WASHINGTON UNIV SERTTLE DEPT OF COMPUTER
SCIENCE P A NELSON ET AL. APR 86 NOOO14-85-K-0328
UNCLASSIFIED F/G 12/% NL

AD-A193 293 PRI)GR!EMHING SOLUTIONS TO THE ALGORITHM CONTRMTION 11

PN Be 2 0 20,05 B i oe St L

AN

P T T\

aa STy

!‘
UL g b

'
€O

H oy -
ol o S
m.ml

2

———

| &

40
—

EEE EREIN

—
—
o ——
—
e ————

I

SLrrrino I N S

I

I

—_—

=y

-

RPN POAFL I

')
» a

NN

P2 ELPT .

L
>
-

AD-A193 205 UK fice (yp,

‘,"ff.r...f.f:

-

», A RARU . way oaf wsg tag Al et Bt ate G’ “ate 012 9042 08 Ty I 8t et

. ¢

Unclassifieq @

iECURIYY CLASSIFICATION OF TMIS PAGE (When Date Entered)
READ INSTRUCTIONS

REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

1 REPORT NUMBER 2. GOVT ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER
none

& TITLE rand Subtitle) $. TYPE OF REPCRT & PERIOD CCVERED

Programming Solutions to the Algorithm

Contraction Problem Technical Report

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR() 8. CONTRACYT OR GRANT NUMBER(s)
Philip A. Nelson and Lawrence Snyder N00014-85-K-0328

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJEC TASK
University of Washington AREA & WORK UNIT NUMBERS

Department of Computer Science
Seattle, Washington 98195

fi. CONTROLLING OFFICE NAME ANO ADDRESS 12. REPORT DATE
0ffice of Naval Research April 1986
Information Systems Program ‘JQEUMBEROFPAGES

Arlington, VA 22217

14. MONITORING AGENCY NAME & ADDRESS(If diffarent from Controlling Office) 15. SECURITY CLASS. (of this teport)

Unclassified

'5Sa. DECL ASSIFICATION, UOWNGRADING
SCHEOULE

16. DISTRIBUTION STATEMENT (of this Report?)

Distribution of this report is unlimited.

I

17. DISTRIBUTION STATEMENT (of the abstract entered in Blosk 20, I di!ferent from Roporw F i M..T
CLECTE GRS
APR 1 31388

18. SUPPLEMENTARY NOTES

“R

19 KEY WORDS (Continue on reverse side i/ neceasary and Identily by block number)

A]gor1thm contraction problem: para]]e] progaramming

7) . v ! '/‘ R .

20 ABSTRAZT (Continue on reverse side il rfecesasary and identify by block number)

. Algorithms for the parallel solution of problems are usually designed assuming
an unlimited number of processors. Physical parallel machines have a fixed
number of processors., The algorithm contraction problem arises when an
algorithm requires more processors than are available on the physical machine.
-—MWe present,tools for comparing algorithm contractions based on bottle neck
communication paths. We apply these tools to minimum, matrix product and
sorting. N

DD (0% 1473 eoimionor 1 noves s cmsoveTe

~

S FERANAPE I

SCEUPITY CLASS FICATION NF THiS PAGE Whar Dete Kntere

a2

"y \ -. - ., -‘\ " Ve R AR AT YOO AASAY

NGNS SN O TG S A A RN SN NI ORI Iy

g *

Rk gt wi ol
A -

ol

*k‘_\j' e e Y,

.
X

O)

RRANME

P

Q‘F"lr':

»

A A SN

T REEE S

‘e v w
e A
v e f W

e I 2]

55]

PR XA 4

T Ragli DU U SN 20 SRS
2 o LA NN

<y

ROLPCIAI BN U U

)

" ot R e Ve A AT AR LS - (% 18 1 4" 920

PROGRAMMING SOLUTIONS TO THE ALGORITHM CONTRACTION PROBLEM
Philip A, Nelson, Lawrence Snyder
Computer Science Department, FR3$
University of Washington
Seaule, Washington 98195

Abstract

Algorithms for the parallel solution of problems are usually designed
assuming an unlimited number of processors. Physical paraliel machines
have a fixed number of processors. The algorithm contraction problem
anises when an algorithm requires more processors than are available on
the physical machine. We present tools for comparing algorithm contrac-
tions based on bottle neck communication paths. We apply these tools to
minimum, matrix product and sorting.

Introduction

Algorithms for parallet computers are usually designed assuming an
unlimited number of processors. For non-shared memory parallel algo-
rithms, this assumption generally manifests itself by the algorithm uuliz-
ing one processor “per point”, or some other input size-dependent proces-
sor allocation. The physical machine has only a fixed number of proces-
sors, of course, which will almost certainly be less than the number
required Dy the algorithm. In order to make the logical processes of the
algorithm conform to the physical processors of the machine, we must
group processes together into a2 module to be executed on a single physi-
cal machine. This activity is called contraction(13]. The way this con-
wraction is performed can have a significant affect on performance.

Consider two examples based on an grid axa of processes, i.e. the
processes communicate with their four nearest neighbors:

(1) There is much process-to-process communication and
approximately equal computation required of each process.

(2) There is litde process-to-process communication and the
amount of computation per process is proportional to its j index,
e.g. process i,j iterates j times.

Suppose we have only one fourth the required number of processors and
now compare two ways of forming contractions of four processes per
processor(d): Coalescing groups of adjacent 2x2 subarrays; folding
groups as if the grid is folded in half and then in half again, ie. i,/
(15«'.;5%) is associated with i n~j+1, A-i+lj and A=i+la=j+l.

Clearly, algorithm (1) should be contracted by coalescing because the
process-to-process communication for the processes sharing the same
processor will become intraprocessor communications (i.e. fast memory
references) rather than slow interprocessor communication; folding
would not be as attractive because no communication is saved by locality.
Altemnatively, algorithm (2) should be contracted by folding because the
work is balanced since each processor will perform a matching amount of
long and short computations; coalescing would not be as attractive
because the processors receiving processes with large indexes will
become a bottleneck.

Using the resuits of Berman and her colleagues(3], an algorithm can
be be automatically contracted, and this seems o be the best approach
when nothing is known about the algorithm. At the other end of the spec.
trum, however, the programmer has “complete” know!dge about the
algorithm. How should he be guided when performing his own contrac-
tion? In this paper we develop some apparstus 0 guide the programmer
who must contract ¢ algorithm. We will provide some case studies of
contraction that show an unexpected diversity and we offer some general
contraction sirategies that can find application in other algorithms. Con-
traction is a nontrivial problem for parallel programmers{13), and so a
secondary goal here is 10 expose it as an important topic for study and a
subject suitable for rigorous analysis.

Definitions
The generic paraliel architecture under consideration in this paper is a
non-shared memory model. [t is a collection of homogeneous sequential
computers operating asynchronously and connected in a communication
network that is a bounded degree graph{13]. A single "edge” in the graph
provides bidirectional communication between two processors. The
CHiPf11} architecture is an example of this generic architecture,

Suppornted 18 pant by National Science Foundatios Crant DCR-3416878
and by Office of Naval Reseasch Coatract No. NODO14-85-K 0328

LW e e T S e e e e
TSI,

The method used for programming this model consists of defining a
sequential program for each processor and a communication graph. We
are assuming a configurable architecture. (The problem of mapping a
communications graph onto a different processor connection graph is dis-
cussed by Berman and Snyder(4) and Bokhari(5).) Communicauon is
explicitly shown in the sequential code by specifying a data value to be
sent to the processor connected by a given edge.

The algorithm contraction problem arises when an algorithm that is
designed for use on a processors must be mapped to a physical parailel
computer with only p <r processors. The programmer must decide which
logical processes are (o be mapped to the physical processors. Assuming
that the logical processes have balanced loads (they run for the same
length of time), we would like the physical processors to have balanced
loads. This is done by mapping the same number of logical processes ©
each physical processor, The number of logical processes assigned w©
two arbitrary physical processors should differ by at most an additive
constant c. For most contractions, it would be best to have ¢ =1.

The contraction induces a communication grapk for the p physical
processors. This new graph is defined by logical processes needing o
communicate with other logical processes not mapped to the same physi-
cal processor. We assume that if a logical process in processor i needs o
communicate with a logical process in processor j, there is a physical
edge connecting the two processors in the new graph. The contraction
may map many of thess logical edges to one physical edge in the new
graph. That is, we are allowing only one edge between physical proces-
sors. Under the assumption of a bounded degree graph for the generic
architecture, this induced graph must also be of bounded degree.

As an example of contraction, let us assume we have an algorithm
with a tree graph. Consider the contraction to 5 processors shown 1n Fig-
ure 1. This contraction caused an increase in the degree: for exampie. the
new root vertex has four descendants. Using this kind of a contracuon, it
can be shown that given p processors, contracting an algorithm with at
least p3 logical processes requires degree p-1. Figure 2a shows a con-
raction of the tree to 4 processors. An extension of this method yields a
binary tree in the p processors.

Figure 2b gives another contraction to 4 processars. This contraction
is derived by the recursive tree construction givea by Leiserson(9).
Given two instances of a tree each with an associated free node, we can
build a new tres and am associated free node. This produces a linear area
layout in the plane with several desirable properties, one of which is the
constant number of external edges.

In this paper, we will be considering the contribution of the commuru-
cation uime to the performance of the contracted aigonithm. Unless other-
wise stated, we assume that 2 communication between processing ele-
ments costs a fixed time ¢,. During this ime. no other communication n

Figure 1: A $ processor contraction.

Figure 2: Two 4 processor contractions.

]g 4 1”068

T P

»

“~ \;.\»\}'n 1}_\\"\ S, '--# g '\.‘,‘\), ,‘.\ \

ok

A e] '-'F‘A‘Y

AL

AR X

e

L L

N}

l"“’ !" [}

P - u, g A LY
-'.'._'!- ? .."q l‘. R

: \": ': ’

'y ,'-"'-, l, '(.I

€ v 7T
'!-:’..I’:":‘~ oy,

4

}\f‘(i

the same direction may take place. We are specifically allowing all edges
to have simultanecus communication. Communication internal to a pro-
cessor costs the fixed time ;. We also assume that s, > ;.

We would like to develop tools for reasoning about the relative merits
of different contractions. This includes their communication costs and
their execution times. To aid in this objective we give the following
definitions.

Let A=(V .E) be an algorithm where V is a set of logical processes (
vertices and associated programs) and |Vi=a, E is a set of edges
(V|.Vz), V|,V;E V.

Let M(A p)=8 be a conuaction of algorithm A into algorithm 8
where B uses p processors and p < |V, |. The coatraction M maps ele-
ments of V, onto Vy such that the number of elements of V,, mapped to
an arbitrary element of V, differs by no more one from the number of
elements of V, mapped 10 any other element of V.

Let w(e). the weight of ¢, for e =(V V), be the larger of the
number of messages from V', 10 V; and the number of messages from V,
woV,.

Let K(A) = MAX w(e), for e € £, be the communication “cost” of A.

.

This cost is an estimate of the minimum communication time required for
the algorithm. Due to dependancies, the actual communication cost may
be more.

Let F(A) be the execution time for A .

PROPOSITION 1: For a given A, p, My, and My, and ¢, > 1, if
K(M(Ap)) <K(MyA p)) then T(M (A p))S T(M (A @)

This proposition is formalizing the notion that the bottieneck edge
will be a lower bound on the time required for the execution of the
mapped algorithm. If the processors have a small amount of computation
relative to the communication, the execution time will depend on the
communication time. The botdeneck edge of the contraction M, will
require 2 minimum of £ K(M(Ap)) time which is less than
t.K(M1(Ap)). With a higher minimum communication time, we can
not expect M ; to execute in less time than M ;. If the processors have a
large amount of computation in ratio to the communication, the computa-
tion time will dominate, yielding near equal imes. Even in this case, M,
uses less time for communication than M, This proposition then
motivates us to map the busiest edges of an algorithm to internal edges.

Case Studies

We now look at several parallel aigorithms and some contractions.
We approach these by considering algorithms with similar commanica-
tion graphs. The three graphs considered are the tree, grid, and binary n-
cube.

Tree slgorithms

There are several algorithms that run on complete binary trees (Figure
1) having similar characteristics, like the aggregation operations of
minimum and global sum. Al processors have a value and we want ©
compute 3 global value that depends on all these values. Leaf processors
send their value 1 their parents. Internal processors take the minimum
(sums) of their own value and their children's values and then send the
result to their parents. The final value will be computed at the root pro-
cessor in O(log) ume. The communication is thess algonthms
requires one message over each edge for each global minimum (sum).
For a single minimum we have K (minimum) = 1.

Consider the contraction in Figure 23. Let us call this contraction
M (minimum p). Each edge in the original algorithm requires one mes-
sage. Each edge in the smaller graph has 4 edges from the ortginal graph.
Since we have only one connection between the physical processors, we
have 4 messages for each edge. For an arbitrary a (size of original algo-
ritm) and p (the number of processors) we have
K(M (minimum p)) a %

Figure 3: Berman and Snyder tree contraction.

A

A

A sinular contraction 10 Figure 2a is touched on by Berman and
Snyder{4). Figure 3 shows this contraction. This is achieved by “fold-
ing” the tree. As Berman and Snyder notice, this contraction, M 3 has
K (M y(minimum p)) = i.

Consider the contraction in Figure 2b. Let us call this conzaction
M y(minimwn p). We note that each edge in the smaller graph has at
most one edge from the original graph in each direction. For an arbitrary
a and p we have K (M y(mirimum p)) = 1.

Propositon 1 tells us that since My has a smaller X, it is the preferr-
able contraction. Both M y and M ; depend on a and p for their cost But,
M 4 has a constant cost, regardless of & and p. In fact, this contraction is
optimum for all tree algorithms that have identical edge weights and uni-
directional communication (all toward the root or atl toward the leaves).

We first look for 2 lower bound. Since the tree is connected, the phy-
sical processors must be connected. This requires at least one incident
edge for each physical processor. The smallest cost K (M (A p)) would
be where a maximum of one logical edge was mapped o0 a physical edge.
Therefore, X (M (A o)) 2K (A), the cost of the onginal algorithm.

LEMMA 2: For complete binary tree algorithms with balanced pro-
cessor loads, equal edge weights, and unidirectional communication.
algorithm contraction based on Leiserson’s binary tree layout technique
yields optimum results.

PROOF: For the mapping M 4(A p), each processor contains a3 com-
plets subtres and an “extra® node. The extra nodes are used in the tree
above the subtrees contained in the processors. Therefore, there at most
4 external connections. Of these four, two odges are used ©
receive(send) data from(to) the children of the extra node, and two edges
are used to send(receive) data to(from) the subtree's and the extra node's
parenis. Since the root of the subtree and the extra node are not at the
same level in the tree, edges with data flowing in the same direction can
not be connected to the same physical processor. (It is possible to have
two of these edges over the same physical edge, dut the data moves in
opposite directions.) This gives the same weight to the physical edges as
the original edges. Therefore, K (M y(A p)) = K(A), which is the lower
bound. O

Notice that this layout technique will place two logical edges in the
sams physicial edge for some physical edge. For tree algonthms with
bidirectional communication, we then get X (M (A o)) = 2K (A).

To help verify thess resuits, the minimum algorithm was programmed
using the Poker paraliel programming environment{12]. Both M, and
My were programmed. Each contraction was timed using 4 and 16 data
items per processor with 4 and 16 processors. The results of these am-
ings are given in Table 1. Each “tick” represents a mircosecond on the 64
processor Pringle.

Grid algorithms

We next look at algorithms that run on 8 grid inerconnecuon. Con-
sider the matrix product algorithm for the Wavefront Amay
Processor{ WAP)(8]. It uses n? processors for the axa matnx product
AB = C. The data is fed in along the top n processors and from the left
A processars. The matrix A is aranged 10 enter columa by column, start-
ing with the first column. The marix 8 is arrarged 1 enter row by row,
starting with the first row. (See Figure 4.) All processors execute dentical
procedures. The result, ¢,,, is initialized 10 zero. A loop is executed a
times that reads an A value from the left and 2 8 valus from above, mui-
tiplies them together, and adds the result to ¢,,. The A and 8 values are
sent 10 the right and down, respectively. This causes the upper left pro-
cessor 10 be the (irst processor 1 stan enecution. As the data moves into
the array, there is a wavefront of execuung processors on the cross diago-
nal. Each edge is used 10 send il of one row of A or one column of 8.
For the WAP slgorithm we have K (WAP) = a .

Consider the contraction in rigure 5. Let us call this contraction
M (WAP p). This is the contracaon done by cutting the graph into p
equal size connecied subgraphs and assigning one process from each sub-
graph selected from corresponding positions o a single processor. The

Minimum: ticks for n (ivems) on p (processors)
Congaction | 16ond | 6doni6 [640ond | 2560n |6
T TSI TR
M, 4156 7682 | 8sM 12067

Table 1 Timings of the minimem aigonthm.

. -

N P PP
l‘\l‘f\f (‘

o

R Loy

a
-

L NI

':A.'ﬂ;.s_' J

sl
RE X

>
‘
')

’ Pl
LN

Rt s

CAVS YN
PP AL A

A &
.,“_'- .ﬁ(

LA
‘:'l *r % "

CRAAL |
7 4

8,5, 7,

/s

! ‘.{‘. LY

.I"".
@ e
hAa TN

Pl

-
.I

b)

22/4@ s

’.

- . oW
et Al

1400832y
Cudpdypay
9udneydy

Tudpnegay

Figure 4: WAP organization

Figure S: A contracuon of 16 logical processes to 4 processors.

physical connecuon graph, shown in Figure 3, is a grid with end around

(i.e. toroidal) connecuons. For each logical process in a phy}ncﬂ proces-

sor, there are horizontal and vertical communicauion paths. Since we have
2

o logical processes in a processor, the number of logical edges using
14

2
one Processor-to-processor connection is 5p—. Since all horizontal and
verucal edges have the same number of messages, n, we have

b}
K(M(WAP p)) = "7.

Consider the conwraction 1n Figure 6. Let us call this contraction
M y(WAP p). This is the contracuon done by cuuing the graph into p
equal size connected subgraphs and assigning an entuire subgraph (o a pro-
cessor. We see that only the perimeter processes have edges that go from
processor-t0-processor. Also, nouce that no end around connections are
needed. The number of communucation paths over one processor-to-

. n . . -
processor connection 1s 7 Each communication path requires n

3
messages giving K (M ,(WAP p)) = sp.

Comparing the two contractions, we see that K (M (WAP p)) is
smaller than K (M ,(WAP 2)) by a factor of 7“- Proposition 1 tells us

that M ; is the beuer contraction. We conjecw: that M ; is the best con-
traction that can be achieved for grid algorithms. The basis for this con-
jecture is that tus contraction has the smallest perimeter for a given area,
and has been commonly used for contraction in published algorithms, for
example for the Jacobi iterative mathod{1] and for the conjugate gradient
method(6).

Both M, and M, were programmed using Poker. Table 2 summar-
izes the results of the timings. As predicied, M, was the faster contrac-
tion, but because the communication ime is not the only time consuming
part in these aigorithms the difference is perhaps not as dramatic as might
be seen on a larger problem.

flinary n-cube algorithms

We now look at two algorithms for the binary n-cube. The first aigo-
rithm 13 the divide-and-conquer aigorithm for mamnx product given by
Nelson{10]. The other aigorithm s Batcher's bitonic sorting aigo-
rithm{2).

The matrix product algorithm takes two n xa matrices. A, and 8, and
computes their product C s AB. A and 8 are assumed 10 be in row

major order in the binary n-cube of order 2k, where k = log a. The algo-

)

v N D Ne -» AN, .".r.:.f .r " .r_'.r .r;.r Ly 'J‘_-"\J'_’-'_:' QNN

rithm views A and B a3 a 2x2 matrix of 2 x-% matrices. The 22 matrix

algorithm is then used to multiply the submatrices. Figure 7 shows a
order 4 cube layed out in L.e plane using the CHIiP architecture. The
numbers in the boxes show the index of the matrix elements initially con.
tained in that processor. We are assuming that the processors are num-
bered in row major order. The dotted boxes show cubes of order 2.
These cubes, which generally have order 2(k-1) contain an %xl sub-

2
matrix of both A and B. Note that these cubes are constructed by

‘removing” the edges of order & and 2k, where and edge of order £ con-
nects processors that are 2! distance apart

To compute the 22 matrix product, all processors exchange values
of B on the order 2k edge and values of A on the order & edge. After the

exchange, each cube of order 2(k-1) contains 4 submatrices of size
A B

Ex? This is all the data that is required for each cube of order 2(k~1)
10 compute its part of the 2x2 matrix product independanty. If the sub-
matrix is not a single element, two matrix products of 2x2 marices are

required. These matrix products are done using the same algorithm.
Maurix addition is done element by element. Because corresponding efe-
ments of the matsices are contained in the same Processor, no cofmmuni-
cation is required.

To find the cost of this cube matnix multiply, K (CMM), we need o
(ind the edge with the most messages. At the first level of recursion, the
order k and 2k edges were used 10 send 8 message each way. This is the
only use of these edges in the algorithm. Therefore, w(e) = 1, where ¢ is
aorder k or 2k edge. At the second level of recursion, two matrix pro-
ducts are computed using the order k-1 and 2k -1 edges. Each matrix
product sends one message each way on each edge giving wie)=2,
where ¢ is 2 order k-1 or 2k-1 edge. At levei | of the recursion,
w(e) =2'"! messages over the order k—(I-1) and 2k~{I-1) edges. The
recursion stops when we have order 2 cubes. This is at the log a level of

recursion. Thers are % matrix muitiplies done by order 2 cubes. These

Figure 6: Another contraction of 16 logical processes 10 4 processors.

WAP matrix multiply: ticks foe n (items) on p (processors)
Contraction | 16ond | 64oni6 | 64ond | 2860n 16
M, 48854 11 1

My 31113 73088 | 221545 7 7646

Table 2: Timings o’ the WAP maurix multiply algorithm.

OO0 o0
Ol oL i O
i O k)
OCFOOODHO
1 0] H
o} ilO H e
oo 00

Figure 7: An order 4 binary n-cube.

-'\-'

- - L) - -~ -) ".- "- * ‘f-. K
\-'_ -"\- n‘_‘f\f._\‘ - I.\. ,

2
N

Iy

LVANYYN R

.
f'f. -

s 5

S

|

o o -

oA

-'~

. ~

PO

-').

; .1‘." l, 2 ’ .{'. -

-

P O |

v e .

‘aw Sy v @

5 %

X RS o

PRR RN b X

PRRIL LT
SR

g,
b

an,

~

d‘ff{-_f'-

order 2 cubes use the order ! and k+l edges. Each matrix multiply sends
1 message each way giving w(e) = E—. where ¢ is a order 1 or k+1 edge.

Since this is the largest value, K (CMM) = —.

Consider any contraction, M(CMM@) where p =2" for some
mS2k. M(CMM p)will map — logical processes to every processor.

?
This allows us o put a cube of order log ﬁp— = 2k -m into each proces-

sor. The processor-to-processos connection graph is also a cu?e and is of
. . n
order m. Each processor-10-processor connection suppons —- commun-

ication paths in the original graph. The real question is which sub-cube
do we map to each procusor The cost of the conmaction,

K(M(CMM p)) will be 2. times the maximum w(e), where ¢ is

mapped to a physical edge If ¢ is order 1 or 2k +1 from the original
cube, K(M(CMM p)) = —p

2k —i -
.chm and order k+1 through k+ 2

Consider the contraction that maps the edges of order 1 through
[into intemal edges. This

makes the edge of order k+ lu'm +1 the edge with the most mes-

sages. This edge is used by level k- uT"' of the recursion. From

Db g
before we know that w(e)=2 b 2 =-2L. Therefore

K(M(CMM p))= 2= Clearly, this contraction is better in terms of

the number of messages over the busiest physical edge than any contrac-
tion that does not keep the high traffic logical edges internai 10 a proces-
sor.

By contrast, let us consider the Batcher bitonic merge sort. This sort
runs on a order k cube 1 sot n = 2* elements. The final sorting will
have the smallest element in the first processor and the largest element in
the last processor. Figure 8 shows a graphical representation of the algo-
rithm. The arrows represent a data exchange and a compare, leaving the
larger number at the end with the arrow and the smaller at the other end.
It 15 obvious from the figure that the order I edge has the most messages.
Therefore, K (SORT)= log a.

Again, to contract this algorithm, we see that we want to assign a
sub-cube into a processor. Consider the contraction M (SORT p) where
the edges of order 1 through order log p are mapped to internal edges.
We are assuming that p = 2%, for some m Sloga. This contraction
assigns the busiest logical edges o be intemnal edges. Thess edges carry
log n-log p messages. Since each processor containg ﬁ- logical proces-
sors, K (M (SORT p))= 2UCEBIOLP) 4oy compraction that does not

map these first log p edges w0 internal edges will have a higher communi-
cation cost. These results agree with and explain the resuits of Hsiao{7],
even though his final algorithm was embedded in a grid instead of
another cube.

LA T — 1
 S— 3T)
A —— 1] -
A - - 3 ¥
$ —n i 3T
A o — ¥ i3
I T3 | S ¥
¥ — 1 i il
0 - ¥ i1
A T — ¥
i i i
P S % iy

Figure 8: Batcher's bitonic merge sort.

Lo,

&

In comparing the contractions for marix multiply and Batcher's sort
we see that the same size cube is mapped in a different way whes
mapped to the same number of processors. The busiest edges are dif-
ferent for the two algonthms, thus, the contractions are different.

Conclusion

The algonthm contraction problem is an important problem for paral-
lel programmers. The way in which an algorithm is contracted can have
a significant affect on performance. Processor-10-processor communica-
Lion can be used as a lower bound on the execution time for an aigonthm.
It is the processor-to-processor communicauon that is affected by dif-
ferent contractions.

We have looked at algorithms for the tree, grid, and dinary n-cube
interconnections. For each algorithm we have compared possible con-
tractions of these algorithms. For trees, we proved that Leiserson's lay-
out technique was the best for contracting tree algorithms such as
minimum and sums. For gnd algorithms, we conjectured that coalescing
by maximizing the area for a given perimeter 13 optimal for the algo-
rithms with balanced edge loadings. Finally, we showed two algonthms
for binary n-cubes that required different contractions 10 produce the
optimal results for the algonthm.

References

(1] LM. Adams, /terative Algorithms for Large Sparse Linear Sysiems
on Parallel Computers, Ph.D. Thesis, University of Virginia, Char-
lottesville, November 1982.

(2] K.E. Batcher, “Soning Networks and their Applications®, Proceed-
ings of the AFIPS Sprint Joint Computer Confrence, Vol 32, 1968,
pp. 307-314.

(3] F. Berman, M. Goodrich, C. Koelbel, WJ. Robison [IL. K. Showell,
“Prep-P: A Mapping Preprocessor for CHiP Architectures”, Proceed-
ings of the 1985 Inernational Confrence on Parallel Processing, pp.
731-733.

(4] F. Berman, L. Snyder, "On Mapping Paralle! Algorithms int Parallel
Architectures®, Proceedings of the 1984 International Conference on
Parallel Processing, pp. 307-309.

(5] SH. Bokhari, “On the Mapping Problem. /EEE Trarsactions oa

Computers, C-30, No. 3, March 1981, pp. 207-214.

{6} D. Gannon, L. Snyder, J. Van Rosendale, "Programming Substruc-
ture Computations for Eiliptic Problems on the CHIP System",
Ahmed K. Noor (ed.), /mpact of New Computing Systems of Compu-
tational Mechanics, The American Society of Mechanical Engineers,
1983, pp. 65-80.

[7) C.C. Hsiso, Highly Parallel Procassing of Relational Databases,
Ph.D. Thesis, Purdue University, Department of Computer Sciences.
December 1982.

(8] S.Y. Kung, K.S. Arun, RJ, Gal-Ezer, D.B. Bhaskr R0, “Wavefront
Array Processor: Language, Architecture, and Applications”. /EEE
Transactions on Computers, C-31, No. 11, November 1982, pp. 1-
$4-1068

(9] CE. Leiserson, Area-Efficient VLSI Computation, MIT Press, Cam-
bridge, Massachusetts, 1983.

{10} P.A. Neison, A Non-systolic Mairix Product Algorithm, University
of Washington, Department of Computer Science, Technical Report
No. 85-11-02, November 198S.

{11] L. Snyder, "Introduction to the Configurable, Highly Parallel Com-
puter®, Computer, 15(1), January 1982, pp. 47-56.

(121 L. Snyder, "Parallel Programming and the Poker Programming
Environment®, Computer, 17(7), July 1984, pp. 27-36.

(13} L. Snyder, "Type Architectures, Shared Memory and the Corollary
of Modest Potendal®, Annual Review of Compuser Science, 1986 (to
appear).

Ry
P

PEEM

b

%

e

2

2l

S

2

AN, g, R G S e R S
» 2 A

LY

CANS

AR A g

Y
y

P TP " 4
SRy

e
S .

.
3
o
.

'

YUy ";.'l

10°0.0%. 00, 5%, 0% 00y 0% 0% 0 %

L USRS e A (Y

LA

g

A T S A

A
=z
|

B LA W) WS S A

N
X
-

AOOT LT N DO DN 'R Dy y s SR S

e
a'a

e
R

