AD-A197 578 ONC FILE COP. | _ | | |---|----| | / | 4) | | (| ٦/ | | | | | REPORT DOCU | MENTATION | PAGE | | | | |---|----------------------------|--------------|--|--|---|-------------|---------------------------|--| | 1a. REPORT SECURITY CLASSIFICATION | | | | 16 RESTRICTIVE MARKINGS | | | | | | Unclas: | | | | | | | | | | 2a. SECURITY CLASSIFICATION AUTHORITY | | | Approved for public release and sale. Distribution unlimited. MONITORING ORGANIZATION REPORT NUMBER(5) | | | | | | | 26. DECLASSIFICATION / DOWNGRADING SCHEDULE | | | | | | | | | | 4. PERFORMING ORGANIZATION REPORT NUMBER(S) | | | | | | | | | | ONR Technical Report No. 6 | | | The state of s | | | | | | | 6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL | | | 7a. NAME OF MONITORING ORGANIZATION | | | | | | | Univer | sity of Ut | ah · | (If applicable) | | | | | | | 6c. ADDRESS (| City, State, and | ZIP Code) | | 7b ADDRESS (City, State, and ZIP Code) | | | | | | Depart | ment of Ch | emistry | | } | | | 1 | | | | Eyring Bui | | | ł | | | | | | | ake City. | | Las accien example | | | | | | | ORGANIZA | FUNDING/SPOT
TION | ASORING | 8b. OFFICE SYMBOL (If applicable) | 9. PROCUREMEN | 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER | | | | | Office | of Naval | Research | <u> </u> | N00014-8 | N00014-85-K-0712 | | | | | 8c. ADDRESS (| City, State, and | ZIP Code) | | 10 SOURCE OF FUNDING NUMBERS | | | | | | | | m, Code 1113 | | PROGRAM
ELEMENT NO | | TASK | WORK UNIT
ACCESSION NO | | | | Quincy St | | | ELEMENT NO. | NO. | NO. | ACCESSION NO | | | Arling | ton, VA
ude Security Cl | 22217 | | <u> </u> | <u>i</u> | | | | | A Conducting Polymer Formed from the Anodic Oxidation of Toluene in Acetonitrile 12 PERSONAL AUTHOR(S) | | | | | | | | | | 12: YENGONAL | | Ashlev. D. I | B. Parrv. J. M. | Harris, and | S. Pons | | | | | K. Ashley, D. B. Parry, J. M. Harris, and S. Pons 13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT | | | | | | | | | | Technical FROM9/87 TO 7/88 July 15, 1988 10 | | | | | | | | | | 16. SUPPLEIME | NIART NOIAI | ION | | | | | | | | 17 | COSATI | ODES | 18. SUBJECT TERMS (| IS (Continue on reverse if necessary and identify by block number) | | | | | | FIELD | GROUP | SUB-GROUP | | , | | | | | | | | · | . Conducting | g polymers, spectroscopy of surface species | | | | | | | 16 | | | | | | | | | 19. ABSTRACT (Continue on reverse if necessary and identify by block number) | | | | | | | | | | Attached. = | DTIC | | | | | | | | | | } | | | | | | ELE | CTF | | | | | | | | | | | | | i | | | | | | JOF 5 | 7 1988 🔝 🥞 | | | 1 |) H | 20 DISTRIBUTION / AVAILABILITY OF ABSTRACT ■ UNCLASSIFIED/UNLIMITED □ SAME AS RPT □ DTIC USERS | | | 21 ABSTRACT SECURITY CLASSIFICATION Unclassified | | | | | | | 22a NAME OF RESPONSIBLE INDIVIDUAL | | | | | STTTEU
(include Area Code) | 22c OFFic | E SYMBOL | | |] | | | | | | | | | OFFICE OF NAVAL RESEARCH Contract N00014-85-K-0712 R&T Code 413a001---01 Replaces Old Task #056-123 Technical Report No. 6 A Conducting Polymer Formed from the Anodic Oxidation of Toluene in Acetonitrile Prepared for publication in J. Chem. Soc., Chem. Commun. by K. Ashley, D. B. Parry, J. M. Harris, and S. Pons Department of Chemistry University of Utah Salt Lake City, UT 84112 July 15, 1988 Reproduction in whole, or in part, is permitted for any purpose of the United States Government * This document has been approved for public release and sale; its distribution is unlimited. A Conducting Polymer Formed from the Anodic Oxidation of Toluene in Acetonitrile. Kevin Ashley, Department of Chemistry, San Jose State University, San Jose, CA, USA 95192, Diane B. Parry, Joel M. Harris, and Stanley Pons, Department of Chemistry, University of Utah, Salt Lake City, UT, USA 84112. As opposed to the much harsher conditions demanded in homogeneous solutions, a conducting polymer of toluene is readily formed by anodic oxidation of acetonitrile solutions containing the precursor. The fabrication of new conductive polymers is of interest due to the potential practical applications of these materials. We report here the electrochemical polymerization of a conducting polymer from toluene precursor. Anodic oxidation of concentrated solutions (0.5 M) toluene in anhydrous acetonitrile solution containing 0.15 M Bu₄N₅+BF₄ leads to the formation of a highly conductive poly[methylphenylene] polymer film on the surface of a platinum mirror electrode (bulk metal). The polymer can also be formed in solutions of lower toluene concentrations (1-10 mM), but only after successive pulsing or sweeping techniques at high positive potentials (>1.8 V vs Ag/Ag^t) for long periods of time. Preliminary electrochemical experiments for the formation and characterization of the film were carried out in dry acetonitrile (nominal water content <0.005%) with Bu₄NBF₄ electrolyte, which had been freshly recrystallized twice from methylene chloride-diethyl ether and dried in vacuo at 75°C for 24 h. Solutions were degassed with and carried out under Ar. Films were formed in the range of thicknesses 0.5-5 microns. Figure 1 shows the cyclic voltammetry of a typical solution. The irreversible wave is similar to those observed in the anodic oxidation of pyrrole to polypyrrole¹, or biphenyl to poly[p-phenylene]² in similar electrolytes. At high positive potentials, a brassy film is rapidly formed on the surface of the electrode, and streaming of unprecipitated solid product away from the surface is observed. Continued growth of the film is observed on subsequent potential scans as evidenced by the behavior of the current on the anodic excursion and darkening of the surface film. Slight attenuation of the current after several scans is similar to that observed in polypyrrole formation². As has been observed and reported previously, these films are doped during the oxidation with the BF₄ anion²⁻⁴; infrared spectra confirm the presence of the electrolyte within the film. Figure 2 shows the transient spectroelectrochemistry at 420 nm for the formation of the polymer film at a platinum mirror electrode upon application of a +2.2 V (vs Ag/Ag⁺) potential step from 1.0 V. We note that the shape of the forward transient is linear in time. If the potential is then returned to 0.0 V, the absorbance falls only slowly. This is typical behavior for an irreversibly formed adherent polymer film at the surface. At high concentrations of the precursor, the reaction is virtually first order with respect to the coupling of the hydrocarbon free radicals, and the total amount of product formed is linear over this time interval. An increase in the solution acidity, as evidenced by the appearance of a proton reduction wave at -0.2 V, is direct evidence for the formation of the toluene free radical species from the initially formed toluene cation radical^{5,6}. Figure 3 shows the voltammetry of a typical polymer film electrode which has been removed from the synthetic cell to a cell containing only the electrolyte solution. Again, the film behaves similarly to other conducting polymer films^{4,7,8}. In the present case, the film is oxidized at about +1.8V, and a significant capacitative component to the current is observed (notice sudden decrease in current at the positive potential switching potential). The oxidation of the film also results in the coupled chemical formation of other insoluble polymeric forms in the matrix; continued proton loss from the initially formed polymer film is observed at potentials where the film is oxidized. This indicates that the polymer anions formed under these conditions are still unstable with respect to further cross-linking or to the formation of multiple pi bonded polymer products. The voltammetry of the film changes only slowly over continued scanning, indicating the sluggishness of the oxidation of the total film. The film is reduced at about -1.0 V, and breaks down rapidly after sweeps to higher negative potentials. Preliminary measurements of the conductivity give a value of approximately 0.1 S/cm. The film demonstrates an electrochromic effect. Figure 4 shows the change in absorbance at 420 nm of the film upon anodic oxidation. Unlike poly(p-phenylene) the effect is irreversible (note the constant value of the absorbance when the potential is switched back to 0.0 V). This corroborates the assumption of chemical irreversibility of the film oxidation under these conditions. This result together with the voltammetric results and the previous spectroelectrochemical results (Figure 2) indicates that the product of the oxidation is also conductive, and that electron transfer to the outer layers of the initially formed film is slow. Raman scattering studies from the film shows bands at 1338,1362,1395, and 1610 cm⁻¹; strong fluorescence from the film may obscure other bands. The Raman shifts are similar to those observed for poly(phenylene). The conductivity of the polymer film is lower than that of poly(phenylene); conductivity values as a function of type of electrolyte dopant and a full characterization of the system will be reported elsewhere. It may be that poly(o-phenylene) type products are formed; these types of polymers are the primary products in the homogeneous solution oxidation of toluene¹⁰. ## **ACKNOWLEDGEMENTS** We thank the Office of Naval Research for support of this work. K.A. thanks the San Jose State University Foundation for a starter grant. ## **REFERENCES** - 1. M. L. Marcos, I. Rodriguez, and J. Gonzalez-Velasco, Electrochim. Acta 1987, 32, 1453. - 2. J. F. McAleer, K. Ashley, J. J. Smith, S. Bandyopadhyay, J. Ghoroghchian, E. M. Eyring, S. Pons, H. B. Mark, Jr., and G. Dunmore, J. Mol. Electron. 1986, 2, 183. - 3. S. Aeiyach, J. E. Dubois, and P. C. Lacaze, J. Chem. Soc. Chem. Commun. 1986 1668. - 4. M. Satoh, M. Tabata, K. Kaneto, and K. Yoshino, J. Electroanal. Chem., 1985, 195, 203. - 5. E. M. Genies, G. Bidan, and A. F. Diaz, J. Electroanal. Chem., 1983, 149, 101. - 6. A. Bewick, G. J. Edwards, J. M. Mellor, and S. Pons, J. Chem. Soc., Perkin II Trans. 1977, 1952. - 7. T. A. Skotheim, S. W. Feldberg, and M. B. Armand, J. Phys. (Paris) 1983, C3, 270. - 8. K. Ashley, PhD Thesis, University of Utah (1987). - 9. K. Ashley, D. B. Parry, J. M. Harris, S. Pons, D. N. Bennion, R. Lafollette, J. Jones, and E. J. King, Electrochim. Acta, submitted. - 10. P. Kovacic and J. S. Ramsey, J. Polym. Sci., Part A-1, 1969, 7, 111. ## FIGURE LEGENDS - 1. Voltammetry of toluene (0.5M) in 0.15M tetra-n-butylammonium tetrafluoroborate in acetonitrile at a platinum mirror disk electrode. Sweep rate is 50mV s⁻¹. - 2. Absorbance transient at 430nm following a potential step from + 1.0 to + 2.2V to the system described in Figure 1. The transient is the average of 10 experiments. - 3. Voltammetry of an approximately 1 micron thick polymer film electrode in the pure electrolyte solution. Sweep rate is 100 mV s⁻¹. - 4. Absorbance transient at 420nm following a potential step from +1.0 to +2.0V on a polymer film formed from the system described in Figure 1. The transient is a single scan. Figi Fy FDH