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. .." Abstract

In this paper we investigate the possibility of accelerating the transient simulation of MOS
devices by using waveform relaxation. Standard spatial discretization techniques are
used to generate a large, sparsely-connected system of algebraic and ordinary
differential equations in time. The waveform relaxation (WR) algorithm for solving such a
system is described, and several theoretical results that characterize the convergence of
WR for device simulation are given. In addition, one-dimensional experimental results
are presented.
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Waveform Relaxation Applied to Transient
Device Simulation

M. Reichelt, J. White, J. Allen
Research Laboratory of Electronics and the

Department of Electrical Engineering and Computer Science
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Cambridge, MA
F. Odeh

I.B.M. T. J. Watson Reseach Center
Yorktown Heights, NY

Abstract
In this paper we investigate the possibility of accelerating the tran-

sient simulation of MOS devices by using waveform relaxation. Standard
spatial discretization techniques are used to generate a large, sparsely-
connected system of algebraic and ordinary differential equations in time.
The waveform relaxation (WR) algorithm for solving such a system is de-
scribed, and several theoretical results that characterize the convergence
of WR for device simulation are given. In addition, one-dimensional ex-
perimental results are presented.

1 Introduction

Both digital and analog MOS circuit designers rely heavily on circuit simulation
programs like SPICE [3] to insure the correctness and to test the performance of
their designs. For most applications, the lumped MOS models used in these pro-
grams [9] accurately reflect the behavior of terminal currents and charges, but in
some cases, these models are not adequate. In particular, charge redistribution
between source and drain during device switching cannot easily be modeled by
a lumped device, but the details of this charge redistribution can have an im-
portant effect on circuit behavior. In circuits like dynamic memory cells, sense

,i amplifiers. analog-to-digital converters, and high frequency operational ampli-
fiers. charge redistribution effects may not only degrade performance, but can
inhibit proper function.

For these critical applications, sufficiently accurate transient simulations can
be performed if, instead of using a lumped model for each transistor, the transis-
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tor terminal currents and charges are computed by numerically solving the drift-

diffusion based partial differential equation approximation for electron transport
in the device. However, simulating even a few transistor circuit in this way is
very computationally expensive, because the accurate solution of the transport
transport equations an MOS device requires a two dimensional mesh with more
than a thousand points.

In this paper we investigate the possibility of accelerating the transient sim-
ulation of MOS devices by using waveform relaxation. In the next section we
start by introducing the equations for transient device simulation. Then we view
the result of applying commonly used spatial discretization techniques to these
equations, generating a large, sparsely-connected system consisting of algebraic
and ordinary differential equations in time. In Section 3 we present the waveform
relaxation algorithm for solving such a system, and suggest why it may be par-
ticularly efficient. Several theoretical results that characterize the convergence
of the method are presented in Section 4, and one-dimensional experimental

Ku results are described in section 5. Finally, conclusions and acknowledgements

are given in section 6.

2 Classical Simulation Equations

The terminal behavior of an MOS device is well described by the Poisson equa-
tion and the electron current-continuity equation [5]

V 2
V, + q (N - n)= (1)

OnV.J,. - q--=o (2)

In these equations V, is the electrostatic potential, q is the magnitude of elec-
tronic charge, n is the electron concentration, and J is the electron current
density N is the net doping concentration given by N = ND - NA where AD
and NA are the donor and acceptor concentrations.

The electron current density is commonly approximated by the drift-diffusion
equation:

J, = -q(p, n VO,- D.Vn) (3)

where p, is the electron mobility, and D, is the diffusion coefficient. An equa-
tion system with only n and V, as unknowns is derived by using (3) to eliminate
,, from (2).

There are a variety of ways to spatially discretize the system of two equa-
tions in the two unknowns n and -. Given a rectangular two dimensional mesh,
a common approach is to use a finite-difference formula for the Poisson equa-
tion, and an exponentially-fit finite-difference formula for the current-continuity
equation. For notational simplicity, we will assume that the mesh points are

2
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evenly spaced a distance I apart, so that the discretized Poisson equation at
each mesh point i is:

O j- ) + ql (+Ni - ni) = 0 (4) ,

where ni, Vi, and Ni are the electron concentration, the potential, and the net
doping concentration at mesh point i. The summation is taken over the nodes
j surrounding i (four nodes for a mesh node i not on the boundary, i.e. north.
south, east, and west).

Under the same assumptions, and assuming constant mobility, the discretized
current-continuity equation with the drift-diffusion approximation becomes:

qD,. [ 1 (u, - u,)nri- B(ui u,)ni] qi i 0 5

where ui = qvj/KT and B(z) = z/(expr - 1) is the Bernoulli function used
to exponentially fit the potential variation to the electron concentration varia-
tion. In this equation. the Einstein relation D,, = (KT/q)pu has been used to
eliminate u,.

If there are m mesh points, then the result of applying the spatial discretiza-
tion to (1),(2), and (3) is a sparse system of m algebraic constraints, represented
by (4). and a sparsely connected system of m ordinary differential equations,

- represented by (5).

3 The Waveform Relaxation Process
The standard approach used to solve these two systems is to discretize the
gn,(t) term in (5) with a low order integration method such as backward-Euler
I1! The result is a sequence of algebraic systems in 2m unknowns, each of which

can be solved with some variant of Newton's method and/or relaxation. Another
approach is to apply relaxation directly to the differential equation system. This
leads to a time waveform relaxation process, as given by the following algorithm.

Although only the Gauss-Jacobi algorithm is presented for the sake of no-
tational simplicity, a Gauss-Seidel version could be created by adjusting the
iteration indexes.

The VW*R algorithm reduces the problem of simultaneously solving m differ-
ential equations and m algebraic equations to one of iteratively solving 2m inde-
pendent equations. 'Each of the m differential equations for the ni(t) waveforms
can be solved with a numerical integration method such as backward-Euler.
Since they only contribute algebraic constraints, the equations for calculating
the v.,(f) waveforms need to be solved only at the discrete points in time used
to calculate the ni(t) waveforms.
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Algorithm 1 WR Gauss-Jacobi Algorithm for solving the system
produced by equations (4) and (5).

The superscript k denotes the iteration count, the subscript
i denotes the component index of a vector, and ep and Cn
are small positive numbers.

k - 0
repeat {

k -k+ 1
foreach(i E{1....n) {

solve
+ q12 (N. - n',) = 0

qD, j [B(u - ' - uk - )nk-1 - B(uk-' - u-1)nk]

-qi 2 (dn ) = 0

for(t" (t). n,(t): t E [0, T], n,(0) = no)

IP

}) until(lit', - ¢.k-1 11 < e .and ink - flk-1 1 < s.,)
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The inherent advantage of the WR approach is that the differential equations
are solved in a decomposed fashion, and therefore different sets of timesteps can
be used at different mesh points to calculate the time evolution of the electron
concentration. The method exploits multi-rate behavior. In MOS devices, the
rate at which electron concentrations evolve may be very different in the channel
compared to the source or the drain. Therefore, WR may prove to be efficient
for the device simulation problem, provided it converges, and doesn't take too
many iterations. This is the subject of the next section.

4 Theoretical Results

As is usually the case for waveform relaxation algorithms applied to systems of
differential equations, Algorithm I converges to the solution of the differential-
algebraic system for any initial guess that matches the initial conditions. The
precise statement is given in the following theorem.

Theorem 1 Given a finite interval [0, T], and any initial guess n'(t) and 0'°(t),
f I [0, T], such that n°(O) = no, the sequence of waveforms produced by AIg. I
converges to the exact solution of the system given by equations (4) and (5).

The proof of the above theorem follows the same steps as the Picard-like
proofs of waveform relaxation for ordinary differential equations [10]. First the
equations that describe the difference between one iteration and the next are
organized into the form

6 Vk+. = Ab k + Bnk(t) (6)

and

bnkI~'(t) ,/[f (n'+'(t), n k ( t, ,k (t) f f(k(t), n.k-'(j), Vk-I(t))] (7)
d0

where V t,& bn,' = nk - nk 1 . The matrices A,B E R" and

the function f : R 'x - R' are constructed from the iteration equations
in Aig. 1. The next step is to show that (6) and (7) represent a contraction.
To this end, consider an interval of time short enough to insure equation (7)
represents a contraction with respect to n for a fixed V,. That (6) is a contraction
with respect to tl' for a fixed n is well-known [8), as (6) represents relaxation
applied to the Poisson equation. One can fit the two contractions together to
show that relaxation applied to the coupled system converges.

The above proof outline suggests that the WR algorithm converges in a
nonuniform manner. That is, first convergence is achieved over a short time
interval, set by what is needed to make (7) a contraction, then over the next
short time interval, and then the next, continuing slowly, until the convergence
is achieved throughout an entire interval of interest. When applied to general

5



differential equation systems, like circuits, WR does demonstrate this nonuni- M
formity in the convergence [7], but WR does not usually show nonuniformity
when applied to the transient device simulation problem.

In order to analyze why this is the case, we will consider a model problem of
just the differential equation associated with the electron concentration, n and
assume that the potential 0 is known. The WR iteration update equation for
this case is then

D, [B(u - ui)nk - B(u, - u)n+'] -12 d +(8

for each i E { 1 .... ml. Note that given 0, (8) is a linear time-varying differential %
equation in n. For this problem we have the following theorem: F

Theorem 2 If at each time t, V'(t) is such that the electric field along any 1%

vertical or horizontal line is either constant, or monotonically increasing, then
(8) is a contraction in a uniform norm on any finite interval [0, 7]. That is,

max[o.T]Jl n +X(t)Jt <5 -tr axio,T]JJ6n (t)JJ (9) "

where - < 1.

I he proof of Theorem 2 is given in the appendix.
Since allowing the different differential equations to take very different timesteps

is WR's main advantage, if this property were limited to insure convergence, the
\VR algorithm would not be effective. Fortunately, that the WR algorithm is a
contraction in a unform norm on any interval implies that the timesteps used
to numerically integrate the differential equations are almost unconstrained.
Given that the different differential equations use different timesteps, interpo-
lation must be used to communicate results between equations, and if not done
carefully this can cause nonconvergence. Linear interpolation is certain not
cause problems, and therefore we have the following theorem [7]:

Theorem 3 Let each of the m independent WR iteration update equations
given in (8) be solved numerically with backward-Euler, with m different sets of
timesteps. In addition, assume that linear interpolation is used to derive values
for the n's between time discretization points. Then this mulimte discretized
WR algorthm for (8) converges, regardless of the timestep selections.

5 One Dimensional Experiments

Except for Theorem 1, the above theoretical results only apply under certain
conditions, and are only an indication that the WR algorithm may be effective.
In order to verify that the theoretical results apply in actual simulation, a one-
dimensional transient device simulation program was written and applied to a

6
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one-dimensional approximation of an MOS device with a conducting channel.
The doping distribution for the one-dimensional device is given in Fig. 1, where
the tick marks denote the mesh points. Potential and electron concentration
boundary conditions were given at z = 0.0 and z = 3.0p. The boundary values
for the electron concentration were computed assuming charge neutrality at the
,contacts".

The relaxation process was tested by first solving the static problem with
zero volts across the "device", and then making a step change of five volts.
Even with this simple example, the variable-by-variable WR algorithm as given
in Alg. I was ineffective. The iterates did not converge in a uniform manner,
and they converged very slowly.

In order to improve convergence, rather than using variable-by-variable de-
composition, we partitioned the problem into blocks based on two techniques.
First. we associated the electron concentration at node i, ni(t) with the potential
t, 1(t) at that node. Then, in order to try to satisfy the assumptions of Theorem
2. wt placed together neighboring nodes where we expected rapid changes in
the electric field. The resulting partitioning of the nodes are boxed in Fig. I.

The resulting waveform iterations for the slowest converging variable, the
electron concentration for the mesh point where the doping changes abruptly, is
plotted in Fig. 2. As the figure indicates, with the partitioning just described,
the WR process converges in just a few iterations and the contraction is uniform
through time as predicted by Theorem 2. The simulation was rerun with very
coarse timesteps to see the effects on convergence, and the WR iterations for the
same node is plotted in Fig. 3. As the figure indicates, using coarse timesteps
does not effect the overall convergence, although the convergence for small I is
slowed.

6 Conclusions and Acknowledgements

hi this paper we presented some preliminary results that indicate the WR al-
gorithm may indeed be efficient for device transient simulation. In particular,
it was shown that under conditions that can be arranged for in practice, the
WR algorithm is a contraction in a uniform norm on any interval [0, T]. Also,
given these same conditions, the relaxation process will still converge even if
very different sets of timesteps are used for the individual iteration equations.
Finally. we verified the theoretical results on a one dimensional example.

There are several aspects of WR that need to be addressed if this method
it to be efficent for two-dimensional MOS transient device simulation. Most
important, a general algorithm for blocking the device must be developed. An
efficent approach for determining what discretization points to use for the alge-
braic constraints must be considered. In addition, the efficiency of WR methods
can also be improved by refining the timesteps with iterations, or using a single
waveform-Newton iteration to solve the nonlinear WR iteration equations.
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A Proof of Theorem 2

The WR iteration equations applied to the model problem (8) can be described
as

hk+ (t) = D(t)nk+l(t) + M(t)nk(t) (10)

where D(t), M(t) E R", n and D(t) is negative diagonal matrix. The assump-
tions about the electric field result in values for the Bernoulli functions such
that D(t) and M(1) will satisfy the relation

I~dii(t)JI ?>ci + E Ilm, (01ll(11

where (i > 0 and is strictly greater than zero for those i's corresponding to the
mesh points next to the boundaries. Note that this implies

IlO(t)-X M(1)]l < " (12)

for "? < 1, for some norm on R.x and for all 1.
Given the relationship between D(t) and M(t), the WR algorithm applied

to a system of the form of (13) will contract in a uniform norm. This has been
shown for the case when D(t) and M(t) are independent of t, using Laplace
transforms [2]. In the time dependent case, the result can be shown by examining
the difference between iteration k and k + 1 of (13) to get

-kn,+l(t) = dji(t)6n ,+'(t) + Em, 1 (t)6nk(t) (13)

for each mesh point i, where 6n4(t) = nk(t)-n-(t). By assumption, dii(t) < 0

and 6nk(O) = 0. Therefore,

max~o ij M(14)

Equation (14) follows from the fact that for all values of 6nk+1(t) on the bound-
ary of (or outside) the bounded region 6,n,+(t) points back into the bounded
region [6].

Assembling the equation system from (14) results in

max[o.T]16nl(t) < marloT)ID(t)-Af M(t)lmaz[o,T6nk(t). (15)

Then in the norm for which IID(f)-AM(t)j I I < 1.0,

max[0,T~jj6n"+1(t)11 < YMaX[oTjl6nk(t)jj. (16)

which proves the theorem.
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