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Summary

The objective of the research was to provide theoretical and
experimental backing for three concepts that will facilitate the
design of structures capable of arresting cracks. The first
concept is that the conventional static toughness measures, JIc or
the JR curve, are bona fide measures of the fracture arrest
capability of tough ductile steels. The second is that the
J-values represent the crack driving force when a crack arrests in
a tough material, provided the bulk of the propagation just prior
to arrest occurs in a relatively brittle material.

The work includes:

(1) Verification of J-integral evaluation of arrest properties:
(a) Analysis of the crack velocity dependence of toughness for
the fibrous mode of crack extension.
(b) A new test method for studying fast fracture and arrest in
tough steels.
(c) Measurements of fast fracture and crack arrest.
(d) Fractographic studies.

(2) Application of J-resistance curve concept to crack arrest.

(a) Development of a finite element model for analysis of a
rapidly loaded stationary crack of a compact specimen of
a tough, rate dependent steel.

(b) Development of a general method for quantifying temperature
and rate-sensitive constitutive relations for steel.

(c) Development of crack extension capability using."local
control™ in the finite element program.

(d) Finite element modeling of rapid crack extension in ductile
viscoplastic materials.
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Proceedings of US-Japan Cooperative Seminar
“Fracture Tolerance Evaluation”
East-West Center. Honolulu, December 711, 1981

DEFINITION OF CRACK ARREST PERFORMANCE OF TOUGH ALLOYS

V. Dantam and G.T. Hahn
Mechanical and Materials Engineering,
Vanderbilt University, Nashville, TN

1. Introduction

Tough alloys are inserted into structures to arrest unstable
fractures but the performance of such materials in terms of the size of
cracks that will be stopped at different stress levels 1is not well
defined. The conventional wedge-loaded compact specimen crack arrest
test is difficu}},to perform on tough materials for which 0.25m}
< KIa/oo < 0.5 /2, The test calls for large stress intensity values at
‘the onset of crack{Ts, i.e. K1 > 2Ky, ang prohibitive specimen
size requirements, .e., W > B(Kla/o,.)* > lm. For this reason,
the possibility of evaluating Kj,-—the S-equivalent of K1, expressed in
stress intensity units—-without recourse to a crack arrest test deserves
attention. The basis for this idea is: (1) the fact that tough alloys
normally display flat fibrous fractures with shear lips or the (fibrous)
full shear mode, and (2) evidence that the resistance to penetration by
a fibrous fracture normally increases continuously with crack velocity
(see Figure 1). In this case, Ky, (the minimum of the Kip-velocity
curve) is found at zero velocity (see Figure lb) and corresponds with Kjc.

Clesenge frestore [axtite troccars
“ID o'
“ich / X
\_-‘ﬂ. IC K'é Kl.
Velocity Velocity

Figure 1. Schematic representation of the dependence of the fast fracture
toughness (Kip) on crack velocity: (a) cleavage fracture, and
(b) fibrous (ductile) fracture.

This paper briefly summarizes the evidence that the fibrous fracture
resistance increases with crack velocity. It offers two "working”
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definitions for Kj,; for tough alloys based on the Jjc- and Jg ( Aa =l.50mm)-
values obtained with conventional slow loading. Finally, it describes an
experimental approach utilizing deep side grooves and preliminary results

for a 7075-T651 Aluminum plate. :jg
4,

'5;

2. Previous Work '
2.1 Experimental Measurements ﬁ

Pt

Evidence that the resistance to fibrous fracture displays a %
positive crack velocity dependence is reviewed in Reference 2 and is fg
drawn from a number of sources: K'Y
*x

(1) CVN-energy values for the fibrous mode (on the ductile shelf) for ﬁ
ABS-C, A302B, HY-80, A 517F, HY-130 and a 1ONiCr-Mo-Co steel are higher @
for standard impact rates of loading than for slow bending. b

(11) Kjc-values for the fibrous mode of crack extension in steels and

high rates of loading exceed the values obtained with conventional slow X
rates of loading. The only exception is the results of Klepaczko ™
for PA6 and DTD 502A aluminum which reveal a 40% decrease in Kic with {5
increasing loading rate in the range 102 < X < 10% MPam!/2s5-1, M

)
(iii) Kyz-values for relatively high strength AISI 4140 and 4340 steel i
on the ductile shelf fall close to or slightly above the corresponding )y

KIC-values.

(iv) Actual measurements of Kjp, the resistance to fast fracture, for &

relatively high strength steels all show an increase in Kjp with crack 'i

velocity for the fibrous mode. F

N v

(v) The J-resistance curve of A533 B on the ductile shelf for high e:

rates of loading that produce a crack velocity of V & 0.25ms™ l 4 $

: elevated by 210KJm~2 (1200 1bin~ ) relative to conventional J-measurements W

< (V~10"3 ms~l), L3
¥ N
o 2.2 Theoretical Calculations o

* Freund and Douglas(5»6) have estimated the crack velocity dependence !

' of the ductile (fibrous) toughness on the basis of dynamic, elastic plastic, W)
Mode II1 (antiplane shear analysis) which predicts a plastic zone a
contraction and steeper strain gradients directly in front of the crack '
with increasing crack velocities above V/Cg > 0.2 (Cg is the shear wave N
velocity). The present authors (2) have incorporated this result in a :
simplified model of the Mode I plastic strain gradient in an effort to :‘
evaluate: ~3

N
* (1) The plastic's strain rates generated by a fast propagating crack

- v

PPER ¥ " {d O » » P M - -~
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and the resulting elevation gf the yield stress, - N
(11) The adiabatic heating(7 and corresponding reduction in the stress & O

field intensity, and 'fﬁ .
(1i1) The increase in applied stress intensity (fracture toughness) A

;éi required to offset the net reduction of the size of the "process zone"”. ;; ¢
¥ - g
£ Figure 2 illustrates that the strain gradient of the model -- a stationary 8. ﬂ
g crack —— is similar to the near tip gradient accompanying steady state é . G
| crack extension proposed by Hermann and Rice. 8 Figure 3 illustrates .
substantial increases of Kip with crack velocity calculated for fibrous : '.
mode fracture in a number of materials. The calculations are based on = g
assumed critical plastic zone strain - distance values which are independent e W

of crack velocity. However, this assumption may not be valid when the E
number of voids nucleated ahead of the advancing crack tip is sensitive to B
the peak normal stress and increases with velocity (or loading rate) as a

. result of the strain rate induced elevation of the yield stress. This j;, *
5 would have the effect of reducing the critical strain-distance value and ¥ ;}
a the toughness at higher velocities (and loading rates) along the lines o 8
¢ reported by Klepaczko. 3,4) Consequently, the calculations in Figure -5 j ?
’ 3 need the support of the fractographic observations that confirm that the ks :¥
3 dimple population does not increase excessively with crack velocity. .Jﬁ ii
< E;V vetesity, a/e - "
§ 5 N
i 3 st
‘ : 3 i
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Figure 2. Strain gradient in Figure 3. Calculate variation of i :
advance of crack (p is extent Kip/Kc with crack velocity. g S'
of plastic zone). D
; A
f 2
3. General Approach ; %
] g
" N
In view of the foregoing, the value of Ky, for fibrous fracture o :
can be equated with Kjc or Kjc (the stress intensity equivalent of Jjc) B o
or more correctly, with Kjp, the stress intensity equivalent of the point Py - ':
on the J-resistance curve coresponding with crack instability. For tough if., e,
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materials the J-resistance curve itself comes closest to a geometry indepen-
dent material property that reflects the crack penetration resistance.
However, two points on the J-resistance curve, expressed as stress intensity
parameters, can serve as convenient crack arrest design parameters:

Kya (1) = Ky = (U E/(1-v2)]1/2 (1)

Ky (2) = Kyg= [Jg E/(1-v®)]1/2 (2)
where Jg corresponds with a Aa = 1.50mm offset from the blunting

line, for a specimen with 10% to 20% deep side grooves. The quantity
Kja(l) is an appropriate measure of arrest toughness for relatively
short cracks, i.e., a < 100mm, stopping near a free surface where large
values of dJ/da are encountered. The quantity Kj,(2) is appropriate for
the arrest of long cracks, i.e., a > 500mm, remote from a free surface,
conditions for which unstable tearing* are not likely to be met in the
first Aa = 1.50mm of penetration. The Aa = 1.50mm offset 1s selected,
because this Jg-value is evaluated as part of the ASTM (tentative)
standard Jic-determination and, because the reliability of Jr-values

for larger crack extensions is currently open to question. Values of

Kja (1) and Kj,(2) for a number of structural alloys based on measure-
ments by the authors, Gudas and Co-workers(9), and Joyce and Hanson(loall)
and estimates of the crack arrest capabilities are summarized in Table l.

4 Experimental Verification

Work is in progress to test the ideas introduced in the preceeding
sections, specifically to:
(1) Devise techniques for producing fast, unstable fracture in tough
arrester grade materials,
(i1) Measure the fibrous mode Kjp-velocity curve,
(i11) Examine fractographs for changes in the fracture appearance with
crack velocity and
(1v) Test the usefulness of Kj,(1) and Kj,(2) as structural design
parameters.

As a first step, the possibility of employing deep face grooves to

reduce the stored elastic energy requirement for fast fracture has

been explored. Conventional J- curve measurements have been performed

on 7075-Aluminum in different heat treated conditions and on HY-130

steel, with 45° face grooves occupying 0%, 25% and 80% of the cross section.
The unloading compliance was used to evaluate the effective crack length,
and the J-values were corrected for face-groove depth: J = J(measured)
(B/By)**. Some of the results of this study are summarized in Figure 4

* dJ/da > dJgr/da
** B {s the ungrooved plate thickness and By, the net thickness after
grooving.
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TABLE 1. CRACK ARREST TOUGHNESS YALUES FOR SELECTED STEELS FOR SERVICE TEMPERATURES CORRESPONDING TO THE UPPER SMELF

MATERIAL  TESTTEW, C o A CVN,0  ESTIMATED K;,, WPa al/2 CRACK ARREST REFERENCE
Kga (1) Kjal2)  CAPABILITY,Zs,mw*

HY-1%0 r 937 uz, 16 182 a 155 ’

WY-130 2s°c %02 ()] 169 10

w-1%0 rT 082 152 235 365 00 ?

Y-80 ar 558 180 259 550 ’

HY-80 /Y 616 110 174 .n- 1 }

A533-3(02) 149 a3 176 207 329 1620 ’, 12 :

AS33-8(03) 149 w1 » 202 n 1190 ’

AS16-670 109 303 137 180 259 1860 ’ %

~ o4

]
(]

7075 A1 " 20 - 7 o 238 Present Study 0
[

7075-A1 Kt 552 .- 3 56 % Present Study e

*Length of a centrally Yocated creck 28 that can be stopped dy long, nominally_elastic arresters, ¢ = 0.5¢
(o, is the yield stress), located on efther side of the crack: 23 » 2/-[(\,.*2,/‘115. ! °

which compares the Kjr/Kjr(25% grooved)-ratios obtained at different
relative toughness levels. The results show that side grooves

occupying up to 80X of the cross section do not alter either the Jjc- or
Jp-values substantially. It appears that the use of deep face grooves to
reduce stored energy requirements for a fast fracture can be justified.

The effects of face grooves on fibrous mode crack arrest measurements
are being studied. So far, run—-arrest events have been successfully
produced in 25mm-thick, 150mm by 150mm compact specimens of 7075-T651
with blunt, 2mmradius starting slots. The relatively low toY’Bness-to-
yleld ratio of this heat treated condition: K;o/ o, = 0.07 m permits
an LEFM interpretation of the arrest event and the evaluation of Ki,.
Results are summarized in Table 2 and show little influence of side
groove depth. In addition, the results seem to be consistant with the
proposed features of fibrous mode crack arrest:

(1) The Kyy-values are close to and somewhat larger than KJa(Z),
(11) The K[p-values (the average values during run-arrest-event)
are larger than Kjp reflecting a rising Kyp-crack velocity curve.

Propagation and arrest in the 7075-T651 test specimens (see Figure 5)
is complicated by the relatively weak grain boundaries parallel to

(O
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Figure 4. Effect of face grooves
on Kjg (Aa=1.50mm) values ob-
tained from stable crack growth
measurements.

Figure 5. Appearance of fractured
7075-T651 aluminum, compact crack
arrest test specimens.

Figure 6. Appearance of fracture surfaces 7075-T651 Aluminum produced

by (a): slow stable crack extension in a conventional J-test and (b)
fast fracture in a compact crack arrest test.
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TABLE 2. RESULTS OF STABLE CRACK SRONTH AND CRACK ARREST MEASUREMENTS IN 7075-Tes1(®)
COMPACT SPECIMENS MI1TH 0%, 253 AND 803 FACE GROOVES. SS1TET ALmiNm

STABLE GROWTH CRACK ARREST

FACE ?loovt“” KagMPe w172 ky0.pa m1/2 ko WPa w1/2 ne, wm Ky, Wa W1/2 By e w1/20C)

KJal2)

0 38 50 139 58 56 88
0 38 50 118 53 54 79
25 ¥ 49 139 51 64 94
25 39 49 139 52 L4 89
25 39 9 174 >88 <84 <121
80 40 - 118 56 60 83

(a) 25mm-thick, 7075-T651 plate: o, =552 MPa, HRB = 91; with cracks extending i ;o the
LT-direction.

(b) Percent of cross section removed by face grooves.
(C) xxo s [KQ . Kl‘]llz

the rolling plane. Tensile stresses in the short transverse direction
initiate cracks in these boundaries (delaminations) at the root of the
face grooves and these permit the fracture path to deviate from the
specimen symmetry plane. In addition, the high speed fracture surfaces
become finclined to the tensile axis. Fractographs of these surfaces
display a step-like appearance (Figure 6a and 6b) with the vertical
segments of the steps corresponding with the delamination of the weak
boundaries. Consequently, the fractographs contain evidence of changes
in the details of the fibrous mode mechanism of 7075-T651 aluminum

that could reduce the toughness values for high crack velocities in
Figure 3.
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Introduction

study  of elasto-plastic

R. Hoff’

L. M. Santi?
G. E. Johnson
C. A. Rubin

G. T. Hahn

Mechanical and Materials Engineening.
Vanderbilt University.

Nashville. TN 37235

The power stress-strain law is frequently used in the
mathematical analysis of plasticity problems since it is a LA
reasonable description of the behavior of many materials
beyond first yield. One of the most common applications of ‘ W st eN
the power-law is in elastic-plastic fracture mechanics since the
siresses and strains at the tip of a stationary crack were 4
determined by Hutchinson {1), and Rice and Rosengren (2] on
the basis of a power-law material.
The finite element method (FEM) is widely applied in the
fracture mechanics. Whenever
possible, the user should code the actual exact analyvtic
representation of the constitutive relation into the FEM code
as a part of a matenial library. Nevertheless, there may be
occasions when this is impossible or impractical, notably
when certain commercial FEM software is used. A common
approach when this oceurs is to approximate the stress-strain
law with a series of discrete line segments. Until now, how 10
perform the discretization has been largely a matter ot art and
experience. Many strategies offer plausible solutions. Ex-
perience suggests that the greatest success can be obtained by
using more segments on the portion of the curve with greatest
curvature. In this note we suggest an cbjective criterion for ¢
the discretization based on the premise that it is desirable to
have as few segments as possible without exceeding some
predetermined bound on the error.
In order 10 accurately describe a smooth curve such as the . ) ) ) _

power stress-strain law, a large number of line segments js  particular value of strain. This note des;rlbgs a technique
tvpically required. However, a large number of line segments whereb)‘_ the power-law stress-strain curve is dn;crenzed using
in the discretized stress-strain curve is computationally un- the minimum number of line segments possible so that a
desirable since this increases the CPU time required to sort  predetermined error criterion is not violated. Results are
and interpolate in order 1o find the siress corresponding to a  presented for a large range of values of the strain hardening

IPresent Address: Department of Mechanical Engineering, Univeraity of
Waterloo, Waterloo, Onianie, Canada N2L 3G
“Present Address: Department of Mechamical Engineering. Memphis State Problem Formulation
Unnersity, Memphie, TN 28152 X
Contributed by the Matenals Division for publicauor in the JoURsnal ¢+ Consider a power-law stress-strain curve of the form
ENGINEERING MaTERIALG aASND TECHNOLOGY
Matenials Divicion March 29, 1984

Manusonipt recened byothe

Optimal Discretization of Power
Stress-Strain Law Curves

A criterion for optimal discretization of power stress-sirain law curves is proposed.
The criterion is based on the assumption that it is desirable to have the fewes!
possible line segments without exceeding some predetermined bound on the error.
The formulation produces a system of simultaneous nonlinear equations which are
solved using an iterative search technique. Solutions are presented in both graphicu!
and tabular form for a wide range of strain hardening exponents and acceptable
error bounds. It is shown that stress and energy density can be accurately and ef-
Siciently modeled using the optimal discretization.
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exponent, n, for cases where the stresses are held to within
+0.1, £0.50r = 1.0 percent of the exact value.
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e/eg=(0/0y)" o>ap,n>1 (1b)

Let e and s be normalized quantities so that e=¢/¢, and
s=a/0,. Equations (1) can then be rewritten

e=s s<1 (2a)

(2b)

These relations can be more conveniently addressed if we
define N=1/nso that

s=e

e=s" s>1

e<l (3a)
e>1, 0<N=]. 3b)

If the allowable relative error is denoted by 4, the line
segments which approximate equation (3b), s*, must be
within the limits

s=e’

(1 -8)s=s"=<(l+3d)s. 4)

Clearly the longest line segment which will be bounded by
equation (4), as shown in Fig. 1, will intersect the (1 +d)s
curve at points /, and i + 1, and be tangent to the (1 — 8)s curve
at some intermediate point i+ £. i.e.,

at point /: sr=(1+ e (5a)
atpointi+1: s*,=(1+de", (5b)
atpointi+§: si,;=(1-8e; (5¢)
=(1-8)[(1 - §)e, +te,.\]".

But since points /, i + £, and i + 1 all lie on a straight line,

st.o=(1=-8)s'+ &7, (6a)
which, upon substitution for s*and s, ,, becomes

ste=(1+ 01 - He’ + e ] (6b)

Since i+¢ is a point of tangency, the value of s*.; as
calculated from the (1 —&)s curve (5¢) must equal the value
calculated from the line segment (60):

1+ 8 - g)e} + e’ ;1 -1 - (1 - e,
+te,.,]* =0. N

The slope of the (1 —8)s curve, calculated at the point of
tangency is

Er=d[(l -de*)/del, . (8)
=N -8 - e, +Ee,. ) "
Likewise, the slope of the line segment in this region is
Ey=(st,-sD/(e..,—¢€). 9)
Since the slopes must be equal at the point of tangency,
(s'.) —sD/e,. —e)— N =d(i - {e,
+%e,.,]' "' =0, (10a)
or,
(1+8)e™, —e)) =N -d)e,., —e)il - e,
+te,.,1"' =0. (10b)

In order for the discrete approximation to exhibit the same
yield point as the power-law curve, and in order to mitigate
errors for small plastic strains, we suggest that the first line
segment should begin tangent to the power law curve.
Therefore, the first line segment is defined by rules that differ
from the approximation strategy used for other points.

The slope of the s=¢" curve at the yield point is

Er=d(e)/del,., =N. (an
The slope of the first line segment is
Ef=(st-1)/(e, - 1). (12)
Since these slopes are equal,
(1 +68)ef —1-N(e, -1)=0. (13)

Equations (7), (104), and (13) are three equations in the
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three unknowns e,, e, and £ (if i=1). Unfortunately, these
equations are nonlinear and no closed form solution is ap-
parent. These equations can nonetheless be solved using an
iterative search strategy. An objective function is constructed
by summing the squares of equations (7), (108}, and (13):

Sle,e. D)= (1 +8)[(1 - tle, ™ + e, ")
—(1-3)[(1 - §e, + Ee) V12 + (1 +0)e; ™
—e, )= N(1 - d)(e, —e (1 - E)e, +§ex]> ' }*
+{(1+8e, ¥ =1-N(e, -} (14

This function is equal to zero at the solution to equations (7).
(10b), and (13). The function, f(e,. e, §), was minimized for
several values of N and & using the BFGS-Armijo variable
metric algorithm [3-7] as implemented by Santi et al. [8-9).
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Convergence was assumed when the values for e, e:, and §
did not char ge in the eighth decimal place. Execution times
were typically 5 seconds on a DEC-1099 computer.

It is a simple matter to reformulate equations (7) and (105)
into independent relations of the form f(®,§) = 0 where o =
e,.,/e,. Since these relations admit but one solution for ¢ and
£, once e, and e, are known, all other points on the discrete
stress-strain curve can be determined using the recurrence
relationship

e./e, =e,/e, =

Other formulations of this problem are possiblg. The
present approach is straightforward and computationally
tractable.

S =e./e= ... =0 (15)

Results
Equation (14) was minimized for 15 different values of A,
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Table 1 Results of analyses
n N [ 3 [) [
8 = 0.12
2 .500 1.0935565 1.2879691 .46840881
3.3 1.0989588 1.3079128 .47021389
4 .25 1.1078153 1.3394505 66960227
S .200 1.1169018 1.3721958 46841355
6 .167 1.1257073 1.4044492 46704401
7 .143 1.1341422 1.4358636 46562250
[ V31 1.1422117 1.4664131 46619941
9 ai 1.1499450 1.4961580 46279618
10 .100 1.1573751 1.5251778 46142206
12 .083 1.1714466 1.5813674 45877285
15 .067 1.1909432 1.6618679 45504340
20 .050 1.2202481 1.7890327 46938886
3o .03 1.2710279 2.0279355 43961969
50 .020 1.3551207 2.4806927 62381667
100  .010 1.5200229 3.6163146 39467482
t = 0.5%
2 .500 1.2213011 1.7623199 42964112
3 .33 1.2331558 1.8242516 43364654
4 .25 1.2541903 1.9247067 .43230698
5 .200 1.2760993 2.0323117 42969150
6 .67 1.2975276 2.1416288 62668437
7 .43 1.3182012 2.251178 42356504
8 .125 1.3381018 2.3610671 42044697
9 .11 1.3572796 2.4708770 41737749
10 .100 1.3758000 2.5808475 41437680
12 .083 1.4111195 2.8017813 40860684
15 .067 1.4605673 3.1374659 .40052053
20 .050 1.5359661 3.7146364 38834941
30 .033 1.6695306 4.9634371 36761045
50 .020 1.8983217 7.9794768 33498484
100 .0i0 2.3719740 20.1519789 ,2785%6478
5 = 1.02
2 .500 1.3265844 2.2315196 .40099010
3 .3 1.3429212 2.3439699 60660050
4 .250 1.3739640 2.5300273 404675499
S .200 1.4066679 2.7342585 460113645
6 .167 1.4388638 2.9668586 139697348
7143 1.4700809 3.1652695 139266495
8  .125 1.5002578 3.3888095 38836644
9 .11 1.5294477 3.6174035 38414363
10 .100 1.5577331 3.8511970 38002435
12 .083 1.6119230 4.3353257 37212970
15 .067 1.6883053 5.1068099 .36112830
20,050 1.8058489 6.5306078 346472203
30 .03 2.0169563 10.0080919 31725234
50 .020 2.3859947 20.4514398 L27584D°8
100 .010 3.1729754 87.8246897 .20905698
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and for values of 6=0.1, 0.5, and 1.0 percent. Table I
presents results for e,, the ratioc o=e ., /e,, and £. All data
have been verified as correct and none produce errors greater
than 10 *~ percent outside of the (1 + 8)s range. Values of ¢,,
©, and £ are plotted in Figs. 2-4, respectively.

Attempts were made to determine if a linear relationship
could be found between any of (e, e,, 0, &, loge,, log e, log
o, log £} and any of {n, N, \ .V, log N}, without success. 1f
results are desired for values of N not listed in Table 1, then
an appropriate interpolation scheme should give quite good
values of e, and o. Stress-strain curves produced in this
manner will still be optimal, but the error term, 4, may not be
exactly the same as stated in Table 1.

Another frequently overlooked aspect of stress-strain curve
discretization is that the energy density is poorly represented if
a number of points on the stress strain curve are used to
discretize the stress-strain curve. The energy density is the sum
of the strain energy density and the plastic dissipation at a
given material point:

W= \ ! o de,,. (16)

The optimal stress-strain discretization technique gives a
much better representation of the energy density than would
be obtained it a number of equal increments were used to
discretize the stress-strain curve. Figure § depicts a rather
extreme example of this. The curve s=e" "' s discretized using
six line segments in the range 1 <e<100. In one case the
optimal discretization technique is used with six intervals (i.e.,
6=0.5 percent), and in the other case six equal intervals of e
are used. The errors in energy density are plotted in Fig. 5.
The optimal discretization technique produces errors in
energy density of roughly —0.2 percent, whereas the equal
interval technique produces errors of as high as — 6.6 percent.
Indeed, the equal interval technique also produces a very poor
representation of the stress as a function of strain, where
errors as large as — 8.1 percent occur at small values of strain.
This is depicted in Fig. 6.
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Conclusions

An objective technique was described whereby the power-
law stress-strain curve was represented by an optimal com-
bination of line segments. Results were presented for a large
variety of strain hardening exponent values, n, at each of
three allowable deviation values, 6. A derailed investigation of
one vase revealed that stress and energy density are accurately
modeled using the optimal discretization technique.
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HIGH RATE DEFORMATION IN

THE FIELD OF A CRAK

Re. Hoff, C. A. Rubin, and G. T. Hahn

Vanderbilt University
Department of Mechanical and Materials Engineering
Nashville, 1IN 37235

INTRODUCTION

As part of a study of the crack arrest capabilities of tough
steels{1l], efforts are underway to simulate rapid crack extension
and arrest in elastic-plastic finite element models. As a first
step, stationary cracks 1in compact tension specimens have been
modelled and the effects of loading rate, strain rate sensitivity
and inertia on Jj have been examined. The aim of this work is to
examine those features of the plastic zone influential in deter-
mining the toughness, namely, the size of the process zone, and
the crack tip opening displacement.

Plasticity associated with a stationary crack has been charac-
terized as occurring in two separate zones, as shown in Fig. 1. The
larger region, called the plastic zone, features small plastic
strains in the range 0 < €, < O.l1. The size of the plastic zone
(at 6 = 0°) 1is given by a characteristic dimension, r,. Levy, et
al.[2] have determined r, for a nonhardening material with a
semi-infinite crack in an infinite plate. In cases where the
plastic zone is small compared to the specimen dimensions

r, = 0.036 EJI/ooz(l- v2), (1)

Even closer to the crack tip is the heavily-strained process
zone, where plastic strains range roughly from 0.l to 1.0. This in-
tensely non-linear zone can be given a characteristic dimension, w,
which can be related to the crack tip opening displacement, &, by

| w =86, (2)
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Rice[3] suggests 1.9 as a possible value of B, and Paris[4] states '
it is of the order of 2. Since the process zone ‘has no “obvious” ]
boundary, the value of B depends on how the process zone is defined; ) :.:
for instance, a critical strain value may be chosen to define the s
process zone boundary. For convenience, 8 = 1 has been used in ':
this analysis. ;
¢

The crack tip opening displacement, §, can be expressed as a :'
function of the J-integral[5] by: ™
0"

§ = dJ/og, (3) R

‘.

{0

for a nonlinear elastic, power law hardening material. The constant, 2
dy, is a function of material properties, a, o5, E and n (Ramberg- 4
Osgood[6])), where i::
Cr

'!

eley, = alo/o )", (%) 4

W

For small values of strain, ¢ can be interpreted as the total o

strain; for large values of strain, € can be interpreted as the ..,
plastic strain. Using values for a steel such as A533B, a value of ,I;f
d, can be determined(5] as dp = 0.52, Equation (3) can be substituted )
into (2) and then divided by (1) giving the relative size of the X
process and the plastic zones: .:"
X

w/rg = 13.14 6,/E. (5) _

(W

If E = 197 GPa and 0, = 415 Ma as in the case of A533B steel at :0:1
93°C, then ::l
4

w/ro = 0003. (6) n

The plastic strain rates are related to the strain gradients :a

and the extent of the plastic and process zones. If it is assumed :_‘
that the equivalent plastic strain is 0.0 at r = r, (the plastic zone Y
boundary), and varies linearly up to a value of 0.005 at r = w (the N,
process zone boundary), then the plastic strain can be expressed f
as: A\

€p = 0.005(ry = 1)/ (ro = W). M '
After making appropriate substitution from (6) and (1), and dif- N

ferentiating with respect to time:

s " 0.005(r/r )(J;/37). (8) -

An "average” value of plastic strain rate could be calculated at ::

the middle of the plastic zone, i.e. where r = 0.5r,. s(




This gives

€, = 0.0025(J1/Jy) = 0.005(ky/Ky) (9)
for the plastic zone, and is equivalent to the €p equation of
Wilson[14].

Another expression for the strain rate in the plastic zone
can be derived from the J-field solutions of Hutchison[7], Rice
and Rosengren[8). The equivalent plastic strain is

€p = ©@o/E)(ED)/ (a0 21, 0)1™/P* 5 eae). (10)

(Note that equation (10) assumes elastic strains to be negligible.)
The constants I_ and 6_ are given in Refs. [8,9), and the remain-
ing values are defineg by the Ramberg-Osgood wmodel of eq. (4).
Differentiating (10) with respect to time, and substituting the
appropriate values for AS33B (a = 1.12, n = 9,71)[10} at & = O,
yields

2, = 3.24 x 10711 £70.9066;,70.093375, (11)

Again, an "average”™ value of plastic strain can be calculated in
the middle of plastic zonme (r = 0.5r,) giving

€, 0.00024(J/J) = 0.00048 (R;/K,). (12)

The plastic strain rate predicted by (9) is 10 times larger than
that predicted by (12). This is due to (1) the nature of the linear
approximation used in (9), and (i1) the fact that the J-field is
not a good approximation where plastic strains are small (such as
in most of the plastic zome). It is not clear which model is better
or more reliable.

A similar linear approximation could be used to determine the
order of magnitude of plastic strains in the process zone. Here
the assumptions, that €, = 0.005 at r = w and e, = 0.25 at r = 0O,
are suggested by finite element results of MMeking[ll] for a
material where n = 10. Typical strain rates in the center of the
process zone for 6 = 0 are

€, = 0.35(J1/3p) = 0.7(Ry/Kp). (13)

The plastic strain rates can directly be calculated for 6 = 0 using

the J~field solution of (11). The result given below is not reliable
since r = w/2 [18].

€, = 0.007(J /) = 0.014(Ky/Ky). (14)

In view of equations (9) and (13), plastic strain rate can be

ol LA LN LA LTS FCAL AR I AR N - L%,
V0 S 000 At IS VLIRS ‘.Oi‘ﬂl-fﬁf};?a:‘.h})}ﬂ:ﬁm_ﬂﬂ!ﬂhﬁ




' ,l‘n.l'\‘l'..l':.t'

O R N R O RSP N B A AT U WY IR OO0 U RO AU U A AT U A LS I P YO YU U

determined at the onset of crack extension of ductile materials such
as AS33B. Table 1 gives typical values of plastic.strain rates for
"slow" and "fast” loading rates. Later, these shall be compared
with finite element computations.

Ductile crack extension proceeds by void nucleation and growth
in the process zone. Toughness 1s controlled by void spacing which
determines w., the critical size of the process zone. From equa-
tions (2) and (3) one can deduce Jy. in terms of the critical process
zone size

Jic = W0 o/Bdy * 20w (15)

Changes in the yield stress, for constant values of w., will alter
J1c according to

- (k2 2 -
[(Jch)/(JIca)] (K ch/K Ica] °ob/°oa' (16)
The subscripts a and b in (16) refer to two different loading rates.

Experimental data is available from a number of sources[12-16])
which relate the variation in Kj. to the loading rate kI. Some of
these data are plotted in Figure 2. Using the strain rate expression
(9), and the yield stress data given in Refs.{12-16], comparisons
are made between the changes in yjeld stress and the changes in
K1, as a function of Kji-rate. These comparisons are given in
Table 2. Equation (16) suggests that the last two columns in
Table 2 should have equal values. In fact, good agreement is
achieved only for AISI 1018, The lack of agreement may have 2
sources. The first one is connected with the relative contribution
of the flow stress in the plastic and process zones. The yield
stress ratios in Table 2 are based on the strain rates in the
plastic zone. Since the strain rates in the process zone are 102
to 103 times the values for the plastic zone, the yield stress
ratios appropriate for the process zone would be larger for mate-
rials whose rate sensitivity increases with strain rate (see Figure
4b). Consequently, a significant contribution by the resistance
to flow in the process zone could account for the greater rate
sensitivity of the Ky.-values of A533B and AISI 1020. The second
source is the rate sensitivity of w., which is neglected by Equa-
tion (16). The increases in the flow stresses and normal stresses
associated with the higher strain rates can facilitate void nucle-
ation and reduce the void spacing and w.. A large reduction in
we in the face of the increase in o, could account for the
relatively low Kj.-ratios displayed by AISI 1018 and the PA-6
aluminum alloy.

The existing analyses do not clearly distinguish the relative
contributions of the changes in the plastic and process zones. The
fact that the rate of strain hardening (the value of n) influences
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both § and w[5,11], when the large strains and hardening are largely
confined to the process zone, is evidence that the.rate sensitivity
of flow in the process zone cannot be ignored. The finite element
calculations described in the following sections were undertaken to
illuminate this issue.

FINITE ELEMNT MDELLING

A stationary crack in a compact tension specimen has been
modelled using finite elements. Figure 3 shows a plot of the mesh.
To 1imit the complexity of the model, the elements nearest the crack
tip were sized to 1 mm. The mesh was composed of 8-moded isopara-
metric elements. Numerical studies by delorenzi, Shih[19], Hoff
and Byrne[20] have shown that these elements are suitable for use
in the fully plastic range.

The model shown in Fig. 3 has 3500 degrees-of-freedom, and con-
sequently the analysis times for the elastic-plastic problem are
very long. As a preliminary step, the same mesh configuration was
used in an analysis employing 4&-noded isoparametric elements,
which resulted in execution times of about one-tenth of the 8-noded
analvsis. The 4-noded isoparametric elements tend to be too stiff
in the fully plastic range, as discussed in Ref. [19]), and this
will be borne out in the results.

The mesh was constructed so that the stationary crack analysis
could later be extended into the advancing crack regime. The method
of crack extension, as implemented by Kanninen et al.[17], involves
the release of constraints at the crack tip. This technique gives
no "obvious” crack tip opening displacement for the stationary
crack problem. The authors have selected the separation of the
crack faces 1 mm away from the crack tip to be the CTOD, as shown
in Figure 6. A more refined approach could be effected by imposing
displacements on the boundary of a region very close to the
crack tip, as has been done by Sorensen[22].

An important feature of the analysis is the incorporation of
the strain rate dependence of the flow stress. Considerable
experimental data is available for A533B steel[23] as a result of
testing for nuclear applications. The uniaxial stress-strain curve
is given in Figure 4a[l7], and corresponds to a nominal strain
rate of lp°3/s. The relationship between the instantaneous flow
stress, ¢, and the plastic strain rate, ép, is given by the
Milvern[24] equation

- e |
o/ao lep/n] p + 1. a7

The parameters D and p must be determined experimentally, and o,
is the flow stress at zero strain rate. Using the data in Ref.
{23] at 93C, the rate dependence relationship is plotted in Fig. 4b.
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RESULTS

The mesh configuration and material model, described in the
previous section, were incorporated in 6 analyses; 3 different
loading rates were employed with &4-noded and B8-noded elements.
Table 3 summarizes the analyses which have been conducted.

Analysis 1 1s static using o—t relations for A533B for an
infinitesimally slow rate of loading. A displacement is applied
to the load point in increments of 0.2 mm until a waximum displace-
ment of 2.4 mm is reached. The maximum equivalent stress in-
tensity factor, Kj, is calculated from

Ky = E/(A~2)]Y/2, (18)

Analysis 2 is a dynamic analysis. A constant velocity of
0.008 m/s is applied to the load point, until a displacement of
2.4 mm is reached. This results in an almost constant K-rate, but
not a constant J-rate.

Analysis 3 is also a dynamic analysis. A constant velocity of
0.8 m/s (100 times faster than Analysis 2) 1is applied to the load
point. Previous studies using 8.0 m/s as a loading rate had been
attempted, but the inertia of the model caused unwanted vibra-
tions which made the interpretation of results very difficult.

Results for the static analysis are plotted in Figure 5.
Fig. 5a shows a dimensionless J-integral as a function of a dimen-
sionless load line displacement. A comparison with experimental
results by Andrews and Shih[25]) reveal that the numerically deter-
mined J-integral values are low. Figure 5b shows a dimensionless
crack tip opening displacement as a function of a different dimen-—
sionless load line displacement. Results from the present study
are again smaller than the experimental results of [25]. However,
the finite element results of this study are in good agreement
with the finite element results of Shih[18]. Equation (3) suggests
that 8§ varies linearly with the J=-integral. Fig. 7 plots this
relationship and shows remarkable agreement with the static finite
element results. The degree of agreement could be fortuitous
since the definition of § 1s somewhat arbitrary, but 1is does
suggest that the definition of § in Fig. 6 is reasonable.

The plastic strains in the crack tip vicinity are of interest
since they essentially determine the plastic strain rates in a
dynamic analysis. The magnitude of the plastic strain, as expressed
by tensor product

e, = [(3/2)eP jiePy 112, (19)

is shown in Figure 8, as well as a comparison with the J-field
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solution of equation (10) at an angle of 45°. Also shown in
Figure 8 are results from the slip line solution of Rice and
Johnson[26], which were later duplicated by M Meking(ll] using
finite elements, for a blunt notch. A comparison shows that the
present finite element results underpredict the plastic strains
within a region of about 3§ from the crack tip. This 1is not
surprising since the mesh is not sufficiently fine to capture this
large strain gradient. It follows that the present finite element
analysis only shows the effects of plastic strain rate in the
plastic zone, and it is not refined enough to show the effects of
plastic strain rate in the process zone.

The effect of loading rate is apparent in Fig. 9. If a criti-
cal value of crack tip opening displacement is chosen as a failure
criterion, then higher values of J can be tolerated at higher load-
ing rates. In fact, for the range of strain rates occurring in the
plastic zone, as given in equation (9), the "average” increases in
yield stress would be 11%¥ and 21%, as given by the Malvern equation
(17). 1In view of equation (16) one would expect equal increases in
J-integral over this range. Fig. 9 shows that the J-integral values
increase by 14% and 26% for a CTOD of 0.28 mm. Although the agree-
ment between the two predictions of yield stress increase looks
good, it {is possible that, even at these relatively low loading
rates the inertia of the specimen may have some effect on the CTOD.
Therefore, it may be desirable, in future analysis, to attempt to
separate the effects of inertia and strain rate sensitivity on the
crack tip opening displacement.

The equivalent plastic strain rate is given in Fig.10. Results
are plotted for 6 = 45°, since at this angle, the plastic strains
are larger and comparisons are more obvious. Equation (10) can
be differentiated with respect to time (at 6 = 45°) in the same
sense that equation (ll1) was derived. Values of the equivalent
strain rate from the J-field, in Fig. 10, are in reasonable agreement
with dynamic finite element results. Differences 1increase as
the plastic strains become small, since the J-field is only valid
where the elastic strains can be neglected. Here again, the J-
field solution is only valid over a very small region.

CONCLUSIONS

1) The loading rate sensitivity of the fracture toughness for
the ductile, fibrous mode, as expressed by Jj., should correspond
with the rate sensitivity of the flow stress in the plastic and
process zones, when the critical crack tip opening displacement is
{fixed.

2) The | mm, 8-noded finite element mesh used to model the
region near the crack tip describes the plastic zone, but is not
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sufficiently refined for an adequate regresentation of the process
zone of A533B steel at the J; = 250 KJ/m“ level. -

3) Numerical results obtained with the finite element model
confirm that in the absence of a process zone, the increase of Jj
with loading rate at constant CTOD corresponds closely with the
increase in the flow stress in the plastic zone.

4) Experimental measurements reported in the 1literature,
contain examples of Jj.-values with a greater rate sensitivity, and
values which are less rate sensitive than the flow stress in the
plastic zone. These cases are associated with either the 102- to
103-fo1d higher strain rates generated in the process zone, or the
possible negative rate depending on the void spacing.

5) Values of the equivalent (total) strain rate in the plastic
zone derived from the J-field agree with equivalent plastic strain
rate values from the finite element model in the range 3§<r<0.5 r,.
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TABLE 1: Estimates of Plastic Strain Rates

Loading Jq ﬁI

e'pts‘ll ép[s‘ll

Rate (kKJem=2¢5~1] [Waem!/2.g=1] Plastic Zone Process Zone

Slow 2 1 3x10™5 4x10™3

Fast 2x103 10° 3 400

Tabulated valaes are for a duct}}s steel such as A533B.
Jie = 180kJ /m*; Ky = 200 Ma*m
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TABLE 2: Comparison of the Strain Rate Dependence of Yield
Strength and the Kj-Rate Dependence af Ky, for Fibrous
Mde Crack Extension in Several Alloys

Alloy Ref. Ki-Range ép-Range [oob/ l/lecb/KIca
[Waeml/2.571] [s~]] %oa
A533B(@177C) 12,13  2-2x10° 5x10™3-5 1.09 1.60
AISI 1020(HR) 14 1-2x106 6x10~5-80 1.36 1.65
AISI 1018(CR) 15 1-2x106 4x10™3-80 1.14 1.08
PA6 Aluminum 16 0.5-2x106  6x10™5-350  1.14 0.66

Subscript a refers to the lowest strain rate and b refers to the
highest rate.

TABLE 3: Summary of Finite Element Analyses

Analysis Analysis ¥, Vimax JImax KJmax K
Number Type [m/s] [mm] [kJ/m2] [MWaeml/2) [Warml/2/s)
1 Static 0.0 2.4 245 230 0

2 Dynamic 0.008 2.4 254 235 689

3 Dynamic 0.8 2.4 260 238 71000

od ) I P Y W W Wy W e - L o oL W PR
m "~ m?l}xh:‘ 2 -PC'J}.A""J}*A\};\.’\A“:\' ".‘J.":.N)‘-i'ri',\j\.{"t\



(B §

Plastic Zone

Process Zone

Figure 1: Plastic and process zones in the vicinity
of a crack.
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Figure 2: Variation of Ki. with Ki-rate for different
materials for ductile, fibrous crack
extension.
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Figure 4a: Uniaxial stress-strain curve for
A533B @ 93C.
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Figure 4b: Variation of flow stress with plastic
strain rate, for A533B @ 93C.
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I The 1981 Campbell Memorial Lecture
¥ . ' The American Society for Metals

®  The Influence of Microstructure on Brittie Fracture Toughness

“ G.T. HAHN

)

:0. This lecture presents viewpoints of the role of microstructure in brittle fracture that have emerged in
v:" the past two decades. The fracture mechanics concept of crack arrest is inserted into the Gnffith theory
of microcracks to describe the resistance of microstructural boundaries. The implications of crack
blunting are related to the essential role of carbide particles and other brittle phases in the steel.
Dislocation pile-ups and the ferrite grain size are accorded a diminished role. The bnittle fracture stress
is related to the dimension of the largest ““eligible” parent particle and the resistance experienced when
the advancing microcrack crosses the boundary. “Eligibility” is connected with the probabihities of
0 nucleating a crack and finding a boundary with minimal resistance. The boundanies of carbide
particles, carbide films at the grain boundaries. brittle inclusion particles, ferrite grains. pearlite
colonies, and bainite packets are possible barriers. The use of the growing data base of Gnffith energ)
e values — or equivalently. the local arrest toughness value —to identify controlling microstructural

R features is demonstrated. The lecture touches on the relation between the transition temperature and

,'{ the brittle fracture stress and draws attention to the latter’s dependence on the size of the stressed
-, volume. Finally. the role of the stressed volume in analyses of the brittle fracture K -value and a
..: statistical treatment that clarifies its origin are discussed. These analyses indicate that a small number

- of the largest particles may have disproportionate influence on K. and that the microstructural
features that effect “eligibility” may have a modest effect on K|,
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1. INTRODUCTION

I want to thank the ASM for the privilege of presenting the
Edward DeMille Campbell Lecture. This lecture provides a
few moments to dwell on a life that is conventional and
inspiring.'** Campbell was a professor of metallurgy.
chemistry, and chemical engineering at the University
of Michigan from 1890 to [925. He was director of the
University's Chemical Laboratory. He was a productive
researcher — the author of 75 technical papers' — with pio-
neering work on the interpretation of the X-ray diffraction
patterns of martensite to his credit. At the same time, he and
his wife Jennie Ives raised and educated six children. In
these respects. Campbell’s life is not unlike that of many
other distinguished members of the society.

What makes his life entirely unique is that Campbell was
blind —blinded at the age of 28 in a laboratory accident.
Campbell fathered children, taught metallurgy and chem-
istry, administered a laboratory, unraveled X-ray patterns.
and published all but three of his papers afrer he became
blind. Campbell’s productive life reveals the enormous re-
serve of inner strength —the “toughness™ of the human
spirit — that resides in us. Fortified with that spirit we can
overcome our share of tragedy. jettison our disappoint-
ments, and meet the challenges of our time.

Like the “toughness™ of the human spirit, brittle fracture
and the toughness of steel are fundamental issues that have
engaged many people for a long time. Reports of brittle
fracture in service appeared as early as 1879.' the Charpy
test in 1905. Current explanations of brittle fracture and the
ductile-to-brittle transition have their roots in papers pub-
lished by Griffith® and Ludwik® in 1920 and 1921. The actual
observations of Griffith cracks™™" led to the development of
detailed mechanistic treatments'*"'* in the decade from about
1953 to 1963.

In the two decades that have followed. mechanistic
studies have been extended to spherodized carbide.' ™
pearlitic,”’~** bainitic,***** and martensitic>*** " micro-
structures. McMahon and his collaborators™ ** have shown
that except for the crack path. the mechanisms of inter-
granular fracture of temper embrittled steels and trans-
crystalline (cleavage) fracture are nearly indistinguishable
(Figure 2.3 and Figure 2.6). Knott and his collaborators
have linked the micromechanism and the statistics of
particles™ with the macroscopic fracture toughness. In addi-
tion, progress has been made 1n analyzing toughness on the
atomic scale ¥***

Today. brittle fracture problems still exist and important
questions remain unanswered. For example. ways of modi-
fying the operation of existing nuclear plants are currently
being sought to avoid brittle fracture. Toughness specifica-
tions for bridge steels are controversial.” The two common
measures of toughness —the CVN-energy used in material
specifications and the K| -value used in design — resist cor-
relation.” The microstructural features governing brittle
fracture are not well defined for many steels. Even the
inherent toughness of unalloyed ferrite in the absence of
carbides and other particles is an open question.

I acquired an enduring 1nterest in this subject in 1953 from
Maxwell Gensamer™ who faced ship plate fracture problems
in World War Il. Since that time. graduate studies at MIT
and a succession of fracture prevention projects for gas
pipes. rocket casings. and nuclear components have enabled
me to view the field from time to time. The invitation to
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prepare this lecture was an opportunity for me to examine
recent work and to reflect on how the views of micro-
structural involvement have changed since my introduction
in 1953. What follows reflects my limited comprehension of
the vast literature of this field — for example. Koulaininen*
alone cites over 400 references in a recent dissertation on
brittle fracture of bainitic steels. I apologize to both readers
and contributors for the omissions.

II. MECHANISMS OF BRITTLE FRACTURE

Metallographic observations of cleavage microcrachs
in mild steels were the key that led to detailed mecha-
nistic treatments in the period 1953 to 1963 The work of
Allen. Rees, Hopkins, and Tipler.” Low."* and the group
at MIT'™"'" revealed Griffith-like cracks form after the
onset of yielding®' and span individual ferritec grains
and carbide films at the grain boundaries (see Figure I
The association with yielding made it possible to connect
nucleation of the cracks with dislocation pile-ups as pro-
posed by Zener in 1948' and elaborated on by Stroh * and
Petch™ (see Figure 2.1). All that was needed to make the
Griffith theory” meaningful was to suppose that more fru.-
ture energy is spent disrupting the lattice when the nucro-
crack crosses a grain boundary than in the gruin intenor
Consistent with this. estimates of the Griffith fracture
energy term y are ~ 10 x larger than y'. the specific surface
energy. which is a rough measure of vy in the interior ot &«
crystal (see Table I). In fact. grain boundaries must ofter 4
range of y-values depending on the misorientation. Sin.c
fracture is associated with the first boundary crossed suc-
cessfully. the weakest link and. consequently. & boundun
with a relatively low y-value will be controlling

Subtleties of the problem and the applicaton ot the
Griffith Theory are more easily discussed with the languagc
of LEFM (Linear Elastic Fracture Mechanics). Since the
grain boundary region is presented with an advancing
(rather than a stationary) microcrack. fracture occurs when
the microcrack fails to amrest. For this reason. | believe
the Gnffith energy term vy is properly viewed as an arrest
toughness parameter™ in this case. Gf = 2y and A7 =
[2Ey/(} = )] ". where E and 1 are the elastic modulus
and Poisson’s ratio (see Table Iy The supersenpt B s added
to emphasize that G! and K{ apphy to a relatively smoathi,
microscopic crack crossing a boundany oftering mimim.:!
resistance. As illustrated i Table I. AT values are much
lower than the conveationai crack arrest toughness, A -
50 MPa\ m. which applies to a rough macrocrack that
overcoming all the boundaries in its path as well as ductile
ligaments.* The LEFM-form of the Gnffith theonn e
presses g,. the bnttle, cleavage. or transgranular-tracture
stress in terms of 2a. the (micro) crack size. 8. a crack shape
factor, and K

KE (B\ 7a) [14]

a,

and more specifically.

o = 125Kt d 11b)

o = 0.79% Ao N

where d is the diameter of a penny-shaped crack and ¢ the
total length of a crach whose depth v much greater than
its length. Since the microcrach 1 generated after the
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Fig. | — Examples of microcracks obsenved in a mild steel by Allen. Rees. Hopkins. and Tipler”

Table 1. Summary of Microcrack and Macrocrack Resistance Values in Terms of v, K. Aw.. and K\,

W ET— T ——— T —T W W W W W NSy i AR AT

Y K. _ K _ K. _
Materials (Reference) Im - MPs\m MPa \ m MPs \ m
MgO — single crystal® 1.5 —_ - 09
Al:O. — single cnystal®! 60 —_ — 23
Bnttle Fe — single cnystal 20 — 09 0y
MgO — bicrystal® 15 w100 — — 291074
Steel at a fernte-femite 56 5.0 — —
grain boundan* "
Steel at a carbide-fernite 14 25 — —
boundary ™
MgO — polyenystal® 14 — — 28
Al-O. — polyervstal®’ 10 to 40 —_ — 291054
‘J'd — \50 -

Commercial grades of stee! —

*Estimated assuming * 3 = v = wh 10 where ¥ 1s the specific surface energy.  1s the shear modulus. and b 1s the Burgers vector

onset of yielding. the probity of applyving LEFM must be
questioned. The use of Eq. [1] can be justified provided
the nucleated crack advances rapidly and tests the condi-
tion for extension 1n a time duration too short for significant
yielding of the femmte. Dynamic contnbutions to Eq {1]
may also be neghgible since little kinetic energy 18 reflected
back to the microcrack from the far boundaries

METALLURGICAL TRANSACTIONS A

The theory connects fracture resistance with the micro-
structure because the critical microcrack dimensions corre-
spond with either the carbide film thickness (¢, or the fermite
grain diameter (d). This was demonstrated by Allen and vo-
workers” and by Low * The 1953 Allen er al. paper shows
that the refinement of carbide films by manganese additions
is accompanied by a syvstemantc fowering of the transition
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MECHANISMS OF BRITTLE FRACTURE

1. Zener, 1948
Stroh, 1954

3\McMahon 8/Cohen, 1964
. 1970
, 1978

4 Smith, 1965

1980

et al

rk & Bgrnstein, 1979

Fig  2— Schematic representations of the mechanisms of bnttle frac-
ture according to vanous authors.'' " 13 ' 408 * The |etter B 1dentifies
bamers to crack extension

temperature; Low demonstrated that the brittle fracture
stress varies linearly with d°°.

At first. the dislocation pile-up was considered only in
the nucleation stage and not in the analysis of the fracture
condition, i.e., microcrack extension across a boundary as
in Figures 2.2 and 2.3. This was changed by the painstaking
metallographic studies of McMahon and Cohen'" which
revealed that the large microcracks observed in the ferrite
grains were invariably connected with a cleaved carbide
particle located somewhere in the grain or on the surround-
ing boundary. Their findings imply that the rupture of the
carbide is an essential. intermediate event between the
formation of the pile-up and the cleavage of the ferrite.
Accordingly, Smith'® and Almond. Timbres and Embury"’
formulated models in which the pile-up continues to con-
tribute to the crack driving force after the carbide crack
nucleates (Figure 2.4). Accordingly, the expression for a,.
the fracture stress for microcrack extension across the car-
bide ferrite boundary. contains a term arising from the
carbide film and one from the pile-up:*

2 (KB;): d 0s 4 2y 2
gy = {_ - - [Tm(-) - '_T] } (2]
Cy ™

m G
carbide film pile-up

The terms 7., and 1, are the effective shear stress and the
lattice friction stress, respectively. Equation |2] involves
two microstructural dimensions: (i) the dislocation pile-up
size which is equated with d. the ferrite grain diameter: and
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(ii) the carbide film thickness, ¢,. These analyses seem to
ascribe a more central role to the carbide and reinforce
the then prevalent view that the refinement of both the grain
size and carbide dimensions enhance toughness. However,
neither Smith nor Almond er al. really explain why the
carbide is essential to the nucleation process.*

*The carbide particle is not an essential part of the fracture condiuon
since ¢. is replaced by d when the grain-size fermte microcracks are
observed

1Il. CRACK BLUNTING AND THE ESSENTIAL
ROLE OF HARD PARTICLES

The distinction between the static and dynamic aspects of
the fracture mechanism also has a bearing on the transition
temperature and the role of carbides. Rice and Thomson™
have treated the origins of toughness in crystals and con-
clude that iron is brittle at temperatures close to 0 K and
crack resistant at higher temperatures. The brittle behavior
arises when bonds rupture before dislocations can form to
blunt the crack; the tough response when the crack blunts
before the bonds rupture. Results of a recent computer simu-
lation of a crack tip in an atomistic iron lattice at O K and
400 K performed by Mullins and Dokainish* are in accord
with this view. The temperature at which an iron crystal
containing a stationary crack changes its behavior from brit-
tle to tough —TT(K, ), the K, -transition temperature — 15
not well-defined by these analyses and, to my knowledge.
has not been measured expennmentally. The T7 (X, ) for Fe-
3 Si single crystals, about —100 °C, can be deduced from
the work of Pilkington and Hull* (see Figure 3). Since Fe-3
Si is in many respects more brittle than unalloyed ferrite.
the TT(K, ) for ferrite crystals must fall below —100 °C
and probably below —200 °C.

The response of a crystal to a rapidly advancing crach.
characterized by Kj,. differs from that for a stationary crack
because there is less time for thermally assisted generation
of dislocations near the crack tip. The time available for
blunting a slowly loaded stationary crack is 1 ~ 10 seconds

.
Fe - 3Si ( Pilkington and Hull, 1968 ) |
}
K. Ka ‘
MPam {
10 - | |
- ‘ 1
I
- 1 Kk '
, |
Ke i
L P :
- . e - - e
0 1 1 1 1 )
-200 0 200 400 600 800

T °C
Fig 3—The K, -transition for Fe-3 S single crystals with statonan
cracks after Pilkington and Hull* and an estimate of the corresponding
K..-transition for cracks propagating with a velocnty @ = 100 ms  based
on the theoretical model of Jokl. Viteh. and McMahon ™ The dashed
portions are based on the extrapolanon of the measured K -cune
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In contrast. the time available to blunt a bnttle crack ad-
vancing with a velocity of @ = 100 ms™* is 1 ~ 10b/a =
2+ 107" s (10b represents the extent of the highly stressed
tip region capable of generating dislocations and b =
0.2 nm is the Burgers vector). The approximate 10"-fold
reduction in the available time produces a ~10°-fold re-
duction in the dislocation contnbution to K;, according to
the theoretical model of Jokl. Vitek. and McMahon.™ This
means that K,-values for Fe-3 Si crystals remain at the
1 MPaVm level displayed by K, below the transition
for temperatures up to about 100 °C and possibly higher
(see Figure 3). In other words. the TT(K,,) for Fe-3 Si
crystals occurs above 100 °C. The same reasoning applies
to microcracks in the vicinity of grain boundaries although
the relevant K} -values are likely to be higher than K|, for
the single crystal

Several other observations support the view that Kf-
values for both Fe-3 Si and unalloved ferrite reflect tem-
perature independent brittle behavior to temperatures above
~100 °C. For example. the constancy of the brittle fracture
stress of Fe-3 Si in the range —200 °C to at least +50 °C.
reported by Griffith and Owen*" (see Figure 4). taken to-
gether with Eq. [1] shows that K& must also be constant over
this range since the microstructural dimension. d (or C,).
does not vary with test temperature. The photomicrograph
of a fast propagating crack that arrested in Fe-3 Si at 22 °C.
in Figure 5. shows that no dislocations are produced while

1300 -t
~ 1200 |- -
€ - -
= e
3 1) - .
¢ ' &
4, ..
e B ~ g
! t -3
v . &
' -
LI S b osuE + ar %2
3 MUCLEATED | NUCLEATE : g
€ e CLEAVAGE 4 CLEAVAGE 3
1}
) o
o i i 1 1
-2 -5 =100 5 e 8
TEMPERATLRE [

Fig 4 — The temperature dependence of the bnttle fracture stress of Fe-
3 Si steel measured with CVN-specimens after Griffith and Owen

Fig. 5— Micrograph of the tip of a fast propagating crack in Fe-3 Si steel
that arrested at 22 °C after Hoagland. Rosenfield. and Hahn * The section
has been etched to reveal dislocations. The dark etching region at the crack
tip reflects dislocation generation and crack blunting which were absent
while the crack is propagating
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the crack lS propagating. but that the crack does blunt after
it arrests.** Another piece of evidence is that Kf -values for
steel correspond quite closely with K, -values for bnttle ce-
ramics bicrystals and polycrystals (see Table I). Lange™ has
identified processes responsible for fracture energy dissi-
pation at the grain boundaries of the MgO bicrystals. They
include the formation of multifaceted fracture surfaces with
overlapping cracks with some plastic flow in the region of
overlap. Similar processes are probably involved in steel

The TT(KZ,) for ferrite is not established. but it seems likel
that it corresponds closely with the TT(K),) for commer-

cial grades of steel which occurs in the range 50 <C to
100 °C.*** As noted by Rice and Thomson.* the transition
temperature depends sensitively on the resistance to bond
rupture. Thus, temper embrittled steels with weak bonds at
the grain boundaries can display brittle behavior to tem-
peratures above 400 °C.*

These circumstances provide possible explanations for
the behavior of microcracks and the essential role of a car-
bide or other hard, brittle particles or inclusions in the brittle
fracture of steel:

(iy Dislocation pile-ups against ferrite grains cannot ordi-
narily produce microcracks because the crack nucleus (in the
ferrite) blunts when the temperature is above TT(A} 1
ie., = —-200°C.

(i) Dislocation pile-ups can nucleate cracks in a carbide
particle because the TT(K,) of Fe.C is above 300 °C.*
The same is true for other hard brittle particles below
their TT(K,,).

(iii) The fracture of a brittle carbide particle presents the
adjacent ferrite with a rapidly advancing crack. This crack
can penetrate the ferrite because K -values remain at the brit-
tle level in the temperature range TT\K]) << T < TT(K}).
(iv) The microcrack will arrest at the grain boundary when
the Griffith condition (Eq. [1]) is not satisfied. Ordinanly.
such an arrested crack will blunt above TT(K,) and can-
not reinitiate.

IV. THE DIMINISHED ROLE OF
THE DISLOCATION PILE-UP AND THE
ORIGINS OF GRAIN SIZE EFFECTS

tIO

Curry and Knott™ have pointed out that the Smith pile-up
theory of fracture (Eq. [2]) does not really predict a ferrite
grain size dependence. They note that the value of 7.4 is
limited by the operation of dislocation sources in neigh-
boring grams and cannot exceed the value at yielding:
Tr = d° k! where k! = 0.33 MPa \ m is the Hall-Petch
parameter.'>*' When (d°*k; is substituted for 7. in Eq. [2].
the grain size dependence of o is lost. Secondly. they note
that the contribution of the pile-up term in Eq. [2] is neg-
ligible for reasonable values, i.e.. d = 20 um, , 0.1 <
co < 1p, 7= 100 MPa, and K% = 2.5 MPa VVm. and
Eq. [2] reduces to Eq. [Ic]. Curry and Knott propose that
the strong carbide size dependence of Eq. [lc] has been
incorrectly assigned to ferrite grain size because ¢ and d
frequently go hand-in-hand as shown in Figure 6(a). To test
this point, they formulate the apparent grain size depen-
dence (replacing ¢, in Eq. [lc] with its dependence on d
as specified in Figure 6(a)), and compare 1t with mea-
surements in Figure 6(b) for different values of the fracture
energy term. It can be seen that the curve for y = 14 Jm™*
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Fig. 6 — Relations among the brittle fracture stress. ferrite grain diameter.
and the coarsest observed carbide film thickness. after Curry and Knott
(a) Experimentally determined relation between c,. the coarsest observed
carbide film thickness. and d. the ferrite grain diameter c. = fid). and
(b) the “apparent™ d ° * dependence of & based on reported measurements
The solid lines were obtained by replacing ¢, in the expression o, =
0.798 KL " with fid) for different values of KT, The fact that the
data are consistent with a linear dependence of o on ¢ °“. butnotond "
supports the view that ¢. is the controlling variable The value K} =
2.5MPam"' (y = 14 Jm™’) gives the best fit. The data in (b) are derived
from Refs. 18, 52-61.

(K2 = 2.5 MPa Vm) agrees with the experiments. The
scatter is not surprising since the relation between ¢, and d
(Figure 6(a)) can hardly be precise. The fact that the
dependence of o on d™°* is not linear also supports the
view that ¢, is the controlling variable in these cases. A
bonafide d °* ferrite grain-size dependence would still be
displayed by steels with ferrite grain-size microcracks, as
shown by Low *'°

These findings do not alter the view that microcrack nu-
cleation is assisted by slip and, possibly, even by pile-ups.
This has been clarified by Argon. Im, and Safoglu® and by
Lindley, Oates, and Richards®® who show that o*, the peak
tensile stress acting locally at the boundary of a non-yielding
particle in a plastic matrix. o* = (1/d) 0, + ©,. is the sum
of terms involving 1/d. the particle aspect ratio and yield
stress and the mean stress. In other words. the tensile stress
on the particle is amplified by the onset of yielding particu-
larly in the presence of a larger hydrostatic component.
Studies by Argon and Im®* and Gurland® indicate that the
local tensile stress needed to fracture cementite particles in
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a ferrite matrix is o ~1500 MPa. Since this value is well
below the theoretical strength, the fracture of the carbide
particle must be assisted by a local stress raiser such as a
defect in the particle or a pile-up. Defects cannot be the
answer for small carbide particies. d, ¢, = 1 um. since the
minimum Gnffith crack diameter is d = 0.7 um (for an
assumed value K;, = 1 MPa um). For this reason pile-ups
cannot be ruled out.

V. THE EVALUATION OF K{, AND THE
IDENTITY OF THE CONTROLLING
MICROSTRUCTURAL FEATURES

The value of K% is defined by measurements of the brittle
fracture stress and the dimension of the particle whose
boundary limits the microcrack size together with the appro-
priate form of the Griffith Equation (Eq. {1b] or [Ic]). In
addition to the carbide particle, film, or lamella, other hard
particles or inclusions (Figure 7(a)). fracture may be con-
trolled by one of the following features depending on the
microstructure of the steel (Figure 7(b)):

(i) ferrite grain®"
(ii) pearlite colony*'-**
(iii) bainite packet****
(iv) martensite packet.”*¥
Particle-size microcracks have been observed in all of these
microstructural features except in martensite packets. The
microcracks in the pearlite nucleate in individual carbide
lamellae in linear arrays. They are joined by the failure of
the intervening ferrite and form colony- and prior austenite
grain-size cracks®** (see Figures 7(c) and 7(d). It is
not clear whether the critical dimension of the microcrack
that determines ¢’ is the colony or austenite grain di-
ameter as assumed by Rosenfield. Votava, and Hahn.”' or
the lamella thickness, as assumed by Park and Bernstein™
although correlations with the TT (CVN) favor the former.
The K& -value consistent with lamella thickness. K& = 1.5
MPa \'m. is smaller than the other values in Figure 8.

The interpretation of brittle fracture stress values of dif-
ferent microstructures involves two complications. One is
that the particle (or grain) generating the microcrack is rep-
resented by a distribution of sizes. The other is that not all
particles are “eligible™. “Eligibilitv" is here connected with
the probability a given particle can produce a crack: (a) that
it is associated with a suitable pile-up or stress raiser, (b) that
it has an orientation favorable for nucleating a crack. and
(c) that the misorientations at the particle boundary produce
a low value of K& For example, if the probability of satis-
fying each of these requirements is p = 0.1, only 1 of 10’
particles is “eligible™. It is the dimension of the largeut
“eligible” particle within the stressed volume that enters into
the expression for the brittle fracture stress (Eq. [1]). Knott
and Curry" select the “largest observed™ carbide thickness
for the value of ¢, in Figure 6. They also select the 95th
percentile diameter to analyze results for spheroidized cur-
bides because this diameter leads to a K2-value identical to
the one derived from the “largest observed™ film. Other
workers have used the average particle diameter. and while
this leads to an incorrect estimate of Kf.. the a~d ™' “ relation
serves as a useful signature.

Brittle fracture stress—particle size relations have been
reported for a number of microstructural elements and are
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Fig. 7— Bamers. (B}, to microcrack extension and corresponding dimensions () grain boundary carbide and film thickness ¢ . (b} fernte grair boandan
and grain diameter d. and (c) and (d ) pearlite lamells or colony boundans (c) and 1d) are photographs of the surfaces of tensile bars of mild steet sieel £

tested at — 140 °C "'

summarized in the convenient o-a™'- form of Eq. {1a] in
Figure 8. The values of K{, can be deduced from the slopes
of the lines, and these show that different boundaries have
characteristic values of K& . Fracture and the identity of the
controlling microstructural feature are determined by the
particle with the (K%, - d™' *)-combination that produces the
largest value of fracure stress. The presentation in Figure 6
facilitates extrapolation and may be useful for identifying
the controlling particle when the microstructural dimensions
are known. For example. microcrack studies reported by
Hahn er al." included work on a coarse grained ferrite:
d = 40 pm, with coarse carbide films: ¢, = 15 um. Fig-
ure 8 shows that the fracture stress associated with micro-
cracks in the ferrite grains of this size is somewhat Jarger
than the value for microcracks in the carbide. This accounts
for the observation of both ferrite and carbide microcracks
in this steel. Ritchie, Server. and Wullaert™ report a brittle
fracture stress o = 1800 MPa for a heat of grade A533B
steel with bainite packets: d = 10 um to 20 um. cementite
particles: d = 0.5 um and oxide particle inclusions, d =
5 um to 10 um. Figure 8 indicates that the brittle fracture
stress associated with spherical carbide particles of this size.

METALLURGICAL TRANSACTIONS A
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o = 4400 MPa. is much larger than the reported fracture
stress. It is therefore unlikely that carbide particles are par-
ticipating in the nucleation process. On the other hand.
microcracks nucleated in the oxide particles would extend at
a stress that is lower than the reported o~values.* and the

*Provided KL for the oxide 1s close to the value for the carbide 1n
Figure &

fracture stress of the bainite packets is close to the value for
the steel. The different fracture stress values are consistent
with the view that the mechanism of bnttle fracture of
AS533B involves nucleation of cracks in oxide inclusions but
is controlled by the bainite packet size. The interpretation
provides indirect evidence that hard particles other than the
carbide can initiate cracks in steel.

VL. THE BRITTLE FRACTURE STRESS AND
THE TRANSITION TEMPERATURE

The views expressed so far imply that o. the bnittle frac-
ture stress. is a temperature- . loading rate- . and specimen
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geometry-independent material properts because it iy a
function of two quantities. ¢.¢.. AT and ¢ . that are both
only functions of the microstructure. The transition tem-
perature. 7T, is the temperature below which the peak
normal stress exceeds .. and is defined by the condition:

O mn = Po =0 13}

where P is the plastic constraint factor and o, is the vield

'The quanuty P depends on the mean stress and strain hardening.
P =13 =27 =35 forthe tensile- . Charpy- . and K, -specimen for
typical strain hardening rates

strength. Accordingly. the various transition temperatures:
TT (tensile bar), TT (CVN), TT (K,). and TT (K,.). can be
estimated when o and o, at the appropriate temperature
and strain rates are known. This is illustrated in Figure 9,
which shows effects of microstructure and the test method
on the TT of a hypothetical medium strength steel that are
qualitatively in accord with experiments. %

However, the construction in Figure 9(b) that assumes
o; is independent of the test piece configuration is question-
able. Estimates of o; derived from tensile- , CVN- | and
K, -specimens of the same material. using Eq. [3] and the
appropriate values of P and o, just below the TT. sum-
marized in Table Il. increase substantially as the stressed
volume of the test piece decreases. This is consistent with
the view, developed in the preceding section. that the frac-
ture stress 1s determined by the size of the largest “eligible™
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particle in the stressed volume. and the fact that this wze
increases with the stressed volume for a matenal with the
usual histogram of particle sizes. It seems likely that the
distnibution of particle sizes depends on composition and
processing history. and it foliows from this that the effects
of changing the stressed volume vany from one material to
another. Some evidence of this can be found in Table 1l

VII. THE RELATION BETWEEN
FRACTURE TOUGHNESS AND THE
PARTICLE SIZE DISTRIBUTION

The size of the stressed volume enters in the analysis
of brittle crack extension and K, because 1t is the extent o1

Table I1. Influence of Test Specimen Geometr)
and the Relative Size of the Stressed
Volume on the Brittle Fracture Stress

o.. MPa
Tensile Bar CVN K,
Relative Stressed Volume ~400 ~20 1
Steel K. Kotilainen*’ 99% — 2850
Steel M. Kotilainen®’ 1508 — 3650
Steel T. Kotilainen™' 1230 2500 3018
Steel E. Hahn™ S50 810
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Fig. 9— Schematic representation of transition temperatures of a hypothetical medium strength steel: (a) influence of the microstructural dimension & on
the TT(CVN) and (b) influence of test piece geometry on the TT for a constant value of g,. Note: in practice g, varies with test piece geometry.

the highly stressed crack tip region, rather than the magni-
tude of the stresses. that is affected by KX, and increases
with the applied load. Ritchie. Knott. and Rice™ therefore
postulated the additional condition for cleavage crack ex-
tension, namely: Eq. [3] must be satisfied a characteristic
distance X, in front of the crack (see Figure 10). A similar
view of brittle intergranular crack extension has been
presented by Jokl. Kameda. McMahon. and Vitek.” The
value of K, below the TT (K,,) is then fully determined by:
(1) the character of the stress field. (2) the values of o,. the
rate of strain hardening. and (3) ¢, and X.. Figure 11(a)
illustrates that a constant value of X, = 3d. where d is the
average grain diameter. provides a rough description of
the variation of K| for AS33B steel below 77 (K,).

At low temperature. the X,-requirement reduces to the
following expression for toughness:

K, = o\ 25X, [4]

N

implying that the particle spacing rather than its size is the
controlling dimension. The correlation between X, and A,.
the mean free path between carbide particles. illustrated by
Rawal and Gurland's”' measurements in Table 111, supports
this concept. While K| -values below the T7(K\,) are dom -
nated by a particle spacing (Eq. [4]), CVN-values may be
more strongly influenced by the largest eligible particle
size (Eq. [1}). This notion and the fact that the spacing
and size can vary independently account for the absence of
a single, well-defined relation between the two standard
measures of toughness valid for all steels.™ A classical ex-
ample of non-correlation. reported by Ritchie. Francis. and
Server.” is illustrated in Table IV.

The characteristic distance was initially connected with
the need to accommodate a dislocation pile-up and an
“eligible™ carbide in the highly stressed region and esti-
mated to be a small multiple of the average grain diameter,
d (see Figure 11(a)). Subsequent studies that reveal X, is

METALLURGICAL TRANSACTIONS A

independent of d (see Figure 11(b)) have led Curmy and
Knott™ to the view that X, is connected with the volume of
material needed to assure the presence of an “eligible™ par-
ticle whose fracture condition is satisfied. Curry and Knott™
have formulated this concept statistically and use 1t to
analyze the fracture toughness of quenched and tempered
microstructures with spheroidized carbides. Their anulysis
recognizes contributions from all the “eligible™ particles.
large and small (see Figure 10(d)). It involves threc stans-
tical quantities: (1) P(r,), the probability a particle has a
radius r,. (ii) P(f.r,). the probability a particle of radw- r
will initiate fracture. and (iii} 6. the probability a particle i
“eligible”, and the condition for crack extension:*

*Pif.r) = 65Xin,Pir), where X 1s the distance from the crach up tor
which the fracture condtion (Eqs. (1] and [3]) s satisfied tor 7 -particles.
s is a factor of order unity describing the shape of the stressed region.
sX~ is area within which the fracture condition 1s satsfied. and o i the
total number of particles per unit area Equation [S}defines A, = A whero
SPifry=lsince X, = fur. . Kp

A

2P(fr) =1 H

|
Results of the analysis. in Figure 12. reveal that the ~5 put
of the particle populaiion with the largest radn a-c the
most probable source of fracture in the crack tip region.
This arises because the reduced stresses needed to fracture
the largest particles are obtained in a volume ~30 > larger
than that corresponding 1o average-size particles. The
analysis indicates that the contribution of the different par-
ticle sizes varies with the temperature. and that the fraction
of the eligible particles 10° < 6 =< 10" is roughly indepen-
dent of temperature. It should be noted that the valuc of #
depends on the nucleation process and enters the statis-
tical fracture condition. For example. the Curry and Knott
analysis indicates that a 15-fold decrease of € leads to a
2-fold increase of K. In other words. the microstructural
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Fig. 10 — Mechanisms of brittle crack extension: (at and (b} transgranular crack extension after Ritchie. Knoti. and Rice . (¢ intergranular crack extensicr, ;
after Jokl. Kameda. McMahon. and Vitek." and (d) staustical interpretation of Curry and Knowt.™ 28

Table 1II. Relation between the Characteristic Distance (X,) and the Carbide Particle Mean Free Path (A,)
in Spheroidized Carbon Steels Tested at —196 °C According to Measurements by Rawal and Gurland™

Steel Carbon Weight. Pct .. MPa K..MPa\'m a. X, um b. A,. um |

RC 0.13 766 18.0 22.1 393 X
YC 0.43 912 14.9 10.7 & 08 -
BC 0.83 841 13.7 10.6 7 &a 3
GC 1.46 813 11.3 7.7 s.28 W
YF 0.43 997 15.6 9.8 432 be
BF 0.83 946 14.6 9.5 3 K6 o

a. X, = K;, /(125 o) [ ]

b. A, = (1 = f1/N,.. where f is the volume fraction calculated from the chemical analyses and N, is the number of particles intercepted per unit lengr "!,,:
of random test lines

b gt gt
.

05

features that control nucleation can make a modest con- Table IV, Example of Non-Correlating CVN.
tribution to K. and K, -Toughness Measurements of ‘AlSI i&-‘()

The Curry and Knott analysis is based on the questionable Steel after Ritchie, Francis. and Server
assumption that the fracture condition, Eq. [S]. must be K, . '
satisfied on every cross section because “the initiation of Condition* CVN-Energy.J  MPa\m MPa \ ™
fracture has to be a more or less sympathetic event across a A 6 6 ) 20 oy
large proportion of the specimen thickness to allow suf- B 95 u I
ficient elastic energy release.” In contrast. if the fracture " T C ————— C — ;
condition must be satisfied only once in the stressed volume R g e T quench ta KC L ourhT €. ol quene b
rather than on every cross section.* the relative contribution B | hour-870 °C. ol quench 10 RT o = 1502 MP,

&

‘.
CELE

T 7 v %

“y "y

*P{f.r,) = OBSx’ tna/2r,} Pir,) where B 15 the thickness
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of the different particle sizes is not altered very much
(see Figure 12), but the estimated fraction of “eligible™
particles is reduced to 8 = 107°. This fraction is consistent
with the large number, N = 1.1 - 10° mm ™", of carbide par-
ticles in steel, but it is so small as to raise questions about
the identity of the nucleating particle. The general con-
clusion to be drawn from either the areal or volumetric
assumption is that the very small number of the largest
particles has a disproportionate influence on both T7(K)
and the value of K, below the transition temperature.

VIII. CONCLUSIONS

1. The brittle fracture of steel is governed by the extension
of fast propagating Griffith-type microcracks across
microstructural boundanies.

2. The microcracks are not preexisting defects and must
first nucleate. Carbides and possibly other brittle par-
ticles have an essential. intermediate role because, unlike
the ferrite, they permit the crack nucleus to form without
blunting it.

3. The brittle fracture stress depends on the values of two
quantities: (i) the size of the microcracks; and (ii) the
resistance it experiences, relevant when the microcrack
attempts to cross the boundary. The resistance is ex-
pressed by the Griffith energy term: 15Jm™ < y =
100 Jm™2, or a corresponding LEFM crack arrest tough-
ness value: 25 MPa Vm < K2 < 7 MPa Vm, that
applies to a rapidly advancing microcrack. The size of
the microcrack corresponds with the parent particle’s
dimension.

4, Since the parent particle or grain is represented in the
microstructure by a distribution of sizes. the brittle frac-
ture stress is determined by the largest “eligible” particle
within the stressed volume. Particles are “eligible” when
the conditions for nucleating a crack can be satisfied and
when the resistance their boundaries offer to microcrack
extension is not excessive.

5. The crack nucleation in hard particles is assisted by plas-
tic deformation of the surrounding matrix but requires an
additional stress raiser such as a dislocation pile-up or a
defect in the particle. However, the pile-up dimensions
do not influence the brittle fracture stress directly. The
microstructural features that affect nucleation can alter
the brittle fracture stress indirectly by changing the
number of “eligible” particles and the largest “eligible™
particle size.

6. The particles whose boundaries resist microcrack exten-
sion include: (i) carbide particles, (ii) carbide films at the
grain boundaries, (iii) carbide lamellae in the pearlite,
(iv) hard inclusions, (v) ferrite grains, (vi) pearlite colo-
nies or grains, (vii) bainite packets, and (viii) martensite
packets. The different boundaries display characteristic
K% -values.

7. The microstructural feature that controls the brittle
fracture of a particular steel is the feature with the
“eligible -particle-size /K, combination that produces
the largest brittle fracture stress value. The existing
K& -measurements provide insights to the controlling
microstructural features in different steels.

8. The differences in the size of the stressed volume in the
tensile-, CVN-, and Kj-test complicate the analysis of
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the different transition temperatures and can make the
K, .-CVN energy relation microstructure dependent.

9. Statistical analyses of the contribution of different par-

ticle sizes indicate that the small number of the ver
largest particles has a disproportionate influence on Kk,
below the transition temperature. Microstructural feu-
tures that influence the fraction of the particles that 1s
“eligible” have a modest effect on K.
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Establishment of Microstructural Spacing :
during Dendritic and Cooperative Growth
'Q
.
. . . . . . b,
This symposium was organized under joint sponsorship by the ASM-MSD Phase Transformations ’
Committee and the TMS-AIME Solidification Committee to provide a forum for discussion of micro- N
structural spacing in different morphologies during various transformations. The invited contributions )
were presented during the March 1983 meeting of TMS-AIME. ~
. . ..:
The size scale and phase spacing are among the most important characteristic features of regular ;":
microstructural morphologies. In practice a number of thermal and mechanical treatments have been 2
developed to modify microstructural spacing during phase transformations. For some time there has been ]‘»
no generally established analysis to account for the selection of spacing under given conditions. However. a::_'
recent advances in experiment have yielded accurate measurements in well-characterized systems which ::«
have stimulated new theoretical work on the analysis of the selection of spacing and scale. i
)
N
Important theoretical progress has been made in applying the principle of marginal stability to the initial oy
selection of dendrite spacing and with the description of dendrite coarsening to account for structural Y,
adjustment. Further progress in analysis and new results have been reported on spacings developed in oy
cellular, eutectic, and monotectic structures. For solid state reactions recent experimental work on spacing .:'}
selection has emphasized the importance of diffusional transport in the vicinity of the moving trans- ‘i
formation interface. The written discussions in the papers that were available at the time of publication o
provide a valuable overview of recent work and point out a number of unresolved areas which should bt
stimulate future work. 5 '
oy
J.H. Perepezko .
University of Wisconsin-Madison -
Madison. Wisconsin ™
G.J. Shiflet o
University of Virginia L
Charlottesville, Virginia .
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the Deformation at the Tip of a Stationary Crack,” Fracture Mechanics: Sixteenth Sym-
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ABSTRACT: A new analytical technique is presented whereby the Hutchinson-Rice-
Rosengren singularity solutions can be used, in certain cases, to determine the stresses
and strains near a crack tip for a dynamically loaded, strain rate-dependent material.
This technique involves a simple modification of the constant, a, and the strain hard-
ening exponent, , in the power stress-strain law. Elastoplastic, dynamic finite element
computations are in close agreement with this analytical technique.

Stresses and strains are generally higher in a dynamically loaded rate sensitive mate-
rial than in a rate insensitive material. Also, Jic increases correspond to increases in the
flow stress in rate-sensitive materials, provided that &, is rate-insensitive.

KEY WORDS: fracture, cracks, plastic fracture mechanics, dynamic, strain rate,
J-integral, crack opening displacement, finite element models, compact tension speci-
men, steels, power-law hardening materials

Nomenclature

Ay Crack tip plastic zone area

d, Constant in crack tip opening displacement relation (Eq 2).

Value depends on the strain hardening exponent n
D Constant in Malvern equation (Eq 14)
E Young's modulus

I, Constant in J-field equations (Eqs 5 and 6). Value depends on

the strain hardening exponent, n

J, J1 Path-independent contour integral; energy release rate for quasi-

.. statically loaded specimens
J, i Time rate of change of the J-integral
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Path-independent integral; energy release rate for dynamically
loaded specimens

Critical value of J-integral when crack propagation initiates
Jic at loading rates @ and b, respectively

Maximum value of J;

Maximum value of J;

Value of J-integral at time = 0

Coordinate directions: X = X, X,

Mode I stress intensity factor (loosely defined as \/EV/1 — 1?)
Time rate of change of the stress intensity factor

K\ at loading rates a and b, respectively

Strain hardening exponent in the power stress-strain law (Eq 3)
Strain hardening exponent in the modified power stress-strain law
Direction cosines

Reciprocal of the strain hardening exponent; N = I/n
Reciprocal of the modified strain hardening exponent; N' = I/n’
Exponent in the Malvern equation (Eq 14)

Radial distance from the crack tip (length units)

Plastic zone size at § = 0

Dimensionless distance from crack tip; R = r/(K1/ao)’
Cauchy deviatoric stress tensor

Arc length

Time

Traction vector; 1, = o;n,

Kinetic energy density; T = (1/2) pu,

Displacement vector

Velocity vector

Acceleration vector

Volume '

Strain energy density; W = J ode;

Constant in the power stress-strain law (Eq 3)

Constant in the modified power stress-strain law (Eq 18)
Integration contour

Crack tip opening displacement

Critical crack tip opening displacement

Strain tensor

Time rate of change of the strain tensor

Known dimensionless functions of the circumferential
position, 68, and the strain hardening exponent, n

Equivalent plastic strain

Equivaient plastic strain rate

Average equivalent plastic strain

Average equivalent plastic strain rate
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f : € Yield strain under static tensile loading; ¢o = 0o/E

| 6 Circumferential position measured counterclockwise from the
crack plane

A Loading rate parameter

v Poisson's ratio

Mass density

oa Instantaneous flow stress under dynamic loading

oge (von Mises) equivalent stress

ag; Cauchy stress tensor

6; Known dimensionless functions of the circumferential position, 6,
and the strain hardening exponent, n
do Yield stress under static tensile loading

Ooa, Oo» Yield stress at loading rates a@ and b, respectively
os Flow stress under static loading

As a first step in modelling rapidly advancing cracks in tough steels, this
paper examines a stationary crack in a rapidly loaded compact tension spec-
imen. The plastic strain rates and therefore the strain-rate sensitivity effects
are smaller for a dynamically loaded stationary crack than for a rapidly
propagating crack. However, strain-rate effects are by no means insignifi-
cant in the stationary crack case [7]. Yet, with the exception of the recent fi-
nite difference study of elasto-viscoplastic fracture by Aboudi and Achen-
bach [2] and creep studies by Little et al [3], virtually no analytical or
numerical work has been reported incorporating strain-rate-dependent flow
properties in the determination of the crack tip stress fields. The aim of this
work is to examine the effects of loading rate and rate sensitivity on J; and
the crack tip opening displacement, features of the plastic and process zones
that are influential in determining the toughness.

Plastic strains, in the region surrounding a stationary crack, can be char-
acterized as occurring in two zones (Fig. 1). Small plastic strains in the range
0 = ¢r = 0.1 occur in the larger region called the plastic zone. The size of the
plastic zone (at 8 = 0) is given by a characteristic dimension, 7. In a non-
hardening material where the plastic zone is small compared with the speci-
men dimensions [4]:

0.036 EJ

ro = ———002 (1 -7 0}

In the immediate vicinity of the crack tip is the heavily strained fracture proc-
ess zone, where plastic strains range roughly from 0.1 to 1.0 [/]. The size of
this intensely nonlinear zone is on the order of the crack tip opening dis-
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PLASTIC ZONE

PROCESS ZONE

FIG. \—Plastic and process zones in the vicinity of a stationary crack.

placement, 8. The crack tip opening displacement can be expressed as a func-
tion of Rice’s [5] contour integral J by [6]

6=d,.-!- (2)

Oo

for a nonlinear elastic, power law hardening material. The constant, d,, is a
function of the material properties a, do, E, and n (in the power stress-strain

law), where
€ AN
—=al\— )
€o Oo

The relative size of the plastic and process zones is approximately :

[

) M3

—= 0.03 4) &
' 22

“
for a material such as A533B [/]. Consequently the volume of the process ’;A
zone is only 0.09% of the plastic zone volume, in two-dimensional, small-scale DN
yielding, plane-strain situations. ' ‘-‘.;:;
Expressions for the stresses and strains in the plastic zone are given by the e
J-field solutions of Hutchinson [7] and Rice and Rosengren [8]: e

EJ (1/m+1)
0 =0o| —5— a6, n 5
y ( 00021;.! 'I( ) ( )
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:v::
' and ;::f
EJ (n/m*1) ).
€ = a e €0, n 6

U] (V] ( 0002 In r) ’I( ) ( ) ‘."
Also of interest are expressions for the equivalent stress and equivalent plas- ‘Y
tic strain: "‘:‘!
oe = V(3/2) 553 (7) W
|‘¢
and ’ 4
er = V(2/3) ey (8) '.
Since the power law relation (Eq 3) does not accurately represent the linear :.f:f
elastic portion of the stress-strain curve, Eqs 5 to 8 are most accurate where :'.‘,:
elastic strains are negligible. ‘::
Strain rates can be determined by differentiating Eq 6 with respect to time: &
EJ )W"‘”( n ) lm ) . X

& = ae J JE %)
! °\ aco’lLr n+1 Y ::::

where the dot superscript denotes a time derivative. Observing the similarity
between Eqs 6 and 9, the latter can be simplified to give "

2 — n —-— .
‘”"’(n+l)(§)“’ (10)

The strain rates given in Eqs 9 and 10 are not accurate in most situations.
The angular distributions of strain rates, represented by &; in Eq 9, were de-
termined for static loading and therefore do not account for the effect of the
inertial loads on the stresses. The amplitude of the strain rate singularity is a
function of a, n, 0o, I, J, and J. Many materials exhibit strain-rate-dependent
material properties, in which case the static go, a, and n values do not repre-
sent the stress-strain relations under dynamic loading.

The application of Rice’s J-integral to general dynamic situations is awk-
ward, since it does not account for kinetic energy or inertia and is no longer
path-independent. Recently, a number of path-independent integrals have
been proposed [9-12] that are applicable to general dynamically loaded
structures. The most promising of these is the J-integral of Atluni etal [12],
which corresponds physically to energy release rate for stationary and prop-
agating dynamically loaded cracks. The J-integral has some computational
advantages over the others, since the integration is performed along a fixed
contour in space and not along a contour that moves with a propagating
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o
crack such as in Ref 10. The J vector integral is given by .
!
= ,[ (W + D — 1, JdS + f [piisic — puat i }dV  (11) )
2 ‘.
whose first component, Ji, degenerates to Rice’s J-integral for stationary, }h‘
statically loaded cracks. The domain of the second integral in Eq 11 is the vol- ,:',»
ume contained within the contour of the first integral in the equation. i
Expressions such as Eqs 5 and 6 for stresses and strains near a crack tip are .
not available for most dynamically loaded structures. However, Eqs 5 and 6 "‘
can still be used for slowly loaded specimens and for rapidly loaded speci- "_‘\ ]
mens with stationary cracks by using the “inertialess’ modelling technique A
discussed in the next section. g
Ductile crack extension proceeds by void nucleation, growth, and coales- %
cence in the process zone. The critical crack tip opening displacement, &, has ...:‘.
been demonstrated to be a viable ductile fracture criterion [13,14]. From Eq 2 ,::
one can deduce Jic in terms of the critical crack opening displacement: e
S
o = 222 (12) 3
n )- )
g . . | | o i
In rate-sensitive materials, the yield stress will generally increase with in- 3
creasing strain rates. If & is rate-insensitive, then changes in oo will alter Jic L.
according to ..
¢
Jich __( chb)2 __ Oob (13) o
cha cha O0a .
3
where the subscripts @ and b in Eq 13 refer to two different loading rates. In N
other words, Jic will increase with loading rate, provided that &c is :}’,
rate-insensitive. r- !
The void nucleation and growth mechanism, which initiates the ductile : »
fracture process, is enhanced by higher mean (or hydrostatic) stress. The
mean stress scales with static yield stress (see, for instance, the slip-line file ’._
1 solution of Ref 5); however, 8. varies inversely with mean stress (15]. There- N
fore a higher yield stress will generally produce a lower critical crack tip open- :'f_';
ing displacement, which in turn would decrease Jic. Clearly, these two com- 2
peting effects are occurring simultaneously, and it is not known which effect N
will dominate. ;:.-::
In the present study, we consider only the former case, where Jic increases ;'.'-’,t
because of the flow stress elevation in the dynamically loaded plastic zone. R
An analytical model is develooed whereby the J-field solutions are modified -
to accommodate strain rate sensitivity. Finite element computations are also
performed to verify the accuracy of this technique.
k:smdmmﬁ :
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Experimental data from a number of sources [16-20] related Jic to the
loading rate, J. Materials that exhibit an increase in yield stress at high strain
rates often show an increase in Jic at high strain rates corresponding to Eq 13,
as was observed in a previous paper [/]. The relative contributions of the
strain rates in the plastic and process zones are still unclear.

Estimation Technique for Strain-Rate Effects

The stresses and strains near the tip of a dynamically loaded crack in a
ductile material are affected by the inertia of the structure and by the strain-
rate sensitivity of the yield or flow stress. It is therefore desirable to isolate
the strain-rate sensitivity effects in order to ascertain their significance. This
section describes a technique whereby the parameters in the power stress-
strain law are modified to account for strain-rate effects.

Suppose that a body were dynamically loaded, but that inertial effects
could be ignored. Physical situations that would correspond to this are (1) a
solid body with negligible density, or (2) a body loaded at constant velocity
so that the accelerations are everywhere negligible (perhaps after an initial
transient). Differences between the static behavior and the dynamic behav-
ior, in such instances would be entirely due to the strain-rate effects.

Experimental results have shown that the flow stress typically increases
with increasing strain rate [/6-20). Numerous models have been proposed to
characterize this behavior, some of which are discussed in Ref 2/. We have
chosen a form of the equation used by Malvern [22] because of its computa-
tional simplicity, although any other stress-strain-rate relation could equally
well have been used. Malvern suggested that the instantaneous flow stress
under dynamic loading, o4, is a function of the equivalent plastic strain rate,
ép, and the flow stress at zero strain rate, o,, according to

ép) P
oa—-o.[(-p—) +l] (14)

The constants o,, D, and p must be determined experimentally.
The power stress-strain law (Eq 3) can be inverted to obtain

¢ N
0-=00(‘_‘) (15)

Qéo

where N = I/n. Equation 15 can be substituted into Eq 14 to give

N .\ lp
od--ao(-&i—o) [(% +1] (16)

-------------
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Substituting for the equivalent plastic strain rate from Eq 10 gives

_ e}V Je Lp
°"""°(m) [((1+N)DJ) “] (7

Equation 17 is too unwieldy to be used as a stress-strain relation. A more de-
sirable dynamic stress-strain relation would be a power law of the form

€ o
oé=oo( , ) (18)
a €

The parameters o’ and N’ cannot be found by equating Eq 18 to Eq 17 and
solving for a’ and N'. However, a very good approximation to Eq 17 can be
found by selecting o’ and N’ to minimize the deviations (squared) between
Eqs 17 and 18. That is, choose o’ and N’ to minimize

fla', N') = f(oa — 0d)* de (19)

Or, making substitutions from above, to minimize:

oo —LN'_ LN je Lp 2
f(a’N)—f{(a'eo) (&60) [((1+N)DJ) +l]} e (20)

(This minimization is best performed by using a nonlinear programming ap-
proach. Ref 23 discusses nonlinear programming in detail.) The limits of in-
tegration in Eq 20 should be chosen to reflect the strain range of interest, typ-
ically 0 to 0.25. Note that Eq 20 only applies to a particular instant in time,
since J/J will, in general, not be constant (J/J is constant only in the special
case where J varies with time according to J = Jo exp{A¢}).

_ Figure 2 illustrates the strain-rate-modified stress-strain curve obtained by
using this approximation technique. The lower curve is the zero strain rate
stress-strain curve for a material such as A533B (¢/e0 = 2.12(0/00)**®). The

v
)
X
7
N
i~
.

upper curve is the actual dynamic stress-strain curve produced according to _,

Eq 17, with o, = 383 MPa, D = 62920/s, p = 7.245,J = 188.0 kJ/m’, and '-:J

= 176.5 MJ/m’s. The curve reflects the variation of ép with ep throughout g

the plastic zone. This curve can be contrasted with the conventional stress- =

strain curve, shown as a dashed line in Fig. 2, which assumes a constant av- f'{:.':

erage strain rate throughout the plastic zone. The high strain-rate estimation Y

technique was applied to parameterize the upper curve. Values of o’ = 0.533 b

and n’ = 6.38 correspond to the high strain rate curve so well that any devia- :3

tions are not visible on the scale of Fig. 2. ‘23
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FIG. 2—Power stress-sirain law curves for A533B steel under static and dynamic loading.

Finite Element Modelling

A stationary crack in a compact tension specimen was modelled using fi-
nite elements. Figure 3 is a plot of the mesh; an enlarged view of the crack tip
region is shown below a view of the bulk of the model. The model is com-
prised of 646 nodal points joined by 190 eight-noded isoparametric finite
elements. Numerical studies [24,25] have shown these elements to be suitable
for use in the fully plastic range.

The crack is modelled with a sharp tip; the finite element analyses do not
account for the continually changing tip geometry as progressive blunting
takes place. This is, however, the same way in which the J-theory models the
crack tip. Therefore the results of the finite element analyses ought to agree
with the J-field equations (Eqs S to 8). Another study, currently under way,
is focusing on the more realistic problem where the continually changing
crack tip geometry is included in the analysis.

The material properties are given with an elastic strain-hardering plastic
model, based on experimental data for A533B steel at 93°C [26,27]. The zero
strain rate stress-strain curve is given in Fig. 4. Static and dynamic finite
clement analyses were performed using this material mode. Dynamic anal-
yses were also performed using strain-rate-sensitive flow stress as modelled
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g s 17.2mm - '

Ws=2032mm

crack TP~ |- jmm

FIG. 3—Finite element mode! of compact tension specimen.

by Eq 14. The three parameters, o, = 383 MPa, D = 62920/s,and p = 7.245,
were determined by Hoff et al [28] for A533B steel at 93°C.

The interaction of strain rate and inertial effects makes it difficult to iso-
late the contribution of either. A technique was devised to eliminate the iner-
tial effect in order to quantitatively assess the importance of the strain rate
effect. A linear elastic static analysis was first performed. All the resulting
nodal displacements were scaled by a constant giving initial velocities at each
node. The scaling constant was chosen so that the load point velocity pro-
duced by this scaling technique was equal to that load point velocity required
to give the desired K-rate, K. A dynamic analysis was then performed, start-
ing with an unloaded model (all displacements zero) but with an initial veloc-
ity distribution. The nodal velocities did not change appreciably during the
analysis. With almost constant nodal velocities, the nodal accelerations are
very small and the model is essentially “inertialess™. Further evidence of the
w inertialess character of this analysis is that the kinetic energy varied by only
13.4% throughout the analysis.

Several finite element analyses were performed under static and inertialess
dynamic loading. Table 1 summarizes the essential features of these analyses.
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FIG. 4—Z2Zero strain rate stress-strain curve for A533B sieel at 93°C.

Results and Discussion

Results for the static analysis, S04, are given in Figs. 5 to 7 at a load level
of J1 = 182 kJ/m’. Figure S shows contours of equivalent stress. Note that
all distances are scaled by the similarity parameter, (K1/ 00)’, so that

r

R=%vor

(21)

Figure 6 shows contours of equivalent plastic strain in the same region as
Fig. 5. A comparison of the equivalent plastic strain at § = 45° from the fi-
nite element computation with the J-field solution of Eq 6 is shown in Fig. 7.
Note the good agreement between these two approaches.

The average plastic strain can be determined from an area average of the
plastic strains in the crack tip plastic zone according to

T

<5

1
€Pave) = '; [ epdAp (22)

In spite of the larger plastic strains near the crack tip, the average is €pve)
= 0.0016 due to the large portion of the plastic zone that is lightly strained.
Analysis S16 features “‘fast” inertialess dynamic loading (see Table 1 for
definition of fast and slow) without strain-rate-sensitive flow stress. The
equivalent stress and equivalent plastic strain contours for this case are very
similar to Figs. 5 and 6 and are not reproduced here. Plastic strain rate con-
tours are plotted in Fig. 8 at a load level of J;1 = 181 kJ/m’. Plastic strain
rates along a line at & = 45° plotted in Fig. 9 show the good agreement be-
tween the finite element results and the J-field solution of Eq 10. Some scat-
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. o 0.001 0.002 0.003

FIG. 5—Contours of equivalent stress; static analysis S04.

- ter is present at very small values of R in Fig. 9 due to the difficulties in nu-
. merically modelling the very large strains at the crack tip.

v The average plastic strain rate can also be determined from an area aver-
b age according to

1
€Plave) — —— f épdAp (23)
Ap

> Plastic strain rates as high as 10°/s are observed near the crack tip, but the
e average strain rate is only 1.06/s. This is also due to the large portion of the
plastic zone that is lightly strained and therefore strains at a lower rate. (The

- 0 000l 0002 0003

‘s
o F1G. 6—Contours of equivalent plastic strain; static analysis S04.
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F1G. 7—Plastic strain versus distance from crack tip at 8 = 45°; static analysis SO4.
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FIG. 8—Contours of plastic strain rate; Jy = 181 kJ/m*, J1 = 1.63 X 10° kJ/m’s; rate-insensi-
tive dynamic analysis S16.
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. FIG. 9—Plastic strain rate versus distance from crack tip at 8 = 45°; J, = 181 kJ/m’,
Ji = 1.63 X 10° kJ/m’s; rate-insensitive dynamic analysis S16.

analysis did not account for the possibility, and effects, of adiabatic heating
in the very rapidly strained region at the crack tip.)

Analysis S24 is similar to S16, except that a strain-rate-dependent flow
stress was used. The character of the equivalent stress, equivalent plastic
strain, and plastic strain rate contours (Figs. 10 to 12) are similar in form to
the static and the dynamic (rate-insensitive) case, but the magnitudes of these

AN

Q 000/ 0002  0.003

A= R

FIG. 10— Contours of equivalent stress; J; = 188 kJ/m’, Jy = 1.77 X 10° kJ/m’s; rate-sensitive
analysis S24.
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FI1G. 11—Contours of plastic strain: }, = 188 kJ/m’, J1= 1.77 X 10* kJ/m’s; rate-sensitive ',"":
dynamic analysis S24. :::,
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. f?f»
quantities are quite different. It is interesting that the magnitudes of all these
quantities are higher than for the static case at a comparable Ji-level. This is _

largely due to the change in the *“‘effective’” stress-strain curve resulting from d
the strain-rate effects (Fig. 2). Figure 13 compares the equivalent stresses and X
equivalent plastic strains from the dynamic rate-sensitive analysis (S24) with

o - -
R AR A A

.

-
-

the dynamic rate-insensitive analysis (S16) along a line at 8 = 45°. The plotted *
points are from the finite element results, and the curves are from the J-field ::‘
solution (the rate-sensitive curve was developed by using the modified o’ and . .i
n’ parameters). These results all show that the effect of strain-rate-sensitive ';v
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FIG. 12—~Contours of plastic strain rate; J, = 188 kJ/m’. J1 = 1.77 X 10" kJ/m’s; rate-sensi- P!
tive dynamic analysis S24. '
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FI1G. 13—Comparison of equivalent stress and plastic strain from the fast dynamic rate-sensitive
analysis, S24, with the fast dynamic rate-insensitive analysis, S16.

flow stress is to significantly alter the magnitudes of the stresses and strains
at the tip of a crack.

The constant-rate stress-strain curve, plotted as a dashed line in Fig. 2,
does not map the finite element data in Fig. 13 when used in the J-field equa-
tions. The equivalent stress is underpredicted, particularly where the plastic
strains are large.

- Analyses S12 and S20 are much more slowly loaded dynamic, inertialess
computations. The loading rate is K1 = 1.0 MPay/m/s, which is within the
range of 0.55 < K; < 2.75 MPay/m/s used in ASTM Test for Plane-Strain
Fracture Toughness of Metallic Materials (E 399). Even at this slow loading
rate, there is a difference of roughly 10% in equivalent stress and 2% in equiv-
alent plastic strain, as shown in Fig. 14 along a line at 6 = 45°.

The crack tip opening displacement has been used as a fracture initiation
parameter. Figure 15 plots the crack tip opening displacement & as a func-
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FIG. 14—Comparison of equivalen: siress and plastic strain from the slow dynamic rate-sensi-
tive analysis, S20, with the slow dynamic rate-insensitive analysis, S12.

tion of Ji. It is clear that the strain-rate-dependent flow stress has a signifi-
cant effect on §. Consider the rate-insensitive analysis, S16. At the point in-
tersected by the dashed line, J1 = 182 kJ/m? and 8 = 237 um. The average
plastic strain rate is 1.06/s. This strain rate would raise the flow stress by a
factor of 1.22 according to the Malvern equation (Eq 14), with D = 62920/s
* and p = 7.245, and if the material were rate-sensitive. This increase in flow
stress would correspond to a 22% larger Ji value according to Eq 13, if &
were constant. Figure 15 shows that the Ji value for the dynamic rate-sensitive
analysis, S24, is in fact 25% larger than the rate-insensitive analysis. A less
pronounced difference is found between the slowly loaded analyses, S12and
$20, where a 4% change in oo and Ji is predicted by Eq 13 but is not verified
by finite elements, since this is within the noise level of the computation. This
suggests that a rapidly loaded rate-sensitive ductile material could fail at a
higher Jic than a slowly loaded one, if a critical crack tip opening displace-
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FI1G. 15—Crack tip opening displacement versus J-integral curves for the fast dynamic rate sen-
sitive analysis, S24, and fast dynamic rate-insensitive analysis, S16.

ment is the failure criterion. The work of Little et al [3] showed the same re-
sult, albeit that computations were performed in the 107 < K < 10’
MPa\/m/s range.

The J-integral, discussed earlier in this paper, was also calculated for each
dynamic analysis. The kinetic energy density term is very small along the in-
tegration contours close to the crack tip, and the inertia term is also very
small due to the small accelerations produced by the inertialess loading tech-
niques. As a result, the differences between Rice’s J-integral and the J-integral
are less than 0.09% for the analyses considered in this study. Consequently,
the treatment of these dynamic problems by using the (static) J-field solu-
tions of Eqs 5 and 6 is justified in the case of inertialess loading.

The authors recognize that actual dynamically loaded structures and lab-
oratory specimens do not exhibit the analytical tractability of inertialess nu-
merical models. Determination of the stress and strain fields is complicated
by vibrations that create localized unloading and even reverse plasticity. The
J-field solutions are not applicable in these cases, and Rice’s J-integral is no
longer path-independent. As a first step in the dynamic analysis of cracked
bodies where inertial effects are significant, the authors have performed pre-
liminary elastic-plastic finite element analyses. The J-integral is path-
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independent in these cases and shows promise as an elastoplastic stress field
characterizing parameter, since it has already been used to describe the stress
state in elastodynamically propagating cracks [29]. The details are still unre-
solved of how the stress state can be described using J in the elastoplastic
dynamic case, providing a challenging topic for ongoing research.

Conclusions

A technique has been described in which finite element analyses were per-
formed on dynamically loaded models without any inertial effects. This *‘in-
ertialess loading technique’ permitted quantitative determination of the ef-
fects of strain-rate-dependent flow stress.

Another technique was developed that enabled the stresses, strains, and
crack opening displacement to be approximated by a simple modification of
the a and n parameters in the power stress-strain law. Using the modified
parameters, o’ and n’, in the J-field solution, stress and strains came to within
10% of a corresponding finite element computation, in regions where
the J-field was applicable. This technique was only usable in conjunction
with the inertialess loading technique.

Finite element computations revealed that stresses and strains in the crack
tip plastic zone were higher in a rate-sensitive material than in a rate-
insensitive material at corresponding Ji-values. Crack tip opening displace-
ments, however, were lower in the rate-sensitive material. The same behavior
was predicted using the o', n’-modified J-field solution.

Finite element computations also revealed that if a critical crack tip open-
ing displacement were used as a failure criterion, then the strain-rate-
dependent material could withstand a higher J-value before this 6. was
reached. Equation 13 showed that this increase in Jic could be predicted
based on how the (area) average plastic strain rate would alter the flow
stress.

The newly developed J'-integral was determined from the finite element
results. In the case of a stationary crack under inertialess dynamic loading it
is virtually identical to Rice’s (static) J-integral. The J-integral does appear
promising in general dynamic loading situations with propagating cracks,
since it remains path-independent, whereas Rice’s J-integral does not.
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' VISCOPLASTIC FINITE ELEMENT ANALYSIS OF RAPID

' . o
; FRACTURE 3
' L}
| R. HOFF .
* Department of Mechanical Engineering. University of Waterloo, Ontario, Canada yt
N2L 3Gl
) and
! C. A RUBIN and G. T. HAHN
P Mechanical and Materials Engineering, Vanderbilt University, Nashville, TN 37235, US.A. p
Abstract—Rapid fracture in ductile viscoplastic materials is discussed in this paper. Following a «
review of previous studies of rapid fracture in ductile materials, a finite element model is developed
R for use with a crack extension algorithm discussed in a companion paper. Despite the lack of an .
3 established rapid ductile fracture criterion, computations which assumed that the 8-Aa history b
‘ was the same for rapid fracture as it was for stable crack growth agree qualitatively with v
experimental data. It is shown that viscoplastic materials absorb considerably more energy during ]
rapid fracture than rate insensitive materials and are therefore “tougher”. A detailed examination )
of the stresses in the immediate vicinity of the crack tip reveals a constantly changing stress field iy
that does not reach a “steady-state™ as the crack tip translates.
{ U
(
| NOMENCLATURE p
A, crack tip plastic zone area ::
a crack length e,
a crack velocity ,:‘
Aa crack growth
C, shear wave speed of the material, C,=(u’'p)'? "
D constant in viscoplastic constitutive relation (3) ]
E Young's modulus ::
A E, undetermined function of € and sometimes v. m or a'C, N
J; Rice’s path independent contour integral: energy release rate under quasistatic loading :i
e cnitical value of J-integral: when crack propagation initiates *'
J Atluri’s path independent contour integral, energy release rate under dynamic loading
K amphitude of stress or strain singularity
k K, mode | stress intensity factor N
m ratio of tangent modulus to elastic modulus for a linear hardening material S,
n strain hardening exponent )
n, direction cosines ),
{ P exponent in viscoplastic constitutive relation (3) f"‘
i r @ polar coordinates »
s arc length -
R s strength (exponent) of the stress and strain singularity for rapidly propagating crack; given in equation (1.2) : ¥
’ T Kinetic energy density: T=u, 4,2 '
, t traction vector. 1,.= o,n, :
7, b dimensionless function of @ and & v
F u displacement vector .::
: ] velocity vector r
b [} acceleration vector
, 1 volume N
: v load point displacement :
X ) load point velocity
; W ’ o N
r, strain energy density; H'= . o,de,
E a crack up opening angle
a, critical crack tip opening angle
r integration contour "]
é crack up opening displacement N
" strain tensor ‘

G
‘v

dimensionless functions of 6 and a
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& yield strain; =06, £

& equivalent plastic strain rate

Epare average plastic strain rate

u shear modulus

Y, undetermined function of @ and sometimes v. m or a,C,
o, Cauchy stress tensor

a, dimensionless functions of 8 and a

o, mean or hydrostatic stress; 0,=(0, + 0, + 0;)'3

A yield stress under static tensile loading

g,. 0, 0. normal stresses in the x, y and =-directions
INTRODUCTION

RAPIDLY propagating cracks in rate sensitive (viscoplastic) ductile materials are examined in this
paper. Despite the practical importance of this class of fracture problem, particularly in relation
to crack arrest phenomena. relatively little analytical or numerical work has been done in this
field. After a brief review of previous work, the fracture criteria and finite element model will be
described. The results of rapid crack growth simulation with crack velocities up to 100 m/s reveal
that viscoplastic materials are significantly more resistant to crack propagation than rate insensitive
materials.

The analysis of dynamic fracture in rate sensitive ductile materials is complicated by at least
three nonlinearities: the material is ductile so fracture is accompanied by large amounts of plastic
flow. load rates and crack speeds are sufficiently large to necessitate the inclusion of inertia effects
in the analysis. and. many ductile materials of industrial interest have strain rate dependent flow
properties. Other nonlinearities such as finite deformation effects and adiabatic heating at the tip
of a rapidly propagating crack could be investigated. but these will not be included in this study.

The stress and strain fields at the tip of a rapidly propagating crack in a ductile rate insensitive
material were characterized by Achenbach and Kanninen [1] for the Mode 111 case. and later by
Achenbach er al. [2] for the Mode | case. For an elastic-linear strain hardening material:

o,=Kogyr Zu 6, v.m. a/C) )
g, =KorE 6 v.macC). 2)

The order of stress and strain singularity is in the range — 0.5 < 5 < 0. The asymptotic approach
used to determine eqs (1) and (2) is unable to give values for the magnitude factor, X, which must
be determined by other means.

Finite element modelling of rapid ductile fracture was performed by Ahmad er al. [3] and
later by Barnes er al. [4] at Battelle Columbus Laboratories. Motivated by previous discovernes
of Kanninen er al. [5] that gquasisiatic analyses or elastodynamic analyses grossly underestimate
the resistance of AISI 4340 steel to crack growth under impact loading. the Battelle group performed
dynamic finite element simulations of 3-point bend specimens using experimentally determined
elastic-strain-hardening—plastic material properties. A critical crack tip opening angle was used
as the fracture criterion. and crack extension was modelled using the “node release™ technique
described by various researchers [6-10]. Their numerical results for macroscopic parameters such
as crack position as a function of time. and dynamic stress intensity factor agreed very weil with
the corresponding experiments. However, due to the coarseness of the computational grid, no
results for near tip stresses or strain rates were obtained.

Lo [11] recently presented solutions to the problem of rapid crack extension in ductile materials
with rate sensitivity. A semi-infinite crack propagating in the x-direction under small scale vielding
conditions was modelled. An asymptotic analysis. in the sense of Amazigo and Hutchinson [12]
and Achenbach er al. [2]. was performed on the basis of crack velocities less than the shear wave
velocity of the material. The analysis uses one of the elastic-viscoplastic constitutive relations
described by Perzyna [13] which does not include strain hardening but models associated
viscoplastic flow. The Perzvna relations are stated in a general three-dimensional form. of which
the one-dimensional case specializes to

b S N SR N A SRR
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G

The parameters g,. D and p must be determined experimentally {14].
The near tip stresses. strains and displacements were determined based on the assumption
that they would be singular in r:

a 1p=1
w=lgE| 7 a6 “
& =rr 26 (5)

; Ip-1
u, =1E E‘H PP G (6. d), (6)

where a is the crack velocity, B=D/a{. D and p are defined by eq. (3), E is Young’s modulus. r
and @ are coordinates centered on the moving crack tip, and &,. and &7, and &, are dimensionless
functions of 6 and a.

The possibility of using the J-integral, or any dynamic variation of the J-integral idea, as a
near tip characterizing parameter is completely ruled out by eqs (4-6). The J-integral is path
independent for stationary cracks since it is comprised of energy density terms, order r~', integrated
around a closed path. order r'. which result in the order r° integral J. (Energy density terms are
of the form o, ¢,and are given by the HRR singularity solution as being singular in r to the order
— 1). In the rate sensitive rapid ductile crack extension case, eq (4—6) would result in the energy
density. order r """, being integrated around a path. order r. giving a quantity of order r"”*#7",

Therefore as r — 0. (for p > 3) this contour integral also tends to zero, not a desirable
property for a path independent integral. Some form of J may still be used as a (relatively) far
field characterizing parameter. providing it is calculated along a contour where no unloading takes
place. That is not unlike the justification for using J to predict tearing instability [15] or using
J; in the presence of crack tip blunting [16, 17].
The Lo results also reveal that the hydrostatic or mean normal stresses.
o, = (0,, + 0, + 0..) 3. ahead of the propagating crack tip. decreases with increasing crack
velocity. As a. C, increases from Q to 0.61. decreases in o, of 40% and 28% are reported for p = 4
and p = 6. respectively. It was shown by McClintock [18] and Rice and Tracey {19] that void
and hole growth is enhanced by high hydrostatic tensile stresses (neglecting the issue of whether
sufficient time is available for this to occur in dynamic situations). Since ductile fracture is the
end result of a hole growth process, any phenomenon which affects hole growth will affect ductile
fracture. However, it is difficult to predict what affects the interrelation between hydrostatic stresses.
critical strain to fracture. and crack velocity, will have on a fracture parameter such as the critical
crack tip opening angle.
The only reported finite element study of rapid crack propagation in rate sensitive ductile
| materials was performed by Brickstad [20]. The Brickstad analysis makes use of the Perzyna [13]
: elastic- viscoplastic constitutive model with linear strain hardening, for a high strength carbon
|
|

steel (0, = 1485 MPa). The “energy flow into the crack tip region™ was used as the fracture
criterion. and crack extension was modelled using the “node release™ technique [6-10). The energy
‘ flow into the crack tip region is a mesh size dependent parameter, but previous finite element
‘ calculations of this parameter by Rydholm er a/. [21] had agreed well with theoretical predictions

S

in elastodynamic problems. "
Brickstad [20] used a rather coarse mesh. and could not comment on the near tip stress and ::-'..:
strain distributions. However he noted strain rates of the order 10%s at the Gauss points nearest NI

[
[
|
\
! the crack up propagating at 250-750 m s.
E The analyucal work of Lo [11] and the finite element analyses of Brickstad [20] suggest that
[ the fracture resistance of viscoplastic materials is enhanced at high crack velocities. The finite
[ element analyses undertaken in this study quantitatively assess the increased fracture resistance
of a viscoplastic material: AS33B steel at 93 C, and elucidate details of the crack tip stress field
during rapid crack propagation.

o
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FINITE ELEMENT MODELLING

The finite element model used in the analysis of rapid crack growth is depicted in Fig. 1. The
material is modelled as linear elastic up to the yield point, and then with power law hardening
beyond first yield:

£=E, o< 6 W)
& 0o
£=<£) , G2 0 (8)
& Co

with o, = 382.866 MPa, £ = 197.62 GPa, & = o,/E, and n = 10. The rate dependent analyses
employed the rate sensitivity model stated by Perzyna in ref. [13].

14
z,=D[g—0—1], ©)

with D = 62919.55 and p = 7.24545. Close correspondence of the analytical model with
measurements of the flow properties of A533B steel at 93°C is demonstrated in a separate paper
[14]. While it is still debatable whether eq. (9) is the “correct™ representation of the constitutive
behaviour of A533B steel at very high strain rates, it does give good agreement with experimental
results in the range &, < 10%s.

Any crack growth simulation must incorporate a method for continuously changing the
boundary conditions. A companion paper [22] presents a detailed discussion about how spring
and gap elements may be used, in the general purpose program ABAQUS, to simulate crack
extension.

An initial velocity field was imposed on the specimen at the beginning of the analysis. This
was to prevent the occurrance of large load impulses at the beginning of the analysis. Impulsive
loads induce large amplitude vibrations in the model which overwhelm the inertial and viscoplastic
effects at the crack tip. The same technique was used successfully in the analysis of rapidly loaded
stationary cracks [23].
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Fig. 1. Finite element model of compact tension specimen used in the investigation of propagating cracks
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Four analyses were performed: a rate insensitive one and a viscoplastic one at a moderate
loading rate of ¥, = 1 m/s, as well as a rate insensitive analysis and a viscoplastic analysis at a
higher loading rate of ¥, = 100 m/s. These analyses are summarized in Table 1. The computation
time required for these simulations was typically 12-16 CPU hr. Although these computations
were performed on a Decsystem-10 computer with a Tops-10 operating system, it was later shown
that very similar times could be expected on a VAX 11/750 running the VMS operating system.

Table 1. Summary of finite element analyses for propagating cracks

Load line K,
Analysis Analysis velocity at start Rate
identification type (m’s) (MPa,/m’s) dependent?
26 Static 0 0 No
P32 Dynamic 1.0 1.1 x 10° No
P42 Dynamic 1.0 11 x 10° Yes
P52 Dynamic 100.0 1.1 x 107 No
P62 Dynamic 100.0 1.1 x 107 Yes

IMPLEMENTATION OF FRACTURE CRITERIA

The necessity of using a particular fracture criterion in a finite element crack growth simulation
forces one 10 make some a priori assumptions about the characterization of the ductile fracture
process under rapid loading. Whereas stable crack growth can be characterized by an experimentally
obtained J~Aa relationship just after initiation [7, 24], very few J—Aa results are available for
rapid crack growth. In the absence of such experimental data, some other fracture criterion must
be used at initiation and immediately following initiation.

The crack tip opening displacement, &, shows promise as a near tip characterizing parameter
since it can be interpreted as the integral of strains around the crack tip [25]. The &Aa history,
used as the fracture criterion for the first 4 mm of growth in the dynamic analysis, was obtained
from the results of the stable crack growth analysis [22]. Figure 2 illustrates that

= — 33.58(Aa)" + 0.47082 Aa + 2.5332 x 104 (10)

{mm)
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Fig 2 Crach tip opening displacement vs crack growth.
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(where & and Aa are in meters), for Aa < 4 mm. A critical crack tip opening angle was used as
the fracture criterion for Aa > 4 mm. The stable crack growth value of a, = 0.24 radians was
used as the fracture criterion. The use of rate invariant values of J (Aa) and q, is equivalent to
assuming that the local ductile fracture mechanism is rate insensitive. This assumption cannot be
defended at this time. It is made so that its consequences can be tested against experiments.

The computational algorithms which performed the rapidly growing crack simulations were
almost identical to those used for stable crack growth. However, the first 4 mm of crack growth
were &-controlled rather than J-controlled, as discussed in the preceding paragraphs.

RESULTS AND DISCUSSION

The results of the rapid crack growth simulations are presented in this section. Experimental
results [24] and numerical results [22], pertaining to slow stable crack growth, are also presented
where possible and appropriate.

Figure 3 is a plot of J, as a function of crack growth. It is known [24] that J; for the slow
stable crack growth analysis is 200 kJ/m 2. Yet, fracture initiated in the rate insensitive dynamic
analysis at (J{ = ) 205kJ m? and 223kJ/m? for ¥, = 1.0 m/s and i, = 100.0 m/s, respectively;
and fracture initiated in the viscoplastic analyses at 257 kJ'm 2 and 330kJ/m 2 for i, = 1.0m/s
and ¥, = 100.0 m/s, respectively. Therefore, the effect of the local material inertia is not very
significant at initiation. whereas the viscoplastic effects are quite large.

The rate insensitive dynamic results for #, = 1.0 m/s are virtually identical to the slow stable
crack growth results. However, values of J; from the viscoplastic analysis are always about 17%
larger than the stable crack growth values. The same trend is evident in the i, = 100.0 m/s results:
the rate insensitive results average out to about the same as the stable crack growth values, yet
the viscoplastic results are about 30% larger.

The observation that rapid crack propagation in ductile materials must overcome more
resistance than slow crack propagation was also observed by Kanninen et al. [5]. Although the
Kanninen er al. study is inconclusive as to the source of the difference in toughness between slow
and rapid loading. the finite element results of this paper do suggest that viscoplasticity could
account for the difference.

The first 2.5 mm of crack growth are replotted in Fig. 4 and compared with experimentally
determined J-resistance curves obtained by Joyce [26]. Joyce loaded 1/2T compact tension
specimens (W = 25.4 mm) of A533B steel at a rate of 600 in’s whereby K, at the start of the test

LYY T T T Y
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i, * 100 ms, v:sconus*y

25F v s 10mn, s .

VISCOPLASTIC /
\ /

\

[MJ/m2]

20}
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o
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\ ——STAE.E CRECK GROWTH

—V 1O m/s
05 N 1
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] 4 € [] 10

Z
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Fig. 3. J -integral vs crach growth
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h
:
h
is about 22% higher than for the i, = 100 m/s cases studied here. Joyce's experimental results
‘ show more of a rate sensitive effect and this may be due to (i) Joyce tested at 150°C, whereas the
h finite element solutions assumed a temperature of 93°C, (ii) Joyce tested 1/2” thick specimens,
o whereas the finite element solution is based on a plane strain model, (iii) crack tip blunting is
v counted as crack growth in the slow stable crack growth results of Joyce, and, (iv) the inertia of
) the specimen appears as increased resistance to crack extension in the experimental results.
ko The i, = 100.0 m/s results have a high [requency oscillation superimposed on an otherwise
s:! monotonically increasing response. This is likely caused by the crack extension procedure which.
O by incrementally relaxing the boundary conditions at the crack tip nodes, puts small impulses into
the crack tip region at each time increment. Evidence that the crack extension procedure is the
:' source of these oscillations is, that during the first millimeter of crack growth, the oscillations are
W of a higher “frequency” than later on. Secondly. the “wavelength” of oscillations is about 1 mm
N (for Aa > 1 mm) where the element size is 1 mm. This crack extension technique may, therefore.
3 be limited 10 load point velocities below, say, 500 m/s. This comment also applies to the node
A release technique mentioned in refs [6-8, 10]. However, the moving singularity element of Atluri
and Nishioka [27-29] does show promise in this area, if a correct viscoplastic formulation can
o be found.
K If the value of J; as stated by Rice,
’ ] :
"> Jy = (Wny — tu,,) ds. an
. iy
5
. decreases as a function of time for the case of a stationary crack. then the specimen musr be
9 unloading and the use of J, is invalid. In contrast, the value of J, as stated by Atluri [30].
4
¢ . .
. Ji=| (W +Tyn —1u,)ds+ l.' pliiu,, — i ] dV" (12) :
1Y .r . F
:: may decrease during the load history without the specimen necessarily unloading. At high loading i
O rates. the inertia term (f, plii,. .. .] d}") of eq. (12} is comparable in magnitude to the strain energy a
o
'
A :
s A
5 :
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and traction terms. Small changes in the material point velocities will make the inertia term
negative. and reduce J|, even though the bulk of the specimen is still loading. This is the
situation observed in the i, = 100.0 m/s analyses, and is the source of the oscillations in these
results. The J -integral values quoted in this paper are calculated along the contour shown by
the dashed line in Fig. 1. Values of J calculated at contours interior to this one are path independent
(to within + 10%) until the points at which the integration is performed experience unloading
due to the effects of the growing crack.

Figure 5 is a plot of the crack tip opening angle as a function of crack growth. The crack
tip opening angle is poorly defined during the first millimeter of crack growth, as in the case of
stable crack growth. Between 1 and 4 mm of crack growth, the crack tip opening angle is very
similar for the quasistatic and dynamic computations. This is likely due to the fact that the §-Aa
relationship from the stable crack growth analysis was used as the fracture criterion for the first
4 mm of crack growth in the dynamic analyses. After 4 mm of crack growth, all of the analyses
use the same value of ¢ = 0.24 radians as the fracture criterion. The viscoplastic v, = 1.0m;s
analysis has two anomalous points at Aa = 0.125 and 2.0 mm. After verifying that these data
points are indeed correct, we can still offer no explanation for them.

Figures 6 and 7 are plots of load point displacement and load as a function of crack growth.
respectively. The rate insensitive i, = 1.0m’s results are virtually the same as the slow stable
crack growth results. Since the load point displacement and load are higher in the viscoplastic
¥, = 1.0 m’s analysis (2% and 20%. respectively). an analysis which does not address viscoplastic
effects for this case would seriously underestimate the energy dissipated during rapid crack growth.
The i, = 100.0 m’s results have a different character than the slower loading rate results. The
general form of the load vs Aa curves in Fig. 7 is that of a sine wave with a period of 190 ps (i.e.
twice the time for about 6 mm of crack growth). This implies that the natural frequency of the
overall specimen is about 5.3 kHz, which agrees very well with a handbook value for an cantilever
beam with the same length as the arms of the compact tension specimen. This illustrates, not
surprisingly. that the bulk motion of the specimen is greatly affected by the dynamic response of
the specimen. The viscoplastic ¥, = 100.0 m's analysis shows again that considerably more energy
is dissipated due to viscoplasticity than could be accounted for in a rate insensitive elastoplastic
dynamic analysis.

The normalized crack velocity, a i,. is plotted as a function of crack growth in Fig. 8. For
the four cases here it appears that

ax=(a+ B Aa)v, (13)
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Fig. 6. Load point displacement vs crack growth.

(Aa is in meters). The constants @ and S are geometry dependent: indeed, @ and B reflect the fact
that a compact tension specimen is kinematically equivalent to two cantilever beams. It appears
that @ and B are insensitive to inertia, load rate and strain rate.

Stresses ahead of the propagating crack tip are shown in Fig. 9-11. Unless otherwise stated
in this discussion the word “stress” shall refer to equivalent stress, o,. “strain” shall refer to
equivalent plastic strain, £;: and “strain rate” shall refer to equivalent plastic strain rate, £,. At
initiation, the stresses ahead of the crack tip are not a function of the material inertia so the
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Fig. 8. Normahzed crack velocity vs crack growth.

i, = 1.0 m/s results are the same as the i, = 100.0 m/s results in Fig. 9. This idea was proved by
Achenbach er al. [31] as r — 0, and introduced into the finite element computation using the
inertialess loading technique discussed in ref. [23]. Figure 9 shows that the stress is elevated by
about 21% for the i, = 100.0 m/s analysis due to viscoplastic effects.

Figure 10 is a plot of the stresses for the four dynamic analyses after 4 mm of crack growth.
The results are not nearly as smooth as the initiation results. The oscillations in stress could be
due 10 noise in the compuiation, but are more likely due to the dynamic response of the material
near the crack tip. The stress oscillations are very similar for the two +, = 100.0 m/s analyses,
and for the two i, = 1.0 m/s analyses. and are therefore not due to random noise. The viscoplastic
eflects again raise the magnitude of the stresses appreciably. The notion of Lo [11] that
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Fig 9 Equivalent stress vs distance from crack tip at fracture initiation.

5 A A

Lﬂmm'ﬁv_mv;ﬁf;m&ﬁuﬂx ECh b SERCR AN RERLRAY



Viscoplastic finite element analysis of rapid fracture 455
L)
1000 T Y M v
900} oV " I0ms -
— * Y " I0 ms, VISCOPLASTIC
c
3 800 r @ v ¢ 100 ms L
=
N &y * 100 ms, VISCOPLASTIC
\ b .
‘ . 700
\ "
w
w
-3
-
© 6004 .
[
I3
|
a 50¢
2
3
o
W
‘OOT
300 N N . N

o] ! 2 3 4 5
DISTANCE FROM CRACK TIP, r [mm]

Fig. 10. Equivalent stress vs distance from crack tip after 4 mm of crack growth.

viscoplasticity makes the near tip stress fields more singular cannot be addressed on the bases of
Fig. 9-11 since this would require a crack tip mesh at least an order of magnitude finer than the
one used here.

Figures 11 is a plot of the stresses after 8 mm of crack growth. Results were only available
for the iy = 100.0 m/s case. Again significant elevation in stress is apparent due to viscoplastic
effects.

Figures 12-14 are plots of the strain ahead of the propagating crack tip and correspond to
the stress plots in Figs. 9-11. The inertia of the material near the crack tip does not appear to
influence the strain. However, the rate sensitivity increases the strain, a small amount at initiation,
a little more after 4 mm of crack growth, and more still after 8 mm of crack growth, as shown in
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Figs 12-14. This is contrary to the results of creep studies by Little er a/. [32] which indicated
smaller plastic strains due to increasing strain rate.

The results presented in Figs 9-14 do not represent the crack tip stress or strain fields on a
sufficiently fine size scale to permit conclusions to be drawn about what effects inertia and rate
sensitivity have on the critical strain to fracture in the fracture process zone. The results do give
a good representation of stress and strain in the region around the crack tip where the J-field
solutions would be applicable if the cracks were stationary.

The plastic strain rates are plotted as a function of distance from the crack tip in Figs 15-
17. In general. the i; = 100.0 m s strain rates are 2 orders of magnitude higher than the i, = 1.0m s
strain rates. The strain rates at initiation are well-behaved, whereas, the strain rates after 4 or
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8 mm of crack growth vary dramatically. Small errors in strain tend to be magnified when
calculating strain rates; this is partly the cause of the large strain rate fluctuation. It is therefore
difficult to generalize these resuits. (Note that data points which would fall below the axes shown
in these figures have been omitted. Their omission is indicated by joining the adjacent data points

with dotted lines.)

Figure 18 is a plot of the average plastic strain rate, defined by
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as a function of crack growth. The average plastic strain rates are about 1/s and 100:s for the
¥, = 1.0 m s analysis and the i, = 100.0 m/s analysis respectively. Substituting these values into
the Perzyna equation (3) implies that the stresses increase by 22% and 41%, respectively. due to
viscoplastic effects. This is substaatiated by Fig. 9 at initiation, and to a lesser degree by Figs 10
and 11 after 4 or 8 mm of crack growth. This supports the observation made previously [23] that
rate effects in the bulk of the specimen can be estimated based on the knowledge of an average

The deformed crack profiles are shown in Fig. 19 for the i, = 100.0 m:s viscoplastic analysis.
A startling feature is the large peak located at x = 0, which develops after crack initiation. This
must be due to viscoplastic effects, since it was not observed in the rate insensitive analyses or
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Due to the lack of an established fracture criterion for rapid ductile fracture, the 6-Aa history
from a stable crack growth and analysis {22] was employed for the first 4 mm of crack growth,
whereafter the crack tip opening angle was used as the fracture criterion. This assumption implies
that the initial strain to fracture, as represented in an integral sense by &, is insensitive to strain
rate and inertia. The effect of loading rate as the calculated resistance curves agree qualitatively -
with experimental results by Joyce [26] (who tested at a different temperature). However, the fact
that the measurements seem to show a greater rate sensitivity than the calculations may assign
that 5-Aa and a, display a positive rate sensitivity.

Computations for crack velocities around 1.0m/s and 100 m/s reveal that the viscoplastic
materials absorb considerably more energy during fracture than rate insensitive materials. This
difference increases at higher crack velocities. This is evidenced by the higher J-Aa curve at higher
loading rates.

For the four cases studies. the crack velocity normalized with respect to the load point velocity,
a'v,. is a linear function of crack growth and insensitive to inertia or strain rate. However, the
normalized crack velocity is likely geometry and load history dependent. ’

A detailed examination of the stresses in the 5 mm region ahead of the crack tip revealed
that stresses were increased due to strain rate effects. Contrary to slow stable crack growth case,
where a fixed stress distribution appears to translate with the crack tip after an initial transient,
it was not observed that the stresses reached a “steady state” distribution after 4 or 8 mm or crack

- growth. The dynamic response of the material near the crack tip seems to preclude the determination
of such a solution.
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A NEW FINITE-ELEMENT TECHNIQUE FOR
MODELLING STABLE CRACK GROWTH

R. HOFF
Department of Mechanical Engineering. University of Waterloo, Waterloo. Ontario
N2L 3GlI. Canada

and

C. A. RUBIN and G. T. HAHN
Mechanical and Materials Engineering. Vanderbilt University. Nashville. TN 37235. U.S.A.

Abstract—This paper presents a new technique for simulating crack extension in conjunction
with the finite-element method. The technique uses spring and gap elements to control the
motion of nodes on the crack plane. These elements are available in many proprietary finite-
element codes. thereby obviating the need for a user-written finite-element code. Numerical
results for stable crack growth are in excellent agreement with corresponding experiments. The
technique is also applied to rapid fracture in ductile materials. as discussed in a companion
paper.

' NOMENCLATURE

a crack length

a crack velocity

a crack growth

E Young's modulus

h element size

J1 Rice’s contour integral

n strain-hardening exponent

w displacements in the X, ¥ and Z directions. respectively
z coordinate directions

a crack-tip opening angle

8 crack-tip opening displacement
€ strain

€ yield strain

g stress

‘ oo yield stress

INTRODUCTION

THE aNaLYsIs of stable crack growth in ductile materials using finite elements is a necessary
precursor to the finite-element analysis of rapid crack growth in these same matenials. Not only
is stable crack growth a special case of rapid crack propagation (i.e. as @a — 0), but many of
the techniques developed for modelling stable crack growth can be extended to the rapid-
propagation case. After a review of previous work in this field, a new technique for modelling
stable crack growth will be described in this paper. Finally, stable-crack-growth results will be
presented based on an analysis using this new technique. A companion paper[1] describes the
application of this technique to rapid viscoplastic fracture.

Other investigators have taken basically two approaches to modelling stable crack growth
with finite elements; we shall call them the microscopic approach and the macroscopic ap-
proach. The microscopic approach models a region in the immediate vicinity of the crack tip.
The elements at the crack tip are much smaller than the crack-tip opening displacement at
initiation and the entire mesh is usually much smaller than the crack length. With this fine-
mesh gradation, it is possible to model the large strains in the fracture process zone (especially
if a large-strain finite-element formulation is used). It is also feasible to use microstructurally
significant fracture criteria such as the “‘critical plastic strain at a critical distance’" criterion
of McClintock and Irwin[2] (also discussed in Rice[3]). The microscopic approach can give
accurate representations of the near-tip stress and strain singularities for limited amounts of
crack growth. Examples of research involving the microscopic-crack-growth approach are An-
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derson[4)], Rice e al.[5]. Rice and Sorensen[6], and Sorensen{7, 8]. Unfortunately, the near-

tip stress fields elucidated using this approach are often difficult to relate to experimentally
measureable quantities such as load, load-point displacement, or even the J integral (where
applicable).

The macroscopic approach to modelling stable crack growth provides data which are easily
related to experimentally measured parameters. The finite-element mesh typically models an
entire laboratory-sized specimen or a relatively large portion of a structural component. The
size of the elements near the crack tip is of the order of the crack-tip opening displacement at
initiation, or larger. Since all dimensions of the model are very large compared to microstruc-
turally significant distances, the fracture criterion must also be meaningful and calculable on
that size scale. Currently the most frequently used are the J integral, the crack-tip opening
angle a, and a combination of the two. Since the critical values of J and « are initially determined
experimentally, it is therefore not surprising that crack-growth simulations using the macro-
scopic approach and these fracture criteria correspond well with experimental measurements.
The macroscopic-crack-growth approach has received far more attention than the microscopic
approach and representative studies include work by Andersson[9], Du and Lee[10,11], Hellan
and Lotsberg{12], Kanninen er al.[13}, and Shih er al.[14].

A finite-element crack-growth simulation must employ some mechanism for altering the
boundary conditions (once the fracture criteron is satisfied) to simulate crack extension. By
far the most commonly used method is the ‘'node-release’’ technique. Conceptually speaking.
when the fracture criterion is satisfied the displacement constraint at the crack-tip node is
replaced by an equivalent force. This nodal force is then gradually reduced to zero in subsequent
increments of the analysis. allowing the node in question to displace, thereby making the next
node the new crack tip. This procedure is repeated for as many subsequent nodes as required
for the desired amount of crack growth. Andersson{4. 9, 15], Du and Lee[10, 11]. Hellan and
Lotsberg[12]. Kanninen er al.[13], Light et al.[16, 17], Rice ef al.[5]}, Rice and Sorensen[6].
and Sorensen[7, 8] have all used variations of this technique.

An alternative technique, used successfully by Shih et al.{14, 18], is to shift the crack-tip
node in the direction of crack growth, thereby modelling the lengthening crack. However, this
technique is still unproven in a dynamic context so it is not used in this study. Atluri, Nishioka
and coworkers[19-21] have developed special crack-tip elements which contain embedded
singularities. and translate with the moving crack tip. Although this technique proved very
successful in elastodynamic problems[20, 22-28], it has some theoretical shortcomings in stable-
crack-growth problems, since the order of the crack-tip strain singularity must be known a
priori in order to formulate the element. Since the order of the strain singularity is velocity
dependent in rapid crack propagation (see Achenbach et al.[29]), the application of the moving-
singularity element to elastoplastic dynamic problems is even less accurate.

The finite-element model and methodology discussed in this paper were developed in view
of two constraints: (i) the methodology developed for modelling stable crack growth must be
useable for elastoplastic dynamic crack growth, and (ii) these computations must be performed
using a commercially available finite-element program. Stable crack growth is the zero-velocity
special case of rapid crack propagation in ductile materials. Since the computations are more
easily performed in the absence of inertia effects, stable crack growth was chosen as the starting
point for the finite-element analysis of rapid crack growth in ductile materials. Most of the
finite-element work performed in a production environment is done with commercially available
finite-element codes. However, no results of crack-growth simulations have been reported
which were obtained using any of these commercially available programs (Shih er al.[14] used
ADINA[30]; however, the program was specially modified for this purpose). It was felt that
the development of crack-growth methodology, which could be used with a proprietary finite-
element program, would be of more utility than a methodology which also required a user-
developed finite-element code. The proprietary code ABAQUS[31] was chosen for this work
because of its proven capabilities in the solution of nonlinear problems. The installation at
Vanderbilt University featured ABAQUS version 3-12-78, running on a DEC-1099 computer,
with the TOPS-10 operating system. The technique described in this paper should also work
equally well with other proprietary finite-element programs.
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FINITE-ELEMENT MODELLING

A finite-element model was developed to permit the investigation of stable and rapid crack
growth in ductile steels. Figure 1 is a plot of the undeformed mesh. The cutout in the top figure
is shown enlarged below. In both cases the initial crack tip is indicated by an arrow. The
dimensions of the model are identical to specimen T52, from a recent study by Shih er al.[14],
at General Electric. The dashed lines show the contours where the J integral will later be
calculated.

The material is modelled as linear elastic up to the yield point. with power-law hardening
beyond first yield:

€ o

— =, o = 09, (1)
€0 To

€ o\”

- = - , o > 0p. (2)
€o Jo

Values for the material constants were chosen appropriate for AS33B steel at 93°C: oo = 382.866
MPa, E = 197.62 GPa, ¢, = o¢/E. and n = 10. Since ABAQUS requires a multilinear stress—
strain curve, the power-law portion was discretized. The stress—strain curve was discretized
in an optimal sense so that deviations were held to within = 0.5% (see Hoff et al.[32]).

A series of 38 springs is defined from points in space to ground. The purpose of these
springs is to associate a stiffness with degree-of-freedom number 2 (i.e. y displacement) for
nodes 60005 to 60042 inclusive (see Fig. 2). In fact, the ¥ coordinate of nodes 60005 to 60042
is initially zero. so that those nodes begin on the crack plane. Nodes 60005 to 60042 are shown
elevated from the crack plane in Fig. 2 for clarity. Gap elements are defined between nodes
60005 and 50005. 60006 and 50006. etc. up to 60042 and 50042. The gap elements are formulated
so that they can transmit only compressive loads. t.e. no tensile or shear loads. Since the
tendency of nodes 50005-50042 is to move upwards, due to tensile loading of the specimen.
all of the gaps wiil close. A displacement boundary condition is applied to nodes 60005-60042.
constraining these nodes from moving in the v direction. With all of the gaps closed. nodes

gg = 17.2mm
4
W=2032mm

0 I mm
«l — | —_———

Fig. 1. Finite-element model of compact tension specimen used in the investigation of propa-
gating cracks.

-{'.'(\f',_d\-'\f._ TR Ca, (. -'\(-__.r‘_.r\1_..'".-_.4-_..-_';%,.‘ T

8 R
ARSI IS YA IS YL lﬁ?t.'f A A GRS



U TS T RO W RO RO OO N U S Y RO M R PO ARG S e O OO O N OO O AT A

108 R. HOFF ¢t al.
SPRINGS GAPS

ERYERER

50042 50040 50038 50006 50004 50002
Fig. 2. Schematic details of springs and gaps at the crack tip.

.......

50005-50042 are also constrained to the crack plane. thereby locating the crack tip at node
50042. It would not be possible to grow the crack with displacement boundary conditions applied
to nodes 50005-50042. since the motion of these nodes after crack growth cannot be determined
a priori.

A static elastic analysis was performed to verify the adequacy of the spring-and-gap method
of specifying the boundary conditions. The y displacements of the nodes constrained by the
gaps were all of order 1072°. Since the displacements of the remainder of the nodes in the
mesh were of order 10~'". one can conclude that the gaps only allow negligible displacements.
By opening and closing the appropriate gaps. the crack length was varied from 117.2 to 129.2
mm. For each different crack length. values of the stress-intensity factor K, were determined
from the finite-element results using two different methods and compared with the polynomial
equation of Srawley[33]:

P a
K'-B—Wf(r.-)~

f <a) _ (2 + a/w)[0.866 + 4.64alw — 13.32(a/w)* + 14.72(a/W)* — 5.6(a/W)*]

— .43
(1 - a/w)*: ’

w
Equation (3) is accurate to +0.5% in the range 0.2 = a/W < 1. The values of K, determined
using the stiffness-derivative method of Parks[34]} agree with eqn (3) to within 0.2. This result
verifies that the spring-and-gap method is capable of modelling displacement constraints ac-
curately. Unfortunately the stiffness-derivative method has not been generalized to elastoplastic
dynamic problems and will not be used henceforth. The J integral of Rice[35] is. of course.
suitable to elastoplastic problems, and variations such as J;(36. 37] are appropriate for dynamic
problems. Values of K, were also determined by performing the contour integration for J,[38].
but agree less well with the polynomial equation (+ 5.2%). This is, however. sufficient accuracy
for the crack-growth simulations to be performed in this study.

Values of J, or K, could have been determined more accurately using contour integration
if singular elements were used at the crack tip. However. the presence of singular elements
caused convergence difficulties with the gaps when this was attempted. Moreover. the standard
singular element, created by collapsing one side of an eight-noded isoparametric finite element
and shifting the adjacent nodes to the quarter points{39, 40}. did not offer any advantage in
crack-growth studies.

Numerical experimentation revealed that the choice of spring constant affected the con-
ditioning of the stiffness matrix[4]. It was determined that if the spring constant was numerically
equal to Young's modulus then the best performance was obtained. For instance. if £ = 200
x 10° Pa. then the spring constant should be set to 200 x 10° N/m. Very stiff springs (i.e.
12-18 orders of magnitude stiffer than the recommended value) did not cause any detectable
degradation in solution accuracy. whereas very soft springs (i.e. the stiffness is 12 or more
orders of magnitude less than the recommended value) significantly degraded the results. Itis
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difficult to determnine exact limits on acceptable spring stiffnesses since the conditioning of a
stiffness matrix depends on the number of degrees of freedom in the analysis and the number
of springs. For the problems worked in this paper. spring stiffnesses within 6 orders of magnitude
of the recommended value were employed and produced no deleterious effect on the results.

IMPLEMENTATION OF THE FRACTURE CRITERION

Several studies[13, 14] have focused attention on which fracture parameters are suitable
for describing stable crack growth. Candidate parameters such as J,, a. 8, dJ/da. average crack-
opening angle, generalized energy release rate, etc. were assessed on the basis of a large number
of requirements: not only must the ideal parameter be physically significant. but it must also
be readily determinable using finite elements. It was found[13. 14] that. for a given material
and small amounts of crack growth, the J integral has a unique relationship to the amount of
crack growth, Aa. This relationship is only mildly specimen dependent. The crack-tip opening
angle « initially has a very high value, but after a small amount of crack growth reduces to a
constant value. In this study the J;-Aa relationship determined from experiment[14] was used
for the first 4 mm of crack growth, whereafter a constant crack-tip opening angle was used for
the remaining crack growth. This two parameter fracture criterion is depicted in Fig. 3. where
the first regime is termed J-controlled and the second regime is termed a-controlled.

The major difficulty encountered in modelling J-controlled crack growth centers on this
paradox: the boundary conditions, which are a function of Aa which in turn is only a function
of Ji, must be specified at the beginning of an increment in the solution but J, can only be
determined at the end of that particular increment. This would not constitute a major problem
if boundary conditions could be handled impliciry at each increment in a finite-element analvsis
(i.e. the boundary conditions are determined as part of the solution process). However. bound-
ary conditions must always be stated explicitly in a finite-element analysis. This necessitates
the use of a rather sophisticated extrapolation scheme to predict what the value of J, will be
at the end of a particular increment. The following paragraphs will describe the evolution of
the J; extrapolation technique.

2.0 Y T T =T T Y Y
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J-INTEGRAL
o
[4 ]

1 1 Il 1 1

]
l
0 2 4 6 8 10 12 14
CRACK GROWTH, Aa (mm]
058 \ T r g T T T v
\ |
0.4 o \\ : -
\
] 5 }
g 03 AN | -‘
5 S|
4 i
—02p l 1
o l
oIt | a-CONTROLLED ,. .
|
1 l 1 L Il A i
0 2 4 6 8 10 12 14

CRACK GROWTH, Aa ([mm]

Fig. 3. Comparison of regimes of crack growth where J; and « are appropriate characterizing
parameters.
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The specimen was loaded so that the load-point displacement varied linearly with a non-
dimensional ‘‘time."" Since K, varies linearly with load-point displacement in the elastic case,
and J, varies quadratically with K, therefore J; should vary quadratically with time. Referring
to Fig. 4(a), if the solution increment just completed is at 7;, then a parabola was fit through
the values of J; at times #;_.. t;—;, and t;. The upcoming increment would end at ¢,_,. and J,
could be predicted by extending the parabola to t,. ;. This technique proved to be very unstable.
Generally the predicted value of J; tended to be much too great (Fig. 4(a)) or much too small
(Fig. 4(b)). The latter case was more serious since the desired crack length is determined from’
the predicted J; value, and if the predicted J, value was less than the previous J; value then
the crack would become shorter instead of longer.

It turns out that in an elastic-plastic analysis J; varies almost linearly with load-point
displacement (with some perturbation due to the changing stiffness of the model as the crack
grows), so the assumed quadratic behaviour was not a good model. A linear-extrapolation
scheme was therefore attempted, whereby J; at ;.. was determined based on data taken at
t;—y and 1;. As shown in Fig. 4(c), linear extrapolation was more stable than quadratic extrap-
olation but minor perturbations in J; were still amplified in time.

The technique finally implemented was a modification of the linear-extrapolation method.
Instead of using data at 7;,_, and ¢;, the predicted value of J; was determined by extrapolating
data at ¢;,_- and ;. In addition, the slope of the J; vs t curve was not allowed to change by
more than 209% between successive increments. This produced the most stable results of all
and is depicted in Fig. 4(d). The J,-t history is shown in Fig. 5 for J-controlled crack growth.
and it is evident that this is a very stable technique.

Once the value at J; was predicted, the value of Aa was determined from a parabolic fit
to experimental data from a General Electric study[14]. Aa was the smaller root of
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Ji = —2.562 x 10'°(Aq)* + 3.985 x 10® Aa + 2.000 x 10°, (4)
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Fig. 4. Cor_nparison of Ji prediction schemes: (a) Parabolic extrapolation overestimating J, . .
(b) parabolic extrapolation underestimating J, . 1, (¢) linear extrapolation from points at 7, - , and
1., and (d) linear extrapolation from points at ¢,.: and ,.
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Fig. 5. Jy history for the J-controlled portion of stable crack growth.

where Aa is in units of meters and J, is in units of J/m?. The value of Aa. determined from
eqn (4). was never equal to an integer multiple of the element length.

This raises the question of how to model these crack lengths which do not coincide with
element boundaries. Suppose that the “‘effective’” crack length Aa would put the crack tip at
a position as shown in Fig. 6. Clearly nodes n. n — 1, n — 2, etc. must be constrained in the
y direction. This is done by leaving nodes m. m — 1, m — 2, etc. on the crack plane as they
have been since the beginning of the analysis. The gaps betweennand m. n — 1 and m - 1.
etc. will remain closed. thereby constraining nodes n, n — 1, n — 2. etc. to remain on the
crack plane. Nodes n + 3. n + 4. n + 5, etc., which previously were used to constrain n +
3, n + 4, etc.. are now displaced upwards so that the gaps are open, Spring node m + 2 is
displaced upwards in proportion to how far the effective crack tip has advanced through element
i: e.g. if the crack tip has advanced 25% of the way between nodes n + 2 and n. then node m
+ 2 is raised 25% of its maximum value. The maximum displacement of m + 2 is almost twice
what the final displacement of node n + 2 will be. Therefore, about halfway through the
incremental gap-opening procedure. the node n + 2 will separate from the gap (i.e. the gap
opens) and node n + 2 will find its own equilibrium position. In general. the gaps were closed

)
|
1
1
li-2
} )
al
n n=l n=2 n-3 n—94

Fig. 6. Details of crack-extension procedure.
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for three increments and then open for another two increments during the incremental opening #
procedure. c;:i
When the crack tip moved past node n. then nodes m — 1 and m were moved upwards 0
incrementally. This procedure repeated itself until 4 mm of crack growth had occurred. At that ::v:
time the critical value of the crack-tip opening angle. 0.24 rad. was used as the fracture criterion !:::
for further crack growth. Opening of the crack-tip element was handled using springs and gaps. b
as just described. except that the determination of the effective crack length was slightly dif- 'u..,
ferent. The motion of the spring nodes. . . . m — |, m. m + 1 ..., are specified in a user- :::n
developed subroutine which is attached to the ABAQUS program at link time. A listing of the ::-:
subroutines used in this study appears in Ref. [38]. .:::
L
b
RESULTS AND DISCUSSION .
The results of a simulation of stable crack growth are presented in this section. An ex- iy
haustive presentation is not made; however, sufficient evidence is given to demonstrate that N
the spring-and-gap technique is appropriate for modelling crack extension. In addition. the ]
stresses and strains ahead of the stably growing crack are contrasted with those ahead of a ’
stationary crack. "
The variation of J, with crack growth is plotted in Fig. 7. The values of J, are determined ::
by integration along the contour shown in Fig. 1. Contours much closer to the crack tip were ‘.:
generally unacceptable for J; evaluation since material unloading took place behind the crack .!"
tip as crack extension progressed. Unloading violates one of the conditions of using J. flow :
theory in the finite-element analysis to evaluate the J integral. which is based on the deformation
theory of plasticity. Besides. as pointed out by McMeeking[42] on the basis of finite-strain "'
studies. the J integral is not path independent when calculated along contours closer than about “
5% from the crack tip. X
The variation of J, with Aa corresponds very well with the experimental resuits of Shih !
et al.[14]. Since the crack growth is determined during the analysis from eqn (4). it is not »
surprising that there is almost an exact correspondence to experiment during the first 4 mm of .
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o gi. wth. At4 mm of crack growth, the crack extension is no longer considered to be J-controlled
e and the fracture criterion switches to a critical value of a.

R The variation of a with crack growth is plotted in Fig. 8. The trend in « is that it starts at
R a large value, about 0.5 rad, and decreases to its steady-state value of 0.24 rad. There is
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considerable noise in a at the start, however, and this may be due to a number of factors. First.
it can be shown that at initiation the J-field solution predicts = rad as the tip opening angle.
Since « is determined according to

1

a = tan” (S)

it is not uniquely defined at initiation. The element size A and the y displacement of node n ~
2, vn- 2. are illustrated in Fig. 6. Second, due to the mesh refinement near the initiation site.
the element size h keeps changing for the first 5 elements of crack growth.

The steady-state value of the crack-tip opening angle, 0.24 rad, was obtained graphically
by determining the asymptote of the « vs ¢ variation during the first 4 mm of crack growth
(although this plot is not shown). This value is slightly higher than the experimental steady-
state value of 0.21 rad, which is not unexpected since the numerical values of o are almost
all higher than the experimental values at less than 4 mm of crack growth.

The variation of 8 with Aa is plotted in Fig. 9. In this instance, 8§ is twice the y displacement
of the node 1 mm behind the original crack tip. In the J-controlled region, the calculated values
deviate by less than 2.2% from a curve defined by

8 = —33.58(Aa)* + 0.47082Aa + 2.5332 x 1074, (6)

where 8 and Aa are in units of meters. In the a-controlied region, the calculated values deviate
by less than 1.3% from a line defined by

d = 0.23673Aa + 7.6159 x 10~*. (7)

Although the J\-Aa relationship in Fig. 7 is similar to this, J; vs & does not plot as a straight
line over the entire range of crack growth.

20 T T T T T T T

[mm]

—o— FINITE ELEMENTS

LOAD POINT DISPLACEMENT, v,

J=CONT! a-CONTROLLED

A A 1 1 A P U

(o} 2 4 6 8 10 12 4 13
CRACK GROWTH, Aa [mm)
Fig. 10. Load-point displacement s« craon g0 ow

Vo) A AV A Y. TR Y (S VAT O A T R A NI ANV N N R NN IR PR




_AD-A193 340 ANALYSIS OF CRACK HRREST TOUGHNESS(U) VHNDERBILT UNIVY 272
’ NASHYILLE TN DEPT MECHANICAL AND MATERIALS
- ENGINEERING G T HRHN ET AL. 15 JAN 88 N09014-80 C-0521
UNCLASSIFIED G 11/76.1 NL

ML




“-’# ofy"s¥

1,
ANXK OO L

2,0

OO0

W Ky syt
R
P U N N N X R N S S S O R R R R T O

I ORI
? “ T
! |“_===—-_ L

)
(8

I

llat

R
'
$
i
3
‘(
.t
,
+

»

S MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAY OF STANDARDS-1963-A

o5 ~*.'

e Y e f{' Vi“f f‘.-"f 3
Y ".j".‘".,‘-}-j‘ o 9! W N "'.,r. i

O NSRS .\\‘:}‘:Q'* 2 R

S

v Caf
"" \'\ \&.;{?V’n."\v\T l..bib(. I‘,i.‘n' ‘( , { \,‘” "\
ﬁ * L X




10 T L T T T Y T

—O— FINITE ELEMENTS

LOAD (MN]

0 EXPERIMENT (GE)

«J-CONT| o~ CONTROLLED

I L [ 1 A - '

0 2 4 6 8 10 12 4 16
CRACK GROWTH, Aa (mm]
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The piot of load-point displacement v, vs Aa shown in Fig. 10, exhibits a similar bimodal
(parabolic/linear) characteristic. The load-point displacement is defined as twice the y displace-
ment of the node at the top of the load hole. Since the finite-element model is only of the top
half of the specimen, this factor of 2 is necessary for correspondence with experiment where
vy is defined as the relative displacement of the top loading pin with respect to the bottom one.

\ The slope of the linear portion in Fig. 10 is significant because its value, 0.834, can be used to
estimate the crack velocity in a-controlled rapid crack extension. That is, if d(da)/ov, = 1/
0.834 for stable growth, then the crack velocity a can be estimated from the load-point velocity
v according to

UL

0.834

a= = 1.20 v.. (8)

Departures from the behaviour predicted by eqn (8) would be due to inertia and strain-rate
effects.

The variation of load with Aa is plotted in Fig. 11. The finite-element results were deter-
mined by assuming a 1-m-thick plane-strain specimen with 25% side grooves. The experimental
results were therefore multiplied by a suitable constant to allow comparison with the numerical
results. The two results unquestionably show the same trends. Any quantitative differences
are due to the computational model being (intentionally) slightly different from the experimental
specimen in terms of material properties, fracture criteria, etc.

The deformed-crack profiles are shown in Fig. 12 for the first 4 mm of crack growth. Note
that the scales are different on the abscissa and ordinate so that the crack opening is exaggerated
in the figure. Several features of this plot are noteworthy. The character of deformation changes
abruptly since the strain fields are quite different at initiation from what they are after finite
amounts of growth. Sorensen(7] and Miller and Kfouri[43] noted similar behaviour in the de-
formed-crack profiles. A more puzzling phenomenon is th: jagged nature of the deformed
profiles. This is perhaps due to the nature of the gap-release mechanism.
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The equivalent stresses and plastic strains at 45° to the tip of the growing crack are plotted
in Figs. 13 and 14. The stresses and strains are virtually the same after 4 mm of crack growth
as they are after 10 mm of crack growth. indicating that the 4 mm point gives indicative results
for stable crack growth. The stresses and strains are generally higher after stable growth than
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Fig. 13. Equivalent stress along a line at 45° to the propagating crack tip.
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they are at initiation, but are much less singular. These smaller stress and strain singularities
for stable growth were anticipated on the basis work by Amazigo and Hutchinson[44]. Although
the data in Figs. 13 and 14 do not prove the existence of a weaker crack-tip singularity, they
do indicate the anticipated trend.

CONCLUSIONS

A new technique was described, employing spring and gap finite elements. which can be
used to simulate crack growth. An advantage of this technique is that it does not require a
user-developed finite-element code: rather, it can be used with commercially available codes
such as ABAQUS.

This technique was applied to the modelling of stable crack growth in a compact tension
specimen of A533B steel. The J integral and the crack-tip opening angle were used as a two-
parameter fracture criterion. Numerical results agree well with corresponding experiments
previously performed by Shih er al.
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Parametric Representation of the
Yield Strength-Strain Rate

Behavior of A533B Steel

A nonlinear programming technique to estimate the parameters for g remperature

C. A. Rubin

G. T. Hahn

normalized version of the Malvern equation is presented. The general conjugaic
gradient algorithm is used 10 minimize a least-squares function formulated froni

data for A533B steel. A constrained solution (which provides preferentiul ireui-

Mechanical ano Materials Engineering
Vanderdiit University.
Nashvilie. Tenn 37235

ment for a particular data point) is also given. The results satistuctorily represent
experimenial data over a temperature range from — 73C 10 260C. The approach i<
well suited 10 design applications where dara at a specific temperaiure of interest are

limited or nonexisteni.

Introduction

The vield strength of a metal is a function of a number of
variables, notably temperature and strain rate. For body-
centered-cubic metals, such as steel above the ductile 1o brittle
iransition temperature, the yield sirength typically increases
with increasing strain rate. Large increases in vield strength
are observed at high strain rates, which may occur in ap-
plications involving rapidly propagating cracks, or projectiles
impacting on a surface. In order to take advantage of the
enhanced material properties at high strain rates, the strain
rate dependence of vield strength must be characterized
quantitatively. With recent advances in computational stress
analysis techniques (such as the finite element method).
analyses employing strain rate dependent vield strength have
become tractable, thereby emphasizing the need for an ac-
curate vield strength/strain rate relationship.

A number of stressstrain-strain rate ‘temperature
relationships have been proposed {1]. One of these is the
Malvern relationship (1, 2] given in equation (1).

€01 = 6l/E+Dlla/a,) - 1)
If the elastic component is eliminated from (1), we obtain
¢=Dl(a/so,) - 1)" 2)

H

where ¢ = the plastic strain rate
o = theinstantaneous yield strength
o, = the‘'static” yield strength(at ¢ = 0)
D.p = temperature-dependent parameters.

1t is common to estimate ¢,,, D, and p by writing equation (2)
for three selected data points and solving the resulting system
of nonlinear equations. Such approaches are often adequate:
however. which three data points to choose is a subjective
decision and the quality of the outcome is dependent on the
experience and insight of the engineer.

In this paper we present an alternative method for the
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estimation of these parameters based on the well-known
principle of least squares. A nonlinear programming strateg)
is used to accommodate the nonlinear nature of the Malvern
equation. Results are given for a temperature normalized
version of equation (2) based on data for AS33B steel. Thewe
are now being used in FEM analvie< of dyvnamic crach-tip
stress fields at Vanderbilt University.

Our purpose here is to present an objective approach to this
curve-fitting problem. The method reported could be used in
conjunction with functional relations different from equation
(1). The Malvern model was chosen for illustration of the
technique because it is often included in commercially
available FEM codes and it appears to be widely used. It is
important to note that the use of a least-squares approach for
the estimation of the model parameters assures that the model
will tully utilize the available experimental data. Presumablhy.
this will result in the best possible curve fit within the
limitations of the mathematical form. Since there is virtually
alwayvs scatter in experimental data, any mathematical
description of the physical phenomenon should benefit by
such treatment.

There are several solution techniques for the nonlinear
least-squares problem., among them the well-known
Marquardt algorithm [3] and the Gauss least-squares method
[4). These require the formulation and inversion of a large
Jacobian matrix. The general conjugate gradient method
utilized in this note involves only vector operations. Since no
matrices Or inversion processes are required, stabihn
problems are avoided and round off is less significant. These
benefits are usually gained at the expense of additional
iterations for convergence: however, since cach iteration 1
less complen, computation times are small (tvpically a few
seconds or less on a main frame computer).

Material Data

A considerable amount of vield strength strain rate data i«
available for AS33B steel (a pressure vessel quahiny <teel used
extensively in the nuclear power industry). Experimental data
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have been given by Steichen and Williams [§] and by Oldtield,
et al. [6]. Their results (obtained from high-speed tensile tests)
are plotted in Fig. 1. Server [T} has obtained similar data using
precrached Charpy <pecimens.

Figure | shows that the vield strength of AS33B is tem-
perature dependent. An exponential dependence of strain rate
on temperature is  predicted by chemical rate theory.
Statistivcal mechanics has been used to tormalize this
relationship, as discussed in [8]. The relationship, based on
the Arrhenius rate equation is

¢ x dexpl-H/T] (K}

where

4 = *frequency” factor
H = tress-dependent activation energy term
T =ab-olute temperature.

The activation energy term has been shown to be a function of
the vield stress by Christian [9): hence

o=f(TIn[4/¢)) 4

The value of 4 has been experimentally determined by
Bennett and Sinclair {10] as 10°s ', and is reportedly quite
insensitive to stress, microstructure, temperature and strain
rate. Combining (3)and (4) gives

ip=Ale /A TR (5

which conserts strain rates, ¢ , at temperature, 7., to com-
parable strain rates. ¢, at the reference temperature. Tx.
Accordingly, data at any temperature can be converted 1o
data at any desired (reference) temperature.

The data of Fig. | were obtained at three different tem-
peratures. Equation (5) was used to transform these data to
equiralent points at T, = 366.15 K (93C). Of course, it would
be possible to consider the behavior at each temperature
-eparatels . The principal disads antage of this approach is that
1t requires experimental data at any temperature of interest.
Such data are not always readily available or easily obtained.
The approach we present here is well suited to devign ap-
pheations where data at the specitic temperature of nterest
are imited or nonesnstant. Within the range of temperatures
and strain rates considered in Fig. 1, reasonable results could
be evpected. Entrapolation to obtain information about
behavior outside the range of the experimental data would be
ditticult to Jetend and 1« not recommended
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Estimation of the Parameters

The general curve-fitting problem requires that we find a
functional relation, z(v), to represent n data points, (v, 2).
The least-squares curve minimizes the sum of the deviations
squared, i.e.,

minimize £ [z(v,) —2.]° 6)
If z(v) is posed as a polynomial or some other simple func-
tion. then a solution can be found by solving a set of
simultaneous linear equations. This technique is discussed in
numerous textbooks on statistics and numerical methods [11.
12]. It a more complex relationship exists between 2 and v,
then some other approach is necessary. Special purpose [3]
and general purpose algorithms {13] have been reported in the
literature.

Development of the Objective Function. A relationship
for the vield strength as a function of the plastic strain rate
can be derived from (2) as

=a,[(e/D)"' 7 +1] )
The least-squares formulation is then
minimize f(o.,.D.p) =St {(6./D) 7 110 {° (8)

where the function fis the objective function. Values of o .. D.
and p which minimize f will be obtained by the iterative search
strategy outlined in the forthcoming.

Algorithm and Implementation. The objective function
was minimized by the General Conjugate Gradient (GCG)
algorithm with an acceptable point line search. as outlined in
(14]. The variables o .. D, and p were scaled by 107, § x 10%,
and 5.0, respectively. Analytical derivatives were used. Reset
was emploved every ten multivariate iterations. Computations
were done in double precision Fortran on the DEC-1099
computer at Vanderbilt Universitv. Convergence was assumed
when the magnitude of the gradient was reduced 10 10 7 or
less,

The computer program was used to minimize a wide range
of functions with known mimma (including least-squares
objectines in the form of equation (8)) prior to conducting this
imvestivation. The  evpected  mimimizers  were  corredtly
identibied by the algonthm in every case
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Strainrateisins ~ 7.

Results

The data normalized to 93C by equation (5) (see Fig. 2)
were used to formulate the objective function. Initial
estimates of the parameters wete

o, | [100 MPa
D = |50000

5o

The final solution obtained by the minimization algorithm
was

g, 7437.40 MPa’
D J = 297930
5.6338 |

The resulting curve is given by the solid line of Fig. 2 where we
see that equation (7) maps the data with maximum yield
strength error of less than + 9 percent and an average error of
tess than 4 percent. The solid line of Fig. 2 can be transformed
to other temperatures by manipulating equations (5) and (7)
to obtain

0=0,{(¢,/D" )" #' +1) (10)

where D' = A(D/AY'®' 7, and p’ = Tep/T,. Since A, D, p.
T, and T, are all known, the yield strength can be determined
at any strain rate ¢, corresponding to 7,. The curves
presented in Fig. 1 were obtained in this manner. Even though
these curves are not formally “‘optimal’’ in the least-squares
sense, there is excellent qualitative agreement at each tem-
perature and deviations are acceptably small. Again, ex-
trapolation outside the range of existing data is not recom-
mended.

Forcing the Curve to Contain a Particular Point

The strategy outlined in the foregoing will be satisfactory
for many applications; however, there may be occasions when
it is desirable to give preferential treatment to a particular
point. For example, facilities may be available to conduct
tensile tests at the single strain rate of 10-'s-'. It may be
desirable to take advantage of published data at higher strain
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rates in the development of the model. One approach would
be to include the locally obtained data in the least-squares
formulation of equaiion (8). This would essentially give equal
consideration to all of the available data in the estimation of
the model parameters. A second approach, which favors the
local data point over the others, would be to force the
mathematical function to comain the preferred point. This
would be done by taking one variable out of equation (7) with
considerable algebraic manipulation. Alternatively an
equality constraint can be introduced in the minimization to
enforce the preferred relation. This procedure is illustrated in
the forthcoming.

Consider the case where the vield strength for a particular
specimen has been found to be 415 MPa at a plastic strain rate
of 10 "} s~ ! and a temperature of 93C. The required equaliny
constraint for the minimization would be

0,10.001/D)" P + 1] - 415 x 10" =0 an

The constrained nonlinear programming problem is given
by equation (8) such that equation (11) is satisfied and thi
problem can be addressed in numerous ways (e.g.. reduced
gradient, Lagrange multiplier based penalty function. etu.. sec
{13) for a survey of methods). For simplicity we chose to use a
sequential unconstrained minimization technique as outhned
by Fiacco and McCormick {15]. The ininal constraint
weighting factor was .1 and this was multiplied by 0.0f for
each successive minimization. The solution obtained was

", 1382.84 MPa’
D | = 6292 !
J 7.2455 |

Convergence was based on step length reduction to 10 °
rather than the gradient test.

The constrained relation is given by the dashed line of Fig.
2. This curve minimizes the objective function of equation (8)
subject to the requirement that equation (11) be satisfied.
Although not formally least-squares optimal because it gives
preferential treatment to a single data point, there are oc-
casions when such an approach may be considered ap-
propriate. The nonlinear programming method outlined here
can readily accommodate the situation.
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Conclusions

In this note we have presented an objective technique (based
on the principle of least squares) to estimate the parameters of
the Malvern equation. The nonlinear programming approach
provides values for o,, D, and p which exhibit excellent
agreement with experimental data for AS33B steel over a wide
range of temperatures.
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¢ ANALYSIS OF CRACK ARREST UNDER ELASTIC-PLASTIC CONDITIONS

by

G. T. Hahn*, P. Bastias**, A. Kumar**, and C. A. Rubin***

ABSTRACT

coe oF.

Elastic-plastic finite element analyses of quasistatic crack propagation and
arrest in a compact test specimen are described. The analyses evaluate the
effect of the prior plastic deformation history of the propagation event on
the shape of the J-resistance curve of the arrestor. In addition, experiments

employing a special device are used to simulate fast fracture and arrest in

- o =

small laboratory test specimens of ductile HY-80 steel and tough 7075 aluminum.

The results show that large dynamic elevations of the J-curve are encountered

- o o on o o m o

during arrest. A relatively simple procedure for assessing or designing welded-

in, steel crack arrestors, based on these findings is proposed.

Key Words: Fracture, crack arrest, J-resistance curve, HY-80 steel,

-

7075 aluminum, crack arrestors, design, history, rate, dynamic

' J-curve.

INTRODUCTION
There is long-standing interest in designs that will stop a rapidly

advancing crack before structural integrity is compromised(1-4), Methods are

Pt

available for determining the NDT-temperature(3) or the arrest toughness

s}

values(5-8) of steel plates that will arrest a short crack, i.e., ~ 10 mm-

long, emerging from a locally embrittlied region. Existing toughness

*Professor, **Graduate Student, and ***Associate Professor, Department of
Mechanical and Materials Engineering, Vanderbilt University, Nashviile, TN
37235
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specifications have thus controlled the kind of "pop-in" crack that originated

from an arc strike and severed the hull of the U.S.S. Ponaganset in 1947.(8)
However, there is no general and rational method for designing welded-in
crack arrestors that can stop a long fracture, i.e., 0.1m <ag 2m in large
structures such as ship hulls, pressure vessels, line pipe, etc.(9) This
remains a difficult problem because very high toughness levels: 200 MPav/m <
Kia < 600 MPavm (200 Kdfmé < Jia €2 MI3/m?) are needed to arrest long fractures
in a fully loaded structure. Figure 1 describes a practical example: a
fracture initiated by a short defect in a 100 mm-wide, brittle weld. The
adjacent steel plates probably must possess an arrest toughness, Kjz = 200
MPav/m to stop the unstable crack from penetrating with a reasonable margin of
safety.* If the plates fail to stop the fracture, a tough welded-in arrestor
of the same weakness located in the path of the crack 1 m from the weld may
produce arrest if it possesses a toughness Ky, ~ 600 MPa.** Arrestors
located farther from the weld would have to be proportionately thicker or
tougher,

The LEM-based toughness estimates given above are not reliable because

the LEFM requirements are difficult to satisfy at the high Kj-levels ***

*The statically evaluated Kj-value for the 2a = 100 mm-long crack emerging

from the weld zone is Ky = 149 MPavm. This assumes a total stress of o= 375 MPa
(G3pp1ied = 250 MPa plus Opesiqual = 125 MPa), and that the other dimensions

are much larger than 2a. ?his calls for an arrest toughness of at least

Kia = 200 MPavm to arrest the crack with a margin of safety.

|

|

| **The statically evaluated Ki-value for the 2a = 2m-long crack entering a

‘ welded in arrestor of the same thickness is Ky = 443 MPa. This assumes that
| the weld residual stresses can now be neglected and that the other dimensions
| of the structure are still much larger than 2a. An arrest toughness of at

| Teast Ky = 600 MPavm is required to stop the crack with a margin of safety.

***For example, to satisfy the requirement that the crack length is less than
1/10 of the plastic zone extent: a > 10 r, =2 (Ky/0,)“. When K| = 200 MPam
and o, = 500 MPa, this means that 2a 2> 0.6m at arrest which is 6x the value
involved in the preceding example,

o e b e e s
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Figure 1. Example of a practical crack arrest problem, A 100 mnrwgde weld:
fusion plus HAZ, with a Tow toughness: Ky~ = 40 MPa (Jj. = 7.7 KJ/m®) contains
a 2a = 4mm long crack. The crack becomes unstable when the total stress
(%applied = 250 MPa plus dresidual = 250 MPa) reaches o = 500 MPa. Tne

cracE begins to extend and becomes a 2a = 100 mm-long rapidly propagating
fracture when it emerges from the weld zone and begins to penetrate the
adjacent steel plates. Question: How tough do the plates have to be to assure
that the crack will be arrested? How tough does a welded-in arrestor plate
located in the path of the fracture 1 m from the weld have to be to assure
arrest?
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They are also unreliable because the estimates given do not take account of ,

the increase in toughness obtained when the ductile crack begins to penetrate 1_
the arrestor as described by its R-curve. The J-integral concept together »'.
with the J-resistance curve are therefore better suited for characterizing

the response of relatively tough materials. With this in mind, Hahn and

Dantam(IO) proposed that the Jp-value evaluated at 4 = 1.5 mm can serve as a
measure of the crack arrest toughness: Ja(2) = Jg.* This measure is valid
for long cracks and arrestors that display the ductile fibrous mode of fracture
during the arrest process.**

However, the use of J-curves in arrest analyses invoives several unresolved
complications illustrated in Figure 2:

(i) Deformation History Effects. Figures 2a, b and ¢ illustrate that the

shape of the J-resistance curve depends on the prior plastic deformation
history. The conventional J-curve (Figure la), produced by ductile crack
extension with a prior history of completely brittle extension, is different
from the J-curve (Figure 1b) for ductile crack extension with a prior history

of ductile crack extension. The J-curve for a propagation-arrest event (in

Figure 1c) is intermediate. This raises questions whether the conventional

Jr-curve has the right shape for a crack arrest analysis.

(ii) Geometry Dependence. The shape of the J-curve for a tough material is

i geometry dependent for anything but small amounts of ductile crack extension,

*Hahn and Dantam identify two measures of arrest toughness: Ja(i) = Jp., and
Ja(2) = Jg(ta = 1.5 mm). The quantity Ja(l) is appropriate when the crack
extension is a small fraction of the initial crack length; Ja(2) when the
extension is a large multiple of the initial length. The Kj-equivalents of
these 2 values are: Kjall) = Kyc = vJycE, and Kja(2) = Kjp = YJgt.

**The transition temperature of a steel arrestor must be well below the service
temperature to assure that it will display high toughness fibrous fracture
under dynamic conditions rather than low toughness cleavage.
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Complications attending the use of J-resistance curves in the

analysis of crack arrest: (a), (b) and (c) compare the shape of the J-curve
for ductile crack extension from a pre-existing crack of length a with
different prior deformation histories in the interval from aj) to ap,

(d) schematic drawing illustrating the excess strain energy (shaded area Aj)
part of which may be returned to make up the energy deficit (shaded area A2)
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typically no more than 0.05 < Aa/(w-a) < 0.1 where w is the uncracked ligament.(11l)
Consequently, it is again not clear that the conventional J-curve is appropriate
when arrest is preceded by large amounts of extension, as in the examples

cited earlier,

(iii) Kinetic Energy Release. A part of the excess strain energy (defined by

the difference between the static J-driving force and J-resistance curves at
instability in Figure 2d) is converted into kinetic energy, and part of this may
be returned adding to the crack driving force during arrest (see Figure 2).(6,12)
The kinetic energy return is difficult to evaluate without a dynamic analysis

and this complicates the task of defining the arrest condition.

(iv) Dynamic Elevation of the J-Curve. There is evidence from several sources

that the J-curve ductile crack extension, normally measured for very low rates
of crack extension, i.e., a ~10"4 ms~1l js elevated by increasing the crack
speed.(13-15)  This does not fundamentally alter the ultimate crack stopping
ability of the material because the crack velocity must be reduced to zero even-
tually to produce arrest. However, the transient elevation of the J-curve
produced by the high velocities of unstable cracks 102ms=1 < a < 103ms-1l, could

provide a mechanism for dissipating the returned kinetic energy.

This paper presents finite element calculations of the effect of the prior
deformation history on the shape of the J-curve. It also presents measurements
of the arrest of fully brittle fractures in tough, ductile aluminum and HY-80
steel. The results show that prior history can frequently be neglected and
that the J-curve retains its geometry independence when arrest is preceded by
relatively brittle fracture. There are indications the elevation of the

J-curve with crack velocity can compensate for kinetic energy return. Simplified,

guidelines for designing crack arrestors are proposed on this basis.
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ANALYSES AND PROCEDURES

Finite Element Analysis

Finite element calculations were performed to examine the effects of the
deformation history - - the plastic deformation produced by an advancing
fracture before it reaches the arrestor - - on the J-resistance curve
subsequently displayed by the arrestor. To simplify the problem, quasi-
static, stable crack growth and arrest were simulated in the elastic-plastic
finite element model of a 4T Compact Test Specimen shown in Figure 3. The
model is composed of 172 quadrilateral and 8 noded elements with a total of
38 nodes forming the path of the crack. The simulations were performed with
the finite element code ABAQUS on VAX 11/780 and 11/785 machines.

The initial position of the crack tip is within the region labeled
Material A, which is endowed with a relatively low toughness. The model is
subjected to a continuously increasing load-point displacement and the nodes
ahead of the crack are released at the appropriate time to simulate crack exten-
sion on the symmetry plane. Details of the procedure are given elsewhere.(16)
The crack eventually reaches the reéion labeled Material B after a crack
extension of either A = 6mm (shown in Figure 3) or 4 = 2mm (configuration
not shown). The crack then arrests for a time since Material B is tougher
than Material A, and then continues to grow as the conditions for extension
in Material B are satisfied as a result of the increasing load point displacement.

The deformation behavior of the 2 materials is the same. It is given by
the piecewise-linear representation of the stress-strain curve of A5338
pressure vessel steel at 93°C (see Figure 4a), and approximates pcwer law
hardening after the initial yield: E = 198 GPa, o, = 383 MPa, n = 10,(13,17)
The crack extension in Material A was controlled to proceed according to a

predetermined J-resistance curve. The effects of several J-curves appropriate
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Figure 3. Finite element model of 4T compact test specimen.
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for toughness levels in the range: 50 MPaYm < J. < 120 MPa/m were examined.
Crack extension in Material B was controlled by the crack opening displacement-
resistance curve previously derived for A5338 at 93°C(13,18): cop = 2,5332 - 1074
+ 0.47082 fa - 33.58 (4a)2, This resistance curve is viewed as a local criterion
that is insensitive to the prior deformation history. For ductile crack exten-
sion, it produced a toughness of: Jy. = 200 KJ/m? (Kye = 203 MPavm), and the
conventional J-curve shown in Figure 4b, when the extension proceeds from a
pre-existing, perfectly brittle crack. In the present calculations, the

different deformation histories prior to arrest produced different J-2a

relations for the arrestor. These J-curves were evaluated with the finite

element model as the crack penetrated into Material B.

Crack Arrest Measurements

Measurements of crack arrest in a ductile steel and aluminum alloy were
carried out to evaluate the dynamic elevation of the J-curve by large crack
velocities. These measurements employed a non-standard, 6 in x 6 in (152.4 mm
x 152.4 mm) pre-cracked, compact-type test specimen whose measuring capacity
is increased by attaching reusable, hardened steel arms. The operation of the
system, referred to here as a "fast fracture device" is shown schematically in
Figures 5a and 5b. The test specimen and other components are described in
Figures 5c and 5d. To facilitate the analysis of the experiments, the variation
of compliance of the system with crack length was evaluated with the aid of a
finite element model. Details of these calculations are presented elsewhere,(19)

After the bolt breaks, the system behaves as if split by a zero toughness
crack which runs to the precrack and is arrested by the compact specimen, i.e.,
ductile arrest with a history of completely brittle crack propagation. The

displacement of the arms at the bolt and wedge at the onset of fracture were
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measured with standard displacement gages. These displacements and the static
compliance values for the system before and after arrest were used to estimate
the elastic energy released during the arrest event. The average value of
the propagating crack toughness, Gp, was then determined by dividing the
released energy by the total fracture area, assuming that all of the released
energy is consumed as fracture energy. The gquantity Gp can be viewed as a
measure of the elevation of the J-resistance curve as a result of crack
extension and crack velocity.

Measurements were carried out on HY-80 steel and the 7075-Aluminum
alloy, which was solution treated at 470°C for 1/2 hr, and aged at 120°C at
different time intervals to achieve HRB = 45, 78, and 92. The toughness

values Jyc and Ja(2) = Jg are listed in Table 1.

RESULTS

Finite Element Analyses

The results of the finite element computations are presented in Figure 6.
These show the different J-curves which were prescribed for Material A
and controlled the "start" of the relatively brittle propagation, and the
corresponding, calculated J-curves for Material B which served as the arrestor.
The results illustrate the J-curve for the arrestor is influenced by the
deformation history, and is unaffected by the deformation history when the
starter toughness, i.e., the Jic-values for the material in which the crack

starts propagating, are much lower than the arrest toughness:

Jic (starter)

Jic (arrestor)

Kgc (starter)

Kyc (arrestor)

< 0.1 or (1a)

< 0.3 (1b)

AW W T T OO I MO W WMy ) W,

"-;‘S"- .af

i
N

2N



Meteriol - ASTM ASE) CGrede O
Run *A°  leg-=—= Run °0°
o= Bun c* | o> B “0°

J-INTEGRAL. JixtkI/m® I

— —
o
-

TS it

—
e e e
—— ——
___..———-.———-.‘—'
i ] ) | 1

Figure 6. Results of finite element calculations showing the effects of the

prior plastic deformation history on the shape of the J-resistance curve of
the arrestor.
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Figure 7. Summary of finite element calculations showing the effects of the

toughness of Material A (starter toughness) on the calculated toughness of

Material B (arrestor toughness) for crack extension increments of 4 = 2mm
and A = 6mm,
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These results are summarized in Figure 7, which also shows that these conclusions
are relatively insensitive to the extent of propagation prior to arrest. In
other words, it appears that the arrestor's response to a relatively brittle,
prior propagation history is the same as its response to a pre-existing crack.

It follows that the rules for the geometry independence of the J-curve for
extension, from a pre-existing (brittle) crack, will also appiy. This means
that the conventional J-curve for the arrestor material will describe resistance
to penetration even when arrest is preceded by large crack extensions and for

relatively small remaining ligaments.

Crack Arrest Measurements

The results in Table 1 show that the tough steel and aluminum alloy suffer
relatively small crack penetrations prior to arrest. When the relatively
large energy releases, e.g. ~ 400 J, produced by the fast fracture device are
combined with small penetrations and deep face grooves, large values of
Gp, the fast propagating crack toughness, result. The Gp value is 18X and 3.6X
larger than J(2) for the HY-80 steel and the tough, HRB = 45, aluminum alloy,
respectively. These increases are qualitatively consistent with the measurements
of Joyce(14,15) in Figure 2e which reveal a ~ 2X increase in J-values for an
increase in crack velocity froma ~10~4 ms=1 to a ~0.25 ms~l. These increases
in toughness are related to the rate sensitivity of the plastic flow stress(13)
and to changes in the fracture process(19) =

The interpretation of the present measurements involves uncertainties
because other sources of energy dissipation have been neglected. However,

even allowing for a factor of 2 error in the energy consumed by fracture,

*The fracture surfaces of the HY-80 steel and HRB 45, 7075 aluminum are ~ 5X and
~ 3X rougher, respectively, than the surfaces produced by a slow tearing test.
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Table 1. Summary of Crack Arrest Measurements

1 Material By/8B ta J1 Jal2 Gp
. mm KJ?m2 KJ/m Kd/m2
i HY-80 0.80 9 221 324 5830
)
4
; 7075 Al
HRB 45 0.25 8.5 192 740 2680
) HRB 78 0.25 50.8 52 292 670
s HRB 90 0.25 >88 22 148 <490
t
) By/B is the fraction of the specimen thickness remaining at the face grooves.
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it appears that the dynamic elevation of the J-curve for arrest of fast
propagating cracks by ductile steel could be ~ 10X. Such a high transient
toughness would consume the kinetic energy return which is not accessible to

the static analysis.

DISCUSSION

The results of this study suggest that a relatively simple J-integral
based procedure may be adequate when assessing or designing tough, welded-in,
steel crack arrestors for long crack extensions, i.e., 4 >10 ao.m The main
features of such a procedure and a tentative requirement for the arrestor

width are proposed below:

(i) Crack Driving Force. The crack driving force produced when the crack

reaches the arrestor interface is evaluated in terms of Jj using a static
analysis usch as the one developed by Kumar, German and Shih(20) and Kumar,

et a1.(21),  wnen appropriate, an LEFM analysis can be used.

(ii) Crack Arrest Toughness. The plane strain, crack arrest toughness:

Ja(2) =Jg (%4 = 1.5 mm), is derived from information provided by a conventional
Jic -determination (ASTM E-813) or a Resistance Curve measurement (ASTM E-561).
To assure ductile, fibrous crack extension in the arrestor material, DT

tests of the arrestor must show 100% fibrous fractures at temperatures from
25°C to 50°C below the lowest service temperature. Effects of prior history

are neglected. Plane strain conditions are assumed since these are more

easily obtained with a rapidly propagating crack, and effects of the deformation

history on the J-curve of the arrestor are neglected.

(ii1) Arrest Criterion. The criterion for arrest is J; < Ja(2). Complications

attending kinetic energy return are neglected for steel arrestors.
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(iv) Arrestor Thickness. The arrestor thickness determines the level of

tensile stress and the value of J;. Increasing the thickness will reduce Jj

and improve the crack stopping capability.

(v) Arrestor Width. The arrest criterion employed insures that in the absence

of kinetic energy return, the maximum crack penetration into the arrestor &

< 1.5 mm. With kinetic energy return (i.e., total crack extensions prior to qﬁ
L
o
arrest that are large compared to the overall dimensions of the structure), i

arrestor penetrations are likely to be 4 < 50 mm. To assure that ‘the arrestor
can both survive such a penetration and contain the plastic zone of the crack
to reduce the risk of weld-failure, an arrestor width dimension, w, related

to the plastic zone size at arrest and the Jy-value of par 1 is proposed.

0.4 JiE
W= 0,05m + —— (2)

002
where E and ¢, are the elastic modulus and yield strength of the arrestor.

A similar procedure for aluminum arrestors may require an added provision
for kinetic energy return since the dynamic elevation of the J-curve may be
too small to accommodate it. The proposed procedure is intended to serve as
a starting point for further discussion. Clearly, as a design approach, it
requires careful scrutiny and should be critically tested before adoption.

Values of J3(2) and corresponding estimates of the crack stopping capabilities

of several steels derived from the proposed procedure are listed in Table 2.

CONCLUSIONS

1. Effects of the prior plastic deformation history on the shape of the J-
resistance curve have been examined with a finite element model. The calcu-
Tations reveal that history effects can be neglected when the toughness ratio:

Jic (starter)/Jdjc (arrestor) < 0.1 or Ky (starter)/Kyc (arrestor) < 0.3
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2. Experiments employing a special fast fracture device show that very

large dynamic elevations of the J-resistance curve are encountered during
the arrest of fast propagating cracks in tough, ductile arrestors. The
measurements point to an 18-fold and 3.6-fold increase in the level of the
J-curve for steel and an aluminum alloy, respectively.

3. The dynamic elevation of the J-curve for fibrous crack extension in a
tough steel may be large enough to consume any kinetic energy which
is returned to the crack during arrest.

4, The findings suggest that a relatively simple J-based procedure may be
adequate for assessing or designing tough, welded-in steel crack

arrestors.
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Figure 1. Example of a practical crack arrest probiem. A 100 mm-w}de weld:
fusion plus HAZ, with a low toughness: Ky~ = 40 MPa (JIc = 7.7 KJ/m¢) contains
a 2a = 4mm long crack. The crack becomes unstable when the total stress
(%pplied = 250 MPa plus Opegidual = 250 MPa) reaches o = 500 MPa. The

crack begins to extend and becomes a 2a = 100 mm-long rapidly propagating
fracture when it emerges from the weld zone and begins to penetrate the
adjacent steel plates. Question: How tough do the plates have to be to assure
that the crack will be arrested? How tough does a welded-in arrestor plate
located in the path of the fracture 1 m from the weld have to be to assure
arrest?

Figure 2. Complications attending the use of J-resistance curves in the
analysis of crack arrest: (a), (b) and (c) compare the shape of the J-curve
for ductile crack extension from a pre-existing crack of length ap with
different prior deformation histories in the interval from a; to ap,

(d) schematic drawing illustrating the excess strain energy %shaded area Aj)
part of which may be returned to make up the energy deficit (shaded area Ay)
and permit the crack to s?lit the arrestor, and (e) example of dynamic
elevation of the J-curve.{17,18

Figure 3. Finite element model of 47 compact test specimen.

Figure 4. Stress-strain characteristics and J-resistance curve of model
materials: (a) piecewise-linear stress strain curve of A533B pressure vessel
steel employed for Materia) A and Material B, and (b) conventional J-resistance
curve of Material B.(17,18)

Figure 5. Fast fracture device: (a) and (b) schematic drawing of operation,
(c) test specimen, and (d) details of assembly.

Figure 6. Results of finite element calculations showing the effects of the
prior plastic deformation history on the shape of the J-resistance curve of
the arrestor.

Figure 7. Summary of finite element calculations showing the effects of the
toughness of Material A (starter toughness) on the calculated toughness of
Material B (arrestor toughness) for crack extension increments of 4 = 2mm
and 4 = 6mm.
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ANALYSIS OF CRACK ARREST TOUGHNESS MEASUREMENT
FOR DESIGN OF TOUGH MATERIALS
A. M. Kumar*, G. T. Hahn**, C. A. Rubin** and N. Xu¥*
CENTER FOR MATERIALS TRIBOLOGY
Vanderbilt University
Nashville, TN 37235
ABSTRACT

This paper reports a preliminary study of a new laboratory test method
designed to measure crack arrest toughness for tough, arrester grade steels
The design 1s basically focused on producing large enough driving force to
produce tast tracture and arrest in a small test piece of a very tough,
ductile material. Tests conducted on HY-80 steel and 7075 aluminum specimens
are reported. The analysis of arrest measurements presented assumes that all
the energy released 1s conserved or converted into fracture energy. A static,
lower-bound arrest toughness is evaluated from compliance analysis using an
elastic-static finite element simulation of the loading device. A photogrammetric
aspect of the fracture surface is performed to quantify and relate the
microstructural features with fracture toughness. The results are consistent
with the view that arrest toughness value derived trom the J-Resistance curve
18 a valid measure of arrest capabilities of a tough material. It also
indicates that rapid crack extension in a tough, ductile material can coansume

large amounts of kinetic energy released from the process of fracture,
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*Graduate Student, **Professor, Department of Mechanical and Materials
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INTRODUCTION

Initial attempts to measure crack arrest capabilities of steel by
Robettaonll], were followed by the development of the Esso testlz], and the
double tension test described by Yoshiki, et al.[3]. These tests provided
measures of applied stress, crack length and temperature for which arrest is
possible. Crosley and Ripling applied fracture mechanics concepts to measure
the arrest toughness, KIa' with a double cantilever beam (DCB) specimenlb].
This was tollowed by the developed ot a wedge loaded 'duplex' specimen with a
hardened steel starter section by Hahn, et al.[5], and a similarly loaded
specimen with a hard weld starter by Crosley and Ripling[6]. Several methods
have been proposed tor analyzing measurements of crack arrest in stift,
wedge loaded specimens, whose static elastic energy release rate parameter,
G, decreases continuously with crack growth. Kraft and Irwin[7], and Crosley
and riplingls] proposed a static, nonconservative interpretation of the crack
arrest process in which they assumed that all the kinematic energy of the
running crack is dissipated betore arrest. Hoagland, Hahn and Rosenfield(9]
proposed an alternative static analysis in which the kineatic energy was
assumed to be completely conserved. In this case the same experiment is
interpreted differently. Accordingly, in the latter stages of the propagation
event, the stored kinetic energy supplied part of the fracture energy
requirements. The same authors proposed a dynamic analysis assuming the
conservation of kinetic energy and accounting for the dependence of the
propagating crack's material toughness, GD on crack velocityllo]. The latter
theory was confirmed by experiments conducted by Kalthoff, Beinert and
winklerllll.

The above concepts provide a reasonable estimate of the crack arrest

behavior of relatively brittle materials, However, with very tough materials,
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neither the apparent critical energy release rate, G,, nor J. remain constant hﬁ
.Y
)
but increase with crack length. Recent work by Hoff, Hahn and Rubinllz] on »
(0
)
strain rate effects using finite element analysis revealed that the J- \ﬁ
DO
N
resistance curve is elevated when a crack extends rapidly in a material with ) 55
i
rate sensitive yield and flow properties. This result agrees with the
0'|'
W
experimental evidence of Joyce[13]. In real structures, crack extention is zs
e
also likely to proceed very rapidly, producing large plastic strain rates ﬁ;
. 2.t
(103/s to 106/s). As a consequence, there will be large elevations in the
X]
yielad stress, resulting in higher toughness values while the crack is £$
W%,
propagating. With this in mind, Dantam and Hahnlla] have proposed twe points 5}
\
1)
on the J-resistance curve (or their corresponding K equivalents) as lower 1i
bound measures of crack arrest toughness that can be used to design arresters: :ﬁ
24471/2 .ﬂ
Ja(1) = Jies Kya(1) = [J1 E/(1- V)] (1) %)
2,11/2 -
Ja(Z)EE JgCa =1.5 mm) , KJa(Z) = [JREI(I- vl (2) ‘
’
The quantities J,(1) and Kja(1) are appropriate tor short arrester cracks, fa
}
i.e., 8 < 100 mm, where the instability condition is determined by the f{
LN
initial part of the Jg-curve; J,(2) and Kja(2) are indicated tor longer ?
e
arrested cracks, i.e., a > 500 mm, where the instability condition is determined h

by the latter part ot the Jg-curve. While these quantities are relatively
easy to obtain for tough materials from Jg-meaurements, their use as arrest
toughness parameters has not been critically tested.

The proposed ASTM crack arrest method relies on the non-conservative,
LEFM analysis that places lower limits on the size of the test piece. The
maximum allowable initiation stress intensity, Kq, for a .200 m x .200 m x
050 m specimen is about 120 MPa m'/?, Theretore a test specimen of the

design ~ 4x to ~ 16x larger would be required to evaluate very tough materials

like ship hull steels with arrest toughness values in the range 200 MPa ml/2
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to 500 MPa ml/2 . [15) 1n other words, the ASTM specimen size required becomes
prohibitive,

There are several ways of increasing the capacity ot crack arrest tests.
One is to insert deeper face grooves on the specimens, thus reducing the
energy consumed by the crack, proportionately. Although questions are raised
about the 3-dimensionality of the crack tip stress field introduced by the
tace grooves, experimental evidence[16v17] shows that face grooves occupying
80% of the cross section do not interfere with static measurements. Another
way of increasing the capacity is to attach reusable hardened steel arms.
Initiation can be facilitated by an external mechanical restraint which is
suddenly removed. The concept that evolved in the present work utilizes a
combination of the above techniques to increase capacity.

Figure 1 schematically illustrates the operation of the modified test.
Loaa is applied at point D by means of a wedge and split pin, which offers a
stiff loading. The hardened steel arms (B) attached to the pre-cracked
specimen (A) are wedged open against the restraint of the notched bolt (C).
As the wedge load is iacreased, the notched bolt breaks and releases the
elastic energy stored in the arms, causing the crack to grow under a high
strain rate condition. Since stiff loading produces a decreasing stress
intensity, K, with crack length, the crack arrests at a point F when the
stress intensity factor drops below the fracture resistance of the material
at arrest.

As part of the present study, an elastic-static finite element analysis.
has been performed to evaluate the compliance of the fast fracture loading
device with the bolt intact and after it fractures, using the general purpose
fintie element code, ABAQUS[18’19]. Measurements of fast fracture and arrest

were also carried out with the device on 7075 aluminum alloys ana HY-80 steel.
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Estimates of the propagating crack toughness, Kjp, and the arrest toughness, k

13

Q‘r
Kla’ are derived ftrom the compliance values assuming that all of the kinetic ;‘

‘ energy is conserved and is converted into fracture energy. f
) |::
v
EXPERIMENTAL PROCEDURE AND ANALYSIS 3

Materials

; — N
) Experimental materials include HY-80 steel and 7075-T651 aluminum alloys. $
(]
The aluminum alloys are solution treated at 470°C for 1/2 hr.., quenched in _ﬁ

&

water and aged at 120°C for diftterent time intervals to achieve difterent N
{

)
! hardness levels At ter the heat treatment, the hardness values measured were ﬁ
8
45, 78, and 92 on Rockwell B Scale for the three aluminum specimens, #

X
respectively, Variation ot the toughness parameters Jj. and J,(2), as !
3 o
; functions of hardness is shown in Figure 2. The specimen geometry, shown in !
\}
J N
Figure 3, is a simple compact type specimen measuring .150 m x .150 m x .025 m {

-t
Sharp 45° face grooves are used on the specimen occupying 25% and 80% of the _

{ "
thickness tor the aluminum and steel specimens, respectively., A fatigue "
crack is introduced in the specimens, tollowing the procedures listed in the :
t
1 standard ch testlzo], in order to reduce the initial stress intensity, KQ. {!
"

Loading Device E

The tast fracture device consists of reusable, hardened steel arms which N
are attached to the specimen by means of a key-like coupling and a set of ii
!.‘

bolts (refer to Figure 4). The loading device, designed by Xu[21], also ?

consists of a wedge and split pin arrangement located towards one end of the :;

steel arms. The wedge, the split pins, and the arms are made of hardened k

N

4140 steel (HRC 50). Mechanical restraint is provided by a notched bolt made Q

»
of 4340 steel, quenched and tempered to a hardness of HRC 38. The bolt in ‘
this condition 1is capable ot withstanding about 275 kN before fracture. ;“
'*
o

N
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Loading and Instrumentation

The tests are conducted using a Tinius-Olsen closed loop servohydraulic
testing machine. The load applied on the wedge is measured by means ot a
load cell and is input directly into an XY-recorder. Displacements are
measured by means of clip gages, one attached to the edge of steel arms (near
the wedge) and the other located near the notched bolt, This enablcs
) simultaneous recording of the end and the bolt displacements. Atter lubricating
the contact surtaces in the wedge and split pin assembly, the wedge is inserted
at a rate of 0.05 meters per minute. Loading is continued till the bolt
fractures and pre-existing crack in the specimen extends and gets arrested.
The wedge 1is then extracted from the device, which is held down by means ot

stoppers.

Analysis 9; Arrest Measurements

At the instant when the pin breaks, the elastic energy stored in the

arms is released and the crack extends with the aid of this energy. In terms

of compliance, this energy can be expressed as

gk e S

(v )2
v, = end (3)

Q
ch an

Here, U, stands tor the energy stored in the arms before the pin bpreaks,
o
Cp,a denotes the compliance of the device that is pinned by the bolt, and
o
Veng 18 the displacement measured at the load point. After the pin breaks

and the crack extends from a, to a,, the compliance of the device increases

to a value, Cu’al. The elastic energy stored drops down to a value, Ual,
given by
2
(Veng)
Ua, = (4)

u,al
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Here, it is assumed that the crack propagates under a constant displace-
ment condition. The difference between the two energies is the total energy
available for fracture, and should give an estimate of the elastic energy

release rate, Gg as follows:

GR = ——m— (5)
B(a) - ag)

where B 1s the effective specimen thickness. Known Gg, tracture resistance,
can be evaluated using the equation
EG

R
(Kyg)? = ——— = (R, 2 (6)
IR (1 - vz) ID

Finite Element Analysis

-‘-c"c. Wiy W% Ny X oo &

A linear, elastic-static finite element simulation of the loading device
was performed using eight noded, quadrilateral, isoparametric elements. The
mesh shown in Figure 5 contains 228 plane strain elements, with 649 nodes and
1947 degrees of freedom. The region labeled Zone 1 represents two half inch
thick arms enclosing air gap an inch thick. The specimen sandwiched between
these arms is represented by Zone 2. Since a difference in elastic stiffness
arises due to this arrangement, a weighted average ot the elastic modulus
value was used for each of the two zones. A concentrated load was applied at
D to simulate the wedge opening force and a distributed load was applied at C
to simulate the constraint due to the notch bolt. Points A and B represent
the positions of the two clip gages used in the test to measure the displacement
The location of the fatigue crack before the test is represented by the point E.
After the bolt fractures, load applied at C is removed and the nodes are release

one by one starting from E to simulate static crack growth.
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Compliiance values obtained from the finite element computations agreed
reasonably well with those trom the experiment (reter to Figure 6). For
constant displacement, the change in stress intensity with crack length can
be calculated knowing the change in compliance values using the equation
E(vend)2 dc

2
— = Kia,18

_— (7)
2Bc2 da

KZ'EG-

The quantity Ky, ;p gives a static, lower-bound estimate of arrest tougnness.
Since the above tunction in compiliance is very sensitive to small varlations
in the compliance values, the following polynomial fit (with a maximum error
ot 5%) 1is used, to smooth out any scatter:

C = mal (8)

where, the value ot m 1s calculated to be 3.4596 x 1076 N~1p-2, Using
equations (7) and (8), the stress intensity change as a function of crack

length 1s calculated (reter to Table 1).

Fractographic Analysis

Since the tracture appearance in the case of fast fracture is signiticantly
different from that of slow fracture, an attempt is made to quantify the
differences. A photogrammetric techniquelzz] i1s modified to measure the
(x,y,z) coordinates of various points on the fractograph with reference to an
imaginary reference coordinate systme. Assuming that the difterence between
the adjacent peaks and valleys on the fracture surface gives a measure of the

surface roughness, the average difference between the z-coordinates is measured

1@

¥!
using the above technique. This difference between the z-coordinates ot E?a

o

o
adjacent peaks and valleys can be taken as a measure ot surtace roughness }ﬁ:

b

only 1f the tilt axis, the imaginary x—axls, and the edge ot the SEM specimen
coincide with each other. These measurements are done on both slow and tast

fracture surfaces and are summarized in Table 2.
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EXPERIMENTAL RESULTS

Figure 7 shows the load-displacement record for the specimens of steel
and aluminum. The displacement shown is recorded by the clip gage attached
to the device near the notched bar and the load measured by the load cell is
the vertical load applied on the wedge. Displacement measured at the end of
the device close to the wedge is recorded versus time and is shown in Figure 3.
The load-displacement values are listed in Table 3 with those obtained
from tinite element calculations tor the difference specimens tested. These
values represent the load-displacement situation at an iastant just before
the tracture of the notched bolt. Atter the bolt fractured, the crack

extensions measured are listed in the last column ot Table 3.

Results ot Fractographic Observations

Some of the micrographs of tracture surtaces produced by the fast fracture
loading device are shown here. For purposes of comparison, fractographs of
the corresponding slowly tractured surftaces are also shown. Figures 9 and 10
depict the typical fast and slow fracture surfaces, respectively, tor steel
(50X magnification). Similarly, Figures 11 and 12 show the typical tractographs
of aluminum surtaces (at the same magnification). On comparing the corresponding
pairs ot surtaces, it 1s appareant that the appearance of tast tracture surface
is significantly coarser than that of slow fracture. Microstructural teatures,
such as the aspect ratio (defined as the ratio of average "height” of a dimple

on its average width or diameter) seem to be higher in the former case.

DISCUSSION
The analysis of the arrest measurements described earlier yields estimates
of Gy and Kip = [EGD/(I-vZ)]l/Z, the average value ot the energy consumed by

the propagating crack and the corresponding toughness. The values of Gq and
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Ga (and Ky and Ky,) the statically evaluated elastic energy release rates at
the onset ot crack extension and arrest (and the corresponding stress ilntensity
values) can also be derived trom the compliance calculations. These values are
identified in Figure 13, which also shows schematically the variation ot Ggayn
and GS®at yith crack length.

At the instant the bolt breaks, elastic energy 1s conveyed down the arms
of the device and test plece to the pre-existing crack tip at wave speeds.
The changes in the straln energy distribution are similar to those produced
by a very brittle crack propagating from the bolt to the test material. The
aynamic energy release rate GIYD, at the location of the pre-existing crack
tip, increases rapidly, consistent with a very high loading rate and rises

well above Gstac

= GQ, because ot the kinetic energy inserted in the test
plece by the fracture of the bolt.

The crack begins to extend when

GI® = Gp(a = 0) = JIC(.;) (7
where Jyc(J) signifies the J-value at the onset ot crack extension tor the
high loading rate. The requirement:

¢ = gp(a) (8)
where Gp(a) represents the crack velocity dependence of the fracture eanergy,
is satistied while the crack is propagating and determines its speed. The
crack velocity diminishes after the bulk of the kinetic energy in the systenm
is consumed as fracture energy. The crack arrests when a = a, and:

63" < G, = Gpla = 0) = J_(2) (9)
It should be noted that the value of GIY® at the onset ot crack exteasion,
Equation [7], and at arrest, Equation [8], are not necessarily the same in

view ot difterences in the character of crack tip strain tield (the rising

nature of the Jp-curve) existing at these locations. The average values of
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value of Kyp. However, it should be noted that even it 30% of the

released energy were dissipated in this way, remote from the crack

ﬁ tip, this would only reduce Kyjp by~15%.

:4 (11) Rate dependence of the yield strength. The calculations of Hoff,

) Hahn and Rubin{12] show that the rate dependence of the yield

ai strength of steel can elevate the Jg-curve by an amount comparable

’% to Jy¢, independent of the local resistance to tracture.

) (111) Rate dependence ot the resistance to tracture. The changes in the

g fracture appearance described in the previous section reflect an

;$ increase in the local resistance to fracture. This is aiscussed

;‘ more fully in the next paragraph.

:

'z As pointed out earlier, the tracture appearance of fast tracture surtace
'ﬁ 1s much coarser, and is accompanied by larger plastic detormation, than the
.: slow fracture surface. Recently, there have been several attempts to relate
5 the elastic energy release rate (or the corresponding stress intensity) with
- the microstructural features in the case of very tough and ductile materials.
: One of the important contributions is from Stuwe[23], whose work indicates

"

o that fracture resistance increases as the magnitude of the microroughness or
12 the depth of an average dimple increases. In more specific terms, doubling

: the roughness will approximately increase the stress intensity by a factor of
:; 1.3. Similar observations of Thompson and Ashbylzal also verify the results
'S of Stuwe. While these analyses are based on empirical formulations, it is

L reasonable to state that a fracture surface revealing enormous plastic work
j and large microstructural features resulting in a coarse structure, indicates
: an increase 1n the resistance to fracture.

55 In summary, the above effects add up in such a way as to enhance the

4

J static values of energy release rate (or the corresponding values of stress
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intensity). From the energy viewpoint, the tactors due to the 3 eftects are
~1.3, .v2.0 and ~1.7, for energy losses, rate dependence of yield strength and
rate dependence of resistance to tracture, respectively. These add up to a
factor of ~5. Experimentally measured values (Tables 4 and 5) indicate a
factor ~4x to ~16x larger than the static, rate insensitive values of the
energy release rate. While the net effect of the above explanations falls
somewhat short, more seansitive instrumentation and a device of higher capaclty

are required to assess the dynamic etfects in a thorough way.

CONCLUSIONS

1. The “fast fracture device” is able to simulate crack extension and arrest
in a very tough material. However, the energy and toughness measuring
capacity of the present design 1s marginal for tough, arrester grade steels.

2. The relatively small crack extensions produced with relatively large
expenditures of energy indicate that the average toughness values for
fast propagating fractures are ~2x to ~4x larger than the values tor
slow crack extension in a tough aluminum alloy and steel.

3. The large values of the toughness Kip, derived trom the measurements may
have 3 sources (1) the rate dependence of the resistance to plastic flow,
(11) the rate dependence of the resistance to fracture and (1i1) unaccounted
for energy losses in the device.

4. Fracture surfaces produced by fast fracture are substantially rougher than
those produced by slow crack extension. This change is consistent with an
increase in the resistance to fracture,

5. Rapld crack extension in a tough, ductile material can consume substantial

amounts of kinetic energy released in the process of fracture.
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6. The Kja(2) toughness values are intermediate with Kjp and Kj,. Wwhile this ﬁﬂ
L
1s consistent with the view that KJa(Z) is a valid measure of the arrest .
(¥
capabilities ot a tough material, more direct evidence ot a close relation u:
1%y
between Kjo(2) and Ky, is called for to support the use of Kju(2) in design. :;'.
7. Measured values of Gp indicate a factor 4x to 16x the energy of slowly o
extending tractures aad the net factor due to various eftects accompanying '3;
e
fast tracture adds up to ~5x. ‘:::
‘4
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FIGURE 1. Schematic operation of fast fracture device: (A4) Wedge load
is applied, storing elastic energy in the arms; and (B) the bolt fractures ]
causing the crack to extend.
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FIGURE 3. Test specimen geometry (drawing is not to scale)
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FIGURE 6. Comparison of compliance values measured without
the bolt vs. the values obtained from finite element

calculations.
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FIGURE 7. Load vs. notched bar displacement record
for the four specimens.
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"3 FIGURE 9. Fast fracture surface of HY-80 steel
t specimen.
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TABLE 1

SUMMARY FOR FINITE ELEMENT ANALYSIS FOR STATIC CRACK GROWTH

fa(m) C(mN-1) t(lﬁ{tll? G(JIm=2) K(MPa ml/2)
0.0 1.1395x10-7 1.0664x10~6  1,2279x105  164.3
0.39x10°3 1.1437x10°7 1.0690x10°6  1,2219x105  163.9
0.71x10°3 1.1471x10°7 1.0712x10"6  1.2171x105  163.5
1.42x1073 1.1547x1077 1.0759x10°6  1.2064x10°  162.8
2.85x1073 1.1712x10°7 1.0855x10°6  1.1852x105  161.4
5.67x10°3 1.2010x10°7 1.1045x1076  1.1449x105  158.6
8.48x10"3 1.2323x10°7 1.1236x10°6  1,1062x105  155.9
11.3x10°3 1.2643x10°7 1.1430x1076  1.0691x105  153.3
14.12x10°3  1.2968x10-7 1.1625x10"6  1.035x105 150.7
16.94x10"3  1.2399x10"7 1.1821x1076  9.9928x10%  148.2
19.76x10"3  1.3635x10°7 1.2020x10°6 - 9.6664x10%4  145.8
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TABLE 3

SUMMARY OF LOAD-DISPLACEMENT DATA

Material Data vend{m)  Vypad(m) Vpin(m) Vertical
Source - Load (kN)
on wedge
HY80 Finite Element 0.0122 0.0099 3.81x10°4 144
Steel Calculations
Experiment 0.0122  --- 3.74x10°%4 151
7075 Finite Element 0.0124  0.0101 3.05x10"4 158
Aluminum Calculations
Specimen 1 Experiment 1 0.0124  --- 3.03x10"4 160
(HRB 45)
Specimen 2 Experiment 2 0.0125  =--- 3.62x10"% 161
(HRB 78)
Specimen 3 Experiment 3 0.0125 --- 3.73x10°4 166

(HRB 92)




TABLE 4

SUMMARY OF ARREST MEASUREMENTS

Material B C c U U G
N/B Psa, u,a; a, a, D
(mN-1) (mN=1) (J) (J) (KJ/m2)
Steel 80% 6.875x10-8 1.18x10°7 712.8 416.0 5499

Aluminum 253 6.32x10"8  1.43x10-7 808.0 357.0 2439
7075
HRB 45

Aluminum 25% 6.32x10°8  2.29x10-7 808.0 223 609.6
7075
HRB 78

Alumi num 25% 6.32x10"8  >2.6x10~7 B08.0 <200 <446.5
7075
HRB 92*

*Crack did not arrest at this hardness level and therefore the
figures calculated represent the upper limits.




A TR AR LN N Y NN U XA NB W VN UN WM WKL g GBSl ‘ahaal Vat tal Vol Yapiong MR N TR WY A XN YR TNW T wa N W T LX)

. TABLE 5

SUMMARY OF ARREST MEASUREMENTS AND CALCULATIONS ]

Specimen By/B Aa Kgc K1D KJ‘V Kia oy

K )
Mgav’m MPa/m MPavm MPavm MPavm o

g

HY-80 802 9.0 402 214 1099.3 259 385 3
Steel

7075 Al 25% 8.5 189 115 430 226 174 av
(HRB 45) g

7075 Al 25% 50.8 193 60 215 142 126
(HRB 78) )

7075 Al 25% No 190 39 <184 101 <104
(HRB 92) Arrest W
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