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PROGRAMMING SOLUTIONS TO THE ALGORITHM CONTRACTION PROBLEM
Philip A. Nelson, Lawrence Snyder .

Computer Science Department. FR35
University of Washington

Seattle, Washington 98195

Abstract

Algorithms for the parallel solution of problems are usually designed The method used for programming this model consists of defining a
assuming an unlimited number of processors. Physical parallel machines sequential program for each processor and a communication graph. We
have a fixed number of processors. The algorithm contraction problem am assuring a configurable architecture. (The problem of mapping a
arises when an algorithm requires more processors than are available on communications graph onto a different processor connection graph is dis-
the physical machine. We present tools for comparing algorithm contrac- cussed by Berman and Snyder[41 and Bokhari[51.) Cornmunication is
tions based on bottle neck communication paths. We apply these tools to explicitly shown in the sequential code by specifying a data value to be
minimum matrix product and sorting. sent to the processor connected by a given edge.

Introduction The algorithm contraction problem arises when an algorithm that is
Algorithms for parallel computers are usually designed assuming a designed for use on n processos must be mapped to a physical parallel

unlimited number of processors. For non-shared memory parallel algo- computer cst w only p b processors. The phogrammer must decide which
rtthms, this assumption generally manifests itself by the algorithm utiliz- logical poes se ave mapped l o s processor. Assuanging one processor "per point', or some other input size-dependent proces- that the logical processes have balanced loads (they run for the sae
sor allocation. The physical machine has only a fixed number of proces- lo Ti i e by m ing the s ical process e to
%ri, of course, which will almost certainly be less than the number loads. This is done by mapping the same number of logical prcesses to
required by the algorithm. In order to make the logical processes of the each physical processor. The number of logical processes assigned to
algorithm conform to the physical processors of the machine, we must two arbitrary physical processors should differ by at most an additive
group processes together into a module to be executed on a single physi- constant c. For most conacions, it would be best to have c = 1.
cal machine. This activity is called contraction[13]. The way this con- The contraction induces a comnunication graph for the p physical
traction is performed can have a significant affect on performance. processors. This new graph is defined by logical processes needing to

Consider two examples based on an grid R xn of processes, i.e. the ommunicate with other logical processes not mapped to the same physi-
processes communicate with their four nearest neighbors: cal processor. We assume that if a logical process in processor i needs to

(I) There is much process-to-process commulnication and communicate with a logical process in processor j. there is a physical
approximately equal computation required of each process. edge connecting the two processors in the new graph. The contraction

(2) There is little process-to-process communication and the may map many of these logical edges to one physical edge in the new
amount of computation per process is proportional to its j index, graph. Thu s, we am allowing only one edge between physical proces-
e.g. process i~j iterates j times. sors. Under the assumption of a bounded degree graph for the generic

Suppose we have only one fourth the required number of processors and arhitecture, this induced graph mnust also be of bounded degree. %
now compare two ways of forming contractions of four processes per As an example of contraction. lee us assume we have an algorithm
processor[4]: Coalescing groups of adjacent 2x2 subarrays; folding with a tree graph. Consider the con-action to 5 processors shown in Fig-
groups as if the grid is folded in half and then in half again. i.e. i .j ure I. This contraction caused an increase in the degree: for example. the
(l~i.j<) is associated with ii-j+l, i-i+l,j and n-i+l,n-j+l. new root verex has four descendants. Using this kind of a contraction, it2 can be shown that given p processo. contracting an algorithm with at
Clearly. algorithm (I) should be contracted by coalescing because the least p3 logical processes requires degree p-1. Figure 2a shows a con-
process-to-process communication for the processes sharing the same traction of the tree to 4 processor. An extension of this method yields a
processor will become intraprocessor communications (i.e. fast memory binary tree in the p processos.
references) rather than slow interprocessor communication. folding Figure 2b gives another contraction o 4 processors. This contraction
would not be as attractive because no communication is saved by locality. is derived by the recusive te commiction given by Leiserson(91.
Alternatively, algorithm (2) should be contracted by folding because t Given two instances of a tree each with an associated free node, we can
work is balanced since each processor will perform a natching amount of build a new tree and m associated free node. This produces a linear area
long and short computations; coalescing would not be as attractive layout in the plane with several desirable propertis, one of which is the
because the processors receiving processes with large indexes will constant number of external edges.
become a bottleneck. In this paper, we will be considering th contribution of the communt-

Using the results of Berman and her colleagues(3], an algorithm can cation tise to the performance of the contracted algonthm. Unless other-
be be automatically contracted, and this seesm to be the best approach wise stated, we assume that a communication between processing ele-
when nothing is known about the algorithm. At the other end of the sP"C. ments costs a fixed time t,. During this time. no other cnmmunication in
trum, however, the programmer has "complete knowl-dge about the
algorithm. How should he be guided when performing his own contrac-
tion? In this paper we develop some appermus to guide the programmer ' -
who must contract , algorithm. We will provide some cae studies of Y'.,
contraction that show an Anexpected diversity and we offer some general
contraction strategies that can find application in other algorithms. Con-
traction is a nontrivial problem for parallel pmgrammen[ 13]. and so a b
secondary goal here is to expose it as an important topic for study and a
subject suitable for rigorous analysis. Figure I: A Sprocessor ontractio.

Definitions
The generic parallel architecture under consideration in this paper is a A,

non-shared memory model. It is a collection of homogeneous sequential
computers operating asynchronously and connected in a communication A A A-
network that is a bounded degree graph(13]. A single "edge' in the graph .,provides bidirectional communication between two processors. The
CHiPI 11 architecture is an example of this generic architecture. (a) (b)

Suppid ii pan by Nam&) science Fowndatae. GCau DU-Ui60711
aad by ortoNwi ItuaubCom e u e. N001445--0321. Figure 2: Two 4 processor contractioins.
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the same direction may take place. We am specifically allowing all edges Asmlrcnrcint iue2 stuhdo yBra n
to have simultaneous communication. Communication internal to a pro- Snyder(4). Figure 3 shows this contractior. This is achieved by 'fold.
cesso cosits dhe fixed time: t, We also assume that t, >> li . ing' the tree. As Berman and Snyder notice, this contraction. M2. has

We would like to develop tools for reasoning about the relative merits K (M I iinmJmpY)) = 1
of different contractions. This includes their communication costs and p
their execution times. To aid in this objective we give the following Consider the contraction in Figure 2b. Let us call this contraction
definitions. MI(Pnumfnwsp). We nome that each edge in the smaller graph has at

Let A (V.E )be analgorithm where V is aset orlogical processes( most one edge from the originalpahn each drection. For an arbitrary
vertices and associated Programs ) and IlVI=-s, E is a set of edges ns and p we have K(M,(mu~nnp)) . 1.
(V ,V 2). V 1,V 2rV. Proposition I tells us that since M Ihas asmaller K. it is the preferr.

Let M (A.p)=-B be a contraction of algorithm A into algorithm 8 able cotsraction. BothI Af nMIdepend on n UNd P for their Cos. But.
where B uses p processors and p -c I V.4 . The contraction M maps ele- M 3his aconstant cost. regardless ofxnd p. In fact.dshis contraction is
ments of VA onto Vs such that the number of elements of VA mapped to optimum for all tre algondtim that have identical edge weights and urn-
an arbitrary element of V5 differs by no more one from the number of direcuional communication (all toward the root or all toward the leavea).
elements of V4 mapped to any other element of V8. We first look for a lower bound. Since the tree is connected. the phy.

Let w(e). the weight of e, for c -(V1.V2), be the larger of the sical processors must be connected. This requires at least one incident
number of messages from V 1toV I and the number of messages from V 3 edge for each physical processor. The smallest cost K (MW (A.p)) would
to V. be where a maximumn of one logical edge was mapped to a physical edge.

Let K(A) -MAX w(e), for eeE. be the communication *cost' of A. Therefore. K(M(Ap)) ZK(A). the cost of the origmnal algorithm.

This cost is an estimate of the minimum communication time required for LEMMA 2: For complete binary tree algorithms with balanced pro-
the algorithm. Due to dependancies. Elie actual communication cost may cesso loaids, equal edge weights, and unidirectional communication.
be more. algorithm contraction based on Leiserson's binary tree layout technique

yields optimism results.
Let T(A) be the execution time for A. PROOF: For the mapping M 1(A p). each processor contains a com-
PROPOSITON 1: For a given A. p. MI. and M 2. and t, > i if pletasubtre and an "extra node. The extra nodes amused in the tre

K(M I(Ap)) <K(Mz(Ap)) then T(M 1 (Ap)) ST(M 2(Ap)). above the subtrees containedIn the processors. Therefore. themeat most
This proposition is formalizing the notion that the bottleneck edge 4 external connections. Of these four two edges am used to

will be a lower bound on the time required for the execution of the recive(snid) data from(to) the children of the extra node. anld two edges
mapped algorithmn. If the processors have a small amount of coptto are used to senditreceive) dam tol(from) die subaree's and the extra node's $I
relative to the communication. the execution time wil 4epenid on th parents. Since the root of the subtre and the extra node am not at the
communication time. The bottleneck edge of the contraction M I will same level in die tre, edges with data flowing in the samte direction can
require a minimum of rtK(M1(Ap)) time. which is less than notbe Cneted tothe same physical poesor. (it is posible to have
tX(Afz(A~p)). With a higher minimum communication tirme. we ca" two of these edges over the same physical edge, but the data moves in a.
not expect MI to execute in less tame than MI. If the processors have a opposite directions.) This gives the same weight to the physical edges as
large amount of computation in ratio to the Communicauion. the compute- the original edges. Thereore K (M,(A p)) - K (A). which is die lower *
tion time will dominate. yielding near equal unmes. Even an this case. M bound. 0
uses less time for communication than MI. This proposition then Notice that this layout technique will place two logical edges in theq.
motivates us to map the busiest edges of an algorithm to internal edges. sames pisysicial edge for some physical edge. For tree algorithms with

Can Suie bidirectional communication, we then get K(M 3(A p)) - 2K (A).
We now look at several parallel algorithms and some contractions. To help verify these reults, die mirmium algorithm was programmed

We approach these by considering algorithms with similar comunia sn h oe arle rgamn nirawtl1 oh i
tion graphts. The three graphs considered are the tree. grid, and binary n- I %a rgamd ahcnrcinwstne sn n 6dt
cube. Items per processor with 4 and 16 processors. The reulti of these tim.

Tre lgrihmingsamegiven in Table 1. Each 'tick*repmeents a muccosecoad on the 64
Procesor Pringle.

There are several algorithms that run on complete biary tree (Figure Grid algoirithms
1) having similar characteristics. like the aggregation operations o enx okaagrthsta u napdinioncmn o-'
minimum and global sum. AUl processors have a value sad we want We nae t moax put algorithmfo thetrnonagi Wateroetn ACoay
compute a global value that depends on all thes values. Leaf processors[1.I ue I rcssr orte iamarxprdcsend their value to their parents. Internal processon take tie nunimsum Itue'Prcsosfrheax mm podt
(sums) of their own value and their chaldren's values and then send the AS a C. The data is fed in along die top m processors .nd from the left%
result to their parents. The final value wall be computed at the root pro. ni processors. The matrix A is arranged to enter colum by column, start- a
cessor in 0 (log n) ume. The comitnsicusion in ths aloih ing with the Am colun. The matrx B is arranged to ~ut raw by row.
require one message over each edge for each global minimum (sum). starting with the first row. (See Figure 4.) All processors exectef identical
For a single mintimm we have K (mnmum) .. prcedures. The reult. c,,. is iitalized to zero. A loop is executed so

times that reads an A value from the left and a 8 value frm above. mnul.Consider the contraction in Figure 2L. Let us call this contraction tiplies diem together, and afts the result to c,,. The A and B values arema
M i(muatiiunap). Each edge in the original algorithm requires one am- sent to the right and down. respectively. This causes the upper left pro. --
sage. Each edge in the smaller graph ha 4 edges from the original graph. cont u be thes first procssor to stars execution. As the data moves into %
Since we have only one connection between the physical processors, we the armay. there is a wavefront of execiauing processors on the cross diago-..J.
have 4 messges for each edge. For an arbitrary it (size of original allso- nal. Each edge is used to mid all of one row of A or one columnu of 5.
raim) and p (the number of processors) we have otWAaorhm hve( P).

is Consider the contracion an is111111 5. Let us Call thi cornractionP MI (WAP .9). This is dhe contraction done by comn the graph into,
equal sine connected subgrapas and assigning one ro.from each sub-
graph selected from corresponding positions to a sinale processor. The

Minimm tcks fona(itmsu)oe (processors
IContrction 16 nd fido16ld6fion 4 236on16l

Figure 3 U456 761 1 12Q7-
Fgr3:Berman anod Snyder wree contraction. Table I Timings olf the nmaie algorithm.
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b, ri~thm views A and 8 as a Ux2 matix of -x-1 matrices. The 2,a matriu.
isb2  algorithm is then used to multiply doe subnsauicas. Filmr 7 shows a

bla order 4 cube layed out in t~e plane using tie CHiP architectuire. Thenumbers in the boxes show the index of she Matrix elements initially con-
tained in that processor. We mre assuming thsat the processors are num.-
bered in row major order. The dotted boxes show cubes of order 2.
These cubes, which generally have order 2(k-1) contain an ±st-1 sub.

54* ~ B~5 * 2 2matrix of both A and D. Note that these cubes sam constructed by
J...s..sJ~'removing* the edges of order k and 2k. where and edge of order k con-

nects processors that are 21'"it distance apart.
Figure 4: WAP organization To compute the 242 matrix product. all processors exchange values

of 8 on the order Zk edge and valuaesof A on the order k edge. After the
exchange. each cube of order 2(k-1) contains 4 submat-ices of size
T X T . This is all the data that is required for each cube of order 2(k-1)
to compute its part of the 2x2 matrix product independantly. If the sub-

matix s ot sngl eemet.two matrix products of -2x 2 matrices are

required. Thiese matrix products are done using the same algorithm.L
Matrx addition is done element by element. Because corresponding ele-
ments. of the matrcs are contained in the sum procesisor, no communi-
cation is required.

To find tie cost of this cube matrix multiply. K (CMM), we need to
find the edge with the most messages. At the first level of recursion the
order k and 2k edges were used to said amessage each way. This is the

Figue 5 A ontrctin o 16logial rocsse to prce~o".only use of these edges in die algorithm. Therefore. w(e) .1, where e is
a sorder k or 2k edge. At the second level ofrcunxwonmatix pro.

physical connection graph, shown in Figure 5. is a grid with end around ducts ate computed using the order k-1 and 2k-I edges. Each matixs
(i.e. toroidal) connections. For each logical process in a physical proces. product sends one message each way on each edge giving w (e) a2.
sor. thremaehorxontal ansdvertical commnunication patSimsewe have where e is a order k-1 or 2k-I edge. At level 1 of die recursion.,

w(e) =-1 messages over dhe order k-(I-I) and 2k-(I-l) edges. The~-logical processes in a process-r, the number of logical edges using rcisoisoswe ehv re ue.Ti sttelgNlvlo

one processor- to-processor connection is -. Since All honxntal and recursion. There am - matrix multiplies done by order 2 cubes. Thesep 2vertical edges have the same number of messages. N * we have

K (M I(WAPp )) -RP
Consider the contraction in Figure 6. Let us call this contraction

M 2(WAPp). This is the contraction done by cutting the graph intop T T
equal size connected subgraphs and assigning an entire subgraph to a pro- if h 4 F

essor. We see that only the perimeter processes have edges that go fromF T'
processor- to- processor. Also notice that no end around connections are %- -
needed. The number of communication paths over one procssor-to-

procssorconectin 2i Each communication path requires A Figure 6: Another contraction of 16 logical processes aD 4 processors.

mesaes7P=; WAP matrix multiply: ticks for n (tem) on p (proessors)
Comparing the two contractions, We 1140 that k(M2(WAJp)) is Contraction I16 on 4 64 on 16 1 64 on 4 I256on 161

smaller than K (M (WAPp)) by afactor of.7.. Proposition lItells us I I Ip M 131113 73 221545 7 76A6that M I is the better contraction. We conjecture that M 2 is the best con-%
tractioni that can be achieved for grid algorihs The basis for thi con Table 2: Tunings oa the WAP matrix multiply algorithim
jecture is that this contraction has the smallest perimneter for a given area.
and has been commonly used for contraction in publishe algorithm. for 

-
example for the Jacobi iterative method(11I and for the conjugate gradient0 00
methodL61.

Bobi Md I andl Af wete programmed using Poker. Table 2 su mmar-
izes the results of the timings. AS predicted. Md2 wa the faster cono-ac-
sion. but because the communication time is not the only time consuming0
part in these algorithm the difference is perhaps not as dramatic a might
be seen on a larger problesm 0 0 0
Risy rn-cube algariths0

We now look at two algorithms for the binary n-cube. The first algo-
rithm is the divide-and-conquer algorithm for matri product given by
Nelsonj 201. The other algorithm is Batcher's bitonic sorting algo- 0 0 0
rithm(2).

The matrix product algorithm takes two N xis matrces. A, and B, and0 00 0
computes their product C sA8. A and 8 are assumned to be in row Figure 7: An order 4 binary n-cub.
major orderin the binaynr-cube of order 2k. wherekA lo0g . Thea21g0-

%
%,i



order 2 cubes use the order I and k+1 edges. Each matrix multiply sends In comparing the contrctions for matix: multiply and Baucher's son
I message each way giving w(e) = -1., where i is aorder I ork +1 edge. we see that the same size cube is mapped in a different way whet

2 mapped to t same number of processors. The busiest edges are dif.
Since this is the largest value. K(CMM) - ferent for the two algorithms, thus. the contractions are differient.

Consider any contraction. At (CAM p) where p = 2' for some Cnlso
z ~The algorithm contraction problem is an important problem for paral-m 2k. M (CMM p) will map 2- logical processes to every processor. lel programmers. The way in which an algorithm is contracted can have

p a significant affect on performance. Processor-to-processor commusica-
This allows us to put a cube of order log 2A -rn into each proces- ion can be used as a lower bound on the execution time for an algorithm.

p ~ It is the processor-co-processor communication that is affected by dif-
sot. The processor-co-processor connection graph is also a cube and is of ferent contractions.
order m. Each processor-to-processor connection supportsR commun- We have looked at algorithms for the tre,. grid, and binary n-cube%

Pication paths in the original graph. The real question is which sub-cube interconnections. For each algorithm we have compared possible con-
do we map to each proessor. The cost of the contraction. tractions of these algorithms. For tnees, we proved that Leiserson's lay-

K(,VCMMp))wil be PC ime th maimumw~e, wen is out technique was the best for contracting tree algctrithrre such as
K(ICMfp) ilbe-tie hemxmu ~e hreCI minimum and sum. For grid algorithms, we conjectured chadt coalescing

mapped to a physical edge. If e is order I or 2k +I from the original by maximizing the area for a givens peruieter is optimal for the algo-
cube K ( (CW p)) -1 rthnu with balanced edge loadings. Finally, we showed two algorithms

cubKM(M p fo binary n-cubes that required, different contractions to produce the
Cons r the contraction that m ap the ges of order I through optimal results for the algorithm.
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