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' Matching is defined as the methodology of merging micro~data files to .
; EE create larger files of data. Matching is often done to extract statistical |
: information which cannot be obtained from the individual files that are 8
¥ incomplete. Current federal statistical practice involving multivariate :
k) .

file=merging techniques is typically not based on a formal statistical )
theorv. In view of this situation, a survey on matching is given., All known
models for matching arce presented under a unified framework, which consiste

ol three situations involving the same or similar individuals. o
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¥ & The properties of a maximum likeljhood strategy to match files of data ;
it involving the same individuals are derived via ranks and order-statistics v
;' 0] from bivariate populations. In addition, the properties of this strategv "
v have been examined with respect to a more reasonable criterion called -
\ epsilon-correct matching. Asymptotic results for such situations, including
" (1Y the Poisson approximation for the distribution of the number of correct '
: ;1. matches, and %443 convergence in probability of the average number of
) epsilon-corect matches, have been derived. Small-sample properties, like the "
S monotone behavior of the expected number of matches with respect to the )
ﬁ dependence of parameters of the underlying models, have been proved.
Two matching strategies due to Kadane (1978) and one strategy duce to '
( :‘;R Sims (1978) for merging files of data on similar individuals are discussed. o
I oy These strategies are evaluated via a Monte-Carlo study of matching models :l
3 involving trivariate normal distributions.
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i. INTRODUCTION

One of the most important tools for analyzing economic policies
is the micro-analytic model. Thils technique 1is used frequently in
public declision-making centers. Virtually every Federal Agency uses
micro-analytic models for the evaluatlon of policy proposals.

Direct use of sample observations rather than aggregated data
is characteristic of the micro-analytic approach. For this reason,
the micro-data that 1s used as input to the model has a significant
bearing on the validity of the results of the model. Furthermore,
when all the input data come from a single sample, the quality of the
model depends on, among others, sampling and data-recording proce
dures. However, if the data from a single source is insufficient or
partly aggregated, then typically multiple sources of data are used
to provide the necessary lnput to the model. At the same time,
issues such as validity and quality of the results of the model
cannot be assessed as easlly as when we have a single source of data
as input. In such situations, government statisticians have been
using a methodology 1ln which multiple sources of data are merged to
form a composite data- file. Effective use of the different pleces of

data In order to produce sensible but more comprehensive files is a

fundamental issue in the file merging methodology.
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Some of the difficulties assoclated with the merging procedures

and techniques for their resolution have been known for quite some-

time. Initlated by the Federal Subcommittee on Matching Techniques,

there has recently been renewed effort to establish solid theoretical
tfoundatlon and empirical justification for the file merging method

ology. This research reviews the relevant literature and then pre

-o_v"'

sents new statistical properties of some known procedures for merging

data-files. We shall now glve an example of a typical situation in

which mergling of two files is carried out.

X, O TR,

1.1 A Paradigm

A micro economic model in heavy use at the Office of Tax
Analysis (OTA), Department of the Treasury, is the Federal Personal
income Tax Model. This model ls used to assess proposed tax law
~hanges itn terms of their effects on the distribution of after tax
income, the «fficiency with which the changes will operate in
achleving thelr objectives, etc. The inputs for this model are two
sources of micro data, namely the Statistics of Income File (SOI)

and the Current Population Survey {(CPS)Y. The 50I file is generated

annually by the Internal Revenue Service (IRS) and 1t consists of

personal tax return data. The CPS file is produced monthly by the

P 2L s s

Bureau of the Census. As we will explaln in Section 1.2, such
yonling of dara from more than one Federal Agency has been severely

restricted in recent years Ly, among others, confidentiality issues

pla oy

such as the privacy of the individuals tnvolved In the aforementioned
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files of data. For this reason, complete information, especially

identiflers such as soclal security numbers, 1s typlcally not
released by the IRS and the Census Bureau. The resulting micro-data
files are compromises between complete Census filles and fully aggre-
gated data-sets. Thus, sufficient detall remalins to support micro-
analysis of the population, while partial aggregation protects
individual privacy and greatly diminlshes computational burden.

A typical problem in tax-policy evaluation occurs when no single
available data file such as SOI or CPS contains all the information

nceded for an analyslis. For example, consider the variables

W o (X,Y,Zl,Zz). where
X = Allowable itemlzations and capital gains
Y = 0l1d Age Survivors Disability Insurance (OASDI)
Z1 = Social security number
Z2 = Marital status

Suppose that we are interested in estimating a simple correlation

between X and Y or, more generally, the expectation of a known

Px,Y

function g, say, of W; that is the integral

Y - | g(w) dF(w) (1.1.1)

where F(w) 1s the joint distribution function of the variables in w.
Now, the SOI microdata file cannot be used in its original form since
1t does not include the OASDI benefits (Y). Census files (CPS) with
OASDI benefits do not allow a complete analysls of the effect of

including thls benefit, since 1t does not contain information on
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allowable itemizations and capital galns (X). Thus, instead of
observing X,Y,ZI.Z? Jointly on the same units, we have to get only

the following palr of fiies:

P2 » b
St

l'v
af.

File 1 (SOI): X,2..Z. )

1092 v

;Q o

4 and =
» ]
y . U4
File 2 (CPS): Y.Z..Z IR

,
N
e
.

Estimating y based on the fragmetary data provided by File 1 and

File 2 1s an important practical problem that has not yet been solved

To e %

L
. satisfacrorily. In an attempt to cope with sltuations such as the . ﬁ
E i
1 074 model, Federal Agencles have long heen using procedures fo. )
Al
(
. N
rat o btng or merging the two incomplete files so that one can do the £$ o
.
LR
psual inlerence for oy, hoping that the merged file 1s a reasonable .
a
.
[
sanatitute for the unobserved data on (X,Y,ZI.Z?). !
) ~
i
The reporting unlts in CPS are households. in general, the e,
.
units 1o a file may refer to other types of legal persons, like '\é o}
corporations, partnerships and flducliaries. The term "individual® '
s . o
I~
will be used as a generic label in this thesls to refer to the '{
» . -3
. ..i . \
reporting units of the micro data files. :\ '
‘e
; Ly
P.2 A_Uichotomy of Matching Protlems &~
LAY
&
Pouphly specking, there are two different categorlies of matching oA
;‘- -’
sreblom,  The firct category consists of problems of exact matching o A
1
in which 11 ts desired o identify palrs of records 1n the two files _
,
-
thar pertain to the same individual. Accurate informatlion on identl > ;
.
) .
fiers such as social security number, name, address are assumed to be s
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avallable when exact-matching the two files. 1t is clear that all we

need to carry out an exact match of two files is, among other tools,
an efficient software to sort the individuals by their identifiers.
With the help of such software, we can, within reasonable error, link
a glven indlvidual in File 1 with an individual in File 2 such that
these two units possess the same values for the ldentifiers. The
resulting merged file contalns data which are more comprehiensive than
both File 1 and File 2. Also, even after merging, most records will
pertain to the same individual, the number of erroneous matches in
the enlarged file depending on the particular software used in the
process of merging. It is clear that, If accurate ldentifiers are
avallable for the units in the two files, then no statistical issues
are involved in the matching methodology and we shall not discuss
this type of problem any more. However, one may refer tou, among
others, Fellegi and Sunter (1969) and Radner et ail. (1980) for work
related to the exact matching methodology. We shall close our
discussion of this type of matching problem by noting some of the
reasons why exact matching of files is often not possible.

First, over the past several years, there have been significant
changes in the laws and regulations pertinent to exact matching of
records for statistical and research purposes. New laws, especially
the Privacy Act of 1974 and the Tax Reform Act of 1976, have imposed
additional restrictlions on the matching of records helonging to more
than one Federal Agency and on the matching of files of Federal

Agcncles with those of other organlzatlons. As a result of these
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¢
laws, some Agencles have limited access to thelr records for statls
tical purposes to an even greater extent than seems necrssary by
statutory requicrements.
Cecond, analyses of microdata often jnvolve data from anits that
n are not avatlable from a single sonurce but are availlable from several
sources. For example, suppose that one is interested in the relation
ships among two cets of variables, one set consisting of information
about nhealth care expenses incurred by individuals and the other set
congisting of Informartion about recelpt of various types of welfare
venefits.  Supposse further tha! no exdisting data file contains all of
the needed viariables, byt that (wo samples of a target population,
which come from two dAifferent surveys, topgether contain all these
v iabiles. I executing a new survey Lo obtatn all the variables
from a single sample is not feasible, then one might match the two
samples and use the merged file for statistical analyses of variables
which are not present in the same sample. Note that the two sample
surveys may have information on the same individuals whose iden
tities are eilther unknown or unreliable. However, in the afore
ment toned example, 1t 1s more appropriate Lo assume that the two
samples contain very few or no individuals in commen. In case the

two samples are stochastically independent, we shall describe the

units In the 'two samples as similar individuals.

Suppose, then, that exact matching ts not feaslibie in view of &
‘h
) ' . &
2 the aforementioned reasons. Then the tools that are usad in the -
L
L]
» exact matching metradology are inadequate for the purpose of merging

g
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the two files of data. 1In particular, identifiers are practically
useless. However, the probabilllistic structure of the populations
that generate the data in the two files or other statistical
techniques can often be used to combine the two files. Such proce-

dures will be called statistlical matching strategies.

In the literature on matching flles there 13 no consensus on
rigid definitions of Exact Match and Statistical Match Indeed, it
is tradlitional to distinguish these two types of problem by verify-
ing whether same (exact) or similar (statlistlcal) individuals are in
the two files. Our classification of matchling problems 1s somewhat

different from the usual practice in the sense that any procedure

for merging files, which may contaln the same or similar individuals,

will be described as a statlistical match if statistical techniques
are involved in the process of merging. Thls convention is in agree
ment with that of Woodbury (1983), who describes certain matching
problems involving the same individuals in two files as "Statistical

Record Matching for Flles™.

1.3 A General Set-up for Statistical Matching

N, e

Consider a unilverse %V of individuals. Let 5. X. Z denote three

groups of random variables and let us assume that we cannot observe

the vector W = (X,Y,2) for any unit in 77. However, suppose that the

following data are avallable:

(3ase) File 1: n1 individuals, «ach with information on a

function !I. say, of W.
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and (Supplementary) Flie 2: n_ individuals, each with informa?t ton
\‘_hﬂ
on a function, g;, say, of W
- L4
o
Varlous matching problems arise depending on what type of data are in E{
VI and W>. We distingulsh only three different situations:
- ~&
-
Case 1I1: !I = X and EE - Y; we also assume that the two files Q'
contain the same individuals. ﬁb
oy
Case [I: lLet wi = (X, 2), !5 (Y,Z2). As in Case I, we further
assume that the two files contaln the same individuals. ﬁ
Case [[l: Let u'{ = (}(.Z), L (X,Z). Unltke in Cases I and 11, we o
) N
assume that the two files contailn similar individuals. -
[ ]
1.4 The Matching Methodology - E
Some_Important Steps «
We shall now mention some steps involved in actually creating a

statistical mateh between two given filles. First,

represented by the files differ, a "universe adjustment" is

Hut to ensure that there ls a common universe ’// from which the

Jidualys of the two tiles are sampled. Second, a "units adjustment® .y
2
might be needed 1 the units of observatlon in the two files differ Gt
fe.g. persons and tax uwnits).  Third, "matching or common variables,” I
s

L
2, are defined and it is assumed that File 1 with n records carries a

~
information on (X,Z), whereas File 2 with n2 records consists of data S

L. L 1 ™
on (Y,Z2). The varlables X and Y are often called non matching .

.
variables. Finally, in the "merging" step, \f the records (Ei,gi), vh
and (XJ,ZJ). respectively from File 1 and File 2, are to be matched, >

5
then one completes the 1 record in File 1 by substituting !J for

O

~

"

\

&

- Y f = W N4 "" -
S A Y L O Tt S G Y, (R LR S A AR A, Wy S RSOV, it Vi Gt S v 1

1f the populations
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the missing value. Thus, we gel the synthetic File 1:

O:é )o 1 - 1,2. L)

-

(X,.1,.2,

Clearly, the same methodology can be used to get a synthetic Flle 2
by finding substitutes for missing X values of File 2 using X's from
File 1. However, in 6rder to keep our discussion simple, we shall
often be concerned with completing only File 1. Although, many

different methods have been used in this final step, several basic

similarities can be identified. In most matches, certain Z variables

are treated as the so called "cohort'" variables. Such variables
cstablish "packets”™ of the records in each of the two files, with
matching permitted only between palrs of cases In the same acke?! |
For example, cex 1s often a cohort variable so that a male can be
matched with another male, and a female with another female. This
step about the formation of c¢ells or packets is aimed at diffusing
the dissimllarities between units that are being matched. Further
more, depending on how many of the common variables are used as
«ohort variables, there may be very little or no within packet
variation with regard to Z. In such situations, File 1 has data on

X and File 2 has data on Y and we would like to merge the files to

~

pert Jotnt danformation on X and Y. Note that, in Dection 1.3, such a

seenar 1o was labeled Case [ The selection of "matchilag records®”

withln a packet is typically based on a "measure of dissimilarity"™ by

which a "distance” 1s computed between a given File 1 record and each

potential mateh in the supplementary fiie. A potential match with
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)
the smallest distance 1s chosen as the match that will provide the -
v Ny
»n" missing Y value 1o a tile 1 record. h
A 4
: b
R . >
;:. 1.5 Two Basic Types of Matching Strategies Y X
,, Suppose that the age of an individual, 21. say, 1s a matching ::5 X
v,
. L}
4 =¥
8 variable. Then, one may define a distance measure d, say, between :
4 ,\‘
:. tndividuals 1 in File 1 and § in File ? by the equation ';-: !
X )
L)
a.. = |Z.. - 2, 1.5.1 !
g, 13 ! 11 23‘ ¢ ) , }
] w |'
) * '
1
P For {fixed 1 1,7, ... np, one Wwill then match one possible j* in :
/s th 3 !
File 2 with 1 record in File 1 if }™ minimizes dij over j. That )
" . . L . ) . , h
\ 13, 3" depends possibly on 1 and satisfies the restriction o
. b
A\ 1
' )
d, .. = min d. 1.5.2 "
D 13= . i} ( ) r
! l<J<_ﬂ n .
PN S 2 .
v Y g
s L)
) If the cholve of 3} invelves no other restrictions, then the statis P
W "
) . - !
::: tical matching strategy is called "Unconstrained Matching”. However, R
there are typically addilional restrictions subject to which one must F"
o -
‘o choose the optimal match j* from File 2. Matching data files with
K the rectrlcetion that the varlance covarlance matrix of data items in ':;:
. ~ach file be identical to the variance covariance matrix of the same P
data items in the matched file is an example of a "Constrailned Match." I~ -3
e In order to formulate this type of merging mathematlically, :-j' .
. H -I »
i assume first for simplicity, that both files carry only n records; 7
o d
that 1s, the common value of n1 and n2 is n. Let }:: '
'
" .\' :
‘
v = "
. t
,I‘ (98 .:
0
:' \:‘ v
N U
p t
'
~— v
: N
l‘ -
> : y N k]
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m aij = & 1 if 1th record in File 1 is matched with the jth !
0 -»
record in Flle ? 1<1, J<n (1.5.3) i
X .th )
}{ 0 if the i record in File 1 is not matched with the N
}
th 2}
& J record in Flle 2
4
DY Then, the following additional conditions will ensure that the “
2~ aforementioned preservation of moments is achieved by not letting )
¥y e
o~
more than one record in Flle 1 to be matched with the same record in )
q 5‘3 File 2: '
p 3¢ ()
v, n !
pb Yy a 1, for J = 1,2, ..., n (1.9.4) ¥
a1 Y '
:
. >
& n '.
Y a,, =1, fori :=1,2, ..., n (1.5.9) '
. 13
. J=1
ﬁ .
Now let dij denote, as in the case of a unconstrained match, a o:
()
LS . . . "l
T measure of inter-record dissimilarity given by the extent to which ;
N M

the attributes in any one record differ from the same attributes in

another record. Then the optimal constrained match minimizes the .:'.

” "objective function” W

~ N

n n :

vl ¥y Yy d a (1.9.6) »
-.\' - - ,_‘ i

N vy N iy

"ol

--:; Subject to the restrictions in (1.5.3) to (1.5.9). <(Clearly, this 'i

"

.A R

extremal problem is the standard llnear assignment problem in ’.

» “

’ "Optimization." o

C‘-' F o

-

» A matching situation mere typlcal of problems relating to policy ::

analyses 1s a constrained merge of two flles with variable weights

[
L}
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in both files and an unequal number of records in the files. Let @y
.th
be the welght of the i record in File 1, and let Bj be the welght

.th
of the j record in File 2. If n ., are respecltively, the number

1T 2

of records in File 1 and Flle 2, then we minimize the objective function

N in (1.5.6) subject to the following constraints.
n
e
Y i i 1.2, ..., 57
Z 11\) @y n1 (1.5 7)
] 1
, N
| Y a B, ) = 1,7, ..., n (1.5.8)
\ . } Z
pp N
y
: " M2
'; Loy -2 By (1.9.9)
i 1=1 j-1
and
aij >0, v 1 and ) (1.9.10)

It is clear that an optimal constrained matching strategy when
the two files have uncqua!l number of individuals s the solution of
: a standard transportation problem in which the roles of the "ware

houses™ and "markets”™ aire respectively played by the records in File
1 and File 2 and the "cost of transportation” is the inter-record
distance "dij"' Fxisting algorithms to solve a linear assignment or

transportation problem can be used to complete the final "merge"

step, giving us the synthetic sample

WY o= (X, ,Y?,Z2. ), 1 <11 <n_, (1.2.11)

=1 SRR 1
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where Y7 denotes the value of 1 assigned to the 1*® record of File 1.

&

The sample in (1.5.11) may now be used to estimate a parameter like

Yy tn (1.1.1).

|24 X FEEAM

1.6 Criticlsms of Statistical Matching

In Sections 1.4 and 1.5, we described the general form of most

matching techniques that have been used by Federal Agencles.
Matching records at the "packet" level means basically that the
random vectors X and Y are stochastically independent, given the

value of the common variables Z. 1In the particular case of a multi

NEESEEE

variate normal distribution for W = (X,Y,Z), condilional independence

assumptlion is equivalent to the claim that the partial correlations

among X and Y variables, controlling on the Z variables, are all

|

zero. This point was made first by Sims (1972) and repeatedly by
others since then. The conditlonal 1ndependence assuamption s a
strong one for which convincing justifilcations has generally not bLeen
offered. It implies that the relationships between X and Y can be

totally inferred from X's relation to Z and Y's relationship to Z.

Sims (1978) stated that matching the files under such assumptlions 1s

»
» l? . .
\: unnecessary. He also sketched an alternative statistical procedure
) that uses the data in the two flies tou estimate, under conditional
N ‘
] :\.; o
- i ndependence, a parameter such as v in (1.1.1). Sims' alternative .

Ly will be discussed further in Section 3.2.

Fellegl (1978) and many other investigators have expressed great

caut lon about the yue of statistical mataohingy becaase not o mich g

-~
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't
known about the accuracy of the estimates of the jolnt distribution

v W
of W produced by synthetic files. "
=
Notwithstanding these criticisms of statistical matching, there Sj n
is no viable alternative statistical procedure that will, in general, U
LAS

I
provide better estimates of y than a synthetic file can offer. ' f
Given this lack of good alternatives, especlally when conditional x:_

independence does not hold, the area of statistical matching is wide

0 o
)
open and both theoretical and empirical investigations to discover ith) :
'
\

X the properties of synthetic data files are in order. W,
.ﬁ ‘

1.7 Reliability of Synthetic Files

1{’( :.l‘

The precision of synthetic-flille-based estimators of a given

.
Gt et

parameter relevant to the population of W = (X,Y,2) is affected by -
various types of errors that occur while matching two files. To ¥
v
oy ‘
Aiscuss these matchling errors, let us first restrict our attention E \
by )
. "
to the cases where the same individuals are in the two flles, namely ™
Case | and Case [1. -_‘ ‘:?
)
w
In practice, 1t 15 almost tnevitable 1n most matching projects e '.|
.__: .:
s R
that some matching errors occur, even with the most sophisticated }
procedure and the most careful execution of matching of the flles. 33 3
s
These errors fa.l intc two major categories: N
RS
1) Erroneous match (false march) or linking of records that ;

correspond to ditfferent individuals.

(11) Erroneous non-match ‘false non match) or fallure to link the

i ,\ "-{ -} -'
- "..’a" [AL N
e rteledeladad

records that do correspond to the same individual.

s
)T .
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5 The reliability of the results of a statistical matching .
. !
strategy 1is often defined (Radner et al., 1980, p. 13) as one of the :

following coefficients:

(a) the proportion of the correct matches, that is, matches of

78

r
o

A N Y S

records on the same individuals.

.
“y
E

=5
5

(b) the proportion of erroneous declilslons, that is, false matches

t

; and erroneous non matches. .
o
- These rellability coefficients are random variables because, in !;'.3
1 b view of the terminological conventions of Section 1.2, a statistical "
_-_;. matching strategy ls dependent on the data in the two files. The E"
'{‘ sampling distribution of the rellability ccefficients, either exact E
ﬁ or asymptotic (as the sizes of the files grow), are very useful in ;:
: A
1 _ judging the quality of a given matching procedure. ‘_'.'\
:"_': Now, we will discuss the reliablility of a synthetic file in E
g Case III, where the two files contain very few or no overlapping )
: ~ tndividuals. Flrst, note that the definitions of error In the E-
E ::f results of matching, which have been proposed for Case I, are not ::
‘ . applicable to Case [II because the linkage of records from the two ;:.
E:':: f1les that pertain to the same unit seldom occurs in Case [II. In '
"
b other words, almost all linkages ln Case [II are false matches in the .:.
- -

) sense of the definitions glven earlier in this section. In Case III,
w2 definitions of error and reliability which are tractable from a

theoretlical perspective are unavallable at this time. In fact,

W
‘, ‘. -
RAPLPTor s
Al tndl

Little theoretical work on the errors presenl in the synthetic files

L]

]
A 3
"

)
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T n e

of Case III has been done. Untll now, the evaluation of a gilven

matching strategy in Case [I1 has been done from an empirical polint

!rl;. * .
g LA

of view. A case 1n point ts the work of Rodgers (1984).

1.8 Snmmary o g™
4 P'._u ”
\ In Section 1.3, thrce important cases for merging two files of g
S ﬂ; 5
. .

data were distinguished. Of these, Case I and Case II are relevant ;Q

when the same individuals are represented in the two files. Case III

-

arises when only similar individuals are present in the files. This
¥ ;
) research 1s concerned with both theoretical investigations and 85

empirical evaluations of the quality of synthetic files in Case [ and

Case 1. wWe shall not dliscuss Case I in this thesis. §3
In Chapter ¢, Cagse [ ts dlscussed al some length. A review of ;e

known results for this case 1s gilven. New optimality properties of
a maximum likelihood matching strategy are established. Some small f:
"\
sample and large sample properties of the number of correct matches
with regard to thils strategy are derived, shedding some light on the

reliability of the synthetic file arising from using the maximum

I

I'kelihood strategy. Lt
Case [II ts the topic of interest in Scctivn 3. The bulk of the ;E
(48

discussion tn this Chapter is confined to matching two flles of data
C\
that are sampled from a trivariate normal population. Thus, if T

!

(X,Y,2) ls a three dimensional normal random vector, File 1 has data

".:'}-

on (X,Z2), while File 2 has data on (Y,Z). Two strategles proposed by -

Kadane (1978) and one strategy due to Sims (1978) are used to create “

LA
¢
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synthetlic flles out
synthetic files are
correlation between

on unbroken data on

of simulated data on (X,Z2) and (Y,Z). These
then evaluated by comparing the estimates of the

X and Y provided by them with the estimates based

(X,Y,2).
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MERGING FILES OF DATA ON SAME INDIVIDUALS

A useful classification of sltuations involving statistical mat

o
v
-
chling of data flles was discussed In Section 1.3. [t may be recalled ~
that in the context of the two files having the same individuals, this f:
S
classification scheme included two cases. Case I is the scenario
-
where no matching variables 2z are present, while case II is the S
s1tuation where matching varlables are part of the statistical model. 5
Y
]
In this chapter, we shall discuss results relevant to case 1 only. ™
i
2.1 A General Model e
T
Lot [U! be a multl dimensional random vector with C.0.F ”(E-U) e
) Ty
and P DF h(t u). Let {401, 1 - 1,2, ., n be a random sample of
o ot N
“lze n from . We shall assume that these sample values got broken up * :
)
into the component vectors T's and U's before the data could be .f :
LI
recorded. Thus we do nat know which T oand U values were palved in the
original cample and the two flles consist of the following data: ;i K
Flle 1 x o xo0 ooy Xy ok
which ls an unknown permutation of Il' Cy In. and ., ﬁ
File 2 Y., Y_. ..., ¥, .,
-1 -7 ~n A
« P
which 1s an unknown permutation of Uy ..., Uy

T
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DeGroot, Feder and Goel (1971) call this a "Broken Random Sample"
model for two files.

Two types of statistical decision and inference problems arise
from observing a broken random sample. The first type of problem
involves trying to pair the x's with the y's in the broken data in
order to reproduce the palrs in the original unbroken sample. The
second type of problem involves making inferences about the values of
parameters in the joint distribution H(t,u) of T and U.

This chapter will be organized into a review of the literature on
matching problems in Sectlons 2.3 to 2.5, followed by a discussion of
statistical propertlies of some matching strateglies in Sections 2.6 to

2.9.

2.2 Notatlo

In this section, we Introduce most of the notatlons that will be
used in the present chapter.

T
(1) () will denote a multivariate random vector. It is assumed to

have an absolutely continuous joint cumulative distribution func

tion (CDF) H(t,u) and joint density h(t,u); the context will make
T

the dimensions of t and u clear. In partlcular, (g) will denote
a 'wo dimensional random vector, with h{t ,u) and H(t ,u) respec

, - . nE T 3
tively as the density and CDF of (). h1(~) and h‘)(-) will
respectively denote the marginal densities of T and U aud F(+),
Gl+) will be the respective marginal Jdistributlion functions.

The symbol L’,;(') will De the generic notation for the density

» n’ v‘. ’ "\" v"')'.m',v-. \'P \u'.-, " ‘J“J"-'.'.-_\.-.'_-\;nl':-":-‘-;.“ ’._‘ , C v '_‘- - -.,.",."} ',f_:.r\‘.l*-'", .‘J'.'f_-/:.‘f.'.r
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function of

the random

denote a
T

real valued function.

veotor Fz.

Without the souttrx, pie) wiil

. i . .
2) Let (Ui), 1 - 1,2, ..., n be a random sample {rom the population
n
T . ) - s - .
of (). Let F Ixy = v T, be the empirical C.D.F
U n no- (Tj<x)
i1 -
hased on the variables Tl, Tn. Simitarly, 6 (x) wlli e
n
the empirical C. D F bacod on 1F N |
L <
1
Let RI Yool o . hetne rank of T oameng the vartabiles
1 a1 (11 ! 1
T, o, T, where LN N Simrlarly, R , ..., R
: n ‘ I8! AN
Wil denate tre rank order off the variables oo 0.
1 n
1) et o (@l Co,o@tny ) b aopermutation of the fntepers
HENN , N ¢ will stand for the set all) such permutat tons.
Also, et " [ T o I B
i et e 50 Yo 1,¢. ., n, define events Ari (p,c) as follows:
!
A Lo, [ U ‘ Ul o< o) (2.2.1)
ni ptRL ) 1‘
Tt A"l(( N A.l(‘(“’ [ 1'7‘ , CldL )
A N S R R, L, e, . n (0. 7.3
0l LA Vi P
et lp oo i, H 1, , I L
[T s g N
J () 7 , 1,0, ,on (IR
ni A ™)
i
v ! sl T, oo, , N (2.2.6)
ni A
il
%) Let ci{x,y) he the generic notation for a joint density of two

arpd 1

random varitabtles T

-

LSy

which are margiaally uniform.

Then,
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define the constant A as

T A T T T TV R L R R

]
j ¢(x,x)dx, which is the density of the
0

random variable T-U evalua‘'ed at zero. For any fixed integer d,

s "7’7‘ ‘.A- .

define
En = (S ), where (2.2.7)
S o= 1.2, , n
nj
Note that 1\f
= I v 1« < and .
* ik (U, U_>0)" <)< dand 1 2k <n
3 ok~
(2.2 .8)
then we get the representation
s t,2, ..., d. {(2.2.9)
N
Let = (2.2.1¢C
Ek Elk 2.2.10)
Then,
n
N Yy (2.2.11}
- N
"ok
[ , 1 .k n
bet &g T (U.-u >0y DS 3K
Jj k
E . ko 2.2.17°
2 ik I I(T T soe) L < 3 7N ( 121
J Kk
LLet = T.-U and Uj' where j - 1,2, ... . Let Ad be
the sigma fleld N !d) penerated by the vectors
Ty
w, STFRENR S Let ¥,(0) be Lhe generic notation for
the characteristic function of a random vector n, 6 belng a vec
tor off dunmy whose dimension 15 the same as that of n
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Let ¢t W, ..., W be the ve a 2 akes : ’
Ejk(~1 ~d) vartiable ij. when Hl takes the R
s
value w_, i - 1,2, ..., 4d. "
~1 ;ﬁ "X}
n k
Let £ (w,, ..., w and S -}y ¥ , .
L "y SR » Hy) be s
k-1
“espective Eoog S = c .
respec ly L9 and = when !i Wi 1 L2, ..., d S: f:
Let Wd = Wd(gl, e, gd) be the negative logarithm of the ) tw
;x' i"
s of the ¢ = T i R S5
modulus of the characteristic function of %4,;. (!1' , !d) IS
)
O
2.3 Data-based Matching Strategies L&
Pairing the observations in the two data -files that were des "2 d
r P
~ribed in Sectior 2.1 should be distinguished from the problem of )
maltching two equivalent decks of n distinct cards, which i1s discussed ) .
NI
- L}
in elementary textbooks such as Feller (14968) . One version of card o
| LS
matching 1s as fellows. Consider a "targe! pack®™ of n cards laid out _
- h -
”
in a row and a "matching pack”™ of the same number of cards laid out el
P
N
randomly one by one beside the target pack. In this random arrange- DAY
2
ment of cards, n pairs of cards are formed. A match or coincidence [
R
is sald to have occurred in a pair if the two cards in the pair are ' N
P
1dentical. Because the two decks are merged purely by chance and ;: ~
without using any type o observations or other information about the )
~ oA
. b 39
cards, one may describe such problems as no data matching problems. S
-
An excellent survey of various versions of card matching schemes is » hi
EOINY
found in Barton (1a%8). )
. :;.
Suppose that N denotes the number of pairs in the aforementioned NN
matching problem which have like cards or matches. The derivation of -
the probablilily disiribution of N dates back to Montmort (1708). The ’
‘a8
'\' ]
¢
\&'. N
()
\

Far

.
e ew: - e e e s . o AT R AT e LAt A \7
\|.'! -‘f 3¢ .. .‘f..*J'f.\.' -.l', " -'. RN L B P .‘,& 1""!'.-' LN N \ l' CRE RS l. " o -'m;‘{zf‘ml A



r.'.)ux'tmxﬂ'(kw x_'rx'.\ur(_wmmriHWT\TJ-“W\WWMT.WWWWEW.WWWW POV

= o
x O
' )
) )
: ;
23 ’
'I
g following is a summary of some of the well known properties of N
L %
} (Feller 1968): "]
(A {
[ .
‘p;l, Proposition 2.3.1: 1If P[m] is the probability of having exactly m :
LS
! matches, then A
N "
T 1 1 1 1 ~
i) P =~ (1 - 1 = = — - _
o ( (m} ~mt [ Yoy T3t (n-myt) - ™= 0.2 » -1 y
Y and ?
P = '1'"‘
E n:* [n] n q‘
I-l
LY &
1 ¢
. (11) Noting that ' Is the probablllity that a Poisson random i',
ot ¥
Y ‘fk’
1 ' varlable with mean 1 takes the value m, we have the following :‘
N
b ] -
b approximation for large n: ]
-_' o
i
-
p et '
ﬁ (m) ~ m
)
(1ii) For d = 1,2, ..., n, the dth factorial moment of N, namely ‘0:
“n n
. ay. .
) : E(N( )). is 1. ‘:
1
) !
- As one might expect, for certain broken random sample models, it 3
]
- pays to match two flles of data using optimal strategies based on 3
v-‘.
:F such data. Several authors starting with DeGroot, Feder and Goel :
‘v’, )
| t1971) have proposed and studied matching strategles based on broken "l
. )
; :E data. In Section 2.9, 1t will be shown that, for certaln matching wi)
=
0
- strategies based on independent variables T and U the distributional ‘:
§ 3
1 v properties of the number of correct matches are the same as those N
i ]
: :-j meent loned in Proposition 2.3.1. In other words, as far as statis -
g ¢
-’ ‘W
tical properties of N are concerned, matching files of data on inde "o
o ':
, pendent random variables 1s only as good as no data matching i1n which ;~
}
| . we randomly assign units ln one file Lo the units in the other tile. KN
e S
& N
| R
|
|
!
]
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2.4 Repalring a Broken Random Sample L
2.4.1 The Basic Matching Problems -
Let us consider matching the broken random sample xl. x2. Ce ey 3
X yl, ceee ¥ by palring x1 with yw(i), for i = 1,2, ..., n where _
; ¢ = (p(1), ..., ¢(n)) 1s a permutation of 1,2, ..., n. As we scek a tﬁ
¢ from ¢ that will provide reasonably good pairings of the x's with ::
the y's, we need to clarify the fundamental role of ¢ in the statis ~
tical model described in Section 2.1. If we treat ¢ as an unknown ;H
parameter of the model, then the likelihood of the data will include -
"

w. For instance, 1f T and U are Joilntly bivartate normal with means

g A
Poreremn o A

2 7 .
R P variances 01' 02 and correlation coefficient p, then the oo
»
2

log likelihood function of ¢, p ., L og.

1 given the broken

2' °

random sample, is
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A constant term not involving the parameters has been omitted in
(2.4.1). In subsectlion 2.4.2, we shall seek ¢'s that maximize the Y

likellhood such as this. On the other hand, some statisticians

L
pETEGtrn

would regard ¢ as some sort of missing dat- and not as a parameter
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of the underlying model. The problem of pairing the two files will
not arise in such situations. However, one may still want to do
statistical inference for other parameters of the model based on the
broken random sample. Such 1lssues are not pursued in this thesis
and one may refer to DeGroot and Goel (1980) for an approach to
estimating the correlatlon coefficlent p while treating ¢ as
missing data in the blvariate normal model.

2.4.2 The Maximum Likelihood Solution to the Matching Problem

We start with a bivarliate model used in DeGroot et al. (1971)

which assumes that the parent probability density function of (5) is

h(t,u) = a(t) B(u) exply(t) 8(u)l (2.4.2)

where a, 8, v, 8§ are known but otherwlse arbitrary real valued
functions of the indicated varliables. Suppose now that xl, o, xn
and yl, Cee, yn are the observatlions in a broken random sample from
a completely specified density of the form (2.4.2). If x, was pAalred

with yw(l) for 1 = 1,2, ..., n, in the original unbroken sample, then

the joint density of the broken sample would be
n n n
] = 0 Ma(x )10 O B(y, )lexpl ¥ vi(x ) &y . )]
1-1 e(1) 121 i -1 i 11 i (1)

(2.4.3)

Thus the maximum llkelihood estimate of the unknown permutation ¢ 1s

n

the permutation for which §  y(xy) 8(¥p(1)) s maximum. Without
11

loss of generallty, we shall assume that the xy's and yJ's have heen

reindexed so that Y(xl) < ... < Y(xn) and 6(yl) <L 6(yn).

[ Wa N "

'



T
Since () 1s assumed Lo have an absolutely continuous dlsteibut ton,

with probabllity one, there are no tles among y(xy)'s or u(y])"‘-

LeGroot et al. (1971) shows that the maximum {ikellbood solati.o s
to palr x1 with yl. tor ¥ -1, ..., n. In other words, the maximm
likelihood palring (M.L.P) 1s " = (1, ..., n).

In particular, if the density in 2.4.2 1s that of a bivariate

normal random vector with correlation o, then M.L.P,can be described

knowing only the sign of p. If p > 0, the M.L.P. is to order the

observed values so that x, < ... < x_and y_ < ... -y and then to
1 n 1 n

pair x1 with yj. tfor 1 - 1,2, ..., n. If p < 0, the solution

15 to palr x1 ana y(r“1 0 f'or i 1,2, ..., n. If pe 0, alil

pAlrings, or permutations, are equally likely.
Chew (1973) derived the maximum likelihood solution to the

blvariate) matching problem for a larper class of densities h(t,u)

with a monotone likelihood ratio. That is, for any values tl' t2,
ul and u? such that tl < t2 and u1 < \12.
hit ,u ) h(t ,u ) > n{t ,u ) h{(t ., u ) (2.4.4)
[ 27 12 2 1
As Defore, we shall ascume that the values x], ..., x and
n

yl, S Y in » broken random sample are from a density h(t, u)

satiasfying (2. 4.4) 0 Without loss, rejabel the x's and y's so that
X, ... < x_ and y - .. < ¥y . Then permatation ¢ (1, ..., n)
i n 1 n

is agaln the M. L.p.
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Q 2.4.3 Some Bayeslan Matching Strategiles -7
; DeGroot et al. (1971) studied the matching probiem from a .
:: Bayesian point of view as well. They proposed three optimality ,.
i.:
criterlia, subject to which one may choose the matching strategy ¢.
L, 4
D . . Co
_ Before we state these criteria, we need some notation and definitions. :
e
-J
~ " C. Cey ) >
:: Let xl, , xn and yl, yn be the values of a broken .-
. o
random sample from a glven parent distribution with den:ity hi{t, u)
N ) _ . X
P, It x1 1s palred with y( (1)’ 1 = 1,2, ..., n, then the likelihood v,
N p{1) o
(]
functlon of the unknown permutation o 1s gilven by the equat ion !
“
H n .
4 L(e) = 0 n(t ,u ), (2.4.9), .
i “
-1 ol R
AN 1
--_' LS
~
Assume that the prior probability of each permutation is l'. Then ~
. nt ~
i the posterior probabllity that ¢ provides a completely correct set -
- of n matches is .
‘o <
N xS
ple) - L)/ 2 L{y) (2 4 €6 '_
gt d
, .
] ,-
For g 1,2, ..., n, let !
RN 3
% (1)) bt d: (1Y - 3} (S 7y -3
|
ﬁ:. be the set of (n 1)! permutations whi h specil’ly that x; s to be
Y
palred with yj. Using the definitions in (2.4 #) and (2 4 7)), we peet
, '.“{- the posterior probability that the palring of x1 and y} yilelds a
v correct match to be
’ *
bt
: Py - y plo). 1 <« 3 < n (2 4.8}
. e d0 )
">

For any two permutat toas o oand po1n @, let

N Al ' e M P P Sl L R P PO T T L T W e
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Kig,y) Bl @1y - ()]

That 1s, K(g¢.y) 15 the number of correct matchen when the observa
tions In the broken random sample are palred according to @ and the
vectors in the original sample were actually pailred according to y.

[t then follows that for any permutation ¢€¢, the quantity

M(yp) 2 Kig,¢) ply) (2.4.9)
we ¢

153 the posterior expected number of correct matches when ¢ is used
to repalr the data in the broken random sample.

Finally, let (bl 0 be the set of all permutations ¢ suhch thit
y

y., and y

() 1 e(n) Yo

NaGroot, Feder and Goel (1971) have proposed three optimality
criteria, subject to which one may choose the matching strategy ¢
1) maxlmize the probablility, p(¢), of a completely correct set of
n matches,

t11) maximize the probabllity, pj, of correctly matching X by
choosing an optimal J tfrom {1,2, ..., n} and

f111) maximize the expectesd number, M(e), of correct matches 1o the
repalred sample
Assuming that the bivariate density of T and U was glven by
hit , u) Attt )b »'”, (r,u) (R'), the following resualt s, amony,
Others, were established by PeGroot et oal . 01971)

fa) The M.L.P ¢® maximizes the probability of correct pairing of all

n observatlions.

,.

1

. % ",
=»

A

S LT



’

S

-
« «
T

»

LR

.%l

Lo ol &
Ty Y

&L

SRS R

29

(b) The probability of pairing xl(x”) correctly is maximized by
pairing x](xn) with y](yn).

(c) The class of permutations Q} 1s complete; that is, given any

permatatijon @q¢] 0’ there exlsts a wﬁ%l n whlich is as good as

¢ in the sense that M(y) > M(y).

(d) Sufficient conditions in terms of the data x]. o, xn and yl,
. yn for the M.L.P ¢ to maximize M(y) were also given.

The results in Chew (1973) and Goel (197%) are extensions of (a)
through to (d) to an arbitrary bivariate density h(t,u) possessing the
monotone llkelihood ratio. The "completeness™ property in (o} 1mplies

. E . LA E
that the permutation ¢ maximizing M(¢) satisfies ¢ (1) - 1 and

for n = 2, 3, ¢~ = ¢E DeGroot et al. (1971) show that f{or

E
¢ (n) = n,
E . .
n >3, ¢ 1s not necessarily equal to the M.L.P ¢* by means of a

counter example.

2 4.4 Matching Problems for Multivariate Normal Distriburions

[n our review so far, we have discussed optimal matching
strategies only in the case of blvariate data, one variable for each
However, multivariate data are often avallable in

T
bath files. Suppose then that we have a model where () has a (peq)

of the two files.

dimensional normal distribution with known variance covariance matrix

Y. Let us write ) and its inverse in the following partitioned form:
X1 Lo 2 2y,
y and ) ! ,
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.
where both Zl? and le have dimension p x q. ‘u
As before, we shall let x_., ..., x and Y,» ---» Yy denole the

~1 ~n -1 n o
o)
values in a broken random sample from this distribution, where each £\
‘1 is a vector of dimension p x 1 and each Yy, vector has the dimen -
! J e

s ston  x 1. The results to be presented here were originally des
t“‘
cribed by DeGroot and Goel (1976) . o~

_____ax o
~
.

The Yikelihood function L, as a tunction of the unknown permu

ration ¢, can be written in the form Eﬁ

y W,
L, = e Y] . . 24,10 -
(0) = expl ) x; @, xw(l)] ( ) vy
p
{ since the other factors in the joint density of the sample do not *.
v
depend on @.  If we agaln assume that the prior probability of each
4 .1 . - _ o
permutation ¢ 15 n(' then the posterior probability that ¢ provides
a completely correct set of n matches is given by (2.4.6). Thus, .
.'-:.
p maximizing ple) 1s equivalent to maximizing Lig), or equivalently v,
minimizing
™
n
[ = ) < . (7. 411 -
Q) = Xy S, Yo ’
-1 >
There 1s no simple way, in general, to describe the maximum likeli 3}
hood solution.
b . v
! However, if rank (21?) = 1, then rank (le) =1 and Ql? can be -,
represented in the form le : a'b, where a and b are vectors of .
@ ? < = o
.'F'
dimensions p x 1 and q x 1. If we let yix) = a'x, and d(y,) - by, v
for 1 = 1,2, ..., n, the " will be the permutation that minimizes s
a
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n
Qly) = 1}—;1 vix,) 6(1““) (2.4.12)

Now, minimizing (2.4.12) is achieved by arranging y(xy)'s from

smallest to largest, arranging 4(y_ )'s in the reverse order from

J

the largest to smallest and then pairing the corresponding elements
in the two sequences.

Suppose next that rank (912) > 2. Without loss of generality,

we shall assume that p < q and let v, = Q for J = 1,2, ..., n.

3 1295

Then, both 51 and v_ are p-dimensional vectors, and the maximum likeli

J

hood solution ¢" will be the permutation that minimizes

¢

Qle) 1%1 X Vet
Let D denote the n x n matrlx ((dij)) whose elements are dij : K;!J'
Then minimizing (2.4.14) 1s equlvalent to minimizing
n n
Qly) = 131 J%ldlj aiJ
subject to the constraints
i, . /
1)] aU 1, tor j - 1,2, . n,
n
Y a 1, for i 1,2, ., n,
3 t)
d” O or 1,
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which 1s a standard assignment problem with cost matrix D. Although,
there 1s no simple form for the solution of an arblitrary assignment -
problem of this type, efficient algorithms are avallable for tinding t-
A
numertcal solutions.
. E . il
The permutation ¢ that maxlmizes the expected number of -~
correct matches is very difficult to calculate when p and n are a A
moderately large. No efflcient algorithms are known. A Monte Carlo o
J
study was reported by DeGroot and Goel (1976) in which they compare ;E
E ]
¢ and ¢" for p . 2 and 50 different covariance matrices ) with the
"
sample size n = 3, 4 and 5. In all cases, the proportion of samples
E
For which ¢ and ¢" were ldentical was between 0.925 and 0.995
Thus, 1t s not unreasonable to use ¢ even when the goal 1s to maxi
mize the expected number of correct matches.
DeGroot and Goel (1976) studled two other simple matching
>
strategles which provide good approximations to the M.L.P " or to v
E . .
the rule ¢ . We shall not discuss them here. 1In the rest of this
=<
chapter, we shall discuss matching problems only in the bivariate case. -~
)
2.5 Reliablllity of Matching Strategies for Bivariate Data o
T .
Consider a random sample of size n, (El), e (U"). from a -
1 n ~
bivariate population with density h(t,u). TIf the pairings in this o
[
) sample are lost before the entire data was recorded, we still can :ﬁ
“bserve the marginal order statistics. In fact, if x., ..., x and
1 n o
I“
yl. ..., Y _ 1s the broken random sample corresponding to the )
T
unobserved sample on (), then clearly the order statistics ‘o
i.\‘
c_':'\
v!.
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x(l) < ... < x(n) of the x's are exactly the same as the order stat
istlcs T(l) < ... < T(n) of the T's. Similarly, the order-statistics
Y <Y < ... <X are the same as U < ... < U . The
(1) (2) (n) (1) (n)

repairing of the x's and y's was introduced in Section 2.4. Thus
for each permutation ¢ in ¢, there is a matching strategy and the
typical merged file consists of the pairs

X

y(i) =1,2, ..., n. (2.5.1)

(¢(1))

Some optimal matching strategles were discussed in Section 2.4.
Here, we are concerned with the quality of the file in (2.5.1).
Ideally, we would llke to chcose a ¢ for which the file in
(2.%.1) recovers all the (5) palrs that we did not observe. It is
therefore natural to look at the random variable N(g), the number

of correct matches due to ¢ or, equivalently, the number of

unobserved sample polnts which have been recovered in (2.5.1). It
should be pointed out that M(¢), which was defined in Section 2.4.3,
1s different from E[N(¢)] because the former quantity is a posterior
expected value given a particular broken random sample and,
in the latter, the expectation is taken over all possible samples.
Situations often arise where it 1s not cruclal that, after the
two files are matched, the matched palrs are exactly the same as the
palrs of the original data. For example, when contingency tables are
contemplated for grouped data on contlnuous varlables T and U, we

m4y, in the absence of the knowledge of the pairings, would like to

reconstruct the palrs but would not worry too much as long as the
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l
. U value in any matched palr came wWwithin a pre t'ixed tolerance « (a
{
> non negative number) of the true U value that we would get in the T
o .
R tdeal mateh of recovering all the origlnal patrs.  This type of .)-2 !
" ]
Yo Capproximate matcening” was flest introduced by Yahav (1980) who y
4
-—
defined ¢ correct matching as tfollows: t',, !
befinition #.%.1 (Yahav): A palr in the merged file (2.9.1), ~
1
X ; N
(1) . ~
. say, 1s e correct \f |U, .- U .. | < €, where ¢ > 0 v
o) (@(1)) (13
and U[i] is the concomitant of X(i); that is, the true U value that e
A
)
was paired with X in the original sample.
(1) g
ORI
The number of ¢ correct matches, N(g,c), in the merged tile S
[
(2.9 1) i3 gilven by b,
- 3
'I
n b
N : ] I (2.9, 0
o, 2 {lu _ 1 I o« ¢ : o
(! (p(1)) (1]
..‘
Notee that as ¢ 4 0, Nlgp;e) converpges (almost surely) to N{e,;0), which N
N
",
1s a count of the exact {0 correct) matches. Hence N(¢), the number hE
of correct matches due to ¢ can be obtained from N(¢;e) by formally ._g l
[
letting ¢ = 0. '
-
A
In the light of the definition of reliability of a merged file, ::-_\
» : . .
- glven in “oection 1.7, the counts N(gp) and N(g,e¢) are useful indices -
:
> whone statistical propertlies reflect the reliability of the merged *
~> )
N . oo
~ f'ile resulting from . We shall stuady these performance character O,
- .\
D
A 1sties in the Followiny sections.
i
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i 2.6 An Optimal."y Property of the Maximum :‘A
¥ -
Likelihood Palring ¢~ :
. -
b . . ~ .
oy The Known results about the optimality of the maximum 1ikelhood pe¥s
= b y "
w© %‘r
paltring " (1, ..., n) with respect to some Bayesian criteria a8
’ »
‘. were reviewed In Section 2.4. Here, we shall propose a4 new criterion
o and establish that ¢ 1s optimal with respect to that criterion
-{:
Conslder the random variable N(¢), the number of correct
-"'.
. matches which result when a permutation ¢ 1n ¢ is used Lo nerge
3 the broken random sample from a bivariate population. In this
section, we shall show that " maximizes E(N(¢)), the expcected
‘.-; number of correct matches, provided that the parent density B/t )
.
exhiiblts certain dependence structures. )
. e
E We begin with quoting a very usctal result on Yhe exchiange ;
;\
N ability of random variables trom Randles and Woife (1979) . -~
‘.K :.'
s -~
o™t . : ~ %
Lemma 2.6.1: I ¢ 2 oand K(+) is a measurable function (possibly -
vector valued) defined on the conmon support of these random vector:s, »
".o '
Lhen )
. £
e, i)
”, :.»?1
K(E) @ K(n) ot
.'u' .
' We now establish a representation for N{g,¢) as a sum of ]
"o
Y
. exctianpeable Bernonlly random variables, which will be oot ad bop D
- .'-’]
B
cxtending results ot Yahav (1980
L
= eorem 2.6, 1 L.t Nlep, o) and V {p,c) he as defined by (005 2) ql "_-:j
- Tl \::’N
(2.2.4) respectively.  Then A
- W
v \__1
>
:'l_
%
A
N
v P
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- Ay
:'\. !J"‘\
o
‘{:1
\)'1,‘-.'."-‘.\{'\‘ -'.)-".(.'.11\.~")-“¢"'.~\¢\ AT A ™ ‘,Jn"'./:' “J"-F- ‘(‘(h‘:‘h ‘l".‘- > 0T ."ﬁ\
T o T N N N N M 0 " MG N P P oM RN S AR |




P 00 Gt G Nl 0.8 Wl 0,0 0.8 4.8 08" . a.atd Al 18 avm - - -
\J d J ROUN TN - . h IO 0 ' A LS LA A A S A A AL A L T W Vs O vy

e

e
B (.

3.
4 x
(
3 ¢
I 36 e
g.l
n [
y [
{ Y ¢ in ¢, N{p,e) = ) Vni (¢,c), (2.6.1) A
J 1:1 §
0 -
"
:: where the summands are exchangeable random varlables. rr
- Proof: The order statistic U and the concomitant U . of T . 4
(1)) (1) (1) P
‘-j ned in (2.%.7) can be written in terms of ranks of T > and U's ay -
o t
? - d
. tfollows: -2
(N “u
; n ~
. ) Yy U I (2.6.7) e
1)) . R = -
. (@(1)) a1 @ (? w(1)) N
Y
.
q n .‘:.
u S I § . {(2.6.3)
- i R, -1
"- (1] a:z=1 a la )
’_P -
; Note thal N{g,e) is simply a count of how many pairs in the merged R
| .
"\ .
11 dye Lo ¢, namely, “
.
. T
. () R U O S (2.6.0) "
n Ulp(i)) &
satisty (
i\:
-
U ‘ U, . <€ (2.6.9) :
| {.Lp(l)) f1]| ‘M~
"‘ !
- g
If (2.6.5) holds for some 1, then 3 a J such that
|11 u. ;ﬁ
) < € o,
(p(i)) J
R
In view of the continuity of (T;,U;), this correspondence is one to "
one. Therefore, the count N{(g,¢) must be the same as the counl given .
0
v ’
by e
2o
4
N~y
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k3 ..
X . )
! N{p,e) = ¥ I (2.6.6)
n . .
' U - < -
1.1 e, ) Wt e ’
. 11 ¢
-
& ;
Hence, (2.6.1) holds by virtue of the definttion (2.2.4) of V. -3
! Towards showing the exchangeabllity of the Vm's, note that the '_
N .
original sample in (2.6.5) are 1lndependent and identically ~
~. =
hj ~
Ry distributed vectors. Hence, using the equal in distribution -3
~ notation, we get '
IN d
J‘\‘ )
- d (v .
W e, W = R . 2.6 \
(~0.1' ¥an! = (¥ ~n) (e.0.7) ,
A i-
ph .
v aM
where (cxl. PN an) is an arbitrary permutation of (1,2, ..., n). )
a X : 2n n -
- Define a function f = (f‘l. y f‘n) from R to R by the equatiuns ‘o
<. <
?
ﬁ n n n &
1 if § I < @( ) I ) < 2 )
b.-b,> - - > : . >
\ 11 ( 3 1_0:) L (aJ a1{0) 11 (DJ Dl €) ::
, £ ..
~ J NS
™ 0 if otherwlse pe
A
! ] - 1,2, y N, (?h 5; ;.k
n where ¢ 1s the matching strategy we started with and (al'bl' o
2n .
o an,bn) is an arbitrary point in R . o,
~ Y
- )
’ It follows from (2.6.7) and lLemma 2.6.1 that \
Cy \
{
. d ) N
- f(! 1' ’ !Qn) - ’f:(!l' L) !2\ ((- 69) N
W
N
o Fix j as an integer in (1,2, ..., n}. Then, using (2.6.8) we see 9
]
that £ (W, ..., W ) is the itndicator function of the event
- ) el “an * "
- 3
n n n ;
- ) < wC ) 1 ) yoI
P’ - { » . . . 3
- (l“ b, ¢ Ll (T“1 Ti.O) | (ll(l ll1 Yy . .
2 t
A
N
5
Y
)
v, ~.
5
&
)
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R of the T's and

or, equivalently, in terms of the ranks Rll' o R

the empirical C.D.F Gn(') of the U's,

X G (U €) < @(R y/n < G (U voc)
n a la n a
4 J J J
Observing that Gnl(k/n) U(k)' k - 1,2, ..., n, we find
tj(!al' C !a ) 1s 1 Aff IU(w(R ')" Ua | < ¢. By the same token,
n 10J )
f (W, ..., W 1s the indicator of the event |U - U .
3 N ' (o(R 1)) ylhse
So that rj(!l' R !n) = VnJ(w.c). From these facts and (2.6.9) it
} follows that
(v (¢,e), ...,V (9,€))
na no
1 n
a Y , 2.6.
(an(w.c). , nn(w €)) (2.6.10)
Because (ay, ..., ap) is an arbltrary permutation of 1,2, ..., n,

wee conclude from (2.6.10) that the summands in (2.6.6) are exchange

able random variables.
Corollary 2.6.1: The number of correct matches resulting from the

matching strategy ¢ has the representation

I (2.6.11)
L (R?1 w(Rll))

Proof: Set ¢ . 0 in Theorem 2.6.1. 0
We will need the following special dependence structures for
the population density h(t,u). (see Shaked 1979).

Definition (?.6.1): Exchangeable random varlables T,U are sald to

APt Y N R e e ¥ e T S S T S L T I e WAL T T T G \H\ RIS RTAASTS Vo T S S LS A IR
.\.o ..o.o ot .C. .-}\ .0 Wt i S o .> Oy "‘ " ﬁ.ﬁ.{h’(&fx’k*&*dﬂ. M*JA.‘.’A.G\\‘\!L‘('&! A :_"\‘?C\'LA { Ve Y.
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be positive dependent by mixture (PDM) iff the joint distribution of

a
r

-

T,U is that of g(;o.El) and g(;o.iz), where El and §2 are 1.1.4

1]
4

random variables, 50 1s a random vector which is independent of 51

and §; and g is a Borel measurable function.
E Definition (2.6.2): Exchangeable random variables T,U are said to
Fal
be posltive dependent by expansion (PDE) iff the joint distribution
5 of T and U admits the following serles expansion:
X
) aH(t,u) = (1 + ¥ ai"i(t)ni(U)] dF (t)dF (u) (2.6.12)
Y i
o~ where F(+) 1s the marginal CDF of T or U, ai's are nonnegatlive real >
;-
X numbers, and {"1} is a set of functions satisfying :
N |
"o ot
. ;
: J nt(X) dF{x) = 0, 1 = 1,2, ..., (2.6.13) X
G ! ¥
- =
HI
o According to the Definitlions 2.6.1 and 2.6.2, the dependence :
o
:-" \"
concepts will apply only to pairs of exchangeable random variables. E:

%y “a h ]
2AA Lg
dt L Lt

It may also be noted that for most of the known expansions of PDE
distributions, the set of functions [nk(~)} satisfies, in addition to

(2.6.13), the orthogonality conditions

'.u"
—
’: o o,
A [ n (xX)n_(x) dF(x) = & (2.6.14) ~
" i RS I -
@ -
- N
’, =
' where k, * - 1,2, ..., and dkg 1s the kronecker delta. b .
o
e We now glve two examples to illustrate these concepts of o
A, .
o X
dependence. ‘
r’ L]
LI}
»
hy
. "
o “
e Ny
(4
hy
)
hat o
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Example 2.6.1: Let tg, £1, %7 be 1.1.4 standard normal random

variables. Let p be any constant in the interval [0,1]. Defiue new

random varlables

T \/1 p* E,l + v/ph

U-\/‘[rp'E,,b»/EEO

Then, it is easy to verify that T,U are jointly normal and that the
definition (2.6.1) can be applied to T and U with the above choice
of EO' El and E?' Hence, the standard blvarlate normal distribution
with nonnegative correlation has the PDM property.

Also, Mardia (1970, p. 48) gives the following series expansion

for the blvariate normal denstty

[543

hit,u) = [1L + ¥ pknk(t)n
K1

K (u)) () f(uy, (¢.6.19)

where f(t) is the density of the univariate standard normal random
variable and {nk(~)} is a set of orthonormal Hermite polyncnomials.
Thus, if p » 0, bivaritate normal distributions possess the PDE
property as well.

Example 2.6.2: A class of bivariate densities due to Farlie Gumbel

Morgrenstern 1s piven by the formula

TV VvV il TR

hit,u) 1 + afl AN 2u), where 0 < U, u < 1

1 - a < 1 (. 6.16)
[t 1s easy to check that T and U are PDE for a > 0 in (2.6.16).
Note that the expansion 2.6.16 has only a finite number of terms,

unlike the expansion for the blvariate normal distribution.
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We now prove that the PDM/PDE structures are inherited by a pair
of new variables obtained from a given sample by computing the same
function of the marginals. These results are generalizations of
theorems in Shaked (1979), whlch were proved only tor n 2. However,
mathematical induction does not help to show the results for an

arbitrary n.

T.

i
Theorem 2.6.2: Let -’Ul). 1 1,2, ..., n be a random sampie from a
POM parent with density h(t,u). Then, for any measurable function

n

g:R = R, the random variables g(Tl,T Tn) and

?) - L. ]
g(Ul,U?, Un) are jointly PDM.
T

N . i L .
Proot: By hypothesis, the veclors (Ul) are 1.1.d, Furthermore, ©inee

PDM property 1s defined only for exchangeable pairs of random

vartables, we have

(t..u) YTy, Y 1,2, o, n (261l
1 11
Equation (2.6.17) together with the independence of T,U pairs yields

(T T, U ..., uyd (U, U

1’ 777" 'n 1’ n 2 777" 'n 17 T n

’n n .
Consider the function K:R » R defined by the equation

K(a S,oa b oo, b)) la , .., a ), pwih o, o h
(’l n ‘l “n (}‘(’l ln) b )} oy

. SN
wWhiere (. .., a . b v b)) s oany pornt oin R Appriy iy " hie

Poanet ton K te, both saudes of (26 0 183) and invoking Lemma > 6 ] wee et

e o

IS, "o’
« _ W, d A ]

T S Ty

<7,
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(T,, .... T ), g(u , ..., U a U .. .., U, g(T., ..., T
(e 1 n) B 1 n)) (8 1 n) Bl 1 n))
(. 6.19)
Hence, (g(T), g(U)) 1s an exchangeable palr of random variables .
The PDM property of (Tl' ”1)‘ t 1,7, ..., n further implies
T the ist i.1.4. ctlors . . . - 2, e
hat there exist n i.1.4. vector (501 Eli 2?1) 1 1,2 n and
a measurable function £ such that
(1) For each j, EIJ'E2) are 1.1.d4 unlvariate random variables
and lhe vector EOJ 1s Yndependent of Elj and E?j'
(1) For each 3,
- = - ( )
Ty @ FUE ggy) and U = £G4, 08 ) (2 .6.20)
Introducing the random varlables,
R S
and
5‘6 = (512' Ce ey Elno E22) e v ey E?nv 5’01' ceey E’On) (26?1)

We find that EI and E; are 1.1.d univariate random variables and Fa

is independent of EI and E; in view of the assumptions (i) and (i1).

Note that (2.6.20) and (2.6.21) imply that

BT g(f(h prhoy ) f(Eln,§0n))

is a measurable function g®, say, of L‘ and La Similarly, g(U) s
also the same function g* of the random variables L; and ;a. Hence,

by definition, p(T) and p(U) are PDM. B
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The next theorem is similar to Theorem 2.6.2 except the parent

distribution has the PDE property.

T;
Theorem 2.6.3: Let (U%)’ i =1, ..., n be a random sample from a PDE
i
parent . Then, for any measurable function gtRn » K, the random
viiritables g,(Tl, Tn) and g(Ul, Un) are PHE.

Proof: The exchangeability of the joint distribution of g(T) and
B(U) has already been proved in Theorem 2.6.2 (see equation 2.6.19).
It remains to be shown that, when the joint density of each of the n
coples of T,U admits an expansion of the type 2.6.12, the joint
density of g(T) and £(U) also admits a similar expansion.

Assume therefore that there exists nonnegative constants {ak}

and a set of orthonormal functions {nk(-)} such that the joint density

of ’1".1 and U1 is of the form.

dH(t, ,u ) dF(t YdF(u {1l + )Y an (t.In (u )1 , (2. 6.72)
171 i 1 K1 i 1

where | . 1,7, ..., §h

n
For any real x, define the measurable set in R

A(x) - ((xl. ceew X glx,,

. X ) < x)
n! <

Then, the distribution function Q, say, of (g(T),g(U)) 13

n
Qix,y) = [ ... J [ ... ] n dH(tJ,u.) (2.6.23)
LEA(X)  uCA(y) j=I J

Hoiny the expansions tn o equation (2.6.27) we get
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B 4y o
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L "

L

Qx,y) = Q(x)Q(y) +

> )
-‘ X Y
. 1 1 ‘-‘
: 0 5 M oox M 7
4 k-1 )
=
- o
n (2) (2)
) ) Y a a x (x)x (y)
: Ve KLoel K 27k, Kk, =~
%0 -,
;v" ; vy s a, a, x‘((n) K (x)x:(n) (y) et
) kK =1 knzl 1 n 1’ 'n 1’ 'n )
(2.6.24) ;:
.
1 )
&) n _:'
> where Q(x) - J ... [ n dF(t) o
X A(x) 1-1
A
.h' n - -
(1 B
" . Yo 1 n (t) M dF(L) -
3 Alx) i-1 "
y o
) 1
A (2) n a8
» b 'J
K X, (x) I ... ] n (v )nQ(T?) 0l dF(ti) '
’ L A(x) ko1 11
¥ ‘&‘; .,
R
and
b ”,
-, w o
- n n [
- )
y xf(“) y (x) =] ... ] n n (t,l) n dF(ti) )
P 1’7" 'n A(x) 1-1 1 11 .
y vl
(2.6.25) i
N -~y N
\ Note that Vv k1 1,2, .. and v i = 1,2, ..., n the signed measure -; :
N * N
3 . () . ~ ~
N induced by X\ K (x) 1s absolutely continuous with respect to Q L
1|<- ’ 1 < “3
X
3
.l 4’"\
) \
Ea
N (]
b .
S
'y R
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so that there exists wk K (x) - the Radon-Nikodym derivative -
1%y
of x(l)(x) with respect to Q such that

X () ~
(x) = | ¥y K (t) dQ(t) . (2.6.26)

2 - 1,... 2

(%)

X
kK.,...,k
1

Hence, from equations (2.6.24) to (2.6.26) we get

AQ(x.y) - da(x)da(yl + n ¥ a v Moot

k=1 k' k K
ey f e a *iZ)k (x) L2’k (y)
kK.=1 k_=1 1 2 1'72 1’72
1 2

.

- o
. 3 Ioa a, w&”) . (x)wi”’ e

klzl k =1 1 1’ * 1’7" " '"'n

(?2.6.27)

Representation (2.6.27) holds almost everywhere (5 measure) because
Radon Nikodym derivatives are defined up to sets of measure zero.

Also, the coefficients in (2.6.27), being products of the nonnegative

a 's, are themselves nonnegative. Hence, to complete the proof we

K
only hdave to show that the orthogonallity conditions (2.6.13) hold for
the wk's of the expansion in (2.6.27)

For * - 1,2, ..., n, and 1 <« kl' .., k< o

we have
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k(tl)dF(tl,]( i i m n ( .1) n dF'(tl)]

o ] - Q0

ity hypothesis {nk(~‘,} are a set of orthonormal functions on the

marylinal disteibution F(+) of T so that -

[ n (t.) dF(t.) = 0 (2.6.28) =
- k1 1

Hence, I (2.6.29) .

where 1,2, ... n -~
and this completes the proof . o~
The following facts about bivartate ranks are easy consequences
of Theorems 2. 6.2 and 2.6.73. 5
Ty

Carollary 2.6.1: Let (” ) be a random sample from a PDM (PDE)
1 .

prarent Cotsider the marginal ranks

and
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R = 1 .
21 ) (U >U ) "
_ a=1 17 a o~
" "‘\
o "
" ) Rpy
of T1 and U1 respectively, where 1 = 1,2, ..., n. The pair (R ) is
21
‘-, PDM (PDE), 1 = 1,2, ..., n.
4'4
n
Proof: Fix i1 and define a function g: R » R by the equation
a
o~ n
a,, ..., a =
gi( 1 n) ) (a,>a )
.y =1 i—
¥
and observe that
&
Ry "gl(Tl' Tn), Roy =g (U, U
Qf- By invoking Theorems 2.6.2 and 2.6.3, the result follows. ]
14 We need one more result before we establish an optimality property
[ i ’
of ¢=. o
Yy Ty N
.\: Theorem 2.6.4: Let random vectors (U Y, v - 1,2, ..., n, be PDM/PDE '.:.,
o 1
. ~
) ' - - Q.
- and denote the ranks of ’['l,U1 among ’ri s and UJ s by Rll'R?l respec A
. ]
o tively. Consider the joint probability mass function o
¥
o
o w. . - P(R,_ =1, R,, = 3), 1 <1, 3 <n -
“ ij 11 21 -
ot =
- of’ Rll and R?l' Then, "U s satisfy the following inequalities: !
:-: ':‘:
- ...“‘
. > e
v oi,j, "yt W)J > ?ﬂlj (2.6.50) e
Ll P
<. P
e A
Proof: HRy hypothesis, the parent distribution 1s PDM or PDE.  Accor 'Y
NS
ding to Corollary 2.6.1, R and R_ are also PDM or PDE. Conse D
"n 11 21 N,
v
quently, R” and R . are exchanpgeable random variables. Hence, *:'.-
-":' ‘ :‘.:;

N |}
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To establlsh (2.6.30), first consider the case when T and U are PLHM y':, N

N
By Theorem 0.6.2, Rll and R"l are PDOM. Hence, there so=xlsts a M

‘ )
distribution function Q(+) say. such that 2': :._

a ,:_,

L
@ -’ '.-
; . oo
., o= ] ow  (t)y w () dQ(t), 1 <1, J < n (72.6.32) .
1} ie *J : i
@

.';'
where wy . (1) and n.J(t) are the conditlional mass functions of Ry, ',z;
and H"l' glven a value t trom the Q distribhution. .

‘ :-l
it tollows from equation (2.6.32) that

.
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We thus obtain (2.6.30) when T,U are PDM. Suppose now that T and U gl :"
]
are pPDHE. Then, by virtue of Corollary 2.6.1, H“ and R’)l would be 7-'\‘ oy
¢ ~ o
S .
- o,
PDE. Hll and R.,)1 are ranks that are based on independent random :—;
) *:':
variables, hence, Rll nnd R,)1 Aare both discrete untform random variables ':- -
s :«—l . -
>
on 1,2, ..., n (uee Randles and Wolte (1979), p. 38). ) :;-
oo
o
A SN
As Rll and R?l have finite supports the series expansion of R11 SN,
- ;\'.n
and R?1 will have a finite number of terms. In fact, Fisher's - j.:
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identity (see Lancaster (1969), p. 90) holds:

. @ !
.

22

n-1

ﬂlj " n (1« kgl aknk(!)qk(J))

¥

’
45 5 'y

¥

‘\'. ]

PR

1l < i, J < n (¢ 6 17y

)

where {ak] are nonnegatlive constants and {nk(-)} are orthogonal

”
T

L NN

functions on 1,2, ..., n. The representation (2.6.33) leads to the

i

t
-

following reasoning:
For 1 <1, j < n,
n-1

vwoam = e T an (1)% 1
n k=1

o ) .
kz a (n (1)) 2 -2 ¥ a

it
~nN
[
Q
x
—
3
x
—~
—
3
x
(=)
—

> 0 (¢.6. 34

P R

Hence, we obtain the inequalities in (2.6.30). An optimality of

el

3

property ¢" can now be established:

T,
Theorem 2.6.5: Let (Ul), 1-1,2, ..., n be as in Theorem ?2.6.4.
\

'{‘ . -/ -, ,.' . ."..'

v .{l' a

v

Then, V ¢ ¢ ¢,
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roof: In Corollary 2.6.1, N(g) was written as a sum of exchangrcable

indlcator random varlables. Hence, using equation 2.6.11, we pet

E(N(p)) = nP(R21 qa(Ru)) (2.6.36) Vs

n
= n § P(R21 = @(k), R]l = K)

~ D

" . r-

where w 1s the joint mass function of Ry |,R,;. Invoking the S

inequalities on n in (2.6.30) we obtain

13

E(N(¢)) < n ; (v, 4 )72

K.k ¥ Te(k) oK)

sy .

1 1

[V e B~

k=1

AF

F(N(p~))

wWhich establishes the deslired result. a -
To interpret Theorem 2.6.5, we first recall from subsection 2.4.2 -

that ¢ = (1,2, ..., n) 1s M.L.P if the parent density has the
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monotone llkelihood ratlo (MLR) property. As demonstrated by Shaked
(1979), there is no general relatlionship between PDM/PDE concepts of
positive dependence and the MLR property. We can therefore state the
optimality of ¢* in Theorem 2.6.5 as below:

Let T,U have a Joint density that has MLR property. In addition,
let T and U be eilther PDM or PDE random varlables. Let xl. R xn,
yl' AN yn be a broken random sample from the T U population. Then

the M.L.P ¢ 1s an optimal strategy to match the x's with the y°'s

in the sense of maximizing the expected number of correct matches.

2.7 Monotonicity of E(N(e"))
with Respect to Dependence Parameters

Repairing of broken random samples based on the available data
in two flles was dlsc;ssed in Section 2.4. It was observed that
data based optimal matching strategies exist when data come from
populations having certaln types of positive dependent structures.
It is therefore reasonable to expect an optimal matching strategy to
perform better when there is some kind of positive dependence in the
population than when the data in the two files are stochastically
Independent.  Our objectlive in this sectlion is to present a precise
account. of such lntultive results with regard to the maximum 1lkeli
hood palring ¢". To this end, we will draw upon the results ot
Section 2.6. We begin with a definttion from Shaked (1979):

Definition 2.7.1: Let J be a subset of R. A kernel K defined on JxJ

1s 541d to be conditlionally positive definite (c.p.d) on IxJ iff

1

qJ.
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(1) K(x,y) - K{y,x), V x,y € J; that 1s K 1s a symmetric kernel. ==

(11) Let m be any poslitive integer. For arbitrary real numbers

SN
ARSI

1:1
positive definite kernels (Widder, 1941, p. 271). We shall now glve

a,, ..., a_ and for every cholce of distinct numbers x_ , ..., s
1 m 1 O
xm from J, it holds that

l“ P
m m m ~
. . L)
) ) K(xl,xj) aidj > 0 whenever § a, 0 (2. 7.1 N
U -1 oA
R

It is pertinent to note that this definition 1s related to the o

well known concept of a positive definite kernel, which is used in, Sk
&
among others, the theory of characteristlic functions. The nonnega h S

M

m m

tivity of the quadratic form } ) K(xi,xj) a.laJ without requiring .
] . N
m 1:1 -1 \.:: v
the condition } a, - 0 in (2.7.1) 1s a standard way of defining o X
" ;

an example of a c.p.d kernel which will be used in the sequel.

-y
!
Example 2.7.1: Let J f1,2, ..., n}, where n is a fixed positive C:
integer. To verify that the kernel K(x,y) - [(x—y) is conditionally
o
positive definite on JxJ, let m be a positive integer. For arbitrary -
real numbers Ay, oo, Ap and for every choice of distinct integers -
i, ..., 1 from J, we have )
1 m
Ky
m m W
? ) K(lq,ls) a ag
a:l B:1 o
Y,
= 2 Yy aa
a B
a,B:1 1 o
[ 3 B -~ (
h ]
N

)
+
N
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.3 el
a=l1 °
>0 (2.7.2),
where we have used the fact that, in view of the integers 11, L, lm
being distinct, 1a*18 iff a=8.
Note that we did not have to impose the condition ; a, - 0 to
1-1

arrive at (2.7.2). Also, the function I(x:y) 1s clearly symmetric in

x and y. Hence, it follows from (2.7.2) that K(x,y) is positive
definite and, consequently, 1is also c.p.d.

We will need the following lemma.
Lemma 2.7.1 (Shaked, 1979): Let T and U be PDM or PDE random vari
ables with joint distribution function H(t,u). Letting F(+) stand
for the common marginal dlstribution of T and U, define Ho(t,u) -
F(t)-«F(u), the distribution function of T and U in the case of

independence of the variables. Then we have the ordering

E (K(T.U)) > E (K(T,U)) (2.7.1)
o

iff K(.,.) is a ¢.p.d kernel, provided the expectations exist.
Theorem 2.7.1: Let the joint density of T,U have MLR property
(2.4.4). Let HO,H he as in Lemma 2.7.1. [f N = N(o") is the number
of correct matches due to the M.L..P ¢, then

E (N > 1. (2.7.4)
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Proof: It follows from the general representation of N(e¢) in

equation (2.6.11) that

>
Loy WLy

o

E.(N) = n PH(R1 - R ;) = n EH((K(Rll'R

o I 2
H 1 21 )) (2.7.%)

‘\- ‘-

21

where K(x,y) = Now, recall from example 2.7.1 that K{(x,y) is

wa)'

c.p.d. on the domain JxJ, where J = {1,2, ..., n} is the common ,»j

Ty e
VanBalrrLLw
ALY

support of Hll and R?l' It was established in Theorems 2.6.2 and

2.6.3 that R and R? are PDM (PDE) according as T and U are POM

11 1

(PDE)Y . Invoking Lemma 2.7.1, we therefore obtain v,

s ,
T RSN

F-,H(K(Rll,R?l)) - [:H (K(RII'RQI)) (2.7.6) . i
O \‘1 n\
"
W :‘.
Under Hg, Ryp and Ry are independent. Also, these ranks are :
N
marginally discrete uniform random varlables on 1,2, ..., n. Hence, D_
we get . -
e
o
-~
EH (K(Rll'RZI)) = PH (R11 = R21) >
s} o N
(g
&R
n :n.
Y P(R = k) P(R - k) i,
1 11 21 N4
ol
2
)
n 1 -"'; .;.:
2 RS
k-1 D o
o
1/n . (2.7.7) 2 {
. =
Equations (2.7.%) to (2.7.7) imply the desired inequality: NN
- »
’
1 - ',,*.
> . o . { ~ «
EH(N) n n 1 ] )
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We conclude from (2.7.4) that ¢" provides, on the average, more

correct matches when the data in the two files come from certain
positively dependent populations than when they are independent. In
particular, this fact holds for the bivariate normal distribution
with positive correlation as well as for Morgenstern distributions
in Equation (2.6.14), where the dependence parameter a »> 0. In the
light of Theorem 2.7.1, it 1s natural to conjecture that EH(N), A4S a
functional of the distribution function H, 1s order preserving with
regard to certaln partial orderings of the space of all continuous
bivariate distributions which have fixed marginals (those of T and U)
and exhibit positive dependence. Although no proof of this conjec
ture is avallable at this time, we offer further evidence in support
of this conjecture in the next two theorems.

Theorem 2.7.2: Suppose that a broken random sample comes from the

family of densities given by the equation
h{t,u) - 1 &+ a (1 2t)(1-2u), 0O < t, u< 1l and 0 « a < 1 (2.7.8)

Then, E_(N) is monotone increasing in a.

a

Proof: Note that in (2.7.8), a - 0 means T and U are independent
and we might say that the farther a« is from O the more the positive
dependence between T and U.  For this family, the marginal distribu
tions of T and U are uniform on [0,1].

Tt tollows from equation (2.6.27) and Corollary .61 that the

joint probability function of the ranks Hll and R“ can be canont

cally expanded as follows:
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1 n k 7
y - o (L Y (k) a nk(i)nk(J)] (2.7.9) -
) n k-1
’
b
n ™
. where 1, - 1,2, ..., n and [nk(-)}1 1s a set of functions satisfy
' -
P o
. tng the orthogonaltty conditions in (2.6.13). Using the expression v
o
. te.7.9) tor we gel
ﬂlj £ ~
I ’
; F (N n P(R R )
: SN RR Ry )
! o
\ <.
' n
no oy w,
]1 .
) 1l "
Ry
\ n n
1 n, k 2 >
" e o ne F 3 Gat(n (1))7] '
1=1 k=1 v
) n ;“D
w
L by (M ot (2.7.10), -
n kK g
k-1
N -
; where, after change of the order of summations on i1 and k, we have
o L
J) nsed nonnegat lve constants bK given by the equation ?j
)
il
] n
. ? -
h Y o (n (1})', k 1,2, ..., n
K K as
11 ~)
1 N . '_‘-
it follows from (2.7.10) that E_(N) is a polynomial In a and hence S
& it inecreases with a, as a goes from 0 to 1. 0
Theorem 2.7.3: Suppose that a broken random sample comes from the }:
. bivariate normal disteibutions glven by (2.6.19), where we assume .
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that the correlation parameter p is nonnegatlve.

increasing in p.

Then E (N) is
P
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Proof: It follows from equation (2.6.27) and Corollary 2.6.2 that

Ty PRy s bRy =)
1 . 1) 1)
=2 (1 +n p 4§ o
n k K
k=1
S S 2 (2 (2)
n
N I ED TS N S SR AL R
k.=1 k_=1 1’72 172
1 2
+
- e n o (n) (n)
L R Y R R N N LR L
1 n 1 n 1 n
(2.7.11)
where, for fixed ¢ = 1,2, ..., [wig) K } is a set of ortho
SEEEELS
gonal functions on {1,2, ..., n}. Using the expresston (2.7.11) for
wn. ., we obtailn
i1
E_IN) - nP(R R,
n
n 3y =
i1 b
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(2.7.12)

where the order of summations over 1 and k,, -+ kp have been

reversed because the terms In the expansion (2.7.11) are all non

negative. We conclude from (2.7.12) that Ep(N) is a polynomlal in

p and hence it increases with p as p goes from 0 to 1. O
As we close this sectlion, we shall state a result due to Chew

(1973) which somewhat resembles, though conceptually different from,

the inequality EH(N) > 1 in (2.7.4). Recall the notation M(¢) 1In

(?.4.9), which denotes the posterior expected number of correct

matches due to the strategy . Arguing that M(e) - 1 when ¢ is

randomly chosern from $, he proved the following result:

Theorem 2.7.3: (Chew, 1971): Lt xl, S X and yl, e, yn be a

broken random sample from a blvartate distribution possessing mono

tone likelihood ratio. If X, < < xn and ¥y < ... < yn, then the
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posterior expected number of correct pairings using the M.L.P ¢" 1is

at least unity, that is
M(e*) > 1 (2.7.13)

It should be noted that the inequallty (2.7.13) was derived
from a Bayesian perspective, whereas in our inequality (2.7.4) the
expectation is over all possible samples. Finally note that while
our comparison is between dependent and independent populations for

the M.L.P., Chew's inequality compares M.L.P with random pairing.

2.8 Some Properties of N(e¢",c)

The maximum likellihood palring, ¢", was introduced in sub
section 2.4.2 and some of 1its small sample properties were studisd
in Section 2.7. Specifically, the behavior of E(N(¢")) was discussed
while holding the sample size n constant and changling only the degree
of dependence in the population. We shall now fix the parameters
describing dependence in the population of (6) and allow n to tend to
infinity in order to study the behavior of N(¢",¢). Later, in this
section, we shall present the results of a Monte Carlo study about
N(e",c) 1in which we vary the dependence parameters even 4as n takes
different values.

In thls section, the notatlons of Section 2.2 will be used
freely.  Recall that N(e") and N(e",c¢) have the shorter notations N

and N(e) respectively. We start with a review of Yahav (1982)'s

results concerning E(N(e)).
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Assuming that the distribution of T and U 1s such that the con
ditional distribution of U gliven that T - t is (univarlate) normal
with mean t and varlance 1, Yahav (1982) derived the limiting value
of un(C) . E(N(e)/n), as n » o, by using the representation (2.5.2)
in which the summands are functlons of the order statistics of
Ul‘ o IJn and the concomitants of the order statistics of
Tl‘ C Tn. His proof relied on an approximation theorem
(Bickel and Yahav, 1977) about the order statlstics for the above
model . Furthermore, he reported the findings of a Monte Carlo study
for a particular case of his model, namely, T and U are blvariate
normal Wwith corretation p.

First, we discuss the large sample behavior of N(e)/n in case of
samples from an arbltrary population. The properties of its expected
value are availlable as a consequence. Second, wWe indicate
how Yahav's simulation study of the small sample properties of pn(()
~an be improved upon. We shall then present the results of our own

Monte Carlo study of un(c) when n ts small.

Theorem 2.8.1: For broken random samples from an absolutely
. . . . N(e) PT . .
cont thuous Jdisteibution, » yle), as n » @, (&.8.2)

where ule) P(F(T ¢) - G(Y) <« F(T+e)).

N(()‘

n Recall the representation (2.6.6) for N(e) as

Proot: Let L
T n

a sum of exchangeable indicators:

2.8.3
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It follows that

.A‘A
" E(Ln) = nP(Anl(c))/n = P(Anl(c)) . (2.8.4)
-*l
>
Note that,
"
\.A
- 2 -2 2
E(L ) = n [E(N(c))( b, E(N(e))], (2.8.5)
s
ol
N (2)
where E(N(¢)) is the second factorial moment of N(¢). Using the
i’ exchangeable representation (2.8.3) agaln, we get
‘.I
A 2. 2. (2)
o E(Ln) -n [n P(Anl(c)Anz(c)) + nP(Anl(c))]
n
et n. =} & -
;: la 1-1 lai :
n A
e n, = £, ., @ = 1,2, . on, (2.8.6) N
2a 1.1 2ai .
. A <
;ﬁ where the sequences {Elai} and {EQai} are defined in (2.2.12) }
> N
Using (2.8.6), we get }
! )
e Anl(a) (nll/n < 0, n?l/n < 0) (7.8.7) g
':.- and .
o .
2 2 W
N n J.H.H )
< Anl(c)An?(c) (nlj/n < 0) (2 } .
¢ 1:1 )1
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Note that, given wl - (U }, the inflinite sequence
- 1

£ A ad inf.

112’ "113’

15 exchangeable. Hence, by the Strong Law of Large Numbers (SLLN)

TlaaNL AN T

tor exchaageable random variables (see Chow and Teicher, p. ¢23),

e

.
€

E(Y

3 o
1o/ ¥y asn

.

where the conditional expectation is equal to F(t1 €) - G(ul). It

5 % B

follows from (2.8.9) that

-y

n

11

AP W P

A

Wee can show by similar arguments that

F(T ) GLU )
a a

'
"
'
-
«
o
-~
<
o

oYy

(2.8.12)

RN

Hoing the fact (see Secfling, 19%0 p. 92) that a sequence of

R o ol ¥ 4% PR

vectors converges almost surely to a glven veclor W the component

rr
s

wise sequences converge almost surely to the appropriate components

,'l 4 "',,

At

of the limit, we get from (2.8.11) and (2.8.1°7)
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/ ) 3
! "11 n ['(T1 ) ((Ul)
;": n?lln A G(Ul) F(Tloc)
- a-s
N (2.8.11%)
N F T 2 (
J ! nl?,/n ( > c) (‘(J,L.))
| .m a
G :
. n,,/n (U,)  F(T,ec) X
Co <
S N
} It follows from (2.8.7), (2.8.8), (2.8.13) and the independence of "
. T T
Lo 1 2 ~
— d o
Y, (y,) and (y3) that Z
Y
2 N
- P(A_ () > ulc) (7 4 ) %
‘ [
| R
| Ry and J'.'
¥ 2
Do
*u <'.'\
| B(A 2 N
ES T e, .
( nl(C)Anz(c)) wo(¢) (2.4 } ;5

O

SOT - M
S E

Using (2.8.4), (2.8.%), (2.8.14), (2.8.15) it is easy lo verify that,
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and (2.%.16)
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var(l, ) » 0
n

“®
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L
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b

- It 1s well known that (2.8.16) implies the converyence in probability

L
AL o
L

o tn o (2.8.0). 1
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The tollowing corollary generalizes Yahav (1982) "5 result concerning
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‘> u“(z), the first moment of N(e)/n.
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(1) N(e) 5 L(c), as nrm. (7.8.17)
n ra
P P P
(11) E(N(e)/n)" » {u(e) ], as nreo. (7.8.18)
Proof s The number of ¢ correct matches can at most be n, the —
0
-
mmber ot pairs in the unobserved bivariate data. Hence,
p:
N{ gt
o Ny e, "
n
:.t;
In other words, {N(e)/n} is a uniformly bounded sequence of random 5
variables. It is well known that convergence in probability and L ;Q
Py
convergence are equivalent for such sequences. Hence, (1) is an easy
)
consequence of Theorem 2.8.1. It follows from (1) and Theorem 4.9 .4 ~
Tl >
-h .
of Chung (1974) that the p moment of N(e)/n converges to
v
(U(L)]p. Hence (1i) also holds. i _
Note that no assumption aboul the conditional distribution of U -,
[
2
given T was made either in Theorem 2.8.1 or Corollary 2.8.1.
Yahav penerated samples from a bivariate normal parent with mean n;
( &
) . .
vector (g} and covartitance matrix
':A'

2 2 2 2
p /{1 p7) p /(l-p)
(2.8.19) G

: 2

P2/ (L p?) 1/(1 p%)

~

Note that in (2.8.19) the varlances of T and U are functions of the o
correlatlion of T and U because Yahav requires that the condittional

distribution of U given T - t be normal with mean t and variance 1. -
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The limiting value of un(c) for his particular model was given by

g

the integral

T
it A XX

@© —
viz v1-
uie) = [ (8" =2 + 5 - @(x Le 5)) ae(x) (2.8.20)
-® visp ARY
E i
e
He computed u(e) by numerical integration for ¢ = 0.01, 0.0%, 0.1, f}
P
o -
2? 0.3. He also provided Monte Carlo estimates of un(c), for n - 10, o
20 and 50 using the simulated data on T and U. The following table >
f: N
P is a tvpical example from his tables, r,:"“
o>
(P o)
@
r

Table 2.1 Expected Average Number of
¢-Correct Matchings, ¢ = .01

S @ s

s

¢

(Yahav (1982)) i'

., e -
ﬂ (e) (c) w,(c) (c) 4
! g 10 Y20 50 s ]
N,

— - -
‘0 .01 .5864 .5326 .52752 .52269 .
:: .01 .1984 .1648 .12712 .11522 {}
.10 .1512 .1058 .07600 .05912 ::

.30 .1084 .0686 .03888 .02144 .

! .50 .1020 L0582 .02720 .01382 2
" .70 .0960 .0614 .02616 .01051 e
.90 .0972 .0540 .02064 .00864 N
by .95 L0976 L0496 L02144 .00829 <
» .99 .0960 .0484 .02128 .00804 \.-5
L

— T T T T T o T [ ]
. [CF9
‘ It is clear from Table 2.1 that un(c) and u(e) are decreasing ﬂ
: as p ranges from 0.01 to 0.99. However, one expects that an optimal ;F

,f strategy such as ¢" has the property that un(c) as well as u(e) are '
monotone increasing in p. The problem here is not with the M.L.P, -

~' ", but with Yahav's model in (2.8.19) because, as the correlation >
[ f
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changes 1ts value, so do the marginal variances of T and Y. To
rectify this problem, we assumed a bivariate normal model for T and U

in which the means were zero and the covariance matrix was
(7.8.721)

For each combination of four values of n, namely 10, 20, %0 and 100,
and twelve values of p, namely 0.00, 0.10 (0.10), 0.90, 0.95, 0.99,
a sample of size 1000 was generated from the bivariate normal popula-
N
tion using the IMSL subroutlnes. These data were used to obtaln
Monte Carlo estimates of un(c). where ¢ was given the values 0.01,
0.¢%, 0.1, 0.3, 0.5, 0.7%, 1.0. Furthermore, it is easy to show
E
|

that, for the model in (2.8.21),

ule) = P(IZ) <« e/v2(1-p0Y), (2.8.22)

where 2 1s a standard normal random variable. It is clear from
(2.8.22) that u(e) is a monotone increasing function of p. Using
standard- normal CDF tables, u(e) in (2.8.22) was computed for each
combination of the twelve values of p and the seven values of ¢
ment lioned above. We have presented the estimated values of un(c)

and the limiting value u(e) 1in Table 2.2 to Table 2.8.
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. Table 2.2 Expected Average Number of fi
! e-Correct Matchings, ¢ = 0.01 )
(%) y
n p ulo(t:) uZO(C) uSO(C) uloo(c) pule)
Rin. J
0.00 0.106 0.054 0.02% 0.015 0.008
!E 0.10 0.113 0.059 0.028 0.017 0.008 )
o 0.20 0.127 0.068 0.031 0.018 0.008 /
0.30 0.138 0.075 0.034 0.020 0.008
~ 0.40 0.155 0.083 0.038 0.023 0.008
" 0.50 0.174 0.095 0.044 0.026 0.008
0.60 0.199 0.109 0.091 0.030 0.008
nr 0.70 0.231 0.129 0.061 0.036 0.008
e 0.80 0.279 0.162 0.077 0.046 0.016
- 0.90 0.374 0.222 0.109 0.067 0.016
‘ 0.95 0.476 0.296 0.151 0.094 0.024
i: 0.99 0.700 0.521 0.299 0.191 0.0%96
' R o S _ _
.- Table 2.3 Expected Average number of
i e-Correct Matchings, ¢ = 0.05
N, P ulO(C) u20(5) uso(c) “100(6) pwle) :
e Y
W
0.00 0.127 0.076 0.047 0.037 0.042 W
!! 0.10 0.134 0.082 0.051 0.040 0.032 3
- 0.20 0.149 0.093 0.056 0.043 0.032 -
0.30 0.161 0.099 0.061 0.047 0.03%2 o
o 0.40 0.180 0.109 0.066 0.0%2 0.040 .
b 0.50 0.201 0.124 0.074 0.057 0.040 ?
' 0.60 0.228 0.141 0.085 0.06% 0.048 h
- 0.70 0.262 0.166 0.101 0.076 0.048 '
s 0.80 0.317 0.205 0.124 0.094 0.064 i)
Sl 0.90 0.420 0.280 0.174 0.13% 0.088 N
. 0.9% 0.529 0.368 0.237 0.186 0.127 .
= 0.99 0.769 0.631 0.459 0.377 0.274 j
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. Table 2.4 Expected Average Number of
¢ Correct Matchings, « 0.1 -
: R O T (o) ) w3
\ L 10° ¢ H20' € Moo Mloo € ule K
)
X . _ _
) 0.00 0.1%4 0.102 0.075 0.065 ¢.0%6 -
. 0.10 0.160 0.110 0.080 0.069 0.0%6 "
P, 0.20 0.177 0.121 0.087 0.074 O.064
N 0.30 0.189 0.1130 0.093 0.080 0.064 ‘~
K, 0.40 0.210 0.143 0.101 0.0H8 0.072 -
' 0.%0 0.234 0.161 0.112 0.096 0.0%0 - |
‘ 0.60 0.264 0.1381 0.127 0.108 0.088 -
o 0.70 0.302 0.210 0.149 0.126 0.103 w
i 0.89 0.363 0.2498 0.182 0.154 0.127 B
. 0.90 0.077 0.347 0.294 0.218 0.174
0.95 0.594 0.452 0.342 0.2499 0.291 o
. 0n.99 0.839 0.7404 0.630 0.580 0.577 ’
¥ o
o
¥ e
" e
&
y
Table 2.5 Expected Average number of "
¢ Correct Matchings, ¢ - 0.3 -
)
) .:"
: p ulO(C) u?o(c) uc)o(c) “1()0(() ulc) -
I 0.00 0.2%9 0.208 0.184 0.17% 0.166 w
n.10 0.269 0.723 0.19% 0.186 0. 174 N
. 0.20 0. 784 0.037 0.207 0.197 0.190
, 0O.130 0.130% 0.253 0.221 0.211 0.197 Q;
, 0.40 0.4 0.275 0.240 0.2¢9 0.213 -
0.50 0.363 0.304 0.263 0.25%0 0.736
s 0.60 0.4801 0.336 0.293 0.278 0.766 >
. 0.70 0.4%5 0.38? 0.337 0.1320 0.303 ;.
" 0.80 0.932 0.457 0.403 0.386 0.1362 o
g 0.90 0.670 0.593 0.540 0.519 0.497
; 0.95 0.802 0.733 0.689 0.674 0.658 -
y 0.99 0.978 0.968 0.961 0.961 0.966 -
b h B - - oo .5
) "
; 3
)
)
1 "
fl
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t
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Table 2.6 Expected Average Number of
p ¢e-Correct Matchings, ¢ = 0.9
§ o i e e e
ﬁ P ulo(c) “20(C) uso(c) uloo(c) ule)
0.00 0.353 0.311 0.290 0.281 0.274
» 0.10 0.367 0.330 0.306 0.298 0.289
A 0.20 0.390 0.348 0.32% 0.315 0.311
0.30 0.417 0.371 0.344 0.336 0.1326
p 0.40 0.452 0.400 0.373 0.362 0.394
L 0.50 0.485% 0.437 0.404 0.393 0.383
0.60 0.528 0.478 0.446 0.435 0.425
- 0.70 0.591 0.536 0.506 0.495 0.u484
(Q 0.80 0.675 0.628 0.994 0.584 0.570
g - 0.90 0.811 0.773 0.752 0.744 0.737
‘. 0.95 0.917 0.896 0.888 0.885 0.886
b ;ﬁ 0.99 0.998 0.999 0.999 0.999 1.000
§ _f.
4 -}
e Table 2.7 Expected Average number of
ﬁ e-Correct Matchings, ¢ = 0.75
L)
e: » P ulo(c) u?O(C) u,)o(c) umo(s) ule)
n 0.00 0.468 0.433 0.416 0.409 0.404
b 0.10 0.488 0.454 0.437 0.429 0.475
g 0.20 0.514 0.477 0.461 0.4%3 0.44%
b . 0.30 0.539 0.505 0.487 0.480 0.471
- 0.40 0.582 0.542 0.522 0.514 0.%503
N 0.50 0.621 0.986 0.960 0.59% 0.547
0.60 0.662 0.633 0.613 0.606 0.5999
e 0.70 0.727 0.694 0.679 0.673 0.668
v (.80 0.810 0.786 0.77? 0.768 0.766
0.90 0.919 0.908 0.906 0.904 0.907
- 0.9% 0.979 0.976 0.978 0.979 0.6R%?
?: 0.99 1.000 1.000 1.000 1.000 1.000
?
o,
."
N
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Table 2.8 Expected Average Number of
¢ Correct Matchings, « 1.0

)
o N Mg l€) Mg le) Moo ) pie) g:.};
0.00 0.570 0.945 0.531 0.524 0.922 o~
0.10 0.993 0.966 0.99% 0.549 0.547 "

0.20 0.61 0.99% 0.981 0.576 0.570
0.0 0.646 0.622 0.611 0.60% 0.609
040 0.690 0.664 0.650 0.644 0.627 :.'_:
0.90 0.709 0.707 0.691 0.688 0.683 -
0.60 0.772 0.7%3 0.744 0.741 0.737 g
0.70 0.830 0.812 0.807 0.80% 0.803 o
0. R0 0.898 0.889 0.887 0.88% 0.886

0.990 0.970 0.970 0.972 0.972 0.975
0.9% 0.996 0.996 0.997 0.997 0.998 o

099 1.000 1.000 1.000 1.000 1.000

Note that, as expected, un(c) is a monotone increasing function
of p for each fixed ¢. Furthermore, the quality of the merged file 1is
quite good if we want to recrea‘te contingency tables with Y

intervals of size .50 or more and the correlation p is » 0.5.
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2.9 Polsson Convergence of N(e¢")

Let us revisit, for a moment, the card-matching problem which
was discussed in Section 2.3. Some of the distributional properties
of the number of correct matches in randomly arranging one pack of
cards agalnst another were stated in Proposition 2.3.1. In partic
ular, the well known approximation of the distribution of the number
of correct matches by a Polisson distribution with mean 1 was
mentioned. This Polsson approximatlon may be motivated by the
observatlon that the occurrence of a match tends to be a rare event
when the number of cards in the matching problem grows indefinitely.
Inspired by this result, it 1s natural to ask whether Poisson distri-
butlions can approximate the distribution of the number of correct
matches due to data based matching strategies. The answer i1s in the
affirmatlve in the case of the maximum likelihood pairing ¢". Our
ailm 1n this section 1s to establish the Polsson convergence of N(e*).

Using the general representation in Corollary 2.6.1 for the

number of correct matches, we can write

N - N(p®) = ¥ I (2.9.1)

where Apy = (R1y = Rpy), 1 =1,2, ..., n are exchangeable events. It

follows that E(N) = nP(An ). 2Zolutikhina and l.atishev (1978)

1

sketched a proof of the fact that the expectation of N converges to a
constant as n tends to . Thelr approach starts with writing p(Anl)

as the triple integral
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[ expl(n 1)in(s(x,y,0))]1dodH(x,y)
-0 .

g — 8
g — 8

0

where s(x,y,0) - p3(x,y) + 2Jp1(x,y)p2(x,y7 < Cc0s20,
pl(x,y) - F(x) Hix,y),
p2(x,y) - Gly) H(x,y),

and p3(x.y) = 1 - pl(x,y) - pz(x.y). YV x,y €R 0 <6 <

~
al
Using the well known method of Laplace (Bleistein and Handlesman
1975), they expanded thils integral in powers of ﬁ and concluded that }d
&
p(Anl) 2 z for large n, where the constant a s given by
Y
" 1. 1 ~
a = [ [h(x,G F(x))/h,(G "F(x))ldx (2.9.2)
- ]
"5
They concluded that, in large samples, E(N) = a.
In thls sectlion, we shall generalize the result of Zolutikhina -
wn
. . th .
and Latishev (1978) by showing that the d factorial moment of >
\..'
(d) d -
N, E(N ), converges to a ,d > 1, under certain conditions on the M
distribution of (E). As a consequence, we shall obtain the weak I~
convergence of 1 to the Polsson distributlion with mean a. )
We begin with the observation that the ranks »
Bl = (RII' C Rln) and 52 = (R21' R R2n) are lnvartant under o
~
increasing functions of T and U respectively. For this reason, N is ~
also invarilant under such transformations. Without loss of general .
ity, we therefore replace T and U by F(T) and G(U) respectively, )
"I
"
WL
N
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where F(G) 1s the marginal distribution function of T(U). This so-
called probability integral transformation allows us to assume that
T and U are marglnally uniform random variables and that the parent

CDF, H(t,u), 1s the joint CDF of F(T) and G(U). Furthermore, the

1
integral (2.9.2) simplifies to a = | h(x,x)dx. We might recall
0

from Section 2.2 that this simpler version of a was called . We
shall henceforth use these simplificatlons and seek to prove that N
weakly converges to the Poisson distribution with mean A.

Following Schweizer and Wolff (1981), the joint CDF of F(T) and
G(U) will be called a copula. In general, a copula is denoted by the

symbol C(.,.) and the following Frechet bounds apply to any copula:

max(x+y-1,0) < C(x,y) < min(x,y), V (x,y) € [0.1]2 (2.9.3)

However, for the purpose of deriving the distribution of N, we shall
consider only a part of the spectrum (2.9.3) of all possible coupulas.
To motivate our cholce of the copulas, first note that, in this
chapter, only absolutely continuous Joint densities are allowed for
T and U. This means that the extremes min(x+y-1,0) and min(x,y) are
ruled out because these copulas correspond to degenerate Jjoint
distributions for T and U (Mardla 1970, p. 32). Second, Goel (1979)
has observed that ¢ = (1,2, ..., n) is M.LL.P iff the joint density
of T and U has the M.L.R property. However, M.L.R property neces
sarily lmpliles that the distribution function of (a) must be such
that C(x,y) > xy, for all (x,y) in the unit square (Tong (1980),

p. 80). We shall henceforth assume that the joint CDF of T and U will
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satisfy the inequalitles

xy < C(x,y) < min{(x,y), V (x,y) € 10,1]?. (2.9.4)

Note that, in (2.9.4), T and U are independent Iff C(x,y) ~ xy.
Positlve dependence of T and U occurs when C(x,y) » xy, for all x and
y. In the remalnder of this sectlon, the joint CDF of T and U will
be a copula C in the class (2.9.4) and the corresponding jolnt density
function will be denoted by c(x,y).

Since R, and R, are some permutations of (1,2, ..., n), we find

it convenient to use the notation ¢ for realizations of Bl or 82.

The common support of R and R_ is denoted by ¢, the set of n!

1 2

permutations of 1,2, ..., n.

We will now formally establish an equivalence between the card matching

problem and the M.L.P in the independence case.

Proposition 2.9.1: Let T and U be independent random variables.

Then the distribution of V = (an, o, Vnn) defined in (2.72.6) is
the same as that of the vector § = (61, . 6n) where
= .., 1 21,2, ..., n (2.9.9)
6n’l I(R 1)
11
Furthermore, the random varlables &8y, ..., §, are exchangeable.

Proof: Note that the rank vectors

R, )

Ry = (R 21 T T 2n

1 c. =
~1 11° o F1n) ind 82 (R

are independent because T and U are, by hypothesls, independent

random vartables, and that Bl and R_ are discrete uniform on ¢.
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P(R = o) =%1—!, Ve €% and a =1,2. (2.9.6)

)
e

As V,;°'s are indicators of the occurrence of matches, the

7 |

Bernoulll varlables énl' RN 6nn in (2.9.%) can be looked upon as ;
indicating whether Rn matches with 1 or not, L+ = 1,2, ..., n. [t is E

o

"'{i)‘

clear that the common support of V and & is

= [, . = ’ =1, »
A {(a1 an) a, Oor 1, i=1,2

(¢ 9.7)

.
X A
o
e
I e =}
—
Q
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A
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. Note that A has 2P n sample polints.

.
l'. T

Ay

v e K

Let a = (a oy an) be a fixed but otherwise arbitrary point

1 [

v -

g

in A. Define the events

3
Yy D(a, E € &:1 . . -a,, 1 - 1,2, ..., nl, }:
3& 2.9 v (w(i)=@(l)) 1 '
(2.9.8) I~

o where ¢ € ¢. Then, using the independence of 51 and 52 and E,
I

- (2.9.8) we get )
2 >~
" .
P(V = a) - P(I ) =a,, L =1,2, ..., n) Py

1 - (R, =R,.) i y
‘..: '.
o’ g
R, h

£ : 2 ’

- P(I(R (1)) di' i 1,2, . nlﬁ2 @) v
” 11 "
) ° g
- R -L\
o E°p 3
- . 3 - _'.
~ ([(Rqu(t)) 2. b L2 > 0 X
)

":! ',\
) K, ),

- E ° P(g1 € D(a,w)) (2.9.9)
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We now observe that the components of a dictate which posations

of ¢ (1), . ., @(n)) must be matched or mismatched by ANy permu
tation ¢ in order that y ¢ D(a,¢). Clearly, the number of ways in
which we can permute the integers 1,2, ..., n and produce ¢’s that

belong to U(a,e) depends only on the fixed vector a and the fact that

¢ s an arrangement of o dAistinet integers.  Hence the cardinality

D(a,yp) does not change as ¢ ranges over .

In particular, Dla,o)
and Dfa,e") have the same number of sample points, where

e* - (1,2, ..., n}). Using (2.9.6), we therefore obtain

BOR, € Dlagd i € DEe™)), Yoo € @

The right hand side expression tn (2.9.10) 15 a Pixed number depen

drug on @" and the chosen a. This means that in (2.9.9), we seek

the expectation of a degenerate random varltable.  Hence, we obtain

POUa) IR € DGaLeT))

Because a was arbitcarily chosen from A, we finally infer tfrom

(z.9.11) that

(v ooV oy Y as

o 8
ni {11 nl ' nn

(2.9.10)

(2.9.12)
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j The exchangeability of 61, 6n follows from the fact that the f"
T v
. . \
distribution of 51 is uniform over %. \6
(Y '\*
o i L&Y
2 It readily follows from Proposition 2.9.1 that, in the indepen- oY
dence case,
"
b o
n n -
- y v,d 35 s (2.9.13) -
O - ™,
~ oo ™M Ty "
.- .J
[ ]
'-“ n -
e In view of (2.9.13), if we let 2 = J & ,, then the exact as well >
- 1=1 o
‘ n o
?: as asymptotic distributions of N(e*) = § vV, can be derived by g
i=1 .‘
. studying Z,, which is same as the no. of matches in the card matching -
o “
- problem. As stated in Proposition 2.3.1, the asymptotic distribution f:
’--
o of Zn is Polsson with mean 1. We now present another proof of this :‘_.:‘
L >
well known result. The novel part of our proof is that we establish i
>
- s
cartaln dependence propertles of 6nl' 6“n and consequently f:'\-:
-‘_ &
-~
derive the limiting distribution by using only the first two moments o
g of Z .
n
= Our program can be stated as below:
S
- (1) Show that éni's have a certain positive dependence structure.
?; (11) Invoke a theorem due to Newman (1982) to arrive at the Polsson
’-
convergence of N in the independence case.
-~ We start with the definitions of some concepts of dependence of
random variables.
“
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Lefinition 2.9.1 (Lehmann, 1966): Xy and X, are sald to be positive

©
X
—
v
>
—
~e
)
N
—
~
'_.c’:l_'-! A -
v Wty T ".

quadrant dependent (PQD) it f

X, > x2) > P()(1 > xl) P(x, » x, ), V x X«
_ )
(2.9.14) SRS
. 5\
Definition 2.9.2 (Newman, 1982): xy, ..., X, are said to be linearly o~ -:-‘
R
positive gquadrant dependent (LPQD) iff ffor any disjoint subsets A LB £
)
of {1,2, ..., n} and positive constants a_, ..., a , -~
1 n ,‘_:
N N
Yooa x  and ) a x are PQD. (2.9.15)
Ke A k(B ’;-"
o )
Detinition 2.9.3 (Esary, Proschan, Walkup, 1967): X1+ ..., X, are n
s
sald to be assoclated iff for every choice of functions Qi:
t(x. ., ..., x ) and f (x, , ..., x )}, which are monotonic increasing o~
l 1 n 2 1 n
in each argument, hd
P4
O X, o, X )y, B x,, ..., X > 0, 2.9.16 s
()v(f)( L n) 2( 1 n)) > (2.9 ) 2
. o . ]
provided £y0x), .., xp) and fo(xy, ..., xp) have finite variance. ~ "C
(5] =
ft 1o weell known that association 1s a stronger property than Y
b
LPQD property of n ravlom variables Kpo oo X We will now -:‘
establish that & L., 8 in (2.9.9) possess a weaker version of ~— !,
nl nn v
.l -
the LPQD property. "S :::
N
Lemma »2.9.1:  For k 1.2, ..., n 1, . :\'
PR S
‘ n
¢
Yy 8 and & are PQD. (°.9.17) A ‘,}
1-1 ni nn A
S
"
»
., '-‘.
Proof: Fix k - 1,2, ..., n 1. Then, using (?.9.14), we sre that .. ;'
)
a
R,
S,
W

%
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ni and 6nn are PQD if

I~ x
O

k k
= P( ¥ 6n1 > X, 6nn > x2) > P( % 6n1 > xl) P(':Sn > xz), v X, x2€R
o 1=1 1=1
) (2.9.18)
a_:..
:: Because 6n1's are binary random variables we obtaln
Sy 1 if x, <0
e,
% P(<§rm > xz) = (2.9.19)
0 if X, 2 1
p
A
It is clear from (2.9.19) that (2.9.18) holds for any xj, provided
l X, < 0 or X, > 1. Hence, it suffices to show (2.9.18) for
)
0 < X, < 1. However, if 0 < X, < 1, then (6nn > x2) = (énn = 1).
IE.
.3 It therefore remains to be shown that
§ k K
'l - =
~ P(1§1 6n1 > 9, ann =1) > P(1§1 6n1 > ) P(én 1),
n V=01, ..., k. (2.9.20)
. By definition of 6n1.
. P(s = 1) = P(R —‘L)—l
ni - 11 7 " n’
v (2.9.21)
1
. and F’(énl =0) =1 - n
/.
s
Kk
‘. Writing P( } 6n1 > %) in the form
- 1-1
gy,
n

N, AT T N NN N N e N et e

AT o s o a A e e ale ff-f.
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n
>, 8 =0)+P(Y &, >0, 8 =1) PN
121 ni nn 121 ni nn
” %
and using (2.9.21) we can rewrite (2.9.20) in a more useful form: ;‘5
! : k =
; P( ¥ 6n1>1|6nn=0) < P( } 6n1>l|6nn=1), -
‘ i=1 1=1
:- .
' L =0, ...,K- (2.9.22) <
l Note that, in (2.9.22), k is a fixed integer. For a given k, .;6
M
we now flx the value of % and proceed to establish the inequality ~
in (2.9.22) by means of a combinational argument. '3
]
9 It is clear that we can express the event (énn = 0) or
"
n-1 ‘l’
as v (R1n = a). Hence we can write,
a=1 .
k n-1
(Y & >4, 8 = = U J (2.9.23) i
121 ni nn a=1 a o
e
where d
. b
._" e
~y dn
k R
= = = P b 2 .2“ A ~
Ja ( 2 éni 2 ") Rl.n a)l a 1v2v , N 1 ( Q ) ,'J .::
1=1 PN
DR 4,
)
Observe that, in (2.9.24), Ja's are mutually disjoint measure- tﬁ' E’
o
able subsets of ¢. Let us now fix « = 1,2, ..., n-1 as well. Then, N
any permutatlion ¢ in J, satisfies ¢(n) = a and (¢(1), ..., e(n-1)) ":: -
|
1 is an arrangement of the integers 1,2, ..., o-1,a+1, ..., n producing Eﬂ
| -a \-'
o, "
at least % matches of the type ¢(1) = 1 in the positions o ::1
RS
i =1,2, ..., k. On the other hand, any permutation ¢ in . :';T:
»
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Y

N » "
N (§ &.21%, 8 =1) satisfies ¢(n) = n and ]
ni =" "nn " satis ein) = e

. i=1 !
9’ .e
{t} e
(¢(1), ..., 9¢(n-1)) is an arrangement of the integers 1,2, ..., n-1 ;:;

[ ]

! yielding at least % matches such as ¢(1) = 1 in the positions ,

- -
> (

. 1 =1,2, ..., k. Because a # n, it is clear that ,

)

T K .

N #I ) <MY &, >0, 8 =1), (2.9.25) g

& T Tya ™ o %

- P

. where #(A) denotes the cardinality of the set A. :

.

Na 7

Since a, k and % were arbitrary cholices, we get from (2.9.23), »
| "
e K K

#y § .4 2%.8 =0) < (n-1) # ¥ § .28 =1 2

- 1=1 i=1 ’.J'p
b

1 A

k =1,2, .. n-1; L =0, ..., k (2.9.26) 0

% Since 51 1s discrete uniform on & it follows from (2.9.26) that .

BN o
L.}

! K K »

~ - - - _ - g

~ P( ¥ §.4 2 v,8 = 0) < P( } 6n1 > a,snn 1) (n-1) !

i=1 1=1 *AN

A% e’

.b‘ (2.9.27) o
'y

5 Multiplying both sides of the inequality in (2.9.27) by n and using !.

» -

» (2.9.21) we establish (2.9.22), which implies that (2.9.20) holds. O R
gt

'_',.E: We now state two useful results due to Newman. By

P "J'.
L

~ Lemma 2.9.2 Newman (1982): If x, and x, are PQD, then ::

e e

[ t"g
N

v 'ﬁ (!

[N ~
. o

. R

) ~4
™~
In K]

:" u\
N
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IE(exp(lrx1+1sx2)) - E(exp(lrxl)) E(exp(lsx2)|
< |rs| cov(xl.xz) for all r,s € R (2.9.28)
a
Lemma 2.9.3 Newman (1982): Supposelthat X TR x are LPQD. Then
n n n
¥ (r,,...,r.) - I ¥ (r)l< ¥ ¥ Irr | covix ,x. )
xl,....xn 1 n -1 xJ J k=1 2-1 k k' 2
k < %
v rl, . rm ER , (2.9.29)
where ¥'s are given by
n
¥ = E(exp(l § r.,x,))
xl....,xn 321 33
¥ = E(exp(1l r.,x,), =1,2, ..., n. a
X, (exp(1 ryx,), J
Suppose now that we choose the arguments ry, ..., Cpy in (2.9.29)

equal to an arbitrary real number r, say. Assume further that

X . xn are exchangeable random varlables so that they have

1'

common characteristic functlon, namely Yx (r) and that the covarliance
1

between any pair of the xJ's is equal to cov(xl,xz). It follows from

(2.9.29) that

|y (r) - W: (r)| < QL%;ll lrI2 covi{x,,x.) (2.9.30)

EX1 1 1'72

n
This estimate for approximating the characteristic function of § «x

i=1
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by the product of the marginal characteristic functions of the x's

depends on the fact that SRR x, are LPQD. We now use Lemma

2.9.2 and show that, with regard to the varlables 6n 4

1 o Sane
an estimate similar to (2.9.30) can be obtalned under the weaker
version of the LPQD property which is given by (2.9.17).

Lemma 2.9.4: Let 6n 's be the Bernoulll varlables in (2.9.5) and

i
n
let Z = Y & .. Then,
n 121 ni
n n(n-1) 2
IWZn(r) - Qénl(r)l < Ir| cov(énl.énz).
Yn>2, r €, (2.9.31)

é was established in

Proof: The exchangeablility of & _, ...,
D nl nn

Proposition 2.9.1. Hence, we obtailn

cov(&n 8 ) = c<>v(6n S ). v L= ), (2.9.32)

1" 'nj 1" n2

¥ (r) = ¥ (r), Vv 3, (2.9.33)

Note also the well-known property that

“’a (r})] <1, ¥V3iand ¥V r (2.9.34)

n)

From Lemma 2.9.1, we have

W ~Mmx

é and § are PQD, V k = 1,2, ..., n-1.
ni nn

In view of the exchangeabllity of &, ..., &5,, we can restate this

property of the 6n1's as follows:

RN

' .
L W |
. w

P YA

o
)’l

AT I A A AN KAL S
£¥25$?p; }31215z5 '
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Let A and B be non-empty disjoint subsets of {1,2, ..., n} such
that B 13 a singleton. Then
y 8 and § % are PQD (2.9.39)
ren ™ jeg M

Fix n > 2 and conslder the following finite sequence of statements:

cov(énl,énz).

Iy () - ¥} (o] < mig:ll Ir|2

m
nl
)
Yvm=2,3, ..., n (2.9.36)
Note that (2.9.31) is obtained from (2.9.36) by letting m = n. We
shall now establish (2.9.36) by induction on m.
By choosing A = {1}, B = {2} in (2.9.3%), we find that 6n1 and

6n2 are PQD. The Lemma 2.9.2 readily implies that (2.9.36) holds for

m = 2. Now, let us assume that (2.9.36) holds for m = 2,3, .. (n-1).
n n-1
Splitting ¥ 6ni as the sum of § éni and 6nn' we infer the PQD
1=1 1=1
n-1
property of J & and § from (2.9.35). Hence we obtain again
ni nn
i=1
from Lemma 2.9.2 and (2.9.32)
v (r) - ¥ (r) -« Wénn(r>l
Y & y 8
121 ni 1.1 ni
2 n-1
< Ir]® cov( ¥ & .8 )
= ni’ nn
i=1
= |r] 2(n—l) cov(é & ) (2.9.37)
nl’' n2

Now, we shall invoke the induction hypothesls that (2.9.36) holds for

s
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m=n-1. Using (2.9.33) to (2.9.37) we finally establish (2.9.36)

for m = n as follows:

. v: (r)}
nl

(r) - wz (r) |
nn nl

2
< Ir}” (n-1) cov(s .8 )

n2

(r) - Wz—l(r)l
nl

n-1
é
1-1 ni

N r

s S0,
o

2 | 2
< |r|l” (n-1) cov(énl,énz) + |r]|

n-2
§ ) (n-1)(1 + )

2
ir| cov(6n >

lo

e

8 ) (2.9.38)

_n(n-1)
2 n2

2
ir| cov(6nl

T &

The proof of (2.9.36) is complete by our inductive argument and

(2.9.31) follows from (2.9.38). O

X

-
)
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Our preparations so far in thls section are adequate for the
purpose of establishing the Polsson convergence of N in the
independence case.
Theorem 2.9.1: Let T and U be independent random variables. Let
the number of correct matches, N, be given by (2.9.1). Then
N » Poisson (1), as n » « (2.9.39)

Proof: We obtain from (2.9.13)

\ N g Zn'
k)
n
3 where Z = ¥ & .. Using the exchangeability of &  's, we obtain
J n 121 ni ni
[} =
'
A
K _ _ _ _ _ 2
cov(6n1.6n2) = P(Rll_ l'Rlz" 2) [P(Rll-l)] (2.9.40)
l
) Since P(R11=1.R12=2) = 1/n{n-1), it follows that
: $ 1 2
n{n-1) cov( n1’6n2) =5 von>2,
D
2 and therefore
D
+
D) - = ..
n{n-1) cov(énl,énz) 0(1) as n-ow (2.9.41)
>
‘ The proof of (2.9.39) conslists of showing that the characteristlic
o
$ function of Zn converges to the characteristic function of the
[}
Poisson distribution with mean 1. 1In other words, we shall show that
)
' Yz (r) » exp(exp(ir) - 1), v r € R as n (2.9.42)
4 n
\
1
' To this end, Lemma 2.9.4 gives the following estimate of the
x
L)
)
)
]
)
#
¥
)
‘.. . - , .
“" "'\‘l - . i W% l.', i i‘ l »3 ' AN l','. ,.c...l‘.. ‘.. 0 ) ~ ', ) j.“_k M N A ‘.‘ 0y l'b{ , v SR IOCN A"

¢
0
Y
iR
A
4
¢ B
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difference between the characteristic functions in (2.9.49)
|Yz (r) - exp(exp(ir) - 1)}
n
n n
< |¥, (r) - ¥ (r)y] + |¥ (ry - exp(exp(ir) - 1)|
YA é 4
n nl nl
< n{n-1) Irl2 cov(d _,8 ) + |Yn (r)y - exp(exp(ir) - 1)|
2 nl’ n?2 4
nl
(2.9.43)
Now, using the distribution of &, glven by (2.9.21) we get
1
¥y (r) = [1 + = (exp(ir) - 1)]
8 n
nl
Clearly,
Y: (r) » exp(exp(ir) - 1), Vr € R, as n » = (2.9.44)
nl

It readily follows from (2.9.41), (2.9.43) and (2.9.44) that (2.9.42)

holds. Hence we obtain

d
Zn -+ Polsson (1) (2.9.45)

which 1ls equlvalent to (2.9.39). 0
We now assume that the broken random sample comes from a

population in which T and U are dependent random varlables. It

should be noted that extensions of some of the techniques used in

the proof of the Polsson convergence in the independence case to the
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88 o
dependence case are not avallable at this time. Specifically, no o
L
proof of the counterpart of (2.9.17), namely ‘-
oo
)
k o

? V. and V__are PQD VY k = 1,2, ..., n-1, Y n > 2

121 ni nn

(2.9.46)
is known. However, direct verification of the association of

\') Vnn has been carried out for n=2,3,4 when T and U have the

nlt o
Morgenstern distribution glven by (2.6.16). Since assoclation of
random varlables 1s a much stronger dependent structure than
(2.9.46), it is natural to conjecture that Lemma 2.9.1 holds even
when T and U are dependent.

In the absence of a valid proof of Lemma 2.9.1 in the depen-
dence case, we need extra conditions on the distribution of T and U

in order to derive the Polsson convergence of N. The following lemma

will be useful in deriving the main result of this section.
S

Lemma 2.9.5: For a fixed 4, let En = ﬁg and L = (Ll' Cey Ld)'.
§n and L are defined in Section 2.2. Then,
a.s
L * L, asn- e (2.9.47)

Proof: Fix d > 1. It is clear from the definitions of Ek in

(2.2.10) and the sigma-fleld A4q in Sectlion 2.2 that the infinite

sequence

§'(1+1' §d+2' e

R R N R W L e M W W T ST T W P W DT Y N T T U Y W
NPT I, Pt S T T Y S R A S AT A oy ot e
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e 89 e
! of d-dimensional vectors are conditionally i.1.d given Ad. Hence, f
|5 -
o
using the Strong Law of Large Numbers for exchangeable sequences o
'$
ﬁ (Chow and Teicher, p. 223) we get :.,-
% s
Qg_ -L g £ 03 E(E, L IA (2.9.48) 3
n-d y.d.1 K d+1°d )
- r_“
% 3
wn In order to evaluate the limiting conditional expectation in o
]
? (2.9.48), note first that, for j = 1,2, ..., 4, '1'3 and Uj are Pt
2 <)
uniform random variables. Now, X
o E
d E( T, =t,, U, =u,) 3
ganlTy = tyr Uy =y 3
L
A f
" - _ _ _ ()
o P(tj Tgep 2 @ P(uj Ugop 2 9 o
J
- .'
- _ )
ﬁ = P(Ty <)) - P(Uy, < up)
P
. =t, - u Py
= 3 7Y 3
- »‘.
+
= L,. 2.9.49) f.
N 3 ( ’
o .
‘l
- Therefore, it follows from the definition of gd in (2.2.10) and ~)
": +1 ~
o Y
X (2.9.49) -
2 ,
‘:: E(§d+1|Ad) = (Ll'Lz' c ey Ld) . (2.9.50) o
A
& Hence, (2.9.48) and (2.9.50) imply that »
. ’
- 1 ) 8.s L R o
na Ek L, as n ® (2.9.51) N
k=d+1 S,
]
hE Also, 4 being a fixed integer, we have Y
)
NS
"i
[ -
? 2
[ \'I
. K
:’n l_
/. ~

<
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‘s S P T S . e e e e = -
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1 d a.s )
Tqd .l t,” 0 asnow (2.9.52) e
k=1
&rl
'
Since :’!
n
1
L == 7% 13 o
n n K1 k ’
the lemma follows from (2.9.51) and (2.9.52) 0 "
N
The following sufficient conditions will be used to prove the next
(%
£
theorem. H(
Assumptions: In the notations of Section 2.2, let A
PV
(a) A<= (2.9.53)
A
(b) | le(e)l 46 < = (2.9.54) -
—C0 *
and (c) P(‘l’a <t) = O(td) as t 3 o, ¥d>1 (2.9.59) N
o
Theorem 2.9.2: If Assumptlons (2.9.5%3) to (2.9.55%) hold, then
q
N » Polsson (A) as n » @ (2.9.56) i
.l'
J‘:’
Proof: Proof of (2.9.56) consists in showing that the factorial
moments of N converge to those of the Polsson distribution with mean ’:‘-
X\, 1n other words, -
o
E(N(d)) - xd. vda =12, ..., (2.9.57)
;J-
N4
By the Fourier inversion theorem, ¢
\V
t'.:
w
“I
>
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where YS (6) 1s the characteristic function of the d4-dimensional

~Nn

random vector §n defined in (2.2.7).
The Assumption (2.9.54) ensures that the Fourler inversion

theorem can be applied to the contlinuous random variable L.

that A

it

we get

>
1}

Since LJ

function

kd

Recalling the representation

from Corollary

E(N

A A A AT A LA T A LA A T 4 T TR A T, A, e A T e fa T T A e
VT e T Y T T g D, e T A O e S o S I N N St s

(a)

a ¥ w e uE L8

1

J e(x,x) dx is the value of the density function of L at 0,

0

gy,

woe

(2w)~

(0) = (2w)

Ty - Uy, )

equal to gL(.

(2%)

¢

(d)

)

n(d) P(

d

1

)

2.6.1, we obtain

n P(A A ... A

S
~n

4
1)

L ¢
{
v

?
X

v o v
reS% %
o "8 0]

27 ®

>
<

N

9l

a0
w &

!

»
x
.

n w
[ ... ] ¥g (8) ae,
- - ~N

(2.9.58)

oy
PL 2N

P

s

\]® B

)

o
-

s
RS

Noting

1@

h
'
L

F

-ty B
Pl a8
{}l'L

o

o

i\vL(t) dt

“
LA

L)
IR T
2 "y T

P TR
. _a
-

1,2, ., d, are 1.1i.d, with their common density

~F v
& 5

it follows that

e @

A

(2.9.59)

4
X

Vot

f WE(Q) ae

e d

5@ o,
r» r

-.:
I

.
b
' s’y

Ny

r

Yyl
L}L’\I'./,

| e 4 1 ]
A

nl n2 nd

L L
TANN®

d
)

= 0), (2.9.60)
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Y Can-1) ... (n-ds 1),

-

For fixed 4, it is clear that n(d) ~ nd as n * », It therefore

follows from (2.9.60) that, in order to prove (2.9.57), it is

-

sufficient to show that

Lim la(d,n)| = 0O, (2.9.61)
n->o

O,

-
-

where A(d,n) = ndP(§n 9) - »

P L -,

From (2.9.58) and (2.9.59), we obtain

a a 7 K ®
a(d,n) = n(2m) =~ [ ... [ ¥ (wdu-(2m)" .. ] ¥ (8)a8

- -1 ~n — —®

4

(2.9.62)

On making the change of variables 9 = (nul. ceey nud) in the

first term of (2.9.62) and noting that

Ws (6/n) = ?L (8), we get
~n ~n

nw nw [ ] @
I ¥, (@ae - [ ... [ ¥ (0)ae
-nw« ~Nn —c0 -0 o~

acd,n) = (2m 9

4

4

(2.9.63)

.

1

For positive constants a and B, which will be determined

—~
[

-
-

!

later, define four integrals as follows:

& Bt
L "

| ¥ (8) ge (2.9.64)
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(' e e

(1) 3 = [ ... [ 1Y (9) - ¥ (9)]de | (2.9.65)

|8l<a ~n

By et 2
]

(111) J3(n) | ... ]"l’L (6)ae (2.9.66) 1

¥y "
—<|—|<B
n~|n

. o -

(b

g
>y

=z

(iv)  J,(n) I [ ¥ (8)a8 (2.9.67) ‘

Bn<|@l<wvn =n

1 ﬁ It 1s easy to verify using these integrals and (2.9.62) that 3
v :
\ a ® v,
W gg a(d,n) = (2w) T 9 (2.9.68) '
k=1 ¥ "
;n. y
4 "_‘ For appropriate choices of a and B, we will show that k
D '..’_‘
)
:: ﬂ |Jk(n)l" 0Oasn -~ @, k = 1»2»304v h
. which will imply (2.9.61).
4 (_J-
:: s Let ¢ > 0 be a fixed number. Then, assumption (2.9.53) and the v
y )
' % expression (2.9.59) imply that ‘l’L(g) is absolutely integrable :
a -
,: on R°. Therefore, we can find a large enough a such that
R %
K 130 <] ... ] [¥ (8)]de
! lo]> BT .
. hA a
o
A < /8 (2.9.69)
ﬁ From Lemma 2.9.5, we have
u
‘o a.s d
. L + L, :
. ~n ~
iy ‘
d
! 4 which implies that (cf. Bhattacharya and Ranga Rao, 1976, p.44)

\l’kn(g) i ?k(g) as n * o,
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the convergence belng uniform on the compact subset
d
{e:0€R and |8} < a}
Hence, for the a chosen above, we can find n, such that
Yn> nye
|J2(n)| < ¢/4 (2.9.70)
In order to show that |J3(n)| + 0, we transform 6 to
r =96/nin J, and obtain
4
J3(n) =n | ... ] Ws (r)dr (2.9.71)
a ~n
e |r|<s
n ~
n
Note that § = ] §, is a lattice random vector so all its
i=1
Ty
moments exist. Since (y,) are 1.1.4, it
follows from the definition of ;1 in (2.2.10) that
E(§n) =0 (2.9.72)

It was argued in the proof of Lemma 2.9.5 that, for all n > d,

5d+1' c ey En are conditlionally 1.1.d4 given Ad with mean

E(E,1A) =L, ¥ =del, ...um

It is easy to verify that the disperslion matrices D(iled)'

J = d+1, ..., n, are positive definite. Moreover, for

3 1,2, ... 4, Ej is degenerate given A, and

d

B2

=

=5

e A

2 P I -

vr A

s
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(2.9.73)

where oz = var(T-U) and I is the dxd identity matrix.

The dispersion matrix of §n is, for n > 4,
D(§n) 51)

n n
E(D( ¥ IA )) + D(E( IAD))
1-1 51 1-1 51

(n-a) ED(E, . IA) + (n-a)%D(L)
We finally conclude that

2 2
D(S,) - (n-d) oI = (n-d) ED(E, ,IA)

(2.9.74)
is positive definite.
As the second-order moments of §n exist, we expand W'S(r) around

~n
r=0 and using (2.9.72) obtain

1l 2
= - = r' .9.7
log W§n(£) > F D(§n)£ + o(licl™), as |icll » 0 (2.9.75)

In view of (2.9.73), we obtailn

2
lexp(10g¥g ()] < exp(- 241 SZyry? o opell®,
~n

as lirll » 0

oy -“f il'\f
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Hence, there exlsts a constant 8 > 0 such that for n > d,
¥g (D) ] < exp(- % (n-4)2 o° Hg"z).
~n

vilcll < 8 (2.9.76)

Now, 13 n2 such that ¥V > n

(2.9.72) and (2.9.76)

20 : < B so that we obtaln using

a

l35(n) ] < n” | ] exp(- i (n-a)° &° Hg"z) dr
a
n <|ri<s
1 2 2
< ..o Jexpt- o g™ ar (2.9.77)
el > o

It is clear that we can choose a large enough a in (2.9.77) such

that Vv n > N,

|J3(n)l < e/4, (2.9.78)

Finally, to show that |J | » 0, we transform u = 8/n in (2.9.67)
and obtain

R G

[J, ()] < n
4
B<lul<r  =n

(W) du (2.9.79)

In view of the earlier remarks about the conditional distributions

of ;1. Cee, En given Ad , we obtain for n > 4,
¥, (W] < aAdlv (w| " (2.9.80)
§n - B Ed+1(!1' g
where £d+1 Ed*l( 1 . wd) is the value of §d+l given

v

v
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!1 = (Ti’ui)’ i =1,2, ..., d. Since the characteristic function

WE (u) 1s uniformly continuous on the compact set
d+1
{u: 8 < |u] < »} of Rd, it attains its maximum inside this set, say
at u = u*. Furthermore, VE has period 2 so that, for almost
da+1
all realizations (!1, e e e !d)'
sup ¥ (w| <1 (2.9.81)
B8<lul<x sd+1
Letting Wa = - ln(‘{’E (u*)l, we get from (2.9.79) and (2.9.80),
d+1
a A
lJu' <n E (exp(—(n—d)va) (2.9.82)
d
= n {n-qd)
R
where
[ -] [+ -] d
M(s) =] ... | exp(-s¥*) N aC(x,,y,) (2.9.83)
o 0 3

is the moment generating function of ¥* with a real positive

argument.

Now, using the Abellan Theorem (cf. Widder (1941), p. 181), we

obtain

a P(¥g<t)
Lim sup t Hv.(t) < Lim supl ed r(d+1)J} (2.9.84)
4 ti0

By Assumption (2.9.5%), the right-hand side of (2.9.84) 1s zero and

it follows that
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A ]
d ]
n H\y.(n—d) + 0, as n » o, @ 4
d t
]
) ":
which implies, in view of (2.9.82), ﬁ o:«
O
4
[J,(n)] > 0, as n » =, (2.9.85) o
4 O,
LV A
l' ‘
It follows from (2.9.69), (2.9.70), (2.9.78) and (2.9.8%) that s ‘\"
.Y N
:_'f. 1
Lim |a(d,n)| = 0 )
n-wo o KB
i B
N
The convergence of factorlal moments in (2.9.57) follows immediately, !'.:
0
QO
which in turn implles the Polsson convergence in (2.9.56) a = .'
The validity of Theorem 2.9.2 depends on whether the Assumptions . :
Y ot
>
(2.9.53) to (2.9.55) hold or not. We shall now given some examples in e .:
)
[l
t
order to illustrate the fact that these Assumptions are not vacuous. ¥ ’
=
We start with a discussion of (2.9.53). E$
2 2 oo
for any Copula C(x,y) on [0,11 , one may define ¢ (possibly an ‘.f{ ,_(;
'.A h
) »
infinite #) by the equatlion :
e,
TAJIS
2 1 )
¢+ 1 = [ Q ?x,y) dx dy, (2.9.86) P
Lo
where Q(x,y) = dC{x,y)/dxdy is the Radon-Nikodym derivative of the o .
]
Jonit distribution of (6) with respect to the product measure of T and .\_\3' ..'
wr e
U (1.e., the independent case). C(x,y) is a ¢2~~bounded distribution ‘\':
Vo)
\
(with marginal uniform distribution) if ¢>2 < +®, h‘.\ '.~
The class of ¢2—bounded distributions is large, as 1s evident .. :
I‘ '\
_'- .\'
from the following general result (see Lancaster 1969, page 95). - :
Proposition 2.9.3: If H(t,u) is a ¢2 bounded bivarlate distribu- 0 :"
N
N
N
N
N
.,
2 ‘:{_
.
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tion with marginal distributions F(t) and G(u) then complete sets of

orthonormal functions LIPRL P i =1,2, ..., can be defined on the

marginal distributions such that

dH(t,u) = [1 + Py "11(t) n21(u)] dF(t) dG(u) (2.9.87)

ne18

1=1

o
and ¢2 = ¥ pf (2.9.88)

1=1

It may be recalled from (2.6.12) that, when all Py 2 0 in the above
canonical expansion of the joint distribution of T and U, we say T
and U are positive dependent by expansion (PDE). It follows from
(2.9.87) that, when a copula C(t,u) is ¢2—bounded. N in (2.9.53)
can be evaluated using the orthonormality of ["i} as

1

| c(x,x)dx
o

>
]

- -3

=1+ I »p (2.9.89)
1=1

It follows from (2.9.88) and (2.9.89) that the finiteness of ¢2 and
A are related to each other. Specifically, since ¥ 1 > 1,

the canonical correlations Py < 1, we obtain

K<G$¢2<m

With regard to the Morgenstern distribution in (2.6.16), we obtain

e R T T N A N R AN A

1
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by
i
: a If 1=1 A
K> \ ¥
L p. =
¥ i
e %
K o if i>1 ‘
" where -1l<a<l. However, we have ;j
l oy
; .
() 1 v
) A = [ clx,x)dx -
i 0 I,
'. o 3
iy =1+ 3 )
d
i [0
t
. which is finite. Simllarly, in the bilvariate normal distribution !ﬁ
) given by (2.6.15), 4
) A
’
W 1 "‘:
N = T 0 < p<1l §
A -p =
- 1-p CH
-
;{ In view of these examples, assumption (2.9.53) 1is not vacuous. ‘
L) Iy
R -'J [y
N Bhattacharya and Ranga Rao (1976) (pp. 189-192), gives conditions N
I d
1
f' that are equivalent to the assumption (2.9.54). We cite one here: A
(
‘; Let GLm denote the nth convolution of the distribution of S
N
o L-T-U, wherem > 1. 1If there exists an integer m such that GLm o
[ )
has a bounded (almost everywhere) density, then the modulus of the Sy
. characteristic function of L is integrable on (-®,)(that 1s }?
: assumption (2.4.54) 1s valid) and vice versa. ¢

.

D]

Another sufficient condition for absolute integrability of

- ?L(e) is due to Bochner and Chandrasekar (1949). If there exlsts . i
e :..', '
" a bounded (almost everywhere density gL(t) of L =T - U and if its o
’I‘ '_!
- characteristic function WL(O) is (real) and nonnegative, then ‘i
Ty "
f' 4
’ M
v W
o M
Ld (
» ,
v -
o
,‘ NN '- Y. I A A s S s Xy '\',...'f._._._’.\f.'f\' AT -‘ >, -, -. -, " " 'V “ ',N.,.N‘f\"\fv\,-.(:.‘p"u .
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(-]
| |vL(e)| de < =
—a0
We illustrate the use of this sufficient (but not a necessary)
condlition when (5) has the Morgenstern PDF,
C{x,¥y) =1 +a (1 - 2x)(1 - 2y)
Clearly, as |a|l <1, Ix] <1, |yl <1, 3 a positive constant k
such that

c(x,y) < k, V (x,y) ¢[0,1])2
Note that
1-t

g (t) = |
L y=0

z(t+y,y)dy, YVt > 0

By the symmetry of C(x,y) in and, it can be shown that

gr(-t) = gr(t), vt > 0.

Now, using the bound k for C(x,y), and the fact that [-1,1] 1is

the support of L, we get

1-t
g. (t) <k [ dy < 2k < =
L 0

Hence, 1t follows that the PDF of L is (almost everywhere) bounded.

We now show that YL(O) is real and nonnegative V a > 0

¥ (@) = E(e“T"U)e) = I

+ al

1 2

1(x-y)e

where, I, = dxdy

O v
o

1
I
1o

."‘. A . --" \‘-\’\ﬂ\’\ ‘h" _v'.\..:."'..F\{\

BRI,

'-b'i"n'\,. =

-

[

SR

AL Y

v s @

AW

e
.
Pt RN

W Y,
,l...‘ A

s

o

® o

»

“t’ffﬂ’l"l

I'l "‘v “»

X

k)
.

“’;?. e,

.I

e

T

NN @ S

AN
» -..

TEYVE
".‘-’.’. .

g

L NN

o T 2
=3

P

Ps

e
AN

S FT

[



-

T A N AT A
- '« g v =

S

MUY UV URUR NN U L M a ™ s VWV

102
= Z1 Zl,
1
with z, = [ e 1xedx
1
0
11
L= 11"V (12 (1-2yraxay
00
= 22 22 N
1
with  z. = | e™® (1-2x)ax
2
0
2 2
Hence, YL(e) = |21(e)| + a|Z2(6)| >0 if a > 0.
©
Invoking Bochner's sufficient condition, we get | IwL(e)lde < @,
-0
if « > 0. However, for all a,
Ity (e)lae = [ 12,(8)]° d6 + a I 1z,
-0 —0 ., . )
(2.9.90)

so that the two integrals on the right hand side must be finite when

[e o]

I

—c0

clude that (2.9.54) is valid for any member of the Morgenstern family

a > 0. It follows that, even when a < O, We con-

|¢L(e)|de < ®,

of densities. It may be remarked, in passing, that, in view of the

generality of the conditlions of Bhattacharya and Ranga Rao (1976) and
Bochner and Chandrasekar (1949). (2.9.54) holds for many distribu-

tions of (5).
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Lastly, we discuss the validity of (2.9.55). To be specific,
when d=1, one can get the bound
2 X
Iwgz(w)(e)l <1l - po(l—po) + sin"(B/2) VB <O <, W= (y)
where P, = po(g) =1-x -y + 2C(x,y)
Therefore,
11 2
4
00
Thus, Ju + 0 as n > o if we show that ano(l_po)(n ) »+ 0 as
n * o, where Hn(S) is the Laplace transform of n. A sufficient
conditlion for this to happen is
P(Po(l—Po) <t) =0(t), ast » 0 (2.9.91)
Let 4(t) and 1-6(t) be the roots of the equation
Po(l—Po) =t
It suffices to show, as t =+ O,
P(P0 < 8(t)) = O0(t) and (2.9.92)
P(P_ > 1 - &(t)) = 0(t) (2.9.93)

(o]

If (5) is independent, then the PDF of Po can be shown to be

gp (x) = -tn(|1-2x])I{x)
o (0,1]
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! So that (2.9.92) and (2.9.93) are valld when C(x,y) = Co where -—
(
-‘ P
! Xx,y¥) = xy. Also, C(x, > !
::’ Co( y) Xy lso, if C(x,y) > xy, then PO(C) > Po(co) so that
I:' ‘-J
4 P(P (C) < 8(t)) < P(P (C ) < &(t)) (2.9.94) ]
N o o o o
)M y
)
o] Thus, using the exact calculations based on the independence case, E:
o
" .
N it follows that ‘
:": :.'! [
| »d
- ¥ € > xy, P(P_(C) < 8(t)) = 0(t) “
_? Efi
1 »
sp At this time, we are optimlstically speculating that, when (6) are
Q
) .
R dependent, (2.9.93) 1is also true. We are yet to demonstrate that {q !
the assumption (2.9.55) 1s not vacuous for any d > 1.
" After we derived the proof of Theorem 2.9.2, we discussed the !
L
o Polsson convergence problem with Professor Persi Diaconis, who a
]
) communicated the problem to Professor Charles Stein. In his Neyman o :
-
L
lecture at the IMS Annual (1984) meeting, Professor Stein outlined :&
N
an alternative proof of the Poisson convergence using hls well-known
L]
theorem concerning the approximation of probabilities. However, we i
have not seen any rigorous version of the proof yet. "
Y,
IO
t.r
[ 4
o
\d
(S ]
<
o
1"
q
.
'
L
o
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3. MERGING FILES OF DATA ON SIMILAR INDIVIDUALS Y
” .
A .:‘
. Problems of statistlcal matchlng were discussed in Chapter 2, -‘-
'L‘ v
) o
ol where we assumed that the two micro-data files belng matched consis o!:
»
A ted of the same individuals. Moreover, the files did not have any .;:;,
N Y
- 0
i common matching varlables. In Chapter 1, practical and legal reasons u::;
. 3
{f.: were clted for these assumptions not to hold in certain situations. ,.
' »
Suppose, then, we have two files of data that pertailn to similar .-'*
,{: individuals. Allowing for some matching variables to be observed “
R
for each unit in the two files, we seek to merge the files so that ;-.
L )
inference problems relating to the variables not present in the same i‘\
\
. 4
: file can be addressed. Thls scenario was labeled Case III in N
Ry - )
¢
Sectionn 1. 1In this chapter,we shall first review the exlsting ‘L_;
g literature on Case III, and then briefly discuss some alternatlves .
‘s )
\
o to matching in certalin models in which the non-matching variables ‘
:\: Ny
~ are conditionally independent given the values of the matching \f
) [ d
fq' variables. Finally, we will present the results of a Monte-Carlo hly
™ N
study carried out to evaluate certain matching procedures relevant ::'
" ™
\‘: to Case III. :'_‘
o
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3.1 Kadane's Matching Strategles for

Multlivariate Normal Models

Distance- based matching strategles were introduced in Section
1.5. The cholce of distance measures in the matching methodology can
be motivated using a model where the unobserved triplet W = (X,Y,Z)
has a multivariate normal distribution. The set-up of the two files
to be merged 1s as follows:

File 1 comprises a random sample of size n_, on (X,Z), while File

1
2 consists of a random sample of size n

5 on (Y,Z). Furthermore, we
expect very few or no records in the two files to correspond to the
same 1ndividuals. Statistlically, this means that, for all practical

purposes, the two random samples are themselves lndependent. For

this reason, we shall denote the sample data as follows.

(Base) Flle 1: (X,,2,00 1 =12, ..., n

(3.1.1)
(Supplementary) File 2: (Y

|

j.Zj). Jj = n1+1, seey Dyen,

Once finished, the matching process leads to more comprehensive

synthetlic flles, namely

Synthetic File 1: (51.31.21). i=1, 2, . n1
(3.1.2)
Synthetic Flle 2: (ZJ.ZJ.ZJ), ) = n1+1. . n1¢n2

where, !; is an imputed value of Y that comes from the original File
2 and 53 is an lmputed value of X that is taken from the original

File 1 by means of some matching strategy. We shall now review
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)

H o

‘ Kadane (1978)'s development of the matching methodology for a multi- °

v LY,
variate normal model. ﬁfﬁ
iy LY
) )
fJ Suppose that W = (X,Y,Z) has a multivariate normal distribution ﬁn
‘ 3
Gyt
58 with mean vector (Ex'Ey’Ez) and variance-covariance matrix .r-
e
iw
ﬁ Lex Zxy ez "’
= 3.1.3 hisht

) Ly Loy ez ( )

176
B, .l'..l
ﬁ Yax Y2y Y22 ::'o‘.:'
iy,
ah
?S The parameters Zxx'zxz’zyy'zyz'zzz can all be estimated consis- ::3
tently using the marginal information on (X,Z) and (Y,Z) respectively M
W)
ﬁ in the two flles. However, ny 1s an unidentified parameter, because s:::
\J
i the Joint likellhood of the data on (X,Z) and (Y,2) is free of the ‘::.:

matrix ny. In fact, in the domain in which ny is such that the

\
'}é matrix Zxx zxy 1s positive semldefinite, nothing is learned
zyx Eyy

N (3

: from the data about fyy, except ln a Bayesian framework, where Jyy, 2
b S

' Y. _,1 _ are, a priori, dependent. Even in this situation, the Rtk

xz'“yz ..:::

. .

posterior distribuion of ny is updated only through sz and Zyz'

1

1
"'

aN Kadane's approach to merging File 1 and File 2 consists of the

¥
=’
- v.-‘:.
-

following steps:

»

"_»

A0
A

. BN,

¥e (1) Start with an imputed value of zxy via some a priorl distribu- ;
\'

:} tion on the covariance matrix §, (i1) Complete Files 1 and 2 by ‘:.’::"h
¢ v
L ~
predicting the missing data, X or Y, using the marginal information i"

2 e
:‘ in the files, (i111) Match these "completed” files based on a .‘

1\

N

e
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distance measure between records of the two files, (iv) Estimate

parameters such as
Y = | gl(w) dF(w) , (3.1.4)

using the synthetic file resulting from Step (iil) and repeating the
Steps (11) through (1lv) many times to find the sensitivity of the
estimates to the imputed value of Xxy and finally welght the results
using the a priorl distribution on J.

Some further details of the steps outlined above are as follows:

Suppose that a an imputed value of Xxy is available. Then we can
assume that ny is known and complete the two files by means of condi-
tional expectations. Let zab.c' for any letters a, b and ¢, be given

by

-1
ac 2cc 2cb

zab. zab -2
Then the predicted value i. say, of a missing Y in File 1 is glven by

Y = E(YIX,2)

-1
2z.X

-1
¥y * Zyx.z zxx.z (X-p, )+ 2yz.x )

(Z-p). (3.1.5)

Similarly, the predicted value, g. say, of a missing X in File 2 is

given by

X = E(X]Y,2)

-1 -1

) (Y-p ) + §

By * 2xy.z yy.z ~ Ey) Xy.y zzz.y (Z-p,) (3.1.6)

Using (3.1.3), (3.1.5) and (3.1.6), it is now easy to show that

(51.i 'Zi) is multivariate normal with mean vector (Ex'Ey'Ez) and

1

variance-covarlance matrix

L " % e ] - - - -
'. s ."‘J‘"'( by




W s

=
1
*
*
>
o1
x
N

(3.1.7)

L]
e
[
[}
>
-
>
w
>

s |
N
»

where A, = ) )
¥yXx.2 “xx.z “xx ¥yz.x “zz.x “zx

v
A
-

zZX

5
>
N
[}
(]

and

) N D)

yx.z “xx.z “xx “xx.z “xy.z

R
>
w
i

D s

yz.x “zz.x “zz “zz.x “zy.x

S5
+

2y, 3t v o_vlog

yx.z “xx.z “xz “2z.x “zy.x

+

E

Also, the vectors (X .XJ.Z Yo J = n,+1, ..., n,+n,, have a common

~J =J 12

multivariate normal distribution with mean vector (gx,gy.gz) and

by Vo]

variance-covariance matrix

G

. A, A A
) Qo Lyy 2y (3.1.8)
y ~
Tt

! AO 2zy Zzz

".'

r‘- —1 “l

¢ where A =73 ¥ ) ) )

4 Xy.z2 “yy.z “yy “yy.z “yx.z

e
o~ -1

& * zxz.y Zzz.y zzz Zzz.y sz.y
" NS D ol S S

1 xy.z “yy.z “yz “zz.y “zx.y
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) 'VEES S I SRS S S
K 5 yy “yy.z “yx.z yz “zz.y “zx.y -t
§,

: and o 3
! 1 1 o

) = -
o A6 Zzy Zyy.z zyx.z v zzz 2zz.y zzx.y
ﬁ Note that the dlstributions given by (3.1.7) and (3.1.8) are singular N
\ - -

ﬁ because the predicted values Xl and Kj¢n are linear functions of the ™,
“ 1 I
- - ™~
“ other components of the random vectors T, = (X, .Y,.2,) and
- - N \}

» = . cti , wh = 1,2, - X
h EJ (53*“1'13*n1 ZJ*“l) respe vely, where 1 1,2 n and 5§ ‘
a ‘
? ) =1,2, ..., n2. In order to describe Kadane's procedures to match :
» A ) R 2

the completed Flle 1, namely, 31' ey, Zn with the completed File 2, 6ﬁ
1
W -~ - {
:i namely, 91' RN gn , let us first assume, for simplicity, that O N
1 4
' n1=n2=n. Starting with n records in each file, we will compute the bl
.

: differences \
[y - .
v "’51 ~ Zyen ol
L) I,
b U, = - . <i, J<n 3.1.9) .

Ii QJ Zi .Y..J on 1< J < ( .
F:‘ .
a' Y
K> - J y
-' Zi ZJ;n - :
( S s
: :'l
A in order to define a measure of dissimilarity between any pair of
-

i records, one each from the two completed files. Suppose first that, N

u -
e, there exlists a vector of constants % = (ll, A ln)'. say, and 1 and .

. e

-, S
’ } such that 7
N P(L° (T u 3.1.10) £
.‘v v .. = = 1‘ . . .~‘. K
A (L°(T, ~J) 0) ( =
A
Ry - R -
~ In view of the independence of the random vectors Ii and QJ. it 1s clear ‘

) ~
\ ;s
\
\ 2
0
h -
3
g w .‘.l .
e o A N T T P N T A A e A S )
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that (3.1.10) cannot hold. Consequently, any of the vectors I - u

is free of any linear relatlionship among its components. It follows

a
§ from this fact and (3.1.7) to (3.1.9) that the differences ii - QJ’
R 1 <1, J < n are 1ldentically distributed, each with a nonsingluar
¥
“ multivariate normal distribution with mean 0 and varlance-covariance
a
'.-: matrix Ql + 92‘ For any positive definite matrix A, a dissimi-
>
n larity measure between ii and QJ can be defined by the quadratic
p form
._:; r G vAr 0
' dij(A) (21 gj) A(g1 gj). (3.1.11)
-’_!
'.f. Also, diJ(A) will be referred to as the distance between the itD record
of File 1 and the jth record of File 2. Various cholces of A in
a (3.1.11) provide different distance measures.
. It may be recalled from Section 1.5 that a constralned matching
v,
-
i of the two files 1s obtalned by minimizing
n n oo
c=3 I 4, .a (3.1.12)
. 1=1 j=1 1313
o~
N
subject to the conditions
.y
s
N n
3 aij =1, vi=1,2, , n (3.1.13)
J=1
2
4
n
) a’LJ =1, ¥v3=1,2, ..., n (3.1.14)
1=1
and
aij = 0Oor 1, V 1 and ) (3.1.15)
2
s
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If the d1

in (3.1.12) are given by d1 (A)'s in (3.1.11) for some

3® 3
choice of A, then we obtain an optimal distance-based constralined
match. Note that this type of matching of the two files amounts to
solving a linear assignment problem. Sometimes, an optimal matching
may be obtalned by minimlzing (3.1.12) without requiring that the
conditions (3.1.13) and (3.1.14) hold. However, as reported in
Rodgers (1984), unconstrained optimal matches do not provide good

estimates of the distribution W o= (5,!,3). We shall not discuss

such "unconstralned matchings."

It i3 important to note that the aforementioned optimization
problem needs to be solved for each realization of the random

variables involved. Suppose then that i and Q have been matched

1 J

in a given problem. Then it might be natural to take (xi.z 'Zl) and

J
(gl.XJ.gj) as simulations of the underlying distribution. Now, the
parameter y in (3.1.4) can be estimated using one of the following

synthet ic samples:

M
-
n
o

tynthetic File 1: (X .¥7,2, i (3.1.16)

i

M
o
+
-
~nN

=]

Synthetic File 2: (X%.Y,,2.), 3 (3.1.17)

where X; and 53 Are values given by the matchling procedure.

Kadane has suggested that matchings based on a fixed A in
(3.1.11) and the consequent inferences based on synthetic files such
as (3.1.16) or (3.1.17) must be repeated many times and the results

must be averaged in some sensible way in order to explore the sensi-

tivity of our findings to the value of ny we started with. We shall
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not pursue such issues as the actual choice of a prior on § and the
aforementioned sensitivity studies of inferences based on synthetic
data. However, we shall now discuss Kadane's cholces of the matrix
A, which will be used in our Monte-Carlo Study of Section 3.3.

Kadane has advocated two cholces for the matrix A in the definl-

tion of distance measure d which i1s given by (3.1.11):

13’

+ Q )—1

(3.1.18)

where Q) and Q, are the matrices in (3.1.7) and (3.1.8); this A leads

to the so-called Mahalanobls distance between the records of the two

files, and
0 0 0
(11) A = 0 0 0 , (3.1.19)
-1
0 0 zzz

In general, the relatlve benefits of these two distance measures
is an open question, although the empirical studies of Barr et al.
(1982) and other investligators reported in Rodgers (1984) indicate
that the Mahalanobls distance 1s worse than the distance provided by
(3.1.19) in the sense of dlistorting the bivarlate and multivariate
relatlonshlips among the varlables X, Y and Z. In view of this, we
shall follow Kadane (1978) in calling the measure induced by (3.1.19)
the "bias-advoiding dlistance function.” The special case of (3.1.19)
when Z has only one component will be discussed in the next

subsection.
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3.1.1 Isotonic Matching Strategy

We shall evaluate, in Section 3.3, Kadane's matching strategies
in the simple case when the triple W = (X,Y,2) has a trivariate
normal distribution. In order to facilitate such evaluations, we
now show that, in the speclal case of a scalar 2, the matching
strategy based on (3.1.19) can be implemented without usling any
algorithm to minimize distances.

Assuming that Z 1s scalar and using (3.1.19) in the objective

function given by (3.1.12), C is equlvalent to

n

n

2

c= 3 ¥ (2,.-2,.) a (3.1.20)
1:1 j=1 1 23 1

In a constralned match, ajj’'s are subject to the conditions (3.1.13)
to (3.1.1%9). Thus, (3.1.20) further simplifies to
n n n

n
c= 3 25,0« ¥ 2o, -2 Y %

Z.,2_.a
i ya 2 151 g1 2

Hence, the minimization of distances reduces to maximlzing

n n
cr = § 1
1-1 3=1

3.1.21
313211223 ( )

subject to the conditions (3.1.13) to (3.1.15) on the ajj's.

DeGroot and Goel (1976) show that, given the numbers z ,6's and

11
221'3. the constrained maximizatlion of C' is equlivalent to maximizing
n
151 21122¢(1) over all permutations ¢ of the integers
1,2, ..., n. However, this latter extremal problem was encountered
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in Sectlon 2.4 when we derived the M.L.P ¢* for certain bivariate
matchling problems. It follows that, with regard to Kadane's distance
measure given by (3.1.19), where Z is scalar, the optimal matching
strategy 1s to order the Z-values in the two files separately and
then match the ith largest Z in File 1 with the 1th largest Z in
File 2. Thls explicit solution means that, if Kadane's matrix in
equatlion (3.1.19) 1s used to minimize distances between records of
the two files, then the synthetic File 1 is obtained by matching the
the X-concomitant of the 1th order-statlstic among Z2's in File 1 with
the Y-concomitant of the 1th order statistic amont Z's in File 2.

~

We shall refer to this strategy as 1sotonic matching of the two files

because the matching procedure is determined by the order-statistics

of the Z's in File 1 and the order-statistics of the 2's in File 2.

3.1.2 Sims' Matching Strategy

In the preceding subsection, 1t was shown that one of Kadane's
matching strategies can be simplified to the point of not using any
optimization algorithm in the matching procedure. Such simplifica-
tion 1s clearly not possible when the triple (X,Y,Z) has a multi
dimenslonal Z . The whole idea of generating very large synthetic
data sets by actually minimizing a sum of distances over all
potential matches seems computationally profligate. One possible
alternative to distance-based strategies, which was suggested by

Sims (1978), will now be outlined.
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Sims has stressed the lmportance of exploiting the local sparse

ness or denseness of the sample data on the matching variables Z. A
dense region of the Z-space ls one within which we expect that the
distributlions of 5 and Z glven g change little. It s, at the same

time, a reglon within which we have many observations. Sims has sug

gested that, within a dense reglon, any arbltrary matching procedure
will produce results that do not distort the joint distribution of
5. Y and Z. Regions which are not dense have few observations and,

withlin them, statlstical matching becomes difficult. Sims felt that

in a sparse region, statlistical matchings will almost certainly

distort the joint distribution of X, X and Z. He suggested that, in

such a region, we should either not match at all or go beyond

LA A

matching to more elaborate methods of generating synthetic data.

L/

However, Sims dld not spell out any specific alternative to matching

within sparse Z reglons.

In our Monte-Carlo Study for comparlng Kadane's strategles with
Sim's, which will be presented in Section 3.3, we created ten bins
in the Z-space, namely (-«,-1.001, (-1.00,-0.75], (-0.75,-0.50],

(-0.5%0,-0.2%), (-0.259,0.00}, (0.00,0.25], (0.25,0.50]), (0.50,0.75],

e e

(0.79,1.00), (1.00,+=). The conditional mean of X or Y, given 2 did

s
-

not change much inside the elght bins which were between 1.00

EAEACRINEN
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II and 1.00. Hence, these latter bins were considered dense bins and

v the two bins in the left and right tall of the distribution of Z were
gg consildered sparse bins. Wlthin each dense bin, we randomly matched

records of the two files, whereas the isotonic matching strategy of

Subsection 3.1.1 was used in the sparse bins.

“~

E: 3.2 Alternatives to Statistical Matching

}:_ Under Conditional Independence

: Several criticlisms of the matching methodology were mentioned in

52 Sectlion 1.6. It was observed that the formation of packets on the
basls of matching variables Z and the merging of records within each

<

ﬁj packet imply that the non-matching variables X and Y are condition-

ally independent given the values of Z. Following A. P. Dawid (1979)

we shall use the notatlon X || Y | Z to denote the conditional indepen-

N

dence among the varlables X, Y and Z.

~

Conslider the situation in which we match the fragmentary data

provided by the files in (3.1.1). It may be recalled from Section

<R

1.2 that any statistical model for thls type of matching should imply

<

':f that the data in File 1 is stochastically independent of the data in
;3 File 2. Clearly, such files of data cannot be used to statlistically
” test the validity of the implicit assumption that X || Y | Z. Further-
;E more, Sims (1978) has observed that matching ltself for the purpose

o of , among others, estimatlng vy in (3.1.4) is unnecessary. He polnted
{i out that, when X || Y | Z holds, one can write

2
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L3

X2 Yz z

0 dF(w) = dF (w) dF (w)/dF (w), (3.2.1)
)

N

i’ X2
h where F77(.) 1s the marginal (with regard to W) CDF of X and Z and

: the other terms on the right-hand side of (3.2.1) are analogously

Y

L defined marginal distribution functions. The two separate samples in
X
)
:. (3.1.1) are adequate to estimate all the terms on the right-hand side
] of (3.2.1) by any of a number of statistical methods. In thls sec-
d
§~ tion, we will discuss some alternatives to matching. With emphasis
8 on estimating the covariances or correlations between X and Y, we
] shall first review a histogram type alternatlve which was suggested
2

< by Sims (1978).

t

s Suppose that we form a grid in the W space and estimate the

o Joint density of W by first counting the number of sample points in
1 each cell of the z grid. Let i index X-categories, ] index
Y Y-categories and k index Z-categories. Let nijk be the number of

W sample points in the (1,j,k)tN cell and use the dot notation to

o
Y define counts of sample points with regard to marginal d'stributions.
v

W

. Thus, we have

’f. tn

- nl K - the number of sample points with X in the i category
o . ~

s th

; and Z in the k category,
: th
e n Ik = the number of sample polnts with Y in the ] category
- th
>, and Z in the k category,
|

- and

. th
N n K = the number of sample points with Z in the k category.
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Clearly,

nk*© % LI

and the data in the two files given by (3.1.1) can be used to compute

n n . and n K for all possible values of 1, j and k. Thus,

1.k" .3k

n1 K is obtained from File 1, n ik from File 2 and n K from the two

files together. Finally, for a known function, g(.), say, let g(gljk)

denote the value of g computed at the center, w of the (1.J.k§h

~1jk
cell of the grid that we started with. Sims has suggested that we

could estimate y in (3.1.4) by the statistic

- n n
Yoo e —K ek (3.2.2)
1,J.k ..k

With regard to ; in (3.2.2), theoretical propertlies such as the
asymptotic distributlon of ; (as the sample slze tends to «) are
unknown at the present time. Also, practical problems such as the
cholce of W-grid and the cells thereof, which would kecep the number
of terms in tihe sum (3.2.2) computationally reasonable, have not becen
studled yet.

Sims (1978) stated that a procedure like the one leading to ;
in (3.2.2), which takes into account the implicilt assumptlon of con-
ditional independence of the matching methodology, had the following

advantages over matching to create a synthetic file such as (3.1.16):

(a) the procedure lends itself to computation of standard errors

indicating the reliability of computations based on it

N

el ;f_;l,:fl‘.;f.;J‘NQ'-_g‘f-.l‘

-

5

ey ®

g

‘.[l‘:l

o« T
L ¢
W

7

e K

S

L)

N

SRR

o AL
‘N—"‘" \ ‘l.{- '_‘.

o

20

oL "7
v

e e e Y
R ,,7'-",;:__
I o -

=,

NGO

o h S tatet
" ., .‘"\-'_ "

-’
5N

-t

e 2 2@
A

- !.'_*-':'-' .



E"G?-?- O RITIIETRO T TIT OS5 rer 97

120

(b) the procedure can be connected to the large statlstical litera-
ture on estimating density functions and multi-dimenslonal
contingency tables, and

{(c) it is likely to provide more accurate results than matching.

Given the lack of work on the statistical properties of the alterna-
tives to matching, we can agree with the advantages (a) and (b), but
regard (c¢) as an undemonstrated speculation. We shall not discuss

; in (3.2.2) any further. Nor shall we elaborate the merits and
demerits of alternatives to matching and synthetic-data- based pro
cedures. Nevertheless, in the next subsection, we shall derive the
estimators of parameters for conditionally independent normal models

without matching the files in (3.1.1).

3.2.1 Maximum Likelihood Estimation in Multivariate Normal Models

Using Two Flles of Data

Consider the random vectors X, Y and Z, with respective dimen-

sions P, P, and Py- Suppose that W = (X,Y

~

»Z) has a nonsingular

multivariate normal distribution with unknown mean vector

(p_ .y p ) and unknown varlance covariance matrix ¥, which is
x'*y’'*~z

partitioned as in (3.1.3). Suppose that the sample data in (3.1.1)

is avallable and that n12p1+p3, nzzp?+p3. Note that, in view of the

nonsingularity of distribution of W and the fact that

Z., ..., 2 are stochastlcally independent, the ranks of the
~1 ~n1+n2
matrices (gl. e, Zn ) and (Zn R Zn on ) are equal to P3 for

1 ~h 2" 2
almost every realization of the 2's.
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! In this section, we shall find the maximum likelihood estimator
of , among others, the covarliances among the variables in the vectors
o
Qt‘: X and Y, without matching the files (3.1.1) but assuming that
g XlY|Z. The maximum likelihood estimation of parameters in
L1
multivariate normal models based on various patterns of missing data
::: has been discussed in the literature. See, for example, Eaton and
g v
Karlya (1983) Kariya et al. (1983), Anderson (1984) and Srivastava ®
w3 -
(0] >
::} and Khatri (1979). However, the pattern of data given by the set-up t':,
>
A
;-‘j (3.1.1) does not seem to have been examined. Note first that, under N
s S
[ & u""
= conditional independence, the density of w can be written as o
o
F\". ‘:::
. - . ~
R f‘!(g.g) £,(z:0)f,(xlz,0)f (y12,0) (3.2.3) NG
Y
4
where 9 = (ExvEyiEz'zxxbzxyszzoZyyczzz) (3.2.4) g\
:,\
o~ oy
o~ and f (W) 1s the joint density of W given by e
. E ~ .":\.
-(p1+P2+P3)/2 —% e
-'; £ i) = (2m) Y N
X~ N
I.’
“ ",
e 1 o-1 o
x etr(- J % (W - pw - '], (3.2.9) "
- -
¥ ~
M etr being the exponential of the trace of a matrix. Also, f‘l(.) is ..\
’_"_.' the marginal density functon of Z, t‘z(.) and f‘3(.) are respectively :'.
. J -~ -
o~ e
the conditional densitles of X and Y, given Z = z. It is well known o
o~ o
: (Anderson, 1984, p. 33 and 37) that f‘l. f‘2 and f‘3 also correspond to ";
. e
. certaln multivariate normal densitles like (3.2.%). Using the joint "
e
normality of X, Y and Z, it is easy to verify that (3.2.3) holds iff !
EN
:-:: v:"-
L T
q-,‘.
. “
?
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122 r
$.=5._ 3ty (3.2.6) -
Xy xz “zz “zy e R
Fl
It follows from (3.2.3) that the likelihood of the observed ;:
data in the two files given by (3.1.1) is
A
L(e) = LI(Q)LZ(Q)La(Q) , (3.2.7)
n1+n2 N
where L .(6) = I f.(z,,0) (3.2.8)
1~ . 1 ~i'~ o
1=1 '-J
fu
(=
nl ;\
L,(8) = M f (x, Iz, .9) (3.2.9) o
2 —~
i=1
and v,
¥y
ny+no >,
Ly(@) = 1 £,0y,12,.9) (3.2.10) -
1:=n)+1 L

Taking natural logarithmg of both sides of the equation (3.2.7), we

1)
obtain hY )

3
Le) = ¥ 2.(e), (3.2.11)

'-' .l'
g

where & (6) - log (L (8)), Va = 1,2,3
a e a

_ ~
Let z and sz denote respectively the mean and the matrix of -
£ e
corrected sums of squares and product - of the data El‘ gn o
12 i~
That 1s, 2z
ny+np :::
Z “n *H‘ 2 zl -
1 2 1i=1
Cf.
(3.2.12) :
- »
”n
N
N R
-
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n1+n2

s, = I (2

- 2Z)(z, - Z)'
1-1 ~ A

1

Similarly, let 51 (22) and 91(32) be the mean and the matrix of

corrected sums of squares and products of the data 31, N En
1
(2 . e Z ). Let, for any lower-case a, b and c, and any
~n_+1 ~Nn_+n
1 1 2
vector zZ,

Ba.b'Z) = By * Iyp Lpp (2 - k)

-1
ac Yeo b (3.2.13)

Sap o = Lap - &

Then using the notatlions in (3.2.12) and (3.2.13), the equations
(3.2.%), (3.2.7) to (3.2.10) and Theorem 2.5.1 of Anderson (1984)

(for the expressions defining f2 and f3) we obtain

n1+n2
11(9) = - 73 loglzzzl
+ tr{- 1 2—1 [s_ + (ny+ns)(Z - Yz - )1} (3.2.14)
2 ‘2z 2 1702082 = BM 12 T Ry
™
1,8 = -5 1og'zxx.z|
1 -1 o1
vt 2 zxx.z[1§1 (51 - Ex'z(zi))(zi - Ex.z(zi))]}
(3.2.19)
and
!3(6) = 5 loglzyy'zl
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n1+n2
1 -1 :
+ el 2 zyy'z[3:31+1 (13 - gy.z(gj))(xJ - gy.z(gj)) 1)
(3.2.16)

Note that in (3.2.14) to (3.2.16), certain constant terms have been
omitted.

It is clear from (3.2.7) and (3.2.11) that the M.L.E of 0 is
obtalned by maximizing la(g) over 9 for each « = 1,2,3 separately.
Moreover, this maximization is easier if we reparametrize the distri-

bution of W by means of

n o= (u,.l ) ), (3.2.17)

» V y V vz [ ,B ,B
2z ' ~xy'~yz'“xx.z'%yy.z’ xy' yz

where, apart from the notations that we have already introduced, we

have, for any letters a and b

T

Bab ab zbb

and (3.2.18)
Yab © a = Bap ¥p

It can be easily shown that there 1s a one-to one correspondence
between © and n. Consequently, if we rewrilte la(g)’s in terms of n,
then maximizing L{©Q) over 0 is equivalent to maximizing la(n) over n,
for each a = 1,2,3. The advantage of the transformation to the
n- space 1s that la(n)'s are functions of disl}oint portions of n.
In fact, l](g) is the same as 11(9), whereas it follows from (3.2.15)

to (3.2.)8, that
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1 -1
+ tr{- 2 zxx.z[1§1 (xl Xxz sz zi)(xi Xxz
and
] nz1 )
3{n) = - 5 log yy.zI
Lyl [n1§n2 ( B ) ( B
+ tr{- = Xy — ¥ - Zz Xy -V B
2 “yy.z j=ny+l J yz yz ~} 3 yz yz
In view of Theorem 8.2.1 of Anderson (1984), it can be

shown using (3.2.14), (3.2.19) and (3.2.20) that M.L.E of n

gilven by

5 - _

zz n10n2

nl 1
gy = LI (% - Rz - IS,

i=1
v =X-B_Z
~Xy ~ xz ~1

n1+n2 1
B_ =01} (Y, - Yz, - Z)'1s,
yz Jenyel J J 2 2

- B

Xz E1)'”

(3.2.19)

)'1)

z

3

(3.2.20)

easily

is

(3.2.21)
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2. -Y-8
~yZz ~ yz ~2
n
zxx.z " n, ) Xy = 2, Xz Zl)(xi T ¥yz " Bz By
1 1=1
A 1 n1+n2 A A A R
= — 1 (Y, ~ v, -8B _Z )Y, - v -B _2Z)'
yy'z n2 3=n1*’1 j yz yz J J yz yz J
Using these estimators and the relationships between 6 and n we
obtain the M.L.E of 6 by means of the following equations.
By = 2xz * sz Lz
By 7 2yz * Byg kg
~
¥, =2
y =B § B y (3.2.22)
Zxx sz zzz sz * zxx.z
Yez * Byz -
yy  yz 2zz vz | zyy.z
zyz T Cyz zzz
ana 5. =% 513§
xy xz “zz “zy
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It follows from the above dlscussion that if we can Jjustify the
assumption that X il Y | Z, then we can avold matching the files in

(3.1.1) and estimate, among other parameters, ny. by means of the
equatlions in (3.2.22). Unfortunately, the two data files contaln no
informatlon regarding the approprlateness of this assumptlon, and
prior information from other sources must be considered. The point
here 1s that, if the matching methodology is based on assumptions
like X || Y | Z, then we must look for alternatives to matching whose
statistical properties are known. Such alternatives are useful
especially because very little is known about the reliatility of
synthetic data-files.

It 1s important to note that (3.2.6) 1s a necessary condition
even 1f W is not normal, provided only that X || Y | Z holds and that
the appropriate moments of the distributlion of W exist. Hence, we
can use the estimator ixy in (3.2.22) even for non-normal popula-
tions. We now show that ixy is consistent for ixy without assuming

that W has a multi-variate normal dlstribution.

Theorem 3.2.1 Suppose the joint distribution of W is such that its

second order moments exist and that the dispersion matrix, }, of ! is

partitioned as in (3.1.3). If X || Y | Z then ny. given by

(3.2.22), 1s strongly consistent for ny.

Proof: We first note that sz and izy are stochastically independent

because they are functions of the independent data in File 1 and

File 2 respectlively. However, zzz involves Zi's in both files so

that the elements of the vector
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are dependent.

will follow from the almost sure convergence of ixz’i

individually (cf. Serfling, 1980, p. 52).

The almost sure convergence of the vector in (3.2.23)

- L Bl ¢ - - - - - -
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(3.2.23)
zz'zzy

In view of the similar-

ities of the proofs of the convergence of these matrices, we shall

only show that, as na + o a =1,2,
. a.s
Zzz ? Xzz
We obtain from (3.2.21),
n1+n2
zz ~ n 1n oy T
1 2 i-=1

(3.2.24)

(3.2.29)

Recalling our assumption that the files in (3.1.1) are independent

random samples and that the vector Z has a finlte dispersion matrix,

it readily follows that the Strong Law of large numbers {(cf.

Serfling, p. 27) applies to independent sequences (Zi} and {gigi}.

Hence, we obtain, as

and

E(Z)

It follows from (3.2.2%) to (3.2.27) that
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(3.2.27)
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. a.s
.’
Zzz zzz
We conclude from our remarks earlier in this proof that, na » ®
- - - a.s
-+
(sz.zzz.zzy) (sz.zzz.zzy) (3.2.28)
Let us now observe that
- - ~-1 =
ny = zxz zzz zzy
is a continuous function of the random variables in the vector
(3.2.23). Hence, the strong consistency of ixy follows from
(3.2.28). a

3.3 An Empirical Evaluation of

Certain Matching Strategles

Several distance-based matching strategles for creating
synthetic data have been discussed in Section 3.1. Specifically, two
strategies due to Kadane (1978) and a strategy which was proposed by
Sims (1978) were mentioned. In this section, we shall evaluate these
three strategles, individually as well as in relative terms, in the
special case where W = (X,Y,Z), the unobservable vector, has a tri-
variate normal distributlon. Before we discuss the Monte-Carlo Study
of the aforementioned strategles, we shall review some of the earlier
simulation studies of statistical matching procedures, which have

certain bearing on our study. A more comprehensive review of evalua
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tions of statistical matching procedures can be found in Rodgers (1984). -
Barr et al. (1982) used, among others, a statlistical model 1in -
which a vector W = (X’Y'Zl'zz) had a four-dimensional normal distri- Eé
bution with zero means, unlt varlances and varlous levels of
covarlances among the four varlables. Altogether, these investl Ei
galors generated 100 palrs of independent files, namely File 1 Q?
comprising 200 observations on (X,Zl.Zz) and File 2 consisting of 200 ~
observations on Y, Z1 and 22, for each of 12 populations, where the i?
populations differed with respect to the covariances of the fj
variables. Then, for each such pair of files, six statistical i
matches were performed, namely three constrained matches and thrce =
unconstrained matches. In each of these six matches, they used three o
distance functions for each type of match. The first was a weighted -
sum of the absolute differences of the two Z variables between 3
records of the two files and the last two were the Mahalanobis ;% E
-
distance and the "blas-avolding" distance, which were dlscussed in g
Section 2.1. A summary of the findings of Barr et al. is as follows. x i
All three distance measures provided accurate estimates of the ;5 i
variance of the Y variable when the constrained matching procedure S
was used. They also found that all three unconstrained matching EE EE
procedures produced Y distributions that had means which were - E
SN
significantly different from the corresponding population values. ) f
The estimated covariances of Y with 21,22, which were computed only 5: ;
for constrained matches, tended to be underestimated. With respect - ;
o
to the most important question in the context of merging files, _:
‘s §$
SN
N

S U g
[y A ]
a5

a e

v “-‘r'} N PO T S N N T G I ST f.f " a (--&J\-\ .-\fxfxfxftfxfuf\f.:nr\v\f\v“f“-uf‘r\rn-\-
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.1
namely the estimation of relationshlips between X and Y variables, it ;4
o A
was reported that, if the conditional independence assumption was by
& :
:: invalld, all statlstical matching procedures provided estimates of 2
- the X-Y covarilance that were extremely poor. On the other hand, for ;
\
2
- the cases in which the conditlonal independence assumption was valid, :
o all six procedures provided estimates of the X-Y covariance that were o
N S
U ]
generally quite accurate. Thelr simulations also indicated that the ;
- i
:~ Mahalancbls distance measure produced less accurate matching than o~
~n .R.
- subjectlvely welghted distance measures. :;
- o
As we mentioned earller, our own Monte Carlo study was confined ;*
to a trivariate normal model. However, our findings were suffi ::
“u
clently interesting to Jjustify their inclusion in this thesis. In -
o,
L d
li fact, some new facts about Kadane's bias-avolding matching strategy f
. 2.
R have already been mentioned in Section 3.1. Suppose, then, that }1
o -4
- W = (X,Y,2) is tri-variate normal with zero means and variance- ;t:
n covariance matrix ;
~ -
e t Pxy Pxz g
. 1 (3.3.1) o
_ ) Pxy Pyz ;
N
- .~
Pxz Pyz 1 ’:
g y »
o0
” 2"
Assume further that the following data is available for the purpose )
-
" of estimating the three unknown correlations in (3.3.1): -
",
.t :::‘
)
;\
- »
» 2
~ :
o
),
-~

v
LR )
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File 1: (Xl'zi)‘ i =1,2, ..., n (3.3.2)
File 2: (YJ,ZJ), J = ns+1, , 2n (3.3.3)
In view of the discussions in Section 3.2, if the conditional
independence assumptlon X || Y | Z or, equivalently,
ny = Pya pyz (3., %)

were true, then we can avold merging the files in (3.3.2) and (3.13.3)
because File 1 and File 2 can be used to get the sample correlations

Pyz and pyz, which in turn provide the maximum likelihood estimator

of pxy. namely

= p

ny Xz Pyz (3.3.5)

wWe shall say X and Y are conditionally dependent, given 2, iff

(3.3.4) does not hold; that 1is

#
Pxy Pxz Pyz

For the sake of simplicity, we shall consider herelnafter only the

conditional positive dependence case of the model in (3.3.1), namely

(3.3.
pxy > Pz pyz 3.3.6)

The complementary case of condltlonal negative dependence, namely

<
Pxy Pxz Pyz

can, however, be handled by methods similar to ours. We shall also

include the case when X || Y | Z holds mainly for comparing and
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l“-

contrasting our results for the positlve dependence case. Finally,

o

we shall evaluate matching strategles only from the point of view of

‘. -
Ny

estimating pxy, the correlation between variables which are not in

w
v

the same flle, because File 1 and File 2 can respectively be used to

I's
, r‘.l\ o

estimate the remaining parameters Pz and pyz.

It is clear that, if the condition X u Y | Z does not hold, then

r '." B -'. P
N,

L4

we should not estimate pxy by means of (3.3.5). 1In such a case,

~

vei@

matching the files (3.3.2) and (3.3.3) for estimation purposes 1s an

.," ‘_.‘- .,

o
L]

alternative that we shall study in this section. Thus, if after

r s ¢
2

merging, Flle 1 becomes the synthetic File 1 namely

ey
'tﬁr;-,f’
-

(Xi.Y".Zl). i =12, ... (3.3.7)

» <
7

wey

where Y; is the value of Y assigned to the 1th record in the process

of merging, then we shall use the synthetic data (XI.Y{),

@

»
.

L )
2 L L

RN,

Flld

1 1,2, ..., n to estimate p_ .
Xy

I.l‘
" oy
"/

PR

It was mentioned in Section 1.7 that performance characteris-

b

tics, which can help us assess the reliability of synthetic data

n’ L.
TV

€ 5 0

x

generated by independent files in (3.3.2), are not known. Gilven this

paucity, our program for an empirical evaluation of matching strate-

l. -
o
2w

gles is as follows

PN P Py
ThA&S NS

(1) Starting with a known correlation matrix given by (3.3.1),

-

generate data from the normal population of W = (X,Y,Z) and

e

XN,

create 1ndependent files (3.3.2) and (3.3.3). Note that data

’.!\\

on (X,Y), which 1s typically missing in actual matching

situations, is avallable in simulation studies.
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(11) Using any given matching strategy, merge the two {iles created -

in Step (1) and compute the "synthetic correlation”, denoted

4

.

<
hndedefetotheof. Ktk

&) by ’;s' which 1s defined to be the sample correlation coeffi- $
. clent based on the (X,Y") data given by the synthetic file
= 4
1 . >,
: (3.4.7) A
JE (1i1) Compare ;s of Step (11) with the following sample \; :
[N A
§ o’
correlations: =
N (a) ;mll‘ the sample correlation coefficient based on the i—
1 ;
) 5
Lt unbroken data (Xi'Yl)' 1 =1,2, ..., n which was genera
[
ted In Step (1). Observe that, if there is no aprilort ﬁ;
:: restriction on the model parameters in (3.3.1), then ;mll ;5
™ )
;: is the maximum likelihood estimator of Pry” o
-
- (b) P2 the estimator of pxy given by (3.3.5), which is Y
N also the maximum likelihood estimator of Py when condi-
5 -
a tional Independence holds. e
v Because Pl and P a2 are respectively based on one .J
‘i sample on (X,Y) and two independent samples on (X,2) and ks
P
; (Y,Z), we shall also refer to these as one- sample and two QQ
: AL
v sample estimates of p .
Xy -
», ' ._(‘
. Using the aforementioned program, we shall evaluate Kadane's ‘
-: distance-based matching strategies discussed in Section 3.1, namely %:
. the isotonic matching strategy and the procedure induced by the
™
-~
: Mahalanobis distance, and the method of matching in bins, which, as w>
\
: explained in Subsectlon 3.1.2, is an adaptatlion of a strategy due to P
K
1,9 o
)
y .
h .
: *
!" L)
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a
A
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Sims (1978). The synthetic correlations resulting from the use of

1’ Ps2 and Ps

these three strategles will be denoted by ;s 3
respectively.

Qur study has been conducted for three values of n, namely 10,
25 and 50. The values of the population correlation pxy which

are used, among others, to generate random deviates from the normal

population of W = (X,Y,Z), were chosen from the following categories:

Low pxy: 0.00, 0.25

Medium pxy: 0.50, 0.60, 0.65, 0.70 (3.3.8)

High ny: 0.7%5 (0.05) 0.95, 0.99
Combined with low as well as high values of Py and pyz. there were
15 cholces of pxy from (3.3.8) such that the conditional
independence restriction (3.3.%5) was satisfied. As remarked earlier,
these correlations were chosen mainly to provide a basis such that
the estimates of pxy resulting from the case of conditlional
positive dependence can be compared with those resulting from
conditional independence. The fifteen values of pxy in the
conditional independence case were lncreased in such a way that the
positive dependence was achileved. Altogether, nineteen such }°'s
were selected.

For n=10, W was generated 1000 times by using the IMSL
subroutines. The calculation of 551 was based on sorting Z's in

the two files, as discussed in Section 3.1.1. Furthermore, Pgsr was

computed for each reallzation by solving a linear assignment problem.

ll‘\"\\\)\

L e B I ’.v\’-‘-“-‘h'v"-\'-.'-\'ﬁ'\\‘\"‘b\\\'\'n"h\ﬁj\‘-\
Ot &y L . A G N G A A AR AC A, > A AR AR A

& L5551
LT

L L de
AR

P 'y IR |
e

JJ@

VAL Gy

¥
AN

:.-‘) LK

5@ %

I"‘!;"l, \I-y. "f r‘:

i T J
»
€,
e

Pt

'r‘.'-'_'-{'ﬁ:,j\ 1\} o

S AE Ll N
o 555;51D5

r r 5 s e v, »
o '@ -
...,l',‘..'lt‘.l “

e 1
v @ Y

£y

Pl d% )
"® s

>,

L4

AP

s
gd



FUNUT TN

w .'.(..1 (X

-

L 400 0 IR ALISLIERN PR RV AN S B0 L0 a8 Aol pek = AL AL A NC AN AR MR A SRt AL g R P

136
The Ford-Fulkerson algorithm (Zlonts, 1974) was used for this
purpose. The computational cost for solving assignment problems grew
quite rapidly with n. Therefore, only 700 independent samples of
slze n=2% were generated. A comprehensive examination of the results

for n=10,25, revealed ;31 and ;s the correlations corresponding

2
to Kadane's two distance measures, were, for all practical purposes,
ldentical (see Figures 3.1 and 3.2). In view of this and the high
computational costs, we compared only two strategies, the isotonic
and the method of matching in bins for n=50 (2500 independent
samples).

Four summary statistics, namely the mean, the standard

deviation, the minimum and the maximum for the simulated data on

Pan 1’ Pmi2’ Ps1’ P2 Py WET® calculated for 34 J's selected

for the study. However, we provide these statistics only for a

representative collection of 15 Y's in tables 3.1 to 3.7. For

each )} and for any ;, the first entry in the tables 1s the mean,
the second entry (in parentheses} 1s the standard deviation and the
third and the fourth entries are respectively the minimum and the
maximum.

Also, the General Plotting Package at The Ohio State

University was used to plot the following pairs of estimates of pxy

(1) n vS. Py

(11) Po1 vVs. Pesy

(1i1) Py vVs. Pmel
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-~ -

(1v) Ps1 V3 Pme2
(V) pgy VS g,
(vl) ;52 vs. ;mlz
{vil) ;53 vs. ;mil
(viil) ;53 vVs. ;maz

Filgures 3.1 to 3.20 provide an illustration of these comparisons.

3.3.1 Conclusions of the Monte Carlo Study

Tables 3.1 to 3.4 clearly show that the two estimates ;sl and
;32' provided by the isotonic matching strategy and the Mahalanobis-
distance based strategy, respectively have nearly identical summary
statistlies. 1In fact, an examination of all the results showed that,
for all values of n and § in our study, the estimates ;sl and ;52
were the same for most of the reallzatlons of W. Flgures 3.1 and 3.2
provide the empirical evidence of this fact.

Now we shall discuss our results in the case of conditional
independence. As noted in Section 3.2, ;m12 is the maximum likelihood
estimator of Py under this model, whereas ;mll’ the method of
moments estimator based on palred-data, is computed for comparison
purposes. As expected, ;mﬁl and ;m22 behave equally well on the
average even though the estimated standard error of ;mll 1s consis-

tently higher than that of Pma2" Furthermore the ranges of Pral

A e A A e R A R S T SR D TR SR ¥

o

L R A ]

@ rre et

P ~
L P
"x" - vt

;‘J.’ ’

Y
..‘

,l.'
2

s
e

'S

® g0

[ o

27710
Oy .

f
%

7%

e

¥
»

PAAiA



‘\

o
4

LR

L

ST T S
* * o ’

~

ey

v . LY L

AR %8 2Pl AR i SR " S ik il ek h el aln® " Sh an’ Ah" A" ath il > ame ryrery
AT AT TR T T T e e N e Y T A T T AT N N Ma ¥ a ¥ Vi Mg W', W W n W W W Wy W Wy - Wy

138

are consistently larger than those of ;m12 (see Tables 3.1, 3.3 and

3.9).

or 1 h p
F ow correlation and each n, psl' p82 and p33 compare well

with the estimates Pmll' or ;m as far as the averages are concerned

L2

(see Tables 3.1, 3.3 and 3.5). However, the synthetic data estimators
have larger variation than ;mQZ' as shown in Fig. 3.3 - Fig. 3.5.
Furthermore, all the synthetic data estimators have varlation
comparable to that of Pmg1 23S shown in Fig. 3.6 - Fig. 3.8.

For medium and high values of pxy, all three synthetic estima-

tors exhibit some amount of negative blas with regard to both ;mil

and ;mQZ' Also, Pg3’ the estimator given by the method of matching

in bins, 13 more negatively blased than ;sl and ;s Tables 3.1, 3.3

5
and 3.%, Fig. 3.9 - Fig. 3.14 illustrate these points. Again, ;53 is

worse than ;S and ;S These patterns among the flve estimates

1 2

exist for any sample size even though the difference between

synthetic data estimators and ;ml2 tends to decrease as n lncreases.
Turning to the conditional positive dependence case, we first

note that ;mil is a reasonable estimator of pxy, even though it would

nnot be avallable to the practitioner. On comparing ;mll with the

synthet lc data estimators and and we find
y Ps1' Ps2’ Ps3 Pme 2’
cat These eatdmat oo perform very badly, in that all of them are
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the three synthetic data estimators have a definite negative blas
compared with ;’maz' Tables 3.2, 3.4, 3.6 and 3.7 and Fig. 3.16 -

Fig. 3.19 support this conclusion. Furthermore it is observed that

;53 based on binning is worse than ;sl (;sz) as illustrated by

-

Fig. 3.20. However, the difference between the average Pme.2 and

;si' 1 =1,2,3 tends to decrease as n increases.
Finally it must be polnted out that as the positive dependence

increases; 1le,p increases, the bias in the three

xy PxzPyz
synthetlc data estimators and P2 increases. Tables 3.4 and 3.7
illustrate this fact.

Based on these observatlions, we must conclude that when
conditlonal independence model holds, the synthetic data estimators

do not provide any advantage over ; the no-matching estimator.

me2’
In fact, they are slightly worse than the ;m12' On the other hand,
in the case of conditional positive dependence, ;miz and all the
synthetic data estimators perform badly, the performance of
synthetic data estimators being slightly worse than that of ;mQZ'
Thus estimators based on matching strategies do not seem to provide
any advantage over the estimators based on the assumption of
conditional independence and no matching. Thus for estimating pxy
in Case III models, the extra work involved in matching data filles
is almost worthless. Further studies are in order for much larger

sample sizes to examine if this picture changes at all. We should

point out that it is possible that matching may be useful for
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extracting some other features of the joint distribution and further

Monte Carlo studles are warrented to explore this.
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Table 3.1 Summary Statistics of Sample
Correlations - Flles with n=10 Records
Conditional Independence Case
pxz pyz pxy pm!l pmlz sl Psz s3
0.0149 -0.0032 -0.0101 -0.0100 -0.0114
(0.3384) (0.1127) (0.3296) (0.3297) (0.3212)
0.00 0.10 0.00 -0.8170 -0.5844 -0.757% -0.757% -0.8%506
0.8472 0.4675 0.8590 0.8590 0.7708
0.5879 0.5794 0.5457 0.5457 0.5105%
(0.2212) (0.2006) (0.2337) (0.2337) (0.2396)
0.92 0.65 0.60 -0.6%523 -0.4040 -0.6058 -0.6058 -0.6058
0.9753 0.9431 0.9626 0.9626 0.9681
0.6830 0.6638 0.6150 0.6151 0.5748
(0.1986) (0.1728) (0.2087) (0.2086) (0.2230)
0.93 0.75 0.70 -0.3369 -0.1437 -0.311%5 -0.311% -0.3396
0.9936 0.9609 0.9576 0.9576 0.96G6
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Xz

.94

.95

.97

(0.1445) (0.

(0.0764) (0.

(0.0419) (0.

.6874
1731)
.2367
L9723

.7789
.1236)
0.1796
.972%

.8238
.1063)
.2123
.9868
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Table 3.2 Summary Statistics of Sample
Correlations - Filles with n=10 Records
Conditlional Positive Dependence Case

o

X2 yz Xy mel me2 P31 Ps2 s3

0.9413 -0.0046 -0.0289 0.0395 -0.01%3
(0.0474) (0.1142) (0.3310) (0.3327) (0.3269)
0.00 0.10 0.95 0.5942 -0.5723 -0.8425 -0.8525 -0.8962
0.9959 0.5302 0.8897 0.8897 0.8181

0.8676 0.5729 0.5276 0.5108 0.4919

(0.0885) (0.2021) (0.2403) (0.2443) (0.2483)
0.92 0.65 0.88 0.2744 -0.5510 -0.6166 -0.6248 -0.6119
0.9914 0.9407 0.9621 0.9621 0.9621

0.9103 0.6771 0.6310 0.6262 0.5834
(0.0666) (0.1617) (0.2018) (0.2050) (0.2085)
0.93 0.75% 0.92 0.4811 -0.2063 -0.3529 -0.3529 -0.2667
0.9918 0.9448 0.9722 0.9722 0.9892
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: Table 3.2 (Cont'd.) S
2l
P P P .
b ¢4 vz Xy Pmel Pme.2 Ps1 Ps2 Ps3 : ::
VARV,
- 0.9558 0.7741 0.7188 0.7165 0.6687 v
[ i n
(0.03%3) (0.1153) (0.1573) (0.1578) (0.1781) t:
s Ds (%)
0.94 0.8 0.96 0.6288 0.2202 -0.2325 -0.2325 -0.1806 Y
0.9960 0.9798 0.9707 0.9707 0.953% '“
- -.
0.9775 0.8871 0.822% 0.8211 0.7770 - ‘.
(0.0177) (0.0640) (0.1036) (0.1040) (0.1231) R
) 0.95 0.9% 0.98 0.8491 0.4165 0.2546 0.2546 0.0215 -
£l .
' 0.9986 0.9783 0.9922 0.9922 0.9727 Wt
i: Z
A 0.9888 0.9439 0.8770 0.8774 0.8258 .
‘ (0.0088) (0.0329) (0.0760) (0.0755) (0.1039) . s
i S
0.97 0.97 0.99 0.9184 0.6081 0.4432 0.4432 0.3541 3
! 0.9992 0.9919 0.9894  0.9894 0.9857 3; o
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Table 3.3 Summary Statistics of Sample
Correlations - Files with n-2% Records
Conditional Independence Case

ol

"..\'J.
Ry PR 4

I".
Vv HAN

- ~ -

XZ yz Xy Pmel Pmiz psl

o !

s2 s3 o

- -0.0068 0.0001 -0.0025% -.0.0026 0.0040 T
' (0.2059) (0.0479) (0.2013) (0.2014) (0.2008) .
0.00 0.10 0.00 -0.6576 -0.2851 -0.5749 .0.5749 .0.6980 o

a 0.5450 0.2501 0.6196 0.6196 0.5087

0.5915 0.5788 0.5568 0.5564 0.5171 ;
(0.1336) (0.1231) (0.1365) (0.1365) (0.1476) N
- 0.92 0.6 0.60 -0.0576 .0890 0.0259 0.0259 -0.0468
: 0.8704 0.8189 0.8663 0.8663 0.8096
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.- 0.6859 0.6859 0.6620 0.6627 0.6111
(0.1087) (0.093%) (0.1096) (0.1097) (0.1216)
. 0.93 0.75 0.70 0.2953 0.2697 0.1828 0.1828 0.1642
0.9022 0.8959 0.8955% 0.8955 0.8973
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Table 3.3 (Cont'd.) ~
1} »
L)
Pxz Pyz Pxy Pme1 Pme2 Ps1 Ps2 Ps3 .

0.7993  0.7934 0.7644 0.7643 0.7129 i

; (0.0754) (0.0617) (0.0789) (0.0790) (0.0964)
0.94 0.85 0.80 0.4274  0.4778 0.4617 0.4617 0.2724 -

0.9380 0.9087 0.9139 0.9139 0.924l

0.8967 0.8961 0.8648 0.8643 0.8049
(0.0416) (0.0313) (0.0473) (0.476) (0.0676) .
0.95 0.95 0.90 0.7057 0.7592 0.6580 0.6580 0.4614 ..
0.9753 0.9636 0.9632 0.9632 0.9297

0.9479 0.9473 0.9117 0.9123 0.8485

(0.0211) (0.0154) (0.0327) (0.0326) (0.0609)

0.97 0.97 0.95 0.8446 0.8638 0.7636 0.7636 0.5102

) 0.9874 0.975%5 0.9735 0.9735 0.9519
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Table 3.4 Summary Statistics of Sample
Correlatlions - Files wlth n=25 Records
Conditional Positive Dependence Case
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Table 3.4 (Cont'd.)
Pxz Pyz pxy Pme1 Pms 2 Ps1 Ps2 Ps3
0.9578 0.7931 0.7641 0.7539 0.7127
(0.0174) (0.0624) (0.0832) (0.0853) (0.0948)
0.94 0.85 0.96 0.8756 0.5449 0.3612 0.3647 0.3425
0.9893 0.9226 0.9181 0.9174 0.9128
0.9792 0.8956 0.8614 0.8543 0.7998
(0.0096) (0.0308) (0.0496) (0.0516) (0.0691)
0.95 0.95 0.98 0.9131 0.7693 0.6315 0.6226 0.5157
0.9959 0.9661 0.9647 0.9647 0.9413
0.9895 0.9475 0.9123 0.9139 0.8499
(0.0042) (0.0158) (0.0339) (0.0336) (0.0584)
0.97 0.97 0.99 0.9685 0.8769 0.7182 0.7352 0.5685

0.9972 0.9833 0.9769 0.9849 0.9773
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Table 3.5 Summary Statistics of Sample
Correlations - Files with n-50 Records
Conditional Independence Case

Pxz

Pyz Pxy fml fme2 Psl

0.93

.0004 -0.0003 -0.0019
(0.1436) (0.0242) (0.1474)
.4381 .1663 .4872

0.4746 0.1244 0.

-0.0044
(0.1445)
.520%
4398 0.

.00
4574

0.5936 0.5952 0.5823 0.
(0.0916) (0.0794) (0.0909) (O
0.2530 0.2219 0.2242
c.8377 0.8103 0.7998 0.

5391
.0959)
0.1098
7873

0.65 0.60

0.6950 0.6953 0.6807 0.6279
(0.0756) (0.0612) (0.0709) (0.0815)
.70 0.2796 0.3696 0.3760 0.2526

0.8768 0.8426 0.8718 0.8543

n‘ {'-)"‘-""-t'-l‘

"

»

Y

Iy

PNl
:_sxﬁ

>
'l}':.\

>
»

-

xS

e
[REREA L

R

2 L e

..
]
-

a0
.
LY

“»

2% e T IR 1
P AR

, . - -
y f (]
AL Ry
e Ny Ay

YN IPN
N " .-'

e
[ 4

i
L)

b J
e

r‘-’{l'-lrl'l' oo
» L ] » L4
(A A
Lol ol

.\-'
o
“~ X

.
'
.

-
G T A L N A G, 20 RN



LEEE LT 2N o0 aV8 o8 oW W U™ 4% 0  ia¥ 4, o

Lo
-.', i"
)
A
S s
150 N
f'\q
. 8
)
" ,'_J
¥y
N
Table 3.5 (Cont'd.) ORI
EA
Cof
-
k
Pxz Pyz Pxy Pmel Pme 2 Psl Ps3 “
A
0.7959 0.7974 0.7797 0.7198 SE
(0.0528) (0.0408) (0.0527) (0.0645)
0.94 0.85 0.80 0.5689 0.5664 0.4919 0.4531 ~
"
0.9204 0.9082 0.9222 0.8821
‘s
0.8982  0.8978  0.8778  0.8110 bty
(0.0289) (0.0200) (0.0306) (0.0493)
w,
0.95 0.95 0.90 0.7152 0.7845 0.7331 0.6079 »
0.9634 0.9467 0.9595 0.9149 ) $~
f
3 e
\
0.9486  0.9490  0.9276  0.8559 Vo
(0.0151) (0.0103) (0.0199) (0.0419) )
.
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Table 3.6 Summary Statlistics of Sample
Correlations - Flles with n=50 Records
! Conditional Positive Dependence Case | J
Jg
(S Y
, Pxz Pyz Pxy Pmil Pme2 Psl Ps3
o
LY
2 0.9491 0.0001 0.001% 0.0025
N (0.0148) (0.0245) (0.1475) (0.1427)
. 0.00 0.10 0.95 0.8700 -0.1447 -0.525 -0.5157
o 0.9828  0.1506  0.4727  0.5145
Ii 0.8776 0.5934 0.5809 0.5358
(0.0336) (0.0817) (0.0928) (0.0981) y
ﬁ( 0.92 0.65 0.88 0.6908 0.2791 0.1519 0.1593 &
> .
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n ~
o ’
. 0.9183 0.6944 0.6771 0.6257 @
Ky
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S W
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N) Table 3.6 (Cont'd.)
o <
‘E Pxz Pyz Pxy PmL1 PmLL2 Ps1 Ps3 v
\ oA
s 0.9595 0.7967 0.7803 0.7198 eI
N
! (0.0116) (0.0415) (0.0512) (0.0627) )
[)
' 0.94 0.85 0.96 0.8793 0.6023 0.5699 0.3995 N
0.9853  0.8960  0.9158  0.8824 -
) q
P > v »
: 0.9794  0.8973  0.8776  0.8106 -
: (0.0061) (0.0200) (0.0294) (0.0468) ;
’ 0.95 0.95 0.98 0.9390 0.8096 0.7596 0.6273 -~
i 0.9932 0.9506 0.9570 0.9279 .
» 7
& -~
< A
. 0.9898 0.9492 0.9281 0.8555 )
> (0.0029) (0.0107) (0.0200) (0.0426) -
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Table 3.7 Summary Statistics of Sample
Flles with n=25 Records
Conditional Positlve Dependence Case

Correlations -
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Xz
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0.93

(0.0762) (0.

.0012
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.0035
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.1102) (0.
.2023
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3.13 Mahalanobis vs. Nomatching.

Q.

Pxz = 0.93, pyz = 0.75, pyy = 0.70, n = 25.
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