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ABSTRACT

Donald Ross Erbschloe Thesis submitted for D.Phil. degree

Merton College Trinity Term 1988

NONLINEAR EFFECTS IN PHOTOREFRACTIVE CRYSTALS

Photorefractive crystals are materials whose index of refraction is altered under
illumination by light. These crystals are both photoconductive and electrooptic.
When a nonuniform light intensity pattern is present in the material, photocarriers
are generated and redistributed, creating space charge electric fields which change
the refractive index locally. These crystals are ideal media for real-time holography,
and applications include wave amplification, image processing, phase conjugation,
and laser beam steering for optical interconnects.

This thesis investigates many novel aspects of the photorefractive effect. A study
of nonreciprocal behaviour identifies a new important consideration in the theory
of two-wave mixing between counterpropagating beams-namely the presence of a
photocurrent, or frequency detuning between the beams results in a spatially vary-
ing beam coupling. A numerical treatment of these important cases provides the
first systematic theoretical assessment of the control of nonreciprocal transmission
and phase shift in lithium niobate, a representative photorefractive crystal. A com-
parison between crystal types suggests candidates for nonreciprocal applications
such as an optical diode. 7/c .-

A study of bismuth silicon oxide, Bi1 2SiO20, as the active gain medium in an
oscillator reveals a novel feature, the presence of a light intensity threshold. For one
crystal sample no oscillation occurred for incident intensities less than 0.8 mW/cm'.
A surprising new result is the appearance of higher diffracted orders in a crystal
sample with a small wedge angle (0.0360) due to wave mixing between an incident
beam and its first codirectional multiple reflection. Several applications for this
new means of obtaining beam interaction are discussed-including the study of
the photorefractive coupling for very large grating spacings, the investigation of
transient phenomena, and laser beam steering.

A new gain mechanism for wave mixing in photorefractive crystals is verified
experimentally using the unidirectional ring resonator and the linear resonator.
The new mechanism depends on two, frequency detuned pump beams and off-Bragg
coupling. A comparison with the traditional gain mechanism for wave amplification,
using a single pump beam, reveals that the intensity of the oscillating beam with
the new mechanism can be four times larger than with a single pump beam. We
provide the first quantitative measurement of oscillation in the linear resonator
using Bi12 SiO 2 0.
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Chapter 1

Introduction

A page of history is worth a volume of logic.

Oliver Wendell Holmes, Jr.

The driving mechanism for the optical properties of a crystal lies in the regular

arrangement of its atoms or molecules. It seems natural that crystals should be

used to investigate the character of light and vice versa. Perhaps this is why the

evolution of optics is coincident with (indeed, often inextricably linked to) the study

of crystals. The twentieth century has witnessed tremendous parallel advances in

technology in the fields of optics and solid-state physics. Developments such as the

laser and semiconductor devices have infiltrated and revolutionized everyday life.

More than ever we exploit that which we purport to know.

In 1966 [5! an investigation of nonlinear optical properties of a crystal of lithium

niobate (LiNbO3) opened a new front of study-the photorefractive effect. This

effect truly embodies the union of crystals and optics. In this process, as the name

suggests, the refractive index is influenced by light. A photorefractive material ex-

hibit- both photoconductivity and the linear electrooptic effect. In tact the best

photorefractive materials such as bismuth silicon oxide (BiU2 SiO2 0) have moder-

ate to large electrooptic coefficients, large photoconductivity parameters and low

.. . -. _ .. .. .. ... . . . _ m ,d h.-- ( m li, mm I mmm mmm~ml mmm i1
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Figure 1: Intensity pattern created by two interfering sinusoidal waves.

dark conductivities. How a (semi-) permanent grating can be established in such

a material is summarized below. If two monochromatic plane waves intersect as in

Figure 1, an interference pattern is established in which the intensity, I, is modu-

lated according to:

1(z) = Io(1 + m cos(Kz)) (1)

where Yo is the total intensity, K is the length of the grating vector formed hv the

two mixing waves and m is the intensity modulation ratio. If this space-varying

sinusoidal intensity pattern falls upon a photorefractive crystal the following pro-

cesses occur. These materials are semiconductors so where the irradiance is high,

electrons from donor atoms are excited into the conduction band. By either drift

or diffusion the free electrons move to darker regions where recombination occurs.

The electrons may recombine and be re-excited many times before final trapping

occurs. Motion of charge carriers will eventually reach an equilibrium when drift

and diffusion effects are balanced by internal fields caused by space charge effects.

A modulated charge density builds up inside the crystal, mimicking the modulated

intensity pattern. The success of the imitation will depend on a number of features,

such as drift and diffusion lengths, strength of applied field, etc., and in the steady
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state manifests itself in a phase mismatch angle 'Fg between the intensity fringes and

the charge concentration. The gradient of the charge density expresses the space

charge electric field associated with it. This field will vary sinusoidally in space and

through the linear electrooptic effect, the index of refraction is modulated and a

grating is formed.

This grating is a phase hologram [115]. A hologram uses a reference and an

"object" beam to create an interference pattern. This interference pattern, which is

stored in the recording medium, contains phase and amplitude information about

the two "writing" beams. If the hologram is replayed by the reference beam alone,

part of the reference is diffracted and reconstructs the object beam. We may con-

side: 'his static or stationary holography, and this describes the situation for steady-

state wave-mixing in photorefractive materials. However, to reach steady-state we

must first go through a complicated dynamic process. The writing beams undergo

diffraction as the grating is being formed thus the hologram is being written and

read at the same time. These diffracted beams also contribute to the interference

field and so hologram formation exhibits a wealth of transient effects before settling

down to equilibrium.

The interest and effort into the study of photorefractivity has grown steadily in

its 22 year history. Only a handful of articles and papers appear-d on the subject in

the late 1960's. Now such publications as Physics Reports (1982), The Journal of the

Optical Society of America (February 1986), and The IEEE Journal of Quantum

Electronics (August 1986, December 1987) devote issues to it. Photorefractivity

even merits special dedicated conferences such as a 1986 Meeting on Progress in

Scientific Culture at Erice, Sicily and the July 1987 Los Angeles meeting of the

Optical Society of America.

There is more to the utility of photorefractive materials than just as erasable,

real-time media in which to store display holograms. These materials are optically

nonlinear, which means the polarisation of the medium is not strictly proportional

to an applied electric field. (It is an unfortunate consequence of an overly useful
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Figure 2: Photorefractive grating formation: (a) Carrier photogeneration. (b) Drift.
diffusion and trapping of carriers. (c) Space charge distribution. (d) Space charge
electric field (gradient of space charge distribution) may be out of phase, 4P, with
intensity. (e) Modulated refractive index (via electrooptic effect.)



CHAPTER 1. INTRODUCTION 5

term like "linear" that the coefficients of the linear electrooptic effect can be directly

related to the second-order optical nonlinear susceptibility coefficients. [135]) Two-

and four-wave mixing in photorefractive materials yield such nonlinear phenomena

as energy exchange between the interacting waves [761, phase conjugation [241, and

nonreciprocal effects [140].

As we approach the twenty-first century our information-hungry society de-

mands more and more from its technologies. There is a never ending quest for

faster computers and improved and increased communications capability. Optical

engineering has become an important arena for priority research. Much of the early

thrust of this research was to develop optical analogues of electronic components

such as switches (bistable optical devices [111]), optical diodes [86], and logical

gates [80], but increasingly, applications aim at areas where optics has inherent

strengths, for example parallel processing in associative memories [26] and neural

networks [81]. Photorefractive materials are versatile and figure prominently in

many proposed schemes for the devices mentioned.

Before we discuss studies of photorefractive crystals, it is worthwhile to review

their place in the history of crystal optics.

1.1 History of Crystal Optics

Crystals were certainly known and valued to the ancients in the forms of gems

and precious stones. The first scientific mention of the regular shape of a crystal

(garnet) appears in Theophrastus' (372-287BC) Concerning Stones [32]. To the

geographer Strabo (63BC- 24AD), pieces of quartz were so reminiscent of ice that

he proposed a common origin. Thus our word "fcrystal"' comes from his description

"KpvaraAAot'". It means to freeze, or to congeal with frost" [1]. Pliny the Elder

propagated this myth in his marvelous compendium of misinformation, Natural

History. However, he did note the characteristic six angles of quartz crystals [10].

The ice-crystal explanation dominated until the 18th century. In this regard
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Strabo's view was to crystals what the Aristotalean view was to mechanics -- and

nearly as long-lived. One of the more eloquent expressions of the theory comes from

John Wycliffe (1320-1384) [1]

When the colde northwynde bloweth harde Christall cometh of the water

As with Aristotalean dynamics, though, there were a few dissenting voices through

the centuries. Agricola (Georg Bauer, 1490-1555) dismissed the idea of frozen crys-

tals as he noted the presence of crystalline materials near Hecla, an active volcano

[101]. The fazt that if crystals were a form of ice it was different from typical

water-ice was mentioned by Robert Boyle (1627-1691). Essentially his argument

was that if one dropped a crystal and a piece of ice into some water there will be a

difference. The crystal will not float. A charming refutation of the then-current hy-

pothesis of crystals from frozen dew appears in Philoaophical Transactions in 1672.

P. Francisco Lana, while travelling in Italy, was given some six-sided crystals found

exclusively in some narrow crevices in a large meadow. "I was told, that they were

produced from the dews, because (forsooth!) being gather'd over night, the next

morning there would be found others at such a time only, when it was a serene and

dewy sky . . . ." To Lana's credit, he argued [821

It therefore ought not to be affirm'd, that a dewy vapour is of it self able

to be form'd into a solid gem; because, if that were so, such vapours
being easily carried by any motion of the Air from those narrow places,

and falling down in dew far from the same, Crystals would be formed

in those other places.

In 1669 Steno (Niels Stenson, 1638-1686) set down the law of constancy of

interfacial angles for quartz. This law was extended in the classification hundreds

of types and shapes of crystals by such researchers as Dominic Guglielmi and Jean

Baptiste Rome Deslisle (32]. Strabo's simple concept was no longer adequate to

explain this complicated situation. The ice theory melted into oblivion.
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If crystals weren't ice, what were they? Robert Hooke (1635-1703) spectulated

in his Micrographia that crystals are ultimately composed of spherical particles (511.

. . . all these regular features arise onely from three or four several

positions or postures of globular particles . . . and this I have ad

oculum demonstrated with a company of bullets and some few other

simple bodies . . . even almost by shaking them.

It was a fortuitous accident which established the science of crystallography. Rene

Just Hauly (1743-1822) dropped and broke one of a group of calcite crystals belong-

ing to a friend. He noticed that the fragments had the same characteristic rhomb

shape. According to Bishop [10],

After breaking up many more calcite crystals of differing external shapes

he concluded that all were composed of a repetition of a minute struc-

tural unit . . . called integrant molecules.

(Presumably he first asked his friend's permission, else this is an example of exper-

imental science at its most callous.)

In the 19th century the study of crystal structure passed on to the mathemati-

cians with research into crystal classes and group theory. Experimental work was

left to the study of interactions of light with crystals. As early as 1669, Erasmus

Bartholinus (1625-1698) observed double refraction in Icelandic feldspar [9]. In try-

ing to explain this phenomenon, Christian Huyghens (1629-1695) discovered the

polarisation of light. Further advances in study of polarised light in crystals were

made by David Brewster [13] (1781-1868) and Etienne Louis Malus (1776-1812),

culminating in the discovery in 1816 that two rays polarised at right angles will

not interfere. This definitive demonstration that light waves are transverse was

made by Augustin Jean Fresnel (1788-1827) and Dominique Jean Francois Arago

(1786-1853) with the explanation coming from Thomas Young (1773-1829). Fresnel

worked out the details of wave propagation in crystals, a feat which Born and Wolf

call "one of the greatest achievements of natural science' [11].



CHAPTER 1. INTRODUCTION 8

Polarisation of light is easily demonstrable and it appealed greatly to the most

eminent popularizer of science in the 19th century, Micheal Faraday (1791-1867).

In the 1840's he conducted a series of experiments investigating the influence of

electric and magnetic fields on light. He discovered the Faraday effect (a non-

reciprocal rotation of the polarisation axis in a crystal subjected to a magnetic

field) in 1845 [331 but failed to find a comparable effect using an electric field. It

took until 1875 and better laboratory equipment for this latter observation. In

that year John Kerr (1824-1907) demonstrated the quadratic electrooptic effect[681,

a change in the refractive index proportional to the square of the applied electric

field. The linear electrooptic effect followed in 1893 from the studies of Friedrich

Carl Alwin Pockels (1865- 1913) [501.

For centuries crystals had been used to divulge the properties of light. The

history of light and crystals comes full circle in 1912 when light in the form of X-rays

was used to investigate the fundamental nature of crystals. The classic experiment

exhibiting X-ray diffraction was suggested by Max von Laue and performed by W.

Friedrich and P. Knipping. Using Laue photographs produced by a sodium chloride

crystal, the father-son team of W.H. and W.L. Bragg ascertained its structure. The

thorough (and personal) history of the early years in X-ray diffraction is told in

chapter 12 of the Braggs' classic text The Cryatalline State [121.

A resurgence in interest in crystals came with this new technology. The timing

was right for the 1920's saw the first stirrings of quantum mechanics. An early

success of the theory was the discovery that a periodic potential function leads

to allowed energy states in the form of bands [124]. This finding helped explain

electrical conduction, and led to the ultimate exploitation of semiconductors.

1.2 History of the Photorefractive Effect

In 1966, Ashkin, Boyd and their group of co-workers at Bell Telephone discovered

"optically-induced refractive index inhomogeneities" in crystals of lithium niobate
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(LiNbO 3) and lithium tantalate (LiTaO3 ). Because of their known nonlinear optical

properties, the crystals were being tested in applications such as second harmonic

generation and as electrooptic modulators. Exposure of the crystals to focused or

unfocused visible laser light created nonuniform changes primarily in the extraor-

dinary refractive index. If left alone there was some relaxation of the change, but

effects would still persist for days or months. Heating the crystal (; 1700 C) atcel-

erated the restoration of the crystal to the neutral state. They surmised that the

electrooptic effect could explain the index change but a more fundamental mech-

anism was needed to explain the fields required to induce the electrooptic effect.

Among the mechanisms suggested were pyroelectricity (a spontaneous polarization

due to a temperature change), microdomain reversals, or a change in the structure

of the crystal cell [5].

Chen found in 1967 that potassium tantalate niobate (KTN) suffered laser in-

duced "damage" as well. In his experiment a crystal was illuminated with 633 nm

He-Ne laser light while a transverse external electric field was being applied. Chen

felt a long-lived space charge field could be established by the drift of photoex-

cited electrons from traps in the illuminated area and their subsequent recapture in

traps in darker regions (181. In a later paper, Chen, LaMacchia and Fraser demon-

strated the ability of this "optical damage" in recording a volume hologram inside

lithium niobate. The crystal had excellent resolution properties, greater than 1600

lines/mm (20]. No applied field was necessary and the question as to the driving

mechanism of photoexcited carriers in lithium niobate became important. Johnston

in 1970 claimed that a type of spontaneous polarisation similar to the pyroelectric

effect was responsible [63]. This idea appealed to Townsend and LaMacchia who

created volume holograms using barium titanate (BaTiO 3) [1251. Chen likened the

effect to persistent internal polarisation [19], an effect well known in ferroelectric

materials in which strong internal fields could last for days after space charge fields

were established by using radiation to excite electrons which can then drift out of

the irradiated area and be trapped [661.
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In 1971, Amodei repoited that thermal diffusion could account for the motion

of excited free carriers [3]. Later that year he and co-author, Staebler, published

a classic paper in which Kogelnik's coupled-wave theory was applied to hologram

writing and reading. Both diffusion and drift of carriers were considered. They also

predicted a one-way energy t~ansfer between recording beams [119].

With this 1971 paper, a coherent picture of what was later to be called the

photorefractive effect began to emerge. (The earliest reference I have found in

which the term "photorefractive" is used is in a 1976 article by Magnusson and

Gaylord [87].)

The 1970s saw tremendous refinements to the physical picture of the photore-

fractive effect and the development of a powerful predictive theory. Ninomiya was

the first to consider dynamic processes in hologram formation. He considered the

index modulation as being linear with the exposure (the time-average of the irradi-

ance) [95]. Magnusson and Gaylord tested Ninomiya's theory experimentally with

the result that they qualtitatively verified many predictions of the theory (i.e., such

as rapidly varying writing and reading results which previous authors had taken

as 4experimental problems"). They suggested coupling experiment with theory to

diagnose material parameters of recording media [87]. Vahey used an approach

similar to Ninomiya, but considered the index modulation as being proportional

to the writing irradiance multiplied by an arbitrary time dependent function. He

also succeeded in deriving an expression for diffraction efficiency (how much of the

reading beam is diffracted by the grating) of the hologram [127]. Kim et al. consid-

ered feedback between the space charge field and the free electron density and thus

were pioneers in the incorporation of materials effects in the dynamic theory. How-

ever they did not consider how the feedback would affect the writing beams [69].

This oversight was included in the work of Moharam and Young who also included

the photovoltaic effect [93], an internal electric field which can drive an intensity-

dependent photocurrent [41]. 1979 saw the publication of the two most successful

theories to date, theories which looked closely at material properties. Feinberg et

[. , . .. .. .. , . .. -- --
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al. proposed the hopping model in which charges are fixed to certain sites in the

dark, but under illumination can move to neighboring sites with an irradiance de-

pendent probability. This approach had very good success in describing effects seen

using BaTiO 3[36]. The most general theory, and the one most favoured today, is

from Kukhtarev et al. [77,76]. Chapter 2 will review the important equations and

provide an example of their theory.

1.3 Applications of Photorefractive Materials

It would be impractical to present an exhaustive list of proposed applications for

photorefractive materials here. As Eichler noted in his introduction to the spe-

cial issue on "Dynamic Gratings and Four-Wave Mixing" in the IEEE Journal of

Quantum Electronici in 1986, "...more than 500 papers have been published up

to 1985" [29]. Our time would be better spent cataloguing areas of suggested uses

with references to one or two representative papers.

The first division of applications is that of static (storage or display) versus dy-

namic (real-time) holography. Certainly the first proposed use for a photorefractive

material, (LiNbO 3 ), was as a medium in which to store holograms. A reasonable

question to ask is how equal are they to this task? The answer, as it so often

is in science, is "that depends". It depends on what type of crystal we are dis-

cussing. Some crystals, such as Bi 12SiO 20 and Bi 12 GeO 20, are very sensitive to light

and are very quick (grating writing times for moderate (, 10 mW/cm 2 ) intensities

are on the order of milliseconds). They compare favorably with high resolution

photographic plates, but suffer from short storage times (20-30 hours) [54]. Other

crystals, like LiNbO 3 and LiTaO3 , respond in seconds to minutes, but have much

longer storage times (1-10 years) [44]. The benefit with photorefractives, of course,

is that you have a self-developing, erasable medium. However it is possible to "fix"

the holograms in these crystals by writing the hologram at a high temperature (1600
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C) and reading it at room temperature. Staebler, et al. estimate that the result-

ing storage time for a fixed hologram in LiNbO3 is 10' years. Because these are

volume holograms, the angular selectivity is very strong-one must be very near

to Bragg conditions for high efficiency [115], one can store many holograms in the

same crystal by slightly altering the angle with each exposure. In one experiment a

whopping 500 holograms were recorded in a single, 2 mm thick sample of LiNbO.

Each hologram had a diffraction efficiency of 2.5% or better [120). As promising

as these results sound, very few papers appear nowadays on holographic storage in

photorefractives-perhaps the feeling is that all the work possible on this subject

has been done, or the cost of materials (a 1 cm' cube of Bi 12SiO 20 sells, typically,

for £500) is too high.

In dynamic holography we take advantage of the ability to simultaneously write

and read a hologram in a photorefractive material. A useful way to characterise

dynamic applications is by the number of interacting waves.

In wave mixing, as in an argument, the minimum number required to produce

interference is two. The 3implest case is when the writing beams are uniform plane

waves and, as we have already discussed, this creates a sinusoidal diffraction grat-

ing. The process works just as well if one of the beams has temporal or spatial

distributions, and two-wave mixing has been used to generate real-time interfero-

grams. An interferogram is a means of measuring the relative spatial displacement

between two surfaces. Departures from parallelism result in bright and dark fringes:

dark where the separation is a half-odd multiple of the wavelength, corresponding

to destructive interference; and bright where the interference is constructive. You

can use the same surface if you superimpose two imiges taken at different times,

which is particularly useful if your object of interest is vibrating. As mentioned

above the response time in Bi12SiO 20 can be on the order of milliseconds. If the

period of the vibrating object is much less than this response time, the mixture of

the object beam and reference beam produces a continuous interferometric pattern

[54,671. In LiNbO 3, where the response time is much longer, it is more convenient
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to use the crystal as a storage hologram and make a double exposure interferogram

(881.

Two-wave mixing in photorefractives generally involves power transfer. In Chap-

ter 2 we will discuss this phenomenon in great detail, but we should mention here

that in Bi 12 SiO 20 this transfer can be dramatically increased if there is a slight dif-

ference in frequency between the waves (detuning typically of a few hundred Hertz).

Thus we can use two-wave mixing to amplify weak signals. In Bi 12SiO 20 gains of

10' and in BaTiO 3 gains of 4x10 3 have been reported [109,1261. This suggests using

photorefractive materials for laser beam steering. In this scheme a crystal is illumi-

nated with a strong, uniform pump beam. A weak probe beam (frequency shifted

iJ necessary) is turned on in the required direction. The large amplification of this

beam essentially redirects part of the pump beam in the desired orientation [1081.

We have discussed how to form a holographic grating with an object and a ref-

erence wave. A third wave can be diffracted off this grating and, if it is sufficiently

intense and near the same wavelength, may interact and contribute to the dynamic

diffraction process. Of particular interest is when the third beam is counterpropa-

gating to the reference beam. Then part of the third beam will be diffracted from

the original grating from behind. This diffracted beam runs counter to, and retraces

the path of, the object beam. Its phase is the reverse of the object beam. This

latter property gives the diffracted beam its name-a phase conjugate. It has been

likened to time reversal [1331.

Although we started with three beams, we ended up with four, so this scheme

falls under the category of four-wave mixing. The arrangement described above

which produces a phase conjugate wave is often labelled a phase conjugate mirror

(PCM). These mirrors are characterised by a threshold t701. Any sufficiently intense

beam incident on the PCM produces a reflected conjugate beam. (In analogy with

a classical mirror, the conjugate is the "reflected wave". However, considering the

conjugate's turn tail character, perhaps, the term "retreating wave" is more apt.)
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It is possible for a single input beam to generate a phase conjugate. The pho-

torefractive crystal can act as the gain medium in a linear resonator. Optical noise

from the input can be captured and amplified in the resonator, creating the required

counterpropagating beams [131]. An even more intriguing arrangement is the CAT

mirror (named for the discoverer's pet feline, whose portrait ignominiously was

aberrated for the experiment) using BaTiOa, in which internal reflections provide

all the necessary beams [37].

Phase conjugate mirrors play important roles in a wide variety of applications.

We can use their phase reversing properties to clean up beams from unwanted ab-

berations [21] or compress frequency dispersed pulses in optical fibres [99]. Since

the amplitude of the conjugate wave is related to the product of the amplitudes

of the other three mixing waves, PCMs are useful for image processing tasks such

as image division [60], image subtraction [80], intensity inversion [132] or edge en-

hancement [35]. The thresholding property of PCMs can be used for correlation

[40] and associative memories [134].

The response time of photorefractives is proportional to the incident intensity.

Very intense pulses can be used to write gratings on nano- or even pico-second

time scales [83,114]. Thus some of the applications discussed in this section may

be possible on ultra-fast time scales. The limitation is the ability of the crystal

to dissipate the power. For pulses of gigawatt instantaneous power, the repetition

frequency must be no higher than a few Hertz [138].

1.4 Outline of the Thesis

Our exploration of photorefractivity begins in Chapter 2 with a discussion of the

theory describing two-wave interactions. This comparatively simple case is the

springboard to more complicated geometries, and the recipe we develop to handle

it will serve us well in later chapters.

Two-wave mixing in photorefractive crystals has been studied for nearly twenty
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years and one might think that there are no new wrinkles to the problem. We can

classify these interactions in terms of the grating spacing of the mixing beams (a

small interbeam angle means a large grating spacing and vice versa). Certainly

the range of grating spacings from submicrons up to 100 microns has been studied

(see for example J.M. Heaton's D.Phil. thesis [491). However, in Chapter 3 we

bring up important considerations for the case of counterpropagating beams (grating

spacing equals one half wavelength - the smallest possible length), and explore

nonreciprocal effects.

With Chapter 4 we lean towards the other extreme of the grating spacing scale.

Significant gain is possible in Bi 12 SiO 20 for large (10-50 microns) grating spacings

with moving intensity fringes. We use this effect in a unidirectional ring resonator.

At these large grating spacings, conditions are favourable for energy transfer to

higher diffracted orders.

Chapter 5 describes theory and experiments involving a new mechanism for

gain in photorefractive materials. This amplification depends on off-Bragg coupling

and is more efficient in many cases than our stalwart gain mechanism derived in

Chapter 2.

The production of higher diffracted orders is investigated in Chapter 6 using a

novel techninque-we take advantage of a very slight wedge angle in a crystal sample.

Two-wave mixing is provided by a single incident beam and its nearly coincident

internal reflection.

We finish up with conclusions, suggestions for future work, and some relevant

appendices.
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Chapter 2

Two-Wave Mixing in

Photorefractive Crystals

"The revelation came to me while doing homework on partial differential equations.

I was a junior and I had to calculate the torsional modes of vibration in a metal beam.

That was when I realized that solving a differential equation gives you a feeling of

accomplishment, but not one of justice."

"Then you were doing it wrong, son."

"The Paradoxical Case of the Relativity Twins"

To create a dynamic holographic grating in a photorefractive material three

processes must occur.

1. Transport of photoinduced carriers.

2. Modulation of the refractive index via the linear electrooptic effect.

3. Diffraction of the writing beams as the grating forms.

The first process can be described in terms of materials equations; the second

is worked out by considering the electrooptic tensor; and the third is specified by

field equations. In this chapter we adopt the strategy of divide and conquer-each

16
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process will handled separately. This makes the problem much more tenable and

allows the luxury of pausing occasionally to discuss the physics involved. By the end

of the chapter we will have derived an expression for power transfer for two-wave

mixing and we will consider means to control and optimize this effect.

Two-wave mixing is fundamental to understanding the whys, hows and where-

fores of the photorefractive effect. The interaction of several waves often can be

reduced to a linear combination of mixing of all the possible pairs of waves.

2.1 The Materials Equations

One of the most quoted papers dealing with photorefractivity appeared in two

parts in Ferroelectrics in 1979. N. V. Kukhtarev and his coworkers [77,76] laid

down a consistent framework of materials equations describing the generation and

recombination of charge carriers, their transport in the form of a current density,

and the establishment of a space charge field.

2.1.1 The rate equations

In this band transport model charge carriers are liberated from fixed donor sites in

the bandgap. Thus one way to monitor the carrier concentration, n, is to consider

the ionized donor density, N' (here we assume an n-type semiconductor). (There

are also negatively charged traps, whose concentration is given by NA -this will

appear in a later equation.) These ionized donors act as traps for unwary carriers

and thus both n and ND can be depleted.

The first materials equation describes the time rate change of N'.

Oa -(I +3) (N- N,) -ynN +  (1)

The first term on the right hand side of the equation is the creation term. There

are two avenues of increasing N+ : photo- or thermal generation. s is the photoion-

ization constant, I is the driving light intensity and 3 is the thermal generation
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coefficient. Note that the production of ionized donors is proportional to the den-

sity of un-ionized donors (ND - N).

The second term describes recombination. - is the recombination coefficient,

and we see the depletion of N' is proportional to the product of the carrier and

trap densities. This means the recombination term is nonlinear.

The donor sites are fixed. Whenever a photon or a phonon begets an ionized

donor a charge carrier is produced. But the charge carriers are mobile- there is an

additional process by which the carrier density can change. That is via a current

density. Our second materials equations is:

d _ I D V. (2)
Ot (9t e

This equation should look familiar to anyone well versed in electromagnetic theory.

It is the continuity equation, where e is the unit electric charge and f is the current

density. It is a statement of the conservation of charge.

2.1.2 The current density

The flow of a current requires some agent to move the charges. Our third materials

equation considers three possible processes:

J=,uenk5 + jI (ND - NA) - pkBTVn (3)

The first two terms on the right hand side of the equation are drift current den-

sities. The first is due to a space charge electric field, E0, which we allow to include

any background field due to an applied voltage. Here pi is the carrier mobility.

The second term is a photovoltaic drift current density which is proportional to the

intensity and the density of un-ionized donors. The constant of proportionality is

the photovoltaic coeffcient, p.

The final term is the diffusion current density, which depends on the gradient of

the carrier concentration. Here kB is Boltzmann's constant and T is the absolute

temperature.
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Figure 1: Band transport model: Generation, transport and trapping of n-type
charge c7riers. Donors and traps lie in the bandgap between the conduction and
valence bands.

Fig. 1 summanzes the first three materials equations. In photorefractive ferro-

electric crystals, such as LiNbO 3 and BaTiO 3, the donor and trap sites are impuri-

ties, mainly transition metals such as Fe, Cu and Mn [72,71]. In Fe doped LiNbO 3 ,

for example, the charge transport occurs between Fe2+ and Fe3+ [73]. The donor

sites in Bi12SiO 20 crystals i-e silicon vacancies that lie 2.6 eV below the conduction

band (the band gap energy is 3.25 eV [521). The nature of the traps in Bi 12SiO 20 is

not well understood, but they lie 0.6 eV below the conduction band. Luminescence

centres (2.25 eV below the band when occupied by an electron, 1.3 eV when not

occupied) may also contribute to charge transport [44].

2.1.3 The space charge field

Our last equation is Poisson's equation. The divergence of the space charge field is

related to the charge density.

(N- + n - N)(4)

A 

--- 

--
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E, is the permittivity of the medium and N- is an ionized acceptor density. The

presence of ionized acceptors is necessary to insure charge neutrality because we

will assume, for most practical cases. N> n. That is, in a Fourier expansion of

N' and n, the coefficients obey N' >> ni where i is an index. Normally we take

this expansion out to first order.

2.1.4 Simplifying assumptions

In theory we could apply any driving intensity, I, to Eqns 1-4 and find the resulting

space charge electric field, E,. (That is our goal, for this is the field which will mod-

ulate the refractive index through the electrooptic effect.) In practice, though, our

first step is to reduce the complexity of the equations by making some simplifying

assumptions. Here we list each assumption and briefly discuss its validity.

1. There is only one species of charge carriers. Implicit in the statement of the

Kukhtarev model is that only one type of charge carrier, electrons or holes, is in-

volved in the transport process. Orlowski and Kriitzig have demonstrated that the

transport of both holes and electrons is deleterious to photorefractivity [1001. How-

ever, simultaneous electron/hole transport does occur in Fe-doped LiNbO3 [1301 and

BaTiO3 [71]. The acceptor/donor concentration ratio (Fe2+/ FeS+) can be controlled

during the crystal growth process, and this ratio determines, to a large extent, the

relative contributions of the electrons and holes to photoconductivity. Thus by judi-

cious doping one can regain single charge carrier status. Valley [128] and Strohkendl,

et al. [1231 independently have developed charge transport models for the presence

of both electrons and holes. These models are based on Kukhtarev's theory and

contain similar expressions of Eqns 1-3 for holes. Valley considered two cases--one

in which the recombination/donor centres are the same for holes and electrons, and

one in which they are different. In Bi 12SiO 20 electron transport dominates, while in

Bi12GeO 20 either holes or electrons govern photoconductivity [102].

-......
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2. Thermal generation of carriers is negligible. The justification for this assump-

tion comes from the low dark conductivities of most photorefractive crystals 44i.

Our own measurements of dark current in Bi 12 SiO 20 (applied voltage but no illumi-

nation) gave values typically in the picoamp range, while with moderate incident

intensities (z 10 mW/cm2 ) the current rose to microamps. Thermal generation in

Eqn I can be neglected except for very low light intensities.

3. The carrier density, n, is negligible compared with the ionized donor density,

N'. Several authors have measured trap densities in photorefractive crystals. In

LiNbO 3 [16], BaTiOa[361, and Bil 2 SiO 2 0[94J the densities are on the order of magni-

tude of 102 m - 3 . Carrier densities are usually much lower than this. For example,

a uniform illumination of 100 mW/cm' in Bi 1 2 SiO 2O produces a carrier density of

2 lx 107 m -3.Thus N' - n ; ND.

4. The ionized donor density, ND, is negligible compared with the donor density,

ND. Here again measurements provide the justification. In Bil 2SiO 2 0 , ND is on the

order of 1025 m -3 [1091, while in LiNbO 3 it is 1023 m -3 [16]. Therefore ND - ND'

ND.

5. The ionized acceptor density, IV, is constant. Ionized acceptors must be

present to offset the initial ionized donor density to insure charge neutrality. We

assume these acceptors play no active role in the charge transport process.

2.1.5 The driving light intensity

Consider the intensity pattern formed by the superposition of two waves of nearly

the same wavelength as shown in Fig. 2a. This is referred to as nearly degenerate

two wave mixing. The grating vector (the spatial angular frequency of the intensity

pattern) is seen in Fig. 2b.

I(F) s- IE+e j( +t- k-,'r + Eej(a- t- k-'r2 = Io + Itej(6t - - ' -) + c.c. (5)

where Io = 1+ + L_ - E+14 + 1E_1 2 is the background intensity, I,= vI7Ti is

the modulated intensity, k+/_ = 2ir/A+/_ is the +/- wave vector, with A+/- the
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Figure 2: Two-wave mixing. (a) The waves inside the medium. (b) The grating
vector in reciprocal space.

wavelength in the medium, I/1( = 1k,. - k-1 = 27r/A is length of the grating vector

with A the grating spacing, Sw = w+ - u; is the frequency detuning, and c.c. means

complex conjugate. For bw * 0 this intensity pattern consists of sinusoidal fringes

moving with velocity v = bw/K. It is common practice to set up a coordinate

system in which I? is parallel to one of the axes, say z, soK F = K z. This total

light intensity will drive the materials equations.

At this point it is convenient to introduce normalized quantities for n, N ,

E,, and J. Experience shows that this will save a lot of algebra later. With our

simplifying assumptions our normalized materials equations may be written:
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h ON,= (I + mejK(vt-z 4 c.c.) - (6)
at r~naON
oN - EqV.J,. (7)

- E+n (I + meiK(t-) c.) - E, (8)

1 - E ,n = 1- N, (9)K

where our normalized quantities are N,. N -/N , nt,, =n/N-, E, = Eo/Eq, J,,=

J/ljeNAEq. The constants are h = N/ISIoND, m = I1/10, n,. = h/r,, 7,. =

1/yN;. The characteristic electric fields are Eq = eN;/EK, Et = kBTK/e, E, =

pry, N; /.5eA.

The next step is to assume the solutions to Eqns 6-9 are driven by I and thus

have the same general functional form.

F.(Z, t) = F,., + F,.iejK(vt- ) + C.C. (10)

Note we assume steady-state conditions for the coefficients Fn0 and F,. These are

the first two coefficients in a spatial Fourier series. We will take the directions of

1, 4 and fn to be i, i.e. parallel to K.

There is one more obstacle to overcome. Eqns 6 and 8 are nonlinear (they contain

the terms nnN,. and nE,,). To overcome this difficulty we invoke linearization. We

assume the amplitude of the first order term is much smaller than the amplitude

of the zero order term. This is a reasonable assumption if the intensity modulation

is very small (m << 1). Then we may ignore products of first order terms. Making

the substitutions of Eqn 10 and applying linearization, we next equate coefficients

of the static (d.c.) and exponential (a.c.) terms. This gives us eight equations and

eight unknowns.
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2.1.6 The d.c. equations

n ,.,o -- n a ( 1 )

N,,o = 1 (12)

EvE~ r n (13)Jno = ,.oE,.o + nnaEP 13
Eq

E,,o - (14)
Eq

Here E,0 is the static electric field due to any applied voltage.

2.1.7 The a.c. equations.

m = 1 n,, + (1 - jKvh)N,, (15)
nn,

N.I = - p J"J. (16)

J,,, = nE,, + Eo - ) n.1 + En,M (17)
Eq Eq

Ent - jN, (18)

2.1.8 The modulated space charge field

Our goal was to find the modulated space charge field, E,j, and we now have the

means. The following method works well. From the a.c. equations eliminate J,,

then n,,, and lastly N,,. The final result is:

Eo, = -mE. (19)

E. = Eo + Ep -jEt (20)l b f + i (VI - b(l + E)

where E,,, = 7rNA/K, b = Kv-d and rd = eofN/eiIoND is the dielectric

relaxation time.
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We will defer a full discussion of the physical meaning of Eqn 20 until later in

the chapter when we have worked out the rest of the photorefractive process. We

should notice, however, that E,j is directly proportional to the intensity modula-

tion, rn. and it is complex. This means the field can be out of phase with the

intensity pattern. This is what we dubbed the phase mismatch angle, Pg, in Fig. 2

in chapter 1.

2.2 The Linear Electrooptic Effect

The next question to ask is what influence the space charge field, E,, will have on the

photorefractive medium. The answer comes from considering the linear electrooptic

effect. In this effect geometry and orientation are crucial.

In many problems we have the luxury of choosing a convenient coordinate sys-

tem. For example, in the previous section we chose the z axis as being parallel to

the grating vector, k. We are much more restricted when we consider propagation

of light in an anisotropic medium, such as a crystal. Optically speaking there is

only one preferred set of axes-the principal coordinate system.

Simply put, the principal coordinate system is the one in which the dielectric

tensor, 9, is diagonal. When an electric field, E, is applied to a dielectric the medium

is polarized. The electric displacement,/D, is related to this field by:

5 = (21)

In the principal coordinate system, ciy= 0 for i :A j. Along the axes, b is in the

same direction as E [46].

If the medium is homogeneous, nonabsorbing and magnetically isotropic then

the electric energy density is given by:

W E.D l D (22)=2 2
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Figure 3: (a) The index ellipsoid with propagation direction, g'. (b) Propagation
eigenstatcs from the cross-section ellipse.

Making a change of variable, xi = D,/ 2Wrc0 , and recalling the refractive index

= V/oi gives:
3 2
n- E = 1 (23)

i=l n

The above is the equation defining the index ellipsoid. The zis are the principal

axes coordinates. Thus in the principal coordinate system the index ellipsoid has a

particularly simple form.

The index ellipsoid is used to describe propagation of light in anisotropic media.

For any propagation direction there are generally two eigenstates, each characterised

by a polarisation and a phase velocity (refractive index). By eigenstate we mean

an incident wave polarised in one of these characteristic directions will maintain

its pola-isation state as it progresses through the medium. Fig 3 shows how to

find these eigenstates. Construct a plane passing through the origin of the index

ellipsoid whose normal is in the desired propagation direction. The intersection of

this plane and the ellipsoid is an ellipse. The directions of the major and minor axes

give the eigenpolarisations while the lengths of the semiaxes are the corresponding

refractive indices.

J.- L_ _ - -i __]i Ii i - - - - - - Ii
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The treatment for the index ellipsoid concerned the optical electric field. An

applied field, such as the space charge field developed in Sec 1, may perturb the

distribution of charges in the medium and alter the index ellipsoid. This is known

as electrooptic effect and the perturbation may be proportional to the applied field

(linear or Pockel's effect) or to the square of the applied field (quadratic or Kerr

effect).

In photorefractivity it is the linear electrooptic effect which is important. Using

the contracted index notation of Yariv and Yeh [1351 an applied field transforms

the index ellipsoid into:

(-2 + rijE) X n + %Ej) X2 + 2r )

2r 4jEX 2X3 + 2rsjEjxlX3 + 2r 6jEjXlX 2 = 1 (24)

with repeated summation over j = 1,2,3. The riis are the coefficients of the

electrooptic tensor. The form of this tensor depends on the symmetry of the crystal

class [30]. For example, several crystal classes are centrosymmetric; that is they

have a centre of symmetry and are invariant under an inversion (replacing the

electrooptic tensor r with -r). Performing this inversion in Eqn 24 gives a different

form for the index ellipsoid unless all the riis are zero. Thus a necessary (but not

sufficient) condition for exhibition of the linear electrooptic effect is that a crystal

be noncentrosymmetric. Ref [135] contains a list of forms for the electrooptic tensor

for all the crystal classes as well as the individual coefficients for several crystals.

Eqn 24 represents a transformation of the original index ellipsoid. In this trans-

formation the lengths of the ellipsoid semi-major and -minor axes may change and

their orientation may suffer a rotation. In other words we might have a new prin-

cipal coordinate system with the application of an electric field.

Most of our experimental work with photorefractive crystals will involve Bi 12 SiO 2O

in the configuration shown in Fig 4a. The Miller index notation gives us the orien-

tation of the principal coordinate system with no applied field. Fig 4b shows the

new orientation of the principal axes for a field applied along the 001 or X3 crystal
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Figure 4: a) Principal coordinate system (dark axes) for Bi 2SiO 20. b) Reoriented
principal coordinate system for applied field along the X3 axis.

axis. The analysis of this case is as follows. Bi 1 2SiO 20 belongs to crystal class 23.

It is a cubic crystal so with no applied field the index ellipsoid is a sphere of radius

n. The only non-zero elements of the electrooptic tensor are r 41, r5 2 , and r53, all of

which are equal. Assuming an electric field f applied along the principal X3 axis,

our index ellipsoid is transformed into:

2 L2 + (25)
2 n2 n 2

In the new principal axes system the index ellipsoid has the form given by Eqn 23.

The appropriate transformation is:

X (XI + X2 ) (26)

1
X,2  - (X 1 +X 2 ) (7

, 3 (28)T 3  X g3

This is merely a rotation about the x3 axis through 45 . In the new primed principal
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coordinate system the index ellipsoid is:

(n 1-r63E ) I (n2r63E ) 2 n2 (29)

The quantity r63E < 1I/n 2 so the new ellipsoid axes lengths are

n i = n+ n3r 63E (30)
2
13

n2 = n- n 3 r 63 E (31)
2

n 3 = n (32)

In the primed principal coordinate system light polarised in the xi or x2 direction

will experience a refractive index change, but light polarised along the x' axis will

not.

In general we can describe the change in refractive index in terms of a change

in the dielectric constant (for optical frequencies) given below:

A f = ?reffE (33)

where reff is the appropriate electrooptic tensor component or combination of com-

ponents.

2.3 The Field Equations

Consider the mixing of two waves in a photorefractive medium as shown in Fig 5.

How will the modulated refractive index found in Sec 2.2 affect the waves? We

need to find the expression of the governing wave equation. Here we will neglect

any vectorial complications such as optical activity or birefringence. These effects

will be discussed briefly later in the chapter.

The superposition of the two waves is given by:

E = E+(z)e- j (4+ ' - -+) + E_(z)e- (k- - -t) (34)
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Figure 5: Orientation for two-wave mixing

The modulated dielectric constant is:

Er ,o + i .eJ(r & t) = frl
° e -i(K 'e -0wt) (35)

Here "" means complex conjugate.

The derivation of the scalar wave equation is a straightforward exercise and

can be found, for example, in Ref [1151. We take advantage ot the fact that the

angular frequency difference, 6w, between the waves is very small compared to either

angular frequency. Thus u)+ zt w-. This also means the time derivatives of f are

much smaller than the time derivatives of E. The scalar wave equation is given by:

V 2 E + ,j0 ,1oEfoE = 0 (36)

where w is the angular frequency of the two waves, po is the permeability of free

space, E, is the relative dielectric constant of the medium, Eo is the permittivity of

free space, and E is the total complex amplitude.

Putting Eqns 34 and 35 into 36 yields:

(V2E+ - 2jk± V&4 _ k2E ) e-i(9k4r-W't) 4-

(VE_ - 2j-L. VE - k2E) e-Xk-rt) 4

)
2 Uofo (fro + A ej( ¢-b ) + " e )

+ e(~w) 0 (37)
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K

Figure 6: Bragg closure. The propagation directions corresponding to k - K and
k_- K are neglected.

where k+f -kj = k.

As is stands the above equation is difficult to work with. It is time for some

simplifying assumptions.

2.3.1 More simplifying assumptions

1) Neglect terms involving the second derivative. This is reasonable because E+

and E_ vary slowly in space. It is a common assumption and is known as the

"slowly varying amplitude" approximation [44). An alternative way of reaching this

conclusion is to look at the first derivative terms. These are multiplied by k which

is a very large number. Thus these terms dominate the second derivatives.

2) Neglect higher diffracted orders. The vectors k+, k-, and K form a Bragg clo-

sure. In Eqn 37, e-j(k+-'-f )eJ(R t)-0 e an^-

e- i(k.i+e)*- .These products correspond to valid propagation directions for the solu-

tion given by Eqn 34. The products e - ( t ' wt)e-( 6, ) and ejff - -- e(R'¢ wt)

suggest higher diffracted orders which do not fit the Bragg closure. In a volume

grating angular selectivity is very strong and any departure from the Bragg condi-

tion greatly reduces the diffraction efficiency [115). This assumption will be valid
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except for very s-mall interbeam angies.

3) 1 '3e one (izmenstonal theory. Assume The incident beams make v:erv smali

angles with the x axis SO k_ - T kX.

With these three assumptions and the relationship

k =, (38)

we obtain

dE ..\f*k E_ (39)
dx 2,
dE_ AE,k E_ (40)
dx 4E,0

(In reflection geometry (see Fig 2.7c) the right hand side of Eqn 40 is positive rather

than negative.)

2.3.2 Two-wave mixing coupled wave equations

Using Eqn 33, Eqns 39 and 40 can be written:

dE. - L E. (41)
X i I+ -+ (

dE_ - jFe" Ag  L E_ (42)
dx I +L - 42

where 1'= konareffiE, with ko, the free space wave number, and 4g arg(E,).

In terms of the intensity and phase of each wave we may write:

dI+ r.i_d1 - 2FsinIgi+ + 1- (43)

dII.I_dI - -a2rsin I9  + 1- (44)
dx f_

___ L

d- F cos 'g 1  
(45)

d_- L(6

dz - aFcostgi 1+ 1  
(46)

Here a I4-1 for transmission geometry and -1 for reflection geometry.
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a) Transmission b) Feftection c) Ccuntercrccacating
geometry geomet ry geometr y

Figure 7: Geometries for Two-Wave Mixing. (a) Transmission. (b) Reflection. (c)

Counterpropagating.

2.3.3 Consequences of the coupled wave equations

The coupling in Eqns 43 - 46 is highly dependent on the phase mismatch angle, (D.

If tg = 0 there is no coupling in intensity between the beams. When Dg= 900 the

coupling is strongest and we may expect maximum power transfer. The reverse is

true for the phase equations. But what does coupling of the phase mean physically?

It means the phase difference between the beams can change as one moves across

the crystal. This means the fringes of the steady-state grating are bent '931.

Consider the symmetric geometries shown in Fig 7. We should point out that in

general the crystal orientations differ between transmission and reflection geometries

to take best advantage of the electrooptic effect. The counterpropagating beam

configuration is a special case of the reflection geometry and will be discussed in

detail in Chapter 3. In this antiparallel case the steady-state grating fringes are not

bent, but chirped as a result of the phase difference in the beams.

Power conservation is different for transmission and reflection geometries. For

the transmission case the sum I + L is constant while it is easily shown that the

reflection case gives constant I - L. We can use power conservation to obtain
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solutions for the coupled wave equations. For the transmission case. substitute

L = lo - I- into the differential equations and solve.

(X) = 0, 3exp(21 sin(D'x) 10 (47)
1 +/3, exp(2F sin -g:) 1! 1L _(X) = 1 0 (48)
1 +13, exp(2Fsin xgz)

1 1 +/3.

0+(X) = 0+()+Fcos (gX - Icot g In (49)2. 1 + 0, exp(2F sin 4)gx)

)=0 1 cottgo n1+' i (50)
2 1 +/3, exp(2r sin 4 gx)

Here s3, = 1,(O)/IL(0), the input beam ratio.

2.3.4 Crystal parameters

Different crystal types generally have different photorefractive responses. There may

even be variation between crystals of the same type but from different manufacturers

[31]. The presence of impurities or dopants may lead to variation in effects such as

absorption, relative concentrations of acceptors and donors, or the strength of the

photovoltaic field. Ultimately the individual behaviour of a crystal sample is due

to its distinct combination of crystal parameters.

Table 1 lists typical values from the literature for the parameters which make

up E,1 for Bil 2SiO 20 , LiNbO3 , and BaTiO 3. These are the crystals we will consider

theoretically and experimentally in the rest of the thesis. LiNbO 3 and BaTiO 3 are

uniaxial crystals and have ordinary (n.) and extraordinary (n.) refractive indicies.
There are two important electrooptic tensor components for the applied electric field

and grating vector direction along the 001 axis. In LiNbO3 r 33 is the appropriate

value for transmission geometry and r13 for reflection geometry. We have taken p

as 1.0x10 - 3° m3/V to give a photovoltaic field of 2.5 kV/cm, a value we measured

for one sample of LiNbO 3. The photovoltaic effect is negligible in BaTiO 3 and

Bi12SiO 2o. BaTiO 3 has a very large electrooptic tensor component, rsi, which en-

hances two-wave mixing in transmission geometry. The r13 component is important
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Parameter Bil2SiO20  LiNbO 3  BaTiO 3
N((m -3 ) 1.0x1025  1.0x10 23 

_ 1.0x10 2s

NA(m 3  1.0xI0 1.0xl0 2.0x1022

E, 56 Ell 78 Ell = 4300

E3 3 = 32 E33= 168
n (refractive index) 2.62 n_ - 2.29 no = 2.44

n, = 2.20 n, = 2.37
reff (m.,' V) 3.4x10 -

12 9.6x10 -12" 2.6x10 - -
r33 = 3.1x10 - 1  r51 = 1.6xi0 - 9

jz (m 2 /Vs) 3.0x10 - 6  1.0x10 - 1 5x10 - -

(m 2 '/J) 2.0x10- ' 2.5x10 - 5  3x10 6

p (m 3 / N) 0 1.0x10- 30  0

M (mI/s) 1.6x10 - 1' 1.Oxl0 - 15  5x10 - 14

Table 1: Crystal parameters for Bil 2 SiO 2O, LiNbO3, and BaTiO3 for A = 514 nm.
Refs [49,135,130,16,861

in reflection geometry. The values listed are for a wavelength of 514 nm.

2.3.5 Optimization of intensity coupling

The characteristic fields are Ej, Eq, E,, and Ep. Et is a diffusion field. Eq is

proportional to the maximum value the space charge field can have. It is 1/2Tr

times the field due to the separation of ionized donors and acceptors by one grating

spacing [117]. E, is a consideration during the transient period while the grating

forms [49] or when moving fringes are present, i.e. when the two mixing beams have

different frequencies [121]. The photovoltaic field is Ep. It is a constant field and

can be present in ferroelectric materials such as LiNbO 3 and has been measured in

some samples to be as strong as 100 kV/cm [72].

Et, Eq, and E, depend on K and therefore on the interbeam angle. Fig 8

depicts the relative strengths of these fields as functions of the interbeam angle for

Bil 2 SiO 2O illuminated by light of wavelength 514 nm at a temperature of 293 K.

Here the interbeam angle is measured in the medium. As the angle between the

beams increases the grating spacing decreases. This has the expected effects of
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increasing E,, but decreasing Eq. For small interbeam angles (8 < 50) we may take

Et< Eq. In all cases Em< Eq. E,<< Eonly for very small (-: 10) angles but for

angles > 100 the reverse is true.

The above approximations may be used to simplify the expression for E,. The

interbeam angle ranges (small/large) where the approximations are valid are useful

to delineate photorefractive behaviour. Consider the case with no moving fringes

(b = 0). For small interbeam angles (large grating spacings) we take Eq > E.0 ,>

Et. T'en

E, -mEo (51)

Since m is real, E,I is in phase with the intensity pattern and '~g 0.

There are two cases in which E,1 becomes pure imaginary. If there is no applied

field, Eo = 0, then for Eq> Et

Ej "z jmEt (52)

For large interbeam angles, Eq < Et and

E., imEq (53)

Here the modulated space charge field is 900 out of phase with the intensity pattern.

The small interbeam angle case is called drift dominated and is characterized by

little or no intensity coupling, but pronounced bending of the hologram fringes at

steady-state due to strong phase coupling. When the interbeam angle is large (small

grating spacing) or when no external field is applied, the diffusion process governs

charge transport. This is called the diffusion dominated regime. Now significant

power transfer between the beams is possible. Staebler and Amodei [119] were the

first to describe these two extremes.

Figs 9a-e demonstrate these effects for Bi 12SiO 2 C using the crystal parameter

values of Table 1. In the first the phase mismatch angle is plotted as a function of

applied field, E,0 , for five interbeam angles (10, 20, 50, 100, and 200). At Eo = 0

the only possible process for charge transport is diffusion, thus we expect 1$, = 900.
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Figure 8: Characteristic fields versus interbeam angle (in the medium). (a) Trans-
mission geometry. (b) Expanded view of (a).
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Figure 8: Characteristic fields versus interbeam angle (in the medium). (c) Reflec-
tion geometry.

For small interbeam angles even small electric fields push 4€ towards 0 or 1800,

while for large angles, diffusion continues to dominate over drift. Fig 9b shows

the symmetric dependence of the magnitude of the coupling term r on E.0 . It is

symmetric because we have no moving fringes and no photovoltaic field. This plot

illustrates an important trade-off, the phase mismatch is more favourable for power

transfer in the diffusion dominated case, but in the presence of an applied field the

coupling coefficient, F, has a smaller magnitude than for the drift dominated case.

The intensity coupling depends on 21sin t and we might expect the magnitude

of this term to be optimized for a particular interbeam angle (or grating spacing).

Fig 9c shows that coupling gets stronger with increasing interbeam angle for small

applied fields, but not necessarily for greater fields. Fig 9d plots 21F sin 4g versus

interbeam angle for E,0 = 0, 2, 5, 8, and 10 kV/cm. There is a clear optimum angle

for the stronger fields. In Fig 9e we plot the gain (L(d)/L(0)), given by Eqn 48, for

an interaction length of 1 cm, no moving fringes and an applied field of 10 kV/cm
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Figure 9: Coupling in degenerate two-wave mixing. (a) $g vs Eo. (b) F vs E.0 .
For all plots: A = 514 nm, T = 293 K.
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Figure 9: Coupling in degenerate two-wave mixing. (c) r sin 4)g vs E,O. (d) r' sin 4,
vs interbeamn angle.
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Figure 9: Coupling in degenerate two-wave mixing. (e) Gain (1, (d)/ I+(0) ) vs
interbeam angle.

for various incident beam ratios, 13,. The beam ratio has no effect on the optimum

interbeam angle. The smaller 0,. is, the greater the gain. Thus for l, = 10-' the

gain can be as high as 40.

Another key feature borne out by Figs 9c and 9d is that the energy transfer is

just in one direction. That is the coupling term has the same sign regardless of the

combination of beam ratio, interbeam angle, and applied field. In our example, L.

always gains at the expense of L.

For the applications oriented reader, it is evident from Fig 9c that the applied

field is a useful control parameter for beam coupling in Bi 12SiO 20, particularly for

small interbeam angles. Changing the interbeam angle also influences the beam

coupling, but shifting beam directions is undesirable in applications requiring fixed

optics.
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2.3.6 Optimization with moving fringes

The preceding discussion highlights an unfortunate aspect of photorefractivitv with

Bi, 2SiO 0 . An applied field is ncc~ssarv to obtain a large coupling coefficient. F.

but this field takes us away from the high gain. diffusion-dominated regime.

Fortunately there is a way to have the best of both worlds, to maximize F and

have (I9 = 90'. The trick is to use moving fringes. This was first demonstrated ex-

perimentally in 1981 by Huignard and Marrakchi 561. The following year Stepanov.

et al. explained this effect in term: -,f "running" holograms '1211. The process of

reading a hologram in a photorefractive material in the presence of an electric field

results in a moving grating. A resonant condition is achieved if the recording inten-

sity pattern runs synchronously with this moving grating. Treatments of moving

gratings have been provided theoretically by Valley 1129) and both experimentally

and theoretically by Refregier. et al. '109], Gfinter [45J, and Huignard and Mar-

rakchi [57J.

Let us reconsider Eqn 20 for the case b A 0. Using the approximations of Sec 2.

we obtain for large interbeam angles

Eai mEq (54)

For negligible b, we are still in the diffusion dominated regime with 9 = =90'. As

the fringe velocity grows in magnitude the real part of E, becomes increasingly

important. For IbEq/Ej > 1, E,1 ;- -rnE,/bEq. Here tg = 0 and we have

no power transfer between the beams. Clearly moving fringes will not facilitate

intensity coupling for large interbeam angles.

For small interbeam angles

Ego
E., = -m E E (55)

With a bit of algebra we can show that the imnaginacy part of E.1 has a maximum

for b = -Em/Eo in the limit Eo > E,. Figs 10a-d give a comparative study of



CHAPTER 2: TIVO- IAVE MIXING 13

180 --------- -

-s35
0

- -4. ":)

S90

45-

00

10 5 0 5 10
Eso(kV/cm)

-5

I- v (10 mis)

-4

- 10-
E

-2 (b)

E -6

0
-8

0
10 5 0 5 10

Eso (kV/cm)

Figure 10: Coupling in nearly degenerate two-wave mixing. (a) tg vs E,0 . (b) F vs

E,o. For all plots: A = 514 nm, T = 293 K, interbeam angle = 0.75 ° .
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-tg, r and coupling in Bi 12 SiO 20 to that for zero fringe velocity. We have chosen

one particular interbeam angle, 0.75', corresponding to a grating spacing of 15 gtm.

Fig 10a shows 4 , as a function of E,0 for various fringe velocities. We see that

(Dg = 90' is realizable for E,0 j 0 with an appropriate fringe velocity. Happily this

combination of field and velocity is also where I" has its peak, as seen in Fig 10b.

The resonant condition is apparent with applied field as the control parameter in

Fig 10c and with fringe velocity as the control parameter in Fig 10d.

r sin 4, for moving fringes is nearly an order of magnitude larger than that

obtained with no moving fringes. If we tried to reproduce Fig 9e for gain with a

1 cm long crystal, we would find essentially complete power transfer between the

beams.

Highly efficient gain in Bi 12 SiO2 0 and related crystals may be achieved using

an applied a.c. field. First proposed by Stepanov and Petrov [122] this method

employs an a.c. field of frequency w., > rd. The photoinduced carriers do not have

time to move far before the direction of the applied field changes. Thus the time

average for $t is 900 and optimum gain is realized. This technique has recently

been used in photorefractive gallium arsenide [78].

2.3.7 Other effects

In the course of our treatment of the photorefractive effect we have made several

simplifying assumptions. Some, such as neglecting thermal generation of carriers,

have a sound basis in experimental evidence. Other assumptions were made for the

ease of the theory. Let us discuss briefly the modifications necessary if we were to

include these effects.

1. Large modulations. To linearize the materials equations we expanded n, N'

J, and E. out to first order terms in a Fourier series and then neglected products

of first order terms. In other words we assumed small modulations. It is easy to

show that each first order coefficient is proportional to the intensity modulation,
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m. If the gain is large (strong coupling or large interaction lengths) then m might

not be small. This problem has been addressed by Refregier, et al. [109], Ochoa, et

al. [97J, and most recently by Au and Solymar [6]. Higher order Fourier terms are

included in a pertubation treatment. Ref [6] modeled Bi 1 2SiO 20 and found that, in

general, the imaginary part of E, 1 decreased for larger modulation depths. We also

made the claim that ND 2- -?, or specifically, NV j ni. If we look at the a.c. Eqns

15-18, then this latter condition is no longer true for very small interbeam angles

and very weak applied fields. For example, using Bi 1 2 Si0 2 0 with no applied field, no

moving fringes, an interbeam angle of 0.10, a temperature of 3000, and a wavelength

of 514 nm, we find that JN 1 I : InI. Fortunately, most of our applications will

involve larger interbeam angles, stronger applied fields, or both.

2. Absorption. The photorefractive process would not work without attenuation

of the mixing waves. If none of the incident light was absorbed, no photocarriers

would be produced, and there would be no space charge field or refractive index

modulation. With moving fringes there is another way in which absorption reduces

the gain. The total intensity will not be constant across the medium. The dielectric

relaxation time is inversely proportional to the total intensity. A spatially varying

intensity means the optimum fringe velocity changes across the crystal. Only one

"slice" of the crystal will be at the resonance condition.

For the transmission geometry there are analytic solutions to the coupled wave

equations in the presence of absorption (see Chap 4) but a numerical treatment is

necessary for the reflection case.

3. Vectorial Effects. We used a scalar treatment for the field equations. But

the vectorial nature of the problem is important when we consider birefringence or

optical activity. For example, the optical activity of Bi 12 SiO 20 (the rotation of the

polarisation axis is z 38°/mm for 514 nm) will reduce photorefractive gain. To see

why, consider the transmission geometry for the crystal orientation in Fig 5. Take

the two incident beams polarised in the y direction to maximize the electrooptic

effect. If the crystal iq 10 mm long then the polarisation of the waves will undergo a
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little more than one complete revolution during transit. Half the interaction length

will be spent with polarisations close to the z direction. But the electrooptic effect

is null for beams polarised in z. There will be little or no coupling in these regions

and therefore the overall gain is reduced.

John Heaton's D.Phil. thesis gives a thorough treatment of absorption. optical

activity, and birefringence 149]. One must resort to numerical methods to iiuclude

these effects.

2.4 The Photorefractive Effect as a Nonlinear Prob-

lem

The term nonlinear has cropped up many times in the course of this chapter. We

finish our discussion of two-wave mixing by reviewing the inherent nonlinearity of

the photorefractive process.

The most important nonlinear character was mentioned in Section 2.2. The

polarisation of the medium is described by D = &E. But the dielectric tensor, E,

itself depends on E, thus we have a nonlinear relationship. In particular, E, via the

electrooptic effect due to the modulated space charge field, depends on the prod-

uct of the mixing optical field amplitudes. When writers describe photorefractive

materials as being nonlinear, this is the property to which they refer.

The material equations are nonlinear in the sense that they contain products of

intensity driven terms such as the space charge electric field and carrier concentra-

tion. We resorted to a linearization process to arrive at analytic expressions for the

modulated space charge field.

Finally the field (coupled wave) equations were expressed in terms of the prod-

uct of complex amplitudes. The lossless case given by Eqns 43 and 44 is a pair

of nonlinear coupled differential equations. Fortunately these equations have an

analytic solution.



Chapter 3

Nonreciprocal Effects in

Photorefractive Materials

So flew the god and the virgin-he on wings of love, and she on wings of fear.

The Legend of Apollo and Daphne

Bullfinch 's Mythology

In Chapter 2 we learned that the phases of two mixing waves could be coupled

in a nonlinear photorefractive medium. The particular case of counterpropagating

beams was investigated first by Yeh [136,1391. A 1985 Letter by Solymar and Wilson

proposed a novel application for this phase coupling (118]. They suggested using

photorefractive materials in a controllable nonreciprocal (NR) optical phase shifter.

This is a device through which a beam transitting in one direction will suffer a

certain phase shift, but a beam travelling in the opposite direction may undergo a

different phase shift.

NR devices, such as phase shifters, are well known in microwave applications (231

and more recently have become important in optical waveguides [98,17,92]. Many

applications involve a 180°phase shift (gyrator) and the devices invariably depend on

a gyrotropic or Faraday rotation effect. NR phase shifts of up to 3600 are available

48
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using these devices so, to be competitive, a photorefractive NR phase shifter should

be able to produce similar sized effects. Solymar and Wilson suggested using the

NR phase shifter in a fibre-optic gyroscope to compensate for the Sagnac phase

shift. This operation would be analogous to slewing a mechanical gyroscope to a

new orientation. Yeh has proposed using the effect to decouple counterpropagating

modes in a bidirectional ring resonator [139]. This latter use has recently been

demonstrated in a resonator using BaTiO 3 as the gain medium [62].

In this chapter we will explore the feasibility of a NR phase shifter using pho-

torefractive materials. First we look at an analytic treatment of two-wave mixing

for counterpropagating waves [59,1361. We then argue that this approach requires a

numerical treatment for several important cases, and we will compare results using

analytical and numerical methods. Once we have an effective means to solve the

coupled wave equations, we can look in detail at NR transmission and phase shift,

the expected magnitude of these effects, and the means to control them. The chap-

ter finishes with an overall appraisal of using photorefractives for NR applications

and a discussion of the limitations of our treatment.

3.1 Reflection Holograms

3.1.1 Background

Most applications of two-wave mixing in photorefractive materials use transmission

geometry. There are several reasons why reflection geometry is less popular.

1. Large interbeam angles, such as would be used in reflection geometry, are

associated with the diffusion dominated region with the phase mismatch angle,

0., close to 900. Unfortunately, overall gain is generally reduced. For example,

in Chapter 2 we found in Bi1 2SiO 2 0 the interbeam angle for optimum gain was

usually less than 100.
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2. Reflection geometry often involves different crystal orientations than those

for the transmission case to exploit fully the electrooptic effect. This requires

different polished faces, or perhaps, an alternative crystal cut. There is a

greater demand for transmission geometry orientations, and these are what

the crystal suppliers provide.

3. Experimental layout for reflection geometry is generally more complic ted. In

general, a greater number of optical elements are required to get a split beam

around the crystal to send it through the rear face.

4, In the reflection case the coupled wave equations have a two-point boundary

condition. This increases the difficulty of a mathematical solution.

There are certainly fewer papers dealing with reflection geometry as opposed

to transmission geometry for photorefractive materials. Counterpropagating beams

impinging on a crystal exhibiting optical activity was studied by Kukhtarev, Dov-

galenko and Starkov [741. Diffraction efficiency in both reflection and transmission

geometries was the subject of a paper by Heaton, et al. [47] A reflection grat-

ing can form when a single beam interacts with its reflection off the back face

of a crystal. The treatment of this case was studied theoretically by Yeh [137

and experimentally by MacDonald, et al., in BaTiOa[86], and by Zha and Gfinter

in KNbO3[1401. Ja generalized two-wave mixing with multiple reflections [581.

Dynamic self-enhancement in lithium niobate using reflection geometry has been

demonstrated by Shvarts, et al. [113]

3.1.2 An analytic treatment

Two of the most detailed theoretical studies of mixing of counterpropagating beams

come from Yeh [136] and Ja [59]. This latter paper includes a numerical treatment

for the lossy case. The method for the lossless case follows.

We start with the coupled wave equations:
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dI+ .I

dz - 2r sinl+I, + _(1)
dL_ LI(2

dz - 2rsin 9 I+ + 1 - (2)

dO+ L_dz - rcos gI+ + 1- (3)

d_ - -Cs__I 1+ (4)
dz 4co +L1

To solve the intensity equations, introduce A = 1+ - L and E + + L. Then

we can rewrite Eqns 1 and 2 as

dA
d-z- = 0 , A = constant (5)
dZ E3 _ A2dz = r sin 1 E (6)

These two equations lead us to

4(z) 1I+o (o -/3,.)2 + 409,.0e 2rsinz + (1 - i,,) (7)

1 1) -( 3)2 + 40,1 oe 2 r ' ifl - (1 -i,,)) (8)

where 4~o = 4(0) and 0,. = 1-(0)/1+(0). The above two expressions are in-

convenient in that we rarely know L(0) in advance. It is useful to introduce

13, = L_(d)/I4(0), the input beam ratio, where d is the crystal length. It is a

straightforward calculation to show

0'.. = -3,(1 +0,)(9

01. + .
2r '

sin 

9,d

Using this we obtain

I+(z) = -C + y2 + Be 2rsin z, (10)

L(z) = C + C + Be rhin (11)

1.. . . .. m km , .m.,m . , .mmm1[h d 
'

m b mm m . .
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B = 3,oi~o2

1 + ,hg (12),31°,,+ e 2r min 
d

C I
32 .2rsin*,d

_- p/o(3, -e1

2 + e2in4nfd (13)

Eqns 10 and 11 can be put into the phase equations to obtain

6+(z) = 0+(0) + 1 rcos gz + cot gln(T+T) (14)

0-(z) = _(O)- !rcos$ 2 z +- cottgln(T+T_) (15)

where T+ = I+(d)/I+(O) and T = [_(O)/l_(d) are the transmissions of the two

waves. A useful relationship is

I+(z)L_(z) = Be2rsinz (16)

We can use this to show the transmissions are

T+ (1 + ,)e2rsin ted (17)

Or+ ,e 
2rin*V

r= , + e2ringd (18)

We next obtain the expression for the NR phase shift, A0.

A46 = (0b+(d) - 0b+(0)) - (0(0) - 0(d)) (19)

- 1cot I1n(P, + 1)eIn "'" (20)

In the limit $D --+ 0, Eqn 20 becomes

A160 - 1 (21)
= rd3, + 1

The above expression is what prompted Solymar and Wilson to suggest a NR

phase shifter. A large product rd for an input beam ratio much different than

1 can lead to a substantial NR phase shift. Numerical results from the previous

chapter suggest values for F close to 15 cm - 1 for Bi 1 2SiO 2O are possible. This was

for transmission geometry and moving fringes. The question we need to ask is how

large can the coupling term be for reflection geometry?



CHAPTER 3: NONRECIPROCAL EFFECTS 53

I,(z) + !_(z) =constant 1+(z) - '(z) =constant

+

+-

I -I-

d z d z
(a) (b)

Figure 1: Power conservation in two-wave mixing. (a) Transmission geometry. (b)
Reflection geometry.

3.1.3 A numerical treatment

To answer the question of the size of the coupling term we need to obtain an

expression for the modulated space charge field, Ea. Before using the procedure

of Chapter 2, we should consider power conservation in the reflection geometry.

Fig 1 gives a comparison of the two geometries. In the transmission case the total

intensity is constant. For wave mixing in the reflection case, A = 1+ - L. In our

analytic treatment this constant difference, A = -2C. The important feature is

that the total intensity varies across the crystal.

How will a background intensity gradient affect our previous treatment? The

d.c. equations in Section 2.1.6 will not be changed. This means the zero order (or

background) current density, J0 , is constant. This is a flow, and is the product

of a density and a velocity. The density is given by the carrier density, no, which

is proportional to the total intensity in a given region. The velocity is the drift

velocity, and this is proportional to the field EaO. Since Jo is constant but n0 is not,

this means E, must vary in space. This is an effect not considered by previous

researchers. There is an additional consideration when moving intensity fringes are
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Figure 2: Nearly degenerate two-wave mixing of counterpropagating waves.

present. This is essentially the same argument given in Chapter 2 for gain reduction

when absorption is present. Coupling is optimized, for a given total intensity, for

one particular fringe velocity. If the total intensity varies across the crystal, then

one fringe velocity cannot satisfy the optimum condition everywhere-the gain is

less.

The treatment of Sec 2.1 can be modified easily to include a spatially varying

intensity. Here the input waves are as shown in Fig 2. Analogous to Eqns 2.5 and

2.10 the driving intensity and normalized quantities have the forms:

I(z,t) = IO(z) + I(z)ejK(u -z) + c.c. (22)

F(z, t) = Fo(z) + F,,(z)e jK( 't - ) + c.c. (23)

We assume steady-state conditions for the coefficients. The procedure to find E,1 is

exactly as outlined in Chapter 2, except all the terms involving the total intensity,

such as b and h can have z dependence. One final assumption is needed, namely,

the zero order terms vary slowly in space. On the scale of a grating spacing their

derivatives with respect to z are negligible compared with those of the first order

terms.
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With these assumptions. we obtain the following results

Eo(z) = o E (24)
/1eno

E.I(z) = -m EO(z) - E, - jE (25)

We should mention that in the derivation of the above, Jo was found to be constant.

As long as a current is present, E,0 varies spatially, since the background carrier

density, no, depends on the total intensity. In this case a further condition on Eo

is

V f Eo(z)dz (26)

where V is any applied voltage (possibly equal t ) zero for the case where only the

photovoltaic field drives the current). If Eo varies spatially, so does E,1 . If there is

no current, then Eo is constant, but E., will still be spatially dependent if b # 0.

Previous experiments demonstrating NR transmission used crystals in open cir-

cuit configurations [86,140], that is no electrodes or wires and no current flow. If

no voltage is applied and J = 0, then E,o is constant. This leads to

.iE, (27)
E.iopen(Z) = n- l+ -b(z) -n _ -F + b(z)fft

This is identical to Eqn 25 for E,0 = -E., except the last term in the denominator

was b(1 + EtIE,). For reflection geometry, Et/E, > 1, so the two expressions

reduce to the same thing. In other words, the open circuit configuration can be

included as a special case of the closed circuit treatment, for E, 0 = -E,.

The coupled wave equations are given by Eqns 1-4, except now F and 4g may

vary spatially.

3.1.4 A comparison of the treatments

It is important to compare results using variable coupling with those using constant

coupling. The two crystals we will consider are Bi 12 SiO 20 and LiNbO3 . LiNbO 3
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Figure 3: Crystal orientations for counterpropagating waves. (a) LiNbO 3.
(b) Bi12SiO 20.

has the advantages of a larger electrooptic coefficient and a photovoltaic effect. The

crystal orientations for counterpropagating beams are shown in Fig 3. In both cases

any applied voltage will be in the z direction.

Consideration of the electrooptic effect

The photovoltaic field in LiNbO 3 acts along the 001 axis. To take full advantage of

this field, the two-wave mixing grating vector needs to be in this direction as weli.

LiNbO 3 belongs to crystal class 3m. In the contracted notation of Yariv and

Yeh (1351, the electrooptic tensor is
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0 r22 r13

0 r 22 r'3

0 0 r3

0 rs, 0

r5  0 0

-"22 0 0
An electric field applied along the 001 (or z or crystal c) axis does not rotate the

principal axes, but changes their lengths.

An, = -in3r 1 3 E (28)

= -1nr 3 3 E (29)

For light polarised in either the x or y direction the relevant electrooptic coefficient

is r13. This component is roughly one third that of the largest coefficient (r 3 3 ), but

this orientation was chosen specifically to take full advantage of the photovoltaic

field.

For Bi 12SiO 2O the field will be along the 001 axis to optimize the electrooptic

effect. This case was worked out in Chapter 2 and we will use the same input

polarisations, either in the x or y directions.

The numerical method

The variable coupling terms and the mixed boundary conditions require a numerical

treatment for the solution of the coupled wave equations. A common technique to

handle mixed boundary conditions is the shooting method [104,61]. The basic

approach is to make reasonable guesses for all unspecified function values at one

boundary, integrate to the other boundary and compare the computed function

values with the known boundary conditions. Revised guesses are made and the

cycle repeats until the final functicn valuc. arc witii, a zct ,, zacc.

In our case we do not know L(0) in advance. We use the analytic solution in

Eqn 11 to make our first guess. (Here we take the total intensity as I+(0) + L(d)
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and E,0 = V/d in calculating 4 D and F.) [_(0) is known, and. for convenience, we

take O.(O) = o_(O) = 0. This is justified since, as revealed in Eqns 1-4 and 15. there

is an undetermined constant in each solution.

The set of four coupled differential equations is integrated using a fourth-order

Runge-Kutta routine. If the calculated value for L(d) is not within a tolerance of

0.1 % then a new guess for L(0) is found via a Newton-Raphson method.

A further integration is required after each iterative cycle to choose Jo such that

the condition in Eqn 26 is satisfied. Combining Eqns 25 and 26 gives

Jo =eV 4- Ed (30)

f, , dz /n0 (1)

where the total intensity, 1(z), is updated on each iteration.

Figs 4-6 show comparisons between the numerical method outlined here and the

analytic and numerical methods of Refs [59,136] which assume constant coupling.

In all plots the crystal length is taken to be 1 cm, the wavelength of the incident

light is 514 nm, and the temperature is 300 K. For LiNbO 3 the photovoltaic field is

chosen to be 15 kV/cm, a typical value.

The coupling in LiNbO 3 is strong and there is significant variation of intensity

across the crystal. This is seen in both the intensity and phase solutions to the

coupled wave equations (Figs 4a,b and 5a,b). Figs 4c and 5c depict the variation of

E,0 . Figs 4d and 5d illustrate that the coupling terms do vary across the crystal.

The conditions for Fig 4 were chosen to illustrate the case of no moving fringes.

The input beam ratio is 0.1 and the variable coupling solution for intensity shows

less power transferred between the beams. The difference between the analytic and

numerical treatments shown in Fig 5a, where only the photovoltaic field drives the

current, is not as disparate. That is because the intensity coupling term, r sin tg,

does not have a large spatial variation. What is interesting, though, is that the

phase coupling term, r cos 4, changes sign as we move across the crystal. The

difference in behaviour for the phase solutions between the two methods, as seen in

Fig 5b, is quite dramatic.
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Coupling is not strong in BilSiO_0 and the two treatments yield essentially the

same solutions. If absorption is present. though, the intensity variation across the

crystal is greater. and some divergence between the methods might be expected.

Since we are using a numerical method to treat the variable coupling case. it is

relatively simple to include absorption in our treatment. The intensity coupled

equations become
!dL. I1I_

dz = 2Fsinb 9 1  L al_ (31)

dl_ = 2Fsin'S P 9aI (32)dzI+-- _

We can compare this with the numerical treatment with absorption for constant

coupling in Ref [591. Figs 6a-d consider absorption in the case of Bi 12SiO 20. Here a

is taken as 2 cm - 1 , a value found experimentally for some Bi 12SiO20 samples [311.

The difference in the two treatments is more apparent in the phase solutions.

We argued at the beginning of this subsection, from physical principles, that

moving fringes, absorption, or a photocurrent leads to variable coupling in reflection

geometry. That was confirmed in the derivation of E,1 . That this variable coupling

is a significant effect is seen in Figs 4-6.

We have a suitable numerical treatment with which to solve the coupled wave

equations for counterpropagating beams. Now we have the means to calculate NR

effects and consider various control parameters. Two potential control parameters

are applied voltage and fringe velocity. It is unfortunate that these represent the

cases where we most need the numerical treatment.

3.2 Nonreciprocal Effects

The origin of the laurel tree, according to ancient Greeks, began with an unkind

remark. One day Apollo chided Cupid for playing with arrows-such devices were

surely meant for more mature hands. Apollo's assessment of Cupid's character was

spot on, for no sooner had he turned his back, but Cupid fired a gold-tipped arrow
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Linea r
system

Figure 7: Principle of reciprocity. Source at P and detector at P. may be inter-
changed and still produce the same effect.

at him. This caused Apollo to fall hopelessly in love with Daphne, a wood nymph.

The god of love then struck Daphne with a lead-tipped arrow. Her heart hardened

and she could love no man, particularly Apollo. She fled and Apollo pursued. He

had nearly overtaken the nymph when her father, Peneus, interceded and changed

her into a laurel tree. This is an interesting and early example of the dramatic

consequences of nonreciprocity.

To understand NR effects, we should start with the principle of reciprocity. Fig

7 illustrates this principle, most commonly attributed to Helmholtz [42]. A source

and a detector may be placed, one at P, and the other at P2. If the system through

which the light signal passes is linear, then reciprocity holds: the measured signal

(amplitude and phase) will be the same whether the source is at P and the detector

is at P2 or vice versa. If the intervening system is nonlinear, then NR behaviour is

possible.

For two-wave mixing in photorefractive materials there are two types of NR

effects-transmission and phase shift.
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3.2.1 Nonreciprocal transmission

NR transmission is merely a fancy name for power transfer. If one mixing wave

gains at the expense of the other, then T_ = T_. This effect was demonstrated

experimentally in KNbO 3:NIn by Zha and GiInter 1401. For an open circuit crystal

with beams of equal input intensity, they measured T_ = 113% and T_ = 57%.

MacDonald. et al.. used BaTiO 3 to investigate "assymmetric transmission" [851. A

single input beam was used and the counterpropagating beam was the back surface

reflection of the input. They found the transmission through the crystal depended

on whether the input was parallel to the crystal c axis (T = 52%) or antiparallel

(T = 39%). The asymmetry is a consequence of the one-way power transfer in

photorefractive crystals. For one orientation of the c axis the reflected beam gained

at the expense of the input, for the opposite orientation it lost power. A complete

treatment of the problem involves multiple reflections. The reflection at the rear

surface depends on the steady-state intensity solution. This is worked out in detail

in Ref [137]. If this effect could be enhanced, one could use a photorefractive crystal

as an optical diode.

The potential control parameters for NR effects are applied voltage, beam ratio

and fringe velocity We investigate these controls using LiNbO3 as the medium,

and, in most cases, consider the effect of different values for the photovoltaic field.

In al plots the crystal length was 1 cm, the temperature 300 K, and the wavelength

514 nm. The crystal parameters are taken from Table 2.1.

Figs 8 a and b show the transmissions as functions of applied voltage for input

beam ratios, 3,, of 1 and 0.1 with no moving fringes. Substantial power is transferred

from the plus beam to the minus beam. Physically this is due to being in the

diffusion dominated regime and having a long interaction length. The photovoltaic

field is taken to act in the +z direction, so a positive polarity voltage enhances the

NR transmission, while a negative polarity detracts.

Transmission (T-) as a function of beam ratio is shown in Fig 9 for no
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Figure 9: Transmission vs beam ratio.

applied voltage and no moving fringes. A photovoltaic field increases the trans-

mission, and the gain is larger for smaller beam ratios.

Some interesting effects are seen when moving intensity fringes are present (Fig

10a). Here no voltage is applied, the beam ratio is 1, and the total input intensity

is 200 mW/cm 2. With no photovoltaic field the coupling is still strong and the

behaviour is symmetric. As this field increases the asymmetry with fringe velocity

is more apparent. The maximum NR transmission is no longer at v = 0, and

for positive fringe velocity it is possible to change the direction of power transfer.

The key feature here is that moving fringes can be used to reduce the NR effect.

The magnitude of fringe velocity (- 10- 8 m/s) at this relatively strong intensity is

very small. This corresponds to a detuning frequency of 0.7 Hz. If the intensity is

reduced, the detuning frequency required to achieve the same effect goes down.

In Fig 10b, Ep = 15 kV/cm, V = 10 kV, 0,= 0.1, and the total intensity is 200

mW/cm'. Here we plot J0 as well. Notice that JO has a minimum close to the fringe
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velocity at which the NR transmission is optimized. Physically we can understand

this by looking at Fig 4a for the solution to the intensity coupled wave equations.

The steady-state background current density depends on the background carrier

density, which is driven by the total itensitv. For very strong coupling, the space

average total intensity is less than the total input intensity. This means the current

density is reduced. This is a useful effect for device applications. We can monitor

beam coupling by measuring the photocurrent-there is no need to sample either

of the beams.

3.2.2 Nonreciprocal phase shift

Phase coupling between counterpropagating beams was evident in Figs 4-6. Thus

we expect a difference in phase shifts encountered by the two mixing waves. We

need to investigate the influence of various control parameters on this effect.

We define NR phase shift, AO, as in Eqn 19. We use LiNbO3 , a crystal length

of 1 cm, temperature of 300 K, and a wavelength of 514 rim. Figs 11a and b show

AO as a function of applied voltage for no moving fringes and beam ratios of I and

0.1. Here the NR phase shift is normalised to 7r. A photovoltaic field is necessary to

produce an appreciable effect. It is evident the sign of AO depends on beam ratio.

This is shown in Fig 12 for an applied voltage of 10 kV.

The effect of fringe velocity is seen in Figs 13a-d. Here V = 10 kV and 4,(0)

100 mW/cm2 . Three values of f,, 1, 0.4, and 0.01, are shown. Note the difference

in behaviour for the plots 0, = I and 3, = 0.01. The sign of AO for a given fringe

velocity is essentially reversed between the two cases. i3,. = 0.4 lies in the transition

range.

The largest NR phase shift is roughly -r/2 for E , = 15 kV/cm and , = 0.01.

Fig 13d shows the close relationship between input intensity and optimum fringe

velocity. The beam ratio in this figure is kept constant while the intensity, as given

by 1+(0), varies. Each curve represents a different fringe velocity and each one has
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an optimum for a different value of 1+(0). (The guiding principle for photorefractives

is the greater the intensity, the faster the reaction.) The optimum value of AO is

the same for each curve. This suggests that a device capable of seeking out this

optimum could be used to measure intensity by varying fringe velocity, or to detect

movement by varying intensity.

3.3 Assessment and Design Considerations

3.3.1 Control parameters

In the previous section three control parameters were studied-applied voltage,

beam ratio, and fringe velocity. (The effect of a fourth parameter, the input intensity

was found to be dependent upon the fringe velocity.) Let us discuss each control

separately.

1. Applied voltage. In the absence of a photovoltaic field, applied voltage is
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not a useful control parameter for NR behaviour. Its effectiveness is increased for

smaller beam ratios. To apply a voltage, transparent electrodes are required.

2. Beam ratio. In most practical applications, the input beam ratio will be fixed

in advance, or allowed to reach some steady-state value (such as in a feedback circuit

like a bidirectional ring resonator). Thus this parameter has limited potential as a

control. In general, the lower the input beam ratio, the greater the NR effects. For

a given fringe velocity, the beam ratio determines the sign of the NR phase shift.

3. Fringe velocity. This is the best candidate for a control parameter as it

offers the widest range for NR effeLxts. The r :az n it is so effective is that coupling

between the beams is only strong for a small range of fringe velocities close to 0. If

a strong photovoltaic field exists, one can use fringe velocity to change the direction

of power transfer. There are two drawbacks to using fringe velocity as a control.

In many applications it will be undesirable to frequency shift one beam relative to

the other. In such a case moving fringes can be produced by moving the crystal at

the desired speed by mounting the crystal on a piezoelectric translator driven by an

applied sawtooth voltage. The second drawback is the very slow velocities required

to achieve strong NR effects, even for moderate intensities. Fringe velocity may be

impractical to use for low intensity two-wave mixing.

3.3.2 Comparison of crystal types

The previous section concentrated on LiNbO 3 as the nonlinear medium. Table 1

compares NR effects for three crystal types (Bi12SiO 20. BaTiO 3, and LiNbO 3), using

fringe velocity as the control. These are representative values for similar conditions.

In each case the crystal length was 1 cm, the wavelength 514 nm, the temperature

300 K, the input beam ratio was 1, the total input intensity was 200 mW/cm2, and

the beams propagated along the crystal c axis. There will be some minor differences

between the crystals, though, to increase NR effects-namely, the LiNbO 3 sample

should have a photovoltaic field (we took the value 10 kV/cm in our comparison),
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Maxzmum, M11aximum Fringe Velocity

Crystal Transmission NR Phase Shift Scale (m/s)

Bi 12SiO. 0  1.33 6.1 x 10-r 10-
BaTiO3  1.92 0.12 7r 10 - 7

LiNbO3  1.91 0.17 7- 10-  -

Table 1: Comparison of NR effects for different crystals.

while in Bi 1 2SiO,0 we should apply a voltage (here we used a value of 10 kV).

LiNbO 3 seems to give the best combination of transmission and NR phase shift.

but requires the slowest fringe movement. If a strong photovoltaic field is present,

one can use fringe velocity to change the direction of power transfer.

3.3.3 Magnitude of nonreciprocal effects

This study revealed that the largest calculated NR phase shift (< 7r/2) is less than

expected from Eqn 21. In that expression, when 4)g - 0 then, for small beam

ratios, Aq!,:zn r'd. The difficulty with this simple analysis is that F and (D do

not have constant values for the combinations of control parameters necessary for

drift domination. But we can consider what happens when intensity coupling is

reduced-this should correspond to conditions where phase coupling is strong. For

example, in Fig 10a there are specific values of fringe velocity where T. = T_. For

these velocities, the spatial average of ', should be close to 0. When we compare

AO in Fig 13a we see these velocities are not where the NR phase shift is optimized.

In other words, conditions which take the average value of -% to 0 also tend to

reduce the magnitude of F This makes sense, F and (Dg are not independent, but

are linked through Ei.
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Figure 14: Measurement of NR phase shift for nondegenerate two-wave mixing.

3.3.4 Measurement of nonreciprocal phase shift

It is difficult to measure the phase of a wave directly. Instead it is common practice

to combine the wave with a reference wave (of unspecified phase) and measure the

phase difference. This, in essence, is what is done in an interferometer. In a similar

way we do not measure the NR phase shift, but its change as we adjust control

parameters. A scheme involving frequency shifted input beams is illustrated in Fig

14. After mixing in the crystal each transmitted beam is combined with a reference

beam in a Mach-Zehnder interferometer arrangement to produce a moving inter-

ference fringe pattern which can be measured by photodetectors 1 and 2. Both

intensity patterns have the same angular frequency but independent phases. Part

of the difference in phases is due to the NR phase shift, ,-ONR, the rest a conse-

quence of optical path differences between the various combining waves. AOoPL.

For convenience we may separate these phases and consider the intensity patterns
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to be described by .4 sin(t&wt - -\OPL, and ' n' --. n)R The combi_"ticn

of these two signals gives another sinusoidal function with amplitude .4T. The total

phase difference is related to the amplitudes of these three signals by

ANR - AOPL = COS 4- - 1 ) (33)

2A, A2

We can eliminate A\bopL by changing control parameters and making a second

measurement. We are left with the change in AONR. A bit more algebra is required

V_• to extract the transmissions from the amplitudes.

3.3.5 Experimental attempts

Our LiNbO 3 samples proved very difficult to work with. Previous research with

crystal samples in the group was plagued by noise and non-repeatability [91J. The

noisiness of signals hampered our effects as well. Of the dozen or so crystals of

LiNbO 3 available, only one was found with the proper cut-polished faces normal to

the c axis. No Bi 12SiO 2 0 crystals had the proper orientation. The q.mp!e had a large

interaction length, 1.3 cm, and the crystal was used in an open circuit configuration.

A set-up was similar to Fig 14 except the detectors just measured the transmitted

signal-the mirrors were blocked off and no moving fringes were produced at the

detectors. Moderate intensity (10-30 mW/cm 2 ) input beams produced independent,

noisy, transmitted signals. The fringe velocity was limited to no slower than 5 x 10'

m/s and for this value, little power transfer was expected. A new attempt was made

mixing unexpanded beams. Fig 15 shows typical simultaneous readings. Coupling

between the beams is evident in that one trace has peaks where the other trace has

depressions and vice versa. The noise was not due to any fluctuations in the laser

output. Removing the crystal produced flat, steady signals at the detectors.

We borrowed a second sample of LiNbO 3 with polished c faces from the Univer-

sity of Osnabruk. This had a large photovoltaic field (35 kV/cm) but a very small

interaction length (2 mm), and produced similar noisy traces with hints of beam

coupling.
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Figure 15: Typical traces for transmitted beam intensities. The signals are very
noisy, but beam coupling is evident.

One cannot make sweeping generalizations from looking at just two samples,

but obtaining poor results from two crystals of very different origins bodes ill for

the use of LiNbO3 in nonreciprocal applications.

3.3.6 Limitations

Numerical methods, particularly ones involving iteration, are prone to instability.

Our treatment was no exception. For values of Ep greater than 15 kV/cm and

positive fringe velocities, the computer program would not converge to a particular

solution. Instead it seemed to oscillate between two solutions. Nonlinear materials

often exhibit bistable behaviour, and the mathematical model may be pointing to

a region where LiNbO 3 is optically bistable-two possible intensity states for the

same input.

The presence of absorption dramatically slowed down convergence, and scores

MW --Nb
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Figure 16: NR phase shift vs fringe velocity for various values of absorption.

of iterations typically were required. This is likely due to the poor initial guess

calculated from the numerical treatment of Ref [59]. But absorption has been

studied, and Fig 16 shows that a healthy attenuation constant of 2 cm -1 reduces

the maximum NR phase shift by a factor of 2. The conditions are the same for Fig

13a with Ep = 10 kV/cm.

The question of modulation depth is important here. The solutions to the in-

tensity coupled wave equations shown in Figs 4a, 5a and 6a reveal there are regions

in the crystal in which m is not much smaller than 1. Indeed, for the Bi 1 2SiO 20

plot, the intensity solutions cross, so there is one point where m = 1. As suggested

by Ref [8], we may expect a reduction in photorefractive coupling for higher mod-

ulation depths. Taking this into account may lower the expected magnitude of NR

effects.
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3.4 Conclusions

This chapter began by posing the question: Can photorefractive materials be used

in the design of a nonreciprocal phase shifter? The answer is yes, but there are

several drawbacks.

The effect is small, several times less than that obtainable from magnetooptic

NR phase shifters. For use in a fibre-optic ring laser gyroscope, this might be

adequate, for the round-trip optical path difference between counterpropagating

beams is typically much less than a wavelength [221. However there is a concurrent

effect which might be undesirable in a resonator-power is transferred between the

beams. Decoupling these effects would be difficult. The best control parameter,

fringe velocity, requires delicate and precise movement of either a mirror or the

crystal itself. Of the three crystal types studied, the material with the largest

theoretical NR behaviour, LiNbO 3, has produced poor experimental results.

Our research has shown, however, that NR transmission effects in photorefrac-

tive materials have great potential. It has been suggested to use a photorefractive

crystal as an optical diode, but we have shown that using fringe velocity one can

control the strength of the beam coupling, reduce it to negligible coupling, or even

change the direction of power transfer.

An interesting byproduct of this study is a numerical method for treating two-

wave mixing with spatially variable coupling. The techniques described should be

readily adaptable to other geometries.

- L - -- 
-- - _



Chapter 4

Unidirectional Ring Resonator

One ring to bring them all and in the darkness bind them.

J.R.R. Tolkein

(a fellow Mertonian)

Beam coupling in photorefractive materials often results in power transfer. As

discussed in Chaptet 2, this light intensity interchange is described by a gain co-

efficient, 2 r sin $,, which has a maximum in Bi12 SiO 2O with moving fringes when

49 = 900. A photorefractive crystal with high gain can be used as the active medium

in a resonator. Oscillation will occur as long as the photorefractive gain exceeds

losses due to absorption, diffraction and reflection from optical elements in the cav-
ity. We will see that the oscillating beam chooses a path whose length satisfies the

phase condition for resonance-namely one roundtrip represents an accumulated

phase which is an integer multiple of 27r.

Optical resonators with photorefractive gain are the subject of keen interest,

particularly in concert with phase conjugating mirrors [28]. The interest is un-

derstandable-phase conjugating mirrors retrorefiect incident light, reversing the

phase, so any aberrating effects in the resonator cavity may be corrected, and the

reflectivity can exceed unity. (Of course there are different theoretical considerations

80
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in a system which, in effect, folds the optical path. For example, the concept

of cavity length loses its meaning.) Many of the applications of photorefractive

crystals discussed in Chapter 1, such as in optical computing, image processing,

and associative memories, utilise such optical resonators.

Most of the work with these resonators uses BaTiO 3, and many configurations

are discussed in Ref [131). We were interested in seeing if one design in particular,

the linear resonator, would work using Bil 2SiO 20 as the gain medium. (The linear

resonator is discussed in greater detail in Chapter 5.)

A good starting place for the understanding of resonator operation with pho-

torefractives is the unidirectional ring resonator (URR). In this tried-and-true ar-

rangement, a photorefractive crystal is placed in a leg of a resonator formed by

three or more mirrors (see Fig 1). A single input beam incident on the crystal

generates scatter, some of which may be captured in the resonator and amplified.

This arrangement has been explored using BaTiO 3 by White, et al. [131], Kwong,

et al. [79j, and Fischer [38]. BaTiO 3 has very high gain due to its large electrooptic

effect and one can induce oscillation at very low light intensities (- 50LW/cm2 at

633 nm), and may even achieve bidirectional operation. Rajbenbach and Huignard

reported a study of the URR using Bil 2 SiO 20[105]. In a material like Bi 12 SiO 20 wave

propagation in the resonator is unidirectional because the applied electric field en-

hances the gain for beams in the transmission geometry, but not in the reflection

geometry.

A URR is relatively easy to set up (as much as any resonator can be), oscillation

is self-starting (no need for a seed beam), and the gain can be quite large. We felt

the experience gained in working with the URR would serve us well later.

We start this chapter with a short review of the pertinent theory of two-wave

mixing and derive an analytic solution to the intensity coupled wave equations in

the presence of absorption. Then we consider the feedback of the amplified beam in

the ring resonator geometry. Next we discuss experimental results. Although our

work reproduced many of the findings of Rajbenbach and Huignard, we concentrate
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on new observations or quantify some of their qualitative results. In particular we

discuss the appearance of diverse higher diffracted orders.

The thrust of this and the next two chapters is experimental, and they follow a

particular sequence of experiments. The fruition of our labours with the URR comes

to bear in Chapter 5, in which we consider a new gain mechanism for photorefractive

materials [110]. This mechanism is different from that discussed in Chapter 2 (that

one depended on the imaginary part of the space charge field). This new gain

process is very similar to one proposed recently in which higher diffracted orders

may amplify a weak mixing wave [6]. We employ this new mechanism successfully in

a ring and linear resonator. Finaly in Chapter 6 we look more closely at the higher

diffracted orders discussed at the end of this chapter with a special eye towards

applications.

4.1 Background

4.1.1 Optimum frequency detuning and grating spacing

In two-wave mixing the combination of small interbeam angles and a large applied

electric field leads to drift dominated behaviour. In this regime, except for very small

interbeam angles or weak applied fields, Eq > E.0 > E,, > Et. Our expression for

the modulated space charge field in this limit is given by Eqn 2.55. The imaginary

part of Eo has extrema for b = ±E,..,/Eo. The maximum value occurs for bopt

-E,.,/Eo and the positive root, bmin, gives the minimum value. For bopt

E ° mEE ( 1 )

jm Eo 2 + EEq

in other words, pure imaginary so gt= 90'. For bmin

E = -mE. 0  (2)

Here $0 = 0. This positive root is not discussed in the literature, but it gives insight

into the resonance condition for b. The ratio Em/Eoo is small, therefore there is
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little separation of bopt and brin-the resonance is sharp.

For fixed E, and E.o (ie. constant interbeam angle and applied field), bop t is

constant. But bopt = bWopt1~d, where bWopt is the optimum detuning frequency for

the fixed grating spacing. Using the definition of 7d and E, from Chapter 2 we

obtain

optsND esND(3)

The optimum detuning frequency is linearly dependent upon the total intensity.

Both E, and Eq are proportional to the grating spacing, A. We can optimize

the imaginary part of Ej in Eqn 1 for a particular grating spacing. The condition

to be satisfied is E, 0
2 = E, Eq, which leads to

Aopt = 27rE, 0  e/ (4)op NA e'' 4

For the crystal parameters in Table 2.1, Aopt = 151m. Any grating spacing close

to this value will insure high gain at the optimum detuning frequency.

We have considered conditions favourable to high gain. Now we need to consider

losses.

4.1.2 Coupled intensity equations with absorption

The results of Chapter 2 show that for waves mixing at the optimum detuning

frequency, tg = 900. That is, there is maximum intensity coupling (Isin g =

F), and no phase coupling. Consider two waves mixing as in Fig 2.5 at optimum

detuning. We make the assumption that absorption losses are sufficiently small that

r is constant through the medium. Then our coupled intensity equations are

dI = 2r I,I- CI (5)
de, I+ + L
dl- 2r a (6)

dwh c+ + I_

where a is the absorption constant.
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Figure 1: Unidirectional ring resonator geometry.

Introduce the quantities Z = L - L and Q = L./. Eqns 5 and 6 can be

written in terms of these quantities as

d = - aE, E(x) = Eo exrn-ax) (7)
dQ
dQ = 2rQ, Q(x) = Qo exp(2rx) (8)dz:

where the subscript "0" denotes the value at x = 0.

1+(X) IOexp(-ax) (9)
1+ 1/Q + 0exp(-2rx)

L(X) E 1(O)exp(-ax) (10)
+ (0)exp(2rx)

where 1(0) = 4(0) + L(O).

4.1.3 Ring resonator

We may now consider two wave mixing in which the amplified, oscillating beam

undergoes feedback as shown in Fig 1. Rajbenbach and Huignard have shown that

in Bil 2SiO 2O the oscillating beam can arise from the noise spectrum of a parnt beam

[105]. In other words, oscillation is self-starting. The particular frequency compo-

nent of the noise spectrum corresponding to the optimum frequency detuning will
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achieve the highest gain. thus the frequency of the ,nscillating beam is automati-

cally detuned to the optimum value. This means the intensity expression of Eqn 9

is valid.

At steady-state, the condition for oscillation is that both the amplitude and

phase of E. return to their original values after one complete circuit. The amplitude

condition can be expressed in terms of the intensity

L, (0) -R L (d) (i

where R is the combined reflectivity of the resonator for one round trip. We ignore

diffraction losses in this treatment. Substituting Eqn 9 at x = d into the above

expression yields
I(0) 1 e- 2r d

1 -(0) 1 - -(12

For oscillation to occur, this ratio must be greater than 0, so F must satisfy

2rd > ad - 'nR (13)

Eqn 12 gives the steady-state beam ratio of the resonator.

The phase condition for oscillation is that the phase delay of the round trip

must be an integer multiple of 27r. This is not a very restrictive condition-there

are many components of the noise spectrum of the input pump beam which can

find optical paths around the resonator satisfying the phase requirement.

In Bi 12 SiO2 O oscillation in a ring resonator is unidirectional. For the set-up in

Fig 1 we take the crystal orientation to give efficient power transfer for transmission

geometry. A counterpropagating beam would mix vith the pump beam to form a

reflection grating with k in the a direction. But the applied field (necessary for high

gain in Bi12 SiO2o) is in the z direction and cannot enhance the reflection coupling.

Thus the gain for the reflection case will not be large enough to sustain oscillation.
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Figure 2: Experimental layout.

4.2 Experimental Results

4.2.1 Layout and resonator alignment

The layout of the URR we studied is shown in Fig 2. The resonator cavity was

formed by 3 dielectric plane mirrors. One mirror (C) was mounted on a piezoelectric

driven translation stage, and by applying a voltage to the driver, the geometry of

the cavity could be slightly changed. The Bi 1 2SiO 2 0 crystal sample had 5mm x

5mm front and rear faces and a length of 5.33mm. The crystal had silver painted

electrodes on the 001 face, and the orientation used was as in Fig 2.5. The crystal

was mounted in the holder described in John M. Heaton's D.Phil. thesis [49]. This

holder has plunger type contacts and was connected to a Brandenburg HV power

supply. Unless otherwise stated, the applied voltage was 4.5 kV. Reflection off a

glass plate inserted in one leg of the resonator provided a sample of the oscillating

beam. The strength of the oscillating signal was measured using a photodiode. An

iris aperture allowed only low order modes to oscillate in the resonator when it was

stopped down (w iable down to slightly less than 1 mm in diameter).
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The pump beam was the expanded. spatially filtered and collimated ,utput

of an argon ion laser. The wavelength was 514 nm and the light was vertically

polarised. Part of this beam was split off to provide a normalising signal. as well as

a reference beam for interferometric measurements.

The resonator alignment is critical to achieve oscillation. Asystematic place-

ment of the mirrors using the following method worked well. The resonator was

built up "backwards". using an injected beam from a He-Ne laser source. The

He-Ne laser was put in the position of the photodiode in Fig 2. The He-Ne beam

was parallel to the optical table and the beam height was level with the centre of

the crystal. Mirrors .4, B, and C were positioned sequentially, forming the general

arrangement of the ring resonator. The line AB was at an angle of 1.9' to the

pump beam to give a grating spacing of 15 jim. The height at which the He-Ne

beam struck each mirror was constant. Any uphill or downhill slope to the align-

ment beam was detected easily using a stopped down iris aperture of the correct

height. Care was taken to insure the reflection off mirror C hit the glass plate at

the exact spot as the injection of the be -n from the He-Ne laser. The iris aperture

was placed downstream of the glass plate now. Any misalignment resulted in the

beam reflected off mirror C missing the aperture. Each mirror mount had vertical

and horizontal tilt controls and these were adjusted until any reflected beam re-

traced the path of the original alignment beam. When this was accomplished, the

resonator was sufficiently lined up to obtain some sort of oscillation.

Additional fine-tuning of the resonator was made in two stages. First the iris

aperture was opened to its maximum diameter. The pump beam was turned on,

a voltage applied, and oscillation started. The oscillating beam consisted of a

writhing, complicated, superimposed mode structure. We replaced the He-Ne laser

with the photodiode and mirror C was adjusted to optimize the signal strength of

the oscillating beam sample. (We found, by trial and error, that this signal was

most sensitive to changes in the tilt of mirror C, off which the oscillating beam had

the largest angle of incidence.) The second stage was to close the iris aperture to
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!ts minimum diameter and then adjust -he mirrors to ,ptimize the symmetry in the

lower order modes. For this tuning, mirror B worked best.

4.2.2 Comparison with previously reported results

Oscillation was self-starting in our ring resonator. As mentioned above the aperture

could be used to select single modes. Not a specific lower order mode. but one of

many. A sample of these modes, as well as an example of the structure with a fully

open aperture, is given in Fig 3. There are two images in each photograph because

there were reflections off both the front and rear surfaces of the glass plate. Here

the photodiode in Fig 2 was replaced by a lens and a camera back.

The main difference between these modes and those reported by Rajbenbach and

Huignard is the obvious rectangular symmetry. Ref 1105] reported modes exhibiting

circular symmetry. This means in our resonator the limiting aperture must be the

crystal itself.

Mode stability was fairly good-from a few seconds to two minutes. High fre-

quency vibration, such as produced by rapping on the optical table did not initiate

mode transition, but low frequency disturbances, such as caused by air currents,

did. Often a particular oscillating mode would fade and there would be a delay

of some tens of seconds before oscillation would build up again. At other times a

single stable mode would give way to a waver of competing modes. The struggle

would have a single stable mode emerge as the victor. This competition occured

most frequently between modes TEM00 and TEM11 , or between modes TEMi0

and TEM0 2 . Ref [25] describes mode competition in a URR using Bi 12 SiO 20. In

particular, by placing lenses in the resonator, the authors were able to emulate a

confocal resonator and limit the number of higher order modes by decreasing the

Fresnel number of the system.

We used low input intensities, less than 15 mW/cm 2. This is an order of mag-

nitude less than that used by Rajbenbach and Huignard. One reason we chose to
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Figure 3: Resonator TEM modes. (a) 00 (b) 10 (c) 20 (d) 39 (e) 40 (f) 01 (g) 02
(h) 11 (i) 21 (j) 31 (k) 12 (1) Superposition of modes.
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Figure 4: Measurement of detuning frequency.

work in this range was necessity. Our laser output was less stable at high power

settings. A second reason was that it was more convenient when performing inter-

ferometric time studies. The frequencies we measured were on the order of hertz to

tens of hertz instead of the hundreds of hertz characteristic of high light intensities.

The interferometric arrangement is shown in Fig 4. The reflection of the oscil-

lating beam off the front face (: 20%) is combined with part of the input beam in a

Mach-Zehnder scheme. Any frequency difference between the two beams results in

an interference pattern of fringes moving at the detuning frequency. This frequency

can be measured by analysis of an oscilloscope trace.

We had a number of questions about the detuning frequency we wanted to

answer.

1. Does the detuning frequency depend on mode?

2. Is the behaviour linear with input intensity, as suggested by Eqn 3?

3. How will changing the length of the cavity affect t -etitning frequency?
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Figure 5: Detuning frequency, 6v vs input pump intensity. Symbols refer to various

TEM modes.
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Figure 6: Change in cavity length due to displacement of mirror C. For our case:
AB = 65.2 cm, BC = 33.0 cm, CA = 56.5 cm.

Fig 5 shows the frequency difference, 6v = 5w/27r, for various modes as a func-

tion of input pump intensity. Each data point is a statistical average of up to ten

measurements taken for a particular mode and a given intensity. Error bars are not

shown in this figure. but typical error bars for these interferometric measurements

appear in Fig 7a. The scatter is somewhat broad, but there is no discernible trend

difference between the modes. Within experimental error every mode seems to have

roughly the same detuning frequency for the same intensity. The dependence of 6,'

on the input intensity appears linear in this region. The straight line is based on

a linear regression fit to the function 6v : cIo, wher-, c is the slope. We may take

Io = L-(0) because the oscillating beam intensity is very weak compared to the

pump intensity. The be-t fit slope i- n 23 r-/Ws. This is ovel eight tImes lalger

than the slope predicted by Eqn 3 using the crystal parameters of Table 2.1. Two

factors may account for this discrepancy. The table parameter values were chosen

as rep.resentative of the literature. There may be significant variation among crystal



CHAPTER 4: UNIDIRECTIONAL RING RESONATOR 93

samples. In particular, this Bi 12 SiO, 0 sample produced photocurrent densities (pro-

portional to sND) nearly four times larger than those for other Bi 12 SiO2  nainples for

a given input intensity i31). The second factor concerns the size of the applied field.

Some authors report that the applied electric field in Bi 12 SiO 2O is often less than

that expected from the applied voltage fie. E,o ,- V/d). For example. Jonathan.

et al., found their applied field was half as large as expected !6 41. This decrease in

field strength may be due to shadowing effects at the electrodes, or a loss due to

poor ohmic contact of the electrode to the crystal. A combination of higher values

for SND and a smaller E,0 would result in a larger slope in Eqn 3.

In BaTiO3 one can change the detuning frequency by displacing one resonator

mirror slightly (79]. This changes the cavity length and the difference in detuning

is necessary to satisfy the phase condition for oscillation. The detuning frequency

can take on positive or negative values, and is periodic with the mirror shift.

We would not expect a change in cavity length to produce such a large range

of detuning frequencies in Bi 12 SiO 20 because the gain is very strong only for values

close to 6,Wopt. It is likely that oscillation would cease before a large change in

detuning took place.

Fig 6 shows the change in geometry when mirror C is displaced a distance 61

along the bisector of ZACB. Both sides AC' and BC' are shortened by a length

6l cos 10c. The total change in cavity length is

AL -26 cos 1 c (14)

For our case Oc = 89.50. The piezoelectric translator had an elongation of 1 Am

/100 V. Thus applying 10 V gave SI = 6.1prn. This resulted in AL = 0.2SA, where

A = 514 nm. This change in length was confirmed by injecting a beam into the

resonator with no applied field to the crystal (no beam coupling) and setting up an

interferometer as in Fig 4. An applied voltage of 40 V to the piezoelectric translator

shifted the interference pattern by almost exactly one fringe.

Fig 7a shows the results of mirror displacement on the detuning frequency of

- a-
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mode TEM1 ,0 for an incident intensity f 9.7 mW cm 2 . The error bars represent

one standard deviation of the experimental values. Fig Tb includes various modes.

Again the different modes all seem to be at roughly the same detuning frequency

and this is independent of mirror displacement.

The ordinate axis in Figs 7a and b has quotation marks around the word

"change". Did we really change the cavity length by displacing mirror C? As

soon as the voltage to the piezoelectric translator was modified, the oscillation in

the URR immediately stopped. After several seconds to a few minutes, the oscil-

lating beam would reappear-equally intense and at the same detuning frequency.

It is likely that after the original oscillation was disturbed by shifting mirror C,

the new oscillating beam travels along a slightly different path which satisfies the

twin conditions of optimum detuning and proper cavity length. We still obtained

oscillation when the path choices were restricted by putting in one or two small

apertures in the system. In this regard oscillation in the URR is very forgiving.

One benefit of using low incident power was the discovery of a threshold for

oscillation. No oscillation occured for pump intensities less than 0.8 mW/cm2 . This

is seen in Fig 8. Here the ratio, 0,., of the intensity of the oscillating beam (I+(d))

to the pump intensity (L(0)) is plotted as a function of input intensity. According

to Eqns 9 and 10, 3, = 0,o/R and thus depends on £,R, and a, all of which

are independent of intensity. We should mention that Rajbenbach has reported

a region of reduced gain in Bi 12 SiO 2 0 , for nearly degenerate two-wave mixing at

similar intensities [106]. It is possible that at low light intensities not all acceptor

sites are filled, ie. N; is reduced, which leads to reduced coupling.

Threshold devices are increasingly important in many optical applications such

as image processing [70] and associative memories [1121. A URR using Bi 1 2SiO 2 0

could be used as a threshold detector, however the mode structure of the oscillating

beam would be a limiting factor on the spatial resolution of the output.

The highest beam ratio we measured was 0.08. This is lower than the steady-

state beam ratio of 0.6 reported in Ref [107]. However, Rajbenbach and Huignard
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Figure 7: Detuning frequency, 6v, vs "change" in cavity length, that is, a mirror dis-

placement designed to give this change in length. (a) TEMj0 . Error bars represent

one standard deviation.
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Figure 7: Detuning frequency, 6v, vs "change" in cavity length, that is, a mirror

displacement designed to give this change in length. (b) Various modes.
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oscillation occurred for an input less than 0.8 mW/cm2.
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used a longer wavelength (.568 nm) to reduce the absorption loss. and had a longer

interaction length (1 cm). We can use our value and Eqn 10 to estimate the gain

coefficient in our system. For this crystal a = 1.1 cm - '. d = 0.53 cm. and R = 0.65.

(To calculate R: Mirrors A and B had reflectivities of 0.95, C had a reflectivity of

0.98, the transmission of the glass plate was 0.92. and there was a 20% reflection

loss off the front face of the crystal.) In terms of 3,

r = - - in (R (ed(l -t- R3,) - 3,)) (15)

For our experimental values, r = 1.05 cm - 1 . This is lower (by a factor of ten)

than that calculated from the treatment of Secs 2.1.8 and 2.3.2, but those did not

take into account optical activity or higher diffracted orders. Further, as we have

discussed, E.0 may be reduced.

4.3 Higher Diffracted Orders

4.3.1 Emergence of higher diffracted orders

In the derivation of the coupled wave equations in Chapter 2 we neglected coupling

to higher diffracted orders (see Fig 2.6). We argued there that this simplification was

valid if the interbeam angle was large. However, to get the high gain necessary for

oscillation in the URR using Bi1 2 SiO 20 the interbean angle must be small. Higher

diffracted orders (HDOs) were visible whenever the oscillating beam was present.

In general, besides the pump beam (0 order) and the oscillating beam (-1 order),

the +1, -2, and -3 orders were seen (see Fig 9a).

Au and Solymar have described the emergence of higher diffracted orders and

have shown that significant power transfer to these orders is possible [7]. They have

also identified an off-Bragg coupling mechanism by which power transfer between

the principal mixing waves may occur, even when the phase mismatch angle, -t,

equals 0 (6]. We will not go into the full theory in this thesis, but an off-Bragg

coupling mechanism similar to that presented in Ref [6] is described in Chapter 5.
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Figure 9: Two species of higher diffracted orders in the UTRR. (a) HDOs. (b)
Companion orders.
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The key feature here is :hat conditions for HDOs improve as the interbeam angle

becomes smaller.

4.3.2 Companion orders

The reflection of the oscillating beam off the glass plate revealed an interesting

phenomenon. The oscillating beam had an entourage. A number of other beams

(which we shall call companion orders) were visible. These represented a different

"species" of higher diffracted orders. They appeared on either side of the oscillating

beam and were evenly spaced along a line some 350 out of the plane of the resonator.

Closer inspection revealed that companion orders also appeared around the

pump beam, the HDOs, and, surprisingly, the reflection of the oscillating beam

off the front crystal face. (We shli call the pump and oscillating beams and the

HDOs due to their two-wave mixing the principal beams, in relation to the compan-

ion orders.) Several views of these companion orders are seen in Fig 1.0.

Several observations may be made here:

* The angular separation of companion orders was much smaller than that for

the HDOs. (We will measure this separation in the next subsection.)

* There seemed to be a focusing effect in the companion orders-as one moved

away from the principal beam, on one side the orders became increasingly

focused while on the other side the companion orders were increasingly defo-

cused.

* The companion orders shared the same mode structure as the principal beam.

* The spacing and orientation of the companion orders were not affected by a

decrease in ;nterbeam angle between the pump and oscillating beam to 1.440.

* The number of companion orders around each principal beam diminished as

the order of the HDO got larger (i.e. as one moved away from the pump
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(a) (b)

(c) (d)

(e) Mf

Figure 10: Companion Orders in the Ring Resonator. (a)-.(c) Oscillating beam.
(d) Pump beam (one side only). (e) Higher diffracted -2 order. (f) Reflection of
oscillating beam off front face. In all but (d), the principal beam is the second from
the bottom.
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beam). The pump beam usually had eight or nine companion orders. the

oscillating beam five to seven. IIDOs -2 and -1 three or four and HDO -3

two or three. It was not unusual to find that a single input to the crystal,

the pump beam, produced over 30 separate beams. This was a very prolific

crystal!

How do the companion orders arise? It shoul" be emphasized that because

of the iris aperture and the angular separation of the companion orders, only the

oscillating beam could circumnavigate the resonator and be reinforced. Only the

oscillating and pump beam entered the front face of the crystal. The companion

orders were not due to any reflection external to the crystal, they had to be produced

inside the crystal.

One possibility we considered was that the companion orders were some type of

preferential, amplified scatter from the noise spectrum of the principal beams. The

question we asked was, is the electrooptic effect in Bi 12 SiO 20 enhanced for a grating

vector out of the plane of the resonator at 350? The answer, as demonstrated in

Appendix B, is no.

A telling clue to the origin of the companion orders is seen in Fig 11. An

expanded, incident beam with no voltage applied to the crystal produced a trans-

mitted beam as well as a second beam at an angle of 350 . It seemed our crystal

sample had a slight wedge angle.

4.3.3 Measurement of the wedge angle

This particular crystal of Bi 12 SiO 20 had come back recently from being recut and

polished. It was part of a crystal of original dimensions 5mm x 5mm x 10mm. After

a long and protracted bout with an internal fracture, the first crystal split in two

(see Appendix A describing damage in Bi 12 SiO 20 crystals). The larger piece was

saved and became the crystal we used for these experiments. It is very likely that

during the cutting or polishing the wedge was introduced.
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Figure 11: Transmission of a uniform beam through the crystal sample. The pres-
ence of a multiple reflection suggests a wedge angle.

Incident

tight 2z 2EV)
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Figure 12: Multiple reflections in a crystal with a wedge angle.
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Figure 13: Interferometric measurement of wedge in Bi 12 SiO 2o crystal.

The angular separation of the companion orders in air, AO. was measured as the

ratio of spatial separation over a given distance behind the crystal. This was found

to be 0.19' for all the companion orders observed.

As shown in Fig 12, the wedge angle, 0,,,, is related to this angular spacing by

A# = 0_1 - 0o = 2n8,. (16)

where n is the index of refraction. For our measurement, 0.. = 0.036'. Notice that

the angular separation of multiple reflections with the input beam is a multiple of

20.. In other words, the higher multiple reflections are at the same angular spacing

as higher diffracted orders produced by two-wave mixing of the input beam and the

first co-directional multiple reflection.

The presence of a wedge in the crystal was confirmed using a Specac interferom-

eter. This is shown in Fig 13, a sketch of the interference pattern. A fringe analysis

was difficult because both the wedge angle and crystal face were small. The orien-

tation of the fringes were at approximately 350 to the 001 crystal axis. The fringes

were bent, suggesting one or both surfaces were curved. This may explain the fo-

cusing effects we saw. The two interference fringes is too small a number to give

a value for the wedge angle of 0.036', but reflection off the curved surfaces might

emulate a larger wedge angle.
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4.3.4 Nature of the companion orders

Are the companion orders merely the result of amplification of multiple reflections?

This cannot be the complete answer because we see companion orders on either side

of the principal beam. Multiple reflections exist only on one side. In the same way

the interaction of the pump and oscillating beams produce HDOs, the two-wave

mixing between any principal beam and its first codirectional multiple reflection

gives rise to higher diffracted "companion" orders. Additional weak multiple re-

flections at the proper angular displacements may well facilitate the emergence of

higher diffracted companion orders. Because the wedge angle was smaller than the

interbeam angle between the pump beam and the oscillating beam (roughly ten

times smaller), a greater number of companion orders were present than HDOs.

Moving out from the pump beam, the intensity of the principal beams decreased,

and thus fewer companion orders were seen.

Once the HDOs and companion orders are established, an intricate network of

beam coupling builds up. For example, each separate beam couples to the pump

beam. This is evident because when the oscillating beam is suddenly interrupted,

the HDOs and their companion orders decrease in brightness, then gradually fade

away completely. Clearly the pump beam is reading/erasing a number of gratings.

A complete description, in which each beam is coupled to every other beam, would

be complicated indeed.

4.4 Conclusions

Our goal in these experiments was to gain expertise with a resonator using Bi12 SiO 20

as an active medium. In the course of the experiments we have put numbers to

many qualitative findings previously reported, and have found reasonable agreement

with theory, if one allows for variation in crystal parameters and applied fields.

We have demonstrated the crucial importance of the optimum detuning frequency
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to oscillator operation. We discovered that oscillation in a URR resonator using

Bi12 SiO, 0 has a threshold for incident intensity. For our crystal sample no oscillation

occurred for intensities less than 0.8 mW 'cm 2. And we have observed and explained

the presence of various higher diffracted orders, some of which are due to a slight

wedge angle in the crystal sample we used. In Chapter 6 we will discuss potential

applications for a crystal with a wedge angle.



Chapter 5

Wave Amplification with Two

Pump Beams

So we grew together,

Like to a double cherry, seeming parted,

But yet an union in partition;

Two lovely berries moulded on one stem.

A Midsummer Night's Dream

Act I1, Scene II

Thus far we have looked at wave mixing in photorefractive materials with two

input beams. A characteristic of the wave interaction is power transfer in one

direction, eg. 1+ increases at the expense of I_, but not vice versa. The coupling

term which describes the power transfer depends on the imaginary part of the

modulated space charge field.

But there are other means of redistributing energy if a greater number of waves

interact and the interbeam angles are small. A recent article by Ringhofer and

Solymar suggested a new mechanism for wave amplification in this case [1101. In

this new scheme, four waves interact as shown in Fig 1. Power is transferred inwards

from the pump beams. Unlike our traditional two-wave mixing mechanism which

is necessarily on-Bragg (the beams which write the grating, simultaneously read it

107
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2 ( pum P)
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Figure 1: Four wave mixing. Beams 1 and 2 are strong pump beams.

directly), this new mechanism depends on an indirect, off-Bragg coupling. This is

similar to the process by which beams can be amplified via a higher diffracted order

[61.
In this chapter we review the theory of Ref [1101 (which gives only the final

expression for the gain coefficient). We will concentrate on qualitative features of

the theory. One important criterion is that, for high gain, the four mixing waves

must be frequency shifted relative to one another. A common method of achieving

this small frequency shift experimentally is to introduce a Doppler shift by reflection

off a slowly moving mirror. The mirror is typically mounted on a piezoelectric

translator driven by a sawtooth voltage signal [109]. This works fine for one beam,

but coordinating the motions of two or three mirrors to get multiple frequency

shifts is difficult and requires more equipment than we had available to us. One

way out is to use a ring resonator. The oscillating beam in the ring resonator is

automatically frequency shifted to give optimum gain. In this arrangement, one of

the internal beams (3 or 4 in Fig 1) is reinforced in a resonator, and one needs only a

single moving mirror to detune a second pump beam. The remainder of the chapter

relates experimental work with this resonator and a similar arrangement-a linear

resonator.

Our goals in the experiments were to verify the existence of the new gain mech-

anism, to test certain qualitative features of the theory, and to establish some
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benchmark by which the new mechanism could be compared to the traditional gain

mechanism.

5.1 Theory

Consider the four waves mixing in Fig 1. The interference pattern produced by the

overlapping of these waves is merely a superposition of those patterns produced by

each pair ef waves. The total intensity is
4

I(r) [E = i Z Eiej( It - k ' ) i2

1=1

4 4
'o + Z Z E E,,e(bw' ' lK ) I # m (1)

1=1 m=1

where wl, = w, -w, are the detuning frequencies, and Kn - km, are the

resulting grating vectors. We assume nearly degenerate mixing.

We can follow the general treatment of Chapter 2 and derive a modulated space

charge field for each grating. As in that chapter, we neglect higher diffracted or-

ders and assume small modulation. We can reduce the complexity somewhat by

assuming beams 1 and 2 are very much stronger than beams 3 and 4. Thus we

may neglect coupling between beams 3 and 4. In Chapter 2 we found that power

transfer was in one direction only. Let us take this direction in a clockwise sense

in reciprocal space (Fig 2a) so power is transferred 1 --+ 3 - 4 -* 2. We let our

subscripts reflect this direction. The modulated dielectric constant is
E, = E,. + E,2 r (E,,L e-j(112 .F-6w,2 t) + E,, L3e - j( g?1 '€- 6W13 t)

1 ~10

+ E. 14 14 -e-j(4.? '
W 

1 4 
) + Ec32 . t) +

10 10

12

where I,, = EjEm. and

E,,, E Eo (3)"
+ EW. b,,

: ' Jli a - - d -" -
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Figure 2: Nearly degenerate four-wave mixing. (a) Propagation vectors in reciprocal
space. k = , - 2. (b) Off-Bragg parameter, ;.

reflects the fact that the interbeam angles are small and we are in the drift domi-

nated regime. Here bi, = 6 wl..,,-d, E,, = 7rN/LK,, and E,,, = eNj/,KI,.

5.1.1 On-Bragg and off-Bragg coupling

The writing beams read the various gratings formed in the photorefractive medium.

Finding the coupling between the beams is rather like doing a jigsaw puzzle. We

need to find some combination of a writing beam and a grating vector which will

exactly reproduce any one of the writing beams, ie. duplicate the propagation vector

and frequency. If the pieces fit, we have vector closure, and the on-Bragg condition

of Fig 2.6 is satisfied. For example, beam 1 combines with grating vector K13 and

part of it is diffracted into beam 3.

Sometimes the jigsaw pieces do not meet exactly, and we need a hammer to force

the fit. The hammer is the off-Bragg vector, 1 , shown in Fig 2b. Vector closure is

given by

= g + k2 - 4 + (4)
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Thus, for example. beam 1 combines with grating vector k 42 and tv to reproduce

beam 3. This is indirect, or off-Bragg, coupling. Note. for this to work in general.

we must match the frequency detunings. A13 -= 6W42 = (6w1 _ and 6W 4 = SW. 3

(1 - C)6w 12, where is the scaling parameter shown in Fig 2a. This condition

suggests itself, regardless, because of the symmetry of the mixing. This also ensures

that all gratings rr.ve at the same velocity.

In the undepleted pump approximation, where 13, 14 << 11,12, the coupled dif-

ferential equations for E3 and E 4 become

dE3 - T q-(E.1 4 - ,*I,2 )E3 -j (E,,4 .-- E,,,) EjE 2E4e - j' (5)

dE~~dz = 1" ( E,,,11 + E-4-1-12) E4 - j-1 (E-1.1 - EW41 ) EIE2E~e -J  (6)

where q = k0n 3r. The first term on the right hand side of the above equations

represents on-Bragg coupling, the second term off-Bragg.

5.1.2 Analytic treatment of the coupled equations

To make Eqns 5 and 6 more tenable, we introduce a change of variables

B 3 =E 3 exp(jz), B 4= E; exp(-jO-) (7)
2 2

Then our coupled equations become

dB 3  . (_ " 1B3

dz - q 21

q (E.. * - E.. B4(8)dB 4  .(__)

4 jq±1 -E + 
B 4 ±+

+ j q(E.,," E.,,) B3 (9)
1 + /9,o

where 3.o = 11/12. These equations are of the form

B3 = -j(ajBe + al2 B4 ) (10)

B = = -j(alBs + a2 B4 ) (11)

..d~~~~~ ~ 3+m -- a 2,2B 4/),m1 J -* h.,b. - '. - -
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where

a(i l q 1 + Ev, - _ _ - a1E 2 I. (-- , ,4 o

a ., q v -- (E , E.,,) a22  = ( 3 ,, E., 4  E W)- , -o o ' '  1 --- ~ 3r -r r 2q

The solutions are

E 3(X) B 3 exp(-j -- ) = E 3(0) exp(-j(T )X- )x) (12)
2 2

E4(x) B4 exp(j P) = E 4(0) exp(AT W (13)
2 2

where

=(all - a2 2 ) = 2 (a 1l - a22)
2 - 4a,2a2l (14)

5.1.3 The gain coefficient

The coupling term T is complex. Let T = T, + jTi. Then

E3(x) = E 3(0)exp(Tjz-j(Tr+!,)X) (15)

E 4 (z) = E 4(0)exp(Tjz+j(T,-!0)x) (16)

The intensities, 13 and 14, will exhibit simple exponential gain, expressed by a gain

coefficient, 2T,, which is the new mechanism analogue of 2r sin 4$g. An interesting

feature is the phase. If 10 <K T,, then beams 3 and 4 are phase conjugates.

Let us look at T more closely. We can simplify Eqn 14 somewhat by noting

E.13 = E-4 . and E 14 = E-32 . So a12 = -a2 1 . Our general expression for T is

T = 1q -0.(E.___-_EW,)

q2 (1-3.) (E.. ' . ,.,') 2q(,, + E"". -) + jb21f17

+0,E. 4 ))2 2qo~(E-42  ,)+ b (17)

So our gain term for intensity is

2T, = Re [q (E.42 - E ,,*

+ 2q-O(Ew., + E '22((E + E-14)2] (18)
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The first term on the right hand side of the equation is due to on-Bragg couplina

between the internal beam and the two pump beams. Power is transferred from

pump 2 to the internal beam, but lost to pump 1. The second term is due to

off-Bragg coupling.

It is worthwhile to look at two special cases.

I. Three-wave mizing. = 2

Here both internal waves are coincident, so we have in effect three-wave mixing. In

this case, E,,,. E,,,,. Eqn 18 becomes

-T 1? ,1) (1 -3,)2
2T1 = -2q 1 3, lm(E.) 4q1 Re(E,, , ) - U

2 - 4q3 (1 E3)2

(19)

Here it is obvious that on-Bragg coupling depends on the imaginary part of the

modulated space charge field, and the off-Bragg coupling on the real part. Two other

features are important here. The sign of q, which depends on reff, can be positive

or negative by virtue of crystal orientation. This is a consideration in optimizing

2T. For example, to get large gain when q is positive, we must minimise Im(E ,,0)

and balance the two terms containing Re(E,,,) simultaneously. The second feature

is the pump ratio, ,3,°. For positive q and Im(E,,0), a beam ratio greater than one

is necessary for effective on-Bragg coupling. If the beam ratio is less than one, then

this term detracts from the overall gain.

II. Equal pump intensities. , 1.

Here

2Ti = Re (12qO (E... + E.,.)- (20)

This is the expression from Ref [110]. There are two strategies, mathematically, for

maximising the real part of this square root (we assume ( # 1). Which strategy we

choose depends on the the size of the off-Bragg parameter, -k. It has to be different

from zero to have gain, but if it is too large, the -02 term dominates and gain is

reduced or lost completely. In our jigsaw puzzle analogy, when the hammer is too

large it smashes the pieces rather than making them fit. Therefore we expect the
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gain to be effective for small interbeam angles. IIowever, for very large values of

w one can achieve high gain if the real part of (E ,4 - E,,) is minimised while

its imaginary part is maximised (and has a positive sign). For this to be effective.

though, ( must be differem from 1. In the case of three-wave mixing then

2T, v 4 qtO Re(E,,,,) - ul (21)

The best test for the presence of the new gain mechanism is to hare equal pump

intensities. There is no on-Bragg coupling in this case.

5.1.4 Optimization of the gain

Let us look at the problem of achieving high gain for a particular case. We will

restrict ourselves to the combination of three-wave mixing and equal pump inten-

sities. The gain is optimized for the maximum value of q Re(E ,,). For the case

Eq,4 > E,o we have

Re(E=,.) + (22)

(1±+ b14~a)+b 4

which has extrema for

b E,.1  1 (23)14 E" + E 02 //E. 42)

Fig 3 shows 2Tj as a function of pump detuning frequency (6V1 2 ) for various

interpump angles. Fig 3a is for positive q, and Fig 3b is for negative q. For all the

theoretical plots in this chapter the crystal parameter values are those which give

a good qualitative fit to the experimental data-that is, providing the correct peak

frequency detuning for the symmetric case of three-wave mixing. The differences

between these and those in Table 2.1 are NA = 2 x 1022 m - ', and the ratio /7, =

1.9 x 1012 (V-m)- '. We use an applied field of 8 kV/cm and a total pump intensity

of 15 mW/cm 2 .

It is clear there is one best overall interpump angle. For these parameters, it is

approximately 3.2' for both positive and negative q. This angle gave us the best
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Figure 3: Gain coeffcient, M"' vs pump detuning frequency for various interpump
angles (in air). (a) q positive. (b) q negative.
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experimental gain. An important point is the magnitude of the gain coefficient. At

optimum detuning and grating spacing, the gain is 37 cm . In the case of nearly

degenerate two-wave mixing, we found at small angles. .E,,optI = Eq. If we compare

mixing between pump 1 and the inside beam. then the same for the same crystal

parameters the largest expected gain coefficient is 35.5 cm - '. (Note: These values

are theoretical values. In practice, because of loss, this gain coefficient is much

less-a typical optimum value in Bi 1 2SiO 20 is 12 cm-1.) This new gain mechanism

seems to be slightly more efficient than the traditional mechanism.

5.1.5 Variation in (

If C - 1 then we have four-wave mixing. Fig 4 shows the gain coefficient as a function

of C for various pump detuning frequencies for two extremes of in-air angles between

the pump beams. Fig 4a is for an interpump angle of 1.60 and positive q, and Fig 4b

for negative q. For a given value of ( there is an optimum detuning frequency.

Figs 4c and 4d show an interpump angle of 100. This gain is only possible when

the imaginary part of (E,,, + E,,14") is maximised and C much different than 2

The symmetry and interrelatedness of the internal beams is very important in these

plots. Both beams experience the same gain.

At this point we should mention the appearance of spatial subharmonics be-

tween mixing beams in Bi 12SiO 20 . This has been reported by Mallick, et al. [89].

The authors observed K/2, K/3, and K/4 subharmonics (where K is the grating

vector formed by two nearly-degenerate mixing waves). These are very distinct

beams which may attain an intensity relative to the pump beams of 40%. Which

submultiples were visible depended on the amount of frequency detuning. Ref [89]

suggested these beams were diffracted orders which overlapped and were mutually

reinforced.

The spatial subharmonics reported correspond to ( = 1/2,1/3, and 1/4 for our

four-wave mixing. Fig 4 shows that high gain is possible for these, and other, values
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Figure 5: Gain coefficient, 2Ti vs pump beam ratio for positive and negative q.

of C. Perhaps these intrapump beams arise from noise amplified by a combination

of the gain mechanism described in this chapter, and a reinforcing mechanism.

The phenomenon of subharmonics does not seem to be a general characteristic of

Bi 12SiO 2 0-we have looked for it, but have never observed distinct subharmonics in

any of our crystal samples.

5.1.6 Variation in pump beam ratio

The relative strength of the pump beams is important to the gain term. If the

ratio is much different than 1, the on-Bragg coupling becomes important and may

dominate the gain. In any case, pumps of unequal intensity produce a term inside

the square root of Eqn 19 which detracts from the off-Bragg coupling.

The effect of changing 0,.. on the gain coefficient is seen in Fig 5. Here = 2'

the interpump angle is 3.2' and for positive q, 6v12 is taken as -10.5 Hz, while for

negative q, bv12 is -12.5 Hz. These frequencies maximise the gain coefficient for

, -1.
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Figure 6: Unidirectional ring resonator with two pump beams.

5.2 Unidirectional Ring Resonator: Experimental

Results

5.2.1 Experimental layout

We set about to prove experimentally the existence of the new gain mechanism. The

obvious way of doing the experiment is to have 3 or 4 input beams and measure the

power transfer into the signal beams. But the difficulty is then to adjust carefully

the frequency detuning of each beam needed to maximise the interaction. We opted

for a different experimental set-up (Fig 6) in which there are only two input beams

(the two pump beams) and then one of the signal beams may emerge from the

noise. In order to help the emergence of the signal beam we created a feedback loop

by constructing a three-mirror resonator. This is not an ideal test of the theory

because the interaction will now depend on additional phenomena like the scattering

of the input pump beams and on new parameters like the resonant frequency of the

cavity, and in our undepleted pump approximation there would be no limit to the

exponential growth of the signal beam. However, this beam can only emerge in the

- - .- --
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resonator if there is an amplification mechanism. Therefore the present experiments

can prove the existence of the mechanism, but they are nut suitable for checking

quantitatively the predictions of the theory.

The photorefractive material used was the Bi 12 SiO 20 sample described in Chap-

ter 4. For all runs a 4 kV d.c. voltage was applied along the 001 crystal axis.

Vertically polarized light of wavelength 514 nm was incident on the i10 face. One

pump beam (which we shall call driving pump) was Doppler shifted using a mirror

mounted on a piezoelectric translator. The input signal to the translator was a

triangular wave. During half the period the frequency shift was favourable for os-

cillation and amplification, and during the other half conditions were unfavourable.

The ring resonator cavity was aligned using the main pump beam. An iris aperture

in one of the cavity legs allowed only low order modes to oscillate. The oscillating

beam was sampled from reflection off a glass plate.

5.2.2 Verification of new gain mechanism.

First the set-up was aligned so that the angle between the main pump beam and

the oscillating beam, 8M, was the same as the angle between the driving pump

beam and the oscillating beam, OD. Then we switched on the main beam on its own

and, as expected, obtained oscillation due to the traditional gain mechanism, that

is the oscillating beam adjusted its own frequency detuning so as to maximise the

imaginary part of the space charge field. Next we switched on the driving beam of

the same intensity as the main beam. The oscillation stopped, as predicted, because

the two pump beams worked against each other. The oscillating beam, however,

reappeared if we slightly detuned the driving beam. Such detuning would not have

helped the traditional gain mechanism (recall there is no gain via the imaginary part

of the space charge field when there are two pump beams of equal intensity) but

could maximise the new gain mechanism. Hence the reappearance of the oscillating

beam is a proof for the existence of the new gain mechanism.
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Figure 7: Gain vs ratio of pump beam intensities. Gain is defined as the photodiode
signal with both pumps over the photodiode signal with only the main pump.

5.2.3 Comparison with traditional gain mechanism

The relative intensity of the oscillating beam as a function of pump beam ratio

is plotted in Fig. 7. The interpump angle in air was 3.20 with the oscillating

beam bisecting this angle. The intensity ratio (Im.,,,/d,.,) was varied using a

neutral density filter wheel. The photodiode signal was taken at optimum driving

pump detunirg frequency and this value was normalised to the average signal for

oscillation with no driving pump. The driving pump had no noticeable effect for

ratios > 50:1-the oscillating signal was indistinguishable from that due to the

main pump alone. For ratios < 1:10 oscillation was surpressed. Presumably for

very weak main pumps the new gain mechanism is n.t efficient-the direction of

energy exchange from the driving pump for the traditional gain mechanism is wrong

for our geometry. The optimum beam ratio was unity, giving an increase in signal

intensity by about a factor of four. This overall behaviour agrees qualitatively with

Fig 4a (for the case of negative q), although the peak there did not occur for 0,.. = 1.

Our crystal was set up so the energy transfer was 2 --. 4 --. 3 -- 1, corresponding

to negative q. We also see that the new gain mechanism is more efficient than the



CHAPTER 5: WAVE AMPLIFICATION WITH TWO PUMP BEAMS 123

traditional one. In a system with feedback, such as this resonator, a small increase

in 2Tj can be magnified into a large increase in gain.

Each data point represents the average of the photodiode signal for i0-30 cycles

of the triangular input to the piezoelectric translator. The error bars represent one

standard deviation for the data. The likely reason for the noisiness of the data is

the rather short interaction length of the crystal. only 5.3 mm, thus giving only a

limited amount of amplification. The overall plot and trends, however, were easily

repeatable.

5.2.4 Optimization of gain

The dependence of the oscillating signal on the driving pump beam detuning is

shown for a pumpbeam ratio of 1:2 (driving pump intensity = 10 mW/cm2 ). Fig 8a

shows the symmetric case of Om = OD = 1.60, with error bars. The next two plots

(without error bars) show the effect of keeping 8M = 1.60 and varying GD, and for OD

= 1.60 and varying 0M. The trends are quite clear. In all cases there is an optimum

detuning and the signal declines as GD or O increases.

5.2.5 Search for subharmonics

Let us discuss some further experiments related to those of Mallick et al. who also

had two pump beams incident on a Bi12SiQ 20 crystal and observed spontaneously

emerging output beams at subharmonic positions. We asked the following question:

Is the signal beam in the oscillator higher at a sublarmonic position that in its

vicinity, or in other words, are subharmonic positions in any way distinguished?

To answer this question we set GM = 1.60 and OD = 3.2', that is when the

oscillating beam trisects the inter-pump angle and we chose unity beam ratio. This

corresponds to the position of the third subharmonic. By varying either Om or 8D

or both we did not observe any preference for the subharmonic position. This seems

to indicate that, as predicted by the theory of Ref [110], the subharmonic positions
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are by no means preferred and gain is continuously present for the range of .f's

and 0O'S measured, not only in discrete positions.

There is no doubt that subharmonics were observed repeatedly and reproducibly

by Mallick et al. Why is it then that neither the theory of Ref ?1101 nor our exper-

iments can find any preference for subharmonics? It is possible the theory fails to

find the subharmonics because of the approximations used, namely small modula-

tion and no higher diffracted orders. Our experiments might miss the subharmonics

because for some reason it is the presence of the resonator that ensures the con-

tinuously available gain. Another possibility is that the subharmonics found by

Mallick, et al. are due to some properties of their experimental set-up, e.g. those

of the piezoelectric drive.

We should mention an effect observed when in the range of pump frequency

detuning correspoding to high gain. If the resonator was not aligned, or a screen

was placed in one of the cavity legs, no oscillation occurred. However, a large patch

of optical noise appeared in between the pump beams when the driving mirror

movement direction was favourable for gain. This region could be fairly intense,

roughly 20 times less than that for the oscillating beam. There were even "higher

diffracted orders" produced- less intense regions of noise on either side of the

pumps. It is clear from Fig 4a that gain is high, for small angles, for a range of

around 1. Noise in this region undergoes high amplification.

5.2.6 The second signal beam

The appearance of the second signal beam is an important verification of the theory.

The new gain mechanism depends on four-wave mixing. We cannot have amplifica-

tion of one signal beam in the absence of the other. There is a crucial symmetry in

these beams. In one experiment, we varied the interpump angle from 3.40 to 5.8*,

keeping the angle 8M constant as 1.70. The angle between the second signal beam

and the driving pump was measured at 1.70 in every instance.
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Figure 9: Simultaneous oscilloscope traces of signal strength of beams 3 and 4.
Bottom trace is oscillating beam.

Both signal beams could be sampled using a photodiocie. Fig 9 shows a typical

simultaneous trace for the emergence of the two beams. The second signal beam

was weaker (by a factor of 5 to 10), but the close relationship between the beams is

unmistakable. If the oscillating beam was suddenly interrupted, both oscilloscope

traces immediately dropped to background level.

5.3 Linear Resonator with Two Pump Beams

A significant finding of the last section was that for the ring resonator the gain in

the system with two pumps was larger that using a single pump (i.e. exploiting the

traditional photorefractive gain mechanism). This gave us encouragement to try the

two pumps with a linear resonator arrangement with Bi123 ,O20. Using just a single

pump we have been unable to obtain oscillation in Bi12 SiO 20 with this geometry.

The linear resonator using photorefractive crystals as the gain medium has been

investigated theoretically [24,65] and experimentally using BaTiO3[1311. In these

studies, a cavity is formed by two mirrors (see Fig 10), and a single pump is sufficient
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Figure 10: Linear Resonator: Experimental layout.

for oscillation to begin. The oscillating beams arise from the noise spectrum of the

input pump beam. Those components which satisfy cavity resonance conditions

and which have the appropriate frequency detuning can be amplified. If these

counterpropagating beams are sufficiently intense, a phase conjugate of the input

pump beam is produced.

That oscillation in the linear resonator is more difficult to start and sustain is

readily seen in Fig 10. Amplification is effective only when the oscillating beam

is codirectional with the pump beams. The oscillating beam must traverse the

crystal twice to get back to a direction where gain is possible. We have twice the

absorption loss. The situation is reminiscent of the ferrymen who hauled supplies

and convicts out to the prison on Alcatraz island in San Francisco Bay-the trip was

only profitable on the way out. This configuration using Bi12SiO 20 was described

by Rajbenbach and Huignard [105), but it is unclear what success, if any, they had

in achieving oscillation.

Everything about the layout was the same as for the ring resonator, except a

d.c. voltage of 4.75 kV was used. Both pumps had intensities of 4 mW/cm2 . The

interpump angle was 3.20 in air and the oscillating beam bisected this angle. As

before, the driving pump was detuned using a mirror mounted on a piezoelectric

translator. We used a triangular ramp signal to drive the mirror. This effectively

changes the sign of the frequency detuning halfway through each cycle and for one
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direction of mirror motion we expect favourable gain. but none for the opposite

direction. This effect is readily seen in Fig lla which depicts some sample data.

Here 6w = 87 s- '. There is a slight delay as the ramp voltage increases before

oscillation begins. This might be explained, in part, by an initial slow amplification

from the noise spectrum. More likely it is due to some chirp in the detuning of the

driving pump beam due to inertia as the mirror changes direction of motion.

It was essential for both pump beams to be present to maintain oscillation. There

was no oscillation for either pump alone. Thus it appears that, as for the case of

the ring resonator, this new gain mechanism is more efficient than the traditional

one.

The oscillating beam was sampled using the reflection (20%) off the front face

of the crystal. Fig lb shows the variation of the oscillating beam intensity as a

function of the frequency detuning of the driving pump beam. There is clearly an

optimum value. Unfortunately the intensity of the oscillating beam was not high

enough to observe phase conjugate reflection.

5.4 Conclusions

In this chapter we have investigated a new mechanism for wave amplification in

photorefractive materials. This mechanism uses two pump beams and is very effec-

tive in Bi12 SiO 20 at small interbeam angles where the off-Bragg parameter is small.

Therefore it seems to be a useful complement to nearly-degenerate two-wave mixing

described in Ref [109]. We have used this mechanism successfully in two different

resonator configurations.



Chapter 6

Applications of Wave-Mixing in a

Crystal Sample with a Wedge

Angle

There is nothing insignifi cant.

Samuel Taylor Coleridge

The photorefractive effect, when first reported, was nearly dismissed as a mere

nuisance. The opening paragraph of the paper by Ashkin, et al. [5) addressed the

optically-induced refractive index inhomogeneity in LiNbO 3 and LiTaO3 :

The effect, although interesting in its own right, is highly detrimental

to the optics of nonlinear devices based on these crystals.

And the closing remarks proclaim (italics mine):

Work on this mechanism and its poiaible elimination is continuing.

Chen recognized the potential of the change in refractive index as a means of storing

volume holograms [201 and the rest, as described in Chapter 1, is history.

132
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The moral here, of course, is that in the construction of technology, sometimes

stumbling blocks make the best building material.

In our experiments with the unidirectional ring resonator described in Chapter

4, we discovered a crystal sample of Bi 1 2SiO20 with a wedge angle. The multiple

reflections created by the wedge and their resulting higher diffracted orders intro-

duced new channels through which incident power was transferred. The result was

a loss in efficiency of the resonator. It would be simple to denounce the wedge angle

as an unfortunate mishap and have the sample repolished. But before taking that

step we should ask: Is there any use for a crystal with a wedge angle?

One application is immediately obvious and was mentioned in Chapter 4. One

can produce many output beams with a single input beam. Since the wedge angle

is fixed, the results are highly reproducible-something not always guaranteed with

photorefractive crystals.

This chapter addresses other ways of utilizing our "unfortunate mishap". First

we look at some interesting transient phenomena when the applied voltage is first

turned on. This provides some insight into how power is transferred among the

higher diffracted orders. Finally we use a He-Ne 633 nm beam to probe the grating

formed by argon ion laser light of 514 nm. The probe beam was coincident with the

writing beam. We observed a field/intensity dependent scattering that has potential

application in laser beam steering.

6.1 Transient Effects in Higher Diffracted Orders

6.1.1 Transient energy transfer between mixing beams

There is a certain inertia during grating formation in photorefractive materials. It

takes time for the space charge field to build up to modulate the refractive index.

The build-up period is characterised by transient effects and these can be quite

spectacular. For example, in drift-dominated two-wave mixing, the power transfer

-
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is oscillatory and during the undulations of intensity, a weak signal beam can nearly

deplete a strong pump beam ;45!.

The time dependence of the modulated space charge field produced by two

mixing waves is described by the well-known differential equation i1161

OaEs

19t g E , f m (1)

where m is the modulation ratio of the the mixing waves and
1 A I C E E E

C= -Lj j , D=I+ -E-1

q q

Eqn 1 reduces (as it must) to Eqn 2.19 in the steady-state. Because the coefficients

are complex in this first order differential equation, the time behaviour of E, can

be oscillatory.

In short, transient effects are described by Eqn 1 and the coupled wave equa-

tions. John M. Heaton's D.Phil. thesis provides many theoretical and experimental

details of two-wave mixing transient behaviour in Bi 12SiO 2 0 [49]. In particular he

developed both numerical and analytic solutions to the coupled time and space

differential equations. Both treatments, though, are computationally complicated.

For example, the analytic solution works only for the undepleted pump approxima-

tion and requires complex integration and the evaluation of Bessel functions with

complex arguments. Appendix C reveals a new, simple, analytic formula we have

developed for the signal beam complex amplitude which agrees remarkably well to

the numerical solution of Heaton and Solymar [48] for a wide range of important

and practical cases. The savings in computer time is marked. A typical calcula-

tion of 220 time points using either method of Heaton takes 20 minutes on an IBM

personal computer, while the computation of the same number of points using the

simple formula requires less than 5 seconds.

Transient effects have been studied experimentally in two-wave mixing in LiNbO 3

[751, Bi, 2GeO20 [45], and Bi 12SiO 20 [49,64]. Observed effects are
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9 Power is transferred from the strong Deam to the weak beam.

* For small interbeam angles and small applied fields the transfer is oscillatory.

* For strong applied fields the gtating writing times are longer.

* For smaller grating spacings (larger interbeam angles) the grating writing

times are longer.

Our study is the first experimental look at transient power transfer among higher

diffracted orders.

6.1.2 Videotape studies

The business of applying a voltage to a crystal may seem rather mundane, but there

are definite considerations. Bi 12 SiO2 0 is a very good insulator in the dark (resistivity

= 5 x 10" f cm [2]). One must be careful of having a high voltage across an

unilluminated crystal. The danger is an in-air spark between the electrodes which

might damage the crystal (see Appendix A). The crystal must be flooded with light

to reduce the resistivity several orders of magnitude before the voltage is applied.

The turn-on characteristics of our HV power supplies were not step-functions.

There was no instantaneous jump from 0 V to the desired potential difference.

Instead the voltage (as measured from the current across a fixed 10 Gfl resistor-a

value close to the resistance of our illuminated crystal) had rise time constants on

the order of a few milliseconds, and generally experienced some type of overshoot

above the final steady-state voltage. For example, if the power supply was turned

to 1 kV, the voltage peaked at 2.7 kV (an overshoot of 1.7 kV) before dropping back

to 1 kV. For a desired voltage of 4.0 kV the rise time was longer and the overshoot

was 1.0 kV (underdamped behaviour).

Modelling a time-varying applied field like this is difficult, and, for the most

part, unnecessary. Studies of transient behaviour in photorefractive crystals employ
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choppers or shutters for one of the mixing beams with the applied voltage at its

steady-state value i491.

But the simple fact remains: at some instant, one has to turn on the voltage

with the crystal illuminated. Not so simple is that when this occurs, a pulse of light

energy escapes from the crystal, away from the region of transmitted light.

This effect is observed to some extent, in all of our Bi, 2 SiO 0 crystal samples.

The pulse duration is short-less than one second for intensities on the order of

1 mW/cm2 . This is too fast for ordinary camera film to pick up, but not for a

TV camera. We observed scores of transient sequences and recorded on videotape

several of them for varying crystal sample, incident intensity, and magnitude and

polarity of applied voltage.

Figs la-f show a transient sequence for one crystal. This was a sample from

Sumitomo Electrics. Its front face was a 1 cm square and it measured 3mm thick.

A voltage of 5 kV was applied along the 001 axis and the incident light was vertically

polarised, of wavelength 514 nm, and intensity 0.3 mW/cm2 . Fig la starts with the

transmitted light with no applied field. Scatter is seen predominantly on sides of the

crystal image. The top and bottom scatter regions are due to an incomplete fit of the

crystal in its holder-there were gaps through which light could pass. It is likely the

scatter on the left results from a reflection off an internal surface, although we took

efforts to ensure the incident light was normal to the front surface. The subsequent

photographs show the emergence of the light pulse on the left side at intervals of 20

ms. The pulse manifests itself as somewhat staccato horizontal streamers that reach

out from the main transmitted beam. There are two counterpropagating pulses-

one on either side of the crystal, but the one corresponding to the primary direction

of energy transfer is the most prominent.

We can explain this pulse in terms of amplification of scatter noise. As soon

as a voltage is applied to the crystal, power can be transferred to scattered beams

making small angles with the incident light. These beams are amplified, generating
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(c) (d)

(e) (f)

Figure 1: Transient effects in Sumitomo Bi 1 2SiO 2O crystal sample. (a) No applied
field. (b) 20 ms after application of field. (c) 40 ms. (d) 60 ms. (e) 80 ms. (f) 100
Ma.
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(a) (b)

(c) (d)

(e) ()

Figure 2: Transient effects in Crystal Technology Bi 12SiO 2O crystal sample. (a) No
applied field. (b) Field turn on. (c) 20 ms after application of field. (d) 60 ms. (e)
80 Ms. (f) 100 Ms.
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(g) (h)

(i) (j)

Figure 2: Transient effects in Crystal Technology Bi 12SiO 2o crystal sample. (g) 120

ms. (h) 160 ms. (i) 200 ms. (j) 400 ins.
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more scatter which can be amplified, creating additional scatter and so on. Power

is passed on like the baton in a relay race. This transfer is very effective in the

transient phase because of the presence of moving fringes i49].

Through our studies we can make these observations. Keeping everything else

constant:

* Pulse duration increases with decreasing incident illumination.

* Pulse duration and spatial extent decreases with decreasing applied voltage.

" The pulse is seen predominantly on the side corresponding to the direction of

normal power transfer.

" The pulse reoccurs when the voltage is turned off.

Figs 2a-j show the Crystal Technology Bi 12SiO 20 sample with the wedge angle

(0.0360). Here the bright pulse of light moves horizontally to the right (the correct

direction for normal power transfer for this orientation), and we see the higher

diffracted orders emerge on either side in sequence. This is a very pretty thing to

watch. The intensity of the orders undulates as another pulsemovesout along the

350 line.

Clearly this phenomenon gives us rare insight into energy transfer among higher

diffracted orders. It is worth looking at this in greater detail.

6.1.3 Photodiode measurements

A closer inspection of the transient behaviour was made using the experimental

layout in Fig 3. The path length from crystal to photodetector was approximately

3 meters. This length was necessary to provide adequate spatial separation of the

orders to steer them to the appropriate detector. A storage oscilloscope monitored

two orders at a time. We numbered the orders as in Fig 4.9a, that is the main

incident beam was the 0 order, the first multiple reflection (on top) -1, the second
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Figure 3: Study of transients in higher diffracted orders. Experimental layout.

-2, etc. Those orders below the 0 order wave were numbered +1, +2, and so on.

The -1 order was always monitored and this provided a reference. An attempt to

measure the main beam revealed no discernible change in intensity during transient

effects, ie. an undepleted pump. Repeatibility was excellent in these runs.

Fig 4 shows some typical data. This is for an applied voltage of 4 kV and

incident intensity of 1.4 mW/cm2 for beams -1 and +1. We see that both beams

gain in intensity after the field is applied, but beam +1 gains more slowly and peaks

while beam -1 is losing strength. Both beams show ringing effects, but in beam +1

the oscillations are more damped.

Fig 5 shows oscilloscope traces for beams +1, +2, -1 and -2 (the only beams

measurable) for the same intensity of 0.45 mW/cm and an applied field of 4 kV.

This is a composite of 3 plots in which the -1 traces were matched. The dashed

line marks the instant the voltage is first applied. The important feature here is

the confirmation of what was observed in the video runs. The intensity peaks move

out sequentially from the main beam. Also higher diffracted orders seem to grow

in pairs-orders +1 and -2 peak at roughly the same time.

We can explain the relative delay in power transfer to the outlying orders in two
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Figure 4: Simultaneous oscilloscope traces for photodiode signals of beams -1 and
+1. Incident intensity is 1.4 mW/cm 2. Applied voltage is 4 kV. Dashed line repre-
sents the instant voltage is first applied.

ways. First, efficient power transfer depends 3n a strong modulated space charge

field. The coupling of an order to its adjacent orders is expressed in the modulation

ratio, m, in Eqn 1. Until the adjacent order amplitude grows large, the driving

term, fin, is weak. Thus the growth of one order couples it more strongly to the

next order and so on. This is why optical intensity seems to be handed from order

to order. The second effect is due to coupling with the main beam. The larger the

interbeam angle, the longer the grating writing time. So receiv~Kig power directly

from the main beam takes more time for distant orders.

We can take the time from first apply'ing the voltage to the first peak in intensity

as a repeatible, representative time value for the photorefractive transient effect.

Because we are using low light intensities the transient behaviour has time constants

on the order of tenths of seconds or longer. The time constants for the rise of the

voltage delivered by the power supply was on the order of milliseconds-so we may

neglect transient circuit effects. Fig 6a shows the reciprocal of this time value

plotted as a function of incident intensity for the -1 beam. The fit is remarkably
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Figure 5: Composite of oscilloscope traces for photodiode signals of beams -1,-2,
+1 and +2. Incident intensity is 1.45 mW/cm2 . Applied voltage is 4 kV. Dashed
line represents the instant voltage is first applied.
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Figure 6: Reciprocal of time from the instant voltage is first applied to the first

intensity peak vs incident intensity. Applied voltage is 4 kV. (a) -1 order. (b) +1
order.
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Figure 6: Reciprocal of time from the instant voltage is first applied to the first
intensity peak vs incident intensity. Applied voltage is 4 kV. (c) -2 order.

linear. This suggests the time value is in some way proportional to the dielectric

relaxation time constant, -,d, which we know is inversely proportional to intensity.

Figs 6b and c show similar plots for orders +1 and -2. Here the slopes of the best

linear fits are very close (6.6 and 7.3 mW/cm2 -s respectively), which again suggest

the emergence of these orders as a pair.

Finally we need to ask what is the dependence of the transient behaviour on

applied field. In two-wave mixing an increase in applied field tended to slow down

the transient effects. This is seen in higher orders as well, as evidenced in Fig 7.

Fig 8 shows the effect of applied voltage on the reciprocal time from the instant

the voltage is first applied to the first intensity peak. Again we see a slowing of

transient behaviour for large applied electric fields.

Our wedge angle has provided a simple means of producing highly repeatible

transient effects in higher diffracted orders.
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Figure 7: Simultaneous oscilloscope traces for photodiode signals of beams -1 and

-2 for various applied voltages. Incident intensity is 2.6 mW/cm 2. (a) 4.5 kV. (b)

2.5 kV. (c) 0.5 kV.
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Figure 8: Reciprocal of time from the instant voltage is first applied to first intensity
peak vs applied voltage. Incident intensity is 2.6 mW/cm2 .

6.2 Application to Laser Beam Steering

6.2.1 Probe of the grating

One of the exciting prospects of wave mixing using a crystal with a wedge angle is

the possibility of writing holograms with very large grating spacings. This extreme

drift-dominated regime has never been explored and might have some interesting

features. On an optical table interbeam angles are limited by the geometry and

size of optical elements such as prisms and mirrors. The smallest in-air angle we

could achieve was z 1.20. The wedge gave an effective in-air angle between beams

of 0.19 ° which results in a grating spacing of 150 lim.

Our crystal with a wedge effectively produces very small grating vectors. We

decided to write a grating using a 514 nm beam and probe collinearly with a 633

nm beam. This probe beam will not satisfy the Bragg condition exactly, however

the angles involved are sufficiently small that efficient diffraction may be expected.
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Figure 9: Probing the grating. The wavelengths of the writing (A) and reading
(Ar) beams are different.

Fig 9 shows that the angle of the diffracted probe beam is

k, Ageo = te (2)

Here the subscript r refers to the reading beam and g to the grating writing beam.

For Bi 12SiO 20 the indices of refraction at 514 and 633 nm are 2.62 and 2.52 re-
spectively. So we expect 0, = 1.280,. We should see diffracted 633 nm beams at

different angular spacings than the 514 nm orders.

The idea of a collinear probe beam which satisfies the Bragg condition was first
investigated by Huignard and Ledu [55). This is discussed also in the article by
Mallick, et al., on spatial subharmonics [89j. The K/2 grating vector (for their case

a grating spacing of 80 #m) produced by light of wavelength 514 nm was read by

light of wavelength 1.06 jum and part of the reading beam was diffracted. This is

significant because of the importance of the near-infrared in optical communica-

tions. Having the writing (514 nm) and reading (1.06 im) beams collinear might
be necessary if the beams are restricted to the same optical path. say along an

optical fibre. The photorefractive crystal could act as a switch to diffract the signal

beam, depending on the presence of the grating writing beam and other control

parameters. Our scheme might be called collinear near-Bragg diffraction.
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Figure 10: Use of a 633 nm probe beam to read a grating formed by 514 nn light.
Probe and input writing beam are collinear.

Fig 10 shows the experimental layout for this test. An expanded, collimated.

uniform intensity beam of wavelength 514 nm was at normal incidence on the crys-

tal. A beam splitter allowed the injection of a collinear, unexpanded beam from a

He-Ne laser. (An attenuating filter was used to reduce the intensity of the 633 nm

in some experimental runs, but the results were the same as for an unfiltered probe

beam.) A narrow band filter was used behind the crystal to remove the green light

for many of the photographs.

We did not observe collinear near-Bragg diffraction. The results were much more

surprising and suggest a novel means of laser beam steering.

6.2.2 Control of direction of scattered beams

Figs 11 and 12 show the results. Fig Ila depicts the main transmitted beam and

its first multiple reflection for no applied field. Fig 11b is the multiple reflection

pattern of the He-Ne beam with no voltage applied to the crystal. Fig 11c shows

both beams. When a voltage was applied both beams produced higher diffracted

orders. However, the red orders overlaid the green. There was no discernible reading

of the 514 nm grating by the 633 nm light. The red higher diffracted orders seem
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(a)

(b)
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Figure 11: Superposition of 514 nm multiple reflections by 633 nm multiple re-
flections. (a) Transmitted 514 nm writing beam. (b) 633 nm probe beam. (c)
Superposition of both beams.
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Figure 12: Apparent rotation of line of diffracted orders for applied voltage of 5
kV. Change in writing beam intensity: (a) Change in writing beam intensity: 0.2
mW/cm'. (b) 2 mW/cm 2. (c) 4 mW/cm2 . (d) 5 mW/cm 2. (e) 9 mW/cm2 . (f) 11
mW/cm2 . (g) 15 mW/cm 2. (h) 20 mW/cm 2. (i) 30 mW/cm 2.
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to arise from the same mixing mechanism as the green ones-via multiple reflection

due to the wedge angle. This is somewhat unexpected because BizSiO 20 is relatively

insensitive at red wavelengths. For example. the quantum efficiency (a measure of
carrier production per absorbed photon) is an order of magnitude less at 633 nm

than at 514 nm ?431. However photorefractive gratings at 633 nm in Bi 1 2 SiO, 0 have

been measured by Powell and Petts '1031. They found the sensitivity in the red

could be increased by a factor of 16 if the crystal was heated to 300' C.

Figs 12a-i show the effect of increasing the intensity of the green light, with a

constant applied voltage of 5 kV. The green light is filtered out for these figures. The
line of diffracted orders appears to rotate. Actually the bottom diffracted orders

disappear and the top orders move horizontally at spatial rates which preserve the

line. This is a slow process, taking from 10 seconds to over a minute to reach steady-

state. The effect can be observed as well by keeping the writing beam intensity

constant and by varying voltage. If either the intensity is suddenly turned down or

the applied voltage removed, the diffracted beams slowly drift back to their original

positions (as in Fig llb).

We can easily exploit this effect for laser beam steering. We know the higher

diffracted orders are "copies" of the input beam (in the URR they had the same

mode structure as the oscillating beam). By adjusting either the applied voltage

or the intensity of the writing beam, we can direct the a copy of the 633 signal

beam. Figs 13a and b show the apparent rotation of the line of diffracted orders as
a function of writing intensity and applied voltage. The angle of rotation appears

to be linear with intensity and quadratic with applies voltage.

How can we explain the movement of the diffracted orders? It is unlikely that it
is due to a piezoelectric deformation of the crystal. Piezoelectricity is not intensity

dependent. There is a slight fracture in the crystal. Could the presence of an applied

field and/or high intensity light cause expansion of the fissure? It is possible, but

close inspection of the diffracted orders using just 514 nm light suggests this cannot

be the mechanism responsible. When a voltage is applied, increasing the incident

-AL
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intensity also shifts these diffracted orders. The outlying orders tend to smear out
into regions of muted noise and only the -1 order persists. This tends to move

horizontally, but as Figs 2g-i reveal there is still a vestige of the original order left
behind (seen in the photograph as a crescent region). The responsible mechanism

must depend on both intensity and applied electric field. It is characterised by time

constants much longer than those observed for the transient effects.

What is particularly interesting about this new phenomenon is the integrity of
the spatially shifted orders. As discussed above, the -1 order using 514 nm light

leaves a ghost in the original location (the position corresponding to no applied
voltage). But with 633 nm light the shift seems to be complete-the entire beam

moves. Fig 12i shows the -I order is stretched out somewhat for very intense incident
beams. It is interesting to note that the -2 order moves twice as far as the -1 order,

thus preserving the line of diffracted orders.

We will discuss two possible mechanisms. The first is a thermal effect. If a
temperature gradient or a region of inhomogeneity exists in the crystal, the refrac-

tive index may vary spatially. This could divert the beams, and the heating might
well depend on incident intensity and applied voltage. Such an effect would tend to

preserve the line of orders. Because the angles involved are small, all the beams we
observe travel through the same part of the crystal, therefore the effect of a nonuni-

form index will be felt by all. The main beam passes through the crystal once,
the first multiple reflection makes two additional transits, and the second multiple

reflection two trips beyond that. Thus we would expect an increased deviation for
the higher orders. If this is the mechanism then this effect will differ from crystal

sample to crystal sample, and perhaps even within a single crystal sample if the

probe beam passes through a different site.

The second possible mechanism is that of noise gratings. The growth and effi-
ciency of noise gratings depends on intensity and strength of applied electric field,
and they emerge on time scales similar to those describing the movement of the

diffracted orders. The effect we see may be considered similar to that which causes
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the horizontal pulse of light energy at field turn-on discussed in Sec 6.1.2. That

is, scattered light is amplified in a preferred direction. This effect is well-known

in BaTiO 3 and is called fanning "341. although it has never been reported in the
literature on Bi 12SiO 20 . In BaTiO3 beams interacting in the crystal can suffer sig-

nificant bending, particularly in the case of a self-pumped phase conjugate mirror

using internal reflections i27,28].

Another remarkable feature is that the movement is in the opposite direction
to that expected for normal power transfer for vertically polarised light. Foote and

Hall have demonstrated that the direction of power transfer depends on the polar-

isation of the mixing waves in Bi12 SiO 20[391. In the presence of an applied electric

field Bi 12SiO 20 is birefringent, and for light incident upon the 110 face, two orthogo-

nally polarised states exist in the medium. These two states correspond to different

directions for power transfer. However, birefringence cannot be the complete solu-

tion to the wayward spatial shift of the orders. We would expect to see a splitting

of the diffracted orders, not a unidirectional movement. Further, measurements of

the polarisation states of the diffracted orders show that, as expected, they are el-
liptically polarised, primarily in a direction commensurate with incident vertically

polarised light. Finally, only the diffracted orders move, the main transmitted 0

order does not move.

This is a very interesting phenomenon and one which merits further research.

6.3 Conclusions

Our crystal sample with a wedge angle has provided a wealth of novel, interesting

effects to observe. In this chapter we concentrated on two effects with particular

applications. The first concerned transient power transfer as a voltage was applied to

the crystal. A first-ever study of transient effects in higher diffracted orders revealed
that light energy is passed on from order to order sequentially. The orders seem

to emerge in pairs. Finally we observed a new intensity/electric field dependent

| ~ ~ ~ ~ ~ ~ ~ _ L_~ ( i Ii il i li -06i 11 - _-_ - i
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scattering in Bij 2SiO,20 reminiscent of beam bending in BaTiO 3 . This iast effect

allows for angular control of one or more of the higher diffracted orders.



Chapter 7

Conclusions and Suggestions for

Future Work

Let us not go over the old ground, let us rather prepare for what is to come.

Cicero

What can I know? What ought I to do ? What may hope? I

Immanuel Kant

A multitude of interesting and important optical effects arise when beams of light

mix and interact inside a photorefractive crystal. Through the first six chapters and

three appendices of this thesis, we have investigated a wide variety of some of these

phenomena. Our main interest has been what phctorefractive materials do best.

They provide a medium for the coupling of beams. Like some agent or broker.

they arrange for trades in energy or differential rates in the acquisition of phase.

Photorefractive crystals can achieve all this in real time and in a controllable fashion.

This remarkable ability stems from the nonlinear nature of the polarisation of the

medium in the presence of a light wave.

This last chapter consists of three parts. The first is a brief survey of some

of the accomplishments described in this thesis. The second is a guide for further

157
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studies in photorefractives. either here at Oxford. or elsewhere. FinallY xe say a

few encouraging N ords about the future of photorefractive crystals.

7.1 Accomplishments

Ignoring, for the moment, the sage advice of Cicero at the beginning of this chapter,

let us make a quick review of the key points of this thesis. This will help define the

directions of future work.

We began with a description of the photorefractive effect and the place of pho-

torefractive crystals in the long, proud history of crystals. This led to a discussion

of the evolution of our current understanding and applications of photorefractivity.

The nonlinear effects observed in these crystals are numerous, but they are

basically variations on a theme. The theme is two-wave mixing, or a superposition

thereof. Chapter 2 discussed this fundamental interaction, particularly in terms of

differences in the relative sizes of the characteristic fields, and the optimising of

power transfer between the mixing beams.

The preceding provided a necessary background for the understanding of novel

phenomena and techniques discussed in the remaining thesis.

Two-wave mixing for counterpropagating beams was the subject of Chapter 3.

We demonstrated that for the important cases involving moving intensity fringes or

in the presence of an applied voltage, the degree of beam coupling varies spatially.

All previous treatments of this problem assumed a constant coupling term. A com-

parison of the solutions of the coupled wave equat'ons for constant and variable

coupling revealed several cases in which the results differ significantly. Our numer-

ical method was employed next to make the first systematic theoretical assessment

of the control of nonreciprocal transmission and phase shift in LiNbO 3, a represen-

tative photorefractive crystal. For both NR effects, the velocity of the light intensity

fringes offers the greatest range for control. This is particularly attractive because

the photocurrent in the circuit containing the crystal was shown to depend on the
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degree of wave interaction. The photocurrent has its minimum values when beam

coupling is strongest. This should provide a useful, nonintrusive means to monitor

NR transmission. A comparison of the theoretical results for different crystal types

suggests both LiNbO 3 and BaTiO 3 should show strong NR effects, however our

LiNbO 3 crystal samples proved too erratic in coupling to allow us to measure any

effects. Our final conclusion about using photorefractive crystals for NR purposes

was that they look promising for NR transmission (eg. as an optical diode), but
not for NR phase shift. Moving intensity fringes and an incident beam ratio much

different from 1 are required to obtain a suitably large NR phase shift ( <r/2), a
value readily realizable using NR magnetooptical devices.

In the next chapter we began a study of oscillation in resonators with pho-
torefractive gain. We looked at the unidirectional ring resonator and made several

new observations. We found a threshold for incident light intensity below which
no oscillation occurred in Bij 2SiO 20 . For our sample this was 0.8 mW/cm2 . We

measured the frequency detuning of the oscillating beam (relative to the incident
light) and found no measurable difference between the various resonator modes. In
BaTiO3 when one slightly repositions one of the mirrors forming the ring resonator,
the resulting change in resonator length is accompanied by a change in frequency

detuning of the oscillating beam. We discovered this was not the case for Bi 12 SiO20 .

Here the detuning, which is a function of light intensity, applied electric field, and

interbeam angle, must be close to an optimum value to achieve the large gain neces-

sary for oscillation. A surprising new result was a preponderance of higher diffracted

orders for one crystal sample. Many of these additional beams were due to a slight

wedge angle in the crystal. Different diffracted orders (which we dubbed compan-

ion orders) arose from two-wave mixing between a beam in the crystal and its first

codirectional multiple reflection.

Chapter 5 is significant because it provides an experimental verification of a
new gain mechanism for photorefractive materials. The new amplification scheme

involves off-Bragg coupling and results in a power transfer from two pump beams
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inward to two symmetric signal beams. The gain is readily controllable by chang-

ing the frequency detuning of the pump beams. At its optimum value, the new

gain mechanism in Bi 1 2 SiO 20 gives slightly larger gain than the traditional two-

wave mixing mechanism. This was confirmed experimentally in a unidirectional

ring resonator where the small increase in the gain coefficient using two pump

beams resulted in a steady-state oscillating beam intensity four times larger than

for a single pump. The increased effectiveness of resonator operation permitted the

first reported quantitative measurement of oscillation in a linear resonator using

Bi 12 SiO 20 . Finally we searched for evidence of spatial subharmonics between the

two pump beams, but found no preferential position for the signal beams.

We then returned to a study of the crystal sample with the wedge angle. The

minuteness of the wedge angle (0.036' as measured by the angular spacing of adja-
cent orders) allows us to investigate the case of very large grating spacings-much

larger than has been looked at before. Transient effects in this region give keen

insight into the transfer of power between diffracted orders. Using a single uniform

input light beam, the transient phase of grating formation shows power is passed
sequentially from order to order. In other words, one order must be amplified before

it can effectively pass on power to an adjacent order. We have identified a transient

pulse of light which occurs when a voltage is first applied to an illuminated Bi12 SiO2 O0
crystal. AU our crystal samples exhibited this pulse to some extent. As an aside,

we developed a new, simple, analytic formula which describes transient behaviour

in two-wave mixing and which results in a remarkable savings in computation time

over other numerical and analytic treatments. Finally we demonstrated a novel

method of laser beam steering in which the positions of the higher diffracted orders

of a collinear probe beam (of wavelength different than the writing beam) can be

shifted by changing either the applied voltage or the intensity of the writing beam.

I -p~- 
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7.2 Future Work

There are many directions the work described in this thesis can go. We will consider

these directions by subject.

1. Nonreciprocal Effects. The theory we considered in Chapter 3 assumed small

modulation depth for the intensity fringes (ie. small m). There are some

cases of interest where this approximation may not be valid, for example when

the incident beams have roughly the same intensity and strong absorption is

present. It would be worthwhile to do an analysis, such as was done recently

by Au and Solymar [8], for mixing beams in the reflection geometry and large

modulation depths.

Experiments using LiNbO3 as the medium were unsuccessful, however NR

transmission effects have been reported in BaTiO3 and KNbO3 . One of these

materials could be used to verify our theory, particularly the aspects involving

control of these effects.

2. New Gain Mechanism. As mentioned in Chapter 5, the best way to evaluate

this new mechanism is to use three or four beams, each of which can be

frequency shifted relative to the others. Besides experimental confirmation of

the theoretical results, these questions should be looked at:

" What is the relation between the signal beams? Specifically, are they

phase conjugates or even near phase conjugates? On a related theme:

what type of cross-talk exists between the signal beams? Is spatial and/or

temporal information shared between them?

" What effect will incompatible frequency detuning have on the gain? By

incompatible we mean that the frequency differences between the beams

give different speeds for the moving fringe patterns inside the medium.

Our theory depended on a scaled frequency shift for the beams to give
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all the fringe patterns the same velocity. However. if gain is possible or

even enhanced for different combinations of frequency shift, this would

be significant. and might explain why we observed oscillation in the ring

resonator for such a wide range of frequency detuning of the driving

pump beam.

* What is the intensity profile of the region of internal optical noise between

two frequency shifted pump beams? How does this optical noise relate to

the spatial subharmonics observed by Mallick, et. al. [891? We described

this phenomenon in Section 5.2.5. The optical noise, which looks rather

like a swarm of irritated fireflies, seemed concentrated halfway between

the two beams, but extended well out of the plane of the pump beams. As

we changed the frequency of the driving pump beam, the profile seemed

to stay the same, but either dimmed or brightened overall. We would

expect to see the noise follow the pattern suggested by Fig 5.4, namely,

for a specific frequency detuning value, the most intense peak would be

in the centre, but a change in detuning should result in a symmetric,

bimodal intensity distribution corresponding to a new optimum value

of the scaling parameter, (Fig 5.2a). Our group recently ordered a

vidicam and digitizer, and this equipment would be ideal for looking at

the intensity profiles.

* What would be the result if both signal beams were reinforced by (sep-

arate) unidirectional ring resonators? We made a brief attempt at this

set-up, with minor success. The difficulty is insuring that one is reinforc-

ing the second signal beam, and not just an arbitrary noise beam close

to the symmetric position. If the two URRs are spot on, one might be

able to achieve significantly enhanced gain in both.

3. Linear Rejonator. The intensity of the oscillating beam in our linear res-

onator described in Chapter 5 was too weak to generate a phase conjugate
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beam. We recently had the surfaces of a 1 cm cube of Bii.?SiOo antireflection

coated. With reduced reflection loss and a longer interaction length. amplifi-

cation may be high enough to produce phase conjugation. But this raises an

interesting question: what type of phase conjugation. if any, is produced in a

linear resonator fed by two input beams? With a single input, the counter-

propagating, oscillating beams become the "pump" beams, and, if they are

sufficiently intense, a phase conjugate of the input beam emerges. With two

input beams do we get two phase conjugates? WhaL if the oscillating beam

does not bisect the angle between the two input beams? If each input gen-

erates a phase conjugate, and if there is a second signal beam between the

two inputs, then we could have the case of seven-wave mixing-a complicated

situation indeed!

4. New Crystal Cut. In Appendix B we suggested a new crystal cut which would

result in an enhanced electrooptic effect in Bi 12SiO20 for wave mixing in the

absence of optical activity. Optical activity will tend to reduce the net pho-

torefractive gain, but a question worth asking is, will the overall gain for a

Bi1 2 SiO 20 crystal cut with a 111 face be higher than for a 001 face cut? The

difficulty here would be a fair test- different crystal samples usually have

different crystal parameters. We have a rare opportunity to make a definitive

test. In Appendix A we described crystal damage in a 1 cm cube of Bi 12 SiO 20.

The undamaged part of the crystal should be large enough to cut into two

samples of equal length. Both samples should have identical parameters. The

original orientation and that proposed in Appendix B use polished i10 and

110 faces, so the new crystal cut will merely involve a rotation of 54.7" about

the normal axis through the polished faces.

5. Wedge Angle. Once the test on the new crystal cut is finished, a slight wedge

angle can be introduced into the standard cut crystal. It would be interesting

to compare wedge effects with the sample we used in Chapter 6. In particular
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we need to see if the spatial shift of the higher diffracted orders of a collinear

probe beam is reproducible in a different crystal sample.

7.3 Conclusions

Research in photorefractives is at a very exciting stage. The field is still young at

age 20, due iii part to a fallow, contemplative phase in the 1970s. But the result was
a coherent charge transport/field equation theory which seems to explain, at least

qualitatively, the effects seen in hundreds of experiments. Now new experimental

results come fast and furious, as if straining at the leash of the theory, testing its

limits.

The next stage will involve systematic exploitation of the effects being demon-

strated in the laboratory today. Many devices use electrooptic crystals such as
BiU1 SiO 20 in spatial light modulators and LiNbO 3 in optical waveguides, but, as

of this writing, no commercial products exist which utilize photorefractive wave

mixing. Still, the promise is there, and, if the quality of materials becomes more
uniform, photorefractive crystals will find their place in optical interconnects, res-

onators, and computers of the future.

It it our sincere hope that the work represented in this thesis furthers the tran-

sition to this next stage.



Appendix A

Damage in Bi 12 SiO 20 Crystal

Samples

Chapters 4, 5, and 6 chronicle work done with a repolished piece of Bi 12 SiO 20 from a

damaged crystal. The original sample was 5 mm x 5 mm x 10 mm. The damage was

first observed as a small fracture extending about 1 mm into the crystal, roughly

3 mm from one end on the long edge which served as the cathode. Over the

course of several weeks of experimental work (two-wave mixing and photocurrent

measurements) the fracture grew in extent and depth until the crystal split in two.

At the time we felt the damage was initiated by an air spark which passed over

the front face of the crystal when the flooding illumination was interrupted and a 10

kV/cm electric field was applied. Extreme care was taken with new crystal samples

to prevent a repeat occurence. We had limited success with this as evidenced by Figs

la and lb. These photographs show a second damaged Bi 12SiO 20 crystal sample.

This was a 1 cm cube from Sumitomo, Ltd. Fig la depicts the damaged crystal

and a new replacement crystal for comparison. Fig lb shows details of the internal

damage. As with the previous crystal the cracks originated on the cathode surface.

It is very easy to chip the edges of a Bi 12SiO 20 crystal. The best way to minimize

edge damage is to limit handling of the crystal. The mere act of setting the crystal

165
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(a)

10mmri

(b)

Figure 1: Damage in Bi12Si0 2 o crystal samples. (a) New Sumitomo sample (left)
and damaged Sumitomo sample (right). (b) Interior view of damaged sample. Top
of picture was crystal cathode.
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in a holder with spring plunger electrical contacts invariably causes some minor

chipping. But this does not seem to be the source of the fractures. The original

cracks on both damaged crystals started on the sides of the crystals some distance

from the edges.

The key to the damage seems to be the cathode. Bryksin. et al., reported in

1982 and 1983 the presence of strong electric fields near the cathode in a uniformly

illuminated sample of Bi12 SiO 20[15,14]. Very close (< 1 mm) to the surface the

field strength could be in excess of 100 kV/cm. Oberschmid made a very thorough

study of photocurrent in Bi 12SiO 20 and Bi1 2GeO 2096. He found that electrons were

injected into the crystal at localized sites on the cathode. The current from these

sites spread out along conical paths. The presence of both positive and negative

charges at the cathode creates instabilities and Oberschmid observed strong local

fluctuations in the electric field. Anderson and Luke reported in 1987 beam induced

damage in Bi1 2SiO 2 0 in a PRIZ configuration [4]. The PRIZ is a spatial light

modulator in which the front and real crystal faces are polished and have transparent

electrodes. The authors found fractures (originating at the cathode) extending

about 65 lim into the crystal. These arose using relatively low illuminations (100

ttW/cm 2) and weak applied fields (2 kV/cm). It appears damage manifests itself

in the form of small pits, 2-3 /Lm in diameter on the surface of the cathode. Striae

may emanate from these pits and may run between several adjacent pits. These

running striae can grow into fractures. It is very likely that the pits serve as the

local electron injection sites mentioned by Oberschmid.

What can be done to minimize, or eliminate, crystal damage? We used painted

silver electrodes on unpolished crystal faces. Surely the problem of pits or rough

areas is worse on an unpolished surface. It might be beneficial to polish all the

surfaces of a Bi 12SiO 20 crystal before applying electrodes. Once damage has been

identified, reduced applied electric fields and low illuminations may prolong the

useful life of the crystal. At least we may state confidently the reverse is true-strong

fields and high intensities seem to aggravate the condition. In the Sumitomo sample
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we were trying to obtain oscillation in a linear resonator configuration (see Chap 6).

We knew a fracture was present in the crystal and we limited the applied field to 7

kV/cm and the intensity to 10 mW/cm2 . The crack extended approximately 2 mm

into the crystal and its growth was slow. We increased the field to 10 kV/cm and

the illumination to 30 mW/cm 2. The crystal suddenly lit up with bright internal

sparks. We immediately turned off the applied field. The fracture was now over

5 mm long and had developed branches. After this episode the damage increased

visually each time the crystal was used.

The internal sparking is a tell-tale sign of crystal damage. In our optical set-ups

there is generally quite a bit of scattered light falling on the walls of the laboratory

(the crystals send out a lot of scatter). The first evidence of damage in the Sumitomo

crystal was a semi-periodic pulsation in a region of scattered light when an electric

field was applied to the crystal. When the field was increased, the frequency of

the pulses increased. Close inspection of the crystal revealed a small area near the

cathode growing alternately bright then dark. This was found later to be the site

of a small fracture.

I included our experiences with damage in Bi 12SiO 20 in a talk on crystal diag-

nostics given at Cambridge in September, 1987. The response of the audience was

rather interesting. My confession of destroying the crystals prompted several others

to bare their souls. One individual exclaimed, almost with pride, that his group had

ruined two Bi 1 2SiO'2 0 crystals-one having literally exploded when an a.c. electric

field was applied in the kilohertz range.

At a previous scientific meeting we heard the woeful tale of a research student

and a crystal of BaTiO3 . This crystal has a Curie temperature around 5C. Care

must be taken to avoid abrupt temperature changes near this value. The well-

meaning student was cleaning the surfaces of the crystal using methanol. When the

methanol evaporated the temperature change was sufficient to shatter the crystal.

Relating such experiences is invaluable to research. We often learn more from

mistakes than from successes. It would be useful to include a short forum, perhaps
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at the end of one or more sesssions. at conferences to pass on warnings and pitfalls.

Barring this, experimenters should seek out fellow workers to discuss things to be

wary of.

Equally as important as understanding the uses of photorefractive materials is

to be familiar with the abuses of photorefractive materials.



Appendix B

General Treatment of the

Electrooptic Effect in Bi 12 SiO2 0

The appearance of the companion orders in the ring resonator, described in Chapter

4, prompted the following question: Is the electrooptic effect in Bi1 !SiO 20 enhanced

for an electric field in some direction other than along the 001 axis? If the answer

is yes then the companion orders might be due to some favourable combination of

grating spacing and orientation formed by the principal beam and noise.

Consider a general grating formed by the mixing of two waves in Bi 1 2SiO 20 . The

modulated space charge field is given by Eqn 2.20. We should mention that in the

derivation of E, 1, we use the projection of the applied electric field in the direttion

of the grating vector, k, as E,0 . The magnitude of Ea, will determine the index

modulation via the electrooptic effect. E, has the following projections onto the

principal axes of the crystal with no applied field

E., = EZ. + Ev +E (1)

In the presence of E.1 , the index ellipsoid is transformed to

2 y2 z

- + -i + - + 2rE.xy + 2rEyxz + 2rEyz = 1 (2)n
2 n

where r = r 83 .
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Figure 1: Two-wave mixini, with grating vector not coincident 'vith applied field.

We want to find the new principal coordinate system of the crystal. Rewrite the

above as the quadratic form

Q xrCx (3)

-_ crE brE

where x r = (x,y,z) and C = crE 1- arE with a = E.,'E, b = Eyi'E. c

brE arE

E,. E. and E - E,,. To find the new principal cooridinate system we diagonalize

Q and to do that .ve need the eigenvectors of C.

The characteristic equation for C is

n2 AI- 2r 3 E abc - r2 E2 (a' , c') (n2- A) =0 (4)

This expression can be simplified somewhat if we assume eigenvalues of the form

Ai 3 - EirE for z 1,2.3.

'- (a2  
2 -c-2)E - 2abc 0 (5)

Eqn 5 is a cubic equation in E whose solution in terms of the coefficients is well

known, although a bit complicated [104. The roots to this equation give the eigen-

values which represent the lengths of the axes of the transformed index ellipsoid.
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Figure 2: Eigenvalues for Eqn 8.

The eigenvectors. , satisfy

(C - AiI)wj, = 0 (6)

The transformation from the old primary axes system to the new one is made

by
1, T X (7)

where T means transpose and 1t' is the matrix whose columns are the eigenvectors

wi. In other words, the eigenvectors are the directions of the new principal axes.

To find the net electrooptic effect in the new axes system, transform the incident

polarisation vector to primed coordinates and sum its projections onto the new

principal axes of the index ellipsoid.

Our case of interest is shown in Fig 1. The two mixing waves are at near normal

incidence to the front surface,. so the grating vector. k, is parallel to this surface

and makes an angle Q with the z (001) axis. Then a sin0'v 2. b sin f n 0,V and



.PPE.DI. 3 173

N

z

Figure 3: New principal axes system i dark axesi for electric field at an angle of
54.7 ° to the original 001 (light) axis.

c = cos f. The characteristic equation is

f 3_ E + sin' 2 osl = 0 (8)

Fig 2 shows the roots of Eqn 8 for fQ between 0 and 180'. To find the maximum

absolute value for a normalised eigenvalue look at the general solution to Eqn 9.

c +alE+a 2 =0 (9)

Following Ref '1041, we introduce the quantities Q -a , /3, R a2 /2. and 0 =

arccos(R.,. ' Then our three roots are

E = -2VQcos 3 (10)

C = -2v cos ( 8 3 (11)

(3 = -2vi cos (O-347r (12)

For our case a, = -1 and a =- sin 2 Q2 cos fl. If we optimise. say, e1 with respect to

fl then we find we must satisfy

sin 2 p = 2 (13)3

or f2 = 54.7' with a corresponding eigenvalue of -1.155. The other two eigenvalues

are f2 = 0.577 and E3 = 0.577. The eigenvectors are
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1.577 ,1.707 -fl.408

. . -. 707 -408

0.577 ') 0.816
L jL

The new principal axes are as shown in Fig 3. The first thing we shouid notice is

that we can have an enhanced electrooptic effect. If light is polarised along the z'

axis. then the normalised electrooptic effect is 1.155. or over 15% larger than for the

case shown in Fig 2.4. We should recall that we also have a reduced applied field

component in this case (E,0 cos Q2). To take full ad,,antage of this enhancement, one

should have electrodes normal to this optimum axis. namely the 111 or IIi face.

The 111 cut for Bi 12SiO, 0 is used for devices such as spatial light modulators.

as is the cut shown in Fig 2.4 [53,84.4.. Marrakchi. et al., claim that the crystal

cut in Fig 2.4 is the optimum one for the electrooptic effect in Bi 1 2 SiO2 0 for wave

mixing [901. Optical activity will have a more significant effect on the electrooptic

effect for crystals cut with a 111 face. The normalised changes in refractive indicies

for the two principal axes for light polarised in a plane parallel to the i10 face are

1.15 and -0.577, where for the crystal in Fig 2.4 these values are 1 and 0.

However, the enhanced electrooptic effect cannot explain our companion orders,

because there the angle the grating vector made with the z axis was approximately

350 . This is not the optimum angle, and the orientat;-, of the new principal axes

for vertically polarised light and this angle of grating vector gives a net normalised

electooptic effect of -0.885, a magnitude less than that for the case of Q = 0'. This

supports the claim that companion orders are due to a wedge in the crystal sample.



Appendix C

A Simple Analytic Formula for

Transient Two-Wave Mixing

In this appendix we derive an analytic formula for the complex optical amplitude
of a wave undergoing transient amplification in two-wave mixing. We show this
method compares remarkably well to a previously reported numerical method [481.
This is important because our method leads to more efficient computation.

In the undepleted pump approximation for two-wave mixing the space and time
differential equations describing transient behaviour are

- = -jI Eor "(1)

- g gE - f S (2)

Here S+ = E+/VTo where lo is the pump beam intensity, F' =ko n da
2 = ko eff, and g and

f are given in Chapter 6.

Our situation is this: a photorefractive crystal is uniformly illuminated by a
single beam. An externally imposed d.c. electric field is present in the material. At
time t = 0 a second mixing beam is introduced. The numerical method of Heaton
and Solymar [48] to solve Eqns I and 2 for this situation is as follows. At t = 0, S
and Ei are constant-S. = S,( and E,1 = 0 for all x. For a short time interval
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St. ._ may 6e considered 'nchaniea . the space ,iiarge (ield uro,,s )ecause

the presence )f a modulated i:nensitv 7attern. :Z,_) - s calculated "m Eqn 2

and this is inserted irto Eqn i. The sDace equation is integrated .-iedin- viues for

S_(xAt). This can be inserted into Ecn 2 for the next time step and the process

see-saws between time and space solutions until the required number f time steps

are taken. For the case of small interbeam angles and large applied fields (drift

dominated case) the solutions are highly oscillatory and many" steps are required to

prevent instabilities. Even with very small time steps (on the order of the dielectric

time constant) our experience has shown the intensity solution may go negative

(a unreal physical situation I for strong coupling and large interaction lengths. In

other words, this numerical treatment is prone to give solutions which are more

oscillatory than other methods [49].

Our method is similar in philosophy: we attack one differential equation, solve

it, and use the solution in the other equation. Basically ours is an iterative method.

We start with Eqn 2. We assume S, is constant and find

E.,l( , t) = E.i(x.0) e- 9'  -f (1 - _,,t) (3)

but EI(x.O) = 0. We put this solution into the space equation

(9 = F CO S (4)

C f-(1 (5)
9

This has a simple exponential solution, In theory we could continue the iterative

process going back and forth between differential equations, but further iterations

will require numerical solutions. Let us stop here and see how good our answer is.

In terms of intensity and phase we have

I+(x,t) = Ioexp(2r'Im(C)x) (6)

,+(x,t) = r"Re(C).r (7)
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Figure 1: Normalised signal beam intensity vs time. Comparison of numerical
and analytic solutions. (a) Interbeamn angle =100, applied field =108 V 'in. (b)
Interbeamn angle 40, applied field =2x105 Vi'm.
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Figure 1: Normalised signal beam intensity vs time. Comparison of numerical and
analytic solutions. (c) Interbeam angle = 0.50, applied field = 2.x10 5 V i.(d) same
as (c) with r =3.4 x 10-12 M/~ V
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Figs la-d show a comparison between the analytic and numerical methods for

interbeam angles in Bi 12Si0 2 0 of 100 , 4', and 0.5 ° . The crystal parameters are taken

from Table 2.1 except that in Fig 1c, a = 10- ' m2/Vs, and for the first three plots

r = 10 - 12 m/V. In the last plot r is taken as 3.4 x 10- 12 m/V. The crystal length is

1 cm, I0 = 100 W/m 2 , the wavelength is 514 nm, the crystal temperature is 300 K,

and there is no frequency detuning between the beams. For the interbeam angle of

100 the applied field is 106 V/m and for the other plots, 2 x 10' V/r.

The agreement between the two methods is very good, regardless of the inter-

beam angle, for the case of weak coupling (small value of r or small interaction

lengths). For strong coupling the two methods still agree for large angles (> 80)

but at smaller angles the oscillations for the analytic method are more damped.

The great savings is in computation time. Calculating and storing 220 time

points using the analytic formula took less than 5 seconds on an IBM personal

computer. The numerical method needed 20 minutes to compute the same number

of points.

Finally we show that the analytic expression Eqn 4 is the same if we start the

iteration with Eqn 1 and take one more iterative step. This fact substantiates the

observation that Eqn 4 is a reasonable approximation to the transient behaviour

calculated by a more thorough treatment.

The solution to Eqn 1 assuming Eol constant is

S+(x,t) = S+oexp(-jr'E.,'x) (8)

If we put this into Eqn 2 and separate the variables we have

f S+0  E = 1o(.,) dE., (9)
t =o exp(-BE 1 ) - AE.1

where A = g/fS+o and B = -jF'x.

This integral cannot be solved analytically unless we can expand the exponential

term in a series and ignore most higher orders. For a crystal of length 1 cm,

an applied field of 106 V/m, assuming Eo 1 mEo0 where m is the modulation



APPENDIX C 180

ratio, and taking the crystal parameters of Table 2.1 we find BE,I ; 4m. Thus

BE, 11 < 1 for sufficiently small modulation ratios (which we assume is the case in

the undepleted pump approximation). A similar check of crystal parameter values

shows that BI/IA I < 1.

Expanding the exponential to the first order term and integrating gives
1

E0i(x, t) = A + B (1 - exp(-fS+o(A + B)t)) (10)

We can neglect B with respect to A and we reproduce Eqn 3, and thus the rest of

the derivation of Eqn 4 follows.
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Appendix D

Publications and Talks Arising

from this Research

Publications

1. D. Erbschloe, D. Jones, L. Solymar, J. Takacs, and T. Wilson, "Determination
of Parameters of Photorefractive Crystals", Proceedings on the International
Conference on Holographic Syatema, Components and Applicationa, IERE,
1987, pp 163-167.

2. D. Erbschloe, L. Solymar, J. Takacs, and T. Wilson, "Nonreciprocal Effects
in Photorefractive Materials", Proceedings on the 14th Congress of the Inter-
national Commission for Optics, 1987, pp 501-502.

3. D. Erbschloe, L. Solymar, J. Takacs, and T. Wilson, "Two-Wave Mixing in
Reflection Holograms in Photorefractive Materials, To be published in IEEE
Journal of Quantum Electronics, May 1988.

4. D. Erbschloe and L. Solymar,"Linear Resonator in Photorefractive BSO with
Two Pump Beams", to be published in Electronics Letters.

5. D. Erbschloe and L. Solymar, "Unidirectional Ring Resonator in Photorefrac-
tive BSO with Two Pump Beams", submitted to Applied Physics Letters.

6. D. Erbschloe, D. Jones, L. Solymar, J. Takacs, and T. Wilson, "Higher
Diffracted Orders Produced During Two-Wave Mixing in a Unidirectional
Ring Resonator", in preparation, to be published in Journal of Physics, D.
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Talks

1. "Investigations in Photorefractive Crystals", seminar, presented to Physical
Electronics Group, Department of Engineering Science, Oxford, Hilary term,
1987.

2. "Nonreciprocal Effects in Photorefractive Materials", with L. Solvmar, J.
Takacs, and T. Wilson, presented at the 14th Congress of the International
Commission for Optics, Quebec, Canada, August 1987.

3. "Determination of Parameters of Photorefractive Crystals", with D. Jones, L.
Solymar, J. Takacs, and T. Wilson, presented at the International Conference
on Holographic Systems, Components and Applications, IERE, Cambridge
University, September 1987.

4. "Holography: The View of the Future", an invited talk in support of the
Horspath Village Church Tower Appeal, Horspath Village Manor House, March
1988.

5. "Higher Diffracted Orders Produced During Two-Wave Mixing in a Unidirec-tional Ring Resonator", with D. Jones, L. Solymar, J. Takacs, and T. Wilson,
presented at Optics-ECOOSA '88, Birmingham, March 1988.
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