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Multi-Variable Functional Interpolation and Adaptive Networks

1 Introduction

The strong resurgence of interest in 'self-learning machines', whose ancestors include the
perceptrons of the 1960's, is at least partly driven by the expectation that they will provide a
new source of algorithms/architectures for the processing of complex data. This expectation
is based on an analogy with connectionist models of animal brains. The brain is able to cope
with sophisticated recognition and inductive tasks far beyond the capabilities of systems
based on present computing logic and architectures.

An example of an everyday task for the human brain which illustrates this point, is
the recognition of humain speech. For automatic speech recognition one wishes to deduce
properties (the implied message) from the statistics of a finite input data set even though
the speech will be subject to nonlinear distortions due to noise, sex, age, health and accent
of the speaker. This has proved to be notoriously difficult. Over the past decade, one
of the most successful techniques developed for speech recognition has been based around
Hidden Markov Models (see for instance [1,2,3]). In this scheme, speech is modelled as a
sequence of causal stationary stochastic processes determined by a finite number of allowable
states, state transitions, a matrix of stationary transition probabilities and an initial state
distribution. There is, in addition, a learning algorithm (Baum-Welch iteration) to fine
tune the parameters of the model which increases the likelihood that each model produces
it's associated data. However, one of the problems with this approach involves the a priori
assumptions made regarding the topology of the Hidden Markov model (number of states,
allowable transitions etc). As long as the total possible input data is consistent with the
assumptions made in the original model, then one can expect a faithful representation
of the data. This unfortunately presupposes that we already know how to model speech
adequately.

In an attempt to circumvent this problem, self-learning machines have been employed.
The virtue of these is that no explicit model of speech is required. For instance, the multi-
layer perceptron (which is a layered nonlinear network) embodies a set of nonlinear, 'hidden'
units whose task is to encode the higher order constraints of the input data [41. This is
achieved by varying weights governing the strengths of connections between the units in
order to minimise the error in relating known input-output pairs (the 'training' set). This
process has become known as "learning". The ability of the network to give subsequently
reasonable (in some sense) outputs for inputs not contained in the training set is termed
"generalisation". In effect a multi-layer perceptron of given geometry with given nonlinear
responses of the units constitutes an M-parameter family of models (where M is the total
number of weights which are varied). It is currently an act of faith, based on encouraging
practical results, that such families are broad enough to include models of speech which are
adequate for the purposes of classification. This means, however, that the design of a multi-
layer perceptron for a specific task remains an empirical art. In particular, how many hidden
units should be employed and in what configuration, how much training data is needed,
and what initial inter-connection strengths ha-, to be as-tigned? Sume experiiientai work
has been performed which addresses these problems (for instance [5,6]) although it is fair to
comment that an understanding of these issues is still lacking. The source of the difficulty
is the implicit relationship between these externally controllable factors, and the model
ultimately represented by the network.

The present paper investigates the implicit assumptions made when employing a feed-
forward layered network model to analyse complex data. The approach will be to view such
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a network as representing a map from an n-dimensional input space to an n'-dimensional
output space, say a : R n , Rn'. This map will be thought of as a graph r c Rn x ln' (in the
same way that a : !t -+ IR, where s(z) = x may be thought of as a parabola drawn in IR2).
From this point of view, "error free" training data presented to the network in the form of
input-output pairs represent points on the graph, r and the learning phase of an adaptive
network constitutes the optimisation for a fitting procedure for r based on the known
data points. Generalisatibn is therefore synonymous with interpolation between the data
points with the interpolation being along the constrained surface generated by the fitting
procedure as the optimum approximation to r. In this picture the implicit assumptions
made when using a multi-layer perceptron concern the nature of the fitting procedure, and
clearly relate directly to the way in which the network generalises. Thus, we are led to the
theory of multi-variable interpolation in high dimensional spaces. In subsequent sections,
we shall exploit some of the mathematics of this expanding field of research to develop a
new type of layered network model in which the nature of the fitting procedure is explicit.
This class of layered network model will be shown to be of considerable interest in itself. In
addition however, it is hoped that the explicit nature of the fitting procedure will allow us
to develop a better understanding of the general properties of layered nonlinear networks
which perform an equivalent function.

2 Multi-variable functional interpolation
using radial basis functions

This section introduces briefly the method of Radial Basis Functions, a technique for in-
terpolating in a high dimensional space which has recently seen important developments.
Further details may be obtained from the review article of Powell 17) and the important
contribution of Micchelli [8].

In the cited references the radial basis function approach is applied to the strict inter-
polation problem which may be summarised as follows:-
Problem: Given a set of m distinct vectors (data points), {x; i 1,2,..., m} in R" and
m real numbers {fi;i = 1,2,. .. ,m}, choose a function s : R - R which satisfies the
interpolation conditions

8(x,-) =-f, ; = 1, 2,. .. , m I

Note that the function, 8, is constrained to go through the known data points.

There are clearly many criteria one could impose which wou!d restrict the possible
functional form of s(;:) (see for instance 19]). The Radial Basis Function approach constructs
a linear space which depends on the position relative to the known data points according
to an arbitrary distance measure. Thus, a set of m arbitrary (generally nonlinear) 'basis'
functions 0(I1x - 9jI) is introduced, where z E IRn and 11... 11 denotes a norm imposed on
R" which is usually taken to be Euclidean. The vectors y, E R ,i = 1,2,...,m are the
centres of the basis functions and taken to be sample data points. In terms of these basis
functions, we consider interpolating functions of the form:-

inn()= A(1Z -v. ~E H (2)
2=I
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Inserting the interpolation conditions, equation (1) into equation (2), gives the following
set of linear equations for the coefficients {Aj),

= i :(3)
(fm) = (A, A m) ( A)

where
A,, (Il-.u j) x, -= 1,2,.. .,m (4)

Given the existence of the inverse to matrix A with elements Aj, equation (3) uniquely
defines the coefficients Ai through A = A-'f.

In general, one might expect that for an arbitrary choice of 0 the matrix A could be
singular. However, the results of Micchelli prove that for all positive integers m, n and for
a large class of functions 0, the matrix A is non-singular if the data points are all distinct .

This discussion readily generalises to maps s : Rn - R n'. In this case the m distinct
data points in R n are associated with rn vectors L E Rn'. The interpolation condition of
equation (1) thus generalises to

Sk()= ,k s =k ,2,..., k= 1,2,...,n' (5)

which leads to interpolating functions of the form

m

si-(Z) ZA kA,(I1x- y x E IR kn (6)

The expansion coefficients Ajk are obtained using the inverse of the same matrix A defined
in equation (4).

Once a suitable choice of the function 0 is made, and a convenient distance measure im-
posed, the above relations exactly specify the interpolation problem which has a guaranteed
solution.

However, for certain classes of problem, the above analysis may not be a good strategy
for the following reason. A basic consideration when fitting data is the number of degrees of
freedom required. That is, the minimum number of basis functions needed to generate an
acceptable fit to the data. In the situation where the number of data points far exceeds the
number of degrees of freedom there will be redundancy since we are constrained to use as
many radial basis functions as data points. In this case the strict interpolation conditions
generally result in this redundancy being used to fit misleadir:g variations due to imprecise,
or noisy data.

It is possible to avoid this difficulty by weakening the interpolation conditions. We
suggest the following generalisations to the conventional radial basis function approach.
First, it may be necessary to distinguish between the data points, (X, i = 1, 2,..., m) and
the radial basis function centres, (y., j = 1,2,... ,no n0 < m) 1. The problem thus
becomes overspecified, the matrix A is not square, a unique inverse no longer exists, and the
previous exact problem becomes one of linear optimisation. In the following, we shall adopt

'in particular, we do not necessarily require that the radial basis function centres correspond to any of the .
data points.
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a minimum norm least squares method by introducing the Moore-Penrose pseudo-inverse,
A' of matrix A. For the case where rankA = no, this has the property that A+A= I
where I denotes the n0 x no identity matrix. The pseudo-inverse provides a unique solution
to the linear least squares problem [10] in the following sense,

Of all the vectors A which minimise the sum of squares IIAA - fl12 , the one which has
the smallest norm (and hence minimises [JAll2) is given by A = A+L.

For this particular solution set, an expression may be derived for the normalised error
C, specifically,

N 1 lLf - (f)112

(7)

11 rm1= (AA+).,iL, - Li12

- N--S IfL - Q)112

where (f) is the mean value of the response vector over all the training data points. Note
that if the pseudo-inverse equals the exact inverse, then the left and right inverses are the
same and hence the matrix product AA+ is the m-dimensional identity matrix, and this
error is zero.

An additional modification, which is useful particularly when f_(1) has a large x-independent
component, is to incorporate constant offsets {Aok} into the form of the interpolating func-
tions

Sk(T) = \0k+ AikO(l[-1- y 11) xE En k = 1,2,...,n' (8)
j=1

These coefficients enter the least squares formalism through an additional column in A

Ai 0 = 1 i= 1,2,...,m (9)

In this form, the radial basis function approach to multi-variable functional interpolation
has a close resemblance to adaptive network theory. This will be discussed in the following
sections. An important consequence of this approach which should be emphasised is that
the determination of the nonlinear map (;) has been reduced to a problem in linear algebra.
The coefficients Ajk appear linearly in the functional form of the mapping, therefore the
problem of determining the precise values, even in an overdetermined situation, has been
reduced to one of a linear least squares optimisation which has a 'guaranteed learning
algorithm' through the pseudo-inverse technique 2. Of course, this ,.eduction has assumed
suitable choices for the centres, {VI} and the function 0. It may be argued, therefore, that

the restriction of the optimisation by fixing these quantities is excessive and must limit the
range of applicability of the approach. In the case of the strict interpolation this does not
seem to be the case, at least as far as the choice of 0 is concerned [15]. There is evidence to
show (17], again for strict interpolation, that the effect of a suboptimal choice of the {Yj}
is to reduce the rate of convergence of the expansion given in equation (6). For the least
squares extensions described here, much less is known.

2AP a technical numerical point, the solution will not generally be obtained from the normal equations

(which may be ill-conditioned), but would be obtained via the efficient procedure of singular valued
decomposition.
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3 The radial basis function method
viewed as a layered network

Much of the power and attraction of current adaptive network models is contained in the
nonlinear aspects of the hidden units so that nonlinear input-output relationships may be
modelled. Unfortunately, since the error criterion, or cost function, depends on the response
of the nonlinear elements, the problem of finding a globally optimum solution becomes one
of unconstrained nonlinear least squares minimisation. Such problems can be solved usually
only by iterative techniques. For instance, 'error back-propagation' is a first order (only
depends on the gradient of the function of interest) steepest descent technique which suffers
from slow convergence properties due to it's tendency to zig-zag about the true direction to
a minimum. More sophisticated iterative schemes derived from second order approximations
have been proposed which improve convergence properties (the quasi-Newton, or variable
metric algorithms-see for instance [111, Chapter 15 and [121). Recent works of note which
have considered more general iterative strategies and found them to be orders of magnitude
superior to back-propagation when applied to specific layered network problems are those of
Lapedes and Farber [131 (conjugate gradients) and Watrous [141 (Davidon-Fletcher-Powell
and Broyden-Fletceir-Goldfarb-Shanno). In spite of this effort, the difficulty remains that
the solution obtained by such methods is not guaranteed to be the global optimum since
local minima may be found. There is no reason in the current iterative schemes why a
least squares minimisation solution obtained, will necessarily have the required form. Even
choosing a good initial starting point for the iteration schemes will not necessarily imply
that a good approximation to the global minimum will be obtained. It is important to
know how 'good' a solution is obtained by settling for a local minimum, and under what
conditions the solution at such a minimum has to be deemed unsatisfactory.

In the previous section it was shown that because of the linear dependence on the weights
in the radial basis function expansion, a globally optimum least squares interpolation of
nonlinear maps can be achieved. The relevance of this to layered network models is that
the mapping produced by the radial basis function expression eqn. (6), has the form of a
weighted sum over nonlinear functions. There is thus a natural correspondence with the
following general 3-layer network system, in which the layers are fully interconnected with
adjacent layers, but there are no interconnections within the layers (see figure 1).

The input layer of this network model is a set of n-nodes waiting to accept the com-
ponents of the n-dimensional vector z. These input nodes are directly connected to all of
the hidden nodes. Associated with each connection is a scalar (yi, for the link between
the i-th input node and the j-th hidden node) such that the fan-in to a given node has
the form of a hypersphere, i.e. in the case of a Euclidean r.orm, the input to the node is
#j = Z2=x(z, - y,,) 2 where the zi are components of z. The 'hidden layer' consists of a set
of no nodes, one for each radial basis function centre. The output of each of these is a scalar,
generally nonlinear function of 6,. The hidden layer is fully connected to an output layer
corresponding to the n'-components of the n'-dimensional response vector s(x) of the net-
work. The input value received by each output unit is a weighted sum of all the outputs of
the hidden units, where the strengths of connections from the j-th hidden unit to the k-th
output unit are denoted by Ail. The response of each output unit is a linear function of its
net input which may include the bias AOk. A natural extension is to allow for nonlinearity in
the response of the output units. Clearly, if the transfer function of these units is invertible,
then it can be accounted for by a suitable modification of the interpolation conditions used
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Input layer Hidden layer Output layer

2 3

Figure 1: A schematic diagram of the feed-forward layered network model represented by
the radial basis function expansion.
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to derive the weights {Ajk}. This specifies, as a layered network model, the radial basis
function expansion, equation (8), which produces a mapping from an n-dimensional input
space to an n'-dimensional target space.

This type of network falls within the general class of nonlinear layered feedforward
networks. In particular we have specialised the geometry to a single hidden layer and fixed
the fan-in and fan-out to the hidden units as indicated. The choice of hyperspherical fan-
in to the hidden units has the effect of sectioning the decision space into hyperspherical
regions rather than hyperplanes which result from the more usual choice of a scalar product
type of fan-in. This has the advantage of allowing disjoint regions in the decision space,
but which pertain to the same classification, to be satisfactorily resolved by the single
'hidden' adaptive layer. Problems without simple connectivity would traditionally require
two hidden adaptive layers, as discussed in 1181, whereas the approach described in this
paper can deal with such problf ns by employing a single hidden layer.

In principle, the total set of adjustable parameters include the set of no-radial basis
function centres, y.. as well as the set of (no + ) .n weights, .However, only the latter

are included in the least squares analysis in this paper in order to preserve the linearity of
the learning procedure.

The radial basis function strategy may be applied to the general multi-layer perceptron
for which the output units have an invertible nonlinearity. Moreover, when extended to
allow for variation in the input-hidden weights, this method provides an interesting pic-
ture of learning. In particular, the hidden-output weights may be visualised as evolving
on a different 'time scale' to the input-hidden weights. Thus, as the input-hidden weights
evolve slowly by some nonlinear optimisation strategy, the hidden-output weights adjust
themselves rapidly through linear optimisation so as to always remain in the global mini-
mum of an evolving error surface over the hidden-output weights which is parametrically
controlled by the input-hidden weights.

The rest of this paper is concerned with various simple applications of the radial basis
function network assuming a fixed set of centres. In the absence of any a priori knowledge,
the centres, (y I} are either distributed uniformly within the region of IR' for which there
is data, or they are chosen to be a subset of the training points by analogy with strict
interpolation. We expect that with additional knowledge of the surface to be fitted, the
freedom to position the centres may be used to advantage to improve the convergence of
the expansion (although not necessarily to improve the 'fit' to the unseen data). Evidence
for this as well as insight into the significance of the centres follows from the work of
Powell 115] who showed that for strict interpolation when n = n' = I and when 0(r) =
r2k+I, (k = 0, 1,...), the radial basis function method is equivalent to interpolation with
natural splines. In this case the {y )} are the knots of the spline fit. Naturally, when the
strict interpolation is weakened to give a least squares interpolation, the significance of the
'knots' in constraining the surface is also weakened. In what follows, we shall attempt to
be as general as possible in the analytic work by assuming an arbitrary form of 4. Where
numerical work necessitates a specific choice, we have chosen to employ either a Gaussian
form (O(r) _ exp[-r 2J) or a multiquadric (O(r) % v'+r2).

-7-
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4 Specific example (i):
the exclusive-OR Problem and an exact solution.

Input Number of 'ON' Output
Pattern bits in input Pattern

00 -* 0 0
01 - 1 -. 1
10 - 1 -. 1
11 -. 2 0

Table 1: Symbolic mapping of the exclusive-OR problem.

The exclusive-OR problem defined by the symbolic mapping in Table 1 has been considered
interesting because points which are closest (in terms of the Hamming distance) in the input
space, map to regions which are maximally apart in the output space. This is a classic
example of a logic function that cannot be represented by a linear perceptron. Clearly, a
function which interpolates between the points given in Table 1 must oscillate, and may be
hard to represent using a subset of data points unless there is some built in symmetry in
the radial basis functions.

In what follows, we initially take one radial basis function centre determined by each
piece of input data, so that both y, ,x are selections of the four ordered input patterns
of Table 1. We choose to number the four possible input patterns as (0,0) - 1, (0, 1) -.
2, (1,1) -- 3, (1,0) - 4 which we visualise to be the cyclically ordered corners of a square.
The action of the network may be represented by

4

so that the set {A,) may be found from

4

A E A 00 1(--T - I*7II)
j=1

ie.

For the ordering we have chosen, the vector L and the matrix A take the specific forms

(10)

and [ 4o €i 4y €
A= 01 0 0 01 0v r21

01 0,/2 0'1 00o

ima, _ m m, mm mm o *i m)J
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where a labelling notation has been introduced so that 0 denotes the value ofp(II -_;izl),

01 denotes the value O(lx, - z,~,fl) and v/-2 represents O(lIx - -X±211), all counting being

performed cyclically around the square. Note that this is a labelling device and we will

not exploit the properties of any particular distance function at this stage (although the

notation Or, indicates that we have in mind a Euclidean metric as an example).

It will be convenient to construct A-' from the eigenvalue decomposition (see Ap-

pendix A for further details)

A VMVT

Since A is real symmetric, V is an orthogonal matrix with columns composed out of the
orthogonal eigenvectors; in this case,

1 1 -1 0 _-V
V = 2 1 1 - - (12)

1 -1 0 -=V'2

and p is the real, diagonal matrix

M A 0 0 0

0 PB 0 0

0 0 ME 0
0 ME

where

IA (Oo + 20, + v)

MB = (Oo - 20 + Ov-) (13)

ME = (0 - OV )

Note that at this stage it is possible to decide how well posed the original problem was,

by seeing under what conditions an inverse matrix A- exists. It is clear from the form of

the derived eigenvalues of the problem, that an inverse exists as long as

4o # O/i (14)

or

are satisfied. Thus fai. the analysis has been carried out for an arbitrary choice of non-

linear radial basis function and metric, therefore the above conditions can be taken to be

restrictions on the various combinations of radial basis function and metric that may be

reasonably employed for this problem. It is interesting to point out two situations where

an inverse does not exist:

* O(z) = mx + c combined with a city-block metric

-9-
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* and O(x) = X2 + c combined with a Euclidean distance function, (11tI = a1)

as may be easily verified by direct substitution into equation (15). These instances corre-
spond to the network structure of a linear perceptron and are thus unable to represent the
exclusive-OR function.

Given the inverse of A, we may proceed to obtain the 'weights' of the network as

1\ = A-'f
Sv.- r1 V (16)

Vr - IVT (EA - B)

where we have exploited the fact that the response vector L, eqn. (10), may be decomposed
into the difference of the basis vectors VA and -B derived in the appendix (Appendix A).
Performing the above operations (which is simplified since vectors orthogonal to MA, B do
not, contribute) gives the final result that

P A I B I A,

1 PAI + JAB A2A:::- - (17)

PA - A2

where, explicitly
A1 =[ ,-

(18)

0 = , + )

[00 + -r~ I

Equation (17) specifies the choice of network weights which exactly solves the exclusive-
OR problem. The weights are still dependent on the precise choice of radial basis function
and distance measure. Clearly we are free to choose these subject to condition (15) without
affecting the solution of exclusive-OR. This choice does however influence the output of the
network for arbitrary, real-valued inputs.

Figure 2 illustrates the solution for the specific choice of a Euclidean distance function
and Gaussian radial basis functions (0(z) = exp[-x 2/aj). Similarly, Figure 3 shows the
output using the same distance function, but employing multiquadric radial basis functions
(0(.T) =v/+-- ). In both instances, the mapping surfaces have two planes of reflection
symmetry through the diagonals of the unit square. The difference is that the Gaussian
choice produces two maxima near to the odd parity inputs and two shallow minima close
to the even parity inputs. The multiquadric does not have these maxima and moreover

-10-
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1.0 000

0.0000

-. 1811

Figure 2: The exclusive-OR solution (i). Obtained using a Euclidean distance function and
Gaussian radial basis functions centred at the corners of the unit square.

0.7087

01.0000

1.574B

-. 1575

Figure 3: The exclusive-OR solution (Ii). Obtained using a Euclidean distance function
and niultiquadric radial basis functions centred at the corners of the unit square.



D.S. Broomhead and David Lowe

diverges rapidly outside the unit square. This distinction is of no relevance to the exclusive-
OR function itself. It would however, be significant were it attempted to give meaning
to input and output values other than those represented by zero and unity. Clearly, the
details of the generalisation would then be dependent on the specific interpolation scheme
represented by the network.

We conclude this section with a discussion on the number of 'hidden units' employed
to solve the problem. Note that the problem has been solved exactly; given the weights
as determined by eqn. (18) and a specific choice of a radial basis function, applying any of
the input pattern pairs will guarantee to get the correct output answer. On preliminary
inspection this may not seem so surprising since each possible input data point was used as
a centre for a radial basis function and so a 'dictionary' of possibilities could be encoded.'

One can exploit the symmetry of the solution however, to show how it is still possible
to solve the exclusive-OR problem exactly without explicitly specifying the response of
the whole set of input states. Specifically, from eqn. (18) and by a judicious or 'fortuitous'
choice of nonlinear function 0 (for instance if 01 = 0 or 0 = -OV2-) then two of the four
possible weights would be zero. This uncouples the corresponding pair of hidden units from
the system, with the result that the remaining network satisfies the exclusive-OR function
without being explicitly 'trained' on the entire possible set of input/output pairs.

1

2

Figure 4: Equivalent network for ex- Figure 5: Equivalent network for ex-
clusive-OR with A2 set to zero. clusive-OR with A, set to zero.

For the case that 01 = 0 (Figure 5) the two identical weights connecting the two hidden
units to the output unit have a value of 1/10 + r, I. In this case, the hidden units centred
on the patterns (0, 0), (1, 1) have no connections to the output and hence cannot contribute.
Thus, when these patterns are presented to the network, the two units which would react
most strongly to their presence have been disconnected from the output unit while the
remaining two respond with 01 = 0 as expected. Alternatively, if the patterns (0, 1), (1,0)
are presented, one hidden unit contributes a value of 4'o and the other a value of 0/2. Since
their sum is just I/A 2 the result of the network is to give the answer I as it should. A
similar argument may be presented for the case when 0 =-- -,2

In either case, the surfaces shown in Figure 2 and Figure 3 are constrained sufficiently
for the specification of just two points to fix the remaining pair of output values. Here

3 However, note that this scheme has achieved a fit with four adjustable parameters, the weights Ai, whereas
the standard 2-2-1 multi-layer perceptron would employ nine adjustable parameters.
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we have, by a suitable choice of 0, adjusted the form of the fitting algorithm to admit a
network which 'generalises' the incomplete training data to give the entire exclusive-OR
function. This sort of procedure can of course be employed by a multi-layer perceptron

However, it should be clear that for a strongly folded surface such as represents the
exclusive-OR function (or the more general n-bit parity function shown in Appendix B) the
presence or absence of redundant points which may be omitted from the training set must
depend sensitively on the implicit fitting procedure employed by the network. Moreover,
the question of which points are redundant must also require detailed specific knowledge of
the network and the relationship it is being used to represent. As a rule, one can expect
a network to be capable of 'correctly' generalising, only when there is sufficient training
data appropriately distributed to enable an adequate fit to significant turning points of the
underlying graph. Clearly, the more folded this graph is, the more demanding will be the
requirment on the data.

5 An analytic solution to a non-exact problem:
The exclusive-OR problem with two centres.

The previous section, with its related appendices, dealt with exact solutions to strict inter-
polation problems. For strict interpolation the interpolating surface is constrained to pass
through all the training data points. This is achieved by using the formalism described in
the first part of section 2. which requires the use of a radial basis function (or hidden unit)
for each distinguishable data pair. It was noted that this rule may be relaxed in special
circumstances where the symmetry and other details of the problem may be employed.

In this section we shall consider a specific example of the more general approach dis-
cussed at the end of section 2 which relaxes the strict interpolation of the data. In addition,
recall that in section 2, sufficient scope was allowed in the variant of radial basis function
techniques to accomodate an approximate interpolating surface whereby this surface is
not directly constrained to go through all (or any) of the training set. This is clearly an
advantageous strategy when the input data is corrupted by external sources and it would
not be desirable to try and fit the noise added to the (presumably) structured data. In
addition, where the true data actually represents a smooth map, it allows the use of far
fewer hidden units than data points.

We repeat the analysis of the exclusive-OR problem considered in the previous section,
but using just two radial basis function centres. It is clear that there are two distinct choices
how the two centres may be positioned: either on opposing vertices, or adjacent vertices
on the ordered corners of the unit square. We choose the lucations of the centres to be on
opposing vertices at (0,0) and (1, 1). This choice allows us to exploit the symmetry of the
exclusive-OR function to allow its solution with fewer 'training' points than data points.

The total training data is the mapping depicted in Table 1. The calculations are per-
formed using the pseudo-inverse technique with, and without, the use of an adjustable bias
on the output unit.

5.1 The approximate exclusive--OR without an output bias.
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Figure 6: Contours of the approximate exclusive-OR solution, w~ithout an output bias.
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Following section 2, we use the following form of interpolating functions:

SWz = E AMU( z- Yijl) (19)

where _y, - [0, 0]T , Y3 = 1, jT. The set {A,} is given by

.f, = -,(llT - fylil) ; = 1,2,3,4 (20)

so that
A = A~L (21)

where f is the same response vector as in the exact case, eqn. (10), and A+ is the pseudo-
inverse of the (non square) transformation matrix

A- I i (22)
02 -0
01 .01

From Appendix A, given the singular value decomposition of A

A = USVT

the pseudo-inverse is obtained as

A + 
= V(S- 1 )UT

= V(Sl)2vTA (23)

The matrix V is composed of the normalised eigenvectors of the matrix

ATA- (= ab (24)

where
a = 0 + 2,12 + (25)
b = + 2 22

and the diagonal matrix (S-1) 2 is made up of the reciprocal of the eigenvalues of the
corresponding eigenvectors.

It is straightforward to verify that

V=2  1 -1)(6

and

( (1/[a+ b - ) (27)

Substituting these matrices into the pseudo-inverse expression, eqn. (23) and then into
eqn. (21) gives,

_ )(28)
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where
Al 201j[a + b]

201_____ (29)4.02 + 1,00 + 0-!

This is the set of weights with minimum norm which minimises the least mean squared
error to all the training data. In fact the error, C, may be evaluated analytically to give

(0o+02) (30)

+ V12 + 0 202/2 (30)

An interesting point about this error, is that it will be zero if the radial basis functions
are chosen to be such that Oc0 = -02. This is precisely the condition mentioned at the end
of the previous section in the discussion of how the exact exclusive-OR problem could be
solved with only two radial basis function centres. In both instances the error is zero and
the interpolating map manages to perfectly 'learn' the training data. However, for general
choices of radial basis function the solution as derived, does not reproduce the desired output
of exclusive-OR satisfactorily. For instance, Figure 6 depicts this solution using Gaussian
radial basis functions and a Euclidean norm. The figure plots contours of equal 'height'
produced at the output of the radial basis function mapping. The vertices of the unit
square in the figure represent the logical values 00, 01, 11, 10. As seen, although the output
discriminates succesfully between even and odd parity inputs, the relative magnitudes have
not been preserved (the output of 00 is greater than the output of 01 for instance). This
situation is rectified by the inclusion of a 'bias' attached to the output node as is now
demonstrated.

5.2 The approximate exclusive-OR including an output bias.

Consider the same situation as in the previous subsection, but where now a data independent
variable is allowed, effectively a weighted bias at the output node through a connection to
a node which gives a constant unit output. The interpolating function now has the form

S(z) = Ao + E ,0(II - Il) (31)
,j=1,3

where {A1,3 } are as previously assumed. The problem is to fit three parameters by using
the same four training points

The matrix of distances is now

A 1.. 0 I 1 01 (32)

1 02 00

1 01 01

Consequently, the singular value decomposition is determined by the eigenvectors and
eigenvalues of the matrix

ATA= c a b (33)
c b a
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Figure 7: Contours of the approximate exclusive-OR solution, including an output bias.

where

a + 2 2 +02

b 202 + 21,012 (34)

c = Oo + 201 + 0'2

Note that c here has the interpretation of being proportional to the mean value of radial
basis functions evaluated at any training point.

Consider the eigenvalue equation

ATA C12 0j2
(03 03

From the characteristic equation one finds that the eigenvalue problem factorises, giving

IAO a - b

(a + b + 4) ± v/(a + b - 4)2 + 8c 2  (35)

2

The normalised eigenvector corresponding to p = a - b is then

ao = 1 (36)
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For the case p = p±, we have a2 = a03 , since the resulting eigenvectors are orthogonal
to a0 . Setting a 2  I without loss of generality implies that the (unnormalised) component
al is

at = 2c
P± - 4

Thus the resulting orthonormal matrices V and (S- 1 )2 take the form

/ 0 a+/A+ aj-/A..7
- ,F 1// /A+ I/A_ (37)

-I/v V_ I/A+ l/A_

(s- A= 2.+ (38)
0 0 A-

where the normalisation factors A± are given explicitly by

(A±) 2  2 + (a,) 2  (39)

Using these matrices to construct the pseudo-inverse of A results finally in the set of
weights,

A: x (40)
A 0

where

A0= 204 (a+ + 246) + 2aj (a- + 21)A+A2 .u-A+

(41)
kl- 2 2

A, = 2 (a+ + 201) +.--..r2 (a- + 201)P+&2+1A

This result is shown in Figure 7 and may be compared directly with that of the previous
subsection shown in Figure 6. Note that the network now succesfully discriminates states
of opposite parity and moreover returns precisely the correct magnitude for each corner of
the unit square. However, the symmetry of placing the centres on the diagonal of the unit
square, means that the solution obtained in this case is exact. There are only three inde-
pendent equations we need to solve, and three adjustable parameters at our disposal. If we
had chosen our centres to be adjacent vertices of the unit square, then the symmetry would
not have existed to reduce the system of four equations to just three, and the approximate
analysis would not have produced a zero-error mapping.

We choose to interpret the action of the output bias in the following way. The r6le of
the output bias rests on the fact that the desired output states of the exclusive-OR function
have non-zero mean. The analysis without the inclusion of bias achieves a minimum error
solution which matches the output in the mean. However, since positive weights are needed
to achieve this, the resulting s(_) naturally has maxima near to the centres (0,0), (0, 1).
Therefore, s(z) does not reproduce the required qualitative details of the exclusive-OR
function. In contrast, the inclusion of the bias allows the whole surface s(;) to be 'floated'

to the correct mean level while the remaining parameters adjust its qualitative form.
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It is interesting to repeat the calculation of section 5.1 using a response vector f
(-2, 2, 2 ). This allows one to study an equivalent problem with the mean artificially

removed. This produces, again, two equal weight values (compare with (29))

=82 + 2[Oo + 0212

The resultant fit does not reproduce the training values as well as the three parameter
model given above. It does however have the correct qualitative form. The extra bias

parameter provides a compensation for a global shift which is hard to achieve through
weighting the individual basis functions. The consequences of this observation may also be
noted in conventional multi-layer perceptron studies where the performance of the network

is enhanced if the input data is previously scaled to have zero mean.

6 Numerical examples:
the prediction of chaotic time series.

Lapedes and Farber [13] have recently used multi-layer perceptrons for the prediction of time
series data generated by nonlinear dynamical systems. Extensive comparisons with other
prediction techniques showed that multi-layer perceptrons were more accurate than the

classical (linear) methods and were comparable with the locally linear approach of Farmer
and Sidorowich [161. In this section, we shall, following Lapedes and Farber, use nonlinear

prediction as a non-trivial example of the application of adaptive networks. We note that
in this application our approach is very close to that of Casdagli [17] who has applied

radial basis functions to the construction of nonlinear maps from time series data. Unlike

Casdagli who used strict interpolation, we shall employ the least squares generalisation
given in section 2.

Specifically, consider T d, an ordered sequence of iterates of the doubling map:

x,+1 = 2x, (modulo 1) (42)

and T q, a sequence of iterates of the quadratic map

Xn+l = 4zn(1 - Xn) (43)

These maps are known to be chaotic on the interval [0, 11: in both cases the iterates of
generic initial conditions are distributed according to continuous invariant measures. For

Td the autocorrelation (xzoz) decays as 2 while for T-, (xOXn) - 60,n where 6,,, is the
Kroenecker delta. Therefore, given only the data Tq, second order statistics would convey
the impression that the sequence is random broadband noise (see Appendix C for further
details). Naively (and in fact, erroneously) one might expect from this that the prediction
of T q is harder than the prediction of Ti.

A radial basis function network for predicting one time step into the future was con-
structed as follows. The basis function centres {y,} were chosen to be uniformly spaced

on (0, 1) - the number of centres was an adjustable parameter. A set of input values

{xi E [0, 11 t= 1,2,...,250) was used to calculate the matrix A using equation (4). The

singular value decomposition of A, calculated numerically by a Golub-Reinsch algorithm,
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0

0 1
Figure 8: The Quadratic Map: A figure showing the actual (solid line), and predicted (filled
squares) outputs of the network over the interval 10, 1) for one iterate.

was used to form the pseudo inverse A + using equation (46). This was then applied to the
vector of outputs:

L (f(x,),.. f(x), f(X2 0))T

(where f(x) is the map given by either equation (42), or equation (43)) to obtain the weights

{ A,) according to A = A+f. The accuracy of this mapping were then analysed for an extra

250 different 'test' points.

Figures 8, and 9 which show the output of the networks as a function of inputs, illustrate

the relationship with curve fitting for these simple one-dimensional problems. It is clear

that the basis of the difference between predicting Td and predicting Tq is that the doubling

map is discontinuous and therefore hard to fit. Multi-layer perceptrons also have difficulty
with trying to find an appropriate set of weight values which allows a good fit to Td (in fact

the overwhelming tendency is for the multi-layer perceptron to get stck in an unsuitable
local minimum, M.D. Bedworth, private communication).

For prediction further into the future, the situation is further exacerbated and rapidly
becomes hard even in the case of Tq. The problem is now one of fitting a graph of the
n-th order iterate of equation (42) or (43). In either case the graph has 2n1 oscillations
of unit amplitude. In terms of the radial basis function network, this would require at least
2n hidden units with centres appropriately positioned. An alternative to this strategy is to

iterate the one-step network. This however, is inaccurate since errors in chaotic systems
grow exponentially because of the local instability of the evolution.

The accuracy of the network can be quantified by the following index, .:

r (Xzprdided(t) - Xee2 (t)]2) 
(44)
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0 a

0

Figure 9: The Doubling Map: A figure showing the actual (solid line), and predicted (filled
squares) outputs of the network over the interval 10, 11 for one time step into the future for
the doubling map.

This quantity is a measure of how well the network generalises beyond the training
data. The error expression given in section 2 has the same form, but since it is based on
the training data, shows how well the network reproduces the training data. It is of interest
to compare the two since the difference quantifies the degredation of the predictive power
of the network when it is required to generalise. The graphs shown in Figures 10 and 11
summarise both kinds of error analysis for networks trained on Td, and T.

The most obvious difference between these figures is the scale. It is clear that prediction
of Tq, whichever error criterion is used, is much easier than the prediction of Td by several
orders of magnitude. Beyond this, we see in both cases that the training error of section 2 has
the same basic dependence on the number of hidden units; that is, a fast improvement as no
increases to about 30 followed by a plateau region where the relative improvement is small.
As no approaches the number of data points used in the training (250 in this example),
the training error again drops rapidly as the problem approaches the strict interpolaton
limit. This drop is not, however, mirrored by a drop in the recognition error. Although
initially, the recognition error follows the training error very closely, a saturation plateau is
reached and approximately maintained irrespective of hov. many hidden units are employed.
This can be understood sijice the capability of the model to generalise, is connected with
the underlying 'smoothness' of the true map and the level of 'smoothness' built into the
model through the choice of metric and radial basis function (and indeed the assumption
that an arbitrary function may be approximately represented by the radial basis function
expansion). Therefore one can surmise that in most instances, there will be a limiting
accuracy to which it is possible to model unseen data generated by a mapping. This is
not true for the training points themselves, since it is possible by strict interpolation to
produce a mapping surface which exactly passes through all the points. However, all that
this accomplishes is a fit to the noise on the training points which may oscillate wildly
between the constraining 'knots'. It was for this very reason that we introduced the least
squares solution of the radial basis function construction in section 2.
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Figure 10: The Quadratic Map: The log normalised error showing the training (solid circles)
and recognition data (open circles) as a function of the number of radial basis function
centres. Euclidean norm and a Gaussian radial basis function (4 = exp[-z 2 no/161) were

used.
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Figure 11: The Doubling Map: The log narmalised error showing the training (solid circles)
and recognition data (open circles) as a function of the number of radial basis function
centres. Euclidean norm and a Gaussian radial basis function (€ = exp[-z2ng/161) were
used.
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7 Conclusion

The object of this paper has been to introduce a simple view of network models as devices
for the interpolation of data in multidimensional spaces. The purpose of this is to allow the
application of a large body of intuition and knowledge from the theory of fitting and interpo-
lation to the understanding of the properties of nonlinear networks. Thus we associate the
concept of generalisation in networks with the simple idea of interpolation (extrapolation)
between known data points. The details of the generalisation are then dependent upon the
implicit interpolation scheme employed by a given network. Generalisation is hard where
the relationship has strong oscillations or discontinuities. This suggests that, particularly
in the case of abstract problems for which the topology of the input and output spaces may
not be clear a priori, it may be advantageous to attempt to code the data so as to produce
a relationship which is as smooth as possible. Further we expect the training data, where
possible, would best be distributed to give information about all the turning points of the
graph and need not be tightly clustered where, for example, the relationship is smooth or
monotone.

Motivated by this philosophy, we introduce a network model based on the radial basis
function approach to curve fitting. This model has two main advantages. First, it is
firmly attached to a well established technique for fitting, but, since it is contained within
a general class of nonlinear networks, it may be used as a source of 'existence proofs' for
such networks. For instance, we know that networks of this form can be used to model
relationships which lie in the function space spanned by the chosen set of radial basis
functions. The characterisation of this space and quantification of such things as the rate
of convergence of radial basis function expansions is currently receiving much attention and
is seen to be of direct relevance to the theory of networks.

The second advantage of this network is in practical application. The basis of its sim-
plicity is that it combines a linear dependence on the variable weights with an ability to
model explicitly nonlinear relationships such as for example, the exclusive-OR function.
Thus, in the least squares context, training the network is equivalent to solving a linear
matrix equation. If we specialise to a minimum norm solution, the solution is unique and
in this sense the network may be said to have a guaranteed learning algorithm.

This general approach, whereby optimisation is carried out on the subset of the weights
for which the problem is linear, may be taken with other network models. It would be
interesting to study how much this restricts their generality. Work along these lines is
currently in progress. In the present case, on the other hand, the inclusion of the basis
function centres into the optimisation calculation may be carried out using a nonlinear
optimisation technique in conjunction with the hnear analysis described above. By analogy
with spline fitting of curves, this may produce some advantage, perhaps in the form of
needing fewer hidden units, but, it is questionable whether this would compensate for the
added complexity of performing the nonlinear optimisation. We have not approached here
the general question of what form of 4 is best, or where and how many centres should be
used in the expansion. Work is currently in progress to assess the sensitivity of convergence
of these factors and the use of the error function given in equation (7) as a cost function
for nonlinear optimisation using the basis function centres.
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A Solving linear inverse problems.

The appendix looks at linear inverse problems as they arise in the radial basis function
approach to nonlinear networks.

In applying the radial basis function method, we need to invert an m x r (M > n)
matrix with elements A,, = 0(lix - V,11). Since A may be rank deficient, it is necessary to

account for the possibility of ill-conditioning. Consider the singular value decomposition of
A

A = USVT (45)

where V is an n x n orthogonal matrix, S is an n x n diagonal matrix of singular values
and U is an in x n marix with orthonomal columns. The pseudo inverse of A, A4 , may
be constructed as

A- = VS+U r  (46)

where S + is obtained from S by reciprocating the non-zero diagonal elements. Clearly
if rankA=- m then A 4 A = 1 where 1 is the m x m unit matrix. On the other hand,
AA' = UUT a superposition of projections onto a subspace of F' spanned by the columns
of U. If rankA< m then A'A and AA' give projections onto subspaces of IRm and Rn

respectively.

In the case of the exact exclusive-OR function the question of ill-conditioning does
not arise. In this case it is convenient to calculate the inverse of A through its eigenvalue
decomposition since the symmetry of the problem may be exploited to obtain the solution.
Here

A = VpVT (47)

where, since in this case A is a real symmetric matrix, the matrix of eigenvectors V is
orthogonal. It follows that

A - ' = Vu-IVT (48)

assuming that A is full rank. The rest of the appendix deals with the calculation of the
eigenvectors and eigenvalues of A using the symmetry of the exclusive-OR function.

Our choice of ordering of the input points in section 4 is somewhat arbitrary. It should
be clear that we can perform a sequence of rotations on the original orderings while retaining
the same matrix A. In other words, A is invariant to a certain class of transformations, in
particular, it is invariant to operations in the group C 4 = {E, C4 ,C 2 ,C }, where E is the
identity transformation, C 4 denotes rotations by 7/2, C2 by 7r and C4 rotations by 37r/2.

The character table for the group C4 is shown in Table 2 (for an introduction to the theory
and application of groups see [191).

The character table may be exploited to solve the eigenvalue problem for A by obtaining
a symmetry adapted basis. We can see this as follows. The representation of the group
operations using the standard basis,

-€1 = (I f2= ( -- = ( C4 = (-
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C4  E C4  C2  C4

A 1 1 1 1
B 1 -1 I -I

E -

Table 2: The character table for C4

is not irreducible since it's dimension is four and the maximum dimension of an irreducible
representation of C4 is two. In fact this representation of the group has the form r =
A + B + E and so the basis has irreducible components A, B, E. From the character table

one can ascertain that the appropriate symmetry adapted basis is just

L-A = vB !!IEE=_ = -

or, by normalising and replacing the degenerate vectors YE and vi by simple linear combi-
nations, we arrive at a symmetry adapted set of basis vectors,

1 1 1 1

k-A= 2 LB -r=2 E 2= _0 v/2 E 2 0(49)

It is clear that these basis vectors are orthogonal and they are eigenvectors of the matrix
A since, explicitly,

AYVA = (o+20,+ V)VA A o( 0+201+40-)

AYB = (0 - 20, + 0' )-' AB = (0o - 20, + ,.,) (50)A dv = ('00 - 0 ,r)_vl AE = (00 - OV 2)

These basis vectors and eigenvaluee are employed in section 4 to obtain a set of weights
analytically, which exactly solves the exclusive-OR function.
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B An analytic solution of the exact n-bit parity problem

The n-bit parity problem is a generalisation of the exclusive-OR problem discussed in
section 4. It may be defined by the mapping depicted in Table 3, that is, the output is
unity if fhe tota! number nf input bits having value one is odd, otherwise the output is zero.
Thus changing one bit in the input pattern produces a maximal change in the output.

Input Number of 'ON' Output
Pattern bits in input Pattern

000 -, 0 -. 0
001 - 1 -, 1
010 - 1 1
100 -. 1 - 1
011 2 -. 0
101 - 2 - 0
110 -. 2 - 0
111 -- 3 - 1

Table 3: Symbolic mapping of the n-bit parity problem for the case n = 3.

With the benefit of insight deve!oped from the exclusive-OR problem, this section ob-
tains an exact representation of the n-bit parity problem as a network based on radial
basis functions. The network will have the general form of n-inputs for an n-bit word,
and 2" hidden units all connected to one output. The centres of the 2" hidden units cor-
respond to the possible input patterns. Thus, an exact solution may be obtained once the
2"-dimensional vector A of weights has been determined. All possible input states may be
put in a I : I correspondence with the vertices of a unit n-dimensional hypercube. This
is conveniently achieved by aligning the hypercube with the Cartesian basis so that one
vertex resides at the origin. The Cartesian co-ordinates of each vertex then directly maps
to a unique binary sequence, for instance (0,0,0) - 000, (0, 1,0) - 010, (1, 1,0) - 110,
etc. The vertices may be ordered by treating the set of sequences as a cyclic Grey code
of the first 2" integers. Thus all nearest neighbours in this scheme correspond to points of
opposite parity and the use of the cyclic Grey code ensures that entries across the rows of
A represent points of alternating parity.

The rows of A are permutation of each other because of the symmetry of the hypercube.
It follows that there is a totally symmetric eigenvector, v+ = 2n/211", 1,. IT for which the
corresponding eigenvalue is the sum of the row elements of A

'1

1=0

where p. is the number of j-th nearest neighbours to an arbitrary vertex.

A second eigenvector may be found using the division of the vertices into two groups,
differentiated by their parity. The form of this eigenvector follows from the use of the cyclic
Grey code in ordering the vertices: v- = 2-n/2[l, -1, ,...]7. This antisymmetric form
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distinguishes sites of opposite parity and thus has a corresponding eigenvalue

IA-_ ZPno,-ZP7 , (52)
2 even j odd

since there are Fj even p,1 sites of the same, and Ej odd P' sites with opposite parity.

The coefficients p7 may be obtained by comparing two arbitrary n-bit sequences which
differ in j-locations. The number of ways of permuting j-locations within n-bits is just

()Note that Enp7 = 2 nthe total number of vertices of the hypercube.

(011) (111)

4
(001) (107

5 6

(010) 3 2 (110)

(000) (100)

Figure 12: The hypercube of the 3-bit parity problem

The response vector, s = [0, 1,0, 1,0,.. . may be decomposed as the difference of the
symmetric and antisymmetric eigenvectors. Thus, v+, v- are the only eigenvectors which
are relevant in evaluating the weights. Consequently, as in the exclusive-OR example, the
vector of weights of the n-bit parity problem may be evaluated as

u. t + )-_'
+ Mu- A2

2--- A A1  (53)

P+ + A- 2
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where,

= - odd (7) 0j
[rjeven ( 0~jJ2. [Fj odd ) 12

(54)

A2 =even

Equation (54) accomplishes what the section set out to obtain: an exact solution to the
n-bit parity problem in the sense that there is a guaranteed set of values for the weights of
the matrix which ensures that the result of the network is to reproduce, at least, the values
exhibited in Table 3. It should be noted that although this task has been achieved with
a network involving 2' hidden units, it is still possible to solve the problem exactly with
fewer than this number of hidden units. For instance, and by analogy with the exclusive-
OR problem, if the radial basis function and metric were chosen in such a way that either

of z
3 even (55)

j odd

are satisfied, then an exact solution may be obtained with only 2
n - 1 hidden units.
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C The quadratic and doubling maps

This appendix lists a few details relevant to the chaotic maps discussed in section 6 for time
series prediction. The quadratic map, as discussed, determines the signal at time t + 1 in
terms of the signal at time t by the explicit iteration scheme

t+, = 4z,(I - x,) (56)

By a simple linear transformation, x - y, this map is transformed into the form

y,-+, 2 - 1 (57)

Since these two mappings are related by a linear transformation (z = 0.5[1 - y]), the
behaviour of equation (57) determines the behaviour of the quadratic map. Equation (57)
is interesting because it illustrates that the mapping is explicitly given in terms of Chebyshev
polynomials 1201, specifically

Y.+1 = T 2(!j.) (58)

From this relationship and exploiting the property of Chebyshev polynomials that

2TroT. = T.+,,, + T._,, (59)

or, specifically
2T' = T 2, + To (60)

one finds that the n-th iterate, yr, is connected with the starting value yo through the 2"
Chebyshev polynomial,

Yn = T2-(Y0 ) (61)

This just makes explicit the fact that the value of the map at any time in the future
is uniquely determined by the starting value. However, the map is known to be ergodic,
and thus time averages are equivalent to phase averages. To obtain the phase average, one
needs the fact that the invariant measure of the map, eqn. (57), is

1
m(Y) = (62)7rv, y 2

Therefore, the correlation function (ykYk+,) may be determined by the expectation value

S T2k (Yo)T 2&+, (Yo'
= o dyO (63)

However, this is precisely the orthogonality relationship between Chebyshev polynomials
of the first kind, and hence the integral yields a Kroeneker delta,

(9k+, = b6,.O (64)

Consequently, as far as second order statistics are concerned, the time series generated
by the quadratic map totally loses its memory between each time step, and hence would
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appear to be an infinite bandwidth, noise signal (this is of course not the case when higher
order correlations are taken into account).

In the case of the doubling map, the value of the time series at time t + I is determined
by the time series at t via

xt+l = 2zt mod 1 (65)

The correlation function may be expressed as

( xz) = xo12'xol dx

(66)
=2'- 1/,+ 1)/2f x[2'x] dx2-1(J+ )/2

j=O f/

where [x] denotes the fractional part of x (note that the invariant measure is uniform in
this case and the map is known to be chaotic so that time averages and ensemble averages
are equivalent). By a change of variables, y = 2'x-j the above integral is readily performed
to give:-

(xzoj) 2 2 +
~3 2, =0

(67)

4 3

Thus, in contrast to the quadratic map, the correlation function for the doubling map
decays exponentially in time.
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