
AD-RI93 940 OPTIMISATION ALGORITHMS FOR HIGHLY PARALLEL COMPUTER 1/1
ACHITECTURES THE PE.. (U) HATFIELD POLYTECHNIC
(ENGLAND) L C DIXON ET AL. MAR 88 DRJR45-l7-C-8S3l

UNCLASSIFIED F/O 12/6 ML

Eomhmhhml

, -I.

l1 .-1.8

11111"25 III

MICROCOPY RESOLUTION TEST CHAR1

rN

% % 00

o- %-

;€...:"1

.,; . AD 1988

4

OPTIMISATION ALGORITHMS FOR HIGHLY
PARALLEL COMPUTER ARCHITECTURES

0') ~SECOND INTERIM REPORT ..

THE PERFORMANCE OF THE TRUNCATED NEWTON,

w CONJUGATE GRADIENT ALGORITHM IN FORTRAN & ADA

by

L.C.V. DIXON & Z.A. MAANY

MARCH 1988

UNITED STATES ARMY

EUROPEAN RESEARCH OFFICE OF THE ARMY!

LONDON ENGLAND

CO~NURCTMBER DAJA45-87-C-0038 DI
.IELECTE ..

THE HATFIELD POLYTECHNIC ELECTE
APR 2 71988

•. .',1

PRELIMINARY REPORT NOT FOR DISTRIBUTION

DISTROBUTION STATEbUNT A

Ad ,ion Ulicr: I 88 4 27 U07

1 INTRODUCTION

This project is concerned with the optimisation of objective functions

F(x) in a large dimensional space e on highly parallel computers. -

It has been established that the truncated Newton method introduced by I
Dembo & Steihang ill is an efficient method for solving large optimisation

algorithms on a sequential machine, Dixon & Price 121. The truncated

Newton method consists of two main steps

(i) the calculation of the function value F(x), gradient vector g(x)

and Hessian matrix H(x) at a sequence of points x(
k
)

(i-) solving the set of linear equations

H(x) d - g(x)

approximately for the search direction d.

It has been shown Dixon & Mohsenina [31 that the calculation of the

gradient vector and Hessian matrix H(x) can be undertaken very elegantly in

ADA using automatic differentiation, Rall [41. In ADA it is only necessary

to program the objective function in the normal way, then to declare the V

variables to be of type "triplet" and to use an extended definition of the

arithmetic operators *,+,-,/ to obtain the gradient and Hessian. All the

necessary software for triplet and sparse triplet arithmetic has now been

written and tested. Sparse triplet arithmetic generates the Hessian in a

standard sparse form convenient for large sparse matrices.

In contrast automatic differentiation in Fortran is messy as each

arithmetic operation in the calculation of the function must be replaced by

a subroutine call to perform the triplet arithmetic. This is not a major

problem for the simple test functions used in the tests reported herein, '

.- J3trlb'Ution/ :

LAall b1b11ty Codes

Avall anior-
--

-2-

but would be impractical on realistic industrial problems.

Using automatic differentiation in ADA should remove the difficult

task of ensuring that the gradient calculation is coded correctly and also

the need to estimate a suitable step with which to approximate the Hessian

by differences which is the common practise.

It is anticipated that when the triplet arithmetic is declared to be

concurrent tasks then the ADA version should be efficient on highly

parallel computers.

In the truncated Nevton method the set of equations

H(x) d = - g(x)

is usually approached by applying the conjugate direction algorithm. This

is an iterative method that decreases the quadratic approximation to F

O(x,U) - F(x) + g U + 1/2 U u

and increases HIUI at each inner iteration.

The kth inner iteration is terminated when either

(i) IIg(x+U)J S IIg(x)l min (0.1/k, Ilg(x)ll) 0

or (ii) IUHI > D.

Again the conjugate direction method which consists of updating 0

vectors can readily be posed as in concurrent tasks.

Evidence exists Dixon & Mohsenina 15) that the introduction of an

| -AA :.,:< :.]

-3-

incomplete Choleski decomposition of the matrix H(x), and performing the

conjugate gradient algorithm in the scaled space could be beneficial on

simple problems.

The functions reported in (5] were in a sense special as they were

both modifications of simple low dimensional problems, that had been

extended in such a way that the number of distinct eigenvalues remained low

(which favoured the conjugate gradient method) and had a small band width

(which favoured a full choleski decomposition).

In wishing to test these ideas further one of the first requirements

was to define a more general set of simple test functions that led to

sparse Hessians that could be made arbitrarily illconditioned. The set

chosen are defined in Appendix 1. The Hessians are very sparse having the

familiar diagonal band structure but with some non zero diagonals far from

centre. The functions can be made more illconditioned by increasing the

power of the (i/n)' coefficient, to date tests have been performed with

r 0, 1 and 2.

2 NUMERICAL RESULTS

The results of the tests using the TNCG code in Fortran are given in

Appendix 2. Most of these were terminated when IlgI J 10-6, though for

some illconditioned problems it was necessary to continue until IIgl_ "".

10- 1 to obtain a good approximate result. All the tests were successful

the algorithm behaving as expected. The results on the large dimensional

illconditioned problems were very expensive in terms of computer time and

confirm the need to improve the algorithm in these cases.

So

4 -

The same tests were commenced using ADA, it was found as expected that

the same number of outer and inner iterations was usually required, though

on occasions one extra or fever outer iteration was performed. However the

test series could not be completed because the ratio of the CPU times in

ADA compared with FORTRAN increased rapidly with n. Theoretically the

ratio was expected to remain constant. These results which are shown in

Appendix 3 seem to indicate that either

(1) the ADA implementation is poor

(2) our ADA compiler is poor

or (3) ADA is not suited to high dimensional problems of this type.

This result was unexpected and is being investigated further.

Initial investigation using the incomplete Choleski code on large .

problems have indicated that its performance can be poor if the

decomposition attempts to introduce a large number of negative diagonal

elements. It is intended to introduce Papadrakakis's safeguards 161 to

overcome this problem to determine whether the good results be obtained or .. '

some special problems will be repeated on this very different test set.

However his safeguards are heuristic for general problems and it seemed

sensible to investigate a more theoretical approach.

3 THEORETICAL STUDY

Let us assume that the Hessian matrix is A and that R is an

approximation to the inverse. A.,

0 ..

0 ''€'

?

-5-

The iterative scheme

X k+1 . (I _ RA) Xk . Rb (2)

converges to the solution x*, if III-RAII < 1.

This is easily seen if we write it as

Xk -x (xk - x*) R (Ax* - Axk)

if nov e is the error

k+1 k~
e a(I RA) e

Ile k+11 < H1,- RAIl Ilekil.

The performance vili improve in terms of iterations as III - RAIH is

decreased; but any matrix R for which III - RAIl < 0.5 will lead to a

reasonable speed of convergence. So we might wish to find a sparse matrix

R tor which N -III -RAI) < 0.5 for some norm. We note that if Rj . 0

then N - I and if R- A-' then N - 0. It should therefore be possible by

introducing the variables one at a time to find a sparse matrix R with the

required property. The interaction (2) consisting as it does of sparse

matrix vector multiplications should be efficient on a highly parallel

computer. 1
I

There are of course a number of norms that can be considered. .

Introducing B - I - RA, llBI12 - max eigenvalue B B, noting that BB is

symmetric and positive semi definite.

2T - Trace (B B) > IBI 12

so we could select Ru to reduce T - trace (BTB) T is of course a

quadratic in R 1*6

Ba1 at - E R ik Ak: -
k

% A

. @ a "

6-

(B B)1. a BJ1 Bu

jaSo T s (B)

I (S 2

ii j I k A k I

The reduction of T decomposis into n separate problems as T I Z T# where

2j
T r (6j - Rik A) 2 and R. only effects T

1 k' :-R j k y c

We can therefore introduce elements Rjk in the row R to reduce T . This

is a smooth quadratic function so the introduction of each variable must

reduce T

Viz R 0 all k T I,
j k j

introduce R A /Z A 2 T , 1-A 2 /E A-2

jj k J~ k 1 1 k ik

The method must converge with T. 0 in n steps at most if at each

iteration the parameter R are chosen to minimise T1 over the spanned
j0.

subspace. This method will be investigated further. It is however not

clear from the above approach when the process should be terminated.

However if instead we look at the JjBfJj. norm

Sll. -max IfB1 3 I -max U1
i mJ

U r IB 1 3 (mE I &J - IR~ Akl*:
m m k

We note that again the elements of each row of R only effect one

subfunction so the introduction of elements into the jth row of R may

terminate when U < 1/2.

One approach would therefore consist of introduce the variable Rik one

at a time to minimise T1 terminating when U1 < 1/2. This naturally raises

CAA

0

-7-

the possibility of minimising UJ rather than Ti. U is a non

differentiable function. Its minimisation can be posed as a linear

programming problem. It is however degenerate and it is not necessarily

possible in the simplex method to introduce the variables xk Rjk one at a

time and reduce Uj, as the degeneracy of

Min E u + vsm

- Ak (x+ - x-) + us - v3 = 0

s.t u3 > 0, v* > 0, x > 0 and x- > 0.
k -k -

implies that many zero steps may be taken. These and similar methods

involving incomplete Cholesky factors will be investigated further.

4 CONCLUSIONS

A:

(1) A set of test functions have been defined.

(2) Fortran and Ada implementations of the Truncated Newton/Conjugate
gradient algorithm have been implemented using automatic
differentiations.

(3) The Fortran results were as expected but the ADA results
deteriorated as n increased.

(4) Incomplete Choleski versions of both are almost complete.

(5) Methods for fLnding sparse approximate inverse Hessians have been 0
proposed. -

References

I Dembo R & Steihang T "Truncated Newton Methods for Large Scale
Optimisation" Math. Programming Vol 26 1983 pp 190-212.

2 Dixon L C V & Price R "Numerical Experience with the Truncated Newton
Method" JOTA Vol 56 No 2 1988.

3 Dixon L C V & Mohsenina M "The Use of the Extended Operator Set of ADA
with Automatic Differentiation and the Truncated Newton Method". The
Hatfield Polytechnic TR 176 1987.

S

-8-

4 Rall L B "Automatic Differentiation Techniques & Application"
Lecture Notes in Computer Science No 120 Springerverlag 1981

5 Dixon L C V & Mohsenina M "Incomplete Choleski Decomposition in the
Truncated Newton Method" 12th IMACS Yorld Congress on Scientific
Computers, Paris July 18-22 1988.

6 Papadrakakis M "Accelerating Vector Iteration Methods", J. Appl. 0
Mech. 53 291-292 1986. "1

..,.-,

Ar

%

0

,.. .-

l* *i i

-9-

APPENDIX 1

The test function used is

N N-1i
minimise f(x) 1.0+ Z 0.5 ax 1 + I b1 (x, . x x1)-

ii i=1i1 i +

1" 1% .%
2n n %

ii iin i (ii+.

where N-3n - number of optimization variables.

The optimal solution is

0 1 1,2 ... N

and f(x) 1.0.

Twelve cases were investigated and they are classified according to the
values of a,, bi, c, and d. as shown in the following table

Case No. a1 b c

1 1.0 0.0 0.125 0.125

2~~~~~1 1.0 0.65 .62 02

2 1.0 0.025 0.025 0.025

4 1.0 0.26 0.26 0.26

5 i/N 0.0 0.125 0.125 i/N

6i/N 0.0625 0.0625 0.0625 i/N

7i/N 0.125 0.125 0.125 i/N..

8 i/N 0.26 0.26 0.26 i/N

2 2 2 29 i /N 0.0 0.125 0.125 1 IN

10 1I/N2 0.0625 0.0625 0.0625 1I2 N2 '

2 2 2 2
11 i /N 0.125 0.125 0.125 i IN

%
2 2 2 2 .12 i /N 0.26 0.26 0.26 i IN

- 10-

APPENDIX 2 -

This appendix contains the results of the TNCG codes using both Ada

qnd FORTRAN. Table 1 contains the results using Ada for the 12 test cases

and N - 15,30,60,90 and 120. For each case the result is given in 2 rows.

The first row contains no. of function calls/no, of major iterations/no. of

minor interations. The second row contains the CPU time/in seconds. The

computer used to run all the Ada test runs is VAX 11/785 using VMS V 4.5.

Table 2 contains the results for the same runs as in table 1 but using

FORTRAN. The computer used for the FORTRAN runs is VAX 8650 using VMS

V 4.6. -.

From tables l and 2 it can be seen that for most of the cases tested

both Ada and FORTRAN codes took the same number of function calls, major %

Iterations and minor Iterations. The few cases where there were pa

discrepancies between Ada and FORTRAN are marked with an * in both tables.
O

The stopping rule used in the above runs was J g < 10-6 where g is

the gradient vector. The CPU time for Ada was large compared with that of

FORTRAN. We then decided to run the FORTRAN code for larger values of N.

The values N=300, 1500 and 3000 were used. The results for these runs are 0

:, given in table 3. In this table the output of each run is given in 4 "

* lines. The first line contains no. of function calls/no. of major

iteration/no. of minor iterations. The second line contains I 1x11 at the .'

final point. The third line contains the norm of the gradient vector at the

final point. The last line contains the CPU time in seconds.
4,

The stopping rule used was I((> 10- . In cases 9-12 for large N

,jx.I is not near zero as expected. For example ZIxI - 0.9294 for case 12

with N=1500 and 1[xt - 1.3238 for case 10 with N - 3000.

To investigate these results we decided to repeat the same test with
accuracy of 10"- instead of 10-6. Using 10- 10 as the required accuracy .- :

the above problem disappeared but the CPU time increases. The results for

both 10-' and 10-'° accuracy are given in table 3.

N 15 30 60 90 120

Case 1 8/6/10 9/6/10 9/6/10 10/7/10 10/7/10
3.07 9.47 31.22 79.47 142.36

Case 2 10/7/11 11/7/11 11/7/10 12/8/11* 12/8/11*
6.55 19.67 68.27 174.88 311.81

Case 3 11/7/12 11/7/12 12/8/14 11/7/11 11/7/11
6.62 19.32 78.46 156.99 279.76 -

Case 4 15/9/23 16/10/32 13/8/13 13/8/13 13/8/13
8.43 27.16 79.72 178.48 318.09

Case 5 12/8/36 11/8/59 12/8/69 11/8/68 11/8/79
4.08 12.25 41.99 92.68 166.43 o

Case 6 12/8/37 12/8/46 13/9/66 18/12/136 13/9/75
7.32 22.85 88.68 259.50 349.08

Case 7 14/9/46 14/9/59 18/11/83 15/10/96 19/12/96 *

8.38 25.21 111.01 218.69 468.09

Case 8 18/10/43 17/11/52 18/11/59 35/17/159 21/13/141
9.67 30.54 109.88 398.44 494.50

Case 9 11/8/50 11/8/87 12/9/200 12/9/270 12/9/353
4.14 12.49 51.84 109.10 195.16

Case 10 15/11/72 15/10/118 17/12/289 28/15/436 43/21/880*
9.83 28.82 125.95 359.75 894.51

Case 11 15/10/70 21/12/151 32/17/378* 30/17/491* 24/13/417
9.31 36.05 194.25 393.29 536.53

Case 12 18/10/59 22/13/144 32/15/298 31/17/487 40/20/569*
9.64 37.75 176.52 402.21 834.23

Table 1 Results of TNCG using Ada

*Implies that the results of the Ada code is not the same as
that of the FORTRAN code.

PI

-12-

0

N 15 30 60 90 120

Case 1 8/6/10 9/6/10 9/6/10 10/7/10 10/7/10
0.26 0.55 0.92 1.53 2.02

Case 2 l0/'/11 11/7/11 11/7/10 11/7/8* 11/7/8*
0.44 0.92 1.77 2.71 3.61

Case 3 11/7/12 11/7/12 12/8/14 11/7/11 11/7/11
0.44 0.92 2.00 2.78 3.66

Case 4 15/9/23 16/10/32 13/8/13 13/8/13 13/8/13
0.64 1.42 2.09 3.04 4.02

Case 5 12/8/36 11/8/59 12/8/69 11/8/68 11/8/79
0.38 0.90 1.68 2.57 3.51

Case 6 12/8/37 12/8/46 13/9/66 18/12/136 13/9/75
0.60 1.14 2.85 6.44 5.99

Case 7 14/9/46 14/9/59 18/11/83 15/10/96 19/12/96
0.72 1.48 3.65 5.06 7.85

Case 8 18/10/43 17/11/52 18/11/59 35/17/159 21/13/141
0.76 1.58 3.30 9.14 9.57 %

Case 9 11/8/50 11/8/87 12/9/200 12/9/268 12/9/351
0.40 0.96 2.88 5.38 8.64

Case 10 15/11/72 15/10/118 17/12/287 28/15/433 40/20/762*
0.86 1.93 5.98 12.83 27.03

Case 11 15/10/70 21/12/151 26/15/371* 29/16/383* 24/13/415
0.84 2.34 7.98 12.26 15.52

Case 12 18/10/59 22/13/144 32/15/286 31/17/473 50/24/904*
0.82 2.28 7.27 14.19 32.05

Table 2 Results of TNCG using FORTRAN

implies that the results of the Ada code is not the sane as
that of the FORTRAN code.

N
;%1

d~ *%.*.'

AMMH1 XJX. 4 - - - - - -

-13- I

N 300 1500 3000

Accuracy 10- 10-' ° 10 " 10-10 10-6 10 - 1

10/6/9 11/7/10 13/8/11

Case 1 4.4 10-i same 5.3 10-1 s same
2.7 10-2 6.8 101 2.5 10-21

4.52 4.56 25.46 25.41 57.32 57.36

11/7/8 12/8/11 14/9/12 14/9/12

-5 1-18 1
Case 2 1.9107 2 1 510 same 2.6 10- same

Cas 2 1. 0 s 25 10 -21 1 9 -iss am

2.0 10- 2.9 102 2.1 10-' 4.7 10-

8.81 9.90 56.57 58.70 106.46 113.37

12/8/12 13/8/10 14/9/13 14/9/13

Case 3 2.5 10- 13 same 4.0 10 "S 2.0 10- 19 5.1 10-13

5.9 10- 1 4 18 10 1.6 10 1.2 10- same
10.19 9.88 50.75 55.97 109.71 113.07

13/8/12 14/9/15 15/9/13 15/9/13 16/10/16

Case 4 5.6 10- 1.3 10-23 1.5 10-10 same 1.4 10- 1.5 1022
1.0 10- e 2.3 10-24 2.9 101 1.9 10 1.9 1023

10.35 11.26 57.50 57.14 113.29 125.92

12/8/136 14/9/231 13/9/274 15/10/484 14/9/240 15/10/473

Case 5 5.1 10 " 1.7 10 -is 3.6 10-: 2.8 10- 2.0 10 -7 3.9 10 - 2
1.2 10' 9.4 10- 1.3 10- 1.8 10-17 3.9 10- 1.3 10-12
11.65 16.11 91.68 140.88 164.55 275.97

19/12/214 37/19/604 38/20/779 50/21/814 60/22/1450 •

Case 6 2.6 10-: same 7.0 10-6 6.7 10 -14 6.5 10 - 6.5 lo-
6.1 10- 1.6 10-' 4.6 10-17 1.5 10 -g 1.5 10- 9

26.08 25.57 288.49 333.86 699.62 1084.94

20/13/177 21/14/247 37/16/453 38/17.592 42/19/764 43/20/983

Case 7 1.2 10- 6.9 10-1 6.1 10 5.9 10- 1.7 10- 1.0 10- 19.2 10" 2.7 1o 7.0 10-' 8.7 1012 2.3 10 - 1.0 101.24.59 29.63 232.45 272.12 647.87 800.54WI

I

I@

-14- _v

37/16/233 38/17/327 33/17/523 43/18/1051 38/19/713 48/20/1353

Case 8 3.5 10' 33 10-14 7.5 10 - 7.5 10-6 10 lo-6 1.0 10- 6g0_- 3. 0 16 10 10 10 101

9.8 10- 1.5 1 1.8 10 1 .8 10 9:5 10- 9.5 101
33.98 40.86 253.96 385.80 608.76 983.55

14/9/835 15/10/1265 14/10/3340 15/11/5614 14/9/4799 15/10/9409

Case 9 2.1 10-9 6.9 10- 17 1.6 10- 8.5 10-14 5.3 10- 7 8.9 10- 13
6.4 10- 1.3 10- 4.6 10 3.0 10" 2.3 10- 2.8 10-
42.80 62.51 793.80 1291.51 2151.60 4276.02

37/20/1995 38/21/2395 58/31/7008 61/34/15738 65/32/3216 70/37/21944

Case 10 3.9 10-3 1.0 10-6 0.066 5.5 10-' 1.3228 1.9 10-

1.6 10- 5.6 10" l 3.2 10-7 2.8 10 4 9.5 10- 7 2.4 10- 1 4

132.56 154.44 2153.41 4393.73 2095.39 11942.35 .

51/24/1666 53/26/2393 80/35/3692 86/40/12870 69/32/2251 77/38/29467

3 99
Case 11 6.6 10- 2.0 10 0.4611 4.7 10 1.4219 5.1 10-I 9.4 1 - 3.910-z

4.2 10- 1.4 03 3.9 1 6.9 10- 2.2 1011
121.44 161.36 1263.18 3638.44 1570.84 15189.91

53/26/1596 54/27/2015 80/37/2435 97/48/13019 81/22/3880 39/64/24144 ,,

Case 12 2.3 10- 4.8 10-10 0.9294 3.4 10-: 1.1997 2.0 10-

8.8 10-' 2.8 10-13 1.0 10-6 3.0 10- 7.3 10- 1.9 10-
120.09 141.73 908.40 3790.82 2516.05 13462.14

Table 3 Results of TNCG for large N using FORTRAN"

..-. .,

NO
%1

IBM

-15 -A

V

APPENDIX 3

The tables of results in Appendix 2 indicate that among the first four

Cases, Case 4 is harder than Case 3 vhich in turn is harder than Case 2,

while Case 2 is harder than Case 1. The same seems also true for Cases

8,7,6 and 5 and for the last set of Case 12,11,10 and 9. These results

vere expected vhen ve constructed the test problems. Ve decided to study

the performance of Case 1,4,5,8,9 and 12 in more detail.

In figure 1 CPU time per major iterations, is plotted against N vhen

using the FORTRAN code, for N in the range (15-120).

Figure 2 shovs the plot for N in the range (15-3000). Both these

figures shovs that CPU time/major iterations is linear in N for Case 1,4,5

and 8, vhile for Cases 9 and 12 the function is non-linear. The same plot

vas repeated for the Ada Code and the result is given in figure 3. In this

figure none of the cases is a linear relationship. It must be stressed

that the figures 1 and 3 the scale of CPU time/major iterations is not the

same since the FORTRAN Code is much faster than the Ada Code. Figure 4 ,.

shovs CPU time/major iterations plotted against N for both the FORTRAN and 1,

Ada runs. The FORTRAN and the CPU times vere multiplied by 10 in this

figure.

For the FORTRAN Code it seems that the relation is not linear because

ve have ignored the effect of the changing number of minor iterations. For

cases 1-4 the ratio minor iteration/major iteration is less than 3, for

cases 5-B this ratio becomes as large as 30, vhile for cases 9-12 this

ratio reaches more than 500. In cases 9-12 the minor iterations play an *:

important role vhich can not be ignored. .

As for this problem, on average, one major iteration costs the same as 0
about 30 minor iterations. Using equivalent iteration - major iteration +

minor iterations/30 ve drav CPU time/equivalent iterations against N.

Figures 5 and 6 shov these plots for the FORTRAN Codes. These figures shov

that the relation is nov virtually linear. The same plot for Ada is given

in figure 7 vhich indicates that none of the cases are linear. Again the

scale of CPU time/equivalent iteration used in figures 5 and 7 is not the

same since the FORTRAN Code vas much faster than the Ada one. To shov the

relative time betveen FORTRAN and Ada, figure 8 contains the plots for both

-.

-16-

FORTRAN and Ada. In this figure the FORTRAN CPU time is multiplied by 10 -

to separate the different cases.

These figures shov that the performance of the Ada Code needs more

investigation as it is obviously dominated by the non-linear factor that is

absent in the FORTRAN implementation.

% P

I

'A"-.

.0

'A'. .

- 17 - -,. r.

l. 0
u
u) _______Case 1 -

S- Case 4 -.

--- C ase /

Case 8 (41
Case 9 /4,%

wA

1.00 - -. . . . Case 12 / :i

/@'

0. 50 - .+

0. 00p-

0 30 60 90 120 "0

FORTRAN TNCG NFi

.*,

. , . .-
...._'. _.ZL l . , ./, ., ., .

240
LU _ _ _

,) QCase /
. Case 4

ZC ase 5

180 ' Case 8 /
- - - - Case 9 /

2;12l60.
L-- - Cse2

p. /
v/

I ./
I /l

0 / 12
L U. / , ,.

-/-

-N

/ ...

0. - - - 0

:0 1000 2000 3000 -

FORTRFAN TNCG

F'~'

I . i. gure. 2 Piienao trton"OTA oelreN

W ____ ______ _ _ Ease 1

- Case 4

'I- - - Case 54 -b

40 - - -_.__- - Case 8

< Case 9

w -Case 12
L/

;//1

Of

,',/t""9.

0120

RDR INCGN

Figure 3 CPU time/major iteration "Ada Code"

0

- 2°- .

00

U)Case 1

Case 4

C Case 5
40-

* ~ -- ~ ~ - Case 8
Case 9

. . . . Case 12 12 K

30 - //

20. /

10.

// / //

o/ - L :- - -

10. 7,

0 30 60 90 12 0.:

RqDAq FOR-TRAN TNCG

Figure 4 CPU time/major iteration "FORTRAN and Ada Codes" ""/. s. f N 5.

21

0. - Case Case 5

". Case 4 /% 0

*- - - - - Case 9 /1

- - - - Case 9 /V. .

UJ4//

O. 2 '":

0. 40.. LU

:D +

ia..//,..5

//

-4/

0.00.
0 30 60 90 120

N
FORTIRN TNCG

A

Figure CPU time/equivalent iterations "FORTRAN Code"

IX

Fiur
L%

,I ,,,

,0 ,

....................

-22 - --- -.

20

CCas

Co Case 4

S-- Case 4 12/

- -- - - - Case 5

D ~ Case 1212

LU

10-/

0 L

bo (000 /00 0
7 N

FOIRR /NC

L 16IN -A % I

- 23 -* -,.,-_ -

40- 0
U

__ _ __ _ _ __Case 1co /

- - Case 4 /
- - -- - Cae 4

5 --------- Case B 5
Case 8 /" ;""

- - - - Case 9 I

W Case 12 / ,,

I- - / i

. 12

20 / / ,/

5 .* ":- -

0 J*

if /0 .0 90 2, 0

V / , I~ .'..

Apa

io ,<'" - ,, -

.¢X.-o ,t

0 30 60 90 120 S

flOP INCO "-..-

Figure 7 CPU time/equiva]ent iterations "Ada Code" r

'' ' z _,.c., ,,, ,,y: N , . ,-.-. v , : .,"'7 .'.":.: .0-

.24.

40- ,
() " * , : '. '

Cas
Case 1

.-- -- _ _ CCase 5,/- .. . Case 4

. Case /

D Case 12 /

"""0%~

V/ %I

II I ,.,," ' '

O-L

0 / , 901
/ a

/ /' <

/// / fl
I., /"".

, / " .:
/,, / ..,,.

10/,vi" -,F

/+ - - 2J-f

/ / ./ - S-'.-:

- j' - - - - - C(" - " I a ,,.

0 30 60 90 120

R[)P & FOI3TIRN TNCO .-.

n ,,,oFigur 8CPU time/equivalent iteration "FORTRAN and Ada Codes" , "

m~~ for FORTRAN Code the CPU was multiplied by 10. , -%

%.t

- .5 ~ ~~. N S. . -' V .', S. - -

,*.
.P .. F 1 -"-

r'Or
IL-~

, P,,

S.'A
..-

%..
,-. --

L PL'IL A

.

.

' ..-V:
",/%

..- ,. .0

...-
,,, ,,,..- .,,

_ • e, , W 5 T 7pqP q qP 11

