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Abstract

~ A theory of stochastic integral equations driven by predictable processes in
Stratonovich sense is developed. These driving processes include a large class of
discontinuous semimartingales. The theory of stochastic differential equations driven by
continuous  semimartingales in  Stratonovich sense is extended without involving
Lebesgue-Stieltjes integrals as done by Meyer. Moreover, a change of variables formula
without extra terms involving the jumps of the processes holds for this theory. Results on

approximation of driving processes are preserved.

¢
K

Key words and phrases: stochastic equations, approximation of driving processes,
Stratonovich integration.
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§ 1. Introduction

We propose an interpretation for the expression
N
(1) dX(1) = f(X(1))odu(t) + g(X(1)) dt + T o, (X(1)) «dW(1) ,
V=1

where u(t) is a uniformly bounded, adapted, left continuous or, more generally, predictable
process, and (W(t),- - -,Wy(t)) is an N-dimensional Brownian motion process. Our goal is
to define what (1) means and to study the solutions of such equation. We extend here
the theory of stochastic differential equations driven by continuous semimartingales in
Stratonovich sense. In fact, if u(t) has Lipschitz paths with a uniform Lipschitz constant,
we interpret (1) in the usual Stratonovich sense. The basic difficulty with (1) is that if the
process u(t) is discontinuous at say t = T (a prcdictable stopping time) then X(t) may also
be discontinuous at t = T. Thus in general I f(X(s))du(s)e>0 cannot be defined as
a pathwise Riemann-Stieltjes integral. One way to get around this difficulty is to interpret
this integral as a pathwise Lebesgue-Stielties integral. This approach is followed by Meyer
[9])- But then the change of variables formula is burdened with terms that account for
the jumps of X(t) (cf. Meyer [9], p. 301). These terms also complicate the equations that
follow from using such generalized Ito formula in deducing evolution equations for various
statistics of X(t). We interpret the first integral in (1) differently.  This accounts for the
notation .du(t) which stands for an extension of Stratonovich integration. Our
interpretation of (1) preserves two important properties. First, the wusual change of
variables formula holds for (1). That is, no extra terms due to the jumps of u(t) or X(t)
appear in the formula. And second, robustness in u(t) is built into this interpretation. This
is particularly important when u(t) is a control process. Simple cases of (1) are used to
model the controlled state in problems of singular control (cf. Benes et al. [1], Karatzas

and Shreve [7], Harrison 5], and Taksar [12]). In some applications, the controls u(t) that
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appear naturally are continuous. This last property is nonrigorously dropped in order to find
optimal-in some sense-controls (cf. Harrison (5], §5). The definitions we will introduce are
oriented towards making rigorous that procedure. In fact, we will show that if u(t) is
approximated by Lipschitz processes uj(t) then the corresponding solutions 7g(t) converge to
X(1) as j = = The sense in which these limits are taken is given later.

We mention a few papers dealing with problems related to ours. Kushner [8]
contains an approximation theorem for jump-diffusion processes. The jump process is
Poisson and weak convergence of approximations is proved. In our work we allow u(t) to
be a predictable process. Moreover, we prove that the approximations Xj(t) converge
strongly. Picard [10] studies approximations for stochastic differential equations driven by
continuous martingales. Adapted and non adapted approximations of Brownian motion are
considered. Strong. convergence is obtained. Protter [11] allows general semimartingales (i.e.
those with jumps) as differentials. Given decompositions of the semimartingales as the sum
of three terms, a continuous semimartingale, a purely discontinuous local martingale and a
process of bounded variation, the first two terms are approximated by smoother processes,
but the bounded variation processes are left fixed. Thus our results are in some sense
complementary to those of Protter [11). Doleans-Dade [2] treats existence and uniqueness
for stochastic integral equations with differentials of possibly discontinuous semimartingales.
Lebesgue-Stieltjes integrals are used in [2] when differentials of bounded variation processes
appear. The relation between our approach and that of using Lebesgue-Stieltjes integrals is
further explored in Ferreyra [3]. To clarify ideas we begin with a simple example in §2.
Section 3 contains our hypotheses. Existence and iniqueness for (1) is treated in §4. The
chain rule is considered in §S5.

§2. An Example.

It is enough to consider deterministic functions to illustrate the basic ideas.
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vt Consider the problem
¥
;E:? dX(t) = X(t) du(t), 0€t€2, 1
"
e X(0) = 1,
(::;(
N where u(t) = 1(112)(t), (0<t<2, is the characteristic function of the interval (1,2) defined for
UM,
:;:. te[0,2]. If I(t) = Iot X(s) du(s) is interpreted as a Lebesgue-Stieltjes integral, then I(t) =
»
ooy
: ; X 1(1,2)(t). Thus the above initial value problem is solved by
)
X(t) = 1+ 10 = 1+ 1;,(0).
s This solution is well defined for all te [0,2], and it jumps one unit at t = 1. The
3 »
W following change of variables formula holds for X(t) and suitable ¢ (cf. Meyer [9], p. 301). 4
2}
5 |
}- e(X(1) = @(X(0)) + I 0 ¢'(X(s)) dX(s) + {9(X(1%) - @(X(1)) )
»
N\
"‘;_-g -9 (X(D) (X(A*) - X))} 5(0).
)
h Next, consider the expression
" dX(t) = X(t) o du(t), 0 €t €2, X(O0) =1.
A\
? . Our approach for interpreting and solving this is as follows. Approximate u(t) by
oY
') uj(t) = j(t-1) 1(1.1+1/j](‘) + 1(1*1/1‘.2](‘)-
;:':‘3' Now, solve
?l ..
||' - . =
:5:.' dxj(t) = Xj(t) duj(t), )g(O) 1.
AN
The solution )%(t) equals 1 for t<l, exp [j(t-1)] for 1<t<l + 1j, and e for t31 + 1j.
,::;'. Finally, define )_((t) = jlim Xj(t). Then i(t) equals 1 for t€1, and e for t>1. It is easy to
":i -5 & ]
'.',l:,: check now that
i‘:'l _ _ _
de(X(1) = @' (X(1) odu(t), ¢ (X(0) = &(1). ]
:::; In fact, properties of the Riemann integral give
!
)
e de(Xi() = ¢’ (Xi() du), ¢(X(0) = (1),
l.'. —_ .
and o(X(1)) = lim o(X;(1).
J;;‘: j-o.
o
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§3. Notation_and hypotheses.

Let (LF,P) be a complete probability space and let (F), 0Ost<T, be a right continuous
increasing family of sub o-fields of F each containing all P-null sets. Let (Wy(1),- - -, Wp(D)),
0<t<T, be an N-dimensional (Fl)-Brownian motion. We are concerned with the expression

N
(1) dX(1) = f(X(1) o du(t) + gX(1)) dt + L 0,,(X(1)) «dW (1) .

V=1

The small circle o in the first term on the right hand side of (1) is introduced since that
term does not stand for a Lebesgue-Stieltjes type integral. In fact, this integration is an
extension of Stratonovich integration.

Let V be the set of real valued processes v(t), 0<t<T, that are adapted, uniformly
bounded (in t and w), and continuous on the left. Let U be the set of real valued
processes v(t), 0<t<T, that are uniformly bounded and predictable. (Predictable means that
(tw)~u(tw) is measurable with respect to the o-field on [0,T] x Q generated by the
left-continuous, (F )-adapted processes). Assume, without loss of generality, that all
processes in V and U satisfy v(0) = 0. In section 4 we assume that ueV, while in section
5 we assume ueU. We assume throughout that u{t) = 0 for t < 0. The unknown
process X(t), O<t<T, evolves in R". The initial data X(0) = X is an F,-measurable,
R"-valued random vector such that
(H1) Elx|P<=, for some p>2.

Finally, the coefficients f, g and o, Vv = 1,---N, are vector ficlds on R" such that

(H2) fe C3(RY), feC2(R),

(H3) ge CL(R"), and

(H4) oye CXR"), v = 1,...N.

Here CL(R"), i = 1, 2, is the subset of functions in C(R%) which are bounded together

with all their partial derivatives up to order i.
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Tt Definition 1: We say that a real-valued process v(t), O<t<T, belongs to ¥ if it is
W (F)-adapted, and it has Lipschitz paths with a uniform Lipschitz constant.

e It is well known that under our hypotheses on the coefficients and assuming ve¥,
o

b1 the equation

d N
‘:g' 2y dx@ = [f(X(t)) d—: (1) + g(X(t))]dt + L o,(X(1) o dW, (1),

‘."l \ V=1

O has a unique solution given that X(0) = X.

K f Next, we consider the approximation of the process u by processes in £.

“a Lemma 1: (a) Let veV. Then there exists a uniformly bounded sequence {vj} of elements

e of £ such that for each O<t<T, vi()=v(1), ae.

.'::: (b) Let veU, and let 1 € p'< = Then there exists a uniformly bounded sequence {vj} of

R elements of £ such that
'y

T '
\ Ef Vi) - v()IPdt = 0, as as j = =

t
,‘::.' Proof: (a) Given veV, define vj(t) = jJ' " v(s)ds, j 1, 2,... . Here we assume v(t) = 0
. t-1/}

bk for t < 0. Then vjet since v is uniformly bounded and adapted. Moreover, since v is
| ) left continuous, we have for each t, 0 € t € T, vj(t)-w(t), as.

':"' To prove the second part of the lemma, we use the following result.

Wil mma 2: (lkeda-Watanabe [6], p. 21): Let & be a lincar space of real measurable
processes which are uniformly bounded (as functions from [0,T] x Q into R). Assume ¢
" satisfies the following conditjons.

-.f::.:.. () & contains all uniformly bounded, left continuous (F)-adapted processes; ic. VCo.
= and

‘!:-: (i) if {#,} is a monotone increasing sequence of processes in ¢ such that ¢ = sup ¢, is
)
o ,

o uniformly bounded, then ¢ ¢ .
- Then ¢ contains all uniformly bounded predictable processes; ie., UCS.

OUORIOSIONOG OO Lt G o d S T e D T R 0 Vet Y
-'A"l'.;‘)‘.-"' 'm“f",n‘.’ ',»-'\ ".-“'.9“‘:':,1” tA" ! St 0 u’".i:":"‘;!...ne‘,’ve‘ N,
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e Proof of part (b) of Lemma 1: Let & be the set of veU such that the conclusion of
l‘:o:' ) part (b) holds. Clearly ¢ is a linear space. To prove that ¢ satisfies the condition (i) of
b Lemma 2, let veV. Then the sequence {vj} defined as in the proof of part (a) of Lemma
0 .
D 1 satisfies
\ ~) '
T P
Ny lim E[ lvi(t) - v(t)l" dt = 0
S lim Ef v - v()
NN
,_ by the Bounded Convergence Theorem. Then VC®. To prove condition (ii) let {tb}‘} be a
sequence approximating ¢ in the sense of (b). Also, by the Bounded Convergence
-
f_: Theorem
S T p'
£ lim Ef 16,0 - 6@ dt = 0.

oy el
Then approximate ¢ = sup ¢ as follows. Given je{l1, 2.} choose n such that

=
et T ) 1 T ! 1
= E[ 10,0 - 60IP dr < 5 - New. choose X such that EJ:) 1650 - 6,017 at < >
AN
; _\",f for all m 3 ). Finally, let ‘Yj = ¢. Then {‘Pj} is a uniformly bounded sequence of
1, (

elements of £ satisfying
Ay T p'
o lim Ef 1¥® - 6@ dt = 0, as.
! joo 70
(-
Sy Thus ¢¢® and the proof of Lemma 1 is concluded.

)

:’ §4. [Existence and uniqueness when u js in V.

™)

} Definition 2: Assume ueV is given. Then, an R%valued process X(t), O<t<T, is said to
'::. be a solution of (1) with initial condition X(0) = X if there exists a map
®
i I: [0T] x V x o = R such that the following conditions are satisfied (the dependence of
Ko
:E \ I on wen is not displayed below).

:"]

0 (D) For all veV, T(tv)is (F,)-adapted.

PR (Dii) For all veV, TOy) = X .

W

;::" (D.ii) If veX, then the process I'(t,yv) solves (2) in Stratonovich sense.
N

:ug:: (D.iv) If veV and {vj} is a uniformly bounded sequence of elements in V such that for
]

o

A%

N

3

. IO . OO ", DOAD0 QOOO0O000
DU DO OO U O TN OV O OG0 Nt P W S S Ry SN0 R A B B 8 By o By S Bt b Bty Rt Gy ek
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every t, O<t<T, v; () = v(t), as, then for each t, 0 €t € T,
Eir(y) - T(ty)[2-0, jo=.
(Dv) T(tu) = X(t), 0<t<T.
Remark 1: If v and {vj} are as in (D.iv) then the Bounded Convergence Theorem implies
that for every 1€p'<=, EEIVj(s) - v(s)[p'ds-0, as j-.
Theorem 1: Assume that conditions (H1) through (H4) hoid. Then, given ueV, the

system (1) with ijnitial condjtion X(0) = X has a solution X(t), O<t<T, in the sense of

Definition 2 such that

(a) for each t, X(t) is unigue in guadratic-mean norm, and

(b) EIX(t)IP is bounded. uniformly in t.

N j‘. Proof:

*j( (a) Uniqueness:  Suppose X(t) and )Z(t) are two competing solutions of (1) starting at X.
f.c_ Then, there exist two maps T, T: [0.T] x V x @ = R" satisfying T(tu) = X(t), F(t,U) =
S ;((t) and properties (D.i) through (D.iv). Consider a uniformly bounded sequence {uj} of
‘.z;' elements of &£ such that for each t, 0<t<T, uj(t)-'u(t), as. The existence of {uj} follows
::5 from part (a) of Lemma 1. Then, for each j, the processes I'(t,uj) and ;(t,uj) are
:".) solutions of the same equation (2) with identical initial condition. But uniqueness holds
: :QSE in this case since ue L. Then T‘(t,uj) = l’(t,uj). Then (D.iv) imply that for each t, 0<t<T,
., "- EIX(t) - X(1)|2 = 0. Thus (a) is proved.

- Existence: As a first step we reduce the problem of solving (1) to that of solving a
.;':: simpler system. For this, we introduce a transformation which was also used in Sussmann
,EEE,- [13]) for a purpose similar to ours. Let F: R x R'™-R" be the flow of f, that is, the
’, solution of

i

" )3 ) _

ih Fe (sx) = f(F(sx)) . (sx)eR x R" , F(0x) =

0

! ) ! At .| 4, of l l ot ‘ ‘ ] ‘
‘ ".\.o" :“1 J c".!".o ',t".,a‘l ’.0. oY, ',\0 A 0.".0".4}".« s, ',l L "0 5 \ ‘v ' 51.:|3‘f‘1‘f°v |' '.- N ’.t N “v ',t s M) '.e ‘.0 ‘.v ',c .l e, LML u UMM
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Then FeC3(R x R") and if A(sx) denotes the n x n matrix Y (sx), then

-

J&I.’J.'

s of
(3) AGx) =1 + j'o 7 FT.0) ATx) dr,

{ 4
2R X

> .
-~

where I is the n x n identity matrix. Let B(sx) denote the inverse of A(sX).

&

P X
&

s at
4 Bex) =1- j'o B(T.x) — (F(Tx)) dr .

Since —:—:— is bounded, then it follows from Gronwall’s inequality that both A(sx) and
B(sx) are bounded as long as s remains bounded. Also, it is easy to deduce from the
above formulae and (H2) that
(&  IFsx)! + [Fsx)l < B(s) A + IxI),
where B is indepéndent of x and it is bounded as long as s remains bounded.
Introduce the following vector fields on R™*1 Let

f (%) = (10.--0) ,

g (sx) = (0, Bsx) g(F(sx)) , and

oy (sx) = (0, B(sx) o, (F(sx))) , v =1---, N.

Let F (sx) be the Jacobian matrix of Fat (sx). Then
(6) F,(sx) f(sx)= Fy(s,x) = f(F(sx)) ,
(M F,(%) g(x) = g(F(sx)),

(8) F,(sx) B,(sx) = 0,,(F(sx)) .

The following lemma is needed to solve a stochastic differential equation in Stratonovich

sense involving g and G,, , v = 1,-.-N, as coefficients.

. v i . . . 2 M - M\ WA OO OUBO 0 OO0
RO WAOUOLN] D) DTN DOUN IO N M O A 0 SO N NN IO WM MERMBL A O W X OO ORANOOOONNN AN
N ORI P R ”:0.”'“"v".I"::"’Q“’*".""tt":i"fu"f!‘.’dqi!a'hi"?'l'..!"‘."‘.1";"‘:‘:"’-“"‘.b","'f AR AR NSRS WAL ST SRR LN TR PN
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! mma 3: Let G denote either one of the vector fields G,,, v = 1,-.-N. We have
R —

' - g @75 -
X TeC¥R x R" and g ¢C/(R x R"). Moreover, 3, , ,g and 3 Jj=1---n,
| are bounded as functions of (sX) as long as s remains jn a bounded set. On the other
and,
' 8o L %
: — Il +1 = X1 <B(s) 1+ Ix),
I 5 % I+ .21 I 553 (%) 5 D1 <89 ( )

where B(s) is bounded as long as s remains in a bounded set.

) The proof of these properties follows easily from repeated use of (3) - (5) , (H2) -
1 (H4) and Gronwall’s inequality.
Consider now the system of n + 1 equations
{ _ - N _
K dY(t) = f (Y (1)) odv ()+ g (Y (1)) dt+L o,(Y(t)).dW,(t) ,
V=1
where ?(t) is lle - valued, and ve £. Then, this is equivalent to
N o

©  dY® = g, YO + T oy (1) , YD) o d Wy (D),
v=1

where Y(t) is Rn-valued, and g (resp. o)) stands for the last n components of E (resp.9,),

3, ~ ~ -~
R ie.,g = B(goF) (resp. 0, = B(0,,oF)) . The system with Ito differentials equivalent to
(
) is
(10) dY(t) = h(v(t) , Y())dt + L o,(v(t) , Y(1))dW (1) , ”
V=1
1 ~ ~ 1 N B g5« ~i ~
h where h=g+—- ¥ I — o, and o, is the i-th component of o,,.
" 2 a1 i O ’

The process v(t) enters (10) as a parameter. It is well known that if v(t) is (F,)- adapted

. . ! g G
TR, AV AV Ty Ay B0 s . B 1 T DO N I LA TR AL
e e LRX) . s’u;n'wfﬂfe& AR R e A A R LT T
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N and uniformly bounded then Lemma 3 implies that given the initial condition Y(0) = X,
i‘\_ there exists a solution Y(t) of (10) which is stochastically unique (see, for example,
N

'
-l::: Gihman-Skorohod [4], pp. 50-52).  Next, we prove that the p moment of Y(t), where p

"
Hiw is the power in (H1), is bounded uniformly in t. From (10) and the inequality
t A
:;", la + blP < 2P (lalP + [bIP }, it follows that
Bty
3 P P o P

v E YD)l < C/(Tp) {El XI" + I Elh (v(s), Y(s)) | ds

160 0

N t o p
I el o, w9, ve) oW, ©F )
V=1 0

@ (<

P ' g P
<sCG@Tp) {EIX | + I Elh(s), Y) I ds
0

© -

-~
37 XL
ALY

N t ~ p
+ X I E lo, (V(s) , Y)) | ds},
v=1 °0

where the last inequality is a consequence of the estimates for moments of stochastic B

A
kS .'vf‘- o 2o 2k

integrals (see, for example, Zakai [15], p. 173). Now by Lemma 3, the coefficients h and

-

3 o, of (10) are bounded provided v(t) is uniformly bounded. Then, if M is a uniform
bound for v(t), it follows from (H1) that

- a1 EIY® 1 < C;(TpM )<=, uniformly for te [0,T].

W Suppose next that veV and {vj} is a uniformly bounded sequence of elements in V such

:E',: that for every t , 0 <t < T, vj(t)-'v(t) , &S  Let Yj (t) denote the solution of
1

e N L d
o O = h0G O L Y(0) o+ T 0,050 . Vi) dWy )

o with initial condition Yj (0) = X. This and (10) imply

OROR
(AR IO NIRRT
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t ~ ~

EIY,()- YO 12 C, (T{ J Elh (%(s), ;) - h(y; (5) , Y(5)) 1 2ds
0 .

e . J: E 1h4), Y6)-h(v(9), Y () Pds

and A ~ 2
4:. *\E]IOE | oy (vj (s) ,Yj(s))-ov (vj(s).Y(s))I ds

t ~ ~
[[E15 4@ Y5, ve Yol

N
+1
:1 0

'\J.‘ v

A

~
e Now, The Mean Value Theorem together with the estimates for the derivatives of h and o,,

y given by Lemma 3 imply
. t
EIYJ(t)-Y(t) 12 < CS(T){I E IYj ()-Y(s) 12 ds
0

. t 2 2
':‘.k, + I E[(1+1Y(s)! )Ivj(s)-v(s)l ]ds}.

0

Holder’s inequality together with (11) and Remark 1 imply that the last integral converges

uniformly to zero as j - «®. Then Gronwall’s inequality implies that
::»‘ (12) Ele(t) ~Y(t)l2-' 0, asj-<«, uniformly forte[0,T).

Define TI: [0,T]x Vx 00 = R" as follows. Let

b (13) T(tv)= F(t), Y()),

g w where Y(t) is the solution of (10) with initial condition Y(0) = X (wef is not shown?) It

oty is clear that T satisfies (D.i) and (D.i). To check (D.iii) let veX. By the chain rule for 1

oAl Stratonovich integrals (cf. Ikeda-Watanabe [5), p. 101) and (6) - (8) \

X ' R
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dr(tv)= F, (v(t), Y(®)dv(®) + F(V(t), Y(t)) o dY(t)

N
f(FV (), Y1) dv(t) + g(F(v(t) . Y(®))) dt + T o, (F(v(t) , Y(1))odW,, (1)

v=1
N
= £ (T(tV) dv(t) + g(T(tV)) dt + I o, (T(tV) odW,, (1)
v=1

Thus to conclude the proof of existence it remains to prove (D.v). For this, let {vj } and v
be as required in (D.iv). The Mean Value Theorem together with (13) imply

(14) E Il‘(t,vj) Tl ?. El F(vj v, Yj () - F(v(t) ,Y(1) |2
2 2 2
<G E{le(t)-Y(t) o+ @+1Y®) | )Ivj ®-vit)yl}.

Holder’s inequality, together with (11) and (12) imply that for each t, 0<t<T

(15) E II'(t,vj)-I'(t,v)l2 =0 ,a joo,

It remains to prove (b) to conclude the proof of Theorem 1. We have

16) E It = E IFw® , YOI = C, 0 (1 + E IY®!®)

Then (11) implies (b).

Corollary:  (a) For the solution X(t) of (1) to have a discontinuity at T jt is necessary (but pot
sufficient) that u(t) have a dijscontipuity at 7.

() If u(t) is continuous on the left, with limits on the pight, so is X(1).

Proof: The solution Y(t) of (10) with Y(0) = X is a process with continuous paths.
Then the jumps of the process X(t) = T(tu) = F(u(t),Y(t)) , with T and F as in Theorem
1, can only be produced by jumps of u(t). Hence our statements follow.

§ 5. Existence and uniqueness when u js in U.

Definition 3: Assume u in U is given. Then, an R'-valued process X(t), 0 ¢ t € T, is
said to be a gsolution of (1) with initial condition X(0) = X if there exists a map

A: [0T) x U x o = R" such that the following conditions are satisfied.

»
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(E.) For all veU, A(tyv) is predictable.

(E.i) For all veU, AOV) = X,
(E.ii) If veX, then the process A(t,v) solves (2) in Stratonovich sense.
(Eiv) Let q = 2 + 4/(p - 2); ie, such that 2/p + 2/q = 1. If veU and {vj} is a uniformly
T
bounded sequence of elements in U such that lim EL |vj(t) - v(t)|9t = 0, then
J-OQ
;T
lim E[ [A(ty) - A(ty)]%dt = 0.
lim [[ 1nes - vl

(Ev) AMtu) = X(1), 0 €t € T.

Theorem 2: Assume that conditions (H1) through (H4) hold. Then, given ueU, the

system (1) with initial condition X(0) = X has a solution X(t), 0 € t € T, in the sense of

Definition 3 such that

(@  X(t) is unique in the norm of L%([0,T] x Q), and

(b) EI:IX(t)IP dt < =,

Proof: (a) Uniqueness: The proof is similar to that of uniqueness in Theorem 1. In fact,
suppose A, A[0T] x U x 0-R" are two competing functions satisfying properties (E.i)
through (E.iv). By part (b) of Lemma 1 let {uj} be a uniformly bounded sequence of
elements in £ such that EJ;r Iuj(t) - u(t)|%t - 0, as j - =, with q as in (E.iv). Then
A(t.uj) and K(t,uj) are identical because uniqueness holds for (2). Then (E.iv) implies that
EJ;Or IA(tu) - A(tu)l2 dt = 0. Thus (a) is proved.

Existence: The proof of this part is the same as that of existence for Theorem 1 with a

few minor changes. In the proof of (12) we use the hypothesis EE Ivj(t) - v(t)I|9 dt = =,

j = =, of (E.iv) instead of using Remark 1. The function A is defined on [0,T] x U x Q

as A(tv) =F(v(t)),Y(t)). Then the proof of (E.iv) follows from i
EJ'II A(t,vj) - I\(t.v)l2 dt = EIZI F(vj(t).Yj(t)) - F(v(1),Y(t)) I2 dt

«C EI:{IYj(t)- YOI + (1 + 1Y) v - v(t)lz]dt.

A ) ) OBASOGCDACOSIGOOOOODO0
) DA O UNS A G RN AU O R Y BARARA R GTRA PUASL LR UL U R P PO L Liy LAr Ly AP APl A LPSL LI LS D
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and Hglder’s inequality.

Finally, (b) follows from

T P T P i T p
EJ‘OIA(t,v)I dt = Ej’o IE(v(),Y) " dt € C Ejo {1+l ]dt.

§ 6. The chain rule.

We consider only the case of ueV in this section. Clearly, the chain rule can also
be stated and proved with trivial modifications for the case of ueU.
In this section we assume the hypotheses and notation of Theorem 1. Coordinates of
vector valued functions are indicated by an upper index. For example, f idenotcs the i-th
coordinate of f. We introduce the following extension of Definition 2.

Definition 4: Let $eC3(R" ). An R" - valued process X(t), O<t <T, is said to satisfy

n g | |
(17 de(X() = 1 axi X)) {f' (X(®) o du(t) + g'(X(1)) dt

i=1 i
N

+ Loy, (X®) o dW, O} ,

V=1
(18)  ¥(X(0)) = ¥(X).
if there exists amap I [0,T] x V x Q2 ~ Rn such that conditions (D.i), (D.ii), (D.iv), (Dv) and
(D.i) are satisfied.
Condition (D.vi) isas follows.
(Dwvi) If veX, then I(tyv), 0<t<T, satisfies

N 3 i d .
ummww;lmwﬁmm%mmwwmm

i=1 i

N .
+ I oy(T(tv) o AW, (D},
V=]

(20)  ¥(T(0.X)) = ¥X),

RUEROUCLIC A N AT R
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in Stratonovich sense.

Remark 2:  If (x) = x, this is Definition 2.

Theorem 3: Let ge CB(Rn) and Jet X(t), 0<t<T, satisty (1) with X(0) = X, in the sense of

Definition 2. Then X(t), 0<t<T, satisfies (17) - (18).

Proof: For veZ the usual chain rule holds for X(t) (cf Ikeda-Watanabe [6]. p. 101). That

is, (Dvi) is satisfied. Then X(t) satisfies (17) - (18) in the sense of Definition 4.

Acknowledgements: The author wishes to thank W. Fleming, H. Kushner, H. Sussmann and

O. Zeitouni for their valuable comments.
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