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SUMMARY

Background Information

The work described in this report was performed during the
last three years in the Ultrasonics Laboratory of the Georgetown

University Physics Department. Prior to that period the acti-

vities in this laboratory were concerned with ONR-sponsored work

on reflection and transmission of continuous waves bounded beams

at liquid solid half-space boundaries and solid plates.

At the conclusion of the previous work it had become evident

that a great nwnber of aspects of seemingly simple processes of

reflection/transmission were unknown or unclear when ultrasonic

pulses were used instead of continuous waves. Many of these new

aspects were investigated in the course of the present contract

and the results are included in this report.

Work Performed and Results

Properties of ultrasonic waves traveling in a liquid have

been examined for many years and all important characteristics of
continuous infinite plane waves have been studied. However, real

ultrasonic signals are never infinite plane waves and rarely are

they truly continuous; most ultrasonic work is done by using

either pulsed ultrasound or bounded beam (spatially confined and

having directivity) signals. Existing plane-wave theories cannot

be applied and a new approach was needed to investigate theoreti-

cally and experimentally the various problems of ultrasonic pulse

propagation and pulse characteristics.

This laboratory has had extensive experience with experimen-
tal techniques using acousto-optic interactions (AOI), both in

the linear and nonlinear regimes of continuous ultrasonic waves.

This AOI method is used to obtain definitive information about 0

important sound field parameters without having to disturb the

acoustic field - which is the case when a probe or pickup trans-

ducer is used to intercept the sianal. The AOI technique is

non!avasive.
','i'ty Codes
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Moreover, the elimination of a pickup transducer probe also

eliminates the errors in signal analysis introcuced by any probe

transducer's inability to transfer precisely the shape of the

vibrational pulse it intercepts in the liquid to an identical

electronic signal. Use of the AOI method can yield a true des-

cription of the actual shape of the ultrasonic wave as it exists

in the liquid.

With this great advantage of the noninvasive AOI method over

electronic signal analysis techniques, it was evident that the

method should be applied to investigate ultrasonic pulses and

their propagation characteristics.

Unfortunately, no complete theory of AOI for ultrasonic

pulses existed and no optical system with the required frequency

resolution had been constructed. Both problems were solved while

the present Contract was in effect.

a) Basic Theory

In the AOI method, the light diffraction pattern produced by

the ultrasonic continuous wave yields a measure of the three c.w.

signal parameters:

the ultrasonic frequency,

the amplitude,

the harmonic content due to nonlinear processes.

If one measures the light diffraction fringe spacing, light

intensity distribution, and order symmetry, respectively, one has

determined the three parameters which describe the ultrasonic

wave.

If, however, the signal is a series of ultrasonic pulses,

the resulting AOI diffraction pattern distribution and shape is

determined by

the ultrasonic frequency of the pulse,

the pulse repetition frequency;

the number of bursts in the pulse,

the maximum pulse envelope amplitude,
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the pulse rise and decay history,

the harmonic content due to nonlinear processes,

the number of pulses interacting with the light.

In order to use the AOI technique to determine pulse charac-

teristics, the contribution of any of above parameters to the

shape of the diffraction pattern must be known.

The theory which was developed to solve this problem is

based on the fact that every repetitive waveform can be described

in terms of a Fourier frequency spectrum. The lowest frequency

component for a sequence of pulses is the pulse repetition rate

and all other frequencies in the Fourier spectrum are multiples

of the repetition frequency; their respective amplitudes are

determined by the magnitudes of the parameters listed above.

After the frequency components for a given pulse sequence

are found, their individual contributions to the light fiffrac-

tion pattern must be uniquely determined. An analytically accu-

rate theory was developed for this, first and higher order

approximations were derived and a code was prepared which is

readily usable on a Personal Computer.

Using the results of this theoretical work allows one

1) to calculate the exact shape of the light diffraction

pattern produced by any sequence of ultrasonic pulses,

2) to relate any change in the various pulse parameters to

changes in the optical pattern produced by the pulses

without ever having to base the pulse shape analysis on

probe-generated electronic signals,

3) to relate the analysis of an electronically measured

pulse shape (probe output) and the acousto-optically

evaluated shape of the same pulse to show how much

error is introduced by a probe.
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b) Experimental Verification

In order to verify this theory a unique arrangement had to

be constructed before appropriate experiments could be conducted.

AOI experimental setups for continuous waves usually accomodate

an optical path length of less than 5 meters which is sufficient

to resolve diffraction patterns produced by ultrasonic waves in

the low MHz range. These setups usually fail to resolve the

pattern when the ultrasonic frequency is below 1 MHz.

As was pointed out above, the lowest frequency component in

a sequence of pulses is the repetition frequency. Since it can

be orders of magnitude lower than the low-MHz pulse modulation

frequency, a much improved system had to be designed to resolve

these low frequency component contributions to the expected light

diffraction pattern.

The present version of the facility has an optical path

length of more than 20 meters, uses spherical mirrors and matched

cylindrical lenses, and is capable of resolving diffraction

orders produced by frequencies as low as 50 kHz. It is housed in

a special room in which temperature fluctuations are eliminated

as much as possible and where no other activities take place

while an experiment is conducted. Data acquisition is fully

automated and the whole arrangement is controlled from a PC which

is located in an adjacent room.

The system was then used to experimentally verify the impor-

tant results of the theoretical analysis concerning the optical

signature of the AOI for pulses, particularly the more obvious

and drastic changes pulses may experience in the course of propa-

gation in a nonlinear medium or during reflection or transmission

at boundaries.

Of particular interest were changes in pulse characteristics

and their detectability by means of the AOI technique, including

variations in the initially set conditions of pulse shape like

pulse length, amplitude, repetition frequency, duty cycle,

and modulation frequency,
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as well as pulse characteristics changes occurring during propag-

ation like

frequency content changes due to nonlinearities, reflec-

tions, transmissions through solid plates and excitation of

resonant modes in solid plates.

Two other interesting topics were considered in the course

of the experimental investigations which merit special mention.

The first one concerns the difference between phase velocity and

group velocity of a pulse traveling in a solid plate. It was

found that there are conditions where the propagation direction
of the group velocity is opposite to that of the phase velocity.

The other topic concerns the interaction of plate vibrations,

created by the impinging pulse, with the pulse iself such that

certain frequency component of the pulse may be filtered out,

making the reflected or transmitted ultrasonic pulse quite

different from the initial pulse.

Structure of Report

This Report provides an overview of theory and experiments

related to the determination of the shape, form, frequency spec-

trum and other important properties of ultrasonic pulses trave-

ling in water.

No electronic probes are used in the experiments thus the

determination of the parameters is noninvasive.

The results are obtained by using the theory of light dif-

fraction by pulsed ultrasonic waves, which was developed in this

Laboratory, and by making use of a specially built experimental

setup whose design is based on the dictates of the theory as well
as on the experimental conditions usually encountered in work

with low-MHz ultrasonic pulses and repetition rates starting

slightly above the audible range.

Details of the theoretical and experimental investigations

mentioned in this Summary are listed in this Report as follows.

Section 1 is concerned with the theory light diffraction by

ultrasonic pulses, the computational techniques, and the basic
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experimental, noninvasive determination of the acousto-optic

signature of pulses traveling in water.

Section 2 describes in detail the experimental facilitiy,

including the optical, electronic, and computational arrange-

ments. The experimental procedure and data evaluation as well as

transducer response determination are discussed.

Section 3 contains derivations and results applicable to

acousto-optic processes occurring during propagation, reflection,

and transmission of ultrasonic pulses in nonlinear media.

Section 4 discusses some of the results which were obtained

as a conseuquence of the nonlinear propagation investigation a
listed in Section 3, including negative group velocities of Lamb

modes and the use of solid plates in liquids as spectral filters

for high-amplitude pulses.

Some of the text, equations, and figures presented in this

Report were taken directly from publications which were prepared

under ONR sponsorship of the present Contract. A complete list

of titles, authors, and other identifying information of these

publications is appended to this report.
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Section 1

DIFFRACTION OF LIGHT BY ULTRASONIC WAVES

This section presents the highlights of the theory of light

diffraction by ultrasonic pulses, describing how the structure of

light patterns produced by pulsed ultrasonic waves can be used to

make a comparison with the actual parameters of the pulses as

they travel in the liquid medium. General features of measured

diffraction patterns are highlighted and a description is given

of a numerical model to predict the structure of diffraction

patterns. Using the model, comparisons can be made between

theoretical and experimental results.

The various theories of acousto-optic interactions have

their origins in the standard Raman-Nath theory which was deve-

loped about 50 years ago. Most adaptations condidered sound

beams which were continuous waves and contained a single fre-

quency, or possibly some amounts of higher harmonics caused by

propagation in nonlinear media.

But with the advent of the leaser as a true monochromatic

light source it became possible to consider much higher resolu-

tion requirements, and the possibilities of investigating multi-

frequency ultrasonic signals became realities. To this end,

Hargrove [1] derived a theoretical expression to describe dif-

fraction of Gaussian light beams by arbitrary periodic acoustic

waves. He solved his expression within the Raman-Nath conditions

and illustrated the difference of light diffraction by Gaussian

rather than plane light beams. Zitter [2] used Hargrove's ex-

pression in a study of light diffraction by short ultrasonic

pulses. H~usler et al. [3] demonstrated a qualitative agreement

with the work of Zitter by experimentally producing structured

diffraction patterns from pulsed ultrasonic waves.

The approach used here resulted in a general theory to

describe light diffraction, within the Raman-Nath regime, by

pulsed ultrasonic waves. This theory assumes a plane wave opti-



cal beam incident normal to the acoustic wave propagation direc-

tion in the medium. As will be shown in a comparison between

theory and experiment, the plane wave approximation is sufficient

for the purpose of this study.

Theoretical Procedure

The theoretical procedure is based on the same physical

principles as was used by Raman and Nath, however, instead of

starting with a pure sinusoidal ultrasonic wave, a periodic train

of ultrasonic pulses with all of their frequency components is

considered [4] to interact with monochromatic light. A typical

pulse sequence is shown in Fig. 1-1. The pulse has a repetition

frequency fp and a center modulation frequency fo, (for compa-

rison consider fo to be equal to the continuous wave frequency).

Harmonic analysis can be performed on these pulse shapes since

they are periodic in time. This pulse shape is represented by

the Fourier expansion

v( ) = E vnsin(nap + On) (I-)
n=1

with the definitions:

Vn = anV

Cp = wp t - kpx

Wp = 2nfp

kp = 2n/\p

\P = pulse length in the medium.

The values an and On are the amplitude and phase of the nth

Fourier component of the pulse. The definition of v, the Raman-

Nath parameter, is the same as that for continuous waves. Above

expression completely defines any periodic pulse shape.8
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Fig. 1-1. Typical pulse sequence.
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Following the same procedure as is employed in the con-

tinuous wave case, one substitutes this expression into the

standard diffraction integral, performs the integration and takes

the square of the real part. However, there is a more complex

time dependence introduced by the pulse Fourier spectrum. To

obtain the measured response of a photodetector, the intensity

expression has to be time averaged over an interval T which is

long compared to the optical period, but short compared to the

pulse repetition period, that is

w * 2 n/ T * w p .

A restriction on the size of the light window, illuminating

the ultrasonic beam, follows from restricting the intensity

expression to discrete, fully resolved diffraction patterns. The

resulting inequality,

2ni * \p, (1-2)

limits the minimum number of ultrasonic pulses interacting with

the light beam at any one time. It is shown in the following

sections that this relation establishes the spectral resolution

of the experimental apparatus. Observing this restriction pro-

vides the light intensity distribution of the diffraction pattern

I(8) = E (sinm/Cm)2 Im (1-3)

where:

rm= (ksin8 -ikp)

I 'm ,

lm= GE Jrl(mllVl)'-.Jrn(vn).'

r2=-o rn=-

.exp{i[rl(m)o1 +-..+ rnn +..-]1, (1-4)

rl(m) = m - 2r2 -..- nrn ..

10
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The expression for I(9) represents a set of discrete dif-

fraction orders each with a spatial form described by the

(sinm/Qm)2 term that is maximum at am = 0 which infers the

result

sinOm = ±m \/\p. (1-5)

This result indicates that the diffraction angle is determined by

the pulse length in the medium and the light wavelength \.

The individual Im cannot be derived exactly from Eq. (1-4).

However, since the Bessel functions converge rapidly, the equa-

tion can be factored into a set of approximate expressions. If

the vn are assumed small then, to a first approximation, one

finds that

10 = I n J0(Vn)12 (1-6)
n=l

and

I~m= IJ±l(Vm) e±im n J0 (vn)JZ (1-7)
n<>m

where n indicates the product over n. The intensity distribution

is symmetric about m = 0. For small ultrasonic pulse amplitudes

10 z 1 and

I±m = Vm/ 4 . (1-8)

This equation contains one important result, namely:

To a first approximation, the intensity in the individual

diffraction orders provides a direct measure of the pulse

amplitude spectrum.

In general, the diffraction pattern is not symmetric. This

happens when the pulse peak amplitude is large or the initial

pulse spectrum has higher harmonic terms in it. This can be

illustrated with asecond order approximation solution, given by

11
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Im= IJ±llVm) e±i m rT JO(vn) + J2 (vm/2) e±2Om /2 n JOlVk)n=l k=l
n<>m k<>m/2

00 00

+ E {J±l(vn) J±l(vm-n) e±i(On + Am-n) t JO(vk) }n=l k=l
2n<m k<>n,m-n

00 00

+ n {J_+l(vn) J±i(vn+m) e±i(On+m - On) t J0(vk)12
n=l k=l

k<>n,n+m (1-9)

with the notational convention that all terms with noninteger

summation indices vanish. The first term is simply Eq. (1-7).

All the n products are equivalent to the expression for 10,

divided by IJO(vF)I2, where F, a function of m, depends on the

particular term in question. The second term applies only to the

even diffraction order values and is small, due to the small

values of J2 (v). The terms with the infinite sums dominate the

asymmetry of the pulse diffraction pattern. They represent a

mixing of diffracted light contributions from the individual

pulse Fourier components. One sees from Eq. (1-9), in going from

m to -m, that the combination of the three terms will add to one

side of a diffraction pattern and subtract from the other.

Above equation contains another important piece of informa-

tion:

Even if pulse amplitudes become high and harmonics are

generated, the evaluation of the light diffraction pattern

provides a direct measure of the pulse amplitude spectrum.

It is evident from the structure of above equations that

higher order approximations can be derived in order to obtain

even better agreement between theory and experiment. However,

these equations become rather cumbersome in their application and

are therefore not included in this Report. They are, however,

listed and discussed in [4] and in other references (see list at

end of this Report).
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Typical Experimental Diffraction Patterns

Below are two sets of figures. They illustrate the growth

in asymmetry of actual light patterns as v is increased. The

first illustration, Fig. 1-2, shows an approximation to the

actual form of a pulsed ultrasonic wave. The figure represents

the time history of a single pulse in the wave train and its

Fourier amplitude spectrum.

A similar pulsed wave produces the diffraction patterns

shown in Fig. 1-3. The actual pulse shape is unique and depends

on transducer system characteristics, described in the following

sections. It has a pulse modulation frequency, fo = 2 MHz and

pulse repetition frequency, fp = 125 KHz. Figure 1-3 shows mea-

sured diffraction patterns resulting from a pulse peak amplitude

corresponding to v = 0.6, 1.5, and 2.5 respectively. The in-

dividual diffraction orders are spaced by 125 KHz, as predicted

by Eq. (1-5), and their numbers correspond to the component

number of the pulse Fourier spectrum. In these patterns the ±16

orders correspond to the 2 MHz component in the amplitude spectra

of Fig. 1-2. The next orders, ±17, correspond to the 2.125 MHz

component, the ±15 orders to the 1.875 MHz component, etc.

Referring to the individual diffraction orders in terms of the

frequency value of their corresponding Fourier amplitude com-

ponent represents a restatement of Eq. (1-5).

The figures show a slight pattern asymmetry that is not

significant until the peak amplitude v > 2.0. One might mis-

takenly conclude that only Eqs. (1-6) and (1-7) are necessary to

describe a diffraction pattern in the limit of low acoustic

amplitudes. However, the magnitude of the first and second

diffraction orders corresponding to the 125 and 250 KHz spectral

components are not accurately described by Eq. (1-7). This

places a validity limit on the expression to those amplitude

components centered about the pulse modulation frequency fo. For

an accurate description of the complete pattern one must use the

higher order approximations; e.g., Eq. (1-9) is sufficient to

account for all regions of a particular diffraction pattern of

interest to studies described in this Report.

13
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Fig. 1-2. Pulse sequence (top) and its Fourier
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The equations predicting angular spacing of the intensity

orders in the Raman-Nath and the present theory are equivalent.

In both regimes the smallest spacing corresponds to the wave-

length of the lowest frequency component of the Fourier spectrum

of the wave under consideration.

This equivalence is demonstrated in Fig. 1-4 which shows the

diffraction patterns from ultrasonic waves in transition from

pulsed to continuous. The patterns of Fig. 1-4 are due to pulsed

ultrasonic waves of a constant duty ratio, 1:1 on to off time.

They all have v2MHz = 0.5 where 2 MHz is the pulse modulation

frequency fo. They are incremented at pulse repetition frequen-

cies 125 and 250 KHz. The last pattern is produced by a con-

tinuous, 2 MHz wave. This experimentally illustrates the transi-

tion from the pulsed wave theory to the expected Raman-Nath

result for continuous waves.

Computational Model

A computational model was developed to calculate the dif-

fraction pattern given the Fourier amplitude and phase spectrum

of the input ultrasonic wave. The model is within a complete

software package which is used as the theoretical reference

throughout.

The pulsed wave described by Fig. 1-2 was used as input to

the light diffraction model for comparison to the experimental

patterns of Fig. 1-3. The computational output is summarized in

the following figure set, Fig. 1-5, where the diffraction peaks

are catagorized by order number instead of acoustic frequency.

In comparing the predicted and measured patterns, one sees

good agreement between the intensities of all diffraction orders

in the first two patterns of the figure sets, that is for v <

2.0. As v increases, the low intensity satellites, centered

about the existing main orders, show a different structure bet-

ween the two pattern sets.

The disagreement is due to the input spectrum which is only

an approximation to the true spectrum present in the water. The

pulsed wave, illustrated in Fig. 1-2, is an estimate of the real

16
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form of the wave based on an assumed response time of the trans-

duction system and a knowledge of the pulse duration time. By

the technique of Hdusler et al. [3] the pulse was modeled from

oscilloscope traces of hydrophone probe outputs.

For small values of v, this approximation appears suffi-

cient. If the pulse center frequency is an integral multiple of

the repetition frequency then the amplitude spectrum is symmetric

about fo. Such is the case for the example shown in Fig. 1-3

which first appears to be a reasonable approximation to the

actual input spectrum. The experimental light patterns shown in

Fig. 1-6 are produced by a pulsed ultrasonic beam whose amplitude

spectrum is not symmetric about the center frequency, fo. The

pulse parameters for this set are fp = 97 KHz and fo = 1.97 MHz.

Since the signal was produced by the same transducer system as

that of Fig. 1-2, the same rise and decay times of the pulse have

been assumed. The first figure is of the measured light pattern.

Figure 1-6b illustrates the assumed pulse time history and

Fourier amplitude spectrum used as input to the diffraction

model. The last figure in the set is of the predicted light

pattern for v = 1.0. The intensities, I± and 1±2 do not show

agreement in the two patterns. According to Eq. (1-9), the

intensity of these satellite orders are heavily dependent on the

amplitude of the dominant terms in the pulse Fourier spectrum.

The two more dominant harmonic terms in the spectrum correspond

to the 1±20 and 1±21 in the light pattern. Their slight dif-

ference, between measured and predicted intensity, is translated

throughout the rest of the diffraction pattern.

Clearly, what is lacking is a better understanding of the

form of the ultrasonic wave in the medium.

But fortunately, the real form of the ultrasonic pulse

transmitted into the medium by a transducer system can be
analyzed, using the light diffraction apparatus, resulting

in a better definition of the pulsed wave input spectrum.

The use of this analysis results in a much better agreement
between the theory oulined above and the various experimental

results listed in the following sections of this Report.

19
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Section 2

EXPERIMENTAL SETUP AND PROCEDURE

Fundamental Requirements of the Experiment

A simple Raman-Nath experimental configuration would be

sufficient for a study of continuous ultrasonic waves by light

diffraction. Standard optical setups of this type set a lower
frequency limit for the investigation of continuous ultrasonic

waves of about 1 MHz, in water. Given a 1 MHz acoustic wave in

water, the Raman-Nath theory predicts a diffraction order spacing

which is of the same order of magnitude as the width of a

standard He-Ne laser beam. This indicates that the diffraction

orders are just resolvable since the order separation increases

with frequency.

For light diffraction investigations of pulsed ultrasonic

waves, the theoretical constraints on the apparatus are more

demanding. The necessary optical resolution is determined

through diffraction theory by the pulse repetition frequency. An

additional constraint of the theory places a limit on the minimum

number of pulses within the illumination window at one time, in

order to have sufficient light intensity resolution in the

diffraction pattern. This establishes a width criterion for the

optical beam. For the present study a minimum pulse repetition
frequency of 50 kHz or less is desired. To acquire the same

optical resolution as mentioned above for the simple Raman-Nath

setup, the apparatus must accommodate a light beam with a sound

beam-image plane distance of 25.9 m. The light beam width which

defines the interaction region must satisfy 21 a 0.5 cm. This

indicates a large optical system is needed for pulsed ultrasonic

wave studies.

The following sections describe a light diffraction system

with a maximum acoustic spectral resolution of 40 KHz and the

ultrasonic beam generation equipment sufficient to test the

theories described in the previous section.

&



Laboratory Equipment - Optics

It has been shown that in order to resolve diffraction

patterns from pulsed ultrasonic waves, an optical system requires

a long optical path. Early investigations [1-3] used an expanded

light beam which focused directly into a photodetector. Thus

measurements were taken at the optical image plane.

In this experiment the light beam passing through the
ultrasonic wave is collimated and then focused to produce a small

diffraction pattern at the image plane. A lens recollimates the

light into a set of narrow beams. This second stage of

collimation diverges the individual beams, thereby increasing

their angular separation. Measurement takes place beyond the

image plane where the diffraction orders are further resolved.

This effectively increases the separation of orders in a

diffraction pattern without requiring a longer optical path.

Figure 2-1 is an overhead schematic of the optical

apparatus. The object plane corresponds to the ultrasonic beam

in the interaction vessel. To illustrate the possible

resolution: if a continuous wave of 1 MHz were to be used, this

optical system would produce a diffraction pattern at the screen
with an order spacing of 12 cm.

Using mirrors instead of lenses to collimate the light beam

reduces the overall size of the apparatus. Individual components

of the system are positioned across three relatively large

laboratory tables. Random vibrations are reduced by massive

mirror mounts and optical benches. The geometrical symmetry of

the light path reduces optical phase distortion at the image

plane. Phase distortions are further minimized by limiting the
size of the light beam reflection angles at the two spherical

mirrors, (labeled 120 in Fig. 2-1).

Early diffraction experiments used collimated light beams of

circular cross section. In this apparatus cylindrical lenses

diverge the light beam in one dimension. Once collimated, the

beam has an approximately linear cross section. A comparison of
the two cross sections is illustrated in Fig. 2-2. The two cases

illustrate the light beam intersecting a nonuniform ultrasonic
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beam where the plane of the figure is the object plane.

There are several disadvantages to lens collimation

resulting in light beams of circular cross section. Any part of

the light beam not participating in the acousto-optic interaction

would have to be blocked out, otherwise a diffraction pattern

could not be properly normalized. This is illustrated in the

first two cases of Fig. 2-3.

The resulting optical apparatus resolves a minimum pulsed
ultrasonic wave repetition frequency of 40 kHz. It satisfies the

theoretical criteria necessary to study a broad range of ultra-

sonic wave spectra. The following section describes the trans-

ducer system which produces the ultrasonic waves under investi-

gation by the optical apparatus.

Laboratory Equipment - Ultrasonic Beam Generation

The ultrasonic source is contained in a water tank designed

to fit in the confined space defined by the optical beam. Its

location within the optics was chosen to maximize the object-

image plane distance. The tank is made of transparent plastic

except for glass windows which allow the light beam to enter

normal to the ultrasonic beam. The acousto-optic interaction

takes place in a narrow channel of 4.5 cm width bounded by the

windows. Acoustic absorbing rubber is placed at the end of the

channel positioned such that unabsorbed waves are not reflected

parallel to incident waves. The main body of the interaction

vessel allows ultrasonic wave propagation distances of up to 45

cm. It holds a large body of water that draws heat out of the

interaction channel. The channel is narrow thereby reducing

light pattern distortion, due to fluid flow, by minimizing the

distance the light traverses in the liquid medium.

The water vessel is large enough to hold a variety of ultra-

sonic wave source equipment. On top of the interaction vessel, a

graduated acoustic bench suspends an ultrasonic source and plate

mode goniometer into the main body of the water tank. Both

devices are supported by sliding mounts which allow adjustment of

source and plate distance from the light interaction region.
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The ultrasonic source element is a PZT ceramic disc, 2.5 cm

in diameter, which is air-backed mounted in a plastic housing.

The mounted element is driven directly from the output of an rf

power amplifier which receives an input signal from a computer

controlled pulse function generator.

The goniometer produces reflected and transmitted ultrasonic

waves incident on solid plates immersed in the water. It rotates

a plate sample and the ultrasonic source about a single axis, as

indicated in Fig. 2-4. The axis lies along the water/plate

interface and is perpendicular to the plane of the incident and

reflected ultrasonic beam. Plate and source rotations are con-

trolled from outside the interaction vessel through a linkage of

control rods and worm gears. The goniometer positions the plate

and source such that the reflected or transmitted wave is direc-

ted into the light interaction region.

Proper directivity of the acoustic beam is achieved with a

Schlieren imaging system. The light beam of the Schlieren system

is passed through the transparent plastic walls of the inter-

action vessel main body and aligned parallel to the light beam of

the diffraction system. The Schlieren system projects an image

of the reflected beam onto a screen where an angle vernier

ensures proper ultrasonic beam alignment.

Laboratory Egipment - Light Detection System

A photomultiplier tube is permanently positioned at the

image screen. The detector tube is enclosed in a box which holds

neutral density filters and a manual shutter with a 3 mm width

slit opening. The slit shape and size approximate the zero light

beam cross section in the plane of the screen. A dc amplifier

converts the tube output current into a voltage proportional to

the incident light intensity.

Positioning an individual light beam incident onto the

photomultiplier tube, simultaneously measures the relative light

intensity and position of each diffraction order. This is

accomplished by rotating the flat mirror as shown in Fig. 2-1.

The mirror is rotated through a gear box by a stepper motor.
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Each diffraction order is then individually passed across the

slit opening of the photomultiplier tube box. Thus the diffrac-

tion pattern is scanned without moving the photomultiplier tube.

The light intensity range, in a typical diffraction pattern,

is greater than a single sensitivity range setting of the photo-

amplifier. The qmplifier has manual, front panel controls which

allow it to cover a relative intensity range of over 30 dB Howe-

ver, manual control is impractical when a large volume of data is

to be taken. The next section describes the computer automation

of the photoamplifier and other laboratory devices.

Computer Automation - Hardware

Due to its relatively long path length, the light beam is

subject to fluctuations in position and intensity at the detec-

tor. These fluctuations are significantly reduced by the removal

of the acoustic signal generating devices and users from the

laboratory. Thus, the laboratory has been closed and all

experimental adjustments and steps are remotely controlled

through a single computer interface cable. The acoustic source

is driven through a coaxial cable to the signal amplifier in an

adjacent room.

Computer commands, which control individual laboratory

functions, are channeled through a TTL driven multi-function

board which provides computer read/write ability over 15

individual data channels. Each channel can be switched to either

perform digital conversion of an analog voltage with 8 bit reso-

lution, (A/D conversion), or pass TTL logic signals to various

control circuits of the data acquisition systems.

The board can perform A/D conversion on all channels simul-

taneously by a signal from the computer. Data is sent sequen-

tially from each channel over an 8 bit parallel interface to the

computer for storage and processing. Most channels are switched

into the write mode where they pass computer command signals to

other circuit boards.

The intensity range of diffraction patterns in these experi-

ments covers several orders of magnitude, therefore, 8 bit digi-
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tal resolution is not sufficient. To overcome this limitation, a

separate circuit board was designed to provide computer control

of photoamplifier range switching. The switch board receives

computer commands through the multi-function board. It consists

of a series of TTL controlled dip relays which duplicate the

range selector switch of the photoamplifier. Each range setting

has 8 bit resolution. If the light intensity seen by the photo-

multiplier is in the top 10 % of a particular sensitivity range

the computer switches the amplifier to a less sensitive range.

If the intensity falls into the bottom 10 % the computer switches

to a more sensitive range. The 30 dB amplifier range along with

8 bit A/D conversion per channel provides an effective digital

resolution of approximately 15 bits.

Diffraction pattern scanning is accomplished through the
control of a stepper motor. Electronic pulses from the computer

are channeled through the multi-function board to a motor drive

circuit, providing control of motor rotation and rotation direc-

tion. The motor is connected through a gear box to the flat

front surface mirror as shown in Fig. 2-1. The motor-to-mirror

gear ratio is such that a single motor step produces an effective

mirror rotation of 2.5xi0 -5 radians. This corresponds to a

diffraction pattern translation of 0.15 mm/step. Due to the long

optical path the number of motor steps between diffraction orders

is proportional to the actual order spacing. The computer simply

has to keep track of motor steps to assign relative position to

an intensity measurement.

The pulse function generator produces the electronic signals

sent to the ultrasonic source. A separate IEEE-488 interface

controls the pulse function generator. Therefore the computer

fully manages experimental input, procedure and output.

Computer Automation - Software

Various software program modules were developed for a per-

sonal computer to manage specific laboratory functions. The

modules were written in the Pascal programming language but can

be written in other appropriate computer languages.
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Control of the pulse function generator is accomplished

through individual program procedures for the IEEE-488 standard

interface. A single program module builds command strings from

parameters input by the user. The interface converts these

commands into a bit pattern read by the function generator.

Individual procedures were written to control motor direc-

tion and step by a poke to the appropriate channel on the multi-

function board. It also removes gear backlash after each change

of motor direction.

Intensity measurements, from the photoamplifier, enter the

computer through the multi-function board. A procedure pokes the

read channel monitoring the photoamplifier output and stores the

resulting 8 bit number in an internal buffer. If the resulting

value represents an intensity in the middle of the present photo-

amplifier sensitivity range the procedure passes the value for

storage. The motor control procedure then tells the motor to

rotate a step, then read, then step, etc.

Initial measurements of light patterns revealed that the

relationship between photomultiplier output voltage and incident

light intensity was not linear. A simple routine was followed in

which calibrated neutral density filters were placed into the

incident light. Intensity measurements provided a comparison of

the amplifier response against calibrated light intensity re-

sponse for each sensitivity range. The response was modeled,

inverted and incorporated into a linearization procedure which is

called by the read procedure. Thus photoamplifier response is

made linear within the controlling sottware.

These program modules work together and provide great flexi-

bility in this study of light diffraction by ultrasonic waves.
The following sections describe the integration of individual

control modules into one main program which performs the entire

experimental procedure.

Experimental Procedure and Data Processina - Digitizing a Light

Diffraction Pattern

Individual Pascal modules that control laboratory functions
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are integrated together into a single control program which

performs complete experiments.

After final apparatus adjustments are made the experiment is

performed. Experimental parameters are loaded into the program

and divided among two information arrays called the hard and soft

stacks. In general, the hard stack contains input data that the

computer neither has control over nor is able to measure, there-

fore remaining constant over a series of runs. Such information

includes: the user choice of either frequency or amplitude vari-

ation mode, ultrasonic wave propagation distance, acoustic beam

configuration, characteristic frequency of ultrasonic source

element, number of passes and runs to be performed, specific

function generator output voltage needed to minimize Io .

The soft data stack contains acoustic signal input variables

to the pulse function generator. These include: pulsed or con-

tinuous wave mode, peak voltage amplitude, center frequency,

repetition frequency, and pulse width. These parameters make up

the command string sent to the pulse function generator through

the IEEE-488 interface. The program saves diffraction data in a

disk file. The filename is derived from a concatenation of the

soft stack variables.

Once all hard and soft stack variables are entered, the

program begins its run. With the ultrasound disabled the program

translates the zero order to a position left of the detector. It

changes direction, removes motor backlash, and steps the zero

order to the right across the light detector slit. Between each

translation step the program reads the light intensity, makes a

linear adjustment of the resulting 8 bit value, multiplies

according to the photoamplifier sensitivity range setting and

stores the result along with motor step number in an array. This

continues until the zero order is an equal distance to the right

of the detector slit.

This initial procedure maps the form function of the zero

order. The form corresponds to the (sinx/x)2 function. The

actual measured form is similar to a (sinx/x)2 function but also

displays a Gaussian character, which is in agreement with the
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result of Hargrove7 . Since this experiment assumes fully

resolved diffraction patterns, an individual diffraction order

intensity is acquired without performing a deconvolution of the

total pattern and the form function. Therefore the diffraction

pattern normalization constant equals the peak light intensity

value of the form function. Since diffraction order position is

measured relative to the zero order, the peak form intensity is

assigned a step number position of 0. The form function data are

saved along with each diffraction pattern data set.

The program changes motor direction and the pattern is now

moved to the left until the rightmost diffraction order to be

measured passes beyond the detector slit. The same intensity

measurement procedure is followed as that which read the form

function.

For each pass of the pattern the program normalizes the data

array to the peak intensity value of the form function. This

procedure results in a digitized diffraction pattern. The pro-

cess takes a finite amount of time which depends on the shape of

the individual diffraction pattern. For example, one pass of a

simple Raman-Nath pattern and its form function can take from 2

to 7 minutes. Individual diffraction order intensities signi-

ficantly fluctuate over such time periods. This is a result of

spurious laboratory vibrations, laser moding, temperature gradi-

ents, light detector instability, atmospheric and fluid currents,

etc. These inherent system fluctuations can alter the reproduci-

bility of results. The following section describes the steps

taken to arrive at more accurate values of diffraction pattern

measurements.

Experimental Procedure and Data Processing - Multiple Passes and

Runs

Most system fluctuations are random in nature and make

necessary the acquisition of data from more than one pass of a

pattern. This is easily done within the computer program. The

data storage array is given another dimension allowing each pass

to be saved in parallel to the previous pass. An individual
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intensity measurement is ignored if it does not appear in pre-

vious passes. Readings are deleted from previous passes if they

do not appear in the latest pass. Therefore each individual

array, corresponding to a single pass, ends up with the same

number of readings allowing them to be averaged. For fully

resolved patterns, deleting nonrecurring measurements clips the

low intensity readings at the edge of an order's form function

but leaves the peak intensity values intact.

An individual program run can average up to ten passes of

the pattern, however, averaging three to five passes attains

sufficient reproducibility of experimental results. Diffraction

pattern measurements, from identical pulsed ultrasonic wave

configurations, show no significant change over time.

Experimental Procedures and Data Processing - Miscellaneous

Program Features

According to the diffraction theory, a light diffraction

order corresponds to an acoustic spectral order. The experiment

expresses an order number in terms of the acoustic frequency

component it represents, i.e., a simple transformation provides

C (motor step number) = frequency of order.

The constant C is approximated from measurements of continuous

wave diffraction patterns. The program makes this variable

transformation prior to storing acquired diffraction pattern

data. Thus position of light intensity measurements are ex-

pressed in frequency rather than motor step or order number.

The program enhances fully resolved diffraction orders by

artificially including zero intensity readings at the edge of an

order's form function. This is done for graphing purposes and

helps to separate the orders for later analysis.

All data contained in the hard and soft stacks are included

in the output data file for reference. The elapsed time of data

acquisition, time of day and date of the experiment are stored

along with the diffraction data. A printout of a typical output
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data file is shown in Table 1, presented at the end of this

Section.

A coordinated series of program runs is discussed below,

where the measurements are of Raman-Nath type diffraction pat-

terns produced by continuous ultrasonic beams. This run series

reveals characteristic information about the ultrasonic source.

These source characteristics are used in studies of pulsed ultra-

sonic waves.

Measuring Spectral Bandpass of an Ultrasonic Source -

Electromechanical Approach

Behavior of a specific transducer system resulting from an

induced stimulus is difficult to model exactly. Various

experimental techniques are used to better model transducer

response characteristics. Acquiring the response typically

involves applying a known stimulus to the transducer and measu-

ring the resulting output. A comparison of the known input and

measured output reveals valuable response information about the

transducer system.

Acoustic source response is usually measured by electronic

techniques. An experimental procedure typically starts by sen-

ding into the system a single electronic pulse of known spectral

composition. Usually the shape of the pulse is sufficiently

narrow such that it takes on a delta function character. The
Fourier amplitude spectra of a delta function is constant for all

frequencies. Physically, the transducer sees all frequencies of

equal amplitude. In converting electrical energy into mechanical

oscillation a transducer will pass only those frequencies allowed

by its response. The resulting acoustic output signal contains

the band of frequencies passed by the transducer system. The

signal propagates a finite distance in the medium and is measured

by a previously characterized transducer receiver. Acoustic

energy is converted back into an electronic signal. Analysis is

performed where a deconvolution removes the known receiver fre-

quency response. The resulting continuous spectra represents the

frequency bandpass of the acoustic source.
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With modern electronic digitizing equipment this transducer

characterization procedure is routine. However the measurement

is only as accurate as the previous characterization of the

receiver. Also, most receivers can only measure a part of the

acoustic beam at one time. A direct noninvasive measurement of

the acoustic signal, at its source, in the medium is needed.

This would provide a more accurate characterization of the trans-

ducer system.

Interaction with a light beam produces no measurable distor-

tion of an ultrasonic wave. The light probes noninvasively. The

following section describes an experimental procedure to directly D

measure the frequency response of an ultrasonic source by light

diffraction.

Measuring Spectral Bandpass of an Ultrasonic Source - Light

Diffraction Approach

Measuring the harmonic response of an ultrasonic source with

light diffraction is, in theory, the same as the electromecha-

nical approach. Frequencies of equal amplitude are sent into the

transducer and the resulting output is measured. However,

introducing a single delta function pulse into the source would

not produce a measurable diffraction pattern. This is implied by

the optical beam width constraint equation of the diffraction

theory. Another method is used which sends a specific range of

frequencies, each equal -in amplitude, to the ultrasonic source,

however, they are sent individually at different times.

Each frequency is input continuously thus producing a simple

Raman-Nath type diffraction pattern. The data acquisition system

digitizes each pattern and saves the data set. It increase the

pulse generator output frequency a small increment keeping the

input voltage constant. This f' squency stepping continues until

the desired response range of the ultrasonic source is measured.

For this apparatus, the full resonant range of the transducer

source element is measured in two overnight program runs.

The resulting series of light patterns are sifted to extract

the peak intensity values of the individual diffraction orders.
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Since they are simple patterns, each holds only the I±l and Io ,

Raman-Nath diffraction orders. The normalized intensity values

are converted by a computer program into values of the Raman-Nath

parameter, v. Values of v, with standard deviations greater than

25 %, are ignored. This involves only Io diffraction order

readings at very low values of v. This is due to the functional

form of the Io to v conversion and the relative range of light

intensities in the patterns. A curve is derived by an average of

no less than 2 values of v to each value of frequency. The

resulting normalized response curve for a 1 MHz ultrasonic source

is shown in Fig. 2-5.

In actuality, this curve characterizes more than the re-

sponse of the PZT ceramic element. It represents the transfer

function of the entire transducer system, including the rf power

amplifier, coaxial cable and mounting of the PZT element.

The light integrates across the entire width of the acoustic

beam. The light beam effectively measures the entire acoustic

beam at the output element of the system. Since the light beam

interaction is noninvasive, there is no light beam transfer

response and no deconvolution to perform.

The results of the ultrasonic source response measurement

are used for the evaluations of all experimental inestigations

involving pulsed wave spectra. The modelled pulse is used as an

input to the propagation model, the output of which is input into

the diffraction model. The resulting theoretical diffraction

patterns are compared to those measured by the experimental

apparatus.

Measuring Spectral Bandpass of an Ultrasonic Source - Modeling an

Input Pulse Spectrum

This section reports on a technique, using the acquired

transducer characterization curve, to model the pulsed wave

spectra produced by the ultrasonic source. The pulsed signal

generator, providing input to the transducer system, produces an

electronic pulse of ideal shape. This pulse shape ir easily

modeled from soft data input parameters, from which a Fourier

spectrum is constructed.

38



I,

0.9

~0.8

0.7

0,6
(D

0.3

(A
0

CC 0.4

0.3 /

0.2 1

0.1 N----.'

0.2 0.4 0.6 0.5 1 1.2 1.4 1.8

Frequency (MHz)

Fig. 2-5. Normalized response curve for a ncminal 1 TNHz transducer.

-3 r



However, the generator signal is sent through the transducer

system which produces the ultrasonic pulse in the water medium.

A convolution of the measured transducer response and the genera-

tor output spectra provides an accurate approximation to the

actual pulsed wave spectrum in the water medium. The following

illustration (Fig. 2-6), shows the pulse modeling technique. It
shows a typical pulsed wave output from the pulse function gene-

rator. This general shape is the same for all pulsed waves,

output from the generator, regardless of the values of fp, fo and

burst #, (number of single wavelengths in the pulse). The -

particular input data used to generate the first figure is:

fp = 66.0 kHz

fo = 988.0 kHz
burst # = 5.

A Fourier analysis of this pulse provides the first graph of the

amplitude spectrum in Fig. 2-6 which is used in a discrete con-

volution with the transducer system response of Fig. 2-5. The

resulting spectrum and reconstructed pulse time history is shown

in the second graph.

The resulting spectrum is used in the diffraction model to

predict the shape of the diffraction pattern produced by the wave

in the medium. An experimental pattern is acquired by positio-

ning the ultrasonic source at the edge of the light beam. Figure

2-7 compares the diffraction model prediction to the measured

pattern. Good agreement is seen in most regions of the pattern.

Slight deviations are attributed to measurement error in the
response curve at frequencies off the value of the center fre-

quency.

The diffraction theory equations indicate the higher inten-

sities of the center frequency diffraction orders are what give

rise to the intensities of the higher diffraction orders. There-

fore, a small percentage error in the first set of satellite

orders would produce more profound percentage error in the second

iet of satellite orders. With this in mind, the small deviations
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in the second set of satellite diffraction orders, which are

evident in the experimental results shown, indicate the pulse

amplitude spectrum model is basically accurate, otherwise the

disagreement between theoretical prediction and experimental

results would be much larger.
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Table 1.

Filename is C:\DATA\PULSE\STRAIGHT\S54-86.521,
CW estimate of v = 1.50, Prop. dist. = 4.5 cm.
Taken February, 15 at 6:44 hours.
198 = number of reads in pattern.
Run elapsed time = 0:39:57.46.
Lab Temp. = 20.50C. Tank Temp. = 20.3 0 C.
Intens. Norm. = 22960.0000 ± 176.9565
Rep.Rate = 8.00 4s, # of waves = 6,
Frq = 2.00 MHz, PreAmp. = 54.9 m.

# Frq.Mhz Intens. Std.Dev.

8 -3.8346 0.000000 0.000000
9 -3.8257 0.000583 0.000339

10 -3.8168 0.001181 0.000499
11 -3.8078 0.001860 0.000360
12 -3.7989 0.001613 0.000595
13 -3.7899 0.000748 0.000270
14 -3.7810 0.000000 0.000000

93 -0.0268 0.031743 0.003527
94 -0.0179 0.132067 0.022186
95 -0.0089 0.484767 0.082469
96 0.0000 0.726837 0.034543
97 0.0089 0.492153 0.034121
98 0.0179 0.150547 0.048896
99 0.0268 0.020473 0.008328

147 1.9844 0.006192 0.001448
148 1.9933 0.020155 0.004206
149 2.0022 0.040323 0.004243
150 2.0112 0.040982 0.001873
151 2.0201 0.022482 0.004242
152 2.0291 0.005645 0.002218
153 2.0380 0.002026 0.000721

25 = number of reads in form function.
# Frq.Mhz Intens. Std.Dev.

10 -0.0268 0.192298 0.030040
11 -0.0179 0.362663 0.053232
12 -0.0089 0.667455 0.111581
13 0.0000 1.000000 0.007707
14 0.0089 0.708689 0.119207
15 0.0179 0.164826 0.086132
16 0.0268 0.025269 0.003851
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Section 3

PROPAGATION AND REFLECTION

The initial considerations of wave propagation and reflec-

tion presented around the turn of the century by Lord Rayleigh

and seismologist like Knott all consider plane infinite waves.

This simplifying approach is acceptable in many cases, except

when the wave under consideration is a relatively narrow ultra-

sonic beam of continuous waves or when the ultrasonic signal

consists of a series of pulses containing a few wave trains in

the low-MHz frequency range.

In these cases quite a number of new parameters must be con-

sidered in the calculation of propagation and reflection charac-

teristics. Much of this background work was performed in this

Laboratory in the past; therefore, only the most important fea-

tures will be mentioned below as background information for the

new results concerning propagation and reflection of multifre-

quency waves (bounded, high amplitude, or pulsed ultrasonic

waves) described in more details in the present section.

Propagation and Reflection of Bounded Beams:

A bounded ultrasonic beam propagating through a fluid to an

interface and being reflected back into the fluid is a problem of

wide interest. As just mentioned, many aspects of the problem

have been explored [1-4]. A model which extends existing work in

the fields of propagation, reflection, harmonic generation,

including spectral filtering, and integrates the results into a

cohesive and comprehensive system, was lacking.

The ultrasonic system under consideration consists of an

initial beam propagating through a medium, reflecting from a

liquid/solid interface, and continuing to propagate after reflec-

tion and possibly transmission when the reflector is a solid

plate. The three major physical mechanisms affecting propagation

are geometrical spreading, attenuation and harmonic generation.
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Harmonic generation arises due to the nonlinearity of the medium,

which transfers energy from the fundamental to higher harmonics

and from one harmonic to another. On the other hand, attenuation

of a propagating beam is caused by the absorptivity of the medium

while spatial spreading is due to the finite aperture of the

beam. Should these mechanisms act independently from each other,

the propagation problem for a bounded beam would be much less

complicated. The fact that these mechanisms indeed compete with

each other in affecting the propagation characteristics is the

principal reason why a satisfactory solution has not been ob-

tained for the complete propagation equation, i.e. the general-

ized Burger's equation.

In the plane wave regime, approximate analytical solutions

have been established for the three special cases, where one of

the three mechanisms are assumed to be dominant (5]. Recently,

Haran and Cook (6] treated the two mechanisms of attenuation and

harmonic generation with equal footing, neglecting the spreading

term. They were able to derive an iterative algorithm to solve

this form of the Burger's equation numerically for plane-wave

propagation. A similar algorithm, although expressed in a sligh-

tly different form, had also been developed by Trivett and Van

Buren [7] to treat propagation of plane, cylindrical, and spheri-

cal waves. This result is rather significant in that it provides

a complete solution to plane-wave propagation in a non-dispersive

medium. Recent work in this laboratory lead to an extension of

this solution to treat propagation of ultrasonic bounded beams.

Reflection of an ultrasonic beam from a liquid-solid inter-

face has been investigated by a number of researchers [8-11],

using various numerical and analytical approaches. The analyti-

cal approaches are usually constrained by certain approximations,

such as incident Gaussian profile, incidence near the Rayleigh

critical angle, and field intensity given at the interface only.

To compute the reflected profile for an incident beam having an

arbitrary profile and impinging at the reflector at any angle of

incidence, the numerical algorithm developed by Ngoc and Mayer

[9] was employed. Since an ultrasonic beam, which has propagated
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through a nonlinear medium, contains various harmonic components

in addition to the fundamental, the Ngoc and Mayer's algorithm

will have to be extended to treat a multi-frequency incident

beam.

Propagation and Reflection of Bounded Beams - Sample Results

The capabilities of the computational model [12] can be best

illustrated through a complete sample run. The model was applied

to an incident Gaussian beam propagating through water and being

reflected from a stainless steel plate. The initial beam was

taken to be of a single frequency, 2.98 MHz, with the peak inten-

sity being 1W/cm . Standard values of the sound velocities,

attenuation coefficients and densities were used for water and

stainless steel, while the nonlinear coefficient was chosen to be

B/A = 5.5.

The first propagation program was started with the following

programming parameters: beam width = 2.0 cm, propagation diztance

= 20.0 cm, and incremental step of propagation = 0.05 cm.

The computational results which describe the intensity

profiles at selected propagation distances are presented in Fig.

3-1. This figure essentially shows the process of harmonic

generation as the beam travels from the starting point to about

15.0 cm away. Within this relatively short distance, one can

recognize a significant presence of the first five harmonics.

The fundamental component does not attenuate appreciably, but the

harmonic content does grow significantly as shown on the 0-50 dB

scale.

The program for the reflection coefficient was activated and

two passes through this program were made to select the incident

angle of interest. The first pass examines the coefficient for

incident angles of 0 to 60 degrees, and the second focuses on the

much narrower range from 30 to 34 degrees to better establish a

plate mode for special consideration, which is about 32 degrees

in this case.

For the fundamental component, the incident angle was chosen

to correspond with a plate mode of resonance; the reflected
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profile, therefore, displays the distinct nonspecular features of

beam split, beam displacement, and trailing field. For the

second harmonic, there exists a slight displacement in the re-

flected profile, but the other nonspecular effects practically

disappear. For the third harmonic, the associated range of

incident angles does not include any plate mode, and the reflec-

ted profile is thus essentially specular.

Figure 3-2 presents the intensity profiles of the first five

frequency components, as the beam travels away from the reflec-

ting interface. Within the first few centimeters of propagation,

there are not many discernable changes in the profiles, except

for the higher harmonics, where attenuation has taken a quicker

effect in reducing the intensity level noticeably.

The techniques and some of the results which were used to
solve the problem of the multi-frequency bounded beam [12] were

also considered in the treatment of the problem of pulse

propagation and reflection as investigated by acousto-optic

techniques.

Pulse Propagation and Reflection - Basic Parameters:

This subsection deals with the essential features of finite

amplitude wave propagation and the reflection and transmission of

finite amplitude pulses from flat plates. Since the focus of

this Report is on the use of the acousto-optic technique as a

noninvasive measurement tool to investigate acoustic pulse

interactions, only the pertinent features of the theories are

summarized.

Initially, in the study of acoustic waves in continuous

media, the theory assumes that the disturbance amplitude is

small, that is, the parameters of the medium disturbance, pres-

sure and density, only slightly deviate from their equilibrium

values, po and do . As a consequence, the solution of the wave

equation describes a harmonic disturbance that maintains its

shape during propagation. Therefore, for small acoustic ampli-

tudes one assumes a linear behavior and omits the nonlinear terms

in the equations of motion. The result for a traveling plane
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wave solution is the following relationship between the wave

vector and the frequency

ko = wo/co(l - ia'wo). (3-1)

The quantities ko, wo, and co refer to the wave vector, frequen-

cy, and wave velocity. It is assumed that attenuation, a', is

due to the viscous and heat conductive properties of the medium.

The resulting solution to the wave equation,

u = uO e- 'wO2 x e[iw o(t - x/co)I (3-2)

describes a monochromatic wave whose initial particle velocity

amplitude, uo, decreases exponentially with distance, x, from the

source and has a quadratic frequency dependence.

One should know whether one has an acceptable approximation

if the nonlinear terms in the wave equation are suppressed. Two

parameters, frequently encountered in nonlinear acoustics, are

the Mach number, M, and the acoustic Reynolds number, Re, which

are defined by

M S U/co, (3-3a)
Re B uo/(2coc'wo). (3-3b)

These values are derived from a comparison of the nonlinear and

linear terms within the wave equation, the solution of which is

Eq. (3-3). The linear wave theory is considered appropriate if

M, Re a 1. The first restriction is satisfied for most problems

of acoustics. However, even for moderate acoustic amplitudes, Re

is of order unity. In this case, not only dissipation, but the

effects of nonlinearity must be considered.

Propagation and Reflection - Interplay of Nonlinearity and

Attenuation:

Experimentally, as they propagate in nonideal media, finite

amplitude waves exhibit significant changes in shape which are
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not simply due to attenuation. In the nonlinear theory, the

higher order derivatives and powers of p', d' and u can no longer

be neglected in the governing equations.

The first development is that of the exact Riemann solution,

for an ideal medium, which predicts that individual disturbance

points within the wave profile move at the speed

U = cO + eu (3-4)

where e is a medium constant. This indicates that this velocity

distcrtion tends to shape the wave profile into a sawtooth. The

steepening continues until, at x = xd, a discontinuity develops

in the wave profile indicating, in theory, a shock front charac-

ter. This specific travel distance is given by

xd = co/woen  (3-5)

where M is the Mach number. The deformation, from a sinusoid to

sawtooth wave, represents a transfer of energy from lower to

higher harmonic terms in the Fourier spectrum of the initial wave

profile.

The theory is applicable to both fluids and gases with

exception that e, the medium constant, be properly defined [13].

For a fluid,

= 1 + B/2A (3-6)

where B/A, the nonlinearity coefficient, is the constant coef-

ficient of the first nonlinear term in the pressure density

relation for an adiabatic medium.

Dissipation is included in the nonlinear analysis, as in the

linear theory, by assuming the medium is viscous and heat-con-

ducting. If terms of second order in smallness are retained in

the initial equations of motion one obtains Burgers' equation

presented here in the form (14]
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Ux = (E/Co 2 )uul + au.t, (3-7)

where the subscripts represent partial derivatives with respect

to x and T. The constant a represents the medium dependent

attenuation of the wave, assumed to have a quadratic frequency

dependence.

The above equation describes an initially monochromatic,

plane wave propagating in the positive x direction. Notice both

the attenuation and nonlinear terms appear in the equation. The

relative strength of the terms is reflected in the Gol'dberg

number (14],

r = eMo/a\ O = i/axd ,  (3-8)

which is the nonlinear analogy to the acoustic Reynolds number,

(Mo = uo/co, the peak value of M). In the present study r is of
unity order, therefore, both attenuation and nonlinearity play an

important role and the Burgers' equation is used in the examina-

tion of ultrasonic waves by light diffraction.

A shock front forms because energy is passed from lower to

higher spectral components of the wave. Since a = a(won), n ? 1,
the dissipation is greater for higher frequency components, as a

result, the discontinuity no longer completely develops and the

wave is damped back into a semi-sinusoidal form.

Pulse Propagation and Reflection - Spectral Solution of Burgers'

Equation:

A useful iterative, spectral solution to Burgers' equation

considered here is similar to that given by Trivette and Van

Buren [7] for the general case of plane, cylindrical and sphe-

rical finite amplitude waves, including arbitrary frequency

dependent attenuation. Using a similar approach Haran and Cook

[6] derive much the same algorithm as for the plane wave case of

Trivett and Van Buren, differing only in notation. Ngoc et al.

(151 combined the Haran and Cook model with an algorithm that

treats nonspecular reflection of an ultrasonic beam from a solid
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plate immersed in the liquid. Haran and Cook consider that the

incremental change in the particle velocity u is approximated by

a Taylor series expansion

u(x + dx,t) = u(x,t) + uxdx (3-9)

where quadratic and higher order terms have been neglected. For

a general periodic wave, u is expanded in a Fourier series,

00

u = E un ein(T + An
n=--

where un and On are the real amplitude and phase of the nth

Fourier spectral component. Since u and 4 are proportional, the

expansion is reexpressed as L

u = E Un e
i n r,  (3-10)

n=-ae

where Un = un ein n, is the complex amplitude.

The differential change of the nth harmonic component is

found by substituting above expression into Burgers' equation,

n-i G
Unx= (iewo/co2 )( E jUjUn-j + E nUjU*j-n) - an2Un (3-11)

j=1 j=n

where * indicates the complex conjugate. This form of the solu-

tion is well suited for computer calculation.

An examination of Eq. (3-11) provides insights into the

mechanism of harmonic growth. The first summation expression

represents the energy transfer between the lower harmonics and

the nth spectral component. The second sum is the energy ex-

change between the nth and the higher order harmonics. This

process can go in both directions depending on the relative phase
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of each Un. The full set of n equations are coupled.

To get the incremental change of each particle velocity

component one substitutes Eq. (3-11) into Eq. (3-9) to obtain

Un(X + dx) = Un(X) +

n-i
{ jUjUn-j + Z nUjU*j-n) - an 2 Un}dx. (3-12)j=l j=n

This expression is programmed into an iterative computer

algorithm with specific restrictions on the size of the increment

step, dx, and the number of terms retained in the infinite

series. Calculational errors become sizable if dx is too large.

If there are not enough terms retained in the Fourier expansion,

then the last spectral term grows too large since it has no

higher order terms to transfer its energy to.

The graphs a-f of Fig. 3-3 illustrate the wave time repre-

sentation, and the corresponding set of Fourier amplitude spec-

tra. The initial wave parameters for this example are fo = 1

MHz and uo = 0.1 m/s. For demonstration, the medium characteris-

tics are B/A = 5.0, c(wo2 ) = 0.2 Np/m and co = 1500 m/s. Using

these values in Eq. (3-5) yields xd = 1.02 m. The summation is

truncated to calculate 50 terms in the series and the propagation

step is 0.5 % of the discontinuity distance.

Figure 3-3a depicts the wave at x = 0. The wave profile

distortion at x = 0.5 m is apparent from Fig. 3-3b, as well as

the harmonic growth. Figure 3-3c depicts the wave at x = xd.

The discontinuity is not completely formed due to the attenuation

of the higher frequency components. At x = 2xd the sawtooth

shape is completely formed, however, the dissipation prevents the

wave profile from becoming nonphysical. The next two profiles

are of the wave at x = 10xd and 20xd where the wave has propaga-

ted into the "old age" region.

The spectral solution is easily adapted to pulsed wave

propagation studies, provided the constraints of series trunca-

tion and propagation step size are observed. To demonstrate, the

approximate pulse spectrum discussed in Section 2 is used as an
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input to the propagation model as shown in Fig. 3-4.

Since any pulse spectrum initially has more than one spec-

tral term the idea of a discontinuity distance loses meaning.

The initial number of terms in a pulse spectrum is relatively

large and thus limits the model to short propagation distances.

Otherwise too many terms are needed in the spectrum to minimize

computational errors.

The above set of figures show the pulse at propagation

distance steps of 0.5 m. Although only the relevant number of

terms are shown, the series was calculated to 120 terms and the

distance step used was 5x10 -4 m. Except for obvious amplitude

drop from dissipation, the profile distortion in the time repre-

sentation is subtle. Close examination reveals the shock front

formation of each cycle within the pulse. The amplitude spectrum

clearly demonstrates harmonic growth where the local peak values

correspond to harmonics of the pulse center frequency, fo.

The limitation of the model to short propagation distances,

for pulsed waves, does not hamper the present investigation,

since the apparatus limits actual pulse propagation to less than

0.5 m. A small amount of harmonic growth in the pulse spectrum

produces obvious effects upon the shape of its light diffraction

pattern. Various manifestations of this were investigated, a

cross section of the results is given here.

Pulse Propagation and Reflection - Diffraction Pattern

Experimental Results:

The first set of experiments was conducted for the situation

where the maximum pulse amplitude remains the same while the

travel distance of the pulses is increasing. Due to nonlineari-

ties of the medium, the frequency spectrum of the pulses changes

as the distance of propagation changes, which in turn causes

changes in the calculated composition of the produced diffraction

pattern - and evidently also changes in the observed light pat-

tern. The following series of measured diffraction patterns,

shown in Fig. 3-5, were produced by the ultrasonic source po-

sitioned, in the interaction vessel, from the light interaction
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region in steps of 10 cm. The normalized pulse spectrum used as

input to the model is of the same configuration as the pulse

described in detail in Sections 2. The Raman-Nath parameter is

kept approximately constant, v = 1.35, for each stage of propaga-

tion.

The frequency spectrum of the output of the transducer (in

response to an ideal electronic input signal - see previous

sections) and the corresponding predicted light patterns are

shown in Fig. 3-6.

The agreement between the measured and calculated patterns

is consistent for all four patterns. They clearly demonstrate

asymmetry resulting from nonlinear distortion of the pulse as a

function of propagation distance in the medium, indicating that

even a small amount of pulse harmonic distortion can produce a

measurable change in the pulsed beam diffraction pattern.

The next set of light patterns were produced by a different

input pulse configuration: fp = 122.0 KHz, fo = 0.987 MHz, burst

= 3. In this configuration the pulse propagation distance was

kept constant at 40 cm to the light beam interaction region. The

pulse amplitude was changed, introducing increasing harmonic

contributions. Figure 3-7 shows measured and theoretically

determined diffraction patterns for different values of v.

Satisfactory agreement between prediction and measurement is

indicated in all regions of the patterns. The asymmetry in the

second set of measured satellite orders increases with input

pulse amplitude as expected for finite amplitude waves.

The comparisons between measured and modelled diffraction

patterns indicate that the original acousto-optically ob-

tained transducer response model provides a satisfactory

measure of the actual pulsed wave produced by the transducer

in response to an ideal electronic excitation. The further

agreement, seen in the propagated pulse patterns, verifies

the propagation model.

The last portion of this section continues the verification

of the theories and examines the result of probing a pulsed

61



a .

06

VV

21



A.N -K'L~ V 2ridTVXM. W71r VV . VVV -VWLT VW~

a

...... ~~~~.............. ............................... . .... ............

91..... ... .

----- ----------

.00

.... .... .... .... .... .... ...

C

Frequency (MHz) Diffraction Order

Fig. 3-7. Ebxperi~rlntal and theoretical light diffraction pattern for

pulses with increasing amplittrie but fixed travel distance

in nonlinear medim.

63



ultrasonic beam after it has interacted with a plate in the

water.

Pulse Propagation and Reflection - Reflection Results:

This final portion of this section examines measured dif-

fraction patterns produced by ultrasonic pulses which have been

reflected from a brass plate immersed in the water. Initially,

the reflection model is used with the propagation and diffraction

models to show that measurements agree well with predictions of

the theory.

A measured and a theoretically predicted diffraction pat-

tern, shown in Fig. 3-8 was produced for a pulsed ultrasonic beam

that has propagated 40 cm prior to interaction with the light

beam and before it has been reflected by a brass plate. The

pulse has repetition frequency of 132.2 KHz and center frequency

of 0.925 MHz, burst of 2 and voltage input to the transducer of

150 mV producing a v = 1.45.

All the transducer response characteristics were again taken

into consideration as had been the case for the previously des-

cribed experiments. The predicted pattern agrees rather well

with the measured light diffraction pattern. The apparent asym-

metry, of the second set of satellite diffraction orders, repre-

sents nonlinear distortions due to the pulse propagating 40 cm.

A brass plate, of thickness D = 3.16 mm, is mounted, so that

the propagation distance between the ultrasonic source and the

plate is 11.5 cm, assuring that the total propagation distance,

from source to light beam, is 40 cm.

The next set of diffraction patterns were produced by the

ultrasonic beam after reflection from the brass plate. The

reflected beam is properly directed into the interaction region

while the angle of incidence of pulses against the flat plate is

changed. The plate thickness and the pulse center frequency

correspond to fD = 2.923 (MHz.mm). The patterns show results for

incident angles, 250, 280, and 320 as read from the goniometer,

through the A1 mode of the brass plate. The predictions of the

reflection, propagation and diffraction models are also shown for
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each measured pattern as shown in Fig. 3-9. Each pattern indi-

cates that the agreement between theory and experiment is again

very good; moreover, it is obvious that different frequency terms

has been filtered out of the pulse spectrum as the incident angle

sweeps through the plate mode.

This, clearly can be used as a mechanical frequency filter,

and this issue is discussed in the last section of this Report.
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Section 4

SPECTRAL FILTERING AND NEGATIVE GROUP VELOCITY

A. SPECTRAL FILTERING

Thin metal plates immersed in water can be used to selec-

tively transmit ultrasonic waves of given frequencies, depending

on the angle of incidence of the wave onto the metal plate.

Based on this principle, a spectral filter for demonstrating the

presence of second harmonics in a continuous, finite amplitude

wave was used by Zankel and Hiedemann [1]. However, at that time

the interpretation of the observed effect was purely qualitative.

The results presented here are based on quantitative calculations

which consider the mode structure of a metal plate [2] (i.e., the

Lamb wave velocity dispersion), the angular dependence of the

coefficient of reflection of a plane wave from a plate as a
function of frequency [3), and the relation of mode structure and

reflection [4]; the analysis is made for ultrasonic pulses where

the influence of nonlinear processes on the frequency contents of

the pulse has been taken into account [5) on the basis of a

numerical solution [6] of the plane wave Burgers' equation.

Pulse and Reflector Description

A schematic diagram of the system to be analyzed is shown

in Fig. 4-1. An ultrasonic pulse traveling in water, containing

20 wave trains of frequency 2 MHz, is incident at an angle e on a
flat brass plate. The assumed initial pulse shape is shown in

the figure. The pulse repetition rate is 100 kHz.

With these assumptions one can now perform a spectral

analysis of the pulse sequence. The lowest frequency component is

the repeat frequency of 100 kHz. The number of frequency compo-

nents (multiples of 100 kHz) carried in all subsequent calcula-

tions for pulse propagation in the nonlinear medium and reflec-

tion at the plate was 120. This is a sufficient number to des-

cribe and reconstruct the pulse at any location along its path.
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The changes in pulse shape and spectral contents caused by

reflection from the metal plate depend on the amount of harmonics

present when the pulse arrives at the plate, the product ultra-

sonic frequency times plate thickness (fd), the incidence angle

(8) as well as the amplitude and phase of the reflection coeffi-

cient as a function of 8 and fd.

A typical reflection coefficient graph for a brass plate in

water is shown in Fig. 4-2. For given values of velocities,

density, and an fd of 2.5 MHz.mm, one notes that there are four

angles of incidence where the reflection coefficient is essen-

tially zero. These angles, 6.6, 23.75, 44.15, and 48.45 degrees,

represent resonance conditions at which the SI, Al, S0 , and A0
Lamb modes are excited and reflection is minimal.

It should be noted that the angle of zero reflection is

different for every frequency component contained in an ultra-

sonic pulse that has propagated through a nonlinear medium. Thus

phase and the modulus of reflection must be known for all fre-

quencies in a pulse if one expects to predict the changes of

pulse shape introduced by reflection from a plate.

It is perhaps evident that, in general, the angle of total

transmission for a certain frequency f may well be the angle for

total reflection for frequency 2f - this having been the

assumption made by Zankel and Hiedemann [1]. This, however, is

not necessarily true in all cases, particularly when the angle of

incidence is selected to fall between two closely spaced modes,

as for instance at 46.5 degrees for the conditions described in

Fig. 4-2. Reflection is not total at this angle, and it can be

shown that the phase shift upon reflection is neither 0 nor n.

This introduces more complications into the prediction of the

reflected finite-amplitude pulse shape than into the determi-

nation of the events when the angle of incidence is directly at

or far away from a mode (0% or 100% reflection). Therefore,

calculations were made to illustrate the changes in frequency

components of a reflected pulse.
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Calculations and Results

The calculations start with the determination of the fre-

quency spectrum of the assumed pulse shape as described above.

This initial pulse is shown in Fig. 4-3a which can be transformed

into a spectral representation as shown in Fig. 4-4a where the

strongest component corresponds to the 2 MHz modulation frequency

of the pulse and the other components shown differ by 100 kHz,

the assumed repetition frequency of the pulse sequence.

As the pulse travels through the nonlinear liquid, its spec-

tral composition changes; these changes are calculated using a

technique described by Neighbors et al [7,51. This calculation

shows the expected result that a second harmonic frequency compo-

nent appears in the pulse, together with 100 kHz repetition rate

frequency components centered around the 4 MHz second harmonic,

as shown in Fig. 4-4b. Having carried the calculation to 120

frequency components, one can use this spectrum to construct the
waveshape: this is shown in Fig. 4-3b. The expected saw-tooth

nature of the waveshape within the pulse can be noted.

The remainder of Figs. 4-3 and 4-4 refer to the waveshapes

after reflection. The reflection after a 40 degree incidence

(far away from a Lamb mode excitation situation, see Fig. 4-2)

shows that relatively little was changed in the spectral compo-

sition during the reflection process, as depicted in Figs. 4-3c

and 4-4c. The waveshape and the spectral composition differ very

little from those shown in Figs. 4-3b and 4-4b. But when the

incident pulse impinges at a Lamb angle, as shown for a 44.15

degree incidence in Fig. 4-4d, the 2 MHz component disappears

from the spectrum because the reflection amplitude for that case

is zero - while the reflection coefficient amplitude for the

second harmonic at that angle is close to total. The result is,

as Fig. 4-4d and the reconstruction of the waveshape shown in

Fig. 4-3d show, that the pulse modulation frequency is primarily

4 MHz after reflection.

The final set of results in Figs. 4-3 and 4-4 show that

reflection at an angle which is close to two distinct modes

introduces non-total reflection of the fundamental as well as a
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phase shift which results in a rather complicated addition of

pulse changes caused by the influence of the two adjacent modes.

B. NEGATIVE GROUP VELOCITY

It has been established theoretically that a certain propa-

gation mode of Lamb waves exhibits a negative group velocity for

a particular range of fd, where f is the ultrasonic frequency

and d is the plate thickness. The present paper demonstrates

experimental evidence for the existence of such a propagation

characteristic. Observations of negative group velocity for

Lamb waves were made on a brass plate immersed in water in the

fd range of 2.05 - 2.30 MHz-mm for the A1 and S1 modes. The

measured values of phase and group velocities were compared to

theoretical values for the cases under consideration. The ob-

served signal amplitude is discussed in the light of possible

noise factors.

Introduction

The phase velocity of a Lamb wave propagating along the

interface between a solid plate and a liquid like water depends

not only on the type of solid but also on the frequency of the

Lamb wave, f, and on the thickness of the plate, d. Plotting the

phase velocities of the various modes as function of the product

fd results in the so-called velocity dispersion curves. Defining

a phase velocity, in the most general terms, as Q/k and noting

that this quantity is not a constant, then there will be another

set of velocities, defined in the most general terms as the

values of do/dk, which results in a family of curves depicting

the group velocities.

The numerical values of the phase velocities of Lamb modes
are usually quite different from the values of the group veloci-

ties. The slope of the phase velocity dispersion curves is such

that almost all corresponding group velocities are positive,

implying that the energy flow direction and the direction of the

phase velocity are the same.
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In general, the group velocity of a given Lamb mode can be

calculated when the set of phase velocity dispersion curves is

known. The phase velocity dispersion curves can be calculated by

various standard methods, and the appropriate differentiation of

the resulting curves leads to the numerical values of the group

velocities. It was predicted by Tolstoy and Ustin [8) that the

group velocity may have a negative value in a narrow range of fd,

and it was shown by Biot [9] that the group velocity is identical

to the velocity of energy transport in a dispersive medium.

The implications are that phase and energy propagate in

opposite directions when the group velocity of a given mode

assumes a negative value. The range of parameters where this may

occur ir rather limited. This paper illustrates an experimental

technique which allows one to measure the numerical values of

negative group velocities of Lamb waves directly. Comparisons of

theoretical values of group velocities and experimentally

obtained results are given, establishing the fact that Lamb waves

may indeed travel with negative group velocities.

Predictions

A 1.04 mm thick brass plate was used in the experiments.

The phase velocity dispersion curves for this plate are shown in

Fig. 4-5. This figure shows both the symmetric and antisymmetric

modes of vibration, indicating that, e.g., this brass plate can

support five different modes when the frequency of excitation is

such that the product frequency (in MHz) times plate thickness

(in mm) is 3. The phase velocity of these possible modes would

be determined by the five possible solutions to the defining Lamb

wave equations.

Rather than using the values of the phase velocity as the

parameter for the ordinate in Fig. 4-5, the critical angle (in

degrees) is used. This angle refers to the incident angle of an

ultrasonic wave striking the plate, as indicated in Fig. 4-6.

From the most general form of Snell's law

sinei/v = sine./v
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one can easily see that there will be one specific angle of

incidence ei in the liquid, where the sound velocity is vi, which k

will generate a wave with phase velocity vj, propagating along

the surface such that sine3 = 1. Any one of these "Lamb angles"

or critical angles corresponds to the phase velocity of a

possible mode.

One notes that all velocity dispersion curves in Fig. 4-5

have a slope which is either positive or negative for all values

of fd, except the S1 curve. It is double-valued in the fd-range

from about 2.0 to 2.3, and it changes its slope in this range.

This implies, theoretically, that the numerical value of the

group velocity must change from positive to negative in this

narrow range [2,8,9).

The corresponding values of the group velocities of the Lamb

modes are indicated in Fig. 4-7. One notes that all values are

positive except one rather narrow section of the S1 curve.

Negishi (10) reported some evidence of this phenomenon in an

aluminum plate. He interpreted the observed events as being

related to nonspecular reflection of a bounded ultrasonic beam

whereby the trailing field reversed its position with respect to

the specularly reflected field, indicating that the Lamb wave is

propagating in the opposite direction.

Experimental Procedure

A diagram of the experimental apparatus used is shown in

Fig. 4-8. A PZT 2-MHz transducer is mounted on a goniometer so

that the incidence angle at the brass plate can be varied. The

whole assembly is immersed in a water tank. The transducer is

driven in a pulsed mode and any ultrasonic energy which is con-

verted to a plate mode traveling with either positive or negative

group velocity (see Fig. 4-6) can be monitored by means of two

miniature hydrophones whose sensitive areas can be brought in

contact with the surface of the brass plate.

The two probes can be moved along the plate so that the

distance from the center of the incident pulse on the plate to

80



I )

4.-

>1

. 4

U
0

04

242 3 3 4

0 24

fd (MHz-mmr

Fig. 4-7. Group velicies of Lamb nTdes for brass plate in water.

81



Watar level

Plate

Negativ '' Positive

vpobe] Ix v robe
g S 9

I 0.

Source

Goniorneter

Fig. 4-8 Schemitic diagam of experixtental arrangent used-

82



the measurement point can be changed, allowing for multiple

measurements of the velocity with which the energy of the Lamb

mode travels along the plate. Absorbing material is used

throughout to suppress any spurious reflections in the water
tank.

The electrical output of the two hydrophone probes is ampli-

fied and displayed on oscilloscopes together with the pulse that

drives the transducer. The repetition rate is kept low to assure

that possible reflections will no longer be recorded by the
probes before a new pulse is generated. The selective response

of the two probes and pulse travel times yield both magnitude and

sign of the group velocity.

The experiment is conducted by setting the frequency to a

value which, in combination with the thickness of the brass

plate, makes the value of fd in the vicinity of 2.1. The inci-

dent angle is changed until a plate mode is set up. The location

of the probes is then changed by approximately 10 mm along the

energy flow axis and a new time delay reading is taken.

Results

In order to be able to compare measured and theoretical

values of group velocities one should first compare the theoreti-

cally determined phase velocity dispersion curves and the

experimentally measured critical angles (the "Lamb angles").

This is essential since deviations between calculated and mea-

sured phase velocity curves will certainly result in serious

disagreements of theory and measurement for the group velocity

curves, considering that the latter are obtained by differentia-

tion of the former.

To show the level of agreement for both cases, results are

included in Fig. 4-9 for the A1 and the S1 modes for the fd-range
of interest. It should be noted that the A1 mode is not expected

to show a change in slope, thus no change in the direction of

energy transport will be expected when that mode is excited.

Nevertheless, the data for that mode are included as a reference

of the general agreement of theory and experimental measurements.
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Figure 4-9a shows the experimental confirmation of the

calculated values for the critical angles (phase velocity); it is

an enlargement of a very small section of Fig. 4-5 where now the

S1 curve has been divided into a positive and a negative section

to indicate the sign of the group velocity.

Figure 4-9b shows the corresponding measurements of the

group velocities for the two modes in the fd-range of interest.

The agreement is reasonable for most of the range considered. A

reliable measurement of the group velocity becomes rather dif-

ficult when the value of the velocity approaches zero which is

the case when the slope of the dispersion curve changes from

positive to negative.

But in general, the results presented here do confirm the

theoretical prediction that Lamb waves with negative group velo-

cities do exist, i.e., modes exist where phase and group veloci-

ties are in opposite directions. In addition, it has been

observed that the mode becomes highly attenuated when its group

velocity becomes very small.
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