
RTW-" DESMN DEFINITION FOR A DIGITAL
BEAMFORMTUG PROCESSOR -- /T

:: (U) TEXAS INSTRUMENTS INC DALLAS DEFENSE SYSTEMS AND
ELECTRONICS GROUP J L LANGSTON ET AL APR 88

7UA IF [ED RADC-TR-88-86 F19628-87-C-08ig F/G 12/6 U

EIlllIEllEEEEEE
EIEEEEEEEEEIIE
IEEIIEEEEEIIII
EIIEEEIIEEEII

UIIIIIIIIIIIIIIp

14

MICRCOP REOU 32 ET HR

'ITINA URAU O SANAD 1(3 -AIII~

l, w L

() RADC-TR-88-86

to0 Final Technical Report
April 1988

0r

DESIGN DEFINITION FOR A DIGITAL
BEAMFORMING PROCESSOR

Texas Instruments Incorporated

J. Leland Langston, Dr. Shashikant Sanzgiri, Karl Hinman,
Kevin Keisner, and Domingo Garcia

0 APPROVED FOR PUBLIC RELEASE;,DISTRIBUTION UNLIMITED.

ROME AIR DEVELOPMENT CENTER
Air Force Systems Command

Griffiss Air Force Base, NY 13441 -5700

This report has been reviewed by the RADC PubLic Affairs Office (PA) and
is releasable to the National Technical Information Service (NTIS). At NTIS
it will be releasable to the general public, including foreign nations.

RADC-TR-88-86 has been reviewed and is approved for publication.

S.-

APPROVED: r) I

HANS STEYSKAL
Project Engineer

APPROVED: 41
JOHN K. SCHINDLER
Acting Director of Electromagnetics

FOR TIIE CO0tANDER:D

I NA. RITZ
Directorate of Plans & Programs

If your address has changed or if you wish to be removed from the RADC
mailing list, or if the addressee is no longer employed by your organization,
please notify RADC (EEAA) Hanscom AFB MA 01731-5000. This will assist us in
maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or

notices on a specific document require that it be returned.

DI

p-

'A

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE FOMBil0704-0188

Ia. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

.UNCLASSIFIED NIA
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION /AVAILABILITY OF REPORT
N/A Approved for public release;

2b. DECLASSIFICATION/ DOWNGRADING SCHEDULE distribution unlimited.
N/A_______________________

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

N/A RADc-TR-88-86

Ga. NAME OF PERFORMING ORGANIZATION I6b. OFFICE SYMBOL 70, NAME OF MONITORING ORGANIZATION
I (if applicable)

Texs Istruents Incorporated! Rome Air Development Center (EEAA)

6c. ADDRESS (City, State. and ZIP Cod.I) 7b. ADDRESS (City, State, and ZIP Code)
Defense systems & Electronics GroupHasoAB 07150PO Box 660246Haco AYM 07150
Dallas TX 75266

Ba. NAME OF FUNDING /SPONSORING Tab. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION j(if applikable)

Rome Air Development Center EEAA F19628-87-C-0016
B~.ADDRESS (City, State, and ZIP Cod.a) 10. SOURCE OF FUNDING NUMBERS

*PROGRAM PROJECT ITASK WORK UNIT
Hanscom AFB MA 01731-5000 ELEMENT NO. NO. NO 1ACCESSION NO

___________________________ 62702F 140 4 I IF
11. TITLE (include Security ClasS. ficati on)
DESIGN DEFINITION FOR A DIGITAL BEAMFORMING PROCESSOR

12. PERSONAL AUTHOR(S)
J. Leland Langston, Dr. Shashikant Sanziri, Karl Hinman, Kevin Keisner. Domingo Garcia

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15 . PAGE COUNT

Final IFROM Jan 87 To Nov 871 April 1988 134
16. SUPPLEMENTARY NOTATION
N/A 1 UJC

17. COSATI CODES V a.SBETTERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-ROUP beaznforming system *,application specific

- 09 05 brassboard system integrated circui.ts..
I- very large scale integrated circuit (ARTCi (nvpr)

9. ABSTRACT (Continue on reverse it niecessary and identify by block number)
Very large scale integrated circuit technology now makes large bandwidth digital beamforming
array antennas practical. Algorithms and architectures were investigated for the implemen-
tation of a processor capable of producing large bandwidth multiple output beams for both

* near and far-term applications. OFT and MF algorithms in element space and beam space were
investigated. Structures for dedicated algorithm execution with highly pipelined, systolic
hardware were examined. Arithmetic execution alternatives were considered. The impact of
channel errors were investigated and methods of calibrating the beamformer to compensate
f or these errors were developed. The effects of quantization errors were investigated and
processor dynamic range requirements were assessed. The capabilities of Si and GaAs tech-
nalogies were assessed. The implementation of a processor chip set using Application

* Specific Integrated Circuits (ASIC) was investigated. A recommended brassboard demonstration
system design was derived. -

N20 DISTRIBUrION /AVAILABILITY OF ABSTRACT 121 ABSTRACT SECURITY CLASSIFICATION

C3UNCLASSIFEO/UNImirEo E0 sAME As RPr C oric USERS IUNCLASSI FIED
22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (include Area Code) 2 C OFFICE YMBOL

*4n (617) 377-2r,5 RADC (EEAA)
00Fr 43 U 6Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

UNCLASSIFIED

Block 18. Subject Terms (Cont'd)

OFT algorithm systolic hardware
FF algorithm Si and GaAs technologies

Accession
For

NT 1S G AI

!')TIC T;3

juttificatior,

% By

p -,r les

, TIC

oP~f

6

0

UNCLASSIFIED

0e

SUMMARY

Phase I of the Digital Beamformer Program consisted of the
4study and design definition of the state-of-the-art capabilities

for beamforming systems and a design recommendation for the
development, test, and demonstration of a brassboard system during
Phase II.

Digital beamformer algorithms and system architecture were
investigated. Architectures were developed for discrete Fourier
transform (DFT) algorithm beamforming directly in the element
space of the antenna, and both DFT and fast Fourier transform
(FFT) algorithm beam space derivation followed by DFT beam
combining. Processor architectures capable of producing multiple,
high bandwidth output beams using large antenna arrays were also
investigated for both near-term and far-term beamforming
applications. Structures for dedicated algorithm execution with
highly pipelined, systolic hardware were examined. Arithmetic

* execution using conventional binary data representation is
compared to the use of Quadratic Residue Number System (QRNS) data
representation. The impact of channel errors were investigated
and methods of calibrating the beamformer to compensate for these
errors were developed. The effects of quantization errors were
investigated and processor dynamic range requirements were
assessed.

The implementation of a processor chip set using Application
Specific Integrated Circuits (ASIC) was investigated. The
capabilities of silicon and gallium aresenide technologies were
assessed. A recommended brassboard demonstration system design
was derived. Preliminary chip vendor evaluations were obtained
for implementation of the chip set. Module design and beamformer
system control were examined. System interface and test issues
were identified. Modularity to facilitate growth to satisfy far-
term goals was addressed. A development and test plan for the
Phase II brassboard demonstration system was defined.

The use of DFT methods implemented with QRNS arithmetic is
recommended for the brassboard. The architecture is capable of
meeting far-term system performance goals with current silicon
based technology. Further development of associated subsystems,
such as the RF front end and A/D converters, as well as the
digital adaptive beam controller processor, will permit the
practical implementation of real-time digital beamforming systems.

PREFACE

This re3_port contributes to the understanding of the hardware
design issues encountered in current and future design of digitalbeamforming processors. The advance of digital technology now

allows levels of circuit integration to be achieved which make the
implementation of practical digital beamforming systems possible.
The approach taken in this effort has been to optimize the
beamformer performance in terms of throughput achieved per amount
of hardware required. Particular effort was taken to remove the
need for real-time "in-line" calibration in the systems design by

%N "off-line" calibration of the beamformer steering vectors.
Optimization of the arithmetic system is achieved by using QRNS
arithmetic for the processing hardware. The levels of circuit
integration now achievable permit the exploitation Lf ORNS
arithmetic to optimize the digital beamformer performance.

.

The algorithm and system architecture studies tor digital
beamforming provide the basis for the design of hardware to meet
the requirements of near-term and far-term systems. The processor
architecture study is directed toward optimal system
implementation. The feasibility of the approach can be tested by
a laboratory demonstration system.

Appreciation is expressed to Dr. Hans Steyskal and Mr.
Jeffery Herd of the Electronic System Division of the Air Force
Systems Command for their efforts in directing 1he Digital
Beamformer Program.

Appreciation is extended to people from the array antenna
design engineering and digital signal processing engineering
groups. Algorithm and system architecture studies were done
by arrav antenna design personnel, Dr. Shashikant Sanzgiri and

.Mr Kevin Keisner. The processor implementation study tasks
were executed by digital signal processing engineering personnel.

V: Mr. Domingo Garcia developed the module design and layout, as well
* as the built-in-test. Use of QRNS arithmetic in dedicated signal

processing applications has been pursued by Texas Instruments for
some time as a strong candidate for optimization of processing
hardware requirments. Mr. Leland Langston and Mr. Karl Hinman
were the primary contributors in this area, as well as the chip

Sdesign. Teaming of these people on the Digital Beamformer Phase I
* Program permitted the exploration of digital beamforminF

implementation with considerable expertise.
Ilk%

e.". ('ur thanks go to Mr. F. Richard Burt and Mrs. La Jvce Doran.
'. aata managers. and Mr. Bill,/ fon Kalow. illustrator. ror the rinai

* . report preparatio)ns trom rough drafts and sketches.

-F --

TABLE OF CONTENTS

Para Title Page

1. INTRODUCTION..................................7
1.1 Background....................................7j
1.2 Objectives....................................8
1.3 Approach.....................................8

2. STUDY TASKS AND RESULTS........................11

2.1 Digital Beamformer Algorithms.................11I

2.1.1 Discrete Fourier Transform Processing 11
,2.1.2 Fast Fourier Transform Algorithm..............15

S13 DFT vs FFT Trade Study.....................18.1.3.1 Hardware Complexity...........................18
1.1.3.2 Throughput Rate............................19
2.1.3.3 Expandability..........................19
2.1.4 Recommendation.........................19
2.2 Digital Beamformer Processor Architectures*. . . . 20

42.2.1 Full Adaptivity in the Element Space Domain . . 20
2.2.2 Partial Adaptivity in the Element Space Domain 22

-'2.2.3 Beam Space Nulling Architecture.............24
2.2.4 Combined Element Space/Beam Space Beamformer 26

* 2.2.5 Recommendation............................28
2.3 Digital Beamformer Processor Architectures . . . 28
2.3.1 Programmable Processor Architecture 28
2.3.2 Dedicated Processor Architecture.............29
2.3.3 Dedicated Processor Algorithm Selection 29
2.3.4 Processor Arithmetic Implementation.......30
2.3.5 Processor Pipelining Considerations..........31
2.3.6 Hardware Multiplexing Issues.................32
2.3.7 Processor Architecture Selection.............33
2.4 Channel Error Correction and Calibration 34
2.4.1 Channel Error Compensation at Center Frequency 34
2.4.2 Recommendation for Frequency Independent

Error Correction........................42
2.4.3 Frequency Dependent Error Correction 44

E2.4.4 Recommendation for Frequency Dependent
Error Correction.........................47

2.5 Impact of Quantization Errors and Finite
Word Lengths................................47

2.5.1 Impact on Sidelobe Levels...................47
2.5.2 Impact on Dynamic Range.....................52
2.5.3 Impact on Null Depth........................52
2.5.3.1 Signal Quantization Effects.................52
2.5.3.2 Weight Quantization Effects................53
2.5.3.3 Combined Signal and Weight Quantization

and Channel Nonuniformity Errors.........54

p 3 I

TABLE OF CONTENTS (continued)

Para Title Page

2.6 Processor Chip Implementation Tradeoff 56
2.6.1 Introduction 56
2.6.2 Estimation Methodology 57
2.6.3 RNS Component Evaluation 57
2.6.4 Conventional Arithmetic Multiplication

and Addition 58
2.6.5 QRNS and Conventional Beamformer Comparisons 59
2.7 Chip Vendor Selection 61
2.8 System Interface and Test Issues 62
2.9 Modularity and Far-term Goals 63
2.9.1 Digital Beamforming for 256-Element

Linear Array 64
2.9.2 Digital Beamforming for 64 x 8 Element

Planar Array 67
2.9.3 Digital Beamforming for 64 x 64 Element

S Beamformer 68
2.10 Gallium Arsenide Beamforming Design 69
2.10.1 Processor Design 69
2.10.2 Comparison with Silicon Design 74

3. RECOMMENDED BRASSBOARD DESIGN 75
3.1 System Architecture 75

I 3.2 Silicon Beamformer Chip Logic Design 76
3.3 Chip Packaging 83
3.4 Module Design 84
3.5 System Interface and Control 95
3.6 Built-in Test 95
3.7 VAX Interface 96

,3.8 Hardware Tests 96

4. BRASSBOARD DEVELOPMENT AND TEST PLAN 98
4.1 Chip Development 98
4.2 Module Development 98

- 4.3 Software Development 100
4.4 Test Plan 101
4.4.1 Built-in-Test 101

V 4.4.2 Chip Tests 102
% 4.4.3 Module Tests 102

4.4.4 Test and Verification 103
4.4.5 Processor Performance Verificatio.n 103
4.4.6 Acceptance Tests 103
4.5 Development Schedule 104

5. CONCLUSIONS 106

4

0j

TABLE OF CONTENTS (continued)

Para Title Page

APPENDIX A - QRNS Component Design and Modeling 107

REFERENCES 128

LIST OF ILLUSTRATIONS

Figure Title Page

2-1 DFT Implementation 13
* - 2-2 FFT-Based Digital Beamforming 17

2-3 Element Space Fully Adaptive Nulling 21
2-4 Element Space Partial Adaptive Nulling 23
2-5 Beam Space Adaptive Nulling 25
2-6 Element Space and Beam Space Adaptive Nulling . . 27
2-7 In-Line Calibration of Channel Errors 36
2-8 Off-Line Calibration of Beam Controller 38
2-9 Adapted Pattern without Calibration 40
2-10 Adapted Pattern with Calibration 41
2-11 Off-Line Calibration of Beam Steering Vectors . . 43
2-12 Frequency Dependent Error Compensation

Using In-Line FFT Approach 46
2-13 Frequency Dependent Error Compensation

Using In-line FIR Filters 48
2-14 Error Free Pattern for 64 Element Array 50
2-15 64-Element Array Pattern 51
2-16 Adapted Array Pattern for Jammers 55
2-17 Example of 8-Way DFT Manifold 65
2-18 256-Element Linear Array Beamformer Architecture 66
2-19 Beamformer Architecture Planar Arrays 67
2-20 256-Element GaAs Processor Module 72

0 3-1 Complpx Integer to Complex QRNS Converter Chip 78
3-2 RNS Four Channel Beamweight Combiner Chip 81
3-3 Beamformer Hardware Modules 85
i 3-4 Processor Module Block Diagram...........87

3-5 Brassboard Processor Module 88
3-6 Recomposition Module Block Diagram 90

0 3-7 Brassboard Recomposition Module 91
3-8 Controller Module Block Diagram q3
3-9 Brassboard Controller Module 94
3-10 System Test Box Block Diagram 97
4-1 Program Schedule 105

S5

0|

* . . . * S.. " .

LIST OF TABLES

Table Title P ige

2-1 Types of Output Beams
2-2 64-Element DFT Beamformrt, Si Technology 14
2-3 64-Element DFT Beamformer, GaAs Technology 15
2-4 64-Element FFT Beamformer Throughput 18
2-5 Null Depth as a Function of Bandwidth and RMS Value

of Frequency Dependent Errors 44
2-6 Contribution of Various Errors to the RMS Sidelobe. 49
2-7 Weight Quantization on RMS Sidelobe Level 49
2-8 Thermal, Quantization, and Round-Off Error 52
2-9 Impact of Signal Quantization on Null Depths . 53
2-10 Degradation in Cancellation Ratio due to Weight 54
2-11 Impact of Weight Quantization on Null Depth . . 54
2-12 Beamformer Basic Building Block Gate Counts 60
2-13 QRNS Conversion Component Gate Counts (6 Delays) 61
2-14 Characteristics for 256 Element Linear Array . 67
2-15 Characteristics for 64 x 8 Planar Array 68
2-16 Characteristics for 64 x 64 Planar Array 69
2-17 GaAs vs Si Comparisons for the 1990s 74

N6

K., .

SECTION 1

'INTRODUCTION

1.1 BACKGROUND

Communications and radar systems require antenna systems
which provide both directional beams and null-steering
capability. Communications systems require directional beams in
order to provide antenna gain, reduce succeptibility to jamming
and interception, reduce sensitivity to multipath signals, and to
determine angle of arrival/source position. Radar systems
require directional beams in order to accomplish their intended
function, i.e., target detection and location.

Early systems relied on parabolic reflectors to provide
* beamforming to achieve directionality. However, the requirements

for high-speed beam scanning and flexible scan patterns led to
the development of phased array antennas for radars and satellite
communications systems. The beams were formed in these systems
by using analog techniques to adjust the phase of the signals
from multiple dipole antennas and receivers (transmitters). This
approach is currently used in many systems and one of the
objectives for the MIMIC program is to develop an integrated
phased arrray system based on analog phase shifters. By using
digitally-controlled analog phase shifters, the beamformers can
be controlled digitally.

However, there are many problems associated with analog
phase shifters which limit the accuracy with which the phase and
amplitude of the signals can be controlled. Although the
inherent errors can be compensated for sufficiently well to
permit many practical implementations, this results in a
significant cost increase in the hardware. The accuracy of an

* all-digital beamformer and the potential for relatively low-cost
digital hardware make digital beamformers attractive. However,

% only recently has the digital technology advanced sufficiently to
make digital beamformers practical.

In addition to providing beam steering, phased ariay
* antennas also permit beam nulling to be accomplished. Adaptive

null-steering arrays have been deployed which use completely
analog techniques to place nulls at selected spatial angles to
reduce interferrence from jammers or other undesired sources.
However, the desire to implement a digital adaptive null-forming
procesor as part of the beam controller function has been a goal

*for several years. Once again the digital technology has only
recently advanced to permit the implementation of such a
processor for a real-time system.

7

0:6 N) a. 1 '"1

The digital beamformer is an ideal partner for a digital
adaptive null-forming beam controller. In an all-digital system,
the beam controller would generate digital weight vectors which
would be provided to the digital beamformer to produce a precise
directional beam with low sidelobes and with deep nulls in the
direction of undesired signals. In addition, the beamformer
would provide multiple, independent simultaneous beams.

*There is one restriction, however, with digital beamformers,
which is that they can currently operate only in a receive mode.
This is not a major restriction, since it is the receive function

which is most critical in most systems. For example, a radar
requires the most accuracy for beam control in the receive mode
and a communication systems requires adaptive nulling only for
the receiver.

Hence the advantages of an all-digital beamformer have been

recognized for some time. Digital technology has recently
advanced sufficiently to consider implementing a real-time
digital beamformer. The Digital Beamformer Processor program was
defined by RADC to evaluate the feasibility of digital beamformer

.. technology.

1.2 OBJECTIVES

There are two broad objectives for the Digital Beamformer
program. The first one is to study and evaluate various
approaches for implementing a digital beamforming processor. The
second one is to design a brassboard digital beamforming
processor based on near-term silicon technology.

The first objective includes a study of algorithms,
processor architectures and semiconductor technology (including
Gallium Arsenide) to determine the optimal design approach.
These were accomplished during Phase I and the results are
tabulated in this report. In addition, a set of chips for
implementing the processor in silicon were defined in sufficient
detail to determine the feasability of fabricating the chips, and
the results of this effort are also included in this report. A
recommended brassboard design is the result of the Phase I
effort.

J1. The second objective, i.e., the detail design and

implementation of a brassboard digital beamforming processor,
will be accomplished during Phase II.

1.3 APPROACH

The approach for executing Phase I of this program consisted
of two primary thrusts. The first was to evaluate the

8

i

0

performance and hardware complexity associated with various
algorithms. The second was to evaluate advantages and
disadvantages of various processor architectures for digital
beamforming. The best candidates for meeting near-term goals and
far-term goals were selected. A brassboard processor was
designed based on the near-term architecture selected. The risks
in meeting near-term goals were determined and the risks and
obstacles associated with growth to meet far-term objectives were
identified.

Specific study tasks included evaluation of various digital
beamfroming algorithms, study of various digital beamformer
architectures which accommodate adaptive nulling, channel error
correction schemes, impact of quantization errors on nulling
performance and the modularity of DFT beamformers. The

-u. advantages and feasability of both silicon and gallium arsenide
implementations of the digital beamforming processor were
studied. Architectures optimized for solving the problem with
the respective technologies were identified.

* Discrete Fourier Transform (DFT) and Fast Fourier Transform
(FFT) algorithms were evaluated for digital beamformers. Element
space and beam space techniques were evaluated in terms of
overall hardware requirements and suitability for adaptive
nulling using digital beam controllers. Computer simulations
were used to evaluate the performance of the different algorithms
in the presence of limited input signal word widths, limited
weight accuracies and channel errors. Performance in terms of
null depths and sidelobe levels were used to compare approaches.

% The hardware required for implementing real-time systems,
particularly the digital beamformer hardware, was studied for the
various algorithms. The results from all of these trade-off
studies were then used to formulate processor architectures best
suited for meeting near-term goals and best promise of growth to
meet far-term goals.

The processor architecture for executing the selected
algorithms was studied to determine the most efficient and

*fastest approach for implementing a practical digital beamforming
processor. Issues included:

a. integer vs. floating point arithmetic,

.

b. programmable processors vs. dedicated application-
* specific processors,

C. conventional complex integer arithmetic vs. quadratic
residue number system arithmetic,

d. multiplexed vs. dedicated hardware and dynamic range
* (number of bits required in the processor).

9

W09

A

-~ ~ ~ w PL, PLY vu, %X, .. r N5. mr - ,L rN r -71 P', Win9 "Jpf MW- i W'W _ ' nL ir -vw U u t - . ry - -V'

As the study evolved, the relationship between the algorithm
study tasks and the architecture study tasks were carefully
evaluated. As the preferred approach became clear, the study
then concentrated on optimizing the selected algorithms and
architecture. In particular, the final stages of the study
concentrated on optimizing the DFT algorithms and the QRNS

'* integer arithmetic processor. The gate structures for each part
of the processor were optimized to obtain maximum throughput and
minimum gate counts. A seperate study for optimizing the
architecture for a gallium arsenide processor design was
conducted.

During the study and evaluation of various approaches for
implementing the calibration and error compensation operations, a
new approach for performing this task was developed. The
equations for implementing the procedure were developed and
computer simulations were used to verify performance. The system
architecture was modified to accommodate the more efficient
calibration procedures.

A brassboard system which meets the near-term goals for a
digital beamformer was designed based on the algorithms and
architecture defined in the earlier study tasks. A detailed plan
for developing the chips, modules, system, computer interfaces,

,p and software was defined. Several vendors who can produce the
required processor chips were identified and the expectod
performance of a breadboard system based on these chips was
determined. The results of these tasks are presented in the
remainder of this report.

0

% %%

SECTION 2

STUDY TASKS AND RESULTS

2.1 DIGITAL BEAMFORMER ALGORITHMS

The objective of this task was to select a digital
beamforming algorithm applicable for linear array structures. As
part of this task the Discrete Fourier Transform (DFT) and the
Fast Fourier Transform (FFT) algorithms were investigated and
their impact on the beamformer architecture was studied. The

-specific types of output beams considered for this study are
shown in Table 2-1.

Table 2-1. Types of Output Beams

* Weighted DFT beams

, * Unweighted FFT beams
.

• Weighted FFT beams.

2.1.1 Discrete Fourier Transform (DFT) Processinx - In DFT
processing, the input signal vector (representing a snapshot of
the signal outputs from the array elements at a given instant in
time) is processed to form a beam at any desired angle. By
multiplying different steering vectors (in the dot product sense)
with the same input signal vector, a set of beams can be formed
over any desired range of angles. A beamformer is associated
with each beam and the weights for each beamformer can be
selected independently. The DFT processing algorithm is
expressed in the following mathematical form:

N

Y(e) = E Xn(k) Wcn Wn (e i) (2-1)

n=1
-, / where

* Xn(k) = kth sample from nth array element
Wcn = calibration weights
Wn (8 i) = weights from beam control unit for forming beam

at angle 6 i

0

The DFT implementation for generating M simultaneous beams
from N antenna elements is shown in Figure 2-1. Each complex
weight multiplication shown in the figure corresponds to four
real multiplies and two adds. The weight vector in each
beamformer is computed by an external beam controller. The
number of real multiplies required for M simultaneous beams is

.4, 4*14WM and the number of real adds required is 2*N*M. The
processing can be done sequentially in a pipeline fashion, i.e.,
during each clock period, a single mathematical operation is

.~ .. performed on each element of the input signal vector and the
results are then transferred to the next stage for further
processing. This maximizes the throughput rate of the processor.

If the processing speed can be significantly increased, then
the hardware can be multiplexed to multiply each sample by
multiple weights to generate multiple beams. The number of beams
which can be generated during a sample time period is determined
by the time it takes to perform one complex multiply. If a
complex multiply operation and a data transfer operation can be
performed in much less time than the sampling period, then

* several beams can be computed with the same hardware. The
maximum number of beams that can be computed in a multiplexed

* system is given by:

Ts
Number of multiplexed beams = int -(2-2)

Tm

where Ts is the signal sampling period and Tm is the time
required for a complex multiply. For example, if Ts is
1000 nanoseconds and Tm is 100 nanoseconds, then the maximum
number of multiplexed beams that can be generated in one set of
beamfoi-mers is 10.

A'? If MI sets of parallel processing hardware are available,
then the total number of simultaneous beams which can be formed
is given by:

Ts
Total number of beams M -. mt (2-3)

Tm

* The number of simultaneous beams which can be formed is,
therefore, a function of the sampling frequency, the throughput

Vcapac-ity of the processor. and the number of sets nf processor
hardware.

12

-4

0 0

0 U'

Figure 2-1. DFT Implementation to Generate M1
Simultaneous Beams

13

0

The throughput rates for silicon based DFT processors are
shown as a function of the number of sets of hardware are shown
in Table 2-2.

TABLE 2-2. THROUGHPUT RATE AND HARDWARE REQUIREMENTS
FOR 64-ELEMENT DFT BEAMFORMER, Si TECHNOLOGY

No. of Number of Beams as a Throughput in
Sets of Hdwr Function of Sample Rate Real Multiples/Sec

10 MHz I MHZ 20 MHz Clock

1 2 20 5.12 x 109

4 8 80 2.048 x 1010

16 32 320 8.192 x 1010

64 128 1280 3.2768 x 1011

For a digital beamformer, the throughput rate can also be defined
in terms of the number of beams which can be computed for every
sampling period. Current silicon technology supports a 20-MHz
clock rate for instruction execution for each stage in the
pipeline. Table 2-2 indicates that four sets of hardware permits
80 weighted beams to be formed when the input sampling rate is
1 :MHz.

For the far term application of digital beamformers, GaAs-
based processors can be considered. In the near future, this
technology may support a 1-GHz clock rate. Table 2-3 shows
throughput rates based on the GaAs technology. As shown, a
single beamformer will be able to provide 100 beams for an input
sampling rate of 10 MHz. The processor throughput, in terms of
real multiplies per second, is 256 GIGOPS.

0

1 4IIII j j
it C I

TABLE 2-3. THROUGHPUT RATE AND HARDWARE REQUIREMENTS
FOR 64-ELEMENT DFT BEAMFORMERS, GaAs TECHNOLOGY

No. of Number of Beams as a Total Number of Real
Sets of Hdwr Function of Sample Rate Multiplications/Second

10 MHz 1 MHZ 1 GHz Clock

1 100 1000 2.56 x 1011

4 400 4000 1.024 x 1012

16 1600 16000 4.096 x 1012

64 6400 64000 1.6284 x 1013

2.1.2 Fast Fourier Transform (FFT) Algorithm - The Fourier
transform relationship between the weighted signal samples and
the array response is given by

Y(e i) = Xn(k) (Wcn Won) e -j2w ne i/N (2-4)

where

v9i = sin -1 (i A/Nd)
Won = Illumination taper (same for all beams)

The FFT processing is similar to multiple beamforming using
a Butler matrix. With FFT processing, a set of overlapped beams
are formed. This processing requires about 2*N*log(N) real
multipliers and hence much less hardware than is required for
N-beam DFT beamforming. Because of the fixed nature of these
output beams, individual beam control requires the following

0 Interpolation between beams to fine steer the beam

* Linear combination of output beams to synthesize a
shaped
beam or a low sidelobe pattern

* Linear combination of a selected set of beams to create
nulls in the direction of the interfering sources.

The FFT processor, therefore, requires a set of beam space
combiners to generate weighted independent output beams. The
need for separate beam space combiners can offset the advantages
of reduced hardware requirements for FFT processor. Figure 2-2
shows the implementation of a FFT based processor. The digitized

15
0

signals from the antenna elements are fed to the FFT processor
which generates N simultaneous beams. Selected sets of these
output beams are then fed to post processors for fine beam
steering, adaptive nulling or shaped beamforming.

A practical system utilizing an FFT processor would consist
of a set of unweighted output beams, a low sidelobe sum beam and
a low sidelobe difference beam. The unweighted output beams
could be used for target searching over a wide spatial region.
They can also be used as the auxiliary beams for adpative
sidelobe or mainbeam nulling. The low sidelobe sum and
difference patterns would be formed by the linear combination of
the weighted component beams. The linear combiner has
essentially the same complexity as the the beamformer used in the
DFT algorithm.

The throughput rate of an FFT-based beamformer for a
64-element array, using near term silicon and far-term GaAs based
technologies, is shown in Tqble 2-4. The throughput rate shown
is for weighted beams using post-processors. The table also
shows the hardware requirements for an FFT-based processor. It
is assumed that each post-processor performs linear combinations
of all 64 FFT beams.

• 16

V-V ,

a 3 N

IANO 0 CHANN..L

CALIGR~rION WEIGHTS

.1 -- O TAUS

w
I M1

.4 1 1Z N 11 1I

C R#OUI NENOWN;W

NETW094

w4.ss~- z mm

BEA

Figure 2-2. FFT-Based Digital Beamforming

17

TABLE 2-4. THROUGHPUT IN OPERATION PERIOD

FOR 64-ELEMENT FFT BEAIFORMERS

Number of Beams by Sample Rate

Silicon Technology GaAs Technology

Post 10 MHz 1 MHz 10 MHz 1 MHz No. of Real
Processors Multiplies/Second

20 MHz Clock

1 2 20 100 1000 2.098 x 1010

2 4 40 200 2000 2.560 x 1010

4 8 80 400 4000 3.584 x 1010

16 32 320 1600 16000 9.328 x 1010

2.1.3 DFT Versus FFT Trade Study - The impact of DFT and
FFT algorithms on areas such as hardware complexity, throughput
rate, and expandability are summarized here.

2.1.3.1 Hardware Complexity - From the results in the

Tables 2-2 and 2-4, it is evident that the FFT beamformer has no
significant hardware advantage over the DFT beamformer if the
number of differently weighted beams is the same. This
comparison is based only on the number of real multiplies
required to implement the beamformer. There are however,
additional processors required in the FFT approach to control the
data transfer between different sections (FFT section, beam
select network and the weighted beam summers). For a small
number of simultaneous beams, the DFT approach is simpler to
implement because each of the units is identical and there is no
need for a separate processor to handle the data transfers.

According to Tables 2-2 and 2-4, the hardware
requirements for digital beamforming to demonstrate two weighted
beams (low sidelobe sum and difference beams) at a 10-MHz
sampling rate are four times less for the DFT processor than for
the FFT processor. With no additional hardware complexity, the
DFT approach using a single beamformer can provide weighted beams
if the sampling rate is reduced to I MHz. These beams can be
used to demonstrate adaptive nulling in the beam space.

-18

I.I

2.1.3.2 Throughput Rate - The two major considerationsin determining the throughput rate are the multiplication speed

with present and projected technologies and the processor
architecture to yield the desired set of beams. Tables 2-2, 2-3,
and 2-4 compare the throughput rate and the number of complex
multiplies required for various processor architectures. The
results show that for a small number of weighted output beams,
both the throughput rate and the number of multipliers required
are comparable for DFT and FFT processors.

2.1.3.3 Expandability - There are two possible reasons
to expand the beamformer in the future. One reason can be the
need to merge the number of elements in the linear array to yield
improved spatial resolution. The second can result from a need
to have larger numbers of simultaneous output beams.

If the number of elements should need to be increased,
% then the beamformer modification can be handled more readily with

the OFT approach than with the FFT approach. However, if a
1% larger number of weighted beams are desired, both approaches

- require the same level of complexity since, in each case, this
would be tantamount to adding additional beamformers; for the DFT
approach this beamformer combines the elemental signals whereas
for the FFT approach the beamformer combines the component beams.

2.1.4 Recommendation - Based on the trade study, the OFT
algorithm is recommended for the digital beamformer for the
following reasons:

0 It allows generation of an arbitrarily shaped beam at
any arbitrary angle

" The algorithm is easy to implement

* The processor based on this algorithm is modular in
* nature

0 The algorithm is compatible with integer arithmetic
processing

0 The algorithm is compatible with the adaptive nulling in
element space

19

di

* Partial adaptive nulling in the element space or beam
space domain can be demonstrated with some changes in
the data flow paths

* For a small number of weighted output beams, the
throughput rate and hardware complexity are comparable to
the FFT algorithm

• The DFT algorithm allows multiplexed beamforming for
each beamformer if the processor clock rate is much
faster than the input signal sampling rate.

2.2 DIGITAL BEAMFORMER PROCESSOR ARCHITECTURES

The objective of this task was to investigate architectures
suitable for demonstrating digital beamforming using the DFT
algorithm. Four different architectures have been developed.
Each architecture is configured to demonstrate adaptive nulling
by using one of the following approaches:

0 . Full adaptivity in the element space domain

. Partial adaptivity in the element space domain

* Adaptivity in the beam space domain

* Adaptivity in both the element and beam space domain.

Each of these four architectures is described.

2.2.1 Full Adaptivity in the Element Space Domain - The
digital beamforming architecture (Figure 2-3) which allows
generation of multiple simultaneous beams and also allows full
degrees of freedom for adaptive interference rejection. Full

, adaptivity implies the number of degrees of freedom equals the
number of elements in the array.

As shown in Figure 2-3, four separate beamformers are
by provided. Each beamformer consists of a register which can store

eight different weight vectors. These weight vectors are updated
by the beam controller. Depending upon the sampling rate of the
input signal, a number of sequential beams can be generated from
each beamformer. Beamforming weight multiplexing will allow
calculation of 32 beams during a sampling period.

2

02

I0k=

W -

wu 4

0 zW

IhJJ

00
w Ix

00

2

LL

-a

M0

00

00

21

- V. ~ * ~- . ~ p *

An important part of the digital beamformer is the
calibration for the receiver channel errors. In the architecture
shown in the Figure 2-3 this calibration is applied to the
quiescent (steering) weight vectors rather than to the digitized
input signals. The rationale for providing calibration in this
manner is explained in the paragraph 2.4. This calibration
procedure will allow demonstration of high quality beams in both
nonadaptive and adaptive modes of operation.

This architecture will allow demonstration of the following
features of the digital beamforming:

" Low sidelobe patterns by compensating for the channel
errors

" Variable number of output beams

" Independent adaptive interference control for each beam

" Demonstration of multiple target tracking in the
presence of interfering sources.

The architecture described above will meet the statement of
work requirements. However, the following additional
architectures are included in this report because they have the
advantage of reducing the size of the covariance matrices used in
the adaptive weight calculation. (Although the beam controller
is not part of the beamformer, it was felt appropriate to address
these requirements from a system perspective.)

2.2.2 Partial Adaptivity in the Element Space Domain - The
adaptive nulling can be demonstrated using a selected number of
element outputs as auxiliary elements for the nulling algorithm.
The number of auxiliary elements can be far less than the number
of elements in the array but at least one greater than the number
of interfering signals to be nulled. The advantage of doing this
is that the size of the covariance matrix, which is determined by
the number of auxiliary elements, is reduced. This allows faster

computation of the adaptive weights and imposes less hardware
requirements for the adaptive array processor.

Shown in Figure 2-4 is an architecture for element space
nulling using partial adaptive beamforming. The architecture is
essentially the same as the one shown in Figure 2-3 for full

adaptive beamforming, the difference being an additional buffer
is required to store element channel signals and to switch
outputs from a preselected number of elements to the beam

22
0

w, r5*'

IN

13 I

CY

00

U.L

00

41.a

ww -- J

z

-w 0I

* -J
L 23

cc0

controller. For partial adaptive nulling, the full array output
with quiescent weights is treated as a primary antenna output.
This primary antenna output is treated like one of the element
outputs in the adaptive algorithm. For the partial adaptive
array, the beam controller calculates weights using the following
sample matrix inverse algorithm:

w R l r (2-5)

where w is an 1+1 element vector, M being the number of elements
selected for adaptive beamforming, Ryy is an (M+l)x(M+l)
covariance matrix and r is a steering vector of dimension M+l

*with all elements equal to zero except the first one which is
4equal to 1. In the algorithm, the primary antenna output is

treated as coming from element No. 1. Although the beam
controller computes an M +1 element weight vector (M < N), it can
output a full N element weight vector given by

W = WO - D w (2-6)

where D is a matrix which maps the selected (auxiliary) M element
weight vector to an N element vector, having zeroes for those
elements not used for adaptive beamforming. Wo is a calibrated
steering vector chosen to provide desired sidelobe
characteristics to the quiescent pattern.

All features of digital beamforming can be demonstrated with
this architecture. This architecture has flexibility in that
both the partial and full adaptivity can be demonstrated as the
beam controller processing capability is improved to handle large
size arrays.

2.2.3 Beam Space Nullini Architecture - Another approach to
reducing the size of the matrices for adaptive weight computation
is to do the nulling in the beam space domain. In beam space

nulling, only a selected set of beams in the vicinity of the
interfering signal directions are selected for interference
suppression. The selected beams are called the component beams.
These component beam outputs along with the desired beam outputs
are linearly combined in a beam space combiner. The algorithm to
generate the weights is the same as used for the element space
adaptive nulling.

The beamformer architecture for performing adaptive nulling
in the beam space domain is shown in Figure 2-5. The
configuration consists of three separate beamformers (vector dot

24

0

% %

-0-- --

a

4w
00

25E Io-z

02

Vw -

W M0

z

A IUi

_j WO
zp z

0 0)

w UJO

MW.

"SUjw

V

Beam Space Adaptive Nulling

25

1 6d k', 1N 1 111 51 ll

product processors). Two beamformers are used to generate a set
of multiple beams. At a 1000-nanosecond sampling interval, for
example, a total of 16 beams are generated. These beam outputs
are stored in a buffer. All, or a selected set, of these beams
are passed on to the beam controller for generating the adaptive
weights. One of these beams is designated as the main beam to be
protected against interfering sources. The beam controller
computes the weight vector in a manner similar to that shown for
the partial adaptive nulling in the element space domain. This
weight vector is applied to the the beam space combiner. With a
single beam space combiner, a single weighted beam can be

U',- demonstrated for alO-MHz input signal sampling r-ate or eight
sequential weighted beams for a sampling rate of 1 MHz.

2.2.4 Combined Element Space/Beam Space Beamformer - It is
desirable to have the capability to demonstrate both the element
space and beam space domain nulling algorithms as a digital
beamforming test bed. Figure 2-6 illustrates a configuration
which allows both element space and beam space nulling
demonstrations without changing or reconfiguring the hardware.
The configuration is similar to that shown in Figure 2-5
for beam space nulling and Figure 2-4 for partial adaptive
element space nulling. However, in this architecture a switching
network is provided so that the beam controller accepts data
either from the element space side or from the beam space side.

For element space nulling using full adaptivity, all element
%channel signals are directed to the beam controller. The beam

controller computes a set of weight vectors which are then
% transferred to the element space combiners. The set of weight

vectors given to the beam space combiner form an identity matrix.
This results in the output beams being the same as the input

p-.' beams. For the architecture shown in the Figure 2-6, one
'N weighted output beam can be demonstrated for 10-MHz input signal

-,N, sampling rate or eight weighted beams at I-MHz sampling rate.

For element space nulling using partial adaptivity, a
* selected set of element signals are directed to the beam

controller. Two steering vectors are given to the beam
controller: one vector that sets the desired sidelobes for the

N. quiescent beam and the other which is used in the adaptive weight
N, computation as shown in Equation (2-5). Again the weight vector

is directed to one of the element space combiners.

For beam space nulling, the weight vectors given to the
beamformers are the quiescent weights designed to generate

26
0#

0W

0

W

4j
9W

0. z

........ W

0(

0 -

I-j

(0 4W

WW W0(

* -. 00

W 00

cc4

Figre2-6 Dgitl eaforin ArhiecureAlowig ot
Elemnt paceandBeamSpae Adptie Nulin

27~f

MN scanned beams with or without low sidelobes. The component beam
outputs are directed to the beam controller. The beam controller
generates the weight vectors using an equation similar to that
shown in Equation (2-5). These weight vectors are directed to
the beam space combiner.

2.2.5 'Recommendation - The full element space adaptive
beamformer architecture is recommended as a baseline
configuration for Phase II. However. an architecture which
allows both element space and beam space combining with adaptive
beamforming provides the versatility needed for a digital
beamforming teetbed. The adaptation of this architecture,
however, will require a careful look at the whole system design
and assessment of the future needs for the test bed.

2.3 DIGITAL BEAMFORMER PROCESSOR ARCHITECTURE

-~ 2.3.1 ePr&2rammable Processor Architecture - Traditional
processing architectures are based upon a single processing

* element that executes a stored program which manipulates data in
a random access memory space. The memory space, both for the
stored program and for the data, make up the largest part of the
system. Since there is only a single processor, communication
with the memories is done is a serial manner. The overall
throughput achievable by such an architecture is limited by the
clock speed of the processor and the access times of the
memories. This permits great flexibility in system operation in
that the program can execute any operations needed, storing
intermediate results within as large a random access memory as
needed by the particular algorithm execution. The architecture,
however, is throughput limited.-Memory locations are only accessed
occasionally by a processor that is in continuous operation.

The processing throughput required for the digital
beamformer system is far beyond what can be obtained from a
single processor. Thus a scheme for using multiple processing

-~ elements in parallel is required. Extension of the traditional
0 Processing architecture to a system with multiple processing

elements could provide the necessary throughput. Each processor
could independently execute part of the algorithm, with a
controlling processor to coordinate the activity and combine the

A final results. The individual processors could each have local
0 memories and, as well, have access to a global memory where final

results would be stored. However, all local processors must
contend for access to the global memory. This architecture still
permits a great deal of flexibility, but system control and

0 '

coordination requirements still limit the number of processors
-which can be reasonably used in this type of architecture.

2.3.2 Dedicated Processor Architecture - Another type of
architecture is needed to achieve the throughput required for
digital beamforming. Since the algorithms which must be executed
are known, the architecture does not need the programmable
flexibility of traditional computers. Indeed, the program may be
hardwired so that each processing element does not require an
instruction to execute, but instead always performs the same
instruction. The beamforming algorithm is then being controlled
by the data flow through the system. Random access to memory
elements is no longer required. Each processor is provided
inputs from fixed locations while results are sent to another
fixed location; another processor can then perform operation
faster on it. This scheme requires only local interconnections
between the processors and the memory elements, and avoids
contention for memory locations. Each processor is kept busy,
constantly computing local results. This type of architecture
has been referred to in the literature as a systolic array
processor. A general systolic array processor still may permit
some flexibility by not hardwiring the instructions for each
processor, but then an instruction memory for each processor is
still necessary and the overall coordination of the system for
execution of any particular algorithm must be maintained.

Given that only the execution of a particular algorithm is
desired, the systolic architecture may be referred to as a
dedicated hardware implementation of the algorithm. The memory
for the system consists of local storage registers that hold
results for use by the next processing element, and local data
registers that hold coefficients that are associated with a
particular processing element. The local storage registers serve
as pipeline registers. The throughput of the system is limited
only by the number of processing elements used in the system.
The pipeline registers permit each processor to be continually
engaged in computation. The total number of pipeline stages that
must be passed through from raw data inputs to final data output
is the pipeline delay for the systolic array. The system is
simultaneously executing a number of independent iterations of
the algorithm equal to the pipeline delay.

2.3.3 Dedicated Processor Alzorithm Selection - For the
beamformer program, two algorithms for beamforming are to be

* considered. These are the direct DFT type beamforming using
element space processing, and the FFT type beam space processing
followed by limited OFT combining. While the FFT algorithm

0

N~ON

execution permits a considerable savings in the number of
multiplications required for the beam space processing, the need
for further combination of these results to produce the final
output beams mitigates this advantage. Loss of capability must
be endured when using the FFT approach, if the approach is to
maintain a computational advantage in the number of
multiplications required. For further details of the study of
beam space and element space tradeoffs refer to paragraph 2.1.

Assuming that only the DFT beamforming algorithm is to be
implemented with systolic pipelined dedicated hardware, the next
questions to be addressed are the numerical accuracy and
arithmetic implementation of this hardware. The numericalaccuracy needed for the beamformer is a function of the

applications, but general requirements have been delineated by
the statement of work. The arithmetic implementation method may
be selected to provide the optimum performance for a given amount
of hardware needed.

The use of floating point arithmetic and fixed point
0 arithmetic have both been considered. Fixed point arithmetic may

be integer arithmetic internal to the algorithm with no round off
errors except appropriate scaling of input and output data. Use

e, of truncation internal to the algorithm may also be used by
scaling appropriately at each algorithm step, but also thereby
encountering roundoff error accumulation in the calculations.
Floating point arithmetic also encounters roundoff error
accumulation but provides much greater intrinsic dynamic range.

For beamforming, the dynamic range provided by the hardware,
determines the simultaneous ability of the hardware to process
both near range and far range input signals to the system.
However, this dynamic range is maintained only by the mantissa
portion of the floating point arithmetic system. The intrinsic
dynamic range above does not help, since weak signals are lost
due to roundoff errors when strong signals set the input signal
gain levels at the input to the digital processing system. The
DFT beamforming algorithm consists of essentially only the
implementation of a complex vector dot product, and as such does
not require a large intrinsic dynamic range. However,
maintenance of the working near/far dynamic range is desired;
therefore, a minimum of roundoff error accumulation is required.

2.3.4 Processor Arithmetic Implementation - Given that
dedicated hardware implementation of the DFT beamforming
algorithm is desired, the next question is what arithmetic for
this implementation is best. Since the algorithm does not
require cascading of multiplications, either a fixed point nr
pure integer implementation is acceptable. Furthermore, since
the lynamic range for the complex vector dot product is limited,
an integer implementation with no round off errors is attractive.

30%

This type of arithmetic lends itself to a very efficient
implementation by the use of Quadratic Residue Number System
(QRNS) arithmetic. For comparison of the implementation of
beamformer system chips using QRNS arithmetic and conventional
binary integer arithmetic refer to paragraph 2.6.

The use of QRNS arithmetic as compared to conventional
arithmetic permits higher clock speeds to be attained in the
hardware implementation for comparable technologies. For systems
of sufficient dynamic range, the QRNS system also will require
less hardware. For either near-term or far-term beamformer
systems, the QRNS arithmetic implementation provides an
attractive solution. In a traditional processor environment,
QRNS arithmetic presents several drawbacks.

To use QRNS arithmetic, all inputs must be converted into
QRNS representation. The overhead associated with this
conversion is approximately equivalent to a conventional multiply
operation. Similarly, conversion of final outputs back to
conventional binary representation is normally required. The

* overhead for this conversion is of the order of about three
. conventional operations. Operations in QRNS arithmetic are

integer operations, so that cascading of multiplies results in a
rapid growth of the output dynamic range. Gain in efficiency by
using QRNS arithmetic requires that many operations be executed
in the QRNS system for each associated input and output
conversion. Thus, QRNS arithmetic is advantageous when a
hardware intensive implementation is needed for an algorithm that
requires many noncascaded mu]tiply operations before an output is
obtained.

Any algorithm requiring vector dot products may satisfy the
need for many operations performed in the QRNS system for each
input and output conversion. For the beamformer, since all
inputs are in parallel, multiple beams must be formed from the
same inputs in order to alleviate the overhead for the input
conversions. The number of input channels must be reasonably
large to alleviate the overhead for the output conversions. Both
of these properties are present in the beamformer system
requirements.

2.3.5 Processor PiDelining Considerations - Another
architectural consideration in the implementation of a hardware
intensive arithmetic processor design is the use of pipelining
within the arithmetic operations themselves as opposed to the
pipelining discussed to this point which involves the use of
pipeline stages only between arithmetic operations. There are
two ways in which internal operational pipelining may be
performed. If a convenient intermediate state exists within the
operation, a pipeline register may capture the lines representing
this state and essentially halve the logic delay incurred, by

31
0

doubling the number of pipeline stages. The resulting structure
may be capable of supporting twice the clock rate, thus doubling
the system throughput at only the expense of the additional
pipeline registers.

Alternatively, the inputs to an arithmetic operation may be
delayed on a bit-to-bit basis to systolize the input data. That

'Vis, the least significant bit of an input data word is not
delayed, the next significant bit is delayed by one pipeline
stage, then the third bit by two stages, and so on. This scheme
allows the use of ripple carry addition arithmetic without
incurring any delay for this ripple, since each stage of the
addition is performed only after the carry from the last stage
becomes available. The scheme could be employed on a n-bit basis
as well, by delaying the next significant n-bits in each pipeline
stage. This scheme, however, does not lend itself readily to
implementation of multiplication circuitry, since the carry
ripple into a given bit position of the final output is dependent
upon carry bits generated from all of the input word bit
positions. Multiplication would thus have to be implemented

*using successive additions with this architecture and timing
between operations would become cumbersome. Although this scheme
may present the highest permissible clock rate, its
implementation would become increasingly unwieldy as word widths
increase. Additionally, developing and testing such a time
skewed data system would prove to be a quite formidable task.

QRNS arithmetic lends itself more readily to internal
operational pipelining of both of the above types than does
conventional arithmetic. Since QRNS arithmetic consists of
forming modulo arithmetic residues, it does present convenient
intermediate states within the numerical calculations. In modulo
addition it is convenient to first form the binary sum of the
inputs and pipeline the result. Also, the need to fix up the
binary result in the event the modulus is overflowed can be
stored in the pipeline as well. Then in the next stage a fix up
binary addition is performed and the proper result (fixed up or
not fixed up) is selected. Modulo multiplication presents

*_ similar intermediate stage results that may allow for internal
arithmetic pipelining as well. Implementation of QRNS
multiplication by use of modulo logarithms, is efficiently
accomplished using a scheme with three pipeline stages internal
to a multiplication operation.

2.3.6 Hardware Multiplexiniz Issues - Another general
architectural issue is that of multiplexing the hardware. This

* multiplexing may be done for any one of several reasons. First,
if the hardware is incapable of supporting the input data
bandwidth, then multiple hardware systems could process subbands

0

32

OrJ0- i omr ,iV

to support the higher bandwidth. This is not a desirable choice
since it leads to enormous amounts of hardware, which must be
coordinated together in producing the high bandwidth outputs.
The opposite situation is desired. The clock rate capability of
the processor should be higher than the desired bandwidth to
permit multiple output beams to be produced from the same
hardware.

Another alternative would be to reduce the amount of
required hardware for producing a given beam by altering the
implementation of the vector dot product to a serial

* multiply/accumulate operation instead of the parallel multiply
and add tree operations. This choice implies a processing clock
speed that is much higher than that of the input data, even for
the far term goals. This limitation of this architecture is
necessary, since the bandwidth available is restricted by serial
operation. The other choice above, to produce multiple output
beams of lower bandwidth by multiplexing, is compatible with
producing a single output beam with maximum bandwidth, using the

simultraneosl. Tecoksedmyspottefraino

GaAs technology may allow both types of multiplexing
smultpeneasy even withk anee ahtecupr based upraon seia
exutione ofm eet an mliy/culatehopecraisuon fosiniial
execufomn. The umberlyfccolaeficentio regstrs rheqiedvina
using tisg aproch hubro oe fer, ma recomter prohuibitie
Paragraphi 2.10prsents, Gawves sytma design with hlenthv16
multip10plyacuuaesoeatio fo aa sys-mz iutsignhalensample
raemultiplexingmlat thistio for 10-MHz input signal sample ol

imply a coefficient register of depth 160 words.

2.3.7 Processor Architecture Selection - The above
paragraphs have qualitatively defined several architectural
options for the implementation of the digital beamformer system.
First, a choice between DFT and FFT algorithm usage identifies
the DFT implementation as providing maximum beamformer capability
with little, if any hardware advantage realizable even with a
reduced capability FFT approach. Given a hardware intensive DFT
implementation of a complex vector dot product for the
beamforming processing, a choice of arithmetic implementation can
be selected. The use of conventional arithmetic restricts the
achievable clock rates and hence bandwidth achievable for the

* digital beamformer. The choice of QRNS arithmetic is recommended
by the superior bandwidth capabilities as well as the favorable
h ardware growth for far term systems. Quantitative comparisons
of these two choices are made in paragraph 2.6.

Examination, of all of the architectural issues in the
* implementation of a generic beamforming system is seen to be a

33

difficult task due to the great range of requirements that may be
needed for specific applications. The approach taken for
architectural study for the digital beamformer Phase I program
has been to examine architecture with maximum bandwidth
capability, but to allow multiplexing to produce multiple beams
of lesser bandwidth to facilitate the demonstration of brassboard
capabilities.

2.4 CHANNEL ERROR CORRECTION AND CALIBRATION

The objective of this task was to evaluate the methods for
calibrating and correcting the errors in the receive channels of
the array and to analyze their impact on the beamformer design.

The calibration of the array was considered for the
following two situations:

* Small level of frequency dependent errors over the
bandwidth of interest

0 0 Large level of frequency dependent errors over the
bandwidth of interest

For small error levels, the calibration can be considered
only at the center frequency of the signal bandwidth. For large
frequency dependent errors, frequency dependent calibration need
to be considered for demonstrating desired null depths. The
impact on the beamformer design for each of these schemes is
described below.

2.4.1 Channel Error Compensation at Center Freguency - An
estimation of channel errors involves injection of RF signal in
each element path with equal amplitude and phase using -

calibration manifold and measuring the amplitude and phase of the
digitized signal. The differences in the amplitudes and phases
between channels constitutes channel errors. These errors can be
represented as diagonal matrix, the inverse of which then
represents an error calibration matrix, C.

The calibration of the input signals to correct for the
channel errors is the direct approach for digital beamformer
design. This approach called the "in-line '" calibration approach
is illustrated in Figure 2-7. This approach provides calibrated
signals to both the beamformer and to the adaptive array
processor (beam controller). In-line calibration requires
incorporation of a complex multiply chip in each element channel
to perform the multiplication of the input signal with the
calibration weight. For the QRNS multiply chip, this would
require that the calibrated signals be converted back to the
regular binary format before feeding to the beam controller,
unless the beam controller is also a QRNS processor.

34
6

Additionally, the pins required to get the samples out would
raise the pin count for these chips to an unacceptable level.
Implementing the complex multiply chips using binary format do
not present a technical problem. However, the requirement of an
additional chip can make the implementation of digital beamformer
unattractive from a cost standpoint. Additionally, the speed at
which this chip would operate would limit the overall system
speed and bandwidth to less than half of that achievable with the
QRNS beamformer chips.

35I

a,

.35

4 C
(a,

0

ww
JA

Cc
n

00 4w0

Uw

z

I-

* I-.

* .J0
(c co (D 0I

Iu

Fiur 2-. I-ieClbaio fCanlErr*U

*T -3

IW I

An alternate "off-line" approach would be to calibrate the
signals going into the beam controller and also to calibrate the
weight vector going into the beamformer. The placement of the
calibration weights for this case is shown in the Figure 2-8.
The advantage of this scheme is that the multiply operations are
done at slower rate, since the input signals going into the beam
controller do not have to be sampled at Nyquist rate. Also the
updates in the weight vector being output from the beam
controller can occur at a slower rate. The slower speed
requirement for the calibration weight multipliers therefore
makes this approach anattractive one. However, one still has to
provide multiplier chips in two different areas. Also certain
algorithms may require the input signals going into the beam
controller to be sampled at the Nyquist rate. In this case the
approach may loose its attractiveness.

Another "off-line" approach involves calibrating only the
steering or training vector given to the beam controller. The
basis for this approach is given below. It is assumed for the
derivation that the beam controller processor uses Sample Matrix
Inverse algorithm to perform adaptive nulling. However, the same
arguments are applicable for other algorithms as well.

The output of the digital beamformer is a discrete time
sampled series represented by y(t). The received input signals
are represented by xi(t) for the ith antenna element, and the
beam weights are represented by wi(t) for the ith processing
channel. Collecting test signals and weights as
components of N-dimersional vectors x(t) and w(t), the output of
the beamformer is expi'essed as

y(t) = xT(t)W(t) (2-7)

Consider the least squares solution for the weight vector based
upon k input data samples

Wls(k) = [XT(k)X(k)]-Is (2-8)

where X(k) is a k by N matrix of k received signal vector
samples, and a is the beam steering vector for a particular
output beam.

37

% J' S" %I
V_ X-l 1

40. Na. -q.1)~~wr

2w
CD

00r

0 9

00
bU

38U
0>

if - ~ 7. ~ p - - p~,D

Substituting Equation (2-8) in Equation (2-7) produces the
least squares solution for the output y(t) as

y(t) = XT(t)[XT(k)X(k)]- I (2-9)

Calibration of the input signals is represented by
%multiplication of the input signal vectors x(t) by a diagonal

matrix C containing the calibration coefficients along the
diagonal to produce calibrated input signal vectors xc(t)
expressed as

Xc(t) = C x(t) (2-10)

Likewise the matrix of k calibrated input signal vectors becomes

Xc(k) = X(k)C (2-11)

C appears on the right side of X(k) because the x(t) are column
Nv vectors and X(k) consists of k rows of the transposed vectors

xT(k). Now the least squares solution for the weight vector
*based upon k calibrated input data samples becomes

Wcls(k) = [C XT(k)X(k)C]-lo (2-12)

Now taking the inverse through the brackets produces

Wcls(k) = C-[XT(k)X(k)]-lC-I (2-13)

Finally, the output when using calibrated inputs becomes

Yc(t) = CC x(t)]T Wcls(k) (2-14)

Substituting Equation (2-13) into Equation (2-14) and
simplifying yields

yc(t) = xT(t)[XT(k)X(k)]-IC-l (2-15)

Now by comparing the resulting output Equations (2-15) and (2-9),
it is observed that the only difference is that the steering

V vector a must be premultiplied by the inverse of the calibration
matrix, C-1 .

The above analysis has been verified through simulations.
The adapted pattern without any calibration is shown in

0 Figure 2-9. Figure 2-10 shows the adapted pattern when the

WU steering vector used in the adaptive weight computation was
multiplied by the inverse of the calibration vector. For these
figures a linear Taylor taper with 30 dB peak sidelobes was used

in the simulations.

This off-line calibration method removes not only the need

for calibrating the input signals before they are passed to the
beamtormer, but also allows noncalibrated input signals to be

39

0%

012

Coo

-l0.0

-70.0

Eroso I dBrsApitd an 10Dges I hs

S '7 5'.'40 -

-agm

M 4I'

-25. -2.0 -liOO -10.00 -io O.M HOW tO.O W~O 2000 M~C

THETA (DEGREES)

Figure 2-10. Adapted Pattern with Calibration; Channel
Errors of I dB rms Amplitude and 10 Degrees rms Phase

F: 41

used in the beam controller processor. Figure 2-11 illustrates
the modified digital beaxnforming system necessary to accomplish
this method of off-line calibration. Only the beam steering
vectors need to receive inputs from the calibration subsystem.
The calibration is then accomplished by modifying the beam
steering vectors to account for the channel errors. This
indirect approach requires no additional hardware, since the
calibration weights are essentially constants that change only at
a very slow rate and the beam steering vectors are antenna system
constants that are applied to direct the multiple beams as
desired for system operation. Thus the beam steering vectors can
be calibrated off-line and then still be applied to direct the
multiple beams as before. Two modes of operation are necessary
according to whether the adaptive beam controller is being used
or not.

When the system is operated in an open loop manner without
the adaptive beam controller this method becomes equivalent to
the of f -line beam weight calibration method. The beam steering
vectors are the beam weight vectors in this case and the
associative property of the multiplication permits the
calibration of these beam weights instead of the input signals.
In this mode the calibration matrix, C, multiplies the beam
weight vector, for example in beam scanning operation. The
requirement to accomplish the calibration within 10 microseconds
is removed, however, since the beam steering vectors are the
beamformer system constants that only need altered when the
calibration weights change.

<a. When the beam controller adaptive nulling processor is
* present the calibration of the beam steering vectors must be% altered from that used above. This may require that two sets of

calibrated beam steering vectors be stored when the system
operation is required to change between the two modes rapidly.
The multiplication of the beam steering vectors by the inverse

N covariance matrix in the beam controller requires that the
V ~inverse of the calibration matrix, C-1 , be applied to the beam

steering vectors instead of applying the calibration weights
*directly as in the open loop operation mode above

(Equation 2-15).

2.4.2 Recommendation for Frequency Independent Error
Correction - Testing of the off-line beam steering vector

* calibration method has been performed by making appropriate
modifications to the digital beamformer simulatic. model
developed earlier. The results from the simulaticrn have
indicated no difficulties are encountered in using this
calibration technique. The simplicity of implementation of this
technique makes it the recommended method for performing the

* calibration function.

42

126

0

a 0

W -a
8

001

Figue 211. ff-ine aliratin o Bea Sterin Vetor_j

Sz

43Q
0w

0

2.4.3 Frequency Dependent Error Correction - The frequency
dependent errors are unavoidable in the digital beamforming
systems. These errors stem from the incorporation of recievers in
each of the element channels. The multiple down-conversion
processes and attendant filtering operations inevitably introduce
errors between channels which vary as a function of frequency
over the bandwidth of interest.

Analysis similar to that given by Mayhan in (1] was used to
compute the null depths in the array patterns for a jamming
signal of different bandwidths and different standard deviations
of the frequency dependent channel errors. These results are
tabulated in Table 2-5. The results indicate that 2 dB rms
amplitude error and 20 degrees rms phase error across a 1-percent
bandwidth may be tolerated in the demonstration of greater than
50-dB null depths in the array pattern.

TABLE 2-5. NULL DEPTH AS A FUNCTION OF BANDWIDTH AND
RMS VALUE OF FREQUENCY DEPENDENT ERRORS

Frequency 0 1% 10%
Error Bandwidth Bandwidth Bandwidth

Anplitude Phase Average Average Average
(dB) (Deg) Null Depth Null Depth Null Depth
0.0 0 -85.11 -82.12 -59.22
0.5 5 -84.81 -81.90 -59.06
1.0 10 -83.96 -81.28 -58.62
1.5 15 -82.66 -80.31 -57.98
2.0 20 -81.07 -79.07 -57.25

If the actual implementation errors far exceed those given
above and if better than 50-dB null depths are to be achieved,
then compensation for frequency dependent errors is needed. Two
approaches were considered for the frequency dependent error
compensation. They are:

. Frequency domain correction

* Time domain correction

The frequency domain correction involves performing FFT of
the time domain samples in each element channel as shown in the
Figure 2-12. The frequency domain samples are then multiplied by
the calibration weights calculated to correct for the channel
errors at corresponding frequencies. The frequency corrected
samples are then inverse transformed and passed on to the digital
beamformer. The -advantage of this approach is that excellent

4 4

WIN M2

frequency dependent error compensation can be achieved. The
disadvantage is the need for two FFT operations in each channel.

The time domain correction involves use of finite impulse
response (FIR) filters in each channel. The weights in this
filter are selected to equalize the frequency response of each
channel. This equalization can be done either by "a priori"9

measurements of tl'e errors in the channels or in an adaptive
manner. Figure 2-13 shows implementation of the frequency
dependent channel correction using FIR filters in each channel.
This digital filter may consist of many taps. The implementation
of such digital filters is beet done using RNS hardware. The use
of RNS arithmetic for both digital filter and beamforming makes
the application of this frequency dependent error correction
quite attractive. The disadvantage of the digital filter

approach is the large number of taps which will be required for
,e correcting frequency dependent errors.

44

00

CD0
LL-

w2

0 U)

I-. I"

W 0<3

Cc0C

ILI.I

wIc

e Wugo W
CC cc C cc 0

W_-

Figure 2-12. Frequency Dependent Error Compensation
Using In-Line FF'T Approach

46

2.4.4 Recommendation for Frequency Dependent Error
Correction - For near-term demonstration of the digital
beamforming it is recommended that only frequency independent
error correction be applied. For long-term application of
digital beamforming, either frequency domain or time domain
filtering schemes are recommended for frequency dependent error
correction. For a digital beamformer based upon RNS arithmetic,
the FIR filter uesign approach is recommended. For a beamformer
using conventional arithmetic processor, the FFT approach is
recommended. All word widths include a sign bit.

2.5 IMPACT OF QUANTIZATION ERRORS AND FINITE WORD LENGTHS

The objective of thfs analysis task was to investigate the
% % impact of signal and weight quantization errors on the sidelobe
% levels, dynamic range and the nulling performance of the digital
A beamforming array. The impact on these errors on the beamforming

performance is discussed first, followed by simulations for a
64-element array.

S

2.5.1 Impact on Sidelobe Levels - The signal and weight

quantizations and the round-off errors caused by finite word

lengths in the multiply operation, contribute to the random
amplitude and phaze errors in the beamforming process. These
random errors in turn add a random component to the ideal
radiation pattern. The rms value of this random component
relative to the peak of the beam is referred to as the rms
sidelobe level. Table 2-6 gives relationships bet-ween variou6
error sources and their contribution to the rms side.be level of
the array pattern.

0

0

* 47

4.

WW

I- w
-Jj

42 0

0
(-

I-
* 0

w&

I~w

Figue 213. reqenc Depndet Eror ompnsaton sin
In-Lne IR iltrs o Eualze requncyResons ofAllChanel

SU

48w
0Z

Table 2-6. Contribution of Various Errors to the
RMS Sidelobe Level

Source Parameter Contribution

-2ba
Signal Quantization word length (b2) 2 2

3 N " Na

-Zbw
Weight Quantization word length (w) 2 2

3 N * Nb

Gain/Phase Mismatch rme amplitude erroj)(A)) I (62 + 42)

rms phase error (6) A N - Na
' 4 - 2bm

Truncation After Multiplication word length (bm) 4 N

N 1I W Wnl
N - n =I

SN Wn -complex weight for the h, N " [n~l ~

n-1 antenna element

N N - number of elements in the array

Nb - n-____
N2

Table 2-7 shows the impact of signal and weight quantization
on the rms sidelobe level of a 64-element array with a 40-dB
Taylor taper. The combined effect of 9-bit signal quantization
and 8-bit weight quantization on the rms sidelobe level is less
that 3 dB. A comparison of the computed 64-element array pattern
with and without quantization errors is given in the Figures 2-14
and 2-15.

TABLE 2-7. EFFECTS OF WEIGHT QUANTIZATION ON RMS
SIDELOBE LEVEL OF 64 ELEMENT ARRAY

No. of Bits RMS Sidelobe Level

8 - 76.4363

9 - 82.4569

10 - 88.4775
11 - 94.4981I2 2 -100.5187

49

0.0

NO QUANTIZATION, HAMMING WEIGHTING
-5.0

-10.0

-15.0

-20.0

S-25.0

S-30.0

-35 .

40.0

-45.0

-50. 0

-55.0

-60.0

0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0
* THETA (DEGREES)

Figure 2-14. Error Free Pattern for 64 Element Array:
Hamming Weighting

050

0.0

8 BIT WEIGHTS, 9 BIT SIGNALS
-5.0

-10.0

-15.0o

-20. 0

-25.0

M. -30.0
0 -35. 0 iILI

-4. I
-45. 0

-50.0

-55. 0

-60.0 I
0.0 10.0 20.0 30.0 40.0 50.0 60-0 70.0 80.0 90.0

THETA (DEGREES) 292863
4|

Figure 2-15. 64-Element Array Pattern with 9-Bit Signal
Quantization and 8-Bit Weight Quantization

51

51o

" ~: Zkj I

2.5.2 Impact on Dynamic Range - The dynamic range is related
to the digital word lengths used in the signal representation and
is stated in terms of the maximum difference that can be detected
in the power level of high and low amplitude signals incident on
the array. The quantization and round-off errors combined with
the thermal noise determine the minimum detectable signal. The
particular representation of the digital number system (fixed
point, floating point, etc.) determine the largest signal level
that can be handled.

Table 2-8 shows the effects of the thermal noise,
quantization and round-off errors on the dynamic range of the
digital beamformer, as a function of the number of bits used for
the representatior of the signal at the input and output of the
beamformer. The quantization level is considered to be equal to
the rms voltage level of the thermal noise. The dynamic range is
related to the word length (bs) by

N
Dynamic range (dB) = 10 logl0 (2 2b s) (2-16)

10

where N is the number of elements in the array.

TABLE 2-8. EFFECTS OF THERMAL, QUANTIZATION, AND ROUND-OFF
ERROR ON THE DYNAMIC RANGE OF 64 ELEMENT ARRAY

No. of Bits Dynamic Range (dB)

8 56.22659
9 62.24719

10 68.26779
11 74.28839
12 80.30899

"V 2.5.3 Impact on Null Depth

2.5.3.1 Siznal Quantization Effects - Computer
simulations were performed to analyze the impact of signal
quantization on the null depth performance. For this analysis,
an interfering signal, 40 dB above thermal noise was considered
incident on the array at an angle of -8 degrees from the

* boresight. The quiescent array weighting was used to
yield a -30-dB peak sidelobe level. Except for the signal
quantization, the array implementation was considered perfect.
The impact of signal quantization on the null depth for a
64-element array is shown in Table 2-9. A degradation of 10 dB
is observed going from a 12-bit to a 9-bit representation for the

* input signals. The results in Table /-9 show that the ':-bit
quantization of the input signal will meet the 50-dB null depth
requirement.

* 52

111 11 IN 'l

~~~~~~I N ~~ /.V

TABLE 2-9. IMPACT OF SIGNAL QUANTIZATION ON NULL DEPTHS

No. of Bits Null Depths (dB)

8 - 69.48
9 - 75.44

10 - 81.49
12 - 85.15

Analog -109.94

2.5.3.2 Weight Quantization Effects - The antenna
pattern null depths are influenced by the precision with which
the weights are computed and the digital word length used to set
the weights in the beamformer. The analysis of the null depth
degradation caused by finite bit representation of the weights is
dependent upon the specific algorithm used for adaptive nulling
and on the jammer scenarios. A worst case analysis performed by
Nitzberg [9] for the case of Sample Matrix Inverse algorithm was
adapted here to evaluate the impact of finite word length on the
null depth. The results are given in the Table 2-10. The
degradation is given for two different values of cancellation
ratio. The cancellation ratio is the ratio of the jamming powers
at the array output before and after adaptation. The
cancellation ratio of 30 dB is typical for jammers close to the
main beam and 20 dB for jammers in the far out sidelobe region.
This worst case analysis indicates the need for 9-bit to 10-bit
word length for the weight values.

Computer simulations were also run to quantify the
effects of weight quantization on the null depth. Table 2-11
shows the impact of weight quantization on the null depth. The
degradation in the null depth going from 12-bit word length to
8-bit word length for the weights is seen to be 24 dB. However,
even with 8-bit weight word length the null depth is better than
50 dB.

0.0

- - -- -- - -

TABLE 2-10. DEGRADATION IN CANCELLATION RATIO
DUE TO WEIGHT QUANTIZATION

No. of Bits Degradation (dB)
CR = 30 CR = 20 dB

8 13.39120 4.890204
9 7.929750 1.820816

10 3.621210 0.531585
11 1.223865 0.139119
12 0.339784 0.035199

TABLE 2-11. IMPACT OF WEIGHT QUANTIZATION ON NULL DEPTH

(Jammer at -8 degrees)

No. of Bits Null Depth

8 - 82.78
10 - 82.62

[12 -118.78
Analog -109.94

2.5.3.3 Combined Siwnal and Weight Quantization and
Channel Nonuniformity Errors - Simulations were run for several
multiple jammer cases. Figure 2-16 shows the adapted array
pattern for eight interfering signals. For this simulation, the
signal was quantized to 9 bits, weight to 8 bits and the channel
errors were 1 dB rms in amplitude and 10 degrees rms in phase.
It is seen from this figure that the null depths for all jammer
cases exceeded 60 dB.

Both the analysis and simulation results have shown that
the signal quantization of 9 bits and weight quantization
of 8 bits will support the 50-dB null depths for the adapted
patterns. The computations done in the beamformer using QRNS
arithmetic, effectively represent the precision of a 25.5-bit

* word length, and no round off takes place in the arithmetic
operations. The impact of the compuatational accuracy on the
null depths or on the sidelobes is therefore negligible.

54

JAMMERS AT -10 -8 -7.5 -7 1.5 5 10 15

-10

-1 -0. 0 , -8 75 7 .,5 0,ad1 ere ih

-60.0 dB sapiuead1 eresrsPaeErr ewe

01.0

2.6 PROCESSOR CHIP IMPLEMENTATION TRADEOFF

2.6.1 Introduction - To achieve the maximum bandwidth
processing goal of the SOW requires an architecture with
dedicated algorithm processing. A systolic implementation of the
DFT element space beamforming method is recommended. Each
processing node continually executes the same function with
systolic data flow between processing nodes. With separate I and
Q channel processing, the achievable system bandwidth is
essentially equal to the achievable processing clock speed. Each
beam weight coefficient for a particular beam is applied on each

"I. clock cycle to produce an output beam for that cycle which appears
at the output several pipeline delay stages later.

The hardware may be multiplexed to produce more beams, each
with a smaller bandwidth. Given that a smaller bandwidth than
the maximum achievable is sufficient permits an architecture
which multiplexes the processing to reduce the hardware required.
By sacrificing more of the dedicated processing performance the
hardware can be made more programmable. The design of system

0 chips for a dedicated processing system as opposed to a
programmable processing system is considerably different. The
chip implementation trade off studies performed for the digital
beamformer program assume a dedicated processing architecture of
the DFT beamforming algorithm type. Chip implementations are
examined for both near term and far term system goals.

% Two goals from the SOW produce severe restrictions upon
digital implementations. First the signal bandwidth

. requirements, especially for the far term require digital
implementation that strain the technological capabilities of
digital clock speeds. Second the sheer number of input channels
and output beams required necessitate a large amount of hardware
with an inordinately large amount of interconnection. These
factors require the beamformer architecture to consist of many
modules, each with large numbers of input and output pins.
Restrictions on the practical number of module input and output
pins, especially for standard boards make demands on thearchitectural layout of the beamformer system chips. Far term

solutions to these problems can overcome these difficulties
without affecting chip design and module layout. Thus chip
implementation tradeoffs will be made without consideration for
near term module layout restrictions.

A primary architectural consideration involves the
arithmetic used by the beamformer system. The effectiveness of
digital beamforming when implemented with RNS or with
conventional arithmetic has been examined. The effectiveness of
these designs has been determined by the amount of hardware
required and the achievable throughput attained by the opposing

0 implementations. The use of custom cell performance ASIC gate
arrays for either implementation is assumed. Since the

4o.
56

0 :O
nkp 3!

Si

architecture involves a large number of pipeline registers, a
cell structure that is optimized to include standard cell
implementation of DFFs is the proper measure for these
components. This implies a gate count of five gates for each
DFF, whereas gate array technology without standard cell DFFs
takes seven gates for each DFF. The implementations are evaluated
by determining the total gate counts and the total nominal gate
delays required by the opposing implementations. The system
requirements for chip layout and module construction are also
examined.

2.6.2 Estimation Methodology - Gate counts are determined by
the ASIC cell count required for the particular gate structures
used. In general, the cells required for a particular gate is
one less than the number of inputs, unless the number of inputs
is divisible by 4 in which case the number of cells required is
two less than the number of inputs. For example, a two-input
NAND requires one ASIC cell, a three-input or a four-input NAND
requires two ASIC cells, a six-input NAND requires five ASIC
cells and a eight-input NAND requires six ASIC cells.

Actual delay performance analysis requires simulation of the
electrical characteristics of the design in the implementation
medium. This amount of effort is not appropriate for this
analysis and inntead a simplified delay analysis method is
employed.

NAND gates with two, three or four inputs implemented in
ASIC have essentially the same delay for the same implementation
geometry sizes. This will be considered as one nominal delay.
NAND gates with more than four inputs incur essentially twice the
delay in ASIC cell implementations available and are thus
considered as having an effective two nominal delay. Combination
gates such as two two-input AND gates into a two-input NOR gate,
as well as exclusive OR and exclusive NOR gates each consist of
two levels of logic and although slightly faster than two nominal
delays, are considered as two nominal delay gates for the delay
analysis. Gates with high fanout also incur greater delay and to
account for this gates with high fanouts are evaluated as
two nominal delay gates where appropriate. The use of NOR gates
in CMOS ASIC cells produce poorer delay results than do NAND
gates and as such NOR gates are avoided in any critical pathways.

2.6.3 RNS Component Evaluation - The QRNS rings of 5. 13,
17, 29, 37, 41, 53, and 61 have been evaluated for use in the
above components. Larger moduli may also be used, but the
complexity level becomes less advantageous. For systems
requiring larger dynamic range than can be attained by these
moduli, the use of non-quadratic RNS moduli with complex RNS or

57

0

LA .'

CRNS arithmetic instead of QRNS can also be used. A system with
mixed QRNS and CRNS usage is permitted by the independence of the
parallel RNS arithmetic channels. The use of CRNS components for
the beamformer system has not been considered for the baseline
component development. Far-term system design with CRNS
compcnents mixed with QRNS components does not provide the design
with as easy modular expandability, however their inclusion is
necessary to maintain the advantage of RNS throughput without
increased complexity. Detailed examination of CRNS components
has not been included in the scope of the Phase I Digital
Beamformer Design effort.

The dynamic range provided with the eight QRNS rings is
sufficient for the near-term and far-term goals from the SOW.
For the baseline system the first 6 rings provide an effective
binary integer processing range of approximately 25.5 bits. This
is seen from 5*13*17*29*37*41 = 225.5. Including the last
two rings expands the effective binary integer processing range
to approximately 37.2 bits. The dynamic range required for the
DFT beamforming algorithm when using complex integer

* processing is 25 bits for the near term assuming 9-bit
coetficients, 9-bit data, 64 I channels and 64 Q channels. For

* the far-term with 14-bit coefficients, 14-bit data, 256 I
, channels, and 25A Q channels the DFT dynamic range is 37 bits.

Near-term and far-term system comparisons of QRNS and
conventional complex integer arithmetic will be made using
9 x 9 and 14 x 14 multipliers in the conventional implementa-
tions. The size of the multipliers in the QRNS implementation is
restricted by the requirement to not exceed the total processing
range with the computed output, and by the bit width accuracy of
the inputs provided.

Components of the QRNS beamformer include RNS format and
QRNS transform components to convert input data from binary
representation to QRNS format. The vector dot product is
executed with the QRNS multiplication and QRNS addition
components. Finally, reconversion to binary representation
requires the QRNS inverse transform and binary reformat
components.

Gate counts for critical sate delay paths of six gate delays

are given in Appendix A. Using these components gate counts for
the QRNS beamformer systems for near-term and far-term
comparisons are determined. A particular chip implementation
option is given in Section 3 based upon the six near-term moduli.
This implementation uses a minimum number of chip types to
minimize near-umrm chip development NRE.

A different Thip set would be required to realize the
advantages of reduced pin counts for the chips that are possible
because of the independent QRNS rings. By partitioning the QRNS
system with different rings on different chips the pins needed
for that chip include only the inputs for the ring on that chip.
Tihis reduces input word width requirement:- to oniy o. However,

58

"0

the large number of parallel input channels required by the
beamformer remain a problem. With only one ring per chip, more
channels must be input to the same chip to not increase the
number of chips in the system, which again results in chips with
large I/O pin requirements.

2.6.4 Conventional Arithmetic Multiplication and Addition -

Gate counts and number of gate delays in the critical path for
conventional multipliers have been provided by the ASIC develop-
ment division of TI. For a 16 x 16 multiply, 2200 gates are
required for a 30 delay implementation. For a 12 x 12 multi-
ply, 1470 gates produce a 24 delay implementation. An 8 x 8
multiply using 890 gates requires 18 gate delays. For the beam-
former comparisons 9 x 9 and 14 x 14 multipliers are needed, for
the near term and far term systems, respectively. By interpola-
tion using the above implementations, gate counts and delays for

the 9 x 9 multiplication are 1000 gates with 19 delays, and for
the 14 x 14 multiplication are 1700 gates with 27 delays.

Adder implementations for the beamformer comparisons consist
of 25 x 25 and 37 x 37 for the near-term and far-term systems
respectively. A combination of 4-bit fast carry lookahead with
ripple carry between sections can be employed to achieve
the 19 and 27 delay counts with the minimum number of gates.
This requires about 300 gates for the 25 x 25 adder and 450 gates
for the 37 x 37 adder.

2.6.5 RIS and Conventional Beamformer Comparisons - Using
the gate counts as determined above and in Appendix A comparisons
for implementing a digital beamformer have been made. These
comparisons have assumed a systolic pipelined DFT beamformer
implementation. Both nonmultiplexed and multiplexed beamformers
are considered. Gate counts for registers for the pipelining and
for tap weight application and loading have been included at five
gates for each register bit. This is consistent with custom cell
implementation of the chips that would be appropriate for far
term system applications.

The near term QRNS beamformer uses moduli 5, 13, 17, 29, 37,
and 41 to achieve a dynamic range of 25 bits. The far term QRNS
beamformer uses moduli 5, 13, 17, 29, 37, 41, 53 and 61 to
achieve a dynamic range of 37 bits. Conventional arithmetic
implementations with identical dynamic ranges are compared to
the QRNS implementations.

54

591

VV Nu N. N V ~ -V ~ -*~

As a basis for the comparisons, a single complex multiply
combined with a single complex addition is used to define the
basic building block. To implement the DFT beamformer, one such
basic building block is needed for each channel of each
beamformer. The gates for the pipelining registers are included
in the gate counts for the building blocks. Additional gates for
the coefficient register files are included in the multiplexed
implementations. Multiplexing is assumed to be to a level of 8
for generating the comparisons, although other multiplexing
levels could be implemented as well. The QRNS implementations
also include conversion into and out of the QRNS representation.

- The overhead for these conversions slightly reduces the advantage
of QRNS.

Table 2-12 shows the approximate gates required for the
basic building blocks of the different systems. The QRNS systems
all have a critical path of 6 gate delays while the conventional
near-term system has 19 gate delays and the conventional far-term
system has 27 gate delays. These throughput criteria are
combined with the gate counts to produce gate count, throughput
product complexities for comparison. The QRNS complexities are
expressed as a fraction of the conventional products.

TABLE 2-12. BEAMFORMER BASIC BUILDING BLOCK GATE COUNTS

BLOCK: COMPLEX MULTIPLY AND ACCUMULATE WITH REGISTERS

QRNS CONV QRNS CONV
NO - MUX NO - MUX MULTIPLEXED MULTIPLEXED

NEAR T ERM
GATES 4400 6200 6600 6900
DELAY 6 19 6 19

COMPLEXITY 0.22 1.0 0.30 i.0

'p4 FAR TERM
GATES 7000 10200 10O0 11100
DELAY 6 27 6 27

COMPLEXITY 0.15 1.0 0.20 1.0

Table 2-13 gives approximate gate counts for the QRNS
conversion components. The QRNS to binary conversions are rough
estimates. The recommended QRNS brassboard system includes a

0 binary to QRNS conversion chip for each channel of each
% beamformer. This organization was chosen to simplify

interconnection difficulties. Far term module development will
. allow sharing of these converters over at least eight

beamformers. Theoretically, only one input converter is required
for each channel no matter how many beams are formed. If the
final system is to operate only in a multiplexed mode, then the
number of input converters needed is further divided by the
muitiplexing levei.

60
0

e+e' ' ' J e~'''¢¢v 2 ' - , ,',,7 ",,",. " ..

I1
I

One output converter is always required for each beamformer.
However, this overhead is divided by the number of antenna
elements since each basic block corresponds to one antenna
element. The overhead for the output converters is therefore
less than the input converters, since no interconnection
difficulties are encountered for these components.

TABLE 2-13. QRNS CONVERSION COMPONENT GATE COUNTS (6 DELAY)

BINARY TO QRNS QRNS TO BINARY
CONVERSION CONVERSION

NEAR TERM 6500 40000
FAR TERM 10300 60000

Combining the QRNS conversion components into the complexity
comparisons produces a complexity ratio of 0.63 for the QRNS
brassboard system multiplexed implementation. If only one
converter were used at each element for all 4 beamformers then
the complexity ratio would be 0.41. If the system were to be
used only in the multiplexed mode then one converter could supply
inputs for 8 elements for all 4 beamformers. This would produce
a complexity ratio of 0.34, which is nearly equal to the maximum
achievable of 0.30 found in Table 2-12 for the near term
multiploxed system without conversion components considered.

For a far term system, with no multiplexing so that maximum
throughput is achieved, and with each input converter supplying
converted inputs to eight different beamformers the complexity
ratio is 0.20, or a 5 to 1 advantage for the QRNS implementation.
This assumes only 64 antenna elements. With 256 elements the
complexity ratio is 0.18 for the nonmultiplexed far term system,
and 0.23 for the multiplexed far term system.

2.7 CHIP VENDOR SELECTION

A preliminary ASIC development RFQ for the digital
beamformer brassboard system was prepared during the Phase I
effort, and quotes were solicited for seven ASIC vendors.
Information was also sought about the maximum clock rates
achievable for the baseline component designs from each of the
vendors. The replies to the RFQ indicate that 4 of these vendors
are capable of supplying the ASIC chips needed for the Phase II
development effort. The costs for the chip development and the
necessary number of deliverable chips remain approximately the
same as was estimated for the program in the original proposal.
However, the system utility has been expanded by the multiplexing
capability and by the expected throughput performance in
comparison to the original proposal.

I

aSelection of the actual vendor for the development of the
ASIC chips will be made early in Phase II after solicitation of
best and final offers for the ASIC chips. Finalization of the
beamformer system design and the chip partitioning shall be
completed prior to this solicitation.

Some of the vendors indicated that the masks used in the
generation of the chips would not be deliverable since they
contain information considered proprietary by the vendor.
However, magnetic tapes containing the cell interconnections can
be generated from the design without the inclusion of any vendor
proprietary information.

Preliminary analysis of critical paths for the brassboard
design indicate that the ASIC chips from any of the four
qualifying vendors should be capable of a 50-MHz clock rate.

The use of gate array technology to construct the brassboard
system has been assumed, for reasons of cost and capability.
Recent advances in programmable gate array technology could

• permit the use of these devices for the system. This would
further reduce NRE but also limit performance somewhat. The
splitting of the QRNS parallel rings into different chip types
could be done without incurring excessive NRE and thus reduce
chip pin counts. Module layout could be divided also into the
parallel rings and thus reduce module pin counts. Further study
is needed to determine the feasibility of using these devices.

2.8 SYSTEM INTERFACE AND TEST ISSUES

The design of the digital beamformer subsystem cannot be
entirely separated from the design of the rest of a digital,
adaptive and surveillance beamforming system. For example,

N, ~ paragraph 2.2.4 presents an architecture for combining adaptive
nulling in element space or beam space using selection networks
for both element space and beam space adaptation control. This
design presents many more system interface issues than does the* recommended brassboard system design.

In particular the number of degrees of freedom that the
adaptive controller can process in real time sets a limit on the
channels that need to be sampled by the controller. A selection
network to control this process would be advisable, and update of
only the adaptation weights could reduce the weight update time.
The brassboard assumes that all channels are sampled by the
controller and all weights for a given beam are updated together.

Calibration requirements produce different modes of steering
vector calibration depending on the operational scenario of the

* beamformer as a surveillance or tracking instrument. This
control must be considered in applications systems. Overall
system control for various application systems may present

*62

I

different system interface requirements. Recognition of and
allowance for these requirements needs to be included in the
design goals of the surveillance and adaptive beamforming system
of which the digital beamformer subsystem is a part.

Design of an overall system with built-in-test and fault-
isolation capabilities, as well as system reconfigurability for
fault-tolerance is desirable. System maintainability must be
achieved in any viable design. The use of QRNS in the
architecture presents additional advantages in these areas. The
small independent word widths of the QRNS rings allows easier
testing by greatly reducing test vector requirements. The use of
redundant rings in the QRNS processing system can permit design
of a system with Fault-Tolerance capability. System failure, can
be replaced with graceful degradation with this capability.
Further study of design with fault-tolerance capability should be
pursued in future programs.

An issue of particular concern to far-term systems is the %
great number of parallel inputs to both the beamformer and beam
controller subsystems produced by the antenna elements.Multiplexing these inputs to substantially reduce their number by

increasing the input clock speed will be particularly difficult

with high bandwidth far - term signals. Use of optical
interconnection methods, however, may still permit this
achievement to be realized. Some progress in this area is needed
to alleviate tha I/O difficulties presented by large number cf
parallel inputs to the beamformer system.

Of more immediate concern, are system test issues for the
brassboard demonstration system. Requirements for component and
subassembly testing in the recommended brassboard design are
recognized in Section 3, and development with these test methods
is emphasized in the brassboard development and test plan in
Section 4.

2.9 MODULARITY AND FAR-TERM GOALS

The objective of this task was to study how the modular
nature of beamforming architecture can be extended to large
planar arrays. As specified in the statement of work, the
following three array types were investigated:

0 256 element linear array

* 64 x 8 planar array

0 64 x 64 planar array.

63

%WJ

The DFT implementation using QRNS arithmetic was considered
for the digital beamformers. Both silicon and GaAs based
processor implementations were considered. For silicon based
processor, a 50-Hz clock rate (processing speed for a pipeline
stage) was considered. For GaAs based processor, I-GHz clock
rate was considered feasible in the near future. The input
signal sampling rate of 25 M1Hz was assumed for far-term
implementation of digital beamforming.

DFT digital manifolds of the future were considered to be
built using the following processor chips:

0 Binary to QRNS conversion chip (BQRNS)

0 Two way complex multiply and accumulate chip (MUL)

0 Four way real adder chip (ADD)

* QRNS to binary conversion chip (QRNSB)

The digital beamformer requirements for the above large arrays
were cast in terms of the number of above processor chips
required for its implementation. The two-way complex multiply
and accumulate chip will have a set of programmable weights
stored in a register. This processor chip is designed to multi-
plex through these weights during every sample period. For a
clock rate of I-GHz and an input sampling rate of
25 MHz, 32 different multiply and accumulate functions can be
carried out during one sample period. Figure 2-17 shows an
example of a 8-way digital manifold using these four basic chip

.0.. sets.

The architecture, multiple beam capability, and hardware
complexity for the far-term digital beamformers are discussed
below.

A 2.9.1 Dizital Beamforminw for 256-Element Linear Array -
Figure 2-18 shows the beamformer architecture for 256-element
linear array. Four 64-way combiners are used. Each of these
combiners can generate 32 partial beam outputs for GaAs based
processor and 2-beam outputs for silicon based processors. The
outputs of these beamformers are next combined in a set of four-
way beamformers. Thirty-two of these four-way beamformers would

* be needed or GaAs based processor and only two for a silicon
based processor.

Table 2-14 shows the multiple beam capability and hardware
requirements for GaAs and silicon based processors. The
composition of the DFT Zeamformers and the number of processor
chips required and the corresponding cost are shown this table.

64
0

RECEIVERS I&
A/D CONVERTERS

Ila 0 CHANNELS

BINARY TO ORNS
CONVERSION CHIP

2 CHANNEL
* ~~WEIGHTED COMBINED IIII

CHIP L~ L..~ L.. L

4 WAY ADDER CHIP 27

QRNS TO BINARY CONVERSION
CH IP

* BEAM OUTPUT

66

Figue 217. xamle o 8-ay DT ranifld sin

FourType of rocesor hip
a'[

6(
a..

a' 65

0(

.Ia, a t&lQ &CHANNELS ia " - - - I -"- -

BINRYTO RN

N

64 WAY BEAM
FORMER

BUFFER

I 4 WAY ADDERS

>"- i --- OUTPUT

---! - 40wEIGHTED

64 BEAMS

>.-.-
0I

126

19-2

2-56

Figure 2-18. 256-Element Linear Array Beamformer Architecture

66

TABLE 2-14. DIGITAL BEAMFORMER CHARACTERISTICS
FOR 256 ELEMENT LINEAR ARRAY

Beamformer Processor Chips
Processor Construction No. of
Technology QTY Type BQRNS MUL ADD QRNSB Beams

4 64 way BFM
GaAs 64 128 121 32 32

1 4 way adder

' 4 64 way BFM

Si 64 128 91 2 2
1 4 way adder

2.9.2 Dizital Beamformin& for 64 x 8 Element Planar Array -

A beamformer architectures for planar arrays is shown in
Figure 2-19. Using number of column manifolds equal to the
number of beams from each row manifold, an area coverage of the
output beams can be achieved. Using only a single column, a line

* coverage is achieved within a sample period. Both the area and
linear coverages can be changed within a time period required to

d, update the weights in the beamformer.

ROW OFT MANIFOLDS

T]- COLUMN OFT
MANIFOLDS

Figure 2-19. Beamformer Architecture for Planar Arrays

67

Table 2-15 shows the multiple beam capability, and hardware
requirements and the cost for such a beamformer based on GaAs and
silicon technologies.

TABLE 2-15. DIGITAL BEAMFORMER CHARACTERISTICS
FOR 64 X 8 PLANAR ARRAY

Beamformer Processor Chips
Processor Construction No. of
Technology QTY Type BQRNS MUL ADD QRNSB Beams

Area Coverage
8 64 way BFM

GaAs 512 384 240 1024 32 x 32
32 8 way BFM

.Line Coverage
8 64 way BFM

GaAs 512 260 178 32 1 x 32
1 8 way BFM

9 Area Coverage
8 64 way BFM

Si 512 264 180 4 2 x 2
.' 2 8 way BFM

Line Coverage
8 64

Si 512 260 178 2 1 x 2
1 8

2.9.3 Digital Beamforming for 64 x 64 Element Beamformer -

Just as in the previous case, two beamformer types were
considered: one to provide an area coverage and the other to
provide a line coverage. Table 2-16 shows the multiple beam
capabilities, and hardware complexity associated with the digital
beamformer for this size array.

'9:

68
0

TABLE 2-16. DIGITAL BEAMFORMER CHARACTERISTICS
FOR 64 X 64 PLANAR ARRAY

Beamformer Processor Chips
Processor Construction No. of
Technology QTY Type BQRNS ML ADD QRNSB Beams

Area Coverage
64 64 way BFM

GaAs 4096 3072 2112 1024 32 x 32
32 64 way BFM

Line Coverage
64 64 way BFM

GaAs 4096 2048 1430 32 1 x 32
1 64 way BFM

Area Coverage
64 64 way BFM

Si 4096 2112 1452 4 2 x 2
2 64 way BFM

* Line Coverage
% 64 64 way BFM

Si 4096 2080 1430 2 1 x 2
1 64 way BFM

2.10 GALLIUM ARSENIDE BEAMFORMING DESIGN

One of the study tasks was to formulate a digital
beamforming design using gallium arsenide devices, asses its
performance and compare it with the silicon version. The
following paragraphs summarize the results of that study.

2.10.1 Processor Design - Gallium arsenide (GaAs) material
provides the potential for increased performance for any
processor architecture. The increased speed is obtainable as the
result of better carrier mobility in the gallium arsenide.

S _Carrier mobility in GaAs is approximately five times better than
it is in silicon (Si). However, the technology for processing
GaAs material is not as advanced as it is for silicon. In
particular, the ability to implement structures similar to
silicon CMOS and ECL are not available for GaAs production
devices at the current time. Recent advances in silicon bipolar
technology now promises to provide silicon ECL devices with
increased speed and reduced power. The switching speeds for
the new silicon ECL devices is about 250 picoseconds.
Hence if GaAs devices are to realize a 5X speed increase over
silicon, for the same power dissipation, then gate delays or 50

69
Si

L_: -T - U -W T W

.

picoseconds must be realized. Such speeds have been obtained in
laboratory devices, but production devices are not yet capable of
these speeds. However, if it is assumed that the technology will
advance sufficiently to permit these speeds, then it is proper to
project the performance which can be expected from a digital
beamformer using GaAs technology.

First assume that gate delays of 50 ps are possible. The

minimum number of gate delays for the multipliers and adders is
six. Hence the minimum gate delay time is 300 picoseconds, which
supports a maximum clock rate of approximately 2 GHz. However,
this is the on-chip clock rate, and even this will be difficult
to achieve. The technology for operating a module at such clock
rates is still not practical. However, the speed may be utilized
to multiplex operations so that a single chip can process several
channels. If the sample rate is assumed to be 100 MHz, then
perhaps 16 channels could be processed by one chip. However, if
the word widths are assumed to be 12 bits, the number of pins
would be prohibitive, i.e., 12 X 16 = 194 for input alone.
Hence, another architecture is needed to exploit the speed
obtainable with GaAs chips.

If the sample rate is assumed to be 100 MHz and the number
of bits per sample is assumed to be 12, then the samples can be
converted to serial form and loaded at a serial rate of 1200 MHz.
However, the decomposition of the signal into QRNS format will
result in a wide-word output. Hence assume that there is one
decomposition chip for each I/0 element pair. This means that
the number input lines for each chip will be 24. Also assume
that the decomposition chip performs a parallel to serial
conversion operation. If eight rings are used in the far-term
system to achieve 37-bit precision, then the total number of
outputs is 41 real and 41 imaginary bits. This is too many
to multiplex (41 X 100 MHz = 4100 MHz), even for GaAs. Hence
assume that there are six 16-to-i multiplexers to perform the
parallel-to-serial conversion. This results in a serial transfer
rate of 1600 MHz, which is supported by the GaAs technology, but
may be difficult to accomplish for chip-to-chip transfers.
However, assume for the moment that this is possible. Three of
the output channels are for real values and three are for
imaginary values. Hence to multiplex each processor to
handle 16-channels, it will be necessary to provide 3 X 16 = 48
serial inputs. Each input must be transferred to its own
serial-to-parallel converter, which is then followed by a
register for holding each word for subsequent multiplication.
Each input word is multiplied by the appropriate weight value

(previously stored in a register), and the results added to the
accumulator. After 16 clock cycles (10 ns), the accumulator
contains the weighted sum of either 16 real or 16 imaginary
antenna elements as a 41-bit wide word. Hence 41 pins are
required for output. If the weight vectors are loaded as
decomposed numbers, one ring at a time, then six pins are needed

for the weight vectors. Hence a total of 48 + 6 + 41 = 97 pins

70

0

.; l% % 1A -

0

are needed for 1/. With 16 bit s for address and 8 bits for
control, the total pin count is 121. If power and ground account
for 12 lines, then the package size is still within the size
of the pin grid array packages. However, these packages will not
support the GHz speeds needed for the GaAs devices. Current chip
carrier packages are available for pin outs of 80 to 100.
However, even these packages will not readily support speeds up
to 1 GHz. Since 48 of the pins must accommodate 1.6 GHz clock
rates, the package must be such as to support these frequencies.
This means that the packages must have controlled-impedence I/0.
Although devices which have clock frequencies in this range
(e.g., shift registers and counters) exist today, the packages
are rather small compared to those needed for the processor.
Hence even if a GaAs processor could be implemented today with
50-picosecond gate delays and 1.6-GHz clock rates, it is not
likely that it could be fully exploited because of current
package limitations. However, with silicon technology now
capable of supporting much higher speeds and much denser
circuits, large packages which will support speeds up to at
least 1 GHz will almost certainly be available for far-term

9" applications, i.e., 5 to 10 years from now.

Assume for the moment that GaAs technology and chip packag-
ing technology will progress to the point where 50-picosecond
gate delays and clock rates of 1600 MHz are achievable. Also,
assume that circuit board technology will support short runs
(e.g., from one chip to an adjacent chip) at serial clock rates
of 1600 MHz. Then, what type of architecture is possible to form
256-element modules which operate at 100-Hz sample rates? One
possible architecture is shown in Figure 2-20.

171

'-'"71

wS

-J ~ o.

m c 0 - 0

0L 0 0

UZJ

. is

0 0- 0-

cr m

a 0 0

LL IL

a- a cy &-

-~2 10NW-

> > > N N LAUJ 00

0,

72)
6 c

In this configuration, there is one processor chip for each
of 16 antenna elements, i.e., 16 I/O channels. The A/D
converters are operated at a sample rate of 100 MHz and the word
widths are 12 or 13 bits. However, the A/Ds are assumed to
provide a 16:1 parallel to serial multiplexer which outputs
the sample at a 1600-MHz serial data rate. Hence 32 1600-MHz
serial channels are required for inputs to the processor chip.
The processor chip performs decomposition of the I/O inputs
signals, multiplies each channel by the appropriate complex
weight and accumulates the products. The output from each chip
is an 82-bit QRNS format word, multiplexed as six 16-bit words at
1600 MHz. The output from up to 16 other processor chips can be
summed with this output to produce a 256-element beam. After
adding the 16 real and 16 imaginary values together, the result
is converted back to integer arithmetic. The summing and
recomposition operation is performed by one chip. The input
consists of 96 1600-MHz serial input bit streams, and the output
consists of a 37-bit real and a 37-bit imaginary part for a total
of 170 I/0 pins. (It should be noted that the output lines need
only operate at 100-MHz rates.) Hence a 256-element beamformer
consists of 16 processor chips and an adder/recomposition chip
for a total of 17 chips. In addition, it is expected that
external memory will be required for the recomposition operation.
Although the multiplexed processor operation reduces the
recomposition rate requirement to 100 MHz, this implies that
memory access times on the order of 5 nanoseconds are
required. Hence the memories will need to be GaAs to support
such access times. (A possible alternative is the new silicon
bipolar ECL memories.) An additional 16 memory chips may be
required for the recomposition operation; however, these are
small chips and will require minimum board space. Thus it is
conceivable that a beamformer to combine 256 antenna elements
into a single beam could be implemented in GaAs on a single
module having an area of 100 square inches, i.e., one double-
sided SEM-E size module. The sample rate supported would be 100
MHz and the word size (both A/D word width and the weight
accuracy) would be 13 bits. The processor power dissipation for
such a module is expected to be about 100 watts. The throughput
of such a module would be equivalent to more than 50 billion
complex operations per second or 200 billion real operations per
second.

73

2.10.2 m arison with Sil icon Deien - Table 2-17 shows
the projected performance parameters achievable in the 1990s for
Silicon and Gallium Arsenide technologies. Silicon technology is
expected to be the best technology for implementing chips for
beamformers through 1995 because:

a. recent advances in Si promise very high gate densities
and good speed

ilb. GaAs requires several technology developments and
possibly a "breakthrough" in gate densities

c. the large I/O requirements combined with limited speed
for module implementations negate the chip speed
advantages of GaAs

d. projected costs of GaAs remain high.

TABLE 2-17. GaAs vs Si COMPARISON:
PERFORMANCE PROJECTIONS FOR THE 1990a

PARAMETER Si DESIGN GaAs DESIGN

Gates per chip 150K - 200K 20K - 40K On-
chip clock rate 240 MHz - 400 MHz 1.5 GHz 2.0 GHz
Relative power SAME SAME
Estimated chip costs $500 $3K - $5K
Relative size of processor EQUAL EQUAL
Development cost per chip $50K - $100K $500K - $700K

.i

74

*~i Fil I~-
- - .

SECTION 3

RECOMMENDED BRASSBOARD DESIGN

3.1 SYSTEM ARCHITECTURE

As a result of the comparative study of architectural choices
for both near and far-term digital beamforming, the architecture
selected for the brassboard demonstration design is a direct form
implementation of the DFT beamforming method using QRNS system
arithmetic. This architecture is directed toward the use of
beamforming in the element space, although beamforming by the
beam space method can also be achieved by suitable
interconnection and control of the hardware modules. The design
is comprised of 4 sets of beamforming hardware using five modules
each. One control and interface module makes a total of 21
modules in the system. Each set will be capable of producing up
to 8 interleaved beams when operating in a time division
multiplexed mode. Thus 32 simultaneous output beams can be
achieved in the demonstration system after the outputs are
de-interleaved. Goals include capability of producing 32 beams
with 3 MHz bandwith or 16 beams with 6 MHz bandwith , or 8
beams with 12 MHz bandwith , or 4 beams with 24 MHz bandwith
each.

The beamformer ASIC chips shall be implemented in Si CMOS
gate arrays using established technology thereby reducing both
risk and cost. The chips will actually be capable of supporting a
50 MHz clock rate to further enhance future system capability
without redesign of the chips. However, the system modules will
only be targeted toward a 25 MHz capability. The achievement of
50 MHz modules is not required for the demonstration system and
would require special module construction and interconnection
techniques that would adversely impact the demonstration system
budget. The hardware when completed shall exceed the capability
of producing output beams with a signal bandwidth of greater than
10 MHz as required by near term design goal from the statement of
work.

The architecture for the beamformer demonstration system has
been selected to produce a system with maximum throughput
capability while maintaining a reasonable hardware complexity.
There are several reasons for this choice. The far-term system
goals of signal bandwidth of 25 to 50 MHz cannot be achieved
without an architecture capable of supporting a clock rate of at
least this order or higher. Although slower hardware may be used
by distributing the processing over multiple sets of hardware the
resultant complexity is prohibitive. The potential for faster

75

hardware in future systems through advances in Si CMOS technology
or use of faster Si ECL or GaAs technology, will then present
capability of even higher bandwidth or allow the multiplexing of
the system hardware to reduce the hardware complexity while still
achieving the bandwidth stated for the far term system goal.

Design of the brassboard system includes several functional
efforts. Foremost is the definition and partitioning of the QRNS
architecture into the system chip set logic design. The logic
definition and chip partitioning have been extensively studied in
Phase I design effort and transfer of this design into the actual
chip set design will thereby proceed smoothly during the early
stages of phase II. Chip packaging shall be in pin grid arrays
for the brassboard, for reasons of both cost and effective use of
discrete wire circuit board technology. Socket adaptors will be
required for mounting the pin grid arrays on standard circuit
boards designed for the use of standard DIP chips. The use of
leadless chip carriers and surface mount technology would be the
preferred configuration for high density far term applications
using printed wiring boards.

The beamformer system presents an unusually high input
requirement due to the 128 channels of 9-bit input words. Module
layout and interconnection have been designed to permit use of
standard boards and connectors, although special mounting of an
additional connector will be required to satisfy the module I/O
requirements of the beamformer system. Multiplexing of the input

However, this alternative is not practical for the high input

signal bandwidth required.

Additional functional efforts required include the system
interface and control, beam weight loading, module level built-in

V..', tests, host processor interface, and design of hardware test
support equipment. Details of the design efforts for each of
these functional areas are presented in the remainder of Section

3 and in Appendix A.

3.2 SILICON BEAMFORMER SYSTEM CHIP SET LOGIC DESIGN

The digital beamformer system has been partitioned into two
chip types that allow the construction of the demonstration
system with a minimum cost for nonrecurring engineering effort

* associated with the chip production process. These chips are the
input conversion chip and the beamformer processor chip. The
output conversion shall not be implemented as a chip but instead
will be constructed from discrete parts for the demonstraticn
system. The processor chip will serve a dual role in thedemonstration system. It will contain both the logic for

* beamweight application for 4 channels and an add-tree to

76

P0eh
-V'.%

combine these 4 channels. As such, development of a separate
4 add-tree chip can be avoided by providing for use of the

processor chip in an add-tree only mode for the further
accumulation of the required 64 input channels of both the
inphase and the quadrature data.

Figure 3.2-1 illustrates the input conversion chip. This
chip accepts 9-bit digital input data from both the inphase (I)
and quadrature (Q) channels of an antenna element and produces
the QRNS channel outputs for all 6 rings in the QRNS system. The
chip is functionally subdivided into 3 sections. The two
sections at the top of the figure perform conversion or the I and
Q data from binary integer representation into the 6 independent
rings comprising the RNS representation. These rings total 29
output lines from these two sections for each channel. In the
third section at the bottom of the figure the I and Q data from
each RNS ring interact and are transformed into the QRNS rings,
Sum and Difference Channels. There is no interaction between
different rings, but only between the I and Q channels of each
ring. The last logic block in each channel performs the modulo
logarithmic mapping of the channels to prepare the data for

0 logarithmic multiplication by exponent addition in the processor
4-.. chips.

The input conversion 4hip is pipellned such that only 6 gate
delays are required between pipeline registers to allow maximum
throughput to be achieved by the chip. The number of equivalent 2
input nand gatea for each block are included for reference
purposes in the figure, either to the immediate left or right of
the blocks. The functional purpose of each block in the figure
will be described next.

Each block labeled as a register is simply a parallel
configuration of type D flip-flops (DFF) which are clocked by the
system clock to store the intermediate results of the processing
in a pipelined manner to achieve maximum throughput. Each
individual DFF is implemented with an equivalent of 7, 2-input
nand gates and provides both a true and an inverted sense of the

stored bit at the output, for use in subsequent processing. This
* avoids the need for Inverters when both or the opposite sense of

the data bit is required in the subsequent processing.

Since the 9-bit binary input is required in the decomposition
of all of the 6 RNS rings, line drivers are provided to prevent
excessive delay due to high signal fanout in the MSB and LSB

0 RESIDUE blocks. All subsequent processing is now independent for
.4,- each of the 6 different RNS rings. For simplicity only one block

is used in the figure to represent the processing for all 6
rings.

77

-- - - -0

INPUT OATA WAORAT1R IfiWT DATA

6.3 T I TS1 F IEISS3T 63 j HIT R1 G
gae5 late late gatt

counts coots counts counts

29 LINE IVERS LINE OAIVEMS 29 29 LINE DIWMR LINE DAJYERM 29

2929 29 29

J29

203 29-IT RE61S1E1 I9T FI61ST11 20 20 2HIT RE653TO 2-T REGISTER 203
2929 2a a

291 BMWUR AONE 1 3 1 M aml 103 250 BINUADDE ON CAWT OUTS 103

a a

203 29-MT 961S513 HIT 63 42 203 29MIT RE61S13 HIT REISME 42

9 [CAER FIZZMWS 1lo0 GATES 96 MM AMDE FIXW'S15 TE

"OAA SEECOR AUm RNSDFU

dis NC7 CONERIO CONVRSIO

2M 29-MT 9661STER I 0WINE 20 29-MT REGISTER I OWIEL

late 0 2-IT G6t1esER M 2-IT RE61/1
counts291

*250 BINARY AM2 KO wn? A 103 W5 BUiM SLTRACTS BIN ARES96 71

203 2BT 6STR 6-M1T RE61STER 142 2031 29-IT 9I61STER 6-IT E651STER 42

29 29

5DASUE~ECORSL56 IF96~

293 GATES 761/

k."-,,' :t'.,78

"TR6SE 110 HTRE1TE

The MSB RESIDUE blocks provide a logic reduction sums of
products implementation of a table lookup of the most significant
four bits of the binary inputs to produce the modulo remainders
for each RNS ring. Similarly, the LSB RESIDUE blocks provide the
modulo remainders for the least significant five bits of the
binary inputs. The MSB and LSB residues then must be combined by
modulo addition to produce the RNS residues for the 9-bit binary
inputs.

7,%

The blocks labeled BINARY ADDERS, MOD CARRY OUTS, MOD ADDER
FIXUPS and DATA SELECTORS taken together perform the modulo
addition. The BINARY ADDERS perform a fast carry lookahead
addition of the residues to produce binary outputs of the same
bit width as the respective rings. Any overflows from these are
ignored. Instead the overflows for the respective rings are
determined by the MOD CARRY OUTS whenever the modulus of that
ring is exceeded in performing the binary sum. The MOD ADDER
FIXUPS provide the binary addition of a constant for each ring to
the BINARY ADDERS outputs in the event that an overflow of the
modulus occurs. The constant required is the next higher power
of 2 minus the respective modulus. The DATA SELECTORS then select
the final residue outputs according to whether the MOD CARRY OUTS
determined an overflow for the respective rings occurred or did
not occur. At this point the decomposition of the input data
into the six RNS rings has been completed. Next transformation
of the RNS I and Q channels to the QRNS SUM and DIFFERENCE
channels is accomplished in the bottom section of Figure 3-1.

The third section of the converter chip performs the QRNS
transform of the RNS residues into other RNS residues in which
the multiplication of complex numbers is performed in independent
channels requiring only half the number of physical
multiplications. The transform equations (Appendix A, Equations
A-I through A-5) require a sum and a difference and hence the
outputs are referizu to here as 'he QRNS SUM and QRNS DIFFERENCE
channels.

The logic block labeled QRNS XFORM provides the
multiplication of the input residue for each ring by a consbant

0 for that ring. This constant represents the square root of -1 in
that ring, which is not an imaginary number for the QRNS rings
and thus the product is again a residue in the respective RNS
ring. The QRNS XFORM is implemented by a logic reduction sums of
products table lookup of the product outputs.

The modulo sums and differences of the RNS I channel with
the QRNS XFORM output are formed next. The logic blocks for the
modulo 71m are idientical to those in the first two sections or
FiFure 1-1. The logic blocks for the modulo difference work
3 i1mIary 1 o Those for the modulo sum. The BINARY SULIRACTS are
performed by the binary addition of the true outputs rom the RNS
I channel and the inverted outputs from the QRNS XFORM block.

79

%

The BINARY COMPARES determine if the magnitude of the RNS I
channel or the QRNS XFORM output is larger. When the RNS I
channel output is greater than or equal to the QRNS XFORM output
then the output of the BINARY SUBTRACTS are selected by the DATA
SELECTORS block. If not then the MOD SUBTRACT FIXUPS outputs are
selected. The MOD SUBTRACT FIXUPS are formed by addition of the

4 modulus for each ring to the outputs of the BINARY SUBTRACTS. The
outputs from the two sets of DATA SELECTORS are the QRNS
transformed channels.

Circuitry is also included on the converter chip to prepare
the QRNS transformed channels for logarithmic multiplication

$, which is performed by the processor chips. This is accomplished
by logic reduction sums of products table lookup in the MOD
LOGARITHMS blocks. These blocks determine the exponents
corresponding to the input RNS residues for each of the QRNS
rings. The base of the logarithm used for each ring has been
selected to produce a minimum logic gate count for that
particular ring.

The final outputs of the converter chips are registered on
0, the chip so that chip-to-chip interconnection is achieved without

additional allowance for logic function delay. Similarly the
inputs to the processor chips are first registered before any
logic functioning is performed.

Figure 3-2 illustrates the beamformer processor chip. This
chip includes four multipliers as indicated by the four sections
in the top half of the figure, and an add-tree to combine these
four outputs into a single sum. Since the QRNS transformed
channels are independent, the processor chips may combine either
four of the QRNS SUM or I channels or four of the QRNS DIFFERENCE
or Q channels. Not included in Figure 3-2 is the circuitry
necessary to use the processor chip as an add-tree only chip.
This circuitry shall allow the inputs to each uf the multipliers
to be registered either for multiplication or to be registered
instead in the output registers of the multipliers for direct
accumulation by the add tree circuitry. This requires additional

0 data selectors for the inputs to both sets of registers and an
additional input pin on the chip to control this data selection.
Alternatively this selection could also be made by fuse
programmable selection circuitry allowing programming of the chip
as either an add-tree or a processor chip before installation
into the beamformer system. The total gate count given for the

• chip has included allowance for the additional gates necessary to
achieve this dual purpose usage of the chip.

80

00.

-In

mix-2

pu

x V s Ii
4 x

An.~z 3
Wei! 5 0

~ 3 x

j: ~jI - inL5
* .*-~ft

*U!j

hA aj 3 2

L LE

Figure 3-2. RNS Four Channel Beamweight Combiner Chip:
16K Gates, 160 1/0

The add-tree section of Figure 3-2 consists of three modulo
adders that are identical to the modulo adders found in the
converter chip of Figure 3-1. They are interconnected to form
the sum of the four outputs from the multipliers. The final
output is registered as in the converter chip to provide maximum
throughput operation of the beamformer system.

Each of the four multiplier sections at the top of
Figure 3-2 are identical. These multipliers accept one input
from off chip which is multiplied by a coefficient stored on chip

% in a coefficient register file. The COEFFICIENT REGISTER FILE is
organized as a circulating file that provides eight different
coefficients in turn to be applied to the incoming signal data.
This assumes that the input data will be the same for eight
consecutive clocks so that eight interleaved output beams will be
produced. If the same coefficient is loaded into all eight
registers in the register f ile then an input which changes at
each clock interval will produce only one output beam with a
maximum bandwidth. Thus the system is capable of either
multiplexing multiple beams with reduced bandwidth signals or
providing a signal output beam with bandwidth corresponding to

* the maximum clock rate at which the hardware will operate.
Intermediate configurations are also possible. By alternating
two coefficients in the register files, two interleaved beams may
be produced with an input signal that changes every two clock
intervals. Similarly, a set of four interleaved beams may also
be produced.

Control of the coefficients is provided by the COEF.LOAD
CONTROL block in Figure 3-2. This block will contain a holding
register and a data selector to allow recirculation of the data
in the register file or to select a new coefficient from the
holding register to be entered into the register file. The

% holding register will allow new coefficients to be entered for
each tap weight with sequential operations and then to load all

V. of them simultaneously without loss of any output data while
loading is accomplished. Control of this loading operation will
be external to the chip with only a single input selector pin to

0 determine when a new coefficient shall be passed into all of the
6 circulating register files.

thtThe total pin count given for the processor chip assumes
thtonly one ring will be loaded to each tap at a time. This

will reqU4 re additional circuitry in the COEF. LOAD CONTROL block
to address the particular ring of the holding register that is
being loaded. Additionally, external circuitry will be required
D 3plit -ff the individual rings for loading in this manner.

Alternarlivelv, the total pin count may be raised to aillow f;Dr
I Loading all rings simultaneously for a given tap. The simp.licity'
-)f)peration in this manner would probably justify the additional
p ins, providing that the resulting chip does not significantly

'V 82

%0*%

impact the chip packaging NRE. A decision on this issue shall be

made early in Phase II.

Other additional load control circuitry not shown in
Figure 3-2 will be necessary to select which holding register of
the four multipliers is being loaded. This will consist
essentially of only a 2 to 4 decoder with gated outputs and
occupying only an additional 15 equivalent gates.

The multiplier cells of Figure 3-2 assume that both the
input and coefficient data have been preexpressed in modulo
logarithmic representation. As such, to complete the
multiplication, these logarithms must be added and then the anti-
logarithm of the result determined. Since the logarithm of zero
does not exist, additional circuitry is provided for zero
detection. The SUBRING MOD ADDERS perform the modulo addition of
the logarithms. These adders are formed from subrings of the
QRNS moduli after zero is removed, and consist of bit widths no
wider than four. As such, they are implemented in the six gate
delay maximum with unique circuitry for each subring modulus.
The RING ZERO PRODUCTS force the result to zero for a particular
ring if the RING ZERO DETECTS detect the encoded zero state for

*that ring. The MOD ANTILOGARITHMS are implemented with a logic
reduction sums of products table lookup of the anti-logarithm
outputs. The final outputs of each multiplier cell are the QRNS
ring representations of the multiplication products.

3.3 CHIP PACKAGING

In the assembly of the beamformer brassboard demonstration
system, packaging options for the ASIC chips are restricted by
the size of the chips to either leadless chip carriers or pin
grid arrays. For a demonstration system, the costs associated
with use of mounting leadless chip carriers include the necessity
of having special purpose modules constructed with I/O pads on

the modules for contacts with the leadless chip carriers. Such
modules must also include the chip interconnection wiring, which
implies that printed wiring boards with leadless chip carrier I/0
pads provide the only reasonable solution. This provides little
flexibility for development of the demonstration system. However,
such boards would be the proper choice for a final application
system.

Therefore, the use of pin grid array packaging for the
demonstration system is recommended. These packages come in a
variety of sizes, and for most of these sizes, socket adapters
are available to permit them to be mounted on standard wire wrap
boards. For the converter chip, an 84-pin ceramic pin grid array
should be sufficient to provide enough pins for the 76 functional
I/O pins plus power and ground pins. This does not, however,
leave much margin for additional test pins which may be

83

V:

necessary. For the processor chip a 180-pin ceramic pin grid
array is currently planned. However, if all rings of the
coefficients are to be loaded simultaneously, a larger package
will be necessary. Final decisions on these issues cannot be
made until the ASIC chip vendor is selected and the number of
power, ground, test, and control pins are firmly identified for
each chip.

3.4 MODULE DESIGN

The breadboard system is partitioned into several module
types. Each module is a composed of a 14.4-inch by 11.0-inch
board based on DIN specifications. Because of the large number
of I/0 lines required for each module, the board must be modified
by using four 96-pin DIN type connectors instead of the normal
three for connection to the backplane. Additionally a fifth
96-pin connector will be available at the front of the board.
The board uses a Unilayer (Augat brand name for a planar wiring
technique) design that features a high-density, plated-through
hole pattern on a 0.100- by 0.150-inch grid. Voltage and ground
planes are individually plated and etched on each side of the
double-sided board. The discrete wire layer is constructed with
insulated #38 gage wire that is bonded to the board surface using
a thermosetting adhesive.

Figure 3-3 illustrates the digital beamformer hardware
modules. The beamforming hardware is partitioned into four sets
of modules, where each set corresponds to one beamformer. A set
consists of four identical processor modules and one
recomposition module. The whole system is controlled by one
controller module. Each set produces 8 interleaved output beams
when operating in the multiplexed mode, or one output beam when
operating in the full bandwidth mode.

-. ,

.8

O 8?

CHANELS BEAMORMER I

17 - 32 -- PWESOMMO tL 2
9 INTERLEAVEO BEANS

as -46 - POESRMIL3

CHANELS BEAMFORMER 2

1732POESO4OOL

01

CHANELS SEAMFORMER 3

* 17 -32
S INTERLAVED BEAMS

49 - 64

CHANNELS 13EAWOaRMER 4

~ '~8
INTERLAVED BEAMS

V~4 - 84

Figure 3-3. Beamforrner Hardware Modules

85

The block diagram of the processor module is shown in
Figure 3-4. Each processor module handles 16 I and Q channels.
A channel consists of 18 input lines divided equally between I
and Q. The samples are initially passed through line receivers
and latched into the decomposition chips. After transformation
to QRNS format, the samples are passed to the processor chips
where they are multiplied by the beam tap weights. The beam tap
weights are loaded into the processor chips through 18 data input
lines and five tap select lines. A tap select decoder block
routes the tap weights to the appropriate processor chip.

Finally, the output is passed to the add chips. The rest of the
module consists of the distribution of the system clock and the
interface to the controller bus. Because of the large number of
chips requiring the system clock, the clock input is buffered to
provide the necessary fan-out capability. The controller
interface consists of control/status registers and bidirectional
buffers.

An example layout of the processor module is shown in
0 Figure 3-5. Because the board uses a 0.1-inch by 0.15-inch grid

pattern, special adapters are used to mount the pin grid
components. Regular DIPs are placed directly on the panel. The
components are arranged such that the input beam samples enter
the panel through connectors P1, P2, and P3, and the module
output is passed thought connector P4. Connector P5 is reserved
for the controller bus interface.

.o

• 86

16 It9

.1%

MI

L''0

C3s

W 0

JS

00

0

see::::. I*444
....

0 00o 0
eeooeeee

4o44 14Joo

.-......-.

wi:if :ins
83A:08.. :

...

- zline
SeesI

__* *

8-... - "
.0: .

....

... •......... a. 'L.......:::
I '...

*0 --

0 ... -...... ,....-.

0.

*"" Ii EHA ... - :,

_ ~~...1:: [o~i~ ii ii i

I :.. I -* .. %J . 4'.......

33 , .

~~~ ~ 0' ... ..-.". w -... " " °""!....... ........

*-- ... ..
a.

• *** .. .. .... .......... . .... ..... ... ... ........... .. ..See. ,----- ,----- , ----------.. ........ I ... . .... •

:::: B =JA3 .......... ... 0. " .. .......... ... 4 :

so. . .~ 4 nC .

-- ee. . .. .............. a-

rL6A INC. LJNILAYER 11 050-VME928 I \ _

Figure 3-5. Brassboard Processor Module

88



1

The block diagram of the recomposition module is given in
Figure 3-6. The module takes the output of the four processor
moduLes and feeds them i to two final Add chips. The result is
then transformed back to normal arithmatic by a table lookup
algorithm. The table is made up of a number of PROMs of various
sizes. To maintain the pipelining of the system, registered
PROMs are used where possible. After unregistered PROMs, and at
various intermediate points, discrete registers are used. The
rest of the module is identical to the processor module. The

system clock is buffered onto the module, and a controller bus
interface is implemented using registers and bidirectional
buffers. An example layout of the recomposition module is given
in Figure 3-7.

% 89



a I

i -X

E n

4.. x Ai

%p :1I

%j

Figure 3-6. Recomposition Module Block Diagram

0 90



M I W W'K- - - 0- 0- . W- IV -w- W X -~' -------- 1 I"V Yv NO VWV7 WWXV1~ KX~ J Y T r ' T ~~'~ rim

I.-

.9 . ..... ....

. .. ....
.. .............. ..................r

.... .... . ........ 0 ... .. ... _____..... .... ,c I

a. ***** ......... . ..... ... .

..do ve -------- ,- . --.... .. , ) - o .

0004 ..2O L.J ....... I _c.... .. j3iefl

"P ... 9II 1 91 o6.9

.. so 
a AS;I96093)£I

Es El
..0.9p8

I 0" 8*

=**** ="o I 1S

S.'.... ... . ...3~d9 3 £ 9 ..... JL- '" J ;'" 1 .. . l - -

[0 -' .... . ...... 9..........

- I *. co- ~.... s x ~ L J dw1af 6l I dHO I

o., _e =n IS

eeoc. re  W. . ....

.1 ****~ ~~do ~ 198 fl Y

.7... . *

L o AUGA :N .UIAE : 00*E2

..v"I.o o '' -..... .. . . . .

ee...... .. . .. . .

Figure 3-7. Brassboard Recomposition M1oduie

91

0

-.-GAT .NC. UNILAY 050



The controller module initializes and monitors the system.
The block diagram is given in Figure 3-8. The proposed
controller for the beamformer system is a TMS320C25
microprocessor having 16K words of program memory and 16K words
of data memory.

The TMS320C25 has access to several interfaces. The first
interface is a RS232-C serial port implemented with a UART and
line drivers and line receivers. This inter'ace allows an
external monitor or personal computer (PC) to display system
status and provides a secondary host interface. The second
interface is the controller bus interface that connects with the
processor modules and the recomposition module. This is a
general purpose bus containing 16 address lines, 16 data lines,
and several control lines. Initialization commands, BIT
commands, status words, and sample data allow the TMS320C25 to
control and monitor the system. The third interface is the host
interface. The host is assumed to be a VAX minicomputer with a
DRI1-W Direct Memory Interface Module. Messages and data are
exchanged between the VAX and the TMS320C25 through the use of a
Dual-Ported RAM and a standard software protocol.

The TMS320C25 also controls the loading of the beamformer
tap weights into the processor modules. If the tap weights are
received from the VAX, the TMS320C25 funnels the data to the tap
weight storage memory which is implemented with Dual-Ported RAM.
If the tap weights are received from a beamcontroller, the
TMS320C25 switches the multiplexer so that the beamcontroller has
access to the weight storage memory. The actual loading of the
weights into the processor modules is performed by a discrete
controller/sequencer circuit. The controller/sequencer generates
addresses for the weight storage memory and control signals that
facilitates the routing of the weights to the appropriate
processor chip. Note that an additional path is present that
allows the beamcontroller to bypass the tap weight storage memory
and directly load the weights into the processor chips. An
example layout of the controller module is shown in Figure 3-9.

A

0

92



FMWFERWW3 U) TEXAS INSTRUMENTS INC DRLLAS DEFENSE SYSTEMS AND
ELECTRONICS.GROUP JI LANGSTON ET AL APR 88

UCASFIED RADC-TR-88- 6 F19628 87-C 8616 FIG 12/6 W

EEhEEEEEEEEEEES mohomhEEEn



0
U.

N-

.~mU

'ii

-U

11111 I .0 ~ ~j8 11112511111 2 1)11 2.2
- I.,.

t -
_

-'Jo

I- -

11111 a. i~ 140 111112.0
-p 11111* IIIII~8

JjJJjI.2~5 11111 '.4 1.6
-

~ - 11111NW 

,- illil-
9.

N,

MICROCOPY RESOLUTION TEST CHART
NAtiONAL BUREAU OF STANDAROSIAA3A

N

0

'V

0
-U

p

-U

* S S S S S 5 5 5 S 5 5 5 5

4



............ r .. W W ~ f

U L U

<

, U,

s o vvo ' -- -

SMl S53MMOV T--

.. . .. . . I.. j ... ... .. ... ..

Figure 3-8. Controller Module Block Diagram

93

I I I ",II -



In -.. .

I...00* I

0;:~ LIZ EmOb QI la
.0 U O =AdO S 0

.. : as
rl** as -----

1 ~b~ :40W 1:0 i 9X)S

ad~d~e u~4.
II....~. cc
If .... a. UA~C ~ I

Fiur 3-9 Brsb dCntolrMdl

* 5**94



.2 1
3.5 SYSTEM INTERFACE AND CONTROL

The beamformer subsystem will be mounted in a standard-

aluminum card cage that conforms to the DIN 41494 specification.

The backplane is loaded with 96-pin, press-fit, DIN connectors
for each module. Each connector has 3-level wire-wrap tail pins
for intermodule connection. Once all the modules are seated in
the card cage, an external ribbon cable connects all the modules
through the 96-pin connector at the front of each module.

The card cage will be installed in a standard 19-inch rack.

The 64 I and Q channel input lines and the beamformer output

lines are routed from the backplane to front panel connectors.
The serial RS232-C interface and the parallel host interface of
the controller module are likewise routed to the front panel.

The system may be controlled in three ways. The first
alternative is by a personal computer (PC) via the serial port.
Commands and simulated tap weight data may be downloaded to the
controller module. The controller module then fans out the data
to the appropriate modules. The second alternative is control of
the system by the Host. In this case, commands and data are
transferred to the controller module through the VAX DR11-W

* Interface Module. The final alternative is a hardware only
operation. The controller module places the system in a mode
where it operates at full speed without host intervention.

3.6 BUILT-IN TEST

The built-in test (BIT) for the brassboard will attempt to
isolate faults to at least major sub-blocks at the module level.
The controller module has the responsibility to test its program
and data memory, serial and parallel interfaces, and the tap
weight memory storage block. The processor modules are tested by
sending a command to each of the decomposition chips on the
module to output a particular embedded test vector. Simulated
tap weights are then loaded into the processor chips. After
combining the processor chip outputs with the add chips, the
final output sample is read back by the controller. The result
is compared with the correct value to determine if a fault is
present. If a fault occurs, the sample value can be used to
determine which of the decomposition-processor-add chip
combination is not functioning correctly. If the result is
correct, the recomposition module is enabled. As with the
processor module, the result of the recomposition module is
:-mpared with the correct result. If a fault is present, the
output result is used to determine sub-block faults.

A

95



3.7 VAX INTERFACE

The VAX interface is implemented through a DR11-W Direct
Memory Interface Module. This module plugs into the VAX BUS and
an external cable connects it to the front panel of the
brassboard rack. Software on the VAX makes use of the DR11-W
interface driver (XADRIVER) to communicate with the brassboard.

3.8 HARDWARE TESTS

To test the brassboard system, it is necessary to provide a
simulated digital element input signal. This can be done by
generating a set of I/Q data words for each element to represent
a particular source location. This requires 64 I and 64 Q data
words for each spatial point to be simulated. These data words
will be generated by the VAX and transferred to a separate test
box. The block diagram of this test box is given in
Figure 3-10.

The VAX interface is another DR11-W module. The simulated
data samples are downloaded to a storage memory made up of
64 8K x 9 RAMs. After all samples are stored, the VAX passes
control to the output controller. The output controller is
essentially a sequencer/state machine that cycles through the
memory and generates the appropriate control signals to load the
contents into the beamformer in parallel.

0

96
0

4 .
p - , . - -

.

< 'p



S~~O34111 san i L 3m 11

X X

dq

*.4

Figure 3-10. System Test Box Block Diagram

97



,i p. L9WRW IWVK VW

SECTION 4

BRASSBOARD DEVELOPMENT

The brassboard development can be dividedinto three tasks.
The first task is the development of the chip types given in
Section 3.2. The second task is the development of the six
module types and the overall system design as outlined in
paragraphs 3.4 and 3.5. The third task is the development of the
software to run the brassboard. Although the three tasks are
listed separately, they are all interdependent.

.- 4.1 CHIP DEVELOPMENT

The initial step in the development of the required chips
is the finalization of the architecture. A RFQ will then be
generated and distributed to the various ASIC chip vendors. From
the received quotes, a final vendor selection will be made based
on criteria given in paragraph 2.7.

Once the vendor is selected, the chip design will be entered
into a workstation (e.g., Daisy workstation) using the vendor's
logic library. Extensive logic simulations and timing analysis
will be performed using previously generated test vectors. After
verification, the design will then be released to the vendor.
Chip development subtasks include:

e Finalize architecture

* Generate RFQ

0 Select vendor

0 Enter design on workstation

0 Optimize and test design

0 Verification and release of design to manufacture.

4.2 MODULE DEVELOPMENT

A baseline design for each of the module types was given in
paragraph 3,4. However, the detailed design is dependent on the

98



finalized ASIC chip architecture and chip packaging. This is
especially true of the processor module and recomposition
modules. The controller module, on the other hand, is
essentially a general purpose microprocessor board and its design
should be straightforward. A design review of all the modules
will be held to ensure that the system requirements are
satisfied. The majority of the components will be ordered after
the design is finalized. However, long-lead items will be
ordered as soon as they are identified.

Although the physical dimensions of the selected board is
% standard, a customized board will be developed because of the

number of I/O connectors required. A board layout and wiring
node list will be generated and released to the board vendor.
Depending on the pin count of the selected ASIC chip package, a
customized pin grid array adapter may also have to be developed.
The board vendor currently supports a maximum of 132 pins for its
UNILAYER PGA adapters.

The beamformer modules will be housed in a suitable card
cage and rack. An interconnect list will be generated and sent
to the board vendor for the wire-wrapping of the backplane.
Initially, one set of beamformer modules will be made using
standard wire-wrapping techniques. The boards will be tested and
any design errors corrected. After the wiring list has been
updated, the deliverable modules will be made using the UNILAYER
wiring technique.

Concurrent with the chip and board manufacture, the physical
setup of the system will be assembled. This subtask includes the
modification of the 19-inch rack (if any), assembly of the front
panel, mounting of power supplies, mounting of fans, and the
manufacture of connectors and wiring harnesses. Module
development subtasks include:

0 Finalize system definition

* Manufacture of custom board and FGA adapter

5 Design modules

0 Generate board and backplane wirelists

* Order wire-wrap boards

99



0 Order parts

* Complete rack assembly

* Assemble modules

* Test wire-wrap boards

* Update wirelist

0 Order unilayer boards

4.3 SOFTWARE DEVELOPMENT

In general, the software development will consist of a
planning phase, a requirement definition phase, a design phase, a
code and unit test phase, an integration phase, and finally a
system test phase. After each phase, a review is conducted to
keep the development on the correct path. This cycle is repeated
for the three programmable devices in the beamformer system (VAX,
TMS320C25 microprocessor, and PC).

The major software blocks required for the VAX are:

* Generation of steering vectors

0 Calibration of steering vectors

* Generation of simulated antenna samples

* Adaptive algorithm simulation

* Beamformer output analysis

* Brassboard interface

* System test and control.

The major sofware blocks required for the TMS320C25
microprocessor are:

* Module initialization

0 BIT

* VAX interface

* External monitor(PC) interface

* Beam weight loading.

100



A personal computer provides an alternative to the VAX for system
test and control. It will be used extensively in the hardware/
software integration phase because of its convenience and
availability for lab use. In the final system, it will provide a
secondary method for monitoring the system.

The major software blocks required :or the PC are:

" Brassboard interface

* System test and control

* Downloading of simulated data.

4.4 TEST PLAN

4.4.1 Built-In-Test (BIT) - Both chip development and
module development for the beamformer brassboard design have
included consideration of the need for hardware testability and
fault isolation. The control processor for BIT will be the

% TMS320C25 microprocessor located on the brassboard control
module. When the beamformer system is supplying interleaved
output beams in the multiplexed mode the capability to use one
or more of the interleaved output slots to perform on-line BIT
could be added to the system control software in applications
systems in which multiplexed hardware operation is the normal
mode. However, for the brassboard system BIT will be an off-line
system function.

Fault isolation capability is planned to allow BIT to
isolate faults to individual modules and within data paths on
that module. The system test box will be used to supply known
inputs to the beamformer modules. Loading of known beamforming
weights can be tested against the known input patterns.

Interface access to the the output data from any processor
module or recomposition module will be supplied to the control

* processor to complete the test paths. Analysis will be completed
by comparing test data with expected results and recording any
discrepancies. Combinations of test results in some cases may
allow isolation of faults to the chip level.

The large input and output pin requirements for the
0 beamformer system do not allow the inclusion of many pins

dedicated to test purposes, on either the modules or the chips.
However, the parallel structure of the QRNS architecture allows
data path isolation to the small QRNS ring word widths in the
testing of the hardware. The system test box when loaded with
known patterns can stimulate portions of the hardware with non-

* zero test patterns while holding all other inputs to zero. This

1-.1

1101
01 M

A- '



greatly reduces the number of required test patterns, and
therefore allows a better covering of possible fault conditions.

BIT will also include the verification of system control and
interface functions. System initialization will normally execute
BIT on power up, or system interrupt control will execute BIT
upon request from the Vax host processor.

4.4.2 Chip Tests - Chip test functional verification can
either be done by the chip manufacturer prior to delivery of the
chips, or by TI upon receipt of the chips, or both, depending on
Phase II beamformer program requirements and chip manufacturer
procedures. The need for building a chip test "burn-in" board
could be avoided since MIL-STD screening will not be required.
However, the convenience of such a test board for both chip
acceptance from the manufacturer and for fault isolation testing
after system installation will speed both development and
maintenance procedures.

The chip functional tests will include the verification of
control of the chip and the examination for correct outputs in
response to known test vector conditions. The test vectors for
the QRNS component blocks have been developed along with their
design during Phase I and only need be translated to the
appropriate format during the design entry process to the chip
manufacturer. Test vectors for chip control and QRNS component
interconnection will be developed during the design entry
process.

Verification of maximum on chip clock speed capability will
not be readily achieved in the brassboard system and may have to
be supplied by the chip manufacturer.

4.4.3 Module Tests - Module tests include two board types.
First wirewrap boards will be used to test the module layout and
interconnection wiring. An automatic wiring machine will prepare
the wirewrap boards for each of the three module types. A wire-
wrap list drives the machine. As the first chips become
available from the chip manufacturer the module and its parts
will be assembled for testing by laboratory test equipment. This
will involve the trouble shooting of the wiring list to correct
any errors or deficiencies.

The functionality of interface and communications between
the modules will be tested. Control module testing of the
TM5320C25 processor will be performed. Limited software testing
will verify control of the hardware. Any resulting corrections
will be applied by altering the wirewrap boards and a verified
wirewrap list will then be created, for each module type.

102



0

The verified wirewrap lists will be used for the wiring of
the UNILAYER type boards. These boards will increase the system
reliability as well as reduce the system volume. Again .3
laboratory test setup will be used to reverify the application of
the wirewrap lists to the UNILAYER boards.

The final aspect of module stand alone testing will be
evaluation of the performance clock rate capability of the
individual modules. The laboratory test setup will be extended
to include this evaluation.

A

4.4.4 Test and Verification Software - Software for
analyzing the brassboard outputs will be developed for the host
VAX computer. This software (described in paragraph 4.3) will
load the system test box with simulated input signals for each of
the 64 I and 64 Q antenna channels, and control or simulate the
adaptive weight update process. Beamformer output analysis
software will be developed and tested on the VAX for the purpose
of brassboard system performance verification by the VAX.

Tet4.4.5 Processor Performance Verification Tests Using Vax -
Test scenarios will be generated for performance testing of the
various functions of dispersion correction, beam scanning and
adaptive pattern nulling. These scenarios will be applied to the
brassboard input channels through the system test box. Output
beams will be captured for performance evaluation and passed to
the VAX through the system interface bus for analysis.

Verification of the ability to generate 4 output beams using
a 12.5-MHz sample rate for the input signals will be tested. The

V maximum sample rate capability of the brassboard system will be

ascertained. The capability to update a given weight vector
within 10 microseconds will be verified.

4.4.6 Acceptance Tests - A suitable set of test scenarios
% ~ will be generated to- fulf ill the requirements of acceptance

1 testing. An acceptance test procedure will be agreed on. After
the brassboard installation and checkout the acceptance tests
will be performed. These tests will provide for the
demonstration of the various functions of antenna control as
mentioned above. Successful completion of the tests will require
the demonstration of 10.0 MHz bandwidth capability for Four
independent simultaneous beams and adaptive weight update
capability of less than 10 microseconds. Demonstration f

beam scanning and adaptive pattern nulling with this weightF update rate will be performed with the use of signal inputs -m
the system test box and witb weight update inputs trom the weight

memory buffer provided on the control module.

103

i . . .. . . .,,



4.5 DEVELOPMENT SCHEDULE

Figure 4-1 shows the development schedule for the Phase II
Beamformer Program brassboard demonstration system. In order to
meet the scheduling requirements several tasks will need to

.proceed in parallel at various points in the program effort as
indicated in the figure. This results in some risk in meeting
the schedule but sufficient allowance for some delay is present.
In particular, acquisition of a sufficient chips to populate a
module in order to perform the wirewrap module layout testing
will be done as rapidly as possible. Procurement of the full set
of chips needed for che brassboard system, however, will follow
at a much slower pace while other module and software development
tasks are proceeding at full pace. System assembly and test will
be accomplished along with software/hardware integration and
tests.

Delivery and installation of the hardware will be followed
by delivery of the final report concluding the program effort.

.-

1-.0

-".,i

9 ..

.)

"..

"-"10



CDl~ rr r11 irri

I I I I I T

LA-1 V~~j - 1 1r!

=11 4=1

LL±iL..-L.L.J
I - It 11 11 N I I I I I i

i I i I I L4> j

LLJJJL2i '-4-j

I U) -#> 5~
I CU L-1U I it $.- i Lot -9 j q-jtK

-~~Z L.1.. ICs I I ~ i I I

I u 44 .> -- I Q> I41ctgu 0 ~ I ' I I
$- I IIL- (n 00 =7) 1 -1

-1 Ol i -- 1) "1 IX- g cut i cni I I OI -C2 SI I 't Cot > Ii

-=I-= C ul :=$ L~r - i~ I q3 C: S. -~ W7 (onr 11)r.~ r

Figure 4-1. Program Schedule

105



SECTION 5

CONCLUSIONS

All of the objectives for Phase I have been achieved. A
breadboard design was defined, based on the near-term
requirements and silicon technology. The DFT approach was
selected, and element space nulling was preferred for the near-
term implementations using the DFT approach. The processor
architecture selected is based on integer arithmetic using the
Quadratic Residue Number System (QRNS) for the computations. Two
chip designs were defined to meet the processor requirements for
the brassboard. Seven ASIC vendors were contacted to provide
quotes for chip fabrication. At least four possible sources have
been identified. Chip development costs were verified, and
performance estimates from the various vendors were consistently
much better than the minimum requirements. (Some estimates
exceed minimum requirements by a factor of five.) A brassboard
processor was designed based on the chips defined for the
brassboard. A design plan was completed for Phase II. No major
problems which might impact the successful outcome of Phase II
were identified.

The recommendation is to proceed with Phase II. The
brassboard will include provisions for multiplexing the
beamformer hardware an that 32 beams can be formed when the input
sample rate is less than 2 MHz. Four beams will be demonstrated
for a clock rate of 12.5 MHz. A goal for the brassboard chips is

to achieve an on-chip clock speed of 50 MHz while the goal for
the brassboard system is to demonstrate clock rates of 25 MHz.
The probability for achieving a practical digital beamformer
which meets the near-term goals is very high. Phase II
objectives should be achieved with minimum risk.

.

I.

4--

00

. .



a.-! APPENDIX A

QRNS COMPONENT DESIGN AND MODELING

A.1 INTRODUCTION

This appendix summarizes the development of the logical gate
structure implementation of the digital beamformer QRNS
components. The baseline QRNS arithmetic system includes six
modulo arithmetic rings. The far-term QRNS system includes eight
modulo arithmetic rings. For each of the rings, components
required include: RNS converters, QRNS transforms, mod
multipliers, mod adders, and inverse QRNS transforms. A final
component performs binary recomposition of the RNS residues for
the output beams.

Development of near optimal gate structures for the QRNS
0 components has been accomplished by first developing and

tailoring the methods of logic design and modeling to the
particular needs of the implementing the QRNS components. This
methodology has been applied to develop the logic gate structures
for the mod multipliers and mod adders. Logic model verification
of these components has also been accomplished.

A.2 METHODOLOGY

Three basic methodology developments have been accomplished.
The first is a technique for multiple output logic reduction
providing an improvement in reduction of approximately 15 percent
for most cases compared to results achieved with individual
output logic reduction techniques normally used in developing
programmable cell structures such as used in programmable array
logic (PAL) chip technology. The second is a technique for the
realization of fast carry modulo arithmetic adders. The third is

* a multi-pipeline technique allowing pipelining within operations
as well as between operations to double system throughput
capability at only the cost of the additional gates necessary for
the extra pipeline registers.

The QRNS beamformer baseline design accomplishes modulo
* multiplication by the technique of logarithmic mapping of the

multiplier QRNS inputs, modulo addition of the logarithms and
zero detection within each ring, and antilogarithmic mapping of
the result to produce the multiplication output. These mappings

a, have been accomplished by sums of products logic reduction by the
first technique of the above paragraph. The converter and

* transform components also require use of the logic reduction

107

Y



W.

mapping technique. Factorization of the implicants derived from
the logic reduction methodology can permit some further reduction
of the gates required. This factorization has not yet been
applied to the modulo logarithmic tables implicants, but has been
applied to all other logic reduction outputs. Application to the
modulo logarithm tables will be accomplished early in Phase II.

The design of fast carry modulo arithmetic adders for the
- ', QRNS baseline rings as well as for rings of modulus 53 and 61 for

far-term system requirements have been completed by the use of
the second methodology technique mentioned above. These adders
may be pipelined within the operation itself as well as between
operations producing a double pipelined implementation with only
six gate delays in the worst case path. Similarly, modulo
subtractors needed in the transform components have also been
developed. This mid-operation pipelining may also be applied to
the modulo multipliers as well. Pipeline stages may be employed
between the logarithm mappings, the modulo subring additions, and
antilogarithm mappings to produce triple pipelined multipliers
also with only six gate delays in the worst case path.

NSimilarly, the converter and transform components may be
0- pipelined between mappings, and within their modulo additions and

subtractions to the same six gate delay level.

The binary recomposition component still presents a
challenge to achieve the same pipeline delay performance.
Methodology to accomplish this implementation has not yet been
developed. Multiplexing of the output streams into two
recomposition sections may be necessary to maintain the six gate
delay level of throughput performance achievable in the rest of
the QRNS system. Since a recomposition chip is not being
developed in this program effort, further effort toward
optimizing gate structure to be employed in chip implementation
has not been made.

The residue class core function of Akushskii, Burcev, and
Pak presents another alternative that may enable development of
an efficient recomposition component with minimum gate delay
level capability. This function permits scaling, magnitude,

* parity, and sign detection calculations to be performed within
the residue rings of the RNS system and one additional ring, that
of the residue class core function. Calculations involving each
ring of the RNS are performed within the modulus of the core
function to produce a core characteristic of an input RNS value.

.-~ Further modulo arithmetic operations involving both the RNS rings
A. and core ring on one or a pair of RNS numbers can accomplish the

0
operations noted above.

'elf For recomposition component development one approach would
"0%, be to use scaling methods based on the core function to first
" ; scale the output stream to a new RNS system value justencompassing the reduced dynamic range of the output stream that

'108

'4-,

6956



is actually required for further processing. For example, a
system with 46-dB dynamic processing range for near/far signal
reception and 50-dB null depth capability against the far signal
would need 96-dB total dynamic range and require 16 bits for the
output signal word width. This could be covered by only three
rings of the RNS system and thus rescaling would need only be
applied to those three rings and output conversion based upon
table lookup using a 256K by 16-bit word memory would produce the
final output. The rescaling process and a logic reduction
implementation of the table lookup could well be accomplished
with a single ASIC chip. This analysis, however, is not part of
the scope of the Digital Beamformer Program demonstration
development since an off-the-shelf parts implementation of the
recomposition function is planned for demonstration to defray
further custom chip development expenses.

A.2.1 Multiple Output Lozic Reduction Methodology - As
previously mentioned, several components of the baseline
beamformer system design require 2-level or sums-of-products
logic reduction. The problem is usually stated in terms of an

• input logic table and a corresponding output table. The
variables expressed by these tables correspond to the address and
data lines of memory chips in a memory table lookup
implementation. The memory lookup method uses the so called
minterm implicants consisting of all combinations of the
variables from the input logic table. For each minterm address
all outputs are retrieved as the corresponding data values for
that address. Logic reduction reduces the number of minterm
addresses which must be implemented by examining the set of all
implicants composed of true or inverted values of one or more of
the input logic table variables.

For an n input table there are 2n minterms and 3n possible
implicants. From the set of 3n possible implicants there exists,
in general, several subsets of these implicants which cover all
of the true values of the outputs present in the output logic
table. The total subsets possible from a set of 3n possible
implicants is staggering even for small n. However, only the
subsets of the set of implicants which cover the outputs required
need be examined to find the minimum possible solution. Still,
when four to six inputs and outputs are involved the set of
implicants contains many possible subsets. Logic reduction
algorithms such as the Quine-McCluskey method simplify the
problem considerably for single output logic reduction by

* deriving a set of prime implicants from the minterm set by
nearest neighbor comparisons. This set of prime implicants may
contain more than the necessary number of implicants to cover the
output but will have eliminated all implicants which are also
covered by any individual implicant from the set of prime
implicants. Following the restriction of the implicants to only
the prime implicants by the Quine-McCluskey method, next the

109
a-



'S minimum covering subset from the prime implicant set is desired

to be found.

No general method short of an exhaustive search for finding
this subset is known. The problem is again simplified by
identifying some of the prime implicants as essential in that
they must be included in the output implicant set since no other
implicant covers at least one output that is covered by the prime
implicant in question. Finally, from the set of remaining
nonessential prime implicants, an examination of subsets of these
implicants is made to select enough further implicants to cover
the output. The nonessential prime implicants may be grouped
into several cyclic tables from each of which at least two prime
implicants must be included in the final output covering. The
cyclic groupings may be examined by arbitrarily picking an
implicant and then reexamining all other nonessential prime
implicants to see if inclusion of the arbitrary selection covers
any remaining nonessential prime implicants. If so then they may
be eliminated, and the further reduced set is reexamined for
essential terms given the arbitrary selection. This process is

* repeated until a full covering is achieved. Cost criteria rules
may be devised for governing the arbitrary selection process.
Still a minimum optimization cannot be guaranteed in the general
problem unless all possible branches of the arbitrary selection
tree are examined.

For multiple output reduction the situation is significantly
worse. Prime implicants now include all prime implicants from
each individual output and also some new prime implicants for the
multiple output problem that are not prime implicants of any of
the individual outputs. These additional multiple output prime
implicants arise because an implicant necessary for one
individual output may be covered by an implicant containing an
additional input variable. If this same implicant also arises in
the same manner for another individual output except with a
different additional input variable then the new implicant
replaces two individual reduction implicants. An extended
Quine-McCluskey method can be used to find the full set of prime
implicants for the multiple output case. A description of the
multiple output case is best first preceded by the individual
output case.

In the individual output reduction case prime implicants are
generated with respect to the combinations in the input table for

* which the output is true. These prime implicants express the
sums of products logic implementation form. Conversely the prime
implicants may also be generated with respect to the combinations
in the input table for which the output is false. These prime
implicants express the products of sums logic implementation
form. The sums of products form is preferable for CMOS ASIC

* implementation, since it is expressable as NAND-NAND two-level
logic and NAND gates have better delay properties than do nor

110

W
e



N.

gates for CMOS ASIC gates. The products of sums implicants
express the NOR-NOR two-level logic form. Either set of
implicants, however, can be used with the nand-nand logic
implementation. The sums of products form produces the true,
logic one, value of the output, while the product of sums form
produces the false, logic zero, value of the output.

In the multiple output case an analogous situation occurs.
For multiple output reduction prime implicants are generated for
each possible output combination except zero. For individual
reduction there is only one such output combination that being
when the individual output is true. This generalizes to all
non-zero output combinations for multiple output reduction.
There are 2n - 1 non-zero output combinations for which prime
implicants must be generated. This set of prime implicants is
then the set in which the minimal logic implementation subset

.1> must be contained. However, this set of implicants can approach
the upper limit of all possible 3n implicants from the input
table if the number of outputs needed is relatively large. With
the number of outputs equal to the number of inputs the complex-
ity of the multiple output problem grows by over a magnitude with

0respect to performing the reduction of each output individually.
Additionally, another order of magnitude in complexity is added
to the multiple output problem by the consideration of the output
"sense" combination. Again this is an analogous situation to the
individual output reduction problem. There the "true" output
"sense" produced those implicants which defined the true output
as a sums of products NAND-NAND implementation, and the "false"
output "sense" produced those implicants which defined the
inverted output when the products of sums implicants are
implemented with a NAND-NAND form. Now with multiple outputs
each output can be considered in either true or inverted form.
Any particular input minterm can be excluded from the prime
implicant generation by taking the output combination "sense"
choice that corresponds to that minterm. In other words -very
one of the 2n output combination sense choices produces another
multiple output reduction problem that eliminates a different
minterm from the prime implicant generation process. All
implicants may be generated by the NAND-NAND gate form and the
final outputs are either the true or inverted* values of the
output depending on the output combination sense choice that was
used to produce the prime implicants from the 2n - I non-zero
possible output combinations.

The above discussion of the multiple output logic reduction
problem was necessary in order to understand the methodology used
to Zenerate multiple output logic reductions for the logic
mappings required in the digital beamformer QRNS design. The
methodology really just consists of a compromise between the
vastly superior run time needed to perform individual logic
reductions compared to multiple output reductions. This
compromise improves the multiple output reduction performance in

,I.-.I



two ways by basing the multiple cases upon prior determination of
the minimal individual output reductions performed for both true
and false senses of the individual outputs.

An existing program for multiple output logic reduction by
V the extended Quine-McCluskey method was used for all of the logic

reductions. The methodology consists of first using the program
with each output singly in both true and inverted form. For a
six input table this requires only about a minute of TI business

pro run time for each individual output. From the listing of the
individual output implicants a gate count for all choices of true
and inverted outputs may be calculated. Those choices producing
the lowest gate totals for all outputs combined can then be used
as the multiple output combination output "sense" choices to be
examined in multiple output runs. A single multiple output
"sensr choice for a six input and six output logic reduction
takes on the order of three hours of TI business pro run time.
Thus the process of limiting the output sense combinations to be
examined is essential. Discussions of considering all output
sense combinations in the multiple output reduction were not

* found in any literature examined in this study effort. The
"best" output combination sense choice can sometimes produce up
to a 20-percent improvement over that attained by arbitrary
selection of the "zero" output combination sense.

This limitation of the output sense combinations considered
is one compromise obtained by first examining the individual
reductions. This procedure can greatly reduce the choices
considered from 2n output combination sense choices to only a few
candidates to be considered for multiple output reduction.
However, the second compromise of the methodology is the more
important. As was discussed above when large numbers of possible
prime implicants are available as is the case with multiple
output reductions, situations in which many nonessential prime
implicants from cyclic subsets arise. Resolution of these cyclic

J1 subsets of implicants requires the selection of many arbitrary
implicants in generating a covering from the prime implicant set.

• The examination of many branches of arbitrary choices may be
% necessary to find an implicant set that performs only as well as

the individually derived implicants. This fact suggests the
second compromise. The implicants produced from the individual

.r 7. reductions are saved and when arbitrary selection is required in
the multiple output reduction problem at least that arbitrary

* selection may pick an implicant needed by one of the individual
% outputs. This method thus examines only arbitrary selection

trees which will produce at least as good a result as the
individual reductions. This technique was found to be essential
in the avoidance of many poor arbitrary 3elections made when

% performing the multiple output logic reduction in an
unconstrained manner.

112



The two-level NAND-NAND gate arrangement specified by the
logic reduction methods above, cannot actually be implemented in
two gate delays except when the largest nand gate required has at
most four inputs. With four input systems this is usually the
case, but for five and six input systems there are often gates
with more than four inputs in each of the two NAND-NAND levels.
For available CMOS ASIC implementation four input fan-in is the
standard single gate maximum. An eight-input NAND gate must then
be realized by the logical OR of two NAND gates each with four
inputs. The OR must be implemented as a NOR followed by an
invert. Thus the total levels of logic becomes three for a
single eight-input NAND gate. The performance delay, however, is
closer to that of two typical gate delays when implemented with
the three gate structure composed in close proximity to each
other. This can be attained by the use of a gate macro structure
in the CAD layout specification in the ASIC implementation. Thus
the two-level NAND-NAND logic reduction gate structure for the
typical component used in the digital beamformer baseline design
will have a performance of four nominal gate delays.

A final note of application to the implementation of the
NAND-NAND reduction structure is that of factorization.
Dependent upon the implicants of any reduction there exists a
factorization of those implicants which will minimize the gates
required in the implementation structure. This factorization may
require many more levels of delay for implementation. However,
control of exactly how much factoring is performed allows the
designer to control the number of gate delay levels used in the
structure, to match the level of performance to that of other
components of the system. As an example a NAND-NAND logic
representation for an adder can also be factored into the ripple

% carry add structure thereby using far less gates but at the
expense of considerably more delay. Conversely, the ripple carry
add structure may be expanded through Boolean algebraic
multiplication to produce a two level NAND-NAND structure. The
particular NAND-NAND structure produced depends upon the output
combination sense used. Control of the factorization can produce
a structure with delay and gate count between the extremes of the
two structures and that may be more favorable in terms of overall

0- throughput per gate used in the implementation. Thus the logic
reduction NAND-NAND structures serve as a beginning point for
further architectural optimization through possible advantageous
factorizations of the implicants. For some system situations
further advantageous factorizations may not be possible in which
case the NAND-NAND structure is the optimum overall throughput
per gate structure possible for that system situation.

A.2.2 Modulo Adder Development Methodology - The
exploration ot structural implementation possibiiities for -he
efficient implementation of modulo arithmetic produces many
possible options. One such option is the representation format
of the numbers by the bits in each word. Normal binary

V.11
p.



representation may not be the best choice. Indeed, for mod 5, an
implementation using deficit one notation, in which each number
is represented by one less than its normal binary equivalent and

* zero is represented by binary 100, does yield an implementation
that is more efficient for both multiplication and addition.
Some time has been spent analyzing alternate bit representations
for other moduli as well. However, the lack of a systematic
procedure to explore these possibilities doomed this path to
failure. The ideal would be to achieve the best representations

* of the operands within the overall optimization problem of
performing both multiplication and addition with a minimal
adjustment of representation between the requirements for the two
different operations.

The ideal mentioned above does motivate the structure
proposed for the digital beamformer QRNS implementation. The
multiplier and adder are both accomplished by data
representations conducive to efficient adder implementations, and
the adjustment between representations is the modulo' logarithmic
function which is implemented by logic reduction table lookup.

* It may be surmised that this does produce the optimum data
representation scheme for the system, but it is known that for a
small dynamic range RNS system using only certain 4-bit wide or
less moduli that direct implementation of the multiplications
instead of logarithmic representation produces the more optimal
implementation.

However, for a larger dynamic range system as required for
the digital beamformer the QRNS logarithmic multiplication
appears to produce the best implementation choice. This is
partly because this scheme presents an efficient method for
pipelining within the multiplications both before and after each
table lookup for the logarithm and antilogarithm. The
multiplications are thus produced after three pipeline delays and
can achieve the throughput of the worst pipeline section. As
highlighted above the table, lookups can be achieved in four
delays, although factorization to greater delay may improve their
efficiency. The modulo additions performed between the

*logarithmic operations are not in the modulus of the
multiplication but, instead, in a modulus one less than the
modulus of the multiplication. These are thus composite numbers
allowing further factorization into RNS subrings for the
implementation of these adders. A zero detect is necessary to
complete the multiplication. For the moduli of the baseline QRNS

* beamformer system the subrings required are all small moduli and,
thus, can be implemented with a smaller number of gate delays
required in the worst case path. The moduli required for the
baseline subrings are 3, 4, 5, 7, 8, 9, and 16, all of which can
be implemented with worst case gate delay paths of six or less
gate delays. The larger moduli of 17, 29, 37, and 41 cannot be

* efficiently implemented in only six gate delays. However, a
12-gate delay implementation for these adders, which can be

114



.' pipelined to six gate delays in mid-operation, presents an
;'/vimplementation for the QRNS adders that matches the capability of
' ' ,the QRNS pipelined multipliers.

~Thus, two types of modulo adder arithmetic architecture are
presented. One allows for only six gate delays in the smaller

subrins moduli. while the other allows for 12 gate delays, double
i pipelined to six, for the QRNS addition moduli. The methodology

for the moduli 4, 8, and 16, simply, is to implement them with
~standard binary adders, using fast carry only to the extent

~necessary to minimize the delay path to six gate delays, and is
. needed only for one carry bit in mod 16. Mod 3 presents no

problems, being achievable with only three gate delays. ForSmod 5 and mod 7, efficient seven-gate delay implementations were

devised before the six-gate delay double-pipelined idea was
developed. These can be improved to six delays by logic

reduction and subsequent factorization, if by no other method.
Mod 9 can be achieved as a ripple carry of two mod 3 sections,

since 9 is the square of 3. Since mod 3 is achieved with three
m 5 gate delays, the mod 9 implementation using the ripple of two

% mod 3 sections take six gate delays. For far-term systems also

• incorporating moduli 53 and 61 into the QRNS system, additionalsubring moduli of 13 and 15 are needed. The use of 15 can be

avoided by factoring it into subrings 3 and 5, however, at the

2eexpense of increasing the total bit width. The use of subringmod 13 cannot be avoided if mo cr of twolmd in the QRNS

system. Efficient single-pipeline six-gate delay implementations
for either mod 13 or mod 15 adders have not yet been explored.

4 - Again logic reduction followed by subsequent factoring will

permit the result of six gate delays to be achieved, but this
Snmethod may not produce a very efficient implementation.

subThe use of logic reduction and factorization can also be
applied to the implementation of the larger QRNS adders, but this

ehas not been found to be a satisfactory method. A variation on
1this method was devised. First, form all NAND and NOR gate

combinations of the corresponding input bit positions. Then,

-'._ apply logic reduction to find the fast carry implicants from
, combinations of the NAND and NOR gates and their inverted values,

ethe AND and OR gates. This method presents large logic
greductions to be performed and a more direct procedure was
desired. The development of this direct procedure has been

achieved, and used co produce the fast carry mod overflow detect
a etimplementations used in the six-delay double-pipeline mod adders

40 This method is based upon defining partitions of the size of

.thc. bit width of the modulus that are weighted by one of three

... values. These values are 0*2n, l*2n and 2"2n where n is the bit
obposition starting with n=o for the least significant bit. The

1 generation of the adder carry implicants is achieved by
generating the partition sum associated with each combination of
the weights, then selecting those combinations that produce the

15

deird.Th dveopen o hi dret roedreha be
..N.acheve, an usd c proucethefastcary md ovrflw dtec



-- V

carry implicants, and then decoding the bit position weights to
identify the carry implicant associated with the selected
combination. The selection and decoding process is outlined
below. Using these three weights for each bit position allows the
generation of all of the possible 3n combinations of implicants
having either a NAND gate or a NOR gate or no gate at the
corresponding bit positions of the inputs to the adder. Or,
alternatively, the 3n combinations may be decoded as either an
AND gate or an OR gate or no gate at the corresponding bit
positions. Thus, two types of implicants may be tested. General
implicants consisting of mixtures of NANDs, ANds, NORs, ORs or no

%. gates are not considered by the method.

2- A partition is selected as being needed for the generation
of an essential implicant for the nth carry bit position, if the
weights used for that partition are just sufficient to cause it
to either just exceed or just fall short of certain test values
for that bit position. Just exceed (fall short) means that, by
reducing (increasing) the value of the weight at any bit
position, the partition sum is then less than (greater than) the

* est value. The test values are a function of the bit position
of the carry and of the modulus and, also, the next greater
power of 2 of each. The method can generate either the
noninverted or inverted form of the carry bits. Neither is
preferable in the subsequent implementation of the rest of the
mod adder circuitry and, hence, the more optimal should be
chosen.

The implicants produced by this method have been tested for
both nonredundancy and correct production of the carry bits and
have passed in all cases. These implicants are believed to be
the optimal NAND-NAND implicants for two-level generation of the
fast carries for any modulo adder. Indeed, when the modulus is a
power of 2 mod adder is just a binary adder of bit width equal to
the bit width of the modulus. The same implicants that are
typically used in standard parts for fast binary carry adders are

produced by the method in this case. This lends a high level of
confidence to the optimal production of the other modulo carry
bits as well.

In the partition selection and implicant decoding process,
first consider generation of the most significant carry out of
the mod adder. The most significant carry out indicates that the
sum of the inputs to the adders exceeds the modulus and that

0 wraparound fixup addition is necessary to produce the correct
output for the modulo sum. The partitions that just exceed or
are equal to the modulus select the implicants for the
noninverted most significant carryout. The modulus is the test
value in this case. The partitions which pass the selection
criteria are then decoded as implicants. Bit positions with
weight 0*2n contribute no gate, those with weight multiplier 1*2n
contribute the OR gate of the nth bits of the inputs to the adder
to the implicant and those with weight 2*2n contribute the AND

116



gate of the nth bits of the inputs to the adder to the implicant.
4 For the inverted form of the most significant carryout the

partitions that just fall short of the modulus are selected.

They are decoded from their weight combinations by 0*2n
indicating inclusion of a NOR gate, 1*2n for inclusion of a NAND

K" gate, and 2*2n indicating no gate for that bit position of the
implicant.

%. For the carry positions less than the most significant, the
situation is slightly more complicated. Both noninverted and
inverted forms now require two test values, and two sets of
implicants are produced and must be appropriatly combined in each
case to correctly produce the carry bit. For the inverted form

,the logical or of the two set of implicants produces the carry
4/ out. This means that both sets of implicants may be included in

the second level of the NAND-NAND implementation and that two
levels of logic still suffice. For the noninverted form the
logical AND of the NAND-NAND implementation of the first set of
implicants and of the inverted value of the NAND-NAND
implementation of the second set of implicants is required. This
means that another level of logic is needed for this case.

For the inverted form's first set of implicants, the same
selection test and decoding is used as above for the most
significant carry bit's inverted form, except with the test value
changed. The test value is expressed as the modulus minus the
sum of 2n for all n between the modulus width and the position of
the carry out, except not including in the sum those n for which
2n is less than the shortfall of the modulus from the next power
of 2. The inverted form's second set of implicants are found
using another test value which is formed by adding 2n for the nth
carry bit to the test value described immediately above. The
selection and decoding criteria used here is the same as for the
noninverted form of the most significant carryout. Thus, the
final NAND-NAND form includes both implicants with only NAND and
NOR gates and implicants with only AND gates and OR gates.

For the noninverted form's first set of implicants, the
selection and decoding is the same as for the most significant

* carryout's noninverted form with the test value being the first
of the two test values described in the paragraph above. For the
second set of implicants the test value, selection, and decoding

A criteria are all the same as for the second set of implicants in
the above paragraph. The difference is in the application of the

.5- inverted value of the NAND-NAND implementation of these
* implicants being logically ANDed to the NAND-NAND implementation

of the first set of implicants.

As mentioned earlier in conjunction with the logic reduction
methodology, the implicants produced in the NAND-NAND sums ,r
product form may be factored by Boolean algebra to produce a

* final form that is preferable for actual implementation. This is

.W0 117



definitely the case for the implicants produci'-F the mod adder
cay bits derived by the partition method described here. These
factorizations are not achievable by any ,-nown general method and
must be applied within the capabilities of gate fan-in and
fan-out of the technology in which the implementation is being
executed.

A.3 IMPLEMENTATION ACCOMPLISHMENTS

This section summarizes the implementation accomplishments
for the QRNS components of the baselire beamformer system. The

,. use of pipeline stages internal to the QRNS component operations
4 has established a pipelined six-gate delay arrangement of the

QRNS architecture as a practical choice for implementation of the
beamformer system. Both the logic reduction and mod adder carry

V implicant methodologies described in Section 2 have been used
V. extensively in the generation of the internally pipelined

six-gate delay components.

The internal pipelining of the QRNS components is performed
0 in a manner such that each system operation is always at the same

stage in the pipeline sequence. Note that this does not have to
be the case when internal pipelining is employed. For example,
pipelining may be employed after each bit in a systolic
implementation of a ripple carry adder. For adder circuitry,
this can be an efficient method. However, it does not provide a
reasonable implementation for direct multiplication. This
systolic bit ripple technique requires that the input bits must
be delayed by n delays for the nth bit before processing, and
output bits must be realigned bit-wise with corresponding delays
after processing for subsequent system use. The internal
pipelining of the QRNS components is employed across the full bit
width, and ripple alignments and realignments are not necessary.

A.3.1 QRNS Component Results - Components include those for
conversion to QRNS representation, those for QRNS arithmetic

•l operation, and those for reconversion from QRNS to binary
representation.

The conversion to QRNS representation process includes first
the decomposition to RNS residues and then the transformation of
the two complex RNS residue channels i ito two QRNS residue
channels. The decompositions are dependent upon the near-term
and far-term requirements in terms of the input signal word

._ widths and also in the number of QRNS rings employed in the
system. The transforms and subsequent QRNS arithmetic operations
are dependent )nly on the number of QRNS rings employed in the
system.

%"



¢3 °  A.3.1.1 Decomposition Logic Reductions - Near-term and
.A4 far-term input signal word-width requirements are examined for

g-bit and 13-bit inputs, respectively. It is assumed that the
, inputs are 2s complement integer binary base representations.

The 9-bit RNS decomposition components will rea,,ire three
. pipeline stages. The first stage will be a logic reduction
-'.' .implementation of a table lookup of the four higher-order bits

.. reduced to their modulo residue, and the five lower-order bits
"- -reduced to their modulo residue. These residues are added in two
Spipeline stages using a double pipelined mod adder. The mod

adders are described later.

The 13-bit RNS decomposition components will require
i five pipeline stages. The 13-bit inputs are broken into three

segments for residue lookup and requires two modulo adders for
adding the segment residues. Logic reduction implementations of

e.'vtable lookups of the four highest-order bits, the next four
i. higher-order bits, and the five lower-order bits, each reduced to

their modulo residues, are all performed in the first stage. Two

,'

.- ~stages are required for each of the modulo adders Extra
pipeline reisters are equired to maintain alignment of the
third residue to the second modulo adder.

pipeineTable A- summarizes the results of the logic reduction
tlookups for both the 9-bit and 13-bit input word width cases.

All eight moduli needed for far-term dynamic range requirements

are included.

'" 'TABLE A-1. LOGIC REDUCTION LOOKUPS

T-3bGATE COUNTS GATE COUNTS
fv pie9-BIT INPUTS 13-BIT INPUTSdnMODULUS LSB MSB TOTAL LSB NSB MSB TOTAL

:."5 70 32 102 70 26 32 128
- 13 54 31 85 54 29 35 118
i17 25 12 37 25 24 0 49h -29 23 39 62 23 40 48 ru

•-37 0 42 42 0 43 43 86
•41 0 40 40 0 43 35 78
,.53 0 41 41 0 45 48 93
r''61 0 31 31 0 13 42 55

theiA.3.2 ORNS Transform Logic Reduction - The QRNS transform
and inverse transform components will both require three pipeline

. staes. One stage again will be used for logic reduction
implementation of a table lookup function and two stages will be

pneeded for he double piplineod1- adder nr mod subtracter hat
will be required to complete the transform equation operations.

~119

areinlued

TAL Ai LGCREUTINLOKP



The QRNS transform equations remove the dependence on the

square root of negative one in making complex calculations. This
is possible since the equation

N j2 E -1 mod mi (A-1)

has a nonimaginary solution for QRNS moduli m i . QRNS moduli must
• " be integers whose factorization includes only prime numbers that

leave a remainder of 1 when divided by 4.

The transform equations produce residue components S and D
in the QRNS residue system from the I and Q residues of each
modulus that were obtained from the RNS decompositions.

S (I + QJ) mod m i  (A-2)

DN (I - QJ) modmi (A-3)

The inverse transform equations regenerate the I and Q RNS
N residues that can be recomposed to binary integer representation
* of the I and Q output channels.

I S (S + D) (m i + 1)/2 mod mi (A-4)

Q (D - S) j(mi + 1)/2 mod mi (A-5)

Implementation of the transform equations requires
multiplication of the Q residue of each respective modulus by the
factor j (a constant for each modulus), followed by modulo
addition or subtraction for Equation A-4 or A-5, respectively.
Alternatively, multiplication by -j, followed by modulo
subtraction or addition for Equation A-4 or A-5, respectively,
can be implemented. The best choice for each modulus can be
selected for the implementations.

Implementation of the inverse transform equations requires

r. first modulo addition or subtraction, then multiplication by the
residue constants (m i + 1)/2 or J(mi + 1)/2 for each modulus.
Reversing the subtraction order in Equation A-5 allows using

' instead the constant -j(mi + 1)/2 for that equation. Again the
best choice for each modulus can be selected for the
implementations.

The multiplications using the transform and inverse
* transform equation constants shall be implemented using logic

reduction sums of products gate structures. Table A-2 lists theON residue constant multipliers needed for the transform and inverse
transform equations for each of the eight QRNS prime moduli ot
6-bit or smaller width. Table A-3 gives the logic reduction gate
counts needed for implementation of these constant

* multiplications.

* 120



TABLE A-2. QRNS TRANSFORM EQUATION CONSTANT MULTIPLIERS

MODULUS j -j (mi + 1)/2 j(m i + 1)/2 -j(m i + 1)/2

5 2 3 3 1 4
13 3 8 7 9 4
17 13 4 9 15 2
29 12 17 15 6 23

37 6 31 19 3 34
41 9 32 21 25 16
53 30 23 27 15 38
61 11 50 31 36 25

TABLE A-3. QRNS TRANSFORM EQUATION CONSTANT
MULTIPLIER LOGIC REDUCTION GATE COUNTS

MODULUS j -j (mi + 1)/2 j(mi + 1)/2 -j(mi + 1)/2

5 5 5 5 0 3
13 25 28 16 23 21

0 17 27 27 18 25 17
29 97 87 28 89 89
37 117 121 36 112 119
41 126 131 37 129 119
53 166 207 51 196 213
61 287 258 42 265 272

A.3.1.3 Modulo Lo2arithm Lo2fc Reductions - The QRNS
system multipliers will require three pipeline stages for
operation at the six-gate delay level in each stage. The
operations performed are logarithm, then addition, and then
antilogarithm in the three stages. The logarithm and
antilogarithm are implemented by logic reduction table lookup.
The adders needed here are small modulus, subring mod adders that
can be performed in one pipeline stage.

The multiplier logic reductions have been completed for
sac of the six moduli of the baseline system, and for two
additior.l far-term moduli. In each modulus there are several
candidates for possible use as the base for the logarithmic
operation. These elements are referred to as primitive elements
of the particular ring. By taking successive powers of any
primitive element, all elements of the ring are generated, and,
hence, these elements are also often referred to as generator
elements. Any primitive element of a ring may be used for the
logarithmic base in that ring. The best choice for
implementation may be selected after examining all of the
possibilities.

121



Different primitive elements could be used for the
logarithm and for the antilogarithm, but a change of logarithmic
base would then also have to be implemented by another logic
reduction. The base change reduction would be inherently smaller
than the other reductions since some elements will always map to
themselves. However, the use of three, instead of two,
reductions would not result in less circuitry. Thus, the same
primitive element is selected for both logarithm and
antilogarithm table reductions.

Many candidate primitive elements were eliminated by
applying individual output reduction techniques. The best
candidate individual primitive element reductions were chosen for
multiple output reductions based upon the best output combination
sense choices as provided by the individual reductions. The best
results of these reductions provide the implicants needed to
implement the logarithmic operations. Gate counts required for
the various candidates for individual and multiple reductions as
performed are summarized in Table A-4.

* These gate counts are based upon direct form
implementation of the NAND-NAND structure. Some further
reduction can be achieved by factorization of the implicants.
The columns under INDIV in Table A-4 give gates determined by
individual output reductions. Only a few primitive elements were
selected for multiple reduction. Several output combination
senses were tried in each multiple reduction and only the best
result is listed in the columns under MULTI in Table A-4.

-S.

U'.o

%'

~122

SP



TABLE A-4. GATE COUNTS FOR MODULO
LOGARITHM LOGIC REDUCTIONS

MODULUS PRIMITIVE LOGARITHM ANTILOGARITHM TOTAL
ELEMENT GATES GATES GATES

(INDIV/MULTI) (INDIV/MULTI) (INDIV/MULTI)

* 5 2 4 4 6 6 10 10
3 2 2 2 2 4 4

13 2 25 22 22 21 47 43
6 25 22 47
7 22 21 22 18 44 39

11 22 22 44

17 3 36 29 29 25 65 54
5 39 42 81
6 50 41 91
7 40 46 86

10 48 36 84
11 45 38 83

. 12 46 48 94
14 33 29 30 28 63 57

29 2 77 66 102 97 179 163
3 72 67 89 76 161 143
8 75 69 87 81 162 150

10 80 100 180
11 77 102 179
14 72 69 89 76 161 145
15 75 87 162
18 80 100 180
19 77 102 179
21 72 89 161
26 75 87 162
27 80 100 180

37 2 153 133 286
5 147 140 287

13 151 120 271
15 150 139 289
17 151 119 120 106 271 225
18 153 133 286
19 150 145 295
20 154 127 117 98 271 225
22 147 140 287
24 154 117 271
32 150 134 284
35 150 145 295

123



TABLE A-4. GATE COUNTS FOR MODULO
LOGARITHM LOGIC REDUCTIONS (continued)

MODULUS PRIMITIVE LOGARITHM ANTILOGARITHM TOTAL
ELEMENT GATES GATES GATES

(INDIV/MULTI) (INDIV/MULTI) (INDIV/MULTI)

41 6 147 139 286
7 171 129 300

11 157 140 297
12 143 124 121 105 263 229
13 169 129 298
15 142 135 277
17 143 148 291
19 149 160 309
22 162 150 312
24 156 140 296
26 129 146 275

28 161 126 287
29 151 125 276
30 165 135 300
34 163 134 297
35 160 143 303

53 2 254 225 479
3 212 241 453
5 230 217 447
8 221 240 445

12 240 204 444
14 220 212 432
18 200 185 202 182 402 367
19 211 211 422
20 210 213 423
21 236 213 449
22 246 194 440
26 240 215 455
27 237 230 467
31 249 197 444
32 239 213 452
33 207 229 436
34 208 209 417
35 203 178 185 170 388 348
39 223 219 442
41 243 211 454
45 224 212 436
48 233 215 448
50 209 224 433
51 251 218 469

124
0



-. ~ ~ ~ ~ ~ ~ ~ ~ R ---------.'.-. W-. OR Klr ~ll.' ~ W W 1

TABLE A-4. GATE COUNTS FOR MODULO
LOGARITHM LOGIC REDUCTIONS (continued)

MODULUS PRIMITIVE LOGARITHM ANTILOGARITHM TOTAL
ELEMENT GATES GATES GATES

(INDIV/MULTI) (INDIV/MULTI) (INDIV/MULTI)

61 2 316 268 584
6 276 255 245 219 521 474
7 316 268 584

10 303 245 548
17 303 245 548
18 289 259 548
26 289 259 548
30 289 259 548
31 276 245 521
35 276 245 521
43 276 245 521
44 316 268 584
51 316 268 584
54 303 245 548
55 289 259 548
59 303 245 548

A.3.1.4 Subrinst Mod Adder Development - The subring mod
adders used in the logarithmic modulo multipliers have been
defined and modeled for all subrings needed for the baseline QRNS
system. Table A-5 summarizes the results of this design work.

TABLE A-5. SUBRING MOD ADDER GATE COUNTS

# GATE # NEEDED
MODULUS GATES DELAYS IN BASELINE

3 12 3 1
4 9 4 4
5 39 6 1
7 38 6 1
8 18 5 1
9 38 6 1

16 29 6 1

These components are implemented with gate structures
derived by a combination of logic reduction and engineering
judgment. The power of 2 moduli are simply standard binary adder
ripple carry implementations. The other modulo adders are
implemented with unique gate structures. Mod 3 is easily derived
by logic reduction. Mod 9 is efficiently implemented with ripple
carry based upon cascading two mod 3 implementations. This

125



realizes mod 9 as mod 32. Mod 7 is 1 less than a power of 2 and,
as such, is implemented by using logic reduction derivation of
the mod 7 carry out combined with binary addition with a carry in
bit, the carry in bit being supplied by the mod 7 carry out.
Mod 5 is 1 more than a power of 2 and, as such, the binary adder
carry bit ripple is adjusted to perform carries assuming -1 is
included in the sum. Again, logic reduction derivation generates
the mod 5 carry out, but here no carry out indicates to include a
carry in to the modified binary adder with carry in bit. Other
possibilities for implementing these mod adder structures were
tried, including using different bit assignments than standard
binary representations of the residue magnitudes. For instance,
it was found that mod 5 is efficiently implemented using a 1
deficit representation with only 25 gates. However, to be
consistant with the other moduli the standard representation is
planned for implementation.

For the far term moduli QRNS rings of 53 and 61 two
additional subring mod adders will be needed. These are mod 13
and mod 15, respectively. These moduli have 4-bit wide words.

* Thus, they produce 8-bit wide logic input tables if implementa-
tion with logic reduction methods is performed. Using this
method, the six-gate delay criteria can be satisfied. Estimated
gate counts for these implementations are about 150 gates for
either modulus. Using techniques similar to the QRNS ring adders
in Section A.3.1.5 permit achievement of seven gate delays for
either modulus with counts of 96 gates for mod 13 and 115 gates
for mod 15.

A.3.1.5 ORNS Mod Adder and Subtraction Development -
The double pipelined mod adders needed for the implementation of
the add tree components, as well as in the implementation of the
RNS convert and QRNS transform components, have been designed for
all rings of the baseline, as well as for the far-term rings of

V' 53 and 61. The design of these adders was formulated by trying
many arrangements of the subparts making up the modulo addition.
Fast carry bits were generated as described in the adder carry
bit methodology in paragraph A.2.2. From these were also

-. generated the implicants needed for adding the modulo fixup when
the inputs to the adder produce a sum equal to, or exceeding, the

:'V modulus. The selected scheme consists of forming the binary sum

and the modulo carryout bit in the first pipeline stage, and in
the second stage adding the modulo overflow fixup to the binary
sum, and then selecting between the modulo fixup output and the

0 binary sum as indicated by the modulo carryout bit. It is
assumed that the inputs to the adders are available from D type
flip-flops (OFF), and either the noninverted or inverted form of
each input may be used from the OFF. This applies also to the
second pipeline stage. Double-pipelined mod subtracts needed for
the implementation of the QRNS transforms have been designed
following a method analogous to the mod adder implementations.

* 12.

V~



Table A-6 summarizes the gate counts for the modulo
adders. The gates required for the pipeline stages are included
in the counts as well. It may be noted that the six-gate delay

* limit appears to be an optimum for these adder structures.
Decreasing the latency below this level can only be obtained at
the expense of many more gates required. Relaxing the criteria
to a seven-gate delay limit does not allow an appreciable further
reduction in the gate counts.

Table A-7 summarizes the gate counts for the modulo
subtracts. The high level logic simulation by test pattern
generation and verification for these logic designs has been
completed, as well.

TABLE A-6. DOUBLE PIPELINE FAST MOD ADDER GATE COUNTS
(6 DELAY)

FIRST MODULO SECOND FIXUP
PIPELINE BINARY CARRYOUT PIPELINE AND TOTAL

MODULUS REGISTER sum BIT REGISTER SELECT GATES

5 30 17 6 20 12 85
13 40 29 13 25 19 126
17 50 43 18 30 26 167

S29 50 43 18 30 26 167
37 60 59 24 35 35 213
41 60 59 24 35 36 214
53 60 59 33 35 39 226
61 60 59 28 35 33 215

TABLE A-7. DOUBLE PIPELINE FAST MOD SUBTRACT GATES
(6 DELAY)

FIRST SECOND FIXUP
PIPELINE BINARY BINARY PIPELINE AND TOTAL

MODULUS REGISTER DIFF COMPARE REGISTER SELECT GATES

5 30 17 5 20 12 84
13 40 29 8 25 18 120
17 50 43 12 30 25 160
29 50 43 12 30 25 160
37 60 60 17 35 37 209
41 60 60 17 35 34 206

053 60 60 17 35 34 206
61 60 60 17 35 32 204

127



REFERENCES

[1] W. F. Gabriel, "Using Spectral Estimation Techniques in Adaptive
Processing Antenna Systems," IEEE Transactions on Antennas and
Propagation, Volume AP-34, No. 3, pp 291-300, March 1986.

(2) D. F. Elliott and K. R. Rao, Fast Transforms: Algorithms, Analyses,
Applications, Academic Press, Inc., 1982.

(3) J. T. Mayhan and F. W. Floyd, "Factors Affecting the Performance of
Adaptive Antenna Systems and Some Evaluation Techniques," MIT Lincoln

* Lab Technical Note 1979-14, August 1979.

(4] U. E. Rodgers and R. T. Compton, "Adaptive Array Bandwidth with Tapped

% Delay-Line Processing," IEEE Transactions on Aerospace and Electronic
Systems, Volume AES-15, No. 1, pp 21-27, January 1979.

[5) J. Capon, "High Resolution Frequency-Wavenumber Spectrum Analysis,"
Proceedings IEEE, Volume 57, No. 8, pp 1408-18, August 1969.

(6) J. P. Burg, "Maximum Entropy Spectral Analysis, "Proceedings or the
37th Meeting of the Society of Exploration Geophysicists, pp 34-40,
1967.

(7] R. 0. Schmidt, "Multiple Emitter Location and Signal Parameter
% Estimation," IEEE Trans. of Antennas and Propagation, Volume AP-34,

No. 3, pp 276-280, March 1986.

(8] A. V. Oppenheim and R. W. Schafer, Digital Signal Processing,
Prentice-Hall, Inc., 1975.

(9] R. Nitzberg, "Effect of Computational Errors on Adaptive Processing
when Using a Convariance Estimation Procedure," RADC Symposium on
Adaptive Arrays, Volume 1, pp 250-269, 1980.

(10] M. A. Soderstrand, W. K. Jenkins, G. A. Jullien, and F. J. Taylor,
editors, Residue Number System Arithmetic: Modern Applications in
Digital Signal Processing, IEEE Press, 1986.

[11] H. J. Nussbaumer, Fast Fourier Transform and Convolution Algorithms,
* Springer-Verlag, 1981.

1 128

0R



_, IF u - . ., L W RWU. - .,- . -VV , - .-.. .. . .,r..WWR rK .. M-W M C' P I" .. '.,: ..7'-,7 .

' MISSION

~Rome Air Development Center

RADC plans and executes research, development, test and selected

acquisition programs in support of Command, Control, Communications
:% and Intelligence (C31) activities. Technical and engineering support within

areas of competence is provided to ESD Program Offices (PDOs) and other .

ESD elements to perform effective acquisition of C31 systems. The areas

of technical competence include communications, command and control,

battle management, information processing, surveillance sensors,

intelligence data collection and handling, solid state sciences,,€
electromagnetics, and propagation, and electronic, mnaintainabili y, and

, compatibility. "

II

:.d

,.

"p.

h' MISIO



01


