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A NOTE ON EXTENDED @ASI-LIKELIH(X)D

M. Davidian
Department of Statistics
North Carolina State University
Box 8203
Raleigh, North Carolina, U.S.A.
27695-8203
R.J. Carroll
Department of Statistics
University of North Carolina at Chapel Hill
321 Phillips Hall 039 A

Chapel Hill, North Carolina, USA
27514

SUMMARY

We study the method of extended quasi-likelihood estimation and
inference of a variance function recently proposed by Nelder & Pregibon
(1987). The estimates are inconsistent in general, and the test levels can
be biased, but in many cases such as the exponential family the
inconsistency and bias will not be a major concern. Extended
quasi-likelihood is compared with Carroll & Ruppert’'s (1982)
pseudo-likelihood method, which gives consistent estimates and, when
slightly modified, asymptotically unbiased tests. We quantify the notion
of a problem in which the amount of statistical information is large in
each unit, showing in this instance that the two estimates are closely
related and may be asymptotically equivalent in many important cases.

However, in some cases outside the exponential family, an asymptotic bias

can persist.

Keywords: EXPONENTIAL FAMILY; HETEROSCEDASTIC REGRESSION MODEL; INFERENCE
FOR VARIANCE PARAMETERS; PSEUDO-LIKELTHOOD ESTIMATION; VARIANCE
FUNCTION ESTIMATION.
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ﬁj 1. INTRODUCTION
RS
5,
' Consider the following mean-variance model for observable data y:
o
'.‘
N 2 2
k) = = = H = . .
2 E(y;) = p; = 1(B) = £(x.B) : var(y,) = o"g"(1,.2;.6) (1.1)
"a‘
»)
o
.::t':.: Here, ¥y is the ith response variable of N independent observations,
"Q'
t::"?l (xi,zi) are associated vectors of covariates, f is the regression function,
Kb :
: ’ B is a p-vector of regression parameters, o is a scale parameter, and g is
S
RE) the variance function with variance parameter 6 (r x 1). For example, the
st
;::": variance may be modeled as proportional to an unknown power of the mean:
£
®
1 © 0
Yy -
R :{-_ g(ui.zi.e) =By By > 0. (1.2)
A:E}
5
b
) Special cases of (1.1) are used in applications such as radioimmunoassay,
o
4 econometrics, and chemical kinetics. Model (1.1) includes the class of
3
_&} generalized linear models, see McCullagh & Nelder (1983).
Mo
) A usual aim is the estimation of B, with estimation of the variance
Wi
" . function parameters as an adjunct. However, as discussed by Davidian &
>,
o Carroll (1987) and Davidian, Carroll & Smith (unpublished), estimation of
Ay
[ the variance function, in particular the parameter 6, is an important
A
';o,:" problem both for estimation of B and in its own right.
..
() .
b Most methods for estimating 6 are 'regression” methods based on
Y
E) .
o generalized least squares. In these techniques, 8 and o are estimated by a
Q'I
:' ;: weighted regression of some function of the absolute residuals from a fit
A
'.‘ -~
o B* on their expectations. For example, in location-scale problems squared
1
® residuals have approximate mean proportional to gz(ui.zi.e) and variance
3:::. proportional to g4(ui.zi.9). Thus an estimate of 6 can be obtained by a
.
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:“ s generalized least squares regression of squared residuals on o'g (ui.zi.e)
A ~ ~ ~

S with variance function g4(ui.zi.9). vwhere By = f(xi.B*). A related method
KA

‘:::.: is the pseudo-likelihood approach of Carroll & Ruppert (1982). In this
‘“‘"‘. A

f:.‘:',:: method, one pretends B = B, and then estimates (0,6) by normal theory
‘:‘:‘:‘ -~

) maximum likelihood, maximizing ePL(ﬁ*.B.a), vhere

LA

l."

R

! N

O ) e, (B.6,0) =-Nlogo- 2 log [g{u.(B).z,.0}]

ol PL so1 i i

{ . 3

P - (20971 2 {y; - £(x,.B)Y /g ().2,.6} . (1.3)
el i=1

This process may be iterated with a generalized least squares routine for

':‘I: B. The number of iterations of the- entire procedure for estimation of B
E,::':“: may be chosen in advance or the process may be iterated until convegence;
.:.' see Davidian & Carroll (1987). The pseudo-likelihood method is
_ asymptotically equivalent to weighted regression on squared residuals with
gv‘ estimated weights, and full iteration of such a regression yields the
’:’3,&. pseudo-likelihood estimate. Both methods can be modified to account for
j loss of degrees of freedom for preliminary estimation of B as in Harville
| :é (1977); for a discussion and a review of many common methods for estimation
Q! of 6, see Davidian & Carroll (1987).

E’:‘:: Pseudo-likelihood and weighted squared residual estimation are based
V’E upon the method of moments. Nelder & Pregibon (1987) instead attempt to
F" define a family of distributions with mean and variance functions given by
‘r: (1.1), this class including as special cases skewed distributions such as
tga the Poisson or gamma. Their extended quasi-likelihood is

N

x
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)9‘.‘0‘ N
R 2q6.0.0) = (1) 3

& where (1.4)

[log {2n0”g"(y,.2,.8)} + D{y,.u; () .2,.0}/0"].

'. v"%
A X8

> <

7
D(y.p.z.68) = -2 —L =¥ 4w

2
) y

[
-

7

g (w.z,08)

::N. The function eQL is sometimes but not always an exact log-likelihood.
b . Under (1.2), if 6 = O, eQL is the normal log-likelihood; for 6 = 1.5, that
o8 of the inverse Gaussian. For 8 = .5, 0 =1, eQL differs from the Pcisson
A log-likelihood by replacing yi! by its S;:irling approximation; for 6 = |,
. eQL differs from the gamma log-likelihood by a factor depending on o. One
motivation for (1.4) is the Edgeworth expansion of Barndorff-Nielsen and
Cox (1979) or the related saddlepoint approximation of Daniels (1954),

i which yield an expansion for the density of the mean of m random variables

:;:: from a one parameter exponential family as m - ®. The leading term of the

:ég‘: expansion at m = 1 is the extended quasi-likelihood summand. See Efron

g;::' (1986) for a related formulation. Note that the form of eQL may be

éﬁi unsatisfactory in situations for which g(y.z.8) = O for y = 0. In this case

;:'::';' Nelder & Pregibon suggest replacing g(y.z.68) by g(y+c.z,.8) for some c; we

E:“": use this adjustment where applicable in our discussion.

Q' An additional reason for considering approximate likelihoods for a

égi':s mean-variance model 1is that linear exponential families with given

:::o: mean-variance relationship do not always exist. For example, Bar-lev &

P;' Enis (1986) have shown that if the distribution of ¥Yyq is an exponential

‘.. family with variance function (1.2), it is necessary that 6 € (—,0) U

; (0.1/2), so that such a family exists only when 6 € {0} U [1/2,»), and the 3
_" general form for the density parameterized in terms of 0 and o is unwieldy. :
i
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; We have observed in many examples that the pseudo-likelihood and
il quasi-likelihood methods lead to similar estimates, although sometimes
"? inferences for 6 are substantially different. In Section 2, we construct
:".: an asymptotic theory for extended quasi-likelihood which allows an easy
:j)' illustration of the relationship between the two methods and suggests a
t:;i simple motivation for the form of extended quasi-~likelihood. In general,
EE:.EE‘ the extended quasi-likelihood estimate of O is inconsistent, and the
;".' ' resulting test is biased, but in our experience, the inconsistency has not
£ been major at exponential families. - The inconsistency is noted
:':E‘:’ independently by Morton (1987). who, like Carroll & Ruppert (1982), uses an
"! estimate of 6 based on squared residuals. These methods have the advantage
.;_‘ of being consistent and, when sligl;tly modified, asymptotically unbiased
Eij for testing. We study extended quasi-likelihood in the case that it is
o likely to perform best, namely, (Morton, 1987) when the amount of
_*:' statistical information is large in each observation. We quantify this
",E; notion, and then show that in this instance the two estimators are nearly
"}' asymptotically equivalent, although extended quasi-likelihood can be
t\ affected by an asymptotic bias while pseudo-likelihood is not when the
5}. underlying distribution is asymmetric and outside the exponential family.
:} In Section 3 we discuss inference for 6 based on the two approaches. From
':;:l the theory of Section 2 we observe that while inference based on asymptotic
§? theory for the two approaches yields similar results under many conditions,
" such a test based on extended quasi-likelihood can be adversely affected by
i possible asymptotic bias of the estimator. The difference in test behavior
{é we have observed may be due to the effect of asymptotic bias.

a:'

L

=

. . 1 v 3
3 O AGHO OBOR0A0 OO ORI MO o8
:a i‘ff.‘.'g‘,? Ly .,‘x_‘ﬁo:.,'i,:flf«,‘t},‘s‘,ﬂﬁz.’.-i'(,ts:,::l:gttzg‘ bt b "':yi‘:n’?i:&'*:a?:;’,i50"7,'(::%!‘3‘ ntteli ".."“,!'q\-‘“'q|,-u"Jq‘_M‘”,zfﬁ';‘;'gfg‘dlfc‘g:"a?&'t?‘ly‘ﬁ"?." 205 e
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g 2. SOME ASYMPTOTIC RESULTS

t

Y Neither pseudo-likelihood nor extended quasi-likelihood are exact
[

I likelihood approaches. Pseudo-likelihood is based on the method of
i: moments, so that the estimating equations are unbiased, and hence
:‘ consistency and asymptotic normality obtain under very general conditions
P

" even without the assumption of normality. Let v(ui,zi.ﬁ) = log g(ui.zi.e).
‘-'z ve(ui.zi.e) be its column vector of partial derivatives with respect to 6,
!.. _1 _1
g'q we(ui.zi.e) = ve(pi.zi.e) - N2 ve(uj.zj.e). and §(p,z,8) = lim N '3
K> we(ui.zi.e) we(ui.zi.e)t. Let subscripts denote differentiation with

- e e .

respect to the argument, e.g., gu(pi.zi.ﬂ) = ag(ui.zi.e)laui. Define the

¥y

L]
-’

P errors e, = (yi—ui)/{a g(pi.zi.e)}. and assume the {ei} are independent
[ ] .

j| with skewness (i and kurtosis kg Ky o= O for normality. Let v = (n.Bt)t
i‘

o and use subscripts PL and QL to denote pseudo-likelihood and extended
l‘

' quasi-likelihood, respectively.

) RESULT 1 (Davidian and Ca Su hat (B - o (N1/2
. (Davidian an rroll, 1987). ppose that (B*-B)/a = p( )
! ~ - A :

- and TpL T 7 = Op(N 1/2). Then BPL is asymptotically normally distributed
0.'

:‘: with mean 6. If o - O simultaneously with N = «, then

':' 1
nt

N

¢ N725 12N o

et (BPL - 0) = {2E(n,z. 6)} iil( i -1) we(ui.zi.e) + op(l).

o (2.1)
i!o

. R

) If the (ei) are identically distributed with kurtosis k, the covariance
§

::| matrix of the asymptotic distribution of BPL is given by

\

L]

(2 + k) {4N E(n.z.0))" L. (2.2)

XTSRRI TS K] ¢ ocwo SO 0 PR
W e’ el S, ey ‘ N A ‘ﬁ e g SRR ok " “’a‘* :'*‘:'ﬁ'q'l"' Xt 'ﬂ"t' ‘o': " a' 'c‘p‘t‘:’i' 5e BOODGE
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o
2;::::
':0'::! The assumption o - O is a useful simplification technically and is
IXN
Yy
o relevant in applications where o is "small" relative to the means as in
» assay problems, see Davidian, Carroll & Smith (unpublished). In the gamma
hay
' " and lognormal distributions, o is the coefficient of variation, which is
o)
'\. often fairly small. Alternatively, think of y; as the mean of m
!; 3 -
‘;::::. observations with mean By and variance gz(ui.zi.e). equate o and m 1/2, and
)
:::% let m » »,
Wy :

The assumption o - O yields a motivation for (1.4). Since the goal of
: .'5_: extended quasi-likelihood is to describe a class of distributions "nearly"”
#‘ containing exponential families, consider a density h such that
W "‘;{
¢
®
"‘* log h(y.a.8.0) = {ya - b(a)}/o> + c(y.8 o) (2.3)
™ )& ’ . ’ ’ .
Sl
-"\ﬁ
4'
r for some b, c, and a = a(p,z,8). To satisfy (1.1) we require Sb(a)/8a = p
R
;E::.: and 8°b(a)/8a® = g2(n.z.8). implying that p = {db(a)/du} Owda and
)
éo: gz(u.z.e) = Op/8a. This yields, writing b now as a function of pu,
E
’ 7] B
e a=) {1/g%u.z.6)} du;: b(.z) = J (Wg2(u.z.8)} du.
A -4‘1 ~0 P, , ]
[0 ]
o
e Plugging into {2.3) gives after simplification
: .~\
% 2.-1
Y log h(y.a.6.,0) = - (207) " D(y.u,z.8) + d(y.6.0) (2.4)
®
o
;:.. for some function d. For h to be a density we must choose d so that h
2
':'. integrates to one; by approximating the first term on the right side of
@
1‘.’,‘. (2.4) when o is small we may approximate d. Since when o is small we have
i
o -2 ~ 2, 22 o 22
»-::.'; o~ D(y.u,z.8) = (y-u)/{c“g"(y.z.0)}), d = -(1/2) '.g{2mc“g“(y.z.0).
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Inserting this in (2.4) yields the summand of (1.4).

The fact that (1.4) is an approximate log-likelihood implies that GQL
need not be consistent. With the suggested adjustment ¢ = 1/6 as in Nelder
& Pregibon (1987), if the {yi} are distributed as Poisson with means {ui}
taking on values 1 and 4 in equal proportions and we assume 8 < 1.0, the
theory of M-estimation as in Huber (1981 p. 130-132) implies that 8

QL
converges to 0.45. If the {ui} take on larger values, such as 30. 40 and

50 in equal proportions, however, 80[. converges to 0.50. Many examples in
regression we have seen suggest that extended quasi-likelihood and
pseudo-likelihood are typically equivalent for power of mean models (1.2).

Since the estimating equation for the extended quasi-likelihood
estimate 8QL can be biased, sta.ndérd asymptotic theory for GQL while

possible to construct, is not fully informative. As an approximation we

use the small o assumption to construct an asymptotic theory. We also

) describe an approach suggested by the Poisson case for "large" (ui}.

- 1/2,2 _ 172 & _
B RESULT 2. Suppose that N'"“(vyy - 7) = O (1) and N (By - B)/o = 0 (1)

if Nllza-’)\ZOasN-)w. o - 0. Then

~ - - N
o N/2(8y - 0) = (2 E(n.z.0)) N'1/2 2 (€2 - 1) wgln,.2,.)

b + (%) (6 E(u.z.0)) 7" ¢ + 0,(1). where (2.5)

G =1

N
_ b
(Y X 1=

. Ci{e(ny.2y.8) vy (u;.2,.6) - 2 g (n;.2,.8) wg(u,.z,.0)}.

i A sketch of the proof is contained in the Appendix. The implication of
® (2.5) 1is that while ePL and 6, behave similarly, they differ in an

QL
:: asymptotic fashion through the second term on the right hand side of (2.5)

BEOANIDGOU DO OO PG A PO PO ORI j \J
O R S SR UMLK AR AR AR AR

: , NG00SO OO0 ITONOAGON
WM L "-‘<*i-"-‘e"‘t".e‘éb‘-a?’?.19'..21’-4 "t?.":ﬁ*f’! *i‘gh""?‘n‘?"ﬁg..‘."l.’«.d.’i'! '1\".’1!.,3;"'10’%\!';‘.
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in . way that might affect asymptotic inference. ¥When GQ,L is

asymptctically normal it will have mean 6 + (GN-I/zf(u.Z.B)}-l()\C). where

A

CN - C. From (2.2) and (2.5), then, GQL and SPL will be asymptotically
equivalent only if A = O or CN - 0; the latter will occur for symmetrically
distributed data. If the {ei} are identically distributed with kurtosis «k,
for example, then BQL and 8PL will have asymptotic covariance (2.2).

In the case of (1.2), ue(ui.zi.e) = log p; so that

N
6-1 e -
. ¢ My {1 - 20 (log My - N)}. Iy =j§1 log My

_lN
CN= N~ 2
i=

For the normal distribution, (i = Ky = 0; for the gamma, lognormal, and

inverse Gaussian distributions (i = 0(g) and Ky = 0(02). so that the
asymptotic bias is O and the two estimators are asymptotically equivalent
with covariance the same as if the data were normally distributed with mean
y and variance 02;1?6. From Bar-Lev & Enis (1986), (i = O(o) for
distributions which are exponential families with 8 € {0} U [1/2,2). If
the {yi) are not from an exponential family, the asymptotic bias need not
be zero. For example, consider a shifted gamma model Yy = By +
ag(pi,zi.e)ei. where v has a gamma (ai"’i) distribution with E(wi) =
ai/‘pi' and € = (wi - (ai/wi)} (ai/cpf)—l/z. so that E(e?) = 1. In this
case (i =2 a;l/z. so that if the (ai} do not depend on o, the asymptotic
bias will not vanish. At exponential family models in cases not covered by
the asymptotic theory here, one might expect pseudo-likelihood to be more
variable than extended quasi-likelihood, since the latter is based on

approximate exponential family likelihoods.
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\S An asymptotic theory for which the means are "large” in which o

! remains fixed yields a similar result under (1.2) if 6 < 1. Let Ho N be a
»* »*
sequence to be chosen shortly. Define By = “1/“0,N and Yy = yi/uO.N so

& that e = {y’; - p’;)/(é u’;e). vwhere 6 = (9—1). If as N » @, min - ©

7 Ho,N 1 P
.') and Ho.N © in such a way that the (u:} and the (y:} are well-behaved,
! then if 8 < 1, 6§ -0 as N - © so that the calculations here parallel those
o for the case of small o. By analogy. the small o part of Result 1 holds.
( Replacing o by 6 in (2.5), in the Poisson case for which 8 = .5 and 0 = 1,
:’" gi = u;1/2 and Ky = u.gl. so that CN - 0 and the limiting covariance of aQL
= is as if Ky = 0. Thus, in the case of "large” means and data distributed
;- as Poisson, extended quasi-likelihood and pseudo-likelihood will behave
similarly. .
The theory presented here is applicable when the small o or large mean

assumption is valid, which is the case in many important situations, and

:.# does not address problems of other types.

o 3. INFERENCE FOR @

,,s The asymptotic distribution theory of Section 2 can be used to

4 -
Y construct tests of Ho! e = 60. Throughout, define A(p,z,0,k) = lim N 12

A

t * o
(2+Ki) me(pi.zi.e) we(ui,zi.e) . From (1.3), OPL maximizes ePL(B*.B).

W where

- n N

,:g e;L(p.e) = -N log op, (B.6) - 1§1 log g{u,(B).z,.6}.
- ~g N

'. oPL(ﬁ.G) = E

2 Aoy - £(x,.8)) /2% (u, (B) .2,.8).
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wh
;:‘u&‘ One might reasonably base inference for 6 on a test statistic
EX l!"
;'.d:'."v * A % ~oA ~
) R -
‘:“Q".
’:1::::
A% ~
v ) wvhere PB(6) denotes a generalized least squares estimate computed at 6 and
Q""‘ A A
s:g::' compare TN to the percentiles of the xf distribution. Although B(BPL) and
A ~
::' BPL do not necessarily jointly maximize the pseudo-likelihood, the fact
o ~ o~ ~
{ that {B(BPL) - B*} converges in probability to O along with a Taylor series
W
.:h‘l and Result 1 may be used to show that under H., TN has asymptotically the
!'. »
:: same distribution as the random variable 2 W(O)tf(u.z.B)W(O). vwhere W(M)
EX A
‘ - has a normally distribution with mean M and covariance matirix

{E(1.2.0)) A(n,z.0) {E(n.2.0)) /4.

AN

&4

Nelder & Pregibon (1987) suggest a likelihood ratio type test based on

treating the extended quasi-likelihood as an actual likelihood. Such a

test is based on

5] Qy = -2 [€g (B(8,). 685} - £y {B(Bey )00y 1.
V vhere

N
£ ¢qL(P.9) = N log oy (8.6) - 1o £(y;.2,.0).

(XA 2 -1 Y
G “Q(P0) =N I Diy,.m,(P).2,).

In the situation of Result 2, QN has asymptotically the same distribution
i as the random variable 2W[)\C(6§(u.z.O)}-l]tA(u.z.G)W[)\C(Gf(u.z.e))_l] under
P H., where - C.

o 0 C ,

The asymptotic distributions of TN and QN need not be X, in general.
By Appropriately scaled versions of these statistics, say aT, and aQN for some
Rl

N
Sl constant a, will be possibly noncentral x‘:‘ if and only if A(p.z.8) =

R O D XA
'E’c»“ﬁ"."v“?!‘? '.i( : ?y’b‘,a‘&?g‘(,g‘l ‘q!l"oé? .'lng't R e""»i‘ [}
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D

,,‘li-‘

!"3”

“'»{ 28(n.z.0)/a, see, for example, Muirhead (1982, p. 31, Theorem 1.4.5).
)

"t!:!l. 2

i Thus, comparison to the percentiles of the X, distribution may be
e

;":: misleading. In many important special cases of practical application,
::‘:’ however, the distributions are readily seen to be chi-square. If the
.:".u

:‘.j distributions of the {ei} are normal, so that K= 0, then TN and QN are
|'.:: both asymptotically )(3. If the {ei} are identically distributed with
s,

Y

::::.:" kurtosis x, since then A(p,z,8) = (2 + ) §(u.z.0), it follows that under
9!'1‘; '

L4 HO' {2/(2+x)} TN is asymptotically distributed as xf. so that a test based
-‘il‘l

.'k on this statistic with x appropriately estimated is an asymptotic a-level

| test. McCullagh & Pregibon (1987) consider estimators for the cumulants
.o':,o'
K
Y for linear regression models. In the situation of Result 2, under HO.
e ,*:- .
‘-.‘,:f_ {2/(2+k)} is asymptotically distributed as noncentral xf with noncentrality
vadyy - ' -
'ﬁi parameter A = )\20':5()1.6) Ic {9(2+«)} 1. As long as A = O, comparing this
e
A%
statistic to the percentiles of the xf distribution is an asymptotic
:"l‘..
E‘é"s a-level test which is asymptotically equivalent to the test based on TN.
1‘0‘,
'!‘n':' For general, not necessarily identically distributed {e.,}, the
i *
2 :
:)s asymptotic distribution may not necessarily be chi-square. However, if r =
T
f, "‘: 1 so that 6, £(n.z,0), and A(p,z,0) are scalar, as in the important cases
L
t' of extra variation in Poisson or binomial models, under H..
v‘ 0
Y
28(pn.z.0)/A(n,z,0)T is asymptotically distributed as x2. vhile
L J
g" N 1
:ﬁ 2;-‘(;;.z.6)/l\(u.z.9)QN is asymptotically distributed as noncentral xf with
o noncentrality parameter A = 7\202/(9A(u.z.9)}. In practice, one might
H¥s
® estimate this factor by computing appropriate estimates for §(u,z,08) and
e
s 3: A(p.z,0). For example, if nearly Poisson data are suspected, one might
"'g
LV® -
25: estimate Ky by the final estimate for uil.
Vo
o Nelder & Pregibon suggest comparing QN directly to the percentiles of
\:.
:::::E: the xf distribution. Comparing either TN or QN to the xf distribution may
o
’
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.,,* be erroneous in general, but in important practical situations such as

those above in which the distributions are xf. their suggestion does not

EEE: account for the additional multiplicative factor depending on kurtosis
::E::: which appears unless the data are normal. In the saddlepoint approximation
;.: approach, m = © jimplies N % 0, thus they observe that if the underlying
". distribution of the data is known to be from an exponential family, then
,. such a test is asymptotically valid. In our asymptotics, fer the cases of
{‘ﬁ the normal, gamma, and inverse Gaussian examples cited in Section 2 we see
;:'.\ this to be the case. For the Poisson case, one may consider the analogous
'?'?: "large mean" asymptotic approach at the end of Section 2 to conclude the
.- same. We further obtain the correct form and properties for a test of this
',\_ type when only the mean-variance r;lationship is specified. For other
::. approaches to variance function estimation which avoid problems of
i kurtosis, see Davidian & Carroll (1987) and Giltinan, Carroll, & Ruppert
.( (1986).

>

For a model such as (1.1) for which only the mean and variance are

specified, interest in @ may be in the context of trying to understand the

L

structure of the variances, not the form of the underlying distributions.

)

W

':f.' When appropriate, a chi-square test based on QN will approach its nominal
P

® level if A = 0. VWhen the underlying distributions of the data are such
W ~

:::‘ that BQL is biased asymptotically so that A # 0, the validity of a x2 test
i.’.

)

*:: A based on Q, mey be seriously affected.
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APPENDIX : SKETCH OF PROOF OF RESULT 2

A A A

For convenience. let = log o and let (B.8.n) be the joint extended

quasi- likelihood estimators for (B,6.n). Let 7(i.B.8) = {1 , v;(ui.zi.e)}F
-1 t

p(i.p.0) = fﬁ(xi.ﬁ)/g{ui(ﬁ).zi.e}. BN =-4N "3 7(1,B.8) 7(i.B.06) , and GN =

A A A

NIz p(i.B.0 p(i.B.B)t. From (1.4), (B.8.n) solves

Q, y(B.8.m)
0= 02 N(B'a'%) . where (A.1)
Q, y(8.8.1)
12 N o
Q, n(B.6.m) =N 121 e ™7 (Yy - u;) p(1.B.6)/g(k,.2,.6):

— N -
Q, y(B.8.m) = N 172 2 Le 2n D(Yy.my.2;.0) - 1}

%’N(B.G.n)

N
=N12 3 - Ze2m aD(Y, .1, .2,.6)/38 —{ Jlog g(Y,.z,.8)/36}].

i=1

The following result is shown by assuming appropriate smoothness conditions

for g so that D may be differentiated.

LEMMA A. Under regularity conditions,

N
N3 D(Y,.1,.2,.0) = o N'!
i=1

N
5 3
=1 i

i
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N
N1 s

aD(Y,.1,.z,.0)/30 = -2 { o N}
i 1

[
It M2
P

. e?ve(i.ﬁ.e)

N
3 .-1 3 4,
+ 0" N 131 So 4 ei}+0p(a ):

N

s (Y, .n.2,.0)/0000 =2 2 N1 2[3 0 (i.B.8) vi(i.p.6)
i°Pi+%y 2 B 8

N
N 2

i=1

~(8gg(ky2;-0) / B(y.2,.0)) ]+ 0 (),

t
where gee(ui.zi.e) = az{g(ui.zi.e)}/aeae‘ v 814 = -2 gu(ui.zi.G)IB. and

Sg 1 = geu(pi.zi.e)/3 - ve(ui.zi.e) gu(pi.zi.e).

A Taylor series in (A.1) using consistency, a Taylor series in o about

O using Lemma A and laws of large numbers yield after simplification

GN 0 N1,2 (BA— B)/G
3 By 5 -6
(A.2)
[ N172 g e, P(1.8.6) r 0
= 1=1 + (Nllza) + 0 (1),

N N P
N125 (2 - 1) 7(1.8.8) Nz 3 s,

i=1 | | o |

where s; = (s1 i s; i)' Equation (A.2) implies that, as N 5 ®, g - 0,
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Algebra and simple probability limit calculations yield the result.

Equation (A.2) also shows that in these asymptotics BQL is equivalent to a

i’«:; generalized least squares estimator for . O
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