
,,,,feted) '1I ILL) t
SECURIY CLASSIFICATION OF THIS PAGE (14hen Data, F,,trrd)• ! E P O R D O C M E N T TIO N P A G E- " 'lREAb ft ts'rU(-" lt I

REPORT DOCUMENTATION PAGE BEFORE COMPLETING FURM

1. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

AFIT/CI/NR 88- 31
,A TITLE (and Subtitle) S. TYPE OF QEPCRT & PERIOD COVERED

,'LT A''rt.I 60T" fVLTI cONm^60 ?y P14D1 THESIS
L bv06 I i ThA Wi SPo A.TAT)o J 1 ETW o* .c3 6. PERFORMING ORG. REPORT FUk(M ....

00l ,. LTHOR(s) 8. CONTRACT OR GRANT NUMBER(S)...

.,O 0t>ucLAS. ALL .. # oP#:k(

1EPFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROjit _T. TASK
AREA & WORK UNIT NUMBERS

;.-. FIT STUDENT AT: u tVm:Lstry OIL (vLIPoOPlA

S:ONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

1988
13. NlUMBER OF PAGES

'.IONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) IS. SECURITY CLASS. (of thie report)

AFIT/NR-.-" UNCLASS IFIED
Wright-Patterson AFB OH 45433-6583

ISa. DECL ASSI FICATION/DOWNGRADING
* SCHEDULE

"w 16. DISTRIBUTION STATEMENT (of this Report)

DISTRIBUTED UNLIMITED: APPROVED FOR PUBLIC RELEASE::" DTIC
TE

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Repo A4
SAME AS REPORT

~H

I. SUPPLEMENTARY NOTES Approved for Publiclease: IAW AFR 190-1

LYNN E. WOLAVER ' __ - zL
Dean for Research ' Professional Developmbnt'
Air Force Institute of Technology
Wright-Patterson AFB OH 45433-6583

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

20 ASTP ACT (C'o nfinue n n reverse nide It necessary end Idenlify by block number)

. ATTACHED

DD 1 J,, 73 1473 EDITION OF I NOV 65 IS OBSOLETE U, lASS1FIFD
S;FCURITY CLASSIFICATION OF THIS PAGE (7h en fts F,, t-

6%. . . . . . . . . . .. '.''' -. .'..."... . .. '.."... . ".,.. . - . .-.- ", 5 %t'," ,

1.:: .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..-. . . . . .,5 ..--..,:;;:, .- . .. -: .- . .., : .: ,., .. ,-.,,. . ,,,, _
.I -' - . - -' ",,... . . . . . .."-':



I.. Multlattribute Multicommodity Flows in Transportation Networks

Douglas A. Popken

SAbstract

Previously developed minimum cost multicommodity network flow models do

not simultaneously consider the weights, volumes, and inventory holding

costs of the commodities. Ignoring one or more of these attributes may

prevent detection of potential savings; however, simultaneously ac-

counting for all three attributes leads to a problem considerably more

-. , difficult to solve. This thesis examines a multiattribute multicommo-

dity flow formulation of a transportation network with transshipment

terminals, which seeks to minimize total vehicle and inventory related

costs. First, a decomposition strategy transforms the model formula-

tion, P, into an equivalent formulation, P'. In P', the vehicle flow

variables may be found as a function of the commodity flow variables;

furthermore, the vehicle capacity constraints need not be explicitly

considered.- The decomposition, however, creates a situation whereby a

commodity's incremental cost function on a given arc may contain con-

cave and/or convex portions. This feature implies the presence of

numerous local optima, over which an exhaustive search for a global

optimum is computationally infeasible. To overcome this difficulty, an

algorithm is developed to find a local optimum that is "good", in the

sense of being superior to nearby local optima. The procedure alter-

nates between a version of the Franke-Wolfe algorithm to find local

optima, and a search routine based upon adjacent concave flows" to

provide local improvements. AComputational results from a series of

test problems measure solution quality and algorithm efficiency.

;>+2%
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cave and/or convex portions. This feature implies the presence of

numerous local optima, over which an exhaustive search for a global

optimum is computationally infeasible. To overcome this difficulty, an

algorithm is developed to find a local optimum that is "good", in the

sense of being superior to nearby local optima. The procedure alter-

nates between a version of the Franke-Wolfe algorithm to find local

optima, and a search routine based upon "adjacent concave flows" to
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1. INTRODUCTION

A transportation system is more than just a set of warehouses,

vehicles, and routes. It is also a set of policies that direct the

timing and the procedures to use in the logistical actions of trans-

porting, handling, and storing goods. These actions all involve costs,

with the magnitude of the costs dependent upon the policies in place.

Since every item we use requires numerous types of logistical actions

to bring it to its final destination, logistics related costs form a

significant component of the total cost of a good, and ultimately, the

price paid by the consumer. It would obviously be useful to devise

policies that make the logistical process more efficient.

1.1 Physical Context

In this thesis we will assume the viewpoint of a single shipping

firm which desires to minimize its overall shipping costs. The firm

transports loads of goods from multiple origins to multiple destina-

tions via routes that are either direct, or that have intermediate

stops at transshipment terminals. At the terminals, loads are reas-

signed to vehicles that take them to their next stop. We can easily

represent this physical system in graph form. Figure 1.1 illustrates

such a graph for a simple example with only one terminal and one desti-

nation. Though many of the concepts developed in this study are appli-

cable to a more generalized network, the emphasis will be on networks

that allow commodities a maximum of one terminal stop on any path

between their origin and their destination. Furthermore, shipping

strategies where the vehicles make stops at multiple numbers of origins

'%
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or destinations, known as collecting and peddling [2], will not be

considered here.

Figure 1.1
Basic Network Configuration in Single Terminal -

Single Destination Case
origins

destination

Each of the commodities will have an associated weight, volume, and

dollar value. This is a departure from previous network flow studies

V that have tended to concentrate on one, or perhaps two, of these at-

tributes. As we will see later, ignoring one or more of these attri-

* butes may prevent detection of potential savings; however, simultane-

ously accounting for all three attributes leads to a problem consider-

ably more difficult to solve.

* We will assume that shipping occurs continuously, with commodities

being shipped between specific origin-destination pairs at a constant

" * rate per unit time. The firm is responsible for all costs, from the

• time a unit is available at an origin, to the time it reaches its final

6 ~'
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destination. These assumptions affect the way that time related costs

are determined.

The time related costs, or inventory carrying costs, result from

'-.e .the time that commodities must spend in transit, and the average time

that they must spend waiting to be picked up by vehicles. These costs

represent the opportunity cost of money being "tied up" in inventory,

% 1as well as costs associated with the storage of goods over time. The

% inventory carrying cost occuring in transit is assumed to be propor-

tional to the distance traveled; however, this cost could also include

a fixed component to reflect unit material handling costs at the begin-

ning and/or the end of travel on the arc, if so desired.

Costs are associated with the vehicles themselves, and come about

from such things as fuel costs, driver wages, highway use fees, and

"* amortization costs. We will assume that all vehicles are identical;

thus, the vehicles incur identical costs for travel on a given arc.

The vehicle costs on an arc will consist of a fixed component, common

to all arcs in the network, plus a variable component proportional to

the distance traveled on that particular arc.

The solution to the problem will consist of two simultaneously

solved parts. The first part will be the determination of the optimal

* vehicle flow rate (shipping frequency), in vehicles per unit time,

across each arc. Specific vehicle routes will not be considered. The

other part of the solution is the determination of the optimal commo-

* dity flow across each arc. The vehicle flow rate will affect the total

inventory carrying costs of the commodities; moreover, there is a phys-

ical link between vehicle flow and commodity flow as a result of the

• -volume and weight capacities of the vehicles.

V.-
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1.2 Tradeoffs Involved

Designing a transportation system involves the evaluation of

*numerous tradeoffs. The most basic of these is the tradeoff between

"" transportation costs and inventory carrying costs, both of which depend

upon vehicle flow. These two factors are related to vehicle flow such

that increasing vehicle flow increases transportation costs, but de-

creases inventory carrying costs. To illustrate, let:

x. . = the multicommodity flow vector on arc (i,j),

yij (x. . vehicle flow on arc (i,j) (an increasing function of xi),

h = the vector of multicommodity inventory holding cost parameters,

hx.. = the total inventory holding cost per unit time on (i,j) 1 , and13

C.. the transportation cost per vehicle on arc (ij).ij

Then we can say:

total arc cost/unit time C )y (x. . + hx ./2y ) . (1.1)

Through calculus, one can determine the optimal value of y ij (xi) for a

fixed level of x... Complications arise in this study because we must

simultaneously determine the optimal values of the commodity flows

(which also affect inventory costs), and the vehicle flows.

Another tradeoff involves balancing capacity utilization and the

total distance a unit of commodity must travel. This tradeoff arises

when we consider both the weight and the volume of the commodities.

Vehicles may be filled either to their weight capacity, their volume

1. The convention throughout this thesis will be that vectors are
denoted by bold-face type. A symbol such as hi.. will refer to the
multiplication of two vectors. 1j

V%. 0_ - _,A -



capacity, or possibly both, depending upon the mixture of commodities

being carried within the vehicle. It seems intuitive that filling a

vehicle simultaneously to both its weight and volume capacities

generates a certain amount of efficiency. This is not always possible,

as the proper mix of commodities may not be available at a certain

location and/or during a certain time interval. One way to accomplish

e this objective is to consolidate high and low density vehicle loads

originating at different locations. This is achieved in this thesis

through the use of one or more transshipment terminals. The disadvan-

tages of this approach are the additional number of item-miles

traveled, which tends to increase vehicle costs, and the additional

* time required to ship the commodities, which increases inventory costs.

In the case of the capacity/distance tradeoff, we can achieve

savings by consolidating commodities having low densities with commodi-

ties having high densities. It may also be possible to achieve savings

by consolidating commodities having low inventory costs with commodi-

ties having high inventory costs. This is possible due to the effects

of two factors. The first of these is capacity utilization. Note that

it may be least costly to ship expensive commodities in partially

filled vehicles. In some cases we can then use less expensive goods to

* fill the truck to capacity at the consolidation terminal, thus saving

on vehicle costs. The second factor relates to the inventory costs

themselves. Average inventory costs on the terminal-to-destination

* links are reduced as the less expensive commodities make up a greater

proportion of the loads leaving the terminal. Net savings will only be

realized if the extra shipping time involved for the expensive commodi-

* ties is small. On the other hand, the presence of high inventory costs

P' . .......... "'
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might nullify any savings achieved by consolidating high and low

density commodities.

The following example should serve to illustrate these tradeoffs,

and give some insight as to when they might occur.

A1.3 Example

Consider a transportation network with two origins and one destina-

tion, with each origin producing a single unique commodity. Flow can

be routed directly from an origin to the destination, or first to a

transshipment terminal and then to the destination. Such a network is

5'. shown in Figure 1.2.

Figure 1.2

Example Network

5'0

25

In deriving costs, we will initially assume that inventory costs

are negligible. Later in this example, we will analyze the effects of

adding inventory costs to the formula. We will also assume that the

vehicle flow is a continuous variable. This provides no inaccuracy if

we assume that vehicles can be dispatched in non-integer time inter-

vals. For example, a value of 1.5 vehicles per week is equivalent to

%6..

%
...............................................................
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3.0 vehicles every two weeks. Assume also that commodities fill a

vehicle proportionately. This assumption is vaiia as long as a ship-

ping unit (e.g. box) of a commodity is small in relation to vehicle

capacity, thus allowing us to load vehicles with little or no wasted

space. We will also assume that all vehicles have the same capacity.

This will not have any effect upon the methodology, but it will reduce

the number of variables that must be considered.

Let:

k 3k the density of commodity k; k=1,2 ; in lbs./ft

0s the weight capacity of a vehicle/ volume capacity of a vehicle,

dk = the demand for commodity k in weight loads/unit time, and

C = the cost per vehicle on arc (i,j).

Assume that the weight capacity of a vehicle is 80,000 lbs., and that

3
the volume capacity is 4200 ft , typical values for large trucks

operating on U.S. highways; thus s =19.05 lbs./ft3. The parameters

of the example are summarized in Table 1.1 below.

Table 1.1

"- ' ' k  'k
Icommodity k d k Ck Ck s
(or node k) (demand)l I (density)'

0 - - 19.05!
1 .0125 50 190 1

.tII ,,..'. 2 5.0 ,

' -150 -

00
Observe s referred to by Daganzo [3] as the "ideal density".

3
Commodity I has a density of I lb/ft , and is therefore "light" in re-

3
* lation to the ideal density. Commodity 2 has a density of 50 lbs/ft

0
* ' oA.
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and is therefore "heavy" in relation to the ideal density. Thus, there

would appear to be some potential savings in combining the two commodi-

ties at the transshipment terminal. In this way we night be able to

'N. produce loads with a density closer to that of the ideal density, thus

utilizing vehicle capacities more efficiently. However, we need to

weigh any efficiency savings against the added cost of the additional

routing circuity.

Vehicle Costs Only

We will now derive the cost function and use this to compare

the costs of direct shipping versus consolidating the flows. The

only costs involved with this initial formulation are vehicle costs.

Let:

k= flow of commodity k on arc (i,j) in weight loads/unit time, and
ij

Yii vehicle flow on arc (i,j) in vehicles/unit time

0 k k
2" %Note that Zks xi/s is equivalent to the amount of commodity k flow

on arc (i,j) measured in volume loads/unit time. The minimum number of

vehicles required per unit time on arc (i,j) can be given by:

" :'*k k O , k
y. max{ E xk Z . /s } . (1.2)

i jk ii' k ij

Note that the first term in equation (1.2) applies when loads are

"heavy", and the second term applies when loads are "light". When

loads are heavy we will say that costs are weight dominated; when loads

are light we will say that costs are volume dominated. Let K be the

total shipping cost- incurred per unit time. This can be written as:

K = E. .C y , (1.3)
* 19J , j ii

%'
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Note that costs on an arc depend only upon the particular attribute

that currently dominates the arc cost function.

% Case 1: Direct Shipping Only

Let Kd be the total shipping cost per unit time when all commodi-

ties are shipped direct. By using equation (1.2) we obtain:

. ds--/s 2d d' lt 2t Ytd 0

By using the above results in equation (1.3) we obtain:

K = $870.20 /unit time

Case 2: Direct and Terminal Shipping

To calculate the costs when we include the possibility of using the

-. transshipment terminal, we first must determine the proper proportion

of the flows to be sent there. Let:

fk* = the optimal proportion of commodity k flow to be routed via

the transshipment terminal.

Daganzo [3] uses a matching technique to determine the optimal f k,

for networks constructed similarly to that of Figure 1.2, but with any

nimber of origins. Using this technique, one finds that fl* = 1.0 and

f 2 * = .0729 are the optimal values. It can be shown that for any opti-

mal solution involving consolidation: 1) at least one commodity will

always be shipped through the terminal in its entirety, and 2) all

loads leaving the transshipment terminal will have the ideal density.

The vehicle flows can be found by again using equation (1.2) to obtain:

S10 1 f2*2 2* 2 f2 *d 2 +dI%.: Ylt d a s Y2t f ' Y2d (1 )lf*d2 yld =0, and y td=fd2l

. . .

~- I.
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By using the above results in equation (1.3) we obtain:

K = $842.43 /unit time

1
This is a net reduction of approximately 3.2% over direct shipping.

This reduction is possible through more efficient utilization of capa-

city, which in this case dominates the extra costs incurred by addi-

tional item-miles traveled.

Vehicle Costs and Inventory Costs

We will now consider the same network with inventory costs included

in the cost function. However, to simplify the analysis, we will

* assume that the time spent in transit is small compared to the average

time that a unit of commodity spends waiting to be loaded. In this

way, we can ignore the "in-transit" inventory carrying costs. Let:

k
* h =inventory cost/weight load/unit time for commodity k.

kk
The total inventory cost per unit time on each arc is: Ekh X /2yij,

which is merely the summation of the products of the average inventory

levels (in weight loads) and the hk coefficients. The total shipping

costs per unit time can now be written as:

k k
K = . [ Cjyi + Ekh x j/2yij . (1.4)

By minimizing this function with respect to y. we find that, in

* the absence of capacity constraints, the optimal number of vehicles per

1. The example could have illustrated a much higher percentage cost
reduction by increasing commodity 1 demand. However, the existing
parameters were chosen to illustrate several types of tradeoffs with-
out having to later change previously defined parameters.

% N
% %



unit time on arc (i,j) can be given as

E zh k xk /2

y"" .12 .. • (1.5)
ii 'k ii i

* ~If we account for the capacity constraints of equation (1.2), the fact

that equation (1.4) is convex in the yij's implies that the optimal

value of yij will then be given either by equation (1.5), or by a

value at the edge of the feasible region. This leads to:
..,:>,

/s" kk E k O, k /2Chkx 6

Yij = maxi k ij'kXiSss, ( kl2 ' ) . (1.6)

Note that equation (1.4) is a summation of equations of the form (1.1),

where the optimal y. (xi )'s are defined by equation (1.6). Earlier,
'3 '3

* we made the convention that when the first term in equations (1.2) or

(1.6) is largest, we say that costs are weight dominated, and when the

second term is largest, we say the costs are volume dominated. Simi-

larly, when the third term in equation (1.6) is largest, we say that

costs are dollar dominated. This implies that marginal costs depend

only upon the inventory holding cost of the commodities. That is,

weight and volume are relevant only when vehicles are filled to one

of these capacities. Note however, that if costs are weight or volume
.

dominated, there will still be an inventory cost component.

* In this example we will assume that hI = $80,000/weight load/unit

time and h $8.0/weight load/unit time. In relation to each other,

commodity 1 is very expensive, and commodity 2 is quite cheap, even on

• a per unit basis.

X6.

0

0F-
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Case 1: Direct Shipping Only

In the case of direct shipping we use equation (1.6) to obtain:

Yld =Yld 1/2C ld) Y2d d, and = Ytd = 0

Using these results in equation (1.4) we obtain:

Kd = $1445.44 / unit time .

This is clearly greater than the case where inventory costs are not

considered.

Case 2(a): Direct and Terminal Shipping (earlier derived fk*Vs)

Observe what happens when we consolidate commodities in the

proportions used earlier (f1=1.0,f 2=.0729). In that case use of equa-

tion (1.6) results in:

%. = (h d /2= (1khk 1 ,/2
Ylt d t ld = Ytd d/2Ctd

,..-= f d2, and = (1-f2 )d2, .- Y2t f dY2d'

Using these results in equation (1.4) we obtain:

K = $1646.8 / unit time.

Consolidating flows in the once optimal mix gives us a higher cost

than direct shipment. This comes about mainly from the additional

waiting time incurred at the transshipment terminal. Observe that the

loads on the terminal to destination arc still have the ideal density.

However, vehicles leaving the terminal are no longer filled to capa-

city. This is because inventory costs dominate the physical capacity

.
N i A 2S
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considerations, causing vehicles to leave more frequently than would

occur otherwise.

The above analysis does not necessarily imply that we should not

consolidate commodities when high inventory costs are present. On the

contrary, we might be able to achieve savings by sending more "cheap"

goods (commodity 2) to the terminal than before to take advantage of

the unused space on the outbound vehicles. In addition, average inven-

tory costs per unit time are reduced as the cheaper commodity makes up

a larger porportion of the vehicle loads leaving the terminal. We will

examine whether or not these effects lead to net savings.

Case 2(b): Direct and Terminal Shipping (optimal proportions)

Suppose now that f2 is set to 1.0 . At this level, all of the

excess capacity generated by the expensive commodity 1 is used up, that
k k k

is, EkXtd > (zkh xtd/2Ctd) . However, average inventory costs will

continue to decrease as we add more commodity 2 flow through the

terminal. Now use of equation (1.6) results in:

k 12
.- .- k (h hdl/2Cl ) ,

-td 'kXtd it (t y2t d Yld Y2d 0

Using these results in equation (1.4) we obtain:

K = $1300.80 /unit time
.. '1-

We obtain a reduction over direct routing of approximately 10%, and a

* reduction over the non-inventory based solution of 27%. Without consi-

dering the inventory cost attribute, we would have consolidated commo-

dities in a highly nonoptimal manner. However, note that the savings

*reduction above does not directly depend upon the relative densities of

............................................... .... ....... ................-
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2
the commodities either. To see this, suppose that 9 was decreased

from 50 to 12.5, h 2 was decreased from 8.0 to 2.0, and d2 was

increased from 5 to 20. The same solution, that is, fl = f2 = 1.0,

produces identical costs and savings. However now both commodities are

light: s' = 1.0, s2 = 12.5 < s= 19.05

Example Summary

aWe have illustrated several tradeoffs in comparing alternative

shipping strategies. The net effects of a change in commodity flow

routing has been shown to depend upon the relative values of weight,

-* volume, and inventory cost for each commodity. We should not only

* -consider consolidating commodities with high and low densities, but

also commodities with high and low inventory costs.

Earlier we pointed out that marginal costs on a given arc depend

upon only one or two attributes of the commodities using that arc. In

general, we will seek to add flows to arcs in the most efficient

manner. Thus, on a dollar dominated arc, we would desire to add flow

with a low inventory holding cost, but high weight and/or volume.

aSimilarly, on a weight dominated arc, we would desire to add flow with

a low weight but high volume. However, since we wish to minimize the

* sum of the costs on all arcs, we must weigh the potential benefits on

all arcs simultaneously. As we shall see, the special cost structure

of this problem makes our task quite difficult.

,V I

-.'b 
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1.4 Thesis Objectives

We have seen that a number of tradeoffs must be considered simulta-

neously when solving the type of problem described earlier in this

chapter. As we shall learn in the next chapter, the literature review,

previous model formulations have tended to ignore at least one of the

commodity attributes of weight, volume, or inventory holding cost. The

main reason for this is the great difficulty of obtaining optimal or

even near optimal solutions for this problem in networks of any

practical size.

This thesis will attack the problem by first examining its mathe-

matical structure. Through this examination, we hope to come to a

better understanding of the underlying tradeoffs, and to find features

of the problem that can be exploited by specialized solution algo-

rithms.

We will also devise a solution algorithm that can be applied to

network problems of a size that would be encountered in practical

usage. This requirement will likely preclude finding a global optimum;

but if we can obtain "good" locally optimal solutions with a reasonable

amount of effort, this disadvantage is minimal. One means of attaining

such solutions is by employing a strict standard upon the type of local

- optima that will be acceptable as a final solution. Due to the possi-

bly large number of local optima to be evaluated, the algorithm must

perform its search and evaluation procedures quickly and efficiently.

0 Finally, we will endeavor to test the methods and analyze the re-

sults by producing a workable computer code of the solution algorithm.

In this way, we can assess the quality of the solutions, and determine

the efficiency of the algorithm under differing problem scenarios.

'p.

* 'p
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1.5 Thesis Summary

Chapter 1 provided an overview of the motivation for and the pri-

mary issues involved with the logistical problem examined in this

thesis. In Chapter 2, we will discuss previous research in related

areas of study. The relevance of the research will be examined, pro-

viding a basis of comparison for this thesis' model formulation, analy-

sis, and solution methods.

Chapter 3 will begin with a detailed problem statement. A mathe-

matical programming formulation of the problem is then followed by an

in-depth analysis of the cost functions associated with the arcs of the

network. This analysis will determine the necessary conditions for

concavity/convexity, the relevancy of nonlinearity in practice, and the

effect nonlinearity has on our solution strategies.

In Chapter 4, we will explore local optimality conditions -- speci-

fically, one set that has been in standard usage, and a stronger, more

restrictive set introduced and defined in the context of this problem.

Algorithms that can achieve both sets of optimality conditions will be

introduced, followed by a discussion of the merits and the drawbacks of

each approach.

Chapter 5 contains a series of results from computer trials on test

problems using a new algorithm presented in Chapter 4. These results

measure solution quality and algorithm speed for various network con-

figurations.

Lastly, Chapter 6 provides conclusions regarding both the signifi-

cance of the mathematical results of this thesis, and the utility and

efficiency of the new algorithm

I
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2. LITERATURE REVIEW

Although the problem under consideration in this study is unique

in the breadth of factors considered, it shares characteristics with

a number of earlier formulations of multicommody min-cost flow prob-

A lems. By placing restrictions on the cost structure, or upon the types

of constraints considered, our problem can be reduced to these earlier

models. Therefore, to thoroughly understand our problem, it is neces-

-' ~ ary to examine these formulations, and see how previous researchers

have proposed solving them.

2.1 Linear Network Flow Models

Single Capacity

If we set vehicle frequencies beforehand, the nonlinear inventory

costs become fixed, and the problem is reduced to a linear multicom-

modity min-cost flow problem. The vehicle frequencies, together with

the vehicle capacities, would correspond to the arc capacities. If we

further assume that vehicles have only one type of capacity (weight or

volume), we have the standard multicommodity flow problem with one type

of arc capacity. These problems have been studied extensively due to

* their wide application and appealing structure. As with other linear

cost network problems, multicommodity flow problems can be modeled

directly as a linear program, and solved by standard LP algorithms,

* such as the simplex method. However, the multicommodity flow problem

can become very large in terms of the number of variables and con-

straints which must be considered, making the simplex method prohibi-

* tively slow. Thus, much of the research has centered around special-

% -
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nw

ized solution techniques that attempt to capitalize upon the under-

lying network structure of the problem. Kennington [91 provides an

extensive survey of linear multicommodity flow problems and their

solution techniques. He divides these techniques into the categories

of price-directive decompositions, resource-directive decompositions,

*m. ~and partitioning methods. Several forms of column generation algo-

rithms are presented which have been used to solve price-directive

formulations. An important example was provided by Tomlin [15], who

was the first to develop a price-directive decomposition for the linear

multicommodity flow problem. In his formulation, he assumes infinite

arc capacities, thus reducing the subproblems of the algorithm to

• simple shortest path problems. Kennington also describes several

resource-directive decompositions, and shows how they have been solved

by tangential approximation and gradient search algorithms. Finally,

partitioning techniques are presented using various methods that

exploit the structure of the current basis in the simplex method.

Multiple Capacities

Further difficulty is introduced to the linear multicommodity min-

cost flow problem when multiple capacity constraints on the arcs are

. used. Weigel and Cremeans [161 provide a formulation in which capaci-

ties are expressed in vehicles per unit time period and different com-

modities can be expressed in varying units of measurement. However,

* they neglect the possibility of combining high and low density commodi-

ties on the same vehicle to economize on vehicle capacity requirements.

Swoveland (14] uses a price directive decomposition technique to solve

* a problem with generalized capacity constraints. The model is flexible

*,1
S,
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enough to handle weight and volume constraints simultaneously, as well

as other types of resource constraints.

Hall and Daganzo [8) analyze transportation costs with considera-

tion of both the weight and volume capacities of the vehicle. The

analysis is performed in the context of a "peddling" strategy used over

a region of suppliers with items of varying densities. (Peddling

strategies allow vehicles to make multiple pickups or dropoffs along

the course )f a vehicle route.) They show that the number of vehicle

loads required is minimized when all vehicles are simultaneously filled

to both capacities. Cases are analyzed to determine potential savings,

which may be as much as 50%, when compared to solutions obtained by

using only one type of capacity.

Daganzo [3] considers a two capacity network model with many

origins, one destination, and a consolidation terminal. Each origin

produces a unique commodity with a given density. His formulation has

.4. a linear cost structure and seeks to minimize the total vehicle-miles

traveled. The solution is obtained via graphical methods derived from

linear programming theory. The solution technique capitalizes upon

the fact, which he proves in his paper, that costs are minimized when

the flows leaving the consolidation terminal have the "ideal density";

that is, both vehicle capacities are reached simultaneously.

Mixed Integer Models

The linear multicommodity flow problem assumes that all costs are

directly proportional to the flow of commodities across the arcs, and

that arc capacities are fixed and known beforehand. Another class of

network flo% models, generally known as "network design problems", also

P. ..
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consider the costs of optionally added arc capacity, which in our prob-

lem would correspond to solving for the vehicle frequency variables.

These models usually involve finding the optimal integer capacities on

the arcs, along with the optimal commodity flows, subject to various

demand, conservation of flow, and possibly, budgetary constraints.

Thus, one approach to our problem would be to restrict the vehicle

frequency (capacity) variables to integer values, and then to use the

standard techniques available for solving mixed integer mathematical

programming models. The subproblem u^ such an algorithm generally

finds the optimal values of the non-integer variables for given values

of the integer variables. In our case, the subproblems would be

linear multicommodity flow problems, which could be solved via any of

numerous techniques mentioned earlier. Unfortunately, the number of

possible combinations of feasible vehicle frequencies is very large,

thereby limiting the size of network problem which could be solved

successfully. However, our model allows the capacity variables to be

non-integer by assuming that vehicles may have non-integer interdepar-

ture times. We can then treat arc capacity as a vehicle flow (measured

in vehicles per unit time) with real values. It can be shown that if

we were to ignore inventory holding costs due to waiting time prior to

* loading, our model would become an LP relaxation of a mixed integer

network design problem. Magnanti and Wong [121 provide an extensive

survey of network design problems involvinL both linear and nonlinear

cost structures.

-.-.
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% %2.2 Nonlinear Network Flow Models

% The problem defined in this thesis is made more difficult by a non-

linear objective function. This nonlinearity comes about from the

relationship between inventory holding costs and vehicle frequency. It

is useful to review some of the methods used previously to deal with

nonlinearity in multicommodity flow problems. However, none of the

models that were examined reflect multiple arc capacities, being

either uncapacitated or having single arc capacities. In the case of

capacitated networks, it t often the case that a transformation is

first applied to the network to obtain an equivalent, but larger,

uncapacitated network flw model. Other strategies will be discussed

with some of the models below.

Convex Network Flow Models

Convex cost network design models have received a lot of attention,

partially because of the availability of numerous convex optimization

techniques, and have often been used to solve traffic assignment prob-

* lems. In addition, convex models have the desirable feature that

global optimum can be found through straightforward optimization tech-

niques. LeBlanc [11] uses a branch-and-bound algorithm to solve a

. mixed integer model with convex routing costs. The flows are essen-

tially single commodity in the sense that all "commodities" have a

single shared flow attribute, and there are no arc capacities. The

-0 problem is reduced to solving a sequence of shortest path problems and

one dimensional searches.

Steenbrink [13] uses a decomposition technique to solve a convex

road expansion/traffic assignment model. He first eliminates the
.,.

,::.'.;
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road expansion (capacity) variables from the main problem by placing

them in a subproblem which relates optimal capacity to traffic flow

on each link. The main or "master" problem minimizes a sum of the

objective functions on the links; these functions being concave at

low levels of flow, and convex at higher levels of flow. However,

he simplifies the problem by assuming that the objective functions

are strictly convex, and justifies this with the intuitive fact that

links with low levels of flow are not expected to be part of the final

solution. The master problem can then be solved via a stepwise loading

algorithm.

Concave Network Flow Models

Many transportation related problems can be solved using concave

cost flow models. For example, by using Steenbrink's decomposition

technique, many fixed charge problems can be reduced to a multicommod-

ity concave-cost flow problem. It is a characteristic of such problems

that the optimal solution occurs at an extreme point of the feasible

region. It is known that these extreme points correspond to arbores-

cence flows in the network [181, but the large number of feasible ex-

treme points considerably complicates the search for a global optimum.

* Therefore, many authors have proposed algorithms that converge to a

locally optimal solution. Among these is Yaged [17], who uses both

marginal cost and average cost pricing schemes to reduce the problem to

* a series of shortest path problems. He shows that for an important

special case, his algorithm will converge at a local optimum, or will

produce an infinite sequence which converges to a local optimum. Gallo

* and Sodini [6] define the concept of adjacent extreme flows to a feasi-

.v-.
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ble solution of the concave min-cost flow problem. They provide an

algorithm that searches all adjacent extreme flows to find a locally

optimal solution. They show that their technique can make considerable

improvement over solutions obtained using Yaged's procedure.

Other authors have sought algorithms which find the global optimum

to the concave min-cost flow problem. Erickson, Monma, and Veinott

[4] have devised a dynamic programming technique, known as send-and-

split, to find a global optimum to the problem. For certain classes

of problems, their method outperforms previous global solution tech-

niques. However, since the general concave min-cost flow problem is

very hard, their technique is still limited in the size of the problem

* which can be solved.

Blumenfeld, Burns, Diltz, and Daganzo (1) analyze cost tradeoffs

* * between transportation, inventory, and production costs in concave cost

networks with a consolidation terminal. Strictly concave costs are

obtained by assuming a fixed freight charge per shipment, independent

of shipment size, up to the capacity of the vehicle. By decomposing

the network into sub-networks, and capitalizing on the all-or-nothing

feature of the optimal solution to concave cost network flow problems,

'iey eliminate the need for mathematical programming techniques.

* Hall [7] analyzes a special type of concave cost freight network

which can be decomposed into "shared" and "exclusive" arcs. He shows

that in this type of network, the optimal route for each origin-desti-

nation pair can be found from the optimal flows on the shared arcs

alone. The problem is solved using a local search algorithm that

relies upon the concepts of both marginal cost and "incremental cost"

* as optimality criteria. Computational results are provided which show

%. %... ..- *.m m n m
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time requirements to be relatively small, even for large networks.

General Nonlinear Network Flow Models

Klessig [101 provides a solution method for general nonlinear min-

cost multicommodity flow models which requires only that the cost

function be continuously differentiable, and that the constraint space

be compact and convex. The solution algorithm, known as the condi-

tional gradient method (CGM), involves calculating gradients and

performing line searches in the direction of these gradients to achieve

a local optimum. This technique builds upon a method originally pro-

Vi posed by Franke and Wolfe [5], through inclusion of a line search

* particularly well suited for multicommodity flow problems. Klessig

-hows that other solution techniques, including Yaged's, for solving

both convex and concave cost multicommodity flow problems, are merely

special cases of the CGM. Convergence is guaranteed, but no computa-

tional results are presented.

2.3 Tradeoff Analysis

Other studies have approached the min-cost flow problem using

analytical frameworks other than mathematical programming. These

* studies have tended to concentrate on explicitly considering cost

tradeoffs at a conceptual level, as opposed to complex optimization

techniques with precise costs.

0 Burns, Hall, Blumenfeld, and Daganzo [2] compare alternative

distribution strategies, such as peddling and direct shipping.

economic order quantity type formulas are developed to examine the

transportation cost/inventory cost tradeoff under both strategies,

5-%
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with a single vehicle capacity taken into consideration. The formulas

require only a few easily measurable parameters, and can be solved via

a hand calculator.

2.4 Summary

The model to be described later in this thesis will be shown to

have a nonlinear objective function, along with the two types of vehi-

cle capacity constraints: weight and volume. We have seen that a num-

ber of earlier model formulations capture various aspects of the above

model; however, no single formulation contains all of the relevant fea-

tures. For example, we have seen linear models with one or two types

* •of capacity constraints. We have also seen nonlinear models with one

type of capacity constraint; but these involved either strictly concave

or strictly convex objective functions, which is not necessarily the

case with our model. Mixed integer models could capture all of the

necessary features, but the number of possible combinations of integer

values would render all but the smallest problems unsolvable. In addi-

tion, restricting vehicle flow (capacity) variables to integer values

is highly questionable in our model. Only Klessig's nonlinear model

formulation appears general enough to handle all of the necessary

O features. However, the result of his solution algorithm is a local

optimum which may or may not be very good in a global sense. Some

authors 16,7] have developed techniques to achieve a better form of

* local optimum than one which is merely optimal in a marginal sense.

~- However, these have only been made operational in the case of strictly

concave cost single commodity networks. One can conclude that more

. specialized techniques are desirable.

deiabe
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3. MATHEMATICAL ANALYSIS

The multicommodity multiattribute network flow problem has a math-

ematical structure fundamentally different than other min-cost network

flow problems. This is due to two related factors. The first of these

is the presence of two types of commodity attributes: attributes for

which costs increase linearly (weight and volume), and an attribute for

N-,which costs increase nonlinearly (inventory holding cost). The second

factor is the presence of multiple commodities that may share an arc.

In a single commodity environment, the first factor would lead to an

"-'." arc cost function that is strictly concave with respect to a commodity

flow variable. With multiple commodities, cost functions may be either

concave or convex with respect to commodity flow variables, depending

upon the relationships between the attributes of the incremental

commodity flow, and the attributes and flow levels of the other

commodities sharing the arc. Therefore, the solution techniques that

apply to network flow problems with strictly linear, convex, or concave

cost functions cannot be applied without modification. This section of

the thesis will explore the mathematical properties of the problem in

detail, giving us some insight into possible solution strategies.

3.1 Problem Description

As discussed in the Introduction, the transportation network has

three sets of nodes: sources (origins), sinks (destinations), and

0
intermediate nodes (transshipment terminals); these sets being denoted

0, D, and T, respectively. Vehicles carry loads of commodities along

the (one way) paths of the network. These paths start in 0, end in D,

and may include a maximum of one node in T. The model does not make

0 N"N.N
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N any specific provision for vehicles once they reach the end of an arc;

they might either return empty, or be rescheduled for another load.

However, this will be treated as a separate problem beyond the scope of

this model.

A demand will be defined as a specific number of weight loads of a

commodity, to be shipped between a specific origin-destination pair, at
N' 1

a constant rate over time. 1 The vehicles carrying the commodities have

identical capacity, and for each given arc, will have constant inter-

departure times. (These assumptions on the vehicles, while not crucial

to the methodology developed in this thesis, will reduce the number of

variables that need to be considered.) Thus, the model has no dynamic

-' aspects, both commodity flow and vehicle flow being constant over

time. The relationship between these two flows must be such that

neither the volume capacity, nor the weight capacity of the vehicles

N will be exceeded. The individual shipping units (e.g. boxes) of the

commodities are assumed to be small in relation to either capacity of

the vehicles. This allows us to further assume that commodities can be

* fit into a vehicle with essentially little or no wasted space, thereby

eliminating the need to analyze vehicle loading from a combinatorial

point of view. Assuming the items to be small in relation to vehicle

capacity also allows us to model the commodity flow variable as a non-

integer variable with no major loss of accuracy.

Two types of costs are involved in the model formulation: vehicle

costs and inventory holding costs. Inventory holding costs are

assessed on a unit of commodity as soon as it is "made available" at an

* 1. A weight load is defined as the amount of commodity that will fill a
vehicle to its weight capacity.

p-

- , %.S6



28

origin, and continue until it is delivered to its final destination.

Because of the non-dynamic, continuous nature of the model formulation,

it is convenient to calculate average values for inventory holding

costs per unit time. The average time between vehicle departures on an

arc is equal to the inverse of the vehicle flow rate, yi." We are

assuming commodities are made available for shipping at a continu-

ous rate, implying that a unit of commodity will wait on the average

for one half of this time, or 1/2yij. We are further assuming that

inventory holding costs are no longer accrued once the commodity

reaches its destination, which is reasonable in this formulation if the

vehicle unloading time is small relative to the vehicle interdeparture

time. Thus, if the inventory holding cost/weight load/unit time for a

commodity k is h , the average waiting costs per weight load for travel

on arc (i,j) for commodity k is hk/2yi. In addition, those inventory

holding costs/weight-load that relate to vehicle travel time can be

expressed as tij hk, where tij is the amount of time required for a

vehicle to travel the length of arc (i,j). The parameter t.. might

also include time required for material handling. Total inventory

costs for each weight load of commodity k on arc (i,j) can then be

expressed as h k(/2y + tij) .

Vehicle flow rates will also be treated as a continuous variable.

This provides no conceptual difficulty if we allow non-integer inter-

departure times, which is equivalent to having the ability to redefine

our time units on each arc so that one vehicle leaves per unit time.

Vehicle costs per unit time will be obtained on each arc by multiplying

the vehicle flow rate by a constant that reflects the cost of loading

and driving the vehicle the length of the arc.

p i"
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3.2 Mathematical Programming Formulation

First we will define the following notation:

._

0 is the set of origin nodes
4D is the set of destination nodes

T is the set of terminal nodes

the variables are defined as:

x - the number of weight loads per unit time of commodity k on arc
ij (i,j) between origin-destination pair p

Yij - the number of vehicles per unit time on arc (i,j)

and the parameters are:

a the density of commodity k in lbs./ft3

hk - the inventory holding cost per unit time per weightload of commo-
dity k

s- the weight casacity of a vehicle (lbs.) / the volume capacity of

a vehicle (ft )

t.. - the time required for a vehicle to traverse arc (i,j)

dpk - the demand per unit time for commodity k between origin-destina-
tion pair p

Let I and Y represent solution vectors for total network commodity

$ flow per unit time and total network vehicle flow per unit time, res-

pectively. Then let:

N F(X,Y) = total network costs per unit time given X,Y

* We will seek to minimize F(X,Y) subject to demand, capacity, and con-

servation of flow constraints as follows:

1gN
o
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P: Minimize F(X,Y) .E IC y + r khkxk + t..hkx.k.
1tkj ii /ij +1 ij

s.t. j ? dpk for i e p, for all p,k (3.1)i

Z. xpk = dpk for j e p, for all p,k (3.2)
I 1 13

E. x k
- Z. xpk  0 for each i e T, for all p,k (3.3)

x k. = Ex p k  for all i,j,k (3.4)

Ek x j < Yij for all i,j (3.5)

E k 0 k .k < for all ij (3.6)k xij/ -ij

xp k

* >k 0 Yij >0 for all i,j,p,k (3.7)

r,,- "..

- Constraints (3.1) and (3.2) ensure that demand is met, while con-

straints (3.3) provide for conservation of flow through the consolida-

tion terminals. Constraints (3.4) are definitional constraints that

relate the individual flow variables to total commodity flow on each

arc. Constraints (3.5) and (3.6) are weight and volume constraints,

p.. relating commodity flow to vehicle flow. Note that the units for the

left-hand side of constraints (3.5) are weight loads, and the units for

*the left-hand side of constraints (3.6) are volume loads. Constraints

*. (3.7) are the standard restrictions to nonnegative flow levels.

0

w. 0
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3.3 Analysis of the Arc Cost Function

* The objective function of Problem P is a sum of the cost functions

on each arc of the network. To gain further understanding of the

underlying mathematics, it is useful to analyze the cost function

for a given arc (i,j). We will first define the arc cost function, and

then show how the function may take on three different forms, with the

form depending upon which attribute - weight, volume, or inventory

holding cost - "dominates" the current flow on the arc. We will relate

_ the behavior of these functions to relationships between the flow

attributes and determine necessary conditions for second order behavior

of the functions. It will be convenient at this time to introduce some

vector notation. Let:

1 2 K th
xi =(x i,x... - the commodity flow vector for arc (ij)

h (hI h2 ... .. . , hK ) - the vector of inventory holding cost parameters

s = (sO/sl sO/s 2 ,.... ,sO/sK) - the vector of unit conversion para-
meters, converting weight loads to volume loads

- 1.(1.1. 1) - a vector of unitary coefficients

4.The arc cost function, Fij, has the same form on each arc, and can be

expressed as

- F ij(xi ,Y.) = CijYi + hx ij/2Yi. + t ijhx ij (3.8)

Decomposi tion

Fi. is a strictly convex function of yii. Therefore, for a fixed

level of xii, the optimal unconstrained value for y.i can be foundJj

directly by setting the derivative of Fij with respect to yi.. equal to

j'%

0



32

02

dF.ij(xij,yij)/dyij = Cij hi.j/2y2 = 0

which implies that the optimal value, yij, is

*

yij = (h. ij/2Cij ) (3.9)

This is very similar to the standard Economic Order Quantity formula of

inventory theory. However, the capacity constraints

Ixii < Yii

sxij < Yij

may not allow yij to be physically realizable. This implies that opti-

mization of equation (3.8), subject to its capacity constraints, will

either lead to a solution given by equation (3.9), or to a solution at

a boundary of the feasible region. Therefore, the optimal feasible

value for yi. will be

yi. = max{ Ixii, sx.., (hxi .. i.) (3.10)
-. , 1h I 3

Equation (3.10) provides some insight into the multiattribute char-

acteristic of the model. The commodity flow can be viewed as being

composed of three separate "flows": weight (1x .), volume (sx. ), and

"dollars" (hxi ), where we consider the inventory holding cost per unit

time to be a dollar flow, although not in the literal sense. The vehi-

cle flow is dependent only upon the dominating "attribute flow". This

. can be seen by substituting the appropriate expression for y i in equa-

tion (3.10) into equation (3.8), thus obtaining a function Fij(x ij)
1k 13

dependent only upon the commodity flow variables x.. This function
13

has three distinct forms, one for each of the three elements of the

0'.
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right-hand side of equation (3.10). When y i is equal to the first

term in equation (3.10), we will say that the cost function is

"weight dominated", and will denote the cost function by FW .(X).

Similarly, when y i. is equal to the second term in equation (3.10), we

A" will say that the cost function is "volume dominated", and will denote

the function by F (x. ). Finally, when yi. is equal to the third term
13 11

in equation (3.10), we will say that the cost function is "dollar domi-

nated", and will denote the cost function by F.d.(x..1. These three

cost functions are expressed as

F. .(x. ) = C. x.. + hx. /2(lxi )+ t hxi (3.11)
13 13 13 1j 13 13 13 13

F v (x ) = C..sx.. + hx. /2sxij + t..hx.. (3.12)"i F i ,J 1J •j .j1J13 13 1313 13 13 131

a C.

Fij (xij) (2Cij hxij) + ti hxij (3.13)

The above suggests a decomposition of the problem in a manner

similar to that of Steenbrink [13]. That is, one can define a "master

problem" that finds a cost minimizing commodity flow subject to con-

-- straints (3.1)-(3.4) and (3.7). The subproblem for each arc would pro-

vide the appropriate function from (3.11)-(3.13) for each level of

flow, in effect, "optimizing" the capacity variable y.- according to

the flow level. However, before we discuss specific solution algo-

rithms for the master problem, further analysis of the arc cost func-

-" tions (3.1l)-(3.13) is necessary.

Parameter Space

-' It will often be the case that as we increase or decrease the flow

of a commodity on an arc, two, or perhaps three, different cost func-
,%%%
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tions (3.1l)-(3.13) will apply, depending upon the relationships of the

three attributes of flow: weight, volume, and dollars. It is instruc-

tive to view this process of changing flows and cost functions as

movement through a 3-dimensional "parameter space", with a different

axis representing weight flow (lxij), volume flow (sx. ), and "dollar

flow" (hx ij).

Observe the parameter space depicted in Figure 3.1. The space is

divided into three regions, denoted Rw , R , and Rd . By knowing the

values of the three flow attributes, we know in which region the

current flow resides, and which of the three cost functions (3.11) -

(3.13) is appropriate. That is, in region Rw, costs are weight domi-

nated, and equation (3.11) will apply; in region Rv, costs are volume

d
dominated and equation (3.12) will apply; while in region Rd , costs are

dollar dominated and equation (3.13) will apply. The boundaries be-

tween the regions are defined by the set of points where two or more
-p.

elements of equation (3.10) are equal. For example, the boundary be-

tween Rw and Rd is defined as the set of points where

xij = (hx ij /2C.

The three flow regions have the following physical interpretation:

- region Rd represents combinations of flow attributes for which it is

optimal to allocate more vehicle capacity than physical requirements

dictate; region Rw represents combinations of flow attributes for which

it is optimal to allocate vehicle capacity according to the weight of

Lhe loads; and region Rv represents combinations of flow attributes for

which it is optimal to allocate vehicle capacity according to the

volume of the loads. Any combination of commodity flows is represented

by a point in the parameter space, while incremental changes in the

"."
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Figure 3.1
Parameter Space

hx1,
(inventory holding cost)

S.1 

1/2
1lx (hx 2c// xI(x/c

RR

Sxij (volume)

1x1 (weight)
SI



36

flow of a given commodity can be represented by a line through this

space. When this line crosses a boundary between regions, a different

cost function applies. Thus, it is possible to think of F U (x: } as a
."V

composite cost function formed by concatenating the functions Fij, Fi
r n d i e m s

and F. at the points where the incremental flow line crosses the

m] region boundaries in the parameter space.

As an example, observe ray A- in Fig. 3.1. It starts in region R

and at point B, crosses into region R. One possible composite cost

function for this incremental flow is shown in Figure 3.2. Note how

the form of the function changes when the incremental flow line reaches

point B; it goes from being concave in region Rd to convex in region

w
* Rw . In the next section we will develop further understanding of this

Incremental Cost

flow levl co A Incremental Flow

Figure 3.2
on.

0:

° ~
"-.'. /~~~~~~~~~~~ flwl.l repoIgI on .IceetlFo
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behavior by analyzing the derivatives of the three forms of arc cost

functions.

First and Second Order Behavior of the Arc Cost Functions

We have seen how the arc cost function F.. will, at any given

point, have one of three forms, depending upon the relationships be-

tween the three flow attributes. In this section, we will examine the

behavior of equations (3.11) - (3.13) when we allow a particular commo-

dity flow variable, x. say, to vary. The flows of the other commodi-

ties will be held at some fixed level. In particular, we will derive

k
and examine the first and second derivatives, with respect to x.it of

* the functions, define expressions for limiting values, and determine

necessary conditions for concavity/convexity.

The dollar dominated function, Fd. is simplest to analyze; being a
i

sum of linear and square root terms, it will always be strictly con-

cave; thus, there is no need to analyze the second derivative. In

addition, limiting behavior is not particularly relevant. This is

easily seen by recalling our parameter space of Figure 3.1. Suppose

that our current flow is defined by point A in R d . Any incremental

.? flow with hk < - defines a ray, similar to ray , that must even-

wv* tually cross over into R or Rv . Therefore, for large values of the

incremental flow variable, xkV the functions F.o Fvx. , te fnctonsF. or F.. will apply.

The situation is less clear cut when analyzing F . or F.. We will
w.j

* begin with the weight dominated function, F... First, we will define

the following notation. Let:

0~

6°%"

--------------------------. . . . . . . . . . . .

. . . . . . . . - -. . . . . . . . .%. . . .- - . . '
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(Fw  i3 and
ii k dx k

x k  with -  0 e 1 2 k-l 1.. Kwith X. 0j (ije Ix ioj 2..9 xijj

Then we calculate:

(Fi.) = C + (h lxi - hx. )/2(lxi
2 + th k,

and by cancelling the hkxT. terms we have:

w ' 2.bxk 4k
(Fi)k = Cij + (h ij - i)/2(lxij) + tij 1h314)

kA few observations can be made at this time. Note that x i only

* appears in the denominator of the second term of (3.14). This implies

kthat the second term will get increasingly smaller as x.. gets larger,

which leads to

lim )k = C.. + ti (3.15)

i.. i +j i
k

-. x.. 00

Since this is a constant, F.w will tend to become linear for large flow
13

values. Observe also, that in the single commodity case, the numerator

of the second term in equation (3.14) will always be 0. This implies

w k
that, in this case, F will be linear for all values of xij* 13 13

In investigating second derivative behavior, we define the addi-

" tional notation:

.., w _.i
'F," d2F

(Fx k  , and
ii k

* h hx\k /lx k:.:.w ij ij '
13 13.

.'-S

,-o - . . - -. ~ **~ * %% .
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The term h is the ratio of dollar flow to weight flow of the fixed

w

commodities, and can be interpreted as the average dollar value per

weight load. Now,

(F )" (hx k - hx\k)/(lx..) 3 (3.16)
ij k 1i - i

which implies that when

hk < h , i n n k
W is convex in x..,

k k
. is linear in x.., and

hk I

This is a very useful set of results in that the whole question of

second derivative behavior is reduced to a comparison of two simple

ratios. Recall that the relationships (*) apply to an incremental cost

function, where we vary the level of only one commodity. In flow re-

gion Rw , we then have the following physical interpretation: when the

dollar value per weight load of a commodity is less than or equal to

the average dollar value per weight load of the current flow on an arc,
I

the arc cost function will be convex with respect to incremental

changes in the flow of the added commodity. Similar statements can be

made regarding linear and concave cost functions for the cases where

the dollar value per weight load of a commodity is equal to, or greater

%%

%• . than or equal to, the average dollar value per weight load. However,

I

-I
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the convexity condition is unique to the multicommodity, multiattri-

bute formulation, and will not occur in single commodity problems, nor

in multicommodity problems that don't involve inventory costs and

capacity constraints.

The volume dominated function, F v j, can be analyzed in a similar

fashion. Let:

d2 FV X

(F v k F F 1 i , , (F = -3 13 , and
13 k  dxk ijlk dxk

ij

h x \k h /sXv ij ij"

The term h is the ratio of dollar flow to volume flow of the fixed

commodities, and can be interpreted as the average dollar value per

-. volume load. In this case, it can be shown that

(Fiv )' ksk + kh\k k ( 2 +ti.hk

(Fi ) k = CijsO/sk + (h . shx k)/2(sxij) + (3.17)

ll (Fi O)k = CijsO/sk + (3.18)

X, .. -" co
ij

(Fv 0 k Us \k _ hk \k (3.19)
iik ii - ij ij

which implies that when

* I---------------------------------------------------------------

:hk/(O/sk) < hV FV is convex in ki,

Shk/sOk hv F'> is linear in xk

hk/(sO/sk) > h F.. is concave in x...
v ij .1

% A-
-* -- % -e- -. - - -,% -,% . .. % -~~U

j. Z<,~ * Ut," I Z-CC
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N These conditions have a physical interpretation analogous to the

case with FW.. Here we can say that, in flow region Rv, if the dollar

value per volume load of an added commodity is less than or equal to

the average dollar value per volume load of the current flow on the

-t arc, the arc cost function will be convex with respect to incremental

changes in the flow of the added commodity. As before, similar state-

ments can be made regarding linear and concave costs for the cases

where the dollar value per volume load of the commodity is equal to, or

greater than or equal to the average dollar value per volume load of

°- the current flow.

Graphical Analogies to Function Behavior

w v dpnsuo h

We have seen how the nonlinearity of Fi and F depends upon the

relationships between the parameters of current and incremental flow.

These relationships can be easily captured in the framework of the

parameter space of Figure 3.1 by noting that hk, h k(s/s ), hw, and

hv can be represented by the slopes of certain lines through the para-

meter space. For example, suppose that a line connects the origin of

the space with the point defined by the current commodity flow (e.g.

point A in Figure 3.1). The slope of this line with respect to the

dollar-weight axes is hw while the slope of this line with respect to

the dollar-volume axes is h W We can interpret the line representing
v

incremental flow (AB in Figure 3.1) in a similar fashion: the slope

• of the incremental flow line with respect to the dollar-weight axes is

h , while the slope of the incremental flow line with respect to the

k /Okdollar-volume axes is h Ps S. Thus, the second order behavior of

* the arc cost function can be determined by comparing the slopes of the
- .,-
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lines associated with current and incremental flows.

Note that our composite cost function, Fi.(xi), may consist of up

to three function segments, with a separate segment for each region in

which the incremental flow line lies. There may be one segment that
. Fd

is concave, corresponding to Fi (x ij), and up to two other segments
w

that may be linear, convex, or concave, corresponding to Fij (xij) and

F. (xij). Figure 3.3 illustrates the five basic forms of F.. that can

.% be obtained by extending a line from one point in the parameter space

to another. The form of the arc cost function will depend upon the

point defining the initial flow, the region boundaries crossed by the

incremental flow line, and the slope of the incremental line. For

0 example, an incremental flow line that begins in Rd, ends in Rw, and

has slope hk < S will correspond to a composite arc cost functionw
k u

that is first concave and then convex. However, if h > hwI the line

would correspond to a concave arc cost function.

The parameter space concept is also useful in determining the pre-

k
cise range of x. values over which each function will apply. First

note that the sign of the relevant inequality of the necessary condi-

tions will not change as we move along the incremental flow line in a

particular flow region. For example, if hk < hw, increasing the pro-

* portion of commodity k flow (moving outward on the incremental flow

line) will decrease the average, hw but can never make it become less

k
than or equal to h . Therefore, the inequality will remain unchanged,

* and the second derivative condition will remain in effect throughout a

given flow region. The only points at which the second derivative

condition will change is where the incremental flow line enters another

*region of the parameter space. When this occurs, a different set of

.0
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FIGURE 3.3
The Five Basic Forms of the Arc Cost Function FiJ
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Aratios must be compared. This greatly simplifies the problem of deter-

mining the precise range of values over which a functional form will

apply. Instead of resorting to complicated numerical analysis, the
inflection points of the arc cost function F.j can be determined

through simple geometric calculations in the parameter space.

3.4 Bounds on the Degree of Nonlinearity

w vWe have seen that the functions F.. and F may be nonlinear, but

it is unclear at this point if this poses any practical problems. For

example, we have seen that the degree of nonlinearity is determined

largely by the differences between values of inventory holding cost

parameters. We might wish to know how much deviation in these values

*j is allowed before nonlinearity becomes significant. Perhaps by assum-

ing that these parameters fall within a certain range, we could assume

w vthat F. and F. are linear, especially if the flow values are large
IJ 13

enough. If this proved to be the case, our composite cost function

N N dwould be a combination of concave (F and linear functions and would

then itself be concave. Standard techniques of concave cost network

flow models could then be applied.

This section will develop a means of analyzing the cost functions

to determine if, in practice, F. or F. have significant levels of
qw

nonlinearity. We will confine our analysis to F. since less para-

meters are involved, thereby making the calculations less cumbersome.

However, the conclusions we obtain can be applied to F i. as well. We

will proceed from the viewpoint of having a known collection of commo-

dities, with given parameters, that are to be sent through the trans-

. p-.
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portation network. We wish to determine if the set of parameters is

such that some feasible combinations of flow would produce significant

nonlinearity. We will only analyze the situation where Fw . is convex,

that is, hk < h . This implies no loss of generality since, on each

arc, at least one inventory holding cost parameter must be less than or

equal to the average inventory holding cost on that arc. The anplysis

will consider two separate cases, one corresponding to the situation

where the current flow on an arc is in region R d , and the other where

the current flow is in region Rw . The reason for this distinction will

be made clear in the analysis to follow.

Case 1: current flow in region Rw (4\k > (hx\k /2C sxo\k

re k
In this situation the addition of commodity flow, x. say, will

cause costs to increase in a strictly convex fashion. That is, our

composite cost function for incremental flow will consist only of

F. .(x. ), which will be strictly convex by our initial assumption that
13 13

k -
h < h . The point on this function with greatest convexity (largest

second derivative) will be where the incremental flow is set to 0.

It is at this point that we wish to establish a bound on nonlinearity.

The bound to be used is derived from the first derivative. Let

(F wj) I be the limiting value of the first derivative defined by equa-

tion (3.15). Our bound, Bw, will be expressed as:

-Bw = 1- [( F')k /(F i)k 1 (3.20)

w~~ wJ '

Since F.. is convex and strictly increasing, (Fw < (F w

which implies that 0 < Bw < 1 • If Bw is "small", then we can say that

0e#
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F .. is "nearly linear". The largest value of Bw is found where13

xk . = 0. Thus, by inserting xk = 0 into (3.14), and substituting

(3.14) and (3.15) into (3.20) we have

<1- [C.. + (hk Ixi - i \l2 lx + .hk) 2 [C.. + t hk

ii i- ii i j ij iJ

In appendix IA, simplification of the above equation results in:

Bw < (hx\ k  h kx
1 k )2

ij k

."-(This bound is nearly exact at x.. = 0 if we assume that t.ihk << C. .)
13 13 i

% wSuppose that we wish B to be no greater than some value a. This can

be accomplished by setting

w< (hxk k \k. \k 2
B <.h j - h Ix i) .(2Cijx.xij) < a

which leads to the following compact but important result:

----------------------------

w a k >(1- kw 2
rB < a h A > ( 1 - .r) (3.21)

-- - -- - -- - - w -- - --- 13 - - -

where r
ri k 1 13 - .

rk kx (x 2
.'-'." ij zj z j

By our earlier assumption that bk < h, we know that hk/h must be less

than 1, and is therefore bounded on either side. Note, however, that
" -" kw

for some combinations of a and rii, the right hand side of (3.21) will

be negative. This implies that assuming linearity at the "a level"
0
, does not restrict inventory holding cost parameters. This is more

kw
likely to occur when r.. is large, which can be physically interpreted

as a "heavy" flow of low dollar value commodities. On the other hand,

many "reasonable" values of these parameters will be such that only

-. .

a....
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very small differences in inventory holding cost parameters would be

tolerated. For example, observe the situation depicted in Figure 3.4,

* a two-dimensional cross section of the parameter space of Figure 3.1.

Here rkw is equal to 2.0; that is, the number of weight loads is twice
Her

that given by the Rd-Rw boundary at the current dollar flow level.

When a is set to .05, the left hand side of equation j3.21) is con-

strained to be greater than .8, but less than 1.0. Equivalently, for

rkw = 2.0, no commodity on arc (i,j) may have a dollar value per weight

load that differs from the average dollar value per weight load of the

other commodities on the arc by more than 20%. On the other hand, if
" kw

__ r.. was set at 5.0, and a remained the same, there would be no implied
ij

restriction on inventory holding cost parameters. In summary,

equation (3.21) becomes more relevant in network flow problems

wherekw
where solutions with low values of r .w have high probability.

This is most likely to be the case when commodity weights are low,

inventory holding cost parameters are high, and demands are small.

Rd \k \k \Case 2: current flow in region R (Ix .k sx.k < (hx..k/2C.. )

In this situation our current flow is in Rd, but by adding enough

k
incremental flow, x i, we will cross the boundary intoR w

. The compo-

d
site cost function for incremental flow will consist of portions of F.

andFnd .. The point on the composite function with greatest convexity
S 1J

will be at the boundary between the two cost regions. Therefore, we

must evaluate the bound Bw at the point where

\k k \k hkk 2Ck
Slx__ + x.. = [(hx.. .) / 2C.J 1J

0e.
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Figure 3.4
Graphical Interpretation of r kw
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In this case the bound is considerably more difficult to derive

since xk . must now be solved in the above expression through the quad-ij

ratic formula. In appendix IB, the above expression is shown to imply

lx \ k + x.k  > [ (h k/2C )2 - lx.k/2C. .(hk - s ) ]1
_ ij 13 3 13 ij w

which after simplification is shown to further imply

B < [ X" 6 - h -)x /2hkC h) ( (3.22)i B <[ x.k.h k ) ] [ hk22ij ij

13WX 13 3

Suppose that, as before, we wish to limit Bw to being no greater

than a . In this case:

---------------------------------

wk- kd 2
< a h /h > [ 1 -(a/(l-a))(r) (323)-'-'" " B ij ](.3

where

- kd (hxk/2C )/ (hx\k/hk
i j ij ij

In this case the "r term" is quite different, but can also be ex-

pressed graphically in our parameter space. In Figure 3.5 we see the

dw
Rd-R boundary point, D, for our current dollar flow level. The term

hk is the slope of the line representing incremental flow, while the
0

term hx k represents the initial dollar flow level. The r term can

dw
again be seen to represent a multiple of the R -R boundary. In this

case, however, r may be above or below the value 1.0, and will

hk
decrease with h. Thus, the effeccs of deviation in inventory holding

cost parameters become more d;fficult to avoid.

kd
A final note is in order regarding the relationship between rij and

kw
r.. . It is apparent from Figure 3.5 that the limiting velue of

6%
AX,

A-" . . .. ' . . - - -A-• . . . ,,
.

. -L ,. *- ' % % ' ' "% ' ' - ','
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Figure 3.5
Graphical Interpretation of rd
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hil /h isi xM corresponding to the case where h k  In thisiJ W

kd kw
situation, rij has the same form as the reciprocal of r *J Further

comparisons can not be made, however, since here we are assuming that

1x. k < (hx / 2 C) . whereas in case 1 we assumed the opposite.

3.5 Summary

The multiattribute multicommodity network flow problem was formu-

lated as a mathematical program, Problem P, with certain assumptions

regardipg the network structure. The objective function of Problem P

is comprised of a summation of the individual arc cost functions, Fij,

which are actually composites of up to three different functions:

F v d
.and .. Each of these three separate functions apply within

* a particular region of the parameter space; this space being three-

dimensional, and each point representing a possible commodity flow per

unit time of a given weight, volume, and dollar value.

dw v
The function F.. is strictly concave, but F.. and F. may be

ij ij i

either concave, linear, or convex, depending upon the relative values

of easily derived parameter ratios. Thus F.. is a general nonlinear
13

function, but with a constant functional form for incremental flow

within a particular region of the parameter space. The convexity

condition is unique to the multicommodity multiattribute formulation,

and will not occur in single commodity problems, nor in multicommodity

problems that don't involve inventory holding costs and capacity con-

- straints. Since incremental flow can be represented by a line through

the parameter space, the inflection points of the function F.. may be

determined through straightforward geometric calculations.
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We have also seen that nonlinearity can not be dismissed as only

a theoretical problem. Assuming F or F. . to be linear could lead to

quite inaccurate results and suboptimal solutions.

4,

.1 6

S

Jl .
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!%.
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0

4. LOCAL OPTIMA

It was shown in Chapter 3 that a commodity's incremental arc cost

function may contain concave and/or convex portions, depending upon the

attributes and current flow values of the commodities on the arc. This

feature implies that the problem defined in this thesis is at least as

difficult as finding the global optimum in strictly concave networks --

a cost structure in which one could at least be assured that the opti-

mal solution would be of the "all-or-nothing" type. Unfortunately, the

number of possible solutions of this type grows exponentially with the

size of the network. With the presence of arc cost functions that may

contain both convex and concave portions, the all-or-nothing necessary

condition need not apply, thus enlarging the set of candidate solutions

even further.

The mathematical difficulties discussed above imply that finding

(or verifying) a global optimum for our problem would be very difficult

in a network of any practical size. One strategy, used previously to

attack large min-cost concave network flow problems, has been to decom-

pose the network into smaller independent subnetworks, for which the

min-cost flow problem can be optimally solved much more readily (Blu-

menfeld et.al.[l], Hall [7]). However, this strategy depends upon
0

certain assumptions that may not apply in our problem, such as assum-

ing that cost is linear on arcs that normally carry large flows. Chap-

ter 3 demonstrated that nonlinearity is significant in our problem,

even at relatively high flow levels. In addition, the decomposition

strategy also relies upon there being a finite set of discrete choices

of flow values on arcs that share flow from more than one origin-
d

'.'--"destination pair. This is only true when all the arc cost functions

S..-
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are concave, but this is clearly not the case in our problem when more

than one commodity is involved. Other means by which to decompose the

problem of this thesis, that don't rely upon the above assumptions,

have not as yet been discovered.

In Chapter 2 we saw that a number of researchers have considered it

sufficient, especially in larger networks, to find a local optimum to

the minimum-cost concave network flow problem that is "good" in some

sense. To find such local optima, the basic strategy usually involves

starting with some initial feasible solution, and then making a series

of local improvements until some final criterion of local optimality is

met. This strategy avoids the computational difficulties discussed

* above as inherent to a global optimization strategy. Therefore, since

- no decomposition techniques have been determined to be appropriate, the

research effort in this thesis has also been directed towards finding

"good" local optima.

Three issues are central to the local optimization process: find-

"ing an efficient means of converging to a local optimum, choosing a

"good" starting solution, and finding a means of verifying that the

local optimum is truly "good" in some sense. Though the issues are not

separable, we will initially discuss some of the aspects of the first

't issue -- finding an efficient means of converging to a local optimum.

We will then relate local optima to the concept of a "good" local opti-

mum through the use of what shall be referred to as "adjacent concave

* flows". An algorithm will be presented that has the capability to

efficiently find such "good" local optima for the problem defined in

this thesis. The issue of a "good" starting solution will be dealt

with in Chapter 5 of this thesis, Computational Results.

'I.,4
%;nZ w fft
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4.1 Marginal Definition of a Local Optimum

[

To formalize the concept of a local optimum, it is necessary to in-

troduce some additional notation. Let:

F(X) = ijFij(xijYij(Xi )) - the objective function of the network

flow problem expressed as a function of the commodity flow

* vectors xij., and the vehicle flow vectors, y ij (X ), as

defined in equation (3.10)

F'(X) = the gradient vector of F(X), representing the partial

derivatives of F(X) with respect to the commodity flow
a .'

variables on each arc

0 = the set of constraints (3.1)-(3.4),(3.7)

Note that since yij can be defined in terms of xij, we can eliminate

the yii variables from our formulation in a fashion similar to Steen-

brink's decomposition technique [131. The problem P of Chapter 3 can

then be rewritten as:

Minimize F(X)

s.t. X E Q

F(X) is a summation of functions Fij, each of which, as was shown

* in Chapter 3, is a composite of arc cost functions of the type (3.11) -

(3.13). The arc cost functions for the weight and volume dominated

situations, (3.11) and (3.12) respectively, were shown to have contin-

* uous first derivatives (equations (3.14) and (3.17)) and the same can

easily be shown for (3.13). The optimality condition that we shall

define shortly requires that F(X) itself be continuously differen-

0%
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tiable in the sense that a first derivative is defined at every point.1

The constraints Q ensure that the feasible region for X is bounded.

More specifically, it is a flow polyhedral, and is thus compact and

convex. This fact, combined with our assumption of continuous differ-

entiabilty, allows us to define the following necessary condition of

local optimality:

Proposition: If X solves P', then

min { <F'(X),X-X> : x } = 0 (4.1)

If F(X) consisted only of convex arc cost functions, there would be

0. only one local optimum, the global optimum, and the necessary condition

(4.1) would then become sufficient for global optimality.

'" The Conditional Gradient Method

In Klessig (101, a version of the Franke-Wolfe algorithm called

the Conditional Gradient Method (CGM) is described which seeks a local

optimum meeting the condition (4.1). The CGM is meant to be applied

to nonlinear multicommodity flow problems meeting the two conditions

above: 1) the objective function is continuously differentiable, and

2) the constraint space is compact and convex. Therefore, the CGM

could be applied to P' to find a local optimum of the form (4.1).

1. The points at which the functions (3.1l)-(3.13) intersect in
* 'forming each F. ., though technically discontinuities, present us with

no difficulty h1 this regard. We can merely assume that at these
intersection points, each F. . is defined by the cost function (3.11)
-(3.13) in the flow region Aiving higher costs.

- 2. The notation <-,-> will denote the inner product of the two vectors
indicated within the brackets.

".W.4

0--
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0

The CGM is an iterative algorithm that maintains feasibility

with successively lower cost at each iteration. The algorithm moves

from one solution to the next by moving in the direction defined by the

current gradient vector. A line search sequentially examines solutions

in the direction of the gradient, starting with the solution at the

limit of the feasible region, and moving back towards the current

solution, until one is found that meets specific cost reduction cri-

teria. This then becomes the current solution. The algorithm halts

when condition (4.1) is satisfied. Below is a formal statement of the

algorithm as applied to problem P'.1

* Algorithm I

Step 0 Select any X belonging to 0 . Set i = 0 . Select values for

a and 8 such that 0 < a,8 < 1 . (a and 8 are tuning parame-

ters that can be adjusted as the problem requires.)

Step 1 Compute any X. belonging to S2 satisfying

< F'(Xi)X i > min { < F'(Xi ),X > : X E }

(Xi defines the limit of the feasible region in the direction

-p of the gradient.)

Step 2 If < F'(X),X.-X > 0, STOP ; X satisfies the necessary
1 1 i

condition of (4.1) Otherwise compute the smallest nonnega-

tive integer k such that
F(Xi + 8k(li-Xi) -FIX i ) - a8k< F'(Xi),lXi-X i > < 0 (4.2)

* 1. The parameter a used in Algorithm I should not be confused with the
"' a used in Chapter 3, they are not related in any way.
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k

Step 3 Set X X+ + (X -Xi)
i+1 1 1 1

Step 4 Set i = i + I and go to Step I

A few observations can be made about this algorithm. In the case

of Problem P', Step 1 reduces to a simple shortest path problem, with

arc costs given by the gradients when evaluated at the current flow

levels. In a model with a more complex constraint space, such as those

models involving fixed arc capacity constraints, this step would re-

quire solving a linear program. This also would have been the case

in this model had we not decomposed the problem into the form P'.

The line search of Step 2 is of finite duration in that there will

always be some finite integer k that satisfies the inequality (4.2).

This line search procedure is desirable in that it does not require the

storage of solutions or a time consuming one dimensional minimization.

On the other hand, although solution improvement is guaranteed, the

effects of the a factor cause the line search to have the property

that a solution may be selected that has a higher objective value than

solutions examined and discarded earlier in the line search. The per-

formance of the line search will also depend upon the values selected

for the parameters a and S. Klessig [101 suggests values of c=S =

In general, larger values of S will cause the line search to examine

solutions that are further from the current solution than would be the

case for smaller values of 6. On the other hand, larger values of a

will make it more likely that the line search will accept solutions

that are further from the current solution than would be the case for

I smaller values of a. Consequently, the selection of "correct" para-

n- rA7 r-'
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meter values involves weighing the tradeoff between the number of

iterations of the CGM and the work per iteration.

Convergence will occur in that either the algorithm will generate

a finite series of solutions Xi whose last element is a local optimum,

or the algorithm will generate an infinite series of solutions Xi that

will, in the limit, approach a local optimum. [10 pg. 347]

Klessig provides no performance data for the algorithm, but its

performance is likely to be highly dependent upon the particular prob-

lem, and the structure of its objective function. We could apply the

algorithm directly to P' and obtain local minima. However, this would

-not capitalize upon any of our knowlege regarding the structure of
0

F(X). In addition, there would be no guarantee of achieving a "good"

local optimum.

4.2 Adjacent Concave Flows

Algorithm I of the previous section is sufficient for finding a

local optimum of the form (4.1). However, we are interested in ob-

taining not just any local optimum, but one that is "good" in relation

to other nearby local optima. For this reason, we will introduce the

concept of "adjacent concave flows". This concept is similar to Gallo

• and Sodini's [6] "adjacent extreme flows" and Hall's [7] "incremental

flows"; both of which are applied to concave cost networks. This sec-

tion will define the concept of adjacent concave flows and give the

* rationale for its use.

Hall defines an optimality criterion that requires that cost can

not be reduced by switching flow between an origin-destination pair

* from its assigned path to an alternative path. The attainment of this

-.-
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V state occurs by searching over all possible extreme flows. This is

possible in certain network structures by examining only those arcs

with "shared flow". Gallo and Sodini use a similar concept, but in a

more generalized network structure. They provide an algorithm that,

starting from an extreme flow, finds all adjacent extreme flows. These

adjacent extreme flows are the result of rerouting the flow between

certain paths, or equivalently, a basis can be found for the old and

new flow matrices that differ by only one column. If no adjacent

extreme flow has a lower cost, the solution is a local optimum.

A common element of both of the above is the definition of local

S' optimality criteria, based upon rerouted flows, that are in some cases

0stronger than the marginal definition of local optimality. This is

true for the situation in [7] and the uncapacitated single commodity

example in [6]. There are difficulties in accomplishing the same thing

for our model. A major reason is that we do not have a one-to-one cor-

, respondence between extreme flows and local optima. This is due to

both the presence of more than one commodity, and the generality of the

arc cost functions.

We can analyze the effects of this problem, and examine the vali-

dity of testing adjacent extreme flows, by dividing the commodities

0 into three categories. These categories correspond to the functional

form of the incremental cost functions over the feasible range of a

commodity's flow, on all feasible origin destination paths. The cate-

.. gories are: strictly concave, strictly convex, and mixed convex and

concave. The mixed situation will occur if a single functional form

. does not apply over the entire feasible range of an arc cost function,

%0
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the arc cost functions along a particular path have mixed functional

forms, or the paths differ between each other in functional form.

Strictly Concave

In the strictly concave situation, there is ample justification for

having a search algorithm examine adjacent extreme flows for that

commodity. The reasoning for this is straightforward. Suppose that we

hold the flows of all commodities but one fixed, and that given this

fixed flow, the incremental cost functions for the free commodity are

concave over the feasible region on all of its possible flow paths. As

4- .in ordinary concave cost networks, the all-or-nothing necessary condi-

tion will apply to the free commodity, and the optimal flow will be

-A along a single path. To find the overall optimum flow for that commo-

dity (given the fixed flow), we can evaluate F(X) for each alternative

flow path, and choose the path corresponding to the smallest F(X).

• .Strictly Convex

In the case of commodities with strictly convex cost functions, we

can do no better than a solution that is optimal in a marginal sense.

This can be seen by again holding all commodities but one at some fixed

level. Now suppose that, given the fixed flow, the incremental cost

functions for the free commodity are convex over the feasible region on

all possible flow paths for that commodity. The overall optimum solu-

"- tion for the flow of the free commodity (given the fixed flow) can be

found by a gradient search technique such as Algorithm I. Thus, we

could do no better by shifting flow of the free commodity from its

originally assigned path(s).

So.

0'.
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Mixed Concave and Convex

Unfortunately, no simple argument exists for commodities whose

incremental cost functions are a mixture of concave and convex, as the

optimal solution for that commodity may have split flows and/or involve

numerous local optima. In addition, the local optima do not neces-

sarily correspond to any extreme flow of the commodities in question.

The implication of these facts is that, in the mixed situation, we no

longer have a finite set of local flow modifications to test for cost

reductions. Therefore, adjacent flow concepts have much less relevance

* -' in the mixed situation.

In summary, we see that there is justification for searching adja-

cent extreme flows of commodities with strictly concave incremental

cost functions. On the other hand, there is no reason to search adja-

cent flows of commodities with strictly convex incremental cost func-

tions. In the case where a commodity has mixed concave and convex

incremental cost functions, the situation is ambiguous; extreme flows

may or may not be optimal. Adjacent flow modifications of these commo-

dities could only be performed on a heuristic basis, without any under-

lying theory to guide us. For this reason, we shall employ the re-

striction that any algorithm that searches adjacent flows will only0

examine the adjacent extreme flows of commodities in the "strictly

concave category. These types of flows will be given the name of

"adjacent concave flows".

S-
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4.3 A Stronger Definition of a Local Optimum

Condition (4.1) was the basis for an earlier definition of local

optimality. If we wish to use adjacent concave flows as the basis for

',. '.a stronger definition of local optimality, we must still take account

of the fact that shifting any type of flow may cause us to move to a

solution that is not optimal in the earlier defined marginal sense.

>? One way to deal with this is to use each adjacent concave flow as the

initial solution to a gradient based local optimization routine, such

as Algorithm I. The solution then produced would have cost less than

or equal to the adjacent concave flow, and would also meet condition

(4.1). The general framework for an adjacent flow testing algorithm

(which will be denoted Type A) would be:

Type A

I. Use Algorithm I to find an initial solution that meets condi-

tion (4.1). Define the set of adjacent concave flows correspon-

ding to this solution.

2. Select an untested adjacent concave flow. If none exists, then

STOP, the current solution is considered to be locally optimal.

3. a. Using the selected adjacent concave flow as a starting solu-

* tion, perform Algorithm I.

b. If the solution to Algorithm I has cost less than the current

solution, go to Step 4; else, go to Step 2.

* 4. Replace the current solution with the new solution. Define the

new set of adjacent concave flows corresponding to this solution

and go to Step 2.

.' . ,--
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Of course, this algorithm lacks the elegant simplicity of merely evalu-

ating the cost of all adjacent extreme flows; even worse, the repeated

use of Algorithm I makes it extremely time consuming.

A less time consuming approach would be a similar algorithm that

" differs in that testing of adjacent concave flows for cost reductions

occurs without performing Algorithm I. Only adjacent concave flows

that are found to have cost lower than that of the current solution

would be refin.d by Algorithm I to achieve optimality condition (4.1).

The new local optimum (in the sense of condition (4.1) ) would then

become the starting point for again testing adjacent concave flows.

This procedure would continue until we achieved a local optimum from

which no further cost reductions could be made by reassigning a concave

flow to an adjacent path. The general framework of this algorithm

(which will be denoted Type B) would be:

Type B

1. Use Algorithm I to find an initial solution that meets condi-

tion (4.1). Define the set of adjacent concave flows correspon-

ding to this solution.

2. Select an untested adjacent concave flow. If none exist, then

STOP, the current solution is considered to be locally optimal.

0 3. If the solution corresponding to the selected adjacent concave

flow has cost less than that of the current solution, go to Step

4; else, go to Step 2.

4. Perform Algorithm I upon the adjacent concave flow. Replace

the current solution with the solution to Algorithm I. Define

the new set of adjacent concave flows corresponding to this

solution, and go to Step 2.

Zo
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The final solution of this algorithm would then be optimal in a

marginal sense, and also in a stronger adjacent flow sense. In addi-

tion, such an algorithm would be much faster than the Type A algorithm,

which optimizes each adjacent concave flow. However, the solutions

S-.obtained by the Type B algorithm will often be worse than those

obtained by the Type A Algorithm. In any case, they will be optimal in

a weaker sense than those produced by the first type of algorithm; that

is, it might be possible to achieve cost reductions by applying the

Type A algorithm to a "final solution" produced by the Type B algo-

rithm. This is due to the fact that each iteration of Algorithm I

provides a solution with cost less than or equal to that of the

* previous iteration.

A better approach would be to somehow combine the quality of solu-

tions of the Type A algorithm with the relative speed of the Type B

algorithm. This is indeed possible by using the maximum number of

iterations of Algorithm I as a control parameter. The rationale for

such an approach is based upon the empirical observation that most of

the cost reduction achieved by Algorithm I occurs in its first few

iterations. This alternative approach would test the cost reduction

achieved by shifting a concave flow to an adjacent path, and then

O performing at most n iterations of Algorithm I. (Less iterations would

be required if local optimality is achieved earlier.) If this solution

* - is then found to have cost less than that of the original flow, it is

* then refined by running Algorithm I to its completion, and becomes the

new current solution. In this way, our solutions still meet condition

(4.1).

S . - - - - - - - , . , - - - - - - - . , - - - - . . - , - . - . . , - e - . ! .
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An additional desirable feature would be the ability to choose

the adjacent concave flow with greatest cost reduction after n itera-

tions, not just the first flow found with reduced cost. However, this

procedure might greatly decrease the speed of the algorithm without

necessarily finding better solutions. Therefore, a hybrid approach

has been chosen, whereby only the adjacent concave flows obtainable by

shifting the flow of a single commodity being shipped between a given

origin-destination pair are compared for the greatest cost reduction.

A more formal statement of such an algorithm follows:

n'a

A--
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Algorithm II

Step 0 Select any X0 belonging to Q2. Set i=0 . Select values for

a a and 8 such that 0 < a,8 (1 . Set n = the maximum number of

iterations of Algorithm I for testing adjacent concave flows.

Step 1 Using Ii as a starting solution, find a local optimum ii, using

Algorithm I. Set {C) = the set of commodities that, given i.

have concave incremental path cost functions over the feasible

range on their possible flow paths. Set F. = the total cost of

solution j.

Step 2 If {C :), then STOP, X. is the final solution. Else do:

Select commodity k from the set (C}. For each of k's alter-

native flow paths;

a. Reroute the entire flow of commodity k to the alternate

flow path.

b. Using the network with rerouted flow as a starting solution,

perform n iterations of Algorithm I, or until condition

(4.1) is satisfied, whichever occurs first.

Step 3 Set X. = the solution in Step 2b with the lowest cost, Fi.

* If Fi > Fi, set {C} : {C} \ k and go to Step 2; Else, go to

Step 4.

0 Step 4 Set X i+1  Xi, i : i + 1 ; go to Step 1.

Definition: A solution to Algorithm II using parameters n,a,and
will be denoted as (level n, a, 5 ) locally optimal.

-44%
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0

The solutions to Algorithm 11 have several interesting features

that merit discussion. The most important feature is that any solu-

tion will have a form of local optimality that is stronger than the

local optimality condition (4.1); this is ensured by Step 1. Also note

the control parameter n. The algorithm has been structured such that

any solution that is (level n, a, a ) locally optimal will also be
0o  0

(level no, a, a) locally optimal for any n < n . However, this does

not imply that a higher value for n will necessarily ensure a lower

cost final solution.

Recall the first two types of algorithms discussed in this section.

The Type A algorithm involved achieving a local optimum of the form

* (4.1) when testing each adjacent flow. This fits into the framework of

Algorithm II by setting n = . The Type B algorithm involved testing

adjacent flows without optimizing. This is equivalent to Algorithm II

with n = 0. We see that both of these algorithms are actually special

cases of Algorithm II; however, setting n to some small integer value

will likely be more efficient.

It is also interesting to note that, when only one commodity is

considered, the n=0 case of Algorithm II reduces to a concave program-

ming algorithm, roughly similar to that developed by Hall [7]. This

* is because, in the single commodity case, the arc cost functions are

all concave, which further implies that each extreme flow will also be

a local optimum in the marginal sense. Algorithm II is then reduced to

* a two phase procedure: 1) obtain a marginally based local optimum of

the form (4.1) by applying Algorithm I to the initial solution (which

in the concave single-commodity case requires only a single iteration

0 of Algorithm I), 2) search over all adjacent flows, moving to succes-

4.-
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sively lower cost solutions, until no further cost reductions are pos-

sible.

The operation of Algorithm II is facilitated in solving Problem P'

by results from the analysis of Chapter 3. In particular, the ratio

tests, (*) and (**), of that chapter, provide simple means to evaluate

whether an arc cost function will be concave or convex with respect to

the incremental flow of a commodity. However, this is useful for only

partially determining which incremental path cost functions are concave

in Step 1. There will be some cases where the path cost function (de-

fined by the summed arc cost functions along a particular origin-desti-

nation path) will be concave, even though one of the arcs on the path

has a convex arc cost function. The arc oriented tests, (*) and (**),

are not able to test for this possibility; thus their use would imply

that some adjacent concave flows would be missed in Step 1 of the algo-

grithm. The implementation of Algorithm II that provides the results

of Chapter 5 uses the aforementioned ratio tests under the assumption

that the run time computational requirements of a path oriented con-

cavity test would be unjustifiably high.

N. 4.4 Summary

I The mathematical complexity of the arc cost functions causes previ-

ously developed techniques for solving non-linear min-cost flow prob-

lems to be inappropriate for the problem defined in this thesis. This

is especially true if one considers finding a local optimum, as defined

in the marginal sense (4.1), to be insufficient. By using a decomposi-

tion to transform Problem P, as defined in Chapter 3, to an equivalent

form, P', we first simplified the constraint space such that finding a

I
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local optimum in the marginal sense was reduced to solving a series of

shortest path problems. This was accomplished by devising a variation

upon Klessig's algorithm [101 called Algorithm I. Then, to refine such

solutions we proposed a search over all "adjacent concave flows" for

possible cost reductions. These adjacent concave flows correspond to

rerouted flow of those origin-destination-commodity triplets for which

all path cost functions are concave.

The search procedure for cost reducing flows was made more compli-

cated by reauiring that any new solution must also be locally optimal

in the earlier defined marginal sense, implying a stronger form of

local optimality, which we denoted (level n,t, a) local optimality.

*.A procedure known as Algorithm II was defined that produces these

(level n,a,8) locally optimal soloutions. Making the search process

for these stronger local optima algorithmically operational required

tradeoffs between solution quality and computational requirements.

This was accomplished in Algorithm II by the "level n" parameter above,

which controls the amount of computational effort expended in testing

adjacent concave flows for cost reductions. Without this control para-

meter, it is likely that the algorithm would require inordinate amounts

of time to achieve a final solution meeting the necessary local opti-

* mality requirements. Computational testing of Algorithm II is neces-

sary to determine the effects of varying the level parameter, n, and to

judge the algorithm's overall performance.

0 % %
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5. COMPUTATIONAL RESULTS
~. V

h IThis chapter will provide a detailed examination and discussion of

three major aspects of the performance of Algorithm II as applied to

Problem P'. In the first section, we will examine the quality of the

Ve solutions obtained by the algorithm in relation to solutions obtained

through alternate formulations and solution techniques. The following

section will discuss the relationships between the initial and final

solutions of Algorithm II. The data for these first two sections will

be provided by a set of test problems involving relatively small net-

works, to be described more fully below. The third section of this

chapter will evaluate the "level-n optimality" concept introduced in

_ the preceding chapter. In this case, Algorithm II solves a series of

-' ~test problems with n set at various levels. For reasons to be ex-

,- plained later in this chapter, these test problems will be performed on

considerably larger networks than those of the first two sections of

this chapter. The chapter will conclude with a final summary of the

three sections and observations regarding the overall performance of

Algorithm II.

5.1 Quality of Solutions

.- It is important that there be some means of verifying that the

solutions produced by Algorithm II are "good" relative to solutions

that can be obtained through alternative techniques or formulations.

0 The ideal situation would be if the Algorithm II solution for a given

problem could be compared to the global optimum for that problem; how-

ever, the complexity of the model prevents one from obtaining (or veri-

fying) the global optimum in all but the simplest of cases. For this

-S
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reason, our standards for comparison in judging the quality of the

solutions will be somewhat less direct, and will be provided by solving

three different forms of relaxations of the problem. These relaxations

will involve eliminating different features of the model formulations

relating to problems P or P', which in two cases allows us to use cur-

rently available alternative solution techniques: linear programming

and concave programming. In this way, we can view the results of this

analysis from the standpoint of comparison to alternative solution

techniques, as well as from that of the appropriateness of modeling

"vS various commodity attributes. The emphasis of this section will be

upon the objective function values of the final solutions to Algorithm

II. Other features, such as run time performance, will be evaluated

in later sections.

/: The first relaxation involves eliminating the inventory holding

costs related to vehicle frequency from the objective function of Prob-

lem P. The result is a linear objective function in a model with line-

4-* ar constraints, thus giving us a problem that is solved to optimality

via standard linear programming techniques. This formulation was dis-

cussed in the literature review of Chapter 2 as an example of current
4

.' modeling techniques in multicommodity network flow problems. Note that

the final solution to this LP provides a lower bound to the optimal so-

lution of Problem P'. As we shall observe, for certain problems, the

solution to this relaxation provides a reasonably close approximatiom

to the solution of the full problem. We can then obtain the true cost

of the optimal solution to the linear programming relaxation by evalu-

A ating it under the objective function of the original problem. This

cost is then an upper bound to the optimal solution of Problem P'.

'N%0"
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The second relaxation involves reducing the set of commodities to

a single "average commodity" I to be shipped through the network. This

provides us with a single commodity network flow problem with all con-

cave arc cost functions. Previously developed concave programming tech-

niques could be applied to solve this problem; however, we will not

have to resort to a separate algorithm. As noted in Chapter 4, Local

Optima, in the single commodity case, Algorithm II reduces to a con-

cave optimization algorithm similar to that devised by Hall [7]. The

final solution to the relaxed problem will then be evaluated under the

objective function of the original problem and the full commodity set,

thus providing us with an additional upper bound to Problem P'. As

with the first relaxation, this formulation also represents one of the

means by which multi-attribute network flow problems are currently

modeled.

.A third relaxation comes about from assuming that all commodities

have identical "ideal" densities, thus eliminating the need for one of

the forms of physical capacity constraints, (3.5) or (3.6). Unfortu-

II nately, this modification does not alter the characteristic of arc cost

functions having both concave and convex portions, making the degree of

difficulty close to that of the original problem. Therefore, solving

this problem also requires the full machinery ot Algorithm II. The so-

lution to this relaxation is relevant in that it forms an additional

upper bound to the optimal solution of the original problem. Of fur-

ther importance is that it provides a measure of the costs had we

1. In accordance with the variable definitions in Problem P (Chapter
Three), a commodity refers to a distinct item type in the sense of
having a unique weight, volume and inventory holding cost; however,
multiple origin-destination pairs may be involved.

'p
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ignored one of the two capacity attributes: weight or volume. Doing

so would have eliminated many technical details in our mathematical

analysis of the problem and streamlined the operation of Algorithm II.

Description of Test Problems

A series of test problems was constructed to evaluate solution

quality under varying circumstances of demand and travel distance. As

noted earlier in this thesis, the set of network nodes consists of

origins, destinations, and one level of transshipment terminals. In

particular, there are 12 origins, two transshipment terminals, and one

destination, located on an L2 metric grid. This particular size of

network was chosen in an effort to balance two requirements: the need

for sufficient problem complexity, and the desire to reduce the effort

required to set up the problem constraints and transfer the solutions

obtained in the linear programming relaxations. The initial configu-

ration of the network is shown in Figure 5.1.

Four different network configurations are obtained by moving the

destination node closer or further from the origins and transshipment

terminals. By doing this, we change the relative desirability of

routing commodities via a transshipment terminal, as opposed to routing

them directly. One can achieve the same effect by moving the origins

relatively closer or further from the transshipment terminals; however,

this would have greatly increased the number of offline recalculations

* required to set up new network configurations.

4
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*Figure 5.1

Network for Solution Quality Testing
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'" Each network configuration is tested under a total of four randomly

generated demand sets, where each set is created by using a different

random number seed in the following procedure: 1) each origin of the

test network is randomly assigned one of eight possible commodities

(for which the attributes are given in Table 5.1) , and 2) the amount

- of commodity flow is selected as a random quantity between 1/4 and 1

full truckload per unit time, as determined by the dominating attri-

bute of that commodity.
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Table 5. 1
Commodity Attributes

Commodity Weight (lbs.) Volume (ft3 ) Inv.Hldg. Cost ($/weight-load/
__ __ unit time)

1 500.0 50.0 800
2 10.0 5.0 400
3 50.0 4.0 16
4 100.0 25.0 800
5 20.0 .5 8000
6 150.0 5.0 533
7 25.0 1.0 32
8 50.0 1.0 160a
The final solution produced by Algorithm II, including the concave

version used in the second relaxation, may be varied by using different

- initial solutions. Therefore, an attempt was made in this section to

find a "good" initial solution for each problem instance by initializ-

ing Algorithm II with three different types of solutions. These were:

1) The optimal solution to the linear programming relaxation, 2) evenly

dividing each commodity's flow over all possible paths, and 3) routing

"- the flows through the transshipment terminal closest to each origin.

In this section of the chapter, we will provide Algorithm II results

for only the best solution (one with least cost) obtained via the three

alternative starting solutions. The next section of this chapter will

• discuss in detail the effects of using different types of initial solu-

tions under varying circumstances.

Table 5.2 provides a summary of the values of parameters used in

• the test problems.

S%
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Table 5.2
Parameter Values for Test Problems

Parameter Value

A Vehicle Weight Capacity 80,000 lbs 3
Vehicle Volume Capacity 4,200 ft.
Vehicle Travel Time .002 days x # of miles traveled
Vehicle Cost $1.35/mile x # of miles traveled
Tuning Parameter (a) .5
Tuning Parameter (g) .5

m...

Test Results

Algorithm II was coded in FORTRAN IV and implemented on an IBM

3081. The linear programming relaxations were solved via the simplex

0 method using the LINDO package. Tables 5.3 a) - 5.3 d) summarize the

results of testing the alternate formulations and solution techniques,

,. where the objective function value listed is that obtained by evalu-

ating the respective final solutions under the objective function of

the original problem formulation. The cost of the solution with all

flows routed directly is also provided, as an additional benchmark in

our analysis. The relative rank of each formulation, in relation to

the others in that problem instance, is given in parenthesis.

y..".
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Table 5.3

Objective Function Values and Rankings of Alternative Model Types
($/unit time)

5.3 a) Demand Set 1

!Solution Type ! Coordinate of Destination (miles)
587 875 1162 ! 1450

'Algorithm I : a ' ' I

!(Problem P') '19333 (2)131328 (1):43133 (1)!54988 (1i

_.Linear Program :20696 (5)!33773 (5)!44817 (5)!55844 (4

'Concave Program!19149 (1!31332 (2):43133 (1)'54988 (1)

:Algorithm II ' a
!(One Capacity) ',19463 (4)!31529 (443636 (3)W55808 (3W.

'Direct Routing !19333 (2)!31462 (3)!43656 (4)!55914 (5)1

5.3 b) Demand Set 2

Solution Type Coordinate of Destination (miles)
587 875 ' 1162 1450"I: 8 a , a

i ':Algorithm I1
!(Problem P') 4340 ()17189 (1)! 9913 (11812671 (1)"

a"° "'a a , a

Linear Program 14567 (5)17265 (2)19960 (2)812717 (2).'

'Concave Program:4408 (2)17641 (4)!10889 (4):14187 (4

S,.Algorithm II, l a
:(One Capacity) 14408 (2)17800 (5),11304 (5)814552 (5

' a i I I (][- ].DirectRoutingj 440 (2)'7539 (34110789 (3)814088 (3)8

%"

5..

S- o
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5.3 c) Demand Set 3

'Solution Tyipe Coordinate of Destination (miles)
_____._ _ ' 587 875 1162 ' 1450 .
:Algorithm II , , , I ,

!(Problem P') '6270 (17110181 (1}!14249 (1)118166 (M)

Linear Program 16539 (4)'10569 (3)!14435 (3)118349 (2)!
I. , I I i I I

:Concave Program,6308 (3),10574 (4)115092 (5)'18900 (4
:Algorithm II ,,
:(One Capacity) 16672 (5)!10678 (5}!14790 (4)!18959 (5
iIII I I

, I I I I

.Direct Routing 16297 (2)'10287 (2)!14415 (2)!18605 (3}

-r 5.3 d) Demand Set 4

'Solution Type Coordinate of Destination (miles)
587 1 875 1162 1450

:Algorithm II
'(Problem P') 110297 (1)!16485 (1)'22366 (1)!28257 (1)!

'Linear Program !11209 (5)!16968 (3)!22851 (3)!28916 (3
I I I I I

! Concave Program10882 (4) 17347 (5)!23762 (5)!30147 4}!I I I

:Algorithm II
- (One Capacity) 110327 (2)116562 (2)122366 (1)!28316 (2)1

% I-.- s , ,
-" "~lDirect Routing 11T,1037 2194 (4),23593 (4)',30185 (5)8

p.

0,,
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The most noticeable feature of the results of Table 5.3 is that

Algorithm II, when used to solve the formulation P', in almost every

case produces a lower cost final solution than any other technique or

formulation. This is not too surprising, since only formulation P'

takes full account of all three commodity attributes: weight, volume,

-4 and inventory holding cost. However, in many cases, the ditferences in

1 ~cost are significant.

In the case of the optimal solution to the linear relaxation, there

are consistently large differences between it and the Algorithm II

solution to Problem P'. However, the size of this difference decreases

as the destination becomes further from the origins and terminals; at

the shortest distance, the average difference is 6.3Z, while at the

longest distance, the average difference is 1.3%. This is due to the

fact that as distance increases, the Cij terms increase, which in turn

decreases the second derivatives of the arc cost functions. In effect,

the arc cost functions become more linear, and the linear programming

relaxation becomes closer to the costs of the original formulation.

The magnitude of the distance effect will vary greatly from one set

of demands to another, depending upon the amount of linearity induced

by the feasible combinations of commodity flows. For example, we would

- expect that demand sets containing large quantities of commodities with

high inventory holding costs would be more difficult to approximate

with a linear programming relaxation. This can be illustrated by ob-

serving Table 5.4 . The attributes of all commodity flows have been

- - summed within each demand set to obtain the total amounts of weight,

- volume, and inventory holding cost. The last columns of the table

provide the average percentage difference in objective function

0
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values occurring between the Algorithm II solution and the linear and

concave solutions. Although this provides only a rough comparison, we

can see that the rankings of these average reductions for the optimal

linear solution fall in the same order as the size of the total inven-

tory holding cost.

Table 5.4
Total Attribute Levels vs. % Reduction

Demand Weight Volume Inv. Hldg. Cost/ Avg. % Reduction-Alg.II vs.-
Set Loads Loads Unit Time Opt. Linear Concave

1 6.06 5.93 15,221.88 5.1 - 0.2
4 4.60 6.56 5,892.60 4.1 6.03 4.36 7.76 1,635.78 2.6 3.6
2 4.44 6.21 634.56 1.5 7.1

Inventory holding cost considerations may in some cases prove more

important than accounting for differences in commodity densities.

Observe in Table 5.3 that for the two demand sets with highest total

inventory holding cost/unit time shown above, sets 1 and 4, the Algo-

rithm II solution to the single capacity formulation also produces

lower objective function values than the optimal linear solution. This

occurs even though set 1 is "heavy" and set 4 is "light", while the

single capacity formulation had assumed uniformly ideal densities.

* In general, the concave programming algorithm did not perform par-

ticularly well when compared to Algorithm II. However, we can observe

from Table 5.4, that in the case of Demand Set 1, the concave program-

* ming algorithm performed slightly better on average. Here, the unusu-

* " ally large inventory holding costs caused the arc cost functions to be

highly concave, thus allowing a reasonably close functional approxima-

* tion. This is particularly true when the travel distances are rela-

4,'J
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tively short, or, equivalently, the C.. terms are relatively small.

This distance effect also causes the arc cost functions to become more

concave. In general, the percentage difference in objective function

values between Algorithm II and the concave programming algorithm in-

creases as the destination is moved further away from the origins and

terminals -- from an average difference of 1.7% at 587 miles, to an

t i s fmaverage difference of 6.1% at 1450 miles.

5.2 Dependence Between Initial and Final Solutions

The previous section demonstrated that demands and network struc-

ture affect the linearity of the arc cost functions. This in turn

affected the quality of solutions produced by initializing the algo-

rithm with the optimal solution to a linear programming relaxation of

the problem. Similarly, these factors will affect the ability of vari-

ous types of initial solutions to lead to a final solution with least

cost in Algorithm II. In this next phase of the computational study,

the dependence between initial and final solutions of Algorithm II is

investigated. Our source of data will be the same test problems used

in the previous section. Further insight is gained by providing two

different sets of commodity attributes for each problem instance.

* The first set of commodities is the one used previously, and con-

' tains large variations in density between commodities. The second set

i- of commodities has a much narrower range of density. It was con-

* structed by generating densities randomly in an interval of + 10 lbs./

ft.3 about the ideal density of 19.05 lbs./ft.3 . However, the ordering

of commodities by density is maintained by assigning the random den-

* sities to the appropriate commodity.

f d
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The results of this investigation have been summarized in Table

5.5 . The type of initial solution which led to the least cost final

solution of Algorithm II is given for each problem instance using the

following code:

L - the optimal solution to the linear relaxation,
E - evenly dividing the flow between an origin-destination pair

over all possible paths,
C - routing flows through the terminal closest to an origin, and
D - routing all flows directly.

The second place initial solution(s) are enclosed in parenthesis immedi-

ately after the first, followed by the percentage difference between

first and second place objective functions.

Table 5.5
Initial Solution Providing Lowest Cost Final Solution

Demand Variation Y Coordinate of Destination (miles)
Set in Density 587 875 1162 1450

1 High D,(C)-.55% L,E,C-O% L,E,C-0% L,E,C-0%
1 Low L,(E,C)-.01% L,(E,C)-.04% L,(E)-.03% L,E,C-O%

2 High E,(D)-.19% L,(E)-1.47% L,(E)-.42% L,(E)-.7%
2 Low L,E,C-O% L,(D)-I.12% L,{C)-.93% L,{C)-1.15%

3 High L,(D)-.42% L,(D)-I.0% E,(L)-.56% L,(E)-.5%
3 Low D,(L)-.02% L,E-0% L,E-0% L,E-O%

4 High L,(E)-.II% L,(C)-.46% C,(L)-.88% C,(L)-.87%
%% 4 Low D,(L)-.25% C,{L)-1.0% C,(E)-.81% C,(E)-1.33%

We see above that the optimal linear solution generally provides

the best initial solution for both sets of commodities. A likely

explanation for this is that the linear relaxation is solved to opti-

mality, thus accounting for all possible savings due to commodity dens-

ity considerations. On the other hand, the remaining initial solutions

are approximate and heuristic in nature. That is, direct routing seeks

to minimize item-miles traveled; the closest terminal strategy attempts

S&A
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ato capitalize on the economies of scale effect of concave functions;

and the even flow strategy, by initially sending flow on all paths, is

able to sample the marginal costs on all paths at some non-zero flow

level. However, one major drawback in using an LP optimal initial

solution is the considerable effort required to set up the formulation

and transfer the solution to Algorithm II in the proper format. In

practice, this process would have to be automated via specially

tailored preprocessing routines.

One of the most striking features of the above results is the

consistently small difference between first and second place final

solutions: usually less than 1%, and often, 0%. This result is

* encouraging in that it shows that the quality of the Algorithm II

final solutions is nearly independent of the starting solutions. How-

ever, it would be desirable to test this result more rigorously by

randomly generating many different initial solutions and analyzing the

variations in final solutions. Unfortunately, time and computer re-

source constraints prevented the inclusion of such a test in this

thesis. On the other hand, the extreme difference in form of the

initial solutions that were examined makes this relatively limited test

more credible.

* There appears to be few differences between the type of results

achieved with the two different sets of commodities. One might expect

the optimal linear solution to perform relatively better as an initial

0 solution when density variations are high, implying high potential con-

solidation savings. However, this is not the case here. It appears

*.-. that Algorithm II is also able to capitalize on density variations to

* achieve consolidation savings.

AIz
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In some of the above problem instances, routing all flows direct

was a better solution than any that could be achieved via Algorithm I.

This situation becomes more likely when the distance from the terminals

to the destination is small relative to the distance from the origins

to the destination. This is more a characteristic of the network

than any failing of Algorithm II. However, it is worth noting that

Algorithm II can not make any improvement to an initial solution with

all flows routed direct. The reason for this is in the way that

Algorithm II tests adjacent flows. Recall that the source of cost

savings in our network model is the consolidation of two or more commo-

dities at a transshipment terminal. Algorithm II operates by shifting

only one commodity flow at a time, and then evaluating marginal costs

to determine the extent of any further flow shifts. The triangle

inequality ensures that marginal costs will always be lower on the

direct route than on the terminal route for any single commodity flow.

5.3 Level n Optimality

In this section, we will test the performance of the part of Algorithm

11 that searches over adjacent concave flows, and observe how this

performance varies with changes in the value of the control parameter

n. Performance will be judged in terms of the reduction in costs below

those of the initial solution and those of the initial local optimum.

We will also examine the execution time of the algorithm for different

levels of n, and contrast the time requirements with the cost reduc-

tions at each level.

This phase of the computational testing required it more compli-

cated series of test problems. The test problems discussed previously

.~~~- .. .. . . .. .

..........................
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were unsuitable, due to the fact that the final solutions to Algorithm

II were achieved at level n=O; that is, setting n to a higher level

had no effect upon the final solution value. This situation will

always occur when there is only one flow from each origin, and the

local optimum does not have any split flows. These conditions imply

that all flows will follow a single path from origin to destination,

and the unused paths will have at least one arc with zero flow. Then,

since the gradients on the zero flow arcs will have a value of infin-

ity, the gradient based shortest path algorithm imbedded in Algorithm

II will never select an unused path over the current path. Thus, flow

changes will only occur as a result of shifting adjacent concave flows,

not through the gradient based optimization of Algorithm I.

The test networks in this section were generated randomly, in-

stead of having preassigned node locations as before. However, as

gwe shall describe, this did not entail distributing the nodes com-

pletely independent of each other. In the procedure that was used,

V" three terminal nodes and five destination nodes were first assigned to

random locations on a 1000 mile by 1000 mile grid. For each terminal,

a random number, uniformly distributed between five and 20 , was gener-

ated to determine the number of origins to be assigned to the region

within a 200 mile radius (within the limitations of the grid space)

of the terminal. By locating each of the the origins close to at least

one terminal we increase the likelihood that a reasonably interesting

amount of consolidation will occur in the final solutions. However,

this "assignment" of origin to terminals is not meant to imply any

permanent restriction of flows to a particular terminal during the

course of the algorithm.

4Mr
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Commodities were randomly assigned to the origins such that each

origin shipped a commodity to each of the five destinations. The quan-

tity of each commodity shipped between a given origin-destination pair

was a random number uniformly distributed between 1 unit and .1 truck-

load. The attributes of the commodities are the same as those used

earlier in this chapter, and can be found in Table 5.1.

Each problem instance was initiated by two types of initial solu-

tions: one with flow evenly divided over all possible paths, and one

with flow routed through the terminal closest to each origin. The

optimal linear solution was not used here as an initial solution, due

to the large time requirements to manually formulate and transfer such

solutions for networks of this size. However, our analysis of the pre-

vious section suggests that this will not have a large effect upon the

quality of our solutions. The costs of direct routing have been in-

cluded in the table for comparative purposes.

Each network was solved using Algorithm II with n set at 0,1 and
". o'-

2, with no further cost reductions found above this level. Budgetary

constraints on computer time prevented running more than five distinct

network/demand configurations for each level of n, and each initial

solution. Table 5.6 summarizes the network characteristics while Table

* 5.7 summarizes the results of these tests. The parameters of the model

are those used earlier, and are given in Table 5.2. The cpu times

A.. result from using an IBM 3081, and include I/0 time.

-,1A -M
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Table 5.6
Summary of Network Characteristics for Level n Analysis

origins Uniform (5,20) at each terminal
terminals 3
destinations 5
origin-dest. pairs 5 per origin (one for each destination)
commodities 1 per origin-destination pair, chosen randomly

from the set of 8 commodities in Table 5.1

Table 5.7
Solution Values and CPU Times for Varying Levels of n

($/unit time)
(CPU seconds given in parenthesis)

:No. of: Initial Starting : Marginal: Level
l. IOrgns Solution Cost Optimum I n=0 , n=1 n=2

21 : Even Flow: 45903 23429 22961 22961 22961a [

______ ____ (5.51) 1 (15.31)1 (24.36):
' 21 : Closest 23520 23520 22961 22961 22961a a
'__ Terminal (3.82) 1 (17.40)! (27,53):

"" * 21 :Direct 22961""",' ,' Routing ,,,
I% I"I I I I I I

36 : Even Flow: 67232 32068 : 32007 31872 31872
12 i 1 (5.58) 1 (36.781 (57.101

36 : Closest : 32482 32482 1 31978 31872 : 31872
_____ 1Terminal ! 1, , , _ _ (5.89) 1 (35.91)! (55.86)!

36 Direct 41489 , ,
__, IRouting _ _ _ a

I __ ___ I _ _ _ _I I _
"*" a a a I I

36 : Even Flow: 121465 : 62673 : 62403 62388 : 62349

!3 ,'_, _ _ (3.62) 1 (18.36): (40.05)!
36 : Closest : 64013 64013 : 62591 62412 : 62412

Terminal (4.33) : (18.70): (30.72)!
. 36 :Direct : 76768 : * a
' : Routing ,,|IIII I

: 45 : Even Flow: 90004 : 39583 : 39576 39492 : 39492-(8.62) (41.52) (67.22)

- 45 : Closest : 41239 : 41239 : 39492 39492 : 39492
Terminal 1 ,'_ _ ' (15.73) ,(81.04) (131.69)!

45 : Direct ' 2583 o" I I IIa I• : : Routing xAI.J1L I I _ _ _ _. _ _ _ __1_ _ _ _ - _ _ _ _

49 : Even Flow: 84152 40853 : 40748 40729 40729
!-_-._ 5_ __. 5 (10.57) 1 (84.05): (107.39)_

- 49 Closest : 40897 40897 : 40781 40778 : 40730
. Terminal I ! (10.17) (52.52)' (112.68)!

•,' 49 :Direct , 57501 ,
"Routing __'_'_'

%
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We see that in each of the ten network/initial solution combina-

tions, the final solution value appears to "bottom out" by the time

that n reaches 2, if not sooner. In fact, the average percentage

reduction in solution values from n=O to n=2 is only slightly more than

.1%. We also observe large increases in cpu requirements as n becomes

higher than zero. These two factors suggest that it may not be worth-

while to set n higher than 2, and arguably, not higher than 0. On the

other hand, the n=0 level produces solutions that are reduced an

average of 1.4%, and as high as 4.2% in one case, from the initial

marginally based local optimum. It would be premature to generalize

from these observations; but it does suggest that available computer

time might be better spent generating a number of initial solutions

and solving them with n set to a low value, 0 say, than by solving a

single problem with n set higher.

The majority of the cost reduction achieved by the algorithm occurs

in the process of reaching an initial local optimum (Algorithm I).

This would tend to indicate that, in this particular problem structure,

a marginally based local optimum is often a relatively "good" solution.

On the other hand, it is interesting to note that there appears to be

some tradeoffs involved in solving a problem via Algorithm II versus

*Algorithm I alone. For example, by initializing Algorithm I with

different starting solutions, we can obtain a number of final solutions

(marginally based local optima), with a wide range of costs. Addi-

tional cost reduction can then be achieved by proceeding with the

remainder of Algorithm I. This additional cost reduction tends to be

relatively small when the Algorithm I solution is "good", and rela-

tively large when the Algorithm I solution is "poor". I~i effect, the

S%
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adjacent concave flow search allows the poorer Algorithm I solutions to

catch-up" to better Algorithm I solutions. Thus, it is necessary to

go beyond the marginally based local optima of Algorithm I to ensure a

i"good" final solution.

The solutions produced at the higher levels are less dependent upon

the initial solution than those at the lower levels. In three of the

five problems, the final results are identical over each initial solu-

tion type, while the other two problems have only insignificant differ-

ences. This is particularly interesting in light of the major differ-

ences in form and cost of the starting solutions. This would suggest

a certain amount of robustness on the part of Algorithm I.

5.4 Summary

In the first section of this chapter, we saw how solving Problem

P', via Algorithm II, compared to solving relaxed versions of Problem

P' via linear programming, concave programming, or Algorithm II it-

self. It was shown in a series of test problems that Algorithm II,

operating on the full version of Problem P', was consistently superior

to other solution techniques or alternate formulations. This is

largely due to the fact that only Algorithm II has the methodology to

deal with all three of the commodity attributes: weight, volume, and

inventory holding cost.

The second section demonstrated that Algorithm II is not overly

dependent upon its initial solution. This was true over a wide vari-

ety of demands, network structures, and commodity attributes. Such a

characteristic indicates a certain amount of robustness on the part of

Algorithm II, and provides some initial evidence that near optimality

0c.A -
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is being achieved.

The final section explored the behavior of Algorithm II as the

level-n parameter was varied. We saw that n need not be set higher

than 2 for the algorithm to achieve its maximal cost reductions. In

fact, the relatively small amount of cost reductioD achieved by in-

creasing n from 0 to 2 may not justify the relatively large additional

cpu time requirements.

0
Ii12
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Fir%: 6. CONCLUSIONS

This thesis has demonstrated the advantages of using the multi-

attribute multicommodity network flow formulation to model load planning

problems in transportation networks. Previously, research has focused

upon techniques for solving problems with less complex formulations,II neglecting one or more facets of the general problem. These short-

comings can lead to improper cost estimations, and thereby, to subopti-

mal routings of vehicles and commodities in the transportation network.

- Solving the multiattribute multicommodity formulation in reasonably

-" large networks required developing new methodology to deal with arc cost

functions that were shown to have both concave and convex portions.

[ •This nonlinear feature results in the presence of numerous local optima,

over which an exhaustive search is computationally impractical. To

overcome this difficulty, it was first necessary to analyze the struc-

ture of the cost functions and the constraint space. This analysis

provided several new and powerful results, which were then incorporated

" into the solution algorithm presented in this thesis.

The three-dimensional parameter space concept developed in Chapter

3 is an intuitively appealing means of representing multiattribute flow

across an arc. Incrementing commodity flows can be represented by

0 movement in a straight line through the space. Inflection points of

the commodity's incremental arc cost function can then be found at the

intersections of this line with the boundaries between the flow regions

*w v d
R Rv , and R.

- In Chapter 3, a simple ratio test was derived which indicates

whether an arc cost function will be concave or convex with respect to

an incremental flow. This result can be used in the development of

N0 41
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efficient solution algorithms by eliminating the need for numerical

analysis techniques to determine the second derivatives of the arc cost

functions. Recall that the ratios can also be represented in the para-

meter space by the slopes of the lines defined by average and incremen-

tal flow.

The computational results in Chapter 5 demonstrated the importance

of accounting for all three of the commodity attributes: weight, vol-

ume, and inventory holding cost. Algorithm II is currently unique in

its ability to effectively operate in a multicommodity environment that

includes these three attributes, and appears most applicable to situa-

tions with multiple commodities and high inventory costs. In contrast,

linear models are incapable of handling the effects of high inventory

costs, while previously developed nonlinear models neglect the possi-

bility of capitalizing upon the commodity density variations often

present in multicommodity situations. On the other hand, the single

commodity case may be adequately handled through already established

concave programming techniques (to which Algorithm II reduces in the

single commodity situation); furthermore, in situations without high

inventory holding costs, a linear model may be more appropriate. In

fact, preliminary trials of Algorithm II in instances where all commo-

dities have low inventory holding costs indicate poor performance; run

times are very long, and the algorithm has trouble converging at all.

Some of the generalizations above regarding model appropriateness

have been summarized in Table 6.1 below. These generalizations may be

applied to min-cost network flow problems whose network structure is

like that described in this thesis.

0
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Table 6.1
Generalizations of Appropriate Modeling Techniques

!High Density VariationLow Density Variation"

-% . [ Inventory Costs ' Inventory Costs U
, High Low High Low

'*, i Ct sit y

Single Cornodty C D

Multicommodity AII LP AII D

AII - Algorithm II
C - Concave Programming
D - Direct Routing (little motivation for consolidation)

* LP - Linear Programming

Algorithm II demonstrated the capability to efficiently produce

"good" local optima, with costs significantly lower than known alterna-

tives. The final solutions generated are largely independent of the

form of the initial solutions; that is, nearly the same final solution

is attained, regardless of the starting solution. This partially sug-

gests that the final solutions may be nearly optimal, or at the very

least, that Algorithm II is relatively robust. The level n control

* parameter proved to be an effective means of holding down computational

requirements while still allowing significant cost reductions.

Further testing of Algorithm II upon larger and more complex

network structures is desirable. It would be particularly interesting

1. Recall that in this thesis the term, "single commodity", implies the
existence of only one commodity in the sense of having a unique weight,
volume, and inventory holding cost; however, multiple origin-destination
pairs may be involved.

,.0'..
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V to test Algorithm II in problems that allow commodities more than one

stop on paths between their origin and their destination. This would

be the case in a problem which modeled consolidation as well as break-

bulk activities at the terminals. The ability of Algorithm 11 to effi-

% % ciently find low cost solutions in this multi-level terminal situation

is still an open question.

-p....Ic:A
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Appendix 1A

Derivation of Expressions for Bounds on Nonlinearity,

Case 1 : Ix\k > (hx. /2Ci ) , sx.13 - 1 3 1

Definition: Bw = I - (FW )k/(Fwi
ii k ij'kloo

By inserting the expressions 3.14 and 3.15 for first derivative and

limiting derivative into the above expression we obtain:

B w = 1 C. + (hbk)x/xk _ hxtk \2\.h k ) / I C. + t .h k= ij ij/i j + ij i ij ]i

Because x.. = 0, the term lx.. can be set to Ix\ , and if we eliminate

-"the term It.hk by assuming It hk << Ci, wecasy

. k \k \xk" / i \ k 2
B. .-+" B- - i /' (  C.

Continuing with the simplification:

B w < [hx\k h klxk / [2C (lx'k )2
ij i 3i ij

Suppose now that Bw must be less than some a , which we can accom-

plish by setting

,O. [l ~\k k \k xk2 <a
[lix h 13 [2C. (1X )2J < aij -hlij] /2ij( iij -

-" which is equivalent to

Sij h 1Xij < 2 C i

I\k

By dividing through by hx k . we obtain:I13

1 - bk/h ) < 2ctC.
%w - 13 13•
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Then by rearranging terms:

hk/h >( 1- a(r k w )2

kw \k h1J 2

4.%

i i

'S

whr0 w I k(xk2

0j Ij I
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Appendix 1B

Derivation of Expressions for Bounds on Nonlinearity,

Case 2: ij, sxij - (13 1/

?w

Definition : B= 1 - (Fwi)k/(F j)k.

By inserting the expressions 3.14 and 3.15 for first derivative and

limiting derivative into the above expression we obtain:

B 1 - [ C. + (h klxk - hx\k)/2(lxi)2 + t. [ C h

\k k
In this case we set 1xij to 1x k. . + x. such that

1e x.. = x l \ k + x k  = [(hx.k + h kxk )2
= ij x x j =ij "

Putting this equality into standard quadratic form we have

[x + \2(x - h/2C xk + [(1xk 2 - hx:k/2C.1 013 1j i ij i 13

Thus a 1

b = [2(1x \ k  h k/2C I
1\k 2

c [(Ix.i) -hx "/2C I
13 i ij

It is convenient to first solve for b2 -4ac, which is equivalent to

( k/2Ci )2 _ 2(lx \k)C (h h.'-. - 2 ij)/ ijlh - w

We can then say that

,-.1ij l[h C 2 )] (+/-) [(h 2C - 2 (1x )/Cij(hk -
13 w
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k -

Sre we have assumed that h < h the term in the square root is posi-

tive and x. . will have real roots. Also, because we are finding the

U1 k
solution for an increasing xi", we need only find the upper root. Thus

.,* by substituting the expression above for x. . into (lx.. + x and by

cancelling terms we obtain

\k k 2 k (b2  k 2 \kk
O(xk + x. ) hk(/4c _ 4ac) +(h2ci) _ lx.k/2C..(h - )ij j ij -j +i ij j w

, But since h k  w' (b 2 _ 4 a c ) I > h k/2cij 'we can say

(1x\k + xk 2 > (hk/2c 2 \k
.ij ij xij/ i w

Using the right hand side above to replace (lx ij)2 in the expression

for Bw we obtain:

..- (i 1 \k (hk hw)]/[2(h k/2Ci )2 1X.\kl(hk Hw) + t..hk}V

B - gw < j - {C + [ h- - tj

kkk

, (C ii + t ij hk

And if we eliminate the t..h k term by assuming that t..h < C.

B W < [1X \k h - k) / (h k 2/2C.. Ix k 'k (h 1]
ij w - iI n  w

Suppose now that B is required to be less than some a, which we

can accomplish by setting

[Ix.6h- hk) / /2C - x. khk -h 1 < a!, -, j w 1 jj w -

which after simplification is equivalent to

(h - hk) < [(,/(l-a )hk) 2 1 / [2G..lx kj]

-o1 1

0-o

0

.°'. .
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Dividing through by h we obtain

1 - hk/hw < [(/l)(Lhk)2 ]
J /[2C.ii hxkij]

or

k- kd,2hk/w > [ 1 -/l-)rij) I]

where rid = [hx \k/2C i/[hx\k/h k
ii iJ ii 1J

V

'I


