
AD-AI93 652 PitoS rT CHN IKE SMj L/

UNCLASSIFIE 7D9 J/ ML

- ~ Io1315 2-2

- ~ ~ 1- 0.5~Il .

_1 1. 4N 11

ROYAL SIGNALS AND RADAR ESTABLISHMENT

Memorandum 4117

Title Protection & Security Mechanisms in the SMITE Capability Computer
Author Simon R. Wiseman
Date January 1988

Summary

The SMITE system will support high assurance, yet flexible

multi-level secure applications. The SMITE multi-processor

capability computer is beins developed, based on RSRE's
Flex computer architecture, to provide a suitable
environment. This paper describes the protection
mechanisms provided by the microcoded hardware and
introduces the security mechanisms built in software on top
of these.

Copyright
CController HMSO London

1.988

1. Introduction

The SMITE system will support flexible multi-level secure applications that
offer a high degree of assurance that the security is upheld. To provide this
environment the SMITE multi-processor capability computer is being developed.
It is based on the Flex computer architecture [Fostert .al..82) which was the
product of RSRE's research into software engineering.

Capabilities are used as the basic means of controlling access to objects.
However this is augmented with first class procedures for information hiding and
a typing mechanism for authentication purposes. These are combined with a
modular compilation system and structured backing store to give a powerful set
of primitive mechanisms with which secure systems can be built.

This paper describes the protection mechanisms provided by the microcode
hardware and system software, and introduces the security mechanisms built in
software on top of these.

2. Pointers

The main memory of the SMITE computer is organised as a heap store. That is, it
is divided into discrete blocks, of various sizes, each capable of containing a
mixture of scalar data and pointers. A pointer is a primitive capability made up
of the address of a block, and one access right. There are various types of
block, and certain instructions only apply to particular block types.

SMITE has sixteen types of block. These are used for holding data, constants
or instructions, and for representing procedures, abstract typed objects,
types, hash tables, processes, semaphores, peripherals and storage

I resources.

Various instructions exist that create new blocks. The result of these is a
pointer to the new block. Apart from copying existing pointers, this is the only
way new pointers can be created. The computer maintains a distinction between
scalar data and pointers, using hidden tag bits in the memory, thus preventing
all software, however 'privileged', from treating scalar data as pointers or
from otherwise forgeing pointers.

The SMITE instruction set offers no facility for deleting a block. Instead

inaccessible storage is recovered by a garbage collector. This is performed by
microprogram although it is invoked by software. The advantage of placing the
garbage collector in the firmware, apart from improved performance, is that no
software needs to be able to break the rules of capability protection. If it
were performed by software, the garbage collector would have to be highly,
privileged and great care would be needed in controlling this privilege.

A block can therefore only be accessed if the program can obtain a pointer to\,, ,
it. This forms the basis of all protection mechanisms in the computer.

Unlike some other capability architectures, such as the Cambridge CAP r

[Needham&Walker7?] and Intel iAPX-432 [Tyner81], pointers may be freely
copied and used in any context without losing their meaning. Thus the computer
has one uniform address space, even though the multi processor hardware has El
separate physical memories, shared by all software. This plays a most
important part in the provision of object oriented programming.

Pointers to some types of blocks have an access right associated with them.
For example, pointers to blocks used for holding arbitrary data may have the Codee

right to write into the block. This right is initially granted, but an instruction

I Dist Special

exists to remove it from a particular pointer. A pointer without this right cannot
be used to write data into the block to which it refers. Thus it is possible for
'read only' pointers to be used to give away limited access to data.

Such 'read only' access rights do not form a major part of SMITE's protection
system, but often form a useful optimization when creating higher level
protection mechanisms.

The oointr mechanism ensures that access to an object cannot be gained
illicitly, however it does not provide a means of information hiding. The use of
the Read Only access right is of limited use in this respect because it does not
prevent the user from reading further pointers from the block and writing into
the blocks they refer to. Mechanisms to prevent such problems occuring, such
as the 'sense keys' of the KeyKos system [RajunasBE), have not been
included. This is because the problems can be solved at higher levels of
abstraction, as described in section 4.

3. Procedures

Information hiding is achieved using blocks of type procedure. Procedure blocks
are a closure (Landin641 of the code to be executed and the environment in
which it must execute. Procedures are therefore First Class data objects, in
that they can be freely passed around and remain valid in any context.
Procedures are called by supplying suitable parameters and appropriate
results are returned.

Procedures are blocks, two words long, which hold a pointer to the code and
constants of the procedure and a pointer to a data block which holds the
non-local data that comprises its environment. Neither of these words may be
altered and the code is always read-only, though the contents of the
environment block could be changed.

ll procedures in SMITE are implemented as closures, there is no subroutine
mechanism provided to speed up calls to procedures declared in the same
module, as is found in all other capability computers. This is because the
calling mechanism is quite fast, largely due to the way procedure calling is
incorporated into the high level language oriented instruction set.

Procedure blocks may only be called, no instruction exists which will read or
write their contents (except for a highly privileged part of the backing store
software). The information contained within them is therefore hidden, unless it
is made available before the procedure was created or by the code of the
procedure.

Abstract data objects may be implemented using procedures to provide the
required abstract functions while hiding the underlying data from the user.
Some care must be taken to ensure the implementation does not inadvertently
pass the user a capability to access the hidden data. especially if exceptions
occur, but this is relatively straightforward to verify.

Note that unlike earlier capability computers which have many general purpose
registers, such as the Plessey PPZS [England?5J, each SMITE computer has
only one, though this is capable of containing an object of arbitrary size. This
register is used to pass parameters to procedures and return results or
exceptions. Therefore it is not possible to mistakenly return sensitive
capabilities in 'unused' registers.

For example, suppose makebuffer is a procedure which creates a simple
buffer. Its environment contains a pointer to the system supplied procedure for

2

making n-valued semaphores (the instruction set only supplies binary
semaphores). The code of make_buffer call this twice to create two new
semaphores, one to control filling the buffer and the other em-tyuig ;t. A
suitable buffer is then created, along with appropriate index variables For the
buffer.

In figure 3a, make buffer is shown to be a procedure that takes no parameters
and delivers a structure of two procedures. The first of these takes no
parameter and delivers an integer, while the second takes an integer and
6E:Iivers nothing.

make_buffer Void -) (Void-> Int x Int -> Void

Procedure to

Environment
of]l

make Semaphores

make buffer

make-buffer

Code of
make_bufferi

Fiq3a: Procedures bind together the code and non-local environment,
and hide them from the user,

Next two procedures are declared, these are for moving data into and out of
the buffer. The declarations actually consist of some executable code. This
creates the environment for the procedures and creates two closures by binding
this with the code for put and get. The environment is simply a data block
containing pointers to the buffer, buffer index variables and controlling
semaphores.

The result of the call of makebuffer is the two procedures, put and get.
These may be called to put data into the buffer, or take it out. However they
do not give arbitrary access to the underlying data structure of the buffer,
because they can only be called.

Note that with buffers implemented in this way, the operations put and get do
not take a parameter specifying which buffer to operate on. Instead this is
bound into them and for each buffer that has been created, different
procedures for put and get ere created. This is not inefficient because all
versions, including those used by other processes, are able to share the code,
since all software operates in one uniform address space.

i3

_ .-

full sema!

put1 - t, empty serna1

get I iCode for put Buffer 1

Code for 9et

put 111 f l sm2

2 1Fempty sema 2 l

get. 2- IN. _ " "-
9e t 2 -~eF2

F9B3b: The buffer to be manipulated is bound to the procedures.

4. Typed Objects

While information hiding is provided by procedures, users cannot, in general,
determine what kind of procedure they possess. This is because procedures
carry no distinguishing type information that can be interrogated by the caller.
Without such a mechanism, a procedure received as a parameter cannot be
passed sensitive data, in case it is not of the correct type and misuses that
data. This severely restricts the functionality of the abstract types that can
be implemented securely.

other
Read/Write Access data No ccess

Right Granted Right Denied

\\ Right restored 7
if key known

Fi94a: The right to access data in a keyed block can be denied. However
this right can be restored if the key, which is generally a
pointer, is known.

Typed objects can be provided by using Keyed Blocks. Pointers to a keyed block
have an access right associated with them. This is the right to access the data
in the block. Without this right no access is possible, not even read, though
there is an instruction which will grant the right and allow full read/write
access. However, this Open operation must be provided with the key to the
block, otherwise it will fail. The key is a single word value, which is stored in
the first word of the block.

4

If the key were a scalar value, the user could quickly try all 232 values and
gain access to the protected data. However the key may be a pointer and these
cannot be forged or guessed. The pointer will be kept hidden by the Type
Manager software, which will use it to create new data objects of the type and
to 9ain access to the underlying data of objects passed to it.

The keyed block mechanism allows type informaticn to be attached to an object
and hides the underlyin9 data from its users. The type is represented by a
pointer to some block. This pointer is used as the key for all keyed blocks
which represent objects of that type. Procedures wh.-h create the typed
objects and access their representation keep the key in their non local
environment and do not disclose it.

For example, consider an alternative form of the implementation for the simple
buffer described in section 3, in which a buffer is made a typed object. Four
procedures would be supplied, for creating new buffers, moving data to and
from a buffer and for deciding whether an object is a buffer. Note that the
latter procedure will be needed only if the prosram- language does not
provide type abstraction or cannot be trusted to enforce it properly.

make-buffer Void-> Buffer
put Buffer Int-> Void
9et Buffer -> Int
isbuffer Buffer-> Bool

'Procedure to make

make_buffer 1 1 semaphores

E environment

put Key for

type Buffer

environment

ge t

is Bbufuer?
ffuf ll sema

empty sema

B Buffer

buffers [full sema

x empty sema,

B~u ffer I

Fis4b: Keyed blocks hide the representation of a buff Er and attach
type information. Procedures hide the key to the type.

The procedures for manipulating buffers are created when the type manager is

S

brought into existence. Rt this time a key is made which will represent the type
'buffer'. This key is simply a capability, which is created by generatin9 a new
block of store, which is not distributed to any but the four buffer procedures.
In this example the block is not used to hold data and so will have zero size.

The procedures put, get and is_buffer all have the same environment, which is
simply a block containing the key (a pointer) that represents the type Buffer.
Procedure makebuffer also requires a pointer to the procedure for making
n-valued semaphores.

A call of make buffer generates space for the buffer and creates the
controlling semaphores. Then a keyed block is generated and pointers to these
are stored in it. The buffer type key is stored in the first word and a pointer
to the new keyed block, with the access right denied, is delivered as a result
of the call. No access to the underlying data that implements the buffer is
permitted using this pointer. The access right may be restored if the key can
be presented, but this is not given to the users of the type. Therefore users
cannot gain access to the underlying data structure of the buffer.

The procedure isbuffer takes a pointer as a parameter. It attempts to grant
the access right on the pointer, supplying the buffer key as a further operand
to the instruction. If this succeeds the procedure simply returns true. If the
instruction fails, either because the pointer did not refer to a keyed block or
the key was wrong, false is returned. Note that the pointer which has the
access right granted is not accessible to the caller.

The procedures put and get act similarly, first granting the access right on
the pointer to the buffer and then performing the appropriate operation on the
buffer. Note that, unlike the examole given in section three which used
procedures which had a buffer bound into them, the buffer to be manipulated
must explicitly be passed as a parameter.

If a subsystem expects to receive a pointer to a buffer as a parameter, it can
check that the pointer really does refer to a buffer using isbuffer. It can
then use the buffer, safe in the knowlege that it will obey the rules about
buffers. If the buffer was implemented using procedures, as in section 3, it
would not be possible to determine whether the parameter (a procedure) gives
access to a buffer.

The protection provided by keyed blocks is equivalent to seals [Redei174).
Hoever the implemertation in SMITE is quite straishtforward, since the type
Information is held in the object rather than in the capabilties (Qonters).
Therefore the pcinters are all of fixed length, occupying just one 32 bit word.

S. Mcdule Lcading

Programs on SMITE are constructed using a modular compilation system whijch can
allow mixed language working. However, programs are not 'lrnked' to form
executable images which are then copied into store and run. Instead a form of
linking loader is used which is much better suited to the use of capabilities. it
also has the advantage that out of date images cannot be run.

A module is essentially a procedure which creates some data structure and
delivers a capability to access it. A module may require the values created by
other modules, but each module in a program must only be loaded once. This is
achieved by passing a Loader to a module. The Loader is a procedure which,
given a module, returns the value it keeps. The Loader records the value kept
by each module it loads. If it is requested to load a module again, it Simply
returns the value associated with It.

9

A module must ensure that the parameter it is given is a proper Loader, and not
just some arbitrary procedure even if it appears to act in the same way. This is
because a program consisting of several modules may perform checks in one
module and perform sensistive operations in another, based on the result of the
check. By providing a special spoof loader, a user could construct a program
which incorporated a fake checking routine, which would allow illegitimate use of
the sensitive operation.

This could be prevented by typing the Loader using a keyed block. However,
since modules are invariably brought in from backing store, so must the
procedure for checkin9 the type. This would seriously slow up the system, so
special provision is made for the type Loader in the instruction set.

The ability to create a Loader is carefully controlled, whilst changing a Loader
into a procedure of type Module X 4 X is an instruction that is universally
available. In practice only the trusted type manager for loaders may produce
new loaders. When a module needs to access the data structure kept by
another, it first checks that the procedure it was handed as a parameter is a
true Loader. The instruction to do this fails if it is not, but otherwise delivers
the underlying procedure. This is called, passing the module to be 'loaded' as
a parameter. The result is a read-only pointer to the object kept by the
module.

A more detailed description of the SMITE modular compilation system, including
details of language specific modules, in given in [HarroldBB).

G. Modes

A frequently used form of abstract data type is where a copy of part of the
underlyin9 object is freely accessible. The implementation oF Mode objects
follows this pattern, in that the mainstore representation of a mode may be
read at any time, while the alias on backing store must be kept hidden to
prevent forgery.

At mode, which is the 19ol68 term for type, is treated as an object in the
TenlS algebraic abstract machine [Core&Foster8G], which is a generalisation of
the ideas developed during the Flex project. TenlS is effectively a strongly
typed language system whose types include the universal union of all types.
Mode objects are provided to implement this in such a way that the users cannot
fabricate their own illegal modes, yet modes may be examined.

Mode objects could be implemented using a procedure which delivers the
accessible part of the object while keeping the rest hidden, however they are
made a special case because they are often used. A special kind of block,
similar to the keyed block is provided. Here the access right gives full
read/write access, but if a pointer is denied the right it can still be used to
read all but the first two words of the block. The first word is the key for the
block and the second word is the protected data. This may be a pointer to
further protected data.

7. Revocation

Most capability systems provide a low level mechanism for revoking capabilities
once they have been distributed. The use of such mechanisms can lead to
complications, especially in parameter validation. This is because the
mechanisms provided revoke access to data blocks, which are at the lowest
level of abstraction. What is generally required is to revoke access to hi9hly
abstract objects, such as files and messages. By using a low level recovation
mechanism, the high level object becomes inconsistent, as parts of it are
removed, which causes obscure exceptions to be raised.

In SMITE revocation can be provided where it is needed, by building appropriate
checks in the procedures which access the underlying data of an object. This is
in contrast to the unwieldy low level mechanisms that have been proposed by
others [Redell&Fabry?4), [Gligor?9], [Corsiniet.al.84).

An example of revocation is found in classified files. Access to the underlying
file is only permitted if the user has the necessary clearances. Whenever
users attempt to gain a copy of the classified material in a file, a check is
made to ensure that they have sufficient clearances. Revocation can be
achieved by reducing a user's clearance or altering the file's classification or
distribution list.

8. Proces Context

Processes running in a system generally need access to generic resources,
such as "my terminal" and "my current directory", which are provided by the
operating system. In 5MITE capabilities are used to control access to such
resources, which are constructed as abstract data types. However, it is still
necessary for a program which is loaded from backing store to gain access to
its version of these capabilities.

The capabilities that refer to these generic resources are stored in the
context of each process. The context is an association between unique
identifiers and values. Each unique identifier represents one of the generic
resources. An instruction allows a orogram to find out the current value
attached to a particular identifier, and a special form of procedure call allows
the context to be changed and restored in a stack like manner.

The unique identifiers will normally be pointers, so that they cannot be forged,
which are kept hidden in much the same way as type keys. The capability for a
generic resource will be obtained by calling a procedure that hides the key.
This may be formeJ into a module so that it can be readily incorporated into
programs.•

When a process is launched, its inital context is set to that of the process
which launches it. The lifetimes of processes are independent, therefore care
must be taken when designing generic resources to ensure that they can safely
be accessed after the process leaves the scope that designated them.

For example a procedure call may establish a new window as the "current
window". When it exits the previous window will be restored to "current
Suppose a process was launched during the call and this remains active after
the window is restored. This process will have inherited the new window and can
access it even after it is supposed to be destroyed. Such disasterous results
can be avoided easily by incorporating a revocation switch in the window
description.

_ 8 _ _ _ _ _ _ _ _

9. Write Once Structured Backin9 Store

SMITE provides a capability based structured backing store, organised in a write
once fashion. Thus the backin9 store is a heap, able to store primitive objects
(blocks of various types) much like main store, except that they cannot be
overwritten. Procedures and an equivalent to keyed blocks may be stored,
providing abstract type extension facilities.

The backing store is implemented entirely in software, usin9 the abstract type
mechanisms for protection. Access to objects in the backing store is governed
by backing store capabilities, which are data objects constructed by the
software. These are implemented as keyed blocks which contain the disc
address and type information of the object on disc.

When a program stores data in the backing store it does not provide a
destination address. Instead the backing store software places the data at
some convenient free place and returns a backing store capability which can be
used to access the data in the future. A program can only bring an object into
main store if it posseses a capability for it. The result of doin9 this is a main
store capability to a copy of the object in main store. This capability has
read/write access revoked, so the copy cannot be altered. This facilitates
sharing of data brought in from disc.

The backin9 store software does not provide an operaticn for overwritin=
objects. However, special objects called references, which can be atomically
updated, are provided to support alterable objects such as directory
structures and updatable program modules.

The advantage of such a backing store is that maintainin9 consistency is
relatively simple. Directory structures can be built which cannot be damaged,
even if the event of power failure. Also, since a garbage collector is used to
recover inaccessible variables, complex structures can be implemented and
maintained without "danglin9 reference" problems arisin9.

The write once organisation has a particular advantage for secure systems.
Objects stored in the backing store are guaranteed to be unalterable, as Ionm
as they do not contain a reference. It is possible, usin9 the other security
mechanisms, to ensure that certain programs cannot use references. There ore
backin9 store objects produced by such a program cannot be used to
communicate with that program.

In other words, untrusted software can share access to objects in bazKns
store, and it is impossible for one to modify the object and thus send
information to the other. Therefore the system offers separation between
untrusted programs while having unrestricted sharing of backing store objects.
Conventional systems cannot offer such flexibility because they do not provide
a non overwriting file store.

Details of the implementation, including the on-the-fly garbage collection are
given in [Wiseman88].

9

10. Security Mechanisms

The provision of multi-level computer security presents three separate
problems: controlling access to classified information, preventing users bein9
fooled into underclassifying information and preventing software alterin9
access controls against the user's wishes. SMITE offers three solutions to
these three problems: reference monitors, high water marks and the trusted
path. A more detailed explanation is given in [Wseman86a&bI.

10. 1 Ref erence Monitors

Reference Monitors are the most visible security mechanism in SMITE as they are
responsible for controlling access to classified information. P reference
monitor is placed between each function that accesses classified information
and the users of that function. Its task is to check that the user is cleared to
access the information, record the details of the access for later auditing and
finally to perform the access.

Secur ity Access
Pol icy Rules

,i

Reference

User - Monitor - Object

Auditing
InformaL ion

FilO. 1: A reference monitor encapsulates a classified object.
It ensures that the users have the necessary
clearances to access the information it contains and
maintains auditing information.

The reference monitors are implemented as an abstract type whose underliyng
type is the original object. The interface provided is the same as that of the
underlyin9 object. That is the security checks are hidden from the user. Tins
can be implemented using either procedures or keyed blocks as appropriate.

10.2 High Water Marks

While reference monitors control access to classified information, they do not
prevent erroneous software from accessing data which the user did not wish to
be accessed. For example consider a user who is cleared to access Secret
information but is creating a document which is to be Unclassified. "Trojan
Horse" software may access some Secret information and incorporate this into
the document without the user realising. This would cause the user to distribute
the Secret information in a document marked Unclassified. In effect the "Trojan
Horse" has fooled the user into underclassifying information.

To prevent this from happening a system of High Water Marks is maintained for
objects created by untrusted software. That is, the system maintains the
classification of the most classified information that the object could
conceivably contain. If the user gives these objects a permanent

10

classification, a check s made to ensure that this dominates the object's hgh

water mark.

TRUSTED

. gh water mark
UNTRJSTED

Fi91.Z: Objects accessed by untrusted software all have the same
high water mark.

Maintainance of the high water marks is the responsibility of the reference
monitor functions. Whenever untrusted software accesses classified
information, the reference monitor ensures that the caller's hsgt water ma- is
increased accordingly.

10.3 Trusted Path

Some functions that the users of a system need tc perform alter the access
control information. That is they affect which users can access what
information. Functions in this category include giving new information its
classification, regrading existing information, altering access control lists or
distribution lists and changing users' clearances.

While a reference monitor checks whether the user is allowed to invoke such a
function, it cannot check that the software invok;ng it is doing so because the
user requested it or because it contains a "Trojan Horse". To exclude the
latter, these functions must only allow themselves to be invoked by the
Trusted Path. This is interface software which is guaranteed not to contain a
"Trojan Horse". It will at least comprise all software that controls the
screen, keyboard and mouse, along with menu and window software.

The use of the type abstraction facilities offered by the SMITE architecture
allows the trusted path to be implemented as a set of small independent
modules. This will allow code level proofs of correctness to be tackled, giving
the necessary high degree of assurance.

11. Summary

The microcoded hardware provides capability protection in the main memory of a
SMITE computer. Possession of a capability for an object entitles the holder to
access it, while it is impossible to access it without a capability. The objects in
memory are typed, so each type of object is accessed in different ways. In
particular procedures and keyed blocks are offered as mechanisms for
information hiding and for creating user defined abstract types.

These primitive protection mechanisms allow software to be wrtten to provide
flexible security mechanisms. Moreover, the fine granularity of protection

11

allows the different concerns of security to be split up, allowing correctness
to be established more easily, yet without loss of performance.

Acknowlegements

Thanks 9o to Michael Foster, Ian Currie and numerous others at RSRE who were
involved in the Flex project, for the basic research which is being used as the
foundation for SMITE. Also, special thanks are due to Phil Terry of TSL
Communications, who has contributed a great deal towards understanding
security issues within SMITE, and Peter Bottomley for commenting on earlier
drafts of this paper.

References

P.W.Core & J.M.Foster
TenlS: An Overview
RSRE Memo 3977, September 1986

P.Corsini, G.Frosini & L.Lopriore
Distributing and Revoking Access Authorizations on Abstract Objects:

A Capbility Approach
Software - Practice and Experience, Vol 14, Num 10, pp931. .943
October 1984

0. M. England
Capability Concept Mechanisms and Structure in System ZSO.
Rev. Fr. Autom. Inf. Rech. Oper. (France)

Vol 9, Sept 75, pp4?. .62

J.M.Foster, I.F.Currie & PW. Edwards
Flex: A Working Computer Based on Procedure Values.
RSRE Memo 380
Also in: Procs. Int. Workshop on High Level Language

Computer Architecture
Fort Lauderdale, Florida, December 1982

V. D. Gligor
Review and Revocation of Access Privileges Distributed through Capabilities
IEEE Trans Software Engineering, Vol SE-S, Num 6, ppSS. .586, Nov 1979

C. L. Harrold
The SMITE Modular Compilation System
to appear
1988

P. J.Landin
The Mechanical Evaluation of Expressions
Computer Journal, Vol 6, Num 4, pp308. .329, January 1964

R.M.Needham & R.D.H.Walker
The Cambridge CAP Computer and its Protection System.
Operating System Reviews
Vol 11, Num S, Nov 77, ppl..10

S.A.Rajunas, N.Hardy, A.C.Bomberger, W.S.Frantz and C.R.Landau
Security in KeyKos
Procs. IEEE Symposium on Security and Privacy
Oakland, California, April 1986

12

D. D.Redell
Naming and Protection in Extendible Operating Systems
MIT Project MAC Technical Report MAC-TR-140
November 1974

.D.,Redell & R.S.Fabry
Selective Revocation of Capabilities
procs. IRIA Workshop, pp 197..209
1974

P. Tyner
iAPX-432 General Purpose Data Processor: Architecture Reference Manual
Intel Corp. Jan 1981

S. R. Wiseman
A Secure Capability Computer System
Proceedings IEEE Symposium on Security and Privacy
Oakland, California, April 1988

S. R. Wiseman
A Capability Approach to Multi-Level Security
Proceedings IFIP/Sec '88
4th International Conference on Computer Security
Monte Carlo, Monaco, December 1986

S. R. Wiseman
The SMITE Object Oriented Backin9 Store
to appear
1988

13

DOCUm[N1 CONTROL SHEET

Overall security classification of sheet UNCLASSIFIED

.......

(As far as possible this sheet should contain only unclassified information. if it is necessary to enter

classified information, the box concerned must be marked to indicate the classification eg (R) (C) or (5)

1. D0-C Reference (if known) 2. Originator's Reference 3. Agency Reference 4. Report Security
MEMO 4117 1U/C Classification

5. Originator's Code (if 5. Originator (Corporate Author) Name and Location
778400 RSRE St Andrews Road, Malvern, Worcs. WR14 3PS

5a. Sponsoring Agency's 6a. Sponsoring Agency (Contract Authority) Name and Location

Code (if known)

7. Title

PROTECTION AND SECURITY MECHANISMS IN THE SMITE CAPABILITY COMPUTER

7a. Title in Foreign Language (in the case of translations)

7t. Presented at (for conference napers) Title, place and date of conference

8. Author 1 Surname, initials 9(a) Author 2 9(b) Authors 3.4... 10. Date P;. ref.
i4sa C) IWiseman S R -9I 4@1 14

11. Contract Number 12. Period 13. Project 14. Other Reference

15. Distribution statement

Descriptors (or keywords)

continue on separate piece of paper

Abtract
The SMITE system will support high assurance, yet flexible multi-level
secure applications. The SMITE multi-processor capability computer is
being developed, based on RSRE's Flex computer architecture, to provide
a suitable environment. This paper describes the protection mechanism
provided by the microcoded hardware and introduces the security
mechanisms built in software on top of these.

S80/48

'A TE

MED

