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A ABSTRACT

'y The effects of synoptic waves on the dynamics of planetary waves are
investigated using normal mode analysis. Initialized analyses of the Navy Operational
Global Atmospheric Prediction System (NOGAPS) for 19 days between January and
:u:i' April 1986 are projected onto the normal modes of a linearized version of the model.
-g For each analysis, the different terms (adiabatic nonlinear, linear and diabatic) which

» affect the time tendency of planetary-scale modes are determined by a one-time step
) integration of the NOGAPS model. The effect of svnoptic scales on planetaryv scales is
, _‘ determined by computing the difference between the adiabatic nonlinear term
f’ computed from the NOGAPS analyses and analyses for the same period that have
J" been spectrally filtered to remove most of the svnoptic-scale waves. The energy
. tendency due to the nonlinear adiabatic term and the synoptic-scale contribution to
':': this term are also computed. It is shown that the synoptic-scale contribution to the
‘,E:" adiabatic nonlinear term and the time tendency of planetary-scale modes can be a very
v large percentage of these terms.
By eliminating momentum advections in the model and computing the adiabatic )
:-.;': nonlinear term for the filtered and unfiltered analvses, the relative importance of
b interactions through mass field interactions or momentum field interactions are
3‘ determined. 1t 1s shown that synoptic-scale interactions which affect the planetary-
& scale barotropic modes are primarily through the momentum advections, while mass
I~ and momentum interactions are possible for the baroclinic modes. The importance of
.r_ mass field interaction generally increases as the vertical scale of the wave decreases.
5 Because of the importance of svnoptic waves to the dvnamics and energetics of
. planetary waves, errors in the forecasts of planetary waves may in part be due to the
;_f synoptic-scale [orecast errors.
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I. INTRODUCTION

Atmospheric predictability studies (Lorenz, 1969) indicate that each scale of
motion has different predictability, e.g. small-scale motions are theoretically predictable
to an hour, syvnoptic scales to a few days and planetary scales to a few weeks.
However, a number of studies (Lambert and Merilees, 1978; Baumhefner and Downey,
1978; and Morse, 1983) have shown that synoptic-scale motions, rather than planetary-
scale motions, are the most accurately forecast by numerical models. Although
planetarv wave errors have been reduced in current operational models (Wallace et al.,
1983; Bettge and Baumhefner, 1984), planetary waves are still no. forecast as accurately
as cyclone scale waves. This result does not seem to be dependent on the type of
model used. Baumhefner and Downey examined a number of different models and
found the same error pattern. The error in forecasting planetary-scale waves might not
seem to be that important given that the error in the synoptic scales is smaller and that
the svnoptic scales of motion produce most of the day-to-day weather changes. The
importance of accurate planetary-scale predictions is clear when one considers medium-
to long-range forecasts (up to 10 days). Since planetary waves often steer the smaller
svnoptic disturbances, an improved planetary planetary-scale forecast would
presumably lead to an improvement on the synoptic scale.

There are at least two reasons why planetary waves are not forecast as well as
theory suggests. One reason is that the dynamics for planetary waves are poorly
understood. Planetary waves consist of a quasi-stationary component and a generally
smaller transient component. The quasi-stationary component is thought to be a
response to forcing by a combination of topography, differential heating due to land-
sea differences and possibly scale interactions. [t would seem reasonable to suspect
that errors in the quasi-stationary component might be due to inadeguacics in the
model forcing. Another source of error for planetary waves is spurious excitaticn of
transient planetary waves (Daleyv et al., 1981; Somerville, 1980; Lambert and Merilees,
1978: Roads and Somerville, 1982). These spurious waves are thought to be the result
of errors in initial data or an inadequate model domain. Such waves are a major
contributor to planetary wave error in the first 24 to 48 hours of a torecast (Daley ¢t

al., 1981). These transient waves have often been examined in terms of the normal
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modes of the linearized set of equations describing oscillations of a stratified resting
atmosphere on a spherical earth. The mode that has been most often identified as
being spuriously excited is the so-called external Rossby mode. This mode has a large
phase speed and a period of approximately 5 days. This fact has led some to refer to
this mode as the 5-day wave. Daley et al. (1981) showed that large-scale external
Rossby modes are excited when a hemispheric domain is used rather than a global
domain, and when bad or poorly analyzed tropical data are used. Daley also showed
that application of the nonlinear normal mode initialization procedure of Machenhauer
(1977) to the large-scale external Rossby modes improved the forecast in a root mean
squared sense for the cases examined. However, he properly notes that there is no
evidence to show that the Machenhauer balance condition, which seems to be
appropriate for the gravity modes, is applicable to the fast Rossby modes.

Very little is known about these Rossby modes in the atmosphere or in numerical
prediction models. The best observational evidence for the existence of these normal
modes is from the studies of Madden and Julian (1972) and Ahlquist (1982). Applving
time series analysis techniques to station pressure data, Madden and Julian were able
to identify westward propagating 5-day waves. The observed characteristics of these
waves were shown to be not inconsistent with those of a planetary-scale Rossby wave.
Ahlquist projected 1200 consecutive days of twice dailv National Meteorological
Center tropospheric analyses of velocity and geopotential onto three-dimensional,
normal mode Rossby wave structures. Through spectral analyses of these time series,
Ahlquist was able to identifv 14 planetary-scale, normal mode waves. By contrast, a
rather large amount of research (Dickenson and Williamson, 1972; Williamson, 1976;
Machenhauer, 1977, Errico, 1984) has been done to determine the nature of the
dynamic balance of the gravity modes. It is from these investigations that the
nonlinear normal mode initialization procedure was developed. The dynamic balance
of the gravity modes has been studied primarily by long-term model integrations.

A third and as yet unexamined reasor for errors in numerical predictions of
planetary waves is that these errors are due to errors in the smaller (cvclone) scales.
The dynamics of planetary waves may be such that nonlinear interactions from smaller
scales are important. If this is the case, then errors in cvclone scales would lead to
errors in the planetary scales. The planetary scale prediction errors in numerical
models cannot be fully understood or corrected until the importance of nonlinear scale
interactions are determined.

12

A a TN AT T

oy g W Ve«
-t -

~ O e L Nl N

N

o

IR

l(ff‘fff




[t is the general hypothesis of this study that nonlinear interactions with cyclone

waves are an important factor in the dynamics of planetary waves. The purpose of this
study is twofold:

1. Determine the importance of these nonlinear interactions using the normal
mode analysis technique of Errico (1984); and

2. Identifv some of the mechanisms of these nonlinear interactions.

A number of studies have examined nonlinear interactions and their importance
to the maintenance of planetary waves. One of the earliest studies to illustrate how
nonlinear interactions could maintain large-scale, quasi-permanent flow was by
Saltzman (1959). Using a highly simplified barotropic model with an idealized flow
that crudely simulated a Northern Hemisphere winter 500 mb {low pattern, Saltzman
found that there was a substantial energy transfer from the synoptic waves to the
planetarv waves. Saltzman and Fleisher (1960) used 500 mb data to show that in the
mean there was a net kinetic energy transfer from svnoptic scales to planetary scales.
A more recent study by Kao and Lee (1977) showed that the primary contribution of
nonlinear interactions to the energy transfer is essentially through the interactions of
the slowly moving waves. the stationary long waves and zonal mean tlow. Saltzman
(1970) gives a review of the major studies that have used Fourier analysis to identify
nonlinear interactions. Gall et al. (1979) used a simplified general circulation model to
demonstrate that the initial development of the ultralong waves from a zonal mean
basic state can be ferced by the interaction between the cvclone waves and the basic
flow. Gall argued that the ultralong waves were forced mainly by planetary scale
variations in the meridional heat flux convergence of the higher wavenumber modes,
which produces a positive correlation between planetary scale upward motion and
temperature. The principal kinetic energy source for the planetary waves was the
conversion of wave available potential energy to wave Kkinetic energy at a given
wavenumber. A more recent studv bv Young and Villere (1983) confirmed in part
Gall’s results, but also showed that direct transfer of kinetic energy from intermediate
scales to planetarv scale was of equal importance. In both of these studies. the
nonlinear transfer of potential energy was not computed directlv. This transfer was
implied by showing that the conversion of eddy available potential energy to eddv
kinetic energy was much greater when nonlinear interactions were allowed.

The analysis of the scale interactions in this study are done using Errico’s normal

mode analysis procedure. This analysis procedure requires the use of a numerical
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model and its associated normal modes. The model that will be used in this study is a
version of the Navy Operational Global Atmospheric Prediction System (NOGAPS).
The normal modes used in the analysis procedure are derived from this model. This
analysis method is used because it has a number of advantages over previously used
methods such as Fourier or spherical harmonics analysis. The most important
advantage of using normal mode analysis is that the total effect of other scales
(vertical, meridional and zoral) on a given mode can be determined. Another
important advantage is that the nature of wave motions can be identified physically
and high-frequency noise can be separated consistently from low-frequency
meteorologically significant waves in both mass and velocity fields. Normal mode
analysis also allows one to separate the data into different vertical, zonal and
meridional scales while maintaining the physical nature of the data. The other
techniques that were mentioned above do not have this advantage. While it is true
that a combination of the Fourier and spherical harmonic could be used to decompose
the data into different vertical, meridional and zonal scales, this representation would
be artificial and it has the disadvantage of having no explicit relationship between
spectral modes of mass and velocity. Finally, since divergence is significant in the
motion of ultralong waves, it may be more appropriate to represent data as solutions
of linearized primitive equations rather than as solutions of the non-divergent vorticity
equation (i.e. spherical harmonics).

There have only been a few studies in recent years (Kasahara and Puri, 1981; Ko,
1985) that have used normal mode analysis to examine the spectral distribution of
atmospheric energy. These studies were confined to examining just the spectral
distribution of atmospheric energy and not the energy conversions between modes of
different vertical and horizontal scales . There has been even less work in determining
the energy exchange between the different vertical and horizontal modes. The little
work that has been done in this area has focused on zonal mean-eddy kinetic energy
exchange (Tanaka et al, 1986). Tanaka used normal mode analysis, to examine 25
days of dailv First GARP (Global Atmospherics Research Program) Global
Experiment (FGGE) IIIb analyses from the Goddard Laboratory for Atmospheres
(GLA) and the Geophysical Fluid Dynamics Laboratory (GFDL). Tanaka examined
the distribution of kinetic energv as well as the Kinetic energy interactions between the
barotropic mode and baroclinic modes of different zonal wavenumbers. The focus of

his study was on zonal mean-eddy kinetic energv exchange. This study is unique in
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that the focus of the normal mode analysis is on the interaction between synoptic
scales and planetary scales and that these interactions are examined in term of the total .
energy exchange (potential and kinetic) between scales. s

A description of the NOGAPS model used in this study is given in Chapter II.
The normal modes of this model are derived in Chapter III. To assist in the ;
interpretation of results from the NOGAPS model, a nonlinear scale analysis and the
results from a simple analytic model are presented in Chapter IV. The results of the
experiments conducted to determine the importance and mechanisms of nonlinear
interactions are given in Chapter V. Chapter VI contains a brief summary and some
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II. THE MODEL :"

The model used in this study to investigate the dvnamics of planetary scale waves g )

is version 2.2 of the Navy Operational Global Atmospheric Prediction System ;{‘.
(NOGAPS). This model is a modified version of the general circulation model 2.
developed at the University of California at Los Angeles (Arakawa and Lamb, 1977). v
It is a global finite difference model and uses the primitive equations in sigma :
coordinates. The resolution of the mass variables (surface pressure and temperature) is e
h.¢'

2.4° latitude by 3.0° longitude with nine levels from S0 mb to the surface. The model
uses scheme C staggering (Arakawa and Lamb. 1977) in the horizontal, and finite ‘-

<
differencing in the vertical according to Arakawa and Suarez (1983). The horizontal ';:‘
finite differencing is energy conserving and it conserves enstrophy when the motion is :E
nondivergent. The vertical differencing conserves the global mass integral of the ;V
potential temperature under adiabatic processes and it employs a local form of the ) 4
hvdrostatic equation. The time differencing is a combination of five leapfrog steps for ;:_
each Matsuno backward step, while the heating is computed during a single forward & )
step that precedes the Matsuno step. However, in this study only the forward time
step of the Matsuno step is used in the analysis procedure. :f;
Phyvsical processes include radiation, moist and dry convective adjustment and a :':f
cumulus parameterization technique (Arakawa and Schubert. 1974), which interacts "'Z
with a bulk parameter boundary laver (Randall, 1976; Lord, 1978). ;
The objective analyses of wind and geopotential are done with a three- _,,
dimensional successive corrections method that is a form of the scheme used by Barnes :i-
(1964). The analyses of wind and mass are done independently. Since the NOGAPS "
initialization method is fullv described bv Barker (1982). oniv a brief descripuon of this 2_5
method will be given here. The results of the independent wind and mass analvses are o4
combined via a calculus of variation method in which the balance equation 1s used as a Eﬁ
constraint. The functional ::E
]
Fo, ) = / (6 — @) +B(V -V) +2)\V - fVy (2.1) E’
A >
+2J(u,v) — V39| dA 3
®
&

‘v.;n

N P e e A gy P T TR M T



is minimized and the associated Euler-Lagrange equations are solved over the entire

earth. Here ¢ is geopotential, Wy is the stream function, A is the horizontal area over
which the integral is applied, A is a Lagrange multiplier and the symbol ~ denotes
analyzed values. The quantity B can be made a function of latitude if desired to force
more adjustment toward either one of the analvsis fields in certain areas. Thus, P
would have relatively greater weight in low latitudes where the wind is a more reliable
parameter for analysis and prediction than the geopotential field. The above procedure
minimizes the change to the analyzed geopotential and non-divergent wind while
constraining these variables toward the balance condition. The problem of generating
an appropriate divergence to go with the nondivergent winds produced by this
balancing procedure is solved by using the forecast first-guess divergence. The problem
of vertically inconsistent corrections is minimized by vertically coupling the variables.
The variables are coupled before they are initialized by projecting them onto empirical
orthogonal functions. The smoothness of the four empirical orthogonal functions used
insures that the inconsistent vertical variations of wind or geopotential that couid be
generated by the initialization procedure are eliminated.

The initialization procedure used in this version of the NOGAPS model initializes
objectively analyzed correction fields for V and ¢ rather than the updated fields. This
procedure has the advantage of not affecting areas without new data. The resulting
initialized corrections are interpolated to the model sigma coordinates surfaces and
added to the first-guess forecast. This method minimizes vertical interpolation error
and preserves the model generated first guess divergence.
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III. NORMAL MODES

Since the data used in this study are analyzed using the normal modes of tie
linearized equations from the NOGAPS model, it is important to have a fundamental
understanding of these modes. This understanding may be gained bv examining the
derivation and structure of the modes. The normal modes for an earlier (lower
resolution) version of the NOGAPS model were denived by Barker (1982). He followed
the method of Temperton (1977) and Temperton and Williamson (1981). Three
different sets of modes are derived for the version of the NOGAPS model used in this
study. They are obtained below by separation of vanables. Except where noted. their
denvation closely follows that of Barker (1982). Each set of modes is examined tor
consistency with the model as well as for simlarities to modes derived bv other
authors. [t will be shown that modes derived with a model top at U mb are best suited
for use in this studv.

A. VERTICAL MODES
The lineanzed governing equations used by Temperton and Williamson (1981)

are
av — -
—aT+kaV+V(RT1np.+¢)=Q, (3.1
oT 3.2
7§-+TCV-V7==QP (3.}
dlnp, n'r(vv) =Qr (3.3)
ot
¢=¢,+GT. (3.9)

Here the vertical discretization is taken into account by writing the equation in vector
form. Thus, V is the vector form of the wind, T is the perturbation temperature, T is
the rest-state temperature, p, is surface pressure, ¢ is the perturbation geopotential.
V*V s divergence and ¢s 1s terrain geopotential. t and G are lineanzed matrix
operators and nt 1s a vector. Q, Qt and Qp are the nonlinear components of their
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respective equations. All of the above operators and vectors are defined in Temperton
and Williamson (1981). Their exact form is not important. However, it is important
to note that the entries that make up these matrices are constant and that ¢ is defined
as p. ps-

Barker approximated (3.1) - (3.4) using the ¢ system of the NOGAPS model as

%‘t’_+kav+V(m1nn+¢)=Q. (3.5)
ot
alnw-‘y—l’l”(V-V):Q, (3.7)
ot
¢=¢,+GT (3.8)
where
o=P2"P (3.9)
w
and
x*=p, —p. (3.10)

Py s the pressure at the top of the model atmosphere and @ is specific voiume. Tt and
G are once again matrix operators that are similar to those in (3.2)-(3.4). Thev are
consistent with the Arakawa and Suarez (1983} vertical finite difference scheme used in
the NOGAPS model and are given in Appendix A. A different treatment of (3.4 wiil
be discussed later.

Following Temperton and Willlamson (1981). Barker (1982) defined a vector h
whose hornizontal denvatve represents the pressure gradient force,

gh=¢+omalnnr (3.11)

This definition allows the determunation of a single equation for mass bv operating on

(3.6) with G, muluplving (3.7) bvg7a. and then adding the resulung two equations to

obtain
Jh
g.a_t_+c(v.v) =Q, (3.12)
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where

C = Gr + oxall” (3.13)
and

Q. = GQr + Q, RT. (3.14)

Although equation set (3.12) is vertically coupled, it can be transformed by
separation of variables into a set that is not coupled. This is done through the
diagonalization of the matrix C by:

E”'CE = ¢D, (3.135)
where the matrix E contains the eigenvectors of the m~'rix C as columns and the

diagonal matrix D contains the eigenvalues of C. Definung the verucal transforms of h
and V as

V=E'V

{3.10
h=E'h (3.17)
produces the uncoupled equation set
v - .«
oh ~
95, DV V) =Qu, (3.19)

where Q.. and Q), are the transforms of Q,, and Qy, respectively. These equauons are
uncoupled except through the noniinear terms on the right sides of the equations. The
independent vanables in (3.18) and (3.19) are the coeflicients of the verucal modes (the
eigenvectors contained i E). There are as manv moaes as there are ievels in the
model.

The verucal modes derived using the linearized NOGAPS equations given by
(3.5)-(3.8) for T equal to (218, 218, 218, 228, 241, 234, 267, 270, 2831°K are shown 1
Fig. 3.1. For comparison. the verucal modes derived by Temperton and Willamson
(1981) for T equal to (229, 209, 218, 237, 250, 268, 277, 283. 283K are shown 1n Fig.
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Figure 3.1. Vertical modes for the NOGAPS model with nine levels, T equal to (218,
218, 218, 228, 241, 254, 267, 276, 283)°K and a top at 50 mb.
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Table 1. Equivalent depths (m) of the vertical modes of the NOGAPS and
Temperton and Williamson (T & W) models.

Vertical NOGAPS T &W

mode index
1l ,829. 4 10,153.1
2 972. 46 4,701.0
3 186. 67 851. 40
4 77.86 205. 05
5 30.41 64. 90
6 13. 44 20. 06
7 5.629 7.275
8 1.399 2.366
9 . 359 . 498

I
J

3.2. The eigenvalues (equivalent depths) of the vertical modes for this lineanzation cf
the NOGAPS model and those derived by Temperton and Willlamson (1981) are given
in Table 1. These NOGAPS modes are quahtativelv very similar to the modes derived
by Temperton and Willilamson (1981). The general structure 1except the sign of the
Jth-6th modes are opposite from Temperton and Williamson, but this an arbitrary
choice) and the levels at which the crossings occur are similar. However, there are
some noticeable differences between the two sets of modes, with the most significant
differences occuring in the gravest modes. The NOGAPS barotropic mode {mode one)
lacks the charactenistic peak at the top of the atmosphere and in fact decreases ncar
the top. The first two baroclinic NOGAPS modes have zero crossings at levels lower
than for the modes derived bv Temperton and Wilhamson (1981). Most of these
differences can be attributed to the differences between the NOGAPS mode! and the
model used by Temperton and Williamson (1981). One difference between models is
the location of the model levels. One of the major differences. in terms of vertcal
structure, is the location of the model top. The model top in the NOGAPS model is at
50 mb while the top in the model used by Temperton and Wilhamson (1981) 1s at 0
mb. Barker (1982) also found that the equivalent depths are sensiuve to the locaticn
of the model top. Changing the model top from 30 mb to U mb increased the
equivalent depth of the external mode from 7874 m to 9660 m. Barker found that a
consequence of specifving the model top at 50 mb is that all the equivalent depths are
smaller than if the top was at U mb.

Although most of the difference between the two sets of modes can be attributed

to the difference in the model tops, part of this diflerence is due to an mnconsistent
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This linearization of (3.20) has an etfect on the matrix C {rom which the vertical modes

are dertved. Consider the momentum equation

v

E—+kaV+o1raVln1r+V¢=Q,. (3.23)
Inserting (3.20) in (3.23)

oV

—ai—+kaV+o";raVln1r+V<b.4—VGT=Q,. (3.2

The matrix G is a function of m. which 15 a tuncuon of the horizontal coordinates.
Expanding VGT one obtains

A
W+fkxV+mraVln1r+V¢,+(VG)T+GVT=Q'_ (3.25)
Following the suggestion of Rosmond (1986) VG can be written with the chain rule as
dG
wEr—Vlnw. (3.20)

Using (3.26), (3.25) can be linearized as

av’ , - _da— . '
a"_‘t +fk><V +(UW&+7|’ET)VID7F+V¢, + GVT :Qv. (3:.’.)
24
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linearization of the hvdrostatic equation by Barker. The dJiscretuzed. unlineanzed Z::
hvdrostatic equation for the NOGAPS model is _-;
¢ =¢,+GT, (3.20) ’
where the matrix operator G is simular to the one given in Appendix A, except that the .
full values and not the mean state values are used in the entries of G. The G matrix :
defined by Temperton and Williamson (1981) 1s constant. However, the G matrix ﬁ'.'-'
defined above 1s not constant. The choice of a model top at a nonzero pressure level
makes G a funcuon of surface pressure (% 1n this case), which was not taken into ,
account by Barker (1982) in his lineanization of the hvdrostatic equation 3.5}
A second set of NOGAPS vertical modes that inciudes the etfect of 4 vanable G e
matnx will now be dertved. A more consistent linearization of (3.20) vields ;"
¢ =9, +GT +G'T, (3.21) W
where =
G =G-G. 1,
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The denvative of G with respect to T can be determuned anaivucally since G can be
written as a function of ®. The linearization of the remamning governing equations is

unchanged. To obtain a single equation for mass one must define h as

gh = (m—%%‘%f) In7+ ¢, + GT'.

(3.28)
Using the above definition of h, the matnix C would be defined as
— dG —
= oTa T—T HT. 1M
C Gr+(a7ra+7r(ﬁr_ ) (3.29)

The matnix C defined in (3.29) is cleariv different from the C detined in «3.13). If
G were not a funcuon of surtace pressure (the model top was at zero), then (3.28) and
(3.29) would reduce to (3.11) and (3.13) respecuvelv. Since the matrix C in (3.29) 1s
different from that defined in (3.13), the eigenvectors wiil be different. IHowever, the
overall simularities between the vertical eigenvectors and eigenvalues of the NOGAPS
model (as dertved bv Barker. 1982) and those of the model used bv Temperton and

Williamson (1981) indicate that the etfect of the additional term

dG =

el .

i dr 12.30)
in (3.29) is small. The vertical modes obtained from the matrix C 1n (3.29) are shown
in Fig. 3.3 and the equivalent depths are given in Table 2. The term (3.30) has been
approxumated by a centered finite difference as

_ G(T + A7) + G(T — AF) \ =

7( — )T <

2A7 (3.31

where An equals | mb. The major difference between these modes and those denved

(O¥]

previousiv occurs in the barotropic mode. The characteristic peak that is absent in
mode one in Fig. 3.1 1s now present. .Also, the equivalent depth associated with this
mode has increased from 7829 m to 8101 m. The more consistent linearization of the
hydrostatic equation leads to a set of vertical modes that are miore simular to those
derived by Temperton and Williamson (1981).

Although the vertical modes derived with a variable G matrix are more simlar
(than modes derived without this effect) to modes derived by other authors. thev do
have some disadvantages. They require the computation and storage of an additional
term. [n addition, the placement of a model top at 0 mb is clearly a more reaiistic
condition than having the model top at a finite pressure level. The closer the basic

state is to the real atmosphere, the better the linear approximation becomes. Thus, it
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Table 2. Equivalent depths (m) of the vertical modes of the NOGAPS model that
includes the effect of a variable G matrix.

Vertical Equivalent depth
mode index
1 8,101.8
2 914. 33
3 198. 06
4 73.78
5 31.68
6 12.99
7 5.749
8 1.358
9 . 368

would seem that better results would be obtained at less computational and storage
expense if the vertical modes were derived with a model top at 0 mb.

Consequently, the modes used in this study are derived from a basic state in
which the top of the atmosphere is assumed to be at 0 mb. The equivalent depths for
these modes are given in Table 3 and their structure is given in Fig. 3.4. The modes
derived with the model top at 0 mb have equivalent depths that are much larger than
the NOGAPS modes denved using Barker's linearization or those derived with a
variable G matrix. The O mb top modes have zero crossing at higher levels than the
two other sets of NOGAPS modes and their structure is more similar to the modes

derived by Temperton and Willamson.

B. HORIZONTAL MODES

The details of the determination of the horizontal modes of the NOGAPS model
have been given bv Barker (1982). Only the general method for determuning the modes
will be given here.

The solutions of the uncoupled equation set (3.18 - 3.19 ) for each equivalent
depth Dy gives the horizontal modes of the model. Equations (3.18) and (3.19) can be

written in finite ditference form as

—a.0 9(5,\11).-... i

btipy; — f; (W), + T AN Q. N (3.32)
— ¢ -

_ (fom)is_s  g(6eh)i ;41 333)

6,v",+§ + ps + Y —Q"-.,—'; (3.33
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Table 3. Equivalent depths (m) of the vertical modes of the NOGAPS model with o
model top at O mb. v
Vertical Equivalent depth '
mode_index .
1 9,687.3 !
2 2,575.5 )
3 296. 85 .
4 156.01 L
5 52.99 b
3 21.85% z
7 8. 960 "
8 2.253 N
9 .520 N
+q
§
vy
—_ k7 P ul. . — V)
6ehi; + D[(éav)"’ + (5:8)s. = Ch,, (3.39) "

alAb p;al

Clac™y

A7

"b‘ﬁ'—‘r. o

A vertical mode index (£) is assumed for D and each variable. The finite difference
operators are

(53T)k = Tk+§ - Tk-} (3.35)

LR

— Tk+k +Tk__L

(M), = =23 c
e 2 (3.36) o

.r:'

o

y
.y ——rz

= >

(T)k - (T)k' (3 37) ::*
The other variables are defined as follows: a is the earth’s radius, AA is the longitudinal -4
grid interval, AO is the latitudinal grid interval, u and v are the east and north :;f-
components of the wind, respectively, i and j are the longitudinal and lautudinal b
o

indexes, respectively and p is cos 0. -
Special definitions of the Coriolis term are used to keep the matrix operator of ::';
(3.32)-(3.3d) svmmetric. A svmmetric matrix insures that the corresponding ::','.
eigenvectors are orthogonal, which allows determunation of the inverse of the !‘_
eigenvector matrix by simply taking the transpose. To achieve symmetry, the Coriolis .
. . N
term in (3.32) 1s replaced by ~a
_ ——A + —A :\:.

f: p:-}(v)-+§.:-§+f.v p1+§(v)-‘+§.1+§ s‘x
2p, (3.38) -
ol
oy
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and the Coriolis term in (3.33) is replaced by

-‘: - =

f-' f:’ (u -‘..i —1( $,5=1

b 2 (3.39) . y
where

f;“:

3 1
shiert 3k
cos(£2)

fr = %f,+§.+§f..§. -]
i cos(42) (3.41) ’

These definitions correspond to a potential enstrophy conserving finite difference

K scheme as derived by Temperton and Williamson (1979).

. A dynamical state vector is defined as

: u(ly, 65, 8)

; (i 65, €) = T(As, 65, €) (3.
h(, 65, 8)

e o e

(]
1a
to

.

(RS

where y represents grid point values of the vertical mode coetficients. These values can

be expanded into Fourier modes by :
I-1 k-
(X, 0;,8) = Y A(m,0,, 0™
m=0 (3.43) .;
X The inverse of (3.43) is R
A(m,0,,8) = I Z»,A 6,,0)e™>:, N
i=1 (3 - ) L
)
Assuming a wave solution of the form in (3.43) allows (3.32) - (3.34) to be written as :Z
Ou, , 1 r(m) ) ) gik'h; = N
o T T he St e T =0 (g %
3 ij_f ( ) . i - ‘:‘
ot [f ' f,—x J-lfJ (m).‘-;&—jh h:—lszu (3.46) f:
| 8h, D g
- + —Z[tk'a; + L :
ap
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J'(m) = cos(AT") - ssm(%*).

After applying the symmetric operator

J'(m) 0 0
S,=t 0 -1 0

0 o (¢/Dd)}
to ¥ such that

¥ =84
allows Eqgs. (3.45) - (3.47) to be written in matrix form as:

:Qa” + Ly = —iQH'
BRFTS = —iQH". (3.53)
The matnix Q is diagonal and positive definite with entries related to the cos 9 Lisa
matrix depending on the actual finite differences used in the model, and H is a matrix
representing the latitudinal variation of the corresponding nonlinear terms transformed
in the same way as u, v and h are to give y'

To complete the computation of the horizontal modes, the matrix equation (3.53)

1s rescaled using

7=Q'Y, H=Qil, L=q tLq }. (3.54)
If 'Y contains the eigenvectors (normal modes) of L, then (3.53) can be written using
(3.54) as

) . "

_1§[Y- "Y1+ Y 'LY(Y ™ '4) = Y 'H.
The identity

A=Y"'LY. (3.56)
where A 1s a diagonal matrix containing the eigenvalues of L, makes it possible to

rewrite (3.55) as
aC
E = —1AC + r,

where

AR

T R N N RO (U



C=Y"4. (3.58)
The nonlinear term is now r and the mode frequencies are A.

The components of C, denoted here by C(m,n,2), are referred to as the coefficient
of the normal mode. Equation (3.57) can be written in component from as

aC(m,n,t) .
— - —iwC(m,n,8) + r(m,n,t). (3.59)

The elements of C are functions of the vertical, zonal and meridional mode numbers ¢,
m and n, respectively. The mode number n is a measure of the number of zeros
between the poles. For each m, £, and n there are three equations for C: One for an
eastward propagating gravity wave (EG), one for a westward propagating gravity
(WG); wave and one for a westward propagating Rossby wave (R). The symmetnic
modes (u and h are symmetric about the equator and v is antisvmmetric) consist of the
odd indexed (n=1,3,5..) Rossby modes and even indexed gravity modes. The
antisvmmetric modes (u and h antisvmmetric about the equator and v is symmetric)
consist of the even indexed Rossby modes and the odd indexed gravity modes. These
coefficients are the amplitudes of the various modes required to represent a parucular
atmospheric state. Corresponding to each horizonal mode is a natural frequency (®)
that 1s determined as an eigenvalue of the system. The frequencies of various modes
corresponding to those given by Dickenson and Williamson (1972), Temperton and
Williamson (1981) and Barker (1982) are given in Tables 4 and 5. The frequencies of
all the modes are very similar, with most of small differences being due to the different
honzontal resolutions used in each model. The structures for a few selected mbdes are
given in Figs. 3.5 and 3.6. The structures of these modes are also very simular to those
derived by other authors (Temperton and Williamson, 1981. Kasahara,1976; Dickenson
and Wilhamson. 1972). Any results obtained here using the modes of the NOGAPS

model should be simular to resuits obtained using modes of other models.

C. EXPANSION OF DATA INTO NORMAL MODES

The amplitude of a given mode is determuned by expanding grid point values into
normal modes. The first step in the expansion process is to remove the mean state.
then combine the thermodvnamuc vanables into one vanable, the equivalent
geopotential (gh). The data are expanded into vertical modes using (3.10) and (3.17),
then into Fourier modes using (3.44) and lasty scaled according to (3.51) The
symmetric and anusvmmetric components are found bv averaging or ditlerencing the
values from the two hemuspheres. Finallv, each scaled Fourier mode of each vertcal

mode is expanded into meridional modes by (3.58).
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Table 4 _Frequencies (s’!) of the Rossby modes for the models used by Temperton
and Williamson (1981) (T&W), Dickenson and Williamson (1972) (D&W), for the
NOGAPS model with model top at 50 mb (B) and for the NOGAPS model with
a ] model top at 0 mb (M). D=10 km for (T&W) and (D&W), D=8,101 m for (B)
A and D=9,682 m for (M). Horizontal grid intervals are specified in degrees.
n T&W, 10 D&W, 2.5 B2.4x3 M2.4x 3
0 6.11x10"°  6.14x10>  5.93x10"° 6. 14x10"°>
. 1 1.44x1075  1.45x1075  1.32x107°  1.43x107°
' 2 8.46x10"% 8.73x10°%  8.16x10°% 8.68x107°
3 5.72x10"%  5.87x10"% 5.61x10"® 5.86%107°
. 4 3.98x10"% 4.17x10"%  4.05x10°®  4.18x107°
s 2.87x10"%  3.08x10"® 3.03x10"%  3.11x107°
6 2.14x10"6  2.36x10"%  2.34x10"% 2.39x10°°
7 1.63x10"® 1.86x10"% 1.86x10"% 1.89x10°°
8 1.27x10"®  1.49x10°®% 1.51x10"% 1.52x10°°
9 1.01x10"®  1.22x10°%  1.24x10°% 1.25x107°
- 10 8.10x10"7  1.02x10"®  1.04x10"®  1.05x10°°
) 11 6.62x10"7 8.58x10"7  8.83x10"7  8.89x107’
. 12 5.52x1077  7.30x10°7  7.58x10~7  7.62x10"
: 13 4.70x1077  6.27x1077  6.57x107  6.60x1077
y 14 4.11x10"7  5.43x10"7  5.74x10"7  5.77x1077
' 15 3.75x10"7  4.73x10°7  5.06x10"7 5.08x1077
: 16 3.13x1077  4.14x10"7  4.49x10"7  4.50x10""

|
1

]

For each £ and zonal wavenumber m .= 0, there are 111 modes in the NOGAPS
model for the svmmetrnic case and 112 for the anusvmmetric case. These modes mav
be divided 1nto three sets (sets of 37 each for the svmmetric case, two sets of 37 and
2 one set of 3§ for the anuisvmmetric case). The modes associated with the 37 largest
negative eigenvalues are usually referred to as westward-gravitational (WG) modes.
The 37 modes whose eigenvalues are positive are retered to as eastward-gravitational
(EG) modes. The remaining modes, all with negative or zero values are referred to as

Rossbyv or rotational (R). In a lineanzed model, these modes describe westward- and

N '\:,.'-,"}'-‘,"};,“',-;..-),)"',‘“.-")‘ A N I o N N N N I R T R AN



Table 5. As in Table 4, except for eastward-gravitational modes.

|
[
)
|
!

n T&W, 10 D&W, 2.5 B 2.4 x 3 M 2.4 x3

0 -5.44x10"5 -5.38x10"° -4.71x10"5 -5.29x10°°

1 -1.31x10"% -1.30x10"% -1.18x10"% -1.28x10°%

2 -1.87x10"% -1.86x10"% -1.69x10"% -1.84x10~%

3 -2.35x10"% -2.36x10"% -2.13x10"% -2.33x10%

4 -2.79x10"% -2.83x10"% -2.55x10"% -2.80x107%

5 -3.22x10"% -3.20x10"% -2.97x10"% -3.27x10"%

6 =-3.63x10"% -3.75x10°% -3.38x10"% -3.73x107¢

7 -4.01x10"% -4.21x10"% -3.80x10"% -4.20x10"¢

8 -4.36x10"% -3.66x10"% -4.22x10"% -1.s51x10"%

9 -4.69x10"% -5.10x10"% -4.63x10"% -4.66x10"¢

10 -4.98x10"% .-5.54x10"% -5.05x10"% -5.13x10°%

11 -5.23x10"% -5.97x10"% -5.47x10"% -5.60x107%

12 -5.44x10"% -6.38x10"% -5.88x10"% -6.06x10°%

13 -5.61x10"% -6.79x10"% -6.29x10"% -6.52x10"%

14 -5.72x10"% -7.19x10"% -6.70x10"% -6.98x10°¢

15 -5.94x10"% -7.57x10"% -7.11x10"% -7.44x10-%

16 -5.94x10"% -7.94x10"% -7.51x10"% -7.89x10"%
eastward-propagating gravitv waves, and westward-propagaung Rossby waves,

respectivelv.

and muxed Rossbv-gravity waves are R modes.

symmetric ifm-

model.

In the real atmosphere or in nonlinear models.
lineanized equations are no longer independent solutions and their behavior 15 not

necessarilv wave-like.

() modes in the NOGAPS model.
the tvpes R, WG and EG. All of the R modes for m=0 are stationary 1n the linearized

particular dvnamuical structure.

'''''''''

However,

34
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each mode mav

the normal modes tron: the

be considered as descnibing a

The behavior of these modes 15 altered by the inclusion

Consistent with the above categorization. Kelvin waves are EG modes
For each ¢,

The modes mayv be divided among

there are 115 zonaliv
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of those terms/physical processes that are absent in the linearized models: nonlinear
advective terms and diabatic terms (which include friction). These terms couple the
{ behavior of the modes in a nonlinear model. The eigenvalue associated with each
mode in a nonlinear model is not the only frequency the mode may have, but it may be
considered as the mode’s natural or resonant frequency. Whether a mode with that

y ' frequency is observed depends on the strength of the nonlinear and diabatic forcing.
’ For the modes of equivalent depth DZ, the structures of the modes have been
normalized so that the sum of the kinetic plus available potential energies per unit
mass of the corresponding fields is given by

1

Ee= 5";‘ G (3.60)

, where C 15 the amplitude of the mode designated by the index n and the asterisk

ISR el

denotes a complex conjugate. The sum is over all modes of a given equivalen: depth

wta's ¥

Djp (denoted by the set Sp). For each value of £, each mode contributes independently
to Ep because the modes are mutually orthogonal for each L.

The vertical modes of the NOGAPS model are not orthogonal. Therefore, it is
not true that

®
E = E
\ Z ¢ (3.61)

=1 ’
is the total kinetic plus available potential energy of all the modes. However, E is

positive definite and increases in value as the Ep increase. Although its is not the

precise energy, it does have utility.

D. NORMAL MODE ANALYSIS
In the nonlinear, diabatic, discrete-time NOGAPS model the prognostic equation

k of a coefficient may be written as

AC, :
= —wC, + N,
3 At " »+Q (3.62)
Y where A C, At is the discrete time tendency of a parucular vertical, zonal. mendional

X EG. WG, or R maode, -’i(»Cn represents the linear terms in the model, i=v<1 , Np
represents the adiabatic nonlinear terms, and Q,, 1s a sum of diabatic terms. The focus
of this study is on the prognostic equation for the R modes and the nonlinear
interactions which may occur through the adiabatic nonlinear term.

The procedure for determining the different terms in (3.062) for the R modes 1s

relativity simple. The linear term for a particular mode n is determuned by multipling
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the coefficient of a mode by its natural frequency. The coeflicient for a mode is Y

determined from initialized NOGAPS analyses using the procedure described in section :':
C of this chapter. The discrete time tendency is determined from a one-time step :.
integration of the NOGAPS model. First the coefficients for the modes are determined E
at the initial time (t). Then the model is integrated over one time step (At) and the I"_
coeflictents at t + At are determuned. The discrete time tendency is then given by }’,
Calt + At) = Ca (2) Z
At (3.63) B,

where At is equal to four minutes. The determination of the time tendency was found ,
not to be sensitive to the time step used. In addiuon, for the Rossby modes, one f-'.:

would not expect AC/At to vary greatly from one ume step to another. This in fact ‘
has been demonstrated bv Errico (1984). lHowever, for the gravitational modes, .'
AC/At may vary largelv in the mnitial stages of a model integration. Tlus vanation of 32'.
AC/At for the gravitauon mode will depend on the initialization method used. For the ':E
Rossby modes, the procedure for determining the ume tendency should be adequate for :.
the purposes of this study. !
The nonlinear adiabatic term 1s determined bv subtracuing the linear term from :*\f-

the discrete time tendencv that has been determuned {rom an adiabatic one-time step S_
integrauon. Errico (1981) was able to derive explicit expressions for the N\s of a Y

simple. nonlinear, f-plane, pnimutive equation, two laver model. For this simple model, 3»\

the Ns can be wrntten in terms of the sums of quadrauc functions of the modal ::',}
amplitudes. These sums represent interactions between rotational (geostrophic), :.

rotational and gravitational (ageostrophic) and gravitational modes of different EA
wavenumbers. The complex NOGAPS model does not lend itself to such a simpie :."_
decomposiuon. Thus the nonlinear adiabatic term is determuned numer'cally using the ::E:
NOGAPS model and the procedure described above. :\
Using a numerical procedure, Errico (1984) was able to decompose the adiabatic .
nonlinear terms of the modal equations >f a gobal pnmutive equauon spectral model ‘
into three different groups: N (Ri. N (G) and N, (R*G). The first depends oniv on
the rotauional mode coeflicients, the second oniv on the gravitationul mode coeflicients,
and the last onlv on tic sums of products of each tyvpe of mode with the other. .
Because of the highly divergent nature of the gravational modes. N (R*G). may be ;"_i
likened to interactions between the divergent component of the mouon and the ‘j"_:_
rotational component. For a simple f-plane model, N\ (¥'*G) would represent terms ;:E:.
such as the advection of momentum by the divergent wind. b
3
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The adiabatic nonlinear terms for the modal equations of the NOGAPS model
are not decomposed into ;\'n(R), f\'n(G), and .\'n(R”‘G). However, Errico (198.1) has
shown for the long time solutions to the NCAR Community Climate Model, N (R) is
an order of magnitude larger than Nn(R*‘G) and .\'n(G) for all but the smallest vertical
scale rotational modes (£=8,9). For the smallest vertical scale R modes ,\'n«\R*G) ~
N, (R). For rotational modes, one would expect that if nonlinear interactions occur
through the adiabatic nonlinear term that they would to a first order approximation, be
due to Interactions between rotational modes (except for the smallest scale vertical
modes 1.e. £=8.9).

The diabatic term is determined by subtracting the discrete time tendency
determined from the adiabatic one-time step integration from the discrete time
tendency determined from a one-time step integration which included diabatic
parameterizations (e.g. cumulus, sensible heating parameterizations etc).

In addition to allowing the examination of possible nonlinear interactions
through the adiabatic nonlinear term, (3.62) can be used to gain insight into the
general dynamical cature of a given mode. This insight may be gained by comparing
the relative magnitudes of the different terms. For example, it is possible to determine
if a mode 1s balanced, i.e., the time tendency of the mode is small compared to the
other terms. If a mode i1s not balanced, it may be possible to ascertain which terms are

most important in determining the time tendency of a given mode.
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IV. A SCALE ANALYSIS AND A SIMPLE ANALYTIC MODEL

To interpret the results from the complex NOGAPS model, one must first have a
good understanding of the linear and nonlinear dynamics of planetarv scale modes. To
highlight the difference between the results presented in the next chapter and those
predicted by linear theorv, a linear and nonlinear scale analysis of the shailow water
equations is presented. A simpler analvtic model will also be developed in this section.
This simpie modei will be used to show what terms are represented by the adiabatic
nonlinear term and how synoptic waves may affect planetary waves.

A.  SCALE ANALYSIS

Some important dyvnamical features of planetary scale Rossby modes can be
illustrated by a simple scale analysis of the shallow water equations with a variable
Coriolis parameter. The shallow water equations are adequate for this purpose
because the primitive equations can be represented through the normal mode as a set
of shallow water equations for each equivalent depth (assuming V is not a function of
the vertical coordinate). The shallow water equations to be scale analyvzed are

%’-+V-VV+V¢+kaV=O

and

do —
LT 4+V . Vo+oV -V +¢V.V,
ot T o+ ¢ 4.2)

The nonlinear terms have been retained to show how nonlinear interactions mav have
a significant affect on planetary scale motions. In a strictly shallow water context. ¢
would be considered the mean height of the tluid and would be fixed. In a normal
mode context, ¢ is the equivalent depth and is different for each vertical mode
considered. Note that ¢ is the departure of the geopotential from ®.

Two length scales are chosen to demonstrate how synoptic scale motions (Ly)
affect planetarv scale Rossby motions (Ll). In addition, two different time scales, an
advective scale (T=L.V) and one appropnate for a free planetary scale Rossby wave,
will be used. The latter time scale is determuned by Ly, C, where C = (36, £2 is the
phase speed of the fastest Rossby mode. Using two length scales and the time scale

associated with this fast Rossby mode makes the scale analysis presented in this section
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different from those of other authors (Burger, 1958; Haltiner and Williams, 1980) who

used an advective time scale and a single planetary length scale. The scales used in the
following analyses are:

f=10"%s""', L,=10'm, ,L,=10°m, V= 10ms™! (4.3)

1. Single length scale analysis
Using the planetary length scale given above and assuming an advective time

scale, the equation of motion (4.1), with the exception of the pressure gradient force, is
scaled as

ﬂ-+-V-VV-4~V¢;S-+—}'1{><V=0
at (4.4
2 2
v: vV - s %
L, L, L,
or after muluplication by L,
V2 V‘Z ¢ fV
50 that the values are
10° 10° ¢  10°

If the equation is to be balanced, the pressure gradient force must balance the conolis
force i.e. the scaling is geostrophic, so that ¢ scales to 10%.

Using geostrophic scaling for ¢, an advective time scale and a single planetary
length scale, the geopotential equation (4.2) is

%+v.v¢+$v.v+¢v-v (4.5
Ve Ve oV Ve
-il— Ll Ll Ll
and after muiuphication by L
Vo Ve 1% Ve

For the above analvsis, ® is the scale value of ¢ and it represents the scale of the
equivalent depth. The appropriate value of @ for the fast ume scaling 1s 10°m*s™" (this
1s the approximate value for the equivaient depth of the barotropic mode), Using this
value of @ and fast time scale in (4.5) reveals that the ume tendency und the
divergence terms are of the same order. For the slow ume scaling, if onec assumes

@ = 10" then the first-order equation for (4.5) is V*V=0. However, most of the
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planetary scale modes with a natural period (i.e, the period determined from the "
natural frequency) that is approximately equal to the slow time scale do not have an ._
equivalent depth equal to 10°. A more appropriate equivalent depth for these modes is o~
o=10% Using the slow time scale and the more appropriate value of ® shows all the 2,
terms in (4.5) to be the same magnitude. The results obtained using the advective time :C?
scaling and the more appropriate value for the equivalent depth are similar to the :f.'
results obtained by other authors (Burger, 1958; Haltiner and Williams, 1980). b::
The first-order system obtained using the fast time scale is quite different from b
that obtained using the slow time scale. The fast time scale system is linear, the winds :E:
are geostrophic and the time variation is given solely by the divergence term in (4.3). :;_,
The slow time scale svstem is nonlinear, the winds are also geostrophic, but the time o
variation is determined by advection of the mass field as well as by the divergence term. R
2. Multi-length scale analysis b
To accomplish a multi-length scale analysis, the synoptic length scale (L5) is :\f
used whenever a derivative is taken in the nonlinear terms. Planetary scaling ( Ll) is bli
used in the other terms. A more formal procedure to determine nonlinear interactions !.
would be to transform the equations using the appropriate transform based on the \:‘
geometry: Fourier transforms for cartesian geometry or spherical harmonics for EV
spherical geometry. After transformation of the equations, the nonlinear terms would . ;f
appear as interaction coefficients that represent explicitly the scale interactions. For o
scale analysis purposes, this interaction can be illustrated by using only two length E
scales (L, L,) in the nonlinear terms. Using multiple length scales in the scaling of ;_':
(4.1) vields results similar to those obtained using a single length scale except the
advection term is an order of magnitude larger. However, this term is still an order of t::
magnitude smaller than the largest term in the equation. E'.
Using multiple length scales in the scaling of (4.2) gives the same results as ;-E
using a single length scale if one assumes geostrophic synoptic scaling for ¢ i.e ;
¢=fVL2. The overall effect of including nonlinear interactions for the fast Rossby 3—':
waves is small. The momentum advection term in (4.1) is an order of magnitude larger :-_;_':
but 1t 1s still an order of magnitude smaller than the largest term in (d4.1). Because of E'.’.x
the assumption of geostrophic synoptic scaling for ¢ in the nonlinear analvsis of (4.3), ": |
there is no difference between the linear and nonlinear scaling of this equation. For
the fast time scaling, the time tendency in (4.5) is still driven by the divergence term
and for the slow scaling (with 5 = 104) all the terms are still the same magnitude. -..
®
"4
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It would appear from the analysis using the slow scaling and ¢=10* that
nonlinear interactions from the advection of the synoptic scale momentum fields may
not be as important as the nonlinear advection of the mass field. This result is
consistent with geostrophic adjustment theory, which indicates that the atmospheric
response to a mass perturbation for scales larger than the Rossby radius ¥® /f is greater
than for a given wind perturbation. The planetary length scale used in this analysis is
an order of magnitude larger than the Rossby radius. Since the Rossby radius
decreases as the equivalent depth ($) decreases, one would expect mass perturbations
to be even more important for the smaller equivalent depth planetary scale baroclinic
modes.

Additional information on the dvnamics of planetary scale Rossby modes can
be obtained by scale analyzing the quasi-geostrophic potential vorticity equation. This
equation can be derived from (4.1) and (4.2). The potential vorticity equation for this

model is
¢ fae f _
B 1% V. Ve—LV.Vé+v8=0
TR T ‘T2
CV fCV vy f2v3 Vi (4.6)
L? ¢ j] P L,

¢ fCL LV fVL
Lf ¢ fL @

where the nonlinear scaling for this equation is based on fast ume scaling using

1

¢=10%. For this scaling, these nondimensional quantities have the values:

L X feL Ly VL 1
Lf 10 3 fL3 ¢ 10

Note that the nonlinear interaction through the advection of vorticity is now part of
the first-order svstem. This implies that nonlinear momentum interacuons couid be
mmportant. Again, this result is consistent with geostrophic adjustment theory because
for these modes ®=10° the Rossbyv radius i1s approximately the same order of
magnitude as the planetary length scale.

If the nonlinear terms are dropped and the geostrophic relation for V is

inserted, (4.6) can be written in cartesian coordinates as

_fa5 Bos _
pot foz ) (4.7
Insert the wave solution ¢ = exp <{p(x-ct) into (4.7) then ’
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This agrees with the value of C that is used in this scale analysis. However, the effect
of the nonlinear terms may be such that this phase speed is not observed for this mode,
so that it is probably an overestimate of the speed of this mode. One final point to be
made from this analysis is that the importance of the mass field interactions will
increase as the equivalent depth ($) decreases.

B. A SIMPLER ANALYTIC MODEL

The normal modes of the NOGAPS model are quite complex and are not easily
interpreted. A simpler analytic model will be developed in this section to illustrate
what terms.effects are represented by the nonlinear term of a mode. Using this model,
it will be shown how waves of a particular vertical and horizontal scale can affect
waves of different scales. The results from this quasi-geostrophic mocs' -~ill be used to
interpret the more complex NOGAPS model.

Following Haltiner and Williams (1980), the quasi-geostrophic equations are

a¢ 0 (27—

5+ Ve Ve +Boy) - foe® 5o (e ?Z)=0 (4.9)
3 9¢' d¢ ;

oz Ve VaZ 4 T(2)Z =0 (4.10)
V'~ f¢=0 (4.11)
where

.8 .0
V—-lgz +J$ (4.12)

V, =f'kxVé=kx Vi (3.13)

¢ =f1V3%*¢ (4.14)

_0 9 - _Hg g 18T i
(2) = 375z t%9) =% (& ~®az) (4.15)
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The vertical coordinate (Z) of this system is defined and related to the more familiar

pressure coordinate system in Appendix B. The vertical velocity of this system is given

Z

by Z. Now making the Boussinesq approximation ( e~ = constant ) and assuming

static stability (I') is constant, then (4.9)-(4.11) may be written

3, 1) 3z
EV ¢+ka¢-VV’¢»+-a;o—foﬁ=0 (4.16)
3 3y Y 1‘?_

If the above is linearized about a basic state of rest and Z = 0 at the surface (Z = 0)
and at the top of the atmosphere (Z = Z7), then the vertical modes for this svstem are

ir 2
Qe(Z):AeCOS-ET— (418)
The derivation of these modes is given in Appendix B. To transform (4.16) and (4.17)
let
oo ek
6= 3 ulene 19
Z= Zz(zvyat)e‘t"
g (4.20)
where ‘l’£=w‘£ and Zz = -2_2 Substituting the above expressions into (4.16) and

(4.17), muluplving by e-(iZnZ:ZT)' and integrating from Z=0 to Z=Zy gives the

following transformed equations

d oY ;
5 Ve + Dk x Vy, - UV, + 3;‘&, + folZ, =0 (4.21)
J
3, . T,
£W-r J (e—])kwij'VﬂJg_,‘ﬁ-—o‘Zg:O, (422)
where the boundary conditions require Zz = 0if £ = 0 (£=0 in this svstem

corresponds to £=1 for the NOGAPS mode, i.c., the barotropic mode). The second
terms in (4.21) and (4.22) represent the nonlinear interactions between vertical modes §
and £-§ that will aflect a given mode £. The interaction term in (4.21) represents
interaction between the momentum fields, while the interaction between the mass fields

(temperature advection) is represented bv the interaction term in (4.22).
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It will be useful to look at two cases. For the first case £ = 0 (barotropic case),

so that (4.21) and (4.22), reduce to one equation

;] oy
5 V% + Zk x Vi, - VV3%_; + a: Bo=0
)

(4.23)

As expected, this equation closely resembles the barotropic quasi-geostrophic vorticity
equation, except that the simple advection term is represented as the nonlinear
interaction term. The only interactions that are allowed come from the momentum
advection terms. The interaction through the mass advection term is eliminated
because of the boundarv conditions Z = 0 at the top and bottom of the model. The
boundary condition at the bottom is not the same as in the NOGAPS model where the
vertical motion i1s not necessarily zero at the bottom. One consequence of the
boundary condition Z = 0 at the top and bottom of the simple model 1s that the
vertical structure of the barotropic mode is stnctly constant. Also, since the equivalent
depth is proportional to 1 £, the equivalent depth of the barotropic mode is infinite. 1
the equivalent depth (®) is infinite then from (4.6) it can be seen that mass advection

term 1s zero. The equivalent depth associated with the barotropic mode of the

NOGAPS model is not infinite. Thus, one would not expect that interactions through
the mass advection term would be compietely eliminated. However, the scale analysis
of (4.6) indicated that for an equivalent depth that is approximately equal to that of
the barotropic mode of the NOGAPS model, that interactions through this term would
be small. It remains to be seen if the results for the barotropic mode of this simple
model apply to results obtained with the more complex NOGAPS model.

The second case 1s just the general baroclinic case where £ # 0 . For example, if
£ = 3 then (4.21) and (4.22) become

0 , 2 9% 7, =
Evz'%*} :kayp’.-VV Y3, + P Bo + f032, =0 (<4.24)
3
TN ST L;
3 - 3=k xVy, Vs, + —2Z, =0,
EY) . (3-7) ¥, Vs, £ (425

Thus, interaction mayv occur for buroclinic modes through the temperature advection
term and through the momentum advecuon term. For mode number 3 to be aflected
by nonlinear interactions. mode v,y will interact with Wa Vs with V.- et

Honzonal wave interaction will now be examuned using Fourner transtorms. The
following denvauon closely follows the method used in Lorenz (1960) and Haluner and

Williams (1980). If we assume periodic boundary conditions in both x and v
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Ye(z + k,y+ t)—¢'¢(z Y, t) (200
2x 2r z

z,(z+7 y+—g—.t)-— e(z, v, t) (4.27)

then the horizontal variations of yp and Zp can be represented using orthogonal basis
functions of the form:

wmn(z)y) = ei(m..+”")' (4.28)
Using the above, ¥ and Z are represented as

¥(zv,2,1) Z Z ZC“» (ermimrnetete (4.29)
Z(z,y, Z,t) Z Z ZD,,,. A (t)erimEeenow) 5T

’ (=.39)
where £ and g are the penods in the X and v directions respectively. Therefore, (4.21)

and +4.22) can be transformed to

aCM.C 1kaCMC Z Z M — H M"H)k'HXMCM_H_J'CH,e_J'

at (4.31)
+Nif‘TMDM.z
%:a_-e _ ,Z zﬂ:(_‘_;il(M ~H) - (M-Hk-HxMCum_g.,Cr,,; 432)
- P
where M = mki + ngj. ;;=; and H is a dummy index. The interaction terms 1n

the above equations represent interacuons between vertical as well as honzontal
modes. The horizontal modes interact in the same manner as do the vertical modes.
That 1s, zonal wavenumber 7 mav interact with zonal wavenumber § to aftect zonal
wavenumber 1.

Eliminating Dnpp between (4.31) and (4.32) gives the spectral torm of the
potential vorticity equation

ICwy . imkﬂncm.e foze A,
3t = A, +(1+T)Z¥A_2CM-H.;CH.Z—; , {(4.33)
2
where
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=(M-H)-M-Hk-HxM

and
2
Ag = (M 'M) + forp

The spectral form of the quasi-geostrophic vertical motion equation is obtained by

eliminating ch,zlat between (4.31) and (4.32) to give
$mk£ﬂo CM ¢

DM't=—-(—M—.M)—'+[(£—j)—M M A ZZCM H,CH; 1(434)
where 2 pa

_ ., JfE r
A3 _(M'M+E)

Using (4.33) and (4.34) some analogies to the normal modes of the NOGAPS can now
be made.

The spectral form of the quasi-geostrophic potential vorticity equauon (4.33) 1s
of the form as (3.62) 1.e

AC,
where
_ tmklf,
Y="2a, i4.36)
and

44
N, —(1-r-f0 ZZ—CM H.;CH.e-;
(4.37)

Thus (d4.33) may be hkcned to the prognosuc equation for the rotational modes of the
more complex NOGAPS model. For this simpie model the adiabatic noniinear term
(Np) is wrntten as the sum of quadratic products of the modal coeflicients and 1t
represents interactions between the rotauonal modes of different wavenumbers. Note
that there 1s no prognostic equation for Dy . DM.Z mayv be likened to the coefiicient
of a gravitauonal mode for the more complex NOGAPS model. The equation for
DM.Z 1s purely diagnostic and the amplitude of DM.E 1s determuned solelv bv the
rotational components of the motion (this 1s consistent with the initial assumpuon of

quasi-geostrophic conditions). A final point to be made from (4.33) and (4.34; 15 that
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N, for the quasi-geostrophic equations does not contain interactions between the
divergent and rotational components of the motion.

It is desirable to form the kinetic and potential energy equations for these modes.
The kinetic energy for this system is given by

w/h 2w/ Ie 1
o oo ¢ M

using the above and (4.16), the kinetic energy equation for this system may be written
as

14 M ] H

(4.39)
+ fOtCM.-lDM.t
e Y S(-M-H) - (-M - H)k - H x (-M)C- - Ot
: A
3 H

- fotc_M,-eD-M—z-

A potenual energy equation mav be formed by assumung the potential energy is

proportional to
P=Y Y Llcucne
t M {4.40)

Using the above and (4.22), the potenual energy equation for this svstem mayv be

written as 3P

En ,
S % fie o "Z Z(t -jM-H-M-Hk -HxMCm-u,Cu.-,
—-ld -; T ' ~ (4.41)

B T (- M -H (-M - Hjk - H X (-M)C- - uCucees

- anC—M,-{D—M-l
Based on (4.39) and (4.41), the amount of kinetic or potential energy transterred to a
given mode Cpq p is proportional to the amphtude of that mode umes the pair of

interacting modes Cpy g jCH.E-j' Also note that the potenual energy as defined in

49

CRNIC SR R L

A A R SR A T Oy S A L R A S RO

N

LA

4

Eopm

NN LAY

Ly

“
st

YV ELST N e o o N

XS

a_s

-\-->‘ - “w
ST <“.



I

f

v - e s b A Al P . B Bl sa ba' at "
R R R T T NN RO VN W ...-..n--nlL,._

Pa s S0 N2 VLI

3
pY
’
e
The scale analysis and simple analytic model results presented in this chapter o
. . . s +
indicate how the dynamics of planetary-scale waves could be affected by synoptic-scale =
waves and how this effect might vary with vertical mode. However, the simple system s '1
of equations used here do not address the other important aspects of the dynamics of :_ i
planetary-scale waves. For example, the importance of forcing by diabatic processes j-_
and nonlinear interactions which involve the divergent component of the wind are not ::-
-
addressed by the quasi-geostrophic equations. For any given time, these neglected 0
effects could be small, but in a climatic sense (time mean) they may be important. The n
l‘
adiabatic nonlinear term (N,) for the rotational modes of the NOGAPS model will ~
include interactions between different scales of the highly divergent gravitational modes Q‘, ‘
and the rotational modes. However, for the long-time solution to the NCAR 2.
. . . . . . ¥
Community Climate Model, Errico (1984) has shown that the adiabatic nonlinear term "W,
that represents interactions between the gravitational modes and rotational modes is k
generally an order of magnitude smaller than the adiabatic term that contains only (:
interactions between rotational modes (except for the shallowest vertical modes s
£2=28.9).
: , : . : ~a
While the results of the simple analytic model do not contain all the possible '
interactions between modes, one would expect the results to be valid as a first order :,-"‘:
approximation to the more complex NOGAPS model. In addition, the possible < '
importance of diabatic process and forcing by the divergent part of the motion do not oo
negate the possible importance of syvnoptic-scale interactions through the adiabatic ff-
nonlinear term. o
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V. RESULTS ‘

L4
”

The first experiment of this study is designed to determine the dynamical “
importance of synoptic-scale nonlinear interactions on planetary scale Rossby modes. :
In the first part of this experiment, 19 days of 12UTC initialized NOGAPS analyses L
taken every five days from 16 January 1986 to 16 April 1986 are projected onto the
normal modes of the model and the magnitudes of the terms given in (3.62) are o
determined. In addition, the energy spectrum as a function of meridional mode ~
number for each vertical mode is determined. Mean magnitudes of the terms for zonal >
wavenumbers 1, 2 and 3, are obtained by averaging the real and imaginary parts of the RO
respective terms over the period and then taking the magnitude of that average. An y
alternative way to compute these would be to take the magnitude and then average. ;
The latter method has been used by most other authors {Errico, 1984; Kasahara and ,
Puri. 1981). Similarities between the time-averaged energy spectra computed in this \_
studv and those computed by other authors indicate the difference in averaging ,.
techniques produces no qualitative difference in the spectra. Only the time-averaged :
spectra are computed by averaging the real and imaginary parts. All other averages are ,
computed by taking the magnitude first and then averaging. 5
Since the vertical modes are not orthogonal, the energy spectrums as a function ‘
of vertical modes cannot be precisely compared. However, the meridional energy I_‘
spectrum for each vertical mode is exact since the meridional modes are orthogonal.
Due to the large number of modes associated with each zonal wavenumber (there are I
nine vertical modes and 37 meridional modes associated with each), it is necessary to 5‘
limit the number of modes to be examined. The choice of modes to be examined N
should be based on the energetics and dynamics of these modes. The energy spectrum "2
of these modes should give some indication as to which modes (meridional and 24
vertical), if any, are the most important. \:
A.  ENERGETICS AND DYNAMICS OF PLANETARY SCALE MODES )
The choice of which vertical modes to examine cannot be based solely on the "z
energy spectrum determined in this study because the vertical modes are not completely ‘:
orthogonal, although the larger scale modes are nearly orthogonal. I[nstead. one must bt
also rely on previous studies. Little work has been done in the area of the atmospheric .
W]
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the same percentage of kinetic energy as the barotropic and first baroclinic modes. »
The results of Kasahara and Puri (1981) and Ko (1985) indicate that at a ol
minimum. the £ = 1-4 vertical modes need to be examined. Kasahara and Puri (1981) :-'_:
. . . . -~ g \.\-'
presented some statistics in regards to the energy spectra as a function of meridional i
.
mode number, but no conclusions were made as to the required meridional resolution ®
o
needed to clearly resolve the planetary scales.
s ) ) . ) RN
Because the meridional modes used in this study are orthogonal for a given o~
l\-
vertical mode, it is possible to examine the energy spectra as a function of meridional .::.
mode number and draw definite conclusions. The energy spectra for a time average of ®
the sum of symmetric (odd indexed) Rossby meridional modes of zonal wavenumber 1. .r.‘
: . L A Ity
2 and 3 for the nine vertical modes of the model are given in Figs. 5.1 - 3.3. The ,‘:ﬁ
A ] .l
- . . p)
energy spectra for the large-scale vertical modes (£=1-3) have a peak in the energy N
.“‘f
:~:I Y
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energetics of normal modes, although some related work has been done using empirical

orthogonal functions.

The partial basis for the choice of which vertical modes to examine comes from
Kasahara and Puri (1981) and Ko (1985). Kasahara and Puri (1981) analvzed
Northern Hemisphere National Meteorological Center (NMC) daily data for the
month of January 1977 using completely orthogonal normal modes. They found that
the kinetic energy was the largest for the external mode (£=1) and then it generally
decreased as a function of vertical mode number, although a substantial amount of
energy existed in the fourth and fifth vertical modes. Theyv also noted that there was
more kinetic energy in the smaller scale vertical modes than in other studies that used
empirical orthogonal functions to represent the vertical structure of the atmosphere.
An important conclusion of their study is that higher resolution (more vertical modes)
1s needed to clearly resolve the planetary scales. This conclusion was based on an
analysis of the kinetic energy spectra that showed significant kinetic energy in the
medium scale vertical modes of planetary-scale waves.

Ko (1985) analyzed 30 days of perpetual January simulations from the National
Center for Atmospheric Research (NCAR) Community Climate Model. His results. in
terms of the kinetic energy spectra, were similar to those of Kasahara and Puri (1981).
Ko also examined the total and potential energy spectra. He found that a large
percentage of the total and available potential energy was contained in the medium
scale vertical modes (£=4-6). Vertical modes 4 and 5 were found to contain the largest

percentage of total and available potential energy. Those modes also contained about
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around meridional mode number 1-6 with a rapid decrease there-after. The spectra for

the medium-scale vertical modes (£=4,6) are much flatter than the spectra for the
large-scale vertical modes. The £=4 mode still shows a slight peak around meridional
mode number 9, but the rapid decrease in the spectrum does not occur until meridional
mode number 19. The spectrum of the £=35 mode is generally flat until meridional
mode number 33, while the spectra of the £=6 mode is generally flat through
meridional mode 57. The general pattern for the £=7 mode is that the energy is
spread uniformly over most meridional scales. The smallest vertical scale modes
(£=38,9) have a minimum in energy near meridional mode 17 and then the energy
increases until mode number 41 where the spectra become relativelv flat. The
corresponding energy spectra for the antisvmmetric (even indexed) Rossby modes (not
shown) are very similar. These results are qualitatively consistent with those of Ko
(1983) and Kasahara and Puri (1982), although there are of course quantitative
differences. These differences can be attributed to the difference between the modes
used. the averaging technique used and to the differences in the data analvzed. It
appears tfrom the energy spectra that no clear choice of which meridional modes to be
examined can be made. While 1t is true for certain vertical modes that energy is
concentrated in particular meridional modes, this pattern does not hold for all vertical
modes. Clearly some additional criteria are required to reduce the number of modes
examined.

[t is possible to establish some additional criteria based on the dvnamics of the
different modes. The focus of this study is on planetarv scale waves and these waves
have certain dynamical properties that were illustrated by the scale analysis presented
in Chapter 4. The analvsis using the single length scale and the fast time scale (this
time scale 1s appropriate for the large-scale barotropic meridional modes; £=1, n=0-3)
shows the time tendency to be driven solely by linear effects. The multi-length scale
analysis using the fast time scale also indicated that the linear terms should be the
same order of magnitude as the largest term in (3.62). The scale analysis for the slower
time scales also indicated that the linear term was the same order as the largest term.
This slow time scale 1s appropriate for the baroclinic modes.

The importance of the linear term (same order magnitude as the largest term) can
be used as a criteria for the sclection of the modes to be examined. Only those modes
that show the linear term to be important should be examined. The amplitudes of the

terms 1 (3.02) are given as a function of meridional and vertical mode numbers in
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Figure S.1. Energy spectra for an average of zonal wavenumbers 1-3 for (4) the
barotropic (£=1) rotational mode and (b) Ist baroclinic rotationul mode (£=2) as a
function of the odd (svmmetric) meridional mode numbers.
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Jand (b) £=4.

As in Figure 5.1, except for (a) £

Figure 5.2.
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Figs. 5.6 - 5.10 for a time average of the symmetric zonal wavenumber 1 case (results
are similar for wavenumbers 2 and 3). The importance of the linear term is evident for
the n S 3 meridional modes for the first four vertical modes. The linear term is
important up to meridional mode 8 for the barotropic mode, and up to meridional
mode 4 for the third vertical mode. For the smaller scale vertical modes (£=7-9)
modes, the linear term is no longer important for any meridional scale. In general, 1t
can be said that the importance of the linear term decreases with increasing vertical
mode number. Based on the meridional wavenumber arguments given above and the
analysis of the importance of the linear term as a function of vertical as well as
meridional mode number it would seem reasonable to limit this study to the
examination of the first four meridional modes (n=0-3).

From Figs. 5.1 - 5.5 it can be seen that the energy contained in the n < 3 modes
decreases as a function of vertical mode. In general the energy contained in then < 3
modes is of the order 1 - 10! while the energy contained in the n < 3 modes for £ 2
5 modes is of the order 1072 - 1073 The comparison of the amount of energy contained
in the n < 3 meridional modes is not exact (the vertical modes of the NOGAPS model
are not completely orthogonal). However, the variation of the energy in these modes
with vertical mode is very consistent with the results of Kasahara and Puri (1982) and
Ko (1985). Based on the above comparison of the energy contained in the different
vertical modes for the n < 3 meridional modes and the consistency of these results
with those of other authors, it would seem reasonable to limit this study to the
examination of the first four vertical modes of the n=0-3 meridional modes.

Another reason for not examining the smaller scale vertical modes (which cannot
be addressed by the analysis of Figs. 5.1-5.5 and 5.6-5.10 is the possible dependence of
the adiabatic nonlinear on the divergent part of the motion. Errico (1984) has shown
for the long-time solution to a primitive equation model that N(G*R) is the same
order of magnitude as the N(R*R). The N(G*R) term depends highly on the divergent
part of the motion. Since the divergent part of the NOGAPS analyses is just the
model first-guess divergence, any results obtained concerning nonlinear interactions
may be more indicative of the model rather than the actual atmosphere. The
dependency of the interactions on the model is an important subject in its own right,
but it is a subject bevond the scope of this work.

The choice of of the modes to be examined (the £=1-4 , n=0-3 modes) does

climinate some modes with energies similar to the chosen modes and modes that show
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the linear term to be important, but the set chosen should be sufficient for the purpose
of this study which is to show that nonlinear interactions with rcyclone waves can be an
important factor in the dyvnamics of planetary waves.

Before examining the results of the experiment that is designed to determine the
importance of synoptic-scale nonlinear interactions, it is necessary to establish the
importance of the adiabatic nonlinear term in the dynamics of planetary waves. While
it may be shown that synoptic-scale interactions are an important part of the adiabatic
nonlinear term, this effect would not be significant unless this term is important in
general (of the same magnitude as the other terms). As can be seen from Figs. 5.6 -
5.10 the adiabatic nonlinear term is at least the same order as the ]Jargest term for a
given meridional mode and it is often the largest term. For the largest scale vertical
modes, all of the terms (linear, nonlinear adiabatic, diabatic and time tendency) are
nearly the same magnitude for the largest scale meridional modes (n=1-3). This result
is interesting considering the single length scale analysis carried out using the fast time
scale (which is appropriate for the £=1, n=0-3 modes) showed the time tendency to
be driven by the linear term. The multi-scale analysis did show that the nonlinear term
could be important. For most of the remaining meridional modes, the time tendency
for the largest vertical scales is driven by the adiabatic nonlinear term, with the diabatic
term becoming important for the smallest scale meridional modes.

The importance of the diabatic term for the largest vertical scale meridional
modes has not been shown before. In the only other study of this kind, Errico (1984)
did not investigate the planetary scales in detail and his focus was mainly on the

balance for the gravity modes. In addition, he averaged modes by frequency, which
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could have obscured some of the detail of the planetary scales. The results that he ey
. . : : . : e
presented did show the adiabatic nonlinear term to be important for the higher N
LNy

. . : . ~

frequency Rossby modes, but he did not show the diabatic term to be important for =

\.

the Rossby modes except for the higher vertical modes. Although it beyond the scope '.
of this study to examine in detail the affects of diabatic terms on planetary waves, the B
importance of the diabatic term, as shown in Figs. 5.6 - 5.10, does deserve some :;'-;
comment. fj"'..-
It is not surprising that this term might be important for planetary scales given !
the general belief that the quasi-stationary component of planetary waves is forced in T
bR,

part by differential heating due to land-sea contrasts. A note of caution must be added '.'_;‘
here. As is the case with most models, the diabatic processes of the NOGAPS modei ;:'.-; ]
)
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Figure 5.6. Magnitude of AC_fAt (dotted line). -idC_ (solid). N\ (dash-dot), and Q,
(dashed) for (a) the barotropic (£=1) rotational mode and (b) the Ist baroclinic
- Rotational mode (£=2) as a function of meridional mode number (n) for zonal
" wavenumber 1.
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are parameterizations of the actual atmospheric diabatic processes. Thus results -
obtained here may be different from other models with different parameterizations. In :

X addition, the diabatic term is not decomposed into different components (sensible oY

‘ heating, latent heating, frictional dissipation, radiational heating), so it is not possible E

‘ to determine which diabatic processes contribute the most to this term. For the larger A

) meridional scales, it is possible that the majority of this term is due to heating. For the E“

) smaller scales, dissipation may be important. 4 ;
B. THE EFFECT OF SYNOPTIC SCALES ON PLANETARY SCALES ;‘_:

' Based on the dvnamics and energetics of the different modes and on scale ’
considerations, the focus will be on zonal wavenumbers 1-3, vertical modes 1-4 and ,
meridional modes 0-3. For this part of the experiment, the data (u, v, T, In p.) for ;
each of the 19 days of 12UTC NOGAPS analvses taken every 3 d~v¢ {from 10 January ‘.
1986 to 16 April 1986 are spectrally filtered. The data are taken onlyv everv 5 davs so E ‘

' that each day is statistically independent. Also, graphs of the data taken everv 5 days i
are easier to interpret than those that have dailv data plotted. When average i
magnitudes and energies are computed later, 85 days of data taken over the same \
period will be used. :_

To eliminate the synoptic waves, the data are filtered by transforming to spectral ..\.-
space using a fast Fourier transform routine, setting the coefficients of zonal i:_
wavenumbers 7-15 to zero and transforming back to phyvsical space. The magnitudes ,
of the adiabatic noniinear term (N) from both the unfiltered and filtered data are ':
computed and the difference between the nonhnear terms from the unfiltered and :
filtered data 1s calculated. The magnitude of this diflerence represents the contribution E.~
of the svnoptic scales to the nonlinear term of the given planetary scale, hereafter .,:_‘\
referred to as N . =

Figures 5.11 - 5.14 are plots of Np and N versus ume for an average of :'_:*
nmeridional modes n=0-3 of the £=[-4 modes of zonal wavenumbers m=1-3. The c.._‘\
gencral pattern that emerges from an examunation of Figs. 5.11 - 3.14 15 that for all :\
vertical modes N ¢ 1s the same order of magnitude as N but itis generaliv smaller :'.:}
than N\ (here after referred to as the total nonlinear term). On no dav 15 N larger i.
than \n twhich could occur it the interactions from waves other than m=7-15 acted to el
oppose the interactions from the m=7-15 waves). On a number of davs, the svnoptic- j:}t_
scale contribution to the total nonlinear term 1s significant (N Is a large percentage “
of N\ '
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For a given day, the significance of the syvnoptic-scale contribution to the total N
term can be illustrated by the ratio of N ¢ to N. Figures 5.15 - 5.18 are plots of the ;.
percent magnitude of the svnoptic-scale contribution to the total nonlinear term as a o
. . . . . . -~ |
; function of ume. The svnoptic-scale contribution to the magnitude of the total Ry
nonlinear term will be considered significant for any given day if this contribution is at N,
' - . - .I
least 30 percent of the total. This is somewhat arbitrary, because a smaller value could N
. . . . , )
be important if AC/At is smaller than the nonlinear term. However, the 30% value h)'
. . . . . - . . ¢
does highlight days on which the synoptic-scale contribution to the nonlinear term is N
| large. The number of days where the magnitude of the svnoptic-scale contributions is ::
Z greater than 30 percent varies with vertical mode. The number of significant days is '
greatest for fourth vertical mode. In general. the larger scale vertical modes (£=1-3) ~
;', have the smallest number of significant davs. The strength of the svnoptic-scaie e
y contribution to the total noniinear term varies with vertical mode number in the same .
‘ ~ . . . - . ’
/ manner as the number of significant davs. The svnoptic-scale contribution to the total :‘_
1s strongest for medium-scale fourth vertical mode. For this mode, the svnoptic-scale A
o contribution to the total nonlinear term exceeds 50 percent for a number of days. -
; There is a slight variation of the svnoptic-scale contribution to the total nonlinear term e
:. with zonal wavenumber. Zonal wavenumber 3 is the most affected zonal wave N
o
\ . . . N
; number. The fourth vertical mode for this zonal wavenumber exceeds the 30 percent Ll
criteria for 12 of the 19 days and on three of these days the svnoptic-scale ]
" contributions exceeds 30 percent. .
o - . . . . . . S
’ From the above analvsis, it is clear that synoptic-scale interactions can be -
-
significant for a particular day, but the analysis does not show the time average eflzct :
‘- of the synoptic scales on planetaryv scales. Table 6 gives the average magnitude of the :
. difference between the total nonlinear term and the nonlinear term computed from the N
: filtered data as a percentage of the average magnitude of the total nonlinear term. The -
- « R]
averages for these terms are computed as
: : 3
- Toe = | o 5 3 Nl 6) . :
3 (3. -
K k—l n=0 R . . "
¥ where K 15 the number of davs in the data set and four 1s the number oi mendional "
) modes. To insure greater statistical significance, a larger samiple size 1s used to i
iy . . : .
& compute the averages given in Table 6. For these averages, the total term (Np) and -
: the svnoptic part (.\'ns) are determuned from 85 davs of 12Z iniualized NOGAPS o
analvses taken every day trom 16 January 1986 to 16 April 1986. The following days ::
, were mussing from the data set: 17, 21 and 23 January and 9 and 21 March.
b, ~
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Table 6. Time averaged (over 85 days, taken between 16 January and 16 April
1986) synoptic-scale contribution to the total nonlinear term as a percentage of the
total for an average of meridional modes n=0-3.

Vertical Zonal Wavenumber
mode index
1 2 3
1l 20 18 17
2 17 14 16
3 24 25 24
4 35 28 42

—

For a given zonal wavenumber, the magnitude of the time averaged syvnoptic-
scale contributions is a largest percentage of the total nonlinear term for the fourth
vertical mode. The nonlinear term of the second vertical mode appears to have the
smallest contribution from synoptic scales. For the medium-scale vertical modes, zonal
wavenumber 3 has the largest synoptic-scale contribution to the planetary scales in
terms of the percent magnitudes.

It is clear from the above analvsis that the synoptic-scale contributions to the
magnitude of the total nonlinear term can be significant for a given day (N ¢ can be as
large as 60% of N,)) and are significant in a time-averaged sense.

The result that the syvnoptic scales tend to have a significant impact on the
magnitude of the total noniinear term is important, but it is not the whole story. For
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the most affected mode (£=4, m=3), the nonlinear interaction from synoptic scales is :‘ ~
42% of the total. However, this leaves nearlv 60% of the total unaccounted for. The ;:E
rest of the term is due to interactions with scales other than those represented bv :"
wavenumbers 7-15. This includes interaction of the planetarv scales with the zonal :::
mean state (m=0). Although these other interactions are significant. it 1s bevond the \'
scope of this studv to examine them. The purpose of this studv 1s to establish that '.::-
interactions Wwith cvclone waves can be an important factor in the dvnarucs of ;'
planetary waves. -'F
Another point that has not been considered is the relationship of the dayvs when "
Nps 1s a large percentage of N to the general importance of N, on those days. It is ,\:”
5,‘)_
I
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important to establish that on the days when the synoptic-scale contribution to the 3
total nonlinear term is a large, the total nonlinear term is of importance, i.e., it is of the 1
same magnitude as the other terms in (3.62). To accomplish the above, one must 3
A examine the non-time averaged variations of the terms given in (3.02). In addition, '
such an examination will also serve to illustrate the dvnamical differences between the ;
different vertical modes at these planetary scales. j'F
The terms in (3.62) are plotted in Figs. 5.19 - 5.22 for an average of meridional 4
‘ modes n=0-3 versus time for the data taken every five days. The time variations of *
. barotropic mode (Fig. 5.19) are quite interesting. For all three zonal wavenumbers, the ‘
, general dvnamic pattern is a tendency for balance between the adiabatic nonlinear term :
and the linear term. The time tendency of these modes is generally less than the *
¢ nonlinear or linear term, and the diabatic term also has a small contribution to the \
3 barotropic mode. On the davs on which the nonlinear and linear terms are not in :
’ partial balance, the time tendency is driven by the linear term. For these days, it N
appears as if the heating is partially balancing the nonlinear term. For all the days A
d examined, the contribution of the nonlinear to the barotropic mode term is at least the *
E same order of magnitude as the other terms. It was previously shown (Fig. 5.15) that b
b the synoptic-scale contribution to the total nonlinear term for the barotropic mode is
’ small. However, the synoptic-scale contribution to the overall dynamics of the ‘
" planetary-scale barotropic modes could be more important than the small magnitude : :
Vo might indicate. This contribution could be an important factor in maintaining the :
; partial balance found in this mode or it could be the dynamic ingredient that keeps
these modes from obtaining a complete balance. The above could also be true of the i
. diabatic term which also has a small magnitude for the barotropic modes. .
_‘, The above description of the dynamical nature of the barotropic mode is also )
‘: generally true for the second vertical mode (Fig. 5.20). The dynamics of the third (Fig.
v 5.21) and fourth (5.22) vertical modes are quite complex. No one term or two terms
; seem to dominate. The diabatic term is of increased importance for these modes, but it
is by no means dominant. The linear term is of lesser importance for these modes than 4
-‘:‘ it is for the first two vertical modes, but it still makes a significant contribution to the ‘
N time tendency. There is no hint of a simple balance between two leading terms for :
these modes. For both of these modes, it generally true that the diabatic, adiabatic i
:' nonlinear and linear terms are additive so that the time tendency is the largest term. .
N Two important points are illustrated by the above analysis :
v '
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' e For the vertical mode that is most affected by svnoptic-scale interactions
! (£=4), the dvnamics are the most complex. The nonlinear term is on average
A important for this mode, but this importance varies significantly over the period 4
\ being examined. .
a e The tume tendencies of the barotropic and first baroclinic modes are generally ‘3
: smaller than the nonlinear term due to the partial balance between the linear .
and nonlinear terms. Thus, synoptic-scale contributions can be more important N
in determining the time tendency of these modes than their small percentage of .
the total nonlinear term may indicate.
P To establish the importance of synoptic-scale interactions for these modes, it is N,
. necessary to compare the magnitude of the synoptic-scale contribution to the total -:
nonlinear term to the magnitude of the time tendency. The magnitude of the synoptic- N
; scale contribution to the total nonlinear term as a percentage of the mégnitude of the ;r
time tendency are given in Fies. 35.23 - 3.26 for the £=1-4 vertical modes of zonal :
) wavenumbers 1-3. In addition, the synoptic-scale contribution to the total nonlinear _
: term is plotted to allow comparisons on the days when the synoptic scales make up a .
! large percentage of the total nonlinear term. For the barotropic mode (and especially .
for the barotropic mode of zonal wavenumber 3), the synoptic-scale contribution is a ::
: larger percentage of the time tendency than it is of the total nonlinear term. For :
: example, the synoptic-scale contribution to the total nonlinear term of the barotropic ZE
mode of zonal wavenumber 2 on the 26th and 31st cf January is only about 12-14% of [
' the total nonlinear term, but 38-40% of the time tendency. This result implies that for ;':l
‘ the barotropic modes, the synoptic-scale contributions are mcre important than the ::3
small value of NN, would indicate. The result is also true, although to a lesser :"
extent, for the second vertical mode (Fig. 5.24) of zonal wavenumbers 1 and 2. For Le
' vertical modes 3 and 4 (Figs. 5.25 - 5.26), the general pattern is that the synoptic-scale E
contributions to the total nonlinear term are a larger percentage of that term than of E:
the time tendency. This is an indication that the nonlinear term is no longer the NS
dominant term for these modes. Rather, the nonlinear term it is only one of three )
terms that contribute to the time tendency and that these terms are aduitive. The lack ﬁ?-_ :
of any balance for the £=3,4 modes is an indication that the linear term is no longer :_'.‘_ :
large enough to balance the nonlinear term. However, the fourth vertical mode is still ,’.
the most affected by synoptic scales. The number of days for which the magnit .de of l
the synoptic-scale contributions to the total nonlinear term ‘s greater than 30 percent ‘{:"_
of the magnitude of the time tendency is generaily less than the number of days for
which the synoptic-scales contributions are greater than 30 percent of the total .'; -
'
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nonlinear term. However, there are still more significant davs for the fourth vertical
mode than any other vertical mode.

C. ENERGY RELATIONSHIPS

[t is clear from the above analysis that synoptic scales can play an important role
in the dynamics of planetary scale waves. It is also clear that these interactions are
important in a time mean sense (Table 6). The analysis in the previous section is very
good at highlighting this importance, but it does not show how the energy flows
between synoptic scales and planetary scales. Are the scale interactions acting to
decrease or increase the amplitudes (energy) of these modes? This question will be
addressed in the this section. It will also be very important to determine the average

energy transfers that can be compared with other studies (e.g. Tanaka et al., 19S0).

Most of these studies considered either kinetic or potential energy transters, while total
energy energy transfers are treated in this study.

The sum of Kinetic plus available potential energy in a particular mode is given
simply by

3

CaCa (52)

where C, is the amplitude of the mode designated by the index n and ( ):" indicates the
complex conjugate. Thus, an equation for the time tendency of the total energy of a

given mode can be obtained by multiplying (3.62) by C,* , and adding this to the \'
product of the complex conjugate of (3.62) times Cp- The contribution of N\ to the %.,a
time tendency of the energy of a mode n for m = 0 is given by I

*

2 Re (C,N, ") (5.3) J
o
where Re indicates the real part of the expression. The relation given in (3.3) indicates !
that the energy tendency generated by N\ or Nps depends on the phasing between C ;
and N or N .. [f the synoptic-scale forcing is out of phase with the planetary scale ':::
mode, then a large magnitude of Nps does not necessarily imply a large energy
transfer to the planetary mode. However, this might still indicate an important E'
contribution to the phase speed of the planetary wave. X
*

The synoptic-scale contribution to the energy tendency produced by the

-t

nonlinear term is computed by taking the difference of the tendencies as computed in

v,
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(5.3) from the filtered and unfiltered data. The energy tendency that is associated with

o

the synoptic-scale contribution to the nonlinear term ic shown in Figs. 5.27 - 5.30 for .
the £=1-4 vertical modes of zonal wavenumbers 1-3. Also included on these plcts are \
the contributions of the total nonlinear term. For the barotropic mode of zonal .—
wavenumber 1 (Fig. 5.27), there is clearly a bias for the synoptic-scale contribution to : )
the energy tendency to be positive. That is, the synoptic scales are interacting such k
that they are increasing the energy of the barotropic mode on 16 of the 19 days that a4
were analyzed. The above pattern is evident to a lesser extent for the barotropic ’
modes of zonal wavenumbers 2 and 3. For the £=2,3 modes (Figs. 5.28-5.29), there is :~
a tendency for the synoptic scales to take energ away from the planetary scale. This
tendency appears to be strongest for the £=3 modes. For example, on only two of the :’.':
19 days are the synoptic scales transfering energy to zonal wavenumbers 3 and 2 scales. '
The {ourth (Fig. 5.30) vertical mode has the largest contribution from synoptic scales 5-
to planetary scales in terms of the percentage of the total energy tendency due to the ;
nonlinear term. For most of the days examined, the synoptic-scale contribution to the =
energy tendency is positive for all three zonal wavenumbers. 'f:
Table 7 gives the time-averaged synoptic-scale contribution to the energy ::'
tendencies of the nine vertical modes of zonal wavenumbers 1-3. Energy flow from ;t;
synoptic scales to planetary scales would be indicated by a positive value. Once again, i
to insure greater statistical significance the averages in Table 7 are computed from 85 :
days of 12UTC initialized NOGAPS analyses -
The general pattern that is evident from Table 7 is that barotropic (£=1), and '-”‘:'.

third baroclinic (£=4) modes have a positive contribution from synoptic scales to the

;'.M'

energy tendency for all three zonal wavenumbers. The synoptic scale contribution for

"
.
s
the £=2,3 modes are consistently negative for all three zonal wavenumbers. The "y
N
synoptic-scale contribution to the energy tendency is generally largest for the 7]
barotropic mode and smallest for the £=4 mode. The relative importance of the »
. . . . Q&
energy flow from synoptic to planetary cccles for a particular vertical mode is not o
truely indicated by energy tendencies given in Table (7). For example, the barotropic ::', ,
: N ~
mode has a larger synoptic-scale contribution to energy tendency than does the £=4 i:
. . »
mode, but the barotropic mode contains a larger amount of energy than does the £=4 N
mode. However, the most important point to be made from Table (7) is not the "
strength of the synoptic-scale contribution, but rather the pattern of this contribution. o
SN
Based on the the pattern of energy flow from synoptic to planetary scales, one can e
hypothesize some possible mechanisms for these interactions. ® _
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mode (£=1) and the synoptic scale contribution to the energy tendency generated by
the nonlinear term (dashed) for zonal wavenumbers m=1-3 (a-c).
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Figure 5.28. As in Figure 5.27, except for £=2.
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; Figure 5.29. As in Figure 5.27, except for £=3.
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' Table 7. Time averaged (over 85 days, taken between 16 January and 16 April *
1986) svnoptic-scale contribution to the energy tendency (J Kg! s’y generated by -
the total nonlinear term for an average of meridional modes n=0-3. .
LS
Vertical Zonal Wavenumber Y
mode index i
‘!

1 2 3 )

_ 1 8.2x10"7 5.7x1077  7.2x1077 7
2 -2.4%x10"%  -3.4x10"% -3.5x10"’ 3
3 -1.9x10~7 -5.3x107% -1.7x1077 N
e,

4 9.7%x10"8%  s5.2x107%  4.9x107° E,‘

L3

W

B . . . f

The analysis of the energy flows in this studv between svnoptic scales and ‘
planetary scales i1s unique in two ways: The analysis 1s done considering the total r
energy flow and it is specific to interactions between synoptic waves and planetary :
waves. Tanaka et al. (1986) examined kinetic energy flow for groups of modes, but o
they did not look at the total (kinetic and potential) energv flow and their emphasis :.r
o

. was on zonal mean-eddy interaction. A important resuit of their study was that the s
zonal mean barotropic mode gained energy from the baroclinic modes of higher s
-~

wavenumbers. Tanaka et al. indicated that the Kinetic energy source for the higher )
wavenumber baroclinic modes came from the conversion of potenual energy via ;'-'.
baroclinic instability.
The results given in Table 7 show that the barotropic modes of all three zonal A
wavenumbers gain total energy from synoptic scales while the planetarv-scale R
baroclinic modes (£=2,3) were losing total energy to synoptic scales. These results are 3
similar to the results of Tanaka et al. (1986) if one thinks of a local basic state having a
projection on planetary scales. Here | use the term basic state to refer to the state : \
obtained bv zonally averaging over a restricted domain, such as the wavelength of one .
cvclone. The above is in contrast to a zonal basic state that unplies averagig around f
an enure latitude circle. Because of the large scales of planetary waves, a local basic -
state may have a large projection on the planetarv scales. Thus, the synopuc scale e
£=2 and 3 vertical modes may be gaining potential energy from this basic state, :
. . . . . . L. . ~
converting this potential energy to kinetic energv via baroclinic instability and then X
‘I

.
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transfering this kinetic energy back to the barotropic (£=0) component of basic state.

In addition, the syncptic scale £=2 and 3 vertical modes could at the same be
transfering energy to the £=4 planetary scale modes.

The hypothesized mechanism for the energy flow described above is aiso
consistent with the results obtained from the analytic model presented in Chapter .
For example, if the zonal wavenumber 6 mode for the first baroclinic mode (£=1 in
the notation of the simple analytic model, £=2 for the NOGAPS analysis) were to
interact with the zonal wavenumber 7 mode for the second baroclinic mode (£=2 for
the analytic model, and £=3 for the NOGAPS model) then the zonal wavenumber 1
mode for the first baroclinic mode (£=1 for the analytic model, £ for the NOGAPS
model) and third baroclinic (£=3 for the analytic model, £=4 for the NOGAPS
model) modes would be affected. Also, the first two baroclinic modes could interact
with themselves to affect the barotropic mode.

Since the results presented in Table 7 are for the total energy flow it is not
possible tell how much of the energy flow is kinetic energy and how much is potential
energy. The results from the simple analytic model presented in Chapter IV, indicate
that the majority (if not all) of the energy flow to the barotropic mode should be due
to kinetic energy transfer while both kinetic and potential energy transfer are possible
for the baroclinic modes. In the following section the relative importance of energy
transfer through the momentum advection terms (kinetic energy transfer) to the energy

transfer through the mass advection terms (potential energy transfer) will be examined.

D. SOME MECHANISMS OF SYNOPTIC-SCALE INTERACTIONS

It is clear from the analysis of the previous sections that synoptic scales can have
a significant impact on the dynamics and energetics of planetary scales. What is not
clear are the mechanisms by which the synoptic scales are interacting with the
planetary scales. Are mass field interactions (e.g. temperature advection) the primary
mechanism (Gall et al., 1979) or are momentum field interactions (e.g. momentum)
advection more important? One of the reasons why the mechanisms of the interaction
are not clear is that the adiabatic nonlinear term is a combination of of terms from tie
momentum equations and the thermodynamic energy equation. That is, the nonlinear
term contains the effects of temperature advection as well as momentum advection.
What is needed is a way to separate these effects. The method used to separate these
effects is simple and direct. That part of the synoptic-scale contribution due to
momentum field interactions is isolated in the following way:

o. The data are filtered as described in the beginning of this Chapter.
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e The nonlinear term for both the filtered and unfiltered data is computed by first
computing the discrete time tendency of the coefficients via an adiabatic one-
time step integration of the NOGAPS model, and then subtracting the linear
term (I0C) from it. However, in this step the term representing the horizontal

. momentum advections s deleted.

bl PN T

e The energy tendencv due to the nonlinear term with the momentum advections '.;
deleted is computed using (5.3) from both the unfiltered and filtered data. ’;

i

¢ The energy tendency due to svnoptic scales with and without the momentum ::}

. . . . -

advections is determined by subtracting the energy tendency computed from the R
filtered data set from the energy tendency computed from the unfiitered data for T

each case. -

¢ The energy tendency due to synoptic scales that comes through the momentum -:Zj
advections is computed by subtracting the energy tendency due to synoptic o

scales computed without momentum advecuons from the svnoptic-scale L
contribution to the energyv tendency computed from integrations made with all o

of the advectuion terms 1ncluded. ::

. . .. b

Care must be taken in using the above method. Since the synopuc scale N

. . . '\J
contribution to the nonlinear term can often be a small difference between two large -!-H
terms (the nonlinear terms computed from the filtered and unfiltered data) care must N
.

. . . R

be taken to insure that the deletion of the momentum advecticn terms does not oS
produce a large icrease in ume tendencies. A large increase in the ume tendencies )
<.
. mayv mean that one would be trving to determune a value as a very small Jifference i_
between two very large numbers. If this difference is smaller than the accuracy of the -
two values being subtracted, then the diflerence 15 not rehable. The error produced by R
'd

” - . . L

the filtenng process i1s such that onlv 3 to 4 signuticant digits are mamtamed atter
filtering. Thus if the original difference 1s small 1an order of magnitude smaller than ‘."
l‘.

the onginal terms), and if the deletion of the momentum terms increases the tume by
tendency bv two orders of magnitude or more then the resuits would be questionable. 3
. . e

The other potential source of error in this method anses because the model N
equations are 11 a {lux torm so that deleting the term that represents the momentum )
advecuions aiso means deleting otner terms (which enter via the conunuity equauon -
which do not involve momentum advecuons. lhe continuous {lux torm of the -
momentum advection term n the sigma coordinate ot the NOGAPS model 1s 9
droV ;

no .

v. (nVV) -~ *70— (3.4 ’_

Where 7t 15 defined bv (3.10). The discrete form of the first term i (3.4} 1s deleted {rom

the NOGAPS model one-time step integrations as part of the analysis procedure which
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( '
is designed to isolate interactions through the momentum advection term. The first '.2:;
' v
term in (5.4) can be written o
W,

: ; : « < )
(V- -VV) +2aVVV + V(V . V7). (5.5) .
The variable ® may be written as "
\
T+x' (5.6) ol

where T is a constant over the globe and ©t is a small deviation from this constant. In
general, ®> >n’ except near high mountains. Thus the first term in (3.4) is
approximated by

S

T(V-VV).

(3.7) }

The third term in (5.5) will in general be much smaller than (5.7) except near ‘::
mountains. The second term in (5.4) and (3.5) will be small for the modes being f:«-

considered because they represent interactions between the divergent and rotational i
parts of the motion (Errico, 1984). ¢
Based on the above arguments concerning the smallness of the neglected terms, it __"

can be seen that most of the nonlinear interactions that may occur through the flux i
form of the momentum advection term will be due to (5.7). . 4
This method for determining the relative importantance of momentum and mass ;::-‘ ]

field interaction is most accurate wnen the synoptic-scale contribution to the total .
nonlinear term is large and when the deletions of the advection terms do not produce E'::
extremely large changes (at least two orders of magnitude) in the time tendencies of the [
modes. Deletion of the momentum advection terms does not produce extremely large \
changes to the time tendency of the modes. The above is not true when the
temperature advection terms were deleted. Deletion of these terms produces large .'_
changes in the time tendencies of most of the baroclinic modes. Another point to m
consider when deleting nonlinear terms is that one must not delete terms that invoive ;:',f
the mean state that the primitive equations are linearized about. For example, deiection :'.;
of the vertical advection of temperature would delete the linear basic term ;'
. T
i (5.8) P
Such a deletion would mean that the frequencies that are determined as eigenvalues of ‘:
the linearized equations, would no longer be valid. As result, the linear term iwC r
A
R

P
o

- >,
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would not be accurate. Since the linearization about a mean state of rest contains no
horizontal advections, the deletions of the horizontal momentum advections will not
alter the frequencies. Because deletion of the temperature advection produces large
changes in the time tendency of the modes, the interactions that are due to mass fieid
interactions are assumed to be the values computed with the momentum advection
‘turned off. These values do not represent just the horizontal temperature interactions
since in sigma coordinates there are a number of nonlinear mass interaction terms e.g.
the advection of surface pressure and the horizonal gradient of surface pressure.
However, the temperature advection would be expected to comprise a substantial part
of these nonlinear terms.

The synoptic-scale contribution to the energy tendency generated bv the
nonlinear term computed with all advections, and the difference between the synoptic
scale contribution with all advection and that quantity computed without momentum
advections are plotted in Figs. 5.31 - 5.34. The difterence represents the portion of the
synoptic scale contribution to the energy tendency that is due to the momentum
advections. For the barotropic mode (Fig. 5.31), the synoptic scale contribution to the
energy tendency generated by the nonlinear term is mainly due to momentum
interactions. This is especially true when the synoptic scale contribution to the energy
tendency is large. For example, compare the values of the total synoptic scale
contribution to the energy tendency with that part due to the momentum advection
terms on: 26 January, 17 and 27 March for zonal wavenumber one; 17 March and 6
April for zonal wavenumber two; and 26 January, 27 March and 1 April for zonal
wavenumber three. Momentum advections are a slightly more important mechanism
than mass field interactions for the second (Fig. 5.32) and third (Fig 5.33) vertical
modes. However, the mass field interactions can be the larger contribution for some
days ( 20 February for £=3, m=1; 26 January, 25 February, and 27 March for £=2,
m=2; and 5 February for £=2, m=3). Mass field interactions are generally the
dominant mechanism for the fourth (Fig. 5.34). This is especially true for davs with a
large energy tendency due to synoptic-scale interactions. However, there are also a a
few days where momentum advections make a substantial contribution.

The results given in Table 7 show that the barotropic mode of all three zonal
wavenumbers gains total energy from the synoptic scales. The results presented in Fig.
(5.31) indicate that this total energy transfer is mainly due to momentum interactions.
Thus, the energy being transfered from synoptic to planetary scales is kinetic energy.
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Figure 5.31. Synoptic scale contribution to the energy tendencv generated by the
nonlinear term for the barotropic mode (£=1) with all advections (solid) ana the
contribution due to synoptic scale momentum advections (dashed) for zonal
wavenumbers m= 1-3 (a-c).
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This result is consistent with the hypothesis presented in the previous section which is .
\ that the relation of the synoptic-scale waves to the planetarv-scale waves can be .
: likened to the relationship of an eddy to local mean flow. Assuming this hypcthesis is .A
correct, the transfer of kinetic energy from the synoptic-scale modes to the barotropic '7
planetary-scale modes may be associated with the process of barotropic stability. Y
The results presented above for the barotropic mode are also consistent with .
those of the simple analytic model of Chapter IV. The results from this model indicate )
that mass field interactions would not be possible for the barotropic mode. This is not "
strictly the true for NOGAPS model, but it does appear from Fig. 5.31 that the
momentum advections are also dominant in the NOGAPS barotropic mode.
The results presented in Table 7 indicate that on the average the svnoptic scales a
are taking energy from the planetary-scale £=2 and 3 modes while giving energy up to ‘
the planetary-scale £=4 mode. From Figs 5.32-5.34 it is clear that the total energy r X
transfer between these scales is due to both kinetic and potential energy transfer. The f.
results from the simple analytic model indicated that both types of energy transfer are -
possible for baroclinic modes. Also the results for the £=2-4 modes are not s
inconsistent with the idea that the relationship of the synoptic-scale modes to a
planetary-scale modes can be likened to the relationship of an eddy to a local mean ::?
flow. There are three possibilities for kinetic and potential energy flow between 'd
synoptic- and planetary-scale baroclinic modes: ‘-j
* Syvnoptic-scale baroclinic modes can gain both kinetic and potential energy from >
planetary-scale baroclinic modes. 9
* Svnoptic-scale waves can gain potential erergy from planetary-scale baroclinic X
modes while losing Kinetic energy to those same modes.
® Synoptic-scale modes can lose potential energy to planetary-scale modes while Z:S
gaining kinetic energy from those same modes. o
The final consequence of the above analogy, is that the type, sign and amount of ::_"
energy transfer from svnoptic-scale baroclinic waves to planetary-scale baroclinic waves !'
would depend in a crucial way on the tilt of the synoptic scale waves’ phase with "E
respect to the vertical and horizontal wind shear of the planetary waves. ::::
The potential energy flow from synoptic scales to the planetary scales of the £=4 j:;:
mode is similar to the flow proposed by Gall (1979). Gall proposed that the planetary ’
scale waves were forced mainly by planetary scale variations in the meridional heat flux :-\.:._‘_
convergence of higher wavenumber modes i.e., the interaction between cycione scales ,:
waves and the local basic state increased the amplitude of the planetary scale ::.-
R,
NG
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temperature perturbation. This potential energy was then converted to Kkinetic energy

due to a positive correlation between planetary scale upward motion and temperature.
[t is clear from the results presented in Fig. 3.34 that potential energy is being
transfered to the £=4 mode of the planetary scale waves. The avove result is also
consistent with the results obtained from the analytic model presented in Chapter 1V.
However, the results of this study also appear to conflict with the results of Gall et al.
(1979) in that not all of the planetary scale modes (the £=1 mode for example) are
being forced mass field interactions. The apparent conflict between this study and that
of Gall can be explained by the differences in the data rather than the mechanism. In
Gall's experiment, synoptic-scale perturbations were allowed to grow from a zonal
mean state.  Gall argued that in developing waves/perturbations that
wave, perturbation velocity (V') and the wave perturbation vorticity ({) were
uncorrelated while V' and the wave/perturbation temperature were correlated. In this
study, the atmosphere data contained a variety of fully developed cyclones. For fully
developed cyclones it cannot be said that V'{’ are uncorrelated. In fact, general
circulation theory would suggest that V'{’ would be correlated. In a more recent study
that was very similar to that done by Gall, Young and Villere (1985) showed that direct
transfer of kinetic energy from intermediate scales to planetary scales was of equal
importance to the transfer of potential energy. A possible reason for this conflict
between these two similar studies is that the zonal mean state specified by Young and
Villere was such that they obtained higher growth rates than Gall and their
disturbances developed faster. I believe that the disturbances in the Young and Villere
study developed to the stage where the correlation V'{’ became significant. While it
may be true for the simple state specified by Gall that the synopticscale forcing of
planetary scale waves is mainly through the temperature advection term, this does not
appear to be true for an atmosphere that contains fully developed cvclones. This is not
to say that the mechanism proposed by Gall is invalid, as this mechanism may be
active in the atmosphere given the proper distribution and variation of intensity of
cyclones. However, the direct transfer of kinetic energy could be taking place that mayv
or may not be in the same sense as the potential energy transfer.

In summary, the analysis of the results presented in this chapter have established
the following:

¢ Synoptic-scale interactions can have a significant impact on the dynamics of
planetary scale modes.
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¢ For the barotropic mode (£= 1), the main balance is between the linear (Rossby N
wave) terms and adiabatic advection terms, so that the time derivative is smaller
than either term. In this situation. the svnoptic-scale interactions can have an
important influence on the planetary scale waves even when they are not a large
percentage of the total advection term.

* Svnoptic-scale interactions tend to decrease the energy of the planctary £=23
vertical modes while increasing the energy of the barotropic and £ =4 modes.

ORI LY CW ey,

¢ The synoptic-scale interactions are mainly through the momentum terms for the
barotropic mode and through both the momentum and mass advection terms
for the baroclinic modes (£=2-4 modes). The mass field interactions are
generally dominate for the £=4 modes.

N
&2 4

A

There are some important implications of the above results to the forecastability

5

of planetary-scale waves. One can easily see that if the strengths and or phases of

svnoptic-scale waves are not not forecast correctly then the interactions between

&

svnoptic and planetary scales will not be forecast correctly. This could immediately

el

lead to a forecast error in the planetary scales. Showalter (1984), using a spectral

A

-_a

forecast verification technique, noted a case where a poor synoptic-scale forecast by

J®

“
hJ

the NOGAPS model led to subsequent degradation in the planetary-scale forecasts of

ﬂ?‘?ﬁ'

the model. The nonlinear linkage of synoptic and planetary scale of motion suggests

Z

that to forecast planetary scales more accurately, more accurate synoptic-scale forecast

s

are required.
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" VI. SUMMARY AND CONCLUSIONS

3

-; The procedures used in this study are based on the normal mode analysis

:. procedures developed by Errico (1984). NOGAPS analyses have been projected onto

’ the normal modes and the different terms (linear,nonlinear adiabatic and diabatic) that

affect a particular mode have been determined. The total energy for each mode and

the energy tendencies due to the nonlinear term are determined. The effect of svnoptic
__\ scales on the magnitude of the adiabatic nonlinear term (Np)- and the energy tendency

due to N\, is also determined. By deleting the effect of the momentum advection terms,
:'_' it is possible to determine the relative importance of interactions through the

-'E: momentum Or mass terms.

{ : The importance of the nonlinear interactions in the dynamics of planetary waves

has been demonstrated by computing the adiabatic nonlinear term for a two different
f data sets. The first data set is 19 days of 12UTC NOGAPS analyses taken every 3
A days from 16 January 86 to 16 April 86. The second data set is a filtered version of the
f" ’ first data set. In this data set the data (u, v, T and &n p, ) are spectrally filtered by
« i transforming the data to spectral space and then setting the coetlicients of wave
.}.: numbers 7-15 to zero. Reconstitution of the field then is a representation of the
y atmosphere without the influence of synoptic waves. The magnitude of the difference

::j between the adiabatic nonlinear term computed from the original and the filtered data
sets is taken as a measure of the dynamical importance of synoptic-scale interactions

';E on planetary scale waves. The magnitude of this difference is on average about 20
‘f-: -30% of the total nonlinear term, although it may be as much as 60-70% of the

\.{-f'. magnitude of the total nonlinear term in certain vertical modes for a given day.

- The ratio of the synoptic scale contribution (N () to the adibatic nonlinear term
of a planetary-scale mode (Np) 1s only one measure of the dynainical importance of
synoptic scales. An additional measure ( the ratio of the magnitude of N to the
magnitude of the time tendency AC At) is used to show that the ratio of the

Ay magnitudes of N . to AC/At may be large even though the ratio of the magnitude of

: Nps to the magnitude of N, is small. This is generally true of the first three vertical

2 modes, although it was especially true for the barotropic mode. For this mode, the

o linear and nonlinear terms tend to balance such that the time tendency of this mode is

b
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smaller than either of the two balancing terms. Even though small when compared to
N+ the contribution of synoptic scales may be important in determin‘ng the balance or
nonbalance of the total nonlinear term with the linear term. In this case, N o might be
very important in determining the time tendency of the barotropic mode.

Although the comparisons with the magnitude of N ¢ to the magnitude N, or to

AC/A% show that N could play an important role in the dynamics of planetary scale

it e Te gl S WX XA AN 31

modes, it does not show how planetary scale modes are affected by svnoptic scale
modes. To examine the mechanism through which the synoptic scales affect planetary

scales, the energy equation for a given mode is derived and the energy tendencies

' a
AR

~
generated by N ¢ and .\'n are examined. On the average, syvnoptic scales tend to give ?j-:
energy up to planetary scales for the barotropic £=1 and baroclinic £=4 vertical
modes, while energy flows from planetary-scale waves to the £=2.3 modes. The ::
positive contribution of synoptic scales to the energy of the planetary scale £=1 mode ?(:
can be a large percentage of the energy tendency generated by Ny which indicates that f:
the synoptic scales play an important role in determining the time evolution of these ';‘
modes. ”".; ':
To determine how energy is being transferred, the energy tendencies generated :";
by N, with the momentum advection term deleted from the equations are calculated. :._:E
The deletion of this term eliminates most of the transfer of energy through the ;
momentum term. By examining the difference between the energy tendency generated )
£~

2

by N, Wwith all the terms included and N ¢ with no momentum advections, it is

¥l
Pty
.

possible to determine how much of the energy tendency due to interaction with

{.‘.

synoptic scales is due to the momentum advections. It is found that interactions

4’.‘.

through this term are, not unsurprisingly, responsible for almost all of the energy

o
transfer from synoptic scales to the planetary scale barotropic modes. Interactions \:
through this term are also important for the £= 2,3 modes, but do not seem to be quite l:f. y
as important as the interaction through the mass fields (temperature advections). The ;.~
relative importance of interaction through the mass field increases as vertical m~de E’
number increases. :'_

The results of this studyv confirm in part those of Gall et al. (1979). That is. ’
synoptic scales do in fact play an important role in the dynamics of planetary scale .
waves and they can act to increase the energy of these waves. However, the results of r\
this study also appear to conflict with the results of Gall et al. (1979). Gall proposed N
that the forcing of planetary scale waves by synoptic sca! waves was mainly through .::::

°
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106 e
o
N

ey Te Tm e e
o o,
LN f_--f'_\'l', ol

N N T N T L



Y
‘
n'.‘:-

v,
"
the planetary scale vanations in the meridional heat flux convergence of svnoptic 2
waves, which produces a positive correlation between planetary wave upward moticn ,’,:- ﬁ
and temperature. In this study, it is found that forcing through the monmentum AN
advections are also important {especiallv for the barotropic mode). The apparent EN
conflict between this study can be explained by the differences in the data used rather ;::.
than the mechanism. ';
There is no question that the synoptic scales have an impact on the dynamics of g
planetary scales. For example, if a major cyclonic development is missed in a forecast s
it could lead to a sizable error in the planetarv waves because the nonlinear e{fects of "':5_
cvclones would not be properly represented. This fact means that to more accuratelv _?_
forecast planetary scale waves one must improve the forecast of svnoptic scales which ;
will feed back and cause an increase in accuracy of the planetary scales. This has o
already been demonstrated to some degree because higher resolution models tend to ::':.:
give better planetary wave forecasts than lower resolution models even though the '.,\
truncation error for the planetary waves should be negligible for both resolutions. ;" \
It remains for future studies to determine how well numerical models represent ::j: ',
these interactions and how errors in forecasting these interactions affect the planetary
scale forecasts. Future studies might should try to examine how periods of large '
‘ svnoptic-planetary interactions are affected by changes which occur on the time-scale .
of synoptic wave. The interactions in this study were examined onlv every five davs so :_’,-\
1t was not possible to see how the interactions varied with the changing svnoptic :._
patterns. Z:';T:

Another possiblity for future study would be forecast verification using normal E
mode analysis. Using normal mode analysis, it may be possible to more fully examine .Zj::_
the relationship between errors in determining the interactions between planetary and I.::j:
synoptic scales and any subsequent planetary-scale forecast error. Finally, other :_}'Z'
studies have indicated that nonlinear interactions mav be important in maintaining !
blocking patterns. These studies did not use normal mode analysis. Much might be E:‘.
learned about the dvnamics of these blocking patterns by examining the nonlinear ;’.:.
interactions using normal mode analysis. {"
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APPENDIX A

LINEARIZED HYDROSTATIC, THERMODYNANMIC AND
CONTINUITY EQUATIONS

The vertical structure of the NOGAPS model follows the development given by

Arakawa and Suarez (1983). The variables are staggered in ¢ so that all the variables

(T, ¢, and V) except pressure and ¢ are carried at the mid-point of each layer. The

o vertical structure is illustrated in Fig. A.1

2 The finite difference form of the hvdrostatic equation is:

¢k — Sks3 = Cp( Pesz — Pe)brsy for k=1,3,..k — 2 (A1

and

bk = éu + Cp( P, — Pi)bx (A.2)
Where

al+x aldx

1 1 Deyy — Py
Pr= — ~ - Al
P51 + K Pka1 — Pk—1 (4.3)
_ po L _1 BT -BI
> A I A ) (A.3)
and

Ox41 = Axy10x + Biy16k4a (A%

are the interpolation formulas used to produce energetically consistent equatons

where:

Pk = 0k(ps — Pt) + Pt (A0
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Figure A.1. Vertical grid structure for NOGAPS model.
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: By, = Per2= Py (A.9)
9] + Pk+2 - Pk
PePy-z _ Pr_,

Agoy = 5= (A.10)
) Px — Pg_3
N _ PxPx_
' : By, = Px Pr_y
; -1 Py — Px_s (A.11)
' T is temperature, p is pressure and Cp is the specific heat at constant pressure. The

geopotential at each level is computed using
\ éx = b, + Cyo( P, ~ Px)fk (A.12)
K, A3

Sn=k+2CP(Pﬂ - Pn-2)(Bu—x 9n)

which are just integrated forms of (A.l1 ) and (A.2). The primed sum indicates
mcrements of 2. The above form of the hydrostatic equation can be written as:

¢k - &. = n—leﬂT

(A.13)
“'hm 0
n<k
Cp(Ppiz = Pp)Ansr
G n= piin n =
, P, n=k (a15)
Cp(PrH-? - Pn)An+l "
P, N
C,(P, — P,_ n—
p( 2)Bny n>k
or tn matnx form as Py
¢—¢,=CT (A.16)

The fiute difference form of the thermodvnamic equation (Eg. 299 in Arakawa
and Lamb:1972) in orthogonal curvilinear coordinates is

1 . A
e[ wT ¥, + [6e (FT°) + 6,(GT" v+ aP,‘;&,(se)fj

, (A7)
1 Tl ——n
= —[(oma)— + -—Al ora) Ser + Vé—(mra) bpm + TIQ)X
C at n "
where P
Acln
M=r (A.18)
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G=1rvéf-
m

S

prEZ

§=1I¢ (A.21)
The overbar is a linear average in the direction of the variable indicated, and 6x is a

S

difference taken in the direction of the subscript.

22

To linearized, first subtract

k 6 (S 1
TEI6,T1 + 6.F + 6,G + 'Z_a)‘ff -0

y -\,

which gives
1k 50[‘5}:‘] 1 k 5H

k- T—Z._a— - a(waa),,*& = (Q@r)ij

1 . a
Ao P59

16T +
or ~
T -1
Ppe-1

_ (cra)xy dlnmw
where Ty is the rest-state temperature. =~ ~ C, 3 = (@r)is

Ok—1

Pe = Tul- Aok

2 bl Ju o 9 pib J8 S J

T _ .
k+1 Pk _ Tk].q. Ok+1 _ [

6T
¢hu +[Pk+l Aok

(A.24)

Substituting the linearized form of the continuity equation (Egs. 166-167 in
Arakawa and Lamb;1972)

Ok = ‘Sﬁlzl(v - VinlQon + UIH»IS:f;x(V ' Vn)Aan + Q.
Oy = _jﬁ;i'(v -V)plAop, + ak_{jf;,(v -Va)Aon +Q_

Seinme=-NE (V. V))Ac, +Qp

n=1

(ak—l - I)S:;?'(V : V)nAan + Uk*lzf;_k_;,g(v ’ 1";)A(7"
Aok

-~
s
N

- - - - - - - - -
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(k1 = DSEZH(V - V)Aon + 0kt SEL (T Va)Aon

+[ ]-
Tk

+ P
In matnx form

6eTi; + (V- V)i =(Qr)i;

Adk

T (x SES L (V- V) agw = (Qr)y

(A.30)
where
(ok+1 — 1) (ok—1) Tk de
(== s pr g o <k
(ok+1 = 1) (Uk.—l) Tk de (A.2D
= e - =k
en = |l 1+ i Pt I P
. '~+l (ak-l) Tlc de
+ = k
The formula

dPe _ Aks1[0ks1(Pera = Pie)] + Bio1[0k—1 (P = Pi-2)]
dr Aok

PO - Pk k= K
is that derived by Arakawa from the interpolation foimulas (A.3) - (A.9). Note that

T

k<K (A.32)

the continuity equation may also be written in matrix form by defining
- -

A0'1
Aoz (A.33)
M=
Ao
so that -0
Selar =-NT6 +Q, (A.3d)
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APPENDIX B
NORMAL MODES OF THE QUASI-GEOSTROPHIC MODEL

AT Y T T |
AN

>
ClP A 4

It is convenient to use the following vertical coordinate ey
2
,
Z = -In(p/po), (B.1) L
where py) is a fixed standard sea-level pressure. The vertical coordinate Z is related to .
the actual height z, and the geopotential by the equation of state and the hydrostatic '-__~'
equation: 2
)
3z 3¢
RT pa = pga aZ (B.2) .‘.';
This verucal coordinate is closelv related to the more famiiiar pressure coordinate o
svstem and the vertical derivatives of the two system are related as follows: ',','-Z"
e
3 10 .3
dp poZ’ (B.3) E
while the other partial derivatives are the same in both svstems. The Z-velocty Z is Ny
related to @ through -
w
Z=—. (B.4) 34
p A
The basic equations of this model are: o
N
‘,
¢ < ‘
= RT (B.5)
oV v :3.
—a—+v vv+zﬁ+v¢+kav 0 (B.6) =
)
+~3
f‘\ ‘
T v.vr zaT ZRT = (8.7 %
ot 4577 © =
aZ )
We assume boundary conditions of Z= 0 at0 and Z= ZT. where ZT 1s Z at the top of
the atmosphere. An expression for Z mayv be obtained by rewniting B.8 as ;::
1
~
\
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. .
v-v+e‘a—z-(e"2) =0. (B.9)

-Z

if we multiplly (B.9) by e™“, integrate from Z to Z and solve for Z we obtain

Iy
7 = ¢? -2V .VdZ.
Z=c¢e /z e V.V (B.10)

-Z = constant then (B.10) can be written

Assuming Boussinequess conditions 1.e. e

. ‘,

Z = ; V-VdzZ. (B.11)
Next we linearize (B.5)-(B.8) about a hvdrostatic and adiabatic mean state at rest by
letting

V =V'(z,y,2,t); ¢=9(2)+¢(z,y,2,1). B.12)
Bv combining the linearized versions of (B.10), (B.5). and (B.7) we obtain a single
equation for mass which contains all of the vertical derivatives:

82 ) Zy
¢ ir(s) [ v.-vdz
z

otoZ (B.13)
The term I'(Z) is the mean state static stability and is given by
d 96 - Hgq, g 18T
[(2) = 3757 + %8 = =% (C +537) (B.14)
where
H = RTyg. (B.13)

A vertical structure equation can now be determuned from B.13 by first dividing
by I'(Z) and then taking é .8Z of (B.13) so that it can be written as

d 19¢

a:(az T 82))
Next we can use the technique of separation of vaniables to deterrune the vertical

+V.V=0 (B.16)

structure equation. This 1s done by letting

¢ =®,.(z,y,t)0,(2) (B.17)

V = Va(2,5,6)6a(2) 1S

and substituting these expressions into (B.16). The vertical structure equation obtained

by the above procedure is.
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A The associated boundary conditions for this equation are
O¢a

; ¢ = 0. o

, az (B.20)

2 The vertical modes of this model are just the eigenfunction of the boundary value
n.' . problem given by (B.19) and (B.20). Assuming I'(Z) is constant then the vertical
o modes for this system are

L Z
'n-- ¢II —_ A” n—”_ n — 0 —
% 2 * (B.21)
..:?_ These function can be used to transform the basic equation into equations for each
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