
Technical Report
CMU SEI-88-TR-8
ESP-TR-88-009

Carnegie-Mellon University

Software Engineering Institute

i

i
i

A Guide to the Assessment of Software
Development Methods

BUI Wood
Richard Pethla

Lauren Roberts Gold
Robert Firth

April -1988

\

AbAi^H

Preliminary Report
CMU/SE1-88-TR-8

ESD-TR-88-009
April 1988

A Guide to the Assessment of Software
Development Methods

Bill Wood
Richard Pethia

Lauren Roberts Gold
Robert Firth

Tools and Methodologies tor Real-Time Systems Project

Approved for public release.
Distribution unlimited.

Software Engineering Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

This technical report was prepared for the

SEI Joint Program Office
ESD/XRS
Hanscom AFB, MA 01731

The ideas and findings in this report should not be construed as an official

DoD position. It is published in the interest of scientific and technical

information exchange.

Review and Approval

This report has been reviewed and is approved for publication.

FOR THE COMMANDER

Karl H. Shingler
SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense.

This document is available through the Defense Technical Information Center. DTIC provides access to and transfer of
scientific and technical information for DoD personnel, DoD contractors and potential contractors, and other U.S.
Government agency personnel and their contractors. To obtain a copy, please contact DTIC directly: Defense Technical
Information Center, Attn: FDRA, Cameron Station, Alexandria, VA 22304-6145.

Copies of this document are also available through the National Technical Information Services. For information on
ordering, please contact NTIS directly: National Technical Information Services. U.S. Department of Commerce,
Springfield, VA 22161.

Table of Contents
1. Introduction 1

2. Context 3
2.1. Key Aspects 3
2.2. Development Stages 3
2.3. Views of the System 4
2.4. Classification Scheme 5

3. System Characteristics 7
3.1. Operational Characteristics 8

3.1.1. Functional 8
3.1.1.1. Environment 8
3.1.1.2.1/0 8
3.1.1.3. Data Transformations 9
3.1.1.4. Math Representations of Engineering Phenomena 9

3.1.2. Behavioral 9
3.1.2.1. Modes and States 9
3.1.2.2. Capacity, Workload, and Performance 10
3.1.2.3. Human Interface 11

3.2. Structural Characteristics 12
3.2.1. System Architecture 12

3.2.1.1. Distributed Processing 12
3.2.1.2. Robustness 12

3.2.2. Data Modeling 13
3.2.3. Language Platform 13

4. Constraints 15
4.1. Software Architecture 15

4.1.1. Modularity 16
4.1.1.1. Size and Complexity 16
4.1.1.2. Coupling 16
4.1.1.3. Cohesion 17

4.1.2. Information Hiding 17
4.1.3. Exception Handling 17

4.2. Integration and Test Constraints 18
4.3. Evolution Constraints 18

5. Representations 21
5.1. Abstraction 21
5.2. Consistency 22
5.3. Completeness 22
5.4. Complexity 22
5.5. Traceability 23
5.6. View Integration 23

CMU/SEI-88-TR-8

5.7. Ambiguity
5.8. Duplication
5.9. Changes
5.10. Compliance with Standards

6. Deriving Representations
6.1. Partitioning
6.2. Refinement
6.3. Elaboration
6.4. Reuse
6.5. Evaluation of Alternatives

7. Examining Representations
7.1. Examination Goals

7.1.1. Feasibility
7.1.2. Conformance
7.1.3. Safety

7.2. Examination Techniques
7.2.1. Walkthroughs and Inspections
7.2.2. Analysis
7.2.3. Testing
7.2.4. Data Extraction, Reduction, and Analysis

8. Management Characteristics
8.1. Process
8.2. Cost

9. Problem Areas
9.1. Experienced Personnel
9.2. Transformation Across Stages
9.3. Feasibility Analysis
9.4. Development Constraints
9.5. Large-Scale Problems
9.6. User Interface
9.7. Implementing Designs

10. Conclusion

24
24
24
25

27
27
28
28
29
29

31
31
31
32
32
32
33
33
34
34

35
35
36

39
39
40
41
42
43
43
44

47

CMU/SEI-88-TR-8

List of Tables

Table 2-1: Stages of Development

CMU/SEI-88-TR-8 III

A Guide to the Assessment of Software Development
Methods

Abstract. Over the past decade, the term "software engineering method" has been
attached to a variety of procedures and techniques that attempt to provide an orderly,
systematic way of developing software. Existing methods approach the task of
software engineering in different ways. Deciding which methods to use to reduce
development costs and improve the quality of produced products is a difficult task. This
report outlines a five step process and an organized set of questions that provide
method assessors with a systematic way to improve their understanding and form
opinions on the ability of existing methods to meet their organization's needs.

1. Introduction
This is the third report in a series of reports concerned with classification and assessment criteria
for software development methods and tools. The first two reports describe guidelines for
classifying and evaluating software engineering tools [Firth 87a], and a classification scheme for
software development methods [Firth 87b]. This (third) report describes issues in assessing
methods for use in the specification and design of real-time software systems. Throughout this
report, the term "development" is used in the restricted sense of specification and design.

Over the past decade, the term "software engineering method" has been attached to a variety of
procedures and techniques that attempt to provide an orderly, systematic way of developing
software. Existing methods such as Design Approach for Real-Time Systems [Gomaa 86];
Problem Statement Language/Problem Statement Analyzer[Teichrow 77]; Jackson System
Design [Cameron 83]; Object-Oriented Design [Booch 83]; and Structured Analysis, Structured
Development with Real-Time Extensions [Ward 85] (see [Firth 87b] for additional examples);
approach the task of software engineering in different ways and prescribe different techniques.
Some, such as Distributed Computing Design System [Alford 85], attempt to cover a broad range
of activities while others, such as Statecharts [Harel 86], focus on particular areas that
traditionally have been especially troublesome.

An assessor of methods is basically concerned with answering the question: What is a good
software engineering method that my organization can use to reduce development costs and
produce quality products? Answering this seemingly simple question is, however, a difficult task
given the diversity of existing methods and the complexity of software engineering. In addition,
methods alone provide no guarantees of productivity improvement or of high quality in the
software product. Methods, procedures, and techniques are valuable only if those who use them
understand their underlying concepts and apply them with thought and judgement.

The rest of this report describes a five step process (outlined in [Firth 87b]) to be used in
evaluating methods. The five steps are:

1. Needs Analysis - Determine the important characteristics of the system to be
developed and how individual methods help developers deal with those

CMU/SEI-88-TR-8

characteristics. Chapter 3 emphasizes the need to evaluate individual methods by
their ability to deal with specific engineering problems.

2. Constraint Identification - identify the constraints imposed on the permitted
solutions and determine how individual methods help developers deal with those
constraints. Chapter 4 reminds the assessor that methods must support
developers' efforts to design systems that exhibit a variety of required
characteristics.

3. User Requirements - Determine the general usage characteristics of the individual
methods. As described in Chapter 2, a method can be examined by developing an
understanding of: how it represents a system under development, the guidelines it
gives developers to derive the representations, and the guidelines it provides to
examine the representations. This understanding is best developed by applying the
method to a sample problem that is representative of the system to be developed.
Chapters 5, 6, and 7 discuss representations, deriving representations and
examining representations in turn.

4. Management Issues - Determine the support provided by the method to those who
must manage the development process as well as the costs and benefits of
adopting and using the method. Chapter 8 emphasizes the need to recognize that
methods are used within particular organizations that have established ways of
conducting business.

5. Introduction Plan - Develop an understanding of the issues that the method does
not address and a plan to augment the method in areas where it is deficient.
Chapter 9 reinforces the notion that methods do not guarantee success and points
out several problem areas in existing methods and their use.

Chapters 3 through 9 of this report each contain an organized set of topics supported by a list of
questions for each topic. The questions have the following characteristics.

LSome are rhetorical and do not require answers. These serve to remind the
assessor of important software engineering issues and the need to form opinions
on how individual methods address the issues.

2. Some require an understanding of the method alone and emphasize the need to
examine individual methods thoroughly.

3. Some require that the method be applied to a problem or set of problems;
demonstrating the need to match the method to the engineering problem at hand.

4. Some require that the assessor form opinions on the needs of those involved in the
development process and how they would use a method to satisfy those needs.
These emphasize the need to use selected methods with judgement and
understanding.

There has been no attempt to reduce the evaluation of methods to a completely objective process
supported by a list of questions with quantifiable answers. To do so would oversimplify what is
and must be viewed as a difficult task in which a large number of tradeoff decisions must be
made. By using the framework and questions provided in this document, method assessors will
have a systematic way to improve their understanding and form opinions on the ability of existing
methods to meet their organization's needs.

CMU/SEI-88-TR-8

2. Context
This chapter contains a discussion of a framework for the comparison of methods. The
framework is introduced here to lend focus to the remainder of the report and to introduce terms
that are used in later chapters. The key aspects of the methods are discussed first, then a two
dimensional method classification scheme is introduced. A more detailed discussion of methods
is available in [Firth 87b].

2.1. Key Aspects
In general, a method is "a systematic procedure, technique, or mode of inquiry employed by or
proper to a particular discipline or art [Webster 81]." When applied specifically to software
engineering, it could be defined as a systematic approach to providing a software solution.
Ideally, the method should cover all aspects of the problem and, in context of software
engineering, should lead from and initial (imperfect) set of requirements to a satisfactory
implementation, passing systematically through intermediate stages.

At all stages in the development process, a representation of the system must be created. It is
important to understand how the method contributes to this process. A detailed understanding of
individual methods can be obtained by examining each method from three points of view, namely:

1. What is the content and form of representation of the artifacts dictated by the
method? Desirable characteristics of representations are discussed in Chapter 5.

2. What procedures or techniques does the method provide for deriving the
representations? Chapter 6 addresses the issue of deriving representations, and
discusses five major areas where a method should provide guidance.

3. What procedures or techniques does the the method provide for examining the
representations? Representations are typically examined in a variety of ways for
several reasons. Chapter 7 discusses examinations and elaborates on the goals of
examinations and the techniques for conducting examinations.

2.2. Development Stages

One axis of the classification scheme deals with the software development process and a
large-grained view of development stages. The different development stages are enumerated
below. Each development stage is characterized by what it represents and the way it represents
it.

1. The requirement is a description of what the end-user audiences view as their
needs and is often a rather eclectic description. It usually covers the needs of each
audience in the end-user community in a very uneven manner, with some aspects
(such as ease of installation) often overlooked. It often describes some functions
(such as a scheduling mechanism) in very general terms, but others (such as a
communications protocol) are discussed thoroughly. There are often important
requirements that are not addressed, and they need to be exposed and handled as
they arise. The earlier^ these issues are addressed and resolved, the better the
prospect of delivering a high-quality product within budget and schedule.

CMU/SEI-88-TR-8

2. The first step is to take the ambiguous, incomplete, and inconsistent requirement
and turn it into an almost flawless specification. This is not yet possible with
current technology, but there are many reasonable ways of proceeding that give a
serviceable specification. The specification describes what the software is to do
and the constraints to be imposed on the designers. It should be noted that
production of the specification is not limited to a front-end activity, but that the
specification will change throughout the life cycle of the system.

3. The design representation describes how the system is structured to satisfy the
specification. It describes the system in a large-grained manner and defines the
breakup of the system into major tasks. It describes persistent data objects and
their access mechanisms, the important abstract data types and their encapsulation
in the heavyweight tasks, and the message structures between the tasks. There
must also be some consideration for how the resources are to be allocated and how
the performance requirements are to be satisfied.

4. The final development stage is implementation with source code, object code,
resource usage, and initialized data structures. This is the level at which algorithms
are represented explicitly.

2.3. Views of the System

The second axis of the classification scheme deals with various views of the system. As
suggested in [Harel 86] these views are needed to describe the system's intended and actual
operation. The views are relevant at each stage of the system's development and are
enumerated below.

1. The functional view shows the system as a set of processes operating on data.
This includes a description of the task performed by each process, the flow of data
between processes, and the underlying math model, if required. The functional
view is often the starting point for the design process, since it deals with what the
system is supposed to do, relates the system to its environment, and focuses on
the needs of the key participants in the development process: customers, users,
and developers.

2. The structural view shows how the system is put together: the system's
components, the interfaces between them, and the distribution and flow of data and
control between the components through the interfaces. It also shows the
environment and the interfaces and information flows between it and the system.
Ideally, the structural view should be an elaboration of the functional view. Each
entity in the latter view is decomposed into a set of primitive software components
that can be implemented separately and then combined to build the entity. The
design process therefore generally converts a functional view into a structural view.
However, the structure of a system is influenced by resource constraints that
prevent the use of arbitrarily many or arbitrarily large components. The structure is
also influenced by certain implementation constraints that require the use of specific
types of component (e.g., MIL-STD-1750a processors), or require that components
be connected in a specific manner (e.g., by MIL-STD-1553 buses). The structural
view should include a definition of the number and dimensions of entities to allow
for resource estimates.

3. The behavioral view shows the way the system will respond to specific inputs:
what states it will adopt, what outputs it will produce for each combination and time
sequence of inputs and state transitions, what boundary conditions exist on the
validity of inputs and states. This includes a description of the environment that is

CMU/SEI-88-TR-8

producing the inputs and consuming the outputs. It also includes constraints on
performance that are imposed by the environment and function of the system.
Real-time systems especially have performance requirements as an essential part
of their correct behavior. The behavioral view should include a definition of the
expected workload and the required responses of the system to this workload.

Ideally, the behavioral view should complement the functional view. Each transaction in the
functional view should be traceable through the system from the initial input through the
interfaces and functional units to the final output.

2.4. Classification Scheme
The classification scheme shown in Table 2-1 uses the system stages (specification, design,
implementation) on one axis, and the views of the system (behavioral, functional, and structural)
along the other axis. The requirements stage is not included, since it is informal, and the authors
of this report believe there is little to be gained by including it. A high-level classification of a
method can be obtained by determining if it supports the activities of a particular stage and, for
each stage supported, whether or not the method provides a means to represent each of the
three views. In addition, as discussed in Chapter 3, the same framework can be used to identify
the operational characteristics of a system to be developed.

CMU/SEI-88-TR-8

Views
of the

System

Specification Design Implementation

Functional

Structural

Behavioral

Table 2-1: Stages of Development

CMU7SEI-88-TR-8

3. System Characteristics
It is important to consider the characteristics of a system when choosing a method to use in its
development. A method that is suitable for one system may be unsatisfactory for another. For
example, real-time systems deal with the processing of data by a computer in connection with
another process outside the computer according to time requirements imposed by the outside
process [IEEE 83]. "Real-time systems typically sense and control external devices, respond to
external events, and share processing time between multiple tasks. Processing demands are
both cyclic and event driven in nature [Fairley 85]." Real-time systems are very different from, for
example, batch oriented, data processing systems where the rate of data input and output is
controlled by the system rather than by an external process. Methods suitable for data
processing systems need not model an external process or the unique characteristics of devices
that sense and effect the environment. Methods for use in the development of real-time systems
must model both.

One of the first steps in evaluating a method is to characterize the operational system that is to be
built and to understand how the method will help developers deal with each of its characteristics.
Using the framework discussed in Chapter 2, the characteristics of an operational system can be
well described by considering three views of the system: the functional view, the structural view,
and the behavioral view. During the development process, the functional and behavioral views
are developed and gradually transformed to the actual software represented by the structural
view.

Our discussion of these views focuses on the ability of methods to represent the views, analyze
the representations, and provide guidance to developers in deriving the views. General,
system-independent characteristics of methods and their representations are discussed in
following chapters.

Beginning with this framework, the first questions to ask when evaluating methods for
requirements analysis and design are:

1. Does the method allow the representation of all three views?

2. Are the views complementary?

• Can there be integrated views of function and behavior as well as
independent views?

• Are there suggested techniques or rules for deriving the structural view from
the functional and behavioral views?

The discussion on views is divided into two major sections. First, the functional and behavioral
views are discussed in the section on operational characteristics. Second, the structural view and
the constraints often placed on software structure are discussed in the section on structural
characteristics.

CMU/SEI-88-TR-8

3.1. Operational Characteristics

The operational characteristics of a system primarily describe what a system does (functional
view): what functions it performs, what input the system receives, what output the system gives,
and the relation between the inputs and outputs. In addition, operational characteristics also
address when the functions occur (behavioral view); which functions occur under which
conditions, and how quickly inputs are transformed to outputs.

Each of the following subsections deals with one of these views and lists evaluative questions
that should be asked of a method when considering the view.

3.1.1. Functional
The functional view shows the system as a collection of processes operating on data. This view
deals with processes; data flows, including system inputs and outputs; and data stores. The
functional view is discussed below in terms of the environment in which the system operates, the
system's inputs and outputs, and the data transformations performed by the system's processes.

3.1.1.1. Environment
An important characteristic of any system is its relationship to the environment in which it
operates. Specific systems are built to operate in specific environments and these environments
differ dramatically across different types of systems. Characterizing the environment involves
specifying the entities with which the system interacts: users, devices that sense and effect the

environment, communications channels that connect the system to other systems.

1. Does the method provide a representation that clearly draws a boundary around the
system and separates it from its environment?

• Does the representation clearly identify the specific entities that the system
interfaces with?

• Does it provide a mechanism to detail and describe the interfaces between
the system and these entities?

3.1.1.2.1/0
Another system aspect that is dealt with early in the analysis process deals with the
characteristics of the system's individual data inputs and outputs. Initial analysis work often
begins with a hazy picture of the inputs and outputs. In other cases, inputs and outputs are well
defined and detailed since the system must interface with existing devices.

1. Does the method allow the representation of data that flows across these interfaces
using an appropriate level of abstraction?

• Are abstract representations available to describe data flows that are to be
detailed by analysts and designers?

• Are detailed representations available to describe data flows that must meet
rigidly defined interfaces to existing devices or must conform to established
communications protocols?

8 CMU/SEI-88-TR-8

3.1.1.3. Data Transformations
Characteristics of individual data transformations (processes) performed by the system must also
be considered when selecting methods. Different systems or different parts of an individual
system require processes that differ in size, complexity, and dynamic behavior. Development
methods must deal with the characteristics of the processes required in the system.

1. Does the method provide a technique to represent each process including its
inputs, outputs, functions, and the exceptions that it may raise?

2. Does the method provide a representation (decision tables, for example) that allow
analysts and designers to define and detail complex logic when required?

3.1.1.4. Math Representations of Engineering Phenomena
Many of the results of engineering studies associated with systems are represented as
mathematical models of the system operation. These models may represent the kinematics of
motion of relevant objects, detail the processing of received signal data, or describe the
scheduling algorithms used to service asynchronous requests for scarce resources. These
models are derived from engineering studies, and simulation is often used in the development
and validation of the algorithms. Unfortunately, the models are often incomplete, are developed
somewhat independently of the final target environment, and must be carefully incorporated into
the software design. If the algorithms themselves are still under development during the software
design, the method must accommodate this process and provide aids to minimize the associated
risk.

1. If mathematical algorithms must be devised, does the method provide a
representation that is familiar to the algorithm developers and can be understood by
the algorithm implementors?

• Do the representations allow description of the precision and accuracy or the
calculations dictated by the requirements?

• Do the representations allow specification of functionality under adverse
conditions such as loss of data or single sensor failure?

2. Does the method provide techniques to refine and validate the algorithms over
time?

3.1.2. Behavioral
The behavioral view shows the way the system will respond to specific inputs: what states it will
adopt, and what outputs it will produce for each combination and time sequence of inputs and
state transitions. The behavioral characteristics of individual systems vary considerably and an
effective development method must deal with the required characteristics of the system to be
developed. Behavioral characteristics are discussed below in terms of: modes and states;
capacity, workload, and performance, and human interfaces.

3.1.2.1. Modes and States
Real-time systems are, to a large extent, event driven and a system's response to any particular
event is dependent not only on the event itself, but also on a variety of conditions that have
occurred prior to the event. A system's operational state represents an externally observable
mode of behavior [Ward 85] where the system's response to an event or set of events differs

CMU/SEI-88-TR-8

depending on the current operational mode. In addition, real-time systems often change state
based on conditions detected within the system itself, for example, hardware component failure or
input signal overload.

Methods used for the development of systems with these characteristics must support the
analysis and specification of this type of behavior.

1. Does the method incorporate the concept of describing the behavior of the system
using a state-oriented model?

2. Does the representation of the model include the representation of events, actions,
states, transitions, and guards dictated by the operational environment?

3. Is the model appropriate for the complexity of the system under development?

• Are representations such as event tables and transition tables [Fairley
85] available for simple behavioral models?

• Are representations such as state transition diagrams or Petri-nets available
to describe complex models?

• Can the representations for complex models be partitioned to help
developers deal with the complexity and the math formulations?

4. Can stimulus/response relationships be represented in a time-dependent manner?

5. Does the method allow representation of the relationship between the behavioral
model and the functional model?

3.1.2.2. Capacity, Workload, and Performance
Real-time systems react to events occurring in their environment and data provided by the
environment. Events occur in periodic or aperiodic intervals and data from different sources is
available at distinct points in time or continually. In addition, different events may occur and need
to be processed concurrently.

Capacity, workload, and performance are three related characteristics all dealing with the ability
of a system to process its inputs to produce outputs over a defined period of time. The capacity
of the system can be described by defining all of the entity types required in the system, the
relationships between those entities, the attributes associated with each entity type and
relationship, and the number of instances of each entity type. The workload is a measure of the
amount of work presented to the system. Workload must be defined according to a time line so it
can be analyzed frame by frame. The required performance characteristics define the constraints
on processing specific elements of the workload.

Consider a display system, for example. The capacity of the system may be described by stating
that there are two types of displays, tabular and graphical, with 200 tabular displays and 500
graphical displays. The tabular displays may contain up to 8 columns and 30 rows of numbers or
character strings, and the graphical displays may contain up to 20 interconnected entities, with
each entity and connector having up to 4 text strings or numbers describing its values. The
workload of the system may state that at each of five operator stations, the operator may request
up to five displays per minute. The required performance may be described by stating that a
selected graphical display must be displayed completely to the operator within two seconds of

10 CMU/SEI-88-TR-8

selection, and a tabular display within three seconds of selection. These response times should
be adhered to when simultaneous selections at five active stations are made.

These characteristics can be specified for normal loading, the most likely load, and for stressful
(exceptional) operating conditions. In addition, fallback and recovery modes must be accounted
for. Building a system to meet only the normal load often leaves the human operator in a situation
of dealing with the stressful conditions with little help from the automated system. On the other
hand, building a system that handles all overload conditions simultaneously is unwise and very
expensive. It is often true that some operations can be postponed, delayed, or ignored during
such conditions.

Questions regarding the ability of a method to deal with capacity, workload, and performance are
listed below.

1. Does the method allow the representation of periodic and aperiodic events?

2. Does the method allow the representation of discrete and time continuous data?

3. Does the method allow the representation of input rates and bounds on those
rates?

4. Does the method allow the representation of concurrent processes?

• Does the method allow the representation of synchronization between
concurrent processes?

• Does the method provide analysis techniques for synchronization between
communicating processes, mutual exclusion for shared resources, deadlock?

5. Does the method provide a representation that captures capacity requirements for
individual entities?

• Can this representation be related to the time line so that total capacity
required to meet performance constraints can be derived?

6. Does the method provide representations that capture performance requirements?

• Does the method allow the representation of relative as well as absolute time
constraints; e.g. action A occurs within two milliseconds after the occurrence
of event B?

• Does the method provide techniques to analyze these representations to
determine if the performance requirements will be met under normal
conditions; under all conditions?

7. Does the method assist the developer in handling exception, fallback, and recovery
conditions?

8. Does the method encourage using the behavioral model to specify system
operation under overload conditions?

3.1.2.3. Human Interface
An especially important characteristic of many real-time systems is the system's interface to its
human operator. The human interface is significantly- different from other types of system
input/output interfaces and requires separate attention in any development effort. A system's
success or failure often depends on its human interface characteristics. Since this is an area that
is not well covered by most methods, it is discussed in more detail in Chapter 9, Problem Areas.

CMU/SEI-88-TR-8 TT

3.2. Structural Characteristics

A system's software is structured from a set of components and the interfaces between the
components. A structural view of the system is concerned with the individual components, the
interfaces between them and the distribution and flow of data and control between the
components through the interfaces. As stated in [Statemate 87], the structural view is concrete
and can be thought of as implementing the functional and behavioral views, which are more

abstract.

A system's software structure is influenced by a variety of factors and a development method
should account for these factors. Certain structural characteristics are desirable regardless of the
type of system being developed and are discussed in the Chapter 4. Other characteristics are
influenced by factors such as the overall system architecture and the implementation language
platform, which vary across systems under development. Development methods, to be effective,
should help developers deal with these system dependent characteristics.

3.2.1. System Architecture
One factor that plays a major influence on the structure of real-time software is the hardware
architecture of the overall system of which the software is a part. Because of severe performance
requirements, needs for extreme reliability in harsh environments and the state of existing
hardware technology, hardware architectures that support software in real-time systems often
have the following special characteristics: distributed processing and robustness.

3.2.1.1. Distributed Processing
Because of the need for processing power or the need for geographic distribution, systems are
often constructed as networks of homogeneous or heterogeneous processors. In addition,
real-time systems often contain devices that sense and effect the environment or special
processors (signal processors as an example) that are customized to rapidly perform particular
data transformations. These processors communicate via special purpose busses, shared
memories, communications lines, or some combination of these devices. Methods, to provide a
complete structural view of the system, must account for these characteristics.

1. Does the method provide representations that describe all elements of the
hardware system?

2. Does the method provide representations that detail the data and signal flow
between the devices?

• Does the representation identify the source of all stimuli and provide a map to
the resulting outputs?

3. Does the method provide modularization guidelines that account for the need to
map specific software modules onto specific hardware devices?

3.2.1.2. Robustness
Systems have varying requirements for robustness: availability and reliability. Robustness
generally is described by probabilistic measures such as mean time to failure and mean time to
repair. Robustness considerations often dictate the system architecture, requiring hardware
redundancy to offer protection from individual hardware component failures. The hardware

12 CMU/SEI-88-TR-8

architecture characteristics dictated by the need for robustness heavily influence the software
structure and the dynamics of the software's operation.

1. Does the method provide representations that describe the mapping of software
components onto hardware components for all operational configurations?

2. Does the method provide techniques to detect and recover from failures?

• Are techniques for defining and implementing error detection and correction
codes provided?

• Are techniques for implementing fault-tolerant software provided?

• Does the method provide techniques to model dynamic system
reconfiguration?

3. Does the method provide techniques to analyze system performance for all
configurations?

3.2.2. Data Modeling
One of the major aspects of a system is its data. The data objects manipulated by the system, the
relationships between them, and the degree of distribution of the data objects are important in
structuring the system. In systems that are primarily concerned with data (for example, DBMS)
there are often many and complicated relationships between the data objects, and it is important
to represent the data in a consistent and complete manner. In systems with less emphasis on
data, there are often fewer and less complicated relationships, and data modeling is usually less
difficult.

1. Does the method provide a data modeling technique, describing all entities and
their relationships?

2. Can this technique represent different views of the data and integrate these views?

3. Can the technique allow for partitioning of the representations, or must they be
coalesced into a single underlying view?

4. Can complex relationships be described in straightforward ways?

5. Does the method provide representations that detail the distribution of data in
distributed processing systems?

3.2.3. Language Platform
A second major factor that influences the structure of a system's software is the need to utilize
"standard" operating systems and language systems in the system's implementation. These
standards are often imposed with the goal of reducing the complexity, development time and life
cycle cost of the system. Each language platform (language, runtime system, operating system)
provides designers with a set of constructs, entities, and mechanisms that they must use to
construct the system's software. Effective methods should assist developers in structuring
software that utilizes these components.

1. Does the structural representation provided by the method map directly to the
structures provided by the language platform?

2. Can the representation be used to detail the interfaces between the application
specific software and the language platform software?

CMU/SEI-88-TR-8 13

3. Do the data structure representations provided by the method map directly to the
data definition forms of the language platform?

4. Do the partitioning and modularization techniques provided by the method lead to
structures that can be efficiently implemented on the language platform?

14 CMU/SEI-88-TR-8

4. Constraints
As stated in [Firth 87b], the task of system developers includes not only the activities of analysis,
decomposition, and understanding of the systems operational requirements, but also includes the
activities of analysis and understanding of the solution's constraints in order to compose a
solution that operates within those constraints.

All real-time software solutions must be designed by considering a variety of constraints:
hardware architecture requirements, implementation language and software platform
requirements, the needs of integration and test teams, and the anticipated needs of those who
will evolve the software system. Meeting these constraints usually is not a simple task and often
involves many separate groups of people. Each group has its own set of requirements and
needs. For example, the end-users who will use the system on a long-term basis will have a
different set of requirements than the integration and test team or the software developers.
Often, these needs conflict with one another, so that the needs of one group cannot be fully
satisfied unless the needs of another group are compromised. Throughout the software life cycle,
decisions must be made constantly and iteratively to determine the optimal software solution. A
method can help this continuous evaluation of constraints and solutions in a number of ways:

• By representing the system so that all groups in the development life cycle can
understand the tradeoffs involved in order for the system to meet certain constraints.

• By providing a means to segregate and identify the source of the individual
constraints: customer, user, hardware availability.

• By representing the system so that all groups in the development life cycle can
understand the parts of the system with which they are not involved, so that they can
formulate requirements that are realistic, feasible, and work within the boundaries of
existing system requirements.

• By helping developers analyze these tradeoffs to understand the impact of a
particular requirement on the entire system and to evaluate alternatives in order to
generate a system that meets its constraints.

• By guiding developers towards solutions with characteristics that are known to
reduce the complexity and cost of development and maintenance tasks.

Several constraints were discussed in the section on structural characteristics of Chapter 3. This
chapter deals with additional areas that must be considered when evaluating methods. Effective
methods should support developers efforts to compose and implement an acceptable solution.

4.1. Software Architecture

It has long been recognized that a major portion of the expense of developing and using software
comes from the activities of integration and test of the software and evolving the software after its
initial use[Boehm 76J. Certain general characteristics of software architectures have been
recognized as valuable in reducing these costs. Architectures that exhibit these characteristics
tend to be easier and less expensive to implement, test, and maintain.

The various processes and data structures defined during the requirements analysis and

CMU/SEI-88-TR-8 15

specification activities must be packaged in a manner that promotes testing and maintenance.
Packaging involves grouping components together and defining the interfaces between the
packages. The packaging process involves making many tradeoff decisions but should, to the

largest extent practical, lead to an architecture that exhibits the interrelated characteristics of
modularity, information hiding, and clearly identified exception handling. Detailed discussions of
these characteristics can be found in a variety of texts including [DeMarco 79], [Fairley 85], and
[Habermann 83]. This section lists desirable attributes of design methods that should be

considered.

4.1.1. Modularity
Modularity deals with the physical composition of a system: its components and their interfaces.
Each component should be well defined and of manageable size and complexity. The interfaces
between the modules should also be well defined and designed to minimize the complexity of the
connections between modules, thereby enhancing the clarity of the design. The concepts of size,
complexity, coupling, and cohesion can be used to describe the desirable properties of modular

systems.

4.1.1.1. Size and Complexity

The basic need underlying the concept of modularity is the need to partition systems into a
number of separate, manageable pieces. While it may be possible for a single designer to
successfully implement and maintain a small program, it is generally not possible to construct a
software system as one monolithic piece. A design method should encourage partitioning a
system into pieces of manageable size and complexity.

1. Does the method provide techniques to partition the system into manageable
pieces?

• Do these techniques promote the notion of limiting the size of individual
modules so they can be easily understood?

• Do these techniques promote limiting the complexity of individual modules?

2. Does the method provide a representation that describes each piece?

3. Does the method provide a representation that describes the interfaces between
the pieces?

4.1.1.2. Coupling
A software system should be structured to minimize the number and complexity of connections
between its modules. The term coupling is often used to describe the interdependence of
modules. Systems that exhibit low coupling of modules are generally easier to test and maintain.

1. Does the method provide packaging techniques that lead to minimal coupling
between modules?

• Does the packaging technique discourage the use of common data
structures?

• Does the technique encourage the use of passed parameters?

• Does the technique encourage the localization of control decisions?

2. Does the method's design representation enforce reference to other modules by
name rather than by elements internal to the referenced modules?

16 CMU/SEI-88-TR-8

4.1.1.3. Cohesion
Cohesion is a measure of how strongly the various elements of a module are associated with
each other. To simplify the tasks of test and maintenance, modules should be composed of
elements that are strongly associated with each other. Cohesion of elements can be described
using the scale provided in [Fairley 85] where modules exhibiting the greatest cohesion are the
most desirable.

1. Does the method provide a modularization technique that leads to modules of high
cohesion?

• Does the method encourage grouping together elements that are all related
to performing a single function?

• Does the method encourage grouping together elements that are related to a
single real-world object?

• Does the method encourage encapsulating major data structures in modules
with procedures to manipulate the data?

2. Does the method provide rules for examining the design representation that assist
developers in determining the cohesion of the modules?

4.1.2. Information Hiding
Information hiding deals with the desirable "black-box" nature of individual modules. Information
hiding suggests that any program or module should be viewed in terms of its inputs and outputs
only. Details of encapsulated data structures, algorithms, or the structure of the module itself
should be hidden from other modules. It should not be necessary to deal with the internal details
of a module in order to use it.

1. Does the method provide a modularization technique that encourages the use of
information hiding?

2. Does the method provide a design representation that separates module interface
information from module implementation information?

4.1.3. Exception Handling
A special area of concern in designing systems is how the system handles errors—exceptions to
normal operations. Exceptions include such things as improper data values, input data rates out
of defined bounds, attempts to operate on unavailable data, etc. Most exceptions must be
recognized and processed by the applications software, rather than the underlying run-time
system or operating system, since only the applications software "understands" the context in
which the error occurred and the possible actions that can be taken to recover from the error.

Exception handling software should be clearly separated from the "normal" software. Mixing the
two together significantly increases the complexity of the software and may lower its reliability.

1. Does the method emphasize the need and provide guidance in separating normal
processing from exception handling?

2. Can the method's design representations be used to capture and represent this
separation?

3. Does the method's behavioral model account for the need to model exceptions?

CMU/SEI-88-TR-8 17

4.2. Integration and Test Constraints
During integration, the various subsystems (collections of modules with defined interfaces) that
comprise the software are tested to ensure that they all work together. Integrators should be able
to understand the requirements that each module or subsystem meets in order to design test
suites and to ascertain whether a group of modules do indeed work together properly. Often test
suites are defined in parallel with the system. Testers must understand the system
characteristics and the characteristics of the environment within which the system will operate in
order to develop effective test suites. In addition, since target system hardware is often not
operational until late in the development cycle, initial testing is often performed on special
integration systems that simulate the target system.

Integration teams and/or quality assurance teams often consist of people other than those who
developed the software. Representations generated during development should thoroughly
describe the function and behavior of the system as well as model the environment in which it
operates so that testers can more easily identify and isolate problems.

1. Do the representations describe the intended function and behavior well enough so
that separate teams can use them to test the system?

2. Does the method provide representations that model the system's environment to
allow testers to develop real-world test scenarios?

3. Can the method be employed to design and document test cases?

4. Can test teams trace from requirements through the representations to develop test
cases for modules and subsystems?

5. Does the method provide guidance on extrapolating the results of tests executed
with target system simulators to predict actual characteristics of the software on real
target hardware?

4.3. Evolution Constraints

Real-time systems are not static entities. After a system has been deployed, it will presumably
operate over a long period of time. Over the course of its life software bugs and usage problems
may surface. What was originally thought to satisfy the needs of the user may in fact be
insufficient, or different sets of users may evolve different sets of needs. In addition, over time,
the environment within which the system operates may change, thus affecting the system
requirements and constraints. For example, the system may need to meet new performance or
reliability requirements. This may require that enhancements be made to the software or that
new hardware technologies be used. The software must be able to change to conform to the
needs and constraints that arise over the course of a system's life.

1. Do the methods representations provide maintainers with a "road map" into the
implementation that provides an overview of the system, shows the relationship of
its parts, and allows them to focus quickly on areas of interest?

2. Do the representations help maintainers determine the scope of effect of a
proposed change to a particular module or set of modules?

3. Does the method provide a modularization technique that partitions hardware-
dependent and hardware-independent functions into separate modules?

18 CMU/SEI-88-TR-8

4. Does the modularization technique lead to architectures that accommodate small
changes to the system's timing requirements without major redesign?

5. Does the method promote the notion of abstraction of hardware device functions
into logical operations to support the replacement of devices over time?

6. Does the method provide techniques for organizing its representations to support
the evolution of the system into multiple versions?

CMU/SEI-88-TR-8 19

20 CMU/SEI-88-TR-8

5. Representations
Any evaluation of a method must focus on how well the method can be used by system
engineers, analysts, and designers to assist them with the complex tasks of requirements
analysis, and specification and design. During the development process the system under
development must be modeled from a behavioral, functional, and structural view. These models
must capture and record the various characteristics of the system. They should, in addition,
exhibit the characteristics described below.

5.1. Abstraction

The essence of abstraction is to extract essential properties while omitting inessential details
[Ross 75]." Abstraction allows the designer to concentrate on each representation, at various

levels of detail. The designer can more easily think about complex problems in a hierarchical
manner by abstracting away from the details: thinking about the problem at a high level first, and
then proceeding on to the next lower level. This may also make finding problems with the
representations easier, as problems concerning a particular piece of data can be isolated at one
level. In addition, a designer may also be able to define one high-level representation for similar
objects, and differentiate those objects at a lower level of the representation. Abstraction
supports the notions of information hiding [Parnas 72]. With information hiding, details that do not
affect the system at a particular level of abstraction are made inaccessible. Representations at
any given level have access to the bare minimum of information that they need to describe the
system at that level of abstraction. A representation can then be examined at a level that is
appropriate for the reader, so that he does not need to be concerned with details that he does not
need to know about.

1. Does the method define abstraction techniques and give guidance on producing
representations at various levels of abstraction?

• Are data abstraction techniques available to define and represent abstract
data types?

• Are representations available to detail these data types?

• Are procedural abstraction techniques encouraged?

• Does the method supply definitions for commonly used procedural types, e.g.
stacks, queues, bounded buffers?

• Can the user define and record the definition of abstract procedural types of
special use for his applications domain?

2. Do the abstraction techniques include the definition of balancing rules?

• Are developers given rules to use to insure consistency between the levels of
abstraction?

CMU/SEI-88-TR-8 21

5.2. Consistency

The method must help the designer make sure that consistency is maintained between
representations so that "no set of individual requirements is in conflict" [IEEE 83]. The
representations should all be consistent with the requirements of the system, and the method
should help the designer determine that this is true. In addition, the various types of
representation (structural, functional, behavioral) should be derived and expressed in a manner
that encourages consistency between them; that is, they should not contradict each other. The
method should prescribe heuristics to examine the representations for consistency, such as
semantic and syntactic analysis, simulation, and by tracing components back to representations
that have already proven to be consistent.

LDoes the method provide guidelines for analyzing representations to insure
consistency within each representation?

2. Are representations expressed in a manner that allows for consistency checking
between them?

3. Does the method encourage the use of a common glossary or dictionary to protect
against naming clashes between entities?

4. If hierarchical representations are available, does the method encourage the
technique of using one level of representation to derive a template for the next
lower level?

5.3. Completeness

A representation is complete if all the necessary elements that describe the system are included.
Completeness, of course, is difficult to formally define and it is difficult to check to see if a
representation is in fact complete. However, the designer needs a mechanism to determine that
all aspects of the system have been represented completely. The method can help by forcing or
encouraging the designer to consider a range of issues when deriving the representations.

• Does the method provide mechanisms to represent, examine or understand such
things as exceptional conditions, boundary conditions, error handling, initialization,
fault tolerance, performance, and resource constraints?

• Does the method provide a mechanism to ensure that all of the requirements for the
system have been met?

5.4. Complexity

A careful distinction must be made between a useful and expressive representation and one that
is cluttered, complicated, and difficult to read and understand. Representations should not be
more complex than the nature of the relationships that they are trying to express. Each
representation should express only a few key concepts and relationships. A cluttered diagram
sometimes indicates that not enough abstraction has occurred or that too many things are being
expressed at once. In addition, although formal notations are able to express information in a
concise manner, they sometimes can be elaborate and cumbersome to use. This is compounded
if the method uses a number of notations that are syntactically and semantically different.

22 CMU/SEI-88-TR-8

1. Are there a manageable number of concepts expressed in a single representation?

2. Does the method provide techniques to partition and decompose complex
representations into sets of simpler representations?

3. Are notations semantically and syntactically simple across representations, and are
the semantics and syntax relatively simple and straightforward to use?

5.5. Traceability
A method should guide the designer in deriving representations at each stage of the development
process, as well as between the levels of each representation within a stage. It should be easy
for the designer or reader to understand and trace through these representations. A designer
must be able to refer to representations that he has done previously, so he may use what he has
done to move forward to the next stage or level in the design. The designer also may need to
look backwards to understand the repercussions of a change at any level. Similarly, others
involved with the software will need to be able to trace backwards and forwards between the
stages and levels of representation in order to verify requirements or to understand the system.
Reusers of software components need traceable representations, for often it is not sufficient for a
designer to simply reuse an existing implementation (a portion of code); the requirements and
design of the component must be included to help the designer understand the function and
behavior of the component.

1. Can readers of the method's representations easily determine the paths between
requirements and implementation?

2. Does the method provide naming conventions for entities across all
representations?

3. Does the method provide notation for relating the name of an entity with the names
of its components?

4. Does each level of a hierarchical representation clearly identify its parent and
children?

5. Does the method encourage recording and provide representations to record the
designers critical decisions, e.g., which processes and data stores have been
pulled together into which packages; which packages model real-world objects?

6. Can a time ordered sequence of events be traced through the representations to
determine the behavior of the system?

5.6. View Integration

A method should allow the designer to specify relationships between representations at different
levels or stages. This way the designer can narrow the problem initially, for example,
concentrating on the behavioral representation of the system and later relating the functional and
structural representations to finish the description of the system. Because the representations
are integrated, the designer may examine what effects a functional change in the system will
have upon its behavior. While representations should be coupled, there should not be a large
amount of redundancy between them.

CMU/SEI-88-TR-8 23

1. Does the method provide techniques for relating one view of the system to another?

2. Do the techniques prescribe a small number of well defined relationships?

3. Do the method's representations clearly identify the relationships?

4. Can developers use the representations to determine how alternatives in one would
effect the others?

5.7. Ambiguity

Completed representations should be clear, precise, and complete to avoid ambiguity. The
designer may at any stage leave portions of the system without representations, however, in the
end these ambiguities must be resolved. The method should allow the designer to derive
representations, leaving some areas temporarily ambiguous. In addition, the form of the final
representation must be well defined so that misinterpretation of the representation is not possible.

1. Does the method prescribe a sequence of steps that allows developers to leave
portions of a representation temporarily incomplete and ambiguous?

2. Does the method provide techniques for examining the representation to insure all
ambiguities have been resolved?

3. Does the method provide representations that are well defined, e.g., do decision
tables contain entries for all combinations of conditions?

4. Can various audiences examine the representations to gain an unambiguous
understanding of the system at the level of detail they are interested in?

5.8. Duplication

Representations should contain a minimum of duplicated information. Information duplicated
between representations often leads to inconsistent system designs, as well as making it
confusing to check for completeness. Certainly, in some instances there will be a need to
redundantly express information, but those instances should be few and carefully chosen. When
duplication is necessary, the method should help developers identify when it occurs.

1. Can you derive representations without expressing the same information over and
over again?

2. Does the method provide a representation that can be used to record the existence
and location of duplicated information; e.g. cross reference table?

5.9. Changes

At any stage in the development process, one should be able to make changes to the
representation of the system in a simple manner. This allows the designer the flexibility to refine,
prune and enhance the design, as well as to evaluate different design alternatives. The
development methodology can assist this evolutionary activity by providing accurate external and
internal system documentation, a well structured software system that is easily prototyped and
modified by those making the system changes [Freeman 83]." It should be easy to add to, delete

24 CMU/SEI-88-TR-8

from, or alter aspects within a particular representation as well as relationships between
representations. The magnitude of change at one level of a representation should be reflected by
changes of similar magnitude at lower levels or between other representations. The designer
should be able trace the effects that these changes might have on other representations.

1. Does the method provide hierarchical forms for all types of representation?

• Can low-level changes be made without necessarily effecting high-level
representations?

• Can high-level changes be made without effecting all lower level
representations?

2. Does the method provide structuring techniques where the scope of effect of any
decision is minimized?

3. Can the repercussions of a change to higher and lower levels of a representation
be traced; across different representations?

5.10. Compliance with Standards
Use of software methods should lead to representations that comply with the applicable
standards wherever it is specified or appropriate. These standards can vary from dictated
languages (Ada) to company, customer, and project imposed standards used for such things as:
intermediate work products used for status and progress reviews; final documentation delivered
with the product; and project defined work products that compensate for known gaps in the
standard development process. In support of this, the following questions should be asked of a
method:

1. Does the method establish and enforce well defined representation standards for
each view at each stage of development?

2. Can the method be tailored to support organizational (customer, contractor, project)
standards, procedures, and paradigms?

3. If the programming language is Ada, does the method deal with the structures of
Ada explicitly?

4. If the development process is to follow the 2167 standard, does the method
produce artifacts (in a timely manner) to satisfy these requirements?

CMU/SEI-88-TR-8 25

26 CMU/SEI-88-TR-8

6. Deriving Representations
The representations provided by a method serve as useful vehicles to organize, record, analyze,
and communicate the requirements and design of a system under development. Requirements
analysis and design are not, however, simply a matter of writing things in fixed format and looking
at the results. Deciding what to include in the representations and how to organize them are
difficult tasks that cannot be reduced to mechanical transcription. Methods should, then, provide
system developers with more than a set of representations. They should also provide a set of
suggested heuristics or techniques to guide the process of deriving the representations.

Existing methods vary widely in the guidance they provide in deriving representations. Some
prescribe a set of well defined activities that are to be performed as a regimented sequence of
steps. Others offer loose collections of suggestions for producing and analyzing the
representations. While rigidly defined activities seem appealing on the surface, it is generally true
that the development of a real-time system is a multifaceted task that does not lend itself to a
lockstep approach. The complexity of many systems and the constraints on the implementation
provide developers with problems that must be solved with the skill and judgement developed
through training and experience.

There are, however, techniques that have been effectively used in the development of real-time
systems. Methods should remind developers of these techniques and offer suggestions on how
to use them. Several of these have been discussed in previous sections since their use can be
demonstrated by examining the representations, e.g., modularity discussed in Chapter 4 and
abstraction discussed in Chapter 5. Others are discussed in Chapter 9, Problem Areas, since
existing methods tend to be stronger in representations than in techniques for deriving them. The
remaining few are described in this section.

6.1. Partitioning

Partitioning is the activity of breaking a representation of a system into a set of smaller
representations while defining the interfaces between them. Partitioning helps the developer by
allowing him to transform large, complex problems into a set of smaller, manageable problems.
Partitioning is a critical part of requirements analysis and design since partitioning decisions
made early in the process have strong effect on all later activities. For example, early decisions
on how to break up a system into subsystems effect not only the architecture of the final
implementation but also the basic manner in which developers view and think about the system
under development.

1. Does the method provide a means to partition the system at all stages?

2. Do the partitioning techniques account for the structure of the problem as well as
the hard implementation constraints?

• Do requirements partitioning techniques lead to structures that can be
understood by system users in terms that are familiar to them?

• Do design partitioning techniques account for distribution, robustness and the
need to utilize existing software packages, e.g., database management
systems?

CMU/SEI-88-TR-8 27

3. Are the suggested techniques flexible enough to allow experienced developers to
examine the alternatives they believe are appropriate?

4. Do the techniques emphasize the need to define the interfaces between the
partitions?

5. Do the techniques suggest partitioning the system so that pieces are independent
enough to allow individual analysts/designers to elaborate and refine the pieces
independently?

6.2. Refinement

Refinement is the process of including more detail in a representation. Usually, the developer
does this hierarchically, with the most abstract level at the top of the hierarchy and each lower
level including subsequently more detail. The method should guide the developer in determining
the amount of refinement that should be included at each level of a representation. Each level
should contain an amount of detail that can be easily understood and managed by the designer
and should be consistent with the amount of detail that is contained in other representations at
the same level.

1. Does the method guide the designer in determining the amount of detail to include
at each level of a representation?

2. Is the amount of detail consistent across levels of different representations?

6.3. Elaboration
Elaboration of a representation occurs when developers add more functionality to a partial
representation. Developers should be able to partially derive a representation, leaving some
areas of the representation unfinished, and elaborate it at a later time. The developer should be
able to use the same heuristics to derive the unfinished part of the representation so that it is
consistent with the previously completed parts of the representation. The method should guide
the developer to insure omitted parts of the design are eventually completed so the requirements
of the system are met.

1. Can the developer leave parts of the representation of the system temporarily
incomplete?

2. Does the method help the developer determine what representations are missing in
order to satisfy system requirements?

3. Does the method provide a clear set of heuristics so that a designer can elaborate
on a representation in a way that is consistent with the previously completed
representation?

28 CMU/SEI-88-TR-8

6.4. Reuse
Reuse of existing software with known characteristics and high reliability promises to lower
system development costs, reduce risk, and yield systems of higher reliability. Experienced
designers will reuse, either directly or by salvage through rework, components from another
system if possible, since this is often a productive path to take.

A development method should account for the benefits and risks of reuse. While it is desirable to
reuse existing components when possible, they should only be reused when they in fact help
produce a system that meets the end users' needs. Focusing on reuse too early in the
development process may lead to systems that are well structured and reliable but do not exhibit
the operational characteristics required by the user.

Since existing requirements analysis and design methods typically ignore the area of reuse, this
topic is also covered in Chapter 9, Problem Areas.

1. Does the method offer guidelines that encourage both a top down and bottom up
(using existing components) approach?

2. Does the method encourage separating requirements into essential and negotiable
classes, where negotiable classes identify the opportunity for reuse?

3. Does the method encourage designers to suggest alternatives provided by existing
components, to negotiable requirements?

6.5. Evaluation of Alternatives

At any point in the development process, developers continually make decisions that will affect
the system. Usually, there is no single right way of doing things. Alternatives must be evaluated
to determine what effects a decision will have on the overall system and what tradeoffs must be
made. Development methods should encourage the generation of alternatives and provide
guidance to evaluate them wherever possible.

1. Does the method allow the designer some flexibility when making design
decisions?

2. Does the method encourage the designer to generate a number of alternative
designs?

3. Does the method help the designer evaluate alternative representations based
upon system characteristics and constraints?

CMU/SEI-88-TR-8 29

30 CMU/SEI-88-TR-8

7. Examining Representations
It is important that a method emphasize the need and support the activity of examining its
representations at all stages of development. Successful development efforts must include
reviews of intermediate work products to identify problems, reduce risk and insure the delivered
system exhibits its required operational characteristics. The general rule that should be followed
during a development effort is to "examine early and often."

Examinations should be considered from two points of view: the goals of the examinations and
the techniques used to perform examinations. Each of these viewpoints is discussed separately
below.

7.1. Examination Goals
Examinations of the evolving system's representations occur at various points in time for a variety
of reasons. Examinations are effective only if they are conducted for specific, well defined
purposes. Current practice too often conducts examinations (walkthroughs, inspections, etc.)
with no clear, unambiguous understanding of why the examinations are being done. The end
result is a process that produces little of value and much frustration for all participants.

Several of the reasons for conducting examinations are discussed below. Development methods
should facilitate these examinations.

7.1.1. Feasibility
A development approach is ultimately proven feasible if the system's final implementation
conforms to the specification, including all of the performance and resource constraints.
Examinations for feasibility should begin early in the development effort and identify major risk
areas— areas where desired functionality cannot be provided at all or not within the
implementation constraints. Feasibility should also be gauged throughout the development cycle.

Methods should emphasize the need to determine feasibility and should promote techniques that
identify development approaches that are unlikely to be successful. Typically, it is better to
compose a system from parts with known characteristics, since this makes the judgement of
feasibility easier than the case where the characteristics of all parts are "guesstimated."
Feasibility is also more easily predicted if the method supports the paradigms of: prototyping,
incremental development of high-risk items, reusable components, techniques to assist with
estimation, and prediction of resource usage and performance.

1. Does the method provide techniques to examine its representations, including
operational prototypes, to assess risk and gauge feasibility?

2. Do the method's design representations allow capture of the important
characteristics of existing components (performance, capacity, resource usage)?

3. Does the method provide techniques to predict the resource requirements and
performance characteristics of the composition of the components?

4. Does the method encourage identification of high risk items and their incremental
development?

CMU/SEI-88-TR-8 31

7.1.2. Conformance
The goal of any development effort is to produce a system that conforms to its specified behavior.
The representations produced during the development process must be periodically examined to
determine if they capture the requirements and to determine that the evolving design and
implementation will yield a product that conforms to the specification. Finally, the implemented
system must be tested to determine if the actual behavior, under test conditions, matches the
expected behavior.

1. Does use of the method lead to a specification that clearly and completely defines
the desired operational characteristics of the system under development.

2. Does the specification serve as a model of the system that can be understood by
the customer and end user to insure the system under development will meet their
needs?

3. Does the method help determine what questions should be asked during the
examinations for conformance?

4. Does the method provide guidance in developing test cases by specifying which
tests should be developed?

7.1.3. Safety
Real-time computer systems are now embedded in systems that can cause hazards to the public
at large, to the system operators, and to the equipment being operated. It is desirable that the
development methods promote safety analysis. Hazardous operations often arise from poorly
defined operating conditions. Safety analysis usually tries to pinpoint those conditions in a
specification and design. In order to perform a reasonable safety analysis, one needs to
understand how the software, hardware, human operators, and system's environment interact.

1. Do the method's representations describe the operation of the complete system,
including software, hardware, human operators, and environmental conditions?

2. Does the method provide techniques to inspect the behavior of the system under
exceptional conditions in the environment?

3. Does the method provide specific guidelines examining for safe operations, e.g.,
determining if the human operator is warned if he is taking actions leading to
hazardous conditions?

7.2. Examination Techniques

Several examination techniques have proven useful in the development of systems. These
techniques include: walkthroughs, inspections, analysis, test and data extraction, reduction, and
analysis. Methods should facilitate these well known techniques through the characteristics of
their representations and by providing guidelines for conducting the examinations.

32 CMU/SEI-88-TR-8

7.2.1. Walkthroughs and Inspections
Walkthroughs can be used at various stages of the development cycle to examine the
specification, design, or implementation artifacts. Walkthroughs are typically conducted by
having the creator of a particular artifact "walk other interested parties through" it. The
participants play the role of critical reviewers and attempt to find errors or areas of special
concern.

Inspections are similar to walkthroughs in that people other than the creator of the artifact
examine it to find errors. Inspections tend to be more formal in that the artifact is distributed
ahead of time for review with the hope that reviewers will spend time examining it in detail. The
members of inspection teams are carefully chosen by the skills they bring to the effort; different
team members may inspect for different things. Finally, inspection meetings are conducted to
"debrief" the inspection team members rather than to "generally discuss" the artifact.

Inspections and walkthroughs should be supported by sets of rules that allow clear
communication and promote focused discussion. The rules should attempt to define the terms
"error" and "area of special concern." They should also encourage reviewers to separate issues
of form and substance, that is, concerns over what a representation says should be separated
from how the representation says it. Errors in substance are the most important.

1. Is the syntax for each representation clearly defined so reviewers can quickly locate
and dispense with problems with form?

2. Does the method provide specific guidelines for reviewing the representations?

• Are there checklists and well defined procedures for areas such as
consistency, completeness?

• Are their issues lists for areas such as exception handling, robustness,
performance, maintainability?

• Are criteria for determining the quality of a representation, unique to the
method, clearly spelled out?

7.2.2. Analysis
Analysis is a technique for assessing, against a fixed set of criteria, certain aspects of a
representation. Analysis can be used for any representation but is typically used with source
code or design representations. There are two general classes of analysis: static and dynamic.
Static analysis is concerned with the structural characteristics of the representation, i.e., is the
representation well formed by the structural rules provided by the method.

Dynamic analysis is concerned with the behavior of a representation when it is "executed."
Testing is a form of dynamic analysis performed against code. The notion of "executable
specifications" recognizes the need to perform dynamic analysis against other forms of
representations earlier in the development process.

1. Does the method provide techniques and a clear set of rules for static analysis of its
representations?

2. Is the syntax of the representations well defined allowing the purchase or
development of automated tools to perform static analysis?

CMU/SEI-88-TR-8 33

3. Does the method support the animation or simulation of its representations to allow
dynamic analysis early in the development cycle?

7.2.3. Testing
Testing is the form of dynamic analysis most commonly used and understood. Testing involves
executing the software system on a set of well defined test data. The purpose of testing is to
insure that the individual parts of the software system do what they were designed to do and that
the composition of the parts meets the system's operational requirements. While testing,
unfortunately, cannot prove the absence of errors, it can be used to improve one's confidence in
the system.

1. Can the specification be used to develop test scenarios that exercise the system
under both normal and exceptional operating conditions?

• Does the method suggest a technique for generating the test scenarios?

• Does the technique explain how to use the representations to insure all
important aspects of the system are covered?

2. Does the method provide a technique for using the design representation to
generate unit test cases?

3. Does the method provide a technique for using the behavioral representation to
generate behavioral tests?

7.2.4. Data Extraction, Reduction, and Analysis
One aspect of analysis generally overlooked in discussions of development is the need to
perform analysis of a system after it has been put into use. Once a system is installed, it often
has residual flaws that have escaped detection in the tests performed. These flaws are usually
the result of unusual operating conditions, including race conditions and unexpected failure
conditions. The side effect of these flaws can vary from causing the system to "crash" to minor
errors in operation. In any case, there is a need to analyze the system's behavior to isolate the
cause of the problem. This is best done by anticipating that the system will have these flaws and
designing the system to continually collect data on its own operation. Data is generally extracted
from the system in a raw format, reduced to a well defined format, and analyzed to determine the
cause of the observed errors.

1. Does the method encourage the designer to define the data necessary for
extraction?

2. Does it encourage the use of its behavioral model to identify high-risk areas (areas
of concurrency, synchronization, potential race conditions) where data collection
would be especially useful?

34 CMU/SEI-88-TR-8

8. Management Characteristics

A software system is developed by a software "manufacturer" who will deliver the software
product for profit to the customer. "The need to control cost in all its forms places the software
engineering process—and those who conduct it—in a set of managed activities that are
frequently reviewed and adjusted by those responsible for the cost of system production, system
acquisition and ownership [Firth 87b]." Each group of actors \n the software development cycle
imposes constraints on the process. The software builders need to perform risk assessment,
plan, organize, staff and track the development of the software system. For efficiency's sake,
they usually have mechanisms existing within the organization to perform these activities.

Similarly, customers may also specify reviews, tests, and deliverables in order to ensure that the
software product possesses the form and content that they desire and to ensure that costs are
being kept in line. The mechanisms and procedures that a customer or developer has in place to
monitor and regulate the software process have a significant impact on the use of any software
development method. "A software development methodology is actually a blend between a
collection of technical procedures and a set of management techniques that can result in effective
deployment of project personnel, predictability of project schedule, budget and outcome, accurate
estimation of software properties, and the final result of a high-quality system that meets the
needs of its users throughout the lifetime of the system [Freeman 82].M

8.1. Process
Most organizations who develop software have "in-house" standards and practices to which all
software development projects adhere. The same can be be said for customer organizations that
contract the development of software. There are specified activities involved with planning,
organizing and staffing, project tracking and control, and risk assessment that must performed
and specified criteria to be met in order for a software project to gain management approval to
advance a step forward in the development cycle. Usually, these standards and practices have
been formulated over time-and stem from the need for management to control the costs and
output of the project in a way that serves the best interest of the company and the customer.
Often, standards and practices have evolved from lessons learned on previous projects, and,
thus, management is firmly committed to this way of doing business, as they may have previously
paid a high price for problems that occurred before these practices were implemented.

Because organizations implement these process controls for a reason, and because
management usually believes strongly in these controls, a software development method should
help support efforts by management to control the software development process. However,
there is usually a dichotomy in the way that management and development processes are driven.
Management processes are usually time driven. The customer negotiates to have the product
delivered on a particular date, and managers try to schedule the development process in order to
meet specified checkpoints—milestones and deliverables that lead up to delivery. However, the
software development process is event driven. The completion of one step is usually necessary
for the commencement of another. Modules should be completed and tested before integration
can begin. Requirements analysis should be completed before high-level design is begun. The

CMU/SEI-88-TR-8 35

method should augment the management practices that are already in place and should not
require severe alterations in an organization's process of developing software. Both the method
and the management process should be flexible enough to allow for synchronization of the
software development process and management checkpoints. It won't be efficient to schedule
reviews and walkthroughs of products that are not yet completed, nor would it be wise to deliver
faulty or unfinished products to the customer.

A software development method can provide managers with a series of activities and steps on
which they can base schedules and monitor their progress, representations which can be used to
document decisions made during development or as deliverables, and rules to analyze
representations to support reviews and to judge how complete or correct a group of
representations are.

1. Does the method provide planning techniques that lead to milestone definitions and
project plans that are consistent with use of the method and the implementation
language?

2. Does the method have analysis techniques that can be used during reviews or that
can help you gauge progress during development?

3. Are representations clear and easy enough to understand to be used for design
reviews?

4. Can representations be used to comprise deliverables?

5. Can you rapidly develop high-level design representations that can be analyzed to
determine the most feasible design approach?

6. Does the method prescribe the generation of a sufficient number of intermediate
design products to support a detailed project plan?

7. Does the method help partition the system into manageable pieces that can be
given out to individuals?

8. Does the method contain rules that review teams can use to analyze or verify the
design?

8.2. Cost

The direct cost of using a method may appear to be small - a few books or training courses might
seem to suffice. However there are many other costs associated with successfully introducing
and using a method in your organization. In order for a method to be worth using, the initial
"learning curve" costs and other associated costs should be more than offset by the other
benefits a method provides for your software project.

One significant cost is time. It will take time to train your people to adequately use a method and
to have them adjust to using it. Some methods have elaborate notations and require extensive
training, while others are somewhat simpler to use. Your organization must determine whether
time spent for training and extended schedules is feasible. It may take more time, especially in
the beginning, for your team to execute the project, given the extra activities that a method may
prescribe and their unfamiliarity with the method. It may also take time for management to
understand how to best incorporate the use of a development method into their existing process.

36 CMU/SEI-88-TR-8

Another cost of acquiring a method is the cost of evaluating and selecting automated tools that
support it. A good set of automated tools can increase the efficiency and ease of using a method
by a large amount, however they must be selected carefully [Firth 87a].

1. Are there a number of automated tools on the market that support the method?

2. Does the method require a reasonable amount of training, that is proportionate to
its power, and feasibility of use?

3. Does use of the method reduce product life cycle costs by an amount that is worth
the cost of adopting the method?

4. Can the method be adapted for use: across a broad range of applications domains,
with a variety of implementation languages, with conformance to a variety of
standards?

CMU/SEI-88-TR-8 37

38 CMU/SEI-88-TR-8

9. Problem Areas
One of the necessary activities in evaluating existing methods is to gain an understanding of not
only what a particular method is but also what that method is not. The software engineering
methods that exist today can aid the solution of a variety of problems. It is important to
recognize, however, that they are not "silver bullets" [Brooks 87] that deal perfectly well with all
problems, handle all aspects of system development, eliminate the need for experienced
personnel, or guarantee success under any conditions.

Successful selection and use of methods require a realistic understanding of their capabilities.
False expectations about the benefits of using a method will undermine its successful use and
may cause an individual or an organization to abandon the use of methods entirely. As stated in
[Firth 87b], it is important to determine a method's undesirable features.

1. What issues does the method not deal with?

2. What are the negative consequences of using the method to solve a particular
problem?

Method assessors and users need to answer these questions and to develop a realistic plan for
introducing the method into the development organization. This plan should address the problem
areas and, for each problem, should describe the way in which the method will be augmented to
deal with each of the problems.

The following sections discuss problems that have been identified, in general, in current methods
and their use. Several of the areas below have been briefly discussed in previous sections but
are grouped together here to present a more complete picture of problems in existing methods.
While it may be possible to identify a particular method that deals especially well with one of the
difficult areas below, this is the exception rather than the rule. Also, methods that focus their
attention on one of these areas usually offer little support in others.

9.1. Experienced Personnel

It is important for the investigator and evaluator of methods to remember that methods are
techniques used by developers to produce software systems. Methods, by themselves, do not
produce specifications, designs, or implementations. They provide guidance, forms of
representation and rules for analysis that assist developers in the production and analysis of a
variety of intermediate and final products. Methods are not a substitute for a development staff
that is skilled and experienced in developing systems within a particular applications domain.
Knowledge and understanding of an applications area, as well as experience in developing
systems in that area, remain crucial to the success of any development effort. When used
properly by an organization, methods can help leverage the skills of experienced practitioners
and improve the overall productivity of the organization and the quality of its products.

Evaluative questions, then, should focus on how experienced practitioners can use a particular
method to effectively capture, represent, and communicate the key characteristics of a system

CMU/SEI-88-TR-8 39

that only they, through their experience, would recognize as important. The questions should
also focus on how less experienced staff members can use the method to receive structured,
efficient guidance from those with more experience.

1. Can experienced staff members use the method to capture and represent what they
believe to be the key functional, behavioral, and structural characteristics of the
system at all stages of development?

• Can they effectively use high-level representations to explain these
characteristics and the decisions they have made about them to the variety of
audiences involved in the development process?

• Can they use these representations as a vehicle to direct the work of less
experienced staff members?

• Can they use the analysis techniques prescribed by the method to test all of
their thinking and answer their questions?

2. Can less experienced staff members use the rules and guidelines prescribed by the
method to develop elaborations and refinements of the high-level representations?

• Can they use the examination techniques prescribed by the method to insure
that their elaborations and refinements are consistent with the higher level
representations.

• Can they use the derived representations to support structured dialogues
with more experienced staff members to uncover gaps in their own
understanding and skills?

9.2. Transformation Across Stages
The development process, consisting of the specification, design, and implementation stages,
must generally be tailored by individual organizations for specific product development efforts.
Often, during the process, representations for each stage of development are partially complete,
inconsistent, and ambiguous. This situation is recognized by emerging life-cycle models such as
the spiral model [Boehm 86]. It is motivated by the need for developers to initially tackle
perceived high-risk issues and drive them through design and occasional implementation to
insure the viability of the design approach.

Given this need, it is especially helpful if a method deals with all stages of development and does
so in a way that can be tailored to the problem at hand. Partial or complete representations at
one stage should support the development of representations for the next stage. All
representations should remain useful throughout the development effort and should capture the
history of key design decisions.

Unfortunately, this complete set of characteristics is lacking in any one method. Many cover only
a subset of the phases, provide little guidance in transforming from one set of representations to
the next, or require the developer to dismember one set of representations to produce the next.
Evaluative questions should focus on the breadth of representation, ability to tailor the sequence
of stages, and the transformation from one stage to the next.

1. Can developers use the method to represent the system under development at all
stages?

40 CMU/SEI-88-TR-8

2. Can developers use the method when narrowing in on high risk areas to derive
partial representations for ail stages?

• Does the method support the partitioning of the problem into a set of smaller
problems with well defined interfaces?

• Do the analysis rules support the examination of these fragments with the
same rigor as they support the examination of complete representations?

• If the method allows for the simulation or animation of the specification, does
it equally well support the simulation or animation of the fragments?

3. Are developers, using the method, supported by a set of transformation rules or
guidelines that allow them to transform the representations at one stage to those of
the next?

• Do the rules prescribe a transformation process that is relatively automatic?

• Do the entities and structures created at one stage of development remain
visible and intact at the next stage?

• Does a representation continue to serve a useful purpose after the
representation for the next stage is completed?

9.3. Feasibility Analysis

Feasibility analysis deals with assessing the capability of a system's design and implementation
to conform to its specification, including all of the performance and resource constraints. In most
real-time systems development efforts it is important to begin gauging the feasibility of a design or
design fragments early in the design process before great time and effort is spent going down
futile paths. The most difficult problems in this area typically deal with the behavioral
characteristics of workload, capacity, and performance discussed in Section 2.1. A useful
method must not only capture these behavioral requirements, but it must also assist the
developers in determining whether or not a developing design will meet the requirements.
Evaluative questions should focus on the ability of a method to support performance prediction.

1. Can designers use the method to predict the resource requirements and
performance characteristics of an evolving design?

• Do the method's design representations capture resource estimates for
individual components?

• Do the same representations capture performance estimates for these
components?

• Does the method support execution or animation of the design representation
and predict resource usage and performance under varying operating
conditions?

CMU/SEI-88-TR-8 41

9.4. Development Constraints
The application specific software for many real-time systems is often constrained to operate on
specific hardware, runtime system and language platforms. The use of these platforms is
dictated by a variety of technological, organizational, and business issues that are treated more
fully in [Fairley 85], [Freeman 83], and [McDonald 85]. In addition, an engineering organization
may own or be able to acquire existing software components that have been used and thoroughly
tested in other systems. In an attempt to reduce development time, improve reliability and lower
life cycle costs, developers may be required to reuse many of these components. The overall
result of these constraints is that the application software must be constructed using the
constructs, entities, and mechanisms provided by the implementation platform and existing
components.

Additional constraints, often overlooked in discussions of methods, are constraints placed on the
development process. Most development groups must adhere to "company standard" or
"customer standard" project planning, tracking, and control mechanisms. A method can only be
effectively used if its use can somehow be integrated with project management schemes.

Many existing methods do not account for these issues. They either do not provide a bridge to
transform the specification to an acceptable architecture or they fail to fully account for the
operational characteristics of the implementation platform and components that must be used.
Project management concerns are often overlooked in method selection.

Evaluative questions dealing with development constraints are:

1. How well can the method be used to create reusable components?

• Does the method encourage partitioning into standard parts?

• Does the method incorporate an abstraction mechanism that allows
development of generic components?

• Does the method provide a design representation that captures component
characteristics important for reuse: inputs, outputs, exceptions, capacity,
performance, restrictions?

2. Does the method include a bottom-up approach?

• Can developers represent existing components and the implementation
platform?

• Do the representations capture performance characteristics and resource
consumption of each component?

• Can the method predict the resource requirements and performance
characteristics of the composition.

3. Can the method be used with existing project management practices?

• Can the method's representations be used to fulfill project milestones and
deliverables?

• Do the method's examination rules and techniques fulfill the customer's
progress review requirements?

42 CMU/SEI-88-TR-8

9.5. Large-Scale Problems

The evaluation of alternative methods must deal with the ability of these methods to "scale up" to
support very large development efforts. Real-time systems vary considerably in size and a
method that deals well with small problems is not necessarily suitable for large problems.

Evaluative questions should deal with the ability of the method to partition the problem into
manageable pieces, integrate those pieces as the solution develops, and control the derivation of
the various representations.

1. Can developers use the method to partition the problem into a set of smaller
problems with well defined interfaces and integrate the results?

• Does the method provide hierarchical representations that allow developers
to work at a detailed level and easily remember the overall context?

• Are the rules used for partitioning and decomposing one view consistent with
the rules for other views? For example, if the method supports data flow and
control flow, are they dealt with at compatible levels?

• Does the method endorse naming conventions that allow multiple developers
to integrate their results and avoid naming clashes?

• Alternatively, does the method embody the notion of scope?

2. Does the method deal with the issue of identifying the representations themselves?

• Are the representations uniquely identified in a manner that mirrors their
relationships?

• Does the method provide rules for configuration control?

• Does the method provide rules for version control?

9.6. User Interface
A critical aspect of most systems, often overlooked by existing methods, is the system's interface
to the user. In many real-time systems— avionics and air traffic control, for example—the user,
pilot or air traffic controller must be viewed as a key element of the overall system. The user's
needs must be met and the needs must be satisfied in a manner that is acceptable to the user. A
system that performs all its real-time functions properly but fails to meet the special information
processing and interaction needs of its users will not be successful in meeting its overall
operational goals.

In addition, a system's user interface is one area that is likely to change as the system is
developed and after it has become operable. It is often the case that users redefine and refine
their own understanding of their needs only after they have had the opportunity to interact with
the system being developed. Also, as hardware technology evolves, there is often a strong
demand to replace the hardware devices the user deals with directly. Newer devices can often
ease the burden on the user or provide information displays that are easier for the user to
comprehend.

CMU/SEI-88-TR-8 43

Evaluative questions should focus on the ability of the method to deal with human factors as well
as the guidance the method provides in architecturally separating user interface components.

1. Does the method provide representations that allow the user to visualize the user
interface?

• Do the representations adequately represent what the user will see, content
and format of displays?

• Do they allow representation of user inputs, content and format?

• Do they allow the user to visualize a dialogue with the system, the ability of
the user to modify the displays and the mechanics of the interactions?

2. Does the method model and help predict the information processing and
decision-making demands placed on the user?

3. Does the method promote the partitioning of user interface processing from other
processing?

• Does it encourage a clear separation between form and substance of user
interactions?

• Does the design method address user error processing; are lexical, syntactic,
and semantic errors dealt with at an appropriate distance from the interface?

• Does it encourage the separation of device-dependent from
device-independent processes?

9.7. Implementing Designs

Partitioning a development process into various stages is done to separate a variety of issues
and to allow different sets of people with different sets of skills to effectively participate in the
process. Design and implementation activities are separated for a variety of reasons, but there
must be some transformation process between design and implementation representations.
Creating a design that cannot be feasibly implemented on a constrained implementation platform
serves no useful purpose.

An example of the problem of transforming designs into implementations that is of special interest
to DoD contractors is their need to implement systems using the Ada language. The Ada
language and Ada runtime systems are in the process of maturing as users are maturing in their
ability to effectively use both. Many existing methods were developed prior to the introduction of
Ada and do not necessarily embody or emphasize the same underlying development principles
that are promoted by Ada. Runtime systems for target hardware have seen little use in deployed
systems and their operational characteristics are not yet widely understood. In addition, many
designers and implementors have little experience with Ada implementations. Taking all this
together it is especially important to consider the aspect of Ada maturity when selecting methods.

Evaluative questions should pay attention to implementation issues when choosing a design
method that will be used in conjunction with an Ada implementation.

1. Do the method's representations and techniques for deriving the representations
emphasize the importance and use of the concepts underlying the Ada language:

44 CMU/SEI-88-TR-8

• abstraction

• information hiding

• concurrency

• modularity and packaging

• exception handling

2. Does the method provide a design technique that results in design representations
that map easily to Ada implementations?

• Does the method provide a data modeling technique that results in
representations that map directly to Ada supported data types?

• Does the method provide a modularization technique that results in
representations that map directly onto packages and tasks?

3. Does the design method encourage the use of idioms, commonly used procedural
types, that are especially difficult to implement in Ada?

4. Does the design method lead to architectures that will not (when implemented using
a particular compiler or runtime system) meet required performance or resource
usage constraints? For example, does the method lead developers toward
implementing systems as collections of communicating tasks while the required
implementation platform is unable to efficiently support task switching or is unable
to support a large number of tasks with minimal resources?

CMU/SEI-88-TR-8 45

46 CMU/SEI-88-TR-8

10. Conclusion
The guidelines that are presented in this report can be used to help an organization assess a
method using the five step process outlined in [Firth 87b]. Again, the five steps are:

1. Determine the important characteristics of the system to be developed and
determine how individual methods help developers deal with those characteristics.

2. Identify the constraints imposed on the permitted solutions and determine how
individual methods help developers deal with those constraints.

3. Determine the general usage characteristics of the individual methods. A method
can be examined by developing an understanding of how it represents a system
under development, the guidelines it gives developers to derive the representations,
and the guidelines it provides to examine the representations.

4. Determine the support that the method provides to those who must manage the
development process as well as the costs of adopting and using a method.

5. Develop an understanding of the issues that the methods do not address.

The steps place a strong focus on understanding the system that will be built, including potential
risk and problem areas, as well as understanding the environment within which the system will be
developed. This understanding is best achieved by defining a manageable sample problem that
is representative of the system and applying likely methods to the solution of the problem. By
using this approach, method assessors and potential users will gain an in-depth understanding of
the methods and their strengths and weaknesses.

There is no such thing as an overall "best" method for developing all software, only the method
that will work best to help develop a system with particular characteristics and will blend with an
organization's software development practices. This may require tailoring the method to existing
practices, modifying existing practices to account for effective techniques new to the organization,
or both.

In fact, the characteristics' of a good development method are not much different than the
characteristics of good software engineering. A method is a tool that can help you employ good
software engineering practices. Even so, choosing a good method will not shield you from failure.
Just like any other tool that promotes good software engineering practice, a good method can fail
if it is used poorly or incorrectly, or used in place of experienced, competent people.

By applying the evaluative questions in this document to existing methods and by reviewing
Chapter 9 (Problem Areas), it should become apparent that existing methods do not provide
solutions to all of the problems encountered in the process of developing software systems.
Those choosing methods must recognize the need to anticipate how the method will be used by
individuals in their organization to solve particular problems and the need these individuals will
have to augment the method with additional techniques to cover the areas the method does not
address. Methods should not be introduced into organizations as panaceas for all problems.
False expectations on the benefits of using methods can cloud their real value and lead to their
unjustified abandonment. Problem areas and techniques for dealing with the problems should be
addressed in an introduction plan.

CMU/SEI-88-TR-8 47

Finally, a cost/benefit analysis should be performed to predict whether adopting a particular
method will pay off in terms of reducing costs and improving the quality of the delivered product.
Acquiring proficiency in the use of a method requires training and experience over time. Also, a
tool that automates your chosen method can enhance the benefits obtained from its use, but
these benefits do not come without a price (see [Firth 87a]).

While it is easy to estimate certain costs (books, classes, seminars, tools), it is not easy to
estimate others (time and experience to become proficient). Adopting new methods often
requires changing the way people view and think about problems. The cost of bringing about this
change and the benefit received from it are not easy to predict. Selecting and introducing a
method must be followed by carefully monitoring its use to determine the success its users are
having in improving productivity and the quality of the delivered software product.

48 CMU/SEI-88-TR-8

Acknowledgement

The authors are grateful to the many people who reviewed early drafts of this document and
provided constructive comments and criticisms. We are especially thankful for the in-depth
review and comments provided by Len Bass, Timothy Coddington, Richard D'lppolito, Jeffrey
Stewart, and Nelson Weiderman of the Software Engineering Institute as well as by Cammie
Donaldson of Software Productivity Solutions, Inc., Don Reifer of Reifer Consultants, Inc., and
Hank Stuebing of the Naval Air Development Center.

CMU/SEI-88-TR-8 49

References

[Alford 85]

[Boehm 76]

[Boehm 86]

[Booch 83]

[Brooks 87]

[Cameron 83]

[DeMarco 79]

[Fairley 85]

[Firth 87a]

[Firth 87b]

[Freeman 83]

[Gomaa 86]

[Habermann 83]

[Harel 86]

Alford, Mack.
SREM at the Age of Eight: The Distributed Computing Design System.
Computer 18(4}:36-46, April, 1985.

Boehm, Barry.
Software Engineering.
IEEE Transactions on Computers C-25(12), December, 1976.

Boehm, B. W.
A Spiral Model of Software Development and Enhancement.
ACM SIGSOFTSoftware Engineering Notes 11(4), August, 1986.

Freeman, P., and Wasserman, A. (editors).
Object-Oriented Design.
In Tutorial: Software Design Techniques, IEEE Computer Society Press,

Washington, DC, 1983.

Brooks, F. P.
The Silver Bullet, Essence and Accidents of Software Engineering.
IEEE Computer20(4), April, 1987.

Cameron, J.
Tutorial: JSP and JSD: The Jackson Approach to Software Development.
IEEE Computer Society Press, Washington, DC, 1983.

DeMarco, Tom.
Structured Analysis and System Specification.
Prentice-Hall, Inc., Englewood Cliffs, NJ 07632,1979.

Fairley, Richard E.
Software Engineering Concepts.
McGraw Hill, New York, 1985.

Firth et al.
A Guide to the Classification and Assessment of Software Engineering Tools
Carnegie Mellon University, Pittsburgh, PA, 1987.

Firth et al.
A Classification Scheme for Software Development Methods.
Technical Report CMU/SEI-87-TR-41, ESD-RT-87-204, Carnegie-Mellon

University, Software Engineering Institute, November, 1987.

Freeman, P., and Wasserman, A. I.
Ada Methodologies: Concepts and Requirements.
ACM SIGSOFT Software Engineering Notes, 1983.

Gomaa, H.
Software Development of Real-Time Systems.
Communications ACM29{7):657-8, July, 1986.

Habermann, A. N. and Perry, Dewayne E.
Ada for Experienced Programmers.
Addison-Wesley Publishing Co., Reading, Massachusetts, 1983.

Harel, David.
Statecharts: A Visual Approach to Complex Systems.
Concurrent Systems, February, 1986.

50 CMU/SEI-88-TR-8

[IEEE 83]

[McDonald 85]

[Parnas 72]

[Ross 75]

[Statemate 87]

[Teichrow 77]

[Ward 85]

[Webster 81]

The Institute of Electrical and Electronics Engineers, Inc.
IEEE Standard Glossary of Software Engineering Terminology.
Technical Report ANSI/IEEE Std. 729-1983, IEEE, February, 1983.

McDonald, Catherine W.; Riddle, William; and Youngblut, Christine.
STARS Methodology Area Summary - Vol II: Preliminary Views on the

Software Life Cycle and Methodology Selection.
Prepared for Office of the Undersecretary of Defense for Research and

Engineering, IDA Paper P-1814.
March, 1985

Parnas, D. L
On the Criteria To Be Used in Decomposing Systems Into Modules.
Communications ACM 15(12):1053-1058, December, 1972.

Ross, D. T., Goodenough, J. B., and Irvine, C. A.
Software Engineering: Process, Principles, and Goals.
Computer, May, 1975.

AdCad.
The Languages of Statemate 1.
January, 1987

Teichrow, Daniel.
PSUPSA: A Computer-Aided Technique for Structured Documentation and

Analysis of Information Processing Systems.
Transaction Software Engineering SE-3(1), January, 1977.

Ward, Paul T. and Mellor, Stephen J.
Structured Development for Real-Time Systems, Vol I: Introduction & Tools.
Yourdon Press, New York, 1985.

Webster's Third New International Dictionary.
Merriam-Webster, Inc., Springfield, MA, 1981.

CMU/SEI-88-TR-8 51

52 CMU/SEI-88-TR-8

UNLIMITEDr UNCLASSIFIED
*€CURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
1. REPORT SECURITY CLASSIFICATION

UNCLASSIFIED
2«. SECURITY CLASSIFICATION AUTHORITY

N/A
2b. OECLASSIFICATION/OOWNGRAOING SCHEDULE

N/A

lb. RESTRICTIVE MARKINGS

NONE
3. DISTRIBUTION/AVAILABILITY OF REPORT

APPROVED FOR PUBLIC RELEASE
DISTRIBUTION UNLIMITED

4. PERFORMING ORGANIZATION REPORT NUMBER(S)

CMU/SEI-88-TR-8

5. MONITORING ORGANIZATION REPORT NUMBER(S)

ESD-TR-88-009

6«. NAME OF PERFORMING ORGANIZATION

SOFTWARE ENGINEERING INSTITUTE! SEI

|6b. OFFICE SYMBOL
(If applicable)

7a. NAME OF MONITORING ORGANIZATION

SEI JOINT PROGRAM OFFICE
6c. AOORESS (City, State and ZIP Code)
CARNEGIE MELLON UNIVERSITY
PITTSBURGH, PA 15213

7b. ADDRESS (City, State and ZIP Code)
ESD/XRS1
HANSCOM AIR FORCE BASE, MA 01731

8«. NAME OF FUNOING/SPONSORING
ORGANIZATION

SEI JOINT PROGRAM OFFICE

8b. OFFICE SYMBOL
(If applicable)

SEI JPO

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

F1962885C0003

8c ADDRESS (City, State and ZIP Code)

CARNEGIE MELLON UNIVERSITY
SOFTWARE ENGINEERING INSTITUTE JPO
PITTSBURGH, PA 15213

10. SOURCE OF FUNDING NOS.

PROGRAM
ELEMENT NO.

11. TITLE (Include Security Classification)
A GUIDE TO THE ASSESSMENT OF SOFTWARE DEVELOPMENT METH0D$

PROJECT
NO.

N/A

TASK
NO.

N/A

WORK UNIT
NO.

N/A

12. PERSONAL AUTHOR(S)

WOOD. PETHIA. ROBERTS GOLD. FIRTH
13«. TYPE OF REPORT

FINAL
13b. TIME COVERED

FROM TO

14. OATE OF REPORT (Yr., Mo.. Day)
APRIL 1988

15. PAGE COUNT
58

16. SUPPLEMENTARY NOTATION

COSATI CODES

FIELO GROUP SUB. GR.

18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

SOFTWARE ENGINEERING, SOFTWARE DEVELOPMENT, SOFTWARE
ENGINEERING METHOD

19. ABSTRACT (Continue on reverse if necessary and identify by block number»
OVER THE PAST DECADE, THE TERM "SOFTWARE ENGINEERING METHOD" HAS BEEN ATTACHED TO A
VARIETY OF PROCEDURES AND TECHNIQUES THAT ATTEMPT TO PROVIDE AN ORDERLY, SYSTEMATIC
WAY OF DEVELOPING SOFTWARE ENGINEERING IN DIFFERENT WAYS. DECIDING WHICH METHODS TO
USE TO REDUCE DEVELOPMENT COSTS AND IMPROVE THE QUALITY OF PRODUCED PRODUCTS IS A
DIFFICULT TASK. THIS REPORT OUTLINES A FIVE STEP PROCESS AND AN ORGANIZED SET OF
QUESTIONS THAT PROVIDE METHOD ASSESSORS WITH A SYSTEMATIC WAY TO IMPROVE THEIR
UNDERSTANDING AND FORM OPINIONS ON THE ABILITY OF EXISTING METHODS TO MEET THEIR
ORGANIZATIONS NEEDS.

20 OISTRIBUTION/AVAILABILITY OF ABSTRACT

UNCLASSIFIED/UNLIMITED XX SAME AS RPT. D DTiC USERS X3

21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED, UNLIMITED

22«. NAME OF RESPONSIBLE INDIVIDUAL

KARL SHINGLER
22b TELEPHONE NUMBER

(Include Area Code)
(412) 268-7630

DD FORM 1473, 83 APR

22c. OFFICE SYMBOL

SEI JPO

EDITION OF 1 JAN 73 IS OBSOLETE. UNLIMITED. UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAG:

