
UNCISSI FED OJLL
SECURITV CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
- lb. RESTRICTIVE MARKINGS

3. DISTRIBUTION/AVAI LABILITY OF REPORT

AD-A198 042.
a. PERFORMING ORGANIZATION REPORT NUMBERIS) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

Technical Report # 7 AFOiR-*M- 8 8 - 0 84 1
64L NAME OF PERFORMING ORGANIZATION [Eb. OFFICE SYMBOL 

7
a. NAME OF MON TORING ORGANIZATION

(I applicable)

Texas A&M University Air Force Office of Scientifi Re ;e

6c. AOORESS (City. State and ZIP Code) 7b. AOORESS (City. State and ZIP Cod ,

College Station, TX 77853 -

a.NAME OF FUNOING/SPONSORING IX OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IOENTIFICATORGANIZATION (f.~a.~O _ FJ "'FORANZATN " -g 49620-85-C-0144

AFOSR __ _ _ _ _ _ _ _ _ _ _

Sc. ADDRESS (City. State and ZIP Code) 1 V 40 10. SOURCE OF FUNDING NOS.b A 410 PROGRAM PROJECT TASK WORK UNIT
Bolling Air Force Base ELEMENT NO. NO. NO. NO.

Washington, DC 20332
11. TITLE fInclude, Security Classuficat n)

* A NOTE ON EXTNDED QUASI -LIKELIHOOD ~ "~' a
12. PERSONAL AUTHORIS)

Davidian. M. and Carroll. R.J.
13a. TYPE OF REPORT 13b. TIME COVERED 1,9. DATE OF REPORT (Yr.. Mo.. Day) 15. PAGE COUNT

t-00'wl - FROM 8/87 TO 8/88 16
16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SU BJECT TERMS (Continua on reverse if necessary and identify by block number)

FIELD I GROUP I SU. GA. - exponential family,"heteroscedastic regression model., ['-
inference for variance parameters, pseudo-likelihood
estimation, variance function estimation

19. ABSTRACT (Continua on ovverm if necessary and identify by biocc number#

WIe study the method of extended quasi-likelihood estimation and inference of a variance
function recently proposed by Nelder & Pregibon (1987). The estimates are inconsistent
in general, and the test levels can be biased, but in many cases such as the exponential
family the inconsistency and bias will not be a major concern. Extended quasi-likelihood
is compared with Carroll & Ruppert's (1982) pseudo-likelihood method, which gives consisten
estimates and, when slightly modified, asymptotically unbiased tests. We quantify the
notion of a problem in which the amount of statistical information is large in each unit,
showing in this instance that the two estimates are closely related and may be asymptotical
equivalent in many important cases. However, in some cases outside the exponential family,
an asymptotic bias can persist.

20. OISTRI SUTION/AVAI LAWLITY OF ABSTRACT 21..ABSTRACT SECURITY CLASS.CICATION

UNCLASSIFIEDIUNLIMITEO MSAME AS RPT. C OTIC USERS Q 3
22a. NAME OP RESPONSIBLE INOIVIDUAL 22b. TELEPHONE NUMBER 22c. OFFICE SYMBOL

(include Ara Code)

Major Brian Woodruff (202) 767-5026

DD FORM LFjpON(IJf7 OBSOLETE. UNCLASSTUTN I
, SECU~RTY CLASSIFICATION OF THIS PAGE



AOS.T 8 88-0 841

A NOTE ON EXTENDED QUASI-LIKELIHOOD

Technical Report # 7

110td.

Aceession For
OTIS GRA&I
DT!C TAB

* LyallablItty Codes
vaW and/or

Dist Special

IFIC (AFSC)

001



A NOTE ON EXTENIED QUASI-LIKELIHOOD

M. Davidian

Department of Statistics
North Carolina State University

Box 8203
Raleigh, North Carolina, U.S.A.

27695-8203

R.J. Carroll

Department of Statistics
University of North Carolina at Chapel Hill

321 Phillips Hall 039 A
Chapel Hill, North Carolina, USA

27514

&MMARY

We study the method of extended quasi-likelihood estimation and

inference of a variance function recently proposed by Nelder & Pregibon

(1987). The estimates are inconsistent in general, and the test levels can

be biased, but in many cases such as the exponential family the

inconsistency and bias will not be a major concern. Extended

quasi-likelihood is compared with Carroll & Ruppert's (1982)

pseudo-likelihood method, which gives consistent estimates and, when

slightly modified, asymptotically unbiased tests. We quantify the notion

of a problem in which the amount of statistical information is large in

each unit, showing in this instance that the two estimates are closely

related and may be asymptotically equivalent in many important cases.

However, in some cases outside the exponential family, an asymptotic bias

can persist.

Keywords: EXPONENTIAL FAMILY; HETEROSCEDASTIC REGRESSION MODEL; INFERENCE

FOR VARIANCE PARAMffriS; PSEUDO-LIKELIHOOD ESTIMATION; VARIANCE

FUNCTION ESTIMATION.
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1. INTROIXDCION

Consider the following mean-variance model for observable data y:

E(yi) = Pi = i(P) = f(xi'.) ; var(yi) = a2 g 2(piziso). (1.1)

Here, yi is the ith response variable of N independent observations.

(xiz) are associated vectors of covariates, f is the regression function,

JR is a p-vector of regrcssion parameters, a is a scale parameter, and g is

the variance function with variance parameter 6 (r x 1). For example, the

variance may be modeled as proportional to an unknown power of the mean:

0

g('yzi.e)= Ji, Pi > 0. (1.2)

Special cases of (1.1) are used in applications such as radioimmunoassay,

econometrics, and chemical kinetics. Model (1.1) includes the class of

generalized linear models, see McCullagh & Nelder (1983).

A usual aim is the estimation of 3, with estimation of the variance

function parameters as an adjunct. However, as discussed by Davidian &

Carroll (1987) and Davidian, Carroll & Smith (unpublished), estimation of

* the variance function, in particular the parameter 6. is an important

problem both for estimation of 1 and in its own right.

Most methods for estimating 0 are "regression" methods based on

* generalized least squares. In these techniques, 0 and a are estimated by a

$ weighted regression of some function of the absolute residuals from a fit

on their expectations. For example, in location-scale problems squared

* residuals have approximate mean proportional to g2  z,, ) and variance

proportional to g4 (ui.zi.e). Thus an estimate of 6 can be obtained by a

0
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2 2
generalized least squares regression of squared residuals on a g (WI,.zi.e)4^

with variance function g (Wi.zi.6O. where W = f(xi.I3,). A related method

is the pseudo-likelihood approach of Carroll & Ruppert (1982). In this

method, one pretends 3 = and then estimates (a.0) by normal theory

maximum likelihood, maximizing tPL( ,..a). where

N
RpL(P.9,a) = -N log a- I log [g{iiI),z.O}]

i=l

2-_1 N 2 2
- (2a I {yi - f(xi.1)} /g iIi(3 ).zi.G} (1.3)

i=1

* This process may be iterated with a generalized least squares routine for

13. The number of iterations of the entire procedure for estimation of 13

may be chosen in advance or the process may be iterated until convegence;

see Davidian & Carroll (1987). The pseudo-likelihood method is

asymptotically equivalent to weighted regression on squared residuals with

estimated weights, and full iteration of such a regression yields the

pseudo-likelihood estimate. Both methods can be modified to account for

loss of degrees of freedom for preliminary estimation of 13 as in Harville

(1977); for a discussion and a review of many common methods for estimation

* of 0. see Davidian & Carroll (1987).

Pseudo-likelihood and weighted squared residual estimation are based

upon the method of moments. Nelder & Pregibon (1987) instead attempt to

* define a family of distributions with mean and variance functions given by

(1.1). this class including as special cases skewed distributions such as

the Poisson or gam. Their extended quasi-likelihood is

K
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N 2.
8Of3 .6,o) - (-1/2) - [log (2cr g (yizi.,)} + D{yi.Wi(P).zi,.}/O) .

i=l

where (1.4)

D(y,;i,z.e) = -2 2 y - dw.
g2 (wz, )

The function eQL is sometimes but not always an exact log-likelihood.

Under (1.2). if 6 = 0. eQL is the normal log-likelihood; for 6 = 1.5. that

of the inverse Gaussian. For 6 = .5, a = 1 eQL differs from the Poisson

log-likelihood by replacing yi! by its Stirling approximation; for 6 = 1.

eQL differs from the gamma log-likelihood by a factor depending on a. One

motivation for (1.4) is the Edgeworth expansion of Barndorff-Nielsen and

Cox (1979) or the related saddlepoint approximation of Daniels (1954).

which yield an expansion for the density of the mean of m random variables

from a one parameter exponential family as m -+ -. The leading term of the

expansion at m = 1 is the extended quasi-likelihood summand. See Efron

(1986) for a related formulation. Note that the form of eQL may be

unsatisfactory in situations for which g(y.z.) = 0 for y = 0. In this case

Nelder & Pregibon suggest replacing g(y,z,8) by g(y+c,z.6) for some c; we

use this adjustment where applicable in our discussion.

An additional reason for considering approximate likelihoods for a

mean-variance model is that linear exponential families with given

mean-variance relationship do not always exist. For example, Bar-Lev &

Enis (1986) have shown that if the distribution of yi is an exponential

family with variance function (1.2). it is necessary that 6 i (-o,0) U

(0,1/2), so that such a family exists only when 6 C (0} U [1/2.-). and the

general form for the density parameterized in terms of 6 and a is unwieldy.
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We have observed in many examples that the pseudo-likelihood and

quasi-likelihood methods lead to similar estimates, although sometimes

inferences for 0 are substantially different. In Section 2, we construct

an asymptotic theory for extended quasi-likelihood which allows an easy

illustration of the relationship between the two methods and suggests a

simple motivation for the form of extended quasi-likelihood. In general.

the extended quasi-likelihood estimate of 0 is inconsistent, and the

resulting test is biased, but in our experience, the inconsistency has not

been major at exponential families. The inconsistency is noted

independently by Morton (1987). who, like Carroll & Ruppert (1982), uses an

-0estimate of 0 based on squared residuals. These methods have the advantage

of being consistent and, when slightly modified, asymptotically unbiased

for testing. We study extended quasi-likelihood in the case that it is

likely to perform best, namely, (Morton, 1987) when the amount of

statistical information is large in each observation. We quantify this

notion, and then show that in this instance the two estimators are nearly

asymptotically equivalent, although extended quasi-likelihood can be

affected by an asymptotic bias while pseudo-likelihood is not when the

underlying distribution is asymmetric and outside the exponential family.

* In Section 3 we discuss inference for 0 based on the two approaches. From

the theory of Section 2 we observe that while inference based on asymptotic

theory for the two approaches yields similar results under many conditions,

*- such a test based on extended quasi-likelihood can be adversely affected by

possible asymptotic bias of the estimator. The difference in test behavior

we have observed may be due to the effect of asymptotic bias.



2. SOME ASYMFUFIC RESULTS

Neither pseudo-likelihood nor extended quasi-likelihood are exact

likelihood approaches. Pseudo-likelihood is based on the method of

moments, so that the estimating equations are unbiased, and hence

consistency and asymptotic normality obtain under very general conditions

even without the assumption of normality. Let v(pizi,0) = log g( i.zi.e)

v0(i,.zi,.) be its column vector of partial derivatives with respect to 0,

WoOli-ziO) = %O(Pi,zie) - N-I. VOL JzJ,0). and f(ji,z,O) = lim N-1I

(JO(wi.zi., ) O(ei,zi,0)t. Let subscripts denote differentiation with

respect to the argument, e.g., g {i(,ziO) = ag(Ji,.zi.O)/oiU. Define the

* errors ei = (yi-pi)/({ g(jyiz,9)}, and assume the {Fl} are independent

with skewness and kurtosis i; Ki = 0 for normality. Let 7 = (,0t) t

and use subscripts PL and QL to denote pseudo-likelihood and extended

quasi-likelihood, respectively.

RESULT 1 (Davidian and Carroll, 1987). Suppose that (P,-P)/a = 0 (N - 1/ 2 )

and -YPL - -r = 0 (N ). Then PL is asymptotically normally distributed

with mean 6. If a i 0 simultaneously with N -sw, then

1/2p -1 N I/ 2 N 2N(PL -) = {2f(iiz,6) N (I - 1) W0(Ai'zi,0) + O (1).

(2.1)

If the {el) are identically distributed with kurtosis K, the covariance

matrix of the asymptotic distribution of 0PL is given by

(2 + K) {4N f(.,z,)} - I. (2.2)

t
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The assumption a -1 0 is a useful simplification technically and is

relevant in applications where a is "small" relative to the means as in

assay problems, see Davidian, Carroll & Smith (unpublished). In the gamma

and lognormal distributions, a is the coefficient of variation, which is

often fairly small. Alternatively, think of y as the mean of m

2 -1/2observations with mean Iand variance g2 (Piz ,0) . equate a and m , and

let m -.

The assumption a -+ 0 yields a motivation for (1.4). Since the goal of

extended quasi-likelihood is to describe a class of distributions "nearly"

containing exponential families, consider a density h such that

log h(ya.9,a) = {ya - b(a)}/a2 + c(y,B a) (2.3)

for some b. c. and a = a(p.z.O). To satisfy (1.1) we require &b(a)/ca = p

and 82 b(a)/&a2 = g2 (p.z,O), implying that p = {8b(a)/p} Op/8a and

g 2(Lz,6) = 6jz/&a. This yields, writing b now as a function of p.

II

a = {l/g 2 (u,z,6)) du; b({z) f {u/g 2(u.z,8)) du.

04 _

Plugging into (2.3) gives after simplification

log h(y.a.O,a) = - (2a 2 )- 1 D(yp,z.0) + d(y,O.a) (2.4)

for some function d. For h to be a density we must choose d so that h

integrates to one; by approximating the first term on the right side of

(2.4) when ar Is small we may approximate d. Since when a is sma~ll we have
-22 2 ( y 2 . , )( ~ .D(ypz.O) - (y-u)2/{a2g (yz)} d -(1/2) ''{ 2 r z,).
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Inserting this in (2.4) yields the summand of (1.4).

The fact that (1.4) is an approximate log-likelihood implies that OQL

need not be consistent. With the suggested adjustment c = 1/6 as in Nelder

& Pregibon (1987). if the (y,} are distributed as Poisson with means {lLi}

taking on values I and 4 in equal proportions and we assume 6 ( 1.0. the

theory of M-estimation as in Huber (1981 p. 130-132) implies that 8QL

converges to 0.45. If the (pi} take on larger values, such as 30. 40 and

50 in equal proportions, however. 8 QL converges to 0.50. Many examples in

regression we have seen suggest that extended quasi-likelihood and

pseudo-likelihood are typically equivalent for power of mean models (1.2).

* Since the estimating equation for the extended quasi-likelihood

estimate 0QL can be biased, standard asymptotic theory for 0 QL while

possible to construct, is not fully informative. As an approximation we

use the small a assumption to construct an asymptotic theory. We also

describe an approach suggested by the Poisson case for "large" (p}.

RESULT 2. Suppose that NI 12(IQL - i) = 0 (1) and NI/ 2 (UQL- P)la = p (1)

if N1/ 2 a-N * 0as N-,,. a -0. Then

* 1/2( =2 N 2
SNI (OQL- 6) = (2 (p,z,O) - 1 N- 1/2 . (a - 1) eO(,.zi.O)

+ (N a) (6 f(p.z.0)) CN + Op(1). where (2.5)

-1 N(CN = N fig(pi.Zl.O) vO( li.zi.O) - 2 g,(.Li.zi.O) oS(/i.Zl.e)}

A sketch of the proof is contained in the Appendix. The implication of

(2.5) is that while OPL and 6 " behave similarly, they differ in an

asymptotic fashion through the second term on the right hand side of (2.5)

11W
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in .. way that might affect asymptotic inference. When 6 is

asymptotically normal it will have mean 6 + (6N- /(.z 1) (XC). where
CN -* C. From (2.2) and and 6PL will be asymptotically

.. , equivalent only if X = 0 or CN -* 0; the latter will occur for symmetrically

distributed data. If the (e) are identically distributed with kurtosis x,

for example. then 6 and 6 will have asymptotic covariance (2.2).

In the case of (1.2). v,(,.zi,.) = log pi so that

.4.

C, N-1 N -1 N= = lY i . i {1 -20 (log A i - 1 N))' lN = 1lop

i=l J=l

For the normal distribution, = 0 = ; for the gamma, lognormal, and
0(02)

inverse Gaussian distributions 0(a) and x = , so that the

asymptotic bias is 0 and the two estimators are asymptotically equivalent

with covariance the same as if the data were normally distributed with mean
1 2 26

11 and variance a .2 From Bar-Lev & Enis (19%), = 0(a) for

distributions which are exponential families with 6 C (0) U [1/2.-). If

the (yi} are not from an exponential family, the asymptotic bias need not

be zero. For example, consider a shifted gamma model y =Pi +

4 ag(Pi,zi.9)ei , where wi has a gamma (ai,ip) distribution with E(wi) =at ande ( -1/
1 2, ta 2

a /1i and e,-- (wi - (ai/Pi)) (ai/2i/ 2, so that E(e ) = 1. In this

case =2 ai2. so that if the (a,) do not depend on a. the asymptotic

bias will not vanish. At exponential faitily models in cases not covered by

the asymptotic theory here, one might expect pseudo-likelihood to be more

variable than extended quasi-likelihood, since the latter is based on

approximate exponential family likelihoods.

.0

0
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An asymptotic theory for which the means are "large" in which a

remains fixed yields a similar result under (1.2) if 6 ( 1. Let WON be a

sequence to be chosen shortly. Define 11i = Pi/1O,N and y = Yi/O,N so

thati = Y- )(6 i r = a p(-1)

and 0 in such a way that the (pi) and the {yi) are well-behaved.

then if 6 < 1, 6 -+ 0 as N - so that the calculations here parallel those

for the case of small a. By analogy, the small a part of Result 1 holds.

Replacing a by 6 in (2.5), in the Poisson case for which 6 = .5 and a = 1.

- 1/2 .- 1Pi= /2 and Ki = i I so that CN -+ 0 and the limiting covariance of 0QL

is as if = 0. Thus, in the case of "large" means and data distributed

* as Poisson, extended quasi-likelihood and pseudo-likelihood will behave

similarly.

The theory presented here is applicable when the small a or large mean

assumption is valid, which is the case in many important situations, and

does not address problems of other types.

3. INFEREMM( FOR 0

The asymptotic distribution theory of Section 2 can be used to
o-f

construct tests of H0 : 6 = 00 Throughout, define A(li.z.,K) = lim N- l

(2+i) 0e(jyzi,,e) w6 (jai,ziO)t. From (1.3), 0PL maximizes LpL(P*,O),

where

N
ePL(13.0) = -N log a PL(PO) - 1 log g(P(1(P),ziO},

i=lN
"2 N2 2
a PL O) = (Yi - f(xi4p)) /g {Pi(p).zi'8}.1=l
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One might reasonably base inference for 0 on a test statistic

TN = -2 [e*pL{P(0oO) - ePL{P(OPL).ePL}J.

where P(O) denotes a generalized least squares estimate computed at 0 and

compare TN to the percentiles of the X r distribution. Although P(OpL) and

0PL do not necessarily Jointly maximize the pseudo-likelihood, the fact

that {P(OpL) - 1)} converges in probability to 0 along with a Taylor series

and Result 1 may be used to show that under HO0 TN has asymptotically the

same distribution as the random variable 2 W(O)t f(p.z,O)W(O), where W(M)

* has a normally distribution with mean M4 and covariance matirix

{f(j.ze) }- A(uzO){f(pzO)}-1 /4.

Nelder & Pregibon (1987) suggest a likelihood ratio type test based on

treating the extended quasi-likelihood as an actual likelihood. Such a

test is based on

oN = -2 'eo f1^(0o).0o) - eoP(01 )

where

N
eL (P.6) = -N log cQL(,3.0) - I log g(ytz 1 .0).QL i=1

2 N

or2 (13,0) = N 1 I D{y.Ai().zi}.
i-1

In the situation of Result 2, QN has asymptotically the same distribution

as the random variable 2W[XC{6f(pi,z.6I)}- ]tA(i.z,)W[XC{6f(M.z.0)) - ] under

H 0 where CN -+ C.

The asymptotic distributions of TN and need not be ,2 In general.

Appropriately scaled versions of these statistics, say aTN and aQN for some

constant a. will be possibly noncentral If and only if A(p.z,6) =
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2f(p,z,O)/a, see, for example, Muirhead (1982, p. 31, Theorem 1.4.5).
2

Thus, comparison to the percentiles of the Xr distribution may be

misleading. In many important special cases of practical application.

however, the distributions are readily seen to be chi-square. If the

distributions of the {a) are normal, so that 0, then TN and QN are

2both asymptotically r" If the {(e} are identically distributed with

kurtosis K, since then A(p,z,8) = (2 + K) f(p.z,O), it follows that under

HO , (2/(2+K)} TN is asymptotically distributed as Xr2 , so that a test based

on this statistic with K appropriately estimated is an asymptotic a-level

test. McCullagh & Pregibon (1987) consider estimators for the cumulants

* for linear regression models. In the situation of Result 2, under HO .

2{2/(2+K)} is asymptotically distributed as noncentral Xr with noncentrality

2 t -1 -1parameter A = X C E(pO) C {9(2+K)) As long as A = 0, comparing this
2

statistic to the percentiles of the Xr distribution is an asymptotic

a-level test which is asymptotically equivalent to the test based on TN.

For general, not necessarily identically distributed {ei}, the

asymptotic distribution may not necessarily be chi-square. However, if r =

1 so that 0, f(pz,6), and A(pz,6) are scalar, as in the important cases

of extra variation in Poisson or binomial models, under HO .

2f(pz.e)/A(pz,O)TN is asymptotically distributed as 2. while

2f(p.z,O)/A(p,z.})QN is asymptotically distributed as noncentral Yl with

noncentrality parameter A = X 2C2/{9A(.z,6)). In practice, one might

estimate this factor by computing appropriate estimates for f(Pz,6) and

A(p,z,O). For example, if nearly Poisson data are suspected, one might

estimate Ki by the final estimate for pi
1

Nelder & Pregibon suggest comparing QN directly to the percentiles of

the X 2 distribution. Comparing either TN or ~Nto the X 2 distribution mayr N (INr

IS101
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be erroneous in general, but in important practical situations such as

2
those above in which the distributions are r , their suggestion does not

account for the additional multiplicative factor depending on kurtosis

which appears unless the data are normal. In the saddlepoint approximation

approach, m - implies K i - 0, thus they observe that if the underlying

distribution of the data is known to be from an exponential family, then

such a test is asymptotically valid. In our asymptotics, for the cases of

the normal, gamma, and inverse Gaussian examples cited in Section 2 we see

this to be the case. For the Poisson case, one may consider the analogous

"large mean" asymptotic approach at the end of Section 2 to conclude the

* same. We further obtain the correct form and properties for a test of this

type when only the mean-variance relationship is specified. For other

approaches to variance function estimation which avoid problems of

kurtosis, see Davidian & Carroll (1987) and Giltiran. Carroll, & Ruppert

(1986).

For a model such as (1.1) for which only the mean and variance are

specified, interest in 6 may be in the context of trying to understand the

structure of the variances, not the form of the underlying distributions.

When appropriate, a chi-square test based on QN will approach its nominal

* level if A = 0. When the underlying distributions of the data are such

that 6 is biased asymptotically so that A 4 0. the validity of a )2 test
QL

based on QN mey be seriously affected.
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APPENDJIX : SKETIM OF PROOF OF RESULT 2

For convenience, let n = log a and let (0,0,n) be the joint extended

quasi-likelihood estimators for (P.,71). Let T(i. 3,) =I , t

p(i,3,) = f£(xi,3 )/{i(I),zi.e}. BN = -4N- 1 2 T(it,3.9) T(i,f,.) t
, and C =

N- p(i.P,6 p(i.,O)t. From (1.4), (1,8,r) solves

0 ,N , where (A.1)

Q3.N(P'O.n)

-1/2 N
= N I e (Yi - Ai) P(i-f3 .O)/g(Ai'.zi.);

i=1

= /2 N

n= N1  I l e2 D(Yi.,li'zi.) - 1);
i=1

%3,N(PO.n)

N 1 -2j
N- I 2  I [- e D(Yi.,IiziO)/ae -{ alog g(Yi.zi,9)/Oe)].

i=1

The following result is shown by assuming appropriate smoothness conditions

for g so that D may be differentiated.

LEMMA A. Under regularity conditions,

N1 N 2  _N N 4 -

ilD(Y i.'i.zi.) = ,a N 1 (a

i=1i=1 N s  i '

----------
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aD(Y~.I...)a -2 { ai N- Ia OiPO

i~l i~l

3-1 N 2-

1=1 52. i =1U~

where 99(iZ-)= 0-2{g (L I.z Vo)}/~aot, si. = -2 gXL z.9)/3, and

s 2.1 96g iAVZV.)/3 - v O(Avizi.) g'P-z,)

A Taylor series In (A.1) using consistency, a Taylor series in a about

0 using Lema A and laws of large numbers yield after simplification

1=1 01/2/

N NN

1 2 2N

N(.1 1) Tji,,O) N . I s4 i=lil

where s (SIX, s t I) Equation (A.2) implies that. as N a* , i-0,

0
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BN Nl1/2 I TI ] 2 N 1/2  (a 2 _ 1) T(i,.O)

i=l

Algebra and simple probability limit calculations yield the result.

Equation (A.2) also shows that in these asymptotics P3, is equivalent to a

generalized least squares estimator for -3. D
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