OTIC FILE CUES AFWAL-TR-88-2040 ### AD-A197 270 PROPERTIES OF JP-8 JET FUEL Charles R. Martel Fuels Branch Fuels and Lubrication Division May 1988 Summary Report for Period August 1984 - April 1988 Approved for public release; distribution unlimited AERO PROPULSION LABORATORY AIR FORCE WRIGHT AERONAUTICAL LABORATORIES AIR FORCE SYSTEMS COMMAND WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433-6563 #### NOTICE When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely Government-related procurement, the United States Government incurs no responsibility or any obligation whatsoever. The fact that the Government may have formulated or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication, or otherwise in any manner construed, as licensing the holder, or any other person or corporation; or as conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto. This report has been reviewed by the Office of Public Affairs (ASD/PA) and is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nations. This technical report has been reviewed and is approved for publication. CHARLES R. MARTEL Fuels Branch Fuels and Lubrication Division CHARLES L. DELANEY. Fuels Branch Fuels and Lubrication Division FOR THE COMMANDER BENITO P. BOTTERI, Assistant Chief Fuels and Lubrication Division Aaro Propulsion Laboratory "If your address has changed, if you wish to be removed from our mailing list, or if the addressee is not longer employed by your organization, please notify AFWAL/POSF, Wright-Patterson AFB. 45433-6563 to help us maintain a current mailing list." Copies of this report should not be returned unless return is required by security considerations, contractual obligations, or notice on a specific document. | ٠ | _ | - | _ | _ | _ | _ | | _ | _ | _ | | | | | | |---|----|----|---|---|----|----|----|-----|-----|---|-----|---|----|------|------| | ¢ | ΕĪ | ۲Ī | Ī | R | ΤS | 77 | lΔ | ςςi | FIC | Δ | TIO | N | OF | THIS | PAGE | | | | REPORT (| DOCUMENTATIO | N PAGE | | Form Approved
OMB No. 0704-0188 | | | |--|---|---|--|--|--|------------------------------------|----------------------------|--| | 1a. REPORT S
UNCLASSI | ECURITY CLASS
FIED | IFICATION | W.elschiff Schiffeliff Colonia | 1b. RESTRICTIVE | MARKINGS | | | | | 2a. SECURITY | CLASSIFICATIO | N AUTHORITY | | | /AVAILABILITY OF | | | | | 2b. DECLASSIF | ICATION/DOW | NGRADING SCHEDU | LE | Approved for a supply of the s | or public re | lease; | distribution | | | 4. PERFORMIN | IG ORGANIZAT | ION REPORT NUMBE | R(S) | 5. MONITORING | ORGANIZATION RI | PORT NU | MBER(S) | | | AFWAL-TR | | | | | | | | | | | pulsion La | organization
boratory | 6b. OFFICE SYMBOL (if applicable) AFWAL/POSF | 7a. NAME OF M | ONITORING ORGAI | NIZATION | | | | 6c. ADDRESS | (City, State, and | d ZIP Code) | | 7b. ADDRESS (Ci | ty, State, and ZIP (| ocie) | | | | Wright-Pa | atterson A | NFB OH 45433- | -6563 | | | | | | | 8a. NAME OF
ORGANIZA | FUNDING/SPO | NSORING | 8b. OFFICE SYMBOL (If applicable) | 9. PROCUREMEN | T INSTRUMENT IDE | NTIFICATI | ON NUMBER | | | 8c. ADDRESS (| City, State, and | ZIP Code) | | 10 SOURCE OF I | FUNDING NUMBER | | | | | , | | 2 4544, | ! | PROGRAM
ELEMENT NO. | PROJECT
NO. | TASK
NO | WORK UNIT
ACCESSION NO. | | | | | | | 62203F | 3048 | 0! | | | | 11. TITLE (Incl | ude Security C | assification) | | | | | <u></u> | | | | S OF JP-8 | JET FUEL | | | | | | | | 12 PERSONAL
Charles F | | | | | |
 | | | 130. TYPE OF
Summary | | 136. TIME CO | OVERED
g 84 to Apr 88 | 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT 1988 May 16 | | | | | | | NTARY NOTAT | | American Control of the t | | | | | | | | | | | | | | | | | 17. | COSATI | | 18. SUBJECT TERMS (C | | - | - | - | | | FIELD
21 | GROUP
04 | SUB-GROUP | ⇒JP-8, Jet Fuel
Average Proper | , Chemical F | Properties, (| Physica | ₁1 Properties ઉટ | | | 21 | 05 | | | | | عاد المعادد المعادد | | | | This repo
August 19
fuel supp
values of | rt provide
84 to Apri
1ier or re
the vario | es a summary of 1988. The eceiving termious data have | and Identify by block me
of 80 JP-8 jet f
data were obtai
inal. Averages,
been determined | uels produce
ned from the
standard de
and are rep | e test reported test test reported repo | ts provintum | rided by the | | | | RESPONSIBLE | D SAME AS RI | PT. DTIC USERS | | CURITY CLASSIFICA | | TICE CHANGE | | | CHARLES R | | HANNINAL | | 22b TELEPHONE (Include Area Code) 22c OFFICE SYMBOL (513) 255-7431 AFWAL/POSF | | | | | #### **FOREWORD** The work reported herein was performed under Program Element 62203F, Project No. 3048, Task No. 05, and Work Unit 91. The report was prepared during the March-June 1988 time period, but the data include fuels delivered to the Department of Defense over the period of August 1984 through April 1988. Mr Charles R. Martel (AFWAL/POSF), Aero Propulsion Laboratory, Air Force Wright Aeronautical Laboratories, Wright-Patterson Air Force Base, Ohio 45433-6563, was the author of the report. | Acces | sion For | r | |--------|----------------------|---------| | NTIS | GRA&I | 36 | | DTIC | TAB | 0 | | 9 | ounced | | | Justi | fication | n | | - | ribution
Llabilit | y Codes | | | Avail | • | | Dist | Spec | lal | | | 1 1 | | | 1-1 | | | | '/ L ' | 11 | | ### TABLE OF CONTENTS | SECTION | TITLE | PAGE | |---------|------------------------------|------| | I. | INTRODUCTION | 1 | | II. | FUELS DATA | 2 | | | 1. DATA SOURCE | 2 | | | 2. DATA ANALYSIS | 2 | | III. | DISCUSSION | 6 | | | 1. FUEL PROPERTIES | 6 | | | 2. INTERPRETATION OF RESULTS | 11 | | IV. | CONCLUSIONS | 13 | | v. | RECOMMENDATION | 13 | #### SECTION 1 - INTRODUCTION The USAF is converting from JP-4 to JP-8 as its primary combat fuel. In 1979, USAF operations within the United Kingdom were converted from JP-4 (NATO designation F-40) to JP-8 (Nato F-34). NATO and USAF operations in Europe will be converted to JP-8 by the end of 1988. Plans are to convert USAF operations in the Pacific (Japan, Korea, and Okinawa) to JP-8 by 1991. The USAF is also considering switching continental US (CONUS) operations to JP-8. JP-8 (F-34) is commercial Jet A-1 (NATO designation F-35) plus special additives, i.e., fuel system icing inhibitor, corrosion inhibitor/lubricity improver additive, and static dissipator additive. Although not widely used within the CONUS, Jet A-1 is the primary commercial jet fuel for the rest of the free world. In NATO, much of the JP-8 will be procured and shipped as Jet A-1, with the special additives, required to convert the Jet A-1 into JP-8, injected into the fuel prior to its delivery to air bases. The primary commercial jet fuel within the CONUS is Jet A, a higher freeze point Jet A-1. Jet A, Jet A-1 and JP-8 are kerosene fuels with a minimum flash point of 100°F (38°C). JP-4, a mixture of naphtha (gasoline) and kerosene, is much more volatile with a flash point of about -10° to +10°F (-23 to -12°C). Combat and aircraft crash landing experiences have repeatedly demonstrated the significantly increased fire and explosion hazards of using JP-4, as compared to Jet A, Jet A-1 and JP-8. The average properties of JP-8, as delivered to the USAF, have not been previously reported. These data are needed by engine and aircraft designers and operators to estimate aircraft and engine performance. This report documents the properties of 80 JP-8 and Jet A-1 fuels procured for use by the USAF in Europe over the time period of 1984 to April 1988. Fuel sources included Venezuela, Greece, Italy, Spain, the Netherlands Antilles (Aruba), the US, Singapore, France, and the Netherlands. This report also includes a comparison of JP-8 with commercial Jet A. #### SECTION II - FUELS DATA #### 1. DATA SOURCE Data were obtained from suppliers' test reports, required for each batch of fuel delivered to the USAF. Also, data were obtained from the Belvoir Fuels and Lubricants Research Facility (BELRF) in the form of a letter report dated 22 January 1988. The BFLRF fuels data were incomplete, as the primary emphasis of the BFLRF report was the performance of JP-8 in diesel engines. Some of the test reports were also incomplete, with various fuel properties and test results either not measured or not reported. The limited number of JP-8s included in this report are due to three factors: (1) USAF operations in Europe are a small fraction of those conducted within the CONUS, so far less fuel is required, (2) most of the fuel test reports represent large tanker shipments, and (3) only the United Kingdom received JP-8 during the 1984-86 time period. #### 2. DATA ANALYSIS Table 1 is a compilation of all the JP-8 data, including source and date. Table 2 contains the statistical averages, standard deviations, and minimum and maximum values of the JP-8 date of Table 1. These statistical data were calculated or identified for each fuel property using the statistical functions incorporated into The Software Group's ENABLE, an integrated word processing, spreadsheet/graphics, data base, and telecommunications software program. The heats of combustion reported in Table 1 include data measured directly using calorimeters and estimated values using the aniline-gravity correlations given in ASTN D 1405. To provide a standard method for comparison, heats of combustion were also calculated using ASTM D 3338. Also, the hydrogen mass percent was calculated for all fuels using ASTM D 3343. Enclosure 2 to Belvoir Fuels and Lubricants Research Facility lett L.E. Pera, subject "Shipments of JP-5 and JP-8," dated 22 Jan 1988. | | • | | | | | 16 | IDLE 1 | . 01 | | JUNION | · · · | | | | | | |--|--
--|--|---|---|--|---|--|--|---|--|--|---|---
--|----------| | SOURCE | DATE
YR-MO | ACID
NO | AROM % | OLEFIN | TOTAL
SULFUR | MERCAP
SUL FUR | IBP | D86 (
%10 | 720 | ATION
X50 | (C)_
%90 | EP | MEAN | FLASH
PT | GRAV
API | FR
PQ | | 57 FRANCE PORT JEROME 61 FRANCE PORT JEROME 63 FRANCE PORT JEROME 65 FRANCE PORT JEROME 72 GERMANY, KARLSRUHE 82 GERMANY, KARLSRUHE 84 GREECE ST THEODORI 68 GREECE ST THEODORI 68 GREECE ST THEODORI 69 GREECE ST THEODORI 13 GREECE ST THEODORI 14 GREECE ST THEODORI 15 GREECE ST THEODORI 15 GREECE ST THEODORI 15 GREECE ST THEODORI 16 GREECE ST THEODORI 17 GREECE ST THEODORI 18 19 GREECE ST THEODORI 20 GREECE ST THEODORI 21 GREECE ST THEODORI 22 GREECE ST THEODORI 23 GREECE ST THEODORI 24 GREECE ST THEODORI 25 GREECE ST THEODORI 26 GREECE ST THEODORI 27 GREECE ST THEODORI 28 GREECE ST THEODORI 29 GREECE ST THEODORI 20 GREECE ST THEODORI 21 TALY, SILICY 22 ITALY, SILICY 24 ITALY, SILICY 25 ITALY, SILICY 26 ITALY, SILICY 27 GREECE ST THEODORI 28 HETHERLANDS R'DAM 29 HETHERLANDS R'DAM 29 HETHERLANDS R'DAM 30 HETHERLANDS R'DAM 31 HETHERLANDS R'DAM 32 HETHERLANDS R'DAM 33 HETHERLANDS R'DAM 34 HETHERLANDS R'DAM 35 HETHERLANDS R'DAM 36 HETHERLANDS R'DAM 37 HETHERLANDS R'DAM 38 HETHERLANDS R'DAM 39 HETHERLANDS R'DAM 30 HETHERLANDS R'DAM 31 WETHERLANDS R'DAM 32 WETHERLANDS R'DAM 33 WETHERLANDS R'DAM 34 US SHELL HORCO LA 35 US SHELL HORCO LA 36 US SHELL HORCO LA 37 US SHELL HORCO LA 38 US SHELL HORCO LA 39 US SHELL HORCO LA 30 US SHELL HORCO LA 31 US SHELL HORCO LA 32 US SHELL HORCO LA 33 US SHELL HORCO LA 34 US SHELL HORCO LA 35 US SHELL HORCO LA 36 US SHELL HORCO LA 37 US SHELL HORCO LA 38 US SHELL HORCO LA 39 US SHELL HORCO LA 30 US SHELL HORCO LA 31 US SHELL HORCO LA 31 US SHELL HORCO LA 32 US SHELL HORCO LA 33 US SHELL HORCO LA 34 US SHELL HORCO LA 35 US SHELL HORCO LA 36 US SHELL HORCO LA 37 US SHELL HORCO LA 38 US SHELL HORCO LA 39 US SHELL HORCO LA 30 US SHELL HORCO LA 31 VENEZUELA, LAGOVEN 31 VENEZUELA, LAGOVEN 31 VENEZUELA, HARAVAN 31 VENEZUELA, HARAVAN 31 VE | 8711124488888888888888888888888888888888 | 0.0107
0.007
0.003
0.003
0.003
0.003
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005 | 167777656455850090502382508181737000509105509111111111111111111111111111 | 6507670111115315224422631232222 0000000000070760569 205013 96 50495 88 78 | 06046722911208857777738861833533411557661011001010101010101010101010101010101 |
0.0002
0.0008
0.0009
0.0008
0.0007
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0. | 141144224390327
14524390327
14524390327
145243204390327
14525455545689720472234320
145254320
145254390327
145254390327
145254320
145254390327
145254390327
145254390327
145254390327
145254390327
145254390327
145254390327
145254390327
145254390327
145254390327
145254390327
145254390327
145254390327
145254390327
145254390327
145254390327
145254390327
145254390327
145254390327
145254390327
145254390327
145254390327
145254390327
145254390327
145254390327
145254390327
145254390327
145254390327
145254390327
145254390327
145254390327
145254390327
145254390327
145254390327
145254390327
145254390327
145254390327
145254390327
145254390327
145254390327
145254390327
145254390327
145254390327
145254390327
145254390327
145254390327
145254390327
145254390327
145254390327
145254390327
145254390327
145254390327
145254390327
145254390327
145254390327
145254390327
145254390327
145254390327
145254390327
145254390327
145254390327
145254390327
145254390327
145254390327
145254390327
145254390327
145254390327
145254390327
145254390327
145254390327
145254390327
145254390327
145254390327
145254390327
145254390327
145254390327
14525439032
1452543
1452543
1452543
1452543
1452543
1452543
1452543
1452543
1452543
1452543
1452543
1452543
1452543
1452543
1452543
1452543
1452543
1452543
1452543
1452543
1452543
1452543
1452543
1452543
1452543
1452543
1452543
1452543
1452543
1452543
1452543
1452543
1452543
1452543
1452543
1452543
1452543
145254
145254
145254
145254
145254
145254
145254
145254
145254
145254
145254
145254
145254
145254
145254
145254
145254
145254
145254
145254
145254
145254
145254
145254
145254
145254
145254
145254
145254
145254
145254
145254
145254
145254
145254
145254
145254
145254
145254
145254
145254
145254
145254
145254
145254
145254
145254
145254
145254
145254
145254
145254
145254
145254
145254
145254
145254
145254
145254
145254
145254
145254
145254
145254
145254
145254
145254
145254
145254
145254
145254
145254
145254
145254
145254
145254
145254
145254
145254
145254
145254
145254
145254
145254
145254
145254
145254
145254
14525 | 17308337311717563726377207717177699171809918183376952599426677697886373681739171756779901781777697771777777777777777777777777777 | 180
180
180
181
180
181
181
182
178
183
183
183
183
183
183
183
183
183
18 | 1993257688887922222119935384026245543024222222222222222222222222221115922818922511122222221199993353840262455430242222222222222222222222222222222 | 22222222222222222222222222222222222222 | 2423344199428777016300930352241040680464471880331116269822222222222222222222222222222222 | 1996577812220065556228706082705789054768190864588782222222222222222222222222222222222 | 161944922136769331312353722711234818199118112688412128898069677772448511444444445454554554444444445455455444554554444 | 41.707044445.2554445.2570404445.255445.3513.0445.04513.0445.04513.0445.04513.0 | | | FLASH | GRAV
API | FREEZ
POINT | AT -20 | SHOKE
PT | H2 | COMB (REPORT | (BTU/LB)
03338 | EXIST
GUM | WSIM | FSI I | ANTI | OXIDANT
TYPE | COR
MG/L | INHIBIT
TYPE | MDA I | FILTER
TIME | SOLIDS
NG/L | |--|---|--|--|--|---|--|---|--|--|----------------------|--|---|---|---|---------------------------|--
---| | 41
36
41
39
44
44
49 | 46.2
47.4
46.9
47.6
46.2
46.9
43.6
45.9 | -54
-53 | 3.9
3.5
3.5
3.9
4.8
4.2 | 24
25 | 13.90
13.95
13.89
13.98
14.00
14.04
13.79
14.00 | 18393
18486
18502
18489
18628
18637
18463
18507 | 18622
18637
18621
18645
18652
18660
18593
18643 | 1.00
1.00 | 98
97 | 0.13
0.15 | 22.4
22.4 | | 20.2 | | | 7 ·
6 | 0.38
0.10 | | 42
41
43
46
47
46
39
43 | 45.6
45.6
45.6
45.6
45.1
45.0 | -48
-51
-49
-48
-49 | 4.1
3.0
3.7
3.8 | 27
26
26
26
26
26 | 14.05
13.70
13.98
13.98
13.86
13.93
13.78
13.88 | 18413
18636
18606
18644
18603
18625
18430
18403 | 18655
18644
18637
18633
18612
18617
18607
18617 | 3.00
2.00
2.00
3.00
2.50 | 84
86
90
78 | | 17.2
17.4
17.2 | A0-35
H 4733
H 4733 | 8.9
8.6
8.6 | DCI-4A
N 5403
N 5403 | | 11
11
8
7
8 | 0.70
0.65
0.85
0.68
0.83 | | 431
431
431
431
431
431
431
431
431
431 | 46.224324
46.224324
46.324
46.324
47.395 | -53
-53
-50
-53
-50
-52
-58
-52
-50
-56 | 388985.26267.033.333333333333333333333333333333333 | 26
26
26
26
26
27
29
28
29 | 13.94
13.86
14.09
13.93
14.13
13.84
14.05
14.05 | 18454
18444
18646
18642
18625
18660
18611
18631 | 18627
18650
18656
18666
18644
18653
18606
18630
18655
18690
18683
18641
18635 | 2.00
2.50
2.00
2.00
3.00
2.00
2.00
2.00
3.00 | 94
85
92
82
78
92
78
94
86
80 | 0.11
0.13
0.12 | 17.2
17.0
17.2
17.2
17.2
17.2
17.2
18.0
20.0
18.0 | H 4733
H 4733
H 4733
H 4733
H 4733
H 4733
H 4733
H 4733
A 5733 | 8.9
8.6
8.9
8.9
8.9
10.5
15.0 | HIT 580
HIT 580
HIT 580
HIT 580
HIT 580
HIT 580
HIT 580
N 5403 | 575777777857
575555557 | 5586686998 | 0.35
0.60
0.41
0.26
0.42
0.45
0.45
0.26 | | 41
42
43
44
48
51
48
51
49 | 623380583595
44940454555 | -53
-49
-52
-52
-48 | 43355.073644 | 28
28
20
21
22 | 13.93
14.20
14.13
13.88
13.90
13.85
13.53
13.59
13.94 | 18463
18505
18602-
18534
18559
18562
18519
18516 | 18635
18692
18702
18513
18533
18605
18647
18636
18636
18641
18596 | 0.00
0.00
2.00
1.80
1.00 | 75
78
96
97
86 | 0.12
0.12 | 20.0
20.0
6.1
17.5
20.0 | A
E 733
E 733
J65 | 12.0 | N 5403
N 5403 | 5.8
5.8 | 7
7
3
10 | 1.10
0.98
0.70
0.30
0.20 | | 49
51
51
51
51
44
51
44
51 | 45.2
45.1
45.1
42.6
42.6
45.1 | S. Carlo | 4.033
4.33
4.06
5.50 | ·· | 13.91
13.96
13.93
13.62
13.63
14.01
13.75
13.60 | 18537
18534
18488
18536
18537
18417
18454
18480
18483
18443 | 18628
18632
18638
18642
18603
18595
18580
18579
18633
18522 | | • | | | | | | | | | | 421
421
521
528 | 43.8
43.8
43.5
41.3
41.5 | -51
-49
-49
-59
-48 | 5.5
4.2
4.2 | 22
20
22
21
22 | 13.92
13.91
13.59
13.77
13.68
13.58 | 18530
18491
18549
18405 | 18520
18571
18600
18576
18538
18539 | 1.20
1.20
0.60
2.00
0.70 | 90
98
97
96
85 | | 20.0 | E 733 | 15.7 | N 5403 | 5.8 | 13 | 0.60
0.32
0.30
0.30 | | 49
48
46
49
46
57 | 41.9
46.7
46.1
45.2
41.5
41.5 | -48
-49
-58
-56
-68
-49 | 4.5555.10401. | 22
21
27
22
22
23
21
21 | 13.63
13.60
14.07
13.42
13.45
13.40
13.63 | 18550
18552
18523
18520
18570
18505
18555
18542
18542
18529
18529
18516
18604
18581 | 18559
18557
18657
18558
18558
18525
18525
18525
18529
18534
18534
18534
18617
18605
18613 | 1.09
1.09
3.20
1.00
1.00
1.00
0.80 | 98
90
90
98
89
95 | | 20.0
20.0
19.4
18.8
18.8
18.8 | AO-30
AO-30
AO-AOL | 14.3
14.3 | | 225555555555 | 15
10
7
6
6
5
.7
11
5
7 | 0.20
0.27
0.127
0.127
0.135
0.135
0.140
0.120
0.120
0.213
0.427
0.240
0.240
0.240
0.240
0.240
0.240 | | 449577724481111143 | 41.7
41.9
40.4
41.9
46.8
44.5 | -49
-564
-548
-544
-551
-551
-48 | 6.1
3.4
5.3
5.7
6.3
5.6
3.2
4.0 | 21
21
21 | 13.58
13.95
13.61
13.82
13.48
13.79 | 16542
16542
16529
16529
16516
16604
16581 | 18539
18539
18549
18534
18524
18536
18617
18605 | 1.00
1.20
1.10
1.10
1.10
0.50
0.40
0.40
0.40 | 97
48
90
90
92
91
98
97 | | 18.8
18.8
18.8
19.0
20.0
20.0
20.0
20.5
18.6
22.6
18.6 | A0-30
A0-30
A0-30
A0-30
A0-30
TOPAHOL
TOPAHOL | 11.8
12.0
10.9
12.6
13.7 | HIT 480
HIT 580
HIT 580
HIT 580
HIT 580 | 5.6 | 7766771098 | 0.45
0.29
0.13
0.40
0.27
0.27
0.16 | | 43
43
41
41
41
41
41 | 416.797711255570794985251381304
44644555570794985251381304 | -48
-49
-53
-53
-53
-51
-51 | 4.1909916 | 22
23
23
23
23
23 | 13.63
13.80
14.07
13.45
13.45
13.67
13.55
13.72
13.55
13.77
13.56
13.90
13.90
13.90
13.90 | 18590
18603
18570
18609
18626
18587
18592
18629 | 18613
18600
18625
18651
10649
18620
18606
18657 | 0.50
0.40
0.40
0.40
0.40
0.40
0.50 | 94
74
98
95
95
89
89 | 0.16 | 22.6
18.1
21.6
19.4
19.7
17.9
22.3
20.2 | AD-30
AO-30
TOPAHOL
TOPAHOL
TOPAHOL
TOPAHOL
AO-30
AO-30
TOPAHOL | 11.7
14.4
10.8
14.5 | N 5403
N 5403
HIT 580
HIT 580 | 4 | 8
14
15
7
11
13
10
12 | 0.26
0.40
0.40
0.21
0.24
0.90
0.23 | | 85 (A.C.) | Ç. | | | ~~. | • | | | | | | | | | | | • | | # \$ 2000 P. A. The state of s 203 | FSII
Z | ANTI | OXIDAN1
TYF | ' | COR INHIBI | | FILTE
L TIM | R SOLIDS
E MG/L | ж и і | JFTOT
HG COOE | |--|--|--
--|--|--|--|--|---|---| | 0.13
0.15 | 22.4
22.4
; | | | 2 | • | 7 | 0.38
0.10 | Ċ | | | • | 17.2
17.4 | | 8.
8. | 6 N 54 | 03 | 11
11
8
7 | 0.70
0.65
0.85
0.68 | 000 | 0.5 | | | • | 4732 | , g., | 5 N 541 | 03 | 8 | ŏ. a š | ŏ | 0.5 | | .11 1
.13 2
.12 1 |
17.2
17.0
17.2
17.2
7.2
7.2
8.0
8.0 | H 4733
H 4733 | 8.6
8.9
8.9
8.9
10.5
15.0 | HIT 58
HIT 58
HIT 58
N 540 | 5.7
9 5.7
9 5.7
5 5.8 | 5586686998 | 0.35
0.60
0.41
0.26
0.42
0.45
0.55
0.55 | NNN0000000 | 0.5
0.5
0.5
0.5
0.5
0.5
1 | | .12 2 | C.C | A
A
E 733
E 733
J65 | 12.0
12.0 | N 540
N 540 | 3 5.8
5.8 | 7
7
3
10 | 1.10
0.98
0.70
0.30
0.20 | SAMO | 1.0
1.0
1.0
1.1
1.5 | | • | | er ja i | | | | | | | · | | | | E 733 | 15,7 | N 5403 | 5.8 | 13
7
7
6 | 0.60
0.32
0.30
0.30 | 1311111 | 0.5
0
0.0 | | 20.
19.
18.
18.
18.
19. | O
S
B
TOP | 10-30 14-30 10-30 10-30 10-30 10-30 10-30 10-30 10-30 10-30 10-30 10-30 10-30 10-30 10-30 10-30 10-30 10-30 10-30 | 10.8
14.5 | HIT 450
HIT 550
HIT 550
HIT 550
HIT 550
HIT 550
HIT 550
HIT 550 | 9976755NFB | 15076657115766777109884557113012 | 0.21
0.24
0.99
0.23 | 118000000000000000000000000000000000000 | 1.0
1.0
1.0
0.0
0.0
1.0
1.0
1.0
1.0
1.0 | | | 20. 13. 12. 13. 12. 12. 12. 12. 12. 12. 12. 12. 12. 12 | 20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0 | CONC TYF T | COMC TYPE MC 0.13 22.4 0.15 22.4 20. 17.2 A0.35 8. 17.4 H 4733 8.6 17.2 47 | 20.0 E 733 15.7 M S403 20.0 E 733 15.7 M S403 20.0 A 13.0 M 540 20.0 A 12.0 20. | 2 CONC TYPE COR INHIBIT MAJ MG/L TYPE MG/L 17.2 M 4733 8.9 DC1-4A 17.2 M 4733 8.6 M 5403 17.2 M 4733 8.9 MIT 580 5.7 18.0 M 5403 5.8 20.0 A 12.0 M 5403 5.8 20.0 A 12.0 M 5403 5.8 20.0 A 14.3 2.9 15.0 MIT 580 5.7 18.8 TOPANOL 10.9 MIT 580 6.9 20.0 A 10.30 11.8 MIT 580 6.9 20.0 A 10.30 11.7 M 5403 21.6 TOPANOL 11.7 M 5403 21.6 TOPANOL 11.7 M 5403 21.6 TOPANOL 11.7 M 5403 21.7 TOPANOL 11.7 M 5403 21.8 TOPANOL 11.7 M 5403 21.9 TOPANOL 11.7 M 5403 22.3 A 10.30 14.5 MIT 580 20.2 TOPANOL 14.5 MIT 580 20.2 TOPANOL 14.5 MIT 580 20.2 TOPANOL 14.5 MIT 580 | 2 CONC TYPE COR INHIBIT NOA FILTE NG/L TIME NOA FILTE NAA FILT | 2 CONC TYPE | CONC. TYPE MG/L THRIBIT MOA FILTER SOLIDS MG/L TIME MG/L TIME MG/L TIME MG/L MG/L MG/L MG/L MG/L MG/L MG/L MG/L | TABLE 2. JP-8 DATA STATISTICS | | | | | | - | | ٠ | • | | - ; -
- ; -
- ; - | - • - | | | : | | |-----------------|------------|------|------------------|------------------|----------------------------|---------|-----------|--------------------|--------|-------------------------|-------|--------------|-------|----------|----------| | - | ACID , | ROH. | ICID AROM. OLEF. | TOTAL | MERCAP. | | 980 | D86 DISTILLATIONN | ATIONN | | | FLASH | GRAV | FREEZE | VISC | | | .0 | な | VOL X VOL X | SUL FUR | SULFUR | 189 | × 5 | X10 X20 X50 X90 EP | 8 | 06X | 쮼 | _ | AP. | PT (C) · | | | 9 | 0.008 16.4 | 16.4 | - | 0.084 | 0.0006 155 | 155 | 17. | 8 | 002 | 200 237 | 560 | 45.5 | \$3 | -52 | 4.2 | | 0.0077 | | 9.1 | 9.0 | 9.0% | 0.00036 | 8.8 | 7.4 | 8.5 | 8.8 | 8.8 10.4 10.2 | 10.2 | 8.4 | 2.1 | 3.2 | 98.0 | | 0.038 | 338 | 20 | 3.5 | 0.26 | 0.0019 | 171 | <u>\$</u> | 8 | . 22 | 59 5 . | 281 | 88 | 49.3 | 27- | . 6.5 | | MIN VALUE 0.002 | 202 | 12 | 0 | 0.01 | 0 | 07. | 162 | 2 | 182 | 213 | 235 | × | 40.3 | § | 2.7 | | NO. POINTS | 12 | 80 | 65 | 82 | 51 | 82 . 15 | 8. | 25 | 28 | . 8 | 8 - | & | 8 | 25 | 82 | | | | | | | · | | • | | | 2 2
. : | | | | | *AT -20C | | 35 | SHOKE | 2 | ECOMB (B | HZ COMB (BTU/LB) | EXIST WSIM FSII A-OCOR INH | FISH. | FSII | A-000R | H | . Q | FILT | sor ids | JFTOT | ا_ | • | | 100 | 0.7 | 4.0 | 5.5 | 0 | 07 | |---|----------------------------------|--------------------------------|-----------------------------------|---------------------------|------------------------------| | E S | 1 0.7 | 2.4 0.4 | 13 1.5 | 0 | 0, | | CUN X HG/L MG/L TIME NG/L MH HG CODE | 1.3 89 0.13 18.5 11.8 5.5 8 0.42 | 0.84 9 0.02 2.6 3.4 0.9 2 0.24 | 1.10 | 0.1 | 52 50 8 33 24 23 39 51 40 40 | | FILT | €0 | N | \$ | m. | - 8° | | MG/L | 5.5 | 0.9 | 7.2 | 5.9 | ສ | | OR INH
MG/L | ±.8 | 3.4 | 20.2 | 8.6 | 72 | | . A-00 | 18.5 | 5.6 | 3.2 59 0.16 22.4 20.2 7.2 15 1.10 | 0 . 48 0.11 6.1 8.6 2.9 3 | ä | | FSII | 0.13 | 0.02 | 0.16 | 0.11 | •• | | <u> </u> | 8 | • | 8 | 8 7 | 20 | | EXIST | 1.3 | 78.0 | 3.2 | • | 25 | | SHOKE H2 COMB (BTU/LB) PT WT X RPT. D3328 | 23.8 13.85 18546 18610 | 2.7 0.18 70 45 | 18702 | 18513 | 8 | | RPT. | 18546 | 2 | 18660 | 18393 | 22 | | H2 X | 13.85 | 0.18 | 29 14.20 18660 | 20 13.40 18393 | 8 | | | | ~ | & | 8 | ņ | | SMOKE
PT | 23.8 | ~, | - | | - | | SHOKE | AVERAGE 23.8 | STD DEV 2. | MAX VALUE | MIN VALUE | NO. POINTS 43 80 72 80 | TABLE 3 - COMPARISON OF JP-8 AND JET A | FUEL PROPERTY | SPEC. REQU | JIREMENTS | DELIV | ERED JP-8 | FUELS | JET A* | |-----------------------------|------------|-----------|---------|-----------|---------|---------| | | MININUM | MAXIMUM | AVERAGE | MININUM | HAXIHUH | AVERAGE | | TOTAL ACID NO., MG KOH/GM | | 0.015 | 0.008 | 0.002 | 0.038 | 0.008 | | ARCHATICS, VOLUME PERCENT | | 25 | 16.4 | 12 | 20 | 17.8 | | OLEFINS, VOLUME PERCENT | | 5 | 1 | C | 3.5 | 1.2 | | SULFUR, TOTAL, WT PERCENT | | 0.3 | 0.08 | 0.01 | 0.26 | 0.05 | | MERCAPTAN SULFUR, WT PERCEN | Т | 0.002 | 0.0006 | 0.0000 | 0.0019 | 0.001 | | DISTILLATION TEMP., C (D86) | | | | | | | | INITIAL BOILING POINT | | REPORT | 155 | 140 | 177 | | | 10 PERCENT RECOVERED | | 205 | 174 | 162 | 199 | 189 | | 20 PERCENT RECOVERED | | REPORT | 180 | 168 | 206 | | | 50 PERCENT RECOVERED | | REPORT | 200 | 182 | 225 | 213 | | 90 PERCENT RECOVERED | | REPORT | 237 | 213 | 262 | 245 | | END POINT | | 300 | 260 | 235 | 281 | | | FLASH POINT, DEG C | 38 | | 46 | 36 | 58 | 54 | | GRAVITY, API | 37 | 51 | 45 | 40.3 | 49.3 | 42.4 | | FREEZING POINT, DEG C | | -47 | -52 | -60 | -47 | -45 | | VISCOSITY, CST AT -20C | | 8 | 4.2 | 2.7 | 6.5 | 5.1 | | SMOKE POINT, MM | 19 | | 24 | 20 | 29 | 23 | | HYDROGEN, MASS PERCENT | 13.4 | | 13.85 | 13.40 | 14.20 | | | HEAT OF COMB, BTU/LB | 18,400 | | 18,610 | 18,513 | 18,702 | 18,572 | | THERMAL STABILITY | | | | | | | | PRES. DROP, IN HG | | 25 | 1 | 0 | 13 | 2.3 | | HEATER TUBE RATING | | L.T. 3 | 0.7 | 0 | 1.5 | L.T. 1 | | EXISTENT GUM, MG/100 ML | | 7 | 1.3 | 0 | 3.2 | 1.1 | | PARTICULATE MATTER, MG/L | | 1 | 0.4 | 0.1 | 1.1 | | | FILTRATION TIME, MINUTES | | 15 | 8 | 3 | 15 | | | WATER SEPARATION INDEX | 85 | | 89 | 48 | 99 | 95 | #### NOTES: SMOKE POINT MINIMUM IS 25 UNLESS LESS THAN 3% NAPHTHALENES PRESENT WATER SEPARATION INDEX MINIMUM IS 70 WITH ALL ADDITIVES PRESENT EXCEPT STATIC DISSIPATOR ADDITIVE, 85 MINIMUM WITH ALL ADDITIVES EXCEPT STATIC DISSIPATOR AND CORROSION INHIBITOR PRESENT. ^{* &}quot;AVIATION FUELS, 1983", NIPER-134-PPS, APRIL 1984 #### SECTION III - DISCUSSION #### 1. FUEL PROPERTIES Table 3 compares the specification limits for JP-8 with the average, maximum and minimum values of Table 2. For comparison, Table 3 also includes the average properties of Jet A fuels. Each of these properties or measurements are discussed below: - a. Acid Number The acid number controls the amount of acidic components in the fuel, carried over from the crude oil, formed or added in refinery processes, or added after processing. The specification level is 0.015 mg KOH/gm fuel. Four JP-8 fuels exceeded the
specification limit. All four of these fuels were supplied by the Lagoven refinery in Venezuela. - b. Aromatics Content Aromatics are unsaturated, cyclic hydrocarbons that are excellent solvents, have a strong odor (hence the name aromatics), and have poor combustion performance. As the solvency of aromatics causes some elastomers to swell excessively, specifications typically limit aromatics content to 20 to 25 percent by volume. The poor combustion performance of aromatics is another reason for limiting aromatics content of jet fuels. None of the JP-8 fuels exceeded or even closely approached the specification limit of 25 percent aromatics. The average aromatics content of JP-8 was slightly less than that for Jet A (16.4 vs. 17.8 percent.) - c. Olefins Content Olefins are chain and branched chain paraffins that have double carbon bonds. As the double carbon bonds cause olefins to be less stable, olefins are limited to 5 percent by volume. Average olefins content of JP-8 and Jet A was 1.0 and 1.2 percent, respectively. However, the accuracy of the test method used to measure olefins content is poor, so the differences in the average values is meaningless. As the most likely source of olefins is cracked stocks, the specification limit on olefins effectively limits the use of thermally and catalytically cracked stocks. - d. Sulfur Content Sulfur is limited in jet fuels because of its corrosivity and the noxious nature of its combustion products. The specification limit for JP-8 and Jet A is 0.3 percent by mass. Both JP-8 and Jet A had average sulfur contents well below specification limits, but JP-8 averaged 0.08 wt percent vs. 0.05 wt percent for Jet A. Referring to Table 1, the fuels obtained ¹Shelton, E. M. and Dickson, C. L., "Aviation Fuels, 1983," NIPER-1 April 1984. from Greece, Italy, Spain, and Aruba were notably higher in sulfur content than fuels obtained from Venezuela and in the US. These differences reflect either different crude oils or refining techniques. - e. Mercaptan Sulfur Content Mercaptan sulfur is one of the most noxious forms of sulfur, both in odor and in corrosiveness. None of the JP-8 fuels exceeded the specification limit of 0.002 wt percent, and the average mercaptan sulfur content of JP-8 was only slightly less than that for Jet A, which has a specification limit of 0.003 wt percent. - f. Distillation Range The distillation range for JP-8 and Jet A are identical (see Table 3). None of the JP-8 fuels approached either the maximum allowable 10 percent recovered temperature or the end point temperature. The Jet A fuels had slightly higher distillation temperatures than JP-8, reflecting the higher allowable freeze point of Jet A. - g. Flash Point All but one JP-8 met or exceeded the minimum allowable flash point. The average flash point for Jet A was significantly higher than for JP-8. This correlates with the higher average distillation temperatures of Jet A. - h. Gravity All JP-8 fuels met the gravity limits. As API gravity is inversely related to specific gravity, the higher average API gravity for JP-8, as compared to Jet A, means that JP-8 is less dense than Jet A. The higher density of Jet A correlates with the higher distillation range and aromatics content of Jet A. - i. Freezing Point Aside from additives, the major difference between JP-8/Jet A-1 and Jet A is the freezing point requirement. All JP-8 fuels had freezing points of -47°C or below. With a maximum allowable freezing point of -40°C, the average Jet A freezing point was -45°C. - j. Viscosity Engine starting and altitude relight performance requires excellent fuel atomization, and atomization is a function of viscosity. Although the viscosity limit for JP-8, Jet A-1 and Jet A is the same, viscosity tends to correlate with freezing point, density, and distillation range. As seen in Table 3, the average viscosity of JP-8 is less than for Jet A. - k. Smoke Point The smoke point is the maximum flame height (in millimeters) that can be obtained without smoking, using a standard wick lamp. Smoke point correlates with fuel combustion performance in gas turbine engines. A high smoke point insures that the fuel will burn with a minimum of exhaust smoke and minimum heat transferred to the combustor liner via radiation. All DP-8 fuels exceeded the specification limit of 19 mm. The slightly higher average smoke point of JP-8, as compared to Jet A, is due to the higher aromatics content of the Jet A fuels. - 1. Hydrogen Content The hydrogen content of jet fuels also correlates with fuel combustion performance. For the JP-8 fuels listed in Table 1, the mass percent hydrogen was calculated using ASTM D 3343. All JP-8 fuels met or exceeded the minimum allowable hydrogen content of 13.4 percent of specification MIL-T-83133B. - m. Heat of Combustion The calorific value of a fuel can be neasured directly in a calorimeter or estimated using correlations based on other fuel measurements. All but one JP-8 met or exceeded the minimum specification limit of 18,400 Btu/lb. However, a significant bias was noticed in the data supplied by BFLRF (fuels number 40-67). Therefore, the heats of combustion of all fuels were calculated using ASTM D 3338. The average heats of combustion are: # Average Heat of Combustion (Btu/lb) Reported Calculated | Fuels # 1 - | · 80 | 18,541 | 18,610 | |-------------|------------|--------|--------| | Fuels 42 - | 69 (BFLRF) | 18,500 | 18,614 | It is obvious that the BPLRT reported heats of combustion are significantly lower than those reported by the fuel suppliers and as calculated using ASTM D 3338. Using the D 3338 values, all of the JP-8 fuels easily exceeded the specification limit of 18,400 Btu/lb. The reason for the apparent bias of the BFLRF data is unknown. Because of this apparent Lias, the ASTM D 3338 data are shown in Table 3, where the JP-8 fuels have a slightly higher heat of combustion than Jet A fuels. n. Thermal Oxidative Stability - Jet fuel is becoming the primary coolant for airframe and engine components and engine lubricant. As aircraft become more complex and engine fuel flow rates decrease with increasing engine efficiencies, fuel temperatures increase. Fuel must withstand these higher temperatures without forming deposits within the fuel system. A Jet Fuel Thermal Oxidative Tester (JFTOT) test apparatus is used to insure that each batch of fuel has acceptable stability. The JFTOT monitors the formation of deposits on a heated, polished aluminum tube and plugging of a filter downstream of the heated tube. The tube deposit must be less than a Code 3 (a dark tan) and the pressure drop across the filter must not exceed 25 mm of mercury. All JP-8 fuels easily passed the JFTOT. (Note that the Tube Deposit Codes are normally listed as zero, less than one, one, less than two, two, less than three, etc. For statistical purposes, a less than a Code one was assumed to be 0.5, etc.) - o. Existent Gum Jet fuels are good solvents and may contain quantities of dissolved gums and resins, which can form deposits within the fuel system and combustor. To analyze for existent gum, a sample of the fuel is evaporated and the residue remaining is weighted. All JP-8 fuels passed the existent gum test, and JP-8 and Jet A fuels had similar quantities of gum. - p. Particulate Matter This test measures the quantity of solid particulates (contaminants) by filtering a gallon of fuel through a 0.8-micron pore size filter membrane, which is weighted before and after the filtration. Only one of the JP-8 fuels exceeded the specification particulate matter limit. The commercial specification for Jet A and A-1 (ASTM D 1655) does not include a particulate matter test. - q. Filtration Time DoD jet fuel specifications limit the time required to filter one gallon of jet fuel through a 0.8-micron filter. (This test is run in conjunction with the Particulate Matter test, above.) The purpose of this test is to insure that the fuel does not contain contaminants that will rapidly plug the filters and filter-water separators in the bulk fuel storage and servicing systems at Air Force bases. Compliance with the Filtration Time test has greatly reduced filter replacement requirements at AF bases. The contaminants that can plug filters include solid particulates (sand, rust, fibers, etc.), precipitates from refinery treating solutions left in fuels, and reaction products of fuel corrosion inhibitors (fatty acids that have reacted with water and metals to form gelatinous soap-like materials). The effects of corrosion inhibitors (CI) on filtration time are given below: | <u>JP-8</u> | Ave. Filt. Time (Minutes) | Std Dev.
(Min) | Max Filt. Time (Min) | |-------------|---------------------------|-------------------|----------------------| | Without CI | 7.6 | 1.8 | 11 | | With CI | 7.9 | 2.2 | 15 | However, the effects of corrosion inhibitors on filtration time is most pronounced if the fuel has been contacted with water, such as during barge or ship transport. r. Water Separation Index - The most common and potentially serious contaminant in jet fuel is water. Filter-water coalescer/separator devices are used in the base fuel servicing systems to remove particulates and undissolved water. The water is removed by coalescence; i.e., small water droplets coalesce to form large droplets that are then separated by gravity and hydrophobic filter media. However, coalescence of water can be degraded or prevented by trace quantities of surface active (surfactants) materials in the fuel. The Water Separation Index (Modified) apparatus consists of a miniature coalescer device through which a sample of the fuel, emulsified with water, is passed. The ability of the coalescer to remove the water is then determined. A Water Separation Index Modified (WSIM) rating of 100 is excellent; a rating of less than 70 is cause for concern. As fuel additives affect the WSIM, different limits are placed on the fuel, depending on which additives are present. With
corrosion inhibitor (CI) but not the static dissipator additive present, a minimum WSIM of 70 is allowed. As seen below, the presence of the corrosion inhibitor does significantly lower the WSIM. | JP-8 | Avg. WSIM | Std. Dev. | Min. Value | |------------|-----------|-----------|------------| | Without CI | 94 | 4.8 | 86 | | With CI | 88 | 6.8 | 75 | The average WSIM value of 95 for the Jet A fuels (which normally do not contain corrosion inhibitor additives) is essentially the same as for the JP-8 fuels that do not contain a corrosion inhibitor additive. s. Fuel Additives - JP-8 requires, as mandatory additives, fuel system icing inhibitor, corrosion inhibitor/lubricity improver, and static dissipator additives. Antioxidants are optional unless the fuel has been hydrogen treated, in which case the antioxidant is also mandatory. The metal deactivator additive is optional. Tables 1 and 2 show that 8 of the 80 fuels contained fuel system icing inhibitor, 33 contained antioxidant, 24 contained corrosion inhibitor, and 23 contained metal deactivator. These numbers reflect three facts: (1) metal deactivator additives are optional, (2) antioxidants are optional unless the fuel has been hydrogen treated, and (3) fuel system icing inhibitor and corrosion inhibitor additives, while mandatory, may not be added until the fuel has been transported to terminals near the using bases. For example, in the United Kingdom (and proposed for part of NATO), JP-8 will be procured without fuel system icing inhibitor and corrosion inhibitor additives. These additives will be added at terminals that support military bases. Thus, the fuel procured will be Jet A-1 (NATO F-35) and will be converted to JP-8 (NATO F-34) prior to delivery to air bases. (This survey did not include the static dissipator additives.) #### 2. INTERPRETATION OF RESULTS CONTROL OF THE PROPERTY a. Low Temperature Performance. Of primary concern to the Air Force is the performance of its aircraft with JP-8, as existing aircraft were designed to use the lower viscosity and more volatile JP-4. Most aviation turbine engines are supposed to start and operate satisfactorily with fuels that have a viscosity of 12 centistokes or less. Table 4, below, lists the viscosity of the average JP-8, the maximum viscosity JP-8, the average JP-8 plus one, two, and three standard deviations, and the average and maximum viscosity Jet A fuels from 1983. Also listed are the fuel temperatures at which the fuel viscosity is 12 centistokes. TABLE 4. VISCOSITIES OF JP-8 AND JET A FUELS | JP-8 Fuel | Visc at -20C | Temp at 12 cSt | |-----------------|----------------------------------|-------------------------| | Average | 4.2 | -47°C
-35°C
-40°C | | Maximum | 6.5 | -35°C | | Ave + 1 Std Dev | 5.0 | -40°C | | Ave + 2 Std Dev | 5.9 | -37 ⁰ C | | Ave + 3 Std Dev | 6.7 | -34 ⁰ C | | Specification L | | -29°C | | JET A | Viscosity | Temp. at 12 cst | | Average | 8.86 @ -34.4°C | -43°C | | Maximum | 8.86 @ -34.4°C
14.9 @ -34.4°C | -43°C
-29°C | A review of Table 4 indicates that engine starting (i.e., 12 centistokes) should not be a problem with the average JP-8 down to -47°C, its maximum allowable freezing point. About one third of the JP-8 fuels (i.e., the average JP-8 plus one standard deviation) may not start at temperatures below -40°C, 5 percent (average plus two standard deviations) may not start below -37°C, and 1 percent (average plus three standard deviations) may not start below -34°C. Jet A fuels are slightly more viscous than JP-8 fuels and may give starting problems at -29°C and below. For long duration, high-altitude flights in cold climates, the freezing point of fuel must be sufficiently low so as to prevent fuel from freezing and preventing fuel flow to the engine. The freezing point of JP-8 fuel has been selected to insure that USAF flight operations will not be compromised by the freezing point of the fuel. Commercial airlines typically use Jet A for transcontinental flights across the US, but use Jet A-1 fuel (with its lower freezing point) for transoceanic flights. Most USAF flight operations within the CONUS could safely use Jet A. However, some CONUS originated USAF flights stay aloft for many more hours than required for commercial transcontinental operations or may terminate overseas or in Alaska, using flight routes that include very cold air mass temperatures. Thus, the use of a Jet A based fuel for all USAF aircraft in the CONUS would not be possible, if potential fuel freezing problems are to be avoided. The logistics of stocking and servicing two grades of JP-8 fuel, differing only in freezing point, would not be acceptable at many bases. Thus, the choice of a kerosene-based military jet fuel for CONUS bases is not a simple, straightforward problem. b. Fuel Energy Content - Aircraft may be either weight limited or volume limited; i.e., the fuel load and cargo or bomb load may be constrained by the maximum allowable gross weight at take-off or by the available space for cargo or weapons. Weight limited aircraft have increased range when using a fuel with increased energy content per unit mass. Conversely, volume limited aircraft have increased range using a fuel with increased energy content per unit volume. Compared to JP-4, JP-8 has an increased volumetric energy content with a slight mass energy content penalty. TABLE 5. ENERGY CONTENT OF FUELS | Fuel | Btu/Lb | Btu/Gallon | |------------------------|--------|------------| | Ave. JP-4 ¹ | 18,702 | 118,645 | | Ave. JP-8 | 18,610 | 124,221 | Table 5 shows that JP-8 has about 0.5 percent less energy content per unit mass and about 4.7 percent more energy content per unit volume. Thus, there will be an insignificant range penalty for weight-limited aircraft and a slight increase in range for volume limited aircraft. Harrison, W. E. III, "The Chemical and Physical Properties of JP-4 1980-1981," AFWAL-TR-82-2052, June 1982. #### SECTION IV - CONCLUSIONS - 1. The average properties of the JP-8 fuels supplied to the Air Force for European operations have been determined. JP-8 fuels are slightly less dense, have slightly lower viscosities, lower freezing points, and are slightly more volatile than commercial Jet A fuels. - 2. Most of the JP-8 fuels met all specification limits. One notable exception was that several of the fuels from Venezuela had high acid numbers. - 3. About a 3- to 4-percent range increase can be expected for volume limited aircraft (such as fighters) when using JP-8, as compared to JP-4. #### SECTION V - RECOMMENDATION This survey of JP-8 fuel properties should be periodically updated, especially once the conversion to JP-8 within NATO has been completed and the conversion to JP-8 in the Pacific has been initiated.