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Abstract

A classical algorithm for finding a minimum-cost circulation consists of repeatedly
finding a residual cycle of negative cost and canceling it by pushing enough flow around
the cycle to saturate an arc. We show that a judicious choice of cycles for canceling
leads to a polynomial bound on the number of iterations in this algorithm. This gives
a very simple strongly polynomial algorithm that uses no scaling. A variant of the
algorithm that uses dynamic trees runs in O(nm(log n) min og(nC), m log n) time on
a network of n vertices, m arcs, and arc costs of maximum absolute value C. This
bound is comparable to those of the fastest previously known algorithms.

1 Introduction

The minimum-cost circulation problem is that of finding a circulation of minimum cost

in a network whose arcs have flow capacities and costs per unit of flow. This problem is

equivalent to the minimum-cost flow problem and to the transshipment problem, and it

has a variety of applications [7,18,20].

The minimum-cost circulation problem has a rich history; a series of faster and faster

algorithms for it have been devised. A discussion of many of these algorithms can be found

in our earlier paper [13]; we summarize some of the previous results here.

The important parameters by which to measure the running time of an algorithm are

n, the number of vertices in the network; m, the number of arcs; U, the maximum absolute

value of an arc capacity; and C, the maximum absolute value of an arc cost. For ease in

starting time bounds, we assume m > n > 2. In bounds containing U or C, the capacities

or costs, respectively, are assumed to be integers.

All known polynomial-time algorithms for the problem use the idea of scaling or suc-

cessive approximation. These algorithms compute closer and closer approximations to an

optimal solution. The idea of scaling is due to Edmonds and Karp [6], who used this

idea to devise the first polynomial-time algorithm for the problem. Their algorithm uses

capacity-scaling and has a running time of O(m(log U)(m + n log n)) if the fastest known

single-source, nonnegative-cost shortest path algorithm [8] is used. Rbck [21] exhibited a

simpler capacity-scaling algorithm achieving the same time bound and also presented a cost-

scaling algorithm with a running time of O(n(log C)min{nmlog(n2 /m), n2 log U + nm})

if the fastest known maximum flow algorithm [1,14] is used. The latter bound was also '

obtained later by Bland and Jensen [3] using a somewhat different cost-scaling approach.

A generalization of the cost-scaling approach has been proposed in [12,13,15].

These results left open the question of whether there is a strongly polynomial algorithm
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for the problem. A strongly polynomial algorithm is one with a time bound polynomial

in n and m if arithmetic operations take unit time, and with a time bound polynomial in

n, m,log U, and log C if arithmetic operations take time polynomial in the number of bits

needed to represent the operands. Tardos [24] was the first to devise a strongly polynomial

algorithm for the problem. Other strongly polynomial algorithms were later proposed by

Orlin (19] and Fujishige [9]. The fastest known strongly polynomial algorithm is that of

Galil and Tardos [11], which runs in O(n 2(logn) (m + nlogn)) time.

For networks having integer arc costs that are not huge, the asymptotically fastest

algorithm is the one previously proposed by us [13], which runs in O(nm(log(n2/m))

min{log(nC),mlogn)) time.

All the known polynomial-time algorithms for the problem, whether they are strongly

polynomial or not, are somewhat elaborate. Our purpose in this paper is to show that

a simple, classical algorithm for the problem becomes strongly polynomial if a careful

choice is made among possible iterative steps. The algorithm we analyze was proposed by

Klein [17]. We call it the cycle-canceling algorithm. This algorithm consists of repeatedly

finding a residual cycle of negative cost and sending as much flow as possible around the

cycle. Our rule for choosing cycles is to always select a cycle whose average arc cost is

smallest. Such a cycle is called a minimum-mean cycle. A minimum-mean cycle can be

found in O(nm) time using an algorithm of Karp [16]. The cycle-canceling algorithm

with minimum-mean cycle selection runs in O(nmmin{log(nC),mlogn)) iterations and

O(n 2 m2 min{log(nC), m logn}) time. This algorithm is primal (i.e. maintains a feasible

circulation), very simple, and does no scaling. The algorithm itself is described in Section

2 and analyzed in Section 3.

Although this algorithm seems to be of mostly theoretical interest, it has a variant

that is more efficient. The variant combines more flexible cycle selection with the use of a

sophisticated data structure for representing dynamic trees [22,23,25]. It has an asymptotic

running time of O(nm(log n) min{log(nC), m log n}), which is competitive with the fastest

previously known algorithms, at least on non-dense networks with arc costs that are not

huge. This algorithm and its analysis are presented in Section 4. Section 5 contains some

concluding remarks.
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2 Minimum-Cost Circulations, Cycle Canceling,

and Minimum-Mean Cycles

Our framework for discussing the minimum-cost circulation problem is the same as in our

previous paper [13]. Let G = (V, E) be a directed graph with vertex set V containing n

vertices and arc set E containing m arcs. We require G to be symmetric, i.e. (v, w) E E il

and only if (w,v) E E. For a vertex v, we denote by E(v) the set {wl(v, w) E E}. Graph

G is a circulation network if each arc (v, w) has a capacity u(v, w) and a cost c(v, w), both

real numbers. We require the cost function to be antisymmetric, i.e. c(v, w) = -c(w, v) for

all (v,w) E E.

A circulation is a real-valued function f on arcs satisfying the following constraints:

f(v,uw) _ u(v,w) V(v,w) E E (capacity constraints), (1)

f(v,w) = -f(w,v) V(v,w) E E (flow antisymmetry constraints), (2)

f(v, w) = 0 Vw E V (conservation constraints). (3)

The cost of a circulation f is given by the following expression:

cost(f) = 2 c(vw)f(vw).
(v,ui)EE

The minimum-cost circulation problem is that of finding a circulation of minimum cost.

For a circulation f and an arc (v, w), the residual capacity of (v, w) is u1 (v, w) =

u(v, w) - f(v, w). An arc (v, to) is a residual arc if uj(v, to) > 0. An arc that is not residual

is saturated. We denote by Ef the set of residual arcs. A residual cycle is a simple cycle of

residual arcs. The capacity of a residual cycle is the minimum of the residual capacities of

its arcs. Note that the capacity of any residual cycle is positive. The cost of a cycle is the

sum of the costs of its arcs. A residual cycle is negative if it has negative cost.

The following classical theorem characterizes minimum-cost circulations:

Theorem 2.1 [4]. A circulation is minimum-cost if and only if there are no negative

residual cycles.

3



Theorem 2.1 suggests the following well-known algorithm due to Klein [17] for comput-

ing a minimum-cost circulation, which we call the cycle-canceling algorithm. Begin with

any circulation f.- (A starting circulation can be computed using any maximum flow algo-

rithm, such as the algorithm of 114).) Repeat the following step until there are no negative

residual cycles: Find a negative residual cycle r and cancel it by increasing the flow on

each of its arcs by an amount equal to the capacity of r'. (This saturates at least one arc

onr.

The cycle-canceling algorithm can run for an exponential number of iterations even if

the capacities and costs are integers, and it need not even terminate if the capacities are

irrational. A natural question is whether there exists a rule for selecting cycles to cancel

that results in a number of iterations bounded by a polynomial in n and m. We answer

this question in the affirmative.

Our selection rule is simple: always cancel a residual cycle whose average arc cost is

as small as possible. In discussing this rule, we shall use the following terminology. The

mean cost of a cycle is its cost divided by the number of arcs it contains. A minimum-mean

cycle is a cycle whose mean cost is as small as possible. The minimum cycle mean of a

graph with arc costs is the mean cost of a minimum-mean cycle. We call our selection rule

minimum-mean selection.

The importance of minimum-mean cycles in the minimum-cost circulation problem is

suggested by a result in our previous paper [13]. There we obtained a strongly polynomial

algorithm by using a minimum cycle mean computation to update the dual variables.

Minimum-mean selection can be regarded as a generalization of the rule proposed by

Dinic [5] and Edmonds and Karp [6] for selecting augmenting paths in the Ford-Fulkerson

maximum flow algorithm [7]. Their rule is to always select an augmenting path containing as

few arcs as possible. A standard way to convert a maximum flow problem into a minimum-

cost circulation problem is to give every original arc a cost of zero and to add a return

a"c from the sink to the source. The capacity of the return arc is infinite and the cost

is minus one. The minimum-mean cycle-canceling algorithm on this augmented network

corresponds exactly to the Ford-Fulkerson maximum flow algorithm on the original network;

m-inimum-mean selection algorithm corresponds exactly to the Edmonds-Karp algorithm.

A mainimum-mean cycle can be found in O(nm) time using an algorithm of Karp [16] or

in O(nm log n) time using a new algorithm of Young [26]. Although the former method has

a smaller worst-case time bound, the latter method might be preferable in practice, since

4



Karp's algorithm has a best-case running time of Sl(nm), whereas Young's method can run

much faster. In the next section we show that the cycle-canceling algorithm with minimum-

mean selection terminates after O(nmmin{log(nC),mlogn)) cycles have been canceled,

thereby establishing a strongly polynomial bound of O(n 2m2 min{log(nC), m log n)) on its

running time.

3 Analysis of Minimum-Mean Cycle-Canceling

In order to analyze the cycle-canceling algorithm, we need to introduce notions from linear

programming duality theory. A price function p is a real-valued function on the vertices of

G. For a price function p, the reduced cost of an arc (v,w) is cp(v, w) = c(v, w)+p(v)-p(w).

Observe that the cost of a residual cycle is the same whether the original arc costs or the

reduced arc costs with respect to some price function are used. Furthermore, the flow

conservation constraints (3) imply that the cost of any circulation is unaffected by replacing

original costs by reduced costs.

The following classical result expresses linear programming duality for the special case

of minimum-cost circulations.

Theorem 3.1 [7]. A circulation f is minimum-cost if and only if there is a price function

p such that, for all (v, w) E E,

uj(v, w) > 0 * cp(v, w) _> 0 (optimality constraint). (4)

The optimality constraints are more commonly called the complementary slackness con-

straints.

A notion of approximate optimality plays a crucial role in our analysis. The appropriate

notion, called c-optimality, is obtained by relaxing the complementary slackness constraints.

The relaxed complementary slackness constraints were first described in print by Tardos

[24] and were independently discovered by Bertsekas [2]. The notion of e-optimality is the

basis of several minimum-cost circulation algorithms [2,13,24]. For an c > 0, a circulation

f is e-optimal if there is a price function p such that, for all (v, w) E E,

uf,(v, w) > 0 =* cp,(v, w) 2 -c (c-optimaiity constraint). (5)

Note that 0-optimality is equivalent to optimality. Furthermore, if all arc costs are

integers and e is small enough, then an c-optimal circulation is optimal.

5
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Theorem 3.2 [2]. If all arc costs are integers and i < 1/n, then any i-optimal circulation

is minimum-cost. S

A result from our previous paper establishes a connection between c-optimality and

minimum cycle means. For a circulation f, we denote by c(f) the minimum i such that f

is c-optimal, and by p(f) the mean cost of a minimum-mean residual cycle.

Theorem 3.3 [13]. For any circulation f, c(f) = max{O, -M(f)}.

An important concept concerning minimum-cost flows is that of the admissible graph

G(f,p) = (V, E(f,p)). The admissible graph is the subgraph of the residual graph induced

by the arcs with negative reduced cost:

E(f,p) =(v,W) E Ei ce(v, W) < 0}.

The following lemma provides a key insight into the problem. Although the lemma is r.
not used until Section 4, it motivates the analysis of the current section.

Lemma 3.4 Suppose a circulation f is c-optimal with respect to a price function p and

G(f,p) is acyclic. Then f is (1 - 1/n)c-optimal.

Proof: Let r be a simple cycle in Gf, and let I be the length of F. By the E-optimality of

f, the cost of every arc on F is at least -e. Since the admissible graph is acyclic, at least

one arc on r has a nonnegative cost. Therefore the mean cost of r is at least

(l-1)f (n- 1)(
I < - = -(1- I/n)c.

n

Theorem 3.3 implies that f is (1 - 1/n)c-optimal. I

Now we have enough tools to analyze the minimum-mean cycle-canceling algorithm. As

a measure of the quality of the current circulation f, we use c(f): the smaller c(f), the

closer f is to optimal. Let f be an arbitrary circulation, let c = i(f), and let p be a price
function with respect to which f is c-optimal. Holding c and p fixed, we study the effect

on c(f) of minimum-mean cycle cancellations that modify f.

Lemma 3.5 Canceling a minimum-mean cycle cannot increase t(f).
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Proof: Let r be the minimum-mean cycle that is canceled. Before r is canceled, every i

residual arc satisfies cp(v, w) 2_ -e by e-optimality. The choices of ( and r imply that

every arc (v, w) on r satisfies cp(v, w) = -c before canceling. By antisymmetry, every new

residual arc created by canceling r has cost c. (Every such arc is the reversal of an arc on

r.) It follows that after cancellation of r, every residual arc still satisfies cp(v, w) > -c.

Thus after the cancellation c(f) _< c. I

Lemma 3.6 A sequence of m minimum-mean cycle cancellations reduces e(f) to at most
(1 - /n), i.e. to at most 1 - 1/n times its original value.

Proof: Consider a sequence of m minimum-mean cycle cancellations. As f changes, the ad-

missible graph G(f, p) changes as well. Initially every arc (v, w)cE(f, p) satisfies cp(v, w) >

-e. Canceling a cycle all of whose arcs are in E(f,p) and adds only arcs of positive reduced

cost to E! and deletes at least one arc from E(f, p). We consider two cases.

Case 1: None of the cycles canceled contains an arc of nonnegative reduced cost. Then -

each cancellation reduces the size of E(,f,p), and after m cancellations E(.f,p) is empty, e/

which implies that f is optimal, i.e. c(f) = 0. Thus the lemma is true in this case. .

Case 2: Some cycle canceled contains an arc of nonnegative reduced cost. Let r be !

the first such cycle canceled. By the proof of Lemma 3.4, the mean cost of r is at least

-(1 - I/n). Thus just before the cancellation of F, (f) <5 (1 - I/n)c by Theorem 3.3.. -*
-

Since by Lemma 3.5 c(f) never increases, the lemma is true in this case also. Ii

Lemmas 3.5 and 3.6 are enough to derive a polynomial bound on the number of itera-

dions, assuming that all arc costs are integers. .

Theorem 3.7 If all arc costs are integers, then minimum-mean cycle-canceling terminates

after O(nm log(nC)) iterations. .

Proof: Let f be the circulation maintained by the algorithm. Initially c(f) _< C. If c(f) <

l/n, then c(f) = 0 by Theorem 3.1. Lemmas 3.5 and 3.6 imply that if i is the total number I

of iterations, (1 - l/n) [('- ' )/ ' ] > 1/(nC). That is, [(i - 1)/mJ !5 - ln(nC)/Iln(1 - 1l/n) <_

n ln(nC), since 11n(1 - 1/n) <_ -1/n for n > 1. It follows that i = O(nm log(nQ). ]

To obtain a strongly polynomial bound, we use an analysis closely following that of

[13]. We say that an arc is e-fixed if and only if the flow through this arc is the same for all

7
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c-optimal circulations. The following result is a generalization of a theorem of Tardos [24].

Theorem 3.8 ([13]) Let e > 0, suppose a circulation f is c-optimal with respect to a price

function p, and suppose that for some arc (v,w), I cp(v,w) 1 2ne. Then (v,w) is c-fired.

Consider an execution of the cycle-canceling algorithm. Suppose an edge (v, w) becomes

fixed at some point of the execution. Since, by Lemma 3.5, the error parameter c(f) never

increases, the flow through (v, w) henceforth remains the same. When all edges are fixed,

the current circulation is optimal. To see this, observe that an optimal circulation is c-

optimal for any c > 0, and therefore it must agree with the current circulation on all (fixed)

edges.

The following theorem bounds the number of iterations of the cycle-canceling algo-
rithm in the case of real-valued costs. In the proof, we use the following inequality:

(1 - _,(,n+1),_< - for n > 2. P.

Theorem 3.9 For arbitrary real-valued arc costs, the minimum-mean cycle-canceling al-
gorithm terminates after O(nm2 log n) iterations.

Proof: Let k = m(n [in n+ 11). Divide the iterations into groups of k consecutive iterations.

We claim that each group of iterations fixes the flow on a distinct arc (v, w), i.e. iterations B,.

after those in the group do not change f(v, w). The theorem is immediate from the claim.

To prove the claim, consider any group of iterations. Let f be the flow before the first
iteration of the group, f' the flow after the last iteration of the group, f = c(f), C' = c(f'),

and let p' be a price function for which f' satisfies the c'-optimality constraints. Let r be

the cycle canceled in the first iteration of the group. The choice of k implies by Lemmas
3.5 and 3.6 that n' c(1 - )ngnn+1l < . Since the mean cost of r is -c, some arc on r,

say (v, w), must have cP(v, w) < -t < -2nd. By Lemma 3.5 and Theorem 3.8, the flow on

(v, w), will not be changed by iterations after those in the group. But f(v,w) is changed

by the first iteration in the group, which cancels r. Thus each group fixes the flow on a

distinct arc. I

Theorem 3.10 With the use of Karp's algorithm for finding a minimum-mean cycle, the

minimum-mean cycle-canceling algorithm runs in O(n 2m3 logn) time on networks with

arbitrary real-valued arc costs, and in O(n 2m2 min{log(nC),mlogn}) on networks with

integer arc costs.
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Proof: Immediate from Theorems 3.7 and 3.9. l

4 A Faster Variant of Minimum-Mean Cycle-Canceling

Although Theorem 3.10 is an interesting theoretical result, because it shows that a classical

minimum-cost circulation algorithm is strongly polynomial with a natural choice of iterative

steps, the bounds on the performance of the algorithm are not competitive with those

of most previous polynomial-time algorithms. In this section we describe a variant of

the minimum-mean cycle-canceling algorithm for which the time per iteration is O(logn)

instead of O(nm). This improvement is based on a more flexible selection of cycles for

canceling, explicit maintenance of a price function to help identify cycles for canceling, and

a sophisticated data structure to help keep track of arc flows.

The algorithm, which we call the cancel-and-tighten algorithm, maintains a circulation

f and a price function p. We denote by t(f,p) the minimum c such that f satisfies the

c-optimality constraints for p, i.e. c(f,p) = max{O,- min{,c(v,w)lu1 (v,w) > 0}}. We call

a residual arc (v, w) admissible if cp(v, w) < 0, and a residual cycle admissible if all its arcs

are admissible. Initially f is any circulation and p is the identically zero price function.

(Thus c(f,p) _< C initially.) The algorithm consists of repeating the following two steps

until the circulation f is optimal:

Step I [cancel cycles]. Repeatedly find and cancel admissible cycles until the admissible

graph is acyclic.

Step 2 [tighten prices]. Modify p so that c(f,p) decreases to at most (1 - 1/n) times its

former value.

Theorem 4.1 The cancel-and-tighten algorithm is correct. Each iteration of Step I results
in the canceling of at most m cycles. If all arc costs are integers, there are O(nlog(nC))

iterations of Steps I and 2.

Proof: The first two statements of the theorem follow by the proof of Lemma 3.6. Namely,

let E(f,p) be the set of admissible arcs. Canceling an admissible cycle reduces the size

of E(f,p) by at least one and cannot increase c(f,p), since all newly created residual arcs

have positive cost. Since E(f,p) has maximum size m and minimum size 0, after at most

m cycle cancellations Step 1 terminates. Lemma 3.4 implies that after Step 1, the mean
cost of a residual cycle is at least -(1 - 1/n) ((f,p), which implies that p can be modified

9
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to satisfy the requirement in Step 2. The third part of the theorem follows as in the proof

of Theorem 3.7. 1

Now we show how to implement Steps 1 and 2. Step 1 is the dominant part of the

computation. A simple implementation runs in 0(nm) time (O(n) per cycle canceled). A

more complicated implementation runs in O(m log n) time (O(log n) per cycle canceled).

Performing Step 1 is essentially the same as converting an arbitrary flow into an acyclic

flow by eliminating cycles of flow, and algorithms for the latter purpose, such as the

O(m log n)-time algorithm of Sleator and Tarjan [22], can be adapted to the former purpose.

We shall describe the appropriately modified version of this algorithm. First, however, we

describe the simple implementation of Step 1 on which the Sleator-Tarjan algorithm is

based.

The simple method is analogous to a subroutine in Dinic's maximum flow algorithm for

finding augmenting paths of a given length, once a layered residual network is constructed

[5]. The method uses depth-first search to find admissible cycles. Each search advances only

along admissible arcs. Whenever a search retreats from a vertex v, this vertex is marked

as being on no admissible cycles. A search is allowed to visit only unmarked vertices.

Whenever a search advances to a vertex it has already visited, an admissible cycle has been

found. The cycle is canceled and a new search begun. A straightforward implementation

of this algorithm has a running time of 0(m) plus O(n) per cycle canceled, for a total of

0(nm) time.

The Sleator-Tarjan algorithm improves on this method by using a dynamic tree data

structure [22,23,25] to avoid explicitly searching along the same path many times. The

data structure allows the maintenance of a collection of vertex-disjoint rooted trees, each

arc of which has an associated real value. The data structure supports the seven operations

described in Figure 1. A sequence of I tree operations on trees of maximum size k takes

0(1 log k) time.

In the dynamic tree implementation of Step 1, if parent (v) is the parent of a vertex

v, then (v, parent (v)) is an admissible arc. The implementation of Step 1 is described in

Figure 2.

A few extra data structures are needed in this method. To make Step lb efficient, the

algorithm maintains a list of all vertices and a current pointer into this list. All vertices

preceding the pointer are marked. To find an unmarked vertex, the algorithm steps the

10



make-tree(v): Make vertex v into a one-vertex dynamic tree. Vertex v must be in no
other tree.

find-roog(v): Find and return the root of the tree containing vertex v.

flnd-value(v): Find and return the value of the tree arc connecting v to its parent. If v
is a tree root, return infinity.

find.min(v): Find and return the ancestor w of v such that the tree arc connecting w
to its parent has minimum value along the path from v to jind.root(v).
In case of a tie, choose the vertex w closest to the tree root. If v is a tree
root, return v.

change-value(v, z): Add real number z to the value of every arc along the path from v to
find .root(v).

link(v, w): Combine the trees containing v and w by making w the parent of v and
giving the new tree arc joining v and w the value z. This operation does
nothing if v and w are in the same tree or if w is not a tree root. A
sequence of

cuf(v): Break the tree containing v into two trees by deleting the arc from v to
its parent. This operation does nothing if v is a tree root.

Figure 1: Dynamic tree operations.

pointer through the list, stopping at the first unmarked vertex. Similarly, to find admissible

arcs in Step 1c, the algorithm maintains lists of the arcs leaving each vertex and a current

pointer into each such list. In addition, for each vertex v, the algorithm maintains parent(v)

and a list of the vertices u such that parent(u) = v. A straightforward analysis of the

algorithm shows that it requires 0(m) tree operations and runs in O(m log n) time.

Step 2 of the cancel-and-tighten algorithm is much easier to implement. The simple

method described in Figure 3 has an O(m) running time.

Since Step 2 is only performed when there are no admissible cycles, the level of every

vertex is well-defined, and Step 2a can be performed in O(m) time by computing the levels

of vertices in a topological order, i. e. an order such that if (v, w) is an admissible arc, L(v)

is computed before L(w). Step 2b obviously takes O(m) time; Step 2c, O(n) time. The

following lemma shows that this implementation of Step 2 achieves the required decrease

in f(f,p):

Lemma 4.2 Steps 2a-2c reduce c(f,p) to at most 1 - 1/n times its former value.

Proof: In Step 2b, the computed value of c is c(f,p). Every admissible arc (i,w) has

L(v) < L(w) by the definition of levels. Thus the only arcs participating in the definition

of p are those of nonnegative reduced cost. It follows that p > 0.

• 11



I

Step ]a [initialize]. For each vertex v, unmark v and perform make-tree (v).

Step lb (find starting vertex for a search]. If all vertices are marked, stop. Otherwise, select an
unmarked vertex v and go to Step Ic.

Step Ic [find end of path]. Perform r .- find-root (v). If there is no admissible arc (r,w) with w
unmarked, go to step if. Otherwise, let (v, w) be such an arc and go to Step Id.

Step Id [extend path]. If find-root(w) 9 r, perform link(r,w,uj(r,w)) and go to Step 1c. Otherwise,
go to Step le.

Step le [cancel cycle]. Let 6 = min{uj(r,w), find.value(find-min(w)}). Perform f(r,w)
f(r, w) + 6. If u1 (v, w) = 0, mark (r,w) inadmissible. Perform change-value(w, -6). While
find-value(find - msin(w)) = 0, do the following: u -- find-msin(w); f(u, parent(u)) +- 0;
cut(u). Go to Step lb.

Step If [retract path]. Mark r. For each vertex u such that r = parent(u), do the following: f(u, r)
u(v, w) - find-value(u); cut(u). Go to Step lb.

Figure 2: Implementation of Step 1.

Step 2a [compute levels]. For each vertex v, compute a level L(v), defined recursively as fol-
lows: If v has no incoming admissible arcs, L(v) = 0. Otherwise, L(v) = max{L(u) +
l(u, v) is an admissible arc).

Step 2b [compute price increment]. Compute c = - min{c,(v, wl(v, w) is admissible). Compute p =
min{(c. (v, to) + e)/(L(v) - L(w) + l)1u/(v, w) > 0 and L(v) > L(w)).

Step 2c [compute new prices]. For all vcV, replace p(v) by p(v) - pL(v).

Figure 3: Implementation of Step 2.

The price change in Step 2c increases the cost of each arc (v, w) such that L(v) < L(w)

by an amount p(L(w) - L(v)). This includes all the originally admissible arcs. Thus

each such arc has cost at least -e + p after Step 2c. Reduced cost of an arc (v, to) with

L(v) = L(w) is not changed by Step 2c, and thus the reduced cost remains nonnegative.

Reduced cost of an arc (v, w) with L(v) > L(w) is decreased by p(L(v) - L(w)). If cp(v, w)

is its original reduced cost, its new reduced cost is c(v, w) - p (L(v) - L(w)) 2! -c + p

by the definition of p. Thus after Step 2c c(f,p) :. c - p. The definition of p implies that

p 2! e/n, which implies that, after Step 2c, c(fp) :_ (1 - 1/n)c, as desired. I

The dynamic tree implementation of Step 1 and the above implementation of Step 2

yield an O(mlogn) time bound per iteration of Steps 1 and 2. Theorem 4.1 gives an

O(nmlognlog(nC)) bound on the total time to find a minimum-cost circulation. This

algorithm is not strongly polynomial, but the implementation of Step 2 can be modified

to give a strongly polynomial method. Namely, every n t' iteration of Step 2 is performed

differently. At such an iteration, we replace e by t(f) and then replace the price function

12



p by a price function p such that f is e(f)-optimal with respect to p'. In our previous

paper [13] we show how to find c(f) and p in 0(nm) time using an algorithm of Karp

[16] for finding a minimum mean cost cycle and the Bellman-Ford algorithm (see e.g. [25])

for finding shortest paths from a single source. Since these computations only occur once

every n iterations of Steps I and 2, they do not affect the O(m log n) bound per iteration,

except that the bound becomes amortized instead of worst-case. With this change of Step

2, a bound of 0(nm log n) on the number of iterations of Steps 1 and 2 follows as in the

proof of Theorem 3.9. This bound is valid for arbitrary real-valued costs. Thus we obtain

the following theorem:

Theorem 4.3 The cancel-and-tighten algorithm, with the dynamic tree implementation of

Step 1 and a minimum cycle mean computation after every n iterations, runs in 0(nm2 (log n) 2 )

time on networks with arbitrary real-valued arc costs, and in 0(nm(log n) min{log(nC),

mlogn}) time on networks with integer arc costs.

5 Remarks

Open problems remain, concerning both the practical and the theoretical ramifications of

our results. On the practical side, we believe that the practical performance of the algorithm

described in Section 4 is worth investigating. There are some obvious modifications that

should improve the practical performance of the method. For example, Step 1 need not be

performed unless there is an admissible cycle, and Steps 2a-2c can be repeatedly performed

until such a cycle exists. Perhaps some alternative implementation of Step 2 might be "-.

better in practice. It is not clear how much time should be spent between iterations of Step .

1 in trying to reduce c(fp).
S

On the theoretical side, an open question is whether one can reduce the asymptotic

running time of Step 1, and hence of the entire algorithm. Previous results [13,14] sug-

gest the possibility of an 0(mlog(n2 /m)) bound. More generally, it would be interesting

to see what other well-known algorithms for the minimum-cost circulation problem and

other problems can be made polynomial or strongly polynomial by choosing iterative steps

carefully. Another question is to what extent the bounds in Theorems 3.10 and 4.3 can

be improved in special caes. For example, if all capacities are zero or one, the simple

implementation of Step 1 of the cancel-and-tighten algorithm runs in 0(m) time, and the

bounds in Theorem 4.3 decrease by a factor of log n. Probably even better bounds are

13
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obtainable. See e.g. [10].
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