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Summary

Fast, accurate numerical algorithms for ex and the logarithms of numbers

are necessary to develop useful statistical models such as a rational poly-

nomial approximation of the normal probability density function integral.

Exploiting the string functions $EXTRACT, $FIND, and $LENGTH of the MUMPS

programming language, extremely precise algorithms are presented for ex , the

natural and common log of N, the error function, and the normal probability

density function.

The standardized normal variable distribution routine presented is accur-

ate to 1.5 parts in ten million - affording the analyst comfortable margins in

models requiring extensive numeric manipulation.
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e , LOGARITHMS, AND THE NORMAL DISTRIBUTION

Dallas R. Hodgins

Introduction

Since the Veteran's Administration File Manager (FM) does not presently

have a very wide selection of statistical tools, the Naval Health Research

Center initiated a program to enhance FM's statistical capabilities. To date,

routines for basic descriptive statistics I, a random number generator, multi-

ple regression, and the routines presented herein have been completed. The

philosophy has been to develop accurate, concise structures that industrial

hygienists in shipyards, medical workers, and administrators can easily and

comfortably use in dealing with small samples. ,.

Much emphasis has been placed on using FM ,elationally. The dovetailing

of relational data structure, the algorithms, and the coding is a remarkable

outcome of the essential linearity of a relational logical view of the data.

The routines presented in this paper are algebraic structures written using

linear algebra notation. The correlation between the mathematical models used

and the computer models developed is emphasized - not to pontificate, but to

stress the inherent integrity of the methods and to underscore the accuracy

and conciseness attainable in routines written in MUMPS. MUMPS is a flexible

media that not only allows great latitude of expression, but is logically

appealing, allowing code structures that are ao'sthetically attractive.

The goal is to place in the hands of te-Earchers the abilitv to sample

their data, order it, and der ive basic intc- C'. n s Withou, thC " ' cl:bo'"

alienation induced by the magnificent, but o'ct'helming, services of some of

the popular commercial packages. FM and the programs in this paper ale in the ,%

public domain. The source code is presented fi all to critique - which is

the pleasure and challenge of an open forum.

The progression of this work has been to -lw elop the elementary measures

of central tendency with an emphasis on -odxi n, , that in sorting, tor Pxam

ple, entities can be compared ad oss ,lomairs. m4 -ing data handled giacefril ly,

and fast processing achieved. The taming of ,in ti his pape . nolbined ,.it h

the existing programs, allows the researcher te e'1al with probability disti i

butions germane to his actual data. For e:xampi, the mean and -,tandard devia-

tion of the weight of tile men (ot women) ol i -,.ticulai shipyard can now be
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computed, and the probability of the occurrence of an individual weight can be

computed at once using NORMDIST.

Methods and Materials

The routines were developed using Intersysters MUMPS M/VX 3.1 on a Digital

Equipment Corporation (DEC) VAX ll//85 machine. The programs meet or exceed

the accuracy stated and have been thoroughly tested against values published

in the Handbook of Mathematical Functions of National Bureau of Standards

(Applied Mathematics Series 55, ninth printing. November 1970). In the dis-

cussion of the routines, N is any real number. The discrepancy between the

symbols used in the discussion and the symbol- in the routines stems from

using conventional mathematical notation to 'rite the algorithms ("x" is

always the working variable, etc.) and use of $.Thols in the meta mathematical

language that convey meaningful images.

We shall develop an algorithm to produce ratural logarithms (In), then a

program to yield a number if given its logarithm, and finally relate these

inverse processes to the normal probability density function. While the

models are rigorous in a mathematical sense, the exposition is not.

It is of great convenience to represent numbers, N, by raising e (the

Naperian or natural logarithm base: e = lim(ll "n) as n goes to infinity) to

a power b:

N eb

By definition, the in of N is b

In N - b In e = b

as the in e = 1 (if N = e, we have e eb so l n . b In e, or b 1; e P .

Given N, we want an expression that will produce b, the In of N. We could

use Taylor's series expansion for
2 3

1/(l+x) 7- 1 - x x -x ... for IxI<1

and integrate term by term to obtain

ln(l+x) = x - x2/2 # x3 /3 x"/.i ... for x.<l

The problem with this method is it- slow con' 'nce which leads; to the need

of many terms, thereby increasing the pos- bility of erroi Hastings-

approximated this power series with the polynor. ,
2 8ln(1+x) ax a2  , a x ... a x M(x) (1)

.4-.,



for 0 < x < I where ec(x)l < 3E-8 and

a1 = .99999 64239 a5  .16765 40711 0

a2 = -.49987 41238 a6  .09532 93897

a3 =.33179 90258 a7  .03608 84937

a4 = -.24073 38084 a8  .00645 35442

The discerning reader will note that x greater than 1.0 are not fit for

the formula. What do we do when we want the In of a number greater than 2?

We must convert numbers greater than 2 to the form (l+.bbb...) and subsequent-

ly retransform the value obtained from equation (1) (this is the only note-

worthy acti'ity in the routine LOG).

Turning to LOG (figure 1), let us step thiough the process as we look at

the arithmetic tor the in ot N = 22.345. At CHAELOG we set Z = 22.345 the N

selected at SEL. The hub of the game in logarithms is dealing with the

decimal position of N. The MUMPS SFIND(Z,".") ttinction returns () if there is 0

LOG ;NAPERIAN AND BRIGGSIAN LOGARITHMS,DRH,NHRC,1/12/88
;POLYNOMIAL APPROXIMATION - ABSOLUTE ERROR LESS THAN OR EQUAL TO

3*10E-8)
S N(1)=O,N(2)=.6931471806,N(3)=1.0986122887,N(4)=1.3862943611,N(5)=

1.6094379124,N(6)=1. 7917594692,N(7)=I.9459101491,N(B)=2.0794415417,N(9)=
2.1972245773
SEL S L=O R !!,"WHAT ARGUMENT ? (USE DECIMAL POINT): ",X I X="" K CI,L,X
Q

I X<O!(X=O)!(X'?.N1".".N) W !,"NUMBER GREATER THAN 0 - NO COMMAS
USE DECIMAL POINT" G SEL
CHAR S Z=X,M=$F(Z,".")

I M=O S C=$L(Z)-1 F J=I:1:C S X=X/10
I M>2 S C=M-3 F J=1:1:C S X-X/lO
I M=2 S TM=$L(Z)-1 F J=1:1:TM S X10*X
I M=2 S TM2=SL(X),C=-(T-TM2+1) F J 1::(TM2-1) S X=X/lO
S Cl=$E(X,1),X=X/Cl-1

LnX S T(O)=I,T(1)=X F J=1:1:8 S T(J)=T(1)T(J 1)
S L=(.9999964239*T(1))-(.4998741238*T(2))+(.3317990258*T(3))-

(.2407338084*T(4))+(.1676540711*T(5))-(.0953293897*T(6))+(.0360884937*T(7))-
(.0064535442*T(8))

W !,"THE LOG,BASE lO,OF ",Z," IS ",$J(.434294819*(I,tN(C1)+
(C*2.302585093) ),10,8)

V !,"THE LOG,BASE e, OF' ",Z," IS ",$J((L+N(C)i(C*2.302585093)),10,8)
K A,C,J,L,M,S,T,TM,TM2,Z G SEL,

Figure 1. Natural Logarithm
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no decimal point in the number, 2 if N is of the form .xxx..., and an integer

equal to two more than the number of integers preceding the point in all other

cases--$F(22.345,".")=4. Alternate paths to this information are more diffi-

cult without direct access to the registers, as any Fortran programmer will

testify. For instance, you can replace $F with

S N=22.345 F J=1:1 S C=J,Y=N/1O,N=Y I Y<1 S C=C-l W !,C 0

and a similar line for numbers less than 1. Setting M = $F(Z,".") has three

possibilities:

1) when M=O, there is no decimal point in Z; therefore the characteristic

of Z is $LENGTH(Z)-l (logarithms are traditionally reported as

.aaa... Ec (where E stands for "exponent"). The part .aaa... is called

the mantissa. Ec is 10 c (which places the decimal) with c being known

as the "characteristic");

2) if M>2, there is at least one digit in front of the decimal. We set

c=M-3, as we want Z in the form a.aaa... as the ln(a.aaa...) is

.bbb .... We subtract three in order to leave a digit, avoiding

counting the decimal, and to account for the fact $F goes one beyond

the decimal. Knowing the characteristic we now divide Z by 10 c

F J=l:1:C S Z=Z/IO

to yield 2.2345EI the logarithmic form we seek.

3) M=2 means we have a number like .aaa... ot .000.. .aaa... which is.

slightly more complicated. If we wanted ln(.000123) we would do the

following: S TM=$L(.000123)-1 which equals 6; mulLiply .000123 by 10

six times (see CHAR+3) giving us 123; setting TM2=$I,(123)=3 allows us

to calculate c, c=-(TM-TM2+l) or c=-(6-3+1)=-4 giving us 1.23E-4, the

form we desire for ln(.000123).

At this point, we have the code to reduce all numbers to the form

a.aaa...Ec, and we know the characteristic c. Our example 22.345 has become

2.2345E1 with c=l. What we need for the approximation in equation (1) is

.aaa... as we are going to compute ln(l,.aaa...). Therefore, we set

C1=$EXTRACT(2.2345) which gives us the 2 in front ot the decimal and divide

2.2345 by C1(=2) to obtain 1.11725 from which we subtract I yielding .11725.

I

6

OF P



We are now ready to evaluate ln(l+.11725) with x-.11725. Line LnX+1

multiplies the terms, sums them, and places the result in L. The last chore

is to untrack L=ln(1.11725) as we arc seeking ln(22.345). What we did,

actually, was first divide 22.345 by 10c (where. c was 1), then we divided by %

C1 (where C1 was 2); so I, really is the v;Ilue of In( 2 2 . 3 4 5 /CI*l10c) or the

ln(22.345/2*0). By generally accepted rules

L = 1n[22.345/(CI*C)I = ln(22.345) - ln(Cl*C)

= ln(22.345) - [In Cl+In CI

= In 22.345 - In Cl-in C

but C is actually 10c
, so

L = In 22.345 In C1 - C In 10

Shifting the terms about, our answer has the toin' ,

Ln 22.345 = L 4 In CI + C In 1()

- .11087 + .693147 + (1*2.302585)

= 3.1066

The only item left needing explanation is CI which takes on the values

0,1,2.. .9 and these Ins are in N(1)... N(9). The code in LnX+3 reads

in Z=$J((L+N(CI)+(C*2.30.. . )),10,8)

The Briggsian or common Log of N is simply the constant .434... times the In

X. Plainly, the efficacy of the process lies in the string functions SF, $L,

and SE.

Computing the antilog e> is more straight forward. Given :.: the natural

logarithm of N, what is N? This time we "borrov" our polynomial appto:imation

foom Messrs. B. Cailson and M. (old;tein ()I tht Los Almos Scitif ic Laboia-
3

tory :
x 2 3 7

e =1+ alx 4 a2x aX ... ax +(x) (2)
where O<x<ln2, lc(x)<2E-10 and

a = .99999 99995 a5  .00830 13598

a2  .49999 99206 a6  .00132 98820

a3 - -.16666 53019 a .00014 13161

a4  .04165 73475

Note that greoit caie -as t akc u lo u] e -' t ]o ".- . ir",l ,(i ui il thc lout 1in

XIEXPX. The E(O) to E(20) values (eN 'here X .1.2....20 respectively) ire 1.

digits to ensure our 2 parts in I) billion a(' ncv. ThcLt- arc two points to

note about the polynomial appioxiimat ion: 1) - a1 t inldil( , : so '.le '1111F

A'.



compute the reciprocal of equation 2 eventually; and 2) the polynomial is

accurate with augments less than or equal to in 2 (.6931471). p

The first part of EXPX (see figure 2) is self explanatory. We accept only

N less than 20 in SEL, as larger N cause errorc greater than * 2E-10. Since

negative N are fair game, we set switch SW2=I, make N positive, and take the

reciprocal later for them.

At DECIMAL^EXPX we start to explore our N. If N is negative and M=O (i.e.

$F found no decimal point), we simply print the appropriate reciprocal of E(N)

(i.e. I/E(N)). If M = 0 and N is positive, .Ie again print the answer E(N)

immediately. IF M>2, we set C = M-2 to capture the number of digits before

the decimal; set CC = $E(N,I,C) to obtain the actual number before the decimal

point (remember it can only be one of the set '.3,4.. .20); and set MM N-CC

to obtain the decimal fraction. If MN2, indicating a number less than one, we

set MM = N, and CC = 0.

I

EXPX ; e RAISED TO POWER X (X<=20),DRH,NHRC,1/12/88
;POLYNOMIAL APPROXIMATION - ABSOLUTE ERROR LESS THAN OR EQUAL TO

2*E-lO
S E(O)=l,E(1)=2.71828182846,E(2)=7.3890560989,E(3)=20.0855369232,

E(4)=54.5981500331,E(5)=148.413159103,E(6)=403.428793493,E(7)=1096.63315843,
I(8)=29%u.95798704,E(9)=81O3.O392758,E(I0)=2202f.4657948,E(11)=59874.1417152,
E(12)=162754.791429,E(13)=442413.392009,E(14)=1202604.28416,E(15)=3269017.3724
7,E(16)=8886110.52051,E(17)=24154952.7536,E(18)=65659969.1373,E(19)=178482300.
963,E(20)=485165195.41
SEL K X,Z S SW=O,SW2=O R !!,"W-BAT ARGUMENT (X<=20) ? ",X I X="" K %
SW,SW2,E Q

I X=- W !',"EXP -1 .3678794411/" G SEI.
I X<O S SW2=I,X=-X
I X=O W !,"EXP 0 = 1" G SEL
I X=1 W !,"EXP 1 = 2.71828182846 WHICH IS G"e""" ( SEL

DECIMAL S Z=X,M=$F(Z,".")
I (SW2)&(M=O) W !!,"EXP ",-Z," = ",$J(1/E(Z),lO,1O) G SRI,
I M=O W !,"EXP ",Z," - ",E(Z) G SEL
I M>2 S C=M-2,CC=$E(Z,1,c),MMlZ-CC
I M=2 S MM=Z,CC=O
I MM>.69314718056 S MM-MM/2,SW1"

POLY S T(O)=I,T(1)=MM F J=1:l:7 S T(J) T(1)*T(J-I1)
S EX=1-(.9999999995*T(1))+(.4999999206*T (2)) (.1666653019*T(3))1

(.0416573475*T(4))-(.OO83013598*T(5))+(.001329882*T(6))-(.000141316l*T(7))
I SW S EX=EX*EX
I SW2 W !!,"EXP ",-X," - ",$J(1/((I/EX)*E(CC)),1O,1O) C KL
W !!,"EXP -,X,- = ",SJ((1/EX)*E(CC),lO, 10)

KL K C,CC,EX,J,M,MM,SW,SW2,T,X,Z G SEL
Q

. . %.. . . . . . . .

rIY
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Now we must check to see if the decimal fraction is less than In 2. If it

is not, we divide by 2 and set switch SW = i. In POLY we perform exactly the

operations as in LOG, placing the evaluation of the polynomial in EX. If SW =
-MM/2 -MM/2 -MM

1, we undo our division by 2 by setting EX = EX*EX as e * e = e ,

If SW2 = 1, we change the sign of N back to -1 and print the reciprocal of the ',

reciprocal of EX times E(CC). Nonnegative N are printed as the reciprocal of

EX times E(CC) as EX is e-x if you recall.
3.415

As an example, let us find the antilog of 3.415 (i.e., evaluate e 0.

3 415 --
which is e * e' ). We would read E(3) and -valuate EX for .415 and mul-

tiply E(3) times EX for the answer 20.0855369232 , 1.5143707 = 30.417. 1%

The third routine, NORMDIST, is the least a(curate, hut not to worry, we 0

will replace it later. It is the most inteiesting ot the thice - actually

what this is all about. The standardized ioomal randor vatiable probbility

function is
2,.e-Z/,

f(z) = 3/

which is arrived at by setting the mean u=O and standatd deviation a=! in the

Gaussian distribution

f(x) = 1X- e 10 a(4)

If ve know the mean p and the standard de',iation a of a population u can use

(3) by transforming oin s-'c- x to a standardi .f,,:4 normal "atiablc z-)/o.

For example. if we have a population mean li=2.5 and standard deviation

a=1.5 and select a subject whose raw score is -.96, what is the probahilitv

this score is greater than zero and less than or equal to 4.96? First.

z = (4.96-2.5)/(1.5) -- 1.64.

The answer is
: ._jl 6 .1. 3448d

P(O<Z<1.64) 6 dx '1

the area under the density function trom t Io I

NORMDIST simply produces the familiar tabui2 values found at the back o +

every statistics text. Knowing the moan and -'andard deviation of any Gaus

9 V



sian distribution, one can translate any measure to the standardized normal

variable by z = (x-u)/a and plug it into NORMDIST to get:

i) P(O<Z<z)

ii) P(Z>z) %

iii) P(Z<z)

iv) e(Izl<z)

The values returned are in error to the extent of +5 units in the fourth

decimal digit.

The numerical analysis is indirect. It turns out the integral of eX 2 dx %

cannot be integrated in finite terms. We could, as with e , use a Taylor's

series expansion around points of interest tn ensure convergence, but it i :

much easier to pluck Hastings' brain. The error function

2 ( z  2  (5)

erf"z = j dx

is close to what we are after; namely,

1 Z 2
f(Z) f et/2 dt (6)

Hastings has approximated the erf with a rational approximation

2 3 4 4
erf x 1 1/(l + a Ix a2X + a3x ax E) M (7)

X real and lc(X)I< 5E-4 wheie

a = .278393 a2  230389

a3 - .000972 a4  .018108

We must make the transformation

2
-6 12 -X or = X

letting

dt= 12 dx

.

"I ' " % % •.%. ."% "% % " *%"% " % '
" % , %d% %* % % %,, 1h0i



and substituting -x2 for - 2 and /2-dx for dt in equation (6) we arrive at

WS

fel , a
s,-[~/ - d x) .C

which reduces to

W
f(V) =J ex dx (8).

The expression (8) differs from the appio:.:iination (7) for the erf (5) by a

factor of 2

2 1
3 tw'ice v •

yp-

so we must divide equation (7) by 2 for the result in line SEL+6 in NORMDIST:

S ANS = $J((-(/S4))/2,6,4) .

Turning to NORMDIST (see figure 3), we place in the A(i) the coefficients

of the rational approximation (7). Entering an N' at SEL, we make our variable

transformation by setting X - N/(212 ). After _oMputing the power teims T(J),

multiplying the A(i)*T(J), adding I and summing, the sum is raised to the

tourth power. Following the foLm of equation (-) we take the reciprocal of

the sum, subtract the result from 1 and di-ide by 2 to reconcile the

multiplicative terms of the integral.

Discussion

There ac three pedestrian matt crs to di, . of. First. the a'curacy of
erf is not consistent with U,!A and FXPX. The r1 -1t is urged t( ist' :i stings'-

rational approximation 26

erf x 1 1/(1 tax a ax a 6 x) 4 (X)=1 . a3x 3  6 ( )"
<e.-0 < x < owhere [ (X)] < 3E 7 and.'-

11
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a 1 = .07052 30784 a2 = .04228 20123

a3 =.00927 05272 a4 = .00015 20143

a5 = .00027 65672 a6 = .00004 30638

This expression was not used originally, as there was no reasonable way to get

the 16th power without risking grievious errors - motivating writing the LOG

and EXPX routines.

NORMDIST ;STANDARDIZED NORMAL VARIABLE DISTRIBUTION,DRH,NIRC, 1/12/88
;ABSOLUTE ERROR IN Z LESS THAN OR EQUAL TO 5*10E-4
S A(1)=.278393,A(2)=.230389,A(3)=.000972,A(4)=.078108

SEL S SN=1 R !!,"ENTER z SCORE : ",Z I Z="" K A,Z,ANS,SN 0
I Z<O S Z=-Z,SN=-I
S X=Z/1.4142136,S=O
S T(O)=1,T(1)=X F J=1:1:4 S T(J)=T(1)*T(J-1)
F J=1:1:4 S S=S+(A(J)*T(J))
S S=S+1, S4=S*S*S*S
S R=(1-(1/S4))/1.1283792,ANS=$J(R*.3989472*1.4142136,6,4)

ANS V !!,"IF Z IS THE STANDARD NORMAL RANDOM VARIABLE ",SN*Z," THEN :"
I SN<1 G NEG
W !,"P(O < Z < ",Z,")= ",ANS
W !,"P(Z > ",Z,")= ",.5-ANS
W !,"P(Z < ",Z,")= ",.5+ANS,?33,"(NOTE: ERROR IN 4TH DIGIT +5)"
V !,"P(jZ I < ",Z,")= ",2*ANS G KL

NEG W !,"P(Z < ",-Z,")= ",.5-ANS
V !,"P(Z > ",-Z,")= ",.5+ANS
W !,"P(",-Z," < Z < 0)= ",ANS
W !,"P(IZ I > ",-Z,")= ",2*ANS,?33,"(NOTE: ERROR IN 4TH DIGIT +5)"

KL K J,R,S,S4,T,X,Z G SEL

Figure 3. The Standardized Normal Variable Distribution

Enter the new A(i), change SEL+3 to J=l:l:f,. add 1 to S, and take the

ln(S+1):

N=(S4 1)16

In N = 161n(S+1)

(You will have to change 1,OG and EXPX to opeo,' as stlrbMtines: i.e. iwnt ad

of W !, you must set "ANSI=" to the alte comp t.>,i by L(;, ,t(.)

S = (S+I) D^LOG S S3=ANSI*16

S X=S3 D-EXPX S S4:ANS2

N is ANS? from EXPX which computed eS3 for you. The rest of NORMDISF Lemains

unchanged and you have nov achieved 3 parts i ten million accuracy: your

-F A



answer is in error + 3 units in the seventh decimal place.
2 _

If the erf is of no interest, Hastings' rational approximation

P(x) = 1 - 1/2( + Fx + F2 x2 + Fx 3 ... F6 6-6 + C(x) (9) Y
where lc(x)! < 1.5xlO - and

F1 = .04986 73470 F4 = .00003 80036

F2 = .02114 10061 F5 = .00004 88906

F3 = .00327 76263 F6 = .00000 53830

will produce
___ Z -t 2 12

1(z) e t_/2 dt

to an accuracy of one and one half parts in ten million. The code for (Q) is

displayed in the routine NORM (see figure 4). Note the line SEL+6 which

assumes our LOG and EXPX routines have been con'erted to subroutines LGN and

EXX respectively. Following the style of FM we enter subroutines with x and
0

come out with V.
Second, the use of the error function to evaluate the standardized normal

variable function does not preclude us from u'ing it, also, as part of our

armament. The erf(ha) is the probability that the error of a single measure-

ment lies between + a, where h is the precision index. Those using a digita-

approach to neural nets will appreciate the utility of both the error function

and the normal probability density function in adjusting weights in logical

threshold units.

Third, standardizing a random variable ii. in itself, a powerful ploy.

Setting z=(x-u)/a conveys a wealth of information about the location and

status of a score in the distribution, if one keeps in mind that the distri-

bution mean is zero and the standard deviation is one. Negative z are less

than the population mean - positive z greater. Given a z ot 1.64 you know

instantly this is a score almost two standard deiations above the mean of the ,

population - a reasonably rare event. Sixty-eigh, percent of the distribution

lies between +1 standard deviations. Ninety- fi percent hetweei 2 standard e

deviations. Knowing these relationships and 1iii NRNDIST (an rationa izC a

myriad of guessing situations. 0

Great care has been taken to make thesE rotLuines, and those previously

developed. aq accurate as practically possihlc. rhie concept of algolithnm for-

small samples is not whimsical. ff onc, hat, i mall -4ample vith missing data

13
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and assumes an N which counts missing data as present, the mean will consis-

tently be underestimated, a serious matter in the health care business.0

NORM ; STANDARDIZED NORMAL VARIABLE DISTRIBUTION, DRH,NHRC, 1/12/88
;ABSOLUTE ERROR IN Z LESS THAN OR EQUAL TO 1.5*lOE-7
S F(l)=.049867347,F(2)=.0211410061,F(3)- .OO32776263,F(4)=.OOOO380036,

F(5)=.0000488906, F(6)=.000005383 -

SEL S SN=l R !!,"ENTER z SCORE :",Z I Z="11 K A,Z,PZ,SN 0%
I Z>6 W !,-OUT OF RANGE- SELECT A ""z"" LESS THAN OR EQUAL TO 6 "G

SEL
I Z<O S Z=-Z,SN=-1
S (X,ZZ)=Z,S=O
S T(O)=1,T(1)=X F J=1:1:6 S T(J)=T(1)*T(J-~1)
F J=1:1:6 S S=S+(F(J)*T(J))
S S=S+l,X=S D -LGN S S3=16*Y,X=S3 D -EXX S S4=Y
S R=(1-(l/(2*S4))),PZ=$J(R,9,1)
W !! ,-IF Z IS THE STANDARDIZED NORMAL RANDOM VARIABLE AND z

",SN*ZZ," THEN :11
I SN<1 G NEC
H !,"P(O < Z < ",ZZ,")= ",PZ-.5
H !,"P(Z > ",ZZ,")= ",1-PZ
H !,"P(Z < ",ZZ,")= ",PZ (

W !,"P(IZI < ",ZZ,")- " ,2*(PZ-.5) G KL
NEG H !,"P(Z < ",-ZZ,")= ",l--PZ

H !,"P(Z > ",-ZZ,")= "1,PZ
W !,."P(-,-ZZ," < Z < 0)= ",PZ-.5
W !,"P(IZI > ",-ZZ,11)- 112*(PZ-.5)

RI. K J,R,S,S4,T,X,Z G SEL
0 _ _ _ _ _ _ _ _ _ _

Figure 4. Precision Standardized Normal Variable Distribution

Large samples take care of themselves. The la-, t~ laige- IUmbci ,, ot the

central limit theorem, grant reprieve to shodd.; data analysis practice". III

the FM descriptive statistics programs, ea~h fiEld is restricted to nuImeric

values in a definite range for that domain, ensuring data attihbute integrity.

The existence or nonexistence of an entity in that field is ascert.1ined and

only then is N augmented or decreased. Thesc are minimal mechanical safe-

guards.

When looking at the normal distribitir-n function

1 2,,

f(xpa 2) e= -J1 2T

it becomes apparent that one. must niinimize the erroi in (x Ai)' ini order to

minimize the error in the integration pircts. This is, wh- -je needed Ito

14



develop LOG and EXPX to write a reasonable standardized normal distribution

function. Multiplying a slight error in X sixteen times is untenable (for I

example .99 to the sixteenth power = .85). On the other hand, underestimating

u by including missing data in the count is equally serious and very mislead-

ing in small samples.
The DEC machines have 18 decimal digit accuracy (they actually carry 19

digits) with 64 bit precision. This is automatic double precision arithmetic.

A VAX 750 running under the UNIX operating system scored the lowest error

rating in a PC Tech Journal accuracy benchmarking test based on stringent

numerical criteria 4,

With accurate algorithms and accurate machines, all that remains is an I

accurate compiler. The MUMPS community must pay attention to the IEEE p.

754/854 standards for numerical computation which define procedures for

dealing with a discontinuous number space. If MUMPS is to gain the preemi-

nence it deserves, it must handle numbers with precision and efficiency.

Some companies utilizing co-processors are certainly headed in the right

direction, producing native mode machine code and using runtime systems that
5handle indirection and the Xecute command

The one fly in the ointment of the MUMPS language itself is the order of

arithmetic operation in an expression. Countless hours have been spent disco-

vering MUMPS has left to right arithmetical precedence! Otherwise, after many

years of massaging numbers, it can be truthfully reported that doing numerical

analysis with MUMPS is a pleasure. I/O is the easiest of any language used.

The string manipulators are without parallel in examining numbers. The fact

that one can simulate the normal probability density integral in four or five

lines of code speaks for itself.
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