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CONFIRMATION OF SLOW-WAVES IN A CROSSTIE OVERLAY

COPLANAR WAVEGUIDE AND ITS APPLICATIONS TO

BAND-REJECT GRATINGS AND REFLECTORS

The slow-wave propagation along a new crosstie overlay slow-wave coplanar

waveguide has been investigated both theoretically and experimentally. A slow-wave

factor observed agrees reasonably well with the theoretical prediction. This structure

is used for construction of a frequency-selective distributed Bragg reflectors (DBR's)

with a compact size. The effect of conductor loss is considered. A doubly-periodic

band-reject grating has been created from the DBR's and the band-reject

phenomenon was observed as predicted. To improve passband characteristics of the

grating, a monolithic slow-wave Chebyshev reflector was designed and fabricated.

Agreement between theory and preliminary experiment has been confirmed. Based

on this theory, a new slow-wave reflector with improved characteristics is proposed

and examined. A respectable slow-wave factor and a drastic reduction of conductor
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CHAPTER 1: INTRODUCTION

1.1 BACKGROUND AND OBJECTIVES

Circuit integration at microwave frequencies is based on the use of (1) planar

transmission lines as the transmission medium, (2) distributed circuit elements or

lumped elements in planar form, (3) microwave solid-state devices compatible with

the planar transmission lines, and (4) hybrid technology, particularly thin-film

techniques, for fabrication. With these features, microwave integrated circuits

(MIC's) offer several advantages over waveguide and coaxial circuits - namely,

reduction in size and weight, ease of mass production with improved reproducibility,

and potentially lower cost. Monolithic microwave integrated circuits (MMIC's)

technology offers the further advantage of combing multicircuit functions without any

interconnecting wires, thus permitting compact integrated modules with highly

reliable performance.

Recently, remarkable progress has been achieved in GaAs MMIC's [1]. In

MMIC design, one of the most important things is to minimize the monolithic circuit

size. The conventional printed line circuits cannot reduce the guide wavelength Xg by

more than Nr' (er is the relative dielectric constant of the transmission medium) from

free space wavelength X0. A slow-wave transmission line provides a possible

remedy. MIS slow-wave microstrip line introduced by Hasegawa [2] and MIS

coplanar waveguide (CPW) [3],[4] have the capability to realize a slow-wave factor

Xo/Xg (or /&0, where 13 and B0 are the phase constants in the waveguide and in free

space, respectively) of more than 20 (Fig. 1.1). Similar wavelength reduction can be

1
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Fig.l1.1 MIS slow-wave structures. (a) MIS microstrip line, (b) MIS coplanar
waveguide.
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3

realized by a Schottky contact microstrip line and CPW [3],[5] (Fig.1.2). The !F
Schottky contact structures have an added advantage that the slow-wave factor can be

controlled by the dc bias applied to the wave-propagating electrode. More recently, a

CPW slow-wave structure with GaAs plasma layer controlled optically has been

proposed by Neikirk and Itoh [6].

In all of these structures, the slow-wave mechanism is generated by spatial

separation of the electric and magnetic energy. Most of the electric energy is located

in the lossless insulator layer or a depletion region whereas the magnetic field

penetrates deep into the lossy layer and semi-insulating layer. Since the spatial

separation is accomplished by the existence of the lossy layer, these slow-wave lines

are inherently lossy. One remedy to reduce loss has been proposed by Fukuoka and

Itoh [71 in which a CPW created on a periodically doped substrate is used. Recently,

Hasegawa proposed a new crosstie coplanar waveguide (CTCPW) (Fig. 1.3) slow-

wave structure in which the wave attenuation is due predominantly to the conductor

loss [8]. Hasegawa reported the realization of slow-wave factor (XO/Xg) as high as

15 both theoretically and experimentally. A similar structure has also been used by

Bastida and Donzelli [9].

In this study, we have suggested a modification of Hasegawa's CTCPW and

proposed a different crosstie overlay slow-wave structure (see Fig. 1.4) which is

more adapatable for monolithic circuit integration. Instead of buried crossties,

overlay crossties were used. As shown in Fig. 1.4, both CPW and microstrip

versions of the new slow-wave structure can be realized by the overlay technique.

The structure has several useful features. (1) Fabrication of the structures proposed

%%
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here is easier. In fact, it is fairly common to provide a dielectric overlay on the

MMIC's for protection. The metal crossties are periodically evaporated on the

dielectric overlay. The crossties may be connected to the ground planes of the CPW

at some distance away from the center conductor. (2) The new slow-wave structures

can be made free of dielectric loss in principle if no tuning is required, although

minimization of the conductor loss is still important. (3) It is possible to combine this

new crosstie overlay mechanism with a Schottky slow-wave mechanism by providing

a doped layer before the CPW electrodes or the microstrip is created on a semi-

insulating GaAs substrate. In such a structure, the attenuation introduced by the

doped layer should be minimized while some bias tunability of a Schottky slow-wave

mechanism is retained. Periodic doping [7] may be one candidate. Because two

slow-wave mechanisms are combined, the loss can be smaller even before

optimization.

Grating structures are found useful in millimeter-wave integrated circuit

applications such as band-reject filters [10][11] and distributed Bragg reflector (DBR)

oscillators [12]. In such applications, the gratings would be operated in stopbands,

corresponding to Bragg reflection, in order to produce strong reflections. Because

the band-reject filters or DBR structures made of the conventional dielectric

waveguide and printed line tend to be electrically and physically long, they are not

very suitable for monolithic integrated circuits. However, if such periodic structures

can be made of the proposed crosstie slow-wave structures, the physical size of the

grating can be made smaller while the electrical length is still long enough to observe ,,

grating effects. In this study, first, the dispersive characteristics of the new crosstie

.'
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slow-wave CPW were confirmed experimentally. Second, the distributed Bragg

reflectors (DBR's) were made of the new overlay crosstie mechanism to realize a

slow-wave band-reject grating with a physically short dimension. From the

transmission and reflection characteristic measurements, a band-reject phenomenon

was confirmed. Although such frequency-selective band-reject gratings can give

strong stopbands, their passbands may have ripples which are excessive for many

applications. In order to obtain better control of the passband ripple at a reasonably

low level, we created a slow-wave reflector from the new crosstie overlay CPW's

which has a prescribed stopband and also prescribed Chebyshev passbands. A

monolithic slow-wave Chebyshev reflector has been designed and fabricated. After

the conductor loss was taken into account, good agreement between theory and

preliminary experiments was observed. Based on the same theory, a new slow-wave

reflector created from a modified crosstie overlay CPW is proposed and examined. A

respectable slow-wave factor and a drastic reduction of conductor loss have been

obtained.

In conclusion, let us summarize the objectives of this study:

1. Develop a new planar low-loss slow-wave structure amenable to monolithic

integration.

2. Based on the new slow-wave structure in which the guide wavelength is extremely

small, compact grating structures are found for use as a frequency selective DBR.

The DBR's are exploited to facilitate band-reject grating implementation.

3. Create a slow-wave Chebyshev reflector by use of the new slow-wave structures

N'l
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in order to get a better control in the passband ripple size and the stopband shape.

1.2 THESIS ORGANIZATION

Following the present introductory Chapter 1 of the thesis, the propagation

characteristics of the new crosstie overlay slow-wave CPW's are analyzed

theoretically based on the spectral domain method and Floquet's theorem in Chapter

2. The effect of conductor loss is included. The predicted and experimental results

are presented. In Chapter 3, we consider the use of these new slow-wave CPW's for

the creation of band-reject gratings. The calculated and measured band-reject grating

properties are presented. Chapter 4 describes the systematic design procedure of a

slow-wave Chebyshev reflector made of the new crosstie overlay slow-wave CPW's.

The theoretical and the preliminary experimental results are shown. A new slow-

wave reflector based on a modified crosstie overlay CPW is proposed for the

reduction of conductor loss. Chapter 5 summarizes the contributions of this study,

presents some recommendations, and proposes some related problems for future

research. Finally, a list of references ends the thesis.

6V%.
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CHAPTER 2 : CROSSTIE OVERLAY SLOW-WAVE

COPLANAR WAVEGUIDE

2.1 TRANSMISSION LINE CANDIDATES FOR NEW SLOW-WAVE

MECHANISM IMPLEMENTATION
9-

At microwave frequencies, the interconnections between elements on a high

dielectric constant substrate such as GaAs, where considerable wavelength reduction

occurs, must be treated as wave guiding structures. On a planar substrate,

transmission line media have been intensively and extensively studied over a spectral

band spanning the HF, UHF, microwave, millimeter-wave, and optical regions. The

configurations (Fig.2.1) that have received the most attention are microstrip line.1.

(Fig.2.1(a)), slot line (Fig.2.1(b)), coplanar waveguide (Fig.2.1(c)), and coplanar

strip (Fig.2.1(d)). Of the four transmission lines, microstrip line and oplanar

waveguide are considered to be the most suitable for MMIC's based on the

considerations of chip yield and electrical performance [1]. As shown in Fig.1.4,

both CPW and microstrip line can be viable candidates for the new crosstie overlay

slow-wave structure implementation.

In this study, however, coplanar waveguide has been adopted as the new

slow-wave transmission line building block due to the two major advantages it offers

over microstrip line in the design of a complex MMIC. (1) The source groundings of

the active devices are done easily without the use of via holes. This allows for thick

substrates offering easier handling and a reduced number of processing steps, leading

to increased yield. (2) Since a ground plane exists between any two adjacent I
10
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Fig.2 l Tansmssion lines in MMICs. (a) Microstrip, (b) Slotline, (c) Coplanar

waveguide, (d) Coplanar strips.e
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transmission lines, coupling problems are reduced resulting in potentially more

compact designs. p.p.

In a coplanar waveguide, the top substrate surface is used for both a signal

line and the ground plane. The normal propagation mode on this structure is quasi-

TEM and is referred to as the odd mode. In this mode, the electric field vectors in the

two slots of the line point in opposite directions [13]. Another propagation mode is

the even mode, in which the electric fields in the slots point in the same direction.

This is a non-TEM mode and generally needs to be suppressed. Suppressing the -
even mode as well as connecting all the grounded regions are achieved by the

introduction of airbridges across the line, connecting the ground planes on both sides

of the center conductor. This effectively increases the cutoff frequency of the even

mode, leading to single-mode operation. In the new crosstie overlay slow-wave

CPW, metal crossties can also serve this purpose.

2.2 SLOW-WAVE PRINCIPLE AND WAVEGUIDE STRUCTURE

FOR THE NEW CROSSTIE OVERLAY SLOW-WAVE

COPLANAR WAVEGUIDE

The basic operating principle of how the crosstie structure works as a slow-

wave transmission line is a spatial separation of electric and magnetic energy.

As shown in Fig.l.4, in the section IA with a crosstie strip, the capacitance is

significantly increased, whereas the section IB with only the dielectric overlay is more

inductive. The spatial separation of energy is therefore accomplished in a periodic

manner. This structure is essentially a grating. However, we do not use this

%%

"' """"-""¢ "" . "'"... "'""'', - . """ .5- a . . .. -\a. - .- "'.'-'- -''-. '." . "..- ", ,'' -''" - '-'.'' "-''. "- -" a Ci. ' .. "'a.."' a..- -
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structure as a grating. By making the period lA+IB in Fig. 1.4 sufficiently smaller

than the operating wavelength, the operating point is far from the stopband and this

structure models a uniform transmission line with its propagation constant and

characteristic impedance calculable from the periodic dispersion relation.

The theoretical treatment of the new slow-wave CPW consists of using

Floquet's theorem for periodic transmission lines. To do this, accurate values of both

propagation constant and characteristic impedance of the constituent sections IA and

IB need to be calculated. Using standard spectral domain analysis [14], these values

can be calculated and the periodic slow-wave CPW can be analyzed.

In the following Section 2.3, the procedures of spectral domain analysis are

presented in more depth. In Section 2.4, the information about propagation

characteristics for each constituent section has been used in Floquet's theorem to

derive the periodic dispersion relation for the new crosstie slow-wave CPW's. The

effect of conductor loss is considered in Section 2.5. Finally, an experiment has been

conducted to confirm the predicted dispersive characteristics of the crosstie overlay

slow-wave CPW's in Section 2.6.

2.3 FORMULATION OF SPECTRAL DOMAIN ANALYSIS

The spectral domain method has been developed for efficient numerical

analysis for various printed transmission lines [15],[16],[17],[18]. Unlike quasi-

static approximations, this method is a full-wave analysis which can predict the

frequency-dependent line properties required in broadband design. It is superior to

J•" .. ,. P
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other numerical methods because of the efficiency of numerical calculation and the

ease of formulation [14].

2.3.1 PROPAGATION CONSTANT

The cross-sectional view of the general constituent sections A and B (defined

in Fig.1.4) in the new crosstie overlay slow-wave CPW are given in Fig.2.2. The

coordinate system is defined in a manner such that wave propagation takes place in

the z-direction.

In conventional space domain analysis [ 19], this structure may be analyzed by

first formulating the following coupled homogeneous integral equations and then

solving for the unknown propagation constant:

Y (x-x,B)E (x)+Y (x-x,13)E (x)]dx=J(x) (2.la)

f ZX (x-x,B)EX (x)+Yzz (x-x,B)Ez (x) JdxJ (x) (2.b)

where Ex, Ez, Jx, and Jz are unknown electric field and current components on the

boundary y=h and the Green's functions (admittance functions) Yxx, etc., are

functions of the propagation constant 13. The boundary conditions at y=h require that

Ex and Ez be zero at the infinitesimally thin and perfect conductor except on the slots

where Jx and Jz are required to be zero. Therefore, these equations may be solved

provided that Yxx, etc., are given. However, for the inhomogeneous structures, the

Green's functions are not available in closed form. -

IZ
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Section A
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o c Dielectric 'inConuct ,overlay * w E.. *.i4 w..* Region 3 b4
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(Semi-insulating GaAs) Region 2 h

Air z Region I

Fig.2.2 Cross-sectional view of general constituent sections in the crosstie

overlay slow-wave coplanar waveguide.
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In the spectral domain formulation, the convolutional type of coupled integral

equations (2.1a,b) are Fourier transformed to yield the algebraic equations:

Yx 0 ,13) Ex( c)+Yx z(a,13)Ez(a)=Jx(a) (2.2a) N

N
Y2-(cc,)Ex(c)+Yz (a,B)Ez(a)=Jz() (2.2b) %

where the quantities with a tilde (-) are Fourier transforms of the corresponding
I

quantities. The Fourier transform is defined as

-(af4(x)eadx. (2.3)

In addition to 13, the algebraic equations (2.2a,b) contain four other unknowns Jx-,

Jz ~, Ex- and Ez ~,

The Green's admittance functions are derived as follows. First, the hybrid

fields are expressed in terms of superposition of TM-to-y and TE-to-y expressions by

way of vector potentials. The electric and magnetic vector potentials are defined in

each region as

c.h(x,y,z)=a^ Ah.(xy)e Y Y, (2.4a)

(Di (x'Y'z)=aA e -jBz (2.4b)

i=1,2,3 for Section A (with crosstie strip)
=1,2,3,4 for Section B (without crosstie strip)

where the time convention eJOt (c=2cf, f is the operating frequency) is implied, and

harmonic solutions in the z direction are assumed. Beta (13) is the phase constant and

ay^ denotes the unit vector in the y direction. Since the vector potentials satisfy the

vector Helmholtz equation, the scalar functions Oyih and Oyie should satisfy the scalar
%
"'p

55,'

5,-
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Helmholtz equation

2 h a2 0h
yi 2 2r 2h.5X2  i y2 02".' 2)O Yi =0  ( .a.

ax ay2 • 2oe

2 y i . -+yi ± 2e 2 = ,2  y 2 = (2.5b)

ax a
where ko=co jg- is the free space wavenumber (go is the permeability of free

space) and Fri is the relative dielectric constant in region i. In homogeneous source-

free regions, the electromagnetic field in terms of (Dih and (Die is given [201 by:

hi1
E.=-VxZ. +-VxVxD.e  (2.6a)

" Yi,,

cI hH.=Vx(D +-VxVx4. (2.6b)'% 1 1 A 1

Z.

where yi^=jxrieO and zi^-j 0 .i""

After taking the Fourier transforms of equation (2.5), we obtain solutions for

the transformed quantities Oyi-h(ay) and Oyi-e(x,y)

For Section A:

y- ((,y)=A e ;y<O (2.7a)

0 eay=eeYy;y<0 (2.7 b)

ey 2(c~y=B coshy2 Y+C sinhy2Y ;0<y<h (2.7c)

2 (a,y)=B sinhy2y+Cecoshy2y ;0<y<h (2.7d)
-h h,

03(ay)=D sinhy3 (b+h-y) ;h<y<b+h (2.7e)

0 (a,y)=DecoshY3(b+h-y) ;h<y<b+h (2.70
'Yi=Va2+6 2-_Eik 2  ;i= 1,2,3 (2.7 g)

-r 0

.11

% % %
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For Section B:

-h h TIYOy,(cty)=A e ;y<O (2.8a)
-t e 'flYOyI a,y)=A e ;y<O (2.8b)
-h h hOy2(ay)=B coshy2y+C sinhyy ;O<y<h (2.8c)

Oy2(aY)=Bsinh 2Y+Cecoshy2y ;O<y<h (2.8d)

-h h h
Oy3(c, y)=D coshy3 (y-h)+E sinhy3 (y-h) ;h<y<b+h (2.8e)
-C (ay)=Desinh 3 (-h)+Eecoshy 3(y'h) ;h<y<b+h (2.8f0

-h -YJ (b ..h)j
OY ay=h-4y;b+h<y (2.8g)

" (ac,y) Fe e [y'(b +h)] ;b+h<y (2.8h)y4 -

=4a2+13 2_nI o ;i= 1,2,3,4 (2.8i)

where Ah, Ae, Bh, Be, Ch, Ce , Dh, De , Eh, Ee , Fh, Fe are unknown coefficients

and y7 is the propagation constant in the y direction in the i-th region. The boundary

condition of the perfectly conducting plane at y=b+h is embedded in this set of

solutions. Also, y1 and y4 are chosen to be positive so that the radiation conditions
a,

at y--±- are satisfied. Substitution of these solutions into the Fourier transforms of I

equation (2.6a,b) yields the field expressions in each region:

For Section A:

Region 1 (y<0)
Cj=JO t-J- "-'A/ efl (2.9a)

2A 7 1 . e IflYEcyy=[_z 1--y]A e (2.9b)

E,=UA' A'- A ]e (2.9c)

Y,#
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HX1=UIA T -L~ (2.9d)
zi

2
A AT 1 A h YlY 

(2.9e)
z 1

Hz1=[-jccA A ']e(2.9f0
zi

Region 2 (O<y<h)
E [-jIB -j--B ]coshy2 y+[-jB -J-~-Ce]sjhTyy (2. 1 Oa)

Y2

-2 bAT 2jA

X2 Z A L~l 2 .CS Y (2Alb

A '2Bh .h. 1 T(2lcH ja Y=-j- A jBcosy 2 y+~C ihy- (2.C 1 nhy)

Z2

- 3T2  h h
H = [-y2 -e-- .][Bcosih 2y+sinhT A Iosyl (2. 1iOe)

2 Z

Region 3 (h<y<b+h)

E- =[-jBD +j--D c]sinhT3(b+h-y) (2.11a)

A9 eE y3=[-z 3+-I-]D coshy3(b+h-y) (2.11lb)
Y3

I M.4N
%~
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E,=aD +j--:-D ]sinhy3(b+h-y) (2.1 Ic)

Y3

H-UB CayDcsyLbhy
x3 ' A~-~oh 3 bhy (2.11 d)

Z3

2
A + *13 h

H 3 [y 3 -~]D sinhy3(b+h-y)(21e

Z3

BY3 h (.1
H z =-jxD+j- A.D ]coshy 3(b+h-y) (. f

Z3

The field expressions in Region 1 (y<O) and Region 2 (O<y<h) are identical to

those in Section A.

Region 3 (h<y<b+h)

-" hay3 3(-h+[O qxr -3y-Ex, :[-jBD + D-jA' (2.12a)
Y3  Z3

2

AY 3

E3 =Ua [- -- D~csihy3(yh)+Ucoshy 3(yEh]si(2.12b)

Y3  Y3~

e BX 3 hBa

H- 3 UBD .'Y3D jh] 3yh+U~ Y3 E h coshy3(y-h) (2.12d)
Z3 Z3

2 AY3  hhh
H y=[-y 3  A J.[D coshy3(y-h)+E sinhy3(y-h)] (2.12e)

Z3

- BY3 h CBY3 hH= [-jaD e-j---D Isinhy3(y-h)-e[-jxEe *j--E Icoshy3(y-h) (2.12f)
Z3 Z3
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Region 4 (b+h<y)

E 4 
=[ jBF h+j .aFee-Y4[I +h)] (2.13a)

Y4
2

- A 44 F -f[y-(b +h)]

y4

E 4=[y'7 4" e -y• y- (2. 13b) 6

Ez=[UaFh+j.. F ]e (2.13c)

Y4

x 4 =013 A ] h (2.13d)
Z4

2
- - A ̂ f 4 Fh -4[Y-(b+h)] (2.13e)

4" 4 

z4

8^4Y4 F y-(b +h)]
AH =[_jatze+j (2.130z4zA

Finally, the boundary conditions at y=O, y=h, and y=b+h have to be satisfied.

In the spectral ( or Fourier transform ) domain, the boundary conditions are:

For Section A:

E., (O0)=E x2 (Or,0) (2.14a)

Ei (aO)E ,(aO) (2.14b)

H (c,O)=H 2 (aO) (2.14c)
"z (cc,0)=H,2(oa,0) (214d) i."

ZIt

Ex(ah)=Ex (ah)=Ex(ah) (2.14e)

Ez2(a,h)=E z3 (.hl=Ez(a,h) (2.14f)
Hx2(o,h>-Hx 3( a , h ) = J z ( Oa ,h )  (2.14g)

H'2 (a,h)-H z3(a,h)=-Jx(a,h) (2.14h )

:.,.~~~ ,A A % , . " .. . - , , - - - - . - - , . " , . . . . . . .. . . . . .
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For Section B:

E (aU)=E, (aO) (2.15a)
E1 ( 1,0=E (C ,0) (2.15b)

Hxl (c,O)=HX2 (a40) (2.15c)

H (,O)=H (a,O) h (2.15d)

E 2 (, h)=EH3 (c,h)=ExO,h) (2.15g) ,,

E,- (ct~b))=E4 (c(bhh (2.15e)
E2(a,bh)=E~(zbh (2315

E- ((,h)=E- (a, h)=E (orh) (2.15f) !

EH (at bh)=EH (~)(a,h) (2.15g) ,

H 3 (cb+h)=H 4 (ot,b+h) (2.15k)

Hz,(a,b+h)=Hz4(c,b+h) (2.151)

where Jz~ and Jx- are Fourier transforms of unknown current components Jz and Jx

on the conducting region at y=h. These conditions allow us to obtain the expressions

for coefficients Ah, Ae, Bh, Be , Ch, Ce, Dh, De , Eh, Ee, Fh, and Fe in terms of Jz-

and Jx-:

-- 1For Section A:i

7i2Y 3 coshy2h-coshy3b '

-Coshy 2h+ -sinh 2h+ AAh ,z-J zA A2 z sinhy3b"
h I Z2I Z3  sni~

A jA (2.16a)
+ Y3 Z2 sinhy2hcoshy3b+",

Y2 ^ sinhy3b
IZ3

Ap
~'V-

" "o% ".".% % " % ". . . .".' - , .-.... " .. " . . . . ' % " ° " ." " . ' . 1°

,, : d~ 
°

" . , o , " " " " -"-"." . .",, . d . . d
=

.- me." ..- " ° i" . . ° . #' . #. . -,/.€-.-.-a-,,
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A A

coshy2 h+-YIY2sinhy 2h+ Al3csy~csy~

6J___ +a 2Y A3~ A sinhy3b
A ~y =s 62 Ainhyhcoshy 3b (2.16b)

A

y3y~ sinh-y3b 5

B=Ah (2.16c) S

A

B e=Yl 2A e (2.16d)
A

A

h_ Y1Z2 h
C A (2.16e)

A

Y'2 Z1

c = (2.16f) 5

A

h_ 1 (coshh+TZsifhyh)Ah(.1g
Dsinhy3b 1

De = 3 1 -7os-2h-snyiD=~~ ... chyh...in )Ae (2.16h)
y3 sinhy3b Y, Y

Ad A

For SeSo

Y, 2  Y3  T1lZ2
;-cshy~h-snhyh+ cosh'y2h+-sinhy2h

A -231

a +B Y3 . T4  (Y3 Y4T-. sinhy3b+-.coshy3b b+-sinhy+ b

z 3 Z4Z3Z
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-1
A A

coshy~ A ifnh2 y2h+ 33-coshy h+-sinhy.hi

7 y3

¥Y2 Y 3 1Y
A2Y 73 i 2(2.17b)

Y3 Y4 ,Z3 z

h hBh=A (2.17c)

A

Be - _1 Y2A (2.17d)
12YA
A

C -Ah (2.17e)
Af2 z 1

VI

C =A (2170

A

D= coshy2h+ 1zsinhy2h A (2,17g)
'2 Z1  2 1g

A

Dey -cosh 2h+Lsinhy2h)AC (217h)
Y3 Y, Y2

7'3 '4 "coshy2h+1- -sinh 2h A sinhy3b+!-coshy3b

(h_ sAY 2  A Z3 Z4 J
h 72Z 3z4hE (~oh~+snYbA (2.17i)

_oshy3b+._.sinhy3b-
Z3 Z4 9

% % % , %-

W A
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N

A -

Y3 cosht 2h+Lsinhy2h -- coshy3b+.sinhy3b

AA A 

e~~~y z321Y2Y

E"= 73 Y4 Y2 YY4 A e (2.17j) -

hh ooshhh3b+-sinh-3b..

A A

Yz ^11ZZ

)( .. wcsY o+sihy~h-b) h
cosh 3b cosh2h+ Asinhn2h -sinhy3b cshY2  sinhY2h

Fh= 1 A (2.17k)
L3sinhT3b+ 74-coshy 3b •3 -coshy 3b+.--sinhy3b

Z3 Z4  
Z 3 Z4  I

A, A

Y~;. ,,, 1. coshyqh+2 sinhy, h Y3^t. (I coshy, h+2 sinhy, h
L s""h3b/ A A ̂ ---- os-r3b/ A A

Fe= 'Y Y, Y2 ] Y3  Y, Y2 ]A

A -coshy b+.-Asinhy3b }  A- coshy3b+-7sinhy3b /

(2.171)

By substituting equations (2.16a-h) and (2.17a-1) into (2.14e,f) or (2.15e,f), we

obtain the algebraic equations (2.2a,b) with the Green's admittance function Yxx-,

etc., expressed in closed forms as follows:

For Section A'
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a +8

xZ zzx 2 2
a +

Y-.z 2 1 -Qa 2+P8 2 ) (2.18c) -

where

A A

cosh~h+ 1 Y2sin y 1 Y3 coshy2h~coshy3b

1 Y2 YA A~ sinhy b
ysinh-f3b ~ sinhy2h~coshy3b(2ld

'V A

73 >'2 sinhy3b
I A A

Yf Y1 3 coshy~h ^12 y3 sinhy2h1

A

13z 2 sinhy2h.coshy3b
^11 coshyh+2L2 sinh-y2 h 2A

z~ A- A inhyvh
I1 Z2 72 L1L3 *~**

WQ 
Sy3 coshy2h~coshy3b

A
z3 sinhy3b

A

coh Ih-i '2. (2.18e)
722Z)

For SecQDon
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Ra 2_B 2)(2.19a)

y- =y-_ - l] (R+S)(29b

xz zx 2+ 2  (2.19b)

1x 2 2 )

Y-zz (22 So+R2 (2.19c) 0

where 'I

A A( Y32
Y1 Y2 Y3 coshy2h+ sinhy2h coshy3b+ sinhy3b

cosh 2h+--sinhy2h+ A s

Y'2 1 .12Y3 Y4R=- 2Y YY2_
Y3 4 "

A cosh 3 b+ -- sinhy3b 4'.

Z3 Z4

%

Y1 Y2 ] %i

*J (2.19d)

Y1 f2 73 Y1 z2 • 13• Y4

-coshY 2h+--.sinhy2h+ 3 coshy2h+-sh2h sinhy3b+ -coshy 3b

S= Z2 T sy + ih3 1 Z3 Z

•3 )4 -1

csh 2h+'-sinhy2h (2.19e)

This process of formulating the Green's function is straightforward but rather

lengthy, especially when more dielectric layers are used. Therefore, a simpler

method of formulation proposed by Itoh [14] will be discussed. This meth-'. is fast

%" . ."'''

I
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and easy while it gives more physical insight into the spectral domain method.

From the form of the inverse Fourier transform

O(x,y)e =j z= 2 -(,y)eJ(ax+Bz)da (2.20)

we recognized that the field components in the space domain are the superposition of

nonuniform plane waves (spectral waves) propagating in the direction of 0 from the

z-axis, where 0=cos-l(1/41a-6T). For convenience, we defined in Fig.2.3 a u, v-

coordinate system for each spectral wave, which has a rotational relation with the x,

z-coordinate system defined by

u=xcos0 - zsin0 (2.21a)

v=xsin0 + zcos0 (2.21b)

For each 0 (i.e., for each a), the nonuniform plane wave may be decomposed into

TE-to-y (Hy-, Eu ~, Hv ~) and TM-to-y (Ey ~, Ev-, Hu-) surface waves for which

homogeneous boundary conditions apply. Since the spectral current Ju~ is due only

to the discontinuity of the tangential Hv ~ component in the TE fields, and Jv~ is due

only to TM fields, they can be dealt with independently.

For surface wave modes, the characteristic equations may be obtained from

the transverse resonance conditions of the equivalent transmission line circuits.

Fig.2.4 shows the equivalent circuits for both TE and TM cases. The characteristic
%. admittances in each region are

5,]
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x

U0 z

V

o ,S

0

u = xcosO - zsinO
v = xsinO + zcosO

Fig.2.3 Coordinate transformation.
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y=b+h -- - ---

h YTE Y3 YTM3 e
J i(a) j (aL)

y=h ".;- * -5 e.*

YI YI
YTE2 '2 YTM2

y=O ------- 4--

Section B
+y0 +0

YTE4 TM 4

y=b+h'- -- ------- %TE3 TM3

y h "lJ (a Y3..... ( ) e .

2' 2:

y -b- h - -- ---

hTE2 YTM2

y--O -------- ;'

YTEI 1YI YTMI

-00 -00

,.

Fig.2.4 Transverse equivalent circuits for crosstie overlay coplanar waveguide.
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TEi - A (2.22a)E-. z.

- A

YTMi = H , Y (2.22b)
Ti E'Yi

i=1,2,3 for Section A
=1,2,3,4 for Section B.

All the boundary conditions for the TE and TM waves are readily incorporated in the

equivalent circuits. For instance, the conducting plane at y=b+h is represented by a

short circuit. The electric fields Eu ~ and Ev- are continuous at y=h and are related to

the currents via

J (a)=Y-h (X, B)E (a) (2.23a)
J (a)=y -e (a,131E (a) (2.23b)

y-h and Y-e are the input admittances looking into the equivalent circuits from the

current sources at y=h, and are given by

-h h -Y(')AY (OCB)=Y+ (2.24a) "
Y-(a,B)=Y+Y (2.24b)

where y 1 h and Y2 h are the input admittances looking upward and downward,

respectively, at y=h in the TE equivalent circuit, and yle and Y2 e are input

admittances in the TM circuit:

For Section A :

EQLSZZ. e. ,.
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Y=Y cOthy3b , h Y TEI +YTE2tanhy2h
1 O2 = TE2 (2.25a)

YTE2+YT.1tanhy2h

Y!=Y cohyC. y. YTMI+YTM2tanh 2h (2.25b)YI=YTM3CtT b  2=  M (.5).
YTM2+YTMltanhy 2 h

For Section B"

Y TE4+YTE3tanhy3b y -Y Y TE+YTE2 tanhy2 h-TE,2 Tl TE2 tahy2h (2.26a)
TYT.+T~ahy 1 YTE2+YTEI tanhy2h

Ye. Y TM4 +YTM 3tanhy3b C YTMI+YTM2 tanhy2h (2.26b)
1= TM3V . . . ,Y2=YTM2.h (.2b

YTM3+YTM4tanhy 3 b YTM2 +Y TMtanhy2 h

The final step is to derive the relation (2.2a,b) in the x, z-coordinate system

from equations (2.23a,b) via a coordinate transformation. Because the

transformation is a simple coordinate rotation (2.21a,b), Ex- and Ez ~ (Jx- and Jz~ )

are linear combinations of Eu- and Ev- (Ju- and Jv-). After the transformation, the

admittance matrix elements in (2.2a,b) are found to be

-2 -h 2Y x(clB)=cos OYh+sin 2Y (2.27a)
~ - - . -. -h

Yx(Oa,B)=Yzx(a,)=sin0cos(Y -Y ) (2.27b)

YI- (a,B)=sin 2Oyh+cos2 OY (2.27c)
B

where sin0= COW=2+82 2+e2

ja a

It is easily shown that this equation (2.27) is identical to equation (2.18) or (2.19).

Now that we have derived the equations corresponding to the integral

equations (2.1a,b), with closed form expressions for the Green's functions in the

spectral domain, the solution of the propagation constant B in the z-direction is to be

A'"-=a
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calculated. To this end, Galerkin's method is applied by expanding the electric field

components Ex- and Ez- in terms of known basis functions Exn ~ and Ezn ~ as

follows

M

Ex(a)=I cnE (a) (2.28a)
n=O

NE-(a)=I: d E-n(a) (2.28b).r

n= 1

* where cn and dn are unknown coefficients. The basis functions Exn ~ and Ezn- must

a. be chosen such that their inverse Fourier transforms are nonzero only in the slots.

After substituting (2.28a,b) into (2.2a,b) and taking the inner products of the

resultant equations with the basis functions Exn- and Ezn ~, we obtain the linear

simultaneous equations:

M N

I" ( 1 1  ' K(12 )d m--0,1,2, -----,M (2,29a) a

n=0 n=1

aM N

K (,1) n+J:m K ( n--O , m=1,2,3,------,N (2.29b)
n=O n=1

where

(1, ,1%

(.

K. IE (a. (aB5 (aFd J
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.K ) E_ c ) Y Y,1B)E (a)da
-_-,

Notice that the right hand sides of (2.2a,b) are eliminated by this procedure. This can

be verified by using Parseval's theorem that

JE fXMa)J(a)da=JE (x)J (x)=0O (2.30)

The above relation is true since Exm(x) [the inverse transform of Exm~(a)] and Jx(x)

are nonzero in the complementary regions of x at y=h.

Finally, the propagation constant B is obtained by solving the system of

simultaneous equations, (2.29). Since this set of equations is homogeneous, non-

trivial solutions can be obtained only when the determinant of its coefficient matrix is

equal to zero, i.e., the matrix is singular. This results in a characteristic equation,

* from which B is obtained.

2.3.2 CHARACTERISTIC IMPEDANCE

Due to the non-TEM nature of the analyzed structure, the definition of

characteristic impedance is not unique. Three commonly used definitions of the

characteristic impedance (Zc) are based on

1. Voltage-current, Z =V/1 (2.3 la)

'
...

% %

W_ ktS..
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2. Power-current, Zc=2P/I2  (2.31 b)
3. Power-voltage, Z=V2/2P (2.3 1c)

where P is the transmitted power, V is the voltage across the slot, and I is the current

on the transmission lines. For switching applications, the characteristic impedance

based on voltage and current in the transmission line is preferred [21]. For some

other applications, the power-voltage definition of characteristic impedance is used

[22]. However, the most suitable definition for the structures analyzed here,

following the argument given in [23], is

2
Z V (2.32)

c2P
avg ,

where Pavg is the time-averaged power flow. The expression for the voltage V

across the slot is given by

V=fE (x)dx (2.33)

slot

and the time-averaged power flow on the transmission line is given by

Pa=Re(JJExH.azdxdY (2.34)

Since the limits of integration are infinite, Parseval's theorem may be used to

transform the expression into the spectral domain as

P ag=Re f[E-(,y)H- (a,y)-E-(,y)H- (a,y)]dxdy. (2.35)

Expressions for the electric and magnetic fields in each region are given by equations

-F se 't 7.. **1 .V. .r 'r. %. %* % %

%
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(2.9)-(2.13). Since the y-dependence of these expressions is simple, the integration

with respect to y may be performed analytically.

Note that the calculation of Pavg requires the values of Ex- and Ez- to be

known, i.e., the expansion coefficients cn and dn obtained by solving the equations

(2.29a,b) for a known 3.

Finally, the voltage V is computed. This involves simply the integration of

the assumed electric field distribution across the slot and can be done analytically.

2.3.3 CHOICE OF BASIS FUNCTIONS

Any kind of basis function may be used as long as it is nonzero only in the

slot regions. However, due to the variational nature of the approach, the efficiency

and accuracy of this method depend greatly on the choice of basis functions. In this

study, the basis functions are selected in accordance with the following criteria: '

(1) For rapid convergence of the solution the functions should satisfy the edge

condition [24] which requires that Ez(x) behaves like I x-xe 11/2 near the edge Xe of a
strip, whereas Ex(x) approaches Xe with the singularity I x-xe 1/2. This ensures the

proper singular behavior of the field for any degree of solution accuracy and is

necessary to achieve fast convergence of the characteristic impedance values, which

quite sensitively depend on the field distribution.

(2) The set of functions Exi, Ezi should be complete to enable approximation

of the exact solution to any degree desired simply by increasing the number of terms

'4



37

of the expansion. In this way the numerical solutions can be easily checked for their a

convergence.

(3) All the physical insight available should be incorporated into the choice of

expansion functions so that the combination of them can closely represent a modal

field distribution and the matrix size can be held small for the given required

accuracy.

(4) It is desirable that the transforms Exi- and Ezi ~ be available in a fairly

simple analytical form.

With the above considerations in mind, the following set of functions are employed ,

[251 ,

S+W S+W.,

co n7t(x+ )w co{ n(x- 2)/w 4

2 .2

1-1 2SW w

E w) (2.36a)
sin n(x+ )/W si =--

2 2J

2(  s+w 2(x- ) "

ww J

%

I

,'

I

------------------------------ " . .
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co ni(x+-)/ wl Co n(x--)WI
2 2 )w

r .{ 2(23 )
si 1 i(x+-) Si xS

2 1-2

zn sn n~x+ +W /w n~x-S+W

22

*~wasw w nr cw m

Tcrw cc(s+w) ctw nc aw nt

2 2 0 I 2 2 H/13--
E c0 (2.37a)

cs~ -. 4.. )J( bI n=,,5,-----U

2 2 '2 22

where JO denotes the zero-order Bessel function of the first kind.
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Fig.2.5 Field distribution of the first four basis functions.
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2.4 FLOQUET'S THEOREM AND A PERIODIC CROSSTIE

OVERLAY SLOW-WAVE COPLANAR WAVEGUIDE

The basis for a study of periodic transmission systems is a theorem due to a

French mathematician, Floquet. This theorem may be stated as follows: For a given

mode of propagation at a given steady-state frequency, the fields at one cross section

differ from those a period away only by a complex constant. The theorem is true

whether or not the structure contains loss as long as it is periodic. The proof of the

theorem lies in the fact that when a structure having infinite length is displaced along

its axis by one period, it cannot be distinguished from its original structure.

Fig.2.6 is the transmission line equivalent circuit of a periodic crosstie overlay

slow-wave CPW. In this figure, one unit cell of the periodic slow-wave CPW

consists of a Section A (with crosstie strip) with length 1A, complex propagation

constant yA (,YA=aA+jBA, aA and BA are the attenuation constant and the phase

constant of Section A, respectively.), characteristic impedance ZA; and a Section B

(without crosstie strip) with length IB, complex propagation constant YB %

(YB=aB+j3B, aB and 8B are the attenuation constant and the phase constant of

Section B, respectively.), and characteristic impedance ZB. The length for a unit cell

is thus I=IA+IB. Based on Floquet's theorem, if the periodic structure is capable of

supporting a propagating wave, it is necessary for the voltage and current at the

(n+l)st terminal to be equal to the voltage and current at the nth terminal, apart from a

phase delay due to a finite propagation time. Thus we assume that

V =e-lV n=e t-lA+B)V (2.38a)ni1 n n

% I
LA
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In1 e - I=e - lA +' B)I  (2.38b) 'w

where y=ct+jB is the complex propagation constant for the periodic structure (a is the

attenuation constant and 8 is the phase constant). In terms of the transmission matrix

for a unit ceU, we now have

V u it u i n 1 e O'+ Je LK ] A Al ) V n + 1 ( 2 .3 9 )
In Cunit Dunit I n+1 I n+lI n+1

where the transmission matrix for a unit cell is given by

B [coshyA ZAsinhyA coshyB ZBsinh

i . .

L *oD 
4A DAJ!..C DsinhyIsn yB l sihyAl os nhyBi cosh hyB

ZA

cAsinhyA 1 AcoshyB 1B+ si shyAAsinhyB B cshyAlAcoshyB lB "4+ chy AAsinhyB 1B.

L 1 . 1 . ZA

From equation (2.39) we have

Thseuto4samtrxegnau qaio o .Annrvalslto o nl

n+eitoyfh der in j= (2.41)

.11

This equation is a matrix cigenvalue equation for y. A nontrivial solution for Vn+l,

In+ I exists only if the determinant vanishes. Hence

"del
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WlA+
1

B)A.- B.
uni uit A C 2-KA+B)-e A+B)(A +D =O

unit Dni-Bui WLuflit+e - 'unit Unit'
CD _e (2.42)

For a reciprocal network the determinant AunitDunit - BunitCunit of the transmission .

43 ..

matrix equals unity [261; so we obtain 5

A. +D. IB LA
coshyl = u n i =coshyA'ACos hyBl B'+Z sinhyAl sinhfBiB (.3

2 27 A 'A +D (2.43

This is the dispersion equation for an infinitely long uniform periodic crosstie overlay

slow-wave CPW.

Another parameter of importance in connection with a periodic structure is the

characteristic impedance Zp presented to the voltage and current waves at the 5

reference terminal plane, i.e., input terminals of a unit cell. An expression for Zp.

may be obtained from (2.41) which may be written as

(Ah~ =j~' Vui+ui - cs"AAO~TI Z

2 siniAnhB1 B (2.44a)

-C V D ~e. (2.44b)

z his -Bis_ Dun in-e (2.45)
n+I A .-e^A ui

uit

Replacing 2eYl by Aunit+Dunit±[(Aunit+Dunit) 2 A4]1/ 2 from (2.42), we obtain

2B. •"

unit (2.46) '

P2

Duunit -4ni

.

%

................ lan.i~., inpt terminals.of.a.unit ..ell .An exressio fo5p .

.................................................................... ""a
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where the upper and lower signs refer to propagation in the +z and -z directions,

respectively. For a symmetrical network, Aunit = Dunit, and since AunitDunit -

BunitCunit=l, we have Aunit2 -1=BunitCunit. In this case (2.46) reduces to

2B ~ ~ B= + Bn'ni

_ A sinhyAlAcoshyBlB +ZcoshyA1AsinhyB IB (2.47)

In general, for a lossless structure, Zp-=-(Zp+)*(* denotes the complex conjugate) in

the passband, since I Aunit+Dunit 1 <2, as (2.43) shows.

Finally, it is well to note that in this approach, the effect of the geometrical

discontinuity at the junction of two sections is assumed to be negligible, although it

can, however, contribute a little.

2.5 PROPAGATION CHARACTERISTICS OF A CROSSTIE

OVERLAY SLOW-WAVE COPLANAR WAVEGUIDE WITH

LOSSLESS CONDUCTORS

To check the validity of the spectral domain analysis mentioned in Section

2.3, the convergence of solutions has been studied by increasing the number of basis

functions used. In this study, it is found that good results can be obtained by using

seven basis functions that represent axial and transverse electric fields in the slot.

Typical results for the propagation constant and the characteristic impedance show

convergence accuracy within 0.5% and 1%, respectively. Of course, the

1%i

... . 'a I, . . ' '.# 
.  I "e .- '..'¢_'.'€ "€.', '.e'.e' '',. a ".' . "o ." a- - . .- '.,-...- . - - .. . ."".' .e , . ." ." .'.- -. -. ,.,€ .".'. '. 4%

.;,,; ,. -. v , :.,. , ., ., ,7,.,... ,...,-. ... ,;. .'. . .'- .,'-,". ..",. -. .... ".;-.. . .. ". .'.,...'.;..'.... .. "-. .-..- ..-- '. ."'-., '1%,
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convergence accuracy could be further enhanced if more basis functions were used.

Based on this scheme, the characteristics of constituent sections in the crosstie

overlay CPW have been studied for a wide range of geometric parameters.

2.5.1 GENERAL PROPAGATION CHARACTERISTICS OF THE

CONSTITUENT SECTIONS

In Section A, the capacitance per unit length is greatly enhanced due to the

existence of the metal crosstie and the thin dielectric overlay. The inherent TEM

nature of the significant parallel plate capacitor created between the metal crosstie and

the center conductor of the CPW results in an almost-nondispersive propagation as

well as a quite low characteristic impedance in Section A. In contrast, without the

metal crosstie, Section B exhibits much higher inductance per unit length and

characteristic impedance in conjunction with more dispersive propagation

characteristics. These behaviors are shown in Figs.2.7(a) and 2.7(b).

2.5.2 EFFECTS OF THE CROSS-SECTIONAL CONFIGURATION

OF A COPLANAR WAVEGUIDE AND THE THICKNESS OF

THE DIELECTRIC OVERLAY

In Figs.2.8(a), 2.8(b), 2.9(a) and 2.9(b), it is observed that for a fixed

distance between two ground planes s+2w in a CPW, both the propagation constant

and the characteristic impedance increase in Section A (less capacitive), whereas the

propagation constant decreases firstly then increases and the characteristic impedance

increases in Section B (more inductive) as the slot width w increases. On the other

% % %

,.~~~~~ %,S .N
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Fig.2.7(b) Characteristic impedance versus frequency of sections A and B in a

crosstie overlay slow-wave CPW.

s=.15mm, w=.745mm, b=.001mm, h=.35mm, Er=1 2 .9

(S.I.GaAs), Er'=6.5(Si3N4), Curve A ---- Section A, Curve B----
Section B.
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Fig.2.8(a) Normalized propagation constant versus aspect ratio of Section A

with different overlay thicknesses. I'.

s+2w=1.64mm, b=.001mm, £r=1 2 .9 (S.I.GaAs), £r'=6.5(Si3N4),
f=10GHz, Curve A .-.. b=.001mm, Curve B ---- b=.002mm, Curve .,I

C ---- b=.05mm. .
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Fig.2.8(b) Characteristic impedance versus aspect ratio of Section A with

different overlay thicknesses.

s+2w=1.64mm, b=.001mm, Er=1 2 .9 (S.I.GaAs), Er'=6.5(Si3N4),
f=1OGHz, Curve A ---- b=.001mm, Curve B .--- b=.002mm, Curve
C ---- b=.005mm.
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Fig.2.9(a) Normalized propagation constant versus aspect ratio of Section B

with different overlay thicknesses.

s+2w=1.64mm, b=.OO1mm, cr=1 2 .9 (S.I.GaAs), cr'=6.5(Si3N4),
f=10GHz, Curve A ---- b=.0Olmm, Curve B ---- b=.002mm, Curve
C ---- b=.005mm.
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hand, for a fixed s+2w in CPW, both the propagation constant and the characteristic

impedance decrease in Section A (more capacitive), while the propagation constant

decreases firstly then increases and the characteristic impedance decreases in Section

B (less inductive) as the center conductor width s increases. Since the slow-wave

factor and the characteristic impedance in the periodic crosstie overlay slow-wave

CPW mainly depend on "4ZB/ZA and NIZAZB, respectively, by appropriately

choosing the combination of center conductor width s and slot width w in CPW, one

may optimally control both the slow-wave factor and the characteristic impedance

values in the periodic crosstie overlay slow-wave CPW's.

Furthermore, from Figs.2.8(a)-2.9(b), both the propagation constant and the

characteristic impedance decrease in Section A (more capacitive) whereas the

propagation constant decreases and the characteristic impedance is almost unaffected

(more inductive) in Section B as the dielectric overlay thickness b dct,.reases.

Consequently, a higher slow-wave factor can be realized by the adoption of a thinner

dielectric overlay, as depicted in Fig.2.12 also.

2.5.3 EFFECT OF SUBSTRATE THICKNESS

As Figs.2.10(a), 2.10(b), 2.11(a) and 2.11(b) show, for a fixed distance

between two ground planes s+2w and an aspect ratio s/(s+2w) in a CPW, the

propagation constant increases and the characteristic impedance is almost unaffected

in Section A (more capacitive), whereas the propagation constant increases and the

characteristic impedance decreases in Section B (less inductive) as the substrate

thickness h increases. Since the effect of substrate thickness on Section A is opposite

that on Section B, the slow-wave factor and the characteristic impedance of the

....
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crosstie overlay slow-wave CPW would not change so much for the different

thicknesses of substrates which have been used. The behavior is shown in

Figs.2.13(a) and 2.13(b).

2.5.4 EFFECT OF THE LENGTHS OF THE CONSTITUENT

SECTIONS

Figs.2.14(a) and 2.14(b) show the slow-wave factor and the characteristic

impedance, respectively, of crosstie overlay s!ow-wave CPW's with different

periodicities. As shown in Fig.2.14(a), it is noticed that, as the frequency is 5-

increased, the curve approaches a very dispersive region which is caused by the

stopband phenomenon. The frequency at which such a region appears increases as

the length of the grating period 1 (=IA+IB) is reduced. Therefore, if the period chosen

is much smaller than the operating wavelength, the corresponding frequency is in the

linear portion of the curve much below the stopband so that the structure can be

viewed as a uniform transmission line. In addition, it is easy to show from equation

(2.43) that a maximum slow-wave factor and a maximum attenuation constant are

achieved under the condition YAlA-YBB= /2 (0 is the phase shift amount in each

period) in the linear dispersion region. In that region (YA1A<< 1, YB1B<< 1, y< 1)

we can obtain the following approximations:

2

cosh , I 1 2! (2.48a)

sinhyl =yl (2.48b)

Substituting (2.48a,b) into (2.43), we get

I.0

S.
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1fl7 ZA
T (A+IB) (YAIATB) +(AIABIB (2.49)

Hence, the maximum slow-wave factor and the maximum attenuation constant for a

periodic crosstie overlay slow-wave CPW become

(3/3o) =Real part of 2B(+) . B + ZA/ (2.50a) 7

max780l +1B~k +zA  SB

(a)m =Imaginary part of 2 1AB(2.50b)

where 130=270, and the characteristic impedance is

Z P = ZA " (2.51)

Fig.2.15 shows how the slow-wave factor of the crosstie overlay slow-wave CPW

depends on the duty cycle 1A/(1A+IB). It is found that the maximum value of slow-

wave factor occurs at the position where duty cycle is equal to 0.5 (IA=IB) as

mentioned in above.

2.6 CONDUCTOR LOSS ESTIMATION

The discussion of the periodic crosstie overlay slow-wave CPW thus far has

been based on the assumption that the losses are negligible. However, in practice,

losses are always present and it may be quite important to obtain a quantitative

estimate of these losses in order to reliably design the slow-wave circuits. It will

therefore be pertinent to include here brief descriptions of the methods that we use for

evaluating these losses. For simplicity, due to the very nice insulating properties of

t.. % I V%
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the semi-insulating GaAs substrate and dielectric overlay used as well as the good

nature of the propagating mode, we restrict our attention to the ohmic skin loss only

and assume that the dielectric, magnetic, and radiation losses in the new crosstie

slow-wave structure are either absent or negligible.

Referring to Fig.2.16 in Section A, the ohmic loss per unit length includes

the CPW and the crosstie strip ohmic losses while only CPW ohmic loss exists in

Section B. To obtain the ohmic attenuation constant c for the constituent sections A

and B, a technique based on the so-called "incremental inductance rule" which is due

to Wheeler [27] has been used. This rule expresses the series surface resistance Rs

per unit length in terms of that part of the total inductance per unit length which is

attributable to the skin effect, i.e., the inductance Li produced by the magnetic field

within the conductors.

It is well known that for a conductor the surface impedance Zs (=Rs+jXs)

has a real part Rs (surface resistance per unit length) which is equal to the imaginary

part Xs. That is

R =X =oL. (2.52)

According to Wheeler, Li can be inferred from the external inductance L per unit

length as the incremental increase in L caused by an incremental recession of all

metallic walls carrying a skin current (see Fig.2.16). The amount of recession is

equal to half the skin depth 8= V2_Jlac, where .t and ac are the permeability and the

conductivity, respectively, of the metallic wall material. An assumption underlying

this rule is that the radius of curvature and the thickness of the conductors exposed to

. & w -w- e, ra e... . .a..a. .~ ~ %
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Fig.2. 16 Recession of conducting walls of crosstie overlay coplanar waveguide
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the electromagnetic fields be greater than the skin depth, preferably several skin

depths. According to Wheeler, we have

L m a ( M)(2.53)
(=I-!m)(T 3L 82

m Prj m

R -M - (2.54)

where aL/Dnm denotes the derivative of L with respect to incremental recession of

wall m, nm is the normal direction to this wall, and Rsm=ogm~m,/2 is the surface

resistivity of the wall m.

The attenuation constant because of ohmic loss is defined as

P power loss in conductors
ac 2P 2xpower transmitted (nepers/unit legth) (2.55)

In terms of Rs and Zc, ac may be written as

2 I2 - m DL' (2.56)

% 21 Z~ 2g.0Z m sM

where Zc is the characteristic impedance of the constituent section A or B calculated

under the quasi-TEM approximation for the lossless case, and I is the total current per

conductor.

We assume that the inductance per unit length for the inhomogeneous

dielectric case (Section A or B) is approximately the same as that of the unloaded

TEM line. This assumption implies that the stored magnetic energy is not affected by

the presence of the nonmagnetic dielectric substrate. This is a reasonable assumption

--a.

%

' dj. J1 ~. 1 .
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as verified experimentally by Pucel et al. [28]. With this assumption in mind, the

inductance per unit length can be expressed in terms of the characteristic impedance

for the Section A or B with the dielectric materials replaced by air (Zca) and is given

as
).,

L= c (2.57)
c

where c (=l/14gte0) is the velocity of electromagnetic waves in free space. From

equations (2.56) and (2.57) one obtains

1/2
_10 1 Za

ac= ) -R_"" (2.58)

Equation (2.58) is the basis for our skin loss computations. Referring to Fig.2.16 in

Section A, Zca is a function of b, s, w, and t, respectively. In Section B, Zca is a

function of s, w, and t. By considering to first order the variation in Zca that occurs

due to an inward normal perturbation 5n at each surface there results:

Section A:•

8b=8w=+25n (2.59a)

5s=8t=-28n. (2.59b)

Section B:

8w=+28n (2.60a)

5s=8t=-28n. (2.60b)

The variation in Zca is

% % %
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Section A:

afa aa af a17a
S b s+- w+ -t4 t;  (2.61 a)

p

-5w.
Section B: p

5f aza aza __
Z= -.--s+ _---.w+ _--t. (2.6 1b)
c as aw at

Substituting (2.59), (2.60) and (2.61) into (2.58), then the ohmic attenuation

constant axc for the constituent sections A and B can be written as

Section A:

_e RS a~ ~ w al
a-'z' a + a( - (2.62a)

0C ab s -

Section B:

at 4Z (I -- L-] (2.62b)

for the case Rsl=Rs2=Rs (Rsl and Rs2 are the surface resistivities of the crosstie

strip and CPW conductors, respectively).

The remaining task is to derive the expression for the characteristic impedance

Zca of the lossless line. From the quasi-static results by Ghione and Naldi [29], we

get

2.'
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Zaz 607C 1 60iK

K(k) K(k 2 )] K(k) K(k 2)(26a

where =

rr

K(k) K(kI) K(k 2)(26b
,f (k ) K ek2 )

K K) k K(k) Kk2

k-S

sinh(Ir.)
k= (T

K(S+2w))

k= tanh()

4b J'
k'2

k2=an 7h

'p2

2 2
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K(k) K(k) 1 J2 70 1

K(k) K(k) i

K(k) K(k) ____.__-_ J 0.77

K(k) K(k) 7
I21 2 V~

Section B:

: 30i I 307c (2.64a)
C- -1 K(k) K(k)

K(k) K(k)

where
2."(k) ( K(k ( k )+ " '' 1) '3)
K(k) K(k1) K(k3)

Keff 2 ,1 ) K~k3 )(2.64b)

K(k)

sinh ( )

4b

The expression for Aw, the effective decrease in the slot width of a CPW due to strip

thickness, is given approximately in [30], and is repeated below:

Aw= - (w-w)= - I +In (2.65)

The partial derivative aw/at is obtained from (2.65) as

- - -' 1

-U * * - * -. .' . . C - '* - - K'. ..
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aw 1.25 (2.66)

Utilizing (2.62) and (2.66), we finally obtain the attenuation constant cXc of the

constituent sections A and B due to skin ohmic loss after a lengthy but

straightforward mathematical manipulation.

2.7 PROPAGATION CHARACTERISTICS OF A CROSSTIE

OVERLAY SLOW-WAVE COPLANAR WAVEGUIDE WITH

LOSSY CONDUCTORS

Figures 2.17(a) and 2.17(b) show the calculated ohmic attenuation constant .1*

versus aspect ratio s/(s+2w) of a CPW in Section A with 1.5 gxm- and 3 g.m-thick

gold as the conductor, respectively. Figs.2.18(a) and 2.18(b) show the calculated

ohmic attenuation constant versus aspect ratio s/(s+2w) of a CPW in Section B with

1.5 pan- and 3 gm-thick gold as the conductor, respectively. Comparing to Section

B, due to the existence of crosstie strip and thin dielectric overlay, the surface skin

current density as well as ohmic loss in Section A are not only greatly enhanced but

also more insensitive with respect to the aspect ratio s/(s+2w). For a fixed value of

s+2w in CPW, as the center conductor width s decreases, the current flowing on the

center conductor is more concentrated and the series resistance increases. On the

other hand, if the slot width w decreases so that s/(s+2w) increases, the current is

concentrated on the conductor surface bordering the gap and the series resistance

increases. Hence the series resistance takes a minimum value for a certain finite value

of s/(s+2w). In addition, as the conductor thickness increases, series resistance and

ohmic loss reduce. This is natural because as the conductor thickness increases the

%",IL& h JV:!
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Fig.2.17(a) Ohmic attenuation constant versus aspect ratio of Section A with

different overlay thicknesses (Au=1.5prn).

s+2w=1.64mm, b=.001mm, h=.35mm, Er=12.9 (S.I.GaAs),

Er'=6.5(Si3N4), Au=1.5gm, f=1OGHz, Curve A ---- b=.001mm,
Curve B ----b=.002mm, Curve C ---- b=.005mm.
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Fig.2.18(a) Ohmic attenuation constant versus aspect ratio of Section B with

different overlay thicknesses (Au=1.5gm).

s+2w=1.64mm, b=.001mm, h=.35mm, Er=1 2.9 (S.I.GaAs),

Er'=6.5(Si3N4), Au=1.5gm, f=1OGHz, Curve A ---- b=.001mm,
Curve B ---- b=.002mm, Curve C ---- b=.005mm.
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cross-sectional size of the center conductor and metal crosstie increase. In Section

A, the series resistance is larger for the structure with a thinner dielectric overlay than

for the one with a thicker dielectric overlay. This is because the current is shifted

more toward the conductor surface in contact with the thinner dielectric overlay.

Fig.2.19 shows the attenuation constant (a) due to conductor loss of the crosstie

overlay slow-wave CPW with different dielectric overlay thicknesses. In this figure,

we have assumed that the attenuation constants due to dielectric loss in both Sections

A and B were negligibly small. Based on the theory given in Section 2.6, the

attenuation constants due to CPW and crosstie conductor losses in Section A (aA)

and due to CPW conductor loss only in Section B (czB) were calculated. In the

meantime, we assumed that the propagation constants in Section A (BA) and Section

B (3B) were not affected by the attenuation due to conductor loss. By applying

(2.43), we finally obtained the attenuation constant per unit length of the infinitely

long crosstie overlay slow-wave CPW's.

Figure 2.20 shows the quality factor (Q=3/2ct) of the crosstie overlay slow-

wave CPW versus aspect ratio s/(s+2w) with different overlay thicknesses. It is

found that a better quality factor could be obtained with appropriate choice of s and w

as well as thicker dielectric overlay. Fig.2.21 shows the ohmic attenuation constant

of the crosstie overlay slow-wave CPW versus duty cycle factor IA/(IA+IB). Due to

the reason discussed in Section 2.5.4, when IA/(1A+IB)--0.5 (1A=lB) the slow-wave
CPW exhibits the maximum ohmic attenuation. Fig.2.22 represents the relationship

between Q value and duty cycle factor IAI(1A+IB). Because of the large ohmic

loss in Section A, the shorter the IA, the higher the Q value.
I

.4
-a

-a

% % % %
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Fig.2.20 Quality factor versus aspect ratio of crosstie overlay slow-wave

CPWs with different overlay thicknesses.

s+2w=l.64mm, b=.001mm, h=.35mm, Er=1 2 .9 (S.I.GaAs),
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Fig.2.21 Ohmic attenuation constant versus duty cycle of crosstie

overlay slow-wave CPWs with different overlay thicknesses.

s=.15mm, w=.745mm, b=.001mm, h=.35mm, Er=1 2 .9

(S.I.GaAs), Er'=6.5(Si3N4), Au=1.5.tm, IA-,lB=. 1mm, f=lOGHz,
Curve A ---- b=.001mm, Curve B ---- b=.002mm, Curve C----
b=.005mm.

,-4...--..,... . . . . .. . .,. ... .... . . . . . . ........ .,.... . . .,.. . . .. ...-... ... . . .. . ..... ... . ....... .._. . ....< ,'...,: ,;-:.-,



'- . 2

1.0-

3.5

3.6

3.1
3.2

3.0 U

2.8 4

2.6 4

2.1

I, 2.2

1 .

4.1 .6 ; - - - -- -

CIA

1.2

1.0

.8" .1 .2 . .' ,S .6 .7 . ",

LA/ (LA+L)

Fig.2.22 Quality factor versus duty cycle of crosstie overlay slow-wave

,CPWs with different overlay thicknesses.

s=.15mm, w=.745mm, b=.OOlmm, h=.35mm, Er= 1 2 .9

(S.I.GaAs), r'=6.5(Si3N4), Au= 1.5p.tm, IA+IB=. 1 mm, f= 10GHz,
Curve A ---- b=.001mm, Curve B ---- b=.002mm, Curve C---- .
b=.005mm.

D1

' '. .,',- ' d" '&'>' " ' " " -," '',' ','v.. "  -,.' "v'v", " .' - i." . " , .- : 3 ..*.,'5'', .','.',,.- ... ....
. A A.. . . .. . . . ,:Z '_ .''a .:G .' & - " ' ' ...



COPLANAR NAVEGUIDE AND I.. (U) TEXAS UUIY AT AUSTIN DEPT
OF ELECTRICAL AND COMPUTER ENGINEER. .T MAN ET ALL

4UNCLRSlI~l,0MAR89 O-594.1-EL DRAL3-S-K-OffS F/O 9/1 N

7 M h ONM AT Oh O h LO -M S h m h h h h h l O ER AY2
EIhEmEhE

mhlommhhhhmohu-
I lomfloflomhohhhf



lilaa

1.0I25 1.4

-%2

** 411 L I 40



82

Figures 2.23(a) and 2.23(b) show the ohmic attenuation constants of sections

A and B versus aspect ratio s/(s+2w), respectively, with different cross-sectional size

of CPW s+2w. From these figures, for a fixed s/(s+2w) the larger the value of s+2w

the lower the skin current densities as well as the ohmic attenuation constants.

Figs.2.24(a) and 2.24(b) represent the slow-wave factor and the ohmic attenuation

constant, respectively, of the crosstie overlay slow-wave CPW versus aspect ratio

s/(s+2w) for different values of s+2w. In the calculation, IA=IB=10 gim was

assumed. From Figs.2.23(a)-2.24(b), the larger the value of s+2w, the larger the

capacitance per uni: length while the inductance per unit length is relatively

unaffected. Therefore large values of s+2w cause a larger slow-wave factor as well

as a larger ohmic attenuation constant. Fig.2.25 shows the Q value versus aspect

ratio s/(s+2w) of the crosstie overlay slow-wave CPW with different values of s+2w.

According to this figure, the larger the value of s+2w, the higher the Q-value

obtained.

2.8 EXPERIMENTAL CONFIRMATION OF SLOW-WAVE

PROPAGATION IN A CROSSTIE OVERLAY COPLANAR

WAVEGUIDE

In this section, the slow-wave propagation along the new crosstie overlay

CPW was investigated experimentally. In this experiment, a CPW pattern was

photo-etched on a pre-thinned 15 im Cu-clad Epsilam-10 substrate surface with

er=10.2 and h=0.635mm (h is the thickness of substrate). The center conductor

width of CPW is s=0.15mm and the slot width is w=0.745mm. Twenty periods of

metal crossties were photo-etched on another pre-thinned 15 im Cu-clad microwave

........ % -
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Fig.2.23(a) Ohmic attenuation constant versus aspect ratio of Section A with

different cross-sectional sizes of CPWs.-U

b=.001mm, h=.35mm, Er=1 2 .9 (S.I.GaAs), Er'=6.5(Si3N4),
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substrate surface with er=2 .5 and h=0.762mm. The lengths of the constituent

sections in each period were IA=0.30mm (with crosstie strip) and IB=0.30mm

(without crosstie strip). By using the spun-on technique, a 3.0 g±m thick DuPont PI-

2556 polyimide (Fr'=3.5) layer was coated on the surface of the periodic crossties as

the dielectric overlay. After the polyimide was properly cured (125 0 C, 15 hours),

construction of a crosstie slow-wave CPW was accomplished by attaching the

substrate with the CPW and another with the crossties face-to-face. Mechanical

pressure was applied to make sure that the two pieces had good contact.

The experimental verification of the slow-wave factor in the crosstie overlay

slow-wave CPW was performed by measuring the phase shift using a Hewlett-

Packard Network Analyzer. Fig.2.26 is a photograph of the disassembled crosstie

overlay slow-wave CPW. Sections of 50 KI conventional CPW were connected at the

input and output ends. In the measurements, these 50 Q2 CPW's were connected

directly to form a calibration reference. The measured values of slow-wave factor are

plotted against frequency in Fig.2.27. The measured slow-wave factor of a simple

CPW without a crosstie pattern is also shown for comparison. These results indicate

slow-wave propagation with a linear dispersion. Measured values of the slow-wave

factor are close to the theoretical values shown by the solid line. The cause of the

discrepancy includes the existence of an airgap due to the thickness of the crossties. .

The measured values of the attenuation constant are plotted against frequency in I
Fig.2.28. The measured attenuation constant of a simple CPW without a crosstie

pattern is also shown for comparison. As shown in this figure, the crosstie overlay

slow-wave CPW exhibits higher attenuation per unit physical length than the simple

Y ZI
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Fig.2.27 Slow-wave factor versus frequency for a crosstie overlay slow-wave

CPW.
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Fig.2.28 Attenuation constant versus frequency for a crosstie overlay slow-wave
CPW.
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CPW due to the existence of the crosstie conductors. However, the difference is

much smaller if the values are compared with respect to the guide wavelength.

Measured values of the attenuation constant agree reasonably with the theoretical

values shown by the solid line.

From the above-mentioned quantities, the slow-wave propagation along the

new crosstie overlay slow-wave CPW has been verified both theoretically and

experimentally. From the extensive study carried out in this chapter, the

combination of a thicker dielectric overlay, a larger cross-sectional size s+2w of the

CPW, and a smaller duty cycle IA/(IA+IB) together with an appropriate value of

aspect ratio s/(s+2w) appear to be the viable candidate structure for an optimized

crosstie overlay slow-wave CPW implementation.
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CHAPTER 3 : A BAND-REJECT GRATING MADE OF

CROSSTIE OVERLAY SLOW-WAVE

COPLANAR WAVEGUIDES

One of the problems of microwave and millimeter-wave integrated

circuits is the lack of high-Q resonators except for a dielectric resonator. In

monolithic integrated circuits, dielectric resonators are not compatible with the

concept of monolithic integration. Microstrip patches provide a relatively low Q. In

this chapter, we investigate the possibility of realizing resonators and oscillators, with

a reasonable physical size, by the use of grating structures in a printed circuit form

constructed with crosstie overlay slow-wave structures.

It is well known [31] that the electromagnetic wave propagating in a grating

structure can be represented in terms of space harmonics with phase constants Bm

given by

2mnt
B=30 +- -  , m=O,_'+2, (3.1)0 d

where d is the grating period and 130 is the phase constant of the dominant (m=O)

space harmonic determined by the excitation of the grating. If the perturbation due to

a unit cell of the grating is small, BO is very close to the propagation constant in the

unperturbed grating, except in the coupling regions of the frequency spectrum.

Fig.3.1(a) is a typical k-8 diagram for the m=O (80), m=-1 (3-1), and m=-2

(B-2) forward-traveling space harmonics and the m=-I (-3-1) backward-traveling

fundamental space harmonic propagating in a grating structure. In fact, mode-
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coupling phenomena occur at synchronous points such as A, B, C, and D. The

mode-coupling phenomena can be used for deriving the dispersion relations for the

grating structure such as the one shown in Fig.3.1(b). Note that if, for a given

frequency, the period d is chosen such that B0d is less than the value at D, no higher

space harmonic radiates and the grating supports a surface wave.

When the grating period d and the phase constant 30 of the fundamental wave

satisfy the so-called Bragg reflection condition 6d--n (point A in Fig.3. l(a)), the

electromagnetic wave incident on the grating is reflected and the bandstop

phenomenon occurs. This stopband results from the mode coupling between the

forward-traveling fundamental 130 and the m=- 1 harmonic of the backward-traveling

fundamental. In the following sections, the frequency-selective distributed Bragg

reflection mechanism has been employed to create a compact grating based on the

new crosstie overlay slow-wave CPW's as a possible high-Q circuit for application in

monolithic microwave and millimeter-wave integrated circuits.

3.1 A DOUBLY-PERIODIC GRATING STRUCTURE AND THE

TRANSMISSION-LINE EQUIVALENT CIRCUIT

As shown in Fig.3.2, we create a grating with its period comparable to the

guide wavelength from the "uniform" crosstie overlay slow-wave CPW's. This

"uniform" line itself is a periodic structure with its period much shorter than the

wavelength and is designed as described in Section 2.4. Hence, the band-reject

grating is physically a doubly periodic structure [32]. As shown in this figure, one

period of the grating consists of two sections of crosstie overlay slow-wave CPW's

-I
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Doubly-periodic crosstie
conductor pattern

dI

Dielectric overlay

Semi-insulating GaAs

CPW conductor
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Fig.3.2 Schematic and equivalent circuit of a doubly-periodic band-reject grating. K
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with different slow-wave factors and characteristic impedances. The slow-wave

CPW in Section dI comprises Section A and B of lengths IA1 and 1B1, respectively,

while the one in Section d2 is made of IA 2 and lB2 long sections. Section dl

contains m periods of lAl+IB1 while d2 contains n periods of 1A2 +IB2 . Hence, the

length of the period of the band-reject grating is

d-d 1 +d2=mx(1AI +IBI )+nx(1A 2 +lB2 ).

To study the band-reject properties of this grating, the same analytical

procedures used in calculating the propagation constant and characteristic impedance

for the uniform crosstie slow-wave CPW's are used to obtain the transmission

characteristics of the constituent sections IAI+lB1 and 1A2 +IB2 in Fig.3.2. Once the

propagation constants and characteristic impedances of the two constituent crosstie

slow-wave structures are obtained, appropriate lengths of the two sections dl and d2

are chosen and cascaded to form a period of the band-reject grating. The reflection

and transmission performances are then characterized by using the microwave two-

port network cascading technique as described in the following section.

3.2 CHARACTERIZATION OF THE REFLECTION AND

TRANSMISSION PROPERTIES OF A BAND-REJECT GRATING

The composite normalized transmission matrix of a symmetrical doubly-

periodic band-reject grating with N+1/2 periods is obtained by cascading the

normalized transmission matrices for the constituent sections dl and d2 into the

equivalent circuit shown in Fig.3.3•

J'll "9
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Fig.3.3 Transmission line eqivalent circuit for characterizing the transmission and
reflection properties of a symmetrical doubly-periodic band-reject grating.
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r-N 5 N. 0 S 5 "1, 15 D1-2- 15. 2 Z! 5 -2-1
LN _

ZL0
X5 03 ZZ 

(3.2)

0 11-

ZL

where

:k" Di3 [ shy'dp shypdp (p='1,2) 
(3.2a)

-oZP = 2) 
(3.2b)N PZ

yly2: the complex propagation constants of sections d, and d2' respectively.

ZI,Z2: the characteristic impedances of sections d, and d 2, respectively.

d d  the lengths of sections dt and d respectively.

ZS,ZL: the impedances connected to the input and output ends, respectively.
After the composite normalized transmission matrix is computed, it is

converted to a scattering matrix according to the following relationship:

-A -M
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:N+NN-DN 2(ANDN-BNZ N )  %

S s2j A A
S] s22 2 +7 (3.3)

2 ~~ N NN+DN 2
L A

where A = AN+7BN+ N I'

From (3.3) the power insertion loss and return loss are computed by II
Insertion Loss = 20 (dB) (3.4a) ,.

1I
Return Loss = 20 log (dB) (3.4b)

In addition, in order to learn how the input impedance of the band-reject

grating behaves, we apply simple impedance transforms as shown in Fig.3.4 to

analyze the resulting structure. For example,

Z IZ ZL+Zltanh yd
Zi+ZLtanhytdl

Z +Z2tanhy2d2

Z .=Z2 Z1 + 2Td

2 2

Z2 +Z -I tanhy2 d2

Z2 1+Z tanhy 2d22N- 2

Zin:Z Z+2N1(3.5)

2Z tanhyd
I + 2Nanyd
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Fig.3.4 Impedance transforms for input impedance calculation for a doubly-

periodic band-reject grating.U



102

The stopband center frequency of the band-reject grating should located at the

frequency where the imaginary part of the input impedance Zin becomes zero.

3.3 PREDICTED CHARACTERISTICS OF A BAND-REJECT

GRATING

Figs.3.5(a)-(c) show the variation of the moduli of the power insertion and

return loss versus frequency for the band-reject grating as different numbers of

periods are comprised. It is seen that the greater the number of periods, the more

sensitive (higher insertion loss as well as narrower stopband width) the power

reflectivity becomes with respect to frequency. In addition, by a reason similar to

that for the crosstie overlay slow-wave CPW, the band-reject effect of the grating is

maximum when the lengths of constituent sections dl and d2 are identical. That

maximum insertion loss increases as the dielectric overlay thickness decreases is also

found. Figs. 3.6(a) and 3.6(b) give the real part and the imaginary part, respectively,

of the input impedance of the band-reject grating with 9.5 periods. Bandstop

phenomena occur at the frequency where the imaginary part of the input impedance

becomes zero and the real part positive maximum. In the calculations for Figs.3.5(a)-

3.6(b), the conductor loss has been neglected.

To study how the wave attenuation due to the conductor loss affects the

grating performance, we evaluated the reflection and transmission characteristics of

the grating structure in the presence of conductor loss. Based on the incremental

4 inductance approach, the attenuation constants were calculated for every constituent

., section of the grating. The results have then been used in the calculation of the

I'
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. Fig.3.5(a) Insertion loss and return loss of a doubly-periodic band-reject grating

'.. with lossless conductors and 5.5 periods.

- s=.15mm, w=.745mm, b=.001mm, h=.35mm, cr-12.9
-4-d-,(S.I.GaAs), F-r'=6.5(Si3N4), Zs-ZL8.0 fl, IA l=.005mm,
r: IBl=.006mm, lA2=.006mm, 1B2=.005mm, dl=d2=.55mm, N=5,
.. Curve A ---- Insertion loss, Curve B ---- Return loss.
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with lossless conductors and 7.5 periods.
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Fig.3.5(c) Insertion loss and return loss of a doubly-periodic band-reject grating .,_

with lossless conductors and 9.5 periods. .

s--.15mm, w--.745mm, b--.001mm, h=.35mm, cr= 12.9
($.I.GaAs), Er'=6.5(Si3N4), Zs--ZL;8.0fl,IAI=.005mm,
IBl--.006mm, IA2-.006mm, IB2--.005mm, dl--d2--5mN9
Curve A ---- Inserton loss, Curve B ---- Return loss.
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Fig.3.6(b) Imaginary part of the input impedance of a doubly-periodic

band-reject grating with lossless conductors and 9.5 periods.I

s=.l5mm, w=.745mm, b=.O0lmrn, h=.35mm, Cr=l 2 .9

(S.I.CiaAs), Er'=6.5(Si3N4), ZL=8.!Q, 1A 1=.OO5mm,
lB'=.O~mm 1 2=OTr, 1B2=.OO5mrfl, di =d2=.mrn1B I .006m, 1 .00mm, 55mm
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reflection and transmission characteristics. Figs. 3.7(a) and 3.7(b) are the insertion

and return losses of the band-reject grating with 9.5 periods after taking the conductor

loss into account. Due to the conductor loss, the peak reflectivity in the stopband has

been reduced but the total insertion loss was increased. Figs. 3.8(a) and 3.8 (b) are

the real and the imaginary parts of the grating input impedance after taking the

conductor loss into account. It may be noted that the input impedance is not very

sensitive to frequency in the passband, and hence broad-band matching with the

ex:ernal circuit may not be difficult to achieve.

3.4 EXPERIMENTAL RESULTS FOR A BAND-REJECT GRATING

As shown in Fig.3.2, we have constructed a doubly-periodic band-reject

grating from the "uniform" crosstie overlay slow-wave CPW's. In reference to this

figure, the following dimensions have been used : IAl=0.10mm, IBl=0.12mm,

IA2 --0.12mm and IB2 =0.10mm. The Section dl contains 17 periods of IAI+IBI

whereas d2 contains 17 periods of IA2 +IB2 . Hence, the length of the period d of the

band-reject grating is 7.48mm. The Section dI has a higher characteristic impedance

than the Section d2. Following fabrication procedures similar to those for the crosstie

overlay slow-wave CPW described in Section 2.8, a 9.5 period long grating with

total length 7.106cm (9.5xd) was finally obtained. Fig.3.9 is a photograph of the

disassembled band-reject grating. It should be noted that, before the design of the

grating, the slow-wave factor is recalculated to include the airgap effect so that the

discrepancy between the calculated and measured slow-wave factors is much smaller

than the one observed in Fig.2.27.

, qI
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Fig.3.7(b) Return loss of a doubly-periodic band-reject grating with lossy

conductors and 9.5 periods.I

S=.l5mm, w=.745mm, b=.O0lmm, h=.35mm, Er=l 2 .9

(S.I.GaAs), P-r'=6.5(Si3N4), Au=1.5g.m, ZS=ZL=8.OQ,
IAl=.OO5mm, IBI=.OO6flm, IA2=.OO6mm, IB2 =.OO5mm, Curve I
A ---- dl=d2=.44mm, Curve B ---- dl=d2=.55mm, Curve C----
dl =d2=.66mrn.
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In the measurements, a section of 50 Q conventional CPW was used at the

input and output ends, respectively, as the test fixture. The same setup as that in the

slow-wave factor measurement was exploited for the characterization of grating

reflection and transmission properties. Fig.3.10 shows the calculated and the

measured values of insertion loss and Fig.3.11 shows the return loss plotted against

frequency for the fabricated grating. From these two figures, a band rejection

phenomenon can be clearly recognized. The center frequency of the stopband is 4.95

GHz in experiment and 5.03 GHz in theory. The difference is about 1.6 %. The 3- "U

dB bandwidth of the stopband is 0.56 GHz in the experiment and 0.50 GHz from the

theory. The difference is caused not only by the errors in fabrication but also by the

fact that the junction susceptance between two transmission lines was not taken into

account in the theoretical calculation. The Q value inside the stopband is around 8.8

in the experiment and 10 for the theory. The peak insertion loss and the return loss in

the stopband are 31 dB and 6 dB in the experiment, 30 dB and 5 dB for the theory,

respectively. The slow-wave factor of this band-reject grating is about 4. The

physical length of the present device is reduced to no more than 25 % of the length of

the conventional grating with the same stop band characteristics.

From the above-mentioned quantities, our theoretical and experimental results

are in good agreement. However, the somewhat higher insertion loss in the passband

due to the attenuation of whole crosstie slow-wave CPW sections and the

discontinuity effects, including radiation loss in the test device, requires further

reduction for practical applications.
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Fig.3. 10 Measured and calculated insertion loss for the doubly-periodic

band-reject grating.

. . . r- - I , e I- 4I l * ii il



116

35

25

20

to

,.J,

~measured

-5

-10

-15

-20 It'll Ilt ii li |, , It n till I nli2.0 2.5 3.0 3.5 4.0 1.5 5.0 5.5 6.0
FREQJENCY [OHZI

Fig.3.11 Measured and calculated return loss for the doubly-periodic

band-reject grating.



CHAPTER 4: SLOW-WAVE CHEBYSHEV

REFLECTOR DESIGN USING NEW

CROSSTIE OVERLAY SLOW-WAVE

COPLANAR WAVEGUIDES

Although the frequency-selective band-reject grating created in Chapter 3 can

give a strong stopband, their passbands may have ripples which are excessive for

many applications. In order to better control the passband ripple at a reasonably low

level, we created a slow-wave reflector from the new crosstie overlay CPW's which

has a prescribed stopband and also prescribed Chebyshev passbands. Two quarter-

wave impedance transformers have been connected to both the input and output ends

to facilitate impedance matching with external 50 Qi measuring systems. The design

procedure is based on a formulation proposed by Cohn [33] for an approximate 
4

synthesis of distributed stepped-impedance transformers.

4.1 SYNTHESIS OF SLOW-WAVE CHEBYSHEV REFLECTOR

PROTOTYPES

The transmission-line prototype circuit used in the design of a slow-wave

Chebyshev reflector is the equal-electrical-length quarter-wave step-impedance filter

as shown in Fig.4.1. It is a distributed filter consisting of n cascaded line elements;

each element corresponds to a resonator in conventional filter design. The elements,

consisting of appropriate lengths of slow-wave structures as shown in Fig.1.4 with

the characteristic impedances Zi (i=l,2,3,---,n) are assumed to have
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lengths of Li=(XgO)i/4, where (Xgo)i is the guide wavelength of the i-th impedance

step at the stopband center frequency. The electrical response of this transmission-

line structure depends upon the impedances of the unit elements. For electromagnetic

waves propagating along the line, the impedance difference between the unit elements

yields reflected waves which will accumulate together to cause the band-reject

phenomenon to take place at the desired frequencies. Based on Cohn's [33]

approximate synthesis procedure for stepped-impedance transformers which

considers only the first-order reflection effects, a scheme similar to the one presented

in [341 was employed to synthesize a slow-wave Chebyshev reflector prototype with

the prescribed characteristics.

Let us regard Fig.4.2 as the attenuation response of the circuit in Fig.4.1.

This idealized attenuation response for structures as in Fig.4.1 can be defined in terms

of Chebyshev polynomials of degree n, the bandwidth, and the maximum stopband

VSWR Smax,s. The insertion loss (IL) of the circuit in Fig.4. 1, if exactly designed

for a Chebyshev response, is

4S1+ maxs T1nsin6 (dB) (4.1)

where Tn(x) is the Chebyshev polynomial of degree n, Smax,s is the maximum

stopband VSWR, 01 is the electrical length of each section at the lower stopband edge

frequency fI defined in Fig.4.2, and

'- .1
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f
n.,. (4.2)

1 2f 0

Smax,s can be defined as the product of the junction VSWR's

SmaX's=VIV2 ---- Vn+1  (4.3)

where Vi is the junction VSWR of the ith junction given by

I-
Vi= 1. (4.4)

In this equation, an appropriate sign has to be chosen in order to have Vi greater than

one since the Zi values alternate up and down. Also, 01 is related to the equal-ripple

bandwidth (Af)er through the bandwidth ratio p

2+-(Af)e-

f2 f0 "
(A2 _ r (4.5)
(ti 2 fo

0

where fl and f2 are the lower and upper stopband edge frequencies, respectively, as

shown in Fig.4.2, and

=f f2f (4.6)a'r

ff0

where fo is the center frequency of the stopband. The degree n of the Chebyshev

polynomial is the same as the number of sections inserted between the terminating

impedances ZO and Zn+l in Fig.4.1. We can derive a useful formula for n using

01,Smax,s, and the maximum passband VSWR denoted by Smax,p. Calculation of

%* % 4.
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the insertion loss at 0=0e1, using (4. 1), gives

S 1a's
ILl00 =101og 10  ~S maxs 1 (4.7a)

=101og, 1 (4.7b)

Pmax.p

where Ipmax,p Iis the magnitude of the maximum passband reflection coefficient and

is given by

-1
PmaxpJ S * max~p(4.8)

Equation (4.7b) can also be written in a form similar to (4.7a), that is,

12
Pmax.p

ILI 10 logo 2+ (4.9)
8 1 I Ixp1

After some mathematical manipulation using (4.7a) and (4.9), we finally get the

following equation:

c s-1S( 
.0

coshS

where

* S~fe

%'
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2

Smaxs (Smaxp+ 1(.

Therefore, if 01, Smax,s, and Smax,p, or equivalently the fractional bandwidth, the

maximum stopband attenuation, and the specified passband ripple size, are given, we

can calculate the number of sections to be inserted between the two terminating

impedances of Z and Zn+I by the use of (4.10) and (4.11).

Owing to the almost-nondispersive feature of the crosstie overlay slow-wave

CPW's, it is noted that the transmission-line prototype having the response given by

(4.1) does not include the effects of the stopband-width shrinkage that will occur due

to dispersion.

After we have calculated n for given specifications, we need to calculate the

junction VSWR's Vi or the normalized section impedances Zi. For the purpose of an

approximate synthesis, as done by Cohn for the case of a step-transformer, we

assume that impedance steps are small that the reflection interaction between steps can

be neglected in the prototype circuit in Fig.4.2. Then the total reflection coefficient of

the reflector prototype referred to at the center of the reflector structure is expressed as

follows:

p = Aeen-A 2e 0 +.......... +(-)nAn41e'Jn (4.12) -

where the Ai's are the junction reflection coefficient magnitudes, which are given by

,Zi-Zi.1

A >0 , for i=1,2, --- ,n+l. (4.13)
T m i+Zom

The magnitude of the step reflections are assumed to be symmetrical, i.e., A Il=An+l1,
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A2An, etc.. Therefore, for n odd ,

P2A j J 2 A sin(n-2k)] (4.14)
k=O

and for n even

A, when n--O• 1~n-_za kn A
P= 2A__ 1  cos(n2k)0+(-)1 n.A , when n>2. (4.15)

k=O 2

In order to obtain Chebyshev passbands, p in (4.14) or (4.15) is forced to be equal to

a Chebyshev polynomial czTn(x), where a is a constant which need not be explicitly

evaluated and

sinX (4.16)

sine1

For n=O, 1, and 2

n=O: p=caT 0 (x)=cz

=A1

n=1: p=aT(x)=otx

=j2A1sin0=j2Alxsin0
1

j2sin81

t'p 
"i5-. ....,... .-,-..
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n=2: p=aT2(x)=a(2x -1)=2ax 2-a
=2A cos20-A2

1 22
=2A1 (1-2x 2sin 20 1)-A2

2 2=-4A x sin 20+2A -A2

a A 2=.a+a.I
2 ' 22sin 01 sin201

We keep going until the desired value of n is reached.

Following the above procedure, we are able to determine the following

junction reflection coefficient magnitude ratios:

SA:A 2 : ........... :A a1: a2: ..... :a 1  (4.17)

where ai=Ai/A 1. Assuming the impedance steps are small, (4.13) can be written

approximately as

Ai=± In- -. >0. (4.18)
Ti-

Substituting (4.18) into (4.17) and performing some manipulation gives

(z I z IZn
a.Iln-. +lln-.....ai Z° Z2 ,n~ } for nodd

Z. al+a2+ .......... +an+ 1

ln- ' =- 12
a ln--+ln--+ .......... +In

i\ Z o  2 t for n even
a Il+a2+. .......... +an+l

,."a. ,,, .'''''' " ""''"" .'""-' . - -,- - -""""" . .'.-.-" .- - - '"" - . . . . . . . . . .. . -"•"•"



-,- -- - - - - - - - a &W - * 4 . - ..._ ' %-

126

I(nV +lnV2+ .......... +lnV )ai 1 2 n+1.
al+a 2+ .......... +an+ 1

a in(VIV 2 .......... Vn+l) 
%

a1 +a2+ ..... +an+-
a ain( Smax's)(41)i

a.+a2 . .......... +an+ 1

Knowing the ai by use of the above-mentioned scheme and (4.17), and knowing

Smax,s, we can then compute all the ratios Zi/Zi- 1 by use of (4.19).

As shown above, the normalized impedance of each section is obtained using

the first-order approximation, while the number of sections needed is calculated using

the exact formula of (4.11). It should be noted that neglecting the higher order

reflections in each step as well as the approximation used in (4.18) can introduce

some errors in the above designed Zi/Zi- 1 ratios. In order to reduce such errors,

some modifications have to be made. From (4.1), it can be shown that the input

reflection coefficient for an exact Chebyshev bandstop reflector design is

(sinOl
S-i.S Iflr sine61)

Tn sinO,

n f sin81)(4.20)

1 lax,$ I~

:.. ..-..

/. .•
in(-2

%N
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The corresponding approximate equation which is consistent with ignoring higher

order reflections is

sine
p -'Iln(Smax,s), (4.21)l

T 1

.Pa 2  (4.21)

(Equation (4.21) is analogous to [33, eq.(36)] for the step-transformer case.) A

correction was introduced by making the ripple sizes of (4.20) and (4.21) the same at

the band edge. By replacing 01 with 01' in (4.21) and setting pa 0=01'=Pel 0=01,

we get

1

0',=sin-cs coshSohi -1 (4.22)
nL oh cosh' S

where S is given in (4.11), 01 is given in (4.2), and

S=- -1 (4.23) ",
S -1max,p

Parameter 01' calculated using (4.22) is then used in place of 01 in (4.16) to generate

all the junction reflection coefficients.

Finally, we have to determine the exact length of each line section in order for

every section of the reflector to be resonant at the same frequency fo (which is the

center frequency of the stopband). Referring to Fig.4. 1, the length of each line

section Li equals a quarter wavelength at the stopband center frequency fo. Hence,

% %

Z5,

'S.
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a.L 0- L radians, i= 1,2 ......... ,n (4.24)

where I3i is the propagation constant of section i at frequency fo. Solving (4.24), we

obtain the length for each section that bring the entire structure into synchronism at the

same frequency f0.

4.2 REALIZATION OF A SLOW-WAVE CHEBYSHEV REFLECTOR

FROM A TRANSMISSION-LINE PROTOTYPE

Following the procedure depicted in Section 4.1, we have designed a

Chebyshev reflector based on crosstie overlay slow-wave CPW's with the following

prescribed characteristics:

.The stopband center frequency=9 GHz

.The maximum stopband attenuation=20 dB

.The equiripple level in passbands--0.5 dB

.The equiripple fractional bandwidth=0.4

After the synthesis of a prototype as shown in Fig.4.1, the number of

sections to be inserted between Zo and Zn+1 is n=13. The maximum stopband

VSWR is Smax,s- 3 9 7 .9 9 7 5 . The maximum passband VSWR is Smax,p;1. 9 8 4 1.

The junction VSWR's Vi, calculated from (4.19) are shown as follows:

V1=V14=1.8056

V2=V 13=1.3369

S,

" SA-
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V3=V 12=1.4124

V4=V1 1=1.4831

V5=V10=1.5433

V6=V9 =1.5873

V7=V8 =1.6105

The step impedances of the reflector prototype are:

ZO =1.0 0 (input)

Zi =ZO xVI =1.8056 Q.

Z2 =Z1/V2 =1.3506 Q

Z3=Z2xV3 =1.9076 Q

Z4 =Z3/V4 =1.2862 Q

Z5 =Z4 xV5 =1.9850 fC

Z6 =Z5 /V6 =1.2506 K2

Z7 =Z6 xV7 =2.0140 Q

Z8 =Z7 /V8 =1.2506 Q

Z9 =Z8 xV9 =1.9850 0

% % .. . .

J P V.4 .1 4- * 444

-~. j. p 'f p 4 ~
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Z1O=Z9/V1O =1.28620

Z11 =ZI0 xVl1=1.9076 Q

Z12 =Z 1 /V12 =1.3506 Q

Z13 =Z12 xV13=1.8056 Q

Z14 =Z13/V14 =1.0 Q (output)

As the reflector prototype was obtained, the characteristic impedance of each

step was scaled up 12 times to facilitate its realization from the new crosstie overlay

slow-wave CPW's. Furthermore, for convenience of measurement, two three-section

quarter-wave impedance transformers have been connected to both the input (Z4) and

output (Z14) ends of the reflector so that the problem of impedance matching with

external 50 fQ measuring systems was eliminated. The designed performances of the

quarter-wave impedance transformer are:

.The passband center frequency=9 GHz

.The maximum stopband VSWR--4.167

.The equiripple passband VSWR =1.5

.The equiripple fractional bandwidth=1.0

The characteristic impedance of each impedance step in the quarter-wave impedance

transformer was calculated based on Collin's [35] theory as follows:

,""

.C M
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ZO = 50 Q (input)

ZI = 37.3112 D

Z2 = 24.4948

Z3 = 16.0809 Q

Z4 = 12.0 KI (output).

For a chosen crosstie overlay slow-wave CPW configuration, the propagation

constants and the characteristic impedances of each constituent section A (with

crosstie strip) and B (without crosstie strip) at the stopband center frequency were

calculated by utilizing the spectral domain method. The attenuation constants due to

dielectric loss in both sections A and B were assumed negligibly small while the
tS.

attenuation constants due to ohmic loss were calculated from Wheeler's incremental

inductance formula. In the meantime, we assumed that the propagation constants in

both sections A and B were not affected by the attenuation due to conductor loss. The

information for sections A and B was then used in equation (2.47). The lengths IA

and IB of the constituent sections A and B for each impedance step were thus

determined. It is important that the operating wavelength be sufficiently longer than

the period I (=IA+IB) of the periodic crosstie overlay CPW so that the structure will

simulate a uniform transmission line. Finally, equation (2.43) was used to obtain the

guide wavelength at the stopband center frequency (Xgo)i for each impedance step i,

and therefore the length Li for each impedance step that brings the entire structure into

synchronism.

S.. .:. ,;.:.:. % 3 -,: .'-.---.----.:.- ." ..--, .-- -, --. - v .:-.:,.;...:-..- .-. :.'." ,"-, .- :.:
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4.3 PRELIMINARY EXPERIMENTAL RESULTS FOR THE SLOW-

WAVE CHEBYSHEV REFLECTOR

Referring to Fig.1.4 for experimental simplicity, a monolithic crosstie

overlay slow-wave CPW with s=0.15mm, w=0.745mm, b=0.001mm, h=0.35mm,

Er(semi-insulating GaAs, substrate)=12.9, Cr'(Si3N4, dielectric overlay)=6.5 and Au

(conductors of CPW and crosstie strips)=0.0015mm has been adopted to serve as the 'a

building block of our preliminary slow-wave Chebyshev reflector circuit. Table 4.1

shows details of the values of Z, 1A, 1B and L for each impedance step of the entire

circuit. In the experiment which was performed by Texas Instruments Company,

Dallas, Texas, first, a CPW pattern was formed by a lift-off technique after a

Ti/Au=200A/15000A metallic layer was vacuum-evaporated onto a semi-insulating

GaAs substrate surface with er=12.9 and h--0.35mm (h is the substrate thickness).

The center conductor width of the CPW is s=0.15mm and the slot width is

w=0.745mm. A 1.0 gm thick Si3N4 (er'=6 .5) layer was then coated on the surface

of the CPW as the dielectric overlay in a plasma-assisted chemical vapor deposition 1

system. With the same lift-off technique, the metal crossties made of a 15000 A thick

vacuum-evaporated Au layer were finally deposited on the top surface of the Si3N4

layer. Fig.4.3(b) is a photograph of the device embedded in a 50 Q test jig.

Figs.4.4 and 4.5 show the calculated and the measured insertion loss and

return loss, respectively, of the slow-wave Chebyshev reflector. In the calculated

curves, the effect of the ohmic loss of the gold conductor (resistivity=2.35x 10-6 !-

cm) has been included. From these two figures, the center frequency of the stopband

is 8.15 GHz in experiment and 8.85 GHz in theory. The difference is about 8%. The

b~ %, 1
0€ , . 0 ...-- '-'-.' 'J '."- .",." '-''""",",",. '"d' ,'...". , "g .~ ' .. , , ."Z. -. " €, "." ."..-,"., % .",.-.
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Table 4.1: Detailed information for Z, IA IB and L of the slow-wave Chebyshev
reflector and quarter-wave impedance transformers

simpedances &

Zof lengths (2) 1 A (m) I B (mm) L (mm)

impedance steps

1 (imped. transf.) 37.31 .0039 .0961 1.4

2 24.50 .0093 .0907 1.0

3 ( ) 16.08 .0199 .0801 0.7

4 (input section) 12.00 .0312 .0688 0.6

5 (Cheby. reflec.) 21 .67 .0118 .0882 0.9

6 16.21 .0197 .0803 0.7

7 ( ) 22.89 .0106 .0894 0.9

8 ( ) 15.43 .0213 .0787 0.7

9 ( ) 23.82 .0099 .0901 1 .0

10( ) 15.01 .0223 .0777 0.7

1( " ) 24.17 .0096 .0904 1.0

12( ) 15.01 .0223 .0777 0.7

13( ) 23.82 .0099 .0901 1.0

14( ) 15.43 .0213 .0787 0.7

15( ) 22.89 .0106 .0894 0.9

16( ) 16.21 .0197 .0803 0.7

17( ) 21 .67 .0118 .0882 0.9
18 (output section) 12.00 .0312 .0688 0.619 (imped. transf.) 16.08 .0199 .0801 0.7

20( ) 24.50 .0093 .0907 1.0

21 ( " ) 37.31 .0039 .0961 1.4

2 (5.0
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(a)

'(b

Fig.4.3 Photograph of the slow-wave Chebyshev reflector. (a) Device chip,ft (b) Device and test jig.
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-S Fig.4.4 Insertion loss of the preliminary slow-wave Chebyshev reflector.
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Fig.4.5 Return loss of the preliminary slow-wave Chebyshev reflector.
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difference is caused not only by the errors in fabrication but also by the fact that the

high order reflections in each impedance step were not taken into account in the

calculation of each junction's VSWR. The peak insertion loss in the stopband is 38

dB from the experiment and 35.5 dB from theory. The minimum return loss in the

stopband is 11 dB from the experiment and 15 dB from theory. The poor return loss

inside the passband comes from the narrow-bandwidth impedance transformers. The

slow-wave factor of this reflector at the stopband center frequency is about 10.5. The

physical and electrical lengths of the slow-wave reflector are 10.8mm and 19.99

radian, respectively. From the above discussion, our theoretical and experimental

results agree reasonably well. However, the detrimental ohmic loss diminishes the

usefulness of the reflector. In order to reduce the ohmic loss of the circuit so that a

higher Q value can be obtained, a modified crosstie overlay slow-wave CPW is

proposed and examined in the following section.

4.4 A MODIFIED CROSSTIE OVERLAY SLOW-WAVE

COPLANAR WAVEGUIDE AND ITS APPLICATION TO A NEW

SLOW-WAVE CHEBYSHEV REFLECTOR

Although the transmission and reflection characteristic measurements of the

slow-wave reflector presented in the last section indicate that a band-reject

phenomenon was confirmed, a somewhat high ohmic loss due to the large skin

current densities on the surface of the crosstie strips and the center conductor of the

% Ie r. II
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CPW caused degradation of the reflector's performance. In order to reduce ohmic

loss to an acceptable level, a modification of the slow-wave CPW presented in

Fig. 1.4 has been made based on a mechanism similar to that described in [36] which

is proposed as the new building block of slow-wave reflector circuits. Figure 4.6 is

the schematic of the modified crosstie overlay slow-wave CPW. As shown in

Fig.4.6, the same modification can also be applied to the microstrip version. Instead

of using a thin dielectric overlay to generate a cascaded chain of large capacitive and

inductive sections, a much thicker dielectric overlay and modulated cross-sectional

configurations of CPWs in the constituent sections A and B are adopted herein. Since

the slow-wave factor in the periodic crosstie overlay CPW mainly depends on

"-ZB/ZA (ZA and ZB are the characteristic impedances of the constituent sections A

and B, respectively), the large value of the slow-wave factor will be maintained in

spite of a much thicker dielectric overlay if different cross-sectional configurations of

the CPW in sections A and B are appropriately chosen. The spatial separation of

electric and magnetic energies is not changed while the skin current densities flowing

on the crosstie strips and center conductor of CPW are reduced. It is conceivable that

the new slow-wave reflector proposed here should be able to provide a reasonably

short physical length as well as a lower level of attenuation inside the passbands.

This is useful for implementation of a possible high-Q circuit in passive monolithic

microwave and millimeter-wave integrated circuits.

4.5 PREDICTED CHARACTERISTICS OF THE NEW SLOW-WAVE

CHEBYSHEV REFLECTOR

As Fig.4.6 shows, a modified crosstie overlay slow-wave CPW with

1*

A

" - . . *
" -'' .- -. '. " .- """- - . ''. .- ".-'-"- ."-.-." -.. ' -- "....'" '5'.. .. "-.-.,-,'. A ',5.. -,..,,'''. % % L ' . ..



139

* Crosstie" conductor patternLW6.
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Fig.4.6 Modified crosstie overlay CPW and microstrip slow-wave structures.
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I,. V~ 5 J5

IF Aft



,I

140

SA=3.Omm, wA=0.2mm, SB=O.1mm, wB=1.6mm, b=0.02mm, h=0.254mm,

er=9 .7 (alumina), er'= 3 .5 (polyimide), Au--0.004mm is selected as the new building

block of our slow-wave Chebyshev reflector circuit. The prescribed characteristics

are as follows:

.The stopband center frequency=5 GHz

.The maximum stopband attenuation=10 dB

.The equiripple level in passbands--0.5 dB

.The equiripple fractional bandwidth=0.25.

After the synthesis of the circuit, the number of required impedance steps is 15. Table

4.2 presents the details of the values of Z, IA, 1B and L for each impedance step.

Fig.4.7 and Fig.4.8 show the predicted insertion loss and return loss, respectively, of

the new slow-wave Chebyshev reflector. As Fig.4.7 shows, a somewhat higher

ripple size (about 3-4 dB) in the upper passband due to conductor loss could be

further reduced by appropriate adjustment of the CPW cross-sectional configuration

and dielectric overlay thickness. Fig.4.9 and Fig.4.10 show the real and the

imaginary parts, respectively, of the input impedance of the new slow-wave reflector.

The load impedance connected to the output end of the reflector is 13 0. The slow-

wave factor of this reflector is about 9. The physical and electrical lengths of the new

slow-wave reflector are 24.1 mm and 23.46 radian, respectively.

..,
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Table 4.2: Detailed information for Z, IA, lB and L of the modified slow-waveI
Chebyshev reflector

impedances &

of lengths z (Q) A (mm) I B m) L (mm)
impedance step

1 21.90 .0227 .0773 1.7
2 18.91 .0284 .0716 1.5

3 22.27 .0221 .0779 1.7
418.63 .0291 .0709 1.5
522.55 .0216 .0784 1.7

6 18.45 .0295 .0705 1.5

722.70 .0214 .0786 1.7
818.39 .0296 .0704 1.5

9 22.70 .0214 .0786 1.7
10 18.45 .0295 .0705 1.5

11 22.55 .0216 .0784 1.7

12 18.63 .0291 .0709 1.5

13 22.27 .0221 .0779 1.7

14 18.91 .0284 .0716 1.5

15 21 .90 .0227 .0773 1.7

%.%

%;N



142

tom |

S -

a

6I
2

o
o I I I I I * r

0 2 6 tO Iz I 16
FREOUENCY Mal

Fig.4.7 Predicted insertion loss of the modified slow-wave Chebyshev

reflector.

-.
'--'--



143

20 ' I I I I !

to

16

it

12

U1

6 4o

U. 0
0 2 1 6 6 10 12 it 16

FREOENCY CGWtZ

Fig.4.8 Predicted return loss of the modified slow-wave Chebyshev reflector.



* 144

too

jIto
120

80 111 j

20

FfCXC 201i 10 12 it 16 i
Fig.4.9 Real part of the input impednace of the modified slow-wave Chebyshev

* reflector.

J.-J



145

' i I J I I I F I U I

3S10

2531

SI 120

to

-S

-to

a.-tO ii1
-is

0 2 1 6 a 10 12 It 16

FREMUECY EQ

Fig.4. 10 Imaginary part of the input impedance of the modified slow-wave

Chebyshev reflector.
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CHAPTER 5: CONCLUSIONS

5.1 ACHIEVEMENTS

Ip
As a new slow-wave structure for monolithic microwave and millimeter-

wave integrated circuits , a crosstie overlay coplanar waveguide was proposed. The

ease of fabrication, freedom from dielectric loss, and the feasibility of combining it

with other slow-wave mechanisms make it more adaptable for monolithic integration.

Similar advantages can also be found in the counterpart microstrip version. The
'I

slow-wave propagation along this new structure has been investigated both

theoretically and experimentally. The slow-wave factor observed agrees reasonably

well with the theoretical prediction. From both results, slow-wave propagation with

linear dispersion was conceived. Based on the new slow-wave structure in which

the guide wavelength is very small, compact grating structures are found for use as a

frequency-selective distributed Bragg reflector (DBR). A doubly-periodic band-

reject grating has been created from the DBR's and the band-reject phenomenon was

observed as predicted. In order to improve the passband characteristics of the band-

reject grating, a monolithic slow-wave Chebyshev reflector was designed and I
fabricated. Agreement between theory and preliminary experiment has been

confirmed. Based on this theory, a new slow-wave reflector with improved

characteristics is proposed and examined. A respectable slow-wave factor and a

drastic reduction of conductor loss have been obtained. From this work, the

proposed new crosstie overlay slow-wave structures are believed to be potentially

useful for miniaturization of distributed circuits in GaAs MMIC's, although the

146
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minimization of circuit loss requires further optimization.

5.2 SUGGESTIONS FOR FUTURE RESEARCH

In future research, the new crosstie overlay slow-wave structures are suitable

for a number of applications. For instance, (1) By the use of the frequency-selective

reflection properties of the band-reject grating, two of the gratings separated by an

appropriate distance could be employed as a resonator. Alternatively, two band-

reject reflectors can be combined with a 3-dB hybrid to produce a bandpass reflector.

(2) A new version of a distributed Bragg reflector (DBR) Gunn oscillator [37] with

an intrinsic leaky-wave antenna in a planar circuit form can also be realized from the

exploitation of the surface stop band and the leaky-wave stop band of the new

crosstie band-reject grating. In addition, if it were possible to incorporate the

Schottky slow-wave mechanism as an electronic phase shifter [38] in the grating

section, it would be possible to tune the oscillation frequency of the device

electronically. This is because in such a grating the propagation constant 8 can be

controlled by the phase shifter, and hence the stopband of the grating can be shifted

[39]. (3) In the new crosstie overlay slow-wave CPW's, the propagation constant B

and the characteristic impedance Z are approximately proportional to '"ZB/ZA and

ZB, respectively. We can thus readily enhance the propagation constant 13 while

maintaining a given characteristic impedance Z. This property can be effectively

applied to achieve the simultaneous matching of the phase and the impedance, which

is required in the optimum design of traveling-wave electro-optical modulators.

Furthermore, the modulation bandwidth of these devices can be very wide due to the

%% '%1
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inherently almost-nondispersive properties of the proposed new crosstie overlay

slow-wave structures.
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