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l. Introduction .

In many problems of life testing, the test process may
require an unacceptably long time period for its completion
if the test i3 simply carried out under specified standard stress
conditions. In such prcblems, it 1s generally possible to run
the life test under stresses that are higher than the specified
standard in order to acce erate the process and shorten the

time to its completion. Thi3 process 1is called accelerated

life testing. A few of the classic articles in this area are

Epstein [1), Chernoff [2), and Bessler, Chernoff, and Marshall
33. A standard reference is Mann, Schafer, and Singpurwalla

[t1, Chapter 9.

In an accelerated life test it is assumed that the lifetime
7T of an item being tested is a random variatle with a distribution
function (a.f.) F(t|e) that depends on an unknown parameter
6 . Furthermore, it is assumed that the parameter ¢ is related
tc the stress s under which the test is carried out by & specifieg
function of the form o6 = y(s,a), where the unknown parameter
o determines the precise relationship betweern s and ¢.

Of central interest in the analysis of cata from accelerated
1ife tecsts is the estimation of the parameters & arnc a.
There &re also many interesting qQuestions relatec to the cdesigr
c{ these tests, sucn as (i) how many items tc put on test, (ii)
whether to replace items wher. they faili, (iii; how to chanze
the stress s as the tests progress, and (iv) when to stop

the test. Our main attention in this paper will be focussea

on question (ii11).




We will consider probdlems in which the stress s can take

only a fixed, finite number of values. A prodlem of this type

1s called accelerated life testing with step stress. In fact,
for simplicity, we will restrict ourselves to problems in which
S can take only two values. These values correspond to

(1) the standard environmental conditions under which an item
will be used in practice, and (1i) a higher level of stress

thet is fixed in advance and is the same for all items to be
tested. We will assume, however, that the time at which an

iter on test is taken out of the standard environment and put
ur.cer stress can be chosen by the experimenter subject to a
given cost structure. The develcpment in this paper follows
that given Iin [5], where these tests were called partially acceleratec
life tests. All of the results that are described in this paper
without prcof, are derived in [5) under somewhat more general

cerditions.

Some other articles that pertain to accelerated life testing

witr step stress are [6] and [7], although these articles dc

not follow tha Bayesian approach to be utilized here. A valust.ie i
uwrvey of accelerated life testing problems from the Bayesiar i
perspective is given by Mazzuchi and Singpurwalla [8]. |
wWe shall denote tre lifetime of an item tested under the
star.cerd conditions by the random variable T, and we shall
le: F{t|¢) dencte the d.f. of T. The value of the parameter
* it unknow:. ana 1s to be estimated. Suppose that 1f the itern

hes not failec by some specified time x, then it is switched
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to the higher level of stress and the test is continued until
the item fails. We assume that the effect of this switch 18
to multiply the remaining lifetime of the item by some unknown
factor a > 0. Since the effect of switching to the higher
stress lev:l will typically be to shorten the life of the test
item, o Wwill usually be less than 1. However, it 1s not necessary
for us to impose this restriction on the models that we will
be using here.
To describe the model for this accelerated life test, we
shall let Y denote the total lifetime of a test item. Thus,

Y is defined by the relation

T for T < x,

Y= (1.1)
x + a(T=x) for T > x.

Since switching to the higher stress level car. be regarded as
tampering with the ordinary life test, x 1is called the tampering
point, and o 15 called the tampering coefficient. This model

anc an a2pplication were originally introduced by Goel [9].
.we shall assume that an experimenter starts with a sample
c{ n items anc subjects them to test in the standard environment.
If iterr 1 has not failed by some prespecifiec time P thier:
it is put under the higher stress and the test is contlinuaa.
If Ti would be the lifetime of item 1 irn the standard environment,

then the totel lifetime Yi of item 1 wunder tris step-stress




1ife test im given by (1.1). 1t would be postibdle to consider
problems in which the tampering point X, for item 1 1s chosen
sequentially, after the experimenter has observed whether or

not some of the other items have previously failed, but we shall
not do 80 in this paper.

Thus, a sample of n observations Yl.....r is obtained

n
on the random variable Y corresponding to preassigned tampering

PCINtS  Xy,... X, If the observed value ¥y of Y, 18 less
than the corresponding tampering point Xy then Yi is called

ar untampered observation. Otherwise, Yi is called a tampered

cbservation. In other words, an untampered ouservation comes

{rorm a test item that failed under the standard conditions,
and a tampered observation comes {rom a test item that failed
after it had been switched to the higher-stress level. The statistical
problems involves in using the model (1.1) are (i) the estimation
¢cf ¢ ané o for given values of the tampering points XyseserXy
anc (ii) the choice »f an optimal design for this estimation,
i.¢., the selectior of the best tampering points.
Tnroughout the paper we shall assume that the random variable

T nhas an exponential distritution with density
f(tle) = ee €% for t > 0 and ¢ > 0. (i.2)

However, the results on optimal design to be presented here

wiil be valid for a somewhat broader class cf distributions.
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In Section 2 we consider the Sayesian decision-theoretic
approach to the estimation of a when the value of 6 13 known.
The results developed in that section are then used in Section
3 to study estimation problems in which both ¢ and a are
unknown. ln these sections it is assumed that the tampering
Points X ,...,X, for the n {items to be put on test are f{ixed.
In Section 4, the optimal choice of the values of XiseooaXy
is presented for various types of observational costs. 1n particular,
it is shown that for many cost functions, the optimal design
uses only the tampering points x = 0 and x = «, and the number

of observations to be taken at each of these values is explicitly

gerived.

2. Bayes estimation

In this section, we shall begin our study of the estimatior
problem by assuming that the ‘parameter 6 has a known value,
say 6= 60. and that we want to estimate the unknown parameter a.
We will then use these results in the next section for the case
in which & 1is unknown.

It is convenient to work with the parameter E = l/a, rather
than directly with the parameter o 1itself, anc we shall assume
that the prior distribution of & is a gamma distribution with

parameters r anc séo. for which the density is

(s(-.G)r
r(r)

-
5!‘ -

g(e) = exp (‘séOE) (e.37




for 8 > 0. These distributions fora a conjugate family of

prior distributions in this problem (see {10]), Chapter 9).

In fact, 1f M denotes the number of tampered observations

among Y,,...,Y,, and A denotes the set of indices 1c¢{l,...,n)

for which Y: is a tampered cobservation, then it can be shown

([10), p. 166) that the posterior distribution of ¢ given

the values of XysseeaXy and Yl""'yn ia again a gamma distributicer

with parameters ™ and 8,00 where

ry=r+Mands =8+ I (Y =x,). (2.2)
icA

If there are no tampered observations in the sample, then we
ottain no information about the value of a and the posterior
distribution of a is the samc as the prior.

Since £ 1is a scale parameter, it is reasonable to consider
less functions for its estimation that are invariant under changes
ir the units of measurement of lifetimes. The following two

lcss functions have this property:

s a2 ]
L(he - EE . S -1 (z.3)
anc
rPPRY 1
Ly(k,e) = - w2 - 1P (2.4)
E




Hérc generally, we might consider & loss function of the foram
L(d,8) = 3 st(2-0)? (2.5)

for some appropriite choice of the values of k and ¢t. PFor
the sake of being explicit we will restrict consideration 1irn
this paper to the loss function L1 given by (2.3). The loss
function L, {for the estinagion of 8 corresponds to the loss
function L, for the estimation of a = 1/8.

" It can be shown that if r > 2 1in the prior distribution
of g, then the Bayes estimator of § with respect to the loss
function L1 will be

r.=2
PO |

. (2.6)
8150

[Nore generally, § as given by (2.6) will be the Beyes estimator

whenever the data are such that r, = r + N > 2] Furthermore,

for giver. tampering points xl,....xn..it can be shown that

the overall Bayes risk of this estimator, calculated with respect

to the joint marginal or predictive distribution of the observations

Yl,...,Yn is

. 3 . 1
E({ — = E ( . 2.7
rl-l ) r+M=-1 ) ( )

The expectation in (2.7) is calculated with respect to the marginal

- ———— .~ e s e B m e B An AN SafmAbiu A o AnRa S ek Bw e in]



distridution of N, which can be found as follows:
Let random variables ‘1”""n be defined as

1 Af 4¢aA,

[ 4 - (2.3)
1 0 4if 1cAS,

where AS 1is the set of indices 1c{l,...,n} for which the

observation Yi is not tampered. Then ‘1"""n are independernt:

given 60. ard

Pr(c1 = 1) = Pr(T > xileo) = exp (-Ooxi). (2.9)

Sirce

L 2 ¢ (2.10)
i=]

it follows that the distribution of X is that of the sur of
independent Bernoulli random variatles, each with its own probability
of success as giver by (2.9). In the next sectior., when the
vaiue of € is unknown, we will have to integrazte this distrituticr
over the prior distribution of ¢ ir order to obttain the marginal
digtribacior of K.

,.___Estimation vxith both parameters unknowr

Suppose now that both of the parameters e ang ¢ are
ur.nown. In this situation, a conjugate family of joint prior

disiributions for € and & can be specified as follows:

A A2 fnd A BA LA BARE RERARS BAES RSASRARAWNER M EWISEIAN M WX AODIPMI 50 AT W




The conditional prior distridbution of g, given 9§, is a gamma
distribution with parameters r &nd s8¢ , and the marginal
prior distribution of & is a gamma distribution with parameters -
Ty and 8g-
Under t.ese conditions it can be shown that the joint posterior
distribution of ¢ and ¢ will have this same {form and can
be snecified as follows: The conditional poaterior distribution
of g, given ¢, is a gamma distribution with parameters r
and slb. where r and 8, are given by (2.2), and the posterior 5
distribution of ¢ 13 a gamma distribution with parameters
r, and 5,5, where r, and S, are defiaed by
+

Ty ®Tpthn - M and S, * s, ¢ Y. . (3.1)

X i

i
icA
1{ &l1 the otservations are untampered, ther. K = 0, 8, = S,

n
ans s, * 8 + I Yi‘ 1f all the observations are tamperec,

i=] n n .,
then N = n, s, =5+ 1}:1(‘11 - x4), and s, = s, ¢ 15 Xy ¢
s 1 !

it thould be noted that this posterior distribution does

net aepenc orn the values of the tampering points corresponding

£

:

t¢ the untamperesd observations. Hence, it does nct depens or X
the method by which these points were chosen. Furthermore, ;
l2

Y is interesting toc note that the contribution of each tampered !

chservation YJ to the posterior distribution cf! ¢ is trne same as
tnét of an observation censorec at x1 irn an ordinary life

tes: tasec on the exponential distributiorn. !

A SR G SR St L. . AT . et o S A SEE xS L AMMA WD LM LAEE LSS LAWE 1O LR AIRR EEA " K UIT LT g eey e LY Y1V T
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Now consider the estimation of 0 4n this prodlem: The
same loss functions (2.3), (2.4), and (2.5) that were discussed
for the estimation of 8 will also be appropriate for the estimation
of 6. In particular, we shall again use the loss functiocn
L, 8given by (2.3), so

L, (8,0) = (£ -1)%. (3.2)

o

it {ollows that if To 2 2 1in the prior distribution of ¢,

ther, the Bayes estimator will be

-

ch

§ =
2

’ (3.3’

where r, and s, are given by (3.1). Furthermore, the Bayes

risv of this estimator will be

E(—3-) = E(—3—0
r.=i rc*n-h-l

\s)

.
~

-

» {

where the expectation irn (3.4 if calculated wisr respect to

tre nerginal (precictive) distritution of K.

Next, we turr. to the estimation of ¢ ir this protlern
where ¢ 1s unknown. It can be shown that with respect tec
tnhe s8&re loss function Ll as before, as given ty (2.2), the

Béyes estimator now becones

e o et - A i LR i A M A ¢ AR Vo e e
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r1~2 s2

b (3.5)

It is interesting to note that this estimator is the same as
the estimator § given in (2.6) when the value of #& was known,
except tat the known value ¢ = eo is now replaced in that

expression by the estimate’

r2*l | B %) (3.6)

S, E'(o)

where the symbol E' 1in (3.6) indicates that the expectation
is to be calculated with respect tc the posterior distribution
of e.

It can be shown that the Bayes risk of the estimator

given by (3.5) is

rlfig—l

E r+ro+n-1
‘(rl-l)(r2+1) (r*H-l)(r0+n—M+l)

ks before, the expectation in (3.7) is to be calculated wit
respect to the marginal distribution of M.

Finally, suppose that we are interestec in estimzting both
E anc ¢ 1in this probl::, anéd that the loss function is of

the form

L(B,6;38,6) = ALy (B, 6) + 5L (6,e), (3.8)
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where ‘1 and *2 are given positive constants. Then the Bayes
estimators B and § are again as given in (3.5) and (3.3),
and the overall Bayes risk p 1s simply

p = Al[Risk given by (3.7)] + Az[Risk given by (3.4)]. (3.9)

L. Optimal design

‘Suppose now that the experimenter has to pay a cost for
each iter tested. In general, this cust will depend on the
tampering point x and on whether or not the observation is
actually tampereag. Under these qonditions, the experimenter
desires to choose an optimal design for the estimation of the
unknown parameters g and ¢ by choosing the n tampering
points Xy,...,X, 80 that the total risk (the sum of the Bayes
risi due tc estimation error and the expected cost of using
the tazmpering points) is a minimun.

ilr many problems of optimal experimental design, it is

Gifficult to obtain a closei-form solution to this minimizatiorn
protler uniless a simple closed-form expression for the Bayes
risk o given by (3.9) is available. In our protlem, such

ar. expression is not available because it is difficult to determine

the expectations in (3.4) and (3.7) as explicit functions cf . -
XypeoasXy - in this section, we will show that despite this

éifficulty, we can obtain simple, explicit optimel designs for

various types of tampering costs. The basic property that we
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shall use is that the Bayes risk p 18 of the form
o = E(n(M)] , (4.1)

where h(M) 1is an explicit, known function of M. Indeed,

it follows from (3.9) that

1 Ay (rtry+n-1)
h(K) = + . 4.2
() rotn=M+l r+m-1 ‘2 (.2)

Suppose first, as a simple example, that the cost of an
otservation depends only on whether or not it turns out to be
tampered, and not on the value of the tampering point. Suppose
that the cost of each untampered observation is v, > 0 and
the cost of each tampered observation is v, 2 0. Then for

&ry tampering points XqseoosXp, the cost of the n observations

will be

C(b'l) = (n‘f‘:)vl + M\)z = n\)l + (\)2-\31)..': - (L.

L

Thus, the total risk R 1s given by

R = E[h(F) + c(NM)] . (L.L)

In (4.4) we have represented FE as the expectation cf

ar. explicitly known function of M. Therefore, among all possitle
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distributions of M, R will be minimized when the distribdbution

of M assigns probability 1 to the integer LI that actually
minimizes the function h(M) + c(M); i.e.,

h(my) + c(my) = 0,1?%?.,n [(h(1) + ¢(1)] . (4.5)
Can this degenerate distribution of M actually be obtained
from some particular choice of the tampering points xl,...,xn?
The answer is yes: We choose my, tampering points at x = 0,
S0 that these‘observations are tampered immediately, and the
remaining n - my tampering points at x = «, 8o that these
observations are never tampered. Thus, under the optimal design
the experimenter never leaves to chance whether or not an observatiorn
will be tampered.

The cost structure we have Jjust consideréd is random in
the sense that the cost of an observation is not fixed in advance
but depends on whether or not the observation turns cut to be
tampered. We shall now assume that the cost c(x) of each observatior

is fixed in advance and depends only on the tampering point

. For the orptimal design, we need to choose the tampering

pcinte XyseoesX, to minimize

- ]

(L.€)
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For any given tampering point x, let
p(x) = E[Pr(T > x|8)] = E(eX®) , (4.7)

where the expectation is evaluated with respect to the prior
distribgtion'of 6. In other words, p(;) is the prior probability
that an observation will be tampered when the tampering point
x 1s used. It follows that E(M) = ? p(xi).

Now suppose that the cost functiézl c(x) has the special

form
c(x) = a + bp(x) . (4.8)

Then R, as given by (4.6), reduces .
R = E[N(K) + na + bX) . ' (4.9

It folluws that the optimal design in this protlern will be the

same as that based on the risk function in the preceding exanrle

defined by (4.3) and (L.4), with a = vi and t = VTV -

4

In both the first example that we presented ir this sectior,

ir. which the cost of an observation was random, and in the second
example, in which the cost ¢f{ an observation was {ixed, the
optimal design was found to use only the two tarmpering peoints

x =0 and x ® w,

In fact, as we will now explain, there ic
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& wide class of cost functions c¢(x) for which the optimal design
has this property.

For any prior distribution of © on the parameter space
0 <o <eo, the function p(x) defined by (4.7) will be a strictly
decreasing function of x for x > 0. Hence, any cost function

c(x) can be expressed in the form

c(x) = c*(p(x)], (4.10)

where c%(p) 1is defined for 0 < p < 1 and has the interpretatior
thet it is the cost of choosing a tampering point x for which
the probability that the resulting observation will de tampered
is p. Suppose now that the cost function c¢(x) yields a function

c®(p) satisfying the following condition:
c*(p) > pc*{l) + (1-p)c®(C) for 0 < p <1 . (4.11)

Tner. it can be shown that the total risk is mirimized by a design
thé: uses only the tampering points x = 0 ané x = «, It is

& ccrollary of this result thai if c%(p) 1= a concave functicr
or. the interval C i P ﬁ 1, ther there it an optimal desizr

using orly the points x = 0 and x = «.

In conclusion, the specizl nature of the particular examples

presented in tris section should be emphasized. They are specizl

beczuse in each case the optimal design can be determined simply

e - —— porg e Ny T T Ty T w Ry vy gy Tw g
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frou the function h(M), without any further consideration of
the predictive distribution of M. PFor more general cost functions,
this avenue of solution will not be open, and the optimal designs

- will involve tampering points x with 0 € x ¢ =,

i el ARl il YY1 o e v ot N
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