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ABSTRACT

Two iterative methods are considered, Richardson’s method and a gen-
eral second order method. For both methods, a variant of the method is
derived for which only even numbered iterates are computed. The variant
is called a leapfrog method. Comparisons between the conventional form
of the methods and the leapfrog form are made under the assumption that
the number of unknowns is large. In the case of Richardson’s method, it is
possible to express the final iterate in terms of only the initial approxima-
tion, a variant of the iteration called the grand-leap method. In the case of
the grand-leap variant, a set of parameters is required. An algorithm is pre-
sented to compute these parameters that, is related to algorithms to compute
the weights and abscissas for Gaussian quadrature. General algorithms to
implement the leapfrog and grand-leap methods are presented. Algorithms
for the important special case of the Chebyshev method are also given.
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1. Introduction.

* e N
L

0

o

The subject of this paper is a set of techniques to improve efficiency in the

3

iterative solution of a real or complex linear system Ax=b, especially for the

LTI

S0

solution of large problems on supercomputers.

SAEE

-

An iterative method generates a sequence ..., x(i_z), x(i'l), x(i), ... . For the

“u. "

Lt d

methods of this paper, a variant such that x(*) can be expressed directly in terms

™
-

e}

L]

of x*~% with no dependence on x~1) will be called a leapfrog method. A variant

L

of Richardson’s method is also presented for which the final iterate is computed

a

from the intial approximation with no computation of intermediate iterates. This

¥

will be called the grand-leap method. The advantages of the leapfrog and

<

<,
s
Cx

grand-leap methods are: (i) a slight reduction in some cases in the total number

m"-_'_.

of arithmetic operations; (ii) an increase in the number of terms in vector sums, PO
-F:-" i

143 M 1 M . :\.‘

an advantage on supercomputers that ‘‘chain’, i.e., transmit results from one NN
il

. . . . vee . . . - LA
arithmetic unit directly to another; and (iii) a reduction in I/O operations for R

large problems. In his Ph. D. thesis [Chro86) studied methods to omit

BN N Y Y

intermediate successive iterates for the conjugate gradient method as a way to

Y (%
o

/4
L

allow parallel computation of matrix vector products. His goals overlapped

somewhat with those of this paper but the approach is not the same.

e

Two iterative methods are considered: Richardson’s method [FoWa60,

A

NN

HaYo81| and a general second order iterative method. For Rich~rdcon's m~thod

LT
'I‘ *u

"
W

the leapfrog method was used in [Smol81, SmSa85] as a technique to avoid

3

complex arithmetic. In this paper its other properties are explored.
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Richardson’s method is an old method the advantages of which have
generally been ignored; however, see [AnGo72]. In the symmetric positive definite
case, Richardson iteration parameters do not yield an optimum iterate at each
step whereas a second order method does. This is one reason for the neglect of
Richardson’s method. However, in a paper of Tal-Ezer [Tal87], a novel approach

is described in which Richardson iterates are almost optimum at each step.

The Chebyshevl iteration is an example of a second order method :Mnt77,
Mnt78], used for the solution of nonsymmetric systems. The Chebyshev iteration
is not applicable, however, unless the eigenvalues of A lie in a half plane.
Furthermore, the Manteuffel adaptive algorithm [Mnt78] assumes the eigenvalues
appear in complex conjugate pairs, which holds if the matrix is real. This is a
brief argument for the use of Richardson’s method if the matrix is either a
general real nonsymmetric matrix with eigenvalues in both half planes or is a
complex matrix the eigenvalues of which do not appear in complex conjugate
pairs. It should be stressed that large complex matrices arise in signal processing,

and constitute an important class of problems.

1.1. Summary. In §2, the leapfrog version of Richardson’s method is derived.
iteration parameters are assumed given, with the exception of the Chebyshev
case for which explicit formulas are given as well as an algorithm. With properly

chosen paianieters, the method applies to any real or complex matrix.
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In 83, the grand-leap method is presented for computing the final
Richardson’s method iterate in terms of the initial iterate. An algorithm is also

given.

Comparisons among the conventional, leapfrog ard grand-leap versions of

Richardson’s method are made in &4.

In §5, the general formula for a second order method is stated, and a leapfrog
version derived. An algorithm (Algorithm 3) is stated in which the parameters are

assumed given. Algorithms for these parameters are presented in 7.

Optimum L -iteration parameters are defined in the Chebyshev case in §2.
In §, L,-optimum parameters are defined. Optimum L,-Richardson’s
parameters, in the case of real eigenvalues, are the roots of an orthogonal
polynomial. An algorithm to compute roots of orthogonal polynomials is
developed, which is an implementation of the Stieltjes algorithm [Gaut82 ' and
related to an algorithm presented in [GoWe69) for the weights and nodes for
Gaussian quadrature. This algorithm is modified to yield the quantities required
to execute the grand-leap method. The L,-approach is only one approach to
optimum parameters. A non-L, treatment is given in [EISt85, Tal87]. Each of

these references is more general than the L,-methods in 8. A completely general

-
»
-
-
b
-
.
.
-’

L,~approach may be based on {SaSm88] but is beyond the scope of this paper.

&%
'l"'
S

Algorithms based on the methods in §6 are gathered and presented in 7.

2
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Algorithms for the special and important Chebyshev case are also given in §7.
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1.2. Conventions and Notation. Although an /,~inner product is a special
case of the Ly~inner product if the measure is chosen correctly, for clarity and

convenience, the two are used separately.

The solution of a linear set of equations Ax = b generally requires that the
set be preconditioned by transforming it into a set such as, for example,
CAx = Cb for which the iterative method converges more rapidly. (Other
preconditionings yield systems such as CAQQ™!x = Cb. but the same remarks
hold for these other cases.) There is no change in the techniques or algorithms
presented in this paper if they are applied to CAx = Cb rather than Ax =b
other than the change in the matrix from A to CA. It will therefore be assumed

that A is the preconditioned matrix.

It will be convenient from time to time to state that an algorithm converges
with no restriction on the input data and if certain conditions on the eigenvalues
are met. In a practical sense, of course, there are restrictions on the data such as
those needed to prevent overflow, which may be infeasible to analyze and

formulate.
Matrices and vectors are denoted by boldface type.

The number of unknowns is denoted by N.
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2. Richardson’s Method: Conventional Form and Leapfrog Form.

This section begins with a statement of Richardson’s method, from which the
leapfrog form is easily derived. The Chebyshev case is outlined and an algorithm

given.

2.1. Conventional Richardson’s Method. Let 7y, ..., 7,_; be a cycle of

tteration parameters where k is called the period. The purpose of iteration

parameters is to reduce the error, but discussion of this is postponed until later.
For now, attention is directed to the iteration, and the reader is asked to accept )
the parameters as given. %
Let x(© be an initial guess. Richardson’s method is defined as follows. For :
. z
1 =1, sey kw =
kS
~
~
N
Pl —p - Axli-) '
*

x(i)=x(i—l)+ri_lr(i_l) . (2.1.1)
3
2.2. Leapfrog Form. The recursion 5
>
r(i)=r(i'1)—ri_1Ar(i’l) (2.2.1) 3
o
will be used, which may be derived by first subtracting (2.1.1) from x=x to ¢
obtain ‘
~
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el =eli-t) 7 pli-1) (2.2.2)

where e(i)=x—x(i), and then multiplying (2.2.2) by A. Since rl)=Ael), (2.2.1)
follows. Vectors el*) and r{) are called the (true) error and the residual error

respectively.

(l"

The leapfrog step from x 72 to x(*) results from using (2.2.1) in (2.1.1) to

"[l
P SRR
u'.l-//{l.'.

e gl

give [SmSa85], for 1 =2, 4, ..., k (under the assumption that k is even)

T s ¥4
i »
AL

x(i)=x(i_2)+7'i—2r(i_2) T lI—r _2A] plt =3
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2.3. Optimum Chebyshev Parameters. It is easy to show that the error

and residual error satisfy

i RS A
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P
’

rt) =g, (A)r(® (2.3.1)

where R is the polynomial

_e

k
Ri(g) = I;I (1 —7_19)

t=1

‘r
s

""

's
."'v' A

1 4
P}
Thg 0, 4, 0y L

8

Any polynomial such that R, (0)=1 is called a residual polynomial [Stie58!.

1

e

o e e s
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Paraimneters are chosen to minimize R;(A) in some sense, to be discussed next.
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Let (2 be a set containing the spectrum of A. Usually one thinks of 2 as an
interval or union of intervals on the real line. However if A is nonsymmetric,
then both {2 and the spectrum may lie off the real axis in the complex plape. Two
commonly used methods to minimize R;(A) are either to minimize the L .-norm
of polynomial R.(¢) over 12 or to minimize a weighted L,-norm over (2. In this
part, only the L_..-norm will be discussed. How Chebyshev polynomials are used

to minimize this norm will now be outlined. The papers of Manteuffel give more

details Mnt77, Mnt78].

The Chebyshev residual polynomial is defined by

where T} is the Chebyshev polynomial of degree k, and d and ¢ are parameters
defining a confocal family of ellipses: d is the center and the foci are d +c.

Henceforth, in the Chebyshev case, the set {2 containing the nonzero spectrum

will be an ellipse. (An ellipse, as the term is used here, means the union of the

curve and its interior.) Parameter ¢ is assumed either real or purely imaginary;

.
AN
- in either case, ¢? is real. (If ¢ =0, R,(¢) reduces to (¢ — d)* /d*.) Assume that d
5 is real and one member of the confocal family with center d and focid + ¢ isin
. the interior of the right half plane, i. e., d > 0. (If there is one in the left half
id

plane, then we consider —A instead of A.) These assumptions mean respectively
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' that the major axis of each ellipse of the family is either on the real line or that ':
l, \3
(I ¢
the major axis of each ellipse is perpendicular to the real line. If the major axis is o
;.r
b, on the real line, then the assumption that at least one member of the family lie in a7
: &
o the interior of the right half plane means that d — | ¢| > 0. Finally, note that if .}:‘C
) -’
the eigenvalues are real, then ellipse 2 may be assumed to be the interval e
. o
" .’.‘-‘
‘ d — | cl,d +] ¢l |, which is the degenerate ellipse of the confocal family. -
% "
Among all residual polynomials, it may be shown Mnt78 that the ™
: N
W Chebyshev residual polynomial has the minimum L. -norm over the interval \v.';:'
! A
' N=/d—| cl,d+] c| !, and closely approximates the residual polynomial with ‘:ﬁ'
) :
4 ®
. minimum L _..-norm over any ellipse, {2, with center d and foci d + c. :;:
. v i
. \ i
[ it is not necessary that d and ¢~ be real in order that the Chebyshev ';_:
\. Y,
iteration converge. The reason for assuming above that these are real quantities
\vv
¢
b is connected with the Manteuffel algorithm [Mnt78!. The Manteuffel algorithm is f
; i
! valid only when the eigenvalues of A appear in complex conjugate pairs, and it is
‘ this that leads to the assumption that d and ¢ are real. In general for any d and
i .
. cz, convergence results if there is one ellipse with center d and foci d +¢ o
: 4
containing the eigenvalues that does not also contain the origin. As a practical '
3 ‘-'.
: e
) matter, however, the Chebyshev iteration is useful only when d and ¢ can be .
g obtained by some technique such as the Manteuffel algorithm. r':."-‘:
e
) In the Chebyshev case the Richardson iteration parameters are derived from r:.
- o
. the roots, {p, }, of T, which are .
“u

* q,‘
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14+2:
p; =cos |T———1|, ¢t =0, ..., k—1
2k

The roots of R are therefore d + cp,;, for + =0, .., k—1 and the parameters for

Richardson’s method are

C,Di+d '

2.4. An Algorithm in the Chebyshev Case. First a technical note on
avoiding complex arithmetic: If the major axis is vertical, i.e.. if ¢ is pure
imaginary, then the roots of K, occur in conjugate pairs. It is an advantage to
order the parameters {7;} in such a way that, in this case, r,_, and r,_, are
conjugate pairs (in order that 7, _, 4+ 7,_, and 7, _,7, _,, required by the algorithm,
are real), a task equivalent to ordering the roots, {p,}, of T} in such a way that
Pi9 = —Pi-y-

Let h =n/2k. The roots of T; are the cosine's of

0, =h,0y= nm—h,0;=3h,0,=7~3h, ....If k is even, which it is in the
leapfrog case, the last two roots in this ordering are the cosine's of 6, _, = —:— —h

and 6, = " 4h. Moreover, cosf; = — cosf,, etc. In the algorithm. the formula

9
“~

8, = 2|—— 1= 1{{=U""'h + rmod(i +1. 2)
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for ¢+ =1, ..., k, will be used. If p, =cosf;, then in the cuse when ¢ is pure
imaginary, {d +cp,, d +cpy}, {d + cps, d + cpy}, ... is a sequence of conjugate

pairs.

If the major axis is real, the error is reduced after a cycle of exactly k
parameters, but the algorithm may not have converged. If the major axis is
vertical, the error is reduced only if k is sufficiently large, a requirement that in

practical applications, however, is observed to be reasonable. If the algorithm has

AP

not converged, the cycle of parameters is repeated. After the parameters have

P

‘ !
been recycled [ times, the error, el = x —x(k‘), satisfies elf) = Rk(A)J el

P

R J
A

l
But Ry(¢) # [Rk(g)] where Ry, is the optimum Chebyshev residual polynomial

.‘.‘

]
oy
o

of degree kl. This is a basic problem with Richardson’s method: It is optimum

only at the end of one cycle of parameters. For an alternative approach, not

-
-
f'f"

»_¥

0

based on Chebyshev parameters, see [Tal87] in which a method is proposed to

L 4
.

Ll

A

increase the number of parameters in an almost optimum way (thus the period is

ARG
.14&-

a By %y Y

not fixed) until convergence is achieved.

e

Algorithm 1. (Leapfrog Richardson’s method in the Chebyshev case.)

Purpose. Execute Richardson’s method with Chebyshev parameters and omit

2t s

LR I
v
54

alternate steps.

. X
.

Input. Matrix A, right side b, initial guess x(o), cycle k, and ellipse

Y \:'~

A

parameters ¢ and c¢. The ellipse parameters are assumed known, for example, as

W

4

output from the Manteuffel algorithm [Mnt78, Ashb85]. The user must also

S
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provide a maximum number of cycles of iterations and an error criterion to halt AN

the iteration. ®

Output. Iterate x¥) the iterate reached after the last cycle of & parameters

. . . A
in the standard execution of Richardson’s method. :)" ,

ik
l#;"}"{

Restrictions. If d and ¢ are real, then d is assumed either positive or

Sl

7
T

l':l g
» “'l

negative and will be assumed positive without loss of generality.

.

&5

Also, for real ¢, 0 < d — | ¢| . In general for any d and c?, convergence results if

Ly

there is one ellipse with center d and foci d + ¢ containing the eigenvalues that

ok

does not also contain the origin. If the matrix is singular, the algorithm

.“,"l
<

converges to a solution if the system is consistent. Period k is even.

oy o)
‘_'.;x'_');l o d
- 4

Notes. (1) Quantities 0,, p;, and 7; need not be array variables since only

=
e

three values are used during execution, but subscripts make the algorithm more e

w

convenient to state. (2) A slight modification of the algorithm would allow iri} to

be an input array, for example, from Algorithm 4. e

1) Set h := 2—7;— o

_ hOhy

2) Do either until convergence or a limit on the number of loops is exceeded. o '
2.1) For1 = 2 to k by 2 do: o\

]

2.1.1) Set 8, _, := [2 la—} - 1}(—1)i—2h + mmod(z, 2).

¥ ¢
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~ f‘)'.
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2

L,

2.1.2) Set 6, := {2 -~ 1}(—1)i_1h + mmod(z + 1, 2).
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i 3

i 2.1.3) Set p; _; 1= cosb, _, . &

2

" 2.1.4) Set p; := cosb; . b
'
t

X

1 »'
2.1.5) Set 7, _p 1= —————,
) P d +cp;_4 g
3
;
J L 1 W
b 2.1.6) Set 7;_; 1= ——— -
W 1 d +cp; i
o
% 21.7) Set a =1, _,+1,_; . i:;;&
R 5
' VA
v X
. 2.1.8) Set v =17, _o7;_, . !‘
Ny =
g . | :
y 2.1.9) Set -2 .= b — Ax(i-2) &
G i
P 2.1.10) Set t := Arl* ™% ]
1O X
.
3 L , b
“ 2.1-11) Set x(t) = X(t -2) + ar(l _2) —ut .
' ,:
: 7
o 2.1.12) Endfor. %
. Y \-.
L 3
- 2.2) If not converged, set x(% := x(*) . 2
2 E.»
3 %

o) 2.3) Erddo.
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3. Richardson’s Method in One Step.

It is easy to see that leapfrog could be continued further to allow computing x(*)
from x4, Ultimately, one arrives at an expression for x*) in terms of x(® with
no intermediate approximations, the form of which is, as will be seen

momentarily,

SOENCIPRRINCE (3.1)

where C}_, is 2 polynomial of degree £k—1. Computing x*) only from x(® while
omitting the computation of any intermediate approximation will be called the

grand-leap.

3.1. Krylov Subspace Methods. Richardson’s method is an example of a

Krylov subspace method, i. e, for 1 <1,

X —xO v (3.1.1)

where V; is the Krylov subspace defined by

V; = span {r(o), C ey A‘_lr(o)}.

The proof of (3.1.1) is an easy induction based on x() = x(=1) +r,<_1r(i'1).

Membership relation (3.1.1) implies (3.1).
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L=

3.2, An Expression for C;_;,. Multiply

;
h )
e
§
0
3
s

::: by A to obtain
e
R )

R r® — k) =ACk_1(A)r(°).

Since

B A
2 .’

x,
':;v‘

r*) =R, (A0

- -

-

, E
) it follows that byt
s o
s ;51 ¢
: 1 - R,(9) g
%) C (S,) _— k¥ [y

‘thy) k-1 ’ .
¢
3
R st
b which is a polynomial since Ry (0)=1. ':::

Therefore if

2 W L

.,."
50 o
1, v\
- R()=0, + - +6,c+1 P
".- .
3 then 7.-
. ¥
<,
” b
- Cror(Q)=0,F 4 - -+ +0 (3.2.1) L
- k-1l¢) =0 1 2.1 o
a ‘@
L - . . 3 . \
. The representation of any polynomial in ¢ in terms of powers of ¢ is called the ;':f..
2 power form. Y
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3.3. A Remark on Polynomial Preconditioning. Assume that residual
polynomial R, is small on set £2 (containing the spectrum of A.) Therefore, on {2,
Ci_,(¢) is an approximation to ¢!, and C,_,(A) is an approximation to A~
Polynomial Cj_, arises in so—called polynomial preconditioning {Adm82, AMS87,

Chen82, JMP83, Sayl83, Tal87|.

3.4. Methods to Compute Ck_l(A)r(o). In the important Chebyshev case,

<

The coefficients, 4;, could be easily determined by expanding T ]in terms

of powers of ¢. In principle, the coefficients of any residual polynomial could be
determined in the same way, although no residual polynomial is as well

documented as the Chebyshev case.

Despite the simplicity of this approach, it has the unfavorable feature that
even when the coefficients, 6;, are known explicitly, it is numerically difficult to
compute the vector d =8, A*1r(® + - - - +9,+% due to the ill conditioning of the
basis {r(o), SR ,Ak'lr(o)}, if k is large. However, to avoid instability it is often
sufficient to take a small value of k, say k =5. If the power form coefficients are

known then nested' polynomial evaluation (Hormer's rule} could be used to
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R compute Cj_;(A)r()

v rd

S S

An algorithm is presented later, Algorithm 2, in which the roots,

1

{o; :1 =1, .., k — 1}, and the leading coefficient, g; _;, of C;_; will be assumed

o
MY

LA, L L2

given. The roots of Cj_; may be computed from the power form (for example by

%

oLy

o computing the eigenvalues of the companion matrix.) A method and algorithm

> r A{‘.},
2 E S
{‘i b b

(Algorithm 5) are presented in §6 that do not require the power form coefficients.

Also see [Tal87| for a non-L, approach.

7] W,

M .}“4
b3 ‘_:?’

,m

)
¥

3.4.1. Avoiding Complex Arithmetic. If A is real, then it is reasonable to

gt
".’ ')

»

assume that the coefficients of Cy_, are real. If so, then the roots of C;_; occur

o -
ol

—'.‘.‘—"?;."“g’.":t !
<o

IR M S

in complex conjugate pairs. Let 0 and o be a conjugate pair. Since

s

4 '-‘1¢‘t'4fl' P

v

5]

h

Py

(A—0o)A—0o)u= 4A2-—(0'+E)A+| ol ?

Y 'n;i "1

'l
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no complex arithmetic is required to evaluate C; _;(A)r(® when the factored form

. " &
LA

= 3
[

s
f

.
-
[P

is used. (In the general case when A is complex, the roots do not occur in

conjugate pairs.)

3.5. Algorithm for the Grand-Leap. ~

Algorithm 2. (Compute x*) =x® + ¢, _ (A)r(9).) -7

- 5 -~ Cad Ll ~ ST
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v,

e

Purpose. Compute the final iterate x¥) from the initial guess with no

)
L5 %%
P
h

b

intermediate iterates computed, except those at the end of each cycle.

o Input. Matrix A, right side b, the intitial guess x9), period k, the leading 'f.'h.

: 4
! coefficient, g, _, and the roots oy, ..., oy _y of C_y, ie,, Cp_1(5) = g5 [T (¢ —0;).
71=1

¥
.

T
1
I

el
]
v

Parameter 73, which is the reciprocal of the root of R, is required if & = 1. These

P
‘l' .l' 'l‘ .I.

AT eI
PAS

parameters are generated from Algorithm 5, and, in the Chebyshev case, from

r
i

e

ity

5

PR g% 4
Yo
-

N Algorithm 6. However, there are other sources for the parameters such as Tal87 .
T.e user must zlso provide a maximum number of cycles of iterations, and an

error criterion to halt the iteration.

Output. lterate x(k), the last iterate reached after a cycle of k parameters in

_ pi=rad

the standard execution of Richardson’s method.

-

Restrictions. The algorithm executes with no restrictions on the input data. o

E AL Lo
(‘7
b

However in order for the algorithm to converge to the solution of Ax = b, for all ~

v w X A L K

b, it is necessary that | Ry(N)l =1 1 —=XCx_;(\;)] <1 for each nonzero

Syt
v,

eigenvalue, X\;, of A. If this holds and A is singular, the algorithm converges to a

va
A,

% %
relr Ll s

solution when the system is consistent.
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1) Set rl®:=b — Ax(%),

5 '..."‘.

l{‘b . .<" ~"‘

2)If k =1 then
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[N 2.2) Return.
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0

X Ly
R :
\ 3) Separate the roots {o; } of Cj_, into real roots and conjugate pairs of (nonreal) ]

A
.')

bl roots: 0y, .., O, are real; o,.,, .. 0p_; are nonreal and f
“"' - . d
) 01 =0;,m+1<y<k-2. )
o

X : - . X
o 4) Do until convergence or a limit on the number of loops is exceeded: .""!
LA "
oy $
2 ) ©) 3
vl 4.1) Set r'/:=b — Ax\" . "

4.2) Set .h
5N
N
5 (5) .= () 0 | G () ]
h, x" i=xV gy 11 [A [A—(oj +Uj+1)]+oja]-+1]><ﬂ(A—aj)r : )
o J=m-+1 7=1 N
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4. Comparisons.

To display some of the advantages in the leapfrog and grand-leap approach a
side-by-side comparison of algorithms is made in Table 1. The conventional
Richardson’s method is compared to the leapfrog version, in which alternate steps
are omitted, and to the grand-leap version in which all intermediate steps have

been omitted. The period, k, is assumed even.

The operations shown in Table 1 form the kernel of a loop, the commands
for which have been omitted. The details for a complete algorithm have been

given already and would be distracting here.

On any computer, reducing the number of arithmetic operations, the
traditional goal of algorithm design, is an advantage. In the case of the leapfrog
and grand-leap versions, it is a thin advantage but an advantage nevertheless and
one that is unexpected. (Since Richardson’s method is a Krylov subspace method,
the number of matrix-vector multiplications cannot be reduced.) It is a further
advantage on supercomputers that do chaining that there are more terms in the

leapfrog expression for x(*) than in the conventional expression.

Some additional comment is needed on how arithmetic operations are
counted. The number of arithmetic operations given in the table is based on the
assumption that there is no mixed real and complex arithmetic. Let us consider

when  mixed  arithmetic  occurs. The Table 1  parameters are

I, 00,7 +7,, 77,0, +0;,0,0;}. In the Hermitian symmetric positive definite
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-case, the roots of R, are real, the Table 1 parameters are real, and there is no

mixed arithmetic. (It is reasonable to assume this. A Hermitian positive definite
system could be solved with nonreal parameters, however.) If A is a general
complex nonsymmetric matrix, all Table 1 parameters are general complex

quantities and since the matrix is complex, there is again no mixed arithmetic.

Mixed arithmetic occurs in Richardson’s method if A is real and
nonsymmetric, for then the Table 1 parameters are general, complex quantitie .
whereas the other quantities are real. If A is real, it is reasonable to assume that
polynomials R, and C,_, are real. The roots may then be grouped in conjugate
pairs, and the leapfrog and grand-leap methods performed in real arithmetic.
Richardson’s method, however, requires complex arithmetic, and the number of
arithmetic operations is effectively larger than shown in Table 1. In this case, one
would not want to consider Richardson’s method, which was the motive for using

the leapfrog method in [SmSa85].

Now we come to an aspect of these comparisons, namely the effect on [;0O
due to the solution of large systems, that is important to take into account but is

necessarily limited due to the range of the subject.

The limitation made here is to consider only programmer—-controlled storage,
from among a list of topics required for a more complete discussion that includes
architectures, specific application problems, and implementation details. The

reader may object that although it is reasonable to dismiss architectures, it is still

P e, W O
W 9, Y' Cr ,.

sl- o
v

.
L$

P IR A
“
BRANAR

- -

L

50
2
<

R

{l

24 ALt ]
L TaeBFedeloinsat
Py T %Y

“of
«

-C'_'. A
l\'l.' /

4
7’

L4y

&
SSNS

Jok

T g% 4
'3
v
»

.',' LY ". _'l ." N
(N
PR A '

"

. -
"-.'-. bR ANY
el 3 -."- ,'r '

7
-



47,

PR

W W TR | ¥ V™

r\r__f s
Al

o ~g%a $ra gt gia-piss gy

21

not reasonable to restrict discussion in quite this way. For, the typical user is
running problems on a virtual memory machine and is beset with multiple
worries that deserve attention, such as memory ‘‘touches’”, or the loading of
vector registers, or the losses due to flushing a cache. Unfortunately, such
transfers between memory levels are hardware dependent and simply cannot be
analyzed within the scope of this paper; the conclusions reached here below do
not necessarily hold in these cases. It should be noted, however, that even for
virtual memory systems, there exist limits Eccl83] that corﬁpel the use of explicit

I/O commands similar to those in Table 1.

One final comment to justify the narrow focus that is taken: It is
characteristic of many supercomputers that only programmer-controlled
peripheral storage is available for large problems and when needed is usually
responsible for languid performance. This dismal fact often attracts comment.
For example, Ortega and Voigt observe, “The [programmer-controlled [. O
problem produced by ver& large problems [is|... known to be potentially
devastating on high performance systems ... .”” {OrVo85|. Programmer-controlled
storage includes system commands, custom utilities, and the less efficient choice,
depending on circumstances, of Fortran commands. Only Fortran commands are

given in Table 1.

In order to weigh the effect of transfers from peripheral storage, a large set_of

linear equations is assumed. This vague statement will be sharpened in order to
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: arrive at a rather specific assumption. The discretization of coupled partial t-"
v A
$ differential equations in three dimensions yields, in some applications, leviathan s
o™
systems of order ten million complex unknowns. Such problems lead to the :;
w oy
" assumption that a matrix multiplication, which may involve a preconditioning, ',::-
'. - 47
rd absorbs the primary memory and that processing after a matrix multiplication %
. e
oy N
e requires reading in a vector from disk. This assumption is seen in Table 1 when, ';:
o )
l ; . (i —2) : N
for example, in the leapfrog algorithm, r must be read from disk after »
. _ b
:j computing t = Ar(* 72, :‘t '
w ] b
e ™ )
R %
_\'- Under these conditions, a third advantage of the leapfrog and grand-leap 5;
3 L4
[ algorithms is seen: there are fewer READ’s and WRITEs. iy
b i "_‘.
W o
:;; In an actual implementation, it may well happen, for example, that two "
- S

.

matrix READ’s are not necessary in any algorithm and that x'7Y in the

%
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conventional algorithm need not be written on disk. Conditions will vary, and

0,
“
?\’.‘n ‘: Y f""_. i

the results in the table are only representative. If the assumption on matrix

-

A

1':1

vector multiplications is not valid, the comparisons would change, but it is

gy
.x."’ "
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plausible that for large problems there would remain an I/O advantage to the

<
® .
“x

leapfrog and the grand-leap formulations.
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Table 1
Conventional Leapfrog Grand-Leap

o= i-—2+Ti—l a=0+E

V=T _oT; _, v=00
READ A READ A READ A , |
v=Axl"% v=Ax("2 v;=Aul " —qutY

|
READ b READ b READ A ‘;
rt b —v rtY=b—v Ve=Av, |
!

READ x~% READ A ;
iU =x(i‘—2) fr el t = Api-2)
WRITE x* 1)
READ A
V=AXU‘1) i
READ b READ rl*—?
- H=p—v
READ x* Y READ x(*~2) READ ul*~?

—ut
WRITE x*) WRITE x(*) WRITE u!*!

2 matrix mults.

4 vector READ’s
2 matrix READ’s
2 vector WRITE's

4N adds
2N mults.

2 matrix mults.

3 vector READ's
2 matrix READ’s
1 vector WRITE

3N adds
2N mults.

2 matrix mults.

1 vector READ
2 matrix READ's
1 vector WRITE

2N adds

2N mults. 4[
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5. Second Order Iterations.

In the real eigenvalue case, residual polynomials of practical value are orthogonal
polynomials, and satisfy a three term recursion. This elegant property yields
second order methods, which have an extra term in the expression for the new
iterate as compared to Richardson's method. Richardson’s method is also called a
first order method and a second order method sometimes called Richardson’s
second order method. In a second order method, each new iterate is optimum in
the sense that the residual polynomial satisfies an L,—optimality property, to be
be discussed in §6. The Chebyshev iteration, employed by Manteuffel Mnt77, is
an example. In the case of a first order method, x¥) is optimum if the residual
polynomial, R, is optimum, but x(*) is not optimum for 1 #*k, a fact commented
on previously n the Notes for Algorithm 1. There is a cost in the second order
method for optimality at each step: a larger number of arithmetic operations and

a greater use of storage compared to Richardson’s method.

The objective is a second order method for which only even numbered
iterates are computed using information only at even numbered steps, a method
hereafter called a second order leapfrog method. In the Chebyshev case, an

algorithm will be given.
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5.1. The Second Order Iteration. Some preliminaries are needed. Let x(0)

r “»

be the given initial guess. Define Ax7Y to be zero and for 0 <k,

W ¢
')
k k+ k !
Axclk) =y (k1) _ (k) y{:«l ,
& Wy
The second order iteration requires a set of parameters {o, v: 1 <k} 'l'.,
‘\1’.' q
that are given explicitly in the Chebyshev case in Algorithm 3, and derived in a o o]
f J"\t
general way in Algorithm 4. Assume these parameters are given. The iteration ""(
v
may now be stated. Let r(® = b — Ax{?). For k >1, ) ﬁ“

Ax*D =y A=) 4 g plk-1), (5.1.1)

xk) =5k =1) 4 AxlE-1), stoe

and
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5.2. Second Order Leapfrog. The derivation is somewhat lengthier than in

-
7
e
2.4

the case of Richardson’s method due to: the need to express Ax'¥) in terms of

Af'!/)
t l;'
8 & Fy

{l
L

information at step kK —2; and a complication involving the residual vector. -~

'y
s
x,

Ty
Ly

First, an expression for x(k), k >2, is obtained in terms of information at

4

step k —2. Since

S

-

% ;

.
- s

o \)‘|

L':\'.\

, . \'A\
PN R R Wl W i N S} S S T M P LN TN ARSI N N R T S I T S S W Nt %y LU Ul Pl Bl g Ol W - Sl

N I A A N N N A A N A N N A N M A N I NN AT AR AT AT AT AT AT TN
R . A 3 ' - bl C & - . ) - ~ 0 « &) - 0 E . ! o'




. S .l el . . - . T Ty e >y
i u UV ARV 0y N W W VO VLT e X RN RSN WA S W X W Wy ¥ g W

¥
v

o e :
R
by 26 c’. d
1 A
I oy
" ol
R xF) =x(F=1) 1 px(k=1) b:?
0 oy
e Mt
e it follows that ;i 3
L
X ,
' ¥
o
/ x(B) =2 4 Ask=2) L Aglk-1) .;',',;:;
3 Now use (5.1.1) in the last equation to obtain
e
v
¥ ,
x(*) <x6-2) ¢ Ax(k-2) + Ax*=2 4 oy rle-l
p
) Define
n'
)
2 AplE=2) — plk=1) _ (k-2)
'.§ Then
'; x(B) =x(k=2) 4 Ax(k-2) +% Ax(k=2) +ak' [r("_Q) +arE2
' It remains to express Ar®) and Ax(*) in terms of information at step k —2.
q ‘_::’.::A
E The expression for Art¥) is simply .'1":-::
5 R
o ‘v
L 3
- artt) =—Aax(®)
‘.
5 Finally, to obtain Ax(k),
‘ Ax®) = 18) oy AxlE=D) R
! )
d .\‘ -
{ i
=ak+1r(’°) + Ve 41 [ak [r(k—2) +Arlk-Y + Vi Ax(k’g)]. f‘f"
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To summarize, the formulas to go from step £ — 2 to step k are

xk) = x(k-2) | [ak [r(k—Z) + Ar(k—2)k +,7kAx(k—2)]

+ Axtk—Y |
;
i rl*) = b —Ax(*)
¢
x A
L Axlk) = akﬂrm + V41 [ak [r(k—2) +Ark-2 + 7k Ax(k'z)],
: and
f"'a
N
! Pty
4 Arlk) = —aaxl®) b
L ~h~‘)\ '

o
-~

[

Initially,
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) x(9) = given,
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Table 2
Conventional Second Order ‘( Leapfrog Second Order
i
|
| READ Ax(k=%
READ rlk %)
READ x'#7%) reap x(¢-%

AxF U=y, Ax* 4o, k-2
WRITE Ax%~2)

S E=1) (k=20 4 A (k-2)
WRITE x(¥~1

READ A
v=Ax{¥-1)
READ b
rk-U=b—y

READ Ax(k~2)
Ax(EY) = axtE=? 4 Qy rlk=1)
WRITE Axt%—1)

READ x (k1)
WRITE x(¥)

READ A
v = Ax(¥)

READ b
¥l =p — v

WRITE w

x*) = x(E=2) 4 4 Ax(E-2)
WRITE x*

READ A
v=Ax¥)
READ b
ribl=b—v

READ w
Axl®) = a,(+1r(k) + VW
WRITE Ax'*)

WRITE r(¥)

READ A
Artk) = —A Ax(k)

w = [r(k—z) + arls=2 1 4 Ye Axk=2)

2 matrix mults.

8 vector READ’s
2 matrix READ’s
4 vector WRITE’s

6N adds

2 matrix mults.

5 vector READ’s
2 matrix READ’s
4 vector WRITE’s

6N adds

4N mults,

4N mults.
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5.3. Comparisons. Under the same assumptions as for the previous set of
comparisons, the two versions of the second order iteration are compared in Table
2. There are fewer advantages of the leapfrog algorithm in this case since the
number of arithmetic operations and the number of WRITE’s is the same. The
advantages are that there are fewer READ’s and a greater number of terms in the
sum defining x*) in the leapfrog version. Note that variations are possible, for
example, in recomputing w in ;,he leapfrog version, and that the arrangement of

terms used here is not necessarily suitable for a particular problem or

architecture.

5.4. Algorithmm for the Second Order Leapfrog Method in the
Chebyshev Case. For the convenience of the reader, an algorithm is given
below for the case of Chebyshev parameters. As before with Algorithms 1 and 2,

no attempt is made to incorporate I/O statements.
Algorithm 3. (Second order leapfrog tteration with Chebyshev parameters.)

Purpose. Execute the leapfrog form of the second order iteration for the
Chebyshev case. The parameters are the same as for the standard second order
Chebyshev iteration as used for example in the Manteuffel algorithm 'Mnt78,

Ashb85).

Input. Matrix A, right side b, and initial guess x(o); also a pair d and ¢ such

that d is the center and d 4 ¢ are the foci of a family of ellipses over which the
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Chebyshev residual polynomial is (nearly) minimum with respect to the uniform
norm. The ellipse parameters are assumed known, for example, as output from
the Manteuffel algorithm {Ashb85]. In the general non-Chebyshev case, this
algorithm could be easily modified to allow {a; } and {v; } to be input parameters,

say, from Algorithm 4.

Output. The algorithm generates a set of optimum iterates converging to the

solution of Ax = b if the restrictions are satisfied.
Restrictions. The restrictions are the same as for Algorithm 1.

Notes. The o, and v parameters need not be array variables; the subscripts

aid clarity.

b — Ax(?.

1) Set (%
2) Set @y :=1/d.
3) Set Ax(?) ;= o, r?,

4) Set Ar® ;= —AAXO),

2d

5) Set ap 1= —————— .
) 2 2d% — ¢?

6) Set Yo = dGQ — 1.

7) Do k = 2 by 2 until either convergence or a limit is exceeded:
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w1 {
7.1) Set w := [r(k—zl + A=) |4y AxkD, N, %
Pt
P
o
7.2) Set x8) 1= x4 w 4 Ax(F2), @ ;

7.3) Set B .= b — Ax(). W

7.4) Set ap . = 1 . Rt

RN
d — [Czak/‘iJ SRR

7.5) Set Ye+1 = dak+1 — 1. ._!f‘:vf\‘

1 Y,

2 ) SR
d — [C ak+1/4] \'.'S'-‘.

7.6) Set ay 9 =

77) Set k42 = dak+2 — 1. -!‘5!‘..; -
7.8) Set Ax®) = akHr(k) + YW AN
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6. L,-Optimum Parameters.

If either the Ly— or l,-norm is used to define optimum residual polynomials, then
it turns out that optimum residual polynomials form a family of orthogonal
polynomials if the inner product (either integral or sum) is defined over a real set.
From this fact, algorithms follow for the computation of the 7—parameters for
Richardson’s method, the o-parameters for the grand-leap method, and the
parameters for the second order method, which are presented in this section. The
assumption that the inner product is defined over a real set usually means that
the eigenvalues of the system matrix are real. The Chebyshev case is an
exception for which the eigenvalues need not be real. (Since Chebyshev
polynomials form an orthogonal family, Chebyshev residual polynomials are L,

optimum as well as L __~optimum.)

The algoiithms in this section generalize to the case of an inner product

z

i

defined over a contour in the complex plane. (A generalization may be based on
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»

A
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6.1. L,-Optimality. Some notation is necessary. Let I be an interval or a
union of intervals on the real line (generally, I' could be any measurable subset)

and let w be a positive weight function on I. Define
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where L = fw(f)d €. The set I’ may be assumed to be real by a linear change of :{}' o
T <ol ‘(
¥,
variables if necessary. In practice, rather than the continuous inner product. one
would use a discrete inner product of the form
1 M
(fr g)w = —Zf(ﬁ,-)g(ﬁ,-)w(f,»)m(fi),
M2
where m(£) is a measure, such as | £, —¢,_;| . A norm is defined by
bl e=(fs o
An (L,~) optimum residual polynomial of degree k is defined to be that residual
polynomial, R, with the smallest norm,
IRl S Pl 2,
where P, is any residual polynomial of degree k. Ideally, I" should contain the spectrum :-\
\':::::‘-C \
of A, and conform to the spectrum as closely as possible. Thus if the spectrum were NG
contained in the union of two intervals, I" should also be the union of, if possible. the
same two intervals. How to find the interval or union of intervals containing the S

<Xl

spectrum is a difficult problem, and is not considered here; the reader is referred to the
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Manteuffel algorithm [Mnt78| (which, however, computes only one interval containing
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the spectrum.) If {R;} is a set of optimum residual polynomials. then [Stie58: they form

2
5
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an orthogonal set with respect to the modified weight function, fw(¢&):

oe 1::5“_":_\;
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(Ri?Rj)fw =0 (611)

N

1

_\.r\." R

:4'..""-(,"4'.{‘ ~vl"\f w',\ [ \r\ r\vr .-‘-r I
Y R A v AN R 0 P Y

\{.‘-;.‘ J.\- '.‘r\.;\r_-."\q'.\d ..-l '\':\' ‘\r “- _‘-:'.-.\f ‘.’;




;;;;;

oy ‘){ -r‘.a'. .._{7 2

if and only if ¢ #35.

-
hy

S
b

e

.::'o 6.2. The Recursive Property of Orthogonal Polynomials. The well-known
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three term recursion for orthogonal polynomials is recalled, a property that yields not

=

%

b
::f only a second order iteration, which is derived here, but, also in §7.1, an algorithm for &
Ao O
- $
“‘: computing, among other things, the roots of the optimum residual polynomial, needed in é
o order to execute Richardson’s method. A
z WY
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Define ¢_, to be zero, and let ¢, be a nonzero constant. A family, {¢;:0<k}, of

P4
w,

.7,
L)

orthogonal polynomials satisfies a three term recursion: for 1 < k,

S ,
f-‘ .4'
B My .‘I’
b br (&) =k 4+ 81 )k —1(€)— Yk i -2(8) (6.2.1) .:Jj.
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R (€)=(ap &+ +1)R,_1(&) ~ e Re_0(€) (8.2.2)

6.3. Second Order Iteration. The recursion for the residual polynomials yields an
iteration for which x(*) is L,-optimum in the following sense: The error, el®) =x —x¥/,

satisfies e(¥) =R, (A)e(o), where R, is an L,-optimum residual polynomial.

To derive the iteration, replace £ with A in (6.2.2) and multiply on the right by r0

to get[Stie58], for 1 < & and r(™Y) defined to be zero,

r#) = (1 4+, 0% 7D 4 ArlE Y — o, plE-2),

Replace rl7) by b—Ax(J'), 3=k —2,k—1,k, and multiply on the left by A7! to obtain

x(k) =(1 +'7k)x(k—1) +ay rk-1) -7kx(k -2,

Initially, x(@ is given and r%=b - Ax©.

k) (k1)

The iteration is usually expressed in terms of the iterant difference, x! x'" 7 as

in (5.1.1).

8.4. A Method for the Roots of C,_,. A matrix will be derived, the eigenvalues of

which are the roots of C _;.

Recall from 36.1 that an optimum residual polynomial of degree k is defined to be

that residual polynomial, R, that solves the weighted least squares problem
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" where P, is any residual polynomial of degree k. Also if {R,} is a set of optimum Ko
Ty, \‘r-

o,
— ~
Oy residual polynomials, then they form an orthogonal set with respect to the modified }:’-\
'i N '-:. i
- weight function, {w(£); see (6.1.1).
-t

v el

", B ’-
o The roots of orthogonal polynomials may be computed by a stable algorithm based N
- o
el
" on the fact that the roots are the eigenvalues of a symmetric tridiagonal matrix. S.. Py

L

X 3
- The algorithm is called the Stieltjes algorithm and matrix S, is called the Jacobi matriz. "~
- ‘;-":
,'.j.‘: The Stieltjes algorithm is recommended for computing the optimum Richardson’s ‘;}

v ?n

i

. method parameters, which are the reciprocals of the roots of the optimum residual .
A
= polynomial. Matrix S; may be modified by one element to obtain a matrix the nonzero )
s 7]

: eigenvalues of which are roots of Cy _;. >4
: If only the roots of R, and C,_; are desired, it is not important .hat R, (0) = 1. It £
> is preferable to work with the normalized family NN
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Ebr _1(€) =5k k108 —2(&) F5kx Dx—1(E) + 5k k10 (£)-

>

!

The first three terms of the recursion are

o of ]
7

el
§do(€) = s11do(é) + s1201(8) Ay

£91(6) = s2100(€) + 52201(€) + s2304(8) 2
h '\ . .
£69(€) = s3261(€) + s3302(£) + s3493(8), :?_:__:

s
which may be written in matrix form as :ai
. .
2
bo(§) s11 S12 0 |[0(€) 0 %5:; "
; Py
E101(8) | = |s21 S22 S23 ||1(8) |+ 53493(S) |0 t"sz

4(€) 0 s3 333J é9(&) 1 . @

e
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In general, £ terms yield the matrix—vector equation :*'\:3
e

v N
8
EB(E) =S d(&) + 5k k119 (€)8r O
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where :f.?-:'.::
:-"_-T_'
. T N s

¢(£)=(¢0(€)7 ¢1(5)1 ] @k—l(&)) ’ ';~_:;-\J
RS

i
6 =1(0, ...,0, 1,0,..., O)T is the k' unit vector and Sk:(slﬂj) is the tridiagonal _:-_,_‘
Jacobi matrix [Wilf62, GoWe69]. The eigenvalues of the Jacobi matrix coincide with the .:;_x?i_
':\-:.:'w.'

roots of &,. e
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Next, a nested procedure in which the eigenvalues of S;,....S; are successively ’_ o
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computed will be described for computing the roots of ¢;. Let <{ij,:1§]' <¢} be the RO
U
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roots of @, ; these are the eigenvalues of S, . R
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j:' The procedure begins with the initial polynomial ¢,. Since ¢, is a constant such N
RN 5 i
that | ¢0|| ew =1, it follows that n
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b 1 K .;
) AN
8 $o(&)=7—— - e
: ” 1" Ew
) Next, to compute the root of @,, it follows from ::::
;,}f ‘_,\
Y S
x‘:’ t\,\

t@o(€) =51180(€) +51281(€)s

X that, if ¢, is to be orthogonal to ¢y,

¢
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Sy =(s11)=((£b0s Po)ew) -
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Of course, ¢,(s,,)=0.

Now assume S _; has been computed, 2<k. Since it is the (k—1)X(k—1) principal

&
% :{ 'r';']." )

P

]
o,

.fu:"\'_

<
N
}\{ submatrix of S;, only the last row and column of S; need be computed, a total of three
N

nonzero elements. Since the polynomials are normalized, S, may be proved to be

l

symmetric. Hence only s;_;; and sy are required.
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Y Matrix S, _, yields the roots p; g _y,.-; Pk _y k-1 Of ¢_;. Let

“k—1(5)=(f‘01,k—1) T (f‘Pk—l,k—l)-
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The elements to be computed are s ;_;, and sy;. These are unknowns in the relations o

(with, uf course, sp_) x = Sk k—1)

€k —o(&) =5k _1 k—20k-3(&) F k1 p—19k—2(&) + 5k 1.k Dk -1(E) "::.‘\:%:

and
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Ebr 1(€) =5k g 10k -2(€) +5kx D —1(8) + 5k k1194 (£)- (6.4.1)
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Orthogonality yields
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sk—1,k =(6@k-2) Bk -1)ew (6.4.2)
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Skr = (€Px 15 ¢k_1)gw- (6.4.3)
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This completes the computation of S;. An algorithm (Algorithm 4} is given in §7.
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8.4.2. The Roots of C;_,. We have
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g 81(6)=o(£)[ 1 (0)/8o( )] — 4 (0) [ €., (8) ). R
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_"‘,: Equation (6.4.1) therefore gives ":
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b1 —1(6)=5k100(&) + 5k k—19k—2(€) + 5k Br—1(&) — Sk k+19x(0) [fck-l(f)J ) (6.4.4)

_'.;2 &
o where §1:=s5g 1 +16:(0)/dg(€). (Of course, @y(€) is a constant.) Define a lower N7
) 3 R
- Hessenburg matrix Sp =(8;;) by setting §,;:=s,; unless i =k, 7 =1, in which case §;, '
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Recall that

{ §CL_1(§)=1—Ry(¢),
R (&) =64 (£)/4:(0),

7 (€)

- | 7Tk” fw ’

¢r(€)

and

PR A
£ »
A

T () =(§—p1) - (E—pir)-

2Ll
[ 1 a1
PN

=1 o
g .Ef /

Therefore,

-1
L7l ewdi(0)

9g-1= |

5 \I'r

In the Chebyshev case, an alternative formula is given in the next section.
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7. Algorithms.

In this section, algorithms are given for the root finding algorithms for the general /.-

case and also for the Chebyshev case.

7.1. Algorithm for Normalized Residual Polynomials.

Algorithm 4. {Compute the recursion coefficients of a specified orthogonal family,
and the roots and leading coefficients of the degree k orthogonal polynomial o, of the
famaly.)

Purpose:  Generate the factored form of successive normalized (real)

orthogonal polynomials, ¢;, ¢ =0, .., k; and the residual polynomial recursion

_parameters, {a;, 7} Additional output is described below. If polynomials are

optimum with respect to a weight function w, they are then orthogonal with respect to
the (real) weight function w(¢), and this will be the weight function used below. Note

that R, (&) = ¢, () /9, (0) is a residual polynomial.
Input. A subprogram must be provided to compute an inner product

(f,g)=%ff(§)g(§)§w(§)df where L=fd§. In practice, this subprogram would
r r

M
compute a discrete inner product (f,g)=jl/j—2f(fi)g(£i)£iw(f,-). Input to the
i=1

subprogram would be the number, M, of nodes, the nodes &;,1=1, ..., M, and the

weight, w(&;) (an array or external function).
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Input to Algorithm 4 then consists of input to the subprogram, the subprogram

itself, and the degree, &, of the highest degree normalized orthogonal polynomial.

| Output. The algorithm generates (1) a two dimensional array of roots, {p; }, of ¢,

0 <1 <k, required for (a modificaiion of) Algorithm 1 in the non-Chebyshev case; (2)

parameter 7, = 1—, needed for Algorithm 2 in the special case k = 1; (3) the Jacobi
1

matrix Sy,; (4) ¢g, and #;(0), needed for Algorithm 5; (5) the recursion coefficients
{ag, v } for the residual polynomials, needed for (a modification of) Algorithm 3; and

(6) the array of leading coefficients, v;, of ¢,, needed for Algorithm 5.

Restrictions. Degree k must satisfy £ <M. The restriction on I is that the nodes,
{&;}, lie on the real line, which holds if A is Hermitian symmetric positive definite.
However, it is not necessary that A be Hermitian symmetric positive definite. For
example, if A is re;al nonsymmetric then I" may be taken to be the major axis of an
ellipse enclosing the nonzerc spectrum and the inner product taken to be the inner

product defining Chebyshev polynomials; see §7.3.

Notes. The reciprocals of the roots of ¢, are the r-parameters needed for

Richardson’s method, and are general input for a modification of Algorithm 1.

This algorithm directly computes the recursion coefficients, {s,-j}, for normalized :.'-_f

NAYD.

polynomials; see (6.4.1). These are not the recursion coefficients, {ay, v}, for residual e
@

_ \ §

Xy

Pl S
’ Pfi{:

polynomials. An expression for the ay, 7, coeflicients in terms of the s;, coefficients is

;

g
»

given as follows.
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v,

,,.
<0 s

Ed

\ Since R; () = ¢;(€)/4;(0), (6.4.1) is equivalent to

L’

N $r-1(0) Sk Pk -1(0) Sk k-19k-2(0)
‘, R(6)=—"L" R, (&) — —* 1" B (6) - &
{ £(©) Sk k+19%(0) FealO) Sk k+19%(0) k-1d) Sk k+19%(0)

oL,

%
}_'

Ry _5(§) -

T Te T 3

From (6.2.2), it follows that

.
& A
)l'l"

(R
_A')Ar'r',
2.2

v
(3

P%—-1(0)

Sk k+19(0)

P

4 Q =

.
-

Q%»&  §

Sk k—10k—2(0)
Sk k+19% (0)
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N Vo W Uk o e
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¥ For step 6.4) below, the monic polynomial, 7, is used to calculate the leading

’

w e
L Aoty S
s

i -

! coefficient of @;. Let the ¢ roots of ¢; be {p; }. Define 7,;(¢) = II (¢ — p;i)- Let
1=1

Lol g
Y
.g‘
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e @
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1

Y == m——— .
ol i | éw

£ N

Then ¢, (£) = v; m; ().

- - e e

The factored form ¢; (&) = v, Hl(f — p; ) is recommended for evaluating ¢, (§).
]=

1 e
. Set ¢0 = UO . ::.‘4'

1) Set Vo i = m . S

2) Set sy 1= ({00, $0)ew» and set py; := sy}, the root of ¢, .

3)If £k = 1, return.
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4) Set vy :=

5) Set ¢1(0) := vy(—py1) -

6) For2 <: <k, do:

6.1) Set the first ¢ — 2 elements of the last column of S, , column 2, equal to 0.

6.2) Formulas (6.4.2) and (6.4.3) give the remaining two elements. Set

Si—1i = (€bicari1)ew

$ii = (€bi_11bi-1)ew -

6.3) Compute the eigenvalues of (the symmetric matrix) Sy . Set the roots, {p; }.

AN
of ¢; to these eigenvalues. :.'::ﬁ\"{
NN
A
[N,
Eg'!.aA
6.4) Set ui:=—i—— .
Il -
6.5) Set ¢;(0) := (—1)'vipy; ~ " Py -
¢;1(0)
6.6) Set a; := —~—t—(—-
5i i +16:(0)
$: 5 ¢._ O
67) Set, Vi 1= _l.i_l__z_.zi_)_ .
$i i +19:(0)
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7.2. Algorithm for the Grand-Leap Parameters.

o

v
C:

Algorithm 5. (Compute §k, and the roots and leading coefficient of Cy._,.)

Purpose. Compute the o-parameters and parameter g, _; needed for the grand-leap

R T o,

X A

algorithm; these parameters are the roots and leading coefficient respectively of C}_;.

Pl
» &

Input. A matrix (s;;)g+1xk+1, Such as S,  from Algorithm 4, nonzero parameters

Vi, 9, and ¢, (0), such as, also, from Algorithm 4, and period k.

Output. The algorithm generates the & — 1 roots, {01- }, and leading coefficient g, _,

of the ‘“polynomial preconditioner’” Cy_,. These quantities become input for Algorithm

¥ o v r V€t PR,
%S'ﬁ‘-‘n";’ .‘ [AENER l'-l..l

2.
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Restrictions. There are no restrictions other than those imposed on the input

parameters.
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1) Initialize kK >2 .
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>

.._...
A 'IT"

2) Set 5;; := s;; for 1 <1, j <k (5, will be reset in step 3).)

]
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v
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3) Set 51 :=s5; k1+19%(0)/dyp -
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4) Set, ék =(§z]) . <
b
= <=
5) Compute the eigenvalues of S,. Set the roots of C,_, equal to the nonzero N
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7.3. The Chebyshev Case. For this special case, the grand-leap parameters may be

determined with explicit inner products.

7.3.1. Chebyshev Orthogonality. Assume d,c¢ #0, and 0 is not in the interval
[d —¢,d +¢]. If d and ¢ are real, this is equivalent to assuming d >0, and d — | ci
> 0. Let T,;(n) be the Chebyshev polynomial of degree : defined by the familiar

recursion To=1,T(p) =u, and for 1 <, T; _(u)=2uT; () ~T; _ (@)

Let ;(&)=T;[(¢ — d)/c| be the shifted and translated Chebyshev polynomial. The

¥
Chebyshev residual polynomial is therefore ” Eg . The family {¥;: 0 <1} satisfies the,
orthogonality relations (where ¢ > 0 if real)
mt=3=0
d+c d x
] (0958w (== o i =5 #0
d—c¢ ¢ 2
0,1 #)

where
1/2
2 2
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7.3.2. Recursions for the Shifted Chebyshev Polynomials. The recursion for T

t

yields a recursion for {¢; }:

- e W |

ORI AR A A N

EPg=diy+c lbx(f)

and for 1 <74,

BRI

7.3.3. Roots of C,_; The roots of C;_; are among the eigenvalues of S,. An explicit

2

expression for S, requires S, and ¢;(0). To determine these quantities, the three term

recursion for the normalized polynomials is needed. The normalized polynomials are:
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The recursion is
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f¢0(f)=d¢o(5)+-\%;¢1(f) :
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61(6) =7 Sol ) +d (O + - 0l9)

and for 2 <7,
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7.3.3.2. Matrix S, ;. Therefore,
[ d ¢ ]
;2
¢ i <
CQ 2
0 = 4 =
2 2
Se = : Co . (7.3.1)
0 L4 £
2 2
%0 ¢ o L 5 cd
o 2 2
L J

7.3.4. Leading Coeflicient g, _;. Since

W (6)

it suffices to find the leading coefficient of Ry, = m
k

The leading coefficient of ¥ (&) is easily obtained from the recursion

w0=19
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=4 (8) = 6, a6)

The leading coeflicient of ¢ is therefore “12— 2 . This combined with the expression
, ¢

for ¢y (0) gives

~_ 1
9k-1 9

coshkcosh™!| — é—

c

7.3.5. Algorithm for the Grand—-Leap Parameters in the Chebyshev Case.

Algorithm 6. (Compute the parameters for the Grand-Leap Algorithm in the

Chebyshev Case.)

Purpose. Compute g, _;, 7, and oy, ..., 0p_, in the Chebyshev case as required for

Algorithm 2.

Input. Ellipse parameters d and ¢ and period k.

Output. The k — 1 roots, {o;}, and leading coefficient g;_, of the polynomial

preconditioner Cj _;.

Restrictions. If the grand-leap algorithm is to converge then the ellipse parameters must

satisfy the same restrictions as in Algorithm 1.
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Notes. The algorithm uses a matrix ék that is not defined if ¢ = 0. In this case, the set
of Chebyshev residual polynomials reduces to the family {R; = (¢ — d) /dk: 0<k .
which is not an orthogonal family for any weight function. The case ¢ = 0 is often used
in the Manteuffel algorithm in order to compute improved ellipse parameters adaptively.
If one believed that ¢ = 0 then Richardson’s method would converge in a single step if
the matrix were normal, in which case no need exists for the grand-leap formulation. If
one were computing ellipse parameters adaptively, then the parameter computation
technique reduces to a sequence of matrix vector multiplications, and again the grand-
leap formulation is not desired. For these reasons, if ¢ is small relative to d the
algorithm halts. The halting criterion is a comparison of | ¢ /dl 2 to the machine epsilon,
denoted in the algorithm by ‘““mach eps’ and defined to be the largest machine number,

€, such that the floating point sum 1 + ¢ equals the machine number 1.

As a final note, there does exist an analog of S in the degenerate case (¢ = 0), and
the algorithm control could branch to the computation of the eigenvalues of the analog

of S;, but the lack of a practical need obviates this version.

1

1) Set, T = m

2)Ifk =1or | c/d| < Vmach eps then return.

3) Set
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d

coshkcosh™ | — —
U (0) ¢
O = e ™ =
Vel ew ,\/_7r_
2
4) Set the roots { 0y, ..., 0,_;} of Cx_, equal to the nonzero eigenvalues of matrix

(7.3.1).

5) Set the leading coefficient g, _;/of C)_, equal to

91 = —

coshkeosh™! | — &
c

8. Summary.

The leapfrog and grand-leap variants of Richardson’s method and a general second
order method have been described. A comparison among the methods and variants
shows that there are advantages either to omitting every other iterant or to omitting all

iterants (except the last).

The leapfrog and grand-leap variants require sets of parameters that may be
computed from the eigenvalues of a matrix. In the leapfrog case, the matrix is the same
as that which expresses the roots of a member of a family of orthogonal polynomials as
the eigenvalues of a symmetric tridiagonal matrix. This matrix may be modified slightly

to yield the parameters needed for the grand-leap variant.
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«_. Algorithms for the leapfrog and grand-leap methods are given in the Chebyshev :;
e gy,
] v
" case. In the Chebyshev case, explicit values for the elements of the tridiagonal matrix are "
: > t
t
) well known and need not be computed. !
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