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ABSTRACT

'The Stokes Phenomenon is known to be a pervasive feature of asymptotics,

but its explanation in the literature is obscured by intricate and lengthy

technicalities. This article presents a simpler approach to its understanding

and treatment as a natural aspect of a well-motivated characterization of
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A SIMPLE EXPLANATION OF THE STOKES PHENOMENON

Richard E. Meyer

1. Introduction

The Stokes Phenomenon plays a pervasive role in special functions and

mathematical asymptotics, but access to its understanding from the literature

is rather difficult because it emerges there as a late, very technical

byproduct of relatively intricate analysis. In Olver's monograph [16], for

instance, it is first mentioned on p. 241, but only with a reference to p. 481 [
for its explanation. The great merit of that explanation is obscured,

moreover, by its limitation to very restricted circumstances [16]. The Author

has never seen a simple explanation of the Phenomenon in its general

context. The pervasiveness of the phenomenon, on the other hend, indicates

that it should be generic and possess fundamental roots. It may therefore be

useful to offer here a direct explanation of the phenomenon as a natural

consequence of a decision to characterize functions by the help of

approximating functions of a multivaluedness different from that of the

functions to be characterized.

The next, brief Section gives a very simple example illustrating the root

of the Stokes Phenomenon so clearly that many Readers may feel no need to

proceed further. Section 3 tries to explain the many strong reasons for the

choice of a characterization of functions by approximants of different

multivaluedness. It also introduces a framework favorable for a fruitful

discussion of the main qualitative and quantitative aspects of the
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Phenomenon. Section 4 discusses the location of the Phenomenon and adds some

cautions for the interpretation of its most common statement in the

mathematical literature. The last Section sketches a direct approach from the

root of the Phenomenon to its quantitative prediction.

2. Multivalued Approximation

It is best to start with the simplest, concrete example and proceed then

to explain why it illustrates matters of great generality. Airy's equation is

2/2 z y(z) . (1)
d y/dz zYZ

The solutions y(z) of (1) are approximated for large Izi by linear

combinations of

u I'Z1 /4 exp(tx), x =2z3 2 / 3. (2)

The meaning of approximation is here rigorous (16] and turns out to be

quantitively useful even when c is only moderately small.

Obviously, u+ and u_ are multivalued functions of the complex

variable z with a branch point at z - 0. By contrast, the solutions

y(z) of (1) are entire functions of z because the coefficient function in

(1) is z, which is entire. Therefore, as we go once around the point z =

0, y(z) will return to its original value, but u+ and u_ will not. It

follows clearly that, if a specific solution y of (1) is approximated at

z 0 0 by a linear combination ciU+ + c2u, then it cannot be approximated

by the same linear combination at z exp(21i). The concept of approximation

here involved must be domain-dependent.

That is the basic Stokes Phenomenon.

The obvious next question is: why should we want to characterize an

entire function by multivalued functions?

I



3. Natural Metric

There are, in fact, very strong mathematical and scientific reasons for

such a choice. From the mathematical point of view, the functions u+ and

u. are exponentially large or small in Izj (except when x is purely

imaginary), and that property of exponential "dominance" or "recessicn" offers

a striking and powerful, qualitative characterization of the solution

structure of (1). Similarly, u+ and u- are oscillating functions of z

(except when x is purely real) and that is also a salient mathematical

property of the solutions of (1).

In science, the functions y(z) in (1) arise usually as Fourier

components, i.e., as the spatially varying factors of functions

y(z) exp(-iwt) simple harmonic in time. Except when x is purely real, the

functions

-ijt -1/4 ex-iwt
U e -z e

u e i wt  -1/4 -x-iwt

represent waves, and so do the solution representations for which (clU + +

c2u.) exp(-iwt) stand as symbols. The approximate wavelength 3w/z 1/2 varies

with spatial position, and so do the approximate amplitudes clZ - I 4  and

c2z- 1 as is usual in science. When x is purely imaginary, those

functions represent purely progressive waves and when both Re x and Im x

are nonzero, they represent growing and damped waves, respectively; for real

x > 0 , e.g, the recessive function u_ thus describes a wave shadow. This

wave character of the solutions of (1) is their most important property, by

far, in the scientific context and in many instances, it is their only

scientifically relevant property. The representation by multivalued functions

is the only way in which it can be displayed with great clarity.

-3-



These considerations carry over, first of all, to the general linear

differential equation of second order,
22

Sd 2w/dz - p(z) w(z) = 0 , (3)

with analytic coefficient function p(z) and parameter e. The corresponding

wave approximations (often called WKB or Liouville-Green approximations) are
p-1/4e*X 1 Z ~ /

v-p e , x = [p(s) 1/2ds (4)

and since they are rigorous approximations [16], they are again first

instalments towards, and symbols for, exact solutions of (1).

If p(z) has a root z0 ("turning point") in the complex z-plane and is

analytic at z0 , then w(z) is also analytic at z0 , but v+, v_ have a

branch point there (unless the root has multiplicity 4n)• Normally,

therefore, they are then approximations to solutions of (3) only for z 0

and sufficiently large Ix-x(z0)I, and they approximate locally singlevalued

solutions by locally multivalued functions v+, v-, which can therefore be

only domain-dependent approximations. Hence, the Stokes Phenomenon of a

multivalued representation of singlevalued functions arises again.

A very similar situation arises near any singular point z* of the

differential equation (3). If x(z.) exists, (4) gives again approximations

to solutions for sufficiently large Ix-x(z.)l [16, pp. 222-224]. The

solutions w(z) themselves are then usually mult~valued near z* , but the 'e

multivaluedness of v+ and v- differs from that of the solutions. The

approximations by v+, v- must therefore be domain-dependent and the Stokes

Phenomenon arises.

But equally, the solution representations symbolized by (4) are precisely

those displaying clearly the fundamental solution properties of wave character

and dominance and recession. The Stokes Phenomenon is a necessary, and rather

economical, price for the representations we need most of all.

-4-
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Another conclusion must be that the variable x in (4) (and of which

that in (2) is but the simplest, special case) plays a fundamental role in theI

structure of wave equations of the form (3). It has therefore been called

[23] the "natural metric" of (3). A physicist would say that x is more

natural than z , which measures distance in rather extraneous units like cm

or inches, because x measures distance in the intrinsic unit of the local

wavelength of (3).

It is perhaps more illuminating to observe that the representations

symbolized by (4) are closely related to the canonical representation of

Hamiltonian oscillators in terms of action and angle [4], and an exact natural

metric of (3) would correspond to Hamilton's angle. For periodic oscillators,

* an exact angle variable is defined, but it can be difficult to establish its

precise relation to clock-time, because that amounts to solving the oscillator

equation completely. A simple, first approximation to the angle is therefore

valuable in practice. For modulated oscillators, a unique angle in the

classical sense is not definable, and a simple approximate standby for it is

an all the more valuable tool. For wave equations, similarly, an exact wave

length exists only for strictly periodic solutions, and its precise

determination is also tantamount to solving (3). The approximate natural

mercx is a first installment towards this and the author has not yet come

*across an instance where it has not been a tool adequate for analysis.%

it should be recalled at this point that the action-angle concept is not 7

restricted to linear oscillators, it plays an even more crucial role in

nonlinear Hamiltonian structures. Its decisive role in the modulation of

completely nonlinear oscillators, even though a classical angle is not then

definable, has been demonstrated, e.g., in [9]. The Stokes Phenomenon arises

equally in the nonlinear context, because a characterization of the

-5-



oscillatory structure is then needed even more for understanding and

prediction. Nor is the action-angle concept restricted to oscillator

equations (3) of second order, it applies to systems of such equations and to

U

higher-order differential equations, as exemplified in the theory of

hydrodynamic stability [2], for instance.

The key role of a natural metric in such structures is underlined with

even more force in partial differential equations describing waves in several

dimensions. A particularly fruitful approach to such waves is by Hamilton-

Jacobi theory, which uses "ray" equations to construct a natural metric,

usually called characteristic or phase or action function [5]. This complex

phase is a multivalued function of position in space in a way quite analogous

to the natural metric x of (3) and serves again for a nonuniform and

multivalued approximation and representation of the wave structure that is the

most important feature of the solutions. Once it is constructed, moreover,

this phase function can be used with utmost economy and elegance [5] to obtain

qualitative and quantitative information on wave spectra. In this connection,

the nonuniformity of approximation turns out to be no obstacle, and the

multivaluedness (19] and basic Stokes Phenomenon play a central role.

Significantly, again, Hamilton-Jacobi theory is not restricted to linear wave

equations.

In sum, there are overwhelming reasons for the choice of multivalued

representations of wave structures in terms of a natural metric. It emerges,

moreover, that the simple linear differential equation (3) offers a felicitous

example displaying the essentials of a structure of great generality. Clarity

will therefore be served best by conducting the following discussion of the

Stokes Phenomenon entirely within the framework of the simple differential

equations (3).

-6-
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In this connection, the natural metric x defined in (4) plays a further

useful role. The equation (3) is called the normal form of the general linear

ordinary differential equation of second order. This term involves misleading

associations, however, because such a differential equation has a large family

of normal forms, linked by Liouville's transformation [16, p. 191]. In this

way, for instance, Airy's equation (1) can be rewritten as a Bessel

equation. In fact, the family of normal forms is so large that the relation

between two normal forms of the same differential equation may be hard to

recognize without the explicit Liouville transformation between them. Indeed,

one normal form of a differential equation may have turning points or singular

points that appear absent in another of its normal formsi This profusion of

different normal forms contributes much to the difficulty of distinguishing

basic features from more specialized ones in the literature.

It would be helpful, therefore, to have a ustandard" form of the

differential equation on which a fruitful discussion can be based from the

start. Unfortunately, this depends on the questions at issue. When wave

structure is of central concern, however, the natural metric offers a

definite, standard form. In terms of

W(x) [p(z)1 w(z) ,

with again x - [p(s)j ds (3) becomes

d2W/dx 2  (1+C2*) W 0,

(x) - 3/2 - 1/4

This standard form of (3) already shows clearly that the differential equation

is effectively a wave (or oscillator) equation where e 1 *(x)l << I (and x

is not purely real), that the natural metric x there measures distance in

-7- 4
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approximate local wavelengths and that approximations of the form (4) are

there plausible.

Furthermore, the superficial distinction in the literature between

turning points of (3), i.e., roots of p(z), and singular points of (3)

disappears: both are singular points of the standard form (5j and the

similarity in their significance for the solution structure needs no further

explanation.

All of this shows that, when wave aspects are the central concern, as is

usual in science, then the standard form (5) offers the best starting point

for a direct road to an understanding of solution structure and the arbitrary

form (3) is best forgotten for a simple explanation of the Stokes Phenomenon.

4. Stokes Lines

It is easier now to return to the domain-dependence of representations

symbolized by the multivalued wave-approximations (4). It will be recalled

from Section 2 that, if a solution y(z) of (1) is approximated at a point

z # 0 by a linear combination clu+ + c2u_ of the wave approximations u+,

u- in (2), then its apprximation at z exp(2ni) as a linear combination of

u+ and u- cannot have the same coefficients c11c2 because z = 0 is an

ordinary point of (1), but a branch point of u+ and u-.

To learn more about such change in the coefficients, it is best to start

from the natural metric and to focus attention first on the case of a

differential equation (5) with only one, finite singular point, which can be

taken at x - 0. Let r(cx) denote a definite branch, defined on the complex

plane of x cut from 0 to -, of the fourth root of the coefficient

function p(z) from (3) and let q(x) in (5) be understood as the

corresponding branch. Then the wave approximations for (5) corresponding to

.°UP



V+, v_ in (4) are

V+(x) = ex V(x) - e - • (6)

More precisely, the Liouville-Green or WKB theorem (16, pp. 222-224]

states that (5) has a fundamental system of solutions

W+ - a(x;c)ex , W_ = b(x;c)e-x  (7)

with the property that fal and jbI are bounded for large JxJ. For a very

large class of functions p(z) in (3), moreover, a(x;c) and b(x;c) tend

to limits as JxJ - for fixed c with arg x an integer multiple of wT

[16, pp. 222-224].

For large JxJ, therefore, any one solution W(x) of (5) is approximated

by a linear combination clV+ + c2V- in which cI and c2 are such limits of

a(x1c) and b(x;c), respectively. The situation of Section 2 is now

reversed: the approximating functions V+ and V. are entire, but * has a

branch point at x = 0 and hence, W(x) has normally also a branch point

there. Therefore, the coefficients in the approximation clV+ + c2V_ to W

must jump across the cut. That is the Stokes Phenomenon.

In a general way, the choice of a cut is rather arbitrary, but in the

context of approximation, there is a natural preference, which Stokes already

referred to [21). For V_(x), it is the positive real axis of x because

that is the line of deepest recession of V. Indeed, if W - clV + + c2 V

and c, is not exactly zero, then in domains where V+ is dominant, c2V_ is

'invisible' in what has come to be called PoincarA's sense of approximation

(16] (and has often been relied on far beyond his intention). 'Invisibility'

means here that, however the first approximation be refined to successively

higher approximations in the technical sense just referred to, c2V- will
%-

always remain submerged in the approximation error. Similarly, the negative

real axis is the preferred cut for V+. (There is no satisfactory way in

-9--
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which the same cut can be used for both and therefore, no single branch of

r(ex) in the way first defined i3 adequate, but the complication can be kept

minimal by use of a definite branch of r(ex) defined [12] on a Riemann

surface sector -ith winding point at x - 0 and opening angle 3w.)

If the rationale just sketched could be relied on, the cut for V_ could

be chosen along any line in the domain larg xl < w/2 of recession of V_

because the technical 'invisibility' of V_ stems wholly from the contrast

between dominance and recession. In the literal sense of asymptotic

expansions often pushed to excess in the mathematical literature, this leads

to the theorcm "for arbitrarily small 6 > 0 , and sufficiently large lxi,
1 lV+ for Iarg xI  (,r/2)-6 , unless = 0 exactly, and higher

approximations have the same sector of validity." In short, the change in

c2 appears only suddenly as the imaginary x-axis is approached on which V+

and V_ are "balanced" because lV+l =-1Vl = I there.

This is totally unrealistic, however. The admission can no longer be

postponed that this account has sinned by discussing approximation without

reference to the meat of that subject, which is [16) the bound on the

approximation error. (The reason is that realistic error bounds [16) demand

an excessive volume of hard analysis for a "simple explanation.") If the

theorem just stated is applied with small 6, the error bound (151 comes to

depend strongly on 6 and for small 6, W - c is even a rough

approximation only for values of lxi too large to be of any interest. An

instructive example [15) of this is quoted in the Appendix. For any sensible

purpose, the value of 6 in the theorem may need to be very substantial [15),

and this explains better why the positive real axis should be the preferred

cut in regard to V, and the other real half-axis, in regard to V+. The

images of these half axes in the Liouville family of z-planes are the original

-1U-



* Stokes lines [16, p. 518], but in recent times, the name Stokes line has come

* to be more commonly attached to the images of the imaginary half-axes, where

* the solutions W are "balanced," because the latter lines need to be referred

to more often in physics and in connection theory and appear as the

characteristic lines (or "rays") of Hamilton-Jacobi theory. (of course, in

cases where an exact natural metric exists, it would be even better to choose

the cuts on, and attach these names to, the images of the half-axes of the

exact natural metric.)

Historically, the Stokes Phenomenon arose first in the analysis of the

classical functions of mathematical physics, which possess exact and concrete

integral representations in terms of elementary analytic functions.

* Application of the method of steepest descent to those exact integral

representations then led automatically to asymptotic approximations of wave

character. They were seen immediately to explain the qualitative and

quantitative structure of the classical functions over most of their domain.

Everybody knows, for instance, that for Bessel functions of low order and real

argument, the interval on which their oscillatory character dominates is huge

by comparison with the interval in which that character is not apparent. Both

rigorously and intuitively, the wave-type approximations to the classical

functions were seen in this way to be such an obvious necessity that the

question at the end of Section 2 (and hence, all of Section 3) was

redundant. On the other hand, the Stokes Phenomenon arose in that way as an

*erudite, technical byproduct of the steepest-descent approximation of integral

*representations explainable only in terms of complicated analysis. This

* impression of a large technical apparatus is enhanced by the fact that whole

asymptotic expansions can be, and are usually, written out in elaborate

formulae for the special functions. Stokes [21] observed that the Phenomenon

".0% . -6% % %% %-



is a general concomitant of a class of technical operations, which arise

often. All this made access to the Phenomenon t6rtuous in the literature.

Apsrt from the omission of proofs and error bounds, this simpler

explanation has also relied on the assumption that the differential equation

(5) has only one finite singular point. If there are more, any description of

approximation must be more elaborate (18]. This is aggravated further when

the differential equation [9] depends on a parameter at a value of which two

[12], [17] or more [22] singular points coalesce, a situation of considerable

scientific interest, but beyond the present scope. (It can also happen [14]

that two singluar points are close to each other without coalescence.)

It should be remarked that the Stokes Phenomenon occurs also in other

contexts. J.W. Gibbs considered [3] its relevance to the representation of

real-valued, but not real-analytic, functions -- such as a periodic square

pulse -- by Fourier series. In reality, the series must be truncated to

approximate the square pulse by a partial sum, which is an entire analytic

function. A square pulse, on the other hand, is the imaginary part of a

multivalued analytic function and in this light, the Gibbs Phenomenon for the

square pulse is a symptom of the Stokes Phenomenon.

A different analog of Stokes' Phenomenon can be exemplified at the hand

of the Hankel functions of order zero as solutions of Bessel's equation of

that order. A good definition of those functions is in terms of an integral

representation (16, pp. 239-240]. It shows the Hankel functions to have a

branch point at z - 0 and hence, their understanding requires a Riemann

surface. Each sheet, however, is a replica of the complex plane and so the

same definition of the Hankel functions is used on each sheet. The integral

representation of H (1)(z) on sheet m is then not the analytic continuation
0

on the Riemann surface to sheet m of the integral representation of

-12-
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HaI)(z) on sheet k 9 m. On each sheet, on the other hand, the two Hankel

functions -- as defined on that sheet -- are a fundamental system of Bessel's

equation. Hence, there must be "connexion formulae" of the form

H (1l (ze 2mwi CH(1)(z) + d H (2) (Z)
0  m 0

(16, pp. 239-240]. If a definite Bessel function is represented as a linear

combination of Hankel functions, it follows that the coefficients must change

from sheet to sheet. The analogy with the Stokes Phenomenon is close because

the integral representations on each sheet are chosen to obtain there the

simplest, clearcut properties of dominance and recession for the Hankel

functions. In other words, they are chosen to agree with the wave

representations sympbolized by V+ and V_. That must cause a Stokes

Phenomenon and connexion formulae are often interpretable in this light. More

precisely, they look, at this point, like uniform extensions of the asymptotic

Stokes Phenomenon by means of exact integral representations. The apparent

nonuniformity of the Stokes Phenomenon, however, is caused only by its still

incomplete discussion.

6. Connection

The question remains how the changes in the coefficients of the wave-

approximation c1V+ + c2V_ to a solution W of the wave equations (5) are to

be computed. It has a far greater scientific importance than may appear at

first sight. The solution W is normally hard to observe, in fact, it is

unobservable by axiom in quantum mechanics, but even in sciences based on

classical physics, it can rarely be observed with any precision at all, except

in laboratory experiments specially designed for that purpose. But, c1

and c2 play a more serious role. The imaginary axis of x is distinguished

by the fact that IV+I " Iv-I - I so that V+ and V_ represent purely

-13-



progressive waves on it, in terms of which radiation and reflection conditions

are most simply and directly interpreted. T.e coefficients ck are the

complex amplitudes of those progressive waves, i.e., Icki are the real

amplitudes and arg ck are the phase constants. An ability to relate the

respective (c1pc 2 ) - pairs in different parts of the domain of the wave

equation therefore translates immediately into a prediction of the scattering

matrix telling us the reflected wave amplitude and phase caused by a given

incident wave amplitude and phase, or vice versa. Those we have a much better

hope of observing, they are axiomatic observables even in quantum mechanics

and are realistically desirable predictions in many sciences. In turn,

moreover, the scattering matrices determine the spectrum, which determines

many further realistic predictions, and aspects of which are normally among

the prime observables. It should be emphasized here that scattering matrices

and spectra depend, not on the complex amplitudes ck, but on the relation

between them, that is, on the quantitative resolution of the Stokes

Phenomena. The amplitudes themselves are normalization constants and, like

the solutions W of the wave equation, are normally redundant in the

scientific context.

Establishment of the relation between respective amplitude pairs (c1,c2 )

in different parts of the domain has come to be known as "connection." The

first mathematically reliable method for it is due to Zwaan [24], but its

range of application is too restricted. A more general method was pioneered

by Langer [7] and has dominated 'mathematical asymptotics' for half a century p

on account of its triumph of uniform approximation of the solutions. This

gives illuminating information, for instance, it shows just how the transition

from light to shadow looks in detail, whereas the differential equation itself

tells only where it happens. It is also essential for the quantitative

-14-



mastery of special functions [16]. However, it offers only an indirect and

cumbersome approach to connection and hence, also to scattering, to spectra

and to other aspects of more primary scientific significance. Still, this

cumbersome approach has been brought to high perfection (18] and has even been

generalized to two and three dimensions [6, 8, 20], albeit without proof

because it gets prohibitive unless it starts from the assumption that the

local variation of the solution is effectively only in one of the space

dimensions. It is also committed to the limitations of the literal Poincari

sense of approximation with its potential lack of any realism (Appendix) and

has so far failed where science needs to know both balanced (or dominant) and

also recessive functionals of a wave equation [10, 11]. In sum, it has done

marvelous things, but not for the explanation of the Stokes Phenomenon, which

emerges from it only as a very late, technical byproduct of a large volume of

hard analysis.

In recent years, however, a simpler and more direct approach to

connection has been found which clarifies the Stokes Phenomenon further. Its

simplest statement (16, p. 481] arises for an ordinary or isolated singular

point of p[z] in (3), which may be placed at z - 0, for brevity. For

regular singular points, in particular, Frobenius' method (16, p. 149] shows

that the differential equation then leads simply and quickly to an "indicial

equation" the roots afa2 of which are the exponents of a fundamental system
1 2

w (z) z F(z), w2(z) - F W
1 F2(

with entire functions Fi(z) (provided a1 -02 is not an integer or

zero). Obviously, those constant exponents MIa 2 describe the

multivaluedness of the wi completely globally. Each of the WKB solutions

W+, W- must be a linear combination of w1l, w2 whence the Stokes relation

-15-
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between a(-?v), b(-;E) and a(co e 21i;c), b(- e 2i;C) is deducible

immediately [16, p. 481).

This sounds almost too good to be true and so it is, in a senbe [16, pp.

480, 482]. It mounts to putting Zwaan's method [24] in a nutshell, with

extension to isolated singular points of p(z) in (3). It relies basically

on the following fact. The circuit exponent of a multivalued function W(x) .

is defined by tracing a circuit once anticlockwise around a branch point and

letting W1 (x) denote the value of W at the start x of the tracing and

W2(x), that found at the end; then

C - log (W2/Wl)

is the circuit exponent. For an ordinary point or isolated singular point of

the differential equation, the circuit exponent C of a solution is clearly

an invariant independent of x . Admittedly, access to this invariant is

known only for ordinary and regular singular points [16, p. 480, 482]. For

other singular points, for instance, for logarithmic turning points of (3),

the circuit exponent is not invariant and the simple argument collapses [16,

p. 480, 482] such cases had not been found tractable by Langer's method

either.

Multivaluedness, however, must be a global structure of inherent

invariance, even if no simple way be known of defining the invariant

quantitatively. An extension of Olver's idea has been found [13] which

applies to a very general class of even highly irregular singular points (and

turning points) of wave equations. When such a point is adequately separated

from any-others in the plane of the natural metric, it suffices to define the

1/4
branch r(cx) of [p(z)] characterizing the wave equation (5) purely

locally in an arbitrarily small neighborhood of that singular point, placed

at x - 0, say. The singularity there can be left virtually arbitrary,

-16-
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certainly, the circuit exponent can vary with lxi, powers and logarithms are

merely the most elementary special examples of the wide variety of functions

admitted. Only three conditions, in fact, are used in [13]: First, r(ex)

is analytic on the cut neighborhood (or more precisely, sectorial Riemann

surface element) where it is defined. Secondly the limit

xdrlim x (8) :i

of a circuit exponent at the singular point itself exists. And finally,

x - 0 is the image of a finite turning or singular pont of (3) (which makes

Re y 4 1/2 [11]). Those strictly local properties are shown to determine the

asymptotic relations between the wave amplitude functions a(x;c), b(x;c) in

(7) far away from the singular point, as 1xI + - with jCxJ+ 0 and arg x

an appropriate multiple of w •

This is as much information as is usually justifiable, because the wave

equation itself is only an imperfect model of reality. Whether more than a

first approximation to a prediction of such a model can be relevant, can be

decided only in the light of further examination of the quality of the

model. This underlines the importance of the first approximation to

connection, which is the relation between the values for different integers

m of the limits *

2mvi ( 2m-1)wi ,
-a(-e ;), c2  -)b(,e 1)

in (7). Those relations turn out [13] to depend only on the limit y in (8). .

In short, even in a very general context, the asymptotic connection which

quantifies the Stokes Phenomenon can be read directly off the most local
.v

properties at the singular point itself of the wave equation. The Phenomenon

is anchored in the multivaluedness structure inherent in singular points of

wave equations (5) in the natural metric. This is a global aspect of

41

structure not tied to any notion of approximation. It is a matter of " .
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tradition, more than substance, that we attach Stokes' name to an asymptotic

aspect of that structure.

a.
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Appendix. 0iver's Example

A simple example [15] illustrating the disasters that can arise from

reliance on the common notion that recessive terms are very small, deserves

wider dissemination. Repeated integration by parts shows easily that the

function

2(n2  cos(nt)dt

0 t2+1
has for large integer n > 0 the asymptotic expansion

l(n 2 ) _ (-1)n- 1  k n- 2k (Al)

k=1
with recursively defined coefficients Xk of which the first three are [15]

X1 W 0.05318, X = 0.04791, X = 0.0895. p

Since those coefficients are of similar size, the expansion goes effectively

just in steps of n- 2, which makes for a gratifying decrease in the

contributions of successive terms as soon as n is large. For n - 100,

e.g., the size of each term is less than 0.02 times that of the preceding

term, and the quantitative efficiency of the expansion is excellent. To seven

decimals, (Al) gives

1(100) - - 0.000 527 1 , (A2)

where the third term in (Al) contributes only + I in the seventh decimal and

the fourth term has no influence at all.

The actual value of I(100) to seven decimals is [15]

1(100) - - 0.000 455 8 . (A3)

The error in (A2) is 0.000 071 3, or 15.6%, and is larger than all but the

first approximation predicted by (Al)! Observe that, as is the norm in

approximation theory, (Al) is rigorous and gives no hint at all of its

failure. J,

-19-



The reason for the large error in (A2) is that I(n2 ) contains also a

term (/2)exp(-n), which is highly recessive at n - 10, but has there just

the value 0.000 071 3 of the error in (A2) to seven decimals.

Rigor is tied to definitions, which may be inappropriate.

Acknowledgements. The author is indebted to Profs. T.B. Benjamin and 3.

Bona for helpful remarks.
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