AD~-A193 948 OPTIMISATION ALGORITHMS FOR HIGHLY PARALLEL COMPUTER 11
ARCHITECTURES THE PE.. (U> HATFIELD POLYTECHNIC
C(ENGLAND) L C DIXON ET AL. MAR 88 DAJA45-87-C-8038

'E UNCLASSIFIED F/G 1276 N

-,

K]
t!

A

X

I L St MU AL I LI TN I e T N AN NI R0 o W W LN 3 W WP . IR TP S PN U T T P PO TR TY TAEXD TYORE m!"ﬁ:‘
\
l."
)

] “
2

"" | fliz2

o

TTEFEERR

EEEE

rr
1
re

= &
22 s nee

s
55
"
[l

!',,.f
MICROCOPY RESOLUTION TEST CHARY _:'_‘g'
IR AL STANDARDS 1962 £ -‘-.u "

o

-1

o B

TIT

Id
Xy

et
v

ﬂ
¥
A]

'I
.

o£h
7

~ v
ﬂ

.
£

h]
’l
z

0y ﬁo:

[
1&

-.':,\
8

£

,,
o 5

r&SL

o

g AR AN ART R e T 3 v, O . " va mt - - - . - - . . - <
») 2 4,94, 9,049,900 0 O T R R PN AR '3 099, U9 gl P02 p0e 430 a0 oty gin-sinavy’ tac Gy Ng* Mt ghgs b b v v by

i &

ﬂm ’!{'”;” o AD 1988

OPTIMISATION ALGORITHMS FOR HIGHLY
PARALLEL COMPUTER ARCHITECTURES

SECOND INTERIM REPORT

THE PERFORMANCE OF THE TRUNCATED NEWTON,
CONJUGATE GRADIENT ALGORITHM IN FORTRAN & ADA

by
L.C.V. DIXON & Z.A. MAANY

AD-A193 940

MARCH 1988

UNITED STATES ARMY
EUROPEAN RESEARCH OFFICE OF THE ARMY
LONDON ENGLAND

CONTRACT NUMBER DAJA45-87-C-0038 D I |(:

ELECTE
THE HATFIELD POLYTECHNIC

PRELININARY REPORT NOT FOR DISTRIBUTION

DISTRIBUTION STATEMENT A

At e Ul 88 4 27 w07

- —————————— B e e TR

Ba™ B a® 2 R . .. 5% J Ny . v ¢

- s

':. ';'::'- :

LA
ISR
. ®

b

4

ot il
5
LN

ey

}
v A

S
Loy
£\

[
X A .._‘.53.‘1

S

o,

('.’l".f‘.f. 'Ts‘ “"
& &

b Y
$'

qf}

o,

o

N

?‘?-

TS
AR
RN
I -

To 2o

</
Y

LT RN TR Lt R S Sad Vab Aon and 8t 04 s
f;
el
L

b This project is concerned with the optimisation of objective functions

1 INTRODUCTION

F(x) in a large dimensional space R" on highly parallel computers.

It has been established that the truncated Newton method introduced by
Dembo & Steihang [1] is an efficient method for solving large optimisation
algorithms on a sequential machine, Dixon & Price [2]. The truncated
Newton method consists of two main steps

“{(1) the calculation of the function value F(x), gradient vector g(x)
and Hessian matrix B(x) at a sequence of points x'*,
(ii) solving the set of linear equations
H(x) d = - g(x)

approximately for the search direction d.

It has been shown Dixon & Mohsenina [3] that the calculation of the
gradient vector and Hessian matrix H(x) can be undertaken very elegantly in
ADA using automatic differentiation, Rall [4]. In ADA it is only necessary

to program the objective function in the normal way, then to declare the

variables to be of type "triplet" and to use an extended definition of the R
arithmetic operators *,+,-,/ to obtain the gradient and Hessian. All the EEE;i
necessary softvare for triplet and sparse triplet arithmetic has now been ESEE
written and tested. Sparse triplet arithmetic generates the Hessian in a f‘:‘

R

standard sparse form convenient for large sparse matrices.

v,
LA

!
'5’

In contrast automatic differentiation in Fortran is messy as each

.Y
¥

Zi® ¥

4

arithmetic operation in the calculation of the function must be replaced by

a subroutine call to perform the triplet arithmetic. This is not a major

' problem for the simple test functions used in the tests reported herein, 179'3
_“p1str1bq;;on/ j;:qv\
] Avallability Coé;; Ty
%, ! jAvall ane/or '% '
]

A

: k :

i o Dist Special a
i

]

]

]

.......

. . N
AL ARAT A u® FUVLW AN v~ i e W

but would be impractical on realistic industrial problems.

Using automatic differentiation in ADA should remove the difficult
task of ensuring that the gradient calculation is coded correctly and also
the need to estimate a suitable step wvith wvhich to approximate the Hessian

by differences which is the common practise.

It is anticipated that when the triplet arithmetic is declared to be
concurrent tasks then the ADA version should be efficient on highly

parallel computers.

In the truncated Nevton method the set of equations
B(x) d = - g(x)
is usually approached by applying the conjugate direction algorithm. This
is an iterative method that decreases the quadratic approxinatfon to F
Q(x,U) = F(x) + g'U + 1/2 UBY

and increases ||U|| at each inner iteration.

The kth inner iteration is terminated wvhen either

(1) lgx+0)|1 < lg(x) || min (0.1/k, |ig(x)]])
or (ii) [|U]| 2D.

Again the conjugate direction method which consists of updating

vectors can readily be posed as in concurrent tasks.

Evidence exists Dixon & Mohsenina [5]) that the introduction of an

ASAIALATANAN L% o n " u T tu g

P g

T Y
,:,p

24

LA/
;-

PERAANS B A -
D B Y Y o)
IR . At

" o
L W)

4, 8 T

-
' _‘. A1

A -P"I'/"-' <o
L]
W ey
[AEIE N -.'!. .’l.' o0, -:.-I

P
[N

¢ P L POl D
SR X
XX

ES

?" .' ’
%5
(4

.
%

2

'i’ﬁ
'
a,

“r

7P
/) g o

BN O W O RN I O A KK RO BUY NI U LN OV UY DY U N ‘gug pia plo gty 4 0 va e §Pa A" W

|

incomplete Choleski decomposition of the matrix H(x), and performing the
conjugate gradient algorithm in the scaled space could be beneficial on

simple problems.

The functions reported in [5] were in a sense special as they vere
both modifications of simple low dimensional problems, that had been
extended in such a vay that the number of distinct eigenvalues remained low
(vhich favoured the conjugate gradient method) and had a small band width

(wvhich favoured a full choleski decomposition).

In wishing to test these ideas further one of the first requirements
wvas to define a more general set of simple test functions that led to
sparse Hessians that could be made arbitrarily illconditioned. The set
chosen are defined in Appendix 1. The Hessians are very sparse having the
familiar diagonal band structure but with some non zero diagonals far from
centre. The functions can be made more illconditioned by increasing the
pover of the (i/n)* coeffic}ent, to date tests have been performed with

r=0,1and 2.

2 NUMERICAL RESULTS

The results of the tests using the TNCG code in Fortran are given in
Appendix 2. Most of these were terminated when ||g|| £ 10", though for
some illconditioned problems it was necessary to continue until ||g|| <
10°'° to obtain a good approximate result. All the tests were successful
the algorithm behaving as expected. The results on the large dimensional

illconditioned problems were very expensive in terms of computer time and

confirm the need to improve the algorithm in these cases.

r.._ b SR 1 2" 0] ¥ T S RaF &

The same tests vere commenced using ADA, it was found as expected that

the same number of outer and inner iterations was usually required, though

on occasions one extra or fewer outer iteration was performed. Hovever the

test series could not be completed because the ratio of the CPU times in

ADA compared with FORTRAN increased rapidly with n. Theoretically the Ry
G0N
ratio wvas expected to remain constant. These results vhich are shown in o ﬁ:

“

o,

i di ith

Appendix 3 seem to indicate that either *h\df
(1) the ADA implementation is poor ;.;;'
R
(2) our ADA compiler is poor :'g:}:.
Weht!
or (3) ADA is not suited to high dimensional problems of this type. Q&?Q
X .
«nkégf
This result was unexpected and is being investigated further. jhﬁ -~
N

Initial investigation using the incomplete Choleski code on large

problems have indicated that its performance can be poor if the E;;;Eu
decomposition attempts to introduce a large number of negative diagonal ;i;él
elements. It is intended to introduce Papadrakakis’s safeguards [6] to ;{f?
overcome this problem to determine wvhether the geood results be obtained or FF’:‘
some special problems will be repeated on this very different test set. §§§E|
iy

!

Hovever his safeguards are heuristic for general problems and it seemed

.....“
A

.
B
DAL R Ty iy
L
PP

’
o
.
DR R
)
e ?

n,l“ .

sensible to investigate a more theoretical approach.

-
”

L)
v e

3 THEORETICAL STUDY

Let us assume that the Hessian matrix is A and that R is an

-
{
-

AR
o«

l,‘

LRSS
ID’D,'

» e .

approximation to the inverse.

.
L4

a
N
~

1“:"
iy %, :
Pl L

(
%

1]
L

“Ae

A Y
Py
“y

T 'l
AT

e -

o)

; TT TR e A RIRIIRT NI YL T, T, W

The iterative scheme
X**' = (I - RA) x* + RD (2)

converges to the solution x', if ||I-RA}} < 1.

This is easily seen if we write it as

X' o x" e (x* - x") ¢ R (ax" - ax%)
if nov e* is the error

e**! . (I - Ra) &

k+l k
I1e*™ 1] < 11T - RAJ} |le*]].

The performance will improve in terms of iterations as }||I - RA|] is
decreased; but any matrix R for which ||I - RA|| < 0.5 will lead to a
reasonable speed of convergence. So we might wish to find a sparse matrix
R tor wvhich N = ||I - RA|| < 0.5 for some norm. Ve note that if RH =0
then N = 1 and if R = A" then N = 0. It should therefore be possible by
introducing the variables one at a time to find a sparse matrix R vith the
required property. The interaction (2) consisting as it does of sparse
matrix vector multiplications should be efficient on a highly parallel

computer.

st - 811 = : Ry Akj

b

Y

; . There are of course a number of norms that can be considered.

i ' Introducing B = I - RA, ||B||; = max eigenvalue B'B, noting that BB is

! symmetric and positive semi definite. Y

I: .

: T = Trace (B"B) > ||B|{|? Sy

» 2 \:\

. so ve could select R‘j to reduce T = trace (B'B), T is of course a :j:

A ,\._\
P A

E guadratic in R, ,::x

?

{

]

]

]

r—n—\wn\nww‘ﬂ‘ LA y T
U

v
{35
L=

5%
o

%

-]
ke
P
o
(W R
»
]
RN
]
st
S d

2
(8, - IR, A,)

; AT
A

ot

The reduction of T decomposis into n separate problems as T = I 'l‘j vhere

h| .
2
gy = f (8jl - f Rjk A,,)" and Rjk only effects Tj.)

s

&
s

?{"‘

4\' .
.'i YN

T

ey
a e
AN

-l
)

Ve can therefore introduce elements Rjk in the row Rj to reduce Tj. This S
. *

is a smooth quadratic function so the introduction of each variable must

A

2

reduce Tj

L.
[}

%,)

g o

L 585

Viz Rjk = 0 all k Tj =1

1,4

2 2 2
introduce Rjj = A,,/f Ajk T, =1 - Ajjlﬁ A’k

{If}
LA

Fo

The method must converge with Tj = 0 in n steps at most if at each

%

2z

W e

iteration the parameter R:lk are chosen to minimise Tj over the spanned

by

{
q

.{'{1{.
7

subspace. This method will be investigated further. It is hovever not

7,
r
'. % .l

vf'{.
g

ﬁ,
i
L 4
A4
-

clear from the above approach wvhen the process should be terminated.

>

Hovever if instead we look at the [{B|]_ norm

€
1]

|

{

v -
N "-";'i)

e

[{B[|_, = max I IB,,I = max Uj
m 3

.l' l'-, ".I

CANRALS,
R

.‘:'t'v
4
<€

'@

U, =C{B, | =CE|8_ -CR, A |}
3 " in RS K jx “km

Ve note that again the elements of each row of R only effect one

’,

»
»
Pal

subfunction so the introduction of elements into the jth rov of R may

Ty iy =y
n’;‘:’

L

".
L'
[)

terminate when Uj <172,

@

'
o ot
s

.
4% T e"aa
L

A

%
.'-'I .

One approach would therefore consist of introduce the variable Rjk one

e 0.
PP
ale’s,
7
s
s

.t
o€ 8
»

at a time to minimise Tj terminating when Uj < 1/2. This naturally raises .
@

R e A A ALl at s s a £ v o L

Cula e ah” N
P g LN) D0 pAR g% LA " - Ly - g0n - o Ay - 280" oy -

Y
0
Ll
g
PPt
-7 Eﬁ:'&
AL
Rt
AN
the possibility of minimising Uj rather than Tj. Uj is a non £ OAIAN
e
differentiable function. Its minimisation can be posed as a linear ;f‘]
¢ *.'.f
programming problem. It is however degenerate and it is not necessarily ?;2;;,
L
possible in the simplex method to introduce the variables x, = Rjk one at a D':
time and reduce U ,, as the degeneracy of A
3 A
R
Min Lu_ + v, bﬁéﬁ‘
" et
+ - i
sjl’zAk-(xk-xk)+u-—V.=o -9 ima Ay
k R
WAL
+ - i)
s.tu 20, v 20, X, 2 0 and X, 2 0. sfkk
o
implies that many zero steps may be taken. These and similar methods ““}i
involving incomplete Cholesky factors will be investigated further. ;i:f:;
ot
‘.'::J'::-"
NN,
4 CONCLUSIONS RO
Q.
'Wg}
(1) A set of test functions have been defined. ‘hﬂ
:$ h
(2) Fortran and Ada implementations of the Truncated Newton/Conjugate I

gradient algorithm have been implemented using automatic

%

differentiations. 3
CaN S,
(3) The Fortran results wvere as expected but the ADA results A
. N
deteriorated as n increased. T
"-"f: d
(4) Incomplete Choleski versions of both are almost complete. :»:f;
WA
(5) Methods for finding sparse approximate inverse Hessians have been . 9.
proposed. 3:{:{
AN
References :ﬁ;ﬁ;f
..'-.-,l'
1 Dembo R & Steihang T "Truncated Nevton Methods for Large Scale @
Optimisation" Math. Programming Vol 26 1983 pp 190-212. e
5
2 Dixon L C VW & Price R "Numerical Experience with the Truncated Nevton -z;% &
Method™ JOTA Vol 56 No 2 1988. ké%)
[14
3 Dixon L C V & Mohsenina M "The Use of the Extended Operator Set of ADA N 'Y
vith Automatic Differentiation and the Truncated Newton Method". The AL,
Hatfield Polytechnic TR 176 1987. N
‘\C:’

1557

)
ST
* "
:::e:‘.a:‘
.\d.l ', -
""""" AL T

TR AT L U LU T TR

.
'
v

“w

!

-8 -

N
5’:«-

4 Rall L B "Automatic Differentiation : Techniques & Application"

Lecture Notes in Computer Science No 120 Springerverlag 1981 ,
S

5 Dixon L C W & Mohsenina M "Incomplete Choleski Decomposition in the R
Truncated Newton Method" 12th IMACS Vorld Congress on Scientific ,
"

Computers, Paris July 18-22 1988.
-

6 Papadrakakis M "Accelerating Vector Iteration Methods", J. Appl. b
Mech. 53 291-292 1986. oty

5y

;:
5 %

5’(’

e
k ‘.'\’ ;i T

L)

e

A
F (yf

-3

£

A

. ¢

¢
AV
ARk

AN
.
'-'
«
v

» 'n'
i\
L

LA S P

mut"m L § Yoy .
Y Lﬂ.mwn.q,q.‘.c.-..‘. WL - . - EA]
Mh{& A AT o M AN A v v e a'ary

Fw“u"nwﬂwwm Vo gt

APPENDIX 1
The test function used is
N N-1 2
minimise f(x) = 1.0 + f=10.5 aixi + f=1b1 (x‘x“1 + X, x:+1)
2n 2 4 n
+ f.lci X, X, + f:ldi (X%, 50)
vhere N=3n = number of optimization variables.
The optimal solution is
x; =0 i=1,2...N

and f£(x') = 1.0.

Twelve cases wvere investigated and they are classified according to the

values of a,, bx' c, and dx as shown in the following table

Case No. a, b, c, d,
1 1.0 0.0 0.125 0.125
2 1.0 0.0625 0.0625 0.0625
3 1.0 0.125 0.125 0.125
4 1.0 0.26 0.26 0.26
5 i/N 0.0 0.125 0.125 i/N
6 /N 0.0625 0.0625 0.0625 i/N
7 /N 0.125 0.125 0.125 i/N
8 1/N 0.26 0.26 0.26 i/N
9 12/8 0.0 0.125 0.125 1%/N?
10 12/ 0.0625 0.0625 0.0625 i’/N?
11 12/8% 0.125 0.125 0.125 i*/N?
12 i2/N* 0.26 0.26 0.26 i*/N°

f.-. WU N WL W W WL WP T R D

E
A
D
E
)
.
v
E
:
]
]

h:‘"‘.ﬂ'ﬂ'lliﬂ'ﬂ'ﬂ'n‘p' -

- 10 -

APPENDIX 2

This appendix contains the results of the TNCG codes using both Ada
and FORTRAN. Table 1 contains the results using Ada for the 12 test cases
and N = 15,30,60,90 and 120. For each case the result is given in 2 rows.
The first row contains no. of function calls/no. of major iterations/no. of
minor interations. The second row contains the CPU time/in seconds. The
computer used to run all the Ada test runs is VAX 11/785 using VMS V 4.5.

Table 2 contains the results for the same runs as in table 1 but using
FORTRAN. The computer used for the FORTRAN runs is VAX B650 using VMS

V 4.6.

From tables 1 and 2 it can be seen that for most of the cases tested
both Ada and FORTRAN codes took the same number of function calls, major
iterations and minor iterations. The few cases where there vere
discrepancies between Ada and FORTRAN are marked with an * in both tables.

The stopping rule used in the above runs was ||gl| < 10"° where g is
the gradient vector. The CPU time for Ada was large compared with that of
FORTRAN. Ve then decided to run the FORTRAN code for larger values of N.
The values N=300, 1500 and 3000 were used. The results for these runs are
given in table 3. 1In this table the output of each run is given in 4
lines. The first line contains no. of function calls/no. of major
iteration/no. of minor iterations. The second line contains I |x,| at the
final point. The third line contains the norm of the gradient vector at the
final point. The last line contains the CPU time in seconds.

The stopping rule used was {(gi| > 10"%. In cases 9-12 for large N
Zix,| is not near zero as expected. For example I|x, | = 0.9294 for case 12
vith N=1500 and E{x,| = 1.3238 for case 10 with N = 3000.

To investigate these results we decided to repeat the same test with
accuracy of 107'° instead of 107°. Using 1072° as the required accuracy
the above problem disappeared but the CPU time increases. The results for
both 10™° and 107'° accuracy are given in table 3.

DS S A M0 00 e at aa oin a4 W W R

A
1

R RN

S
PN
W)

C&

5
o

o' q%
20N

v ® o
SNy
. WP)

. |

v,
PO AR
A

11_1

S
LA N

Y “» v
"'
P
.

[

'y
WA

PO
g%

v

P
+~@®
o

Sy NN
"‘. ‘l .v
£ 3R

1] ’

L

% .I
I’l

N 15 30 60 90 120
Case 1 8/6/10 9/6/10 9/6/10 10/7/10 10/7/10
3.07 9.47 31.22 79.47 142.36
Case 2 10/7/11 11/7/11 | 11/7/10 12/8/11% 12/8/11%
6.55 19.67 68.27 174.88 311.81
H Case 3 11/7/12 11/7/712 | 12/8/14 11/7/11 1177711
6.62 19.32 78.46 156.99 279.76
Case 4 15/9/23 16/10/32) 13/8/13 13/8/13 13/8/13
8.43 27.16 79.72 178.48 318.09
Case 5 12/8/36 11/8/59 | 12/8/69 11/8/68 11/8/79
4.08 12.25 41.99 92.68 166.43
Case 6 12/8/37 12/8/46 | 13/9/66 18/12/136 | 13/9/75
7.32 22.85 88.68 259,50 349.08
Case 7 14/9/46 14/9/59 | 18/11/83 15/10/96 19/12/96
8.38 25.21 111.01 218.69 468.09
Case 8 18/10/43 17/11/52 | 18/11/59 35/17/159 21/137141
9.67 30.54 109.88 398.44 494,50
Case 9 11/8/50 11/8/87 12/9/200 12/9/270 12/9/353
4.14 12.49 51.84 109.10 195.16
Case 10 15/11/72 15/10/118 { 17/12/289 28/15/436 43/21/880x
9.83 28.82 125.95 359.75 894.51
Case 11 15/10/70 217127151 | 32/17/378* | 30/17/491* | 24/13/417
9.31 36.05 194.25 393.29 536.53
Case 12 18/10/59 22/13/144 | 32/15/298 31/17/487 40/20/569%
9.64 37.75 176.52 402,21 834.23
Table 1 Results of TNCG using Ada

* jmplies that the results of the Ada code is not the same as

that of the FORTRAN code.

S o

Y

vy

oL 'L"ﬂ.-h—‘.’.A\JNF;‘v_‘.

[SSEROELY WU O N WUV,

LRl h) w0 ol and-aa e 0y

Rl Sl e Skt Gl S l"'.l_‘:'."."&

!—‘"‘ T NN e d W N R MW D

* implies that the results of the Ada code is not the same as

that of the FORTRAN code.

W WO I IO I, N O N I I Y X 2 ¥ SOOI IO X i i o

THQZ
- 12 - N AL
e
A
N 15 30 60 90 120
Case 1 8/6/10 9/6/10 9/6/10 10/7/10 10/7/10
0.26 0.55 0.92 1.53 2.02
Case 2 10/7/11 11/7/711 11/7/10 11/7/8% 11/7/8%
0.44 0.92 1.77 2.71 3.61
Case 3 1177712 11/7/12 12/8/14 11/7/11 11/77/11
0.44 0.92 2.00 2.78 3.66
Case 4 15/9/23 16/10/32 13/8/13 13/8/13 13/8/13
0.64 1.42 2.09 3.04 4.02
Case 5 12/8/36 11/8/59 1278769 11/8/68 11/8/79
0.38 0.90 1.68 2.57 3.51
Case 6 12/8/37 12/8/46 13/9/66 187127136 13/9/75
0.60 1.14 2.85 6.44 5.99
Case 7 14/9/46 14/9/59 18/11/83 15/710/96 19/12/96
0.72 1.48 3.65 5.06 7.85 Fy
Case 8 18/10/43 17/711/52 18/11/59 35/17/159 217137141 :H%}
0.76 1.58 3.30 9.14 9.57 N
iy
Case 9 11/8/50 11/8/87 12797200 12/9/268 12/9/351 Qﬁ:
0.40 0.96 2.88 5.38 B.64 PN Y
Case 10 | 15/11/72 15/10/118 | 17/12/287 28/15/433 40/20/762* :‘
0.86 1.93 5.98 12.83 27.03 Y
Case 11 | 15/10/70 21/12/151 | 26/15/371% | 29/16/383* | 24/13/415 3&;"
0.84 2.34 7.98 12.26 15.52 gdyf
Case 12 18/10/59 22/13/144 32/15/286 317177473 50/24/7904% t;&;
0.82 2.28 7.27 14.19 32.05 :55{
U AL
G
RO
Table 2 Results of TNCG using FORTRAN -

>

®
S

£

Id

LSS
IS‘-'-"
’IIJ

'i"

)
3
E
!
!

L-u s 19, WL - o, W,

N 300 1500 3000
Accuracy| 107°¢ 107%° 10°° 1071° 10°°¢ 1071°
10/6/9 11/7/10 13/8/11
Case 1 (4.4 10':: same 5.3 10';' same) 4.2 10:;: same
2.7 10” 6.8 10 %} 2.5 10
4.52 4.56 25.46 25.41 57.32 57.36
117778 | 12/8711 | 14/9/12 14/9/12
Case 2 |1.9 10‘3 2.5 10‘:: 1.5 10‘1’ same |2.6 10‘:: same
2.0 1077 | 2.9 10° 2.1 10°%° 4.7 10°
8.81 9.90 56.57 58.70 | 106.46 113.37
12/8/12 13/8/10 | 14/9/13 | 14/9/13
Case 3 |2.51071}| same | 4.0 207 | 2.0 1073%| 5.1 107}}
5.9 10° 1.8 10” 1.6 10” 1.2 10 same
10.19 9.88 50.75 55.97 109.71 | 113.07
13/8/12 |14/9/15 | 15/9/13 15/9/13 | 16/10/16
Case 4 |5.6 10‘: 1.3 10‘§j 1.5 10':: same 1.4 10': 1.5 10':§
1.0 10°% }2.3 10724} 2.9 10” 1.9 107 1.9 10”
10.35 11.26 57.50 57.14 113.29 125.92
12/8/136 | 14797231 | 13797274 | 15/10/484) 14/9/240 | 15/10/473
Case 5 |5.1 1o‘; 1.7 10": 3.6 10‘: 2.8 10':; 2.0 10';’ 3.9 1o‘:2
1.2 1077 9.4 107**} 1.3 10” 1.8 10° 3.9 107 1.3 10°
11.65 16.11 91.68 140.88 164.55 275.97
19/12/214 37/19/604 | 38/20/779| 50/21/814{ 60/22/1450
Case 6 (2.6 10"} | same |7.012077 |6.7 107131 6.5107 " |6.510°]
6.1 10~ 1.6 10 4.6 10°'7{ 1.5 10” 1.5 10°
26.08 25.57 288.49 333.86 699.62 1084.94
20/13/7177(217147247 | 377167453 | 38/17.592| 42/19/764 | 43/20/983
Case 7 |1.2 10'; 6.9 10‘1; 6.1 10'; 5.9 10’:2 1.7 10'; 1.0 10'12
9.2 1077 2.7 10°**| 7.0 1077 | 8.7 10” 2.3 10° 1.0 10”
24.59 29.63 232.45 272.12 647.87 800. 54

@
N T T ¥ h M € L WL L W W e PO

__________ L W W R TR T P T WY

| - 14 -
37/16/233(38/17/327 {33/17/523 | 4371871051 |38/19/713 | 48/20/1353
Case 8 | 3.510°¢ |3.3 107! |7.510°¢ 7.5 10°°¢ 1.0 10°¢ 1.0 10°°
9.8 1077 [1.5 107*¢ |1.8 107%° 1.8 107*° 9.5 107" [9.5 107'°
33.98 40.86 253.96 385.80 608.76 983.55
14/9/835 (1571071265 |14/10/3340 | 15/11/5614 |14/9/4799 | 15/10/9409
Case 9 | 2.1 10': 6.9 10‘13 1.6 10‘: 8.5 10“: 5.3 10‘j 8.9 10’:;
6.4 107 (1.3 10” 4.6 10° 3.0 107} 2.3 10° 2.8 10”
42.80 62.51 793.80 1291.51 2151.60 4276.02
37/20/1995| 38/21/2395| 58/31/7008 | 61/34/15738(65/32/3216 | 70/37/21944
Case 10 3.9 107} | 1.0 107 | ©0.066__ |5.51077 | 1.3228 |1.9 107}
1.6 10 5.6 10° 3.2 10° 2.8 10° 9.5 10” 2.4 10°
132.56 154.44 2153.41 4393.73 2095.39 | 11942.35
51/24/1666 | 53/26/2393] 80/35/3692 | 86/40/12870] €9/32/2251} 77/38/29467
Case 11| 6.6 10‘: 2.0 10‘:3 0.4611 , | 4.7 10‘:‘ 1.4219 _ |5.1 10‘3
4.2 10° 1.4 10° 9.4 10° 3.9 10” 6.9 10” 2.2 107!
121.44 161.36 1263.18 3638.44 1570.84 | 15189.91
53/26/1596 | 54/27/2015| 80/37/2435 | 97/48/13019| 81/22/3880| 39/64/24144
|case 12| 2.3 107! | 4.8 107]7 | 0.9294 f3.4 3077 | 1.1997]2.0 1077,
8.8 10° 2.8 10° 1.0 10” 3.0 10° 7.3 10° 1.9 10°
120.09 141.73 908.40 3790.82 2516.05 | 13462.14
Table 3 Results of TNCG for large N using FORTRAN

S T dw W T TR RO, T

s]

S NP LI TV 15 19 PPy TR EIT N Y VO VR USRIGRpRgRpgn |,),

APPENDIX 3

The tables of results in Appendix 2 indicate that among the first four
Cases, Case 4 is harder than Case 3 which in turn is harder than Case 2,
vhile Case 2 is harder than Case 1. The same seems also true for Cases
8,7,6 and 5 and for the last set of Case 12,11,10 and 9. These results
vere expected vhen we constructed the test problems. Ve decided to study
the performance of Case 1,4,5,8,9 and 12 in more detail.

In figure 1 CPU time per major iterations, is plotted against N vhen
using the FORTRAN code, for N in the range (15-120).

Figure 2 shows the plot for N in the range (15-3000). Both these
figures shows that CPU time/major iterations is linear in N for Case 1,4,5
and 8, while for Cases 9 and 12 the function is non-linear. The same plot
wvas repeated for the Ada Code and the result is given in figure 3. In this
figure none of the cases is a linear relationship. It must be stressed
that the figures 1 and 3 the scale of CPU time/major iterations is not the
same since the FORTRAN Code is much faster than the Ada Code. Figure 4
shows CPU time/major iterations plotted against N for both the FORTRAN and
Ada runs. The FORTRAN and the CPU times were multiplied by 10 in this
figure.

For the FORTRAN Code it seems that the relation is not linear because
ve have ignored the effect of the changing number of minor iterations. For
cases 1-4 the ratio minor iteration/major iteration is less than 3, for
cases 5-8 this ratio becomes as large as 30, wvhile for cases 9-12 this
ratio reaches more than 500. In cases 9-12 the minor iterations play an
important role which can not be ignored.

As for this problem, on average, one major iteration costs the same as
about 30 minor iterations. Using equivalent iteration = major iteration +
minor iterations/30 we drav CPU time/equivalent iterations against N.
Figures 5 and 6 shov these plots for the FORTRAN Codes. These figures show

that the relation is now virtually linear. The same plot for Ada is given
in figure 7 which indicates that none of the cases are linear. Again the
scale of CPU time/equivalent iteration used in figures 5 and 7 is not the
same since the FORTRAN Code was much faster than the Ada one. To show the
relative time between FORTRAN and Ada, figure 8 contains the plots for both

AL

P

e
<y
YY)
hY 58

L)

s 2
"y

~

2.
(s

4

FORTRAN and Ada. In this figure the FORTRAN CPU time is multiplied by 10

to separate the different cases.

These figures show that the performance of the Ada Code needs more
investigation as it is obviously dominated by the non-linear factor that is

absent in the FORTRAN implementation.

ot Mt A S8tk N vat o et At S o Ak A g

*
e
¥
v

v

5

S T P A Tl

..
o
NG

IASARIUR N K K OEOY WEWUNC W

1.0,

Q
Ly
(3 Case 1
. —_——— o —— Case &4 ,O
'.__.
= - - - - - - - Case § ,
-y —_——— e e — e Case 8 @
f_
N Case 9 ,
1. 00 L,i-’ —_ — — _— Cose 12 ,
= 0]
}__
/ /
D
& @
/ // P4
, |
s 7
/ 175 B
r X
0.50. / /, @/\7
O'(JO 1 T T |
C 30 60 80 120
N
FORTRAN TNCG
i Figure 1 CPU time/major iteration "FORTRAN Code"

........

N
x
>
X
>

h)

“

»

AR
tl "
AR
5 »_A
4“~<‘ .

T
F2

P

Jr

-a £S5 %%
??'ﬂﬂ‘

v w .
L
e -

&
e G4
P g

Al T

PAEL L

- o)

-

W
;s

5

Sy
Y 5

PRILS
4t

v K
oy
i
A

o " Lo
X

TR RRRIY
,\-..'-"-‘.\ & ',-."-..' Y S

L
4@?3&5'

)

7

r

.
P
vy @

f‘

>
P

e

€I,
v

eVAY Y

¥l"' -

IT 2 ¥ U TR A,

240

N
Q
o C
N ase 1 /
v e e e e Case 4 9
- /
- - - = = - - - Case 5
— I Case 8 /
180. i(: i
N ase 9 /
L
— — - — Case 12
- /
b
?)
2 /
120 /
| /
| /
‘ / 12
/
60, / py
P
/ .
Pd
/) - - g
/ _ /f” . ’_-—:"j” e - _1; - ;S
Pl "- -_-"-'T’- _— :__:,..’ ”””””””” — 1
> e r -
T 0 1000 2000 3000
o N
s FORTRAN TNCG
x‘!l.\
o
o Figure 2 CPU time/major iteration “FORTRAN Code/large N"
]
g
X
ﬁ.

P R

P AN L FUTORE 35 ST ER R

N N A

_____ ARL LR LIV 217 SV 4R V" N "t gt N,

-Al.qt

wl,
o
tg Case 1
N Case &
: e e e e . - = Case 5 o1
40. . e e e —e Case 8 /VL
g /8
< Cose 9 11/
) /,'
N . _ _ Case 12 ///
X L/
- — 7
30. 5 M7
a 4
L) /,'/
20.
10.
Y
0 v T T - ‘::_
0 30 60 90 120 DA
N

ADA TNCG

Figure 3 CPU time/major iteration "Ada Code"

MV LA W LA AR as .

[

v . o,

924" 0400 103 500 0 gab 20 bt - . s PO NG R e Py) . .
- 20 - e
w0,
Q
7 Cose 1
\ g
L m e Case &
W
0 - - e m = - - Case S 4
/| .
o e Case 8
= Case 9 /¢
\ /
w — = o — Case 12 !}
b
301 7
c:L) S
O <
20]

10.

FORTRAN
10«

C 30 50 90 120
N
ADA & FORTRAN TNCG

Figure 4 CPU time/major iteration "FORTRAN and Ada Codes"
p:-8. for FORTRAN Code the CPU was multiplied by 10.

pU”

-
|-

R
I‘.:' o
[/

'l
. ."v_ LY
{ By N

3

i
v

.
i A
r2e

o

AP,
T AN

s,
h
= .-3_!

!

%

X

oy v

e
A

k U W
4;
o'y

[N
e 4

%
-
> B

WA
S
h i)

2
® X

.“’

4

* g W g]
Al
Xs

+

C. :
s ‘s ™
)
K

L "t"f‘; .
»
S

»
P
LI]

& o :l-('

u'o-' ." " -"
I-{_-"
(Yl

R

LAY [/

oA

NS

¢’
P

e,

h 3
&
s

L A AD
72

:

8 o
U — Case & /
w 12
~ - - - = - - < Case § / A
: ————— e ——— Case 8 /a,”
5
O
L)

- N

0.40 W
—
)
.
(6]

0. 20.

0.00.L _ ___ _ | } _

C 30 60 S0 120
N

FORTRAN TNCG

Figure 5 CPU time/equivalent iterations "FORTRAN Code"

N

r’y

TP P P TR T T A LS LTS

PN * L5 o i - & T - g - . . - - N
420,00 @ s e a . LAAAX ALY ST AT s Brrrresae BALEVVITE ; Dl T o
" % " N 8y L5 % - .\. R J SN S LI 4 \‘ﬁv . S Pl %S] 2 v
AN AN f)‘\n-\-l\ . el p N 3 ,..-zf’-}-uof.! atete et l?\l'- W ot AR RN RN \un-n\u\\ . LA,
TG TR, LK . . e Sl R AN S e O i (A N g TN .u\r....”s AN O.p......f.. AR AR o N ...n....”..nf.s.ﬁh OT.“..\W.V
\\ 1
- [4
’, ,-v
X
3 .
:
b O .
r O &
W (] 2
- 53
. \ . m = ¢
~ [V, 5
b o~ S N\ . z /
- © o)¢
h h N) g s
3 AN :ﬁ) o K
s ~ N\ W ’
3 < k] y
L 4
(&)
- o o z ¢
<
3 N . o = & >
3 o~ o — « .
5 - ¢ 0 ® o - N o 4 K
- 1
r 3
¢ .Y @ Q@ a @ (Y] .
g & 8 g 2 2 Z : .
/ R I b I A R W nnun.-. .m %
W r »
M)
: | o 5 ;
Y _ | | p
! ' | .m .
: £ 4
_ ! _ o (W 2 ”
| . I) £ :
3
_ \ — (] > '
{ gy k v
I _ g :
|] ' ° 7
m ,
o _ &]
© ..
o ‘]
£ ‘.
3 :
L} e ;
(33SH> 11 *NR3-3WIL NED o _
- _ _ ‘O x
O (FP)] O .
.'
-
- e P - ~ ~y - . .t e rryYSe LY - - . o s -

- 23 -

Case 1

C33SH

Case 4

— — — — — S— a——

Case S

-_—

"1

.......

Case 8
Case 9
Case 12

— e — N — . —— - S—

"NB3-3UIL NdID

i
e, e

L L v o . Y e -
NN Lot : 2 S et
Jate el A AR S Sttt e NS ol

TNCG

ADA

T
O
o~

Figure 7 CPU time/equivalent iterations "Ada Code"

. (Rl L A G A w ‘0 Gt A4 18 o A G LA AL L, (i " iegtt ERCA R SSA
-

- 24 - .-".-'_.

.
]
o
[

40

.. -
»
)

-

LA 4
»

FIEY

Ly
,'

Case 1

(SECS
~

\<J
FrEIP ISP
Y J}'J

——————— Case & /

."l’..- i '

IT.

)

- -~ - - - - Case S /

&, %

B,

~
PEE XX AE X
&

———— e — . — Case 8 /

’\.AJ
O

7
s

Case 9 /

L]
27,
2,
V'

[

~

~
",'..-.

‘5

~
Y
A

e

>

N
‘g

Case 12

CPU TIME/EQU.
l
I
]
|

20.

Ada
T

‘et
S ve.
e

PN
R Th] *
. AR Ay
-_?I\‘

s
‘
%

10.

s
¥

'l

Lo

’rrd
WSk

v s
Y
."\-'v A

[
FA
v,

I..I"I_l]
YN s
-"'{‘1‘

L]
1

FORTRAN
10xCPL
'.l

L]
5'
e

’S,
(4

P e

- — - wC =
;kréﬁ-w*’”"’”
oL _ETE T _, -, ,

0 30 50 90

/’

L I
% %
¢

&

.l
L] I,
]

[X4
4

< -
X// < e A
-~ ///’_, -— o
=

YRy,
Y

e,

5,
5
.

=Z
NJ

Q

LY

N o,

ADA & FORTRAN TNCG

"ol

Eo P Y

e

Figure 8 CPU time/equivalent iteration "FORTRAN and Ada Codes" &;ﬁ\‘
p-s. for FORTRAN Code the CPU was multiplied by 10. PO

" 4' - v .l‘ ™
ﬁ1 P AR AN e e T n T e Joo RRA) 3 3 s Y "
(B "f R w_“..r\.-.-..\..\ e .f\f\f&f\f\.r\.n' ’ PG APS LT £ 703 IRICR
vedd R A Bt e e, . RPN | SLAARXAANIE B A
£ IS EN o VL A T AR o Nw..\.f AN . ' P ¢\.¢sr~f\f\a.u.f Y
=l 2 3o TR AL XL AR P AL AL .\g AT M AR w..n....\... ‘V.n\a.”w :
. At . _s

.88 448>

W S NaP R T RN

adaatpYate

SAA IR 'ﬁ\l(;‘l AN

EAD
D

R

o
4

9
.
¢
v,
¥

- -, »_ - - " bt Bl . 9 - e e .- ‘ ICDI 4 »
4 e T P Pe] R RIS A \.‘W-v,\. 4 v‘.-. RS x_\.-.-u. 1\n\-- \\-w m. -le.--.-.-\-. 7..\{\?\1-.-?1.”'. 1‘14)

