DISSIPATION EQUATION : PURE DECAY

The r8le of the various terms on the RHS of the dissipation equation is difficult to analyse.
We will prefer to try to model them together in various situations. The first use of spectral space to model
the dissipation equation is due to COMTE-BELLOT and CORRSIN /2/, {n the case of purely decaying turbulence.
The argument has been extended later by REYNOLDS /87/.

The basic idea is to use a simple shape to mimic the real shape of the energy spectrum. The
energy spectrum is defined by two simple power laws : LogE

s
ks km E(k) = Ak
s 23 ,=5/3
k2 km E(k) Ko € k

togk
This simple law of course does not account for the exact form of the energy spectrﬁm in the ?net-
gy containing range and in the dissipation range. The turbulent kinetic energy can be evaluated as :

© {--]
% Q= f E(k) dk = Ak dk + | K 213 ,~513 4
US+D 2 2s + 1)
3s+5 K3s +5 A3s + 5 e33 TS5

"I+ 1 ‘o

During the decay, experiments have shown that the energy spectrum evolves in a self similar way
(e.g. cf /88/, vol., II, p. 204), i.e. the energy spectrum decays with a given shape E(k.L) in the large
scales, L being a characteristic length scale of the large eddies and a shape E(k/k,) in the small scales,
both laws overlapping over the inertial range. The coefficients A and s are therefore time independent.

Moreover, the turbulent kinetic energy reduces to :

Assuming that the flux € cascading along the inertial range and the dissipation rate € are equal,
which is a standard one-scale assumption, the two above equations can be combined to obtain the dissipation
transport equation :

€, £ C =38ES5
dt el 2 €2 2(s+ 1)
2 Q

The above equation has already been proposed on dimensional analysis grounds and the coefficient
C__ calibrated by reference to experiment. The main interest of the above argument is to validate simply
thi?s form at high REYNOLDS number and to show that there is no universal value for the coefficient ce as

the exponent s lies between 1 and 4. LESIEUR and SCHERTZER /59/ have shown however that tricky non linear
effects invalidate the argument when s is equal to 4.

4 - DISSIPATION EQUATION : SOLID BODY ROTATION

4.1. Introduction

Experiments (/18/, /22/) or numerical simulations (/89/, /90/) have shown that the rSle of rota-
tion is to reduce energy transfer and hence the decay rate of turbulent and to lead to axisymmetric turbu-
lence, the departure from isotropy being small in all experiments.

This double rdle of rotation can be simply explained by looking at the momentum equation in
FOURIER space. It reads, in symbolic form :

%u+vk3|.-uu+w,\u
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It must be kept in mind that the rGle of the pressure term is to satisfy continuity if.e. to project the
velocity field on the plane normal to the wave vector. The rotation action is thus partially jnhibited by
the pressure ; for wave vectors parallel to therotation axis, there are no rressure effects while for wave
vectors normal to the rotation axis, the CORIOLIS term is completely compensated by the pressure action.
All wave vectors do not rotate at the same rate and thus, the energy exchange between wave vectors which
form a triad 1s decreased as the coherence between these modes is damaged. The energy transfer is then
reduced. Moreover, the pressure effects fatroduce a preferred direction ; the rotation axis and the turbu-
lence tends to evolve towards an axisymmetric state, the symmetry axis of which is the rotation axis.

4.2, CAMBON's EDQNM models

CAMBON (/45/, /91/, /92/) has developed a complete model, in the framework of the EDGNM closures,
which accounts for the role of rotation on third order moments and 1s able to predict the selected reduction
of energy transfer and anisotropisation of the turbulent structures according to the relative angle between
the wave vector and the rotation axis. This model is however intricate and time consuming.

A simpler model has been proposed by CAMBON /93/ on more heuristic grounds. The idea is that the
damping time in the EDQNM model :

k
nck) = U p’B(p)dp]”Z

0

as proposed by ANDRE and LESIEUR can be interpreted as twice the square of the rotation imposed at wave
number k by all the larger eddies. CAMBON's idea is to add the contribution of wave number zero, i{.e. the
golid body rotation as :

k
n(k) = [I p2E(p)dp + 2 w’] 1/2
(+]

This modification increases the damping of the third order moments and, as third order moments
are responsible for energy transfer, reduces the energy transfer and then the rate of decay of turbulence.
However such a model is igsotrcpic and does not account for the anisotropisation of turbulence submitted to
solid body rotation. This model is thus only valid to compute energy spectra of fairly isotropic turbulence.
This limitation is not drastic as experiments and numerical simulations have shown that anisotropy develops
very slowly.

4.3. Validation of the EDQNM model

The simplified EDQNM model has been validated by compariscn with results of the complete EDQNM

model (CAMBON, private communication), by comparison with the experiments of WIGELAND and NAGIB /93/ and
by comparisons with numerical simulations /90/.

Direct simulations, i.e. resolutions of the NAVIER equations, were first performed at very low
REYNOLDS number (RA ~35; Re ~ 80) with an initial spectrum similar to the one used by ORSZAG and PATTERSON

/77/, i.e. of the form k4 exp(- k?). Energy spectra after seven eddy turnover times obtained with the direct
simulation and the EDQNM closures compared favourably whatever the rotation rates (figure 16a).

Direct simulations could nct be performed at higher REYNOLDS numbers, so large eddy simulations,
in whick only the largest eddies are computed while the smaller eddies are modelled, were used. Two subgrid
scale models were used to represent the effect of the smaller eddies, both models being derived from the
modified EDQNM model. The first model, labelled SGS 1, represents the smaller eddies with the help of a
wave number independent eddy viscosity which depends upon the small scales turbulent kinetic energy, the
rotation rate, the REYNOLDS number and an assumed shape for the energy spectrum of the small scales /94/,
/95/, /96/. The second model, labelled SGS 2, is more elaborate and couples the evolution of the large scales
with an EDQNM computation of the energy spectrum of the small scales /96/. Both models were used to simulate
a fictitious ex, eriment where the initial energy spectrum of the COMTE-BELLOT and CORRSIN's experiment
(RA ~ 753 Re - /5) is submitted to solid body rotation over the experimental time, i.e. thirteen eddy

turnover time. Lua.ge eddy simulations with both subgrid scale models compare favourably with EDQNM compu-
tation at all rotation rates (figure 16b,/96/).

4.4. Exploitation of the EDQNM model

Direct and large eddy simulations have been very useful to validate the modified EDQNM model.
However these methods are restricted to low REYNOLDS number and are much more expensive to use than an
isotropic EDQNM wodel. The idea is then to use the EDQNM model to study the effect of rotationupon turbulence
over a wide range of REYNOLDS nurbers, rotation rates, energy spectrum shapes (mainly the s exponent of
the large eddies). EDQNM computations give the time evolution of the turbulent kinetic energy and of the
dissipation rate which are the variables used in one-point closures.

The problem is to reduce the data obtained from EDQNM simulations to extract a new decay law for
the dissipation rate as the turbulent kinetic energy is the same for mure decay and for solid body rota-
tion, i.e. :

d 1
Wzl
L2

The dissipation rate decay can be reduled to a dimensionless form as ZE’P %% which is constant
(Cez) in the pure decay case. The evolution of this quantity has shown to vary during decay in presence of
solid body rotation ; the rotation rate is thus not a good parameter. A plausible parameter is the ratio of

2
the rotation time scale and the turbulence time scale w* = Qll%_ﬂ__ which is the inverse of 2 ROSSBY number.
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1 2
2 q
The evolution of the decay constant Z-e—z- -:—: .s function of this parameter w* is tiue same, for a given
large eddies exponent s, for various REYNOLDS numbers and rotation rates. At last, the results obtained

for various large eddies exponent s can be reduced to a single law as :
1 2

25 de, x Gt
=T & cez(s)+c€(¢o)

The function c’c* is plotted on figure 17. The points indicate the extreme vaiues obtained in the

EDQNM simulations when the equilibrium regime has been reached. Two curves, labelled B and HL, indicate
previous models respectively proposed by BARDINA et al /89/ froa large eddy simulations and WIGELAND and
NAGIB experiments and HANJALIC and LAUNDER /97/ to improve jet flows predictions. These models can be
expressed as :

BARDINA et al Ch = 0.15 u
HANJALIC and LAUNDER Ck = 0.27 wH?

4,5. Realisability constraints

Before proposing a new law to represent the data obtained from EDQNM simulations, let us examine
the realisability constraints this model must satisfy. Both turbulent kinetic energy and dissipation rate
are positive variables and must not become negative. Without rotation, the equations :

-3
"

]
o0
N
—

Z q2
59

prevent both the turbulent kinetic energy and the dissipation rate to become negative if they tend towards
zero.

In the presence of rotation, when the turbulent kinetic energy tends towards zero, the inverse
ROSSBY number w* tends towards zero so that rotation effects are negligible. As it seems natural that cg(O)- 0,

the problem is then the same as in the no rotation case and realisability is ensur2d.

When the dissipation rate tends towards zero, the inverse ROSSBY number tends towards infinity.
The function C*é can then be reduced to its higher order, i.e. Cg ~ oW *N go that the dissipation equation

becomes 1 2]n
de g? e? w34 g?
X .. + Ch) e - - - £
a ” (cez cp 1 @ C52 1 Jes a[ € ) 1 q?
2 2

which tends towards zero when n <2.This constraint is not satisfied by the HANJALIC and LAUNMER's model.

We have already supposed CX(0) = 0 as it is natural. This relation can of course be easily deduced
from the LDQNM modei. Moreover, it can be shown, with the EDQNM model that :
ack
555 Wk =0) =0

The EDQNM simulation results on figure 17 have been approximated by the following law :

cx = 0:2236_0*2 + 0.0303 w*
€ 0.2540 w** + 0.1567 w* + 1
ack
This law satigfies the realisability constraint but not the property 5;5— (wt = 0) = 0. However,

when the inverse ROSSBY number w* is small, the decay is ruled by the 052 coefficient so that it is insensitive
to the exact form of the C’:: law in the vicinity of zero.

4.5, Application to solid body rotation experiments

The experiments of WIGELAND and NAGIB /22/ have been used to compare the various models as they
are the most documented and fulfil the homogeneity conditions. Computations have been performed for various
srids, upstream velocities and rotation rates /90/. Figures 18 and 19 give examples for the lowest upstream
velocity and the highest rotation rates, i.e. when the flow field undergoes the maximum rotation in the test
section. For each grid and each velocity, the CE ccefficient has been tuned for the no rotation case and,

as all homogeneous flow computation is an initial value problem, special care wag taken in the determination
of the initial dissipation rates. The curve labelled O corresponds to the case without rotation, the curves
A, B and HL to ours, BARDINA et al and HANJALIC and LAUNDER models. These €igures bring into evidence the
reduction of the dissipation raie due to the blockage of the energy cascade by the rotation. As the inverse
ROSSBY number uw* remains moderate (s* < 7), both BARDINA et al and our model give good predictions in every
case. HANJALIC and LAUNDER model leads to negative dissipation rates and increasing turbulent kinetic energy,
vhich is unphysical and is due to the violation of the realisability constraint.
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4.6. Extension to flows with cnergy production ¥

Homogeneous turbulence is restricted to a certain class of mean velocity gradients. Rotation can
only be combined with a plane strain, the axis of rotation being normal to the plane of the strain. When ro-
tation and strain rates are equal, shear is obtained. Shear is an important case as it occurs in most of
practical flows such as boundary layers, wakes, ...

For flows with energy production, the dissipation rate transport equation is ugually modelled
as /98/ :
3E 3€ Pe
3t +U -

zi)xl

2
£ _ ¢ -E— 4 diffusion terms
€1 L 2 €21 2
24 29
aui
vwhere P = - <ului> x in the turbulent kinetic energy production. The coefficient (:c2 has been previously
3

modified to account for rotation effects. Is it necessary to modify also the coefficient ce1 ?

A comparison of the different possible solutions showed that the solution was to add the same
Cé term to both c€1 and CE2 (AUPOIX, Ph. D. digsertation). A first argument was proposed by AUPOIX et al

/90/, but the best argument to add C*@*) to both coefficients will be given later with the MIS approach.

Shear flow experiments have been computed by solving the REYNOLDS stress transport equations with
the LRR model /107/ with different dissipation equations (figures 20 to 22). The curve labelled O is obtained
with the standard equation while the curves labelled A and B correspond to the addition to both c€1 and Ce2

of the C¥ funccions respectively proposed by AUPOIX et al and BARDINA et al. The use of this modification

improves the prediction of both weakly and strongly sheared turbulence. With respect to the standard model,
the turbulent kinetic energy is increased for weakly sheared flows and decreased for strongly sheared flows.
The differences between AUPOIX and BARDINA models can only be observed for strongly sheared flows where
relatively large inverse ROSSBY numbers w* are encountered. Our model seems to give better predictions but
the difference remains small.

4.7. Conclusion

This study of rotation effects shows how two-point closures can be used to improve the dissipation
equation. A complete EDQNM model could be used but it was too time-consuming (and still in development at
that time). A simpler EDQNM closure has been preferred. Direct simulations of turbulence were first used to
validate the EDQNM model at low REYNOLDS numbers. Subgrid scale mcdels were then derived from the EDQNM mo~
del and large eddy simulations were used to validate the EDQI®M mocel at higher REYNOLDS numbers. The EDQNM
model was then used to perform, at low cost, a large amount of simulations and derive the new dissipation
rate equation, the form of which cannot be obtained by simple a priori modelling.

It must be emphasized that no empirical tuning of coefficient with respect to experiments has
been done in this study. The C*(w* ) was directly obtained and afterwards checked in computations of rota-
ting and sheared turbulence. €

5 - THE MIS APPROACH

5.1, The spectrum shape family

MIS are the initials, in French, for Integral Spectral Method. It 18 an integral method similar
to the familiar boundary layer integral methods where a shape family is assumed, not for the velocity profile
here but for the energy spectrunm.

The basic idea 45 to try to generalize the argument introduced by COMTE-BELLOT and CORRSIN /2/
and REYNOLDS /87/ for self similar decay of isotropic turbulence. They mimicked the energy spectrum shape
by two simple power laws : Log £

kSk E(k) = ak® AT

K2k E(K) = k23 53
m [+]

and the turbulent kinetic :nergy then reads : t
© 3(s + D 2 2(s+ D
lqz-JE(k)dk- 33+5K3s+5 38+ 5 €3s+5

3 26 + 1) Yo A
(] s

This fawily of spectrum shape 1s too rough and does not describe finely the gpectrum shape in the
energy containing range. More elaborate transitions between the two power laws could be used but, as far
as the spectrum shape in the energy containing range is just a fixed for:, it will only change the factor

3(s+ D

s+ 5 s+ 5
T F (: 1 l(o s to another constant. Our proposal is to introduce an unknown but variable spectrum

R Al

shape ir the energy containing range snd to express the turbulent kinetic energy as :

2 2(s +.1)
%q;_FA33+5 538+5

where P is unknown, time-dependent and reflects the gshape of the energy spectrum in the energy containing range.
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5.2. Basic assumptions

As in the COMTE-BELLOT and CORRSIN /2/ or REYNOLDS /87/ argument, extra hypotheses are needed
to de ‘ibe the spectrum shape evolution.

The one-scale hypothesis still holds. The energy flux ¢ which cascades down the inertial range
is supposed to be equal to the turbulent kinetic energy dissipation rate.

The second agsumption concerns the evolution of the large scales. The non linear time scale
(k’!i(k))'l-/2 and the viscous time scale (Vk?)~l are very large for small wave numbers. Thus non linear and
viscous effects are negligible and the evolution of the large eddies is ruled ounly by an inviscid rapid

distoyrtion theory.
It must be noticed that this argument is strictly valid only for wave numbers close to zero.
The existence of a power law E = AkS at higher wave numbers must be due to both linear and non linear

effects. As the spectrum shape E = AkS has been prescribed over the large eddies, it is casier to study
its evolution for very small wave numbers where only linear terms are important than at higher wave numbers.

The first consequence of the use of rapid distortion theory to study the evoiution of the large
eddies is that the exponent s remains constant.

5.3. Dissipation rate transport equation

The transport equation for the turbulence kinetic energy reads, for homogeneous turbulence :

_l 2upa-c¢

dt 2

where P = - <u1 § -—i is the turbulent kinetic energy production. This equation is exnct and no modelling

is required, provided that the REYNOLDS stresses and the dissipation rate be known.

On the other hand, the turbulent kinetic energy reads, with the above hypothesis :
2 As+ 1)

% g2 = F A3s +5 € 3s+5
The dissipatior equation can then be derived from these two equations as :
lge 1 1A, . f[Pe _1gF
€ dt s+ 1 Adt €2 |1 2 F dt

3s + 35
with C€2 T D °
1
_q2

This form brings into evidence new time scales. While the standard equation introduces 2 B

1

q
and 221r which can only be interpreted respectively as the mean strain and the turbulence time scale,
this model directly connects the dissipation rate evolution time scale to the evolution time scales of the

large eddies, of the energy containing range shape and ot the turbulent kinetic energy. The degrees of free-
dom initially introduced in the definition of the spectrum shape family reappear ; modelling is required to
determine these new time scales. Comparison with simple flows will be used for that.

4. Pure decay

This first simple flow was the only case considered originally by COMTE-BELLOT and CORRSIN /2/
and REYNOLDS /87/. The rapid distortion theory shows that, in the absence of mean velocity gradiernt, the
large eddies energy spectrum remains invariant, i.e. dA/dt = 0. Moreover, the hypothesis of self siwilar
decay previously advocated means that the shape of the energy spectrum in the energy containing range re-

maing constant, 1.e. dF/dt = 0. The dissipation rate equation then reduces to the classic form :

€
q

o~
&l

-cc

2 2

-

as there is no energy production.

5.5. Solid body rotation

In the case of turbulence submitted to a solid body rotation, the rapid distortion theory still
shows that the energy spectrum of the large eddies remains constant, i.e. dA/dt = 0. The dissipation rate

equation then reduces to :
lde | o [ _e ,1aF
€ dt eil q? F dt
as the energy production is still null. 2
H
?
i
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On the other hand, we have already modelled the dissipation equation as :

12 i
de 223
at

1 €
- [ + Ch{w* —— * -
€ (ce2 ce(w n 1 2 w

7 9
so that the two formulae can be identified to prescribe the evolution law for the energy containing range
spectrum shape factor P as :

LdF | oppr) —E—
G2 F t'ce(“’)l 2

2

This relation is valid only in the case of solid body rotation, i.e. without energy production.
In the presence of production, two different time scales need to be considered :
L
* 28 is the characteristic time scale of the turbulent flow ; it can be interpreted as a
time scale of non linear effects in the energy containing range. As the action of rotation is to reduce
energy transfer, it seems natural to keep this time scale in the definition of the inverse ROSSBY number

2 a2
w3z q
€

B L TR eg v T L S S ]

wh =

1

k + 12,_ < is the evolution time scale of the turbulent kinieti. energy. As the evolution of the

spectrum shape in the energy containing range is a balance between energy production and energy transfer,
it geems natural to relate the spectrum shape time scale to the time scale.

The proposed law for the spectrum shape factor evolutioun then reads :

*
1 % e
F at [ %q’
8o that the dissipation rate transport equation becomes :
1 de 1 1dA P-g
~Le,_ A 24 % =t}
edt " sFTadc T (Cl® W) T2
2
with 1l 2
38+ 5 wz 9

2"+ D
& 5.6. Linear model

The study of the solid body rotation and the analysis of the various time scales has enabled us
to link the variation of the spectrum shape in the energy containing range to the trapping of energy due to
the reduction of energy transfer by rotation.

The only problem is now to express the variation of the large eddies with the help of rapid dis=-
tortion theory. The use of a complete rapid distortion calculation would be too cumbersome and time-consuming
so that an approximate, simple linear model is needed.

A solution {8 the use of the tensorial volumes of turbulence introduced by LIN and WOLFSHTEIN
/100/. These volumes are defined as space integrals of two-point correlations as :

% q® V“(E) = I(ui(g) 03(5 + 1)> d%

They can be related to second order moments as :

°1j(5) - (2—:‘)3]‘ <ui(§) u5(§ + )> e ikz d3c

thus jq (k) da(k) ]

1 2
5 9% V. (x) ~ U [
2 13 0 imk

These volumes of turbulence make sensc only when all the seconé order moments behave 1like k?
in the vicinity of zero. The spherically averagcd second order moments can thus be identified with the cen-
sorial volumes of turbulence as :

@ 00 = ]ouu_c) a0 = A

1
2 = -
Aij" 41q vij ZAii A

LIN and WOLFSHTEIN derived from the NAVIER equation a transport equation for the tensorial vo-
lumes of turbulence which reads, for homogeneous turbulence :
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CAMBON (private communication) noticed that the derivationof the above equation is somewhat
spurious as pressure~velocity correlations are assumed to vanish when the separation tends towards infinity
while one i{s dealing with the properties of turbulence neav wave number zero, £.2. for infinite wave length.

We prefer to consider this model as a very simple model with pressure effects omitted. Such a
simple model has to be validated by comparison with exact rapid distortion theory solutions.

Figure 23 shows the predictions of the large eddies evolution time scale ;—%—T % %% for various
values of the exponent s, for isotropic turbulence cubmitted to a plane strain. The LIN and WOLFSHTEIN
model gives the same prcdiction as the complete rapid distortion theory, when the exponent s {s equal to
two, i.e. when tensorial volumes make sense. However, as pressure terms are omitted, the evolution of all
A1 coefficients 1s not absolutely correct. The reasons for the corrzct prediction of A and the uncorrect
prldictlons of A have been studied by CAMBON et al /45/. It must be noticed that the exporent s in-

fluences the asymptotic value of the large eddies time scale for high total strain ; however, these values

are never achieved in experiments (TOWNSEND /14/, Dt_.,. ~ 175 ; MARECHAL 125/, Dt oy ~ 2.6). The same
conclusirns can be drawn for three-dizmensi{onal strains.

Figure 24 shows the predictions of the large eddies evolution time scale for various values of
the exponent s for isotropic turbulence submitted to shear. The influence of the exponent s {s small but
the LIN and WOLFSHTEIN model does not exactly fit with the exact solution. The agreement is however accep-
table. The ° ference of asymptotic behaviour between the strained aul sheared flows must be noticed

White for strained flows, the time scale E-%.T % g% tends towards an asymptotic value, it tcnds towards

zero for large total strains S.t.

The linear model without pressure effects is not correct for sheared flows as the linear pres-
sure effects are mainly due to mean flow rotation. For turbulence submitted to strain plus rotation with
a rotation rate larger than the strain rate, the linear pressure effects are large and the simple linear

mode}l fails (CAMBON, private communication).

Better linear models, takirg into account pressure effects to give the correct evolution of the
A1 for strained :1lows, a better prediction for sheared flows and strain plus rotation flows, and even

valid for various values of the exponent s, have been looked for unsuccessfully (AUPOIX, Ph. D. disser-
tation)., The LIN and WOLFSHTEIN wmodel will be used as it is simple and gives fairly good predictions of
the large eddies time scale.

A special attention has to be paid to the initial values of the large eddies coefficients Aij

as they reflect the past history of turbulence. Figures 23 and 24 show that the large eddies time scale
depends drastically upon the total strain of shear encountered.

For strained flow experiments, it always exists a decay re, .on between the turbulence genera-
ting grid and the Jdistorting duct. At the entrance of the distorting Juct, the REYNOLDS stress anisotropy
ic small. One can imagine that the same anisotropy could be produced by applying a large strain to iso-
tropic turbulence during a very short time. Rapid distortion theory connects the anigotropy to the applied

strain as :

<ufu!> 3§ 3u, 3u
R o M PRI B i R 2
b " g R T [axj MR R
Cn the other hand, the LIN and WOLFSHTEIN model gives the evolution of the coefficlents Aij
for initially isctropic strained flows as : SUi U
2j=2+ ).
>3 x
a =2a e 3 1
13 3%
BU1 U
so that, by eliminating { = + 3;1 }c, the coefficients Aij can be connected to the auisotropy. The

b
initial coefficient Ao plays no rdle as one is only interested in the time scale % %? .

For sheared flows, experimental values are taken downstrean of the shear generator. The solution

of the LIN and WOLFSHIEIN model for initially isotropic, sheared turbulence, reads :

A = % a, (1+ (5O

1

3

2 i

Apg = = 3 A8 5w,
A=A, =24

22 33 37

The initial values of the Aij are thus set according to the travel time ol the flow from the
shear generator to the first station.

5.7. Low REYNOLDS number effects

The above proposed energy spectrum shape is only valid at high REYNOLDS numbers. At low REYKOLDS
numbers, the k~3/3 fnertial range 1s reduced or even does not exist. The presence of the dissipation range
must then be accounted for. Various laws have been proposed to represent the energy spectrum in the dissi-
pation range. The most popular are the one preposed by PAO 101/
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and SAFFMAN /102/ : . v2
E(k) = Koez/3 K313 axp - z[ -“—J ]

*

EDQNM computations lead to the more complex formula /103/ :

E(O) = K €23 47513 eyp(c 3.5 NP (L - exp (6n+ 1.2 ~ (19612 - 33.6n+ 1.4532)1%)5) n= ;‘;
vhich has the advantage to exhibit a bump at the beginning of the dissipat‘ve range as observed experimen-~
cally /104/.

These above laws could be introduced in the computation of the turbulent kinetic energy to derive
a new dissipation equation. A simpler solution is :5 cefine a truncation wave number o kD such as
~ - aky -
| 23 513 p k) gy a [ K, 23,513 g
0 *p o
and to proceed with inertial ranges truncated at o kD. The constant A is close to unity whatever the dis-

sipative spectrum used. The dissipation equation can then be derived in a way similar to the high REYNOLDS
number case. It reads :

Sy -B_lide___1 __ze)ue Pe __28]152]
[l+(2 052)3'( € dt s+l[l+3,§— aat e Lq; .l+3vﬁ-Ft
e e 2 e

2
where Re - é%;g— is the turbulent REYNOLDS number and 8 a ~onstant related to «a. For the different
spectrum shapes, the following vailues have been obtained :

PAO 8 = 2,065
SAFFMAN B ~ 2,047
EDQNM 8 = 2.079

An average value 8 = 2.06 has been used.

As the REYNOLDS uumber decreases, the inertial range diminishes, disappears and then the energy
containing range shape variations should be modified at low REYNOLDS number but no tool is available to
simply predict the {nfluence of low REYNOLDS numbers on this time scale (1/F)(dF/dt). Assuming that this
time scale is unaffected by low REYNOLDS number effects, the decay law can be expcessed as :

1

4 a2
AT Cez N e ac23tS LML
€ At |, h.c )-8 2 2+ D 6 '°
€2 342

This decay law has bcen compared with predictions of EDQNM simulations. As shown on figure 25,

the agreement is pretty good. This simply deduced model is better than any low REYNOLDS number model com=
piled by PATEL et al /105/.

5.8. Comparison with experiments

The MIS approach has been checked by comparison with experiments for various strained and sheared
flows, as shown on figures 26 to 31. The continuous line corresponds to the standard dissipation equation
improved by adding the rotation correction presented above. The dotted line corresponds to the simple MIS
wodel without rotation and low REYNOLDS number effects. The largely dotted line corrésponds to the MIS
model with rotation effects (i.e. F variations) included and the chain-dotted line to the MIS model with
both rotation and low REYNOLDS number effects included.

The only tunable parsmeter in the MIS model is the exponent s which has been set equal to two
to be consistent with the LIN and WOLFSHTEIN model.

For strained flows, the agreement with the MIJ wodel is as good as with the standard dissipation
equation, the coefficients of which have been tuned for this kind of flow (figures 26~27). No roiation ef=-
fect occurs and low REYNOLDS number effects are weak.

For weakly sheared flows (figures 28-29), the MIS prediction are as good even a little better

as with the improved standard model. Rotation effects and low REYNOLDS rumber effects improve the prediction
of CHAMPAGNE flow.

The most striking improvement is obtained for highly sheared flows (figures 30-31). Low REYNOLDS
number effects are smali but the agreement with the bare MIS model is as good as with the improved standard
equatior.. This brings into evidence the important rdle of the large eddies time scale in the MIS equation ;
this term is large for strained or weakly sheared turbulence and tends towards zero for highly sheared tur-
bulence. For highly sheared flows, the MIS equation is equivalent to the standard dissipation equation pro-

vided that the coefficient Cel tends towards ce,, which 1s uot the case in the standard equation. Moreover,
the rotation effects correction highly improves the prediction.
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5.9. Conclusion

The MIS approach, based upon simple physical arguments concerning the energy spectrum evolution
introduces new time scales in the dissipation equation. Low REYNOLDS .iumber effects can be naturally ac-

counted for by reasoning on the spectrum shape.

Although a4 too simple linear model has been used, the introduction of the large eddies time
scale and of rotztion effects highly fmproves the prediction of highly sheared flows.

Moreover, without any tuned coefficient, the prediction of strained and weakly sheared {low is
as good as with standard, tured, dissipation equation.

6 - CONCLUSIONS

Two-point closures ar¢ 2 vacy convenient tool to solve purely linear problem as the problem
is analytical in FOURIER space. Rapid distortion theory can thus give constraints to improve pressure-
strain correlation models.

Two-~poiat closures are a suitable tool to perform high REYNOLDS number simulations. As no ad-

justable coefficient is introduced in the model, they can be viewed as "exact". The return to isotropy pro-
blem can be studied over a wide range of REYNOLDS numbers and initial conditions with a two-point closure

in order to improve one-point closures.
The study of the influence of rotation on the dissipation equation has brought into evidence
the r3le of simulations in the derivation of closures. The modified EDQNM model can be obtained as a sim-

plification of the exact, anisotropic model but was first validated by comparison with direct and large
eddy simulations. The extensive use of tlits model has led to a correction function Cg which cannot be ob-

tained by a priori modelling and constant tuning.

At last, the use of simplified energy spectra, either in the simple decay study or in the MIS
approach, have shown to be a powerful tool to study the dissipation equation. This is due to the fact that,
with the one-scale hypothesis of standard one~point closures, the dissipation equation is equivalent to a
turbulent length scale equation while, on the other hand, the use of these simplified spectra gives infor-

mation about the contribution of each length scale to the turbulent kinetic energy. The main advantage of
the MIS approach 1s to introduce new time scales which were not used in standard models and improve the

prediction.
The author would like to ackncwledge Dr. COUSTEIX for his critical review of the paper.

APPENDIX A
CRAYA'S REFERENCE FRAME

The description of second order moments can be simplified by the use of a suitable reference
frame linked to the wave vector to take advantage of the continuity equation. CRAYA /1/ has propesed to

build such a reference frame as follows :

- The FOURIER space reference frame consists of the three basis wave vectors k;, k, and ki.

- For a given wave vector k, the local CRAYA's reference frame k' » k'), k'y is such that k's
is parailel to k, 5:1 is tangent to the circle drawn on the plane containing 53, and ELZ such as 5:1, 5"2,

t -
5_3 be directs

from /1/

In this reference irame, the ;econd order moment reduces to eil =N ¢i2 =3, ¢51 = Gk, ¢£2 = Ny.
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The relations between components in the initial reference frame and in the CRAYA's reference
frame are obtained with the knowledge of the maxtrix w:

cosd cos\f cosd sinep - sin6 )
W) =] - sine cos 0
sin fcos¢ sin fsingp cos8 J

where the angles 6 and

0.1

can be expressed from the components ®ys @y and ay of a unit vector parallel to
ON (i.e, parallel to k or 1:_'3) in the initial refcrence frame :

H

5 %2 % _ /_—-1-a§

o2 fi - o2
N a3 i-a3
-a a
W) = 7 22 7 12 0 ¢
l-a3 l-ch
% % o

The connection between components in the CRAYA's reference frame, denoted by a prime, and in the

inftial reference frame, are then :

- - 4
X Wi xz Xi Woy Xl
3 3 ] 3
—_—- —_— == W, =7
aki i akz 3Ky 49k}

Consequently :

1
n-T “3’

PIp—
22 l-txa

I -
12 1—03

24 2 2 -
((fad N +af Ny - wmax, (5 + §%))

2 2 2 *
(03 i N +of N, + alazaJ(s + §%))

- - a?
33 = (1 - %3) Ny

X & a2 - U U 2 - a2 t]
(%8, 95 B = 90 Ny 070, § — 00, §%)

$23 =~ o3 N - oS

i

931 = = @3 Ny +a,S

and the trace, i.e. the contribution to the kinetic energy, is the same in both reference frames

S tépt Gy Nt

Derivation rules in CRAYA's reference frame are detailed in reference /1/.
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Figure 4

GENCE and MATHIEU experimental set-up. The
second straining can be rotated to impose
different strain axes (from /26/)
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Comparison of very large eddies
evolution time scale given by
the rapid distortion theory for
various values of the exponent

s (s =1, 2, 3, 4) with the LIN
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DYNAMICS AND ROUTES TO LHAOS FRUM QUASIPERIODIC1TY

by

¥. Dubcis
Service de Physique du Solide et de Résonance Magnétique
CEA-Saclay
91191 Gif-sur-Yvette Cedex, France

PLAN

I - Quasiperiodicity in Rayleigh-Bénard convection
- The experiment: structures and dynamics
- The measurements. Reounstruction ot the phase space trajectories
- Forced convection

1I - Quasiperiodic models
- Forced pendulum
- The Arnold model: the phase locked tongues and the critical line
- Experimental results on the properties of the critical line

III - Dynamical properties near the critical line

- Phase intermittencies
~ a) Models
- b) Experimental convective recults

- Direct route from quasiperiovdicity to chaos
~ a) Models and theory
- b) Experimental convective results

- Two oscillators evolution in a free Rayleigh-Benard experiment

IV ~ Dyramics incide the phase locked tongues.

One of the routes 1leading to deterministic chaos is the route throuch the
quasiperiodicity; the samplest one involves the presence of two oscillatoxs, whose the
dynamics may become chaocic by the increase of th¢ amount of the non-linearicies between
them. Though tnis dynamics is generally related to non-linear dynamical systems, it may
be found in hydrodynamical flows, as soon as the increase of a control parameter
(Reynolds number, Rayleigh number, etc...) initiates the appearance of periodic
behaviours. So, in the rollowing, the physical examples will be taken fron
Rayleigh-Bénard experiments, which provide good illustrations ot quasip2riodic
behaviours in dissipative systems.

I - QUASIPERIODICITY IN RAYLEIGH-BENARD CONVECTION

Oscillators and_gzpatiai structures

In a fluid submitted to the Rayleagh-Benard instabkility {1), the increase of tae
Rayleigh number Ra (i.e. of the temperature difference between the top and the bottom
plates confining the fluid - see the lecture of P. Bergé) favours the appearance of new
instabilities which may be time dependent. It is the case of the oscillatory instability
[2] when we are working with low Prandtl number f£l»ids (Pr = v/D' with v, the cinemati>
viscosity and D the thermal diffusivity). When convection is achieved wath high Pr
fluidi, these instabilities take place in the thecma? boundary layers, by first the
formation and then the advection of thermal heterogeneities {3}{4). These phenorena may
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oe time-periodic, if the rolls arrangement is fixed, i.e. there 1s no spatial phase
turbulence. So it 1s necessary to work with confined geometries, f£for which the
horizontal extents of the cell confining the fluird are of the same order of magnitude as
the depth 4 (typically in rectangular cells, L = 2d and L, =~ 1 to 1.5d) (figure i).
Nevertheless, when Ra 1is varied, many different structures are available, though each
one can be stable in a relatively great range of Ra numbers. The point 1s that,
unfortunately, the choice of the spatial arrangement 15 not made by the experimentalist,

but by the convection itself, among the different stable solutions which have the same
probabality to be formed.

Nevertheles:, for a fixed and gaven structure, the evolution of the dynamical
behaviour with Ra 21s well determined and reproducable. This may be understood by the
fact that specific thermal oscillators and the evolution of the coupling setween them,
are related, 1n an unique way, to the spatial arrangement of the convective motion.

Experimental phase-space trajectories

The convective state 1s generally pointed out by the measurement of a local var:able.
The velocity measurements are not really adequate to evadence low chaotic regimes, for
they anduce .ntrinsaically a small amount of noise 1in the signal. So, t¢mperature
measurements are preferred. A lccal probe may be put at the top or the bottom plate (to
minimize the perturbations 2an the £luid motion) as 1t has been done in helium (5] or
mercury convection experiments. But we can take advantage of the presence of temperature
gradients an the fluid to use optical device. This 1s particularly easy to perform with
high Pr f£fluid convectaion, near room temperature. The local temperature gradaents 1in the
fluad deviate the rays of a parallel 1light beam crossing the cell, giving then a
vertical or horazontal image, related to these gradients. Generally, with small cells, a
vertical amage 21s formed in & plane X,Z, w:ith antegration along the Y direction
{parallel to the smaller sade of the cell). The image may be direct "shadowgraphy", or
treated by the knife-edge technaique (Foucault or Schlieren image).

As the oscillators are localised an the boundary layers, (wath hith Pr fluids), the
study of these 1mages 1s very powerfull because we can follow the appearance and the
evolution of the oscillators ain all the fluid; and by putting a photeodiode ain any place

of the image, we get infornations about their time dependence, by the measurement of the
variations of the local light intensaty.

When two osciliators are present, two photodiodes <can be set judicrously to have
mainly the behaviour of the one and the other oscillator. An example 1s shown in fagure
2: the signal of one photodiode, Il(t)h 1s mainly sensitive to the lower frequency
oscillator, meanwhile the other one, Iz(t)b reflects more the behaviour of the higher
frequency oscillator. Thas combined measurement 1s of great anterest an the
reconstruction of the trajectories in the phase space; 1f this reconstructed space 1s
three damensional, the three varaables may be I,(t)n I:(t) and the time derivative of

one of them, il(t) for example. Then Poincaré sections will be drawn by taking the
poants Il(t) = £(I, (t)) when I 1t) reaches a defined value I;(t) [8]. "
In the faigure, two examples are given; one corresponds to a normal biperaocdic regame,

for which we cbtain the section of a torus. The other one i1s a strange attractor, drawn

in the same manner as the first one, and obtained from the preceding baperiodic regame
by changing the Rayleigh number.

o

In experiments on free convection, the only parameter we can vary 1is the Rayleigh
number, which acts together on the amount of the noun-linearities and on the frequencies
of the actual oscallators. More, these frequencies are imposed by the convection, then
thear ratio. But, as we will see further, the two parameters which are involved in tbh
dynamical behaviours undergone by a system consasting of two oscillators, are the
frequency ratio and the couplang or the amount of the non-lineasities. So to understand

-
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4 X

experimental dynamics, it i1s very important to control independently the two parameters. s
Different experimental devices have been set up where a natural convective cscillator is =
forced by an exterral periodic oscillation. In the case of mercury convection, a 'ﬁ
vertical alternative sheet of current associated with a small dc magnetic field has been @E
applied [6]). With higher Pr fluids, a local periodic heating in the lateral boundariee« éﬁ
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Lx=2d

Fiqure 1: Scheme of a small box (confined geometry), as used for Rayleigh-Bénard

convection experaiments to the study of the routes leading to chaos. In this picture, the
convective structure is organized wiath 2X-~rolls and 1Y-roll.

a)

Figure 2: a) Time dependences I_(t) and Iz(t) of the 1ligh. intenaity, measured
simultanecusly ain two places of the Foucault image an the case of a normal biperiodic
regime (fz/fl ~ 7.2, Ra/Rac ~ 324'. The Poancaré section, obtained with these two

signals 1s shown in b}; the dots have veen marked each time Iz(t) = I;, with a2 given
sagn for Iz(t): ¢) Poancaré section, drawn in the same manner as for b), but with a

chaotic regime obtained from the preceding one by a variation of the Rayleigh number
(£,/£ = 6.63; Ra/Rac x 318).
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{7)], or in the bottom plate can provide a good oscillator, coupled to the natural cne.
The electrical power is driven in amplitude, A and frequency f.x' by a synthetizor,
allowing, in principle, to explore the whole plane of the parzmeters (A;x‘ oxt
In this manner, fundamental results have been obtained. A part of them will be
discussed further. Here we want Jjust to demonstrate the appearance of chaos under the
influence of an external oscillator: the experiment is conducted with $i-0il (Pr « 38)
confined in a small box, as usual. At Ra/Rac = 310, a natural monoperiodic regame 1is
present, with an oscillator (hot droplet) whose frequency f° is 29.5 10°® Hz. This
oscillator is forced by a local periodic electrical heating - in a thin conductor in the
bottom plate — just underneath the place where the droplet is growing. Depending on the
values of A.‘l and £ , different regimes may be observed, including chaotic regimes as
shown in figure 3: the dynamical regame, periodic at first, becomes progressively
chaotic when the amplitude A, of the external oscillator is increased, whereas the
frequency ratio p = f.nlf° is kept constant (p = 0.97). The Poincaré section of the
attractor corresponding to the strongest forcing displays the typical features of
strange attractors despite the complexity of the distribution of the points (figure 4).

So we have seen that chaotic behaviours, issued from biperiodic regimes may be
observed experimentally. But to understand why these regimes are chaotic and what are
the evolutions leading to them, w: have to look first at theoretical models. They will
show to us how two coupied oscillators can exhibit a great (somewhat fascinating)
richness of dynamical behaviours.

II - QUASIPERIODIC MODELS

, The forced penduium

The simplest quasiperiodic system may be schematized by the forced pendulum. The
pendulum, sustained or not, is one of the oscillator; it is influenced by the second
one, given by an external periodic force which remains stable. The dynamics is then
described by the following equation:

ae
m—+a— +mg sin 8 = A cos wt (1)
at? at

8 beang the varaable of the system (the angle with the vertical direction in this case);
g 1s the gravitational field, m the mass and « is an expression which depends on the
fact that the pendulum is sustained or not. A cos{wt) gives the external periodic

forcang at the frequency w, which together with the amplitude A, 1s a parameter of this
dynamics.

Different expressions may be derived from the relation (1). We want here just to
mention two of them whach have been particularly studied:

1) The Van der Pol equation:

azg de
— - € (1-682) — + B8 = B cos at (2
at? dt

whach describes a sustained forced pendulum. When B = 0, the asymptotic behavicur of the
pendulun i1s periodic (after the transients).

2) The Duffing equation

a*e de
— +a —+ 08 =B cos wt + 3B (3)
- ae? dat °

where a is a damping coefficient. The asymptotic behaviour is the rest (a fixed point in
the phase space), when B = Bo = 0.

All these relations can be replaced by a set of three ordinary differential
equations, which are for the case of the equation (1): -
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Figure 3: Fourier spectra of a convective signal for different values of the forcing cad
of the modulation amplitude A, of the external oscillator, f““/f‘7 = 0.97 wath
£, = 29.5 10"°Hz, Ra/kac = 310.
dh . 4
dt "
* .
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dx )
— = =-ax - b siny + A cos 2z
dt

— X (4)
dt.
dz

dt
with x = d0/dt and y = 6.

This set expresses the fact that three variables are necessary to describe the
dynamics of the forced pendulum in the phase space. (Note that this corresponds to the
minimum condition - 3@ phase space - to get chaotic trajectories due to S.C.I.
properties).

As the trajectories are not easy to be visualised, in particular when they will be
chaotic, it 1s more convenient to draw Poincaré sections, or stroboscopic sections at
the frequency of the forcing. So x and y values are taken, each time the phase of the
forcing has rotated 2%, and the set of equations (4) beccames an iterated transformation
in the plane of the x.y variables

= £(x_,v,)
g(x_ .y ) (5)

xnox

ynox

or

%, = £(9,.5)

6. g' (P ¥ ) (s*)

LR

in polar coordinates, where ¢ gives, in a certain sense, the phase of the forced
oscillator relative to that of the forcing oscillator.

The Arnold model

Different models are expressed with the form (5'). The saimplest and the most
extensively studied up to day 1s the Arnold model (9) [10) [11]), which takes only into
account the variation of the rela:ive phase ¢, with the relation Poay = t'(w;) such as

B4y

K
(4 =@ + ] - — san (2€¢ ) mod 1 (6)
[ ] 21‘ D
{Note that here the phase is normalized to 1).

The parameter K gives the amount of the non-linearities. When K = 0, ?_, = ¢ +§, and

Q plays the role of a frequency ratio, since it could be the variation of the phase of

the studied oscillator (with frequency £°) when an external one (with frequency f.,:)
has rotated 2% (Q = fo/f"').

What we learn by studying this model in the plane of the two parameters [K,Q)? A
first picture of the evolution of the different dynamical regimes with K and Q is shown
in figure 5. When K = 0, all the regimes for 0 ¢ Q ¢ 1 are quasiperiodic i.e. ?, takes
all the values between 0 and 1, except for the exact rational values of §l. But as soon
as K is increased, the effective frequency ratio is no longer equal to {}, but becomes
the rotation number, defined as

p = lin [(f"('?)-'vo]/n]
n—-40

The non-linearities favour in particular phase-lockings, :.e. for a given interval of Q
values, ¢; takes only a definite number of values. This means that p has become a
rational (p = p/q with p and q integer) near the initial Q value. When K is increased,
the phase-locked tongues broaden {(the smaller the ¢ is, the broader they are) and there
is appearance of the tongues with higher p and ¢ values. The tongues are generated by
Farey sums i.e. between two tongues with P, = p‘/q‘ and P, = pz/qz, there is the tongue
P, = (p’+p:)/(ql+q:) and so on, from the widest tongue to the thinnest one.

Oon a line ¥ = cte, we find successively, by Q variation, plateaus of locking states
separated by biperiodic states; for K = ¥, the probabilit’ of observing rational and
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irrational rotation numbers are almost equal, but at K = 1, the probability of finding a
rational rotation number 1s close to 1, as shown in figure 6. We have a complete devil
staircase. This object 1is fractal and its dimension, calculated un numerical models 1is
D ~ 0.87, number which seems to be unaversal. It represents a local property of the map
and 1is defined in any point of the line K = 1; then it expresses the self-similaraty of
the locking states on this line.

By a further increase of K (K > 1), an overlap of the tongues takes place leading to
a competition between differert dynamical regimes, competition which can lead te¢ chaos.
Indeed, the line K = 1 1s called the critical lane, as this line corresponds also to the
loss of inversibality in the maps Pary = fn(¢;) (this means that the relation Py =P,
is not unique).

The critical line has also been calculated for 2d mappings, (10} in particular for
the standard mapping

as ]

K
oy T R - —sin 2T b

R
r.,, =r, - —=sin (2® 9 )

It 1s no longer the 1line K= 1, but a smooth curve resembling a parabola, with
dascontainuities near the major phase-loched tongues. Along this curve, the fractal
dimension corresponding to the locked portions is the same universal number Do — 0.87
as found for the circle maps, like the Arnold mapping.

Experimental results on the properties

Detaxls of an experimental study can be found in [6]). We want just to note here that
this study has been conducted on forced convection with mercury, in a small box. The
Rayleigh nunber is increased until a monoperiodic regame is reached (Ra/Rac =~ 4). Then,
this one is forced periodically as indicated section I. The properties of the local
plateaus of phase lockings have been studied around two rotation numbers: the golden
mean n.c = ({g-l)/2 and the silver mean ﬂs = Jz—l whach have only "ones" (1,1,1,...) and
twos (2,2,2,...) respectively in thear continued fraction representation.

The local fractal daimensaion D° has been calculated by using the relation
D 0
(5,/5) ° + (s,/s) ° =1

where S 1s the length of the frequency ratio interval between two phase locked tongues
pl/q, and pz/qz: Sl and S2 are the distances of the intermediate tongue, generated by
the Farey sum (pl+p2)/(ql+qz) respectively to its two "parent" tongues pl/q’ and pz/qz.

The results are in good agreement with numerical studies

D, (p = Qc) = 0.86%0.03 H Do(p : QS) = 0.8540.03

III_~ DYNAMICAL PROPERTIES NEAR THE CRITICAL LINE

The study of the global properties, in the plane of the parameteys [K,Q] (Arnold
model) has pointed out the fundamental aspect of the phase locking phenomenon which
dominates all the dynamical behaviours, when the non-linearities are sufficiently hagh.
We will discuss now some poants, with more details, leading to the understanding of the
mechanasms involved near the cratical line and leadang to chaos.

Phase intermittencies

They correspond to a specific behaviour, which is generic of the approach of
phase-locking. It c¢an be understeood farst by studying iterated models, as these
described previously, but also with the 2d Curry-Yorke model [12]} (13]. 1In a major
phase-locked tongue, with p = 1i/q, the phase ¢; takes repeatedly the same values
?l,¢z,...,4;.¢,,¢;,... etc, versus n. But very near the tongue (in B in the fagure 7a),
the phase shows & very interesting bchaviour: for a certain number of iterations (whach
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Figure 6: Rotation number p versur Q for the circle map at K = 1. The

shows the self-similar nature of the staircase (from [10]).
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enlarged picture

the phase intermittencies near

a major

phase-locked tongue; b) ?, variation versus n for 2d model calculatea for a point like
B. Every seventh point has only been drawn (B is near the phase-locked tongue 1/7).
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corresponds to a time duration in experiments), the sequence of ?, values 18 very
similar to this observed an the tongue, but from "time" to "tame", the plateaus of quasi
phase-locking are interrupted by fast rotations of the phase, to recover the actual
rotation number p ¥ 1/q. When the system is below the critical line, the fast rotations
of the phase are periodic (figure 7); this leads to specific properties:

- In the Fourier gpectrum of ¢(n) (which may be seen as 9(t)), there is appearance of
a low frequency 3f, which 4is the frequency of the fast phase rotations; this one 1is
given by the distance of the actual rotation number to the locking state; many of its
harmonic¢cs are also present.

- In the Poincaré section, the density of the points is non uniform, with a righer
density in the regions corresponding to the quasi phase-locking.

- The return maps Per =9 looks like those obtained from amplitude intermittencies.

When the non-linearities are increased, beyond the critical line, the behaviour
remains very similar but the intervals between the fast rotations of the phase has
become chaotic, leading to a broadening of the peaks in the Fourier svectrum, to a
Poincaré section with wrinkles and a ncn-invertible return map.

Note that these phase intermittencies may be seen as dynamical phasons.

The experamental results

As said before, the results concern Rayleigh-Bénard convection in a small cell,
(Lx =24, L = 1.2d4) filled with Si-011 (Pr = 38) for the example described in the
following. In a certain domain of Rayleigh numbers, and for a given spatial arrangement,
two oscillators are present in +he convecting fluid, with a rotation number p = fl/fz
around 1/7 (14). The phase-locking p = 1/7 (f = 9.5 10°2%*, £ =~ 66 10°%%%) is observed
for the interval 320 < Ra/Rac < 322. At the exit of the locking state, by varying the
Rayleigh number, (Ra/Rac =~ 319.5), there is evolution of the dynamical behaviour, so
that the Fourier spectrum of a convective signal becomes typical of phase
intermittencies (see figure 8); indeed we can notice the presence of the peak at the low
frequency 3f = 7£x-£z and of its harmonics.

From the Poincaré section (figure 9), drawn as described in section I, we can get the
variation of the relative phase ¢ with time. As expected, ¢ does not vary lanearly with
time, as a2t wouvld be the case in a normal quasiperiodic regime, but with tendency to
phase-loching, interrupted by fast rotations of the phase. The longer are these periods,
the nearer 1/7 is the rotation number.

From the successive ?, values, we can draw the return map Prys = f(¢;). Clearly, thas
map 1indicates the intermittent nature of the dynamics by the presence of points on (or
very near) the bissectrix. More, in the case shown figure 9¢, we can affirm that the
regime 1s very near the experimental craitical line for near the poant P, an ainflexion
point seems to be present. So the corresponding dynamical behaviour may be chaotic,
though very weakly. This weak.y chaotic behaviour, given by phase intermittencies before
falling in a phase-lockiung is a general feature observed in Rayleigh-Bénard convection,
since by varying the Rayleagh number, not only the amount of the non-linearities are
varied, but also the frequency ratio: so this observed evolution is in agreement wath
the behaviour given by the models, 1f we consider the related variation 1a the

two parameters.

Direct route from quasiperaodicity to chaos

The models

We have seen, that on "the critical line", we g¢go from one phase-locked tongue to
another one when the frequency ratio is varied. Nevertheless, it remains some "points”
(of zero measure) which correspond to quasiperiodic orbits i.e. those for which the
rotation number has remained irrational when increasing the non-linearaities. The mcst

famous irrational number is the golden mean, Qc = ({3—1)/2 whose representation as a
continuous fraction contains only ones
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and hLas, *herefore, the slowest possible convergence 1in a rational approximation —
q
1

(successaively, p‘/q‘ = 1/2, 2/3, 3/5, /8, 8/13, the nunbers 1, 1, 2, 3, 5, 8, 13,...
being the Fibonacci sequence).

Theoretical and numerical studies [15] have shown that i1f the airrational number 1is
preserved when increasing the non-linearicies, the successive combinations p‘f'x‘—q.f"
appear 1in the Fonrier spectrum. The higher are the q, and P, values, the nearer we
approach the cratical line. In the particular case of p = Qc” we have to observe then a
very la.cge rncreas2 of the nuanber of peaks with frequency lower than fo (see figure 1U).
These peaks may be regarded as due to the generalisat:.on of the mechanism givaing the
peak 8%, (related to phase intermittencies) near strong phase-locked tongue as discussed
before. With this picture, all the peaks Sf1 = p‘f'x!-qlfoh corresponding to the
distances of the actual rotation number to i1ts successave fraction representation covld
be explained by the superpositicn of diafferent phase antermittencaes, relative to tae

different neighbouring phase-locked tcngues.

At the critical line, as we know, there 1s overlap of the tongues but this overlap is
not simultaneous for all the toangues. At first, the nearest and (thinnest) cnes overlap,
and the peaks, given by the haghest order combinations in the spectrum broaden, followed
then by the others, peak by peak.

Experaments

This evolution to chaos has been well studied by A. Fein, M. Heutmaker and J.P.
Gollub (7] and by J. Stavens, F. Heslot, A. Libchaber [6) on experiments with forced
Rayleigh-Bénard convection. In the first case, a convective water layer in a small cell
was brought to a monoperiodic regime by increasing the Rayleigh number (f° ~ 0.186 Hz).
Then a perivdic forcing was imposed by modulating heat sources in the short sidewalls,
at constant Ra (Ra/R'c =~ 57).

The experaimental conditions of the second reference have been reported above, in
section II. In the two cases, the rotation number was kept equal to CG {up to 0.03%), by

adjusting fe" (p = fe\|/f0<1) at each value of the amplitude of the external forcing.
The observations are very similar to the results obtained theoretically and numerically:
in particular all the peaks p‘fo—q‘fex‘ have been measured, untal 55:0-89fex' and

combinations of them. The self similarity of the spectrum has been pointed out at the
onset of chaos, for the golden mean and the silver mean |6]); indeed this self samilaraty
1s due to the particular periodic representation as a containued fraction of these two
numbers.

This darect route to chaos from quasiperiodicity 1is not reserved to the "noble™
irrational numbers as QG and QS but 1t 1s expected for any airrational number. The
probability of fandaing this kind of number 1s very low 1n a natural convective
experiment; nevertheless one of them wath hagh Pr fluid, has provided a dynamical
behaviour related to this rouce.

The conditions of the experiments {[16] are the same as these which have been reported
for the observation of phuse intermittencies, but for a slightly dr1ffereat value of the
Rayleagh number (Ra/Rac =~ 317). For thas situation, the rotation number is p = fl/fz (f‘
and fz = natural frequencies of the consection) with ¢ = 1/6.59. The different rationals
p‘/qI which approxinate this number are 1/6, 1/7, 2/13, 5/33,... . All the peaks
q‘f‘-plf2 are present an the Fourier spectrum of the convect e signal (figure 11).
Nevertheless, we have to remark that the lowest frequency wh.uch would correspond to
A = 33fl-5f2 1s broadened. This 1s 11 agreement with the fact that the studied regaime
1s slaghtly chaotic and probably just beyond the critical lane.

Two_oscillators evolution in_a free Rayleigh~Bénard experiment

As we have already said, 1n a free Rayleigh-Bénard experiment, only the Rayleigh
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. number can be varied and its variation acts on both the coupling intens:ty and the
| frequency ratio of the oscillators. Nevertheless some 1interesting results have been
obtained recently on the behaviour of two natural oscillators near the critical line. In
this case indeed, the oscillators are both free to react on their mutual influence and
the reievant phase space is four dimensional. (Note once more that .11 the study
1 corresponds to a well defined and stable spatial configuration of the convective rolls).

The exact evolution of the observed dynamical regimes is as follows:

- At Ra/Rac = 317, the regime as the one, d:scribed just above 1.e. a lov chaotic
behaviour obtained directly from biperiodicity (p = 1/6.59).

b ~ 317 < Ra/Rac < 319.5, different cheotic regimes take place (1/6.59 ¢ p < 1/6.9).

- At Ra/Rac « 319.5 the regime is unambiguously related to phase intermittencies. It

F has been discussed at the beginning of the section IIX.
- Then a 1locking state is o»served for 320 < Ra/Rac ¢ 322, with p = 1/7; 1t ac
& followed by a4 normal biperiodic :egime when increasing further the Rayleigh number.
p We are interested here in th> understaniing of the different chaotic regimes which

hes been observed in the range 317 < Ra/Rac . 320, knowing that the observations at the
ext:remities of the range correspond to dynamical regimes very near the onset of chaos,
then near the experimental critical line. (When phase intermittencies with p = 1/6.91,
we have seen that the return map 1s just at the limit of inversibility). In these cases,
r the study of Fourier spectra and the treatment of the attractor's Poincaré sections have
provaded fundamental anformations about the dynamics. When the regimes bhecome more
chaotic, it 1s necessary to rely on other methods to get quantitive characterization

Fortunately, since some years, theoricians have searched for and found algorathms,
allowing to calculate typical features of chaotic states fron experimental data, namely
the fractal dimensaon of the attractor {17], (18] the metric entropy of the chaotic
state [19]}, ([20]) and then, more recently (21]), [(22), (23] the positive Lyapunov
exponents. For all these methods, the attractor s at first reconstructed by the time
delay method, as discussed in the lecture of Bergé.

We used some of these algorithms to study the different observed chaotic regaimes.

In a farst step, the fractal dimension, or more exactly the correlation dimension was
calculated. using the aligorithm proposed by P. Grassberger and I. Procaccia [17]}, and
which is discussed in details -n the 1lecture of Bergé. Th: sagnal, from which time
series of 15.000 points were obtained, was measured in the same nlace on Foucault image
! of the convective £luid for each Ra/Rac value (the digitalisation was made with around

H 16 ypoints per fast period T, = 1/:2). Then these time series were processed 1n the same
way. As expected, the slope v of the characteristics log[CiR)] = f£(log(R)) with R the
} distance in the phase cpace increases with D, the dimension of the reconstructed phase

space, until i4 reaches a nearly constant yalue {(figure 12); this value gives a fractal
aimension of the chaotic attractor and then a lower bound of the effective dimension of
the relevant phase space. But 1t can give also a quantitative estimate of the evolution
of the chaotic state, with the hypothesis that the dissipation remains constant along
the diff :rent measurements.

To confirm this assumption, the metric entropy has also been calculated, with an

algorithm given by P. Grassberger and I. Procaccia and discussed in details in [19].

. Just we recall here that the method allows to get a value of the entropy. K,n which is a
lower bound of the Kolmogorov entropy Kz.

{ K, <K
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T is the time delay taken to construct euch component of the points in the phase space
{namely X(tl), X(tl+¢), x(t‘+2¢...)...x(t+(D—1)¢) in a D dimensional phase space il
x(c!) is the time series). The K’ calculation as we can see from the relation (9) *akus
advantage of the calculation of the fractal damension, sance K. is ob%aired from the
shift of the successive curves 1logC{R) = f£{(R), with increasing D. 1In figure 13, the
rssults are given for two attractors for which respectively v = 2.4 and v = 3.1.

Some remarks have to be made:

1) As it was already pointed out for the c¢alculation of the correlation dimension v
{24), the good parameter seems to bn, not the dimension D but rather the embedding time

T, = (D-1)7 i.e. the 1length of the time sequence taken to define a point in the
reconstructed phase space.

2) In the case of the discussed experimentail data, the

K, values vary as the
correlation dimension

K

14

" 2 10°% s? for the attractor with v = 2.4

R

K, 5 1073 ! for the attractor with v = 3.1

this confirms the first idea that the correlation dimension varies in the experimental
sequence as the amount of chuos. (Note that v = 2 corresponds to a torus in the phase
space, i.e. a biperiodic regime without chaos).

3) The entropy may be regarded as the inverse of a characteristic time of the
divergence of the trajectories. In the case of the two cr~nsidered attractors, if Rz is
normalized to the 1longest period A of the reginme, we find KzT ~ 0.21 for the f .rst
attractor and 0.53 for the most chaotic one. In this later case,

of the davergence in the phase space 1is around twoe times
dynamics.

trie characteristic time
the longest period of the

Now let us return to the evolution of all the chaotic states under study
(317 € Ra/Rac € 320). From the v values (anad K, valves in some cases), we remark that
the variation of the amount of chzos is non monotonous as shewn in figure 14. How we can
explain this resuit? 2As mentioned previously, the variation of the Rayleigh number
induces tne variation of the frequency ratio p cf the two cscillators. In the considereu
experimental situation, it turns out that an important varsation of p occurs within =2
very small range of Ra/Rac; so in a first approximation, we can consider that the
dynamical properties are then essentially due to the freguency ratio variaticn, as
pointed out by the two end cases {p = 1/6.53, v ~ 2.4; p = 1/5.91, v =~ 2.1). It follows
that the v variation versus p is related to the local properties of the critical line.

Direct -omparison 4ith theoretical and numerical models is (i1fficult since the
results obtained here correspond to a four dimensional phase sbace [30] but nevertheless
they are in qualitative agreement with theoretical predictions.

Note, to finash this discussion, that the calculation of the positive Lvapunov
exponents Al has confirmed the presence of two positive hl (25 this calculation was
performed on the most chaotic signal (attractor in the figure 12b) with the alyorithm

developped by J.P. Eckmann and L. Ruelle, after testing this method on numerical models
[{26].

IV = DYNAMICS TNSIDE THE PHASE-LOCKED TONGUES

We have seen how a biperiodic regime can become chaotic, together on numerical models

in physical situations but the examples we have discussed, were all related to the
direct onset of chaos from biperiodicity. What happens wheu the rotation number is
rational and that the non-linearities are ancreased, i.e. when the regime remains inside
a phase-locked tongue? Without entering in the details which may bz found in particular
in {11), it is inmportant to note that the route to chaos is different from those studied
before. The study of the circle map has shown that inside the tongues, the approach of
chaos 1is achieved by period doubling (29] i.e. in the tongue p/q, appears progressively
the periodic orbits with rotation number (p.2")/(q.2%). Note that the value of the

and
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Figure_13: Calculated K, values versus the embedding time T,
(0) = attractor with v = 2.4 p = 1/6.59;
(X) = attractor with v = 3.1 p = 1/6.52.
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Figure 15: Schematic representation of phose-locked tongunes for the circle map (from
{1i]}). The dashed area correspond to non-chaotic xegimes and the wavy line is the
critical line. The dotted curves represent different paths which may be followed in an
experimental situation.
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rotation number is preserved, but corresponds to different values of the actual
frequencies. The sequence of period doubling (n — ®©) may be not complete when chaoz
appeal’'s and the 1line in the plane of the parameters {K.Q), which gives the on:zet of
chaos 1s not simple, as shown in figure 15 (taken from {11]}). A great interest of this
figure 18 to show, beyond its esthetic aspect a scheme of the possible ambrication of
the different regimes (biperiodism phase-locking, biperiodic chaos, period doubling ard
so on), when an experimental path is folliowed.

in fact the experimental situations are often much more complicated *than those which
are deduced from the circle maps. Some parts of the experimental results may agree with
the predictions, others desagree but could be explained probably f£from 2d models. 1n
particular, in an experiment of forced convection with mercury (28], the detailed study
of the approach of chaos inside the tongue 8/13 has been performed. A complicated
structuration of different dynamical regimes has been observed inside the tongue, when
the amplitude of the forcing was increased. 1In some regions, the influence of the
neighbouring tongues was found.

So if a conclusion has to be made, we could say that the dynamics of two coupled
oscillators, and only two, is fascinating by its great richness. This kind of behaviour
1s not a “"privilege" of theoretical models, but it can be found in many systems. We have
seen some examples in convection, but the different dynamical regimes, related to the

interaction of two oscillators and 1leading to chaos, can also be responsible of
behaviours observed in mechanical systems, biology, climatology, etc...
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I - RAYLEIGH BENARD CONVECTION

Convection is a very common phenomenon in nature and its study and understanding
have fundamental importance in meteorology, oceanography, geophysics etc... and in many
transport processes 1involved in practical applications (material science, power
engineering, combustion etc...). The term “convection" seems to have been applied first
to denote the transportation of heat through fluid motion. Generally speaking,
convection arises when a thermal inhomogeneity exists in a fluid. The competition
between the destabilizing effects like buoyancy and stabilizing ones 1like viscosity
leads to an ainstability. Such instabilities are characterized by the existence of a
threshold beyond which there is organization of £fluid motions into a relatively ordered
pattern sometimes called "dissipative structures”.

Rayleigh-Benard convection is one of the simplest iwstabilities [1]. It is
related to the case of a horizontal 1layer of a thermally expansive fluid which is
confined above and below by rigid plates of good thermal conductivity, submitted to
purely vertical adverse thermal gradient (adverse means "heated from below").

I.1. Physical meaning of the Prandtl number

Let us first consider the layer of £fluid and suppose the existence of a
localized@ thermal gradient. The propagation of this localized gradient through the whele
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fluid layer is governed by a heat diffusion equation. The diffusion coefficient of the
temperature is

where /% is the thermal conductivity of the fluid, C the specific heat at constant
pressure and e, the density. On the other hand, the diffusion coefficient of a velocity
gradient (more generally of the vorticity) is simply the kinematic viscosity » = 7/p, -

These two diffusion coefficients allow us to calculate the order of magnitude of

the characteristic relaxation times 7T of the gradients ir. a layer of depth d. For the
temperature:

Tea © d Vbr.

and for the velocity:
T,xd?*v.

The ratio of these times is the Prandtl number which controls the temporal behaviour in
a fluid layer submitted to the two kinds of gradient. Then in convective motion,

We may have two opposite situations:

(a) High Prandtl number fluids: the vorticity diffuses {then the velocity relaxes)
faster than the temperature. Then the velocity perturbations follow the temperature
perturbations without delay; one says that the viscous effects are dominant.

{b) Low Prandtl number £luids: the temperature relaxes faster than the vortacity: a
veiocity perturbation may persists even after the thermal cause has disappeared: the
1nertial effects are dominant.

From these two opposite situataons, one can point out the qualitative analogy
betweenn the Prandtl number and the 1eciprocal of the Reynolds number Re, because, 1in a
flowing liquid, Re measures the balance between inertial terms and viscous terms.

I.2. Mechanism of the instability

The origin of the instability can be seen as follows. If fluid elements are
displaced along the paths HH' and BB' (see Figure 1) a torque which would amplafy the
daisplacement 1is created. After the displacements HH' and BB' have occurred, the
temperature difference between the two fluid elements diminxshes, due to the thermal
diffusivity D, with a characteristic time on the order of:

where d 1s the depth of the layer The characteristic time of the displacement HH' - BB’
depends on the forces acting on the £luid - that 1s, the buoyant force due to the
density difference and the viscous frictional force. This characteristic time T behaves
like:
n
T N ——
. p,gad AT

dynamic viscosity
expansion coeffaicient of the fluad
mean density

n
@

po
g : gravitataonal acceleration.
The condition for the onset of sustained motion is that the time Ty (lifetime of the

cause) be greater than T, (time for appearance of the effect). Hence the condation for
sustained convection ais:

by
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value of AT.

Fig.2a - Shadowgraphy of disordered convective structures in cylindrical P
and rectangular containers.
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Fig.2b - Geometry of a -"small box" : an
exanple of convective arrangement.
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p, ged ?
4T > constant.
0,
The left hand side, called the Rayleigh num £a, 1s a nondimensional measure of the

temperature difference £T7. The inequality above states that there exists a cratical
Rayleigh number Ra_ (or equivalently, a critical temperature difference AT ) above which
the state of rest ceases to be stable and convection begins. Convective instabilities
were first clearly observed experimentally by Bénard in 1900 and first interpreted by
Lord Rayleigh in 1916; it is for this reason that the two names are associated to the
phenomenon.

Fluid |Air|Water Si oil
v=1 stokes

AT,
(d=1 cm) {17 "|0.1" 2.2°
Pr 0.7 7 900

Table - 3ome cratical temperature differences cosresponding to Ra_ for some fluids
near room temperature.

I.3. Spatial oxganization

We have seen that when the temperature difference applied to a horizontal fluad
layer 1is increased beyond a g¢gaven value (or R’ > Rac)n the fluid begins to move. How
does it do this ?

To study the convective structure, 1t 18 necessary to look at the fluid from
above. This is the reason why, in experiments which deal with thas problem, the upper
plate 1s often made of transparent sapphire whose thermal conductivity is large compared
to that of the usual fluids (in some cases, when the (expensive) sapphire 1is not
available, one can work with glass plates but the results can be slightly different).

The spatial organization takes the form of ascending and descending motions
which carry along the £fluid, 1in rolls turnang clockwise and counter clockwise
successively ain space. These almost periodic motions obviously introduce in the fluid a
succession of "warm" and “"cold" currents. One can make these currents visible (without
perturbing the fluid) through the temperature gradients which induce refractive index
gradaents able to refract light beams so that the fluid acts as many local lenses. Then,
a parallel light beam which crosses the fluid is focused where the refractive aindex is
largest (cold streams) and diverges where the refractive index is lowest (warm streams):
the 1light intensity modulation of the beam after crossing the convective cell reveals
the structure of the motion with bright lines corresponding to downwards motaions.

If the horizontal extent of the layer is large compared to the depth d, we
generally obtain (after a transient period which may be very long) a stationary
(time~independent) roll pattern which has the following properties (near onset):

(a) the axes of the rolls tend to be perpendicular to the lateral walls.
(b) In the core of the pattern, celatively far from the boundaries, the axes of
the rolls tend to be equidistant and, so, locally parallel.

Except for some particular cases, these two conditions cannct be simultaneously
fulfilled, creating a topclngical frustration. This frustration gives rise to defects
such as dislocations, bending of the rolls, grain boundaries. So, very generally, in
large containers the natural structures are diso.dered see figure 2a) [2].

By increasing the Ra number, the convection leaves the steady state and becomes
directly turbulent. In the case of high Prandtl number fluid the onset of turbulence is
larger than 10 Ra_ , but depends on the particular conditions. For low Prandtl number
fluid, the onset of turbulence may be very near Ra . But the common and important
feature is the following: in both cases, this turbulence is due to the erratic motion of
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the rolls themselves. 1In other words, the phase of the rolls is continuougly changing;
this is the reason why this kind of turbulence had been called “"phase turbulence”. Thas
phase turbulence is characterized by a continuous change of the convectaive pattern with
complex motion of all kind of structural defects. This phase turbulence 1s not well
understood., Note, however, that in the case of low Prandtl number fluid, some physical
mechanisms have been recently elucidated [3] but many progress as well experimental as
theoratical remain to be done.

I.4. Towards confined geometries

How can the order of the convective pattern be preserved, the phase of the rolls
fixed and, then, manifestation of phase turbulence prevented ? It suffices to
drastically reduce the number of possible configurations which are compatible with the
imposed contraints. A natural idea is to place the fluid in a cell whose horizontal
dimensions Lx, Ly are on the same scale as the height. The aspect ratio, defined as
= L/d, is small an such a cell and the number of rolls necessarily 1limited. For
example the presence of lateral boundaries separated by a distance of only twice the
depth stabilizes the convective structure and reduces the number of rolls to two, at
least for moderate values of Ra. Note that an the direction perpendicular, the distance
Ly between the boundaries is even smaller. Experiments show that with this type of cell,
spatial order is indeed preserved over a very large range of Ra (typically hundreds time
Rac) . This kind of experimental cell corresponding to a confined geometry is sometimes
called "small box"” (see figure 2b). Under that conditions, the first instability
encountered (after the onset of steady convection) is that of the thermal boundary
layers. 1In these boundary layers, thermal oscillators develop which can have different
forms. The aimportant fact is that, by increasaing Ra, one obtaans, first, only one
oscillator whose pulsations are easily visualized through simple optical means. The
corresponding regime is periodic (i.e. the temperature and velocity of the convective
fluid vary periodically with time), with a frequency well determined and stable [4].

By increasing the control parameter Ra, the regime becomes more complicated and,
finally, a turbulent state is reached. But, this turbulence is not related to the
interaction of many complicated spatial modes like in the case of the large aspect ratio
cells (phase turbulence). On the contrary, in such a small box, the turbulence 1s
related to the interaction of a very small number of modes or degrees of freedom. To
distinguish these last turbulence from the phase (or developed) turbulence it is named
“"deterministic turbulence" or "chaos", or even, "temporal chaos" to well stress the fact
that spatial effects are not involved. As a matter of fact, Rayleigh-Benard convection
in confined geometry can be considered as a dissipataive dynamical system.

IT - BASIC CONCEPTS ABOUT DISSIPATIVE DYNAMICAL SYSTEMS

II.1. Definitions anc examples

A consequence of what we have discussed in the case of a confined geometry ais
that we can expect to be able to anterpret ithe corresponding turbulence in the frame cf
the theory of non~linear dynamical systems with a small number of degrees of freedom
{5]. Let us rapidly address the question: what is a dissipative dynamical system ? an
example of dynamical system is for example, a forced (and sustained) pendulum. The
dissipative character 1s due to the presence of unavoidable friction and the existence
of permanent oscillations is allowed by a convenient sustaining. In a general manner,
the time evolution of a dynamical system can be described through a set of ordanary
differential equations. In all that follows, we will consider that these equations are
non linear, these non linearities giving all the richness in the behaviour.

For example,we will consider a system of 3 equations:

dx/dt = £lX,Y,2)
dy/dt = g(X, Y, 2) (II.1)
dz/dt = h{X,Y,2)

where X, Y, Z are the variables of the system or degrees of freedom. The corresponding
dynamics is represented by the solutions of (II.1):
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X = F(t) Y= Glt) Z = H{¢t)

which give the time evolution of the various varzables allowing to determine the state
of our system.

In an alternative description of the dynamics, one considers the trajectory of
the point whose coordinates are X, Y, Z: doing so, we define the so called phase space,
the c¢oordinates of which are the variables of the system. The prime importance of this
particular space will appear all along this lecture.

As an illustration, let us look at a simple example: that of the sustained
pendulum as modeled by Van der Pol whose second order non-linear differential equation
1s:

d?x/dt *- (e-X?) aX/dt + X =0 (I1.2)

Equivalently, we can describe the system by a system of 2 first order-equations:

Yy
(e=X 2)Y-X

dx/dt
dy/dt

in which the two degrees of freedom, 1.e. the position X and velocaity Y of the pendulum,
clearly appear. The motion of the point of coordinate X, Y in the phase space tends to
the asymptotic trajectory which 1s a closed 1locop, named the “limi. cycle”. Note that
this 1limit cycle is only reached after a long taime during which the trajectory is
progressively attracted towards the limit cycle, and named, for this reason, attractor
(see figure 3).

The existence of an attractor arases from the @di:sipation of the system
represented here by the second term of equation (IX.2). In the same manner, dissipataon
produces area {or volume) contraction in phase space and, as such, the dimension of the
attractor 1is lower than that of the phase space. In the example quoted above the
attractor has a dimension 1 in a two dimensional phase space.

II.2. The saimplest attractors, their Poincaré section and corparison with muppings

The simplest attractors are the fixed point corresponding to the state of rest,
the limit cycle to the periodi¢c regime, anéd the tori which correspond to the
multiperiodic regimes. Furthermore, instead of considering the full trajectories, one
can consider its intersection with a plane (or hyperpla~ . ™ representatjon obtained
this way, the Poincaré section, has a dimension iow (ed by 1 in comparison with the
original representation. In particular, this procedure allows one to draw on a sheet of
paper the Poincaré section of an attractor immersed in a three-dimensional phase space.
This procedure 1s particuliarly usefull in the case of experaimental attractors. As one
can see on figure 4a, the Poincaré section of the trajectories of an attractor embedded
in a three-dimensional phase space consists in an easemble of points P’n E;, P:"'
Instead of considering the full trajectory, one can focus our attention on the
properties of this ensemble Pl. A very rich and simple way to do so is to compare this
ensemble with models called "iterated map". In a two-dimensional case, if X . Y are the

coordinates of a point Pi, the general form of such a mapping reads:

{xkol = F(XL s Yk)
me = G(xk'yA)
meaning that a point Fi.‘ is defained as a function of the prevaous one Ei. An ensemble

of points is thus generated, when the "discre:e time" n runs (see figure 4b). The
topological properties of this set can be usefully compared with that of an experimental
Poincaré section. This method presents great advantcages: comparasor between full
trajectory of an experimental attractor with that of a continuous three-dimensional flow
(i.e. a theoretical model) would require a numerical integration of this flow, a
delicate and time-consuming matter compared with the iteration of a two-dimensional
mapping.

£ill more simple and nevertheless very useful is the one-dimensional map. Only
one variable 1s used in such a mapping which can be written:
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Fag.4b - Comparison between Poincaré section and a two dimensional
mapping.
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This allows usef comparison with the 2xperamental "r .urn maps". Consider a
variable Z of an expeci. r:al dyLawical system, suppose that this variable undergoes
successive marima ... L AP &.. €tc-..

The diagranm .2'“‘= f.‘(Zk) is the "first return map" when the one ob.ained@ by
plottang .2;“:= f(.z,k, is aamed "second return map”.

IX.3. Iteration of a one-dimensional man

Classically, the tools used tv study a once-dimensional map are the graphs in the

(,z‘,,z;‘u) plane of the function t':,z\”= f(‘z;) ind of the identity map: ,z“l= ,2; To
1llustrate the method, we will take as an example the nonlinear mapping:

Z,,= g0, Ze (0.1).

The graph of the function £(P = 4p Z(1-2 for & given value of u between G.25 and 0.75
is zero at Z =0 and Z= 1, and has a maximum nqual to s at Z = 0.5. Witn the help of
this graph, let us now study the iteration d:fined above, starting from an initial
conditaon ,% (g0 = 0.7). The first iterate z is at the intersection of the graph [ with
the vertical 1line with abscissa .2; (see figure 5). Similarly, the second aiterate
.z= f(‘Z;) 1s located at the intersection of f wath the vertical line waith abscissa .z .
and so on. A simple &nd efficient method of constructing the successive iterates
consists of using the identity map, or diagonal, '2,;”= ‘z‘ Indeed the horizontal line
‘2;”= ,2; intersects the diagonal ‘2;”= ,2; at 1 point with :Z’,‘= 3; . It then suffaices to
draw a vertical from this poant without refe-ring to the abscissa axis.

By repeating the sequence of operations:

~ draw a vertical from the diagonal till 1ts aintersection with the graph of f,
- from the point obtained, draw a horizontal until its intersection with the diagonal,

we obtain the successive 1%ierates of the mapping. We ascertain from Faigure 5 that the
iteration converges to the point wath abscissa Z “, the intersection of the diagonal
with the graph of f . One can easily verify that anv inatial condition z; chosen

converges to J ' under iteration of f with the exception of the endpoints 0 and 1 of the
interval. It is clear that any point of aintersection of £{(2) with the i1dentity map is
itn own iterate; it is a fixed point of . This is the case for the origan: taking
.%= 0, we find z;: 0, &;= 0, etc. However, “or a value of ,% that s arbiatrarily close
but not equal to O, the ateration converges to Z ‘. A point at a small drstance from the
origin moves further away from thas fixed point, which 1s therefore called unstable. In
contrast, the fixed point Z* towards whach the ateration c¢onverges for any initial
condition in )0, i[ 1s a stable fixed point.

There 1s a criterion for determining whether a fixed poini is stable or unstable
which dnes not require tedious calculation. j'he graphical construction shows that if the
slope of f(2) at the fixed point 1s of absolute value greater than one, then the fixed
poant is unstable; this 1s the case for the Jrigan. On the other hand., if the slope of f
is 1less than one in absolute value, then the 1iteration converges

towards the fixed
point: this is the case for I ".

III - TOWARDS DETERMINISTIC TURBULENCE OR CAOS

IXX.l. A definition of chaos

We will say that a dynamical regime is chaotic if the power spectrum of a
variable of the systenm {(amplitud> of a p-ndulum, velocity of the fluid in a convection
experiment... etc) contains a continuous part - a broad band - regardless of the
possible presence of peaks. Or else we may use the criterion that the autocorrelation
function of the tame signal has finite jupport, i.e. that it goes to zero in a finite
tame. In either «case, the same concept is involved: the loss of memory (or similarity)
of the sigral with respect to itself. Consequently, knowledge of the state of the system
for an arbitrarily 1long time does nct enable us to predict its later evolution.
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Fig.6 - Behaviour of neighbouring trajectories in phase space. On tie left,
similar when tame runs (non

tegime) but they diverge rapidly becoming completely dissimilar in

the two trajectories remain neighbour and

chactac
a chaotic regame.

Fiq.7 - The first step of the construction of a chaotic (or strauge)
attract~v, The ensemcle of the initial conditions lie in the rectangle ABCD
wnich 13 contracted along XX' ({attractaion) and stretched along Y7
(S.I.C.), the "mean" trajectory being drawn as a continuous loop.
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€sser tially, this means that we are making unpredictability the quality which defines
chaos. Aa a matter of fact, prediction is based on the possibility to extrapolate the
past towards the future. This works very well in the case of periodic signals because of
the repetition of a pattern (permanence of the self-similarity). The 1loss of
self-similarity does not allow this extrapolation to be done, except for very short time
intervals. In the phase space, the question c¢f permanence (periodic} or toss (chaotic)
of the self-similarity has a particular and important consequence. In the case of a
periodic (or multi periodic) signal, two neighbouring trajectories will remain =o when
the time runs (conservation of similitude). On the contrary, they will diverge in the
case of a chaotic signal (loss of similarity) see figure 6. This very important
property of the trajectories of a chaotic regime is called Sensitivity on Initaal
Conditions or S.I.C. Once more, the consequence of S.Y.C. is the following: even a very
small (infinitesimal) difference on the knowledge of the exact condition of the system
will be (exponentially) amplified and, as such, has dramatic consequence in the
subsequen. behavior, producing impredictability. Then, it suffices that a system
presents the property of S.I.C. to be chaotic, whatever the number of its degrees of
freedom may be. Indeed, we have arrived at a haighly nontravial result: the impossaibiality
of preuicting the behavior of certain deterministic flows with only a few number of
degrees of freedom [5][6] !

IITI.2. The key of chaos: the strange attractor

Returning to figure 3, we have yet seen that all the poants corresponding to
different initial conditaons are folded back to the limit cycle, the attractor of the
periodic regime. Let us see, by comparison, how 1t is possible to construct the
attractor of a chaotic regime. We take the simple case of a three-dimensional phase
space; see figure 7. Let us start with initial condations (¢t=0) lying the rectangle
ABC). When the time runs, we have two opposite effects; in one direction, let us say
X X' we have contraction towards the attractor, but in the other Y Y' we have divergence
($.I.C.}. 8o, the rectangle 1s at the same time, contracted (area contraction due to
dissipation) and stretched (S.I.C.). Then, the rectangle becomes narrow and elongated;
but in order to remain in a bounded region of the phase space it has to fold. So, after

one turn (t=1), we are back to the starting plane which we can choose as the Poincaré
plane (in the followang, we will not consider the full attractor but only its Poincaré
section). Due to the combaned effects of contraction, stretching and folding, the

nitial rectangie has been transformed anto some kind of horseshoe. With time
7 yolution, contraction stretching and folding corntinue to act on this horseshoe, giving
some kind of double hairpin after two turns (t=2) see figure 8. When many turns will be
made, one obtain, in the Poincaré plane, a complicated structure with an infinite number
of sheets. One can see on figure 8 that the transverse structure of the Poincaré section
is formed according to the same manner than a Cantor fractal ensemble. So, a chaoti¢
attractor is a fractal objest with a non integer dimension D (here 2 < D < 3). Because
of the very particular and complex topology of these chaotic atiractors, they were named
“strange alttractors”.

Anmong the conclusions ot this geometrical reasoning, one can point out the fact
that a strange attractor (i1.e. an attractor with §.I.C.) can exist in a low dimensional
phase space (minimum 3 dimensions). That means that chaos may appear in a system with
only 3 variables (or, in this context, 3 degrees of freedom). In other words, the system
of 3 differential equations (II.1) may have chaotic solutions in spite of its
determinastic character. This is the reason why this kind of chaos has been named
"determinastic chaos" {(or deterministic turbulence if we deal with an hydrodynamical
system) .

IXI.3. Brief introduction to bifurcations

When discussing about Rayleigh-Benard convection, we have seen that for values of
Aa < Ra, the fluid remains at rest when,for Ra > Ra_ ,convective velocity is present. We
observe a complete change in behavioxr upon crossing the boundary between stable and
unstable solutions. One says that at Ra = Rac, the system undergoes a bifurcation. More
generally, whenever the solution to an equation or system of equations changes
qualitatively at a fixed value - called a critical value -~ of a parameter, this is
called a bifurcation. From a bifurcation point emerge several (t+4o or more} solution
branches, either stable or unstable [5].
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Fig.8 - Diagrams of simple bifurcations

a) pitcrfork (or normal or supeccritical) bifurcation

b) subcritical (or inverse) bifurcation
¢} saddle-node bifurcation.
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Let us 1llustrate some different bifurcations through their bifurcation
diagrams, J being a (real) variable chavacteristic of the bifurcation (for example the
velocity in the R.B. case) and s the bifurcation parameter (for example the Rayleigh
number). In figure 9a onhe can see a pitchtork (or normal or supercritical) bifurcation
the corresponding equation is

a7
- = -~ x?
2t »Z
for p < 0 the only stable solution is I = 0; for g > O this solution becomes unstable

and the two stable branches are I = % {;. Note that the nonlinear term -Z ® limits the
exponential growing due tc the linear term.

One can see on figure 9b the subcritical bifurcation (oxr ainverse bifurcation).
The equation is

ax _ s
Y Sl X+ X

Contrary to the case of tte pormal bifurcation the nonlinear term + % ? hashlso a
destabilizing effect on the solution.

ar The fi~ure 9c¢ represents a saddle-node bifurcation whose equation is

;— = pu= X2 ; for p > 0 there exists 2 branches, one stable and one uastable. For u < 0
t

there exists uv solution, stable or unstable .

III.4. Ways in which chaos appears, main routes to chaos

What are the routes that l2ad a dynamical system from regular behavior to chaos ?
To answer this quest:on, we must 1list the different possible transitions between
attractors, a task as indispensable as identifying the attractors [7].

First, we must say that, very generally, the first ntep after the steady regime
consists in a periodic behavior. For example, in a small »ox, the increase of Ra number
produces a transition <f£ror the steady regime to a periodic one. A natura. step towards
addressing the queation posed above is to examine the conditions under whi-li a periodie
regime loses its stabilaty.

Consisder a flow in ».a m~dimensional plase space which has a periodic solution of
period T X(t«T) = X(£).

To find out if this solution is stable o.s not, it suffices to look at what
happens to a small initial displacement 5% away from the solution. Linearizing the flow
about the periodic trajectory, we find that an 2anitial coadition i;+ 3% (8%

infinitesiral) is mapped at the end of the period T into i;+ MEY, where M is an m x m
matrix called the Floquet matrax.

The problem of the linear stability of a periodic solution has been reduced in
this way to the study of the eigenvalues of M. We first note that this matrix always has
an eigenvalue equai to one; this corresponds to a displacement 5% along the trajectoxy.
We must study what happens in the diractions perpendicular to the trajectory, as shown
in the diagram of figure 10a. We see intuitively that, while the eigenvalues of M depend

on the form of the 1limit cycle, they are independent of the reference point ii chosen

along it. Since over one period ];+ 5X is mapped into X+ M 8}, the solution is linearly
stable 3f all of the eigenvalues of M are 1located inside the unit circle D of the

complex plane. Then, all the components of the vector 8} which sre perpendicular to the
limit cycle are reduced with each period. On the other hand, if (at least) one of the
eigenvalues o> ¥ 1is outside of D, 5% grows continually in at least one direction: the

trajectory moves further and further away from the limit c¢ycle, which is therefore
unstable.

By continuous variation of a parameter u , the periodic solution gradually
changes: the same is true of the matrix M and of its eigenvalues. Each of the
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eigenvalues can be represented in the complex plane by a curve parametrized by u. Loss
of stability of the periodic solution, accompanied by a bifurcation, occurs when one of
these curves exit$ from the unit circle as p is varied. There exist three generic ways
in which to cross the unit circle D, as indicated on figure 10b: at (+1), at (-1) and
at two complex conjugate eigenvalues {(a % iB). Aside from the loss of stability, each of
these crossing types has different consequences on the later behavior of the systenm,
which depend on the nonlinearities and are closely related to the bifurcations involved.

When (+1) is crossed, a saddle-node bifurcation occurs. The periodic solution
does not merely become unstable: it disappears entirely. In a parameter region slightly
above the bifurcation threshold, the system enters a regime called Type I intermittency.
it 1is characterized by phases of regular, almost periodic behavior (laminar phases),

interrupted from time to time by phases of apparently anarchical behavior (turbulent
bursts).

If the circle 1is traversed at (-1), the bifurcation is called subharmonic, and
may be either supercritical (normal) or subcratical (anverse). In the case of a
supercritical subharmonic bifurcation, a new stable peraodic solution, whose period is
twice as 1long, replaces the solution which has become unstable. Period-ucablang is
repeated for each of the periodic solutions obtained, resulting in an infinite sequence
of bifurcations called a subharmonic cascade and ending in chaos. A subcritical
bifurcation, on the other hand, 1leads to Type H intermittency, which qualitatively
resembles Type I intermattency: long phases of almost periodic behavior are interrupted
from time to time by chaotic bursts. However, Type HE is characterized by progressive
increase of the amplitude of the subharmonic during the almost periodic¢ phase, the
reason being that, here, nonlinear effects amplify the subharmonic instability of the
limit cycle. The amplitude increases with each successive oscillation: when 1t exceeds a
critical value, the laminar phase 1s interrupted.

Finally, a third mode of instability takes place when two complex conjugate
eigenvalues (a + 18) simultaneously cross the unit circle: this 1is called a Hopf
bifurcation. If the Hopf bifurcation 1s supercritical, it leads to a stable attractor,
close to the limit cycle which 1s now unstable (but which still exists). This attractor
is a torus T ? on the surface of which is inscrabad the new solution corresponding to a
quasiperiodic regime. A second instability can then generate a transition from this
quasiperiodic vregime to chaos. If the bifurcation i1s suberatical, we can encounter
another phenomenon, called Type Il anterrattency.

Some of chis routes to chaos will be 1llustrated later in more details.

IV_- SOME EXPERIMENTAL ILLUSTRATIONS

IV.1. The method

In the case of Rayleigh-Benard convectaon at room temperature and with high
Prandtl number fluid (silicone oil} many optical method can be used. The advantage 1is
their non-perturbative character; furthermore, they are local or semi-local with large
facality to change the measurement poant. Finally, one can easily visualize the
convective arrangement and, then, have a permanent overlook on the structure. Note that,
here, we are only concerned with the "small box": a rectangular plexiglass frame
(vertical boundaries) is inserted between two massive copper plates, the temperature of
which 1is regulated. Horizontai or nearly horizontal ligh beams can be sent through the
layer. In such an arrangement, laser Doppler anemometry Seems to be the best technique
for determining a fundamental variable of the convection, namely the velocity. Theuagh
used whenever possible, this type of measurement is necessarily contamined by
instrumental noise; this noise represents a serious drawback as far as the dynamical
properties are concerned. On the contrary, one can use another optical method with a
much higher signal-t-noise ratio. The method uses the fact that a temperature gradient
in the fluid causes a gradient in the ind.x of refraction. One then measures deflection
of a light ray due to the ronuniformity of the refraction index [5])[8]. This easily
implemented technique provides a signal corresponding to the mean temperture gradient
traversed by the light ray over its entire path through the fluid. It is t..:refore only
a semi-local measure, not related in a simple way to the variable @, but is nonetheless
used successfully. Use of the 1light deflection technique is limited to transparent
fluids of sufficiently high density, since it is only in such £luids that appreciable
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gradients of temperature, and thus of the jindex of refraction, can exast.

In practice, one make a Foucault (or Schlieren) image of the convecting cell
(knife-edge method). The intensity on this image is rougnly proportional to the
horizonta) or vertical thermal gradient, depending on the oraentation of the knife edge.
By setting a photodiode on a suitable location of the image, one obtains a photocurrent
roughly proportional to the thermal gradient (see figure 11). From the time dependence
of this photocurrent, one gets relevant informations about the dynamical regime of the
convection such as Fourier spectra, a powerful method of data analysis of any dynamical
regime.

IV.2. Reconstruction of the_phase space

Contrary to the case of theoretical dynamical systems for which we know the
variables, we do not know the variables ain a convection experiment (as in any real
system). Most often one measures the variation of only one (or two) property, related an
a simple or complicated way to one cr several of the independent variables of the
system. In such conditions how it 1s possable to have access to the attractors of the
system 1.e. how it is possible to reconstruct a relevant phase space ?

In the case of a periodic regime, if X{(t}) is the periodic signal {rom the
photodirode, one candipziously construct the limit cycle - the attractor of this regime -

just by plotting

dx
;; as a function of the position X ain the case of a pendulum). Equivalently, one can

as a function of X(t) (i.e. the analog of plotting the veloci‘ty

consider that two variables of the system 1n a periodic regime are X(t) and X(t+7), T
being a suitable delay. F. Takens has shown that this last procedure can be generalized
to phase spaces of higher dimension. Starting from observations ci only the signal X(t),
it should be possible to reconstruct the topology of the attractor, by takang as the
phase space X(t), X(t+7), X(t+21),... In other words, we c¢an consider the signal X(¢t)
to be independent of the same signal at a later time X(t+7) where T is an arbitrary
constant called the delay. This does not mean that the attractor obtained in the new
space 1is identical to that in the oraginal phase spacz, but mer2ly that the new
representation of the attractor retains the same topological properties, which may
suffice for studying 2ts essential characterastics.

IV.3. Measuring of the dimension of the attractors

Let us recall that a limit cycle being a curve has a dimension 1, a torus T *, a
surface, has a dimension 2; on the other hand, strange attractors are fractals with a
non integer dimension.

Without entering intc the details, 1let us describe a practical method which
allows a measurement of a fractal dimension {called "correlation dimension") of a set of
points [9].

First, to illustrate simply thas method, let us define a simple fractal set the
Cantor set (Remember that we have met this kind of set in the transverse structure of a
strange attractor). This set is obtained by an iterative process from the unit segment.
First, the central third of this segment 1s removed. Then, the central third of each of
the two remaining segments is removed. The operation i1s repeated indefinitely, as
xllustrated in Figure 12a. In this way we obtain an infinite set of disconnected poants
whose dimension is, then, berween 0 and 1 (a single point has a dimension zero and a
segment has a dimension 1). One can calculate easily the fractal (Hausdorff) dimension:
D= 0.63...

Returning to the correlation dimension, let us dillustrate this approach with
examples from plane geometry. Consider a set of points on the plane and let N(r) be the
number of points of the set 1located inside a circle of radius r. The correlation
dimension » ic determined from the variation of N(r) with r . For a discrete set of
points uniformly distributed on a curve (aimension one), we have, for r sufficiently
small:

N(r) ~ r
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that is, Mr) ~ r¥ with v =1 (see figure 12b). If, on the other hand, the points are
uniformly distributed on a surface (dimension two; see figure 12c):

N(z) «r?, v=2.

We can now consider general objects of arbitrary dimension, such as the Cantor set
described above (see figure 12d). The number of points X(r) located inside a circle will
grow, on the average, more slowly than the .adivs r. Setting N(r) ~ r”, it can be
calculated that » % 0.63, which is equal the llausdorff dimension mentioned previously.

The method 1s generalized to p-dimensional spaces by defining N(r) to be the
number of points contained in a p-dimensional hypersphere of radius r. From this method
one can calculate the dimension eon an attractor. Starting from a time series X(t),
through the method of time delays we can reconstruct a trajectory in a p-dimensional
phase space by taking as coordinates X(t), Xtt+7), X(t+27)...X(t+{p-1)T) where T is an
appropriate delay time. In practice the time ¢ is discretized, so that we obtain a
series of p-dimensional vectors representing the phase portrait of the dynamical system.
Then, the methed described above is applied countirg up the poants ir hyperspheres
centered on many (eventually on every) poaints of the attractor. If a law such as
N(r) ~ r” do exist.” then » is the dimension of the attractor.

Starting from the discrete values X(tl) obtained experimentally, we reconstruct
the trajectory in a p ~dimensional space, as described above, for increasing integer
values of p:

p=2,3,4,5 ...

For eacit value of p, we calculate N(r) and determine the slope of the function £ defained
by 1logN(r) = f(log r), arriving at an exponent » . For a periodic regime, whose phase
portrait 1s a lamit cycle, the dependence of N{r) on r is stractly linear (up to size
effects). Contrest this with the case of white noise. The signal can be considered to be
a superposaition of an infainite number of indeperdent oscillatory modes (or system with a
very large number of dejgrees of freedon). Such a regime can therefore bhe described by an
attractor T 7, with n very large. The trajectories will densely cover any phase space of
dimensaon:
p<n.

Indeed, Figu-e 13 shows that the characteristic functions WN(r) obtained from a white
noise have s.opes on a log-log plot which containue to increase with p: we find » ~ p.
This result can be 2xtended: as long as “he calculated value of » 1s equal to p (or
continues to grow with p ), we know that the dimension of the space used for the
calculation 1s smaller than (or comparable to) that of the corresponding attractor. 1f,
on the other hand, the dimension ¥ calculated for a chactic regime becomes independent
of p. then the chaos is deterministic ana the corresponding attractor strange.

As an 1llustration, one can consider the results »btained from an experimental
time series corresponding to a chaotic regime in Rayleigh-Benard convection in confined
geometry [10]. Figure 14a shows that the slopes of the functions N(r) on a log-log plot
are reasonably well-defined and independent of the dimension p of the phase space as
soor. as p exceeds 3. The saturation of » as p is increased is better illustrated by
Figure 14b, and contrasted with the lanear dependence of ¥ on p for white noase (or
random signal). This type of data analysis demonstrates (he determanistic nature of the
chaotic behavior in this regime and, in addition, detcrmines a lower bound on the number
of degrees of freedom excited [11]. For many other 21llustrations about experamental
strange attractors obtained in the same experament and their fractal dimension, see the
Lecture of M. Dubois. See also the lecture of S. Ciliberto.

IV.4. Type I intermittencies

We have seen in section IIX.4 that type I intermittencies correspond to a
destabilization of a 1limit c¢ycle when the wunit circle is traversed at +1. In the
simplest case, we can illustrate his destabilization in the Poincaré plane {(see figure
15a). If the 1limit cycle 1is represented by 1ts Poincaré section 0, a small departure
from thas cycle will be multiplied, at each period, by a real number slightly larger
than 1, and the successive intersections will be 1,2,3 etc...

As mentssned previously, many dynamical systems can be described by *ie
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reanjected somewhere in the channel.

15b) Mappang A .= A +e+aal

Ra = 270 Ra,

lengths of laminar phases.

15 ¢) Behavior of the velocity near the
threshold of type I 2antermittency in
R.8. convection.

(@) Periodrc regime for Ra < Ra,,
where Ra = 295 Rac is the threshold for
onset of intermittency.

() Intermittent regime for Ra > Ra,.
Notice the 1long sequences (of unequal
length) of barely perturbed oscillations
(passage through the charnel)
interrupted by sudden braief events.

for

Poincaré plane; O corresponds to the €< 0. There exists one
(unstable) lamit cycle. stable fixed poant one unstable
fixed point.
Ak-ol A
P(L)
. Ak
[]
15¢) Mapping A = A + €+ a A? for
e T A \ L
€ > 0. The fixed points have desappeared
a channel 1s now open. After the
crossing of the channel, the point 15d) long and short laminar phase with a
wanders in the phase space and is scheme of the distriF.tion of the
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iteration, of a one-dimensional mapping.
The simplest jteration describing type I intermittencies is

AROIBAA+€+aAi
where ¢ is the control parameter measuring the departure from the threshold of
intermittencies. As one can see on figure 15b, for ¢ < 0 there exast two fixed poants',
one stable, the other one unstable. For ¢ = 0 they merge into one another: as seen
previously, this corresponds to a saddle-node bifurcation. Both fixed points desappear
for € > 0. One can notice that for ¢ positive but small, a narrow channel i1s open
between the parabola and the bissector. Under that condition, the representative point
travels through the channel very slowly: this corresponds to a dynamics which slowly
evolves. In particular, the representative point spends a long time in the vecinity of
the "ghost" of the fixed point. Translated in the £full phase space, this means that the
trajectory remains a certain time near the (desappeared) limit cycle. In other words,
for a while the behavior is nearly periodic: one says that the system is in a laminar
sequence. After that, the representative point escapes out of the mapping and wanders in
the phase space: this corresponds to a “burst"” of turbulence. Then, there 1s a
reinjection somewhere in the channel and a new crossing begins. The reinjection being
made at random, the iterations can start anywhere in the channel; then the duration of
the laminar phase are distributed art random. The distribution of the iength of the
laminar phases can be calculated. One can see in figure 15d that the general shape of
this distributaon 1s qualitatively characterized by a value of the most represented 7;
not too far from the maximum duration. On the other hand, T, is expected to vary like

(e [121.

This kind of intermittencies has kteen observed in Rayleigh-Benard convection in
confined geometry. The convective structure consisted of 2 rolls in the longer size
(L = 2d) and 1 roll in the other one (Ly= 1.2d) (Prandtl number of the oil = 130) [33].
The dynamics of the regaime was studied through velocity measurements (laser doppler
velocimetry). At Ra = 250 Ra_. the regime 13 monoperiodic; the thermal oscillator
responsible for this regime 1is a thermal dropplet. At Ra = 290 Ra_ a qualitatively
different regime sets in: the oscillations are still present, but, from time to time,
they are ainterrupted by a short burst (see figure 15@). As expected, near the threshold
of intermittencies the lengta of the laminar sequences 1is long and the bursts are rare;
they become more and more frequent when Ra is increased. The dastribution of the
duration of the lamiunar sequences wa‘. found in qualitative agreement with what
theoretically expected.

IV.5. Type J intermittencies

We know from sectaon III.4 that this kind of antermittencies 1s associated wath
the destabilization of a limit cycle when the unit carcle 1s traversed at -1 through a
subecritical (or inverse) bifurcation.

A departure from the limat cycle is thus multiplied at each period by a negative
real number, the absolute value of which is slighly larger than one. In the Poincaré
plane, this means that the representative point leaves the ancient fixed point O,
.scillating, on the axis, from positive to negative values: the system returns in
(almost) the same state each two periods (see figure 16a). This is the phenomenon of
"period doubling": basically, this kind of instability produces a subharmonic of
increasing amplitude (in a suberitical bifurcation the non 1linear term does not
saturates the exponential growth). This loss of stability of a limit cycle through the
growing of the subharmonic mode is the basic mechanism of type H intermittencies [5].

* Note that the term "fixed poaint" has to be understood in the context of a Poincaré
section: in the full phase space it corresponds to a limit cycle.
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Poincaré plane; O corresponds to the
{unstable) limit cycle.
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I6b) Mapping A, , = (1+2e)A + a'a} + b'A}
for b' > Oand €20 .

Scheme of the distrabution of the
ngths of the laminar periods.

16 &) Tame dependence of the horizontal temperature 3Jradient near the
threshold of type K intermittency in R.B. convection. This R.B. experiment
is carried out with a ratio Ra/Rac ~ 416.5. Note the continuous growth and
then the abrupt increase of the amplitude of the subharmonic, and the
concomitant decrease of the amplitude of the t 'ndamental.
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The mappang (or iterated map) which describes type H intermittencies is
- 2 3
A= A (l+e) + a A + bA MEIEEE
It is natural, from what we have seen above to consider the second iterate AL,
as a function of A, .
Negiecting the higher order terms:
= ' 2 3
A,, = (1+2e) A + a’A | + b'A MR
with b' = 2(a ®+ b) and a' & b'. b' < 0 would correspond to a normal bifurcation, a case
not

considered in this section. On the contrary, b' > 0 describes the subcritical case
which gives rise to type Il antermittencies. Let us consider in figure 16b, the graph of
Ak'z = f(AA). For € > 0, the unique fixed point (0,0) is unstable (remember that it
represents the unstable 1limit cycle). From the (0,0) point, the upper branch of this
cubic curve corresponds to the growth of the subharmonic and the lower branch represents
the correlatave decrease of the fundamental. When the amplitude of the subharmonic
attains a certain value, a burst appears shattering the signal's regularity. Immediately
afterwards, regular behavior reappears due to a reinjection somewherc in the channel. As
in the case of type I intermittencies, this reinjection as made anywhere in the channel

with equal probability. Then, the amplitudc for the subharmonac at the pegining of a new
laminar sequence is at random. Thas initial

amplitude determines the length of the
laminar phase until the next turbulent burst. One can calculate the distribution of the
lengths of the laminar phase. By contrast with the case of type I intermittencies, this
distribution

is characterized by a long tail towards long durations (figure 16¢). Thas
important difference can be understood from the graphs of <the two kinds of
intermittencies. In type I intermittencies a reinjection at the begining of the channel
corresponds to the maximum of the duration of the laminar phase. In type X
intermittencies, the smaller the initial amplitude of the subharmonic, the longer the
laminar phase lasts. Then, by opposition with the case of type I intermittencies, there

is not a strict limit for the maximum of the length of a laminar phase: in-pranciple, a
reinjection exactly at the point (0,0)

would produce a laminar period of infinite
lengta.

Type H intermittencies have been observed in Rayleigh-Benard convection jin the
same experimental cell as for type I intermittencies. The differences consisted in the
Prandtl number of the oil, (3% instead of 130) and the kind of convective structure (3
rolls instead of 2 rolls). Under that conditions the following regimes were observed:

Ra
332 ¢« — < 377 steady regime
Ra
c
Ra )
377 < —— < 416.7 monoperiodic regime
Rac
Ra
— > 416.7 growing of
Ra

the subharmonic mode with appearance of bursts. This last behavior is well illustrated

in figure 16d which represents the variation of semi local thermal gradients {detected
through optical techniques). One can note the growing of the subharmonic,
of the fundamental and, at a certain 1level of subharmonic, the appearance of a short
burst, followed by a relaminarization etc... One can clearly check that, as expected,

the smaller the initial amplitude of che subharmonic, the 1longer the laminar phase
lasts.

the decrease

Figure 16e shows in more details how one can construct, from experimental data,
a return map - here, a second return map 1;‘z= f(l;) - in order to compare with the
mapping described above; one can remark a very good agreement between theory and
experiment.

Finally, figure 16f shows a distribution of the lengths of the laminar phases;

as e¢xpected, there is a broad distributicn of times waith a pronounced tail towards long
durations.
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lee2)

[}
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¥
Ra = 420.3 Rac
] EPSLON = 0.1

l6e) a) sample of a time signal from the same regire as Figure 16d. Expanding
the time scale provides a better illustration of the growth of the
subharmonic and the correlated decay of the findamental. To the left are
defined the quantities Ik used in graphing the second return map.

b} Graph of the second return map I, _ = f(I;). Two different symbols
are used to construct this graph from the experimental results: one of them
{0) corresponds to the subharmonic (increasing amplitudes) and the other
(x) to the fundamental (decreasing amplitudes). The continuous curve is the
graph of the function:

£(I) = (1 + 26)I + al* + bl

( a and b constants with a & b} predicted by theory to be the functional
form of the second return map near the intermittency threshold. We note the
excellent agreement with experimental results obtained by adjusting the
value of the parameter ¢ (¢ = 0.11).

]
| 1
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-
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t
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16%) Histogram of the lengths of laminar phases. The lengths observed vary

from eighteen rninutes to more than two hours. The most significant feature
is the lonj; tail for T large, characteristic of type K intermittency.
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IV.6. The subharmonic cascade [15][16][17]

We have studied in section 1IX.3 the iteration of a quadratic mapping of the

interval f(_‘[) z % a-g
41 =44 X -

For p = 0.7, we pointed out the existence of a stable fixed point at I * (see fig.5).
(Remenmber, once again, that a stable fixed point in a mapping corresponds to a stable
limit cycle in the real phase space). However, this situat:on for which we find a single
stable fixed point is far to be the unique possibility. Indeed, the results depend on
the value of p which plays the role of a control parameter. For example, let us consider
the situation corresponding to u = 0.8, see fig.1l7.

Now the fixed point I * is unstable, for the siope of the tangent at this poant

1s greater than one in absolute value. The graphical construction shows that the mapping
has two special poants :2’: and x; such that:

df;=f(.z';) and .z':=f(.°[;)
In other words, the iteration alternates between one point and the other:; starting from
one of these points, we must iterate twice to return te it. The two points comstitute an
attractor of period two, also called a 2-cycle. Given that:

z; f(,{:)=f(f(,2';))

,Z': f(.z';)

QX ; 1)
these two points ~ which are not fixed points of f - are fixed points of the function:
HZ) = £V = £2(Z)

as can be verified on Figure 18. Morxe detailed study shows that we pass continuously
from the situation of a stable fixed point to that of an attractor of period two by
increasing the value of u. Transition occurs at the thkreshold value Ho= 0.75. At this
value, the stable fixed point of f becomes unstable, and, correspondingly, there appear
two stable fixed points of f ?. An attrsctor of period two takes the place of the
attractor of period one: the period has doubled. This is exactly the situation expected
when the unit circle is traversed at -1 and when the associated bifurcation is normal.
Let us return to the iteration cf section 1V.5
A,, = i142e) A, + 2" A7 + b A}
but, now, with b' < 0 (normal bifurcation). One can see in figure 19 the graph of this

iteration for € > 0. Clearly, the point 0 is unstable and there are two stable fixed
points corresponding tc the attractor of period two.

Let us now return to the quadratic map. What happens when we continue to
increase u ? The graphs of f and f? gradually change, in such a way that the fired
points of f ? also end up losing their stability. Another simple graphical construction,
helps to foretell and to explain the sequence of events. Consider the square around the
fixed point .2‘; in Figure 18. Inside the square, we observe a locally parabolic curve
containing a stable fixed point - i.e. a situation just like that of Figure 5. Therefore
when the fixed point becomes unstable by deformation of the curve., we can expect the
same phenomenon as before: the fixed point of g will be replaced by two points which
will be the fixed points of the function:

Y = glg(P) = £9(D.

This conclusion applies equally to tae fixed poants I : and ¥ ; : both become
unstable for a value p, = 0.862...

For p > B g has no more staole fixed point but, A, has now four fixed points.
Starting from any one of these points, four iterations are required to return to it: we
now have a 4-cycle. Again, the period has dcubled via a subharmonic bifurcation.

By continuing to increase u, the same phenomenon will be repeated ad infinitus.
We will see a cascade of bifurcation, each accompanied by the period doubling associated

L oree v bsear

xTr—y —————

,
R

ERA
i

3
(<3

.,A.,r,
.f:m{"




=T M 2 o X 4 ~—r-

IR Amvevins. sty

(T3]

t(x) 1

! 7
7/
v, 3"/*’/
BX S
ey 4“/
N’
fix)
) . - -
/o
7
7/ HEEE
/7 o
, Poiy
s Py
. P
d Ll X .
[ XN ., KX 1

e m——

Pig.17 - Graph of f£(P = .z“‘ =4 ;.4.1“r (l-z‘) for ;= 0.8 . Both fixed
points of f are unstable at this value of x. Any initial condation in )0,
1{ has as its asymptotic 1limit the pair of points ,Z; and ‘2'; vasited in
turn.

tix)
]

Ak+2

’ % 5 - Ak ‘

Fig.18 ~ Graph of the mapping g{Q

f(ED) = £2(D fcr p=0.8. This

mapping has four fixed points, of which < .
two, .‘Z: and z;. are stable. f maps Fig.19 - Mapping 4,,, = (142614, +
each one onto the other. The two squares a'A i + p'A] for b < O.

drawn around the fixed points serve to

enphasize the structural similarity with

the graph of £{(Q in Figure 5.
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{ £ with a subharmonic instability. As u is increased we observe a succession of attractors {
t g of period 2‘, or 2f ~cycles, £ an integer varying between 0 (for u < 0.75) up till H
9 infinity. The values of u at which the bifurcatior in the cascade occur have a i
? remarkable property: they form an increasing series converging rapidly towards an '
E i_ accumulation point Ky Whose value can only be obtained numerically:
-4
§ Fo= 0.892486418...
?“
g The following teble gives the values of u corresponding to the first few bifurcations of
H the subharmonic cascade.
> Periodicity of the attractor|u value at the bifurcation point
»
; 1.2° = 1
1 : 1.28 =2 \u‘ = 0.75
: 2 Y
k = 1.2* = 4 ®, = 0.86237...
* 1.2° =8 )3 = 0.88602...
) v
1.2 = 16 B, = 0.89218... )
4 -
{L 1.2%° = o Ho = 0.892486418... b

Examination of the values of u collected above reveals that the convergence towards the
accumulataon point obeys a simple anéd rigorous law: the difference between values of u

associated with two consecutive bifurcations 1s reduced each tame by an almost constant
. factor:

An essential result, which cannot be overemphasized, 1s that the scale reduction factor
& is znuniversal constant, independent of the details of the function f considered:

& = 4.6692016091029909...

More precisely, in iteratang any mapping whach has a quadrdtic extremum we always find
the same period-doubling cascade, with the same scaling laws as above. The theory is
indeed extremely general, which justifies in retrospect the attention we have devoted to
this vparticular function £. What 1s remarkable is that quantitative predictions can be
made provided that a simple qualitative condition is satisfied. K

A graph of the I values of the points on each attractor, as a function of x,
aids in visualizing the subharmonic cascade )Just described (see Figure 20). The first
bifurcations, each doubling the numker of points of the attractor, appear very clearly.

But the bifurcations rapidly become so close to one another that they can no longer be h
distinguished if g is represented on a linear scale. On Figure 20, the attractor of

pericd eight is the last that can be discerned without difficulty. What happens beyond
the accumulation point ?

Numerical simulations shows that traversal of the value u, marks the beginning
of a very complex domain. On the graph of Figure 20 different zones appear, some lighter
and others more shaded. Detailed analysis reveals that 2in this region, periodic
attractors alternate with chaos.

In the latter case, iteration of f yields a sequence of values of J that:
- never repeat themselves
- depend on the initaal condition [Z .

In particular, two arbitrarily close initial conditions give to two sequences of
iterates - or trajectories ~ that always eventually diverge from one another (S.I.C.).
Take in mind that u, is the threshold for chaos in the period doubling scenario.
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iterates of the mapping f£f(2 for m € [0.5,1]. As a

function of the parameter p , we have plotted the value or values of d;
obtained by iteration of f(J) as k tends to infinity. From left to right we

see:

- a sequence of periodic attractors, separated by subharmonic bifurcations
each of which doubles the number of points on the attractor, as well as its

pariod.

- beyond u,, a region where aperiodic and periodic attractors alternate.

s62
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0 % 06150 20
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Fig.21 - Cascade of period doubling in
R.B. convection in mercury. The changing
shape of the signal (temperature of the
fluid at one point as a function of
time) clearly shows the period-doubling
process that takes place as the control
parameter Ra/Rac is increased. The line
segments indicate the Jength of one
period, defined by a basic pattern which
is repeated indefinitely.

From A. Libchaber, S. Fauve, C. Laroche.
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Fig.22 - Fourier spectra corresponding
to data of figure 21. Starting from f‘lz

(in A)

£/4 (in B,

we see appear the subharmonics
£ /8 (in €) and f£,/16 (in

D), as well as thexr odd harmonzcs.

From A. Libchaber, S.

Fauve,

C. Laroche.
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The route to turbulence via subharmonic cascade (or cascade of period doubling)
has been very well illustrated in Rayleigh-Benard convection. The most precise
experiments have been done with 1liquid wmercury stabilized against some parasitic
instabilities with a magnetic field ([18][19]. Needless to say that the experimental
techniques are completely different froam that describec previously.

Larger aspects ratios than for the case of oil are used (Lx = 4d or 6d) and two
purposes are served in placing a magnetic field. First, given the high electrical
conductivity of mercury, the convection rolls have a strong tendency to align themselves
an the darection parallel to the magnetic field. This fixes the spatial order and
prevents the creation of defects as Ra is increased. In addition, the magnetic field
damps certain modes causing oscillation of the rolls; 1t intensifies dissipation, which
favours dynamical behaviors understandable in terms of one dimensional mappings.

The mercury is placed between two thick copper plates. The convective motlons
are measured using bolometers, since optical methods cannot be used in an opaque medium.
In a first phase of the experiment, one fixes the magnetic field strength at zero and
increase the temperature difference until the onset of convection at a value Rac of the
Rayleigh number. Continuing to increase Ra, one notices at a value close to 2Rac” the
onset of a new instability. The signal recorded by the bolometer begins %o oscillate in
time with a frequency f,. This oscillary instabilaty can be attributed to a wavz
propagating along the roll axes. As Ra is further increased, the periodic regime in turn
becomes unstable, and there appears in the power spectrum of the signal a second
frequency t; ¢lose to, »ut nonetheless distanct from fl/2. For a slightly lurger value
of Ra, the frequencies of the two oscillators lock when the condaition of subharmonic
resonance t;= fl/2 is satisfied.

This frequency locking marks the beginning of the second phase of the
experiment. A constant and uniform magnetic field 1s applied, whose intensity is such
that the amplitudes of the two oscillators become comparable. By gradually increasing
the Rayleigh number, one noticas a succession of well-defined values of Ra at which one
periodic regime bifurcates to another of twice the period. Figure 21 shows recordings
from several consecutive periodic regimes. The emergence in the Fourier spectrum of the
suktharmonics tl/d, then t;/s. flllsh the signature of period doubling (see fig.22). From
these results, we can attempt to evaluate the convergence ratio of the successive
bifurcations. We find a value of 4.4, extremely clo.e to the universal asyaptotic limit
4.669... predicted by theory. Chaos {(or turbulence) appears for Ra number immediately
above that corresponding to the emergence of t;/16.

This Rayleigh-B2nard convection experiment confirms the existence of the route
to turbulence via the subharmonic cascade. Let us also mention that thermoconvection in
other fluids (liquid helium, water, oil) also gives rise to a period-doubling cascade,
as well as othersdynamical systems [20].

IV.7. The quasiperiodicity

The route to chaos via quasiperiodicity 1s developed in many details <o .le
lectures given by M.Dubois. Let us just describe in a few words the loss of stabilaty of
the 1limit cycle giving rise to guasiperiodicity by comparison with what happ.ns ain the
case of intermittencies or period doubliny cascade. In these last two cases, the unit
carcle is traversed either at +! or at -1. This means that the eigenvalves whrose modulus
becomes larger than 1 1s real in both cases. Then, in the Pri.ucuré plane, (see
figure 23), the successive vectors representing the increasing depa.ture from the point
0 - section of the limit cycle - are on a straight line. Cn the c.ntrary, when the unit
circle i= traversed at two complex conjugate value (a + ip) the e.genvaiue whose modulus
becomes larger than 1 is complex. Then. the successive vectors are amplified and rotate
in the Poincaré plane. If this loss of stability is associated with a normal
bifurcation, the non linear terms saturate th» growth ot the rodulus and, after a short
transient the points of th: Poincaré section rotate on a circle (see figure 23). That
is to say, the corresponding attractor is no' a Torus 7' whose Pcincaré section is a
circle (see figure 4 ). Returning to the dynamics itself, the periodic regime has been
repi..ed by a quasiperiodic regime. The corresponding transition is called a Hopf
Lifurcation. Different kind of instabilities may then occur giving rise to zhaos via
what is called., generically. “the route (or scenario) to chaos via quasiperiodicity~.
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Fig.23 - Successive intersections in the
Poincaré plane when the unit circle is
traversed:

a) at +1

b} at -1

c) at « t ip

d) Ropf bifurcation; the point 0 is the
Poincaré section of the (unstablej limit
cycle and the points P‘ belong to the

Poincaré section of the Torus 7T 2.
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Transition to turbulence via spatio-temporal intermittency

Paul Manneville

Service de Physique du Solide et de Résonance Magnétique
CEA Saclay .
91191 Gif sur Yvette Cedex, France

1 General setting

As discussed in the 'actures given by P. Bergé and M. Dubois, our understanding of the process of
transition to turbulence has made a great advance thanks to the irruption of deep mathematical
coneents from dissipative dynamical systems theory.

However it shorld be stressed immediately that, while this approach is fully adapted to confined
systemns where the snatial structure remains frozen, the situation of weakly confined systems is
inuch lea= settled. Indeed, in continuous media where instabilities can develop, the number of

. sracting mc ‘es is linked first. of all to the physical processes involved but, more importantly, to
onfinement effects i.casured by aspect rativs. In confined systems (small aspect ratio limit), eigen-
modes associated with instability mechanisms have markedly different critical values and spatial
structures; one can easily restrict the number of effective excited modes to a small value. On the
other hand when the geor—etry allows a large number of equivalent configurations (large aspect
ratio limit), except in a vanishingly small vicinity of the threshold, one cannot avoid that chaos
then gains an irreducible spatial component linked to the specific position/orientation degeneracy.
In this lecture, we shall be interested mainly in some original features of the transition to turbulence
at the limit of very large aspect ratios.

A conceptually simple way to increase the rumber of degrees of freedom consists in coupling
identical dynamical systems and giving a spatial meaning to this coupling. This can be done for
example by assuming interactions between systems sitting at near-neighboring nodes of a regular
lattice. The simplest poasible such coupled systems seem to be the so called cellular automata
which are discrete-time discrete-space systems with a finite number of accessible states per site. In
spite of their apparent simplicity they can display a particularly rich manifold of behaviors, some
simple, others quite complicated (see [23]). A step beyond the discrete local phase space of cellular
automata is performed in allowing a continuous local phase space. This leads to the level of coupled
map lattices; a typical governing equation reads:

X = F(XE) + D (X, - 2X! + XL,)

where the X;’s are the local degrees of freedom, ¢ being the (discrete) space variable, ¢ the (discrete)
time, F(X) the local evolution law, and D the coupling constant. The interaction is chosen so as
to look like a discrete approximation to the Laplacian characteristic of a diffusive process.

In principle, there is no difficulty (except practical) to pass from discrete time to continuous
time by performing a suspension of a given n-dimensional invertible map to get a flow in a (n + 1)-
dimensional phase space, i.e. the reverse of a Poincaré section. In orde: to go from coupled lattice
maps to partial differential equations which are the actual concern of turbulence theory we have
thus to perfom nested suspensions, the first one to recover continuous time, and the second one
for continuous space. Needless to say that the theoretical status of this procedure is yet unclear,
especially because the reverse of the reduction to a center manifold [7] or more generally to some
inertial manifold (for an introduction with references to recent work, see [16]) leads not to a
discretized physical space but to an sbstract low dimensional phase space.
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Avoiding e thorough discussion of this delicate topic, we shall assume that the information
gained in the study of coupled map lattices will be meaningful also for flows in enclosures (i.e. not
necessarily for open flows also of great interest) with spatial modulations playing the major role in
the process of transition to turbulence (this will be justified by hand-waving arguments later).

The conventional approach to the problem of modulated structures involves so called envelope
equations accounting for long wavelength, slow modulations of cellular structures either steady or
propagating. These envelope equations themselves can be viewed as belonging to the more general

A
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& class of reaction-diffusion systems of the form:

i X =G(X)+D VX

~

?‘ where the second term on the right hand side accounts for the diffusion of chemical species reacting
g accordiag to some scheme G. In turn reaction-diffusion equations are a special case of even more
< general hydrodynamic equations for reacting fluid systems, which close the circle sketched in fig. 1.

Let us come back to the evaluation of the number of degrees of freedom. Confinement effects
are illustrated in fig.2 in the standard case of a convection-like instability. The marginal stability
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SPATIAL COUPLING — > ENVELOPE EQUATIONS

CELLULAR AUTOMATA —» COUPLED MAP LATTICES

Figure 1: From hydrodynamic equations to hydrodynamic equations: reduction to center manifold
dynamics, Poincaré sections and maps, coupled map lattices, and envelope equations.
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Figure 2: Effects of confinement on eigen-modes of a convection-like inatability; on the left of the
minimum: large aspect ratio limit; on the right: small aspect ratio limit.
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curve then looks parabolic in the vicinity of its minimum (k., R.):

R-R.
R.

where §o is the (naked) coherence lexgth of the structure (it may be convenient to choose a length
unit such that k. = 1). Using periodic boundary conditions at a distance L in one space dimension
leads to possible wavevectors which are integer multiple of 2x/L. When L increases, the distance
between neighboring allowed wavevectors gets smaller as 1/L, the reciprocal of the aspect ratio.
At the same time, the number of easily excited modes in the vicinity of the threshold scales as
An = (L/2x)\/e. At threshold the coherence of the unstable mode is complete; slightly abuve
the threshold, modulations are allowed since more modes can participate. The width of the wave-
packet varies as 1/, the corresponding coherence length being £o//c. Further from the threshold,
the coherernce is restricted to a length of the order of £y, which makes the nucleation of structural
defects much easier; a large manifold of imperfect structures or teztures can then survive in a

= e= &l - k)’

metastable way. J
Usually, the study of the transition to turbulence involves the control of an applied stress,

1 here measured by ¢, while keeping the aspect ratio constant (and small). In order to understand 4
the specific role of confinement in experiments at large aspect ratio, it may be useful to consider 2

1 5 situation where stress variations are irrelevant while the aspect ratio is the actual control parameter. 1

Let us have a look at the bifurcation diagram —fig.3— of the Kuramoto-Sivashisky equation:
1
310 + 3228 + Bzzes0 + 5(6,9)2 =0

with periodic boundary conditions for L small to moderate [8]. Stable steady cellular structures
(corresponding to rolls in a convection experiment) with an increasing number of cells are observed
in narrow L-windows. The transition between solutions with different numbers of cells can be quite
complicated with very long turbulent transients displaying weakly unstable anomalous cellular
structures with defects, etc. up to the large L limit where sustained turbulencz prevails. A quite
analogous scenario has been observed in convection at high Prandti numbers [1].

From what we have just said, it seems that as loug as we remain with only one parameter
at our disposal, either € or L, we do not get excitingly new things that do not closely fit the
framework of dynamical systems theory (this conclusion would not be changed by the presence of
several physically different unstable modes in competition controlled by a whole set of parameters {

Figure 3: Bifurcation diagram of the Kuramoto-Sivashinsky equation for L moderate; stable cellular
solutions are labelled by their number of cells and windows of persistent turbulence by the letter . !
“T™; stable steady states for L large are reached only after very long transients. :‘_'53:
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€1, €2, ..., —multiple codimension problem— plus the aspect ratio L). In fact, as soon as the aspect
ratio is sufficiently large, the number of effective degrees of freedom is also large. This is attested
by estimates of the dimenaions of attractors [15,1] and of course by the existence of long transients
exploring regions of phase space of increasing complexity. Assuming from the start that the aspect
ratio is Jarge thus leads to accept the idea that even if we are observing a laminar state, this state
can be stable with respect to infinitesimal fluctuations but not globally stable (i.e. with respect to
pertubations of any kind, which can be proven only close to thermodvnamic equilibrium) and that
the global structure of the phase space can be sufficiently complicated to afford several attractors,
among which some can be turbulent and possibly also turbulent quasi-attractors (finite life-time
attractors [6]) explaining the presence of long-lived transieats.

Considering from a general point of view the cases where the process of transiticn to turbulence
is well understood in low dimensional dynamical systei~a we arrive at the conclusion that this is
mainly because everything can be made local both in parameter space and in phase space. The
two best known examples are the sub-harmonic route and the Ruelle-Takens scenario. When these
two conditions are not fulfilled, we have to face more or less important difficulties, the signature of
which turns out to be intermittency, often: associated with crises. The three types of intermittency
arising from subcritical bifurcations of a limit cvcle have been presented in P. Bergé’s lecture; for
a recent illustration of intermittency occurring in a crisis context see [2]. In such cases, the main
problem come from the fact that one already needs a detailed knowledge of properties of regions
in phase space which are not close to the attractor which looses its stability (turbulent burst) and
more generally of tue global structure of phase space {relaminarization problem).

What is implied in the previous two paragraphs is that, in order to get something which has
a chance of going beyond the standard approach in terms of dynamical systems, we must consider
subcriticaliy unstable laminar regimes. If we remember that sufficiently far from the threshold the
coherence length is short enough, we can thus consider the total system as an assembly of weakly
interacting units of individual size O(£;). Then we can assume that the system can be locally in
one or another of the states that can exist at the global scale as attractors or quasi-attractors. This
determines a partition of the physical space into domains that can fluctuate in size and shape. This
kind of weak turbulence is called spatio-temporal intermittency.

The transition to turbulence via spatio-temporal intermittency presents itself as a scenario spe-
cific to large aspect ratio systems. As a natural frame for this type of transition in which a laminar
regime is progressively contaminated by spatially localized turbulent bursts above some thresh-
old while bursts recede below it, Y. Pomeau [19] has proposed a process introduced in statistical
physics under the name of directed percolation. In the following we shall present (§2) numerical
results obtained on a one-dimensional convection model displaying a transition to turbulence via
spatio-temporal intermittency. Then we shall shift to an analysis of the same phenomenon in cou-
pled lattice m=ps (§3) and introduce measuring tools from the field of directed percolation (84, in
order to characterize the critical behavior observed. Concluding remarks and perspectives will be
gathered in 85.

2 A case study: Model-(b)
Here we consider 8 variant of the Swift-Hohenberg model of convection
dw = (e - (V¥ + kZ)z) w— g(w)

The field w accounts for perturbations to the pure conduction regime “w = 0” and can be under-
stood as the either the temperature modulation or the vertical velocity component evaluated in
the horizontal plane at mid-height in the cell. The linear term can be shown to derive from the
Boussniesq equations close to the coavection threshold. It works as a “roll-mili”: the growth rate
o of infinitesimal fluctuations with wave-vector k is given by

o=¢~ (k! ~k)?
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Figure 4: Marginal stability curve (a) and growth rate of infinitesimal perturbations (b) for the
Swift-Hohenberg model

with a maximum for k = k., positive when ¢ > 0 (fig.4). In the following we shall choose a length
unit such that k, = 1 which makes a critical wavelength A, = 2x. At € = 0 modes with |k = 1
become unstable and for e slightly larger, a ring of width O(,/¢) with radius 1 is destabilized.
Nonlinear interactions described by g(w) should then insure the saturation of the unstable modes.
In the original model, g was taken as g(w) = «®; in that case, the bifurcation is supercritical and
one can show that the glchal dynamics derives form a potential. Though this property does not
forbid the existence of metautable complicated textures in 2-dimensions, the asymptotic temporal
behavior must remain trivial, which is reasonable only for fluids with a large Prandtl number (Pr).
Extensions required to get a more realistic behavior at intermediate or small Pr include both non-
potential contributions to g(w) and the coupling to large scale secondary flows induced by curvature
effects. Numerical simulations in the 2-dimensional case remain out of our present reach for aspect
ratios of real interest. On the other hand in 1-dimension one can handle systems with hundreds of
rolls either by spectral methods (fast Fourier transform) or by efficient finite difference methods,
In the following we shall consider a model with g(w) = wd,w, i.e. a nonlinear coupling through
the class; ..l advection term of Navier-Stokes equations (the Burgers equation in 1-dimension). This
new model, called Model-(b) [17], no longer derives from a potential and, as such, can display a
nontrivial time dependance. The control parameter ¢ is not allowed to become larger than 1 for,

point of views. At € = 1, one can cast Model-(b} under the form of a Kuramoto-Sivashinsky
equation for the space derivative of §: ¢ = 3.0. For € < 1, Model-(b) is equivalent to a Kuramoto-
Sivashinsky equation with damping introduced earlier by LaQuey et al. in the context of plasma
instabilitities [14]):

0410 + $0:0 = —1¢ — 2 — Bz222¢

{n order to allow the comparison with results quoted in fig.3 for the Kuramoto-Sivasinsky equation
we give here the explicit correspondance: z — z/v/2, t — t/4, w — 2/2 ¢ with y = (1-¢/4>
0. Obviously, the term (¢ ~ 1)w in Model.(b) breaks the Galilean invariance displayed by the
equivalent Kuramoto-Sivashinsky equation. In order to break also the translational invariance, we
shall supplement the partial differential equation by so called rigid boundary conditions:

w=0d,w=0

at the two ends of an interval of length L.

As discussed in the introduction we have now two control param-ters at our disposal and we can
examine the qualitative changes of the bifurcation diagram when L increases. Numerical simulation
have been performed using a finite difference code, second order in space and second order in time
{Crank-Nicolson schome for the linear part, Adams-Bashford scheme for the nonlinear term). The
algorithm was designed to take advantage of vectorization capabilities of the Cray-1S. The spatio-
temporal resolution has been varied in order to check the reliability of the phenomena observed (up
to 70 points per A, and a time step adapted to the asymptotic dynamics of the svlution, steady,
periodic, ...).
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Figure 5: Qualitative aspect of the bifurcation diagram of Model-(b): € = 1 corresponds to the
Kuramoto-Sivashinsky limit; the length L is given in units of A. (logarithmic scale).

The complete bifurcation diagram has not been studied as thoroughfully as that of the
Kuramoto-Sivashinsky equation with periodic boundary conditions sketched in fig.3. Only the
most important qualitative features have been recognized. From a numerical point of view it is
rzas(ier tc)a keep L constant and to vary €. As expected one can distinguish mainly three domains in

fig.5).

In the small L domain, with L up to about 4 — 5., Model-(b) is typically a confined system,
subjected to crises and bifurcating according to thé classical scenarios. The envelope equation
formalism is hardly applicable. We shall discard this domain and concentrate our interest on the
range L > 10. All the results to be presented from now on have been obtained in collaboration with
H. Chaté (SPSRM, Saclay) and make a part of his PhD Thesis, some have already been published
[3,4], others not.

For L in the range 10 — 50 A, typical solutions to the Kuramoto-Sivashinsky (¢ = 1) are
turbulent. On the other hand, the theoretical approach to Model-(b) close to the threshold (e = 0)
is easier since it begins to make sense to try to approximate the solution by modulating a perfect
roll solution. Wavelength selection by nonlinear end-effects turns out to be non-trivial [5,18].
Fig.6 displays steady solutions obtained numerically with L = 11.25 for ¢ = 0.04 close to the
threshold (the coherence length £o/+/ is large and for € = 0.44 slightly below the threshold of time
dependence. These steady solutions, odd with respect to the middle point, turn out to be unstable
to oscillatory perturbations which involve the 1/2-subbarmonic of the basic wavevector selected by
boundary effects, and their harmonics (3/2 and 2 principally). The bifurcation is subcritical, with
a linear threshold at about € = 0.544 and hysteresis down t- ¢ = 0,537 as sketched in fig.7. Next, a
supercritical bifurcation towards a quasi-periodic state take >lace, with a second frequency related
to the propagation of 1 phase perturbation well synchronized over the width of the system. The
transition to turbulence then takes place through a loss of spatial coherence of these propagating
waves. The main process at the origin of this behavior seems to be 1 strong locai instability of
the oscillatory state immediately followed by a reinforcement of coherence of that segment of the
solution that becomes messy, i.e. the birth of a coherent sfructures in which waves come and die. In
fact, a whole manifold asymptotic states can be observed at the same value of €. Typical samples for
L =11.25 and L = 22.50 given in fig.8 and fig.9 respectively (time flows downwards, visualization
of the solutions by the position of maxima and mirima).

When L becomes much larger than 50, confinement effects, now quite weak, do not seem to
play a direct role in controlling the appearance of time dependance rnd the transition process looks
much like a bulk phenomenon. A severe compression of the data is needed in order to visualize the
dynamical regime reached by the system in this large L, long time limit. What seems important
is the occurrence of coherent structures and it turns out that in these regions the peak to peak
amplitude is larger than in turbulent regions. As illustrated in fig.10, choosing some cut-off and
setting to black vegions where the peak to peak amplitude is larger than the cut-off allows us to
clearly discriminate domains remaining laminar from turbulent patches.
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Figure 6: Two steady solutions of Model-(b): a) ¢ =0.04 and b) ¢ = 0.44.
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Figure 7: Qualitative sketch of a subcritical bifurcation

Fig.11 displays the solution for L = 180 (about 350 rolls involved) and e = 0.692. It can be
viewed as made of a mixture of small islands of laminar domains of various size scattered amidst
a large ocean of turbulence. Such a dynamical regime is called spatio-temporal intermittency. The
main problem is to understand its birth and to predict its statistical characteristics as a function
of the control parameter. Increasing ¢ one observes that the size of the largest laminar domains
decreases rapidly (see fig.12 for ¢ = 0.84). On the other hand, when € decreases the largest laminar
domains reach sizes of the order of magnitude of L itself. Then, they can merge and completely
invade the system (see fig.13 for ¢ = 0.68).
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at € = 0.640 one extremely weakly quasi-periodic, the other chaotic.

Figure 9: For L




Figure 10: Visualisation of laminar domains (L = 90, ¢ = 0.68, time running f-om the left to the
right): a) evolution of the solution from the position of extrema as before; b) same evolution using
the reduction process described in the text.
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Figure 13: Below ¢ = 0.78, spatio-temporal intermittency recedes more or less regularly, leaving a
quiescent state; sround this value the situation is confused, with neither a marked recession nor a
steady invasion; this defines the threshold.

Numerical experiments suggest the existence of a well defined threshold above which the system
is intermittent, while it remains laminar below. As shown in fig.5, this threshold does not seem
to vary with L in the large L limit, hence the bulk character of the phenomenon. We shall come
back to the statistical signature of this transition later, after having examined the simpler case of
coupled map lattices.

3 Spatio-temporal intermittency in coupled map lattices

In view of applications, rather than the form chosen in the introduction, it is more convenient to
consider a coupled map evolution rule given by [9]:

P
XPi= Y W F(xKL,)
j=-p

where the W; are well chosen weights shuch that W; < 0 and 3°;W; = 1 (this has the advantage
of avoiding spurious instabilities of the type found in numerical simulation of partial differential
evofation equations using explicit schemes). Spatio-temporal properties of such systems have been
studied mostly because of their ability to mimic certain aspects of nonlinear pattern formation with
a great economy of numerical resources (for a review see chapter 7 of [10]). Taking F as the so
called logistic map: F(X) = RX(1 - X) or equivalently F(X) = 1— AX? one can observe spatial
structures that develop for P or A in the direct cascade, or at the beginning of the inverse cascade
(see P. Bergé’s lecture). Consider for example step k of the period doubling cascade at the limit
of zero coupling. Time translational invariance is broken and one out of 2* equivalent possible
phases is chosen by each site independently. Switching the coupling on, one obliges the sites to
take the phase of their neighbors into account. The result is a splitting of the system in domains of
identical phase, separated by walls. In practice, it is quite difficult to detect more than a few period
doublings. In the inverse cascade one gets a similar situation except that the dynamics is chaotic
instead of regular inside the domains. Of greater interest to us here is the occurrence of temporal
intermittency close to the lower end of the Period-3 window {11]. Well inside the Period-3 window,
when the coupling is weak one gets the same regime as above, with domaina and walls. But closer
to the intermittency threshold, when the coupling is increased, the walls are seen to “explode” and
spatio-temporal intermittency sets in (fig.14).
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Figure 14: Sample of spatio-temporal intermittency at threshold for the logistic map close to the
Period-3 onset

The connection between spatio-temporal intermittency observed in coupled maps and that in
Model-(b) seems relatively obvious, but should be proven rigorously. As discussed earlier, one can
consider the whole system of length L as made of weakly coupled sub-units with lengths of the
order of the coherence length of the oscillations that were seen to decay as they penetrated into
the coherent structures. This “renormalization” of lengths would allow to define more precisely the
coupled local systems. Note that the status of the invariance properties of the continuous model
becomes unclear since one arrives at a lattice, which breaks translation invariance; however one
can reasonably think that their “macroscopic” consequences —on distances of the order of L and
on a corresponding phase diffusion time scale— can be averaged out by the small scale fluctuations
which could take them into account as a dynamical source among others (“renormalisation” of
mechanisms).

The discrete model we are suppoeed to derive from first principles should read:

X4 = F(X!) + 3 (F(XEya) - 2F(X0) + F(XE0))

In order to describe in a realistic way the spatio-tempoerallr invermittent state we must ask the
local iterations to split the local phase space in 2 different re, .ons: a) the vicinity of a stable fixed
point where the dynamics is reduced to a relaxation towards t!ie fixed point and b) a chaotic region
“far” from the fixed point. This two regions should be connected most probably intrinsically by
the iteration itself but an extrinsic co:nection through the coupling force is also conceivable. The
denonstration will be performed here using a local mndel of type I intermittency (fig.15 [11]) but
the vicinity of a crisis phenomenon could have been used. Take:

F(X)=-a+X+X? for X<e
F(X)=-3(X-¢c)+1—a for X>c

Xow

Figure 15: Local form of the iteration used for the coupled map lattice: A is the cut-off value which .
discriminate between laminar and turbulent states b,

B Vi 5 i 4 8 e Rt .

2t e e et e

Yyt

PR

-— T W T T T Xy T

-




s

B T L Rt 32N m%jkﬁ?w%ﬂﬁfgﬂ

b w e yevmer vy ewe

JE

L S P

6-12

with ¢ = (v/5 ~ 1)/2. Parameer a which controls the distance to the intermittency threshold will
be kept constant: a = 0.01, the coupling constant. ¢ will control the transition.

Sites ¢ for which X; will be close enough to the stable fixed poin* X, = —\/a = —0.1 will be
considered as laminar, otherwise they will be turbulent:

Xi<X,+A —

Xi>X,+A - T

A starting state which is l]aminar everywhere stays laminar since no infinitesimal perturbation
can bring a site outside the attraction basin of the stable fixed point. On the other hand a finite
amplitude localized perturbation that bring a single site X; outside the attraction basinb of X,,
i.e. Xj+6 > Xy = ++/a = +0.1 can grow and even destabilize its neighbors if the coupling is large
enough. As illustrated in fig.16, the expected change of behavior takes place at ¢ = 0.0618 with
finite duration turbulent transients below and sustained spatio-temporal intermittency above.

Figure 16: Spatio-temporal intermittency in coupled map lattice: a) close to the threshold
(e = 0.0618); b) slightly above the threshold (¢ = 0.0630)
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4 The directed percolation approach

Let us now consider a fully stochastic approach in terms of probabilistic cellular automata. Such
systems are defined by transition probabilities which control the transfer of some information
through the system. Tobe specific consider a chain of sites Jabelled by an index i. At each site the
local state X; can be either A or B, 0 or 1 and the futuve state at site ¢ depends on the states at
2n +1 sites j, —(¢ + n) < § < +(¢ +n) with most often n = 1, i.e. three consecutive sites (fig.17a).
The most general process depends on 23"+! free parameters but this number can be reduced by
symmetry considerations or other requirements (totalistic rules that depend only on the number
of sites in a given state among the interacting neighbors).

A simpler process can be defined with a coupling between only two sites. Take a square lattice
and look at it diagonally (fig.17b) then assume transition probabilities of the form: p(01]1) =
p(10]1) = py, p(11]1) = 1 — (1 —~ ;). In addition one takes p(00[1) = O so that no spontaneous
creation of information can occur. This defines a process which can be understood as the transfer in
a well defined direction of the information X = 1 through a lattice from which some bonds (hence
the index ) have been removed at random. This can model for example the infiltration of a liquid
in a porous medium with sites at the end of pores that can be randomly open or occluded, the sites
being either wet (1) or dry (0); a site being connected to two dry sites cannot be wet, hence the
last condition. It is said that we have an absorbing state, from which no escape is pi ssible.

- 1ey2
-1 i I to 2 pad °
] [J L) L4 ot
te o 3 [
< (] [ ] [+ [- 2 {3 ]
° ° ° °
a b

Figure 17: One-dimensional probabilistic cellular automata: a) with 3 neighbors; b) with 2 x}eigh-
bors

Assuming that the information is introduced at some place in the lattice (the root of the process,
level 0) one has to determine the probability of transfer to some level k as a function of p,. This
is equivalent to say that the percolation cluster to which the root belongs can reach sites at level
k (directed bond percolation). It is known that when p, > 0.6445 the information is transferred
to infinity with probability > 0. A slightly more general process allows for additional loss of
information at each site according to some site probability p,. Trausition probabilities are then
given by p(01]1) = p(10{1) = £3ps, p(11|1) = p,(1 — (1 — p3)?), still forbidding spontaneous creation
of information (p(00]1) = 0). Even more general processes can be defined (see [12,13) for a review).

In the present context the correspondance is fixsd by the condition that the laminar state
“L” should be absorbing. Moreover the definition of the deterministic process suggest rather a
probabilistic automaton with 3 sites coupled. In addition to p(LLL|T) = 0 which account for
the iocal stability of the laminar state we can impose a priori left-right symmetry: p(LLT|T) =
p(TLL|T) and p(TTL|T) = p(LTT|T). This leaves 5 free parameters which can be determined
empirically from simulation on the initial model.

At the intermittency threshold for model the studied here, ¢ — 1.0618, we have found
p(LLL|T) = 0 as expected, p(TTL|T) = 0.9903 close to p(LTT|T} = 09906, and p(TLL|T) =
0.0115 cloge to p(LLT|T) = 0.0116. However p(TLT|T) = 0.0522 and p(L7"L|T) = 0.6036 are
different from the two previous sets of values so that the equivalent probabilistic automaton is
certainly not governed by totalistic rules. At a qualitative level, simulations on the original cou-
pled map lattice and the probabilistic system with empiriczlly found probabilities are practically
undistinguishable (fig.18).
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Figure 18: Qualitative comparison between simulation resuits from the coupled map lattice (a) and
the prbabilistic cellular avtomaton (b) is quite conclusive

Let us sketch the beginning of a theory connecting ccupled map lattices and probabilistic cellular
automata. For simplicity, we shall consider the case of the transition (LLT|T) whicit correspond in
general to the growth of a turbulent patch. Assume the laminar sites at § = —1,0 and the turbulent
site at ¢ = 1. The future state at =0 is given by:

X3 = X§+6=(1- ¢ F(X§)+ 2 (F(X% + F(X2))

In order to simplify the problem we shall assume that laminar sites at t = O sit exactly at the fixed
point. Using the fact that F(X,) = X, we get:

5= (Fx) - X,)

The site ¢ = 0 will be turbulent at time ¢t = 1if § > A, that is to say if F(X4,;) belongs io the
interval (Xa; Xm) where Xa = X, +2A/e and X, is the upper bound of the interval invariant
by F (Xm =1+ a), see fig.15. Assuming further that the the probability of the turbulent state
is uniformly distributed on the interval (X, + A, Xm) so that the probability of having F(X4,;) in
the interval (Xa, Xm) is simply proportional to the length of the interval, one gets:

PLTIT) ~ (Xm = X, - %)

The variation of this probability is in reasonable agreement with experimental data. Other cases
where the central site is laminar can be handled in the same way. The cases where the central
site is turbulent are more delicate since onc has to take into account the fact that it has already a
nontrivial dynamics for its own (turbulent transient subjected to noise from neighbors)
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temporal intermittency and directed percolation is that one can borrow tools and concepts of
! statistical theory, especially the notion of eritical behavior and eritical ezponents. Their use has not
’ yet been extensively developed in the present problem since the practical implementation requires
a huge amount of computation to get reliable results. Up to now only the statistics of the lengths of
coherent structures have been examined both for the coupled map lattices and for Model-(b). The
comparison between statistics for the coupled maps and the probabilistic automaton shows that
the analogy goes beyond the qualitative level (fig.19) while calculations for Model-(b) exemplifiy
the distinction between the vicinity of the threshold where the distribution of lengths of coherent
structures decays as a pow: ", as opposed to the exponential decay observed far from the
threshold, thus supporting the idea of a critical domain in the sense of critical phenomena (fig.20).

The main interest of pointing out an analogy between the transition to turbulence via spatio- A
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Figure 19: Statistics of the lengths of coherent structures for the coupled map lattice (o) and the
probabilistic cellular automaton (*) are practically identical up to lengths of the order of 80 above
which end effects are sizable (simulation on 500 sites)
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Figure 20: Distribution of the lengths of coherent structures in the intermittent phase for Model-(b):
a) log-log plot at threshold e = 0.688: algebraic decay; b) lin-log plot above threshcld, ¢ = 0.84:
exponential decay.
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5 Summary, conclusion, and perspectives

In this lecture we have presented a scenario of transition to turbulence specific to large aspect ratio
systems. Starting with simulations on a model chosen for its relevance to the field of convective
instabilities we have characterized the spatio-temporal intermittent “phase”. Then we have exam-
ined the transition process having recourse to simpler.systems: coupled maps lattices. This process
appeazed to involve the propagation of an information, laminar/turbulent which seemed stochastic
though it was generated by a deterministic dynamics. Concepts first introduced in the statistical
physics of critical phenomena applied to directed percolation allowed to account for most features
of spatio-temporal intermittency, and especially the change of behavior at what turned out to be
a true threshold.

The implications of this approch are important because in large aspect ratio systems we have
to face the possibility that what we think is turbulence may be simply a finite life-time but very
long turbulent transient. If the percolation analogy is valid, then a threshold exists above which
the turbulent state percolates through the system and turbulence as virtually no chance to decay.
At a more conceptual level one can say that the described process can help us reconcile local, short-
term determinism with turbulence for weakly confined systems in much the same way as strange
attractors allow to reconcile determinism and temporal chaos for systems with a small number of
degrees of freedom.

Now, a question: is this scenario only a nice theoretical view which works in model systems
built on purpose? The answer seems to be: No! In a recent experiment briefly sketched in fig.21, P
Bergé and M. Dubois {1} have observed a transition to turbulence which may follow the theoretical
scenario. Indeed, as indicated in fig.22, the loss of spatial coherence involves the alterration of
coherent structure a few rolls long, and messy regions with the possible breakdown of a messy
patch into a coherent structure.

Intermittency has a gpatio-temporal meaning in many other contexts of fluid dynamics {see
[21] for a general review). First, one can think of small scale active structures in the dissipation
range of fully developed turbulence, though the connection could be only visuai (fig.12). Second,
the present approch could help understand the growth/decay of turbulent plugs in pipe flows.
Finally, one could also try to introduce anaiogous percclation concepts for the description of the
intermittent structure of the frontier of turbulent boundary !ayers like that in fig.23.

Figure 21: Annular cell used by P. Bergé and M. Dubois: coherent domains are separated by messy
regions; the whole evolves chaoctically in the long term.

I T, — N

}
1

w3




puifing

B D D s s e = 10 -

6-17

0* ago’

a

40 ' =
mn‘t ’

304

mntl

Figure 22: Exemple of spatio-temporally intemittent signal with the birth of a laminar domain
comparable to coherent structures zppearing in the model; time is running downwards, the hatched
region is Jaminar,

Figure 23: Nlustration of the intermittent nature of the outer part of a turbulent boundary layer
from ref.22 plate 157
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] DETERMINATION OF FRACTAL DIMENSION, CONNECTION OF SPACE AND TEMPORAL CHAOS AND
APPLICATION TO EXPERIMENTAL RESULTS
by
S. Ciliberto
Istituto Nazionale di Ottica 3
Largo E. Fermi 6
50125 Firenze (Italy) 1

I - INTRODUCTION

In the last decade many experiments have demonstrated that the transition to chaos
k is a low dimensional phenomenum even in hydrodynamic instabilities governed by an !
infinite number of degrees of freedom /1/.

However in fluid systems the physical origin of the chaotic regimes is not very F

F well understood. Mathematical models that incorporate the correct dynamics and allow a
rrediction of the behavior as a function of the control parameter are not generally

availzble. Very often experimental observations can be Jjust correlated with the behavior

t of simple maps, as in the case, for example, of the Feigenbaum cascade /2/, and quasi F
periodicity /3/.

Besides an other problem remains open: is low dimensional chaos a precursor of
fully developped turbulence, where the fluid flow exibits chaotic states both in space
and time? To give new insight into tnis problem there is nowaday a growing interest in 1
the study of the relatioship between spatial order and temporal chaos.

For example it has been observed in numerical studies of certain partial
differential equations (P.D.E.) /4,5/, and of coupled maps /6/ that coherent spatial
structures coexist with temporal chaos. From an experimental point of view spatial
patterns have been quantitatively analysed in time dependent chaotic regimes only in few
experiments /7-10/. We describe here two of these experiments, where the chaotic states
have been also quantitatively characterized in terms of fractal dimension, metric
entropy and lyapunov exponents. The method to compute these quantities are briefly
summarized in the appendix.

In Section IT we report experiments on surface waves instabilities /9/, where the
competition between twn spatial patterns produces time dependent behavior and chaos. The
tesults of this experiment are in ygood agreement with a low dimensiona’ model obtained
from Navier-Stokes equations /11/.

In 3Jection IXII we describe experiments on time dependent behavior /10/ of a
horizontal fluid layer, heated from below, that is Rayleigh-Benard convection (R-B). We
show that time dependent regimes are characterized by the presence of either traveling
waves or Jocalized oscillations. These spatio temporal regames turn out to be similar to
those observed in numerical simulations /4/ of Kuramoto-Shivanshisky (K-S) /12/ and ‘

Kuramoto-Velarde (K-V) /13/ partial differential equations. At the end of section III we {
report exverimental evidence that the properties of the chaotic regimes depend on space
coordinates.

1Y ~ SURFACF WAVFS TNGTARTITITIES 1

The system of interest is a cylindrical fluid layer in a container that is
subjected to a small vertical oscillation of amplitude A and frequency f, . It is well
known that, if the driving amplitude exceeds a critical value A, (Q ), which is a
function of frequency, the free surface develops a pattern of standing waves. The
surface deformation S(r,€ ,t) can then be written as a superposition of normal modes:

s(r, & ,t) =%‘ aem(t)Jw (Kym rlcost&,

where J, are Bessel functions of order ¥ and the all9wed wave numbers k., are
determined by the boundary condition that the derivative J; (k;, R)=0, where R 1is the
radius of the cylinder. The modes may be :abeled by the indices { (giving the number of
3 angular maxima) and m (related to the number of nodal circles). The mode amplitude a(t)
develon &t instability when the corresponding eigenfrequercy (given by the dispersion
law for capillary gravity waves) is approximately in resonance with haif the driving
frequency f, and A exceeds A, (f,).

This parametric instability leads to sranding waves in which the mode amplitude
oscillates at f, /2. To take into account the possibility of a further slow modulation of
the mode amplitudes, which, in fact, occurs due to mode competition, we write cach
amplitude in terms of fast oscillations at f /2 and slow envelopes Cp(t) and Be(t):

2 B WD I M g o

adt):%(c)cos(ﬁ £, c)+8,(c)sin( T t).
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FIGURE 1
Optical intensity patterns for the (4,3) and (7,2) modes. The first
number of angular maxima.

index gives the

We omit the second subscript because, in practice, only a single value of m is
significant for a given value of & . In our experiment the working fluid was water of
depth of 1 cm, and the radius of the tank was 6.35 cm., Examples of stable patterns
involving a single mode (and possibly harmonics) are shown in Fig. 1 for the (7,2) and
(4,3) modes. The index §{ is obvious from the simmetry while m was determined by
matching the frequency to known dispersion law. The white areas correspond to surface
depressions {tipically 0.5 mm) and the black ones to surface clevations. The driving
amplitude A was about 1.1, A and the frequency was at the minimim of the stability
curve in each case. The two figure have been obtained with a focalisation technique.
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FIGURE 2
Phase diagram as a function of driving amplitude A and frequency f,
experimentally determined points on the stability boundaries. Stable patterns occur in

wne regions labeled (4,3) and (7,2). Slow periodic and chaotic oscillations 1involving
competition between these modes occur in the shaded reg:ions.

. The crosse- are

The behavior of the system as a function of A and f, is shown in Fig. 2, where a
small part of the phase diagram is reported. Below the parabolic stability boundaries,
the surface is essentially flat. Above the stability boundaries, the fluid surface
oscillates at half the driving frequency in a single stable mode, C, and By are
constant as function of times. The shaded areas are regions of mode competition, in
which the surface can be described as a superposition of the (4,3) and (7,2) modes with
amplitudes having a slowly varying envelope in addition to the fast oscillation at f,/2.
They oscillate periodically or chaotically at a mean frequency that is two order of
magnitude smaller than f,.

Qur experimental apparatus, described in Ref. 9, allows us to study a fixed linear
combination of the slow coefficients Cy(t) and By(t), which we denote by a° (t). In Fig.
3 is shown the time dependence of a¢ and a$ .

The slow oscillation resulting from mode competition 1s periodic in this case and
E_ leads aa by about 90¢. This phase relationship is significant it implies that the
mode (7,2) pump (4,3). The dynamic of the slow oscillation was explored by varying A and
f separately inside of the interaction region. In Fig. 4 time series and corsesponding
power spectra of the slow oscillation are shown for three different driving amplitudes
but fixed driving frequency of 16.05 Hz.

As the driving amplitude is increased, a chactic state with a broad power spectrum
is obtained. We characterize the chaotic behavior quantitatively by computing from the
experiiental data the correlation dimension j) of the attractor and a lowe. bound K,

&
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for the Kolmogorov entropy K. When the oscillation is periodic (A=121 am), we find
Y =1.0 X0.04 and K, =(0.01% 0.01) sec™' . On the other hand when the slow oscillation iS
chaotic (A=19C um), Y =2.22%0.04 and Kz=(0.1.’20.01)s'i . These measurements clearly
demorstrate that the attractor has a low (and fractional) dimension and that there is at
least one positive lyapunov exponent.

U tsreary vy

FIGURE 3
The slowly varying amplitudes a; and az ocillate periodically.
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FIGURE 4
The transition from periodic to chaotic oscillation. Time series and corresponding power
spectra of the slow oscillation are shown for f,=16.0% Hz and three different criving
amplitudes. Broad-band noise is associated with the appearance of a subkarmonic f*/2 of
the dominant oscillatior.

This result can seem in contrast with the fact that time resolved spatial rourmer
spectra show the presence of many other modes with § =3,8,11,24 besides the mode (7,2)
and (4,3). However this has been explained by a theory of E. Meron, 1. Procaccia /j11/.
They start from Navier-Stokes equetions with suitable boundary conditions. They can
prove rigorously, using center-manifold and normal form theories that the aynamics is
governed by the modes (7,2) and {4,3) ana all the other modes are enslaved by these two.
Finally they obtained a system of four coupled ordinary differential equations for the
amplatude of the mode (7,2) and (4,3). The phase diagram of this system is in very gocd
agreement with the experimental one. Time dependent behaviors either chaotic or periodic
are indeed reproduced at the intersection of the stability curves of the two modes.

This experiment and the assuciated theory have shown how the incredible reduction
from a large to a very small number of degrees of freedom occurs in practice. They have
also shown that temporal chaotic behavior is produced by che interaction of spatial
mcdes and that spatial order can be preserved in time dependent aperiodic regimes. Thas
result vas made possible by a time resolved analysis of the spatial patterns which
allows a more direct cruparison with the theory.

In other instabilities, such ac (R-B counvection) a time resolved analysis of
spatial patterns in temporal chaotic regimes has been carried out only in few
experiments and we will show in the next paragrapu that also in this case the study of
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spatial patterns is very useful to compare the observed behavior with that of a
realistic model.

III - RAYLEIGH-BENARD CONVECTION
I1Xa Experimental apparatus.

We remind very briefly the properties of thermal convection in a fluid layer heated
from below, that is Rayleigh-Benard instability /i/. When the temperature difference
AT between the two horizontal plates, confining the fluid exceeds a critical value & T
convection begins and the fluid motion forms a perfodic structure, a set of parallel
rolls, with a wave number qﬁTﬂd, where d is the depth of the layer. The most relevant
parameters are the Rayleigh number R =°(%10‘\3AT/2{K and the Prandtl number
P = f/X. Here A,g, ¥,K are respectively the volumetric expansion coefficient, the
acceleration of gravity, the kinematic viscosi*y and :he heat diffusion constant. It has
been computed that for an infinitely extended horiiontal layer the critical Rayleigh
number at which convection sets in is R¢ =1708.

Increasing R above R: another threshold Ry 1is reached where the fluid motion
becomes time dependent. The value of R, and the behavior of the fluid strongly depend
on P, and on the aspect ratio , that is the ratio between the horizontal 1l.ngth and
depth of the layer.

Rayleigh-Benard convection has been widely us2d to study the transition from a
regular to a chaotic motion. Nevertheless spatial patterns in R-B have been studied just
near the threshold of the instability in large aspect ratio cells and a good agreement
with theories has been found /14/. On the contrary convective patterns in time dependent
states has been investigated just in a few experiments /7-8/ leaving open many question
on the role that the spatial degrees of freedom play in the transition into these
regimes.

Thus to have a better insight into the mechanisms leading to chaos in thermal
convection &nd to allow a more direct comparison with numerical models we have
experimentally /10/ studied the evolution of the temperature field in time dependent
regimes of R-B convection.

In our set up the fluid layer has horizontal size 1,=4 cm, 1,=1 cm and height
d=1 ecm. The x and y axis of the coordinate reference frame are respectively
perpendicular and parallel to the rolls axis, (Fig. 5). The z axis is the vertical one.

THERMAL t
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FIGURE S
Schematic diagram of the cell: T,THi, 1ﬁL thermistors, W water circulation, DTC
temperature different controller, Ed electric heater.

The flujd is silicon oil with Prandt]l number = 30. The botton and top plates are
‘rade of copper and the long term stability of the temperature difference is better than
4 m°C, This stability has been obtained with three independent temperature regulators.
The first one is a water bath with a stability of about 0.05°C. The water circulates in
the botton and top plates where a electrical resistor is inserted in each c¢f them. The
two heating resistors are connected with other two stages of regulation. One stabilizes
the temperaiure of the upper plate, the other controls temperature difference between
the two rlates. The last regulator i1s connected to a micro-computer that allows a
complete automatization of the measurement.

The latera} walls of the cell are made of glass to allow for optical inspection.
The detection system consists of a lase~ beam that crosses the silicon oil perpendicular
to the (x,z)-plane and is deflected by the thermal gradients inside the fluid. The laser
beam sweeps the (x,z)-plane and we can measure the temperature gradient averaged along y
in 1074 points of the (x,z)-plane by a method described elsewhere /15/. The 1024 points
are in an array with 16 rows of 64 points cach. Precisely, Tfor each position of the
impinging beam, the unpercurbed zero gradient is measured bv a position-sensitive
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detector and recorded in a computer. Later upon application of temperature gradients we
can measure the horizontal-and vertical-shift components, respectively proportional to
the horizontal and vertical refractive index gradients 2n/ J x and 3n/ 9 z averaged
along the y~axis, that is along the optical path of the laser beam. From these gradients
one infers the temperature through the relation QTVbxs (2 n/)T.31/Q@ x) and similar for
z. The temperature field is then easily recovered by numerical integration of the two
recorded gradients. The sweeping time is fast compared to the time scales of the
phenomena under study. Therefore, by this method we can study the time evolution of the
temperature field.

We perform the experiment in the following way. We start from zero temperature
difference between the two plates and then we increase the temperature of the bottom
nlate till the maximum allowed in our apparatus corresponding to about R=400 R _. The
steps in which the temperature has been increased are separated by sufficient amount of
time to allow the system to relax to a stable state. This type of run has been repeated
several times to check the dependence of the found regimes on the way in which the
control parameter has been varied.

IIIb Spatial Patterns.

Analysing the fluid behavior as 2a function of r=R/Rs we find a stable four rolls
structures at r 80. Above this threshold the regimes of the system are outlined in
table I

TABLE I

Interval | r | regime | Spatial structure |
| | __ |

11 ] 80-90 | TD M | R4 + LO |
I2 | 920-95 | S | R4 |
I3 | 95-130 | TD | R4 + LO+TW |
I4 | 12)-150 | S | R4 {
15 | 150-182 | 0 | R4 + LO |
16 | 182-186 | SHO | R4 + TW |
17 | 186-200 | " ] " !
18 | 200-300 | 0 | R4 + LO+TW |

TW = Traveling waves

TD = Time dependent

S = Stationary

LO = Localized oscillations

SHO= Shilnikov type homoclinic orbit

R4 = 4 rolls

* The interval I1 is not observed in all of the runs

#+ the interval 17 presents a stationary regime in some runs and localized
oscillations of very small amplitude in others,

From a run to another the interva:! initial positions are reproducible within 10%,
whereas the length of the interval does not change sensitively. Instead the behavior of
the system in the time dependent regimes can be different from a run tc another. For
example, in thes interval IS5 we can fin¢ cther subintervals of reriodic, biperiodic and
chaotic behavior, but their existance is related on the speed with which the temperature
gradient is increased and on the previous story of the system.

So we focus just on the general features that we always observe. In particular we
see in Table I that the time dependent regimes are associated with two different spatial
patterns one characterized by localized oscillations the other by traveling waves.

After verifying that the dynamics does not depend sensitively on the z coordinate,
except for the amplitude of T , we focus our attention just on the evoiution of the
horizontal component of the gradient u(x,t) = 37 7 X measured at a fixed z. The
horizontal gradient is infact a direct result of the measurement and furthermore it does
not contain the amplitude of the stationary gradient imrosed between the twe piates.

In what follows w(x,t) = u(x,t)-U(x), and U(x) is the time sverage of u(x,t). The
“"energy" E(t) is the spatial aversge of w (x,t).

Besides the study of u just in one directior allows, 2 more direct comparison with
numerical simulations done in unidimensional partial differential equations (P.D.E.).

As an example we show in Figure 6 the evolution of w as a functicn of x and time t.
We sce here¢ that the osclillations are localized in space beth in the perioaic regime
Fig. 6a at r = 83 and in the chaotic one Fig. 6b) at r = 87.5. The localization can be
also quantitatively measured by making the Fourier spectrum S(f,x) of time series w{x,t)
recorded in different position of the cell. The spectrum S(f,x), with x = 1.5 ¢m is
shown in Fig. 7a) at r=86.5 biperiodic regime and Fig. 7b) chaotic regime at r=87.5. The

amplitude of S(f,x) at fl, r2 as a function of x at r=86.5 and at r=87.% is shown in
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Figure 8a-b) respectively.

The amplitude of S(f ,x) changes of about 3 order of magnitude by moving the
measuring point of only 4 mm. We see the high degree of 1localization of the
oscillations. We also observe in Fig. 8b) that the maxinum amplitude of the two
frequencies tends to become equal at the onset of chaos.

This spatio temporal regime with localized oscillations is not the only one that we
observe. Increasing R we find other windows of time dependent regimes that were
characterized by the presence of traveling waves. As an example we report in Fig. 9b)
the evolution of w {x,t) at r=230 where a biperiodic regime was present. We see that
there are waves starting in the center of the cell that propagate toward the sides of
the cell. This traveling structure is more evident in Fig. 9¢) where the spatio temporal
correlation function C(A,F )={lw (x+2,t+J Iw(x,t)dx dt is reported. We see that the
extrema (Fig. 9d) of C propagaééé with a velocity of about 0.06 cm/sec. This velocity is
consistent with the velocity scale constructed with /d=0.03¢cm/sec for our fluid.
w (x,t) the time evolution of the maxima of C(£> , T ) measured in the chaotic regimes at
r=268 are reported in Fig. 1C. We see that the spatial behavior does not change

sensitively when the system is driven from a periodic to a chaotic time dependent
regime.

FIGURE 6
Evolution of the time dependent component of the horizontal temperature gradient w (x,t)
recorded at r = 83.5 a) and r = 87.5 b). The corresponding horizontal gradients u (x,t)
are instead reported in c¢) and d) respectively.

The transition between localized oscillasions and travelaing waves occurs at r ™ 180
with a regime that has an evolution like that shown in Fig. 11a). This evolution is
characterized by the presence of quasi laminar oscillations that are interrupted by very
large oursts. Ihis rcgime is produced by a sort of competition between two spatial
structures, one associated with the laminar period, the other with the fast transient
This is shown in Figure 11b where the tempcral evciution of u(x,t), averaged over 4
periods of the fast oscillation of Figure 11la, is reported. We see that during the fast
transient ¢f Figure lla, the time averaged structure of the convective motion shifts in
an appreciable way the position cf the rolls boundaries (points where

This change corresponds to a switch of energy {the energy in a mode is the
amplitade of the spatial Fourier spectrum) between the odd and even modes of the spatial
Fourier transform of w (x,t). Thgopfriod of time T between two bursts diverges with
the following law Tp =850(r-r ) = sec when the bifurcation point for this regime
r, = 182.5 is approached.

It is important to note that the presence of two different time dependent spatial
patterns, one characterized by localized states and the other by traveling waves are
also observed in numerical simulations of some partial differential equations /4/ and in
particular in the Spiegel model /4b/ written just to describe buoyancy driven convection
in astrophysics contest.

The transition between localized oscillation and traveling in this equation takes
places via a Shilnikov type homoclinic bifurcation. This bifurcation is characterized by
a time evoiution like that shown in Fig. 11a and is related with big changes of the
spatial structure during the burst as indeed happens in our experiment.

SN
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FIGURE 7
Fourier Spec trum S(f,x) of the time
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the maxima positions of the spatio temporal correlation functions c(o,7T).
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I1Ic Fractal dimension and metric entropy
Several methods have beer. proposed /16/ to
entropy (M.E.) from experimental time series.
useful to characterize the chaotic dynamics. To
system in phase space has to be reconstracted from experaimental time series.

compute D and M.E.

87.5 b).

the maxima of C {crosses) is

compute fractal dimension D and metric
These two quantities are indeed very
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FIGURE 11
Transition between localized oscillations and traveling waves.
a) temporal evolution of the energy.

b) temporal evolution of the spatial structure u(x,t) averaged over 4 periods of the
fast oscillation.

In many eaperiments only a single scalar signal V(t) is monitored. In this case the
attractor can be reconstructed invoking the embedding theorem /1/ (see Appendix).
However in extended systems the use of a single scalar signal cannot always describe the
global behavior of the system. In several experiments done in fluid systems /17/ the
scalar signal V(t), used to reconstruct the attractor and to compute F.D., 1s often
obtained by the local measurement of a variable (e.g. horizontal temperature gradient,
vertical component of the velocity). On the basis of the results described in the
previous section some questions arise naturally. Does F.D. depend c¢n the point where the
measurement has been taken? Do we get different results using a spat:ally averaged
measurement instead of a local one? Furthermore with our experimental apparatus there
are other ways of constructing the phase space. Suitable m-dimensional phase spaces can
be generated by using as coordinates either the mode amplitudes of the spatial Fourier
transform of u(x,t) or simply the u(x,t) measured in m different points x=1i4A . In
what is following the first one will be called Fourier space (F.S.) and the second one
space shifted coordinate phase soace (S.C.S.).

To estimate D the correlation dimension ) /16a/ (see appendix) is ccmputed with a
number of data points N ranging from 4000 tc 8000.

The correlation dimension obtained usingdth_e_ embedding technique, the F.S. and
§.C.S. will be indicated respectively with V,V,V. Using the method proposed in Ref.
18 we have also computed the quantity K:J, (see appendix) that is a lower bound for the
metric entropy. We checked the dependence of ) and k, on the point of the cell where
the time series have been recorded. The results are reported in rFigs. 12a and 12b
respectively at r=267 and r=270. In Figs. 12c¢c and 12d the corresponding K; is shown. We
see that Y and K_ slightly depend on the point of measurement in both cases.

We point ou%: that this result is not coarrelated with the local signal -to-noise
ratio whose reduction normally produces an increasing in the extimation of D/19/.

For a constant instrumental noise, the above ratio is proportional to the 1local
time dependent amplitude whose rms value is shown in Figs. 12e and 12f. (The maximum in
the vertical scale corresponds to a signal to noise ratio of about 10 .) Comparing Figs.
12¢ 1d 12b respectively with Figs. 12e¢ and 12f, we see that an 1increasing of fraccal
dime ,ion does not necesserely correspond to a decreasing of the signal amplaitude. More
specirfically there are points where ) is large and the amplitude of the signal is
large. This fact clearly demonstrates that the spatial dependence of is intrisic of
the fluid behavior. Indeed it is related to neither to signal to noise ratio nor to the
delay time used to reconstruct the attractor. — ~ _

The values of )° have been compared with Y and VY . We find that ) is very
close tomthe value obtained by averaging the 2 computed in different positions of the
cell. Y 1s 1s equal , within error bars,to) .

The results of yi ,)° and K, at different r are summarised in Table 2. The
results of )) reported are those obtained from the time series u(x,t) measured in
x=2 cm. In the periodic and quasiperiodic case )’ does not change as a function of the
position within error bars.

TABLE 2 B

R/R¢ b Y X, i
220 :.02% 0.001 1.04% 0.02 0.0310.01 :
252 2.14¥0.01 2.3110.06 0.06 £0.01 H
268 2.4510.05 2.61%£0.06 0.08 £0.01 B
270 3.68%0.08 4.14T0.05 0.15 +0.01 3
271 3.89%0.1 4,20%0.1 0.18 £0.01 %
¢
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FIGURE 12
Tne spatial dependence of the correlation dimension (a) K2(c) and *he signal amplitude
of w(x,t) measured at r=267. The same quantities measured at r= 2,70 are respectively
shown in b}, d), f). The errors of )) are about 3% and those of k2 about 5%.

IV - CONCLUSION

The main result of this investigation is that the study of the spatial feature of
temporal chaotic regime is very important to understand the physical mechanism leading
to chaos.

Besides, the results described in section IIIc on the calculation of fractal
dimension and metric entropy open some interrogatives on the reason why )y depends on
the position and 3}, 35 are equal to the averaged value of .

Much more theoretical and experimental work will be necessary to better understand
this problem and the role of spatial pattern in time dependent rcoimes. We believe that
our approach can be very useful in the study of the transition from low dimensional
chaos to turbulence where the system exibit a chaotic behavior both in space and time.
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APPENDIX

Many phenomena exibit chaotic <tates that can be described by a low dimensional
Such an object is characterized by fractal
dimension and metric entropy and several methods have been proposea to compute them from
experimental time se.~ies /16/. The former roughly estimates the number of independent
variables involved in the process. The latter measures the average rate of information
loss per unit time. Fractal dimension and netric entropy can be advantageously used to
discriminate in an experiment between a purely stochastic phenomenon and low dimensional
chaos /19/. Also the direct measure of the Lyapunov exponents is useful to characterize

They measure the average divergences of the trajectory in phase
space. These three quantities are indeed related. The metric entropy is the sum ol the
Lyapunov exponents and fractal dimension is related to the Lyapunov exponents by the

strange attractor in phase space /1i/.

the chaotic motion.

Kaplan-York formula.

Al Phase Space

In many systems only a single variable V(t) is monitored the phase space of the
system has to be reconstructed invoking the ambedding theorem, V(t) that is constructing

, where m is the
(In practice T <can be varied only

avector x(t) of coordinates § V(t), V{t +3 ), ..., V(L +(m - 1)7
dimension of the space and ?,' an arbitrary delay.
within a certain range to have a reliable estimation of fractal dimension /20/.
21 a method to find the optimum value of § has been recently proposed).
Examples of the projection of the phase space on the plane ( V(t) V(t+3 ) ) for the

experiment described in section I are shown in Fig. Ala, b, ¢ for the driving amplitudes
reported in Fig. 4 . The delay 7 is 3 sec.

In Ref.
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Figure Al

Phase portrait for the data of Figure 4. Divergence
of nearby orbits can be seen quantitatively in the phase portrait.

A2 Fractal dimension

A strange attractor is 3in general an object of fractional dimension. Thi.,s means
that the number of cells of size £ needed to cover the attractor scales as ~, where
D is the fractal dimension. The calculation of D is a useful way to characterize the
degree of chaos but it needs a very big memory and it consumes a lot of computer time.
However several other definitions of dimension lead to more practical algorithims.

To estimate fractal dimension D we use the correlation dimension )) that is smaller
than D. However in practical cases the difference D-V turns out to be very small. The
correlation dimension is defined in terms of C(&€ ), ber of data points whose
separation in phase space is less than & (divided by N°). For N >+’ this quantity

scales as &, therefore:
. g C(€)
Y = bm i._(__
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An example of C(£ ) for the chaotic attractor of Fig. 4c is shown in Fig. A2 for
different embedding dimensions. The local derivative of C(£ ) is shown in Fig. A3a. The
slope can be seen to reach a limit value in the scaling region -1.5< &< 0 and does
not increase once m is larger than about 4.
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Figure A2

The correlation function C( g ) for various values of the embedding dimension m. The
limiting slope for large m is the correlation dimension ) of the attractor.

The height of the plateau is 2.20% 0.04 that is the correlation dimension of the

attractor at A = 190 um.
For values of £ smaller than those in the scaling region that is comparable with

the noise level the slope has about the same value of the embedding dimension /19/.

A3 Kolmogorov Entropy

The Kolmogorov entropy measures the average rate of information lost per unit time
and it the sum of the positive Lyapunov exponents. Trom th2 measurement of C(£ ) is also
possible to determine K, that is a lower bound of the Kolmogorov entropy. It is defined

2
as Co o~ D (8
Kb= &m % aw ” n - +|()
Z2C M=Doc ’C

Here C, (%2 ) aindicates the correlation function C(& ) computed for the embedding
dimension m. An example is shown in Fig. A4 for the chaotic data at A = 190 am reporggd
in fig. 1 of section 1. We see that K reaches a lamiting value of (0.1%0.01)sec .
this means that at least 1 Lyapunov expdnents is positive.

o (@)

Figure A3
Measurements of correlation dimension ¥ . the derivative (local slope) of the
function log C(& ) with respect log £ reaches a limiting valne in the scaling range of
d=2.204C.04 for m > 4,
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Figure A4
Dependence on embedding dimension of the functicen K {cefined in (5.3)), which is less

than or equal to the sum of the positive Lyapunov exponents. The curves are fits to the
data for the chaotic state (upper points) and periodic state (lower points), for log

= =1, the positive limit of the upper curve for large m demonstrates that at least one

Lyapunov exponent must be positive, so that the trajectories exhibit exponential
divergence.

A4 Lyapunov exponents

We analyze now the algorithm proposed in Ref. 1b for computing Lyapunov exponents
from an experimental time series. We first describe the method and then we apply it to
an experiment of Rayleigh-Benard convection /22/.

The discussion below deals with scalar signal but the method can be easily extended
“o multidimensional signal.

Conceptually, the algorithm to be discussed involves the following steps:

a) reconstructing the dynamics in a finite dimensional space,

b) obtaining the tangent maps to this reconstructed dynamics by a least squares fit,

¢) deducing the Lyapunov exponents from the tangent maps.

We now consider these different steps in detail.

(a) In general the variable experimental V(t) is sampled at fixed time interval so we
define x1=V(1A t) for 1 = 1,..., N where N and A t are rcspectively the number of data
points and At the sampling time. We choose an embedding dimension d. and construct a

d_.-dimensional orbit representing the time evolution of the systesm ﬁy the time-delay
méthod. This means that we define

X, = (xi.x

i 14177 %14a 1) )

for £ =1,..., N~dE+1.

(b) Having embedded our dynamical system in d_ dimension, we want tc determine the d xd
matrix T, which describes how the time evolution sends small vectors around x, to smal

vectors around x The matrix T, is obtained by 1looking for neighbors x, 'of x, and
imposing in i J ¢

Ti(x -~X,) ¥ X, . =X

IS U O T U R (2)

the matrix T, is determined by a least square fit with the condition lx - xil<IEE
Note that, in view of (1), (2), the matrix T, has the form

i
010 ...0
001...0
T =
Y looo...1

2,8,8,... 8,
(c) Step (b) gives a sequence of matrices T, , T . One determines
successively orthogonal matrices Q and upper trianguiar ma%rices R(J) with positive
diagonal 2lements such that 0(0)= urtit matrix and
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Then the Lyapunov exponents )\h are given by >\n = K At T=o

where K s (N~d, =1) is the available number of mgtrices. As an example we present in
Fig. A5 the Lyapunov exponents for the Lorenz model” as a function of d_. The horizontal
dashed lines represent the ccrrect values. To reduce the dimension o§‘ the matrix T ,
without spoiling the calculation of the first positive Lyapunov exponents, that can Be
useful when dE' becomes very large, we define a dM such that

dE = (dM-l), m+1
and the associate vector is

X !

SRl CPEL PP xi+(DM-1)m)

To mantain the same form of ’1’1, providing of changing dE with dM the (2) is replaced by
the condition

i
Tyl =X = Xy~ Xym

However this does not means that the number of used points are reduced by a factor m but

all the data points are used to find the nearest neighbours.

We have applied the method to the R-B experiment described in setion 3.
Specifically we have studied the chaotic regime in the interval 170 R/R 185 where
the system exhibited a transition to chaos via intermittency. The main~ frequency was
about 75 mHz. To have a sufficient number of neighbours in the calculation of Ti, 40000

points with a sampling frequency of 5 Hz, have been recorded for each measurement. This
way, the time evolution of the system is followed for about 600 periods of the main
oscillation. Many tests have been done to verify how Lyapunov exponents depend on dE and
d,. It has been found that the value of )\ is sufficiently stable in the internal
28<d < 25 and 5<d,<8. The results are reported in Figure A6, where the values of the
positive Lyapunov exponents are shown as a function of R for different i, and @ . We see
that the quantitative behavior of the curves is similar and the difference between them
is about 10%. the measurements where done for R/R = 171.41, 174,08, 176.75, 182.10,
183.44, 184.79. Figs. A7 show details for R/R_ = 182.10. By moving the detection point
inside the cell of about lcm and keeping R at the last value shown in figure A7 we €ind
that the Lyapunov exponents charge by less than 5%. As a conclusion, the positive
Lyapunov exponents in the chaotic regime of a R-B convection experiment have been
determined wusing the method proposed in Ref. 1b. Even though the error of the
measurement is not small (about 10%) it is still possible to follow how the number of
the Lyapunov exponents and thear values change as a function either of the control
parameter R or of the position where the measurement has been recorded inside the fluid.
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Lyapunov exponents for the Lorenz moadel as a function of dM.
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X The three largest Lyapunov exponents as a function of the Rayleigh number for different
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LATTICE GAS HYDRCDYNAMICS

Jean Pierre BOON and Alain NOULLEZ
Facuité des Sciences, C.P. 231
Université Libre de Bruxelles

B~1050 Bruxelles, Belgium

1. MULTI-SCALE FLUID DYNAMICS

A fluid is a multi-scale system whose dynamics cannot be described uniquely. At
the microscopic level such a description involves the virtually infinite complexity
of the many-body problem, which can be bypassed by statistical mechanical methods.
At large scale - that is for wavelengths large compared to the molecular size - the
fluid can be treated as a continuous medium and is therefore adequately described by
classical hydrodynamics. Now, complexity is also reflected at large scale by the
non-linearities in the hydrodynamical equations, wvhich, except for particular (usual-
ly oversimplified) cases, cannot be solved explicitly. The connection between
microscopic level - the domain of molecular dynamics - and macroscopic level - the
domain of hydrodynamics - is established by Liouville-Boltzmann kinetic theory /1/.
Correspoadingly, three computational approaches have been developped for the numeri-

cal study of fluid dynamics.

(i) The approach via continuous medium description 1is to solve numerically the
Navier-Stokes equations /2/, which raises the usual difficulties associated with the
numerical treatment of partial differential equations. In practice, feasibility is
achieved by finite elements methods and finite difference equations; these methods,
which use quite involved numerical techniques, have produced spectacular resul’s.
However, they require considerable computational power and so turn out to be very
expensive.

(11) The molecular dynamics approach starts from a microscopirc modeling of the fluid,
simulating a real system of interacting particles. This method has been used exten-
sively for sctudying thermnaynamic and transport properties as well as small scale
dynamscal behavior of fluid systems /i,3/. Recently it has been extended to investi-
gate systems supject to extermal constraints /4/. The major difficulty here arises
from the ratio of time scales and spatial scales, i.e. the ratio of the characteris-
tic¢ hydrodynamic time versus the molecular interaction time, and the ratio of hydro-
dynanic wavalength versus intermolecular potential range. Both quantities assume
large values; as a result molecular dynamics simulations require long computation
times and large cystems (i.e. large number of particles), and consequently costly
computational wmeans.

(i1i) Guite receantly, the development of a "poor man version” of the molecular dyna-
mics approach has been stimulated by progress and perspectiv> s in parallel coumputers.
Similarly as for molecular dynamics simulations, the prediction of flows in fluids
will follow from a microscopic aescription of interacting particles, but here the
particles are confired to points moving along the 1links of a regular lattice, and
interactions reduce to simple mathematical rules. The motivation for using a lattice
gas (in fact, a well known zodel system in Statistical Physics) to simulate hydrody-
namics stems from the idea that the details of the micioscopic properties should be
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unimportant to the macroscopic behavior of the fluid. So whether the fictitious
microworld one uses is a caricature of a real fluid does not natter as long as it
produces correct hydrodynamics. To what extent does lattice gas hydrodynamics meet
this goal? In order to answer this question, we shall first build up the constituti-
ve elements to construct a lattice gas; then we shall put a model system to work and
present the results of hydrodynamic simulations; finally the computarional aspects of
present and future realizations will be reviewed.

2. THE LATTICE GAS

In a seonse, the latt.ce gas approach to hydrodynumics simulation appears as
intermediate between the two other numerica. methods ((1) and (f1) 1n section 1) 1n
the way kinetic theory establishes the connection between molecular dynamics and
hydrodynamics. Indeed the hydrodyramic equations can be obtained from kinetic theory
by mutti-scale expansicn, i.ec. with the expans:on parameters : A /L({A=mean free path;
Lehydrodynamic length) and Te /2 (T=molecular inieraction time; Ty <hydrodynimic
time). At low (and up to moderate) densitjies, the Boltzmann approximation combined
with the Chapran-Enskog method yields the hydrodynamic equations and the transport
coefficients /5/. Ac high densities, there is no unatural scale separation, and smal=-
Tness parameter expansion breaks down; one then uses the Green-Kubo-Zwansig autocor-
relation formalism to obtain the dynawical properties /i/. However, these methods
are unable to treat non-linear hydrodynamics. So, the quescion arises a#s to how a
kinetic model can be constructed to simu)ate hydrodynamics? Such a program will
require to deiine (i) proper mathematical objects (e.g. in classical kydrodynamics,
density, momentum, and energy), and (ii) appropriate rules governing them (e.g. the
kydrodynamic equations).

"n constructing the lattice gas model, one introduces a priacry simplification
(of counsiderable computational convenience) by discretiziang space {(point parcicles ecn
a lattice), tiwe, and velocity. Each node on *he lattice will behave 1s a Booiean
processor updated at each ftime step according to the rules “"connect.ng” neighboriag
nodes (vta the lattice links), which rules must satisiy conservation laws (mass,
i.e. particule nuaber; womentum; an’ energy). Such a system appeare as a Cellular
Automaton /6/ with interactions restricted to first neighbors sccording to a set of
collisicu rules to be specified.

3. THE H¥P JODEL

A 2-D <quare lattice model was first proposed by Hardy, de Pa-=zis, and Pomeau
/7/ in the mid-seventies to investigacn the ergodic problem and was reactivated about
ten yeacs later for attempting co simulute anydrodynamics /8/. (Consider a plane squa-
re lattizce whece each node nas {.s statvy defined by a 4~bit word to represent the
sresence (or the absecce) of particles with discrete velocities (1= particle with
unit velocity; Ozao particie) on each of the 7our links comnecting to the four neigh-
boring noces (see ¥Fig.l). Co each nnde has 24 possibie input configurations and as
many possible outout configurations, which yields 1616 possible rules, only a limited
nuwber of taem being acceptable acrording to conservation laws. The collision rules
are shown iy Fig.Z; noire that the conveution of outgoing arrows Ls usually adopred to
indicate to which node particles are asrociated. The wodel 15 referred to as HPP.
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24817
1010 1st BIT
3d BIT
T 000 Lth BIT

Fig.l. b~bit word representaticn of node state (here b=4)

R

CONVENTION

+ bt

rig.2. Collisions for HPP model. Note that ounly collisions of the first

type are efficient (1.e. produce momentum transfer).

An exclusion principle is introduced in that no two particles with same velocity
5} can occupy simultaneously the same link (or site i=0,1,2,3;. Obviously, colli-
sfon rrles must be constructed so as to satisfy conservation laws, i.e. number of
partd and monmentunm. Note rhat energy conservation is degenerate here (c7s1),
whi . .« unimportant for incompressible or isothermal flows. (Such a lattice gas is

a model fluid waith equal specific heats, Cpacv, and equal compressibilities.k§==%‘).
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4. THE MICRODYNAMICAL EQUATIONS

One defines the state of a node at time tx and position Fx on the lattice
by the Boolean field : m (tx)= {n‘ (Cx,F;); e €& }, where | derotes the site bit
(direction, defined mod.4) and « indicates discrete variables. The updating rule
for the cellular automatoun follows from a 2-step proccess : collision, followed by
propagation.

(1) Collision : the state of site { after collision is given by its state before col-
licion minus the depopulating contribution plus the populating contribution, f.e.

s
R, =R, —ning, ("'"l‘n)[“"x‘-r.;) + Nipngpz (10 (1= ney2) S

(2) kropagation : after collision, particles are shifted one unit lattice length over

one unit time step, so that the complete evolution eguation reaas
n,'(tx-fl,F,f-CL‘) = n; (e, F) + D (2)

.= N, . n.- n - . . n . " .
8 et iz M Nesy Ni Nisa MNiewy Miss 3)

evaluated at tsx and Tx, and where mj=l-ny. An exrlicit example is shown in Fig.3

and a global example of updating 1s given in Fig.4. Note that this lattice gas model
is deteraministic (a given configuration at time tx vields the (txtl) configura-

tion uniquely).

|
\
== A == T €
—f—»—— COLLISION |
T, Y —PR’)F’AGATION A
\
™ teel

Fig. 3. Example of updating rule according to Eq.{2) :
Ni(tet1,Fat Ty i=3)z=0+1-032 1

B T S, - .- J—. N v e e i m———————

A kpearpon

sy

Tt

-«
»




Fig. 4.

5. THE MACRODYNAMICAL EQUATIONS

(single arrows) to time tat+l (double arrows).

Global example of evolutfon of celiular automaton from time t.

The average population is defined as the occupancy probability of site 1 at node

T+ at time tx, that is /9/

N, (Ex,T) = <n( bR >

where the brackets denote an ensemble average over initlal co

It then follows from conservation, i.e.

Zi'Al---o and £-
[

(

‘gurations (se
C;A;=0, that

4)

e sec-

tion 8).

%[N‘.(t;-u,afzi_)-N‘-(t.,'f"*)] = 0 ()
T E [N (ta+1, R+ Ti) - N (b ,7d] = 0 )
3

;

% Next one defines the dengity and the mass current respectively by
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4 or equivalently the density per site : d = F/-G-, and the mean velocity g-:j_/?, where
' e we have introduced the generalization to a set of b vectors '(31(1-0,..., b-1) with
2 components Cu(u-l,...,b) and modulus C, for a b-nearest~neighbor D-dimensional lat-
5:,, tice. (For the HPP model, b=4, D=2, and C=1).
% Most important fis that/o aand j (or d and u) are slow variables, that is they
vary over a spatial range and on a time scale which are large compared to the micros-
* copic space and time scales. Now the dynamical behavior of the system involves
’ characteristic times related to (1) relaxation to local equilibrium (Z,); (ii) sound
propagation (2’5), and (ii) dissipation (Z;), with %, <K 'L’,«Z‘b. Considering the spa-
tial scale expansfon parameter 8-" 33 and Z'D will scale as e’l and 5‘2 respecti-
vely, whereas 1local equilibrium relaxation {s independent of scaling (i-e-
Z. ~ £°). So a multi-scaling follows with time variables {a« > f, Els , b2 & t;
and space variables F, , T, = £ f; . Consequently, not too far from equilibrium the
population distribution function Njy may be expanded as

N, = NO(EF) + eN(eF) + oce?)

with Niw the equilibrium distribution function /10/
(4 - -

N§)= [+ exp(f+7.C;)]' (8)
where the Lagrange multipliers h and q can be expressed in terms of’o andj. Conside~
ring the physical nature of the lattice gas model, it is quite logical that a system

- with built-in exclusion principle has a Fermi-Dirac equilibrium distribution fuaction
a\ (8). Now for low wvel

w velociides, U =su/ << C, expansion of (8) up to second order in u
yields /10/

NO (d,u) = d [1+ (D) cyyu, + Gd) R, uyuy + & (uh))

()

lo([l- ol

G(Ad) = (/) (3-4)/(1=d) 5 Qiyp= €, Gy - (/D)

°)
Note that at zero velocity, Ni( (d,0)= d = f/[y is independent of i. Starting from the
conservation equations (5) and (6), one performs a multi-scale expansion, @é — 69t

+ g 96 QF - 59':. N Nw EN(" To first significant order, (J(€), one obtains /9/

(o) Z C N(O) -
@, ¢Z N * 2 Ip ¢ ° (10)

(11)

with the notation 9, = QF, = { '9‘0‘}. Substitution of the equilibrium distribution

(8) into (10) and (1l) yields the macrodynamical Euler Equations

B, p + V-(p4) (12)




l P, (Pug) + VoF =0 (i3)

where the leading order contribution to the momentum~flux tensor is given by

‘i{p - (Cz/p)f Jc{p + p G(p) -1;’{3&“f ud up, o+ O(u*) (14)

with ﬁ{f) = G(d)/4 and Ta{&xtf = 2‘. Ciu C¢p Q_‘-b,a‘ . One thus finds that the
hydrostatic ptessure is P = F {C’/_D) , and as a result the sound velocity is

given by

¢s = (alyfaf)’/‘ = ¢/p1 (cg= 2™ for the HPP Model) (15) &

To next order, 0(6' 2) , the first equation obtained is 961F=° , which means
that a single species model yields no mass diffusion, and the second equation Qtz {fg)

+.. =0 describes momeatum diffusion over long range @(5-1)- Contracting the @(€) 4’
and @[6") equations, one obtains the macrodynamical equations (for details see
110/) 1

, continuity equation (16)

1]
(o]

P p v Vlpu)

9& (fl_t) + V.E = V.S 4+ £o.t. , uomentum equation (17)

vhere Sd[la'& oC prg ’3‘ (Pl,s,) and h.o.t. denotes higher order terms 0(6(4’),0{5%4,),0@’14).
This result is important because Eq.(17) now bears striking resemblance co the

Navier-Stokes equation.

6. ISOTROPY CONSIDERATIONS e

The question now arises as to whether, the HPP lattice gas constitutes a model
fluid that produces correct hydrodynamic behavior; put as a straightforward question,
are the macrodynamical equations for the HPP model Navier-~Stokes?

Consider the stress tensor for an isotropic medium in classical hydrodynamics.
Isotropy implies rotational invariance, as a consequence of which the momcntum flux

tensor (less the hyd-ostatic coantribution) has the form /11/

Ay

oZ‘(’i,u’+9Pa5) + 471(9’417) ’Sx/s .

The square lattice HPP model has Tl/2 rotational invariance, which is a subgroup of

the continuous rotational invariance group; as a result, 7:({5 is not isotropic for the

square lattice gas /10/. So the HPP model produces correct sound propagation /8/, i
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but viscous dissipation is anisotropic.

Besides the square lattice, the only basic regular two-dimensional tiling geome-
tries are the triangular lattice and the hexagonal lattice (which, in fact, are reci-
procal to each other). Frisch, Hasslacher, and Pomeau /9/ proposed to use a triangu-
lar lattice with hexagonal symetry which has IL/3 rotational invariance; in this geo—
metry, To(p..,g has the form /10/

3P0 dgs v Sy dgy) v 37 Uy fys) 9

which is isotropic, and so ensures isotropy in the momentum equation. This model
will be refered to hereafter as the FHP model (see section 7).

Extension to 3~D systems faces the problem that the tensors ; and §, Eq.(17), may
not be isotropic, i.e. invariant under arbitrary rotations. Indeed non: of the four-
teen 3-D Bravais lattices has sufficient symetry to produce the required isotropy of
fourth order pairwise symetric tensors. Soletions to bypass this difficulty, have
been proposed by d'HYumidres, Lallemand, and Frisch /12/. The first solution is a

multispeed model on a cubic lattice, where particles cen have three different veloci-

ties : 0,1, V-Z; zero for particles at rest, one for particles moving along latcice
links to nearest neighbor, and J_Z for parivicles moving along the diagonal to next-
nearest neighbor. As represented in Fig.5a, the state at ome node is then given by a
19-bit word. This model is shown /12/ to yield, under appropriate condit*~ ., the
proper form for the tensor T (whereas a slight anisotropy persists in g) and so pro-

duces correct inviscid isotropic hydrodynamics.

/,

\IN
\

{a) {b)

fig. 5. 3-D models for lattice gas hydrodynamics. (a) multispeed model on
cubic lattice; (b) 3~D projection of 4-D FCHC.
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A second model, proposed by the same authors /12/, is based on the observation that
in 4-D, there exists a regular Bravais lattice with all the required symetries.
Indeed the 24-hedron, with 24 vertices represented by the Schlifli symbol {3,4,ﬂ
can be used to tile regularly the 4-D space with a 4~D face-~centered~hypercubic lac-
tice (FCHC). A 3-D projection of the 4-D FCHC (i.e. one lattice site wide in the 4th
dimension) produces a 3-D lattice with the required symetries. A representation cof
the 3-D projected FCHC is given in Fig.5b. This 18 a single-speed model, with all

lattice nodes connected via links with unit length c= 2.

The state at each rode is given by a 24~(or 25~ 1f pavrticles at rest are included)
bit word. \(Vote that an additional momentum equation follows from the ex{stence of a
4th momentum component; this component however is a passive scalar because its gover-—
ning equation decouples frowx the others (at least in the low Mach number limit) and
is therefore unimportant. This model, refered to as FCHC, has been put to work very
recently by Rivet to produce the first three-dimensional cellular automaton simula-
tion ¢f hydrodynamic flow /13/.

An alternative possible realization of 3-D cellular automata for hydrodynamic
simulation should be mentioned. It was indeed suggested by Hasslacher that 3-D iso-
tropy could be achieved on a quasi-lattice with icosahedral symetry by projection of
an “oblique” slice out of a 6~D cubic lattice /14/.

7. THE FHP MODEL

Congider a triangular lattice with hexagonal symetry (see Fig.6); each node has
regular hexagonal neighborhood (i.e. 6 links and 6 first neighbors). So the state of
a node will be given by a 6-~(or 7~, if one allows for rest particles at the node) bit
word, and the number of configurations assoclated to one node is 26, which yields
6464 possible rules. Restriction to a limited aumber follows from conservation laws;
in addition the exclusion principle and efficiency of collisions are to be taken into
account. The collision rules are illustrated inm Fig.7.

Fig.6. Triangular lattice with hexagonal symetry for FHP model. The unit area
around each node is f3/l (for liak length=l).
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BINARY COLL!SIONS —_— - = \ OR 7

(SELF- DUAL ) N

N\
TRIPLE COLLISIONS / \
/

QUADRUPLE COLL. N/ N
(DUAL OF BINARY ) AN / N\

COLLISION WITH

™
SPECTATOR < ™\
/
AN

COLLISIONS (BINARY] —> 0 =
INVOLVING A N
PARTICLE AT REST =

HEAD-ON COLLISION

+REST PARTICLE > e > < /

(TRIPLE COLLISION) A

OUTGOING ARROWS .
<> =>

CONVENTION , e.g.

Fig.?7. Collision rules for FHP model

Although the probability of actual triple collisions in a real gas 1is quite
small compared to the probability of binary collicion, triple collisions are very
important here. Indeed head-on collisional processes conserve particle number and
momentum, but also difference in particle number in opposi.e directions, which ylelds
a total of 4 conservation laws in a 2-D system! Therefore triple collisions are cru-

cial in that they remove the spuriovs f{nvariant. On the other hand, head-on colli-
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sions exhibit an interesting feature because they have two possible output channels
(see Fig.7). So by making a4 random choice of output configuration, mirror-symetry is
preserved, and furthermore tlie model is non-deterministic.

Microdynamical equations. For simplicity we zonsider the case with binaty eand

triple collisions (without particles at rest; the generalization is straightforward).
updatiny the cellular automaton proceeds in a two-step

As described in section 4,
sequence (with collisions followed by propagation) which is expressed by the opera-

tion

’ni(C{f',F'fEi)“: n‘-(tf)?;) + AL
(20)

where 1=0,...,5 denotes the site number (or link direction) as shown in Fig.6. Here

A 3 is the sum of the positive (populating) contributions and of the negative (depo-
pulating) contributions from binary and triple collisio s, 1.e.

Ne g, "ea3ceg

A= é’i Diai Miay Mi Pipa Mg Miys é”- Misa Nev s

i3 Tern Pisa Miry Niss (21)

e Ny Veeg N P sy — B Miga Mgy Ny Noes Niss
all quantities being evaluated at ta, Tx, and where (g) and (é): I~(é)
probabilities for output channel selection in head-on collisions

TL/3 rotation in configuration); usually (§>= l-(é) =1/2.
after one time step is shown in Fig.8,

VAVAVAVAVAVAVAVAN

\VAVAVAVAVAVAVAV

VAVAVAVAVAN
OAS00
JAVAVAVAVAVAVAVA

Fig.8. Example of evolutioa
arrow) on the hexagonal lattice gas,

(Note the convention of outgoing arrows in the collision representation)

TRACABLAER N0, B R A MRS, 5

denote the
(corresponding to
An example of evolution

from time tax(single arrow) to time ta+l(double
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MACRODYNAMICS FOR NON-DETERMINISTIC MODELS

As uwsual in Stacistical Mechanics, we now switch to a probabilistic description
/10/, and define the phase space M as the set of all possible assignments s&):{s‘(ﬁ)}
(i=6,..,6-1) of the Boolean field ug{Fx). Then Prty,s()) is the probability, at
time tx, for assignement s8(.) (which can also be called a configuration) with
Z‘P(t.,sm):l > (.S(.) erl) . Starting from an ensemble of {Initial
conditfons, each configuration evolves according to the updating rules of the automa-
ton. This is formally expressed by the "Liouville equation”

Pltev1,E50)) = 2 (te, s()) (22)

S G

with g, the evolution operator, which can be written as €= fo f, where f is the
streaming operator and e , the collision operator. In order to indicate explicitly

<
the two-step sequence of the aytomaton evolution, one can rewrite Eq.(22) as

1
Pltrsr, Ist)) = P(¢Ex, C'st))

(23)

Now, for non-deterministic systems, the description must be generalized so as to

include all possible chofces of the Boolean variables élss, » glviny the transition

selection from state s to state s'. Each transition being assigned a probability

A(s ~»s8'), one has (f'y)-A(s — s'Y, ¥ s,s', in ascordaace with the “"semi-cetailed
balance” assumption

Zg‘A (s=s") =1 , v s’

(24)
which expresses that, if all states have equal probabilities before collision, they ‘
also have equal probabilities after collision. Given that the .f 's take values !
+
independent of ezcch other at each time, defining in this way a harkov process, aand

given that the é values may be assumed to be independently chosen at each node,
EqQ.(23) becoumes

Pltevr, Tser) = £ TLA(SGFH) —s(R) Plts, 50))
St.)

= (23)

This Master Equation describes the evolution of a probabilistic cellular automaton by
expressing the probability for a (propagated) configuration s'(.) in terms of all
possible initial configurations s(.) weighted by the transition probabilities. Note
that in the deterministic case, A(s-»s') reduces to € 'ls'(.), and Eq.(25) beconmes
simply the Liouville equation (23).

Lattice propertfes being translation - invariant, equilibrium solutions should

be the same at cach node; so steady—-state solutions to Eq.(25) should te of the forum 1

B (st)
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where the probabilities p(s) of a given state are node independent, and can therefore
be factorized over all cells, i.e.

p(s) = TSN+ (-s00-ND))

By substitution of the above expressions into (25), one obtains & Master Equation
expressed in terms of the Ny's, and it can be shown /10/ that ils steady state solu-
tions are given by the Fermi-Dirac distribution introduced in section 5.

Macrodynamics des<ribes the evolution of the observables. A observable X is
defined by the mean value

Xt = (x(n @a))> = & = (st)) Plta,st))
5() (26)

which yields the explicit definition, for non-deterministic systems, of the quanti-
ties introduced in section 5. Following the scheme outlined in that section (for
details see ref./10/), one obtains the macrodyamical equations, (16) and (17), which
now, provided isotropy is satisfied, can be cast into a form stressing their analogy
with the equations of classical hydrodynamics

é% f + G% {f“ﬁ}
% (Pug) + 2 E‘(i = 2, S + Zot.

le] 27)

o< (28)
with
éap = c2i- 4(d) u¥/ct) Sup +  §(A) Uiy (29)
S = POV Lo (pug) + 25 (pugy = (4/2)25(P4) 5 T 30
where
g(4 = J:+D9. "l- i L

The factor g(d) is specific of the lattice gas description and is related to particle
~ hole duality. In particular it vanishes when the particle density and the hole
dencity are equal (d=1/2). At any rate, since the coefficient , d) weights quadratic
terms, jt rhould be of minor importance at low speeds. However it raises a more
serious problem that will be discused later.

In (29), cg=C/ {'D is the sound velocity (ignoring corrections o< ul/cl <<1), and in
(30), A?ﬂf) ts the kinematic viscosity which contains a positive contribution, dl R
the collisional viscosity, and a negative contribution, A)P , the propagation visco-
sity (with Lo?, < Y, » 8o that 4)(?) >0 ). The existeuce of the latter is a
consequence of the discrete nature of the system : there is a collisionless step in
the dynamics (propagation) during which fluctuations do not regress /15/.
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Liveatized hydrodynamisr : To first order in the perturbationms, u, and f7=j"f;

(where j; is the mean equilivbrium density), the linearized hydrodynaamir equations
read

42 f‘” + Ja Viu =o

(32)
2 u + 052‘7 ‘= 4)(0) v? .’1—3’-)770{)
e =z E F = ¥ ( 4 + - D -z 33)

Measurements of sound propagation and dsmping /16/ were performed on & FHP lattice
gas by applyiag ar initial perturbation to the velocity field : (u'+gL) cos k.r,
where E is the wave vector of the perturbation; u"-@.g corresponds to the longitudi-

I
nal current, and “.'lExE! to the trarsverse curreat. The results of the Jattice gas
experimen: /15/ are shown in Fig.9.

VAV 2

=

| 1 ] |
256 ; 512

Fig.9. Sound propagation and damping in FHP lattice zas (106 nodes). Tiame
evolution (unit time is time step) ¢f normalized density fluctuations
and velocity fields (d’Humidres, Laliemand, and Shimotura; 19385).

Viscosities : we rewrite the hydrodyuawlc equations for the hexagomal lattice
gas as

96f +§9u(f’u'() = o

(34)
9, (pu,) + %oﬁ(pg(d) Uyt + o(«*)) =

(35,

_é?df * 75(”?"“4 * '].B(F)Qolv'(i
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with 3(d)-(§—d)/(1-d). Here qs and qa are the coefficients of shear aad bulk vie-
cosaty respectively, for which explicit expressions have been obtained by Rivet and
Frisch, eitlier from the 3oltzmann approximation /17/ or from the Green—-Kubo autocor-
relation formalism /18/. A comparison of theoretical results with lattice gas simu~
lation data /19/ ic given in Fig.1l0. The basic model is the FHP lattice with binary
and triple collfsions (five collision rules, see Fig.7); this model iz noted I 1in
Fig.10. The model noted II includes collisions with particles at rest (see Fig.7;
twenty—~two collision rules). 1In the model noted IXII, all possible collisions satis-
fying cotaservation laws have been used (seventy-six collision ruleé). It should be
noted that the agreement between theory aad experiment is improved (in particular,
negative values are eliminated) when model III 1s restricted to sixty-four collision
rules /20/. Most important is the observation that viscosities decrease when more

ccllision rules are used, a fact of considerable interest Sor achievable Reynolds
number values, as discussed below.

iscosity

v

0 0. 0.2 0.3 ot B os
Density per link

Fig.10. Shear and bulk viscosities for FHP lattice gas. Curves are for
theorstical results, dots for cellular automata stimulations (2562

nodes). I,II,III refer to the models described in text. (d'Humiéres
and Lallemand, 1986)

Incompressible Fluid : The incompressible hydrodynamics limit is obtained by

setting p = £ ("frozen density”) except in the pressure term of the mowentum equa-
o
tion, i.e.
2

zé(_l_-rgoli.Vg:-CéVf'+A)S(ﬁ‘Vlg_ i Viu =¢

(36)
vhere = (/’/e ). This set of equations differs from the classical incompressible
0 3 °

fluid equatfions (ovbtained by a low Mach number, Y /65 ,» ¢xpansgion of the hydrodyna- ic
equations) by the presence of the factor g,. However approgpriate scaling

Teg,t 5 JeAhlL)/3, 5 F=(5/5)8/3 S8

— - o ——— -~
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yields the ccrxvect form c¢f the hydrodynamic equations in the incompressible fluid
limit (axcept for the particular value d=1/2, which is a peculiarity cf the lattice
gas duality d{ianvariaace,. Nete that the factor g(¢) raises a difficuaty in the
coapressible case, since time scaling is different for the momentum equation and for
the continufity equation, and therefore mass propagation would not occur on correct
time sgcale.

Reynolds Number : An important consequence of the scualing is felt through the
Reynolds number which now reads

Re = l; ’J.//V (38)

Hera {o is the characteriscic length (measurad in lattice length unit), v is the
characteristic velocity (with velocity unit C), and A is the rescaled kinematic vis-—
cosity, (37). Obviously, highor Reynoids numbey simulatZons will be more easily per-
formed with systems with lower viscosity, An illustracion is yfven in Fig.ll ror the
models FHP I,II1,1L{I for uvhich tte viscosities are shown in Fig.10. So the optimiza-
tion of tac Keynolds numver shculd be viewed not only fun teras of large syntems and
high speeds, but also of those factors that minimize the kineaatic viscosity, i.e.
via an optimizat.on of the collision rules. Por instance, the nighest achievable
Reynolds number with FHP III is six times the value obtained with FHP I, (see Fig.

11); and the gain factor should be at least sixteen for the pseudo 4~D FCHC model
(see section 6) /10/.

Re/uly

0.2 0.3
Density per link

fig.ll.. Reynolds number optimization for models FHP I1,II,III, as a functlon of
density per link, d.(¢'Humidresand Lallemand; 1986)

9. CELLLLAR AUTOMATA SIMJLATIONS

Most of the hydrouynamics simulations performed to date have been realized on
2-D hexagonal lattices, fi.e. with the FHP model, using collision rules including

cenrers (particles at res%). The state of the system at time tx 1is given by a

i
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LixLy matrix (size of the CA universe) of 6-(or 7-) bit words assigned to each node.
The bit value 1 or 0 refiects the presence or the absence of a particle at site
1(=0,...,5 or 6) with velocity CTgy. Updating the universe is performed by "solving"
the microdynamical equations (collisions + propagation) by a sequence of logical
operations (Compntational aspects are presented in Appeundix). Boundary conditions
and tnitial conditions are set according to the problem studied. For instance, in
the sound picpagation experiment {llustrated in Fig.9, a uniformly random distribu-
tion of particles and velocities is realized as initial condition, and periodic boun-
dary conditions are imposed, which confivre the systeaz on a torug(particles 2scaping
the uaniverse at one boundary are reinjected symetrically at the opposite boundary).
On the other hand, a directed flow simulation experiment requires an initially biased
velocity distcibution along a given directiou, with boundary conditions ensuring
steady incoming flow of particles at the input side and “sink" condition at the out-
put boundary. In experiments such as channel flow and flow behind obtacles, their
shape is designed according to the lattice geometry by specific collision rules, with
retlection conditions corresponding to free-slip bhoundaries (specular reflection;
Fig.12a), no-slip boundaries (bounce-back reflection, Fig.l2b), or rough surfaces
(combination of specular and bounce-back reflections with equal probabilities, Fig.
12¢)- The obstacle size 1, must be small compared to the size L of the CA Universe
in order to avoid artefacts. In turn large L implies large numbers of particles,

i.e. large lattices.

(a) (b) (c)

Fig.12. Soundary reflections : {a) free-slip; (b) no-slip; (c) combination of
(a) and (b).

Presently typical 2-D lattfces are of the order of 3x106 nodes {e.g. 1024x3072) popu-
lated with 6x107 particles, i.e. with a deansity dnv 0.2 (flVL.k). Streamline mups are
obtained by representiag the velocity field vectors associated to the fluid elements,
i.e. by averaging the particle velocities over a aumber of nodes (e.g. 8x8,
32%x32,... depending on the problem under investigation). Tech:ical restrictions as to
the universe size, the minimal kinematic viscosity, and the velocity u (whic must be
small crapared to the upper limit C) are determinant; within these limits presently
achievable flows are for Reynolds numbers not exceeding 103. It is to be expected
that fastly progressing developments will overcome these limitations in the near

future.
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Poiseuille flow in a channel. Flow at the inlet of a 2-D duct was simulated by

d'Humiéres and Lallemand /21/ on a 512x3072 FHP II lattice gas with d=.22 and average
velocity u=,30.

Velocity profiles so obtained are presented in Fig.l3 for the region
close to the input boundary (Fig.1l3a) and for a regiom located about ten times fur-
ther downstream (Fig.13b) where 3 characteristic Poiseuille profile has developped.

Fig.13 shows good agreement between the CA simulation 2nd the profiles computed by

the Slichting wmethod. This is the first exanple of quantative comparison between

lattice gas flow and classical fluid mechanics for a hydrodynamic systea involving
both viscous dissipation and non-linear behavior.

TS 2052

;

oy

(a) g

[} 01 02 03 0¢ O o 02 a3 [¢19

Fig.13. Velocity component profile 1n a channel (a) close to the inlet, and (b)

furcther downstream (relative distances frow inlet are ~.5 (a) and ~ b.
(b)) (d'Humiéres anc¢ Lallemand; 1986).

von Karwan streetsS.

The first hydrodynamic flow “experiments” on a lattice gas
were performed in 1985 by ¢'Humiéres, Lallemand, Shimomura, and Pomeau /16,22/,

then
by Salem and Wolfram /23/, to simulate wakes behind a plate.

More accurate results

for this and related problams are now available /19,24/. An ecxample of von Karman

street developping behinrd a flat plate at Re=300 1s given in Fig.l4, where two suc-

cessive velocity maps are shown, indicating the unsteady nature of the flow. Similar

experiments have also been

performed to simulate flow around a stationary cylinder
/26,25/

Flow around a wing profile. The example in Fig.l5 showing streamlines around an

alrplane wing profile at various Jnclinstions with respect to the mean flow direction

/¢o/ illustrates the ability of the method to gonvenient)ly realize mor: complex obs~

tacle shapes and modify their orientation w{thout computdacional difficulty.
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von Karman street formation behind a "bounce-back” (see fig.12) flat
plate fn 512x1024 CA wind tunnel experiment at KRe=70; time (b) = time
(a)+)500 time steps. (a'Humidres and Lallemand; 1986)

Flow around an airplane wing at various inclinations with respect to
the direction cf average input flow. (Lallewmand and d'Humi@res; 1986)




T TR

Channel flow in expanded geometry. This phenomenon was studied by simulating

flow in a channel with sudden expansion (Fig.l6) where recirculation (back flow)
takes place behind the step profile /26/. Isowach curves map the velocity field at
Reynolds numbers Re=50 (Fig.lba) and Re=150 (Fig.l6b); the latter is also shown on an
expanded scale (Fig.l6c) aiong with the corresponding isodensity curves (Fig.l6d).
The arrow in Fig.l6b indicates the location of the reattachment point as evaluated
from Navier~Stokes finite elements~finite differences cowmputations; as seen, good
agreement is obtained.

Fig.16. <Channel flow with sudden expansion. Isomach curves for velocity compo-
nent along the average input flow direction at Ke=50 (a) and ke=150
(b,c); Au =10%. Isodensity curves (at p =.95 fy,4) at Re=150 (d).
(Note 2x expanded spatial scale in ¢ and d). Arrow (in b) indicates

reattachment pornt {(Noullez, Lallemand, and d'Humidres, 1986)

10. FURTHER DEVELOPMENTS

Important progress has been realized receatly in CA simulations of hydrodynamic
flows to study problems like jets in periodic channels, flame fronts, and the Kelvin-
Helwoltz and Rayleigh-Taylor instabilities /27/. Such problems involve the introduc-
tion of two-species particles. In this respect, curreant research activity on lattice
gas hydrodynam:ics has led to interesting variations of the FHP model. One of the
aost promising versions is & two-species model where a ‘color™ bit 1s added to the
particles. The automaton is then a l4-bit model which uses the FHP collision rules
between 1dentical particles, but additional rules for color exchange between colli-
ding particles of different species /27/. If "color™ 1s to be conserved during
collisions, the model {s for mutual diffusion of two equivalent non-reacting gases.
As the two species are then perfectly miscible, the system reaches homogeneous state

in short time. On the other hand, interfaces can form between different «pecles if
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reactive collisions change the relative number of particles of each type. A siample
! chemical reaction is described by the majority rule for autocatalytic transformation:

]
2A + B ~» 3A

ky
A+ 2B —»3B

Such a transformation rule induces a phase separation between A-dominant and
B-dominant regions. These regions are separated by interfaces whose stationary
leagth is proportional to CD/kc)%3 with D, the nutual diffusion coefficient, and kj
the reaction rate. pifferent collision rules can be used to model other types of
chemical reactions, like e.g. combustion /27/.

Body-forces can be introduced by including collision rules that do not comnserve
momentum. These collisions flip bits in the required direction with the correct pro-
bability to simulate external forces (e.g. gravity effects). With different propadbi-
lities for different particle species, gravitational instabilities can be simulated.
As an example, Fig.l17 shows the 2-D simulation of the Rayleigh-Taylor instability,
which develops when a heavy fluid penetrates a lighter fluid layer /27/. Another
{llustration 1s the Kelvin-Helmoltz {instability where two fluid layers umoving in
opposite directions with respect to each other, develop, by shear constraint, a roll

up at the interface, as shown in Fig.18.

Fig.17 : 2-D lattice gas simulation of the Rayleigh-Taylor instability. Maps of
A-particle flux (a) and of B-particle flux (b) after t=1600. (Clavin,
d'Humidres, Lalliemwand, and Poumeau; 1986)
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Fig.18 : 2-p lattice gas simulation of the Kelvin-Helwoltz instability. Average
velocities are + u (left to right) and - u (right to left) in lower
half and in upper half of channel respectively. Map shows flux of
particles of one species (d'Humidres, Lallemand, and Searby; 1987)

Among the numerous problems encountered in the realization of lattice gas siau-
lations, one of the most acute is ccntained in the g(d) factor appearing in the pseu-
do -Navier-Stokes equations (29); this factor should be equal to one for mass and
momentum propagation speeds to be the same (this 1is crucial when mass diffusion is
important, e.g. in chemistry experiments) /27/. It would alsc be interesting to
decrease the value of the sound speed and of the kinematic viscosity, particularly in
2-D systems, Iin order to investigate supersonic and turbulent flows. So far, only
athermal model systems have been treated; temperature can be introduced via many-
speed models, yielding a velocity distribution and thus an additional collision inva-
riant. Major progress will be realized when 3~D models become tractable; the first
results 1in that direction have been obtained very receatly /13/. They concern 3-D
simulations of Taylor-Greea vortices performed with the FCHC model (see section 6)
and are illustrated in Fig.l1l9.

Lattice gas m dels exhibit attractive properties of simplicity, both conceptual-
ly and operationaliy. Considering the fast development of this field of research
over the pas:t two years, and the considerable jnterest raised by its perspectives,
furtber progress is to be expected in the theory, in the experimental methods, and in
the computational techniques, in the near future.
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Fig.19 : 3-D hydrodynamics simulation of Taylor-Green vortex on 128x128x128 FCHC
lattice at time t=0 and time t=2 (256 autcmaton time steps). Velocity
fields are shown for the vertical “wall” plane (a) and for the
horizoutal “floor™ plane (b) (Rivet, 1987).
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APPENDIX : COMPUTATIONAL ASPECTS

Most of the lattice gas hydrodynamics experiments performed tou date have been
simulated on conventional computers, the initial objective being to validate the
method and to improve the model(s) before designing a dedicated lattice gas machine.
The state of the lattice gas is kept in a general computer as a large array of 6~ (or
7-, if rest centers are included) bit words per node : each bit sgpecifies, 1f true,
the presence of a particle leaving that node in one of the six directions. The evo-
lution of the system is obtained by a sequence of two-step processes : propagation
and collisions. The propagation operation reduces simply to moving each bit to the
adjacent memory location in the direction specified by its speed index. Collisions

can be dealt with in two wvays.
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(1) The "brute-force"” approach is to constrvct a look~up table giving, for each
possible input configuration, the output configurationm according to the coliision
rules. For the 2-D FHP model, there are 64 possible input states; so the table will
be 64 6-bit words 1long. However this procedure becomes untractable for many-bit
models when the size of the table overflows the available ecemory (for instance, the
4-D FCHC model would require a 16.77...million 24-bit words table, which is clearly
unrealistic).

(ii) The second method for generating collisional processes is to evaluate the
new state as a function of the previous state using logical operations which caan be
performed very fast on 2 binary computer. The arithmetic version of such operations
is given in section 3 (see e.g. Eqs (3) and (21)); in logical form, they can be opti-
mized to obtain maximum efficlency. As an example, the logical version of the HPP
ccllision rule (Eq. (3)) is cast as

a'y = ng¥s 3 1 =0,1,2,3
s = (ag¥np)A(np¥n2) A(nz¥n3) (A.1)

which takes 9 logical operatioas per site (¥ =exclusive OR; A = aND). Similarly, the
FHP collision operator (see Eq. (21)) can be expressed in a form involving about 60
logical operations (130 if rest particles are included). Writing the collision ope-
rator in terams of logical operations presents the advantage tha’ many collisions can
be realized 1in parallel by operations between whole computer words instead of singlc
bits; for fianstan-e, an FPS-164 vector processor can corpute simultaneously the evolu-
tion of 64 nodes (note that although there are more operations per site than a single
lock-up table access, this method is nevertheless four times faster than the table
method on a 64-bit machine). When the logical operation method is jimplemented on the
FPS-164 computer, it takes 0.6 ps to upaate a node (collisfons + propagation), which
implies that, for wmaximum efricteacy, the whoie lattice should be stored in main
menory. Consequently, the number of nodes is limited to a few millfons on conventio-
nal cowmputers, i.e. lattice sizes a few thousand nodes sgnare.

The lattice is initialized by computing a random initial state whose macroscopic
properties correspond to the desired density and velocity fields. The average link

populatioas are given by /16/
¢nid (E) = d(F) [1 + 3_3 u(F).Cy + 0(ud) ] (A.2)
= &) [1+2w(r).C T, for FHP I

Given the local density and velocities, the link populations are generated ran-
domly by Monte-Carlo method to obtain the required averages (A.2). Boundaries are
implemented by special "tagged” nodes with different collisioas rules. These colli-
sion rules can be specified so as to specularly reflect the particles to simulate
free~slip boundaries or to have the particlesr bounce back to obtain no-slip bounda-
ries (see Fig.l2). Different types of boundary nodes are needed depending on the
excluded links determined by the boundary geometry around these nodes. Obstacles of
any desired shape are set by dividing their boundaries along the lattice links and
imposing proper reflection conditions. Pressure on an obstacle is measured by avera-
ging the momentum transfers bectween particles and boundary. Macroscopic quantities

are obtained by averaging the corresponding microscopic quantities on small rectangu-
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lar regions. The size and shape of these regions can be adapted tc suit the problem
congidered (e.g. 32x32 nodes for channel flow, Fig.l6; 1x256 nodes for l-dimensional
boundary layer experiment, Fig.18). The macroscopic quantities need only Pe calcula-
ted at times separated by many microscopic times because characteristic hydrodynamic
times are ldarge compared to molecular times. Generally, microscopic equilibrium is
attained in a few tens of time steps and statiouary solrtions (when such solutions do
exist) are reached after a number of time steps corresponding to a few times the
characteristic lattice length (note indeced that perturbatiors travel at the sound
speed which 1s 0(l) for the lattice gas model).

Once started, the evolution of the model is completely determinigtic; this means
that it can never run into unphysical regimes aud is free of numerical instabilities
such as those encountered in finite elements methods. The maximum Reynolds number
value that can be reached by the lattice gas method Is limited by the memory size.
indeed, the rescaled shear viscosity (37) has a minimum value at a given density (sce
Fig.10) and the flow velocity should remain small compared to cg (in order to preser-
ve incompressibility). So the Reynolds number is at best proportional to the obstac-
le characteristic length, which itself is a fraction of the rattice length. Conse-
quently, the size of the lattice should increase like the square of the desired
Reynoids number value. As the calculation time per node is roughly constant, the
time for & single lattice update grows as Re? and the cowplete calculation time sca-
les as Re3. On the other hand, since Re is inversely proportional to v, a decrease
in kinematic viscosity by a factor x will induce a gain factor O(da) in computation
time. This can be achieved by improving the collision rules and/or the lattice geo-
metry (note that a factor of 6 on the viscosity has been gained 19 the current best
implementations of the FHP model as compared to its original version).

Alternately, higher speeds can be obtained by dedicated hardware for which lat-
tice gases are particularly well suited; indeed, the lattice gas state is specified
by a small number of bits at each node and the evolutfon r 'e {s strictly local and
deterministic and can be written with logical operations only. The number of logical
operations necessary for the FHP model 1is however too large to render a completely
parallel machiras competitive : most of the sfiicon would have to be dedicated to the
gates computing the evolution rather than to regicters keeping the node stzates.
Also, parallel wmodules would require a large: number of wired connections between
modules it the whole lattice does not fit in a single module. S$o only sertial wmacki-
nes have been constructed to date. In these machines, delay registers have bean
introducei in the computation loop in order to simulate parallelism (it is necessary
to avoid modifying a location before it has been used by all its neighboring noaes);
on the other hand, a single evolutior operator evaluator is sufficient (Fig.A.l).
This evaluator is generally in the form of a read-write look-up table, so that evolu-
tion rules can be modified easily. fhe first realization was the cellular automatn
machine (CAM) built at MIT /28/. This is a general purpose cellular automata machine
computing the evoluticn of a 256x256 lattice at the U.S. television field rate. CAM
uses 4 bits/node, so that lattice gas simulationz need grouping sites by four, redu-
cing th: resolution to 128x128, which 1is insufficient for most Lydrodynamic simula~-
tions. A more recent realization 15 the "Reseau d'Automates Programmables' (RAP)
bulilt at the ENS (Paris) /29/ which updates 512x256 16-bit sites fifty times per
second. RAP 1s quite similar to CAM, but 1ts architecture {s slightly different in
that it woves results rather than parameters, which renders RAP wmore efficient at
handling lattice gas rules. RAP updates 6.5 Msites/sec which compares favorably with
the 1.2 Msites/sec rate obtained with the FPS-164 vector processor. Both CAM and RAP
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rely on an external (micro) computer for defining the rules, introducing the initial
conditions, auad performing the final averaging to obtain macrosccpic physical quanti-
ties. A 1024x1024 RAP-2 version, curreatly under development, uses 8 locked proces:
sors, es&ch one roughly equivalent to RAP-1l. Since the prozesiors sweep the lattice
in phase, pre-averaging over 2x4 site blocks can be performed continously on-board;

as a result, the transfer rate to the processing computer will be considerably redu-
ced.
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Fig.A.l1 : Block difagram of typical cellular auiomata machine. All timing

signals are obtained from a video coatroller whose addresses outputs

scan the whole 1lattice continuously. The current lattice nodes
content is used as an address into a table giving the new state to be
written back into that node. Delays are introduced in order to

prevent modification of a node befo.e its state is used by all its
neighbors. The new state of a node is also transfered to the video
oucput via a color table. The content of this table is chosen so that
only relevant astates are shown in any desirad color. Before startiung
the computation, the rule table, the color table, and the 1lattice

memory are initifalized by a wmicrocomputer via an input/output port

(x/0).
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