J SELDIN
F/G 12/2

ODYSSEY RESEARCH ASSOCIATES INC ITHRCA NY

NOV 87 RADC-TR-87-223

~A19% 375 WATHESIS: THE MATHEMATICAL FOUNDATION OF ULYSSESCU)

- o

-

L Y T R T T O i K R L S T N S B N DS D Y DN U A R O TR L D O TR T AT B

: 2
T ' "::".'.‘ o
'O'hlz.:f.e‘ "ﬁ"

= i 22 22 AN
= Eh g s
213 e BYGR Y RK

F e R

"m___l'l T N
— () e

ll2 IR

s ' '.f_-m

N
Mz §i4 o
' l

==

R R G N AR LGN L

M A R R R R T O O T A o R S TR T AT TR TN ATy _.;"."'..".

R - ¥ .
) o
O Fiic copy éﬁs‘

o
sl
-
thﬁ'|
! “ (]
e
; .|.|,|
R
WO MY

RADC-TR-87-223
Wnterim Report
November 1987

[]
NN
st
AN

“ @p
a‘:.'r SO0
ool
RN
Tgtite's

AD-A195 379

[J
RO
b,
QOO KNY
ligh b,
ot
U "‘ .'.‘..“o

() WK
g

MATHESIS: THE MATHEMATICAL :
FOUNDATION OF ULYSSES

T -Odyssey Research Associates B 123 :‘

ROME AIR DEVELOPMENT CENTER e
Alr Force Systems Command “:Rﬁ.::;

Gritfiss Alr Force Base, NY 13441-5700 WAL
0"':: Q‘.'\‘
YA
VY ?“J“
\) 3 S s
88 5,02 VO .2
. P ‘1;.‘\ ~°
. - . '\"': \
A i S I A S A T N ko BT T et A AL Ly

MM L '-‘..‘.u"..a"ln'L'..‘I“"-“M‘I;.‘l..‘l“l\"-'I‘n"l‘o‘ R R R N T I N AR RN K AR W N T 1oyt pi8 a-b arbe ot - ¢ :.‘:';‘;“.!
pa s N

.|0|'N
o
. oA
4 . ’
kY.
_This report has been reviewed by the RADC Public Affairs Office (PA) and G::as
is releasable to the National Technical Information Service (NTIS). At NTIS '* ¢
it will be releasable to the general public, including foreign nations. LD
@
RADC-TR-87-223 has been reviewed and is approved for publication. Séﬁh
an
e
W
- , . — .)
APPROVED: ﬁ# e d T
S I‘-J ,
JOSEPH W. FRANK Tt
Project Engineer o
£
@
- X ‘.I‘e-
]
U sk
, o
: APPROVED: ::?JhOﬁdzi .Zgééfzj ot
: : !
' RAYMOND P. URTZ, JR. . @
i Technical Director i
Directorate of Command & Control :yﬁ;-

e
a.)
FOR THE COMMANDER: : M::

. JOHN A RITZ
Directorate of Plans & Programs Sghy

YO
H W)
v ¢ o‘l |

By

15

LX
L

sﬁ{ s,‘ v

If your address has changed or if you wish to be removed from the RADC
mailing list, or if the addressee is no longer employed by your organizatiom,
please notify RADC (COTC) Griffiss AFB NY 13441-5700. This will assist us in
maintaining a current mailing 1list.

Be ow o e _wn oo

>
s-

Do not return copies of this report unless contractual obligations or
notices on a specific document require that it be returned.

KRGO

b Y
#d
[L=
£

';'o N":“’
[y \
ODOMN . . , . . . -

O AT R I A AT T I A L A A S N T o A M A o S o o L S WS L 'r'l.:..O'- o

cg e
31

-

'~

»

[et 4

&

oy

s . .
UCANOMRAN A m

iyt .u’.\ W ISARK AR L

A R OV IR TR R L OO RV S 810 e -G VAR AY g V0§90 04 4 ¥ D pat 40 20% 800 ¥yt Sty iy by
UNCLASSIFIED ﬁbﬁ/%—m
I TION OF THIS PAGE v
Form Approved

REPORT DOCUMENTATION PAGE OMB No. 07040188

1a. REPORT SECURITY CLASSIFICATION
UNCLASSIFIED

b. RESTRICTIVE MARKINGS
N/A

3. DISTRIBUTION / AVAILABILITY OF REPORT
Approved for public release; distribution

2a. SECURITY CLASSIFICATION AUTHORITY

2b. DECLASSIFICATION / DOWNGRADING SCHEDULE unlimited.
N/A

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)
N/A RADC~TR-87-223

7a. NAME OF MONITORING ORGANIZATION
Rome Air Development Center (COTC)

6a. NAME OF PERFORMING ONGANIZATION
Odyssey Research Associates

6b. OFFICE SYMBOL
(If applicable)

7b ADDRESS {City, State, and ZIP Code)
Griffiss AFB NY 13441-5700

6¢. ADDRESS (City, State, and ZIP Code)
1283 Trumanshurg Road

Ithaca NY 14850-1313

8a. NAME OF FUNDING /SPONSORING 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION

Rome Air Development Center

8b. OFFICE SYMBOL
(If applicable)

COTC F30602~85-C-0098

8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

i PROGRAM PROJECT TASK WORK UNIT
Criffiss AFB NY 13441-5700 ELEMENT NO. | NO. NO IACCESSION NO.
35167G 1065 0l 02

11. TITLE (Include Security CTaniﬁcation)
MATHESIS: THE MATHEMATICAL FOUNDATION OF ULYSSES

12. PERSONAL AUTHOR(S)
Jonathan Seldin

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) |15. PAGE COUNT

Interim rrom Apr 85 1o Apr 87] November 1987 168

16. SUPPLEMENTARY NOTATION

N/A

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP Computer Security lambda~calculus

12 02 ULYSSES constructive logic

12 07 Mathesis

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

>This is an interim report for the Computer Security Properties Modeling Environment
(ULYSSES) contract. This report is an introduction to MATHESLS, the underlying mathematical
foundation for ULYSSES. The theory of constructions is a form of generalized type assign-
ment to lambda-terms: hence, the paper begins with typed lambda-calculus and continues with
the essentially equivalent idea of type assignment to untyped lambda-terms and its general-
izations. Because the theory of constructions is also based on constructive iogic and the
notion of formulas-as-types, a chapter on this subject is includeda. With this expository
preparation, the theory of constructions itself, along with 1ts basic metatheory {(including
the strong normalization theory and some of its consequences) is taken up. The paper closes
with a chapter on representing mathematics and logic in the theory of constructions. The
mathematics presented is that which is relevant to the ULYSSES' theory of security.

»
20. DISTRIBUTION / AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION N
BruncLassirieounumited O same as RPT] DTIC USERS UNCLASSIFLED
22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) [22c OFFICE SYMBOL
JOSEPH W. FRANK (31%; 230-3241 RADC (COTC)
DD Form 1473, UN 86 Previous editions are obsolete. SECURITY_CLASSIFICATION OF THIS PAGE
UNCLASSIFIED

oA S O T "B’y J.‘.." .lJ'.\'.; .l'l.A ."0-‘ ."ﬂ'i u.l'. D0 .I‘ﬂ'a‘ . 'o ¥

@

St

a
s

=

WEPTS

Pl ol o

Py ey
P
] -”.?...3?."3'

-
g
s

L PN A N o N T 000 00 a8 00 0 8" €0 b 08’ 275,88 8%A 8¢ 8. u'8 aVa nsa"
1, . ! $ U O X 26,2888 00" NYu NN QY - TR T U TR UV T WU R RC R wOwg

; Acknowledgments

I would like to thank Richard Platek, Garrel Pottinger, Tatiana Korelsky, and
James Hook for their mary helpful comments and suggestions. Garrel Pottinger
was especially helpful in checking carefully the proof of the strong normalization
theorem in Chapter 4. Richard Platek wrote part of the Introduction.

Very special thanks are due to Owen Rambow for his creative work in translating
this work from its original form (written in 1st Word on an Atari ST) into IATEX,
and to Donna Simmons and Carlos Maymi for helping him.

Jonathan P. Seldin

Ithaca, New York
April 24, 1987

Accegsion For

DTTIC TAB
Unaanounced

Justification __ |

! pa
NTIS GRA&I v
0
U

By

Di%ﬁfib“f!??/
Avai{gpility Codes
Avail and/or
Dist Special

: 9"\! |

2P LV LR

1y ” T S® ¥ - h [5.8 N LY ; P) P y
'l sl‘. I‘u 1 I.- I‘n (M ‘l) ‘; ﬂl “..“l‘m 4! '- .'u 'Ll ', ‘O ‘0 .A ‘n “n ...\‘ A.‘ « .n - ‘ ‘w " .‘e l‘l.- . . ’. ‘ \ AGN A

k4

A
o7 :

{

5

R,

v ¥
v ¢

‘l
s
P

: :f | IR 4
‘,;'2‘.'«

NS L

""‘":I 22N
» - ,"

sise;

n’!
‘
n 3

a1

A
"’

~" L
AR

> 7
?:f.: N
>
) z’\'

P

L e g

YR ETe L

-y

PR ey

- -

P

] aTh o

AN ARENR A

RN

Contents

INTRODUCTION 4
1 TYPED LAMBDA-CALCULUS 8
1.1 Type symbols and type structures. L. .., 9
1.2 The typed A-calculus. oL 12
1.3 The basic theory of typed A-calculus 17
1.4 The Church-Rosser theorem and pure A-caleulus. 0. .. 21
2 EXTENSIONS OF TYPED LAMBDA-CALCULUS 23
2.1 Typeassignment L 25
2.2 Type variables and principal type scheme 0 000000000 35
2.3 Universal quantification over all types, 37
2.4 The power of sccond order quantification. 41
2.5 Generalized type assignment. . . . 00000000 45
2.6 The need for conversion rules oL 47
2.7 Basic generalized type assignimento oL oL oL 50
2.8 Extended generalized type assignmento 0L L 53
3 CONSTRUCTIVE LOGIC 59
3.1 The D-caleulus L 61
3.2 Formulas-as-types 64
33 AddingAv,and L{for=) 66
3.4 Extension of formulas-as-types 69
35 Fiest order quantifiees . . . 0 0 oL 71
3.6 The full theory of types . . 0000 o 79
4 THE THEORY OF CONSTRUCTIONS 83
1.1 The theory of constructions: natural deduction formulation. 84
4.2 The basic metatheory of the theory of constructions | 87
1.3 The strong normalization theorem. . . 000 o0 000000 106
14 Cousequences of the strong normalization theorem 0 0 0 123
1.5 The theory of constructions: sequent formmlation 128

(%4

T At U TR AR AT RN T T Tt AR R) "L ey Wy W o, " W W W W e L
~~ N > ‘ * -I.-‘ .'- S .,t.'. Q'.,l L) 'l avm N ‘ "\“ lt.o-- .

ab ha dp™ 29 Gat Bav @ar $at Fav ia ot VA ol o8 0) " oth ¥ 200" v, & YE'abyalh el ati a’ S A Y B 80" 0 ¥, 8" S0gd 820 wal Sk

o

<

NS

i
A

®
T

‘:,:?,':“c:.

%0
) i
n’.,"‘f

O

5}.‘ ",)

Bood
.

'\I} n
- %
r-“)-:\'}-_‘ t

AR - v,

-~ - ¥R

A R R R O T N T R o N N R T e L L L Oy o VS T 160 000,000 e

X 5 REPRESENTING LOGIC AND MATHEMATICS IN THE THEORY

o OF CONSTRUCTIONS 134
o 5.1 Representing logic withequality 135
5.2 Adding axioms to the theory of constructions 140
5.3 Representing arithmetic 144
54 Representing sets and functions 149

ALy

A LIST OF POSTULATES AND SYSTEMS 153

PErT

B SYSTEMS AND THEIR DEFINITIONS 156

l.'

-
o

A

“uf

o«

4 o~
1.[- -

A

T
»
i

o

10 XXX

e
“
o

W~

¥ -
v F.‘E‘ S \J
S
o 4
g, Y :
Pt}
B ‘gi Y
'h Fad J .|'
3 ®

' n ::
[} \)
; R
dy whond
: R
;R
tin]

ol

LF
4]

)

)
»

K]

-
[
3
a:‘s'
)

(]
b
N T'_ R '-'_‘-
D ' o “ .'
’\ L (’,\
DL F AL AT O e O o e Y o e e e A 3, L

S PN N T R N KR O T R R O P W W T T N N o K O R R R R R Y T K O IV Y IS YT
&

Errata

The following typographical errors had unfortunately been overlooked in the docu-
ment entitled MATHESIS: the Mathematical Foundation for ULYSSES.

On page 40, the reference after Definition 2.11 should be to Definition 1.7.

On page 104, the last rule of the first proof diagram should be (Ve) rather than
(Vae). The next to last line of the second diagram should be

(¥/z)M :[V/z|B
and the third line following that diagram should read:

Here, the formula Az : M . M : (Vz : C)B is the cut formula in the
reduction step.

Finally, on page 113 in the second line of the Convention, replace D; by D..

i
S
o"‘%}‘o:

N
<
panty

" 1ol
et
It it
::-"'?-:3"’

OV
A
®
RRIARE

ity
o

- - he e & Y bl Y v g T 16" ot al h a i ath-nlig®, T
AR TE RO VN UN NNV LA LW U LW UL/ UL RN A M V \ ! U 4 A T h (Xn Y -

WU ORNRN Y
.‘i (PO

vabs

! "v'::t‘:?ﬁ.
! R0

e
; 2o
o
: et
: ,..091
3 4
' 'f‘"l';.l\':'
; ol c'cé:';
:)
B
k)
4
)
’ INTRODUCTION
'
1)
; This work is an introduction to MATHESIS, the underlying mathematical foundation
¥ for ULYSSES. In ULYSSES one proves that models, designs and formal specifications of
1 information processing systems have security properties. For this to be meaningful it is
v essential that the underlying automated mathematical foundation itself be sound. It is
4 a known fact that various design and program verification environments in widespread
use within the computer security community have faulty logics and implementations;
i a knowledgeable user of thesc environments can exploit these flaws to prove false facts
about system. A less malicious user could inadvertently exploit these flaws and also prove
b false facts about systems. Machine certification of proofs is thus called into question
‘. when the certification mechanisms themselves are not appropriately certified.
v There are two basic explana ons of these flaws. First, the informal theory which
stands logically prior to the theorem prover has not been adequately worked out. The
purpose of this document is to work such a theory for the ULYSSES mathematical
; component. In particular, we prove the formal consistency to this theory.
y A second source of error occurs during implementation. Many automated mathemat-
ical components and theorem provers evolve incrementally; new features are continually
! added to make the theorein prover ever more powerful. Also specific algorithms are
replaced by more eflicient ones. ‘This maintenance, like most software maintenance, is
) usually done in an ad hoc manner. Logical flaws have a way of slipping in during such
: improvements. Our approach to this problem is to provide a mathematical foundation
Y which in principal is much stronger than presently needed. The underlying logic is a true
mathematical foundation in that the usual mathematical entities, viz. sets, sequences,
b functions, relations, elc., are all definable in terms of our ground entities. Future exten- ° i
sions of the theorem prover consist in adding definitions to the basic logic. The standard NN
! basic theoremns about the new cutities (what are usually called axioms) are then provable ",;x-,-'_‘:.r:-_
t in the basic logic. ?}f:-’_':‘\,'.
y We thus have two requircinents for a mathematical foundation for verification: the "_:'_:-::;:'
} informal theory needs to be worked ont prior to implementation; the foundational the- .-__.»::.f:.‘-
! ory should be strong enough to support definitional extensions which will encompass T ")
< a significant amount of mathematics. Several approaches to foundations satisfy these SN
9 requirements. Qur specific choice wis determined by several further requirements. First, R
X in order to add conlidence to the correctness of the implementation it would he desirable ,.“5.\,:{
¥ that the underlying foundations have as few moving parts as possible; e the number :."_"‘:"-g’
' POGAN
\ LT !
1
AN
o
' PSS
[TN
v PagF Yt ¢
\ MR
) - A
‘ R
ﬁ a\'-"'l\v[‘ !

. e - GO et ' P Y L - . P AN N 2
\ AN " o RN " Y LT e T AR W O AR P LR A o, T R N
«"A’u'.'n‘\'r....\ku\. 54 3,095,000 UV Y 0T N .! * 39,4, ‘~ AL X < Baxua Y , (]

y 3 N LAl Al gt e,
. ¥4 9. 99 [b

T VBl Al VAl Uad Uad 19 0D Y 09 G TN IRTR Ay b 0ok Vel Gd tal vad dal Vol ded" - iy ‘O b g Sl Vel 0oL e’ rh S & B AR’ o’ A0

of basic entities, constructors, axioms, ¢te. be small. Second, it would be desirable for
the foundation to have computational content. ‘That is, within the logic mechanically
decidable statements should be distinguishable from undecidable ones and when state-
ments are decidable the decision procedures encoded in their proofs should be available
as computer programs. Logicians with a strictly mathematical background have not re-
quired this distinction; in computer science it separates the possible from the impossible.
; The natural logic for such computable entities is called constructive logic. There are
cases where classical logic differs froimn counstructive logic; namely some classically valid
proofs cannot be made in constructive logic. On the other hand, there is an important
sense in which constructive logic is stronger than classical logic since the latter can be
' interpreted in the former.
. Since constructive logic is not well-known outside of certain subfields of mathematics
' and computer science, a few words about it may be in order. If one proves in constructive
logic that something exists, then one must either give an explicit construction of that
thing or else give a set of directions for constructing it. It follows from this that although
in classical logic one is concerned only with truth and not how that truth is established,
- in constructive logic one is concerned with provability and one takes nothing to be true
unless one actually has or can oblain access to a proof of it. This requires the denial
of the law of excluded middle: A or not A. For if 4 is a statement that something
exists, then A or not A means that either there is a set of directions for constructing
that thing, or else there is a proof that there can be no such set of directions; this is
clearly not true. This makes constructive logic scein a bit strange to those who are not
used to it. Since constructive logic was first used in mathematics as one reaction to
3 the paradoxes of sct theory and logic which were discovered at the turn of the century,
most examples of the difference between constructive and classical logic have generally
been mathematical examples. Such examples can be found, among other places, at the
s beginning of [Bee85], which also has other references.

It might be worthwhile here to look at a nonmathematical example. The law of
excluded middle might well lead a legislator to propose a criminal law in which there is
one penalty for a crime if A is true of the particular case and a different penalty if A is
false. In classical logic, one is justified in concluding that if the crime covered by the law
is commitied and there is a conviction, then one of the two penalties would be applied.
But in practice this does not follow. For suppose it turns out to be extremely difficult
for the court system to decide whether or not A is true in a particular case. Then the
> case may be appealed all the way to the Supreme Court, a process which can take years

(even more than a decade). During this time, neither penalty will be applied. And the

, courts may wind up deciding that A is so diflicult. to decide that the courts cannot do

) so constitutionally (as they might, for example, if they conclude as a matter of fact that

trying to decide A is so diflicult that it is inpossible to do so in a way that does not

treat people arbitrarily); in this case, the original law would be unconstitutional, and

- s0 no penalty would be applied (even if it were not. in dispute that the defendant had

¥ committed the crime). Here is a nomnathematical case in which the law of excluded
middle can be doubled.

Note the relationship between the use of constructive logic and the need to consider

RO I S nnn Tl

how a decision can be made. Constructive logic is often thought of as the logic of what
can actually be done by computations if there are no limitations of time and space, and
this makes it particularly appropriate for reasoning about computing in a general setting.
In fact, this connection is the basis of Constable’s Nuprl proof development systen, in
which executable programs are gencrated by proving mathematical theorems[C*86].

Because we are interested in a proof system, we are especially interested in referring
1o proofs. A good system of constructive logic in which proofs are mentioned explicitly
is the theory of constructions of Coquand [Coq85]'. This is a system of type assignment
to A-terns; the proofs are (roughly) represented by the terins and the formulas by the
proofs. Although the rules of the system are easy to state, the system is, in fact, the
result of a considerable evolution through a nuniber of other systems of typed A-calculus,
and i1s best understood in the light of those systems.

For this reason we shall not take up the theory of constructions itself until Chapter
4. In Chapter 1 we shall take a look at typed A-calculus. In Chapter 2 we shall consider
deductive systems which assign types to A-terms without types. We shall consider the
basic system and and several of its gencralizations. These generalizations include the
second-order polymorphic typed A-calculus®, Martin-Lof’s theory of types?, and gener-
alized type assignment in the style of [LIS86] Chapter 16. The theory of constructions
is a form of gencralized type assigniment, and so readers will be in a position at the end
of Chapter 2 to proceed directly to the theory itself in Chapter 4.

However, to fully appreciate the theory of constructions, it is desirable to consider
both constructive logic and the idea of interpreting terins as proofs and types as for-
mulas. This idea, which is often called the Curry-Howard isomorphism, was introduced
by a number of people independently, including [How80], who based the idea on an
obscrvation of Clurry [CF58], §9E. We take up this subject in Chapter 3. We begin in
Sections 3.1-3.2 with a simple calculus of constructive logic for implication formulas, and
show its relation to the simple system of type assignment. We then proceed in Sections
3.3-3.4 to extend the system to the other propositional connectives, and show that the
law of excluded middle fails in this calculus of constructive logic. This is cnough of
the chapter for a basic understanding of hoth constructive logic and the Curry-lHoward
isomorphism, and many readers may want to proceed directly rom the end of section
3.4 to Chapter 4. llowever, somie readers inay want Lo see a treatment of predicate logic,
and in Sections 3.4 and 3.5, we present versions of (constructive) first-order predicate
logic and higher-order predicate logic which illustrate the Curry-Howard isomorphism
and look toward one of Coquand’s motivations for creating the theory of constructions.

In Chapter 4, we come to the theory of constructions itself. We give its rules in a
natural deduction forinulation, which is a bit. different {rom the form in which Coquand
gave them but is more closely associated with the systems of type assignment mentioned
in Chapter 2. We then proceed to prove the main consistency theorcin for the system,
the strong normalization theorein. We next show the relationship between the natural

TSee also (CHEA], [CHB6), [CH], [CogB6a). [Cogiib], and [Caoq).

2This system was introduced independently by Girard [Gir71} and Reynolds [IRey74) and studied
extensively by a wumber of peaple, including [1F1L.OR3).

*See [Mar?s], [Mars2], [Maria], Chapter X1 of [Hee8s)] and [C*86].

T TR .’-_‘._\- AL SRR "‘q.’. ; LA S ey -‘-\- .‘-,\..'- ,*- " .’- Y AL R W W ...‘:; ._-'n,’\ | *.‘ ' -
W " J ¢ M i Oy - Ny 2 Al o4

X a2ln e

MK o) Eall

/"..:',1,:“-?:‘
v, - l,l
AR

3

o

d

" \“‘!\

Y A P P P R Y L R U N O U O T R A R T R R T O o S ST O O O Y W RV W WO WU R VOV VO IR
(o
! i,
:l Y ‘i':.’::l
" "n 'o '
@
"
f g
¢ gisly
[a5 ¢
L] ’e f."
B r
i [f\' '
) LY ‘::2‘
®
[y S ()
) D
) deduction formulation given here and the original formulation of Coquiand. B o
t Finally, in Chapter 5, we take up the representation of logic and mathematies in X &
4 the theory of constructions. This is clearly necessary if this Ltheory is to serve as the .l":‘ ‘:.l‘,."
mathematical basis for MATHESIS and the rest of the ULYSSES project. This work s Py i
- is all based on the work of Coquand and Huet?, but in addition to the definitions and SN
" examples of the papers of Coquand and Huet, we feel a need to use the strong normal- .i\ _'-."'5:
' ization theorem to give some proofs that the representations of logical and mathematical PN
1,‘ concepts really behave correctly. .;’,i.jxf}.
‘ S _,'_- ,{.
PN AN
®
ni ;' » ’
\ “ J
‘ WA
Fu e)
: Y
' WA
! PRI
°
D)
3
)
L
.
-
N

&

oW X - -
R
‘;i’ﬁ',n"x e,
':‘,‘I Py "
LT e T

X

'y
4

el
H4

]
dC A

o

v

Y
[3 ’&
I‘ ﬂ

Ly

3 Ky Ay Ay

x
rr o
"'
x

e
']
v

7

-

[uS

1See [C1186] and [CH] in particular. vt

T [
v TS \
. el
) " "(
[ot Y .‘!
! R
' Vol
' w-w*'s.
: o

L]
"". ot ..Ig'ﬁ_‘l‘l.ﬁ'.i oy ’ NS RV S T SO T S ER PN L -(. o 7 ‘ |_.. w .v.-r,_v.hr , 1."‘ - ." ‘..' ..r,'.‘h A Lo

AV Y. Sy V. . ¥, St dhe L4 L L L) » A% By V0 WYY

P

ARG,

talafeb il | gl b LY Ut Gl KO A G B G4) Vel ih deps L A et L N

Chapter 1

TYPED
LAMBDA-CALCULUS

The A-calculus is a fundamental prototype for functional programming languages, and
the typed A-calculus is the natural typed version. flere we shall consider as much of the
typed A-calculus as we will need for the rest of the work. A general introduction to hoth
the A-calculus and the typed A-calculus can be found in Hindley & Seldin [HS86].

Most of the systems we will consider will not. have models in the usual set-theoretic
sense of that term. Iowever, ordinary typed A-calculus does have such models, and so
we shall begin with them.

e RNt AT T O o T U I T T P A O N s I W AT AT L T FAE RS >
u.., .".)‘J'(-‘J"I‘,J‘f' .’ .’. ». Tan p 4‘0. .r(h‘. X} -\ ‘F‘ o Y, ‘l

»

~

»

~
N

R R R R R R A A A U R A N A A AT A U R A U A N I S N U LN Y T I N O Y Y O I O O T D I I ey I Y . YOG
: (A 9.6 o094 J .‘. |'..:..:
t "
4
FI
¢
4
i
3
K]

n
i
L}

: 1.1 Type symbols and type structures. Nu
G (K]
: - .)
.: Types arc used for various kinds of data structuses in different programming languages. ".':.:‘::E‘:
‘ Here, we will be concerned with certain particular compound type structures which are SRR
. fairly common. They are: 1) the funclion space type o — g3 of functions with arguments L]
- in o and values in 8, 2) the cartesian product o x 1 of two types a and 3, and 3) the
b disjoint sum a + 3 of two types o and 3.

' For some purposes, the only kind of compound type we will be interested in will be the
™ function space type. In other cases we will be interested in all three kinds of compound
! types. This leads to the two kinds of type symbols in the following definition:
¥

Decfinition 1.1 {(Typc symbol) Assume that we have (finitely or countably many)
2 atomic type symbols 0y,...,0,,.... Then basic type symbols are defined as [ollows:
> (a) Every atomic type symbol is a type symbol; and
(b) If & and B are type symbols, then so is (x —).
_ Ezxtended type symbols are defined by (a) and:
: (c) If a and 3 are type symbols, then so are (o — f), (o x #) and (a + F).
b Remark It might appear that the basic type symbols limit us to functions of one
': variable. ‘This appearance is false, for functions of several variables can by reduced to 4
S functions of one variable by a process kuown as currying (after H. B. Curry, who used it ’
extensively; actually the process was used by others before Curry). ‘o see low currying ®
! works, consider the example NN,
v e y)=r—y. AN S Pty
.' (.’) ! ;\ /
[Let A® be the one-place function whose value h*(a) at an argument a is defined to be :5' hY,
’: the funetion e
K T +
: fy) = a-y=hay). Rt
|]

¢ Then we have Rt gty
' .) M
: h*(a)(y) = h(r.y), il
) . 0y

A

¢ and we have replaced our original Lwo-place function by i new function of one variable.
Our notation will reflect the process of currying. sinee

(0 == ity ~= gy Yy,

) . /1
& ‘F"""‘J':"-.
s will e an abbreveation for
)
Y
% oy = (v == (e, ey)LL)
- » NS
Additional notahion. In extended type symbols, vimecessary pareatheses will be omitted. ®
) The infixes x and 4+ will have a siallee scope than —. TR rET
. N . \ L)
4 As asemantics for these type symbaols, we associate with eacly type svinbol o set ‘.‘-(‘1' Iy
» o
0 D, et Lo,
»
) LA
P
LA
1 e
mTa"ala
i
I
)
P,
i
»
[}
’
i
‘l
'i
)
v e ltig 'y t P R P e ¥ P P L "R | - LI IR) 1LY D R TR
) .4' '-‘f‘c‘f‘u' ‘A'. ARIIAAA Raaada l'. OO0 ;‘l’c .‘. . ‘.l - !‘v ¥ .‘- '.u » * .‘q 0..'! ., -0 ’ - -I. .t "- ". L)

P - pra- Wk S X
Y0 AT LU TR G ey

e Lea o g ~ ta ava aSa 48’ Va® ORI
¥ Val Va¥ st W 0al ent Uag dap €2l al Vel 9.0 b #.0 @ 00 2 0.0 9.4'0.2"0 "5 3"8 2 0 04 aV: Satalla gvi" fpe o)

Definition 1.2 (Type structures) Assume that for cach atomic type 0 there is a set
Dg. Then we define D, for each compound type symbol a as follows:

{(a) Da—g is the set of all functions with arguments in D, and values in Dg;

(b) Daxp is the cartesian product D, x Dg of D4 and Dg; and

(¢) Dagp is the disjoint suin Dy+ Dy of Dy and Dj.

A basic type structure is then defined to be the set

{Dqle is a basic type symbol}.
Au erlended type structure is defined to be the set
{Dala is an extended type symbol}.

It is usual in set theory to take for the cartesian product A x B the set of all ordered
pairs (a,b) where @ € A and b € B. This is not strictly nccessary here: all we really
need is an operatordy,p: A — I3 — A x B and two operators fstg p: Ax B — A and
sndap 1 Ax B — B such that fsty p(da p(a,b)) = a and snds p(da p(a,b)) = b. It
is not strictly necessary that da p(a,b) be the pair (a,b), but we will usually think of
it that way, and so we will call it a pairing opcrator. 'The operators fst4 g and sndy g
will be called projection functions. If A and B are sets D, and Dg respectively, then
instead of da, g, etc., we shall write dq g, etc.

The disjoint sum A+ B is formed from A and B by making a copy inl4 p(a) of cach
element @ € A and a copy inrg p(b) of cach b € B in such a way that cach inly p(a) is
distinct from each inr,y p(b), and then letting A + 13 be the union of all the copies. In
other words,

A+ B = {inly p(a)la € A} U {inr 4 5(b)]b € B}

Givenany element of this disjoint union, it is possible to tell which of the sets it originally
came from. It follows that there is, for any set €, a function

cascapc A+ DB = (A=Y= (B —C)—C,
suchithat il f: A = Cg: B —=C,ac A, and be BB, then

case g p.o(ind g pla), f,9) == f(a)
and
case p - (inra n(b). f.0) = g(b).
As before, we shall use the notation Case .4 cte.
Often there is an interest in a type which is cmpty. ‘This type will be called void,
and will. for now, be taken as an atomic type. Dygg will he the emply set.
ln some cases, we will want the type N of the natural numbers. ‘T'his will also be an
atone type. and Dy will simply be the set of natural numbers. The successor function
will he denoted by a.
Note thata type stracture does not inelude amy set of pairs in which there are pairs
mowhich the first elements are in the same type but the second elements are in different

10

-y M s o o ORI
s N AL S NG NI RN,

vttt
S

A
' o

et
o 0
et '..u"'t‘
|.|.’ LY
: 'Pi“'
YNESLY
) o

7
R "3':

Ay
’
'Y

-

2o
o A
SI22

WSO
.l "’l.y.i'

0 ‘:..'\‘.“nﬁj
' R

T N KR KOV R Y Gat(a® fad dat 022 g% VoV (a7 dat ¥ Bl tnt B fed §u¥ fo* $a® $ab $a° $a® ¥ 030 §¥ §a¥ fab gt 0V Bat Bob 8.0 Be¥
iy
Y
T
K]

W A ST TR

-
.

. -
-

types. Thus, there is no nontrivial way in a type structure to make the type of the
second element depend on the first clement rather than on the type of the first clement.
In particular, in a set of pairs whose first. clements are natural numbers, all of the second
elements must be of the same type. (Of course, scts with pairs whose first elements have
the same type but whose second elements have different types can be forined by taking
R arbitrary unions, but they are not part of a type structure as defined by Definition 1.2.)

5

f
l

W

A 2PNy, Y AN NG Ve TN A

A T N MM b L 0 g A T T ol L i RN T i S
» »° a - *) -) - o - - o ity s & o » 0 v » (d 7 » " v . LY.

OIGK

SPUWRL AN WU
"'n.o.c

':l.wf

\ -.‘"\ "‘0
-. OB
.N~~~ s
-»*.

ng"

.
‘J'M'P Al
1.2 The typed A-calculus. -.::?:‘, :.,
So far, we have talked about structures consisting of sets and some functions associated l"'l‘
with them. Except for these functions and the natural numbers, we have not talked "‘:‘.l."!".l
about any of the elements of the sets. Here, we introduce a formalisin of terms which
will represent these objects. The formalism we will use is the typed A-calculus.
The basic idea behind the A-calculus is the A-notation of Alonzo Church. The idea
is really simple: we are used to saying that if f represents the squaring function, so that
f(z) = 2% then f(2) = 22 = 4. We also sometimes say that this function f is given by
£ +— z2. We might well ask why we do not write
(z—zH)(2)=2° =4
The reason is that in the 1930s, Alonzo Church proposed writing
(Az.z3)(2) =22 = 4. (1.1)
This is the basis of the A-calculus.
In the A-calculus, we usc complete currying. In this notation, the term representing
the function h* of §1 is
Az Ay.h(z,y).
Since we are interested in terms representing objects in the sets of type structures, we
are really interested in the typed A- calculus. There are a number of forms of this system,
depending on which types we are using. Let us begin with the basic type symbols.
Definition 1.3 (Basic typed A-terms) Assume that we have infinitely many individ-
ual term variables, where cach variable is assigned a type symbol in such a way that
there are an infinite number of variables assigned to cach type, and suppose that z®
indicates a variable of type (symbol) «. Then basic typed A-terins are defined as follows:
(a) each typed variable is a typed terin of type o ﬁ ::'0
(b) if M*~? and N® arc typed terms of types a — 3 and « respectively, then ‘.‘|.
(Me—PN*) is a typed term of type f7; and
(¢) if 2 1s a variable of type a and M”is a term of type 8, then (Az™ . M#)*—% is a term .'..t :::‘1.'
of type o — 3.
A term of the form given by (b) is called an application term. A term of the form given M ..‘.
by (c) is called an abstraction term. "-:.5_ ,0(
. . . . '.-«‘r.n‘:‘e. ¢
Notation Parentheses will be omitted when no confusion results. For compound applhi- ";'_\.f-_w M
cation terms, parentheses will be omitted by association to the left, so that NNty
a— 3 —5—brra plryy \')’fﬂ.' ."
M NePPQ °
3 <y
1s an abbreviation for N \“\
DAY
. vATH
(((“[n -—— 3 =y = hNu)/’ —y — AI)(i)'y —_ h(ew)h ':.‘\J\.r
LIty i
L . iv
\'L‘F’u"’ﬁl 5
12
B V0
h o

.~ A PR T T T T T = P TS A T A SV AR A A, ~
RO D OHON S OO DO "I‘-l’..‘- AU O AN s .-!l'u, A cl- o 'o Oy . l'o g AR A2 ") ey) .

La =

UV WU VAT W UL TR R T ey LW N LS LS DV R

Superscripts indicating types will sometimes be omitted when the type is clear from the
context. hty
The notation c.::c.::o. '
M=N DRt

. - . . (]
will mean that “M” and “N” are names for the same term. This notation will be 0 ;1.;:;,

especially used in definitions, such as Definition 1.5 helow., %, X

[[\ R
Examples c’.'t'.:l',‘

(a) (Az™.2")™ 7 @ represents the identity function of type a.

(b) If FA=7 and G*—P are terms of types f— 5 and a — B respectively, then
Az® FP=Y(G*—Pz") represents the compasition of the functions represented by F#—?
and G*—F.

(c) AzP=7. Ay P Az%.2P=7(y*—P2z), which is a term of type (8 — v) — (o — 0)
— a — 7, represents the operation of composition of functions of types a — 8 and
B

(d) If M%is a term of type a and zPis a variable of type 8 which does not occur free
in M?(in the sense of Definition 1.4 below), then (Az?. M)~ represents a constant
function whose value for each argument is the object represented by M°.

(€) Az®.Ay?.x*, which is a term of type a« — f# — v represents the operator which forns
constant functions with arguments in 8 and value in a.

Definition 1.4 (Free and bound variables) An occurrence of a variable z% in a
term M is bound if it is in a part of M of the form Az™.N¥; otherwise it is free. If

1

z® has at least one frce occurrence in M, it. is called a free variable of M. The set of all
frec variables of M is called FV(Af). A closed tcrm is a terin without any free variables.

If one of the atomic types is void, then by Definition 1.3 there will be variables of this
type. llowever, it is the intention that there be no closed term of type void. A proof that
there is no closed term of type void is a kind of consistency result for typed A-calculus.

Definition 1.5 (Substitution) For a term M#, a variable £, and another term N°
of the same type as thic variable, the result of substituting N® for 2 in M?, denoted

[N"/J‘-"]A”’li,

15 the result of substituting N for each free occurrence of 2 in M? and changing bound
variables to avoid clashes, "T'he precise definition, by induction on the structure of M5,
is as follows, where some type superscripts are omitted:

(a) [N*/£%)z* = N7,

(b) [N?/z2)y” = y” for all variables y” distinct from =;
(e) [N [22)(PT=PQ7) = (IN* /2")P =P)N [z]Q");
(d) [N/ [(Ax™.PY) = Ax". PP,

(e) [IN/x™ Ay?. %) = Ay? [N [)1

Wy £z and Y& FV(N®) or "¢ PV(I*): and

13

D

3 L Cp WOAN "V R] o8 S4 LA SIS Vel oy Sy
“'"’v (W X S N o M af X M Mot S Mg -'. -’&r..ﬁl,u c*-" l‘. |~| L ¥ '.\ .. - $ L 20 AL

3 oy ~ -~
R t""‘. U A A A A LA

AT IPUTAAT W] WA AT WU S W WL WL WAL W T R T N TSR O U I R TR WA R PO TOUT A TN W AN M T NSO P N AR RO P IO U OO . P M W
P . i - 9% \J
AT
SNy
Q> OO

| o
b
nirnee
QOGN

iy
ATy yece
et e
.Q:‘I. (M
tuth. it

']
R
ma
(f) [N/z*](2y . P?) = A7 [N /][[y] P AN
: A . . . il
ify? 2z, y" € FV(N?), 2™ € FV(P"), and = is the first variable with the same type .:l..:t:".:,o,
as y7 in a standard enumeration of variables which is not in FV(N?) or FV(P?). ’.:«:.:!:::4:::

If the type of N differs from the type of z, then [N/z]M is not defined. [[]

Pt MO
e
We are now in a position to introduce a relation which corresponds to the process :-:*'*1"\" .

. » A Iy

of calculating values, as in (1.1) above. This relation is called reduction. The main IO ::
idea behind reduction is the instruction we always give beginners for evaluating f(z). '-.‘M\‘;:. ot
For example, if f(z) = z?, the instruction for evaluating f(2) is to replace z by 2, Lre o

thus getting 22 = 4. 'This idea gives us the essential relation between a reder and its ' o
contractum in the next definition. AT RCRINS
R
Definition 1.6 (Reduction) A (onec-step) change of bound variable consists of the :0.::0g::')::'1f,
replacement of a subterm of a term Y of the form .':‘n:'g",:ﬂ:}
Ar®. MP ot
r .V IAMNK u N

' ®
hy " ’;.l.‘s'.
(R
/\!l" ,[y"/}t"][‘"”, :‘:‘.‘.2::’;;:

. . . i 4
where y°& FV(MP?). A rcdez is a term of the form (Az*.MP)N®; its contractum is . "\,:.*':3'5
[N /x*)MP. A contraction is the rcplacement of a redex by its contractum in a term 'a:::nl. l:::l:-
(where the redex before the contraction and the contractum after the contraction are OO0 RN
subterms of the term being contracted). A reduction is a (possibly empty) sequence of '..:r__?,_-‘
contractions and changes of bound variable. :.-:':b?’ d
TSI
If M reduces to N, we write ‘\r:’:. ;
M> N. i
AT
Definition 1.7 (Conversion) An crpansion is the reverse of a contraction; i.e., M ? ..‘ ‘
expands to N if and only if N contracts to M. A term M is said to convert to N if A
N can be obtained from M by a (possibly emipty) sequence of contractions, expansions, Yy :‘,:| |::
and changes of bound variable. 'y

4
oL

If M converts to N, we write
A =, N.

Let us now turn our attention to the other type-forming operators, x and +. For
terms of type a x 3, we need a pairing operator Dy, g of type o — 8 —a x 8. We will
also want terms representing the projection functions: we want fsto g and snd, 5 of types
a x }— a and a x 3 — I respectively such that

Sre

fst,,,[,(D,,.,,M"Nﬁ) > M and snd,,',g(D‘.,gM"N”) > NA,

To deal with terms of type a4 1, we need terms inla g, inrg g, and case, g4 of types
m—w+ 3 A—a+Fand o 43— (v —) —(} — 1) =7 respectively such thal ' o)

case, s (inl, MO [TV s [TV

11

. ‘ R T L NIy PNy e R S g L A PP N T~ P e P TR X o
SN A T W R TR S, aw, A T s 2 v F > . -

" w 8 N T B SRS SR I 0

L. S, [P

- -

)

)lx.l;“i‘l'l.t.l.q l'l-'l.n'l’.o' Y

and

caseq g (inta s NP) fO—TgP=T b gP—TINB.

We will also want to have natural numbers represented. This can be accomplished
by taking one of the atomic type symbols to be N and postulating atomic terms ONof
type N, o¥—Nof type N — N, and, to represent primitive recursive functions, Roof type
a—(N—a—a) — N —asuch that

RaMaNN—oa—oaoN > Me

and
Ro Mo NN—a—a(gN—=NgN) o NN—a—ayNR Mo NN—a—ayN)

where nV is the term representing the natural number n, that is, is the term

AN=N(GN=N(. (aNNoN)..)), (1.2)

where there are n occurrences of NN,

We are now ready to define extended typed A-terms.

Definition 1.8 (Extended typed A-terms) Assume that one of the atomic types is
N. Assume that we have individual term variables as in Definition 1.3 and that, in
addition, we have the following atomic constants for any types a, 8, and y: Dgg of
typea — B — o x B, fstq g of type a x f — a, sndq g of type a x 8~ B, inly g of type
a—a+ P inrg g oftype 8 — a + B, caseq g of typea+ = (a =)= (B—1)— 1
OVof type N, o™~Nof type N— N, and R, of type a = (N—a—a)—N-—a. An
alomic term is a variable or an atomic constant. Ertended typed terms are defined as in
Definition 3 except that any atomic terms may occur in (a).

Definitions 1.4 and 1.5 hold for extended typed terms as well as for basic typed
terms. For reduction, we necd some new kinds of redexes. The redexes of Definition 1.6
are called §-redezes to distinguish them from the other redexes needed here. (On the
significance of this name, sec Ilindley & Seldin [H1S86] Chapter 7)

Definition 1.9 (Reduction) Reduction is defined as in Definition 1.6 except that in
addition to fB-redexes we now have the following additional redexes (given with their
contracta):

Redex Contractum
(fst) fsto 3(Da g M aNF) M
(snd) sndq 5(Da g M N¥) NP

(casey) | caseq s q(inla g M) fo=VgP=7 | fo—7VAL®
écas)eg) casea,p,,gnru'pNf‘)f""’g”“’ g’ —IN#
R; Ry MaNN=a=(M
(RZ) R"A’a NN—«u—-u(aN—'N"N) NN-—-u-—rw"N(R" MO NN-—-a—‘a"N)

-~ [Pl %f C = -.-v'wrd\vlf."'-
!n .;’0‘.- _"Ln.l.l_.'l_-.in'!‘.l,. .‘!. ‘o'ln 4¢'A- LhN .- B \' ~) 1' \'-’

o
\ ‘J"

.5 -r.g

R RITRA BT ..

w

‘n‘.

'!
:!» .n'..' :‘.

u‘.‘l!-'u
@
OO R
“:'.%‘::':l

l.!

: \:%, \'l."

"-.

"‘l ..":‘.‘l'

o
\I (K 0

l ‘.+\;~

ORI NV U UATAVRE R KN ™R "X 'y .“’.“" O
! "‘:’o‘ 'a

‘a
l-'

(K

where nNis the term given in (1.2) above. , e
Definition 1.7 now holds as before. 1“{"

4‘:,
. .s ;:‘
“5 ‘:'..
R .'.'u-

‘r-;‘)_ -y
:"‘w Ql
G

\" I'|'l||

."t
o:h l."::"l]

§:§'1

5::.
h'w il

............... T o
e R e o e o e e L W ""’"

RS R TN WA S

1.3 The basic theory of typed A-calculus
Let us begin with the theory of basic typed A-terms of Definition 1.3.

Lemma 1.1 (Replacement) If an occurrence of a typed term P in a typed term M¥
ts replaced by another term wilh type «v, then the result is e typed term of type S.

Proof By induction on the structure of M. ®
Theorem 1.1 (Invariance of reduction) If M*> N, then N has lype a.

Proof By Lemma 1.1, it is sufficient to prove that types are preserved by changes of
bound variable and that a contractum has the sine type as its redex. This will follow
in both cases from the fact that [N®/x*]Af# is a term of type 3, and this latter fact can
be seen by applying Lemma 1.1 to the cases of Definition1.5. ®

We noted in Section 1.2 above that reduction corresponds to the process of evaluating
the result of applying a function to an argument. Since there are many well-known
calculations that never come to an end, we might expect to find typed A-terms that can
begin reductions continuing forever. In a trivial sense, most typed A-terms begin such
a reduction, since bound variables can be changed whenever they occur. But changing
bound variables does not really correspond to a calculation step; what we really want
to know is whether there is a typed terins with the property that every term to which
it reduces contains an occurrencc of a redex. It turns out that the answer is no.

Definition 1.10 (Normal form) A term is said to be in normal form if there is no
occurrence of a redex in it. If M2p> N7, where N is in normal form, then N is said
to be a normal forn of M®.

Theorem 1.2 (Normal form theorem) Fvery basic typed term has a normal form;
t.c., every bastc typed term can be reduced to a term in normal form.

Proof Define thie degree of a type-symbol to be the number of occurrences of the symbol
— in it, and define the degree of a redex (Az*. M7)N® to be the degree of the type a — 3
of the abstraction part of the redex. 'The proof is by an induction on the pair {d.n),
where d is the maximum degree of any redex in the given term and n is the number of
occurrences in the term of redexes with degree d. 'The pairs are ordered by specifying
that {d,n) < (d,n') if and only if cither d < d' or else d = @ and n < 2’ Since changing
hound variables does not change the pair associated with a given term. it is suflicient to
concentrate on the contraction of redexes. At each stage a redex (Ax* . M7)N@ is chosen
which has degree d and 1s such there is no oceurrence in N of a redex of degree d. The
ouly redexes of degree d in the contractum (N /2*]M# are substitution instances of
those occurring in M hence, if the pair associated with the original term is {d,n), then
the pair associtted with the terin obtained by earrying out the contraction is {(d.n—1) if
n>1andis (d',m) for ' < dif n=1. (Note that n can never be 0.) Henee, each such
contraction leads to a new term with a pair lower in the ordering than the original term,

17

. N s - ~ :
et s 0T e T T 0 T M, A W M L L L L P M B

.

~

L0,

v

TSI T RS, immmmmmmmmmwm

®
C'.i'|
KR
I"::l'.#:l';
:'. Od
",l:i'll!‘-!;
. Y 0.’ :
0 :!;;.‘.t":
' \
::323,-2*,:::

O]
‘..l':';‘:f‘s?:f

S

[
o
::-. ‘:‘:s"?
R
A
)

adetnr
®

LN
)
|"'o‘:'|".'»‘

XM N0

i

4, '.J'"..o’?‘ 2 h‘!’l"‘l"'.

and since the pairs under this ordering are well founded, it follows that the reduction
process must terminate in a term in normal form. B

Corollary 1.2.1 There ts no closed basic typed A-term in normal form with an atomic
type.

Proof Let P? be a closed term in normal form of type 8, where # is an atomic type.
Then P? is not a variable, and since @ is atomic, it is not an abstraction term. It follows
that P? is an application term. Suppose it has the form Py P,. .. P, where Py is not an
application term and type superscripts are omitted for convenience. (Every application
term can be written in this form.) If %) were an abstraction term, then P? would not
be in normal form. It follows that P is a variable, and hence P? is not a closed term,
contrary to hypothesis. &

This corollary shows that the normalization theorem gives us a kind of consistency
result. For if void is one of the atomic types, then it shows that there is no closed term
in normal form of type void. Since, as can be easily proved, reduction never introduces
any new free variables into a term, it follows that there is no closed term in any atomic
Lype. and hence there is none in void.

There is no problem about extending Lemnma 1.1 and Theorem 1.1 to extended typed
terms. Furthermore, Theorem 1.2 can be extended to extended typed terms involving
(fst), (snd), (case;), (casez), and (R;) redexes. But as soon as (R.) redexes are allowed,
there is a problem, for it is possible to have a subterm of the form R, M@ NN—~a—apN
which is not a redex but which becomes a redex after contractions are carried out in
PM on redexes of lower degree. However, there is an alternative method of proof, which
is more complicated, which proves Theorem 1.1 for extended typed terms with (R;)
redexes. In fact, this stronger method of proof actually proves a stronger result for both
the basic and extended systems.

Theorem 1.3 (Strong normalization theorem) Fvery sequence of coniractions
starting with a typed A-term terminales in a term in normal form.

For the proof, see Hindley & Seldin [HS86] Appendix 2.

Corollary 1.2.1 is clearly not true in the extended system with terins for the natural
numbers, since OV is a closed term in norinal form with atomic type N. However, it is
possible to prove that there is no closed term in void. The proof begins like the proof of
Corollary 1.2.1. but becomes more complicated at the point of analyzing P, for now P
might. be an atomic constant, and we need a case for each one. For example, we have
to consider the possibility that it is fst, 5. Furthermore, P lias type « x 8. Since P,
15 in normal form and is closed, it must be of the form D, sM* NP contradicting the
assumption that P? is in normal form. Similar arguments work for the other atomic
constants. This proves:

Corollary 1.3.1 If one of the alomic types 15 void, then there is no closed term of type
void.

g , A - T TN S T A O AN A O A P Al ek
B T Pty et ottt v “' "A‘ " v, m.o.. "‘ PRI,

h 2

-._\- A

S

I
e
i;
30 555

N
Rt
i
W e 4(\ N’:’
) °

." V.'

R AR IR AR RN VY UN D N LW USUATLANRSTCT L 9 . . B " 2’k >4, Ty 0
'

We can also obtain a result concerning type N.

Corollary 1.3.2 FEvery closed term of type N reduces to a numcral; t.c., to a lcrm of
the form
UN”N(UN_’N(...(UN"NON)...)).

Proof Given a closed term of type N, let PN be its normal form. The proof is by

induction on the structure of the term ’M. Follow the proof of Corollary 1.3.1 through

the analysis of Py; there are now additional cases in which it may be ON, oN—N or R,.

If it is OV, we are done. Otherwise, the sccond or third argument must be a numeral by

the induction hypothesis, and so we either have another numeral or an (R) redex. & S
. . . . ' .:':::"f‘

We would now like to prove that the type structures introduced in section 1 form a ::\s:l.i?‘

model of the extended typed A- termms. o ‘:&::

D)

Definition 1.11 (Valuation) A valualion for a given type structure is a function which y }\. , ':

assigns to each variable z%0of type «a an element p(z™) of D,. If p is a valuation, then '

(d/z°]p, where d € D,, is the valuation T with the property that r(z®) = d and, for

each variable y?distinct from 2%, 7(y”) = p(3").

Definition 1.12 (Assignment) For cach valuation p and for cach extended typed A-
terin M, an object |M|,, called the assigmuent of M determined by the valuation p,
or, when no confusion results, the assignment of Af, is defined as follows, where the
notation |M| is used when no confusion results:

(a) |Dq gl is the function which, given dy € D, and dy € g as argnents, returns the
value dy g(dy,dz);

(b) Ifste gl = fsty g : Daxp — Da;

(c) Isndy g| = sndo g : Doxpg— Dp;

(d) linlg g| = inlg g : Do ~ Dayp;

(e) finrg pl = inrg g : Da— Dyyp;

(f) |caseq py| = caseq gy : Dagp — Duey — Dpoey — Dy,

(g) I = 0;

(h) joN—N| = »;

(1) |Re| is the function which, given an element o € D, and a function h
Dy — Do — Dy, returns as a value the function f 2 Dy — D, with the property that
J(O) =dand f(n+ 1) = h(n, f(1));

GY [Me=PNe| = |MO=2|(INY]) if this makes sense (e, if JAP~#] is a function and A
[N“] is an object in its domain); Q'SI:-& &
(k) |/\J‘".)\”"|p is the function [1), -+ Dywhich, for each clement ¢ € 1), returns kel
|AP),, where 7 is [d/2")p. R

Theorem 1.4 For cach extended typed A-term M of type oo, and for cach valuation p. . ,‘3&
M| € D.,. Furthermore, ff M =, N then |M”] = |N"|. HOtAN

i'
Y
'\

19

J . : . . R - RPN P ~ L) =3 %] 4 ()
DO D IO R R O D e e DA e e D R e e o Bl e e D e T o e b

Ca e e bt a0 A ANt s eV ety YRR RO RN TR RIRURCH 2% 2t at2 s 8704 a0 ot a0 a0 a1 a2 2t 00 SR PR A O AR O
RN

Proof The first part is proved by induction on the structure of M®. The sccond part
is proved by showing that assighment is invariant of changes of bound variable and that

the assignment of any redex is equal to that of its contractuny; this follows from Defini-
tion 1.12. @

T, o ou G e
- s oo WSS - e - - -

P R

-

e R

o

20

- e e

-

¥

*aate 4y g% 0 ite bt v 0ty
S

ey

iante

Pouttes

s
S0ty i‘ WY
R

ORI~ b
AN
ARIRY
S
.".‘l’ P'\
R
R
o
R

@

. . R AT AL L . ieya o et
‘.a‘l‘-'.‘-'|‘¢.I‘-.l.o'\ e 0, ‘a"‘,o\o .I“.Ih..“.l~..“’!‘.,". c“.‘ ...‘.. l,o'... ,o‘l.. .-I".t {) ,l. ‘0‘\,, A lA N ‘ N ."'-l&-."n"". Ry vAY A A Yo

vt e

it bet Y,

1.4 The Church-Rosser theorem and pure A-calculus.

As we have seen, every reduction sequence starting with a typed A-term terminates in
a normal form. But we might well wonder if different reduction scquences terminate
in different normal forms. In a trivial sense they do, since a change of bound variable
applied to a normal form leads to a distinct normal form. But normal forms which differ
only in their bound variables are really essentially the same. What we would like to
know is whether or not there are any typed terins which have two or thore truly distinet
normal forms. The answer turns out to be no: all normal forns of a given typed A-terin
differ by only changes of bound variables. This result is a consequence of a theorem due
originally to Church & Rosser [CR36).

Theorem 1.5 (Church-Rosser Theorem) If M, N, and P arc typed terms such that
P> M and P> N, then there is a term Q such that M > Q and N & Q.

All known proofs of this theorein are too long and complicated to be given here. The
most rcadable proof is probably that of Rosser [Ros84] pp. 342-343. What is perhaps
most interesting about this proof (and almost all other published proofs) is that it
makes no reference to the type structure; it remains valid if all of the type superscripts
arc deleted. In fact, the thecorem is not really as inuch a theorem about the typed -
calculus as it is a theorem about the A-calculus. This makes it worth taking a brief look
at the pure A-calculus.

Definition 1.13 (Pure A-terms) Assume that we have infinitely many variables and
perhaps some constants. Then the (pure) A-terms are defined as follows:

(a) Variables and constants are A-terims;
(b) If M and N are A-terms, then (M N) is a A-term; and
(¢} If £ is a variable and M is a A-terin, then (Az.M) is a A-term.

I'ree and bound variables, substitution, reduction, and conversion are defined much as
for typed A-terms; the main difference is that typechecking is not needed in substitution
or in forming application terms. Clearly, any typed A-term can be transformed into
a pure A-termr by deleting the type superseripts. On the other hand, there are pure
A-terms to which no typed A- tenins correspond. For example, the term

Ar.rr

does not correspond to any typed termn, since there s no typed variable # with a type
a that penmits the formation of »" s, Furthermore, the tenm

(Ar.zr)(Ar.rr)
contracts Lo iself, and so elearly has no normal form. The term

(Ar.arr)Ar.arr)

21

R A

N A T A I R T T I L O O R R R R ex $a% 082" 00 2t o) %828 " 02" Y 0a'aUav i onet dpt BetalnTaket bt By o
: : o'ﬁ'nﬂ

)
.,.~ o
_
(R '-.c,‘;'(:
o, ";.,:;
. ‘:.:

" AL

®
R S
F’h Y
N

o 'c..ﬁ
..l';‘o g'"..

5.::..~-"

‘: "'D"'o
n"
Wl

g‘| N‘ 4

; ;’. l.. ’.‘

w"' "
"""’7‘.“5‘.:‘.

N
il

S
\:"l" ‘.‘0 y
N K./
AN
{.h-". ..: y

-'.f-
\qwt
RN,
'\\

Y : »"sﬂ_

AN

PRy

countracts to
(Az.xzr)(Ar.zrz)(Ar.zrr),

and so clearly has no normal form. ‘These last two Leris represent computations that
do not terminate; the first one represents an infinite loop, and the second represents an
expanding infinite loop. Nonterminating computations cannot be represented by typed
terms.

The pure A-calculus differs from the typed A-calculus in another respect. The typed
A-termis have type structures as models. But the pure A-calculus does not have such
simple models in terms of set theory. The reason for this is that in the pure A-calculus,
any term can be applied to itself: if Af 1s a term, then so is (M M). But the standard
axioms of set theory prevent a set-theorctic function (in the usual sense of a set of
ordered pairs) from being applied to itsell. The typechecking required for the formation
of typed application termns is a sufficient restriction to ensure that the terms can be
modeclled as functions in the ordinary set-theoretic sense.

re
(%4

% el 8,0 08 3,0 008 et vt vl -

P
".' .':l"..‘
'l..:..'i.q:'
.\-"I!..O..

e,
i

3
4
¥ " .' .‘.l‘

),
\ :‘ Mol
g Cnt X P e I P A T TR B - g gm e ..‘
RORCOCOGOCOCONINOGOGO0 A A A OO ORI RSN REN IS AN I N T O o L T l'c.O':‘:’o.l'o

1
" -
| J

Chapter 2

EXTENSIONS OF TYPED
LAMBDA-CALCULUS

Although the typed A-calculus, which we saw in Chapter 1, 1s in an important sense the
basis of the theory of constructions, the theory of constructions is not exactly a form of
typed A-calculus; it is actually a form of deductive system for assigning types to A-terins.
There are a number of such deductive systems, and we will look at a several of them
in this chapter. The ones at which we will look will approximate a sequence of systems
leading from the weakest, basic type assignment, to the strongest, which is the theory
of constructions itself.

We begin with a basic systein of Ltype assignment, TA, which is equivalent to the
ordinary typed A-calculus. ‘I'his system is much weaker than the theory of constructions,
but its theory illustrates very well what we will want later for the theory of constructions
itself. This system and its theory are considered in the first two sections. We then
proceed, in the next two sections, to consider the second order polymorhipic typed A-
calculus, which is one of the best known generalizations of ordinary type assigmment
and is of considerable interest to computer scientists in connection with polymorphism
in programining languages. We will see some of the strength of this system.

The theory of constructions is a form of what is usually called generalized type as-
signmenl, which we will consider in the last four sections of the chaper. We hegin first
with a general description of the sort of generalization that is involved (Section 2.5), and
we then see (Section 2.6) why systems of this sort require conversion on the types. We
look at the basic system of gencratized type assignent in Section 2.7, and we see that it
is. in a scnse, a conservative extension of ordinary type assignment. inally, in Section
2.8, we look at some strouger systeins that point the way to the theory of constructions;
the most important of these is the universal fragment of the type theory of Martin-1Lof.
but, as we shall see, this system is not even strong enough Lo interpret the second order
polymorphic typed A-calculus, and we look at how the former sysems would have to he
strengthened to interpret the latter. We end with some limitations on the system which

- - -

K
b

LB %! LR LT LALY] WP RN gy AFATATS AT 1 P TS 1 T P S I it \'.\'\'.".\‘.-_' < l;'.."'
|.l‘|‘l.l \.‘v‘to W, :“‘ol‘vo ‘-‘.‘.. sl l‘c -".} " .-‘.{-.." ﬁ. ." L

results from this strengthening and which are overcome in the theory of constructions Ry “:"
itself. 'l‘y:::‘.\::.q
It is worth mentioning that it is desirable to interpret the second order polymorphic '::.:: :1,::
typed A-calculus in systemns of generalized type assignment because of the strength of :'.5\9.':!“:{.1
the former, which we will see in Section 2.4, and the fact that we have a method for []
proving the consistency of the latter. In gencral, when we have a system which can :" "';q:;\'.f
be proved consistent and in which we can interpret other systems, the latter systems 8y .!"g '.':“
1 in O . k l..'!.o'('g)
are shown to be consistent. As we shall see in Chapter 5, the consistency proof for the .,lq‘.:%.:a‘.io
theory of constructions leads to consistency results for the interpretations of a number l'.‘ :(:l"qil‘(f.
of useful theories from mathematics and logic. 'o, fa'.!oﬁ!:
) [J
."1 v, ..“
"l‘:‘.l""'n o
.g'ligz."l.:
:’c' AL
U '.“i .Q’ ..
i
Y
A
...
(AL
SOV
'}.“,‘
b
e

5 l‘l' &

.‘ »
E(“; “':g':
R
AR
) o
RRRSRARn

2

o
<

-
,‘-

X
} 4
<

S}
J‘&I
<

o

s
pes s,

L d
R TRR
'.:';-:'«t'n
Y ||'q
COT

DAORO
|'..'“."‘"
by '.":";“
’C l'..a‘h:.h:'
. -
¥ v
1 . TR
! 2.1 Type assignment '.';'.:::::!:
" it
K In the typed A-calculus as defincd above, terms without Lypes cannot be formed. But in “::0.::3:::
R most programming languages with type discipline, types play a different, role: instead of BALMLN
. preventing terms from being formed, they pick out of a set of terms that already exist TSI
A those terms that arc acceplable to a progranuning context (such as a compiler). The) .u:ﬁ::q’:
: terms exist independently of the types, and the relationship between the types and the ' ':::.:::::;
' terms is established by a process of assigning types to terms.) :C:..t"
3. It turns out to be easy to apply this approach to the A-calculus. We need only assume ('!:Q:I:e
N that we are dealing with the pure A-terins of Definition 1.13 and give a systemmmatic 3 ' =
procedure for assigning types to them. ey
t This procedure will take the form of a deductive theory or system. The formulas of ..'..‘i'..)
+ the system will all have the form ::“::'.,:a:,:
- M: a, A "'Q
; | - » T
X where M is a term and a is a type. The azioms will be formulas assigning types to L

- the atomic constants if there are any. (For the moment, let us make things simpler ®
,- by assuming that there are no atomic constants.) We also need to assign types to the N
) . oy . g .' |. *
I variables. In the definition of basic typed terms (Definition 1.3), we postulated that each :':i:'.c::.l"
, variable came with a type. Herc, we do not postulate this. Instead, we will postulate t:::t::'o.::e'
) that in any particular assignment, types arc assigned to the variables by assumption. In ::. ':.l XN
' general, I' will be a set of such assumptions; i.c., I' will be a set of formulas of the form |." "'&'

@
f Ty O, Ty:.Qay ..., Ty My, 10;56;’.1".;,
*' 'u"\': 4

o where x;, 2 ,..., z, are distincl variables and ay, a4, ..., a, are types. Thus, in R‘:ﬁ‘k::
',‘ general, an assignment of a type to a term is a deduction whose assuinptions assign Y l.,::‘::::
i types to the [ree variables in the term. The statement that M : o can be deduced from ‘..'.5(
N a set of assumptions I' will be written ' i
| PE M A i
h R
L If we look at the definition of pure A-terms, we will see that we have taken care :"':::"::
of assigiing types to the alomic terms (constants and variables). To assign tvpes to JJ‘ e ‘::l
M compound terms, we need rules. These rules will have to correspond to the clauses gt s
assigning types to applicifion terms and abstraction terms in the definition of hasic o~
K typed A-terms, Definition 1.3, They are as follows: ::&J\
’ (—e) P M:a—gand ' F N:o, then I’ = (MN): 3. I'\.?ﬁ\,.
' (—1) W I x:at Al:B, where z does not occur free i T, then :i:: I '
" Pk ArM o — g e

'

h . . . w M N

¢ Note in the case of (-= 1), the conclusion of the rule does not depend on the assump- Ahiby
tion r 1 «r, whereas the premise does. We say that the assumption is discharged by the

A, rule. ‘T'his notion of discharging an assumption is quite common in natural deduction :-(\. o \
formulations of systems of logic, which were introduced originally by Jaskowski {Jns34] '\:"ﬁ:‘.‘-} y
. e : : Seawits [P e ot
and Gentzen [Gen34] and were extensively studied by Prawitz [Prags] . In these systems. RN
S -":r‘“:"i
P Tl
25H o
]
3 AL

- - - - ~a- L&
. P A a A e e e mre m e A At e e m A A AL A "o by S PR, O
B e ot i s T e O T S R PTE p p, A N N A R o A A A N N P AC M T T A

t, w R R R R AT R AP Sl 120 it R R A I U R B M T W R M A MW YN R (N IR W \gegbpvyrgegt

-

e

o

Sutn A e e

the above rules would usually be written as follows:

[z«
(—e) M:a—p N:a (— 1) M:g
MN B Az M a— 3,

where in (— 1), £ does not occur free in any undischarged assumption, and where the
square brackets indicate the discharging of the assumption z : o by the rule.

Writing the rules this way is associated with writing deductions as trecs, as the
following examples indicate:

Example 2.1 Ar.z : o — a for each typz a.

Proof
1
[z: a]

(—1-1)
Az.z: a—a

|

Here the brackets indicate the discharged assumiption, and the number “1” is used to
indicate the location of the discharge. The importance of keeping track of the places at
which assumptions are discharged is shown in the following example:

Example 2.2 For any types «, 3, and v, we have

Ardydzez(yz)i(wn—=pF-oy)=(a—fB)—a—7.

Proof
3 1 2 1
[r:a—p3—4] [z:0a] ly:a — 8] [z :q]
(—¢) (—)
rz:p—v y=:8
(—¢)
zx(yz): vy)
—1- 1)
Azxz(yz) o — v
(—1 2)
Ay Azaz(yz) (= F)—a —x)
(—1-3)
Ardydzrz(y2) (v = B—y) = (v = 08) — o — 7.
]

It s nuportant to note that i assimmption whicl is discharged need not actually be
used Consider the following example:

AT

. b 8.4

W A e TR ey . - P A WA WAy W Wy W W g T Py Y P P W
1 ‘\q W "‘-.\ \ \.\lt,l\,l W \\"\“I," f',ﬁ . ,.'. .A.. ‘ A \..- fon .. ,.\ d N

A A

TR
Whnhn
N

\J '.' n‘ g
) ’2‘?::":
¢

o
u'..:‘o?:::

1
i ‘-';\)" b

m@%

Ly !

- f'\r

oA \

'--. 'lg&'
]

AR
() '."':" '.{
A

“,6" 0
1,4

R R T O O R O R O R TR VaR b Spd oal toh ad va) urp bed SATA D T S R O O o O O S T O O A l""o‘

H Example 2.3 For any types a and 3, Az Ay.z :a = —a . -

Proof
(]
1 a_]

[z:] .
? TR B
I yz:f—a . .
; (—i-1) \Jj:_%;k“
‘ Az dyz:a— f—« ._,,_{M

A

. Here, the assumption discharged at the first step is y : 8, which does not actually appear RN
; in the deduction. The “- v’ indicates this fact. i .lc'::t?:‘:n’v
B This method of writing deductions and proofs is common in logic and is appropriate "'t.“:t.:;t.:z
for theoretical purposes, as we shall sece. But many non-logicians may be uncomfortable {4::“:‘..!:‘..:
with writing deductions as trees. An alternative is to write the deductions as tables. Wbt 8
The three examples given above can be written as follows: ‘1.::._"“‘.
1 o) \‘l 1
. ARSORARY
X Formula Rule Assumptions gl':.:::.f
O W X
: » 0:’0':‘4:"6';
Example 2.1/) :,;.:::.'.'_
1. z:a Hyp 1 AU
2. Arz:a-—a 1{—1) _— "
‘ﬂﬁ?:'.-:;‘
Example 2.2 e::':?:::':':"
CDGA0
: 1 B 1 1 ."::‘4‘: "‘;ﬁ
. ria—p—y yp 't.q,
! 2. y:a—f3 Hyp 2 h :.":.:.g".‘ﬂ'?
3 z:a Hyp } .o 9
) e e Lo R
; 5 wy::f 2,3(—e) 2,38 : '::"":::‘::
. 6. zz(yz):9 4,5(—c) 1,2,3 N \:,‘0:.‘
7. Azzz(y2) a—y 6(—1) 1,2 N
8. Aydzzz(uz)y (o - B)—ao—y 7(—1) 1 NI
9. Ar Ay Azorzys): R(— i) .'.’
(v—= B =) (=) =1 N
4
t:":‘.':':‘:‘
Example 2.3/ O:..:'.::..':.
! Y .‘::411 "
. »:a Hyp 1 OO
2. Ay f--a 1(—1)] o
y . y . . R T
: 3. Ardyzria—-pg—a 2(—1) i%\ \ .(
Note that here the discharge of an assumption is indicated by the removal of its number ',;%:ﬁ 'y
D :\, L
Y . SNV
27 S
SN
A
* LY
ALY
:f\(i‘-{ ¢
: e
. b
. O .;M.
[]
Ao
\ :‘_\C\,‘ ‘\:1
St
¥ TS I - I & R L u® A T I N T T L L LY AT m™ IR g ‘\ \]
SV, SN YA W N, A * AN Saliv Iy ™ .r ’.' ao.i‘c. W0 ALVALALERGREN “ M, "-‘l‘- 0.\, X :!‘n'

0%

! u’s)CF,

- "
RO

from the last colummn, and that if (— i) is used without a change in the last column,
then the discharge is vacuous.

Ouc feature of this kind of system is that these proofs can all be obtained by working
backwards. Let us see this for each of the three examples:

Example 2.1” We want to prove
F Arz:a—a.
The only rule of which this can be the conclusion is (— 1), and the premise must be
zZ:a b z:a.
But this is a trivial deduction consisting of an assumption. ®
Example 2.2 We want to prove
F Az dydrzz(yz) (o= f—-1)—(a—=f)—a—17.
This must be the conclusion of (— 1), and the premise must be
rra—fF—y bk dydzzz(yz) (a =) —a—1.
This must also be the conclusion of (— 1) with the premise
zia—=fl—ovy yra—3F dydrez(yz):a—1.
This must also be the conclusion of (— 1), and the premise must be
ria—=p—vy, yra—~f rak zx(yx):y.
Now this must be the conclusion of (— ¢), and the premises must be
rra—p—y, y:a—f s:ab xz:86—-9 2.1)
and
ria—=fgoy, y:a—pB z:abk y:8b (2.2)
for some type 8. Now cach of these nmst also be the conclusion of an inference by (—).
The premises for (2.1) must be
ria—fF—~y, yao--fg ok zic—8oy
and
roa—fg—~y yro—g z:a kb z:e¢

for some type o, and it s elear that these deductions are trivial if 6 is @ and ¢ is a. Then
(2.2) minst he

roa--d ey o sia b oy B

28

"t A N AT T AT R A L L B e ot S e N R A T L N
A I .a. ..‘Q a0 L o £ N ANPnd _..V‘\

: '&"-w
LV i o
L gk ®
:du.; :
) 4
) @
[]
) ®
al
i
ﬂ Y
)
) Q.
s
. ‘
! L4
i ®
.’~ .
a'

L y
.
S
~
-\
+
hok
o
®
< . 2]
» .,.l

) L .‘:
i .o'lo o ‘... W =$§ Y

)
!l".l"‘. L Y)

e AT,

and its premises must be
ra—=pB-vy:o—f3 a0t y: (=

and
r:a—= oy, y:a—p, z:abt z2:(.

These {wo deductions also become trivial if is . B
Example 2.3"” We necd to prove
F Ardyz:a—[F3—a.
‘This must be the conclusion of an inference by (— 1), and the premise must be
r:a b Ayxr:p—a.
This must also be the conclusion of an inference by (— i), and the premise must be
zia,y: B8 F r:a,

which is a trivial deduction. @

This style of finding deductions is called the refincment style, and is close to the
usual method of implementing on a computer procedures for constructing proofs in this
kind of system.

Let us give this systemn a name. Note that for technical reasons, we need one addi-
tional rule which has not been needed in the above examples.

Definition 2.1 (The type-assignment systom TA) The system 'T'A is a natural de-
duction system. Is formulas, called type- assignient formulas, are the expressions of
the form

M :a,

where Af is a pure term and v is a (hasic) type symbol. There are no axioms. The rules

- ‘
s L AT T ORI s A P S S TR N M

§¢ "":;‘

o

".'

AR AN

o]
{]
Wt

o

et
.’. W
‘:::..’.'...:'.
N,

0 l‘

cs uh *gh vud ted 1gh Veh Va8 eab 4§ VoD Vab tal ab 0ah €A A D ELN k" 2l e aD U E ah D UaD Bad 0 R U 00,04 80" 029", 276,0°0.0°0,0° 020 % 048 5 0.4 0. 8'4 8¢ a";‘:;:.'»..;;
M5 - '.!
Al AXA

[]
RTCSOTRN
b
l“':“.t"!:’“
I"'ﬁ"c!"’ i.
q' 1"'!"’:"
" l‘g ‘i‘ ()

O
'i‘s‘l!n'tit 3

.;
S

' 4
are as follows: o :“.‘::u::::
U Log,!
(—e) M:a—p N:a 'o' 1:'.:::.:

{
MN - g A

]
Sy
(— 1) (z:a] Condition: z:a s , ;
Mg the on'ly u.ndlsch.arged as- 2 «
sumption in which z oc- :" Tl

oy s curs free. At
Ao Mia—p SRR
(Za) M:B Condition: N is obtained e‘.,
—_— from M by change of Ry
N : ﬂ . “.. ll’ I" i‘
’ bound variablesand M : 8 '.:l.g"'.!::‘
is not the conclusion of a Parathty
rule n,':::":uz‘:l.‘_
' bl
Note that rule (=,) cannot occur in a deduction if all assumnptions are of the form :‘T‘:;:;.;:
z . a, where r is a variable. The rule is included to allow assumptions of other forms .‘ltg:l"g:i:gzk
and because we will need it in systems we will take up later. .'.:::. v :l':
. . . GO0
There are several things to note about this system. The first is that deductions ;"n" 3‘.:59;:0
invariably follow the construction of the term to which a type is assigned by the con- b . 3
clusion. This fact, which is easy to sce, is difficult to write oul as a formal theorem. . o
It is known as the subject-construction theorem; see Curry, Hindley & Seldin [CHS72] ‘ ‘.0...',:::
Theorem 14D1, p. 310. (The name comes {rom the fact that the term M in a formula I !ap:\!'
M : a is called the subject of the formula.) Nevertheless, it should be obvious from the :%:c i‘s‘.:;:
above examples. One result of this theorem is that it is fairly easy to determine the type & '.l$ ':‘d,

of any bound variable. Another is that it is decidable whether or not a given term has = .
a type. See the discussion in Hindley & Seldin [HS86] Chapter 15. VA
By using the subject-construction theorem, we can obtain results for deductions in -

TA corresponding to the results of Section 1.3 above for basic terms. First, we need to

}

- . \ [
define a basis as a set of assuiptions of the form o) .:l::
) X5
) W
My oy, 0 M, oy, R ()
A variables-only basis is a basis in which cach M; is a variable. Then, we have the -
N LY
following analogue of Lennna 1.1: A

Lemma 2.1 (Replacement) Let Iy be any basts, and let D be a deduction giving

I'y Fpa Mo

K'
£

ot
-, >

Lt P obe a term occurrence i M, and let Ary , ..., Az, be those X's whose scope conlains ®

P Let D contawn a formula P : v w the samc posilion that P has in the construction TANE W
\“‘\ AN

trec of M, and lct S)

* L3
) On R R PR I W SR N A :.\N'?\
139478, SR N VNPT 4, 0°6,0%, 09,0

- -

-

S48,

82 8% 0% 5% 00 8% 070 8% 070 8'0 8% 0 0 0788 5 4 0.0 0t 00 0. 0 g R84 RS 949,03 0 e . KT

be the assumptions above P : v that are discharged by applications of (— i) below 1.
Assume that P - vy is nol in Uy . Lel Q be a term such that FV(Q) C FV(P), and let
I’y be a basis in which xy,...,z, do not occur free such that

o, 21 :81,...,%0 800 Fra Q1.
Let M* be the resull of replacing P by Q in M. Then
Muly bpa MY o
Proof See Hlindley & Seldin {HS86] Lemmia 15.16. &

Using this lemma and the subject-construction theerem, it is casy to prove the fol-
lowing theorem:

Theorem 2.1 (Subject-reduction theorem) Let I' be a variables-only basis. If
' Fpa Moo

and M > N, then
I ""l',\ N o

Proof Sce Ilindley & Seldin [HSBG6) Theorem 15.17. &

From these results, we can see that deductions in TA correspond to lyped terms in
the sense of Delinition 1.3.

Definition 2.2 (Correspondence between deductions and terms) Yor each de-
duction D of TA, a typed term |D] in the sense of Definition 1.3 whose type is the
type of the couclusion of D, is defined as follows:

"

(2) If M =« is an assumption, then [M o is a typed variable #” of type «. This vari-
able must be so chosen that it is not assigned Lo any other assumption which is not also
of the form Mca ; but if M : « is a discharged assumption then the same variable st
he assigned o auy other assumptions of the form M« which are discharged at the
same inference by (— 1);

(LY D s

D, D
M a1 N :a

MN A
then lDl =z III)| “'I)QI;

31

RN
®
WA
hih!
R
LSt el

R 0‘|'l

)
% Q;:.:‘g
LI

o
)
n".c"‘o"‘c
ittt
|" .':s.r'
:'i. ‘!.' l'.‘(
$ ':‘.‘.l?."!‘

[]
P

Lt
.
O

Wi

g T T A A A T A A A SR

8 ~ "
DO AN MM AN IO N e AR K MM e e S N .08,

o~ =

-

LA A LAPCA T TR |

»

AT A A A

NI EENTA RN P R O R WP I S O N I PR T SR P R Y Y AW X X

() IfDis
1
{z : a)
D,
M:pB

AeM a0 — g

then [D] = Av ' Dy} where v* = |2 - o

(This is not quite a one-to-onc correspondence because the condition on typed vari-
ables in (a) is almost impossible to satisfy with one definition for all deductions in a way
that is consistent with the changes of bound variables required to define substitution.
But for any small set of deductions, it is locally a one-to-one correspondence.)

This correspondence suggests that we define reduction steps for deductions as well
as for terms. These reduction steps turn out to be similar to the D-reduction steps of
Prawitz [PPra65] (sce Section 3.3):

Definition 2.3 (g-reduction steps for deductions) A deduction of the form

1
[o]
Dy(2)
v (—i 1) P
Ar A o — N o
(~e)
(A MIN 7
Dy
reduces to
P,
N o
Py(N)
[NJ2]AL 2 3
D,

. . i . .
where Dy is obtained from Dy by replacing appropriate occurrences of (Az. M YN by
[N/z]M according to Letmma 2.1,

Using Definition 2.3 . we can prove the following result:

42

P . L My 7 o, Ly | o o)N g
U X *5 EaX '0‘.'- ..a...n"‘n.. i LK "'r Y e ‘.‘;.!.l s - ..;‘l \ 4 .' B !".“I.!.l

USRNSSR ’A"‘."E“.""
L)

? %‘;;
.“t:A A\ .::f

@
O A
e
BB
o,

[]
'o * |

'

! (XN

ket e
Vsl

' 4;‘ .‘;";;‘ . N
Hagr
L3 \
gl
WG
BRSO

U
::‘0:.:&:,:&:;

R,

°
\)
Bt

? ", 1.8 J'M'o."l"'- o ':'0'0 Y

et B at T3n 1T LaY 4% dat

SRR

- e o

= g

q

N
RN X798

WO

R R TI IO O RT T ToO™

Theorem 2.2 (Normalization theorem for deductions) Every deduction m TA
can be reduced to a deduction which cannotl be reduced further.

This can also be proved dircctly; see llindley & Seldin [HS86] Theorem 15.31.

By the subject-construction theorem, it follows that if there is a deduction D of
M : a from a variables-only basis, and if there is a 8-redex in M, then D can be reduced
by a f-reduction step for deductions. 'This gives us the following corollary.

Corollary 2.2.1 (Normalization thcorem for terms) Let I’ be a variables only ba-
sis. If
I' bpa M0,

then M has @ normal form.

(See lindley & Seldin [HS86] Corollary 15.31.1.)

A deduction which cannot be further reduced, which is usually called a normal
deduction, has the property that therc is no inference by (— i) whose conclusion is the
major (left) premise for an inference by (— e). It follows from this that if one takes a
normal deduction (in tree form) and starts with any assumption, whether discharged or
not, then, as one procecds down the tree, one cannot come to a major premise for an
inference by (— ¢) below an inference by (— i) unless one passes through a minor (right)
premise for an inference by (— ¢) in between. Let us define a branch of a deduction
to be a sequence Ay, Ay, ... A, of formula occurrences such that A, is a (discharged
or undischarged) assumption, for cach i < n, A; is the premise for an inference (but
not the right premisc for an inference by (— ¢)) and A4y is the conclusion, and A,
is cither the conclusion of the deduction or else the right premise for an inference by
(— ¢). 'Then each branch consists of zero or more left premises for inferences by (— o)
followed by premises for inferences by (— i). (Under certain circumstances, a branch
may begin with the premise for an inference by (=,).) 1t follows that any deduction
proceeds by breaking the types of the assumptions down into their constituent parts
and then putting the parts back together to get the type of the conclusion. ‘There are a
number of consequences of this fact, among them the following:

Corollary 2.2.2 (Subtype property) In any normal deduction in T'A, every type ap-
pearsng in a formula of the deduction is a sublype of the type of one of the assumptions
ar clse of the conclusion.

Another consequence of this structure of normial deductions is the following:

Corollary 2.2.3 If the type of the conclusion of a normal deduction is atomic. then
there as no inference by (<= 1) e the leftmost branch (a.e., the branch that begins with
the top left assumption and ends with the conclusion of the deduction).

Remark Nis not hard to extend this theory to extended typed A-terms. Al we need
10 dois o add some new constants and assign them new types using axiom schiemes as
{olows:

a3
- - O P s T AT s S S B VR St R I O
e e e S o e N S VRIS

g‘

Cat W T
el

S
A

Wi

[]
¥y '\'"v.;
h. :%":.;

N
S
Gl
‘!h'!?\‘)h
L
gAY,
el
‘) y‘\ .'l .

AR RS
0 Fi‘ 4 'ib
:h:.'u".’s'_ S

wﬁs@ﬁ‘@‘?}‘,

N

RO
®

N
NN

<

rn
=
¥

A
el

-
‘n‘f'c'!'l’..n‘. JOAT OV AN

(D) Dep:a—fg—axf,

(fst) fstyp:ax—a,

(snd) sndgp:axf—f,

(inl) inlyp:a—a+pg,

(inr) intap: 0 —a+p,

(case) caseq yy v+ ff—(a—y)—=(F—7)—7,

(0) O:N,
() o:N—=N,
and

(Re) Rp;a-»(N—uag—a)—N-—a.

We also assuime that these constants satisfy the contractions obtained from the first
four of Definition 1.9 by dropping type superscripts. For some purposes, as we shall see
in Section 3.4, we are not interested in the constants 0, o, and R,. The system without
the constants 0, &, and R,(and without the atomic type N) will be called eztended TA.
The system with N, 0, &, and R, will be called cztended TA with arithmetic.

™y W m -y - -~ DU Rt R G g O) {.(. w v
i W AR N Iala AV e M e L AN N, o Sy

.

')
:::" et

o U"ﬂ:.
N

K 'H
:‘:t::’c’,i‘:.l:‘

]
)
(]

s
Ryttt !

.5'"

H " f"
"O‘Q'i:gv’!"
rEnOaded
o: o0
3 E‘ gc‘f
D ®
‘Q‘\ Ny
'. :: “ ‘:!
.' .! W
Vel ". c’:
0
o‘. Wy
J -1y "I‘

®
u T

N\

|.::‘. dk‘.'.‘

%.

t’
."«-."

N‘o J .'.."l.

L)

5.0 B 3% B0 0% 5 2" At a a0 AV R e At R @ Vel & B 4 A6 3 AT R A et 8 a%"ade 'l it s S4Bl S 00 il vay Vel abe

2.2 Type variables and principal type scheme
As we saw in Example 2.1 above,

AZ.x o=+ v
for every type «. It follows that if 8 is any atomic type, then

Azraz 0 —0.

It seems clear that any other Lype assigned to Az.z can be obtained from the type 0 — 0
by “substituting” some other type flor #. It would be nice to formalize and generalize
this property of type-assignment.

The notion of “substitution” into a type would make more sense if we had type
variables. Hence, we extend Definition 2.1 as follows:

Definition 2.4 (Type schemes) The alomic lype constanis or type constants will be
the atomic type symbols of Definition 1.1. We asstine that we have infinitely many type
variables, which will be denoted a, b, etc. Then type schemes are defined as follows:
(a) Type constants and type variables are (atonie) type schemes;
(b) If @ and 8 arc type schemes, then so is (o - /).
A lype is a type scheme i which no type variables ocenr. A type sclieme 15 a substitu-
tion inslance of a type scheme « if B is obtained from o by substituting types for type
variables; i.e., il there are type variables ay, aa, ..., a, and type schemes s, v, .0, 1,
such that

B =[v/ar, y2fas, ... vlan]e!

From now on, we will assuine that ‘FA is defined using Lype seliemes instead of types.

Now the property of type assignment that we noted at the beginning of this see-
tion can be formulated by saying that any type or type scheme assigned 1o Arr s«
substitution instance of a — a. We are interested in knowing which terims are assigned
a type scheme with the property that any other type seheme assigned to the term s
a substitution instance of the given one. A type scheme with tis property deserves
special name.

Definition 2.5 (Principal type scheme) Let Af be a closed term Then o tvpe
scheme o is called a prancapal type scheme (pols)) of AL and only if

bpn M caf

holds for a type scheme o when and only when of is a substitu on instance of o,

' We are ignoring for the moment types o X /4 and o 4 50 The reasons for this will hecame apparent
in Section 2.4 helow.,

T T T T N A s W o0 S N OO W AT S o

L) L di)

e,
oot

e,
pe

i
Q)
»

"

e
TR
R
i
gt
g
ey

‘ ®
MY
i

e

2

%

o2 T
SEEE

P

T

@ 24
-vz:"ﬁ .

2
X
3

)

A A
-"
2

v J
5

"

-
A
h %'
v
] Cy g
o
oo

P
I'd
W %
¢
AN
QAP

o,
vy

AL

b P
oSl
LT
L,

%

v

CagK T 8N 4N T

)I

L]

]
<o
-

X
s Fd

v‘?f ”
R

s
1@ %X
<L

AN
(I A
CADRCAGR
LSRN
" S *
N ROERRS:

- - A -
o A A LG

-

» Y S ¥ ¥ li“u"

- './::{"". ". LY

.

"

R AR IR U

TR T T N T R T R R O R O R o RO O R O R P O OO O A X .JA'.E'.F.',Q".I!C!T.'.D’.ﬂlﬂ!ui["'n";"’F"'} ‘&

This definition clearly works only for closed terms; i.e., for terins with no free vari-
ables. For terms with free variables, we need to generalize this definition. First, we
define an FV(M)-basis for a term M to be a basis of the form

Moy, My, ..., M, : a,,
in which each M; is a variable which occurs free in M.
Definition 2.6 (Principal pair) Let M be a term whose free variables are
Zy, Z2, ..., T,. Then a pair (I',a) is called a principal pair (p.p.) of M, and a a
p-L.s. of M, if and only if I' is an ¥V(M)-basis and
[" '_TA Al :a'

holds for an FV(M)-basis T’ and a type scheme a’ when and only when I and o' are
obtained from I' and « respectively by the same substitutioa.

Example 2.4 Az .z has pts. a—a .
Example 2.5 Az.zz is not assigned any type by TA.

These examples should make it clear that the following theorem holds; its proof,
although simple in principle, is complicated to write out and will not be given here.
(See Hindley & Seldin [HIS86) Theorem 15.26 and Theorem 14.40.)

Theorem 2.3 (P.t.s. theorem) Every pure A-term M 1o which a type scheme is as-
stgned by TA using only FV(M)-bascs has a p.L.s. and a p.p.

It is worth noting that the use of type variables makes it possible to make general
assertions. The fact that Ar.z has as a p.t.s. @ — a means that it has type ov — o for
all types o, ‘Thus, a statement snch as

Fra Arzia—a
makes a statement about all types a. This saimne method of making general statements

about types is used in the programming language ML (see Gordon et al. [?] and Milner
[Mil85] and [Mil78]).

36

g%’
hQhihy

) o
! .l'l'n .f‘..l‘
L J

P Y - . w
--a-_-
S
Tl

s
TR E
PR

2.3 Universal quantification over all types

: We have seen how to use type variables to make statements about all types. But the |]
! system we have above is still not what is usually needed for making and using such waboatydts ¢
statements in a programming language. For example, in a language such as FORTRAN . ® o
o or PASCAL, programs that differ only in the types of their variables need to be dupli- (',’}'f"- 1:*;.»,
: cated and compiled scparately. A language such as ML avoids this problem by using N
type variables and having a rule of substitution for them. We could easily imitate ML :
K by adding a rule such as
[} Mo
M {Bfaln
L)
t but this scems to be in some ways incompatible with the subject-construction theorem.
o The alternative which suggests itself is to add an explicit universal quantifier.
“ A system with this explicit universal quantifier is already known; it was introduced
independently by Girard [Gir71] and Reynolds [Rey74]. The definition of type is ex-
tended by specifying that if ¢ is a type variable and « is a type, then (Va)a is a type.
y For this to make complete sense, we need to keep track of the types of bound variables;
\ thus, if the type of z is o, then we shall write Aria . M instead of Az.Af. For example,
: the identity function on type o will now be written Az . 2. 1l we take the type to be \ h.::l.
the type variable a, then we have Ar:a . x, which has type a — a. Obviously, some term ':::0..|:|
¢ related to this one should be in the type (Va)(a — a), and the fact that the term has this Whtihhy!
type should express the fact that in ‘YA ap.t.s. of Ar.r is a — a. ‘To construct the term [J
. . v .
we need, we add a new abstraction operator, from a type variable a and a term M. In .‘,\";x_(.'\-:
I\ our example, the term in (Va)(a — a) is Aa . Azza . 2. 'To go with this new abstraction Q-::i‘::
M . . g))
& operator, we need a new application: the result of applying a terin M to a type-scheme Ry Ay
. . . LA NS S,
' A will be Mg, In our example, we will have the term (Aa . Aeza . 2)3, which we expect ;._J:.,f-,:'_.‘
: to be assighed type f— g and (o redice to Ard . 2o In general, we expect Lo have the Sy
. “g"-contraction of (Aa. A7) to [#/a]Al. We also have the following new type assignment ®
rules: Q‘: \ "';t'
(Ve) M (Vu)a Condilion: 4 is a type. :wl‘:-f':}?,\ 1
Y ﬂ&
N
Mp [a)o b
(V1) Al o Condition- a does not
T occur free in oany undis-
» Aa M (Va)o _ -
charpged assuniption.
[
L
)
) One effect of these rules is to give us funetions which take types as arguiments. Sueh
‘ functions cannot be represented in the type structures of Section 2.1, See the second
note hefore Example 2.6 below.
]
")
37
1
)
:
D
L)
S W - \l
‘:\:l‘;-‘_‘f:t
RORTLON
)) }) AN SN,
: A Loy . N A N A A AT % T AT AT AT AT T AT T A e e e e AT AT A AT S \r\-'\~.\d'\f\- N \V"J'\.‘l‘ \.
LM N N e N e N o N N S o 20 e M X o - Kt alas e diC) « (e gt} ! il Do all «WRY 4 '»

- i -

PR

WX N T .

-
e J

l.‘

AR

T IE I L rLEE ANt T LIS L g Sl S St AT A R R R
"W YL e 1% "‘
» s .

Note that with our new notation, rule (— i) is now written as follows:

[z : o]
M:pB

Arv . M o — .

The system defined this way is called the second-order polymorphic typed A-calenlus, or,
for short, seccond-order A-calcnls. ‘To define it, we have the following formal definitions:

Definition 2.7 (Second-order polymorphic types and type schemes) Assume
that we have some {ype conslants and infinitely many fype vartables as in Definition 2.4.
Then second-order polymorphic type schemes are defined as follows:

(a) all type constants and type variables are type scheinges;

(b) if & and B are type schemes, then so is (« —); and

(¢) if a is a type scheme and a is a type variable, then (Va)a is a type scheme. An
occurrence of a type variable a in a type scheme a is said to be bound if it is inside a
subtype scheme of the form (Va)w; otherwise it is free. A secon d-order polymorphic type
is a second-order polymorphic type scheme in which every occurrence of a type variable
is bound. The set of all type variables free in e is called FV(ar).

Definition 2.8 {Sccond-order polymorphic A-terms) Assume that we have in-
finitely many term variables, distinct from the type variables, and perhaps some con-
stants, cach constant having a type scheme assigned to it. Then sccond-order polymor-
phic A-terms are defined as follows:

(a) every constant and variable is a termy;

(b) if M and N are terins, then so is (M N);

(¢) if x is a variable, @ a type scheme, and M a terin, then (Ara - M) i ter,

(d) if M is a term and @ is a type scheme, then Ma is a term; and

(e) if @ is a type variable and A is a termy, then (Aa M) is a ternu

An occurrence of a term varable £ in a terin P is said to be bound if it is inside a
subterm of the form Az:a . Al; otherwise it is free. Aw oceurrence of a type variable a
in a termn 7 is bound if it is inside a subternn of the form da. A : otherwise it is free. The
set of all term and type variables free in A is ealled FV(AT).

Definition 2.9 (Substitution) Substitution of terms for term variables and type
schemes for type variables is defined much as in Definition 2.6 in particular, hound
term and type variables are automatically changed to avoid conflicts.

Definition 2.10 (Change of bound variables) A change of bound vartables m a
type scheme or term is any of the following replacements:

(a) (Va)id by (VIY[b/a]d il b ¢ I'V(9).

-
W0 T N.AV.PY. = alal ! TN, P, V. 4

l"‘l.,'l.Q
" !'.l,
®
by !a e,
oty

“l."l

PO
L .'"
"ﬁ“ .‘I.

O a"h
. .
"t‘ .'.' ,
l".'::

',‘s

’t‘.'!

|.l

"'3
.9"

Ao '
ﬁw"‘c’»’%

*\S

‘—""
B
.hl"a:::’i
l')
AR
o ®
l‘ " c‘ v"‘
\ & () ..‘
0 5%‘2
OO
i

0!'

-

I N R MR N LR M\ W N UM O TR R R SIS O TR N R O PO P W KW M W W W™ "MK WY "';‘ ‘l":';o

: 3 0'.,¢

R

2.9%.8%.!
®

(b) Aa.Mby Ab.[b/a]M if b ¢ FV(M);
(¢) Az:B. M by Ay:B. [y/z]M il yg FV(M).

Definition 2.11 (A-reduction) For terims 2 and Q, we say that P 3-reduces to Q
(PppQ, or P Q) if and only if (is obtained from P> by a finite (perbaps empty)
series of changes of hbound variables and the following kinds of contractions:

(BY) (Az:x . M)N g [N/z]M;

(B%) (QMa.M)a g [afa]M.

Converston is defined from this reduction as in Definition 1.7.

Definition 2.12 (The type assignment system TAP) TAP (second-order poly- R ERER]
morphic type assignment) is a natural deduction system. Its formulas are the type : ::0"1::*
assignment formulas 0 "\.G.::ﬁ

W)
M:a, l".... ¢

) "!': \‘:"
where M is a second-order polymorphic term (Definition 2.8) and « is a sccond-order ittt
polymorphic type scheine (Definition 2.7). ‘TAP has axioms which assign types to atomic ®
constants il there are any; otherwise it has no axioms. Its rules arc as follows: \:t':.'..‘.‘,

W

U
(—me) M:a—p N« R

T3

MN

(—1) [« Condition:

M:p x is & term Yari:mhlv whif-h AL ‘I..“:‘
is not free in any undis By :::. 0:“
Arr . M oo 3 charged assumption. '

i I. t‘\:‘!‘:

M : (Va)o Condition: 3 is a type
M :{B/a)a

scheme,

Ao Condition:
N — a is a type variable which
Aa. M (Va) . ype v .

is not free in any undis-

charged assmnption.

Condition: N is obtained
from Al by changes of
bound variables,

SRIRN TR e ™ S T
B T R RO RO MMM NI S ANAR S M ML ol) 0 SO LR M XS MO 0 N

PSS N1]
.|. AP | X x

WY

PSSO

-

| P I)

Y P

o

w* W,
2 GO

e val Cad Oal VaB AR 00 ab nal Vol Pal ¥ap Vado 10gl Val Yalt Vol “ab vub Ua) eai g 0o 0af ¥, TN TR

(=) M:p Condition: v is obtained

——— from @ by changes of
bound variablesand M : g
is not the conclusion of a
rule.

Notes

1. Rules (=) and (=%) have not been postulated in the literature; however, it is
standard to ignore changes of bound variables and the rules seem necessary to for-
malize this practice. Note that while rule (={) is restricted the way rule (=,) is in
TA (Definition 2.1), rule (=) is not. In fact, if the latter rule were so restricted,
it would be impossible to deduce stateinents of the form Aa.M: (Vb)S unless a and
b were the same or there were an assumption of this form.

2. As we saw above we now have functions which take types for arguments, which
are not part of the type structures defined in Section 2.1, so these type structures
are not models for TAP. In fact, Reynolds [Rey84] has shown that there are no
models for TAP in which the types are interpreted as sels as in type structures.
There are models of TAP in terims of calegory theory, but many people who do not
know category theory do not find such models helpful. For computer scientists, it is
probably best to think of the terins of TAP as having only computational meaning.

3. Some writers use a different notation: M {a} instead of M« and Aa.M for Aa. M.
The notation used here does not hide any important distinctions which are not
clear from the con.. <t and is somewhat cleaner than the alternative.

Example 2.6 The informal discussion before Definition 2.7 corresponds to the following
formal deduction in TAP:

[+ : a]

Az . ria—a

(=i 1
(Vi)
(Ve)

Aa . Azria . x: (Va)a — a)

(Aa . Ara . x)p 8- 4
Note that the term in the conclusion reduees to dae:fd .z,

For the further theory of 'TAP, including the nonualization theorem, see Fortune et
[FLOSBS] and Mitchell [Mit8G]. For a proof of the Church-Rosser theorem for the
reduction defined in Definition 10, see van Daaden {Daa80], § 1.6,

10

s‘!.\o.'. W M X ; N

$,% 0 a0, et gV, 0a i vt gl 'ﬁ‘.““0~|'
i

T '0'.'!

"l ..i‘

]
"'i"‘ "“:|

v
|

?"W\'ﬁ
.k':;.
‘\,c .0. .l
B8 ""'

I
[]
)

e R R S R R AL

. . Wi
2.4 The power of second order quantification Npepenne

pavasnd

It might appear that the next order of husiness is to add the type forming operators x :v:::o:::n:::;:

and + and to arrange to add the new atomic type N. However, these additions turn out i

to be unnecessary; for all of these can be defined, as can their associated functions. - _“_ !

SO

Y Definition 2.13 (Cartesian product type) Let o and 8 be any two type schemes in ¥ "'::::t
'TAP, and let a be a type variable which does not occur free in « or 8. Then the product .:‘15:. "::f

type scheme a x f and its associated pairing and projection operators are defined as {:f.l‘l:g.::‘

follows: SR

(a) a x B = (VYa)((a« — (B — a)) = a); ®

(b) Dag = Az . Ay:f3. da . Azav = (f — a) . zzy; IR0
(c) fsta g = Azia x B . za(Aua . Av:f . u); and Wi
(d) sndy g = Az x . 2B8(Aua . Av:f . v).

It is not at all difficult to prove that from these definitions we have
D"',j Dy — (ﬁ——t o X ﬂ)' ')'N‘;_";\..h .

fstap:ax f—a,

and
sndy 30 x = f.

Furthiermore, we can easily sec that

fst,,"i(D,,'/;MN) e M

and

sndu.ﬂ(D(.,ﬁ A/lN) =. N.

Definition 2.14 (Disjoint union type) Let o and a be any two Lype schemes in TAP,
and let a be a type variable which does not. occur free in a or . Then the disjoint union
type scheme a + 2 and its associated injection and case operators are defined as follows:

T KA T R SRR T Y KT W T N N m——
- ‘. ,5'.1'-' ‘A’
&> - w
G s, S
R LA T
- J
. ‘... P .

XX A

(a) n + B = (Va)((o — a) — ((f} — a) — a));

(Ninl, p = Aria da Afiv—a Agpp-—a. [u;
(e}inrgy = Ayl . da Af:v —a Ag:il — a . gy,

(DY case,p = Azt 3 Aa Afiv—a . Agpd—u . zafy.

It is casy to show that these delinitions iply
ik, oo — v 3,

inf, 00 ff— o 1,

and

and

(b)0=Aa.Az:a—a.Aya. vy,

natural number n, is defined to be

where there are n occurrences of o.
It ts not hard to show that

and

It is also casy to show that

Definition 2.15 (Void type) void = (Va)a.

(Yo =AuN . Aa.Az:a—a. Mya. x(uazy);
(d) 7 = AN . sndy n(u(N x N) Q(Dn n00)),
where Q@ = Av : N x N . Dnn(o(fstynv))(fsty nr); and

()R =Xxa.dria AyN—a—a . AzN . z(N—=a)P(Aw:N.2)z,

where P=Av : N—a.Adw : N.y(mw)(v(mw)). The terin n, which represents the

0:N,
o N—N,
w:N—N,

n .. Ara ca . Ay

12

case, g+ [} — (Va)((ox — a) — ((# — a) — a)).

Furthermore, it is easy to show that if v is any type scheme and if M, N, F, and G are
any terms assigned types a, 3, @ — v, and § — v respectively, then

case, g(inl, pMWWIG =, 'M

case, g(inra gN)Y I'G =, GN.

It turns out. that we can also define the type void:

Then if M : void, and if a i1s any Lype, then Ma : o. 1t follows that if M is any closed
term such that M : void, and if § is any type constant, then M8 is a closed term assigned
type # . This together with the normalization theorem prove the following result:

Theorem 2.4 There is no closed term M such thal
F'p/\p M : void.
We can also define the natural number type N:

Definition 2.16 (Natural number type) (a) N = (Ve)((a — a) — (@ — a));

o(a(.(0)..)),

R:(Va)(«-—~(N-~a-—~a) =N —a)

s(x(.(ry)..)).

) @
[)

KN

kY by

] ®
®

-

) [

) ®

oY W

i

]

3

A

2 Y

i

2N
1
L .5

o
A
5!

%

L res
I" l,"
s

P A

I

-y T,
%5,

Y
S

»

ey A

Ry o > e

- - -

- e el

P, I T)

b
¥
)

EECR N P RIS /Y I

AR

v ﬂwr
‘- A R U O

AR R IEY R R R M AT T R gl 2% . Ta% 2k ¥ “San Sul Vol Yad W 2] 48 S U R U RO K RO

where there are n occurrences of z after the last abstraction,
x0 =, 0,

w(on) =, n,

and also, for any type scheme « and any terms M and N of types o« and N —a —a
respectively,
RaMNO =, M,

and
RaM N(on) =, Nn{(RaM Nn).

Finally, we can define an existential quantifier over all types Lo go along with our uni-
versal quantifier.

Definition 2.17 (Existential quantificr over all types) Let 3 be any type scheme,
and let a be a type variable, which may occur free in 3. Then the ezxistential quantifier
over all types and its associated operators are defined as follows:

(a) (3a)B = (VB)((Va)(B -+ b) — b),
(b) singleg = Ac. Az:fc/a]B. Ab. Az:(Va)(B —b) . zcx,
(c) projecty = Az:(3a)B . Ab . Az:(Va)(B —b) . zbz.

It is easy to show that

single : (Vc)([e/a]} — (Ja)a)

and
project; : (3a)B — (Vb)((Va)(B — b) — b).

It is also easy to show that if v and v are type schemes in which a does not occur free
and if M and # are terms assigned types [in/a]3 aud (Va)(8 — v) respectively, then

project,(singleyja M)y /" =, FaM.

Thus, we can think of singles as a kind of singleton, or one-tuple, in which the object
has type [a/a]0, and projectg is as close as we can come to a projection function. Note
that the type for singles tells us that if Af is a term of type [a/a)B, then singlega M is
in type (Ja)g, and the type for project, tells us that if Af is a terin of type (Ja)fd. v is
any type schieme in which a does not occur free, and F is any teein of type (Va)(3 — v),
then projects M v F' is in Lype v; this gives us one of the important properties of existence
in logic, as we shall see in Sectlion 3.5.

It might appear that we can obtain a true projection function by forming
projecty Ny I where FaM =, M. But this fails to work, for in this case 7 must be
the terim

Aa . Arfofa)d .z,

13

nh. “ -y PN

R o e B e e e e S N et

MY R !
A A

[
ANOBCH
l.|'l‘:':‘: l'
ety t
RO
'.‘-l"“ 2
vty
el
i OO

]
Al .;.;.;p‘ ;::
Wt

nl!':!. .:':31

NV
) "‘[Q” v
l‘.‘l.' Q.‘ b

§ L’| ;
SRR

=

X2
I T

2L,
s

XX
S

‘_,,
’*{'r}’;
.. { , .
[&

A
20

v a
’wbﬁ(_'
et

T DO
AP QN

)R
Yode i

°
SR
::*

\

VOV AN CHUXY UK UY TN WS K
(] .v'.‘:‘:‘q

o
ooyt
:!'-:"to:g

; o
OO M
: G
. WA
: [, "'n")
1y
X o n.l(
'!i .
il hi . '.‘:" .‘*‘
! which has t',ype. (Ya)([a/a];}—. {a/a]B), which means that & must be a and v must be 0':'0'.“" 3
3 [a/a]'ﬂ', which is just § itself; thus, a occurs free in both a and v, which violates the " :':.:::“":‘:
.: conditions for the type of projects given above. '::':.":.:‘:‘
Y Note Most of the terms defined in this subsection which have type schemes as param- .‘!;::::::':it
eters can .be defined as terms representing functions applied to these type schemes. For]
/ example, if we define oinseity:
' R
! D =Aa.Ab.Dgp, S ol
¥
;| then for any type schemes « and 3, { ‘: ‘.":":"
. i
' Daf =. Dap. O
. . .
K Thl.s idea also works for fst, snd, inl, inr, case and R. It fails to work for singleﬂ and ity
R pro;ectﬂ. be;ause of the type variable which occurs free in 8 (in the interesting cases) ":.":::':‘z':
i" and VYlllCll is bound in the definitions. Furthermore, since we do not have in TAP any ::"::9‘:: '.:,
) ma.lchmery for representing functions whose values are types, we cannot do a similar “:“‘e‘"::':‘
! thing for a x B or v + 3. ::!’d.-’t Ny
| :
" g
(\ ! 'l‘"‘
! Mt
t hntet b
d l':' A
by,
[]
> R N
b TR
; Al e
e
: G
0 Q l'.!.
.‘ JONN ' N
W T
3 st
R RERR
’ (™ & .‘(
X h ,..::.,0':.:
: R
g o
™5 CR]
§
W @) "'g:
:. o ‘I'g.:
.) / l."l‘
A

! !
St el

'
D44 A At
’l‘q‘t_ N,

L L

o

e AT T T A T AT T T AT T AT AT T AT AT R AT Kt R e
T P B S I N N TN N TN T ¢

B W

I Y T e e Y
.. 3 . WO, &'V 'y, '8,

St €yt g Y gat Sa¥ fat Vet % fat Tat Pat-] R 18vs 9% A% 8% “g¥a gve’ L TR A L 3 R ::;.l."‘:::::';
Q000N
O \J
RGN

2.5 Generalized type assignment

Although the two term-forming operators — and V may appear to be entirely distinct,
thicy can be made special instances of a nmore general Lype forming operator. This more
general operator is central to the theory of constructions,

This more general operator is obtained by extending the meaning of “type” in TA
by defining (V2 : «)f to be a type whenever o and f are types and r does not occur
frec in a. llere, 2 may occur free in 3. "Thus, the notion of Lype uscd here is much more
general than the notion of type in 'T'A. But let us ignore this for the moment and look
at the elimination and introduction rules for these types, which are as follows:

(Vae) M:(Ve:a)p N:a

MN :[N/z)8,

(Va 1) [:] Condilion: r does not oc-
M:p cur free in o« or in any
undischarged assumption.

Az . M (Va2 o))

If £ does not occur free in B, then (Vo : o) behaves just like o — 3, and the above
rules become (— ¢) and (— i). Hence, if (Va : o) is a type whenever o and # are types.
then a — f can be defined to be (Ve 2 o} for a variable 2 which does not occur free in
cither o or 4.

Systems like this are called systems of generalized type assignment, and are covered
in Hindley & Seldin [HS86G] Chapter 16 and in the references given there, Note that the
notation is different there, since what we are denoting by (Vi : o) is there denoted by
Ga(Az.f), and what is there denoted by Gl is here denoted by (Vi @ a)(f2).

As we noted above, the definition of type needed for this sort of systens is much
more complicated than that used in AL In "TA it is suflicient to define types, and except
for type variables there are no variables which occur in types. But here, in order to
have a system which is really more interesting than ‘'TA, it is necessary to have types in
which term variables occur. This means, in effect, that we need not only types, but also
functions whose values are types. llence, any formalism for generalized type assignment
must include terins represcnting such functions.

Systems of generalized type assignment can be classified by the kinds of functions
they have whose values are types, and in particular by what kinds of domains such
functions can have. The simplest assumption to make about such funetions is that the
domains are all universal; .e., if ov is any type function of n arguments and Al is any term
whatsoever, then a M is a type function ol n — 1 arguments (where, of course, n > 1),
A system of Lhis sort is called basic generalized type assigmuent, and we shall look at
such systems in Section 2.7. The only alternative is to allow functions whose values
are types over restricted domains. One possibility, for example, is to allow functions
whose values are types when the arguments are natural numbers. but not necessarily

o wyd Vb hal 5D Vad T28 U B NE ea§ W) Sl Sut Vel Tah vah Nah Wl (a0 ab Vgl Va ¥ AR IANTAN AN TSN NIV IR LRI LAY

)

; otherwise. Including functions of this kind complicates the definition of the systeins:
\ either the definition of type and type function must list each restricted domain used,
: or else the machinery of Lype assignment itsell must be used to define the functions
i involved. We shall sece more about this in Section 2.8.

‘e e

-

A6

T - - -

L)

L)
)

)

- NIE AT ST TP ke AR AT R R LR
i Il s Tt

‘]
byl
A
s
R
':'!la'!:ml:‘
[)

st

"

=

]
i

S

W 0

Wt 'y

Y l:":'

! _ '| !
@

R
A ﬁ,‘ig%gi

o
2
P

b nt i et e uate sl 600 h A HA e " 8.4 vaf Vol €ab at a0 atataaa a8 e e A2 A AV A2 8V AV DV 0% 8 a 0% 4% 0. 8% V4. 870,040 800 870 8'5 670 8'2.8%0 0 0. 4" g 0 gt g
ra® Wp" . % [3.9V, 508 § .40 § Vol €t tut Net “ab tad ¥av LA AN LW Y\ & Q 8 ::0:::.':".:‘,
SRS

) ®
i '..c.' 3t
W
"
DI
BNALIGN

AN

)]
. ¢ CEARIR
2.6 The need for conversion rules SN
atyen it
Before we proceed, we need to consider the question of conversion. In TA, we have the .‘.::‘:':':‘:::‘
. Lhenet
subject-reduction theorem (Theorem 2.1), which says that type assignment is invariant of AN

reduction. As we shall see below, a similar result holds for generalized Lype assignment. o
For this reason, we have not paid atlention to conversions among lerms to which types ":t:?'i:i:l:i'l
b are assigned. Furthermore, in TA, the structure of the types is so simple that the e ::"Q:ﬁ
t question of conversions between types just does not come up. But in generalized type b::' Ny .Q:Q".'
assignment, the structure of types is more complicated, and so interesting conversions . ‘:‘:"‘"‘
arise. A X4

The best example of this can be seen in terms of the system TAGU of Section 2.8)

below (Definition 2.24). Suppose one of the types is U of that system, and suppose ';;::ﬁ(:g
we internalize the definition of — (which we discussed in Scction 5) as follows (using ':"%:
Curry’s notation): :";ﬁ Q‘i"l‘.q
F=U. AU (Vo u)v. .‘l:"t:::

It is not hard to show that F has type (Vu : U){(Vv : U)U. Now suppose we have, for
a:Uand 8: U,

M :Fap
and
N«
We would like to be able to conclude
MN 3.

However, to do this with our rules requires
A (Ve a)ps,
whereas all we have is
Al (AU AU L (Ve w)e)a s,

It is true that this latter type converts to (Vr : a}g, but with the rules we have so far
this is no help.
To solve this problem, we introduce the following rule:

(Fq") A o a =, 1

,."
.]
P e |

o
Koe
L

Ao

->¢
a3
7

5y
’
Sy
.
g

) {On the reason for the name of this rule, see Hindley & Seldin [11S86] Section 14E.)
This rule is often written as follows:

LY T
I” . A’f

b
h

e
INNAK
oy,
OES
2o,

e
g

(")

%

£y
R g
o

w
s

It is easy to reconstruct the right premise.

e

e
s
ML
22
%

17

\‘;\\ .

OO SRt S A L A e O RN e I D A Ot T L o oD

% Y U U TR AN A A RN OO I NN R XU U RV Y E

E:'

A
) L J
) L
It might appear that the introduction of this rule significantly complicates the nature
of deductions and raises problems with the subject-construction theorem. But in fact it
is possible to limit the places in which this rule is used:
Theorem 2.5 In a system of generalized type assignment in which the rules are (Va e), []
(Va 1), (=) and (Eq"), (and in which there may be azioms), any deduction can be irans- ,)
formed into another deduction with the same undischarged assumption and conclusion O .7“)
in which each inference by rule (Eq”)occurs either just above the major (left) premisc 0
for an inference by rule (Va e) or else just above the concluston.)
Proof This follows from the fact that the following transformations can be carried out p— ®
systematically throughout any deduction:
I. \
1 ity
[z :q] %
D E e
M:p e
(ka") 8
My
(Vi 1)
Arzv . M (Vr:a)y
to) L
1
[z :a]
D
M:p -
(Ve i 1) ®
Ariov . M (Ve)3
(Eq") !
Ariev . M (Ve a)y t: ,
b
1. '
D, W
’ I)
; pl N o ~ 1 :-I'tm
, ——— (Eq7) e
) M (Vz : 3)y N:pj \:.._-\, \
(Ver ¢) ‘:-“:\“.
MN :[N/a]y ~..":~."5:"\.
9] \\h’-\a
'- L]
Ca
»
&Y
3 o
A
AR \
§ L]
| .
: it
) L]
) f\' f'@' |
P]
! .. . ey Ay P, - A s . v, rl‘"vf ‘.?0'
LRI W I N A T AR W, e (g SR e At Ot e M e 8T, 0l s

T =

B b e s gv

Y

to

1118

to

LA R A RO S

D,
M:(Vz:.p
(By (") D,
M : (Vz: o)y N:a
(Vor ¢)
MN :[N/z]y
(£q")
(=
(=
(Eq)
19
A A

gy
il
'a‘:‘?"'::"::.

‘:l.' M0, V.0 0 Tat Caf b Yat Nl Vap .8 fad ¥ i oaf ¢ LT AL AR MU I R A UM U LSO LN “B¥s %9 8% 80 8'g 8" vg 8% 879 4", Sl B8 9.0 0,0'0 00,09, 8.7 §a% 8. a;..é'::;.‘
) “u"::v, ",
) NG ..(‘..
) W
. []
-‘-‘3 e
" I
Y X
|'0 v RNy
) e, ?)-:'
R,
;; _»;“:»" ~
. RS
L) - P
L J
:;' . . . Ht'j
“ 2.7 Basic generalized type assignment .:,:.:::.:}
et it
4 . _ _ O N)
:l. As we noted in Section 2.5, the simplest formn of generalized type assignment assumes : "c::',o:
0: that any term can be any argument of any type-valued function. The system based on !.::!:I:!:Q
this assumption is called basic generalized type assignment, abbreviated TAG.
K The first step in defining this system is to define the terms and the types. In this """
:' case, the types will all be terms, so we begin with the terms. Because type functions) ::/‘ ;
. . . . - j
! will take any terms as arguinents, it turns out to be convenient not to carry along in i digh
e y g y g RN
\” the notation the type of each bound variable. LY,
.\ ey \ m WY
Dcfinition 2.18 (TAG terms) The terms of TAG are defined from countably many °
. term variablesr;, zq, ..., z,, ..., and snme term constants, including a finite or infinite :{-’_’;V
| sequence of constants #,,0,, ..., as follows: .:"_ .
L) . . f
(a) every term variable and term constant is a term; SRS
> . J N’l,
A {(b) if M and N are terms, then so is (M N); and :-:':_nf- _
Q {c) if z is a termn variable and A and M are terms, then (Az.M) and (Vz : A)M are SO
terims. - ._)
a With each constant 0; is associated a non-negative integer dg(0;) called its degree. 'I'he -'_‘:;:")
o
/ constants 0; are called type constants. PRt
2 DI
. . . Lo \ . M0
! X Reduction for 'TAG terms will be defined as in Definition 1.6; 'The only possible oy ':
o contractions in a term of the form (V& : A)M will be those which take place entirely A~
mside A and Af. "':',T.,-
¥ Now we can define the types and type functions. Fach type function will have a rank "‘:-:,-:‘.‘-4,
! {the number of occurrences of V) and a degree*. ‘The types will be the Lype functions of ‘t::\" 0%
. degree 0. en s
f 5 h-‘"] >
) .{1;.. Y
::. Definition 2.19 (A tomic type function) A term o is said to be an wtomic type func- ity
' tion of degree n if and only if G 4
5\) O;OAI]A’,V;A’Ik, :.F"\n)
-' where # is a type constant of degree &+ n and Ay, M,, ..., Mp are any terms. ™ ; W
R y i
N Definition 2.20 (Proper TAG type functions) The term a is a proper TAG type ; ‘h:'\‘
W Junction of rank m and degree n if and only if one of the following conditions is met: i .‘
" (a) a is an atomnic type function of degree noand m = 0, 3‘_?’:.:'\‘-
NS (b) e = Az 3, where (1 is a proper TAG type function of rank m and degree n — 1 (and ‘tﬂ_‘__-_.:
‘ ‘_'(where, of course, n > 0); 'J.‘f‘.’?‘.‘
» s
(c) = (Vo 1 fg)y, where 3 and v are proper TAG type functions of degree 0, n = 0, :-f.:-f-":;..
H . and m = | + rank(;3) + rank(7). v".’r\:-f'.n \
P ZThe number of arguments needed to produce 2 type. The degree of a type constant is a special R .U‘
." case of the degree of an atomic type function, which, in tum, i~ a special case of the degree of a type -‘.\-‘1\:’-‘
) function. ' -',' /
4 ":"\-3\‘-1 {
)n ";'*- .'-'(":‘ X
t ;:)\- '.'\;'4 !
" ?.‘-.‘ -\' -

a0

. 'l'. "
by
¥ P X
L J

5 R
|‘| '“"N'.\’
"W S,
12O

- - N
i .y s A e T i e p A A AR A ,5,‘
':".’;0. OO O T OL s 0'.. ACLHNAS AN l‘-t‘.) .0‘- VV WUy n.!. ah -, .n ~ ‘- - J. N Y X n o L .. n J\ e 8% 1

PR LR AL WA S

[l 2

LIL'.’"-A’, LR

Sl el TN P

“

D S S A

)

v,

A RN AN

Decfinition 2.21 (TAG type functions) T'he term « is a TAG lype function of rank
m and degree n if and only if there is a proper TAG type lunction 3 of rank m and
degree n such that o > 8. A TAG typcis a 'TAG type function of degree 0.

Theorem 2.6 The degree and rank of a TAG lype function are unigue. Furthermore,
TAG type functions have the following propertics:

T1. If a is a TAG type funclion of rank mn and degree n and if 3 ts any term such that
a=. 3, then 8 is a TAG type funclion of rank m and degree n;

T2. If a is a TAG type function of rank m and degrec n, then Ar.a is a TAG type
function of rank m and degree n + 1, and conversely;

T3. Ifa ts a TAG type function of rank m and degree n+ 1 and if M 1s any term, then
aM ts a TAG type function of rank m and degree n; and

T4. (Vr:a)f s a TAG type function of rank m and degree 0 if and only if a and 3 are
TAG type functions of ranks § and k respeclively and degree 0 and mi = 1 + j+ k.
Proof Sec Hindley & Scldin {I11S86] Theorem 16.27 and Remark 16.28. &

Definition 2.22 (The type assignment system TAG) The system TAG is a nat-
ural deduction system. Its formulas have the form

M :a,

where M is a term and o is a TAG type. TAG has no axioms. lts rules are (Vo e).
(Va 1), (Eq") and (=).

Remark It might scem unnecessary to postulate rule (Eq”) here, since the argument of
Scction 2.6 does not apply Lo this system. But it is traditional to postulate it, especially
since in the earlicst versions (Vr : a)8 was only an abbreviation for Ga(Ar.3), and rule
(Y ¢) had to be obtained from the following rule:

Al Gafs N :a
MN N,

To obtain our rule (Vo ¢) from this rule requires rule (Eq”); indeed, to use the elinina
tion rule given here in a nontrivial way requires rule (Eq"). See Hindley & Seldin [11536)
Section 1612,

T'he theory of TAG is sunilar o the theory of TA (Section 2.1). ‘There are sotne conn-
plications, but for the case we are considering here they are not serions. For example.,
rules (Eq”) and (=/,) complicate the subject-construction property. but a version of the
property holds (see Hindley & Seldin [HIS86] Remark 16.37). The replacement letnma
(Lemma 2.1) needs some modification, but. a version of it can be proved that will work
with the subject-reduction theorem (‘Theorem 2.1), which holds for g-reduction. (Mind.
ley & Seldin [HS86] Lemma 16,39 and Theorem 16.41). The normalization theoren for
deduetions (Theorem 2.2) also holds (indley & Seldin (HS86] ‘Theorem 16.13)

» L

AN A M

P A e T T Y

U VTN WA WY W UVUV U AW TN OO WU ‘FE ‘;‘

R T T S I A ¥ Qat gun ot f28 fab g2t €25 Ya® ¥a¥ 0at ds* sat Set et faV.

U
»
}
[)

In fact, ‘TAG is not much stronger than TA. 1t can be shown that if a term is assigned
a type by TAG, then it is assigned a type by TA, although TAG may assign more general
types. (See Hindley & Seldin [HS86] Theorem 16.61.) And if al! of the type constants
have degree 0, then TAG is equivalent to TA (Hindley & Seldin [HS86] Corollary 16.61.1).
These facts may appear to show that TAG is too weak to be interesting. Perhaps it is
better to take them as showing that TAG is a kind of conservative extension of TA, and
thus that the basic formalism on which TAG is based is sound. This can give us some
confidence in extending TAG, as we now proceed to do in the next section.

- e e en

U5 g
J
O RN
PR
S
() O
‘Q:':" ::.!:
]

TN ':
¥ I!:‘O!u X

d
. [)
ate
2.8 Extended generalized type assignment
As we noted at the end of Section 2.1, there are two ways Lo generalize TAG: one is to
modify the definition of type to allow certain special types (such as the type N of natural
numbers) to serve as restricted domains for type functions, and the other is to use the]
machinery of type assignment itself to define the types. Since the second approach is \'.)-_*
obviously more general, we shall adopt it here. N o
Thus, we now suppose that that there is a type of types, or a “universal” type, w0

which for now we shall call U. All the types in which we are interested will be in U.
The system we shall define herc will be called “TAGU”. The reasons we had for not
supplying the type of a bound variable no longer apply, so we shall return to the more o
familiar notation.

Definition 2.23 (TAGU terms) The terms of TAGU arc defined from countably
many term variables ,, z2, ..., Zn, ..., and some lerm conslants, which include U, as

follows:
(a) every term variable and term constant is a terim, .
A e e 0}

(b) if M and N are terms, then so is (M N); and PR
(c) if z is a term variable and A and M are terins, then (Az : A M) and (Vz : A)M are
terms.

Reduction for TAGU terms will be defined using the ﬂl-rodcxes of Definition 2.11.
The only possible contractions in a term of the form (Vz : A)M are those which take
place entirely inside A and M.
Definition 2.24 (The type assignment system TAGU) The system TAGU s a e
natural deduction system. Its formulas have the form QJ‘

M A)
where M and A are terms. 1L has no axioms. s rules are (1q”), (=), and the following: , :
Rules of type formaltion: fhyt)

" *
(V Formation) [€: A} Condition: r does not oc-)
AU B-U cur free in A or in any °
' wndischarged assumption, LR
(Vr: A3 - U
(Eq'U) AU A=,
U '
®
TR
)
A %e g8
Wt
A
*
N ®
'-*"-N’\
~"'¢-‘
Loy
]
-
A
NN N
S
e Ny N A A e N A N R L A e N T T TR N AT T T s.""'\ o

et e T T R T A R T A R I A A A O A M ARG N W e B 890 Bix A £Va t0atRAY S A YA YA, RN a8 B % L0 o 0s 0la gia puaatacatiibnme Sy Lt U a0 Rl ..'Q

i : “,'...'a.
M
. 0
! i
o
I\
o
.'
o
o
l'
3}
s
“'5
‘;: Rules of type assignment:
K (Ve) M:(Vz:A)B N:A
s,
MN :[N/z]B
1
, (YU1) [z: 4] Condition: z does not oc-
) M:B AU cur free in A or in any
Z undischarged assumption.
)
} AT:A .M (Ve : A)B
XN
:: 0': '.'. ;
,:0 Rule (Eq'VU) is a natural rule to go with rule (Eq"). We can extend the proof of t‘ '; !
Ty Theotem 2.5 to virtually eliminate it from any deduction. W "c' I‘
) "a" c"‘a"‘
b
Wi Theorem 2.7 Every deduction in TAGU can be transformed into ¢ deduction with the Al .a o
same undischarged assumplions and concluston in which each inference by esther of ‘F;E
;; rules (Eq") and (Eq'U) occurs just above the major (lefl) premise for an inference by “" ..a‘.
; rule (Eq'U) (in which case it is an inference by rule (Eq")) or just above the minor
,. (right) premise for an inference by rule (VUi) (in whick case it is an tnference by rule
e (Eq'U)) or just above the conclusion.®
h
Proof Note that each rule which discharges an assumption of the form z : A has a
‘;"i premise of the form A : U which does not depend on the discharged assumption. Let us
, call the deduction of this latter premise the independent subdeduction of the rule and
I the deduction of the other premise the dependent subdeduction. The proof is obtained
,:o by transformations which move an inference by one of the equality rules from an inde-
Yo pendent subdeduction of a rule to the dependent subdeduction of the same rule or else
) to below the conclusion, from a dependent subdeduction to below the conclusion, from
n just ahove a minor premise of (V e) to just above the major premise, or from just above

above an inference by rule (Eq’U), then the transformations moving the latter inference

are applied before an attempt is made to move the former (since clearly, an inference
- by rule (Eq”) occurring just above an inference by rule (Eq'U) cannot be moved be-
low it without invalidating it). ‘The last two kinds of transformations are Il and 11T of
Theorem 2.5; in addition, we now need the following transformations:

:’ an inference hy (/) to below the conclusion. If an inference by rule (Eq”) occurs just
I
d

;" 3Note that it is possible to have an inference by rule (Eq'U) followed immediately by an inference
by rule (Eq"), the conclusion of which is the conclusion of the deduction. In this case, the inference by
:} rule (Eq'U) will be regarded as occurring just ahove the conclusion.

Ny
- ry ” - u Wy ¥, R ") Y A
O N i .I.l:'l. - '\' Wyt W A:‘li‘i:‘f);ff‘nrfJAx -.-('_i?n".')!‘.'

L
[St R G G ST IR,

" """'C E

'.I.,'.D. ASLA

X S O Y R R P N U S O O S R R S I Y I N N U R R U R VR L R UN U R NS N W W RUN U RU R RU WL WL WYYV

v \J
; $
!)

] RS

i" 3
(MR
C?.’l’(‘l!u'dq

v, ':ﬁ benec.
Q

D 4 Qi
, " o A TR
¢: ’ Da(r)

(Eq'V) o

A:U U WA
(V Formation - 1)
(Vz:A)B:U '\{,‘.‘ "

Dy W !"":‘.'

1 g S e

to
S

! l:‘,::?,v::ai‘

z: C) QR

B ———— Is ” 04 ‘l’ i
; () R
: (!

oo "}
z:A ittt

S w e e

» ’ Dl D‘l('t) Lgv .y . v
C:u B:U :;:-;,-:!:3:!

(V Formation 1) s’l::%::'::!
e

(1q’'V) 14 "'l"‘:‘a
Pty e ol !

{

D

)

B (Vz:C)B :U
/i

(Vz:A)B:U
D o

AT

. ’ RO

2 V. N

:I 1 LN ':::. ‘n

[z: 4] "'M ":"‘_:

Dy(x) ®
O

R N

200 0
C-u .'::'.:.c"‘t' "
ol R
o
(X
(V Formation 1) .‘!2"00"“:‘::(‘
(Vz : AY$: U @

_CY NI
A:U no o Pl $.|:§t %
L)
\ Dy | R

72
5 ,$
P4 'y Ay
Lo

-
~
bd
i;‘

.._,__
ry,

\\1‘

2
5 3 iy

B P
X :‘.':‘"“.l“.\
it
\ ::.c'sl)
U
)
)
X ‘
M ’ 2
L]
A \
W
) et . ‘ . : "
S AT IR I R L L N R PR A e e e T T IIAN)

N T N N R T T S R R I ks 2 2N atE a3 a*E A e ate S baD (a8 U8 Vah wah Uad Tk Ved tal s8R OaY Voh 12D ToY ad. 0oy 7, ""'."(‘.’.“.‘(‘

; Rues
8 Nt
X Rt
o
Wt
i,
:-m:'
s
ity
o
! .k.
to |:.'0“::§
i .t,,ﬂ")
Kok
[z : 4] 8 |!O'|."ﬁ
T)l Dg(:‘) : . ;"i
AU C:u ‘ i :.',:‘
(V Formation 1) KA i":i‘
(VIA)CU , "":‘":f
—_— (Eq'V) [.:l',.t"..t‘
\
(Vz : A)B : U SRR
[]
D \] » N3
" R
Vi "l I.I"‘“‘i
’ |:I‘|;Q‘Q:é’|‘z
1 Q'?‘Q'l’%'.':
0 :.c.i‘q‘l‘n \
(z: 4] U
Dy(x) °
OO
4 M:C D R
" —— (Eq") : ntioansy
& ! b
b M:B AU X .'0‘50,
4 ' .)
” (VUi 1) . ‘..,:::::.
e Ar:A .M (Ve AVB '
¢ o e
:l to ﬁ,'gg:q v
e 1 DR
¢ Sy
4 {z: A :‘:"‘T’
'_ Di(2) D, -
o M:C A:U r‘ o
ke (VUi 1) Rt
e Ar:A M (Vz: A)C Y et
o (Eq") V',;v o
d Ar:A M (Ve . AV .
) Dy W
"
) S
ey
::: = ::‘::‘l'o{
’.‘. ¢, ¢
N

If we try to remove an infevence by rule (Eq’U) just above the right premise of (YUi)

.)

I ®

4 N

:l‘ n} .
Q) 8
; R
, 0
»:' l‘.. 1

X ¥
K ‘\;‘ o::‘:
\'C ")

[)
4

) :ul_-&"\._
x, R b J,
RN

®, . N

JC ' ‘ T
B R R T N T M D e i

;.5.;«?:' 'Cv" ";-\';'C' v -\-. CNPCAC N

it noA LD

PLIANUIAN T LY AN T

- e s o

R

- - -

)

! . <y - h r T - » ”, " - - -,
I A e A A N N O A DA O e O e O A D D DO S D i i o) A S SO

4

I R U TR UX TR L T AR Y, R T T TR Y X R PO O TN T S

the best we can do is the transformation which takes

1
[z: A) D;
C:U
D \
' (Eq'V)
M:B
(VU i-1)
Az:A. M (Ve : A)BB
D3
to
1
[z:C])
(Eq")
z: A
Dy Dy
M:B C:u
(VWui-1)

Az:C. M :(Vz:C)B (Kq")

Az:C . M (Vx: A)B
D,

Note that this transformation changes the type of the bound variable in the term to the
left of the colon, and therefore cannot be used with this theorem.

This system is a part of the type theory of Martin-Lof, aad is, in fact, one of the
most important parts; see the references listed under his name. At the same time, the
system has some weaknesses. For example, it is weaker than TAP: the condition A : U
in rule (YUi)prevents inferences corresponding to those by rule (Vi)in TAP because U : U
does not hold.* There are several ways one might extend this system. One might follow
Martin-Lof himsell by introducing more universes. Thus, the type U would beconie Uy,
and a new sequence of types Uy, Ua, ..., U,, ... (finitely or infinitely many) would be
tntroduced with axioms such as U, - Uy, gy and rales such as the following:

A U,,
A: Un+l

Then in rules (Y Formation) and (VU1), U may be replaced by any U,,. But this system
is still weaker than TAP.

1in fact, adding U : U to TAGU makes the system inconsistent; see [CogR6Ga).

-
-1

S bt

i

Io'e

AR AN
N
WY

R

28 :»')
SN

) L]
]

T T T S T KR R S R U L MRy R R R R R U R P VY RN UP U RUMI YUV U RS SRV WP WU R TN

EIRONOR]
o

()
9,5 “,' ¢
RN
L
ol
C':':"'!':.:'
RO
D "l"’l e
4 UK
il
I‘ ’ .:" ’:" 0:,
¢ !‘: 8, !’kl'—.ﬂ
' L
OGN
; ..;-:::’:;.;;::.
N Another way to extend TAGU is to add two more rules: the formation rule ':‘l‘..l’gfn;l:'
\ ."l" St
. \J 0“".' 'Q""
[z :U] Coundition: = does not St
A-U olccur f"ro.c in atn‘y undis- ‘ P
charged assuniption. RN
¢ (Vz:)A: U '."“:I::'".'
: R
! ‘ whuiada!
. and the type assignment rule
[z :U] Condition: = does not
: M:A occur free in any undis-
) ' charged assumption.
IR
. Az:U . M (V2 : U)A.
!
#
- This system is called TAGL in Hindley & Seldin [11S86] §16F, since there U is called
[L. Furthermore, TAP can be interpreted in this system. Nevertheless, the system is still
I not as strong as one might want, since one might wonder why not allow z : U — U as
S the discharged assumption.
K In Chapter 4, we shall consider the theory of constructions, introduced by Co-
J quand [Coq85]). This turns out to be the best available system of this kind. (See
Chapter 4 for further references.)
¥
!
D
»
A
)
)
)
)
"
¥
)
)
N
’
'
4
[
0
!
\
»

| 1 ¢ X ¥ (L " ™ I T ¥ y a 3% 5%] p . W%] Gy { (™ L e
’!‘.‘L-‘!?.'l.;’l Wt ,-’I!A"..‘ el .,q'l.c ol N a4 My, K .,0. LN S 3 WO I M M M ! a2l Al .\‘.“l'- b N, 3

R PO T T TR T R I T R O S R T U A W UV WU WU WU

¥
n'::ag.::

By

Chapter 3

CONSTRUCTIVE LOGIC et

o

A reader who has read this far is now in a position to understand the basic rules and the
metatheory of the theory of constructions. However, there is an important aspect of the
theory of constructions that we have not discussed; it has to do not with the anderlying
rules but rather with its intended interpretation. This interpretation is an important
part of ithe motivation Coquand had in creating the system. Some readers might find
it useful to consider this interpretation hefore proceeding to the theory of constructions
itself. For this reason, the theory of coustructions will be postponed to Chapter 4, and
in this chapter we will consider that interpretation.
The interpretation is what is usnally known as the Curry-Howard isomorphism, or
formulas-as-types idea. The essence of it is that in systems of Lype assignment, types
can be thought of as formulas and terms as proofs or deductions. We will consider this
here for constructive logic, and it is with this that we will begin (in the latter part of this
mtroduction). In Section 3.1, we take up a simple fraginent of the propositional calculus
for constructive logic in which the only logical connective is O (if-then). In Section 3.2,
we explain the essentials of the formulas-as-types idea. For some readers, this may be
enough, and these readers are invited to proceed to Chapter 4 after completing Section
3.2.
For readers who want inore, we consider in Sections 3.3-3.4 the extension of these
ideas to propositional calculus with the additional connectives A (and), Vv (or). and -
(not). Again, many readers may wish to proceed to Chapter 4 after completing Section
3.1
But for those who want stili more, we consider in Sections 3.5-3.6 the extension of
these ideas to predicate logic, both first order logic (Section 3.5) and higher order logic! 26,
(Section 3.6). The systems TAJ and TAT presented in these sections will seem strange A,,,-z:;
to some people, and they are not strictly necessary for using the theory of constructions. NOS I
but they do give sonme useful mformation about much of its motivation and intended
interpretation.

oo, simple type theory.

4
W oW '---*-----c--------.-'\{!'J'vf,q‘
i O Ao N T S AN T W 1V B N YL o e S g

YUY R Y IR TS VNN T OOV Y Y U R N O R O PO T IO S T W W W WY S O OO OO P OO O FOOA) 7y Y

Let us now turn our attention to constructive logic. Most people who have heard
of constructive logic understand that it has sotnething to do with existence proofs. But
in fact, the difference between classical and constructive logic involves more than that.
In classical logic we are only interested in whether or not a proposition is true. In
constructive logic we are interested in whether or not a proposition has a proof, and we

1 do not want to assert its provability without having access to a proof.

This difference can be illustrated with formulas involving implication. A formula
A D B is classically false when A is true and B is falsc; it is true for all other combinations
of truth values for A and 3. Note that its truth value depends only on the truth values
D of A and B; how these truth values are cstablished is classically irrelevant.

In constructive logic, implication is not truth functional; the truth of A O B depends
on much more than the truth values of A and B. In fact, instead of specifying when
{ A D B is true, we need to specify what it means to have a proof of A D B. The standard

coustructive specification is as follows: a proofof A D B is a function [program] which,
¥ given any proof of A as an argument {input], produces a proof of B as a value [output].

Truth in classical logic {at least propositional logic) can be defined by means of truth
tables. In constructive logic, however, we really need to introduce a kind of calculus of
proofs.

H'L

LA T (.5 Dl i
., "2 1‘?3,7‘
- !
/@

1

b

.,
2

' LA
R
) o
TR SVNER

y ST A

K S

d Vz'v ”(
. o

))_-\\:.‘ Qf\(
-‘:.\.',\&A‘

: ‘- At1.? Ba

by

)

b

¥

\

60

3
t

B . : W P, O N O P s ™
‘.‘l'.) .‘l .‘l’.‘l'.’l .‘!‘-"‘v l.- (A l’. % l‘n .u ‘.n 4% I’o 0 .>...o.0'..l.- l‘:‘l’. 2 b

CPUR Y T Y bl

AR R R \ . m‘o l‘.,) N o‘ni‘p 'v ..o '. LA l.'. .* l'l.!) |.'

S b LA U R 47 1t a gt ATt e g U et gl SLAL SR LYY L G e oY LI LAL N S SRl LA LM N Lt
oS f:,& s
-.“_.«‘.
OO
) ®
Es'l"l:;'v::::
Ity
¢t
iy
Ié"!!"o.‘!"‘
) o
0
ol
A
3.1 The D-calculus ..n'.":::.'.s:.:::.
OO A
J 0 l‘t
One way of defining a system of formal logic that scems especially suited to constructive ‘lﬁ:"::.l"(::'lt
logic is to use a natural deduction system of the kind introduced by Jaskowski [Jas34) AVARL
and Gentzen [Gen34] and studied extensively by Prawitz [Pra65] . We have seen the AT
method of writing rules used by Gentzen and Prawitz in Section 2.1, but we have not ” X
really discussed natural deduction systems as such. In a natural deduction system, ':g:‘:
each logical constant is characterized by two rules, one for introducing it and one for .)-‘ '.‘50::;
iminating it. In the ca implication, these t S arc Nows: SO
eliminating it. In the case of uuplication, these two rules are as follows .m‘!z‘!zi
(De) ADD A (o1) (4]
B 4]
ADDB
Rule (D e¢) is also known as modus ponens, and rule (D i) is sometimes called the

deduction theorem.
A formal calculus of propositional logic for the constructive theory of D can he l'_"‘j:?

defined as follows: Wty
\ ‘l:% l:g"
Definition 3.1 (D-formulas) Assume (hat there are (finitely or countably many) g :.ﬁ.:
atomic formulas Ey, ko, ..., k,, Then D-formulas, or formulas are defined as :' S‘:""'
follows: ; X .tt‘
(a) Every atomic formula is a formula; R ERNRRY,
(L) If A and B are formulas, then so is (A D). Unnecessary parentheses will be :\,- OO .
. - 80\
onmitted. Furthermore, i X '|:
MDA ADB ! u‘,'
. . . { .
will e regarded as an abbreviation for AKX \ W
] ®
ALD (AzD (.. (A D B)..)). :\—,i\’l_ il
LR
Definition 3.2 (The formal calculus NA(D)) The formal caleulus NA(D)%is a nat- *':.‘C"‘ﬁ\&;
ural deduction system. Its formulas are D-fortnutas. It has no axioms; its rules are (D \“:._g\f,x
e) and (D 1) given above, MY
SR
Here are some examples of deductions in NA(D), given in table form: ; ; PY
X S
Example 3.1 Fyany A D A e Y
A e
R S
Proof. A
NSO
o N
LA Nyp i RS
2. OADA 1 (D) AN
) . 0
2The name NA(D) means the implication fragment of NA. Here the “N” stands for “natural dedne- 'g'.i:"ﬂ.l")
tion”, while “A” stands for “absolute”, a term used by Curry [Cur6d] to stand for constructive logic N".')l J\- ‘
without negation. (Cuarry, who wis osing “N™ for uegation, called the system TA, but here this woulid "S‘\:\ *'.4‘
be confused with “type assigiment”. The letter “N™ was used in this way by Geatzen {Gen'di).) A L
NN
AN

- r.
4
»
r-
Lt

G

3
]
5

= =

v
a

e

R4
S
xS
o'

~

e RN
Al PU.EV AU PVIV. VN PITE TV DY

" " R R T R PO SR T R T U N
B Bt 5 6e 8" tat. ia abe i cle’a 1 a0 s 1 2% 2" RS O I W WU W Pt 1*a8a’ ata Vot aly®, . iy (] 030" ot N ".'."‘;

AL
e)
m o,
[] e
[080, 0
: A0 ';:::.l‘
l"
0 2 |;"‘
e
. X
]
-: ’\(. ‘v(‘ --'v Y ‘)
L) H >]
Example 3.2 Fna5) AD 3D A :.:::::.:::::.:.:
()
Proof. :::E::::.::‘::: ::
L4 e i
2. BDOA 1 (D) 1 .
0. 0"0 "0,
3. ADBDA 2 (D) _,.lf':l.?"'::ct
‘|“c‘§. $
Example 3.3 Fya5) (AD BDC)D(ADM) D> ADC ::c'::":.::'j&;f
\) ¢
Proof. : ": l.'::;.:::::::“..‘
1. AD[’DC “yl) 1 (A LA
2. AD n llyp 2 ".‘q '1...;“ s,
3
3. A Hyp 3 i
4. BOC 1,3 (De) 1,3
5. B 2,3 (De) 2,3
6. C 4,5 (D¢) 1,2,3
7. ADC 6 (D) 1,2
8. (ADB)DADC 7T (D) 1
9. (ADDBDC)D(ADB)DADC 8 (D1)
Example 3.4 AD B, BDC bnpyy ADC
Proof. '} - 9
R
1. ADB Myp ! .:%': 7
2. BOC Hyp 2 e, :—'
3. A Hyp 3 %‘N :“:(
. \ O
1. B L3 (De) 1,3 o
5. C 2,4 (De¢) 1,2,3 ..
6. ADC 5 (D) 1,2 NG
ARGy
In tree form, the examples are as follows: "::::J-:(¢
Example 3.1/ ;\.'.\‘f g
)-*"r" .r.\' (]
I G N
[A] A,
—_ (D R
A A EAT Ny
Example 3.2°

£

.|
®

#|

85 €at Bat 88F V2" $a%a¥aaic atd a8 A A0 2 0ad .0 0 0 0 1 V2 6.0 f 0 8 8 €4 Fad <

s

e

1_
T e
*

»23F]
S
2224
S

2 ZL2

Example 3.3/

i e a4 n oo

: ’ ? y SR
PEVEL RN (A>E A .

(D¢ (>e) W,

B>C B .
¢ (D(‘) ,'u‘ l‘
_ (Di-3 v
/ N (>) : Q'l.::.
AD(C (:) . 2) L1490
P
) °
ADB)DADC
“->m (oi-1) R
‘ (ADBOC)D(ADB)DADC tduiitetind
LR Y
o

Example 3.4’

'y
2X
w7

:'Ifrt
B

SOl
i
&_
’.
.
'

Pp
L4

;

e
%

) -

ALY
L)
e aya e m e e e
R s O T A O P AT R ST L P PV, AL A

N IR e W e e g BT o~

3.2 Formulas-as-types

If Definition 3.1 is compared with the reinarks inunediately before Definition 1.3 (in Sce-
tion 1.2), it will be observed that the D-formulas are isomorphic to the type symbols used
in defining the basic typed A-terms; each atomic formula E; corresponds to an atomic
tvpe 0;, and if A and B correspond to a and g respectively, then A D B corresponds to
a — 3. 1f Definition 3.2 is compared with Definition 2.3, it should be clear that deduc-
tions in NA(D) are isomorphic to deductions in TA. Now by the subject-construction
theorem, the terms in deductions in TA are isomorphic to the deductions. Hence, we
can think of TA as a calculus of deductions of NA(D), where the types represent the
formulas and the terins represent the deductions. If we make use of Definition 2.3, we
can use basic typed A -terms to represent deductions in NA(D).

This correspondence between typed A-calculus and propositional logic was first no-
ticed by Curry in [CF58] Section 9E, and was later extended independently by a number
of people, including W. A. Howard [I1ow80)]. (For more references, see Hindley & Seldin
[HS86} Discussion 14.46.) The correspondence is usually called formulas-as-types iso-
morphism or the Curry-Howard isomorphism.

As we noted after Definition 2.3, a S-reduction step for deductions in TA is similar
to the D-reduction step of Prawitz [I’ra65]. In fact, under the formulas-as-types isomor-
phism, the two types of reduction steps correspond exactly, the proof of Theorem 2.2
(1.e., the proof of 'Theorem 1.2) together with the isomorphisin proves Prawitz’s result
for NA(D), namecly that every deduction can be reduced to a normal form. Here, a
norial form means that nowhere in the deduction is the conclusion of an inference by
(D i) the major (left) premise for an inference by (D ¢).

This isomorphism can also be used to show that certain formulas are not provable
in NA(D). Let us consider as an example the formula known as Peirce’s law:

((ADDB)YD>A)D A

It is not hard 1o see that this formula is classically true, for it is only necessary to
consider what assigmment of truth values could make it false. This would require an
assignment that makes A false and (A D 13) D A true. Now if A is false and (A D B)
D A s true, then A D B must also be false, huat this is impossible if A is false. Thus,
Perice’s faw is always assigned the value true by a truth table. Nevertheless, it is not
constructively vahd.

Theorem 3.1 The formula scheme (A D 1) D A) DO A is notl provable in N A(D).

Proof I this formula were provable, it would be the conclusion of a normal deduction in
which every assumption is discharged. By the formulas-as-types isomorphism, it would

follow that for any two types o and 3, there is a closed term A in normal form such
that

Fra M (0 —) —a)—a.

It (ollows that A - ({0« —=) -~ a) - a s the conclusion of a deduction D i normal
forme By the subject-construction theorem, AL must have the form Az N for some term

6

AN ST S gV oV gVA o7 B o0 gi) g rath yl)

L
o ".-‘ , “..‘ N ~ ~ '_-"’.,'.‘ > ‘f ™y *-F\'.."-',/-\,-"A o ._-’.\.._'.."‘ '-"-"‘(‘ " . el PR .‘. TR **f-.’ {.lf\f.vr\' '.‘\
£V, - A%, WY W . Pt) A . 3 . T4 Wy B S\ S 5 A ad b o LR, A ol B

‘F“ o:;.\'..
a0
Lo)
'.x -
AL
Wi el
4 ®

Coialy ey
L] .. ' () 1
o

J'.‘ , 2
S
» ®

P
'
1}"
-
> 5

oA,
’
T
Ly ,{
a4y
7
o

R ;{',

-

D
v

1

o

”

A YL WIS

R R RT M UK

N for which FV(N) C {z}, and D must have the form

1
[z:(a— B)—a]
Dy
N«

(—~i-1)
Az N : ([— f)— a) —-a.

Since it 1s sufficient to prove that there exist types a and 3 for which this is impossible,
there is no loss of generality in assuming that « is atomic, and thus that there is no
inference by (— 1) in the left branch of D,. Since the only undischarged assumption
inDyisz: (a — B) — a, it follows that this assumption occurs at the top of the left
branch of D,. Hence, D; has the following form, where N is z:

z: (o0 — f)—a
D,
rz:{a—=f)—a Pia—p

(=)

zP : «a

Note that FV(P) C {z}. Now consider the structure of Dy: if the lcft branch had no in-
ference by (— i), then the left branch would begin with the assumption z : (o — 8) — a
and would end with P : @ — §, which is impossible since o is assumed to he atomic. It
follows that Dy has the following form, where P is Ay.Q:

2
zi{a—)=, [y:a]
Dy
Q:7

Ay Qo —p3

[ence, D3 is a normal deduction of
zi(a--f)—=a, yia Fpa Q)3

where FV(Q) C {z,y}. Since we can assumine without loss of gencrality that 5 as well as
a is atomie, this is clearly impossible. ®

Corvollary 3.1.1 If A and B arc alonuc formulus, then

Wnacs) ((AD B)D A)D A

A S AR, [y LRI A '..\'_ AT AN S A L N

o

Cs
5

%
R

.

-

W
'.. ?7»' p

?‘.

!

Wl'-"i"n’;’n'

vs‘v‘

X

1.{?-}
2

.,_‘,k_?
o 55
Ny

.,
@

% ;‘; :
W

R

VA AN

'Y
XA

N

>
A
O
oy
<y

nAw -
]
.
»
i
4

LA
.
Pd

S
211

-
.

|
g
'
R
a ."-"4
e

RN
A
RN
’ l’ ‘.

) N ?

o
o

r"‘
%t
¥

P A i
.'t‘li

a

]

. |

¥

)

a

,
S <
5 '."r(
Lo, o0 W Y

%
‘1 Z

4 \\".
%y "y
".1".{

4
[d

x qw -
T IR
o By

v
1'1{?1.‘.

Lot

g

FER AN AR

R

R U ¥ A Hhgt Wi

o v 4 "

N N e T e SN O SRR g P ,- S Sy

= ¥, ‘0 208 21,2 0.0° .k V.0 28 0 Vol 7.0 walk *ad V.

a

3.3 Adding A,V, and L (for)

Let us now turn to the full propos.tional calculus. In addition to D (implication), we
need A (and), V (or), and = (not). In constructive logic, ~ is usually defined in terms
of L (absurdity), and we shall follow this practice here.

Definition 3.3 (Propositional formulas) Assume that, as in Definition 3.1, we have
finitely or countably many given atomic formulas Fy, ..., Fy,, ...

. Propositional formulas
are then defined as follows:
(a) a given atomic formula E; is an (atomic) formula;

{b) L is an (atomic) formula; and
(c) if A and B are formulas, then so are (A D I3), (AA B), and (AV B).

Notation Unnccessary parentheses will be omitted.
smaller scope than D. The abbreviation

The infixes A and Vv will have

—A

will be used for
ADL.

The elimination and introduction rules postulated for A and V are as follows:

(AC) AN AND
A, B
(A1) A 3
AND
(ve) (Al (1)
Av i3 «
C
(Vi) A]
AV, AV

Of these rules, (ve) will probably look least familiar, It is casy to understand if we
think of proof by cases: if case A or case I3 holds, and if C can bhe proved in each case,
then ¢ must be provable.

[HH

o 4 I'I'-I'

RTINS PRI \.,

.«::a..?‘é

~$ \ J
" *\ O'.'.:::::

I
MY
B
i)

I‘Q (Y .
p
“! ‘!;

"' '
'0 "...'

..i.:"’i.t
] ®
=
5".‘}2:.-3'1

) '0

~h$.“¢4
. 1:::.l.v..‘:’,
nY Ly &b
g?n. "‘
Sy
o O)
: "'I"':.::
(RN ﬂ~
Vg '.'.::'!0.
.

w "‘“

_',‘\-

The elimination and introduction rules for negation, which are derived from those
for implication, are as follows:

(me) -4 A (=) (4]
L L
~A

There is one additional rule used with negation: it is as follows:

Ly L

A

It expresses the fact that anything follows from a contradiction, a fact accepted by most
constructivists. (For those constructivists who do not accept this principle, there is the
minimal calculus, which is the system NJ without this rule. We will not bother with the
minimal calculus here.)

This leads us to the following definition:

Definition 3.4 (The formal calculus NJ) The formal calculus NJ is a natural de-
duction system. Its formulas are the propositional formulas of Definition 3.3. It has no
axioms. Its rules are (D ¢), (D i), (Ae), (A1), (Ve), (Vi), and (L j).

Remark Many people may be surprised that rule (-i) is constructively valid, since it is
often said that constructivists object to proof by contradiction. In fact, the form of proof
by contradiction to which constructivists object is not (—i), but rather the following rule:

(Ld) [~4]
L

A

This rule is not valid in NJ; in fact, if it is added to NJ, the result is classical logic.

It turns out that it is possible to modify Definition 3.4 somewhat:
Lemma 3.1 [f rule (L)) is postulaled in the form
1

I,

where F 1s one of the given atomae formulas, then the rule holds in its full generality as
a dertved rule.

BT R R R L [T Ll o T € O S S AN g T € N

w5 Oy
8
Fa

71®

AN
.
P 4

x x VW

.

oA
7
iy
'.J
I

'
£ .
-«

[d

‘lr:[

- %y Ay Xy

g 1?,'
by '\‘\ 7‘. , !

y &
"I.'d' P
M
&

L}

L4
.
.
T
3

w « -'.. “- . ‘; 5,
SR
’r“r"r': he

o ;,"" LA

5
»

20
XA

RO R RA RN ARG AR LT ASURULSORTS XU A Yol LA W ANANAN AT R R

Proof Since the case of the rule in which A is L is trivial, it is sufficient to prove the
rule for compound fornutlas A on the assumption that it holds for shorter formulas. The
three cascs (note that — is taken care of by the case for D) are taken care of by the
following three deductions:

1)
—_— (L))

7 o
ey (O)

L . 1)
— (L)) — (L))
A B _
AADB (i)

1)
— (L))

A .
avy VD

—

3 ..\‘ l‘

: bRt
\) O ||I]
A OO
2‘ 'l."t
a..‘o.:"

[]

O
O}
STk
i

p s, o0,

[o
STl g,
et
by ‘q.":::':'
d ,I"t.':l,l'n‘

Apatyily
() ':5:‘%\0‘; i
SRR

P

- e

o

B g "Rl aar)

e e

‘l-’.‘. OO OCAIMTAY X l'.‘n O.o‘.-u

A A AN AT UN LA AT LAY LS 'Y W LISTV ™ LW va 8% 8Vs Y, sy B¢, Yo Ve 89 078, 040 8 G0 g b g tTa Ry 0y S gt

3.4 Extension of formulas-as-types

In order to extend the formulas-as-types isomorphisin of Section 2 to NJ, it is most
natural to compare A, V, and L to X, +, and void. This leads us to consider the
system extended TA of the remark at the end of Scction 2.1. But this system does
not correspond exactly to NJ. Instead it corresponds to a system obtained from NJ by
replacing the rules (Ac), (Al), (Ve), and (Vi) by the following axiom schemes:

(1) ADDBDAADL,

(2) AADBD A

3) AABDOD;

(4) ADAVE,

(5) BDAVE;

and

(6) AVBDO(ADC)D(BDC)DC.
It should be clear that, in the presence of the rules (D ¢) and (D 1), these six axiom
schemes are cquivalent to the indicated rules,

Note that by Lemrma 3.1, rule (1L j) is equivalent to the scheme

(7) 1Dk,
where F is an atomic formula distinct from L. This scheme would appear not to
correspond to any term in extended TA, since such a terin would have to be assigned the
type void — @ for an atomic type 0. If there is some object M in the type 6, then we can
apply (— 1) with vacuous discharge of the assumption 2 : void to obtain the conclusion
Az M : void —@. Bul we cannot guarantee that there is an object A to which @ is
assigned for each atomic type 0; indeed, if there were such a ternn for each atomic type,
this would correspond to the provability of each atomic formula. So instead, we will add
to extended TA a constant Ly for each atomic type 0 distinct from void, and we will
assuime the axiom

(L js) Lo: void — 0.

Stuce these constants Ly do not occur at the beginming of any redexes, they do not affeet
the normalization result. Heae , these axioms cannot be used to produce closed terms
in any of the 4. Furthermore, by the prool of Lemma 3.1, it should be clear that for
each type o there is o closed terim Ly of type void — a.

It s not diflicult vo shiow that Theorem 3.1 and Corollary 3.1.4 apply to NJ. The
normalization theorem for extended 'TA plus the constants Ly and axioms (1 ja) can
be used to prove that NJ s, indeed, ditlerent from elassical logic in one of its most
iiportant aspects.

Theorem 3.2 For at least one formula A
Yasg AV A
Proof Let A be an atomiic formula, Let D be a proof (e, a deduetion with no wndis-

charged assumptions) whose conclusion s AV =0 Ao instance of axionn selictae (6)

(1]

L

" " e A -y - o R T L)
Al o ! -:,m .l. .o e O n‘ .,.$— o 'xm"" Y

ST SR

LONOIK
OOt
ity
DD SN

) e
4. l.." g
R '}::

IO N |
rtehlipelinti
[XCRRRD .
R,

e s
() Orx (A8
A

‘

b %

. ey
LA

X,
4

!2’1.1 l‘
LA
LT
) -
st
).

ey

-
oy

e

5

g
I
2

B3R 2

G
-
-
5
&

Pl ok had
“
2@

C
-
-
‘.‘.‘.-‘

=
-

Z.Z,

3“4"
=

-

ool

R+
. »
‘o

y .T' Ed
P -'lf

[}
[
AT
e

5
ot r—l e

»
'z
v
AL

I
-";
o
o
5N

AL LML L

AV-AD(ADA)D(mAD A)D A

Using this, D, Example 3.1, and two inferences by (D e), we get a proof of
(~AD A)D A,
which is, whlien abbreviations are removed,
((ADL)YD A)D A

Since both A and L are atomic formulas, this is unprovable by Corollary 3.1.1.°m

Lhe reduction and normalization procedure used hiere for NI, which is based on extended TA plus
(1 de), is not the nsual normatization procedure for NI in prool theory. For the usual procedure, see
Prawns [Pracn] Chapter 1V,

T

r ; ; Y LB Y x « " " 7 TR s O 0N, O X
ASAACAENCAGN ."‘s" ¢ X Kottt e 5! ""'- y (5h ‘& W "\' T W My otale iyo

AL Ll el Chi) o « f

RO
et
[]

'" "l N
NS '.‘.lo'::o".':'f

)
{
oYy »

WA
R
R
A UM
» [J
OO
i
|‘. t'::l'\ I‘f,
I.' l‘.) ." 3
o *"A':'c"‘
\ .'u'l"

\
Lat)]

"t 1@
'l'\'ﬂ}ll ':q
! ’
l" |
y

-
“

RS0

-t
r

Veateatn oty

S 0 ta® 0t 0eY et it Nat (3% fa" €yt U127 Ha% jfa? §at 2% dat fo¥ dMa¥ Bat Na? §a% he® 02 2% $a® hav B0 §i0 gat Bat ot Y Fat 020 @0 90010 ¢10 GaV BB GV 0.9 00 2t Qb Bt hoh

e

= c':::': ..‘
..-‘
.n‘ ':"'

.
)
i ;
0o ,r’ y
3 ! I' J
o{":"
X ") ‘:
¥
AN
'
) " .‘. ()
! : : - OO0
; 3.5 First order quantificrs ;.:.’:‘3"::.:,:.:,
! DO
l“ OVOOO
) . . . S \ y
" It is standard in logic Lo proceed from propositional logic to first order logic. In first :.::s:::q.l:d::
! order logic, universal and existential quantifiers are present, and are assumed to operate RO
over one fundamental domain of individuals; it is nol possible to quantily over sets of .
X individuals or functions whose arguinents and values are individuals. \;, .’\, A) Q
: To take an example from elementary arithmetic, suppose that the fundamental do-
¥ C .
N main is the set of natural numbers, and suppose that our language has terms representing 'rvfw
the natural numbers and also addition and multiplication (which, for now, will be de- g
noted by their usual notation in algebra). Suppose also that formulas include equations
between expressions denoting numbers. ‘Then a forimula stating that z is an even number
. is ';‘.
: (By)(z = 2y), .t r l'u."
; where 2 is the term representing the number 2. A formula stating that » < y is
L}
Bu)(~ru=0Ay==z+u),
where 0 represcnts the number 0. (Recall that in the set of natural numbers, there are
no negative numbers, so that if a number is dillerent from 0 it is positive.) A formula
which says that r divides evenly into y is
Bu)(~u=0Ay = zu).
’ Finally, a forinula which says that 0 is an identity for addition is
3
Vz)(z =z + 0).
: In giving these examples, 1 assumed that there is a term representing cach natural
! number. In fact, such terms are easy to construct: begin with an individual constant 0
and a function symbol & with one argument. Then the term a representing the natural
N number n is
) o(o(...(00)..)
where there are » occurrences of o.
) If we analyze the structure of the formulas in these examples, we see that we have
an individual constant 0, individual variables . y, u. ..., funclion symbols & of one
; argument and + and - (multiplication) of two arguients, a predicate symbol = of Lwo
arguments, the logical conneciives of propositional logic, and the universal and existen-
tial quantifiers. ‘This leads us Lo the following formal definition:
. Dcfinition 3.5 (First order term aud formula) Assume that we have conntably
many individual variables z, y, z, z;, cte., finitely or countably wany mdividual con-
stants ¢y, ¢q,..., finitely or countably many function symbols wy.wa, ... and finitely or
-3 countably many predicate symbols @y, ¢y, ..., where cach function symbol and predi-
| cate symbol has associated with it a natural munber called s degroe, which represems
! its number of arguments. Then terms are defined as follows:
!
Tl
» } ™ .|'|
N
¥ ‘ %
i " ‘ .‘s l:q
J (
1 0.‘. ::0"
, L
l.!\‘l I\"‘IN
AN
AN R
-~ . - L RN NN
R N A T TR v T T v P g P el o T T R YT T T T TR T TR e T R g

-
.

P

v e
-
B I g

-
LN
o T

-
-

Selaa

AR AR

]
¥
1'{'1.2‘0.'.‘1.. XASAN

8,

LG RO

O TR IR

MPYCITYCATTON N POMY YOO YO TON KO0 U TR OR PO U RO X I RO T A A R R W ooy

() individual constants and individual variables arc terins; and
(b) if w is a function symbol of degree m, and if ¢, ..
is a tern.

First order formulas are now defined as follows:

s Ly are terms, then w(ty, ..., t,,)

(¢) if ¢ 1s a predicate symbol of degree m and il ¢, ..
1s an atomie foriula;

1y are terms, then (2, ..., t,,)

(d) L is an atomic formula;

(e) if A and {3 are formulas, then so are (AA), (AV B), and (A D 13); and

(f) if Ais a formula and z an individual variable, then (Vz)A and (3z)A are formulas.
Parentheses will be oniitted as usual. An occurrence of an individual variable is said to

be bound if it is within the scope of a universal or existential quantifier; otherwise it is
free.

Notes (1) Both function symbols and predicate symbols may have degree 0. A function
symbol of degree 0 is just an individual constant; individual constants are listed sepa-
rately because it is customary to do so. A predicate symbol of degree 0 is an atomic
formula. One example of such an atomic formula is L.

(2) Here L is, in effect, taken to be a predicate symbol of degree 0. But this is not
necessary in all first order systems. For example, in first order arithmetic, L is often
defined to be the atomic formula 0 = o0, which is @ = 1. What is important is that 1
be an alomic formula.

Definition 3.6 (The formal calculus NJ*) The formal calculus NJ* is a natural de-
duction system. Its formulas are the first order formulas of Definition 3.5.
axioms, s rules are the rules of NJ and, in addition, the following;

It has no

(Ve) (Va) A(z) Condition: is a term.,
A1)
(Vi) Alx) Condilion: » does not
—_— occur free in any undis-
(Va)A(x) charged assumption.
(3e) [A(w)] Condition: y does not oc-
(32)A(z) T ('ur.froc in ¢’ or in any
undischarged assumption.
-
(3) A(t) Condtlion: 1 is a teri,

-4
(354

- .- ~ r*-*—
4% #%s W

- PR T T R R S
ARG IOALSCDON “I **“('w‘ " '(‘ \?.' -f' Wiy Wy,

U YU N

e Y
O AR VLS Gl AR,

n|‘ by ‘!.’.l
!
'l' O O'|
R
- 7 . -
l:o ;:"v::
e
=/
pAnTIN
'ni’\ 'h¢ i
P
o
A
]
y (
: "0':?:;,{
KNV NG
WO v
':"?:vi.::
[]
AT
f: ;:,t.;:',c::’
'0‘ O "0"?&
L0
st

¢
oot

4,
Z
-

2

% 3

PR]
iy
Y

y
LAY
b7

5
by

]

-, "

&
*.X

3

'
[}

”
',

.'
-
"
-

L
‘-‘F'\ \‘i

P
W 8 PV

T ATAT o o mn ¥ a5) ¥4

The condition on the variable z in rule (Vi) guarantees that no assumption is made
about z above the inference. Rule (3e) formalizes the argument: there is an z such that
A(z); let y be a thing such that A(y); conclusion €' (where y does not occur free in
C). See the discussion after Definition 2.17. ‘The condition on y is obviously necessary
for this rule. Variables such as z in (Vi) and y in (3¢) arc called cigenvariables or
characleristic variables.

At first glance it might appear that the natural way to extend the formulas-as-types
isomorphism to NJ* is to use the system 'TAP. But this will not work. For in TAP, only
types (corresponding to forinulas) can he substituted for the (Lype) variables, whereas
m NJ* we must be able to substitute terms for the quantified variables. Instead, we
will need to take a type to represent (he fundamental domain of quantification, and
introduce quantification over that type. We will also need to modify the definition of
type to correspond to Definition 3.5.

Thus, suppose one of the atomic Lypes is J, the type of individuals. For each atoinic
constant e, we will want to assume

¢l

For cach function symbol w of degree m, we will want Lo asswine
wil—J— =)
where there are m 4 1 occurrences of J. ‘Then it will follow for each closed term ¢ that
1)

Furthermore, if ¢ is a term with free variables 2, ... 2y, then it will follow (hat.

TR U R I I I

Next, we need to generalize the definition of atomic type: for cach predicate symbol
of degree m, and for any terms £y, ..., by, we need that @y, ... Ly) is a type. We also
assunie void 1s an atomie type, and form as usual types a x 4, oo+ 3, and o — 3. Also.
we need that if » is a variable and « is a type, then (Va2 3)ev and (3 Da are types.

It remains to specily the terms in (Ve Do and (32 2). For the type (Vo 2 Da,
we want a function which, when applied to any ohject t of type J, produces a value in
{t/r]o. Note that as in TAG the type of this function depends on its argnuent and not
Just on the type of its argmnent. For (3 : e, we want to have pairs (¢ M) such that
! has type Joand AL has type [t/r]a. These are just the kind of pairs we were unable
to represent in the Ly pe structures of Section 1.1, We shall have more to say about this
later,

The above conventions, although stated as in previous definitions, can also he oh.
tained by usitg the machinery of 'TA or TAG. What is necessary is some type to wlhich
thie above types belong, such as the type U of Section 2.8 Sinece the above types rep-
resent propositions, this new type will be called Prop. We have the following, formal
definmtion:

PRGN AL A

Y PUYNX I XA 2 AR RN VR UY U '. gt g
A

W0
i

’- A
’
e 0
h A ¢
W

X

3P4 A"y X

{ ANt
.g‘:'.".' !
: 2« c"h NS
[[]

DA

N

‘:‘3'5‘.5::":5.‘

[|'

T
Hahaunu.

ey

S Aav ta” (gt iat g ket

PRSES

™ e i

e -

s

o

&
-

[ox Y

»

o AR
V- We)

R TR R R O I OO AR W W R N RS W O R R A T R R X O RK

Definition 3.7 (TAJ types) The types of the systemn ‘TAJ are defined as follows:
(a) J and Prop are (atomic) types; and

(b) if & and 3 are types, then so is (o« — B). The special types J" and Prop™ for n > 0
are defined as follows (by induction on n):

=, It =g
Prop’ = Prop, Prop"t! = J — Prop”.

Definition 3.8 (TAJ terms) The ferms of TAJ are defined from countably many term
variables x,, rs,. , and the lerm conslanls ey, e, .. y P12y s
void, D, D, fst, snd, inl, inr, case, proj,, and, L, as follows:

oy Ty Ly W,We, ...

(a) every term variable and term constant is a term;
(b) if M, N, A, and B are terms, so are (MN),(A x B), (A+ B), and (A — B); and
(c)if x is a term variable and A and M are terms, then (Az:A . M), (Az:) . M), (Vz : 1) 4,

and (32 : J)A are terms. With cach constant w; and g; is associated a natural number
dg(w;) or dg(;), called the degree of the constant in question.

Definition 3.9 (Reduction for TAJ terms) Reduction for 'TAJ terms is defined by
the following table of redexes and contracta:

Redex Contractun
(3) (Ar: ALMYN [N/z)M
(fst) fstAB(DABMN) M
(snd) snd AB(DABMN) N
(case;) caseAB(nIABMYCICG M
(cases) caseAB(ntABM)YCFG GM
(proj) proj,ACZ(DJAMN) ZMN

Definition 3.10 (The type assignment system TAJ) The system TAJ is a natu-
ral deduction system. Its formulas are all expressions of the form

A oA,
where M s a term and A is either a term or a type. The artoms are as follows:
(1) L J,
(wi) wi ™M, m = dglw;).

(i) @i : Prop™,
for each and
(void) void : Prop

The rules of TA) come in two groups:

m = dg(w;).

073,080 Gl B}

PRI XX I
|9 J

”

(XM 8
e
N
WS, ‘
NS,
:." o
0
Ry
DA
= Q'.
ALY ¥
W
() %ﬂ\.’
') 'f:
.:'L ';::’A‘I'ié
* », .»1..
20 ‘f:; }.
I o !
2\ ('
el
R
®

-
r

.

< A
4

*y

.v'}; Ty
.
A
n'hn'“on“

SR QAT
BN A
NN Y
':\:::\:.\'f_\
MUSCNE RS,

B T S B P L TS LYY N G I S R N AL 9 A e P R A WUTA PR A TR N L e B
e e T e s e N L L LR R S AR LR A (o

(a5 A o 8

A GE LD GG AT O S A oy O el A A AL AN A D AR AT B 070 Y B 0 0 a0 Do d ot D o' L aA 2% 1a%0 a%g o8) a4 “"'L"l; ;

Rules of type formation:

(x Formation) A : Prop B : Prop
AXx DB :Prop
(+ Formation) A : Prop B : Prop
A+ B :Prop
(— Formation) A : Prop B3 : Prop
A— 13 :Prop
(VJFormation) [z :d] Condition: r does not
A : Prop occur free in any undis-
) charged assumption.
(Vz : J)A : Prop
(3JFormation) [z :J] Condition: z does not
A Prop occur free in any undis-
charged assumption.
(Jz: D)A : Prop

Rules of type assignmenl:

(x e) M:AxI3 A:Prop I}:Prop
fstABM : A
(x e)e M:AxDB A:Prop DB :Prop

snd ABM : 3

(x 1) AM:A N:B A:Prop H:Prop
DABMN :Ax B

-1
-t

O™ 7 N A5 AV e R -"F')‘)'\J\—'J'\ ¥ R YIOUR MO b N AN A AT R AT SRR FATSE

A
f\n
b
L J
¥
R (
x
[]
Q}‘ POt
AN

N o \"
"\'(f:: ."\':"-
N
N
f.*"t"n:(-'

{e‘, I
AP A
ey ::':

K
"y

- - -

NUN U KW K N A P PN AR T ARMEN S W S S M T ROV T P W PNV W W AT PR e XA R L XA VTN ohn va',‘;.q,

&
LY LY
(+¢) ;:3. %"#
[v: Bl AN
M:A+DB MA.N:C P:C A:Prop B:Prop C:Prop .

case ABMC(Az:A . NYOy:B . P) : C 5;,«2*

Condition: z and y do not :', '\?'~
occur free in M, A, B,C, or t’::l b
. . ~ A0 |';
in any undischarged assump- ROE

tion; z does not occur free in 9
) o », §.1
P, and y does not occur free ‘E:“:':::::sv:‘
in V. RO
{(+ M M:A A:Prop B:Prop g::!::::::b:::f
tiady
inlABM : A+ B ;':::':‘:;“.;f
(+ 1)2 N:B A:Prop B :Prop !1'.'?,.;5.24"
intABN : A+ B :“.‘- o
i " {
! "
(— o) M:A—B N:a Condition: A and B are ot o
MN - I3 both terms or both types. :\mﬁ o A
'y
: . N Ay
(— 1), [z: A] Condition: z does not oc- :.;:.(':&: \
M- I3 A : Prop cur frec in A, B, or in any :‘y:j-';\).'n A
undischarged assumption, :.;'_:—-tf“ 4
. A ALY ;
\r A M:-A—B and A is a term. }‘lj:'{li'.?-
. ,) o
(— 1), [¢: A] Condition: r does not oc- SRR
MR cur free in A, B, or in any 1‘::(‘!'. ey ‘J;
) ; : At AN
undischarged assumnption, —‘.-‘;_n‘\ :
AiA M:A—=D and A and B are types. TRt

(L jp;) Foreachs,
Niy:J Naod o0 N,yoJ Condition: m = dg(y;).

L psNy Ny Ny, cvoid — o N\Ny N,

(VJe) M (Vz: D)4 N

MN :[N/x]A

. . . o . ;o P e p A
T e AN A AT IRl e N O Lol 's\-"‘-"'\ A T L SRR S ST T o L AR s Yy
] M . AN » » DaedE e JE L) & Ay A - o - & & x » " - A . s .

TR TN R T O R T R o o e TR R Ty TN Y P)
) O

-~ \

A
: (Vi) [z)] Condition: x does not ::s":."‘.b:“‘
. M:A o-cur free in any undis- "::::.":.:’:
:] charged assumption. ﬁ:;!:fgg. Y
Az . M (Vz: A]
At nyh
(3Je) \
[z:Jy: A] [:]]
M:(3z:1))A N:C A:Prop C :Prop
proj(Az:d . AYC(Az) . ApA . NM : C
' Condition: z and y do not
'

N occur free in C, M, or
in any undischarged assump-
tions, and y does not occur

. free in A,

(3J4i) fx:J] Condition: r does not
1 M:J N:[M/z]A A : Prop occur free in A"I or N
: or in any undischarged
" Dy(Az:) . AYMN : (3r - A assnmption.
| (=, M:A Condition: N is obtained
. N A from M .I)y changes of
) hound variables.
}
! (= M:A Condition: I3 is obtained

M-I from A by changes of

bound variables,

Notes (1) As we have seen, we have in ‘TAT functions the type of whose values depend
on the arguments as well as the types of the arguments, and we also have pairs in which
the type of the second clement depends on the first elemient as well as onits type This
means that the type structures of Section 1.1 are not models of ‘TAJ (just as they are
; not madels of TAP). It is possible to construct a kind of semantics for TAJ as follows: J
is interpreted as the set of all closed terms of NJ*; Prop is interpreted as the set of closed
formulas of NJ*; the function types built up from J and Prop using — are interpreted
using terms and formulas in which free variables occur; and terms assigned as types
teris in Prop are interpreted as deductions or, if they are elosed, as proofs. Any other
model for ‘TAJ is likely to be too complicated to provide most people with any insight. TR, \.j.
N\ (2) ‘The presence of Are:d. A in the conclusion of rules (3e) and (3Ji) may seem a '*::«‘.:}* \"\.’t
bit strange. M is there merely Lo supply A as an argmunent, and therefore it might seemn s

-1
-1
2
g
Pd

-,
» :;
~
5}"
-

Sty o)
» -f‘&;. ~,
A
o
k3 l'f,‘?

NN
>
&;;\\‘.- L g -
I)
D Wt
i o X
["
§ "m, “-*'.)!l
! . o R A A R - R R R " R e r A T A kMR M e M A A .--.w.g-.
BN A DA A DN O o O N DN O T T N o O X Mﬂﬁﬁﬂvﬁﬁ:ﬁﬁﬁ&iaﬁ&&-ﬁ»%&i‘ﬁ‘;ﬁh O

%

[

5,

g peg g

more appropriate to use simply A. But if we did that, then £ would occur free in the
couclusion whenever it occurs free in A, which is contrary to the spirit of the system.
The only obvious alternative is to postulate Dy, 4 and Projj, 4 for each formula A4, but
in this case whether or not a termi Dy,4 is defined depends on whether or not there
is a deduction whose conclusion is A : Prop, and this is also contrary to the spirit of
the system. 'The (proj) contraction of Deflinition 3.9 shows that it makes no difference
whether A or Az:J . A is used as an argument here, since it disappears in the contraction.

The systein TAJ contains the systemn NJ* in an important sense, for we can easily
write A, V, D, and L instead of x, +, —, and void (provided, of course, that the
constant L of ‘TAJ is renamed). The system NJ* has been given here as a separate
system because it is traditional to do so. However, from herc on, systems of logic will

only be presented with the systems of type assignment with which they are associated
by the formulas-as-types isomorphism.

e Y !VE“'C;\&W :'\-',.'-_

IRIR
.l';.!'. |'|.t'.'

Wee
u"
{2

i
"I."'iz:'l b
i,o.l' ..0::
ittty

S,
-.';'!'-:
o

Z

&
-

T2

T d

P

A X

z &L
E

' T,

%
:f‘ &L
STINA

R
P ""'“fgq
b
OOrN
ALY
e :“‘?1

‘.l (l

Al
A
X
o ? :
0’41' o

':‘;n‘i’.
FEES et
Ay
e
R
PR

Vs

o NS
B
Y
Y,

@

“-.J’ﬁz
B
5
(<€

Ay

3%

-

2

“n
LS
]

. N ae be b e
R R LS R A L S TN O YO RO YO PO Y X N T 109008 8% Sah Ba? 0a® fa? . Bat 5.0 Ma? oV 0000 Bat Ba® Aa® 0071025 0a® e, Y

R R o R
K

Q'

o
)

R

\
0

3
? 3.6 The full theory of types
¢
N . .
a: An examination of TAJ raises a question: why quantify only over the type J7 Why not
. quantify over other types, such as Prop? In fact, why not quantify over all of the TAJ
types of Definition 3.77 There is, in fact, no reason at all for not quantifying over all

.;| TAJ types, and a logic based on this idea was proposed as long ago as 1940 by Church
" [Chu40]. A version of this system will now be presented as a system of type assignment.
o Clearly the main difference between 'TAJ and the system that will be defiued here

is that instead of only (Vz : J) and (i : J), we will now have (Ve @ a) and (3z : a) for
every TAJ type a. 1t should be clear how to obtain the more general quantifier rules
required here from those of TAJ.

o However, there is another important diflerence: one of the TAJ types is Prop, and

o since we can quantify over Prop, we can interpret TAI” in this new systein. This means
§ that we can use the definitions of Section 2.4 to reduce the number of primitives.
‘" The new system will be called TAT.

- The types of TAT will be those of TAJ (Delinition 3.7).

x Decfinition 3.11 (TAT terms) The lcrns of TAT are defined from countably
| i many lerm varialbes z;,zp,...,1,,..., and the ferm conslanls e;, ca. ..., wi,wa, ...,
& P1,92,.- ., as follows;

& (a) every term variable and term constant is a term;

3 (b) if M and N, are terms, so are (MN) and (M — N); and

(¢) if 1s a term variable, A and M are terins, and o is a type, then (Az:A . Af). ‘:

. (Az:x . M), and (Vz : A) are terms. With each constant w, and ¢, is associated a natu- .

. ral number dg(w;) or dg(p;), called the degree of the constant in question. .:

, -
X Reduction for 'TAT terms is defined using the g-redexes of Definition 3.9. N
k. Pl

> Definition 3.12 (The type assignment system TAT) ‘The system TAT is a natn-
e ral deduction system. Its formulas are all expressions of the form

&

.

Al A

-

: where A s a term and A is either a termn oF a type. Fhe azioms are (¢;), (w,), and

- t@i) from Definition 3.10 for each i The rules of tupe formation are (- - Formation) of

v Definition 310 and

. (Vo Formation) {2 ;0] Condition: r does not

‘; A Prop occur free any unidis

- charged assmnption. aud
X (Vr:ia)A: Prop M Isalype

S
S NS
o The rules of type assignmend are (=), (< 1), (), and (7)) of Defintion 310 el '\.ix
o ~
N pl)

4
b

(]

e e B A At at aT e A A A AT AL AT TN
KA SR A W e L S e A e K X AN Lot atnrin s ala s

N

I O O R N O N O o I N IV LT U N LY U UW U VLA OV ST AGNONg O TP I I I AW N "‘::;‘;:;
i B
' e
| ‘!!l‘
;)
DOACAOAN
y A
LN
X §
s %‘_. o
;‘ ::1'{- "
: umiudt
’) ®
O
y Wty
: for each type a, ‘::::":..;::.:
' GG
’ (Vae) M :(Vz:a)A N:a bt .:.:::::::::
U
OO
. MN :[nfr]A QNN
, . S e
(Vi) x:al Condition: z does not _r{-_:;;_'.r"
; ; SNBSS
~ M: A occur free in any undis- ":J:_)::J]‘:
{ charged assumption. .;j‘},_{ .(5;
Rt
i Ara. M (Vr:a)A ,;-:i-:;"{
' e
Y W _fFals |
' Remark As in TAJ, the type structures of Section 1.1 are not models of TAT. There o N
, are models of the original (classical) version of Church’s type theory formed by inter- fﬂ‘.‘-{\.
: preting J as any set, Prop as the set of two truth values, true and false, and interpreting .)\“’ PO
: ; AR
compound types & — (3 as the sct of all functions from the set corresponding to « to the ?\. Ny
set corresponding to 8. But these models are not models of TAT because they do not NN
model the deductions. Furthermore, since TADP can be interpreted in TAT, it follows :_ on ?. .
. that TAT has no set theoretic models. It is probably best to adopt the procedure we r:}:.-z.—:
used for TAJ, and interpret Prop as the set of closed formulas. Because we now have w-.‘;,\::\
quantifiers over all types, this idea is hard to inake precise, and so is unlikely to be $ o
accepted as the basis for any kind of theory of models. Nevertheless, the idea probably :5.1-&
gives most people more insight into T'AT than any other notion of semantics. &’c L
) L
Now 1 TS : B ALIva’s,
P ow let us show how to use the definitions of Section 2.4 to define the other terms and aNgW AU
! operators of TAJ. Some changes in the previous definitions will be necessary: wherever “’J\."jh:g
we previously had a quantifier (Va), we will now need a quantifier (Vz : Prop), and where tf J':f o
we previously used the abstraction Aa, we will now need Au : Prop. Furthermore, the &';N !
) existential quantifier will need somewhat different treatment, since we now expect the A.r-:".\.'v
B elements assigned an existential type will be pairs. In addition, it is now possible to tr.—rv.g
; quantify over the parameters that stood for type schemes in TAP and now stand for ;-.:}:: :;.‘. y
. terims of type Prop. For this reason, it is worth stating these definitions again for this '7',';’.:‘-,:
system. "':."--"::"N
- RS
Definition 3.13 (Cartesian product proposition) The product type operator and f:.;‘.';’f.)
its associated pairing and projection operators are defined as follows:) Y
(a) X = Au:Prop . Av:Prop . (Vuw : Prop)((u — v — w) — w); ::" -
! (b) D = Aw:Prop . Av:Prop . Ar:u . Ay:v . Aw:Prop . Aziu — v — w . 22y; .
J () fst = Au:Prop . Au:Prop . Aw:Xuv . ru(Ay:e . Azv L y); and &:_ 2
() snd = Auw:Prop . Av:Prop . Ar:Xuv . zo(Ayn . Aziv . z). :I:".-::/_'.r
We use A x 13 as an abbreviation for XA, st

'P
i
N
o

It s not at all difficult to prove from these definitions that if A : Prop and 13 : Prop

, .

"
Y !
ry(_'(i
Y
4
Ca:

[

.' l'
“
A [d
oL .
N

{.
-

Pus hl A
e

P A

DAB - A -1 - Ax N,

b N0

-‘r"' bl 2
P PY

&

ls.l'
. }t"n‘,
"'Rfé’.’
555

555K
/
-"-.-

R

y
.
x

|
@
A

4
Yy
v
.‘(
A

g

‘-‘)
3 l{_.r'.
K,
| o o B M ®ai M U PP AT SRR L T T TS Rt .t’.q".'-’n".’l".--'.-f:h".l\’-f.f.-f-"-""-("f"('.- -',,‘.(.,',_‘,,
.v.l.n.t'u,. v. .| -I'.u '.. '. s i l.o y : W A w A o X 2 N "W Wy, 0% Vg WY, >0,

&
o
I

X
”
=

PN

RO R P T O O O o R o o

- e a»

I NG

fstAB : Ax I8 — A,

and
sndABB: Ax B — I3,

Furthermore, it is easy to sec that if M : A and N : B, then
fstAB(DABMN) =. M

and
sndAB(DABMN) =, N.

--"...'."

Definition 3.14 (Disjoint union type) The disjoint union operator and its associ-
ated injection and casc operators are defined as follows:

(a) © = Au:Prop . Av:Prop . (Yw : Prop)((u — w) — ((v — w) — w));

(b) inl = Au:Prop . Av:Prop . Az:u . Aw: : Prop . Afiu —» w . Agv — w . fz;

(c) inr = Au:Prop . Av:Prop . Ay:v . Aw:Prop . Afiu - w . Ag:v — w . gy; and
(d) case = Au:Prop . Av:Prop . Az:0uv . Aw:Prop . Afiu —w . Agiv »w . zwfg.
We use A+ B as an abbreviation for © AB.

It is easy to show that if A : Prop and B : Prop, then
nlAB A — A+ B,

intAll . 8 — A+ 13,

and
case Al : A+ I3 — (Yw : Prop)((A — w) — ((B — w) — w)).

Furthermore, it is casy to show that if C : Prop, M : A, N : B, F : A—C, and
G :DB—C, then
case AB(nlABMYC1'C =, I'M

and

case AB(ine ABNYCO VG =, GN.

Definition 3.15 (void type) void = (Vz : Prop)r.

'-

Detinition 3.16 (Existential quantifier) Ifa isatype, B is a term, and if, for a vari-
able @ which does not occur free in a but. may occur free in 13, we have r : a b 3 : Prop.
then the existential quantifier over ¢ and its associated pairing and projection functions
are defined as follows:

(2) (Fr c)3 = (Vo Prop)((Vor - a}(13 — w) -+ w);
(b) Doy = Ariev D Ayef3 - AwiProp . Az:(Vor : a)(3 =) . zxy; and
(c) proj, 5 = Aw:Prop Az(Vr i er)(J3 — w) Ay(Ve:)8 . yw:.

]

G
‘l

‘o

. t“-
* 2 1'52
o

RARRRE
)
N \ AR

kY

&
Ry

o
hY

or.
%
N

,..
R AAA RN

;s

L4

LA

T e o N Y gt A MO e N AR AT L S
. 5 L] » . " 0 d &

LS

!,“"‘il""""&"'l‘lﬁbin LR TR PSR S I DR SR W LU WL W o DRI [l TR T PO PO A AR LK N

It not hard to show that rules (3aFormation), (3ae) and (3ai) corresponding to the
rules for 3J in Definition 3.10 are satisfied. 1t 1s also easy to show that

proj, sCZ(Dy sMN) =, ZMN.

Note that in Definition 3.16, there is no way to avoid the use of the paramecters; for
types are completely distinct fromn terins, and there may be a free variable in B which
is bound in the definitions.

Remark It is worth comparing proj, 5 with project; of Definition 2.17. For the same
reason that the latter could not be made a true projection function, the former cannot
be used to define a true right projection for use with rule (3ae). There is no problemn
with the left projection: take C = « and take Z = Az:a . Ay:B . z, and observe that
this satisfies the condition on rule (3ae), which becomes in this case that z and y do
not occur free in C or in Da gM N and y does not occur free in B. On the other hand,
for the right projection, we need to take Z = Az:a . Ay:B . B, and this requires C = B,
in which £ may occur free. Being able to use a right projection with rule (3ae) would
correspond to allowing an inference in NJ® from (3z)A(z) to A(t,) for some term 4,
and making inferences like this work for natural deduction forinulations of first order or
higher order logic is notoriously difficult.

f“: ,’-(‘

LR

%

>~ f
W
"
ST,

-
X

Pd {ﬁf
v
e

g

»
">

" R W W o W L e e T T T R Y
X LT v VD S S, R v

is v T R R R N T R N Y TR R T Y e R X TR 199 0tk avE gie ath gY U NI O N O R O R RO y
¢ \
K]
Y
K Y]
e
4
h
i 4
: /
1 My
[L
5. I oy
 J
1 n° FF
8
7' k
)
A i
) N
4
) (B
[]
Mo
Chapter 4]
: apter 2
.’. _"‘
2 \

THE THEORY OF -

id
§
CONSTRUCTIONS
" ™
[| o
' @
™ r; y
N We have now seen quite a few systems of type assigniment to A-terms. As we said in
|: the introduction, these systems are important for us becanse they are the basis for the N
) system which really intercsts us, the theory of constructions. This is an extension of - \
[TAGU and TAT introduced by Coquand [Coq85] and studied further in {CH86}, [CII], \
' [Coq86a], [Coq86b], and [Coq}. We have already scen that TAT is an extension of TAP; RRERS
. . A . . . ! @
" the theory of constructions, as an extension of ‘TA'TY, is also an extension of TAP. It is alsn It ¥
P an extension of the inportant part of the type theory introduced by Martin-Lof [Mar75], “.};:
[Mar82], and [Mar84)'. This chapter will be devotad to the theory of constructions. o
The proofs in this chapter will be given in more detail than in previous chapters. hhe
s, This is because the system is new and some of the proofs are diflicult. In fact, Martin- P tatiag iy
» . 2ﬂ
N Lof [Mar71] * presented a proof of normalization for a system which was later shown
; 4 . :) . ' []
; not to be normalizable?. For this reason, the iiportant proofs in this chapter need to :
Y be checked carefully, and so they will be presented in considerable detail.
L{
Y o0
ﬁ ! :
' o
ERC AN
L Ly
- ‘f\-“:q‘
: e
ALY
]
C Y
Mt
: 1See also [BeeRS] Chapter X1. ,:. :\";-‘_i
‘A 2An carly version of [Mar75). '-"'J"\..)‘".‘\
y T (o .. B N RN
>’ See :qum].) \-l'_‘f
o _'.-\."’\ L
'y NN,
$) S 'J:".r'_‘:‘-".
a4 ' @
R (e
N ,
NG
g WOk
NN ‘,qr\ 1
e
' N -; A
¢ A
' e
“ . \’;'-“-":;r*:.'
: DANAA
" SR
T A e Lt e L e e e m e e e et A mee e e N A R Pe e e e N Re L e e e e e AT P
RTINS N SO N ORI A I O A P A P P P A o A P SN NN N N A N A A A A AN AT A

- e v e e e

P

i -ty e

i il g

- o

-
‘- -

- - .-
- -

08,0700 3.0%), 64 8 0 U TR Y R R U N Y S O e T W T O R T OO T
S ¥ Ray), L by 1% » A .

4.1 The theory of constructions: natural deduction
formulation.

The theory of constructions, or ‘TAC, combines Lhe kind of generalized type assignment
of systems such as TAG and TAGU with the formulas as types isomorphism used in
defining TAT.

As we remarked at the end of Section 2.8, one of the weaknesses we want to eliminate
in this system is the fact that in TAGU we cannot quantify over compound types built
up from Prop. For this reason, as in TAT, we nced a notion of type. But unlike TAP, we
cannot define the types as a fixed set of terms. Instead, we need to indicate the types
by the rules of the system. Thus, in addition to forinulas of the form M : A, we need
formulas of the form

A : Type
The types are then specified by the deductive rules of the system.

Definition 4.1 (TAC terms) The ferms of TAC are the terms of TAGU (Defini-
tion 2.23), where U is denoted by Prop, except that there is a new constant, Type.

The original intention was that Type would not be part of any compound type.
However, it has since turned oul that it is convenient to have Type occurring as a
certain part of certain compound types, as we shall see below.

Definition 4.2 (The type assignment system TAC) The systein TAC is a natural
deduction system. Its formulas are of the form

M A,
where A and A are terms. There is one axiom:
(PT) Prop : Type.
The rules are as follows:

Rules of type formation:

(PPl ormation) [A] Condilion: x does not. oc-
cur free in A or in any
undischarged assumption.

(TP ormation) (2 A] Condilion: r does not oc-

A Type I3 Prop cur free in A or in any

undischarged assumption.

(Ve - A3 - Prop

N

N N I N B D N D T A P IS A

e
m"&ﬁﬁ

poleQs .
e
A

\
) R

etk
ha
] ®

2
o

X

<

% :
LI

L2
2

i

o
367

=
0 x

el
1 §
=05

K

N
X
‘:.'Y‘-'/
7

o7 2

-:r
K
s

L
g -'.-5
A
2
.; l-;
3 r‘.

o ATy
e PR
Ay
"v?‘.{
T,
\ I,
PGS

»
“HYy
J!v *

s
Pl

2

D
.

' %

f

hl
Whh
LA
"\('r’i
"
(]

'l
e
0
<Y

(" »

-
N
%y

RARANRETR R RY FRA R LIV TR Al e Vol dal wal Uat @nd 1.9 Vop dod %) V0l v 4 O K .00 Vad ual talk va) St TOU 2 ot ‘Nh @ lb Yghoty

TR
By
Wty
'0':: ':g::l’a'
ity
p :."5" 300
! 1
ORI
WM
» L]

e
ety Uy

(PT IFormation) [£: A) Condition: z does not oc- %)

. . gl
A : Prop B : Type cur free in A or in any ‘E:SL‘!:"::

undischarged assumption.

(Vz : A)B : Type 2:::::;'0:;:;‘;::
g
}

g
(TT Formation) [a: A] Condition: z does not. oc- 'g é:‘::s;
freec in A or in any . SO0

‘T B:T e \ :":"'"" b

A Type ype undischarged assumption. OO0

®
(Vz : A)3 : Type o'.',:"u,:;:::;c.:,

ey
~ 7 Ol
(Eq'P) A :Prop A=, B

B : Prop

(Eq'T) A : Type A=.8
I : Type

Rules of type assignment:

(Ve) M (Ve : A)BB N:A
MN : [N/z|B3

(VPi) [« : A] Condition: r docs not. oc-
M:B A Prop cur'frcu in A or in any
undischarged assumption.

Ae:A M (Nz: A)B

(VTi) (z: A] Condition: 2 does not oc-
1 M-I A Type cur free in A or in any
) - undischarged assuption

Ar:A M (Ve AVB

!
(Eq") M A A=, I
Al 3

| =!) A A Condithion: N is obtained
T. p from Al by changes of

bound variables.

(Note that several rules listed carlier are listed here in full: stnee this system s the

T O T S N o N U P R R T T It T NP SR R R IR WAL T L S L R UL RS
R O T Ly s I Gy £, T A T L A VS A LR R R Y

. i . Lt M)
main subject of this work, it was felt. to be important to make this definition relatively .‘A'.'l" I:;:\'
self-contained.)

It is possible to state the rules of this system in a more compact form. To do this,
we define the kinds to be the two terms Prop and Type. Then if we let x and &’ be any
two kinds, the rules of type formation can be stated as follows: ¥

(kK'Formation) [z : A] Condition: r does not oc- M"
A B! cur free in A or in any o
K K

0
undischarged assumption. ST
19704 9,0’ X

(Vr: A)B: &’ ° ®
IO
(Eq'k) AR A=, D S h N

B:r))

Furthermore, the rules for (Ve i) can be combined as follows: e ‘ L
(Vi) [z A] \

M: B AR ‘ I‘Q:i‘:go::::

U RN M

) ". s‘

Az:A M (Ve A)B ':E"'! oy

%
Y

) ®
, o Mt
0 LY o
! ‘:‘\i *t.-"'
e T T T e N N N N AN e N e T Y A N M AT TR M

4.2 The basic metatheory of the theory of construc-
tions

Theorem 2.7 can be extended to TAC:

Theorem 4.1 FEvery deduction in TAC can be transformed into a deduction with the
same undischarged assumptions and conclusion in which each inference by any of the
rules (Eq") and (Eq'x) occurs just above the major (left) premise for an inference by
(Ve) (in which case it is an inference by rule (Kq")) or just above the minor (right)
premise for an inference by (Vii) (in which case it is an inference by rule (Eq's)) or
just above the conclusion.d

Proof Similar to the proof of Theorem 2.7. T'he definitions of independent subdeduction
and dependent subdeduction will be obtained from those of the proof of Theorem 2.7
with U replaced by any kind x. In addition to transformations Il and 111 from the proof of
Theorem 2.5, we need the following transforinations (corresponding to transformations
1V-VI of the proof of Theorem 2.7):

VIIL
1
Dy [x: A)
C:x -
(quu) D'..’(J)
AR B.w
(k&'Formation 1)
(Vz: AV : &’
to
!
[:C)
(Fq")
x:
D, Da(r)
C:n DK

(er'Formation 1)
(Ve Y3 : &’
(Fy'n’)

(Ve :)3 . &'
Dy

YHere, just above the conclusion means what it did in Theorem 2.7, and there way be two such
inferences, one by rule (V') and the next one by rule (Kq'').

. 'J-'\.'["J;‘)'.'.ﬁ\}‘{l\'_'

o

'l." .:| :::
#@-{,"-
'.) { Q"
R

[]
. m
g% ¢
P
:ﬁ-&?;ﬁt. ‘
~),N”\'y. o~

AWIRNIAL

B abataley
NS
®
JOLRREMNY
ey
ql‘s

0 s':':
) . q:.

"_ AL 'l'(..

il e "

[SN Y S
PPl «
. :.I\-r"if

A AR

2
»
2
.‘

\
LS
R

NN
h]

x
£
»- .s ®

53
»'o{'-:

]

;l
o
&

P A w‘,‘\iﬂ.'.\- '

o,

\i..h_.&'ﬂh'r

T RRRI R P e T U

e s
A ' v

VI

to

IX.

i

§_5,

o B’ Ky "\’ ’ ".' "l ‘ '.‘
1
[r: A]
Da(r)
L gt
D, ('K
AR Iw!
(Vr: A)B:n!
Dy
1
[« A
Dy Da(x)
An R
(Ve : AYC : !

g 8 oW Jo¥ 4, 1% A" 0 4 u_gav
(Eq'k’)
(xk'Formation - 1)

(xx'Formation - 1)

q'n’)

Vz: A)B w!
Dy
1

[&: 4]

Dy(r)

A C L D,

(Bq™)
Al I3 AR
(Vi 1)
ArAA DA (Ve AV

Dy

WL W W g W= LRRE S N Y S W S P
ol N | N, L Pl
> N N e Y

v

EADVAL AN A/

ne Ae e B w e e

1,
z?“l.‘ v.v.‘ f,'r.\-r l. (X

RN

R R R R I KA N N M M R MW WU N W O O Y R YU N T, RRYI Y
to
1

[z : A]

D[(t) D'_)

M:C AR

(Vri-1)
Az:A .M (Vz: A)C
(Eq")
Az:A .M : (Vz: A)B
D,

|

From now on, we shall assume without further comment that the transformation
given by Theorem 4.1 has been carried out in any deduction. In some cases, when de-
ductions are put together, inferences by equality rules will be indicated at places other
than those specified by the theorem; this will mean the deduction obtained from the one
shown by carrying out the transformation given by Theorem 4.1.

TAC is clearly an extension of the system TAGU, i.e., of the system TAGI of Ilindley
& Seldin [HS86] Section 16E. This means that TAP can be interpreted in it.

Theorem 4.2 TAP can be interpreted in TAC.

Proof See Hindley & Seldin [IIS86] Thcorem 16.66. m

Now let us turn to the gencral theory of TAC. The first result we have is that
Type and Prop control terms which can occur as “types” the way we expect them to.
To see this, we need first to consider the conditions under which assumptions may be
discharged. For each rule that discharges an assumption of the form z : A, there is the
independent subdeduction, the conclusion of which is either A : Prop or A : Type. This
fact and the conditions on the occurrences of the variables of discharged assumptions
imply that assumptions must be discharged in a certain order. ‘Thus, instead of sets of
assumptions, we are really interested in sequences of assumptions. Now suppose that
we are given a sequence of assumptions of the forn

Ilifh, 1’22/‘2, ey J.'"ZA,,

Suppose that the assumption that we wish to discharge is always the last of the sequence,
Under what conditions can the last assumption be discharged? And more generally,
under what conditions is it always possible to discharge the last assumption of any
initial segment of this sequence? 1t is not. difficult to see that the conditions are those
of the following definition:

W - W o W PSR L M P P TR W A
o To P e A o sl e AT) o Wi,

W0 0. 570579, 879,879. 7R, A o)

A '.l'.(l -

A,

At
?_,.’g" ot
) []

Definition 4.3 ((Well-formed) environments) A (well-formed) environment is a
sequence of assumptions

.l,'liA]‘J-'gZAQ, ..,.z,,:A,, (41)

such that, for : = 1,2,...,n — 1, the following two properties hold:
(a) z; does not occur free in Ay, Ag, ..., A; (but may occur free in Ai¢1, ..., Aq); and
(b) either
ryc Ay xe s As, ooz A Brac Aigs - Prop
or
ry Ay ze Ay, ooz A Brac Aigr - Type.

We can now see that the terms which can be proved to be in Type are really quite
limited.

Theorem 4.3 [If
F Frac A Type,

for any set of assumplions I, then for some n > 0 and for some terms Ay, Aa, ..., Aqp,
and for a sequence of pairwise distinct variables xy, z4, ..., z,,

A= (Ve s Ay Vee 0 Ag) .. (Vx,, 2 An)Prop.

Proof This follows immediately fram the fact that any formula of the form A4 : Type can

occur only as the aviom (F T) or as the conclusion of one of the rules (kT Formation)
or (Eq'T). m

Definition 4.4 (Context) A contert is a term A satisfying the conclusion of Theo-
rem 4.3. If A is a context, and if the conclusion of Theorem 4.3 is that A is convertible
to

(Yo, - A(Yrs s Ag). (Ve 0 A,)Prop, (4.2)

then 4.2 is called a standard form of A, n is called the indez of the standard form, and
Al Az, o0 A, are called its prefir types.

It is easy to sec (by the Church-Rosser theorem) that two standard forms can be
standard forins of the same context if and only if they have the saine index and cor-
responding prefix types are convertible, This means that we can speak of the indez of
a conlert, and if we are willing to consider equivalence classes of convertible terins, we
can speak of the prefir types of a contert. I is also easy to see that any context can be
reduced to ane of its standard forms.

Contexts have a clear meaning: each context is the type of propositional functions
of a certain nuber of arguments over certain terms as “Lypes”. Obviously, contexts are
really useful only when the prefix types are either in Prop or in Type. For this reason,
we would like to know which contexts can be shown (perhaps using assumptions) to be
m Type: ve we want as general as possible o partial converse to Theorem 4.3

90

.l'l!-' WS M o
o @

o ':':,:Eg:;
)
3:0:.::21‘;'::"0

\
OO0
"!l"!l’l':’l‘!'l
i []

P

'

!
ol
@

®
ATt
‘) 'l‘ .'ig ‘\t
'!":0::‘::'::::0‘.:
)
® ®

. 2 4e 8 AR [P— 4 -ave‘ata'afaY,
:r... ave Yo ‘qu 1 altavs igia i ant,] h? N RN WYYy », TN N Y LV LG A { TR M Safdn ¢ fia o ibabef

o
4
»
;:é
)
.’,:
b
Y
! L .
}: Definition 4.5 (Well-formed context) A context is said to be well-formed if and
) only if it has a standard form (4.2) such that the corresponding sequence of assumptions
:' {(4.1) is a well-formed environment.
. It is easy to show the following result:
o
:g Theorem 4.4 If A is a well-formed conlext, then
3.
:. Frac A:Prop$
0] :
| We would like to show that a context cannol. be assigned a type othier than Type. ‘1o Y
& do this, ~e need to consider places that Type can occur in a deduction. It may appear -\.‘ KX
) that it occurs only on the right of the colon and then only alone. But this is not the ',: ' .;‘:
case, for consider the following example: ,th‘ ol
Ao
Prop : Type Prop : Type ' -h:.-;,f',:
X (VTi - v) P N Wt
Az:Prop . Prop : (Vz : Prop) Type . _.._ \
% ‘-‘."'?.':\i': \
' What we can prove about occurrences of Type requires a definition: .:,,.\',.;-ﬂ.“;
i ", d
o AR OOl
j Definition 4.6 (Supercontext) A term A is a supercontext if ._ﬁ_.‘-:f.?:
R PR
A=.(Vz,: Ay)... (Ve : A,)Type ®
. VAL
, where (Vz, : A1)...(Vz, : A;)Prop is a well-formed context. Here, (Ve : Ay). .. (Vo : e, o
. A,)Type is called a standard form of A, n is called the indez of the standard form, and
P . .
(, Ay, Aa, ..., A, are called its prefir types.
i The remarks after Definition 4.4 about the standard forms of contexts apply equally
to those of supercontexts.
L
'g’ The result we want is now as follows:
b)
y
% Theorem 4.5 (a) If ' is @ well-formed environment and if
> I' Fpac M A,
7 SoatE
Y then M reduces lo a term i which there s no occurrence of Type. :\‘:-.';_-.ﬁ'.
p (D) If 1" is a well-formed environment and of ’:-':')‘:-‘;_
¥ . -l‘.'f\.('
oy Ty
n' I’ }"]‘1\(‘ M /‘, .':-‘_'.“,..
A~ S
) and if there s an occurrence of type tn every term to which A reduces. then A s a
). superconler! ®
- 2l ix, in fact, easy to strengthen Theorem 4.3 o show that if Fpac A : Type then A is a well formed
:;‘ context.
g
91
%
»
R
0
"
v
‘ - - - ~
PRNTING R e R e e e e e e -

IO NS

s ot gV 4at da¥ dat gav fat N R R AU S AN R " AT R) 2 4 000 AV Y PR RO

- W Wy

Proof {a) By induction on the deduction of
I’ l"r,\c M : A

(Note that the type of each variable in a well-formed environment satisfies the conditions
of the lemma.) In the cases for rules (Eq’x), the conclusion follows via the Church-Rosser
theorem and the fact that no reduction can introduce an occurrence of Type into a term.
The remaining cases arc easy.

(b) By induction on the deduction of
I’ }_’I‘AC M T A.
The ouly difficult case is rule (Ve); in this case, suppose that the inference is

M : (Vs :B)C N:B

MN : [N/z]C

If there is an occurrence of Type in every term to which [N/z]C reduces, then by (a)
there is an occurrence of Type in cvery term to which N reduces and hence also in every
term to which C reduces. Hence, there is an occurrence of T_pe in cvery term to which
(Ve : 3)C reduces. Thus, by the induction hypothesis (on the left premise), (Vz : B)C
15 a supercontext. It follows that C and hence also [N/z]C are also supercontexts. ®

Define an occurrence of a subterm A of a term M to be the type of a bound variable
il A is the indicated part of a subterm of the form Az:A. N or (Vz : A)B.

Theorem 4.6 Let I be a well-formed environment, and suppose
I’]"’1‘/\(; /\1 N /1,

where A s not a supercontext. Then M =. N for some term N in which cvery occurrence
of the atomic term Prop is inside the type of a bound variable.”

Proof By induction on the deduction of I' Frpe M : A. B
Corollary 4.6.1 If U is a well-formed environment, and if
l‘ }’"r,\(j /” IA,

where A s not a supercontezt, then M s nol a conler!.

Since it is not, in general, decidable whether or not there is an oceurrence of Type in every term
to which a given term reduces, it may appear that this theorem involves a nonconstiictive use of the
taw of excluded middle. But in fact, all that is really needed for part () is that it is not possible to
determine from the deduction that there is a reduction from the term Lo a term in which Type does nes
vcenr, and this can be constructively determined.,

“1he condition of the theorem that A is not a supercontext, is not constructively decidable, However,
all that is really necessary for the theorem is that it not be possible to read from the deduetion in question
thar Vica supercontent, and this can be constructively determined.

LI R N Y I T T AT g S el T
o T

o
)

Tt N) N A N N N AR S, T AL A LS AR Bt Nt "
Py W%y -A\.l?w\d\uh‘:.\a\ha X dﬁﬁﬁ'ﬂmﬂhﬁhﬁﬁf:\i\i&.& 5% VS VLY TR WA SRS

!)
o
':“::‘::: (e
Wt N
é.:';:s:?n:b!
- []
AN
Ry
R
) } g "
Pt

&:A'ﬁ; 3. w1
® @

e
S

)
\ ‘i..‘

8
'.‘. »

R R
f'_. - :-"'u“\ﬁ
PRENERTAY
AN
f .,\:”\$
SN),\
L ' L)'
- N
TNV
@
N :
NS
o
N
e o
FANDENTN
MRS
NG
AT

?-
P’y
e
s r %
M

N
L]

Pl

)

& %

AD-A19S 379 IATHES1S: THE MTHEMITICRL FOUNDRTION OF ULVSSES(U)
ODYSSEY RESEARCH ASSOCIATES INC ITHACA NY J SELDIN
Y 87 RADC-TR-87-223

n UNCLASSIFIED

e

=

=

.2

—
—_—

I

e g
= 22 me.
5 g
e

llLe
1.4 lIIIJ 1.6

= "=

.{‘;,
s

i
1, 5
;ﬁ
Pd

2
Py
B0y

.‘,. ‘

>
"
L@
Pl
'r
'I"l"
R
o e

XX

WA,

1, 5, e
P
Mk

[

. 1]

'

manh i
AR

* ".{ ",
.l"
L3
4§ 4

'“,v.,";"...'. O pa R Gat B8 9 8 Pt B 000 a8 Fa 00,0 470 000 .80 H% 4 ‘0%l ke v, WLY WV T Gal Sup. N g end a8 #.0 00" ‘Nal 0,0
)
’
(]
R
]
;
M, \
"
"
"
.
. . _ .
5 Corollary 4.6.2 If T is a well-formed environment, and if
¥
0l
K I' Foac Mk and U bpacs M oK,
)
| then k = &'
"
: Proof Otherwise, we have I' Fpac M : Prop and I' Fpac M : Type, from which we
) get by Theorem 4.3 that M is a context and from Corollary 4.6.1 that it is nol a context.
B .
!
It is not hard to generalize Theorem 4.3 to the following:
»e
:' Theorem 4.7 If
? I' Frac A: B,
)
.:, where B ts a supercontezt, then
e
A=, Azi:A; Aze: Ag . .. AZm: A L A (4.3)
3 where A’ is a contexl.
™
:: Definition 4.7 (Context Function) A term A satisfying the conclusion of Theo-
:. rem 4.7 is called a contezt function. If A’ is a standard form, then the form on the
right of 4.3 is called a standard form of A, and its indez is m plus the index of A’. All
‘: of the remarks and conventions regarding standard forms and indices of contexts apply
»\:: to those of context functions.
:" Now let us consider the subject-reduction theorem (Theorem 2.1} . In order to X
‘ prove it, we need a replacement theorem corresponding to Lemma 2.1. Lemma 2.1 is ‘
R stated in terms of the subject-construction theorem, which is much more complicated e
. to state for TAC than it is for TA, but the part of the lemina corresponding to the RSN
4 subject-construction theorem is not nceded for the subject-reduction theorem. Another &\ ‘ _
X complication arises from the fact that changes in a term to which a type is assigned may AN
'« N.\ ‘i.
8 be reflected later in a deduction in the types theinselves. However, in the case of the }Q‘_:_\.
[+ replacement lemma neceded for the subject-reduction theorem, a term is replaced by a ﬁ:\ :@
- convertible term, so by rule (Eq"), the later types need not be changed. (See Hindley & R ".‘ A
. Seldin [1S86] Lemma 16.39.) It is sufficient to have the following result (which is called PN
a theorem because it is more substantial than Lemma 2.1):) -\ﬁ w0
-P ':ww ' '
L Theorem 4.8 (Replacemnent) Let Iy be any well-formed environment, and let D be E:\‘t‘::f:-"
S a deduclion of AT
D A
. |‘| ""1',\(' A’l AL TR
. Let Vo0 C be any statement in D, let Dy be that parl of D ending in V- C, let Dy
: be the rest of D, and let £y : I3y, xy: By, ..., 2, : B, be the assumptions of D, that
- are discharged in Da. Lel W be a term such that W =, V and FV(W) C FV(V). and
f
:l'
0
93 _
P "t"‘lﬁ'i'.“'.
)
'
‘
)
‘
!.
W
%
K)

- -~ o : " - 1] v LS " Pox ™ LR "R - : -
", .0.0\...0.0.‘.‘,“;.0'-‘ |’l AN OGN O 0.0%. b DAL IS e "X ...Q.- [N W ! "‘ X ,. p, »: .. ‘; U 2 n A 0"

suppose that Ty is a well-formed environment in which zy, za, ..., z,, do not occur free.
Suppose that D3 is a deduction of

2,2y :By,....xn: By Frac W C.
Then replacing Dy by D3 in D results in a deduction Dy of
Ty, Iy Frac M™: A,
where M* is oblained from M by replacing appropriate occurrences of V by W.3

Proof By induction on the structure of D,.
Basts: There are two cases.

Case 1. D, consists of the single statement V : C. Then M is V, M* is W, and D4
is jUSt D;;.

Case 2. Dy consists only of the axiom (P T). Then the replacement is vacuous,
W = V = Prop, and D4 consists only of the axiom (P T).

Induction step: We have the following cases depending on the last inference in Da.

Case 1. The last inference of D, is (kx’ Formation). Then A is ', M is (Vz : B) I,
and D is

1
(z: B]
Ds De(x)
Bk E:.r'

(xx’'Formation - 1)

(Vo : B)E : &/,

where the occurrence of V : C is either in Dy or in Dg(z). By the induction hypothesis,

the replacement of P; by D3 in Dy and Dy(z) leads to deductions D7 and Dy(z) of,
respectively,

l‘l,rg }_'l‘/\(f B K
and
'y Ua,x o B Fpac BT K

®1t is difficult to describe exactly the replacements which are required to obtain M* from M, but it
is possible to read the replacement process from the proof. [t is worth noting that the part of Dy which
is not inchided in P3 has exactlythe same inference rules in the same relative positions as Dy except
perhaps for some inferences by (Eq's), (1"}, or (2),).

: LSO SISO M A TG U TU T PO U PO P AU R PO O FUCAN R A R AR A R U RN T O A T O I TP WP R T CW U O WU W I WUIRTCY ".';:'.;:‘:;:.':‘0:
4 i Ot
' R W
A Mt
~ @

> 4 i
" v,: ¢
ty e
y e
|' I"' \]
4 AN
?‘ ..! W, ()
0
‘: for appropriate B* and £*. Since V =, W, 3* =, I}, and so Dy is as follows:
X
1
t' i
the D

7 [£: B3]

B*:x .

! Dy(a
¢ (Eq'k) we)
¢ B:x E*
s {xx'Formation - 1)
K (Vz: BYE* : k',
> Case 2. ‘The last inference of D is by (Eg'k). Then A is k and D is
) Dy
: N: &k

— (E¢'R)
MK,

where N =, M. By the induction hypothesis, the replacement of Dy by D3 in Ds leads
to a deduction Dg of

b oF W W N

I',I'y Fpac N ok

& for an appropriate N*. Since N* = N =, M, we can take M* = M, and then Dy is
obtained from Dg by an inference by (Fq’s}.
- Casc 3. 'The last inference of D is by (Ve). ‘Then M is My My, Ais [Ma2/z]A’, and D
1s
‘ D.': 'D(‘,
s My (Ve B)A My BB
:‘ (Ve ¢)
" A/’l A’Ig . [AIQ/J.‘]/\’.
)
;:' By the induction hypotliesis, the replacement of Dy by Dy in Dy and Dy; leads to deduc-
/ tions Dy and Dy of
:. Iy, Uy bopac My (Ve o IDA
and
\ Uy, Uy bpac MG B
A for appropriate M and A5, Furthermore, M3 =, My, Henee, Dy is
,‘l
. s Dy
’ My (Ve YA M DB
p . . - (Vex)
¥ My M3 M5 x)A »
_-: . ; (Fq™)
- My MG My /A
~
ah
.‘
)
5
"
.l
4

BN AT T A A A g e B N S A S A R A A A S R A R TRE SR T S G R
- -y £\ a - » L} L3 L) ¥ L)) iy td - . A La

o o S ol P,

Cvy e 2 d v S i e 0D 0 0 8 03 A% 2 0 R a4 2" 10 2 A 04" a2t 0 a2t 101" 0t Y eV 8 B h S A % B N A T Y Y oo dd. PRV ¢% A% §'p A ,....{‘;‘.,"
) 4

O R AN
.'l..'l|l..
blsteleedstng
; R

) o
v v ' ‘
L) ..!
N
Sttt
‘.:':‘..'- iy
Y

b A oS, N 4

) Ll
R
‘ Case 4. 'The last inference of D is by (Vei). Then Ais (Ve : B)E, M is Az : B . N, M '.‘!'p'(’:'c
. %) I‘Q .Q| !‘
' and D is ‘:‘ﬁz‘i'.‘"::l
: i :«.-%:ﬁ:':».-
! -h. ..l‘l“
[£: B] []
Dy(z) Ds T
Nk B:x rany ,
.Y ? }
(Vei 1) ’*‘F"’m’

Ar:B . N (Vr: B)E.
By the induction hypothesis, the replacement of Dy by D3 in Ds(x) and Dg leads to] ®
deductions D;(z) and Dy of R
X
I,y z: B Frac N*: FE !."‘:,o'.‘l ¥
and)
Py s Fpac B* K Fal Rt
for appropriate N* and B*, where B* =, B. Then Dy is as follows: Ty
1 ALY
\ /
[z: B] Ds ...C\
Di(z) B s e,
N*: K D w (Eq'x) FREAHRY

(Vi 1) t’-..,
Av:: BN (Ve BYE. SN

Case 5. The last inference of D is by (Eq”). Then D is "ls

- '35' _
AR N
(1q”) -:*!

Al A, ';a
¥ "f.

where A =, B. By the induction hypothesis, the replacement of 7y by Dy in Ds leads

“dueti >
to a deduction Dy of o . r‘;‘b'i':'ﬁ
'y oly bgpac MT 0B BN
4 L
for appropriate A", and Dy is obtained by adding an inference by (¢} at the end. ""::; \
Case 6. 'The last ainference in D as by (=), Then D is N
N
P,
N A
- (=)
Ao

s

R R U S R U R T O TR O PUR TOR TR PO TR TR ORI O R O X TN RY

where M is obtained from N by changes of bound variables. By the induction hypothesis,
the replacement of Dy by D3 in Ds leads to a deduction Dy of

l‘l, [‘2 ‘"’I‘AC N*: A

for appropriate N*. Since FV(W) C FV(V), the changes of bound variables which oc-
cur in passing from N to M will take N* to the desired M*, and so P4 can bhe obtained
from Dg by adding an inference by (=.,). &

We can use this theorem to prove the subject-reduction theorem the same way that
Lemma 16.39 of Hindley & Seldin [[1S86] is uscd to prove Theorem 16.41:

Theorem 4.9 (Subject-reduction theorem) Let I' be a well-formed environment.
i

I'bpac M A
and M > N, then

I' Frac N : A

Sce also the proof of Hindley & Seldin [11IS86] Theorem 15.17).
1

As in Hindley & Seldin [HS86] §16D2, the subject-reduction theorem is related to
the normalization thcorem. In particular, it tells us the result of performing a reduction
step on a valid deduction is another valid deduction. The reduction steps that interest
us are the following:

x reductions. A deduction of the form

|
[« A
Dy(x) D,
M3 AR
(Vi 1)
Ar:A M (Ve A)B Dy
kg”)
ArA M (Ve) (Fa) N:C
(Vo e) PR INE Ny
f\v"'\ .'.1
(Ar:A: MN : [N/2)i3 &}‘ﬁ}
Py B
R
(]
a7

N - A ; » ¥ L TR U qaye gEp” L [T OO S Y W (]
T AT A e SV T T T OV 118 ey T Ving o T o R Tt o trh, oty W YA W 0T W 0 B By, AV VLN, NNV B L R s A T PR ANN

P
3

AR KON NS ¢ 0. 02t Ba® 0¥ 12" ta¥.02%.02% 0" o 00 0’ a¥a"ala’ 52" Fa¥a 00 200"

o ORI PO I YU

reduces to
D3

N:C
(Eq")
N:A
Dy(N)
[n/z}M : [N/x)B
Dy,
where D, is obtained from D4 by replacing appropriate occurrences of (Az:a . M)N by
[N/z]M according to Theorem 4.8.

Here, the formula Az:a. M : (Vr : C)B the cut formula of the reduction step. A
reduction is a (possibly empty) sequence of replacements using these reduction steps.

A special case of a & reduction step is a contert-reduction step or c-reduclion step in
which B is a context or a supercontext. A contezl-reduction or c-reduction is a reduction
in which each reduction step is a c-reduction step. A deduction will be said to be contezrt-
normal, or c-normal if it contains no cut formulas for c-reduction steps. 1t turns out to
be easy to prove that every deduction can be reduced to a c-normal deduction using the
notion of the degree of a term, and that this partial normalization result is important in
proving the full normalization theoren:.

Decfinition 4.8 (Degree of a term) Let A be a term such that thercisa step M : A
in a deduction in TAC. Then the degree of A relative to the deduction is defined as
follows:

(a) if A is not a context or a supercontext, then the degree of 4 1s 0;

(b) the degrees of Prop and Type are I

(c) the degree of (Va : A)B is one more than the maximun of the degrees of A and 13;
and

(d) if A =, B. then the degree of A is equal to the degree of 3.

Since only contexts and supercontexts have nonzero degrees, the definition of a context
is enough to guarantee that the degree of a term relative to a deduction is well defined.

Remark Since it is not possible to decide mechanically for a given term whether or not
it is a context or a supercontext, it may appear that this definition uses the law of the
excluded middle, which is invalid in constructive logic, to define the degree of a term.
But this is not really the case; for in calculating the degree of a given context or super-
context, it is only necessary to calculate the degree of terms A which are either Prop
or Type or for which there is a step in the deduction of the form A : Type or A : Prop,
and then the degree of A can he determined by which of these situations occurs. (It 1s
impossible to have more than one by Theorems 4.3, 4.4, 4.5 and 4.6, and it is possible
to determine mechanically which occurs.)

98

N TR T

. B

Nt L LN
. .

o
N |..‘||'
R
A

Sl s ¥ *,
R
§'
N
OCR NN
DR
DA

)
Note that the degree of a term relative to a deduction is invartant of g-conversion. MY 0::“"‘0',:
L)

Theorem 4.10 Every deduction in TAC with conclusion M : A can be reduced to a c- y ..ﬁ.:l
normal deduclion with the same undischarged assumptions and with conclusion N : A, 2 £l
where M > N. e,
%:'."".:_
Proof Let the degree of a cut formula be the degree of its type with respect to the K. .Q(
deduction. Note that if a cut formula is removed by a reduction step, the degree of e "I::‘i:
another cut formula which had lower degree before the reduction step and which occurs ' '.‘I:::A .:l
in the deduction after the reduction is unchanged. Let the indez of a deduction be the el

pair {d, n), where d is the maximum degree of any cut formula in the deduction and n ' ®
is the number of cut formulas in the deduction with degree d. If the pairs are ordered 0:;"‘:5:3'.;';":’
as in the proof of Theorem 1.2, and i reduction steps are carried out in the same order e "t':'c'}
. . . 4 "a‘l"(l "l
(the cut formula has degree d, and there is no cut formula with degree d in D3), then ..‘i‘.:i‘.:n‘.j
an argument like that of the proof of Theorem 1.2 shows that every deduction can be 0 "Q:::':::&
reduced to a deduction with no cut formulas. It should be clear from the nature of the 0" et

reduction steps that a reduction changes only the term to the left of the colon in any ! @
formula by carrying out a sequence of contractions. # .:;i::::::.."i’;
IR
Definition 4.9 The term N of Theorem 4.10 will be called a c-normal form of M. E::E:::s'!.:‘::
. d
In terms of this definition, Theorem 4.10 says that every term to which a type is .:?.::::‘:::'::

assigned by TAC has a c-normal form. N Lot] o
This . L .. o 3 '|$“;!:
partial normalization result is important for the full normalization theorem A
because it gives us some useful information about terms A for which it is possible to W8 v"%
prove I' Frac A : Prop. To obtain this information, we need the following lemmas: %n‘:::::

Yy

Lemma 4.1 Let D be e c-normal deduction of .. o

I' Frac A : Prop,

where T’ is a well- formed environment. Then either A =, (Nz : BYC for some terms B
and C and some variable z which does not occur free in T, or A=, zMM,... M,
Jor some variable z, some natural number p (whick may be 0), and some terms
My, M,,...,M,, and furthcrmore, il can be decided constructively which of these al-
ternalives holds.

Proof Consider the last inference in D which is not by (Eq"), (Eq'P), or (=4). This
inference cannot be by (V&i) since the type of the conclusion is an atomic constant, so
the only remaining possible rules are (kP Formation) and (Ve). Which of these rules
actually occurs can be decided constructively (by inspection of the deduction).

If the inference is by (xP Formation), then there are terms B and C and a variable
x which does not occur free in I such that A =, (Vz : B)C.

If the inference is by (Ve), then consider the left branch of the deduction. As we travel
up that branch from the bottom, the only inferences we find are by (Ve), (Eq”), (=),

99

S U S A A A T TP A T P A T R P T N7 R T P T 3 P W Wy N U X W DR oW S o OV U TV e o
f - e
::.)Q:f'"

.)
&:. J\!.“l

[]

. %N
R M&J ~(
G". ,N , "‘q
14 SN0
L {
®
¢
Wy
l‘.
h
:: and perhaps (Eq'P) at the very bottom. 'This means that the formula at the top of the
’c: left branch must be an undischarged assumption, and it must therefore be in I'. It follows
::; that this statement must have the form z : B, where B =, (Vr : Cy)...(Vz : C;)Prop

: for some natural number p (which may be 0). Then we must have A =, =M, ... M, for
. some terms Ay, ... M, &

}
+
‘ Definition 4.10 (Simple and compound deductions) If D is a deduction as in
'. Lemma 4.1, then it will be called compound if the first case of the lemma holds and
;:s stmple if the second case holds. If A is a term such that A : Prop is the conclusion of
N such a deduction T, then A will be simple [compound)] if D is simple [compound].
a Lemma 4.2 [f there is a deduction of
.“
I:| I' Fprac A : Prop,
(0
Gy . . .
::: then there is a c-normal deduction of it.
N Proof Let D be the given deduction. By Theorem 4.10 there is a c-normal deduction

0 of
‘) I’ }—'I‘AC I3 Prop,

]
""-' where A > B. By adding one inference by (Eq’P) at the end, we get the desired c-norinal

3 deduction of
) l‘ }—']‘A(j A PfOpA

.9
"o u
]
K By Lemma 4.2 and Definition 4.10, every type in Prop (with respect to a given
) well-formed environment) is cither simple or compound, and it is possible to decide
¥ . e
g constructively which it is. Furthermore, the compound types are formed by repeated
- nse of the operation ¥V from the simple types and Prop. Note that the contexts are
y formed in more or less the sane way.
: Lemma 4.3 If D s a deduction of
)
‘ﬁ I' Fpac (Voo AV : Prop,
K- where & does not occur free in 1 o A and where ' is a well-formed environment,
. then there 1s « deduction D' of
! »
\E ' r: A bFpac BB Prop.
\
® Furthermore, the c-normal deduction to which D' reduces has fewer inferences by rules
T other than (Fq"). (Bq's), and (=',) than the c-normal deduction to which D reduces.
)
K) . py . .
..'l Proof This fHows from Lenmas 00 and 1.2, @
4
4
&
100
o
o
M)
*y
o
i 3
@
-
‘.J e _":;‘-:\
» S RN
$ (S g
1 e ey P A
f » " P P T AW W P YN W R W VR W (W T MG LA LY AEV L S ALY Sl Ol S S Vet Nyt S P i S PP SR
A A D Y o e e A e Y e o N N e o S o S D

IR X WO) gVl 90 G ath o d a"2 oS 0T ot aTH TR AT A R L AR Bl C A Vah ab At of Uah o) Vad A0) Vol igh Vol Buk Bal Pad Sl wol Mol ol Sa Gol Syl Syl Sob Onl ol Sob ool

!

RJ

1

[)

{

'

)

Y

!

) Theorem 4.11 If

1 I’ brac M@ A,

) R . .

d where I 1s a well-formed environment and A is nol a supercontext, then

i I' Fpac A Type

D

D or

W I’ l"]',\(: A: Prop.

Proof By induction on the length of tlic deduction P with the conclusion Af : A,
The only difficult case is that in which the last inference of D is by rule (Ve). ‘T'hen

! M = PN,A = [N/z]C, and D has the form

'

: D, Ds

; P:(Nz: B)C N:B

. (Ver)

r PN : [n/z]C.

[/

‘ By the induction hypothesis,

3

| I' Foae (Ve BYC K, (4.1)
and

" I' Fpac B i1 (1.5)

Iy Il we have x = Type, then 4.4 must be the conclusion of either (k" TFormation). the

-1 premises being 4.5 and

d 'yz: BB bopac €7 Type.

\ The conclusion then follows placing Dy over cach ocenrrence of the assumption r : [3.

L If k = Prop, we use Lemima 4.3 to carry out a similar argument using one of the rules

5 rules (kP Formation). m

(

Lemmas 4.1 and 4.2 give us a structure on the types in Prop. It is interesting to note
that the other types have exactly the same structure. By Theorem 411, every type is
in Prop, in Type, or is a supercontext. It is clear from the definition that supercontexts
) have this structure, and Theorem 4.3 tells us that the same is true for contexts, What

all of this means is that types arc built up from Type, Prop, and the simple types by the
operation forming (Va : A)13.
Theorems 4.3, 1.4 and 4.11 and Corollary 4.6.1 allow us to classily all formulas which
can be deduced from well-formed environnments:

\ Decfinition 4.11 (Classification of formulas) A formnla A 2 A is called:

(a) a conlex! function if A is a supercontext;

(b) A context il A =, Type,; \\::
, AR

";‘:ﬁ-':.'&f\
i] o

Ly "'v"-'w v,
¥ '.uc'ﬁ.:.'::ia.
‘. 0:0.0::,
3 8
Kl

ot
: RO
R S R N e A e A T e Y

(¢) & proposition function if A is a context;
(d) a proposition if A =, Prop; and
(e) a proofif A is neither a context nor a supercontext.

A deduction whose undischarged assumptions form a well-formed environment is classi-
fied according to its last formulas.

This classification shows the connection between TAC and the formulas-as-types
isomorphismn.

We would like to extend this classification to the terms M (at least relative to a
given well-forined environment). In other words, we modify Definition 4.11 as follows:

Definition 4.12 (Classification of terms) A term M is called:
(a) a I'~contezt function if there is a supercontext A such that I' Fpac M @ 4;

(b) a I'-contezt if ' Frac M : Type;
(¢) a I'-proposition function if there is a context A such that I' Frac M : 4

(d) a U-proposition if I' Fqeac M : Prop; and
(e) a I'-proafil there is a term A which is neither a context nor a supercontext such that
I’ ""r,\(f M: A

We have alrcady proved (Corollary 4.6.1) that no term is both a I'-context function

and a I’-proposition function or both a I'-context function and a I'-proof. To completc
the proof that this a classification is exclusive, we need the following result.

'!. L' 3
(oot ol

::31

Theorem 4.12 If 1" is a well-formed environment, and tf

5

Y

I' Fpac M- Aand U bypac M2 B3,

P iy

[

arc both derivable, where M and M’ differ only by changes of bound variables, then
A=

54

Proof By induction on the lengths of the two deductions, Dy and D, respectively.
Casc 1. The last inference in Dy is by (1:q”). Assume that the left premise is A @ A’
By the induction hypothesis, A’ =, 3. But A =, A’, and so A=, B.

>

XY ¥ _ |
[

i

Case 2. The last inference in Py is by (Bq”). Syminetric to Case 1.

19327

Case 3. 'The last inference in neither Dy nor Pq is by (Eq”).

Subcase 4.1, Dy consists of the axiom. Then M is Prop and A is Type. Then cither
D4 1s also the axiom, in which case 3 is Type and we are finished, or else the last
inference in Dy is by rule (IEq's), in which case xis Type by Corollary 4.6.1.

Subease 3.2, The last infereuce of Dy is by (kx'Formation). Then I3 is s’ by
Corollary 4.6.2.

1°.

Subease 2.3 The last inference of Dy is by (Bg's). ‘Then by Corollary 4.6.2, 13 is .

> » =
.:":":' L

5

Suhease 3.4 The last inference of Dy s by (Vev ¢). Then the last inference of 1,
i~ cither (Vo o) or (Bg's). 1 it is (Bg's), then the theorem follows by Corollary 1.6.2

2

LY
Ly
“
‘2

102

440 > 27.1®
:fﬂ‘“ ({‘}’:’
¢

P4
h's
o

A\Y

1)

\ “.q A TR T A T AT R o e ‘.- W.\.*' L % V -- v. .h‘ ~1~&- O AN ~q " W, r\‘j".-r‘.\-;\(\-‘ \f’\., ~..' ‘.f‘..l\. \.r'.'.n'
. o M o M o N g A £ B o M e B DU oy B M N o e X » ¥ o g e,

%
»
+)
y
b]

%
]

3
.

[h N » - - B A -

Otherwise, M is NP, M’ is N'I*' (wheee N' and 1 differ fromt N and P ouly by changes
in bound variables, A is [P/z]A’, B is (P/r]1¥, D, is

Dy Dyy
N:(Vr:.CYA pP.C

(Ver)
NP [Plz]/,

D D,
N :(Vr: D) M- n

S

(Vo)

NP [P/z)B.

By the induction hypothesis, C =, D and (Vr: C)A' =, (Vx : DY, 1t follows that
A’ = +B’, and hence A =, B.

Subcase 3.5. The last inference in Dy is by (Vii). Then the last inference in Dy is
by (Vki), M is Az:C . N, M’ is Ae:(C . N’ where N and N’ differ by changes in bound
variables, Ais (Vr : C)A’, and B is (Vz :). ("Uhere is no Joss of generality in assuming,
that the indicated bound variable is £ 0 both A1 and M’ because if the hound varniables
are different a minor odification of Dy will make then the samme.) Furthermore, Dy s

I
fx:C]
Dy,
N K

2

o

and Dy is

1
e
Dy .
N Cow Y

,

"r’r

(Ve'v 1)

Ar:CC N (Ve Y18

T YETVY W Y Y Y
"I-’)d't‘,?.-“."flu‘!

By the imduction hypothesis, A =, 3 and it cleacly follows that A 12

Subease 3.6, T'he last inference i Dpas by (1) This ease s tevinl. @ -

N

. ' . N ~

Covollavy 4.12.1 For any well-formed covieowment V0 no torm s hoth a UV-praposition :-,

Junctien and a V-proof. o~

D _~
e

N

gl
T
PR

YO

l',' PN L '}'}'{' "‘ TAL A S ey W WY T fgm v _« MIw Tty "” LS
ERERLI LN S .&-i:&‘.ﬁ!&'}.. VoW S A VA g A VALY, VLM, NNV P U A)

B TR TR N S

~

Proof Suppose M is both a I'-proposition function and a I'-proof. Then there is a
I"-proposition H# and a I'-context C such that

' bpac M Band I' bppc M2 C.

Hence,
I' Frac B3 :Prop and I' Fppac C : Type.

By the theorem, i =. C. Hence, by the Church-Rosser Theorem, there is a term D to
which both B and C reduce which can he proved on the basis of I' to be in both Prop
and Type, contradicting Corollary 4.6.2. &

Theorem 4.10 gives us the following characterization of I'-proposition functions:

Theorem 4.13 (I) fT is a well-formed environment, and 1f A 1s a T-proposilion func-
licn which is nol a proposition, then either each c-normal form of A has the form
Az:B : C, in which case the type assigned to A by U converls to (Vz : B)F, where F is
a contexl, or each c-normal form of A has the form M, ... M,,.

Proof By hypothesis, there is a c-norimal deduction of

I' boac D (Ve B)E,

where A > D, which is a c-normal form of it, and B is a context. Except for (Eq")
and (=4), which make no difference, the last inference in this e-normal deduction must
be (Vki) or (Yo e). If it is (Vii), we are done. If it is (Vo e), then proceed up the
left branch to the first formula which is not. the conclusion of an inference by (— ¢) or
(Ve ¢). Since the deduction is c-normal and since I' is a context, this formula is not the
conclusion of an inference by (Vii). Hence, it is an assumption, and 1) has the form
rMyo oM, as desired. ("That all c-normal forms of A are of the same kind follows by
the Chureh-Rosser ‘Theorem.) m

By iterating the theorem, and, if necessary, replacing terms M by Ay 13, . My,
where yi 1s not. free in M, we can prove the following corollary:

Covollary 4.13.1 Under the hypotheses of the theorem, if
U Fypac A (Yey 0 18)... (Y, : B,)Prop,

then euher A=, Ar:By . .. dx: D3, . A", where A’ 1s a T-contert, or clse cvery c-
normal form of A has the form 2+ M ..M,

Remark It s worth pointing out that, as we have formulated TAC, there is nothing to
exchude making an assimption of the forin 7 : A, where A is a superconiext. We have
not considered such assumptions so far, and the carly fornulations of TAC excluded

theme But they do no harm, since the rules of the system prevent the discharge of

anmy such assiwmption Farthermore, they will turn out to he useful in practice, sinee

101

,,
~ %
-
M
X
. s

|

4 e
.
.
@

XA

e 5 Y Ty)

) "'x"f' o
g

J/"’ fz-'

P
X
x

e

E

]
]
g -

N O T o i T e o e e e N B M A N SR A N N T T A AT T T T (T

undisclarged variables may be thought of as new constants added to the systemn. But if
such assumptions are allowed, then it is no longer true that anything that can be proved
to be in Type is a context in the sense of Definition 4.4; it might convert instead to

(Vzy: A1)...(Vzu : Ap)zBy ... By,

If we allow such terms to be contexts in a gencralized sense, then different assump-
tions can result in the same formula having different classifications according to Def-
inition 4.11. For example, let T’y be z: Type and let 'y be z : Prop; then y : z is a
I';-proposition and a I'-proof. Furthermore, the definition of well-formed environment
(Definition 4.3) would have to be modified to allow any of the A; to be a supercontext.
(Definition 4.5, of a well-formed context, would then have to differ from Definition 4.3,
since none of the A; of a standard form of a well-formed context can convert to a su-
percontext.) In Definition 4.8, it is necessary to specify that the rank of zBy... By, is
1ifz:(Vz;: A))...(Vzyn : Am)Type is assumed in the deduction. In connection with
Definition 4.10, a term of the form zB, ... By, where z : (Vz, : A4y)...(VZm : Am)Type
assumed in the deduction, will be called a simple generalized context. Finally, it is
important to specify that no substitutions be made for variables assumed to be in su-
percontexts; they must behave like constants. In what follows, we shall assume that
these modifications have been made.

105

‘.'p|n‘-‘.|l 'i‘.gu.‘.c.- WU MU WL W W WU WU MUY L TN . 2020020 e A0t ~ N et ‘GO B ot B8’ A8). 8, e, YT Y YUY

; VALY
: '
: A
) []
A l;. I;..‘(' X
F‘ g‘:j.é:?é
e
f"‘ :'la‘,'
'.ﬁ'l.!
’ ¥ > 7 .'!
4.3 The strong normalization theorem.] ‘:::::;
. U
[t might appear that to prove the normalization theorem it is sufficient to combine Theo- < 'g‘?""é::
rem 4.10 with a similar result for reduction steps whose cut formulas are not propositions. _.'_: {',h",
But this fails to work, for on the one hand, such a reduction step may require that a P
type of arbitrary complexily be substituted for a variable that is part of an assumption e]
that is also a sentence, and on the other hand, a reduction step whose cut formula is .:,,\"_~. '.,'
a proof may introduce a new cut forimula which is a proposition and whose type is a o K::tl’: ;
context of arbitrarily high degree. ::':HQ&h
On the other hand, Theorem 4.10 is of help in proving normalization, for it shows m WS
(via Lemma 4.3) that the types which are proved to be in Prop can be formed from the ;
simple types and Prop by V in much the same way that the types of TAP are formed
from type variables by the type constructors. This turns out to make it possible to Iy

adapt a proof of normalization for TAP to TAC. The proof we have chosen to adapt is
a proof of strong normalization due to Stenlund {Ste72] §5.6. However, the proof needs .
to be modified in much the way that the proof of [Mar71a) is modified in [Mar73]. ;

)
] Counvention Let D be a deduction whose conclusion is M : A, where A =, (Vz, : “F
F Ap) ... (V2 Ag)B,and for i = 1,...,n, let. Dy be a deduction with conclusion M; : A, -
:l where 3
|'| AgE[Af]/.l‘l....,AL‘-]/JJ,’_;]A,’.
L Then
D)
M:A ‘
3 (1D R
" will denote the deduction ey
‘.
L)
'|
Cd 3
A A ‘
v DI .
/ (Fq") R
{ A (Ve Ay) . (Ve s A M, A .
" N
) (Ve) A
MAL My (Va2 Ag) (Ve 0 A]
v S gy
) 3 gy
W Dn '--_\ ‘-’ .
[} ' ' 1/ > .'R;V' .\Q
MMy oMy (Ve o B A, AL ~ '.,"\.'p‘
N
(V “ \-“"ﬁ'i
f MAL AL, Y, Wl LY
.8
A where B =My fey 0 My S fe,)8 and B = (M ey, M g8 (I = 0, ._-’.t N
: then it wall denote D itsell) ":-'::\'.:\:’
'| .N‘.:"'- -:‘{.
3 RTINS
4 A S
) CSABAGLN
. 1 W
&
) [J
) ML
N ~ l'
l ot ™
3 PN
K » ‘\."Fﬂl\f'c
s) g
A ' .I'.‘;
4 M
LA
. h .~ h.
) ()
K N avr]
¥ -;f.'I:'J.'f
IR L N R e R R N s R T A N T A T L AT R LR T AL R R T X L .,-‘.,'f,'-'.‘v'"-"f
v ! '- ’ » W Wy Py .. Ty iy .) b X R 7 - g e v ~ > » A —, A (i N)), .\ ;A.‘A:H w “, [) - (‘ . o *, - o

- e

W

LA A £ U WL TV W W WO I W W B W W B X WO N PO N WO L I Ty o R10a) Gl vab S id Uoh il 0ol

LA N XA

Definition 4.13 (Type of a deduction) If D is a deduction whose conclusion is M :
A, then A is called the lype of D.

Definition 4.14 (Strongly normal deduction) A deduction D is said to be strongly
normal (SN) if every reduction starting with P terminates in a normal deduction.

Qur aim is to prove that every deduction is SN.

Remark In the proof, we will be making important use of the classifications in Defini-
tion 4.11. We will also be discussing a number of deductions at the saine time. It will be
important that each formula in cach deduction be classified the same way in any other
deduction under consideration. For this purpese we will need to know that the well-
formed environments of different deductions are all consistent in that none of them have
assumptions assigning different types to the samie variable. To ensure this consistency,
we will assume that we are starting with a generalized well-formed environment Ty that
is an infinite set rather than a finite sequence of assumptions. All well-formed environ-
ments actually considered will draw their assuinptions from I'g, and no variable will be
assigned more than one type in I'g. Furthermore, we shall assume that any finite subset
of I'g can be extended Lo a larger finite subset of I'y whose elements can be ordered in
such a way that it is a well-formed environment. For any deduction under consideration,
we shall assume that its discharged assmnptions belong to Tg; such a deduction will be
called Tp-acceptable. A term which is the type of a Ig-acceptable deduction will be
called a I'p-type. We shall asswime that any term is a I'y-type which can be built up
from Prop, Type, and the simple types and simple generalized contexts obtainable from
assumptions in [g. ('This assumption is casy to satisfy; if we start with a candidate for
o for which it is not teue, we extend it with new assumptions (for new variables), and
we keep doing this until there are enough assmnptions.) A Vo-proposition variable of
type A, where A is a context, is a variable & such that 2 : A is in I'g. And finally, a
Ig-term of type A is a term A such that M : A is provable from assumptions in I'g.

Definition 4.13 (Ground type set) A set 8 of Pg-acceptable deductions is a
grounded type set (ground) if the following three conditions are satisfied:

(a) Every deduction in S is SN;
{(b) If Dy(N) is a part of a deduction obtaied from a deduetion

£ /‘
Di(r)
A B

107

LU % Y e % FN Y% |) WAL U L L e LN P N e W% %
Qe RO O TR W) ‘ S N A

»
' 4, ' l.._ ML WM i XN M My

'\

"Ll

D

r »,
RN,
» ~.-"TC4’ ‘

s
40 ARSI
ALY,
1] ®
o

'c,:':cto:o:l'%
Of |I.
.'.c:': .
Pagtls, i, 8
)

*
[5-' 1 ..

A
% Fn C’::I‘

(AR
,.:d!-‘e

g|l‘:‘l:::l
'a'..c:..'l
3: ‘:1.1 o,
.

RN S X

».

(00 0 6 1 0 L U 8% BV % 570 8% $Va 1046 s SaU ol ot caB 0ol B0 dod 0 00" §oatd At i atava S R AP A ASFANAR SUARY 000 a0 Saby £F 0" Bin SV¥a 00 AV0 0 4.4 §.0 (a8 Rull Beb 00° Su* 8

by substituting N for r, if D3 is SN, and if

1sin S, then

15 also in S,

and

Ds
N:C
(Eq")
N:A
Dy(N)
(N/z]M - [N/z]B
DDy
1
{z: 4]
Dy(x) D,
A B Ak
Az:A .M :(Vz: A)B (V: b Dy
oA Mo(vz.op) N:C
(Ve)
(Az:A.M)N :[N/z]B
{P/,....D,"}
D,, are SN, and if
r: A
{P,....,D,}

15 a I'p-acceptable deduction, then it is in S. A ground in which all of the deductions
frve a given type A will be called a ground of type A.

Examples The set of all SN Ig-acceptable deductions is a ground. This ground will be
called SN If A is a To-type, then the set of all Fg-acceptable deductions of type A is a
around of type A; it is called SN 4.

Daofinition 4.16 (Proposition term) A propostlion lerm is a term A such that A 3
i i proposition. A proposition termn which is also a variable is a proposition variable. \f

. (V.l'] 8
‘l, |“|/J'|,. ,If

1) . (Ve 2 B3y) Prop, then terms My,

1ox

My suehthatfori = 1,2,....n
vt/ By can be proved from hypotheses from Py, will be ealled

?:::n‘.‘ 3
. o

IC.
‘.l
..*.w

) 'l'.
-"“. 'I:$:
® ®

R
e

OF)
“‘

R 0
'y

':."'3'. 4
”’»4'. "o‘

:‘":" '.‘ -."u

g

3{, Yol

¥ \“'1-
:}\ _p: et

"\- \
\“'&:: '

argument lerms of A. If n = 0, then the term [variable] is called a sentence term
[sentence variable]. (Note that if Aisa proposition term and My, ..., M, are argument
terms of A, then AM, ... M, : Prop can be proved from assumptions in I'.)

For the next definition, we need to recall what we know about [g-types. We know
that any such type (except a supercontext) can be proved (from assumptions in I'p) to
be in Prop or in Type, and that a deduction proving that A is in Prop or Type which has
been transformed by Theorem 2.5 can end with an inference by rule (Eq’s). If we take
such a deduction which is c-normal and delete this last inference, we get what we might
call a standard form of A, to which A converts. I we add to these standard forms the
standard forms of the supercontexts, then this standard form will either be Prop, Type,
a simple type, a simple generalized context, or else will have the form (Vz : B)C. When
we speak of making a definition by induction on the structure of a type, we will mean
by induction on the number of occurrences of ¥ in its standard form. This mirrors the
construction of the type from Prop and the simple types by the universal type-forming
operator. We can indicate this induction by the following definition:

Definition 4.17 (Rank of a I'g-type) The rank of a [o-type A, rk(A), is defined as
follows:

(a) il A is a simple type or a simple generalized context, rk(A4) = 0;
(b) rk(Prop) = rk(Type) = 0; and
(c) tk((Vz : A)B) = rk(A) + rk(B) + 1.

Definition 4.18 (Computability predicate) Let A be a Pg-terin of type A. By
induction on rk(A), a computability predicate of type M, denoted p[Af] is defined as
follows: ‘

(a) if A is not a context, then p[M] = M,

(bY if A =. Prop or Type, then p[M] is a ground of type Af; and

(e} if A =, (Vay : A))...(Va, : Ay)Prop, then p{M] is a function whose arguments
are computability predicates p[Afy],p[M,] of types My, ... M, where each , s a
I'o-term of type A;, and whose value is a ground of type Af M, ... M,,.

I'or the next definition, we need to proceed by a kind of induction on the structure
of a term. For this induction, we need to note that if a term A is not. a I'g-proof, then
it is a I’p-proposition function, a I'g-context function, or a supercontext. Thus, if 4 is
not a I'p-proof, then it converts to Prop, Type, a Uy-simple type, a Pg-simple generalized
context, (Vz : I$)C’ (where B is neither a supercontext nor a proof and where € is not
a proof), or Ax : B . C (where I3 is neither a supercontext nor a proof and where
C is neither a supercontext nor a proofl). Here I3 and € are essentially simpler than
A; furtherinore, if A converts to a simple type zMy .. M, then each Af; is essentially
simpler than A. This justifies the following definition by induction on the “structure of

AT,

Definition 4.19 (Computability object) Let A(ey, ..., 2,) be a term al) of whose

free variables which are not assigned Lo supercontexts in 'y occur in the list xy,...,r,,.

109

0000 0,000,080 8000000095 00 6 040 0000 2 00 R H 1 "0 070,000,000 070 08 070 0] oV aU 00 N ot4 aUaherotic o Np JRav ba- Vet BN tan RS Sat Byt dal faF §,¢ 4

' ‘.' N
A
) @

RTEEREY
i)
RS
X o'”o': i,
! I'q '(‘1
f:';‘e:l’:!'i
KRN
) o
'y Wy o

:‘!{rt:{’c l‘l’

-
i

" k) J

™ % (]
¥, .

F"-«."‘ﬁ",;' !
] ®

VetV
c,"::l':. :::":'

S Bty
e

()
‘::”: "'o
W

:‘t o

R

)
o

T
%

-

N
o

& f{‘:

A
;v 'S

»,

o

L B~

5

5
P

=]

A
o
.'.;i. \
[] n
(AQV%L.
AT
l‘o X 'y ld‘::'
S !
'.“v'. A")\\l\h
] 9
RERCuRLN
oS

1% N ¥ 03" ot

P

P

" oty

-y e A

Pl

- - -

‘t.’\n'ﬁt,

VIRV N R RE MY YU N ¥ U LR MR 0 a0 had caGiled vpliva® gt 0u9 Bab ligh 0ol

» ™ \ -
O R SR I IO o T Tt i ™ o R S e M Mt P i M i K

Let Ay,..., An be o-terms of the types of zy,...,z, respectively. Let p{A;],...,p[4n]
be an assignment of computability functions to the terms A;,..., A,. Relative to
this assignment we shall define by induction on the structure of A(z,...,z,) a com-
putability object C[A(zy,...,zn)] (p{A1],...,P[An]), which will contain deductions of
type A(Ay,..., As) if A(z),...,z,) is a Tp-type. To simplify the notation, we let
z be the sequence z),...,z,, A the sequence Ay,..., A,, and p[A] be the sequence
plAi). ..., p[An])

(a) if A(z) is a I’g-proof, then C[A(x)](p[A]) is the term A(A) itself;

(b) if A(z) =. Prop, Type, or a I'g-simple generalized context, then C[A(z)](p[A]) =
SNA(A);

(c) if A(z) =. z;M (&) ... M;x(2) and is neither a Ty-proof nor a 'g-simple generalized
context, then CLA(2))(pA)) is HAN(CIM: (2))(P[A]), ..., C[Mom(z))(P{A]);

(d) if A(z) =. (Vz : B(x))C(z,z), where B(z) is not a context, then C[A(z)](p[A]) is
the set of all ['y-acceptable deductious

D
M : A(A)
such that if
DI
N : B(A)
is in C[B(=z)](p[A]), then
D
M A(A) ,l.),
(Bq™)
M (Ve : B(A)C(x, A) ! N :B(A)

Vo)
MN :C(N,A),
is in C[C(N, z)](p[A}D);

(e) if A(z) =. (Vz : B(x))C(x,) where B(2) is a context, then C[A(z))(p[A]) is the
set of all I'p-acceptable deductions

D
Al A(A)
such that if
.DI
I B(A)

110

B WA RN

IRV n“ "".'v

:..i
".;, "5!;'.:

o2 .!0‘:!0‘. Wt

» e
'Oi.:'i.‘.‘ ‘.I‘l
§ -.:.'):': o

B

@
' ‘c'.‘;c

T

% é
|
"‘-]

TN O N T TRt o ¢ W AN AN A o YA PRE 0 72 G5E G T B WS 827 W o BRT 60”2 F N V0 aVE AvE 4% 0 2'0 270 0 0.8 0.0 . 0" Bl 0B’ 6.8 Tal Fu0 9,0 70t b .‘~|,'."»."..;'..|..
. UOODUT)X
OOy ¢

"

' by l"l,“ ¢

& '.l by ."

* (e
) 4

' '.." CR] ‘ +
VI
g C.q.

A

is in C[B(2)](p{A]) and if p[E] is any computability predicate assigned to E, then : o

i
.
UACH N M AN
RO NN

D

M: A(A) ’

(Eq") P IR

M : (Vz : B(A))C(z, A) E: B(A) ‘c’.,:;.:g.:o;«

(Ve) ’l'q 4 :::f

ME:C(E,A), ::G’q‘g:::’:

AN

is in C[C(z, 2)|(p[E].p[A]); and ottt

(f) if A(2) =. Az : B(z).C(z,z) and is not a I'g-proof, then C[A(z)](p[A]) is a func-

tion whose argument is a computability function of type A, where A is a [g-term of

type B(A) (the type of z), and whose values are given by (C[A(2))(p{A)))(p[A4)) = \

C[C(=, z)](P[ALP[A]))- 0.:::‘:.0 %

Remarks

1. In case (d), note that since B(x) is not a context and since N : B(A),C(N, z) inust !.;\ < o
have the same structure (with respect to the construction of types) as C(x,x). The NIEINAD
division into cases between (d) and (e) is precisely the distinction between terms .
which can, after substitution, change the structure of the type in an essential way, .:0
and dealing with this possible change is one of the main difficulties of the proof. .sk.“':‘

2. In cases (d) and (e) of this definition, we are assuming that z does not occur) 9
free in A. Since z does not occur in B(A), this is immediate for those A; which .i N
actually occur in B(A), and for those which do not occur in C(z, A), there is ‘ ’c:"',i:v.‘
clearly no problem. For those A; which occur in C(z, A) but not in B(A), since 2
we automatically change bound variables to avoid clashes when we carry out a .q.'o,:,c,:!
substitution, the fact that the bound variable is z implies that it. does not occur N 'c"!u'.‘,
free in these A;.

3. Case (c) of this definition makes sense only if C[A(z))(p{A]) is a computability W ,'n..la"'

predicate. ‘This will be proved below (Lemna 4.6). Wt

Lemma 4.4 (a) If ..'l‘::ﬁ::':::'
z: B N ®

T

{D,,...,D"} ,:\‘J‘. s

for n > 0 is a deduction of type A(A), and if Dy, ..., D, are all SN, then 2 "ﬂ.{: ‘,

ety

RGNy

. B B
[D],...,Dn}) []

) AN t

ts in C[A(2)](p[A)). k\-‘a*‘ N

(b) Every deduction in C[A(z)](p[A]) is SN.? %i;{.d“\
Y

1l

" : "'\- 'r\ ‘
SRS NI A S A SR LR AN A R AN 1S P 0t v s et ol 1S v v v S ity :&:’&3& =

o)
Proof By induction on the structure of A(x). Note that A(z) is not a I'g-proof and
does not convert to Az:B(z) . C(z,z).
Case 1. A(z) =. Prop, Type, or a I'g-simple generalized context. Since
z: D []
{Dl,...,Dn} ;,. -;‘
o
is SN whencver Dy, ..., D, are SN, (a) follows by Definition 4.19(b). Part (b) follows e
umniediately by Definition 4.19(b). el
Case 2. A(x) =, z;M; ... M, and is not a I'p-generalized context. Part (a) holds by ? P
Definition 4.15(c) and Definitions 4.18 and 4.19(b). Part (b) holds by Definition 4.15(a)
and Definitions 4.18 and 4.19(b). :
Case 3. A(z) =, (Vz : B(z))C(z,z), where B(z) is not a context. To prove (a), let }
7
D X
M : A(A) \J' AT
. 'i*'\';-.ﬂ
be a deduction in C[A(z)](p[A]) and let z : B(A) be an assumption in [g for which = T
doces not occur free in D. (We may assume without loss of generality that the bound N
variable £ has been changed if nccessary to assure that there is such an assumption in
I'n.) By the induction hypothesis (a) (with n = 0), z : B(A) is in C[B(z)](p{A]). lence,
by Definition 4.19(d). ...
D
Al A(A)
(Eq")
M (Vr: B(A)C(z,A) z: 3(A)

(Ve)
Mz :C(r, A)

is in C[C(x,z)](p[A]). Hence, by the induction hypothesis (b), this deduction is SN.
[lence, D is SN.

To prove (h), let
y: Iv
{T)lv' . 'v‘Dn}

be a [g-acceptable deduction of type A(A) where Dy, ..., D, are all SN, and let

D
N : B(A)

O Hindley & Seldin [HS86] Theorem A3, Lemma).

b2

e » s ‘ = P, 3 3 99 L L Y R RPN R P

oo WU WU U U W U U WU WL W R WU WU U YU VU WO UV U YU U VU WU U UV RO WY G T U N WU WU U WURU VW .,-e.,v... ~:..~
: .'::..t Q"’

gt l,"-'
) .

‘Q
v: .;é? l."::.'

.i %5 :: W,
2 vty
)]
-y PR &
»)) e . . ';.l‘..I:::ﬂ:':
. be in C[B(z)}(p(A]). By the induction hypothesis (b), D is SN. Hence, by the induction \::.'o:gll:da
D hypothesis (a), :':‘::::E::::::
K . XN
. y: F '::‘ nt 9:' c'
‘ {Dy,.... Dy, D) i ,,‘,
)
is in C[C(N, 2)](p[A]). Hence, by Definition 4.19(d), W
{ [! ?:1;':}:&:‘:
i y:E R 'e" e
)
¥ {Dy,...,D,) i
.) @
| is in C[A(Z)](p{A]) l‘ .‘ 1:-;1:|
¢ Case 4. A(x) =. (Vz : B(#))C(z, z), where [3(z) is a context. To prove (a), let |.'§Q,‘:%,.. .
Ry
: ? PR
M : A(A)) ®
» ﬁ l"‘. (L .oj'
) be in C[A(z)}(p[A]), and let = : B(A) be an assumption in I'g. By the induction 2":'
:: hypothesis (a) (with n = 0), z : B(A) is in C[B(z)}(p{A]). By Definition 4.19(e), e .:.'3'03"',
" '.o) bl
s D “0{,&
‘ M : A(A) !
: (Eq") 3 w’-—
:: M : (Vz : B(A))C(z, A) z:3(A) Vo) R ..;.. 't‘
N c
Y Mz :(C(x, A) o'..cQ.
if "‘C".i' ‘\'i
. is in C[C(x, 2)](p[z], p[A]) for all plz]. By the induction hypothesis (b), it is SN. Ience, , ®
0 D is SN. e .&"
n To prove (b), let ,!".H ":
) .
:'. y: B ".’.q‘t’Q;.
;: {plv-'-vpll} ..$.‘ ".
be an Pg-acceptable deduction of type A(A) where Dy, ..., D, are all SN, and lot) ®
7 R
4 D RN
% F: B(A) LY
1: t ".‘K;
. be in C[B(2)(p[A]). By the induction hypothesis (b), D is SN. Hence, by the induction e
3 hypothesis (a), M.
¥

- - -
e Pl S o)
-
2y
'S

‘.‘l.i . 4% .l|\ .o qloa .n sl“. .l.u " d . ' " ,i Ol‘l !\‘. ‘. ‘c". 0“ .‘i‘. P.’. l.vi) V. X ‘ ol‘.. v, ."-' ﬁ-{!}ﬁ&ﬁ.&

QK
) "O.:::‘:':.:
.l:"i. .l.'.l.

0,070,000, 8700
A’l‘;’.l'c'.l'l’t

e w o "h n . - ~ ol a0 _Bal sal tat Cp caty‘E¥a Y. ab, gt
a2 ety 18 8% 80 88,0 Pl $2% §a¥ (aT HaT Vot Uatatec faTatyiovg® otd oty AR N ¥, G0 6aB 0700 vt Vah tpt Tpl gl gt gb S LSO Y 0.:'..0

is in C[C(z, z)}(p[F), p[A]) for all p[F]. Hence, by Definition 4.19(d),
. "l.{h |

{Dl"-'an} M VIO

] [)
RN
is in C[A(x)](p(A)). m ‘:.“"?’5:':0‘::’:
it
Lemma 4.5 If D\(N) s a part of a deduction oblained from a deduction k ':.{:::::0::
R
z: FE e PG
D[(l‘)
M:B

by substituting N for z, if D3 is SN, and if

D3
N:C
(Eq")
Dy(N)
[N/z]M : [N/z]B
{D/',....D,"}
is in C[A(x)](p[A]), then
1

[z: E]
'Dl(:r:) Dg
M:B FE:r
AeE .M (Ve E)B (V"‘" d D, (4.7)
Ar:A. M (Nz:C)B (Ed") N:C

(Ve)
(Az:A: MYN : [N/z)B

{(D),.... D)

is also in C[A(x)](p[A]).1"

10T Hinldley &: Seldin [HS86] Theorem A2.3 Leuuua 2.

B

. ; e - Yy BB 0 R
R N R IR U VY UN UN AN UM UK LW L W US DV U Uad VLSV TR o %a8 N OO 4

a0 Mt Rt avh aVA ath o "'”““ ¥y
e \.“‘-
it
| @
..
‘:‘5" "
) Y
R
:: e
']
e
Proof By induction on the structure of A(x). Again, A(x) is not a I'g-proof and does ".. ':‘Q:'\"i
not convert to Az:B(z) . C(z,=). i ,:.':::;",:
Case 1. A(z) =. Prop, Type, or a I'p-simple generalized context. The Jemma follows .“ 'l":!’
from Definition 4.19(b) and the fact that 4.7 is SN whenever 4.6 is and the hypotheses
of the lemma are satisfied.
Case 2. A(z) =, z1M,... M, and is not a ['g-simple generalized context. The "::
lemma holds by Definition 4. 15(b) and Definition 4.19(c). ."1'."‘: i
Case 3. A(z) =. (Vz : B(2))C(z,z), where I3(:£) is not a context. By hypothesis. vl :I :!"‘
(4.6) is in C[A(z)](p[A]). Let Wit
D ' L.
O
P B(A) W) "'i‘
. . c . ‘G'Q‘t'gzl 'l“
be any deduction in C[B(z))(p[A]). Then by Definition 4.19(d) we have 30 ...: ‘::
RRON)
D, Sy
' o
N:C g AL Ay Ll
K N:E h.- <
) Dy(N) ”ét;,)
-
Y [N/]M : [N/2)B{D/",....D,", D} ‘»‘-*4‘*' ~0
P is in C[C(P, z))(p[A]). By the induction hypothesis, 0'..‘: '4"1'&"
o 1 e ‘h ':: ' "
.': - ..' I
": [z: E] o:.. ‘.'l'| L

Y pl(.’t) ’Dz
" M:B E:x "' N‘?'

) .

. . - (Vei 1) 'r.%

! Az:E .M :(Vz: E)B (Ba") D, l%
Az:E .M :(Vz:C)B “ N:C . ‘n’
A (Ve) ' K.

: (Az:E: M)N : [N/z)13 }:' g:g:
! Ateinde
,::: {D/.... D, D) G ;,

PonR s
b is in C[C(P, z)])(p[A]). llence, by Delinition 4.19(d), (4.7) is in C[A(=)](p[A)). “_\::_‘_.;&
' Case 4. A(z) =. (Vz: B(2))C(z,x), where B(:r) is a context. By hypothesis, 1.6 is \"5"‘\'*"

in C[A(z))(p[A]). Let

S
: D ""-'5"«:‘.:

I
I B(A)) $ 0) "‘lf
) i
',:\"Q"s‘
A l“.
0 L5
D a;:‘l‘l"
4
|}
N ,::.‘:Q.|
L) I\
::' :" ﬁ\"i‘:a‘l
' \
::\ . ". '|."
' @
AN
RN
:" _\‘;~;~$\
)“' S PR GV Sl g G R Wy o R "-'-F-_;'.. ’.,_-‘--,"4.. AT T .-"V*\‘ w, -'\"‘\ AP e ""N\‘*-F\:‘ﬂ'\
DOOOIAR NN P) An N ., L L o " Y 4 Zakr ol Al ol A A .8 o

- e o am W

A

o o

-

vl

[T

Ty .5

e O3 a8 a8 290 22 a8 02 a8 2% a8 u ¥ a8 n b2 a8 2t ate a8 270 %8 ath et W Whi WL WL Ve WL W WS %2t * o ¥

be any deduction in C[B3(x)](p[A]), and let p[F] be a computability function for F.
Then by Definition 4.19(e) we have

Dy
N:.C ’
(Eq")

N:.F
Dy(N)
[N/z]M : [N/z]B
{D\,... D, D}

is in C[C(x, =)](p{F], p[A]). By the induction hypothesis,

1
[z: F]

Dy(z) D,

M:B E:x

An:E .M (¥z: E)D (\’:" = Dy
el Mo(vecyn) N:C

(Ve)
(Az:l: M)N :[N/z]B

{D\',... D, D}
is in C[C(z, 2)](p[F]. p[A]). Hence, by Definition 4.19(e), 4.7 is in C[A(=))(p[A]). m

Lemma 4.6 If A(x) and plA) salisfy the hypothesis of Definition 4.19, then
ClA(#))(p[A]) is a ground for cach term A(A).

Proof Lemmas 4.4 and 4.5. &

The following leinma makes sense because of Lemma 4.6.

Lemma 4.7 (Substitution) Lel r be a variable which is not assigned a superconlext as
a type by Ty, let A(z,y) be any Uy-type, and let 13(y) be a term which can be shown from
o fo have the same type as z, where y includes all variables ezcept z which occur free
and which are not assigned superconterts as types by 'y, Let C be a sequence of terms

of the same types as the variables 1 y and It p[C] be an assignment of computability
predicates fo the terms in C. Then

ClAr, plCIBOPIC)), pIC)) = C[AB(y), w)(p[C)).

116

* a2t 2"
Saaly® ¥

-~ - - ’ - W R W B WL WP W, (TR R AW W e \._'y PRI S R ‘\\n.\".
T N, e e O N S R M A A N S A A AN

Wi o M X 'o.‘-
-

‘
0 :

LY ¢
R
) 'S
0";01::".:5:,:
W 0":::':.

£ .l.'!

’ (.

o
¥

N
n

QUL
QOOOUE
’l!n'.’;'&’-‘n‘!'

[
LIt
WL
Rt
AN
g At .(
(ﬂli\. Wl AR
®

LR
SOt
R

QUAN)
§%. ¢
P
Rhandi e
KERY NN

®

]
)
o
)
()
| Naf
)
N
Gleboed g
O ..l'
!

i

L R AN R P R T L 0 O U N U A RO R S OV Y A A S UY N UY PV TN T TRV TN A L W VW P P N AP N

) Proof By induction first on the rank of the type of B(y) and second on the structure of
Y A(z,y). For simplicity, let p[B(C)] abbreviate C[B(y))(p[C]). (This is a computability
predicate by Lemma 4.6.)

Case 1. A(z,y) is a [g-proof. Then both sides are A(B(C), C) by Definition 4.19(a).

In the remaining cases, we may assume that A(z,y) is not a [o-proof.

Case 2. z does not occur free in A(z,y). Then the lemma is trivial. This takes care
of the cases in which A(z,y) converts to Prop or Type.

Case 3. A(z,y) =.zM,... My, a simple generalized context. Then z is assigned
a supercontext as a type by [y and hence, by hypothesis, is distinct from z. Then by
Definition 4.19(b), each side consists of the sct of all SN deductions of type A(B(C),C).

Case §. A(z,y) =« yM\(z,¥y) ... Ma(z, y), where y # z is one of the variables in y,
and C is the term in C corresponding to y. Then

ClA(=, v))([B(C)], P[C)) =
PICHCIM (2, »)(PB(C)}, PC)), .. ., C[Mou(z, »))(P{B(C)), PIC))),

and since A(B(y),y) =. yMi1(B(y),v)..Mu(B(v),y),
ClA(B(w), »)I(p(C)) = (PIC(CIM(B(), »))(P[C)). - . ., C[Ma(B(w), v){(p[C))).

The lemma follows by the induction hypothesis.
Case 5. A(z,y) =. zMi(z,y)... Mp(z,y). For simplicity, write this as zM(z, y).
Then the type of z and B(y) is

Ty

L e e

(Vzy : Ev)...(Vz, : I5,)G,

where G is either Prop or a ['g-simple context function, and so B(y) is a proposition
function. By Definition 4.19(c),

ClA(z, wl(p[B(C)), PIC)) = p[B(C)(C[M (z, »))(»[B(C)), P[C))).
By the induction hypothesis, the right-hand side equals
pICICIM(C, »)l(p[C))),
which, by our abbreviation for p[B(C)}, is

CIB(wm(plCN(CM (B(y), »))(p[C]).

If p = 0, we are finished, since A(B(y),y) =. B(y) and M (5(y)) is void, so this is just

ClA(B(v), w))(r[C)),

as desired. If p > 0, then we have the following subcases according to Corollary 4.13.1:

A N A NN
e A A N N N T

%
-"’j
X

NS
>
s’&,\
s
oY 5%

[A
ol

<
o,

:'{ﬁ'l"l s
«
rd
: 5,
S

5

o Raathy

5
27
A

5
P)

5 '-{l
Sl
%

L7

x N
<,
r

[]
Ty

‘I
%Y

[4
£

n
P)
\Y :
‘. f‘l

w
Pyl
W)
-

£
. .'
0N
R
%’
&'
b 2

[

(X TOOSRax
..i Yo'y
()

'
a
v
p]
_&

AR N
) lv‘l -
l:d
-"t:x
ll'l‘.
“E‘A‘,

- *
2
P
22N
[o
<

5{“‘_' . .'r-
‘e
I"

)

—
E\. Sy

N \ t
NN 'r:".-. N

"‘h Y

2o N0 W WA \ X

Subcase 5.1. B(y) =. Az 5y . .. AzpiE, . F(z,y), where 2 is the sequence 2y, . . ., 2,,. o :
By Definition 4.19(f), -~ y

C[B@)(PIC)(CIM B(y),))(p(C))) I

e
C[B(v)=)(P(C), C[M B(y), v)](»(C])). P
. B
By the induction hypothesis on the type of B(y), this is ,-’f:\-]
RN
C[B(y)M(B(y), ¥))(C : Prop), SRR M
)

and since A(B(y),y) =. B(y)M(B(v), y), we are done.

Subcase 5.2. B(y) =. yiN1(y) ... Ng(v), which we may as well abbreviate as yiN(y). :;t
Then A(B(y),y) =. viN(y)M(B(y),y). Now by Definition 4.19(c), 4

CIBWIPICHCIM Bw), (lC]) R

PCHCIN (IPIC)(CIM B(y), w)pCD), DR
hut this is the same thing as
PICICIN (MI(1(C), C[M B(y), w)](p[C))),

) 9
and by Definition 4.19(c), this is AT

" o
CAB(y). »)p(C)), RGN
e 3
as desired.,
Case 6. A(x,y) =. (Vz: E(z,y))F'(z, 2,), where E(z,y) is not a context. By the ;h. PY
induction hypothesis,

»

G IBONPIC) = CE(BLy), y)(pIC)) Y,
and, for any term N(y) such that there is a I'g-acceptable deduction ending in N(C) - ',: \":': ."gt
E(B(C)). AP

CHG r)p[BCO).p[C) = C[F (=, B(y), mI(pIC))
By Definition 1.19(d), the leima follows.

rl
P
'n‘.;:‘

PN AR

Case 7. A(x,y) =. (Yz : E(z,y))F(z,z,y), where E(z,y) is a context. Similar to -
Case 1 using Definition 4.19(¢). # R

2
'y
I
77
]

'
M
"l .l
"
B
P

Notation In the following lemnma, = will depote the sequence y, ..., z,, y the se.)
quenee yyLo Yoy IV the sequence Ny, Ny, B the sequence By, ..., B,,, and p{D]

LY
the seqienee p(i4}), ...] Furthermore, A:«H' fori = 0,1,....,n =1, will denote : ::
[_\"/1'1... .,‘\',/J‘,l/\,+|‘ P\'-" A

2

)
s
a1, !

Sl
33

7
l
-.5

A
1R

\
T
@

Ch T M g P Cp o ® T g uMa W Wy, T
At A e T N N e N e

IR Wl T ST W T AR Sl Wl
-_:.!\ ISy -

AR RN KR N b ol b b ead bad Vol Sah val ik Sall Gk TN LR e " G P 0 Ol Aol i

Lemma 4.8 Let
1 Ay),...oxn s Au(y)
D(z,y)
M(x,y): A(x,y)

be a To-acceptable deduction all of whose undischarged assumptions are among those
shown, where y consists of all variables which occur free in any lype or lerm which are
not assigned superconlezls as lypes by 1I'g. For all assignments of terms By,..., By, to
Yis-- - Ym (where for each i =1,2,...,m, it can be proved from I'g that I3; 1s in the typc
assigned lo y;) and for all assignments of computability predicates p[By], ..., p[B] o
By,....,By, if fori=1,2,...,n, the U'y-acceptable deduction

D;
Ni: Aj(D)
is in C[A;(»))(p[B)), then
D T’n
Ny: AUBY oo N AL() s,
D(N, B)

M(N,DB): AN, D),
is in C[A(N, y))(p[B))."!

Proof By induction on structure of D(wx,).
Basts:

Case 1. D(x,y) consists of the axiom (P T). Since this deduction is clearly SN, the

lemma f{ollows by Definition 4.19(h).
Case 2. D(x,y) consists of the asswmption r; : A;(y). ‘The lenuna is immediate,

Induction step: 'There are the following cases, according to the last inference in
D(x,y).

Casce 1. The last inference is by (kx’Formation). By Definition 4.19(b). it is sulii-

cient to prove that (4.8) is SN. By the induction hypothesis and Definition 4.19(h). the

deductions of hoth premises are SN, Henee, (4.8) is SN,

Case 2. The last inference is by (Bq'k). Similar to Case 1.

Case 3. 'lhe last inference is by (Ve). Then M(x, y) = M (. y)Malr, y).
Ar,y) = B(My(2,y), 2, 1),

N Nindley & Seldin (HS86] Thearem A28 Lenuma (b)),

119

- . s AL AN Y AT T e LT L T e e e S a e T R T e P A
Mmhmmn.%&fh{:‘n_il:‘.'i_'.‘p_‘. \._','.-_'}v:\'xfix\' ‘e ¥ Y O R .‘:\{.\.{&{\{ t'lt‘l)- .0 A

Ry
¢

Ny
S P o
N PN P 1%,

-i 4R

[] []
e
3w i) !
RO
fﬁ'.-'... o

[)
TR
R

.
2

» °
RN

NN
)
%}\i&§\)
U |

A

R S e

aud D(x,y) is

1 Al(Y), .. vz An(y) z A (Y), - za Au(y)
D'(z,y) D"(z,y)
Mi(z,y) : (Vz : C(z,y))E(z, 7, y) Ma(z,y) : Cl=, v)

(Ve)
Mi(z, y)Ma(z,y) : E(Ma(z, y),z,y).

Subcase 1. C(x,y) is not a context. By the induction hypothesis,

D, D,
Ny AY(B) ..., Ny:AL(D)
D'(N,B)
Mi(N,B): (Vz : C(N, B))E(z, N, B)

is in C{(Yz : C(N, 9))E(z, N, v)|(p{B}) and
D, Dy
Ny AUBY ..., Nu: AL(T)

D"(N, D)
M'Z(N)B) : (N'B)|

is in C[C(N, y)](p[B]). Then by Definition 4.19(d), (4.8)isin C[E(M2(N,y), N, y)|(p[I3]).

Subcase 2. C(x,y) is a context. By the induction hypothesis,

Dl Dn
Nyt AUBY L., Nt AL(B)
D'(N,B)
M{(N,B):(Vr:C(N,B))t(s,N,DB)
is in C[(Vr : C(N,y))E(z, N, y)|(p[B]) and
D, D,
Ni: AYBY L., Na: AL(D)
D(N, B)
M(N.,D): A(N, D),

s C[C(N, y)](p{B]). Then by Definition 4.19(¢), for any computability predicate
p[MAON B (A8) is in C[E(x, N,) [(p[Ma(N, B)), p[B]). 'To complete the proof, it is

120

[A T .
A SN AN

NOK T AT AN P TP L . Sl Wi d W, O ?U"ifu(,r.
w"\-‘t Sy

5@ L,
“\1:"'-
(‘_' -
se

I;:‘:l:.%;ﬁ\'l'
3

Y
b
.\
'l
"
o
-

s
L
-

"

4:;‘: ¢
Y

a
5

%
R

SN
IRy
@

"l

S

e

WA
Lo

rr

r's
Akl
s

[¢

Pg

n N 1{
® Lk

) fl&
| J:' r.ﬁ“ A ‘Q

. ”
AT A

o . .'q
Tk
l::-}_\-‘ e

A
Lo
)

A W WU VW A U U U U U U U R O O O O T RO O O SO N N R U YUY U PUNU VU O VOO WU O TR TO AP O O™

'

Y "

TN

Fatalo vl
) []

\
LK)
{ 28,000
R
< z:)
N 2"‘53‘
—‘l -l.a‘..;
) °
::nj'.::"‘l"':
sufficient to find a computability predicate p[AM.(IN, y)] such that h ‘:‘l:'..'\i:";
) '
.)
CIB(z, N, y)}plMo(N, B)).plB) = CLE(M:(N,), N.)(#[B). (49) S
(R
A suitable such function is the one such that L ".
TS
pMz(N, B)] = C{M2(N, y))(p{B}). Pnfudtd
That this is a computability predicate follows from Definition 4.18 and Lemma 4.6. That :P' ‘ f s
(4.10) holds follows from Lemma 4.7. f‘-})i%, 4%
Case 4. The last inference is by (Vki). Then A(x,y) = (Vz : C(2,y))E(z. 2., y), haN R
M(x,y) is Az:C(z,y) . Mi(z,x,y), and D(x,y) is)
,’ Ve aY,
1 Tonn)
i
[I:C(zay)lt z1 :A'(y)"'-:-tn -'An(y) Iy -'Al(!l).---»ln An(y) "::
D'(z,2,y) D'(z,y) v
M(z,2,9) : E(z,x,y) C(x,y): 8 !__ o
(Vi 1) A
Az:C(x,y) . M(z,2,y) : (Vz: C(x,y)) (2, x,y) ol
vk
Subcase 1. C(x,y) is not a context. Then k = Prop. By the induction hypothesis, for {:&k
all deductions PNty
plll '
o
P C(N, D) .
. g "
in C[C(N, »)}(»[B)), o i
e
pm ’Dl 7)'1 .!'.‘ Ad
PC(N,B) , Ny: A ... Nyt AL(DB) s
ey
D(I,N,B) A0
M\(P,N,B): E(P,N.B) A
AT
is in C[E(1 N,))(p[B]). Henee, by Lemmas 4.4(b) and 4.5, ;:" 8
]
! pl T)n D 1 pn '-::"-:;
(F:C], Ny: Aty Nyt AL Ni: A Nao AS Lt
'D“(J') .Dn. :::::'. RS "..
My(r): () C* o x P ::J..:f'-":'\-'
N v v (Vi 1) .
0 M) (Y (s P.C* .
r(x) (Vs VE* () . Sv:".'\\\;"
(Ar:) M) B (D). ORI
.",cl' $
M Y 1
OOt

121

S R R A e A R R s R A s w TR s D it

Y TR TR DT LT RS M AT T WA XA KA RS R k“
0 e

~
poin
[3

. V
) l'p 0"
K JO l.. l’
RN
A
s

YN :
$) Wl
\r(? \ .“ .:
where A} = AY(B), X* = X(N,B),and X*(Y) = X(Y, N, B), isalso in C[E(P, N, y)|(r[B)). ."’\'«"5,-’ :\
Since D" is arbitrary, this implies by Definition 4.19(e) that (4.8) is in C[A(N, y))(p[B]). ?{ N ::
Subcase 2. C(z,y) is a context. Then k = Type. By the induction hypothesis, for X ‘:l&‘i,!.‘

all deductions e
,Dm o un 49" .;.\
BRI
F :C(N,B) e
in C[C(N,y)](p[B]) and for all comnputability predicates p[F}, ' " ol
IO

Y Dy D, []
F:C(N,B), Ny:A(DB) ... Nu:AL(B) ‘.':‘,'.'Q:'..‘::‘

D'(F,N,B)

X
X

.
N
is in C[E(z, N, y))(p{F], p[B]). Hence, by Lemmas 4.4(b) and 4.5, .

Tttt
K l"‘;"‘
v“’..;;

M\(F,N,B): E(F,N,B)

I D] Dn DI Dn
[r:C"). Ny AL Nyt A Ny A},...,Np: A},
'D"(J') Y 1
Mi(z): F*(z) C'x D
(Vei - 1)
Ar:C* M (z) : (Vz: C*)E* (2) F.c*

(Az:: C*) . M} (2)F - E* (1),

where A7, X*, and X*(Y) are as in Subcase 1, is also in C[E(z, N, y))(p[F], p{B]).
Since D" and p{F] arc arbitrary, this implies by Definition 4.19(d) that (4.8) is in
C{A(N ., y)){(p|B))-

Case 5. 'The last inference is by (I5q"’). This is straightforward by Definition 4.19.

Case 6. The last inference is by (=/,). This is trivial by Definition 4.19. &
Theorem 4.14 (Strong normalization) Lvery deduction in TAC is strongly normal.

Proof In Lemma 4.8, let D; consist of the assumption z; : A;(y) and let 13 be y;. Then
for any sequence p{B), D(=,y) is in C[A(=z, »)}(p[B]), and so is SN. &

122

AR A e N
B % X ﬁm ‘rzg"u\."fa_

TR

B0 8% 8% A% B°5 078 $°5 0% 0’0 4V B g 4 . 89 0 g g B p 0 g 9. Rt 0 ¥ g¥ pat gt @0t ga® gar 04"

4.4 Consequences of the strong normalization theo-
rem

Although we have proved the strong normalization theorem for deductions, this theo-
rem is usually proved for terms. We saw in ‘Theoremn 2.2 and Corollary 2.2.1 that for
TA, the normalization theorem for ternis can be proved from the strong normalization
theorem for deductions by using the subject-construction theorem. We do not have this
theorem for TAC in a form that is casy to state. Nevertheless, there is a relationship
between terms and deductions, and we can expect. Lo use this relationship to obtain a
normalization theorem for terms.

Theorem 4.15 (Normalization theorem for terms) If 1 is a well-formed environ-
ment and if
' Frac M A,

then M has a normal form.
Proof By Theorem 4.14 there is a normal deduction D of
I }"1‘/\() N : A,

where M > N. The proof is by induction on the deduction D.
Basis: If D consistls of an assumption, then N is a variable, and so it is in normal
form. If D consists of the axiom (P T), then N is Prop, which is in normal form.
Induction step: There are the following cases, depending on the last inference in D.
Case 1. The last inference is by rule (kx'Formation). ‘Then Ais k', N is (Vz : B)C,
and D is

|
[+: 1]
™ Da(x)
b:k (G N

wi'Formation

(Ve : B)YC 2!

By the induction hypothesis, I3 and €7 have normal forms; hence, so does A,
Case 2. The last inference is by rule (I5g'&). "Then by the induction hypothesis, N
converts to a term 13 (to the lefL of the colon in the premise) which has a normal form.
Case 3. The last inference is by rule (Vo). Then N = PQ, A = [Q/z]C, and D is

D,
(Ve B)C

D,

Q: I

(Ve)
PQ Q).

123

ey -

o,

™
N'\H.. .-\“a N'.‘\ . .

. \--\E_'r: LT OR \-_-r: f_'f_~r_' e -'\-"__-'\-'&"_ .“.-',“-' (,};‘;’ _‘.-\.-\-r_‘-'\-'._ E

VIR RN
0:‘:0"::":|:':0
\} '..‘l."... e
Wttty
a’l‘.u’..a't.o'l.)

™) \

&l)l o 3 !\{'& '!
o

Rt

l{“ .
5'1’
P d
e
L L

I&I ot o
i
:‘;f

. ol

o

d
i
L

N

(R ATV O

" a8 9 “awe fUaY
P T T R T T N T T R R O S O T 1D AT RN N YN U .

By the induction hypothesis, I’ and @ have normal forms. Furthermore, since D is
normal, there is no x-reduction possible in it. It follows that at the top of the left branch
of D (and hence of Dy) is an uadischarged assumption. It follows that P =, y@,...Qnm
for soine variable y. It follows that @, ..., Q,, all have normal forms, and hence that
PQ =.yQ,...QmQ does as well.

Case 4. The last inference is by rule (Vki). Then A = (Vz: B)C, N = Az:B . P, and
Dis

1
[z : B]
Dy (z) D,
P:C B:x

(Vai-1)
Az:B.P.(Vz: B)C.
By the induction hypothesis, B and I’ have normal forins; hence, so does N = Az:B . P.
Case 5. 'The last infcrence is by rule (Eq”). ‘Then N is the term to the left of the
colon in the premise, and so by the induction hypothesis it has a normal form.
Case 6. The last inference is by rule (=). Then N is obtained by changes of bound

variables from a term which, by the induction hypothesis, has a normal form, and so N
has a normal form. m

Note that we have uot proved that every termis SN. If we try to replace the conclusion
by “N is SN” in the above proof, we can see that Case 2 breaks down, since not every
term convertible to an SN terin is itself SN. Indeed, if A is SN, and if z ¢ FV(A),
then for any terms B and C, (Az:B8 . A)C =. A; now if C has no normal form, then
(Ax:3 . A)C is not SN. This shows that we cannot strengthen the theorem to prove that
N is SN. (Of course, to prove that M is SN is somewhat more complicated; we will take
this up below.)

It might appear that since only Case 2 breaks down, and since the conclusion in this
case is not a proof, we might want to add the assumption that N : A is a proof. This
will exclude Case 2. But now we have trouble with Case 4: we can conclude that P is
SN, but not that 13 is SN. Indecd, by the remarks of the previous paragraph, I3 might
not be SN.

Mitchell [Mit86] defines a function Erase for 'TAP which deletes the types of the
bound variables. When this function ts modified for 'TAC, it is defined as follows:

Definition 4.20 (Erase function) (a) Frase(«) = a if a is a constant or a varjable;
(b) Erase(MN) = Erase(M)Erase(N);

(¢) Frase(Az: A . M) = Azr . Frase(M); and

(d) Erase((Ve : A)3) = (Vx : Frase(A)) Brase(13).

Note that except for clause (d), we are mapping terms of ‘TAC to pure A-terms. lu
fact. the range of the fanction Erase is the set of 'TAG terms (Definition 2.17),

124

:u’. rgeythy

OO
]
i‘g .‘4‘(‘“
BN

T e P Y TR T N U Y I N Y T Y Y YT
0t ¥ Pt 0n T2t atatate fat iy aY Sa¥ R T ST O O OO X T R R YO T R OO AN L O N LN 4 428 ¥ HAAK? A d

Y
I
LG
’

nG
G 0.":::5

g

) ®
atnty et
A
We can now prove that if A is not a context in the theorem, then Erase(N) is SN. To ::A:::::.q::‘wf
extend this result to Erase(M), it is enough to note that deductions of proofs do follow .l"c.i"ﬁ. ‘,t.“:i
the constructions of the terms except thal additional infercnces of formulas which are "t"'.‘!:iq:'.s{
nol proofs are added at various places on top. This will give us the following result: °
Corollary 4.15.1 Under the hypothescs of Theorem 4.15, if A is not a contezl, then t:":‘:.;&
Erase(M) is strongly normal. a’:\. ~AdN
. Tttt
There are some further corollaries that follow immediately from Theorem 4.15. These "'&) ; "d
corollaries are standard consequences of normalization theorems. e ‘_!).m
Corollary 4.15.2 For terms M and N such that » " ..
‘ \J .. “ ‘I
I brac M A ":5 ""h"'{"
TAC AT a'..":‘ﬁ"g.e.g
“l Is"&‘l l‘c {
and 19.}02.‘0'.:&‘ X
I' Frac N: A, ﬁ:‘:“':‘.:«':::
O M WOALX)
where I is a well-formed environment, it is decidable whether or not M =, N. » ®
3_‘35?.‘ TR
Corollary 4.15.3 For a terms M and a well-formed environment I', 1t is decidable N .f
whether or nol there is a term A such tha! sl
} et
i . . sy
Y 1 l'"I‘AC M A ".G::::
albety
s We can also prove a partial converse to ‘Theorem 4.2, relating TAC to TAP. Recall!? > ' Py
that the interpretation of types and terms of TA” as terms of TAC is defined as follows: AN
4 first, we divide the variables of ‘TAC into two mutually disjoint classes, the first for “l‘.‘l:)
h interpreting term variables of TAP and the second for interpreting the type variables. l:‘:::,:::;‘l |:0
| Then, for a terim or type A of TAP, we define A%, a term of TAC, as follows: |M.'|:"::::::|§
\ - . Y
: (a) if z is & term variable, then z* is a variable of the first class distinct from all variables "%v:':z:’.c::‘v::
' y* for term variables y distinet from z; » ®
(b) if a is a type variable, then a® is a variable of the sccond class distinet from all i'.“l i'i:i“;
X variables b* for type variables b distinet from a; ' 13:::.. &‘
’ . * e 9§
N (b) (@ — B)* is (V2 :)" 3° for a (term-) variable z which does not oceur free in o or e .: "l:':&
- A R
_J (c) ((Va)a)* is (Va* : Prop)a”; SN
() (MN)* is M*N*; ng‘r‘ ;
X (e) (Ma) is AM*a”, :; :::.b:‘“::
. . - . » AN : .7\' N ..'
) (f) Ar:iv .‘A'I lb‘/\lf Dot A{ . and 2 '0.:“:;..\':!:
(g) Aa.M" is Xe” : Prop . M~ i .:,
5 It is casy to show that if « is any type-scheme of TAP, then a® is in normal form, and 8,
that if M is any term of ‘TAP which is in normal form, then A* is also in normal form.
o Note also that this interpretation takes any 4%-contraction of ‘TAP into a fJ-contraction
: of TAC.
K 2, Remark | and Hindley & Seldin {HS86] Theorem 16.66
'
125
I
D)
!
1)
1
t
)
k)

v, rpirg P I3 - -~ ¥ - . “ Py W T [A" &Y. e Ta T LN B .V. \’-.'NR.-.‘Q .-$v‘
4 !‘ '“‘ “"“" ..‘.- A tb.pb‘v.‘)v.l.‘_ \r .- LA 'y, s.-.'l-i-'(~ Mt AT T R AT . - o

B OO o D WA T T T KA N A T T v T la o

Theorem 4.16 Let T be a sequence
Tyiay, T2, ..., Ty lay
of assumplions in TAP, and let I'* be

r}iaj, x3:a3, ..., T "
Let « be any type scheme in TAP, Iet ay,...,a;m include all of the type variables which
occur free in . and let 1V be

a; : Prop, ... : Prop.

"l

If D is a normal deduction in TAC of
rre M.«
where M is a term of TAP, then there is a normal deduction D' in TAP of
'FM:a

Proof Note first that Lemmas 16.67 and 16 68 of Hindley & Scldin [11S86] hold for TAC
as well as for TAGL; the proofs for TAC are obtained by a minor change in notation
from those for TAGL.

The proof is by induction on the deduction P. Note that by hypothesis, D does not
consist of axiom (P T), and its last inference is not by any of rules (xx'Formation) or
(Eq’'s). Furthermore, since we are assuming that D has been transformed according
to Theorem 4.1, we may assume that the last inference is not by rule (1q”). For the
types of the assumptions (both discharged and undischarged) are all in normal form,
and if the types of the premises of any rule except (Ve) and (Fq”) are in normal form,
then so is the type of the conclusion. With regard to inferences in D by rule (Ve) the
left branch above each such inference contains inferences only by the same rule and rule
(19"} and at the top of the branch is an assumption (since P is normal); and it is not
hard to see by beginning with the assumption that because the type of the left premise
of each such inference by rule (Ve) is /3* for some TAP type sclieme 3, so is the type of
the conclusion. It follows that each of these types is in normal form, and so there is no
inference by rule (Eq”) in the branch. ‘There are the following remaining cases:

Case 1. D consists of an assumption. 'Then M is £;, a is ay, and D’ consists of the
corresponding assumption in ‘T'AP.

Case 2. 'T'he last inference in D is by rule (Ve). Then since D is normal, the only
inferences which occur in the left branch are by rules (Ve). Furthermore, M* is in normal
form. Now it follows from this that AM/* has the form M,y ... M,, where z is assigned a
type by the assumption at the top of the branch (which is not discharged). Hence, 2 is
one of the xi. By the definition of the interpretation, it follows that each Af; is either
V; for some ‘TAP term Ny,in which case the type assigned to it is 95 for some TAP
type scheme 95, or else some /i)' for some “TAP type scheme g, in which case the type

126

@ o
N

o ®
FW l'h- W’
e

[] []
o o
@ d
e

"'c"'n

-ea

o L A T A AR AL R A AL S - . o I A A R
NS ..") .‘ " Y) *~"~‘ ~"\.v v"‘eQ ."‘-. .ah.' 'lﬂ-l a .l .0 -'-v L » .. Mo L) 5

IR

assigned to it is Prop. By the induction hypothesis, there is a normal deduction D; of
[+ N; : v; for cach such Nj, and then rules (— ¢) and (Ve) of TAP can be used to
obtain D’ from the assumption =; : a; and the deductions D;.

Case 3. The last inference in D is by rule (YPi). Then o is (Vz : B)C and M* is

[]
Az:B . N. By the right premisc, B i§ B* for some TAP type scheme 3, and it follows 1;"@;:“".'3‘;'.";
that z is some y*, for a TAP term variable y, and does not occur free in C; furthermore, :0.‘: .:: : "
C is 7* for some TAP type scheme 7. In addition, N is ”* for some TAP term P. It ;;::o;;.v::.::;.;‘
followsthat if the last inference is removed from D, the result is a normal deduction D, ."o::H:: ‘g.l:i
of Gt
. . . g . . A
Uy 851 Faae P70y, ® °
By the induction hypothesis, there is a normal deduction D,’ of “'1:@‘9::'% ;'::t
R B R
Py: 8 brap PPy, Yyyilelehy!
'
and D’ is obtained by an inference by rule (— i).
Case 4. The last inference in D is by rule (VTi). Then o* is (Vz : B)C and M* is
Az : B . N. By the right premise, B is Prop. llence, 2 1s 8 for a TAP type variable a,
C is B* for some TAP type scheme 8, and N is I’* for some TAP term P. It follows
that if the last inference is removed from D, the result is a normal deduction D of
I, 1", a" : Prop bpac 1" : 11"
By the induction hypothesis, there is a normal deduction Py of
' bpap PP 1.
Since « is (Va) 3, D’ follows by an inference by rule (Vi).
Case 5. The last inference in D is by rule (321)). ‘This case is trivial since the same
rule (essentially) is also a rule of TAP. m) sl
R
Corollary 4.16.1 Undcr the hypotheses of the theorew, if N =, M* and tf A =, 0", "‘98 St
.\‘Ql Wt
and if %Q::."::‘.
11 Fpace N A :t.,,:.:‘aé
W,
then .

I' Fogap Ao

127

AN L) o
¥ (i f

4.5 The theory of constructions: sequent formula-
tion '

In this section we shall consider an alternative formulation of the theory of construc-
tions. It is a variant of the form in which the theory was originally presented in Co-
quand [Coq85), and is closcr to the presentation in other papers by Coquand and Huet
than is the system TAC.

As we saw in the last section, every rule which discharges an assumption of the form
z : A has a premise not depending on this discharged assumption that is either A : Prop
ot A: Type. If we wanted to, we could take these premises as justifications for the
assumptions instead of premises for the rules; this is the approach adopted by Martin-
Lof in his work (see his [Mar75], [Mar82), and [Mar84]). The main reason this is not
done in TAC is that it would require that premise to be written above the assumption,
and then the assumptions would not occur at the tops of branches, an inconvenience
for the theory of a system such as TAC. But for the form of the theory of constructions
presented by Coquand, it is the most useful approach.

This form of the theory of constructions is what is known as a sequent calculus. A
sequent is an expression of the forin

reL, (4.10)

where I' is a (possibly empty) sequence of formulas and E is a formula. This particular
sequent calculus is formulated in such a way that the only nonempty sequences that can
occur to the left of the turnstile (the symbol ‘+’) are well-formed environments. This will
make unnecessary the premises which “justify” the discharged assumptions; for these
assumptions will all occur to the left of the turnstile in the premises of the rules and
will hence be part of well-formed environments, and so these premises will automatically
hold. The fact that I' is a well-formed environment will be equivalent to the derivability
of the sequent
I'F Prop : Type.

The system will be called TACS.

Note that uniil the equivalence of TAC and TACS is proved, it will be necessary Lo
specify the system with respect to which an environinent is well-formed. Until notice to
the contrary is given, a well-formed cnviromment will mean with respect to TACS.

Decfinition 4.21 (The type assignment system TACS) The system TACS is a se-
quent caleulus; its sequents are of the form

I'FE, (1.11)

where I is o sequence of TAC formnlas and 1 is a 'TAC formula. The system has one.

axiony:

(P Prop : Type

128

P I IPLY I LT R £ W g W Wy Cp W Cp \ ; d 3 Yo Un Cat r-"‘v”;
R ENR R A Ao - o

u'::c'::
R
K) O
_lﬁﬁ:}ﬁ!’;’é
$ - r. -
\m"'s:::‘l:
l‘}{c':',t .:o"'i
ﬂi'."'q.l’c:t
Qi detadiy
|:l‘ .‘| !
ORIl
® o

NG
)
.I

RN
N
) RPN
.c.*‘:.‘ o)

:

\ " U R ' -
'Q.g.;‘a.":

- .

b
! N
A WA]
. CA]
: RRsadas
) [
" -
i < e l:p."
:' Its rules are as follows, where, in cach case, x is a variable which does not oceur free in ' |::I.:‘0.::
) I’ or in A, and xis any kind: ™ .:::.::!“
Wty
' I. Well-formed envirouments: -‘IS::'!::!!::‘
[]
0 (PY) kA& :i:;:;:i:;‘:,;:;::'
) . WA
:: I',z: AF Prop: Type AN l‘.‘l:ﬂt
L)
3 I1. Introduction of product: ' W
g RO
(Vi) Ve AR D s) ®
: PR
' Mk (Vz: A)B :xk, "".':.n.‘.v.f
:t ¥ "Q.".: (§
:: HI. Introduction of a variable:
Pe I'+ Prop : Type Condition: y : A occurs
. TFo A in " and y does not occur
K vy free in A.
.'.
": IV. Lambda introduction:
N
(M) Pz AFM:B
- PFAzA .M (Vo : A)B, Ll
& Bty
4 V. Applicalion: '\\’(\& ;
X t ‘
) o
; (Ve) 'bM:(Vz: A)B F'EN:A L;‘ T
" I'F MN :[N/2]BS, ';:-’_1;3.-" ‘
: R
) VI. Equalily rules: ; -\-"":f\ '.’
™ (Eq") If A =. B, then F"-i:;‘:i:
; it
'EAM:B) P
¥ S XY
% Uh A A, i
; R
). N 7
(Eq's) If A =, B, then
% '+«
" I'F Ak
)
I
; VII. Changes of hound varables: A ;\‘x_,‘._
\ \.k{\{\.;\.
129)]
1 " . -y
" ey
\ AT
3 R
3 o ...Q ¢
y e ":
]

[)
e N ‘.;QE‘
M

N
ML A AR SN 8 S R S R R R N S AL RN AN AR AN mmmmﬁ&m

If N is obtained from M by changes of bound variables, then:
I'EM: A
I'HN:A

We shall now establish the equivalence of TACS and TAC:

Lemma 4.9 If ' Fracs £ for any formula E, and of IV is any inilial scgment of I'
(possibly including U itself), then each derivalion of T bFqpacs B conlains a subderivation
of T’ Fracs Prop : Type.

Proof By induction on the derivation of I' Fpacs E.
Basis: If T Fpacs E is the axiom (P T), then I' is empty, and the result is trivial.

Induction step: We assume the property for each premise of a rule and prove it for
the conclusion.

If the sequence to the left of F in the conclusion is an initial segment of that of at
least one premise, this is trivial. This takes care of all rules except (Pi). In this case,
[is [y, A:Prop, and E is Prop : Type. If I is all of T', then the entire deduction is
what we seek. Otherwise, I'' i< an initial segment of I'y, and the result is trivial by the
induction hypothesis. B

Lemma 4.10 If ' Fpacs Prop : Type, then T is a well-formed environment.

Proof By induction on the pair {n,m), where n is the number of formulas in I' and m
is the length of the derivation of I' Fpacs Prop : Type.

Basis: Trivial, since I' 1s empty.

Induchon step: Assume the lemma for any initial subsequence ~f T, and suppose

that [is IV, z : A. By the induction hypothesis, I' is a well-formed environment. Now
the only rules of which

M,z : Abqgacs Prop : Type

can be the conclusion are the equality rules and (Pi). If the rule is an equality rule, then
by Lemnma 4.9 there is a subderivation of the derivation of the premise of the inference
which is a derivation of

l", r. A |’"|‘/\(75 Prop . Type

and so the conclusion follows by the induction hypothesis; if the rule is (Pi), then it
follows that = does not occur free in I' or in A and that

!
l }_1‘,\('3 A M 7
~ RV
Since 1 is a well formed environment, this implics that ' is as well. B
Lemma 4.11 If I'Fyacs F. then s a well-formed environment.

Proof Lemmas 4.9 and 110 &

130

e initsg) 0 ST IO tARTAF A AN

Lttt Ly a oV AR R IR0 ia) TV v als L SERR At Bl el oY BB S Bt g Sy i)

Jﬂﬁﬂt

A
D 't".u‘,"a:;:':,

\‘;
I‘|

3‘"“?’3

.'n‘:' :'
sl

R

® o

v.m

'," |,l ‘|

ol .0,::: i
'q'::"t'.'l' 0'
® o

iy

2,0 k00 N X AN % AR RN 200K a'd 800 . a8 R a0 A et a2 e et a0 1 2t e At e it WL WK T) ‘Yot

; Theorem 4.17 There is a formula I such that I' byacs E if and only if T is a well-
formed environment.

y

! Proof The “only if” part is Lernma 4.11. The “if” part is easy using the axiom and
rules (Pi) . &

3,

X We are now in a position to prove the equivalence between TAC and TACS.

X Theorem 4.18 If

y I'Foacs F, (4.12)
then

I' Frac F. (4.13)

Proof By induction on the derivation of (4.12).
y Basis: (4.12) is axiom (P T). Then I' is empty, £ is Prop : Type, and (4.13) holds by
axiom (P T) in TAC.
Induction step: The cases arc by the last rule used in the derivation of (4.12).
Case (Pi). Trivial.
Case (Vi). IV is (Vz : A)B : &, where z does not occur free in A or I', and the prenuse

is
e Abqacs B k.
By the induction hypothesis,
X I'"z: A bpac B: K.
A
y Furthermore, by Theorem 4.17, I',r : A is a well-formed environment (with respect to
. 'TACS). This means that the derivation of (4.12) includes a subderivation of
I'Fyacs A : i, !
FACS > °
W
Hence, again by the induction hypothesis, ::f\,‘\-"
',\‘,\.'_;"';\
I’ Fopac AR ;':-P::J‘:n
A
. -“\n".-:" ™
. ltence, (4.13) follows by (rxk’'Formation). A

Cuase (Pe). ‘Trivial by the conventions of natural deduction systems.
l Cas: (A1), Similar to Case (Vi), using (Vii).

p .

Case (Ve). IJis MN . [N/z]3, and the premises are .
: PlEyacs M ¢ and I'Fracs N @ A, ':
: where C =, (Vx : A)B. By the induction hypothesis .

[]
A ' Fpac MO and 1 bpae N A :;;
I’ 4
1 {1.13) then follows by rules (159”) and (V ¢). M
| o
)
131

"
“
»
‘y
/]
]
s
AT TP OO, it o, ol A o MO L I 0 T o ol ol O A i P M W W A B8 W P S SR

" B2t T2 ata" a0a0 02 ala n s a W aba~ A0 Mt ohe STy aka ot gt 50 T8 ol ate ' e LA A A RA AT AL AL i Ve SLGE AL b, LIS S iy 2 IR AR L Al A VA iy

Case (Eq""). 'Irivial by rule (Eq").
Case (Eq'x). Trivial by rule (E¢'s).
Case (=,). Trivial by rule (=) ®

For the converse we have:

Theorem 4.19 If I'is a well-formed cnvironment, and if (4.13) holds, then (4.12) holds.

Proof By induction on the proof of (4.13).
Basws: 1f (4.13) is axiom (P T), then (4.12) follows by axiom (P T).
Induction step: 'The cases are by the last rule in the deduction of (4.13).
Case (kr'Formation). (4.13) is

I' brac ((Vz: A))B : &/,
where z does not occur free in A or in I'. The premises are
I' Frac A:x and I'z:A bFgpac 'R

Heuce, I'z : A is a well-formed environment (with respect to TAC), and so by the
induction hypothesis

l‘,.'lf C A }“1‘/\(:5 I':w'.
Hence, (1.12) follows by (P1).
Case (Ve)., (1.13) 1s
I' Feac MN :[N/2)B,
where the premises are
I' bpac M (Vz: A3 and U bFopac N A
By the induction hypothesis,
Ubpacs M (Ve AYB and I'Fgacs N @ A
Henee, (4.12) follows by rule {V o).
Case (Vi) (1.13) s
I' bpac AxA M (Ve A,
where the prenses are
Uir oA Fypac Mo and T bpac AR,

where r does not occur free i o4 or in oIt follows that I, 2+ A 1s a well-formed
environment with respect to 'FAC, and so by the induction hypothesis,

For - A ?"|‘,\¢ S LY

Henee, (1 12) follows by rude (A1),
Cuses (Fg") (Bg's). and (L) Tevaal by the corresponding rales tn TACS. @

132

Rttty ':

g
TR
° ®

OO,
‘:(& :‘ .:':i
Co) t
:.'H‘) :1‘
gttt
L' % x :
) ‘f::"l:'!or

® ®
PR Ly
W0 s P
SN “"3‘,}

'; .
%
=5

<
23

5

Yalio! :',:
e VMO
® ®
ol

% byl ‘l)
;%- ";'fv".a-“ . :
REAVAY

-

-

7 K,
<

LA,
AR

) Yf"
_ LA,

Oy

(Y
l"’
l,.J
v
Pd
[4

]
!

. DA __-ﬁ
G -'.‘f.,-H
R ,.“x‘_ -’.‘l' '!
v .4
e Ay .‘4
N X
e .‘.y.’““,\,x

Ve R
o

W
NN

AR
'«.‘%\')

9
I o RO v T A A e NN P e L ;&ﬁ{h‘m&&:ﬁﬁﬁﬁm&iﬂ;ﬁﬁi&m

U RA P NYRY W L VW LY VWU LAN G R75T

Theorem 4.20 A necessary and sufficient condition that (4.12) hold is that I’ be a
well-formed environment (with respect to TAC) and that (4.13) hold.'3

Proof Theorems 4.18 and 4.19. &

Corollary 4.20.1 An environment I' is well-formed with respect to TAC if and only if
it s well-formed with respect to TACS.

For this reason, we shall no longer specify the system with respect to which an en-
vironment is well-formed.

Remark The system TACS is slightly more general than the sequent version of the
theory of constructions presented by Coquand and Huet in that its equality rules are
more general. To obtain a natural deduction system equivalent to Huet's system, the
rules (Eq’'x) must be deleted, rule (Eq”) must be replaced by the two more restricted
rules

M:A B:x A=,D

M:B,

and rule (=]) must be geuneralized to allow changes of bound variables in both parts
of a formula M : A. ‘The corresponding changes in 'TACS include introducing equality
rules corresponding to those given above, and modilying rule (=,,) accordingly.!?

BPottinger [Pot87] proposes a sequent formmbation that is closer to TAC than is TACS and hielps
to emphasize the equivalence. In Poltinger's system, which he calls 'TOC 1, rules (Prm i) and (Vi)are
replaced, respectively, by Hyp (FF Atk = U0 Ak 7 A) and Reit (I'F E&T,FHG = 1 P E).
Pottinger proves that TOC 1 is equivalent to TACS (which he calls TOC 2). Since Pottinger's TOC 1 i~
a seguent version of TAC in the style of Fiteh [1Fit52), Pottinger's equivalence result can be considered
another form of this theorem.

HPotlinger's TOC 1 (sce the previous footnote) actually uses this more restricted version of the
equality rales.

133

ol A N N P A s M B P T SN gL P o R L L P Y | AL A |
n..{ﬁ"a.mﬁ‘ﬁﬁv. AN .!:1"‘.1\.'_1",.-.’, Iy _":}\‘_Aﬂ A ‘_n‘.\,kﬁ_m..‘.l:'.s“'ﬂ’.'&?}_ A :\\.L\u"'.a:' w! J‘}

R T T N A SO A W P R R Y S A RN T T RS L ol T o W W I W I O T

a

N
»

:

e
L e

P
5%
Py

A
'1,‘? p)
[
27

gl J
N
5

L N
.'-‘
LAY
» -

4

Ny
LN

PN AR
yal AR
: g

.

.‘.'

!

[) "l

'. 5‘1
[l‘.

s
R4

P
5""
s
‘,t'

[

£
)
«
1
]

»
e T
o

M -.' e
A
o ",
Y "c‘.(
s
R
Y
By

Pd

>l
%
5>
-

e

‘
Je

£
1

i A9ES
Ay
o
P&
FALhE S,
'-’\"

'

s
.
:'{ &
27

e

Chapter 5

REPRESENTING LOGIC
AND MATHEMATICS IN
THE THEORY OF
CONSTRUCTIONS

It is now time to show that the theory of constructions can be a useful basis for the
ULYSSES system, and to show that we can represent many important concepts from
logic and mathematics in the theory.

This representation has actually been done by Coquand and Huet!. However, their
presentation consists of little more than definitions and examples, and so a number
of people have doubted the power of the theory. Here, in addition to the important
definitions and examples, we shall look at some proof-theoretic consequences of the
strong normalization theorcim to show that these concepts behave the way we want
them to.

We begin in Section 5.1 with the representation of propositional and predicate logic
with equality. In Section 5.2 we discuss the addition of axioms to the system and how this
might aflect consistency. Then, in the remaining sections, we take up the representation
of artthmetic, clementary set theory, functions, and lists.

'See [CHERS). [C], and [Huer6], chapters 11 and 12,

1341

d @
RREXE)
'.‘ ‘. ""
hatteleto

1

i
-
{9

!
4

(AR A
o Saigr e,
.0..'::“‘:".::!::

[N)

e o
':::'::;‘.'. 1.,"':

ATl
.:I‘ .I.J'I‘Q(
W ’.":'.3:'?:::::‘:.:,

!l".l. 2’8000

n"’.\:}, g

oS
g(.

PR

"‘-"

R

5.1 Representing logic with equality

We have already discussed representing the connectives and quantifiers of logic in TAP
(Section 2.4) and TAT (Section 3.6). Since TAP can be interpreted in the theory of
constructions (by Theorem 4.2), we can use these same definitions. It will be convenient
to repeat the appropriate definitions here. They are taken practically word-for-word
from Section 3.6, but a notation more suggestive of logic will be used.

To use these definitions, we necd the arrow, or function-space, type. This now
becomes the implication proposition opcrator:

Definition 5.1 (Implication proposition operator) The term F is defined as fol-

lows:
F = Au:Prop . Av:Prop . (Vz : u)v.

We use either A— B or A D I} as an abbreviation for FAB, depending on the context.

It is easy to show that — satisfies the rules (— e)and { - i}. This means, of course.
that D satisfies rules (D ¢)and (D 1).

Definition 5.2 (Cartcsmn product proposition) The conjunction proposilion op-
eralor and its associated pairing and projection operators are defined as follows:

(a) A= Au:Prop . Av:Prop . (Vw : Prop)((# — v — w) — w);

{b) D = Au:Prop . Av:Prop . Ar:u . Ay:v . Aw:Prop . Az:u — v — w . zzy;

(c) fst = Au:Prop . Av:Prop . Az:Auv . zu(Ay:n . Aziv . y); and

(d) snd = Au:Prop . Av:Prop . Az:Auv . zv(Ayn . Az | 2).

We use A A B as an abbreviation for AADB.

It is not at all difficull to prove frony these definitions that if A : Prop and 13 : Prop
DAB:A -8 — AAD,

fstAl8: AAD —~ A,

and
sndAI}: AAD — 3.

Furthertuore, it is easy to see that if Af - A and N . 13, then
fstAB(DABAMNY) -,

and
snd AB(DABANNY =, N.

Definition 5.3 (Disjunction proposition operator) The disjunction proposition
operator and ils associated injection and case operators are defined as follows:

(#) V= AwProp . Av:Prop . (Vw : Prop)((u -= w) -+ ((0 —) — w));

(b) inl = Au:Prop . Av:Prop . Ariu. w2 Prop . M =0 Agiw - s . fr

tah

!'-F:'f,’\‘!'\"; o, .\"'-ft‘-*'n

'1. ‘;"
“.. ‘i '

R IR AL AN ATUAY L g Vayl,) YR WA TR KV RN AATY Y _far et et = it ug* ov8 a* B 2’8 a" 4 _g"0,0" .. -“.1.'1 o Vol tat “al Mok ®

PR

(c) inr = Au:Prop . Av:Prop . Ay:v . Aw:Prop . Afiu— w . Agiv — w . gy; and
(d) case = Au:Prop . AviProp . Az:Vuv . Aw:Prop . Af:iu »w . Agiv - w . zwfg.
We use AV B as an abbreviation for VAR,

PR

It is easy to show that if A : Prop and 1 : Prop, then
nlAB: A— AV D,

intAB: B— AV B,
‘and
case AB : AV B — (Vw : Prop)((A — w) — ((B — w) = w)).

Furthermore, it is casy to show that if C : Prop, M : A, N : B, I' : A—C, and
G:B—C, then

case AB(inlABM)CI'G =, FM
and
¥ case AB(inrtABN)YCFG =, GN.

Definition 5.4 (False proposition) 1 = (Vx : Prop)z.

With regard to the existential quantifier, we arc now in a position to remove an

anomaly from Definition 3.16. For we now have the machinery to refer to functions
whose values are types.

Definition 5.5 (Existential quantifier) The erisiential quantifier proposition oper-
ator and its associated pairing and projection functions are defined as follows:

(a) £ = Au:Prop . Aviu — Prop . (Yw : Prop)((Vz : u)(vz — w) — w);

(b) D’ = Aw:Prop . Aviu — Prop . Az:u . Ayvr . Aw:Prop . Az:(Vr : u)(vz — w) . zzy; and
(c) proj = Au:Prop . Av:iu — Prop . Aw:Prop . Az:(Vr : u)(vz — w) . Ay:(Ve : u)vz . yw:.
We use (3z : A)B as an abbreviation for TA(AzxA . B).

-

It not hard to show that if A: Prop and 3 : A — Prop, then
(3z : A)B : Prop,
D'AB : (Yu: A)(Bu— (Jz : A)(Bz)),

and .
projAl : (Vz : A)(Vu: A)(Vv : Bu)x — (Fw : A)(Bw)— z).
Furthermore, if in addition €' : Prop, M : A, N : BM, and Z : (Vu: A)(Bu— C), then

projABCA(D' ABMN) =, ZMN.

h Note that D’ differs from D only in the types postulated for some of the bound
variables. But this difference is enough to make it impossible to define a right projection
for D’ that is correctly typed?.

We can also define equality over any type:

2O this point, see [Car86]. Of course, fst works ax a left projection function for D7,

|36

[}

RO AR RO PO T ™M O WY, LN A Ata 400 3¥s aVa atac ks AL AU AR TRt AE, R AT, VAt et tat dap LA St Sl Ak Sa B fal Gl ah LSk b b gt

| Definition 5.6 (Equality proposition) The equality proposition ety
l..‘l'::l':' ‘::0'
M=, i
RS ehe iy
where A is assigned type Prop, is defined to be — "‘"
b QAMN,
{
b where

Q = Au:Prop . Az:u . Ay:u. (Vz : u— Prop)(zz — 2y).
It is not hard to show that if A : Prop and X : A, then
AzzA—Prop . AuizX . u: X =4 X,
and that if in addition Y : A, M : X =, Y, Z: A—Prop,and N : ZX, then

1 MZN :2Y.
B This gives us the reflexive law of the equality proposition and the substitution prop- G I
: erty; these two properties are well known to imply all the usual properties of equality. : \‘\. A
3 It is not hard to see from this that we have all the usual properties of constructive ‘ A ':
1 predicate logic with equality. t::.t:‘:th:ﬂ(:.:o
We can also interpret classical logic. One interpretation® is based on the following O
easily proved facts about intuitionistic logic: o d
VA
| RV o
paNu
~~AD A,~~BD>BF -~(AAB)D(AAB), it
and PLY [!
—~-A(z) D A(z) + ~~(Vz)A(z) D (Vz)A(z). ?"h‘” A
‘Ot o]
Results corresponding to these can easily be proved in the theory of constructions. This 8) ‘.f
means that for formulas A which are classical, that is for which + —~—A4 D A, the logic .d :a\:l:‘.::\:
is classical. Furthermore, all negative formulas are classical and both A and V preserve o %‘:}u\;
classical formulas. For other classical connectives and the existential quantifier, we can bt WO ¥ ‘:'Z
1 use their familiar classical properties to define them: ® ®
IR
AD. B= ~(AA=B), ;\)@}«
I8 Bt ¢
AV, B = ~(-~AA-B), ity
and L *h'\,.‘.n"u%
(3.z: A)B = ~(Vz : A)-DB. ® ®
h L MR
Since these are all negative formulas, they are all classical. ::. 3 -ﬁ't'
3See [CH] §3.3, where this is done for propositional logic. ;'l,'\-:-?‘\f::\
SN
TR
, 137 AW

® ®
NP,
‘ :\‘0 by
o‘:k" Wy
| AR f\""'

TR B D N RO e 3
T T T e A

AR SR PP R
R T

o T a5 alR atd nth all ath o v gat wad BAY_Ba” 822 52 00 28 00 E8 PRt V0 et o 08 a0 02 02t el V)",
e~ ¥t Wt 03 Sa® Be’ 48 100" 03" 0a" talebs ntg" sl 60 2t B et 01 a8 28 a2 200 2% 2N 21 2t atA 2" Yo aUR S EA" L ERY AN 1Y o hp" QU b 8 T WS, TR

1
It is not hard to prove that if A is classical (in a well-formed environment I'), then N :::0‘. l':‘c‘
there is a term M all of whose free variables are assigned types in I’ such that

¢ O]
[Frac M:-Av, A :!:f:f'd:.':f:?:.':'
@ []

v

: \
A second method of interpreting classical logic is as follows: define N;s
0:..6'
Bool = (Vu : Prop)(u — u — u), j.it:‘ ":")

T=Au:Prop. Az :u.Ay:u.z, @ L

IR IRRK]

%. fdty'e

and \ ":* Q::.::'l:
F=Au:Prop.Az:u.\y:u.y. W atilin,

.":‘.‘l"‘l"a
U

Here, Bool represents the boolean type familiar from the usual programming languages,
and T and F for the familiar truth values. The familiar if ... then ... else
operator is defined as follows:

Cond = Au:Prop . Av:Bool . Ar : u . Ay : u . vuzy.

It is easy to prove that T:Bool and F:Bool and, if A is any type in Prop and M : A and
N : A, then

CondATMN =, M

i and
‘ CondAFMN =, N.

The propositional connectives familiar to most programmers can now be defined:
= = Az : Bool . Cond BoolzF T,

Ar = Ar : Bool . = zBool F,

and
Vi = Ax : Bool . zBool T.

It is then easy to prove the following:

T = F ~F= T
! AMTT =, T AMTF =, F
; AFT =, F AFF =, F
“ viTT =T VeTF =, T
ViFT =, T ViFF =, F
l
138

-

)

ety P - TR L VL) LAY TAI RSN, QPR f N AT TS LRI -\\\x\\."-,\‘\‘\"-\.'-".‘:'
'l a.). . ,' *‘ .< " '(. J{J“‘ .‘.(\,0 ‘. J'\l' » '- J'u‘ , .(A *

.. L&YY

We can then get implication as usual by defining
Di = Az : Bool. Ay : Bool . ~(z A ~y),

and its usual truth table properties will follow.

In this formulation of classical logic, a proof of a proposition A is not a term with
that proposition as its type, but rather a term with the type A =g T. Thus, unlike
the first interpretation of constructive logic, this interpretation is based on a different
set of terms to represent the propositions. In fact, it is based on the idea* that there
are only two propositions, T and F.

Extending this second interpretation to quantifier logic is a bit complicated. The
obvious way to proceed is to assume that we have a propositional function A over some
domain D, which is a type. In this case, this means that A : D — Bool. We would want
(Viz : D)(Az) to be T if and only if AM is T for every M : D and to be F otherwise;
but this specification assumes classical logic, whereas the type

(Vz : D)(Az =goat 1)
is treated constructively by TAC, and in general there is no term with the type
(Vz : D)(Az =goat T) V (3z : D)(Az =pout F).

One possible solution is to use the first interpretation of classical logic, and replace 3 by
3.. But this will only work if D is a type for which there is a term of type

(Vz : DY~ Az =goo T D Az =goa T).

A third possible method of interpreting classical logic is to add a new axiom by
assigning to an atomic constant the type

(Vu : Prop)(—u Vv u).

We will have more to say about this in Section 5.2.

4Originally due to Frege.

139

o T W W P T W P L WA T R Y e,
Pt TR ST T Sty P YA R E R T (SAS O L,

3 ...'Q. '|‘I'i.0 i
s
'ﬂ::c':g:

¥, "’q' | "
N

"'u""

et

D) L

° " o
)‘E !"a:al'::l;;::

W

t
e
@ o
W AN P
Ao 248 A A
R
s
.
Vo't
l'. 2'::1
[) - [
“)‘n‘,"u b Tl
RS
! \‘k"' W)
Ay

-

rd

y 4
Pil's
@ <

o, j.
%]
3 i

2

-
.

%
2

(LX)

\m\f :;i;i\- N

B Sy T

5

»

848"

%'

Ny

‘u AN

s ! TR AT kT A AR A A" A n T AT AT T Rt AP ‘-""FE'-"‘-:"'-- LTINS L LN S A L e N L L
‘?'\ '1"'1 ¥,)MMR':}?)‘?A'{?{:'I?{‘ A‘:At:':‘". .: t:..’f.i*s’:.fim)¢ :X;xlm’ O, Wollurln s L{;AM{LKLA&‘LM_L Ao Ny

YRR U Y DY N Y R Y OV O O T T D O TR .02 ial Vol 1 000 Wl Gl 000" 0,8 wh 854 s

5.2 Adding axioms to the theory of constructions

As we have seen, when logic is represented in the theory of constructions is that the
formulas are all represented by types in Prop; the terms in these types will represent
proofs. One consequence of this is that assuming a new axiom A will mean taking a
new atomic constant ¢ and adding ¢ : A as a new assumption to the environment.

Now the way we have proved the strong normalization theorem in Chapter 4 guaran-
tees that such constants can be added without interfering with the proof of the theorem
provided that these new constants do not occur at the heads of new redexes. But this is
Just the way new axioms are added. Thus, adding new axioms does not have any eflect
on the strong normalization theorem.

But adding new axioms may well affect the consistency of the system. Suppose, for
example, we assume ¢ : 1. This amounts to assuming as an axiom 1, i.e., to assuming
the inconsistency of the system. This is one way in which the theory of constructions
differs from the second order polymorphic typed A-calculus: in the latter, Theorem 2.4
shows that the strong normalization theorem implies both the consistency of the entire
system and of any set of assumptions®, whereas in the former, as we have seen, the
strong normalization theorem does not imply the consistency of all sets of assumptions.

The strong normalization theorem does, however, imply the consistency of the empty
environment, and thus of the system TAC itself:

Theorem 5.1 (Consistency of TAC) There is no closed term M such that
'_'I‘AC M. 1.

Proof Similar to the proof of Theorem 2.4. B

-~

Note that this proves the consistency of the higher-order constructive and classical
logic of the previous section.

Although the strong normalization theorem does not imply the consistency of all sets
of assumptions, it does imply the consistency of some particular sets of assumptions.
For example, suppose ' is

zy AL T Ay, 2, DA,

where = A is defined to be A D L. To show that T is consistent it is sufficient to show
that there is no closed terin M for which

r l_'l'AC M. A,’

for any 7. As an example, let us prove that negations of equations between terms with
distinct normal forms are consistent if there are no other assumptions.

50f course, if we allowed new constants in TAP, we would get the same sort of possibilities for
inconsistency that we have in the theory of constructions.

110

™
.

l'oi:;:' o)

'::' R

ity O
’ ®
FANR B
o
.‘:‘.0'..!:::"|'
ettty
i
A

30 W & "
l:'lt"' 't:':
'.':: 1":;
RN
) o
.’.."‘..‘
0 o,) W
.Q.“t*

°
SRRy
n"::‘ﬁ':izﬁ',s

By o

))
TN NS LS
A
by, "vi'yt(\..

)“"

Theorem 5.2 (Q-consistency®) Let I' be a sct of assumplions in which each formula
assigns to a rm (distinct) constant a type which converts to the form ~P =4 Q for terms
P and Q of type A with distinct normal forms. Suppose that therc is a closed term R
such that

r '-TAC R:M =A N.

Then
M=, N.

Proof Let D be a deduction in normal form of
r l_TAC R:M =A N.

Without loss of generality, we may suppose that D does not contain a proper subdeduc-
tion with a conclusion of the same form. Suppose that the last inference in D (except for
equality rules) is by (V e). Because D is normal, the only inferences in the left branch of
D are (V e)and (Eq"”). Consider the formula at the top of the left branch of D. Because
of the form of D and of the rules of TAC, this formula is not a discharged assumption.
If it is a formula of T', then the deduction of the minor (right) premise for the inference
by (V e) of which the formula in question is the major (left) premise is a proper subd-
eduction of D whose conclusion has the same form as the conclusion of D, contrary to
hypothesis. Hence, it must be an undischarged assurnption. But then the term of that
formula to which the type is assigned is a variable 2, and R =, zRy Ry ... Ry, contra-
dicting the assumption that R is closed. Hence, the last non-equality inference in D is
not by (V e).
Since
M=4 N =, (Vz: A~ Prop)(:M — zN),

it follows that that last non-equality inference is by (VTi), R= Az : A — Prop . P, and
D has the form”

1
[z: A— Prop]
Dy (2) Prop : Type A Prop
(Ve)
P:z:M—:zN A — Prop : Type

(VTi—-1)
Az:A—=Prop . PP :(Vz: A— Prop)(z:M — :N),

where 2 is a variable which does not occur free in I, M, or N. An argument similar to
the above argument for D shows that the last non-eq inference in Dy(z) is not by (V ¢},
provided that at the end of the argument we note that although = may occur free in P
since z does not occur free in I' it can only occur free in the discharged assumption, and

SThis term is due to Curry; see [CI'58) 813, p. 270.
7 Passibly modulo some manipulations involving rules (E'P), (Eq'T), and (Eq"'); we will not bother
to mention this fact again in what follows.

111

U ¥
“.I"’-'l.’u‘l!"l

e
4

el
Ry 52

R

r«;,:-"-,
AW T PN, T A A N Y T RSP RN A IC e i !

‘.ﬁ-'

R T A
i

XA
i

g e

na
».i

the type assigned to z by that assumption makes it impossible for it to occur at the top

of the left branch in Dy(z). Hence, the last non-eq inference in Dy(z) is by rule (VPi),

P=.Aw::zM .Q, and Dy(z) has the form

2
[w: 2M]
Dy(w) 2: A—Prop M:A

) (=9
Q::zN zM : Prop

(YPi—-2)
Aw:z2M . Q:zM — zN,

where w is a variable distinct from z which does not occur free in ', M, or N. By an
argument similar to that above. the last inference in D2(w) is not by rule (V e). Further-
more, any deduction of @ : zN must use the hypothesis w : zM. Since Dy(w) is normal
and :M and zN are simple types, it is not hard to see that the only rule that can occur
in Dy(w) is (Eq”), from which it follows that Q = w and, more important, M =, N. m

Corollary 5.2.1 IfI' is as in the theorem, then il is consistent; i.e.,

I' Yrac L.

This theorem can be generalized somewhat. For example, if the types of the vari-
ables are suitably restricted to prevent substitution instances of P and Q which are
convertible to each other, it is presumably possible to prove a version of the theorem for
universally quantified inequalities or for implications whose consequents are inequalities.
Furthermore, as we shall see in the next section, it is possible to prove a similar theorem
for a universally quantified inequality together with a universally quantified implication
between equalities in which it can be shown that if the terms in the antecedent have
distinct normal forms, then so do the terms in the consequent.

At the end of Section 5.1, we noted that we can obtain classical logic by taking
(Yu : Prop)(—u V u) as a new axiom; i.e., by assuming

¢ (Yu: Prop)(—uV u),

for an atomic constant ¢. We need some evidence that adding this assumption does not
introduce inconsistency. Of course, if we start with assumptions which are inconsistent.
with the law of the excluded middle, then adding this assumption will lead to a contra-
diction. But in most known systems without such assumptions, the consistency of the
constructive version of the system is well-known to imply the consistency of the classical
version. This makes it likely that adding this assumption to most consistent well-formed
environments® will not make the environment inconsistent.

*Which do not assign a type to c.

R

U O
R
oA
‘ ..o'&c'::n A%
RO
\J "'q’ . N
o) e
X 4
T

010 % 08 b oV &

N

SR O TR PO R Oy K R Y T VR O TR R O D URUY DR O O O R O TR T D Satvat Vb ép ad-

Remark We have looked here at adding constants that do not head redexes. In general,
when we want a new redex, we definc a closed term that can be shown by an ordinary
B-reduction to head the required redex. This does not mean that using such a definition
is the most efficient way to implement the system. It does, however, show that adding
the new constant and reduction rule will not upset the strong normalization theorem,
since any infinite reduction using the new constant and reduction rule will imply the
existence of an infinite reduction from ordinary f3-reduction using the closed term which
can be shown to have the same reduction rule.

113

"0,04.0'0,0°0, ¢'

" l'q.l'..!%‘l‘)
“1.»'.""

.rf -

.
..;:
AN
ol

_ _,?,.?:

L J
S
2
2

-
)
" f
L -
o
R A

n~
S

3
=
222

R
>
B
2
SR

-
bl
£

tf
=

o
. .

. L J
Vﬁ nt
Wl
3
t."' ok

A A e n g
PRES LN,
.\.-r J" -ﬂ

R R A T M D e T

5.3 Representing arithmetic

As we saw in Section 2.4, we can easily represent the natural numbers in TAC. If this
definition is modified for TAC, it becomes the following;

Definition 5.7 (Natural number type) (a) N = (VA : Prop)((A — A) — (A — A));
(b0 = AA:Prop . Az:A— A . Ay:A . y;
(c)o=AuN.AA:Prop . Az:A— A. Ay A . x(uArxy);
(d) # = Aw:N . sndy n(u(N x N) Q(Dn n00)).
i where @ = Av: N x N . Dy n(o(fstn nv))(fstnnv); and
(e) R =AA:Prop . Az:A AyN —-A— A. AzN . z(N— A)P(Aw: N . 1)z,
where P=Av: N— A Aw: N . y(rw)(v(ruw))
The term n, which represents the natural number n, is defined to be

o(o(...(c0)..)),
where there are n occurrences of o
| As we saw above, it is not hard to show that
0:N,
o:N-=N,

w:N—N,

and
R:(VA:Propl(A —-(N—A— A) =N A),

It i1s also easy to show that
n=,AA:Prop . AziA— A Ay A z(z(...(zy)..),
where there are n occurrences of z after the last abstraction,
n0 =, 0,

n(on) =. n,

and also, for any type A : Prop and any terms M and N of types A and N — A — A
respectively,
RAMNO =, M,

i and

RAMN (an) =. Nn(RAMNn).

It ts also not hard to show that

V N : Prop.
114

A
i
A
}
L]
]
L]
)

EA " A AT A AT S S e by Y Y RN Y T T T O
't‘.‘l .c’i.u s .oi.b",. ,.,.0.. () -| X M g W M ML N K Ny ..|. - '." "- \ A"

L0 _.V""."‘.Vf"l*'¢l*i’p'r -
AT R R L Ay

AN
SR
ilddedade
o] o

b
S

&
Ay

f&’* LS

bt

[J
N

e
S

JOX

PP g yR ¢ o
e
N X,
Qﬁhﬁ
ey

z
<
5

>
Pd

I‘.J .
;'(.
"_ °

ol
X

7

b

%
X
%

@
{
4

N

We know that this definition works in the sense that we can define all primitive
recursive functions and that the peano axioms hold. However, our knowledge of the
peano axioms is entirely metatheoretic; we do not get the formulas representing these
axioms as theorems of TAC. To get the peano axioms holding formally within TAC, we
need to add some new axioms. The first two axioms we need are obvious:

Peanol = (Vn : N)(—~on =y 0)

and
Peano2 = (Vm : N)(Vn : N)(om =y on — m =y n).

We also need the induction axiom:
Peano = (VA : N — Prop)((Ym : N)(Am — A(om)) — A0 — (Vn : N)(An)).

Since the defining equations for + and x follow from the reduction properties of R and
rule (Eq"), it may appear that we have everything we need for arithmetic.

However, we are not finished. For although the only closed terms of type N are
known to be natural numbers?, so that the axiom Peano does not really restrict the
domain of objects in N, we do need to be able to talk about objects in other types which
are not natural numbers. We may even want to create a supertype of N, and in such a
supertype, where we will have things which are not natural numbers, we will want to be
able to assert that an object is not a natural number. To do this, we need to be able to
say that something is a natural number. And so far, we have no way of doing this that
is part of the logic; we have only

M :N,
which is definitely not the same thing. Thus, we need a predicate of the logic, M, which
says that something is a natural number. The definition we want is as follows:

N =dn:N.(VA:N— Prop)((Vm : N)(Am — A(em)) — A0 — An).
It is easy to prove

Frac N :N-— Prop,
"TAC M ZNO,
Frac N :(Vn:N)}(Nn— N(on)),

for closed terms M and N.
Now that we have the definition of N, we no longer need the axiom Peano, for it is
easy to prove'? that there is a closed term M such that

Frac M : (VA : N — Prop)((Ym : N)(Am — A(om)) — A0 — (Vn : N)(Nn — An)).

’Except for AA : PropAz : A — A . x; this term is n-convertible to 1, but not B-convertible. But this
term is not really something other than a natural number.
19This i not mentioned in {Hue86] or [Hue87].

145

r

43
o2

)
P

>

';.,l
Al

7 L {.’f ‘1{:\,
s
Pd

Ay
'I

v
A
LS

ok
.,
h‘
2

t' g 7
e,
p g y g
') ™
A4
»
4

; 1‘5.?.';':1'

/7 I$J‘$If.
- &
LR
e

.

I*‘.Z‘;:v:

-~
.
o,

p)
x
v

» »
A .r'*(*‘- ‘.'\
. .': f};\. ‘?"

AT,
AL OV
®

ety e

N
g
®

< UaY et et Bat B U a0 R 000 00t 0 S 0% 0V 0% A

' While this is not exactly Peano, it is close enough for practical purposes!!.

11

This leaves us with the axioms Peanol and Peano2. These two axioms appear to

Theorem 5.3 (Q-consistency of arithmetic) If I is

and if

cy : Peanol,c; :

r "TAC R:M =A N,

Peano?,

constitute a minor variation of the well-formed environment I' of Theorem 5.2. In fact,
i a similar proof gives us the following result:

where R 1s a closed lerm, A is a type in Prop, and M and N are terms of type A, then

M=, N.

Corollary 5.3.1 IfI' s as in the thcorem, then il is consistent; i.e.,

Yrac L.

The theory of arithmetic we have just seen is an excellent prototype for inductively

. generated free algebras, which can all be defined by simnilar methods!2. Tt is not strictly
R necessary to have definitions for the types and constants involved: the above theory
k would work just as well if N, 0, &, and R arc new atomic constants!3. If we do take

them as atomic constants, then Peano can be interpreted as saying that type N is assigned

only to terms in the set A, and so we are justified in concluding the consistency of the

system with axiom Peano added.
\ As an example of an inductively generated free algebra, let us consider lists. To have
0 lists of terms of type A, we need a type List which, when applied to A, forms the type
! ListA of lists of objects of type A. We also need the empty list, nil4, and the function
consA of type A — ListA — ListA which puts an object of type A at the front of a list
of objects of type A to produce a new list of objects of type A. We will want to be able
to define recursively functions on lists and objects of type A. For example, the function
append which concatenates two lists, is defined as follows, where L; and L, are lists of
\ type ListA and M : A:
: appendA(nild}Ly = L.,
appendA(consAA L)y, = consAM (appendAL;L,).
! "' What Peano actually does is to say that the induction principle holds formally for the type N. We
- know metatheorctically that it holds for N, but without the axiom Peano, we do not have the result as
9 a formal theorem of TAC. Since we do have that formal knowledge about N, it is difficult to imagine
" circumstances in which this formal knowledge about N would be necessary.
2This amounts to applying to the theory of constructions the method of [BB].
; 13Of course, the reduction rules for R have to be postulated in this case. We can have confidence that
) there is no problem with the strong normalization theorem if these new constants are assumed precisely
» because we can define all of them as closed terms from which the reduction rules for R can be deduced.
]
D 116
b
)
1)
)
L
D>

¥ N e . . .-
B R i ot A e T e

LI AN IR -
nllo. l. N

AT N

-

L\

)
5
x v
Y
.
%
X

d (]
e,
%, *.:m.),‘. ',(: "
:‘"- ﬂu‘ﬁ‘::) 4
ey r f.-
LIe 2%s | M
E -‘E"l’!”){!ﬁ
[] @
[Py N0

Ao
»
i ,::5'_‘,;."
RS
Cal o~
gz‘.‘.ﬂ"‘ oA
[]
Vo ts

{® s

4
o
2

SRS

- l“j

Lo
<

r "“i
o
SRR

L e)
.’4_’" g
‘.s'.‘

°
@2

-
a

2
2

'-"x %

X,

23

ot
£
XX

i B

-
s

',
-)

¥
2
2z

@
®

=
.
L4

’
]

M
.I
<

LA
20
"

R

L g
|
5 gt
e
[

77
71,
S

"
Ve

h g
»

',t'
7
’
r
7

% v
-5

’
e

s

B W U WL A W W M M I i W W o W W W W W o W W ol W WP W S WP T W T WL R TR WOV

'Fo take another example, the function reverse which reverses the order of a hist is defined

by
reverse AL = flipAL(nil4),

where flip is defined by

1l

Lo,

flipAl(consAM L),

flip A(nitA) L.
flipA(consAM L) L3

To make definitions like this, we need a term which plays with respect to lists the role

that R plays with respect to N.
It turns out to be possible to define List, nil, and cons so that these recursive defini-

tions become possible:
List = AA.Prop . (Vu : Prop)((A — 1 — u) — u ~ u),

nil=AA:Prop . AB:Prop Af:A—=DB— 1 dy:B.u
cons= AA:Prop . Az : A .M :ListA. AB:Prop . Af:A— 18— By B.fr(IBfy).

The intention is that if L =. (z;, Z2, ..., £y) is a list in ListA, [: A—DB — B, and

y: B, then
LBfyo fxi(fza(...(fray))..).

To show that this definition works, note that if i : A— 3 — B and M : B, and if g is

defined by
g = M : ListA . I3hM,

then g has the properties

g(nitAd) b M,
glconsAxl) o hr{gl),

for all z : A and L : ListA. This function g allows us to define append, reverse, and such
other list functions as length, mapcar, null, car, and cdr.

Just as we defined N corresponding to N, so we can define £ corresponding to List.

The definition is as follows:

£L=AA:Prop. Az : List A. (Vy: ListA — Prop)

((Vu : A) (VL : List A)(LAl — L A(consAul)) —- LA(nilA) — L)

It is then ecasy Lo prove
Feac £ (VA : Prop)(ListA — Prop),

Fracc M (VA : Prop)(LA(nil1)),
Frac N (VA : Prop)(Vu : A)(VL: ListA)(LAl -+ LA(cons Aul}).

and

P

¥ w_m_-
[y e St N

re vz

° ° ‘
o

'5‘

>

¥
vy

} I’ a2

‘u‘-\
2SS
P
X
[y e

n Y
PPy

.
E s
i
” s
2,

» .‘-l'.{‘
bR
4] ®
A ‘.l

hY
%
Loy
:\;s' !

20 @

"

b T 20 T WY

»
.

:a.- T TN S R SO P R R T R o R O R T O T S O O O I O T I O L S WYY Y Y YOO SO GO G O U --'0'.,:.::;:§?:
)) ."".'.'
] !‘ n\':.l.:'z
')
‘ PNt
’\ p’\- "'.'h q
) ..#.Q,_,.m
. -l ..«
i
N A
b L
’ o
I\ it YL
4 Frac P : (VA : Prop)(V3 : ListA — Prop) 5;{51"‘ g:,'g
:: ((Vu : A)(VI : ListA)(Bl — B(consAul)) — B(nilA) — (VI : ListA)(Ll — Bl)), L .:::;,:'
X 4 A
:o for some closed terms M, N, and P. This gives us the desired induction property on v '..."l.::
4 lists. All we still need are axioms corresponding to Peanol and Peano2: [)
- TR
b (VA : Prop)(Vr : A)(Vy : A) (VI : ListA)(Vin : ListA) 4'..;.&.&.
- (consAzrl =Lisa coOnsAym — z =4 y Al =(ina m), ’a"‘::;:"
. e
3 and ':":::%:?::;"
9 (VA : Prop)(Vz : A)(V! : ListA)(~consAzl =4 nil A). FANIN
» ®
. A modification of the proof of Theorem 5.3 shows that these two axioms are consistent. b 'N‘:
y gl
I / !
W
I
y
.
‘-
Q
.
*
"
K
v
\
A
)
\
v,
* 118
B
)
b
1
2
wY
<

Y Pt o ‘ L W e W LW T e e T AT e T T T U e
A AT e (g N o o VT Ve PN AV

"y fy

S e "

T QOO R

PNV S AV AV gh G e TR ST ut £ o e o B Valiat VE 88 a1 % 2% 0% 12% 0.8 £.0 (2085 $.8°8. 5D 8. 4"

5.4 Representing sets and functions

We spoke in the last section of the predicate N of natural numbers. But most math-
ematicians prefer to think of the sef of natural numbers. This point of view is easily
accommodated in the theory of constructions, since it is easy to think of a predicate as

a set!4.
Thus, suppose we have some type U : Prop or U : Type. Then we may think of U as
the current universe. Sets over U are defined to be predicates of type U — Prop. More

formally, we may define
Sety = U — Prop.

In terms of this definition, A/ : Sety and, if A : Prop, LA : Setyiea. If A: Sety, then we
define z € A to be Az. The set {z : UL} is defined to be Az : U . E. Inclusion of set
A in set B can be defined by

ACB=(Vz:U)ze€e Az €DB)
and the corresponding equality by
A=DB=ACBABCA.
A special intensional equality on I/ can be defined as follows:
r=y=(VA:Sety)(zr € A—y€ A).
Many of the usual sets and set operations can be easily defined. For example:
O ={z:U|L},
AnB={z:Ulre ANz € B},
AuB={z:Ulr€ Avre B},

and
~ A= {x:Ul-2 € A}
When no confusion results, we can leave out {7 and write {z|F'}, Set, etc.
It is important to remember the constructive nature of the logic. ‘This means that
the set operations given above are not exactly like those in ordinary mathematics. For

example, we have
A C~n A,

but not, in gencral, the converse.

One operation on sets that we do not have here is the power set operation. For the

power set of A, i.e. the set of all subsets of A, is defined by

PA= A :Set. 3 C A,

M This material is based on the wark of Tluet [[Hue86), Chapter 12 and [1ine87).

149

"

Lo

TReg¥a ¥atan, sty

> e e e V00 g OIS S TR TR I T P A L W % RS T N e e N e e e N e)N >, 3
> R I O T A N N N A A AT T T A P T AT S N A ain Ty Ty

" ",

ity
A

®
i, '::.:o':u".:;“‘
X jg:n?'”
"l f
'3::"":::‘."!!'-.&*

TSNS
\ '."l.::“::.’.:‘
Wy

e il

-

R T S U WO WU WY ¥ .92%.02",. 00" €t "% 14,00 022 4at Ua? 1a¥ 032" Sg¥ Pa¥ s 0p0 0g® 0% 12" 200" 09", 43,01 0

- W O W

and the type of PA is not Set, which is A — Prop, but instead Set — Prop. Terms of
type Set — Prop will be called classes, and we will give the formal definition

Classy = Sety — Prop.

Since U can be replaced by Sety, all set operations are also class operations. We can
define other class operations, for example

(C = {z|(VA: Set)(CA — z € A)},

and
l |JC ={zl(34:Set)(CAAz € 4)}.

We can also define the singleton in terms of classes:
{z} = m(,\A : Set . z € A).

With these definitions,
N : Sety.

We know metatheoretically that the closed terms which are elements of the set A are
exactly the closed terms of type N. Thus, the set A represents the type N in a special
way. There is no known uniform method of defining sets to represent types for arbitrary
types that does not require extra axioms!®.

Most mathematicians think of functions as sets of ordered pairs, but this conception
is not really appropriate here. For we already have functions built into the theory
of constructions as primitive. A function is simply a term assigned to a type of the
form (Vz : A)B. Functions can, of course, be elements of sets, especially if the sets
correspond to types the way A corresponds to N. Since a set corresponding to a type A
is a term of type A — Prop, a set of functions from type A to type B is a term of type
(A — B) — Prop. To say that a function [is a function from set A to set B, we use the
type

(Vz:U)(z € A— fz € B).16

It follows that the set of functions from set A toset B is
Af:U—=U.(Vz:U)(zxe A— fz € B).
If f:U — U, then for A:Set we can define
PreservefA= (Vz: U)(x € A — fr € A).
In terms of this operator, the induction axiom Peano can be written as

Peano =, (VA : N — Prop)((Preserve 0 A) — 0 € A — (Vn : N)(n € A)),

%1t is, of course, possible to add an axiom of the form AM for each closed term M : A, where A is a
type and A is the set intended to represent it, but many of these axioms are likely to upset the proof
of strong normalization.

TS Naturally we must have f : U — (/.

150

.
‘{‘“ ’;"-_-\ ’}1\,',"-”
Lo hm
Koty
SRR A
Mr A
® ®
Py sg TR
e \.Eq':'.:;i
5-*. .'a‘!'t
N, *‘.}:\“‘Ii
o : .‘::.':l ¢
e ¥,

2,000 ,0 4,%

- e

PR

A

GGV LTRSS ORER N LT Y L RER LR e uhad ol LA Ll

4

RO

and the definition of A as
N=,2dn:N.(VA:N — Prop)(PreservedA—0 € A —n¢€ A).

This may help to show how to standardize the definition of inductively defined free
algebras.

This much set theory is sufficient for most practical mathematical purposes, but. from
the point of view of a set theorist it is incomplete. Its major weakness is that if 4 is
set, PA is not a set but a class; in the standard set theories it is also a set. To make
this a set, we would need to have Set include not only the terms in U — Prop but also in
(U — Prop) — Prop, ((U — Prop) — Prop) — Prop, ctc. This can be represented in the
theory of constructions as follows:!7 first define

Set; = U — Prop,
Setpy1 = Set, — Prop.

Then we want to introduce a new type Set which will be assigned to terms in any of the
types Set,. This requires that each type Set,, be a sublype of Set.
There is a general method of making type A a subtype of type B: it is to take as an
assumption
Az A .z A—-B.

From this assumption and M : A, we get (Az : A . z)M : 3, and clearly (Az : A . 2)M
represents the same object as M; in fact, it reduces to M. Assumptions of this form
have not been considered so far in the theory of constructions, and cannot occur in well-
formed environments. [lowever, they have been considered in connection with ordinary
type assignment; see [CIIS72], pp. 453 and 304, where they are called proper inclusions.
Furthermore, conditions under which these assumptions are compatible with the normal
form theorem are given in [Scl77} Remark 2 p. 23. It is possible to extend condition (i)
of that Remark to TAC:

Theorem 5.4 (Consistency of proper inclusions) Let I be a well-formed environ-
menl, and let T' be a sequence of assumptions each of which has the form

Az A .r: A— B,

where I3 is an alomic constant, the assumption B : & occurs in I, and B — (' 1s not o
type in I for any type C'. Then any deduction of

U Fopac M A
is strongly normalizable and both M and A have normal forms.

Proof We begin by proving that the required deductions are SN. Begin by replacing in
N . . S
cach assumption in I the term Ar : A .z by a variable which docs not. occur free in either

17 This is not done in [Hue86) or [Huel7}.

151

N TR o A R KR VA R X R RN A R A " F TR TR TV X RPN T NRtala' o8- gth gl g0p i

Pl St
° °
AT :;
o"' |:'.:0’
o
o
'_,1 () .:'l.:
® . °
LA) }
SN '|:|:

® o
G
4‘|' .b::.\':' !

Ry

{
RN

"l 'l \
ey
[] []

'r‘l"-l
-
o

sxe:

v

B 7aa

f
Py
i > a»

&;ﬁia !
® ®
TRV

A5
57

® [
TN U
:’1)(3\.-(,. %:q"l:
-_) Aa™ A “
R
a » A}
ARG o
:_‘ Pt Py 'y
RAVALGL LY

4
s
e

3

r 5
s
5

ﬁ.' Q'.Q

L 4 L8 A gn o g e

Raar gy s g

T R S N e T e e e o e ot e et e M S e T L e

' or [, using a distinct variable for each such assumption. The resulting deductions
are all SN by Theorem 4.14. Hence, the deductions in which we are interested, which
are all obtained by substituting terms for variables, are also all SN.

Now let us consider the terms in these deductions. These terms may contain redexes
of the form

(Az: A.2)M.

A contraction will replace this redex by M. What we need to know is that this will
not produce a new redex. This could only happen if the original redex occurred in a
subterm of the form

(/\EZA .x)MNlNg...N",

and since the type of
(Az:A.)M

is B, which is by hypothesis a new constant and hence not convertible to the form
(Vy : C)D, this is impossible. B

Now, in order to interpret a set theory in which the power set of a set is a set, we
nced ouly define Set,, as indicated above for each n > 1, define Set to be a new atomic
constant, assume Set : Prop or Set : Type, and then assume

Set,, : Set

for cach nn > 1'8. It follows from what we have just proved that this is consistent; for
Set is essentially the union of all the Set,, and in any given deduction, it will be possible
to replace Set by the union of a finite number of the Set,, and thus avoid using any new
assumptions.

L his involves an infinite number of assnmptions, but they can all be desevibed in a finite manner,
and <o it is not unreasonable Lo suppose that this can be inplemented.

SN
i

i
AR
RO
[]
RGN
0 \ .':.".‘:.":"‘
KXA ""o': Ll
K "ﬁz'-::::"':ﬁi
R
® ‘ o
ARG
l‘:‘ﬁl‘:‘l‘:“!
"’ ! ":.“)l

e
®

ot

et
Ea‘::o .::j:
. 3

PUORPORT KT AR OO RO A SO ROV R T KPR MO T TR KT RN Y DA b Sal P S O A D S T A I TXN

Appendix A

LIST OF POSTULATES
AND SYSTEMS

Here are listed the various postulates which have appeared in this docwment and the
systems in which they occur. A list of the systems and the number of their definitions
is given in appendix

2. The rules are listed in the order in which their main operators first appear.

(— Formation): TAJ, TAT

(— €): TA, TAP, TAJ, TAT

(— i): TA, TAP; (alternate form) TAl, TAT

(V Formation): TAGU

(Ve): TAP; (another sense) NJ*; (another senuse) TAGU, TAC

(Vi): TAP; (another sense) NJ*

(VJFormation): TAJ

(VJe): TAI

(VJi): TAJ

(VP): TACS

(VPi): TAC

(VT): TACS

(VTi): TAC

(VYUi): TAGU

(VaFormation): TAT

(Vae): TAT, TAG

(Vai): TAT, TAG

(=a): TA; (another sense) TACS

=!): TAP, TAJ, TAT, TAG, TAGU, TAC

-
)
-
- e @ - -
-

i.f
s
"%{

AR

ko
:r:::ft
SXE:
b0

o o
¥ OG0 "0';.0"
ANOACH0A

‘."‘ "‘ ":.:e

X2
2
>

DD

25
R

LS
s

|
-
-

S‘
by Vo T 4
o
'5-’.4“:'.

¥, .“‘ g

!‘.'_Q‘. " '~'. "" 'V- v 'f -“ » »- .'- - ‘ - X

LR UL U LI U U RPN X ML W 3 Vol TR PR BN A F RN X AR PR NN (RN T IR L I 4" at3", VW ¥ L' g's,

(=2): TAP

(=" a): TA), TAT
(Ce): NA(C)NJ,NJ*
(Ci): NA (C), NJ, NJ*
(Ae): NJ, NJ*

(A1): NJ, NJ*

(ve): NJ, NJ*

(vi): NJ, NJ*

(—e): Derived in NJ, NJ*
(—1): Derived in NJ, NJ*
(L3): NJ,NJ"

(1L js): added to extended TA
(L jes): TAJ

{Je): NJ*

(3i): NJ°

(3JFormation): TAJ
(Je): TAJ

(3Ji). TAJ

(e;): TAI

(wi): TAJ

(wi): TAJ

(void): TAJ
{xFormation): TAJ

(xe);: TAJ

(xe)o: TAJ

(x1): TAJ

(+Formation): TAJ

{+e): TAJ

(+1);: TAJ

(+1)2: TAJ

(Eq"”): TAG, TAGU, TAC, TACS
(Eq'VU): TAGU

(Eq'P): TAC, TACS

(Eq'T): TAC, TACS

(P): TACS

(PPFormation): TAC

(PT): TAC: (another sense) TACS

e
IR

A

v ™ L - L] X N> .
AN AN Y A ¥y Y MR U R N R Y M O XN (30X Y i

pppppp Y

.3{55'55“33?:

X T'%ﬁ"ﬁ:

R

® °
(PT Formation): TAC !::'l::'i::‘!::'t::
(T): TACS :.4:.::‘,::::;;.,*
9 G
(TP Formation): TAC :;.;:;{g:;:::;::e;
(TT Formation): TAC ety
(App): TACS]
(var): TACS -;,-.]
(i): TACS g »,:;v&':,?-
.\I.' 47 '..'\.'
ALY,
i"‘x? Lﬁ’)ﬁ__ v
;
]
i
u
y
J
)
b
}
]
|
] :":'-
b
1hi

L)
0

A s S X RN A Il KD e T

Appendix B

™
a0

SYSTEMS AND THEIR
DEFINITIONS

&

:’(_ N

xZ

v

; - L"}I
. &‘ .
A

AT %
\)
Here is a list of systems and their definitions. 'g." ;
R
.. v o
NA(D): Definition 3.2. .,:"?:: |::
WO
NJ: Definition 3.4. iy, "':"0':3
) Ll
NJ*: Definition 3.6. *‘A ;:
, . R
TA: Definition 2.1. - \.0'.:.
) ¢
W,
Extended TA: Remark after Corollary 2.2.3 (end of Section 2.1). '&R '0.:'9
AR
TAC: Definition 4.2. 'n,,.— v“’.
L
TACS: Definition 4.21. e
Y
TAG: Definition 2.22. O
i E.‘v o
TAGU: Definition 2.24. IR
' o
TAJ: Definition 3.10. <y VT,

w
I'AP: Definition 2.12. It f

TAT: Definition 3.12.

(BB]
[Bee85)
[C*86)

[Car86]

[CF58]

(CH]

[Clis4]

[CH86)

[CHsT2)

[Chu40]

Bibliography

Corrado Bohm and A. Berarducci. Automatic synthesis of typed lambda-
programs on term algebras. Unpublished.

M. Beeson. Foundations of Consiructive Mathematics. Springer, Berlin,
1985.

R. Constable et al. Implementing Mathematics with the Nup:l Proof Devel-
opment System. Prentice Hall, Englewood Cliffs, New Jersey, 1986.

Luca Cardelli. A Polymorphic A-calculus with Typc : Type. Technical Re-
port, Systems Research Center of Digital Kquipment Corporation, Palo Alto,
California, May 1986.

Haskell Brooks Curry and Robert Feys. Combinatory Logic. Volume 1,
North-Holland Publishing Company, Amsterdam, 1958. Reprinted 1968 and
1974,

Thierry Coquand and Gérard Huet. Concepts mathématiques et informa-
tiques formalisés dans le caleul des constructions. Colloque de Logique, Orsay
(July 1985), North-Ilolland, forthcoming,

Thierry Coquand and Gérard Huet. A theory of constructions. June 1984.
Presented at the International Symiposium on Semantics of Data Types,
Sophia-Antipolis.

Thierry Coquand and Gérard Huet. Constructions: a higher order proof
system for mechanizing mathematics. In Springer Lecture Notes in Computer
Science 203, pages 151 -184, Springer-Verlag, Berlin, 1986.

Haskell Brooks Curry, J. Roger Hindley, and Jonathan P. Seldin. Combina-
tory Logic. Volume 2, North-llolland Publishing Company, Amsterdam and
London, 1972.

Alonzo Church. A formalization of the simnple theory of types. Journal of
Symbolic Logic, 5:56 68, 1940,

T W Y

T W Wy W e o T M T W W AT W
e T o S TN s

® o
I.' 'l.‘.‘"‘...‘ 4, ‘
XD
¥ '.0: .’..l‘:g
e na,

-ﬂ_'-(1‘
PO
RN
.,- s sr'.
u*’\:;\i‘ﬁ‘
SN MQ_' i
':t .1;'\“
" "‘"- 'P.. l
CAUNSR

R N R L
. A RN Y
AR

Y TR R Y N o VU W VO U A R R TR R R R Y R Y™ TN ITND v ~T > ~a¥

. (Coq] Thierry Coquand. Metamathematical investigations of a calculus of construc-
tions. Received February 9, 1987.

[Coq85]) Thierry Coquand. Une Théorie des Constructions. PhD thesis, University
of Paris VII, 1985.

[Cog86a] Thierry Coquand. An analysis of Girard’s paradox. In Symposium on Logic
; tn Computer Science, pages 227-236, IEEE Computer Society, IEEE Com-
. puter Society Press, 1986.

Y [Coq86b] Thierry Coquand. A calculus of constructions. November 1986. Privately
circulated.

[CR36] Alonzo Church and J. B. Rosser. Some properties of conversion. Transactions
2 of the American Mathemalical Society, 39:472-482, 1936.

(Cur63] Haskell Brooks Curry. Foundations of Mathematical Logic. McGraw-Hill
Book Company, Inc., New York, San Francisco, Toronto, and London, 1963.
Reprinted by Dover, 1977 and 1984.

: [Daa80}] Diederik Ton van Daalen. The Language Theory of AUTOMATH. PhD
K thesis, Technische Hogeschool Eindhoven, February 1980.
.: [Fit52] Fredric Brenton Fitch. Symbolic Logic. The Ronald Press Company, New
5 York, 1952.
[FLO83] S. Fortune, Daniel Leivant, and Michael J. O’Donnell. The expressiveness
p of simple and second order type structures. Journal of the Association for
: Computing Machinery, 30:151-185, 1983,
‘ [Gen34] Gerhard Gentzen. Untersuchungen uiber das logische Schliessen. Mathema-
[tische Zeitschrift, 39:176-210, 405-431, 1934. Translated in Sabo (ed.), The
Collected Papers of Gerhard Genltzen as “Investigations into Logical Deduc-
tion”,

| [Gir7l] Jean-Yves Girard. Une extension de V'interprétation de Godel a Panalyse, et

» son application a I’élimination des coupures dans I’analyse et la théorie des

. types. In J. E. Fenstad, editor, Proccedings of the Second Scandinavian Logic
Symposium, pages 63-92, North-Holland, Amsterdam, 1971.

N [GMW79] M. J. Gordon, J. Milner, and C. P. Wadsworth. Edinburgh LCF: A Mecha-
4 nized Logic of Computation. Springer Verlag, 1979. Lecture Notes in Com-
; puter Science 78.
N
¥ How80] W. A. lfoward. The formulac-as-types notion of construction. In J. Roger
p 8
) Hindley and Jonathan P. Scldin, editors, To H. B. Curry: Essays on Com-
X binatory Logic, Lambda Calculus and Formalism, pages 479-490, Academic
! Press, New York, 1980, A version of this paper was privately circulated in ~
' . N v
' 1969 ‘\"k-'. .
. RSSO
X 4"-.""):\"4\.: ;‘
' 1H8

e e
I

A
P R A A i p S S R P N
I TPy s P B 1Vt v Ve TR et L DR RS VA G AR CHILONN ARSI Skt N

U8 5 Rl g8 oRe JRa- oV P 0a 02t a0 00n tan dio tat Rat linV Ra¥ Ba¢ B¢ 20 a0 0a0 000 0ol R0 00 ot AaB Balt B0 08 Rl G006 0000 'R 8 28" M YUY TYTVIVIIS T)

- 7)
[1HS86) J. Roger Hindley and Jonathan P. Scldin. [ntroduction to Combinators and %' M 'lf
A-calculus. Cambridge University Press, 1986. W '.:

[Hue86] Gérard Huet. Formal structures for computation and deduction. May 1986. e l:"..':
Course Notes, Carnegie-Mellon University, First Edition. ®

[Hue87] Gérard Huet. Induction principles formalized in the calculus of constructions. A
In Springer Lecture Notes in Computer Science 249, pages 276-286, Springer- o w_ﬁ
Verlag, 1987. :'.""‘\':"":\{f‘* J

Jas34] Stanislaw Jaskowski. On the rules of supposition in formal logic. Studia
4
Logica, 1:5-32, 1934.

d
Vi

[Mar71a] Per Martin-Lof. Hauptsatz for the theory of species. In J. E. Fenstad, editor, »
Proceedings of the Second Scandinavian Logic Symposium, pages 217-233, "l.".rf
North-Holland Publishing Company, Amsterdam and London, 1971. b :o' ‘ ::‘.c:
[Mar71b] Per Martin-Lof. A theory of types. February 1971. Revised October 1971. '.‘ x '
Privately circulated. ~Eai A
RGN
[Mar73]) Per Martin-Lof. Hauptsatz for intuitionistic simple type theory. In Patrick Tt
. . - . . INENIEN
Suppes, Leon Henkin, Athanase Joja, and Gr.C. Moisil, editors, Logic, DT
Methodology, and Philosophy of Science 1V, pages 279-290, International :".'_v\';'y:\.-
Congress for Logic, Methodology, and Philosophy of Science, Bucharest, 1971, DAY
North-Holland Publishing Company, Amsterdam and London, 1973. o *K.
vl " »
[Mar75] Per Martin-Lof. An intuitionistic theory of types: predicative part. In H. E. :“kti“:“"
Rose and J. C. Shepherdson, editors, Logic Colloquium 73, pages 73-118, '3&}.\3\ Y
Nanrth Holl: sublishing C 975 pL
Narth Holland Publishing Company, Amsterdam, 1975. .@\ ,_vS,‘_
[‘bhg“ S
{Mar82] Per Martin-Lof. Constructive mathematics and computer science. In L. J. '; L :rz ‘
Cohen, J. Los, H. Pfeiffer, and K.-P. Podewski, editors, Logic, Methodol- R T TR PY ¢
ogy and Philosophy of Science VI, pages 153-175, North-llolland Publishing '\\;tfz‘f::-h\-l
Company, Amsterdam, 1982 :‘-_.3',.‘5-) %
B A
[Mar84] Per Martin-Lof. Intuitionistic type theory. Bibliopolis, Naples, 1984. Notes :\:N'-“'t-'-'
by Giovanni Sambin of a series of lectures given in Padua, June 1980. SN
.) o o
(Mil78]) R. Milner. A theory of type polymorphism in programming. Journal of AR
» AR St
Computer and System Science, 17:348-375, 1978. o '\-';,:-i P
. WA
[Mil85] R. Milner. The standard ML core language. Polymorphism, 2, 1985. :-':-(:f'.;t\
'-ﬂf\f'- “
1 [Mit86] Johu C. Mitchell. A type-inference approach to reduction properties and *J:"’-"-t\':\.
. semantics of polymorphic expressions (summary). In Proceedings of the .:.__,,,_‘-t%
b 1986 ACM Conference on LISP and Funclional Programming, pages 308- NN
319, 1986, N
RO
AN 2t
E :f H‘n'\,\f:
p
] AAA A
) :J:fr\\'_a‘f“
s
BAS AN ALY
t P }:x t
N

DU UYL ‘

e e e W

8% 4% 879 Y,

N PO O T O O T O S P T K TR AN ® 000 By gt il Bab BV a¥ fat §a0 Bat)t 0a be? AeV 437 13" 1))

[Pot87) Garrel Pottinger. Two formulations of the theory of constructions. January
1987. Technical report in preparation, Odyssey Research Associates.

[Pra65] Dag Prawitz. Natural Deduction. Almqvist & Wiksell, Stockholm, Goteborg,
and Uppsala, 1965.

[Rey74] J. C. Reynolds. Towards a theory of type structure. In Springer Lecture
Notes in Compuler Science 19, pages 408425, Springer-Verlag, 1974.

[Rey84] J.C. Reynolds. Polymorphism is not set-theoretic. In Springer Lecture Notes
in Compuler Science 173, pages 145~156, Springer-Verlag, 1984.

[Ros84] J. B. Rosser. Highlights of the history of the lambda-calculus. Annals of the
History of Compuling, 6:337-339, 1984,

[Sel77] Jonathan P. Seldin. A sequent calculus for type assignment. Journal of
Symbolic Logic, 42:11-28, 1977.

[SteT2] Soren Stenlund. Combinators, Lambda-Terms and Proof Theory. D. Reidel,
Dordrecht, Holland, 1972.

160
i
T R T

3 B 2 .‘C

-

W

R

gy
[)

. R l'.‘!
S :'n':;:'k-'
° ®
. A
WS, ‘;".q',
LR !z,:;::l
SRR
. :‘1&%:':""&'

3, i

-4 b e o

Batale

W gy

R T O S L O AR AT R A A RN S IN O UYL I Vo' 8% 00, 00 88, 0%, AV iln 1% 878 0% 8% &

Rome Air

RADC plans and exec
and selected acquis
Command, Controf, C
(C31) activities.

support within aread of competence 48 provided zo

ESD Program 0ffices

to pernform effective acquisition of C31 systems.

The aneas of techni

communications, command and control, battle
management, 4infoamation processing, surveillance

.4ensons, intelligen

‘s0ldid state sciences, electromagnetics, and

‘propagation, and el
and compatibility.

MISSION
of
Development Center

utes nesearch, development, ZXtest
ition programs in support of
ommunications and Intelligence
Technical and engineening

(P0s) and other ESD elements

cal competence <include

ce data collection and handling,

ectrondic, maintainability,

:
2
3

IR U A I SR S WSS A S LA S o

15 150, Wi AP S T B0 e N0 B I A PN AW
R Lod ol

Ty ‘ 1y §° .'.‘.’.‘. 8- l'.‘:i":'

2 T e T e e g A A

i

by

B
®

20
5' »

P/
AR

LG TN
Pl o,

v N 1] ‘E
; TR

N
u
o
'y

W .,
PAlEa
¥ AR
A
» ®

o ¥
"“»-'_“\.'5-'(' A

1 I

i
ﬁﬁ

A
"l

5%
L}

(‘.‘
'l:‘

NN
~

w
Ry

WA

P

S
N
0 y ;

e
A
7
z

7

)

hY

[d
% Sy

>

i %
Ay

-I
P
S
P
x .l
o

%
o
2
.

'l
"n’
X
{l_{l

4
Y
)

.
»
i/

S
]

'
ggs
PPy

T

:"';"‘;"Wﬁﬂo":j] TR R AR B R A L R T N T N R e L N R o O R O O T o e * (85207905000 4t a gy 13 ¢

s

: .nf'.::‘
9, .
; .
; Y ":
")
N :{s:
,5 ' ﬂ:
. °
Riani;
' 5 ':“
4 B .:‘
K0
9
s’
: 2
v

S——

EAA AL -

r fad C A aar B 2
SrELEI IS o
P LT

