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ABSTRACT

The effects of synoptic waves on the dynamics of planetary waves are

investigated using normal mode analysis. Initialized analyses of the Navy Operational

Global Atmospheric Prediction System (NOGAPS) for 19 days between January and

April 1986 are projected onto the normal modes of a linearized version of the model.

For each analysis, the diflerent terms (adiabatic nonlinear, linear and diabatic) which

affect the time tendency of planetary-scale modes are determined by a one-time step

integration of the NOGAPS model. The effect of synoptic scales on planetary scales is

determined by computing the difference between the adiabatic nonlinear term

computed from the NOGAPS analyses and analyses for the same period that have

been spectrally filtered to remove most of the synoptic-scale waves. The energy

tendency due to the nonlinear adiabatic term and the synoptic-scale contribution to

this term are also computed. It is shown that the synoptic-scale contribution to the

adiabatic nonlinear term and the time tendency of planetary-scale modes can be a vcry

large percentage of these terms.

By eliminating momentum advections in the model and computing the adiabatic

nonlinear term for the filtered and unfiltered analyses, the relative importance of

interactions through mass field interactions or momentum field interactions are

determined. It is shown that synoptic-scale interactions which affect the planetary-

scale barotropic modes are primarily through the momentum advections, while mass

and momentum interactions are possible for the baroclinic modes. The importance of

mass field interaction generally increases as the vertical scale of the wave decreases.

Because of the importance of synoptic waves to the dynamics and energetics of

planetary waves, errors in the forecasts of planetary waves may in part be due to the

synoptic-scale forecast errors.
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I. INTRODUCTION

Atmospheric predictability studies (Lorenz, 1969) indicate that each scale of

motion has different predictability, e.g. small-scale motions are theoretically predictable

to an hour, synoptic scales to a few days and planetary scales to a few weeks.

However, a number of studies (Lambert and Merilees, 1978; Baumhefner and Downey,

1978; and Morse, 1983) have shown that synoptic-scale motions, rather than planetary--

scale motions, are the most accurately forecast by numerical models. Although

planetary wave errors have been reduced in current operational models (Wallace et al..

1983; Bettge and Baumhefner, 1984), planetary waves are still noL forecast as accurately

as cyclone scale waves. This result does not seem to be dependent on the type of

model used. Baumhefner and Downey examined a number of different models and

found the same error pattern. The error in forecasting planetary-scale waves might not

seem to be that important given that the error in the synoptic scales is smaller and that

the synoptic scales of motion produce most of the day-to-day weather changes. The

importance of accurate planetary-scale predictions is clear when one considers medium-

to long-range forecasts (up to 10 days). Since planetary waves often steer the smaller

synoptic disturbances, an improved planetary planetary-scale forecast would

presumably lead to an improvement on the synoptic scale.

There are at least two reasons why planetary waves are not forecast as well as

theory suggests. One reason is that the dynamics for planetary waves are poorly

understood. Planetary waves consist of a quasi-stationary component and a generally

smaller transient component. The quasi-stationary component is thought to be a

response to forcing by a combination of topography, differential heating due to land-

sea differences arid possibly scale interactions. It would seem reasonable to suspect

that errors in the quasi-stationary component might be due to inadequacies in the

model forcing. Another source of error for planetary waves is spurious excitation of

transient planetary waves (Daley et al., 1981; Somerville. 19S); Lambert and Merilees,

1978: Roads and Somerville. 1982). These spurious waves are thought to be the result

of errors in initial data or an inadequate model domain. Such waves are a major

contributor to planetary wave error in the first 24 to -48 hours of a Cbrecast Dalev et

al., 1981). These transient waves have often been examined in terms of the normal

11 *



modes of the linearized set of equations describing oscillations of a stratified resting
atmosphere on a spherical earth. The mode that has been most often identified as

being spuriously excited is the so-called external Rossby mode. This mode has a large

phase speed and a period of approximately 5 days. This fact has led some to refer to
this mode as the 5-day wave. Daley et al. (1981) showed that large-scale external

Rossby modes are excited when a hemispheric domain is used rather than a global

domain, and when bad or poorly analyzed tropical data are used. Daley also showed

that application of the nonlinear normal mode initialization procedure of Machenhauer
(1977) to the large-scale external Rossby modes improved the forecast in a root mean
squared sense for the cases examined. However, he properly notes that there is no

evidence to show that the Machenhauer balance condition, which seems to be

appropriate for the gravity modes, is applicable to the fast Rossby modes.
Very little is known about these Rossby modes in the atmosphere or in numerical

prediction models. The best observational evidence for the existence of these normal

modes is from the studies of Madden and Julian (1972) and Ahlquist (1982). Applying
time series analysis techniques to station pressure data, Madden and Julian were able

to identify westward propagating 5-day waves. The observed characteristics of these
waves were shown to be not inconsistent with those of a planetary-scale Rossby wave.
Ahlquist projected 1200 consecutive days of twice daily National Meteorological

Center tropospheric analyses of velocity and geopotential onto three-dimensional,
normal mode Rossby wave structures. Through spectral analyses of these time series,
Ahlquist was able to identify 14 planetary-scale, normal mode waves. By contrast, a

rather large amount of research (Dickenson and Williamson, 1972; Williamson, 1976;
Machenhauer, 1977; Errico, 1984) has been done to determine the nature of the
dynamic balance of the gravity modes. It is from these investigations that the
nonlinear normal mode initialization procedure was developed. The dynamic balance

of the gravity modes has been studied primarily by long-term model integrations.

A third and as yet unexamined reaso, for errors in numerical predictions of
planetary waves is that these errors are due to errors in the smaller (cyclone) scales.

The dynamics of planetary waves may be such that nonlinear interactions from smaller

scales are important. If this is the case, then errors in cyclone scales would lead to
errors in the planetary scales. The planetary scale prediction errors in numerical

models cannot be fully understood or corrected until the importance of nonlinear scale
interactions are determined.

'.
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It is the general hypothesis of this study that nonlinear interactions with cyclone

waves are an important factor in the dynamics of planetary waves. The purpose of this

study is twofold:

I. Determine the importance of these nonlinear interactions using the normal S

mode analysis technique of Errico (1984); and

2. Identify some of the mechanisms of these nonlinear interactions.

A number of studies have examined nonlinear interactions and their importance

to the maintenance of planetary waves. One of the earliest studies to illustrate how

nonlinear interactions could maintain large-scale, quasi-permanent flow was by

Saltzman (1959). Using a highly simplified barotropic model with an idealized flow
that crudely simulated a Northern Hemisphere winter 500 mb flow pattern, Saltzman

found that there was a substantial energy transfer from the synoptic waves to the

planetary' waves. Saltzman and Fleisher (1960) used 500 mb data to show that in the

mean there was a net kinetic energy transfer from synoptic scales to planetary scales.

A more recent study by Kao and Lee (1977) showed that the primary contribution of

nonlinear interactions to the energy transfer is essentially through the interactions of

the slowly moving waves, the stationary long waves and zonal mean flow. Saltzman

(1970) gives a review of the major studies that have used Fourier analysis to identify

nonlinear interactions. Gall et al. (1979) used a simplified general circulation model to

demonstrate that the initial development of the ultralong waves from a zonal mean

basic state can be forced by the interaction between the cyclone waves and the basic

flow. Gall argued that the ultralong waves were forced mainly by planetary scale

variations in the meridional heat flux convergence of the higher wavenumber modes.

which produces a positive correlation between planetary scale upward motion and

temperature. The principal kinetic energy source for the planetary waves was the

conversion of wave available potential energy to wave kinetic energy at a given

wavenumber. A more recent study by Young and Villere (1985) confirmed in part

Gall's results, but also showed that direct transfer of kinetic energy from intermediate

scales to planetary scale was of equal importance. In both of these studies. the

nonlinear transfer of potential energy was not computed directly. This transfer was

implied by showing that the conversion of eddy available potential energy to eddy

kinetic energy was much greater when nonlinear interactions were allowed.

The analysis of the scale interactions in this study are done usinL, Erricos normal

mode analysis procedure. This analysis procedure requires the use ot a numerical

13 '
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model and its associated normal modes. The model that will be used in this study is a

version of the Navy Operational Global Atmospheric Prediction System (NOGAPS).

The normal modes used in the analysis procedure are derived from this model. This

analysis method is used because it has a number of advantages over previously used

methods such as Fourier or spherical harmonics analysis. The most important

advantage of using normal mode analysis is that the total effect of other scales

(vertical, meridional and zoral) on a given mode can be determined. Another

important advantage is that the nature of wave motions can be identified physically

and high-frequency noise can be separated consistently from low-frequency

meteorologically significant waves in both mass and velocity fields. Normal mode

analysis also allows one to separate the data into different vertical, zonal and

meridional scales while maintaining the physical nature of the data. The other

techniques that were mentioned above do not have this advantage. While it is true

that a combination of the Fourier and spherical harmonic could be used to decompose

the data into different vertical, meridional and zonal scales, this representation would

be artificial and it has the disadvantage of having no explicit relationship between

spectral modes of mass and velocity. Finally, since divergence is significant in the

motion of ultralong waves, it may be more appropriate to represent data as solutions

of linearized primitive equations rather than as solutions of the non-divergent vorticity

equation (i.e. spherical harmonics).

There have only been a few studies in recent years (Kasahara and Puri, 1981; Ko,

1985) that have used normal mode analysis to examine the spectral distribution of

atmospheric energy. These studies were confined to examining just the spectral

distribution of atmospheric energy and not the energy conversions between modes of

different vertical and horizontal scales . There has been even less work in determining

the energy exchange between the different vertical and horizontal modes. The little

work that has been done in this area has focused on zonal mean-eddy kinetic energy

exchange (Tanaka et al., 1986). Tanaka used normal mode analysis, to examine 25

days of daily First GARP (Global Atmospherics Research Program) Global

Experiment (FGGE) IlIb analyses from the Goddard Laboratory for Atmospheres

(GLA) and the Geophysical Fluid Dynamics Laboratory (GFDL). Tanaka examined

the distribution of kinetic energy as well as the kinetic energy interactions between the

barotropic mode and baroclinic modes of different zonal wavenumbers. The focus of"

his study was on zonal mean-eddy kinetic energy exchange. This study is unique in

14 IJ
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that the focus of the normal mode analysis is on the interaction between synoptic

scales and planetary scales and that these interactions are examined in term of the total

energy exchange (potential and kinetic) between scales.

A description of the NOGAPS model used in this study is given in Chapter Il.
The normal modes of this model are derived in Chapter 111. To assist in the

interpretation of results from the NOGAPS model, a nonlinear scale analysis and the
results from a simple analytic model are presented in Chapter IV. The results of the

experiments conducted to determine the importance and mechanisms of nonlinear

interactions are given in Chapter V. Chapter VI contains a brief summary and some

conclusions of this work.

155



11. THE MODEL

The model used in this study to investigate the dynamics of planetary scale waves

is version 2.2 of the Navy Operational Global Atmospheric Prediction System

(NOGAPS). This model is a modified version of the general circulation model

developed at the University of California at Los Angeles (Arakawa and Lamb, 1977).

It is a global finite difference model and uses the primitive equations in sigma

coordinates. The resolution of the mass variables (.surface pressure and temperature) is

2.4' latitude by 3.00 longitude with nine levels from 50 mb to the surface. The model

uses scheme C staggering (Arakawa and Lamb. 1977) in the horizontal, and finite

differencing in the vertical according to Arakawa and Suarez (1983). The horizontal

finite differencing is energy conserving and it conserves enstrophy when the motion is

nondivereent. The vertical differencing conserves the global mass integral of the

potential temperature under adiabatic processes and it employs a local form of the

hydrostatic equation. The time differencing is a combination of five leapfrog steps for

each Matsuno backward step, while the heating is computed during a single forward

step that precedes the Matsuno step. However, in this study only the forward time

step of the Matsuno step is used in the analysis procedure.

Physical processes include radiation, moist and dry convective adjustment and a

cumulus parameterization technique (Arakawa and Schubert. 1974), which interacts

with a bulk parameter boundary laver (Randall, 1976; Lord, 1978).

The objective analyses of wind and geopotential are done with a three-

dimensional successive corrections method that is a form of the scheme used by Barnes

(1964). The analyses of wind and mass are done indevendently. Since the NOGAPS -'

initialization method is fully described by Barker (19S2). onlv a brief description of this

method ill be given here. The results of the independent wind and mass analyses are %J^

combined via a calculus of variation method in which the balance equation is used as a

constraint. The functional

F (0,-~) + fl(V - V) 2  2AJV f fVIPF($,') = ( _ ) + ( - ) + ,[ f t (2.1) f..

IA

+ 2J(u, v) V2  dA

-I,,
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is minimized and the associated Euler-Lagrange equations are solved over the entire

earth. Here € is geopotential, W is the stream function, A is the horizontal area over

which the integral is applied, X is a Lagrange multiplier and the symbol - denotes

analyzed values. The quantity PI can be made a function of latitude if desired to force

more adjustment toward either one of the analysis fields in certain areas. Thus, fi
would have relatively greater weight in low latitudes where the wind is a more reliable

parameter for analysis and prediction than the geopotential field. The above procedure

minimizes the change to the analyzed geopotential and non-divergent wind while

constraining these variables toward the balance condition. The problem of generating

an appropriate divergence to go with the nondivergent winds produced by this

balancing procedure is solved by using the forecast first-guess divergence. The problem

of vertically inconsistent corrections is minimized by vertically coupling the variables.

The variables are coupled before they are initialized by projecting them onto empirical

orthogonal functions. The smoothness of the four empirical orthogonal functions used "

insures that the inconsistent vertical variations of wind or geopotential that couid be

generated by the initialization procedure are eliminated.

The initialization procedure used in this version of the NOGAPS model initializes

objectively analyzed correction fields for V and 0 rather than the updated fields. This

procedure has the advantage of not affecting areas without new data. The resulting

initialized corrections are interpolated to the model sigma coordinates surfaces and

added to the first-guess forecast. This method minimizes vertical interpolation error

and preserves the model generated first guess divergence.

17,' ,€, ¢,',.',,; ." ,\,',. ..'.." " .-.. .-.-....-.. ...- ,,.,..-. .-..,.- ... -,. -.- .-.- .- .... -. .. .... .-, ....-... -, -..,,- .- -
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III. NORMAL MODES

Since the data used in this study are analyzed using the normal modes of the i

linearized equations from the NOGAPS model, it is important to have a fundamental

understanding of these modes. This understanding may be gained by examining the N

derivation and structure of the modes. The normal modes for an earlier (lower

resolution) version of the NOGAPS model were derived by Barker (1982). He followed
the method of Temperton (1977) and Temperton and Williamson (1981). Three

different sets of modes are derived for the version of the NOGAPS model used in this

study. They are obtained below by separation of variables. Except where noted, their
derivation closely follows that of Barker (1982). Each set of modes is examined for

consistency with the model as well as for similarities to modes derived by other

authors. It will be shown that modes derived with a model top at ) mb are best suited

tor use in this study.

A. VERTICAL MODES

The linearized governing equations used by Temperton and Williamson (1981)
are

ov-t + fk x V + V(Rf Inp, +€) q (3.1) ':

T ( .. '-3'+ f (V. V) = QR np .+ Q(1

-np + 1 (7 .V ) =Q T(

+ (.V (3.3)

Here the vertical discretization is taken into account by writing the equation in vector
form. Thus. V is the vector form of the wind, T is the perturbation temperature, T is
the rest-state temperature, Ps is surface pressure, 0 is the perturbation geopotential.
V'V is divergence and is terrain geopotential. r and G are linearized matrix

operators and ' T is a vector. Q QT and Q are the nonlinear components of their

18 ,.
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respective equations. All of the above operators and vectors are defined in Temperton

and Williamson (1981). Their exact form is not important. However, it is important

to note that the entries that make up these matrices are constant and that C is defined

asp, ps. .

Barker approximated (3.1) - (3.4) using the cr system of the NOGAPS model as

4.iav
F +fk xV + V(Yw-- n r+ ) (3.5)
at

49T-8T a..

- + r(V. V) = QT (3.61)
at

-nir + IT (V-V) = Q (3.7)
at

_dT.4)- .+ GT (3.S) .

where

a, = r (-3.9) "

and I.

7r P . (3.10) ..

Pt is the pressure at the top of the model atmosphere and a is specific Noiurne. T and

G are once again matrix operators that are similar to those in (3.2)-(3.4j. They are

consistent with the Arakawa and Suarez (1983)) vertical finite difference scheme used in

the NOGAPS model and are given in Appendix A. A different treatment of (3.4) will 0

be discussed later,

Following Temperton and Williamson (1981). Barker (1982) detined a vector h 1

whose horizontal derivative represents the pressure gradient force. .."

gh = 46 + - In Ir (3

Tlhis definition allows the determination of a single equation for mass by operating on

(3.6) with G. multipxing (3.7) by v-r, and then adding the resulting two equations to

obtain

oah
g" - + C(V. V) =Qh 12)
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where

C = Gr + Y-twrl (3.13)
and V

Qh = GQT + QRt. (3.14)

Although equation set (3.12) is vertically coupled, it can be transformed by

separation of variables into a set that is not coupled. This is done through the

diagonalization of the matrix C by:

E-CE = gD, (3.15)

where the matrix E contains the eigenvectors of the n'-'-;x C as columns and the

diagonal matrix D contains the eigenvalues of C. Dcfining the vertical transformb of i *Oil

and V as

"V=E- IV (.u i

=E - 1h  (3.17) "

produces the uncoupled equation set ,

o---+ y'k x V + g 'h = Q,, (3.1s) :

ata

9--+D(V V) Qh, .1 :

at'
• -- ,.

where Qv and Qh are the transforms of Q,, and Qh respectively. These equations are !

uncoupled except through the nonhnear terms on the right sides of the equanons. The
lindepencent variables in (3.18) and (3.191 are the cocflicients ofthe vercal modes (tle

eigenvectors contained mn E). There are as mare moces as there are iev'els in tle':...

model. ],
The ve cal modes derived usine the inearzed ,OGAIS equatons given b-"

(3.5) D(V.) for T equal to (21S. 21S, 21S. 22S, 2-41 254, 267. 27o, (l r o

-hr n r h rasom fQadQ rsetvl.3 Ths equathon are

Fig. 3.1. For comparison, the vertical modes derivtd be Temperton and Wilhamson098"1) for T equal to (29, 2 , 21S. 25S, 21, 20 4, 27. 28. 285 K are shown in Fie.

1981) for T equal to (229, 2IS,"22 27 2 5 ) a

b
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Table 1. Equivalent depths (m) of the vertical modes of the NOGAPS and
Temperton and Williamson (T & W) models.

I

Vertical NOGAPS T & W
mode index

1 7,829.4 10,153.1
2 972.46 4,701.0
3 186.67 851.40
4 77.86 205.05
5 30.41 64.90
6 13.44 20.06
7 5.629 7.275 'p

8 1.399 2.366 '"
9 .359 .498

'p

3.2. The eigenvalues (equivalent depths) of the vertical modes for this linearization of

the NOGAPS model and those derived by Temperton and Williamson (19SI) are given

in Table 1. These NOGAPS modes are quahtatively very similar to the modes derived

by Temperton and Williamson (1981). The general structure iexcept the sign of the

4th-6th modes are opposite from Temperton and Williamson, but this an arbitrary

choice) and the levels at which the crossings occur are similar. However, there are

some noticeable differences between the two sets of modes, with the most significant

differences occuring in the gravest modes. The NOGAPS barotropic mode tmode one)

lacks the characteristic peak at the top of the atmosphere and in fact decreases near

the top. The first two baroclinic NOGAPS modes have zero crossings at levels lower

than for the modes derived by Temperton and Williamson (1981). Most of these

differences can be attributed to the differences between the NOGAPS model and the

model used by Temperton and Wlliamson (1981). One difference between models is

the location of the model levels. One of the major differences, in terms of vertical

structure, is the location of the model top. The model top in the NOGAPS model is at

50 mb while the top in the model used by Temperton and Williamson (1981) is at U

mb. Barker (1982) also found that the equivalent depths are sensitive to the locaticn

of the model top. Changing the model top from 50 mb to 0 mb increased the

equivalent depth of the external mode from 7874 m to 906 m. Barker found that a

consequence of specifying the model top at 50 mb is that all the equivalent depths are

smaller than if the top was at 0 mb.

Although most of the difference between the two sets of modes can be attributed

to the difference in the model tops, part of this difference is due to an inconsistent

23
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linearization of the hydrostatic equation by Barker. The discretized. unlinearized

hydrostatic equation for the NOGAPS model is P

,+ GT, (3.20)

where the matrix operator G is similar to the one given in Appendix A, except that the

full values and not the mean state values are used in the entries of G. The G matrix S,

defined by Temperton and Williamson (1981) is constant. However, the G matrix

defined above is not constant. The choice ot'a model top at a nonzero pressure level

makes G a function of' surtace pressure (it in this case). which was not taken into

account by Barker (1982) in his fineanzation of the hvdrostatic equation (3.S..

A second set of NOGAPS vertical modes that inciudes the effect of a vanable G

matrix will now be derived. A more consistent linearization of (3.20) yields

U. +G'T' + G'T, .1

where

G' = G - G.

This linearization of (3.20) has an effect on the matrix C from which the vertical modes
are derived. Consider the momentum equation

av
+ fk x V +a7raVIni+ V = Q. 3.

Inserting (3.20) in (3.23) .

t- fk x V -t- -- 0, -In V T = . ..

The matrix G is a function of' 1t. which is a function of the horizontai coordinates.

Expanding VGT one obtains

av
t + fk x V + ra Innr + 70. + (VG)T + GVT=Q 325)

Following the suggestion of Rosmond (1986) VG can be written with the chain rule as

dG"

Using (3.26), (3.25) can be linearized as

av' dG-
+ fk xV + (a7- + 3r-T)V ln7r + V(7, + GVT' = Q,. (327)
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The derivative of G with respect to 7t can be determined anaivticallv since G L.an be

written as a flinction of it. The linearization of the remaining governing equations is

unchanged. To obtain a single equation for mass one must define h as
dG-

gh = (-- + T -T)In + 4+ GT'. (3.2S)

Using the above definition of h, the matrix C would be defined as

dG-
C= Gr+ (a-'- + TIr T. (3.29)

The matrix C defined in (3.29) is clearly different from the C defined in t3.13). If

G were not a function of surface pressure (the model top was at zero), then .28) and

(3.29) would reduce to (3.11) and (3.13) respectively. Since the matrix C in (3.29) is

different from that defined in (3.13), the eigenvectors will be different. However, the

overall similarities between the vertical eigenvectors and eigenvalues of the NOGAPS

model (as derived bv Barker. 1982) and those of the model used by Temperton and

Williamson (1981) indicate that the effect of the additional term

dG -

in (3.29) is small. The vertical modes obtained from the matrix C in (3.29) are shown

in Fig. 3.3 and the equivalent depths are given in Table 2. The term (3.30) has been

approximated by a centered finite difference as
(G + AT) + G ( -%:) .

2AT (J.31) .

where An equals I mb. The major difference between these modes and those derived

previousiy occurs in the barotropic mode. The characteristic peak that is abent in

mode one in Fig. 3.1 is now present. Also, the equivalent depth associated with this
mode has increased from 7S29 m to 8101 m. The more consistent linearization of the

hydrostatic equation leads to a set of vertical modes that are more similar to those

derived by Temperton and Williamson (19S1).

Although the vertical modes derived with a variable G matrix are more sirmlar

(than modes derived without this effect) to modes derived by other authors. they do

have some disadvantages. They require the computation and storage of an additional

term. In addition, the placement of a model top at 0 mb is clearly a more realistic

condition than having the model top at a finite pressure level. The closer the basic .

state is to the real atmosphere, the better the linear approximation becomes. Thus, it
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Table 2. Equivalent depths (m) of the vertical modes of the NOGAPS model that
includes the effect of a variable G matrix.

Vertical Equivalent depth
mode index1 8,101.8

2 914.33
3 198. 06
4 73.78
5 31.68
6 12.99
7 5,749
8 1.358
9 .368

would seem that better results would be obtained at less comttational and storage

expense if the vertical modes were derived with a model top at 0 mb. S'

Consequently, the modes used in this study are derived from a basic state in

which the top of the atmosphere is assumed to be at 0 mb. The equivalent depths for

these modes are given in Table 3 and their structure is given in Fig. 3.4. The modes

derived with the model top at 0 mb have equivalent depths that are much larger than

the NOGAPS modes derived using Barker's linearization or those derived with a
variable G matrix. The 0 mb top modes have zero crossing at higher levels than the

two other sets of NOGAPS modes and their structure is more similar to the modes

derived by Temperton and Willamson.

B. HORIZONTAL MODES

The details of the determination of the horizontal modes of the NOGAPS model

have been given by Barker (1982). Only the general method for determining the modes

will be given here.

The solutions of the uncoupled equation set (3.18 - 3.19 ) for each equivalent

depth De gives the horizontal modes of the model. Equations (3.18) and (3.19) can be

written in finite difference form as

g(6, h),. _-(32bt j+ - Q(), S+ + = 3 2)api AA ,+., 1
-- A4

~_,(fpU), + g('o h),,,.+bt-j+ + + -- Q 3.3 3) I
+ pj, aAO .- .
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Table 3. Equivalent depths (m) of the vertical modes of the NOGAPS model with ,
model top at 0 mb.

Vertical Equivalent depthmode index968°3"

1 9,687.3
2 2,575.5
3 496.85 L

4 156.01 L
5 52.99 .
6 21.85
7 8.960 .
8 2.253 .
9 .520

b /hj,. + D[ + ( ) . = Qh,,, (3.34)
aAO pjaAA

A vertical mode index (Z) is assumed for D and each variable. The finite difference

operators are

(.T)k =- T + , - T_ ,L (3.35) 

- 2 (3.36)

(Th. (3.37)

The other variables are defined as follows: a is the earth's radius, AX is the longitudinal .

grid interval, AO is the latitudinal grid interval, u and v are the east and north

components of the wind, respectively, i and j are the longitudinal and latitudinal I

indexes, respectively and p is cos 0.

Special definitions of' the Coriolis term are used to keep the matrix operator of

(3.32)-(3.34) symmetric. A symmetric matrix insures that the corresponding

eigenvectors are orthogonal, which allows determination of the inverse of the

eigenvector matrix by simply taking the transpose. To achieve symmetry, the Coriolis

term in (3.32) is replaced by -G

f) P3 - + f) p)~ ~ + ,+ j
(3.38)

2p,,
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and the Coriolis term in (3.33) is replaced by

f7 (U).,. + ft_ , (u),,
2 (3.39)

where

3 + f,
2co (- (3.40)

and f .f. '+L + -, ,,.,
2o( (3.41)-,

These definitions correspond to a potential enstrophy conserving finite difference
scheme as derived by Temperton and Williamson (1979).

A dynamical state vector is defined as

T(A,, 9,. t) =1 j 03, t) 1(3.42)

where y represents grid point values of the vertical mode coefficients. These values can

be expanded into Fourier modes by
I-I "

(A,,,o8,e) = 0 t(,,,e)e'',m .
0, = (3.43)

The inverse of (3.43) is
I

j (,,,, = I- ;ZqA,,, 0,)e"m 14A.

Assuming a wave solution of the form in (3.43) allows (3.32) - (3.34) to be written as

,U r( gik'h*.
) ,2 ,+ ' ap, = (3.45)

49v,_ r(m) "
- - + f 1 i"-JJ'(m) ± -a--j' h -  = Q

9t 2aaO Jh, ,(340)

h, De, D

where

v' (m) = 2in(S-)
A2A (3.4S)

3o
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r(m) co(-- ) (3.49)
2

J'(m) = Ao.) isin(-
2 2 (3.50)

After applying the symmetric operator

J'(m) 0 0

St(0 - ) (3.51)

to I such that

= S'Y (3.52)

allows Eqs. (3.45) - (3.47) to be written in matrix form as:

-iQ- + -iQH'.
at (3.53)

The matrix Q is diagonal and positive definite with entries related to the cos 0 , L is a

matrix depending on the actual finite differences used in the model, and H is a matrix
representing the latitudinal variation of the corresponding nonlinear terms transfbrmed

in the same way as u, v and h are to give I
To complete the computation of the horizontal modes, the matrix equation (3.53)

is rescaled using

= # ' :I=QH, L= -LQ-# (3.5-4)

If Y contains the eigenvectors (normal modes) of L, then (3.53) can be written using

(3.54) as

-a [Y- -i] - y- 'Ly(y- ,)=_y' I.S(3.55)

The identity

A = Y-'LY. (3.50)

where A is a diagonal matrix containing the eigenvalues of L, makes it possible to

rewrite (3.55) as

aC-= - iAC + rat (3.57)

where
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C = (3.58) B.

The nonlinear term is now r and the mode frequencies are A.
The components of C, denoted here by C(mn,t), are referred to as the coefficient V

of the normal mode. Equation (3.57) can be written in component from as

8C(m, n ) -iwC(mn,e) +r(m,n,f).
at -- (3.59)

The elements of C are functions of the vertical, zonal and meridional mode numbers t,

m and n, respectively. The mode number n is a measure of the number of zeros

between the poles. For each m, t, and n there are three equations for C: One for an

eastward propagating gravity wave (EG); one for a westward propagating gravity

(WG); wave and one for a westward propagating Rossby wave (R). The symmetric

modes (u and h are symmetric about the equator and v is antisymmetric) consist of the
odd indexed (n= 1,3,5..) Rossbv modes and even indexed gravity modes. The

antisvmmetnc modes (u and h antisvmmetric about the equator and v is symmetric)

consist of the even indexed Rossby modes and the odd indexed gravity modes. These
coefficients are the amplitudes of the various modes required to represent a particular

atmospheric state. Corresponding to each horzonal mode is a natural frequency (o))
that is determined as an eigenvalue of the system. The frequencies of various modes

corresponding to those given by Dickenson and Williamson (1972), Temperton and
Williamson (1981) and Barker (1982) are given in Tables 4 and 5 . The frequencies of

all the modes are very similar, with most of small differences being due to the different

horizontal resolutions used in each model. The structures for a few selected ntdes are
given in Figs. 3.5 and 3.6. The structures of these modes are also very similar to those

derived by other authors (Temperton and Williamson, 19S1; Kasahara.1976: Dickenson

and Williamson. 1972). Any results obtained here using the modes of the NOGAPS

model should be similar to results obtained using modes of other models.

C. EXPANSION OF DATA INTO NORMAL MODES S

The amplitude of a given mode is deterinned by expanding grid point values into .'.

normal modes. The first step in the expansion process is to remove the mean state.
then combine the thermodynamuc variables into one variable, the equivalent

geopotential gh). The data are expanded into vertical modes using (3.161 and (3.17), -

then into Fourier modes using (3.44) and lastly scaled according to (3.51) The

symmetric and antisvmmetric components are found by averaging or ditlerencing the
values from the two hemispheres. Finally, each scaled Fourier mode of each vertical

mode is expanded into meridional modes by (3.58).
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Table 4. Frequencies (s01 ) of the Rossby modes for the models used by Temperton
and Williamson (1981) (T&W), Dickenson and Williamson (1972) (D&W), for the
NOGAPS model with model top at 50 mb (B) and for the NOGAPS model with
model top at 0 mb (M). D- 10 km for (T&W) and (D&W), D-8,101 m for (B)
and D - 9,682 m for (M). Horizontal grid intervals are specified in degrees.

P

n T&W, 10 D&W, 2.5 B 2.4 x 3 M 2.4 x3

0 6. 11xO 5  6.14x10 5  5.93x10 5  6.14x10 5

1 1.44x10 5  1.45xi0 5  1.32xi0 5  1.43x10 5

2 8.46xi0 "6  8.73x10 "6  8.16x10"6  8.68x10 "6

3 5.72xi0 6  5.87x10 6  5.61x10 6  5.86xi0 6

4 3.98xi0-6 4. 17x10- 6  4.05x10- 6  4. 18x10- 6

5 2.87xi0 6  3.08xi0 - 6  3.03x!0 6  3.11x10 6

6 2.14x10 - 6  2.36xi0 - 6  2.34xi0 - 6  2.39xi0 - 6

7 1.63xi0 6  1.86x10- 6  1.86x10" 6  1.89x10 6

8 1.27xi0 -6  49xi0 6  1.51x10 - 6  52xi0 6

9 1.01xl0 - 6  1.22x0 - 6  1.24x10 6  1.25x10- 6

10 8.1Oxl0 - 7  1.02x10 6  1.04x10 6  1.05x10 6

11 6. 62xi0 7  8. 58xI0 7  8. 83xI0 7  8. 89x10 7

12 5.52xi0 "7  7.30x10" 7  7.58x10" 7  7.62x0"7 .

13 4. 70x10 7  6.27xi0 - 7  6. 57x0 " 7  6. 60x10 "'7

14 4. llxl0 5. 43xi0 7  5. 74xi0 "7  5. 77xi0 7

15 3.75xi0 - 7  4.73x0 7  5.06xi0" 7  5.08x10 - 7

16 3.13x10 7  4.14xl0 7  4.49xi0 - 7  4.50x10 - 7

For each Z and zonal wavenumber m .= 0. there are Ill modes in the NOGAPS

model for the symmetric case and 112 for the antisvmmetric case. These modes ma'

be divided into three sets (sets of 37 each for the symmetric case. two sets of 37 and

one set of' 3S for the antisymmetric case). The modes associated with the 37 largest

negative einenvalues are usually referred to as westward-graitational (WVG) modes.

The 37 modes whose eigenvalues are positive are retered to as eastward-gravitational

(EG) modes. The remaining modes, all with negative or zero values are referred to as

Rossb% or rotational (R). In a linearized model, these modes describe westward- and
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Table 5. As in Table 4, except for eastward-gravitational modes.

n T&W, 10 D&W, 2. 5 B2. 4 x3 M 2. 4x3

0 -5.44x10' 5  -5.38x10-5  -4.71xl10 5  -5.29x10' 5

1 -1.31x10-4  _1.30x,0-4  _1.18x10-4  -1.28x10-4

2 -1.87x10' 4  -1.86x10-4  -1.69x10-4  -1.84xl10 4

3 -2. 35x10-4  -2. 36x10-4  -2. 13x10-4  -2. 33xl10 4

4 -2. 79X10 4  -2. 83x10-4  -2. 55x10-4  -2. 80x10-4

5 -3. 22x10-4  -3. 29x10-4  -2. 97x10-4  -3. 27x10-4

6 -3. 63x10-4  -3. 75x10-4  -3. 38x10-4  -3. 73x104

7 -4. OlxlO4 _4.21x'0-4  -3. 8oxlO' 4  -4.20l

8 -4. 36x10-4  -. 66x10-4  -4. 22x10-4  -1.51X10-4

9 -4. 69x10-4  -5. 10x10 4  -4. 63x10-4  -4. 66x10- 4

10 -4. 98x10-4  _5. 54x!0-4  _5. 05x10 4  -5. 13xl10 4

11 -5. 23x10" 4  -5. 97x10-4  -5. 47x10-4  -5. 60x10-4

12 -5. 44x10- _6.38x10- 4  _5.88x10-4  -. 0x

13 -5. 61x10-4  -6. 79x10-4  -6. 29x10-4  -6. 52x10-4

14 -5. 72x10-4  -7. 19x10-4  -6. 70x10-4  -6. 98x10-4

15 -5.94x10-4  _7.57x10-4  -7.11x1lO 4  -7.44x10-4

16 -5.94x10-4  -7.94xlO-'4  -7.51x10-4  -78914

eastward- propagating gravity waves, and westward-propagzating Rossbv waves.

respectively. Consistent with the above categorization. Kelvin waves are EG modes

and mnixed Rossbv-gravity waves are R modes. For each t, there are 113 zonaliv

symmetric im- 6) modes in the NOGAPS model. The modes may be divided amoric

the types R. WG and EG. All of the R modes for mi=0 are stationary in the linearized

model.

In the real atmosphere or in nonlinear models, the normal mode' fronm the

linearized equations are no lonizer independent solutions and their behaxior is not

necessarily wave-like. However, eachi mode n-av be considered as describino a

particular dynamiucal structure. The behavior of these modes is altered by the inclusion

3.4.
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of those terms/physical processes that are absent in the linearized models: nonlinear

advective terms and diabatic terms (which include friction). These terms couple the

behavior of the modes in a nonlinear model. The eigenvalue associated with each

mode in a nonlinear model is not the only frequency the mode may have, but it may be

considered as the mode's natural or resonant frequency. Whether a mode with that

frequency is observed depends on the strength of the nonlinear and diabatic forcing.

For the modes of equivalent depth DZ, the structures of the modes have been

normalized so that the sum of the kinetic plus available potential energies per unit

mass of the corresponding fields is given by
1 -

E,=2 L c,,c, (3.60)
nESt

where C is the amplitude of the mode designated by the index n and the asterisk

denotes a complex conjugate. The sum is over all modes of a given equivalent depth

Dt (denoted by the set St). For each value of C. each mode contributes independently

to Ez because the modes are mutually orthogonal for each Z.

The vertical modes of the NOGAPS model are not orthogonal. Therefore, it is ..

not true that
9

= ZE(3.61)

is the total kinetic plus available potential energy of all the modes. However, E is

positive definite and increases in value as the EZ increase. Although its is not the

precise energy, it does have utility.

D. NORMAL MODE ANALYSIS

In the nonlinear, diabatic, discrete-time NOGAPS model the prognostic equation

of a coefficient may be written as
A C'

swC,, + N,1 + Q,(.62

At (3.621)

where A Cn At is the discrete time tendency of a particular vertical. zonal. meridional

EG. WG. or R mode, -!WoCn represents the linear terms in the model. N n

represents the adiabatic nonlinear terms, and Qn is a sum of diabatic terms. Ihe Cbcus

of th'is study is on the prognostic equation for the R modes and the nonlinear

interactions which ma' occur through the adiabatic nonlinear term.

The procedure for deterrmning the different terms in (3.62) for the R modes is

relativity simple. The linear term for a particular mode n is deternuned by multipling
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the coefficient of a mode by its natural frequency. The coefficient for a mode is

determined from initialized NOGAPS analyses using the procedure described in section

C of this chapter. The discrete time tendency is determined from a one-time step
integration of the NOGAPS model. First the coefficients for the modes are determined b

at the initial time (t). Then the model is integrated over one time step (At) and the

coefficients at t + At are determined. The discrete time tendency is then given by

CR (t + At) - C' (t)

At (3.63)

where At is equal to four minutes. The determination of the time tendency was found

not to be sensitive to the time step used. In addition, for the Rossby modes, one

would not expect AC/At to var. greatly from one time step to another. This in fact

has been demonstrated by Errico (1984). However, for the gravitational modes,

AC/Ist may var' largely in the initial stages of a model integration. This variation of

AC/At for the gravitation mode will depend on the initialization method used. For the N.

Rossby modes, the procedure for determining the time tendency should be adequate for

the purposes of this study.

The nonlinear adiabatic term is determined by subtracting the linear term from

the discrete time tendency that has been determined from an adiabatic one-time step

integration. Errico (1981) was able to derive explicit expressions for the Ns of a

simple. nonlinear, f-plane, primitive equation, two laver model. For this simple model,

the Ns can be written in terms of the sums of quadratic functions of the modal

amplitudes. These sums represent interactions between rotational kgeostrophic",

rotational and gravitational (ageostrophic) and gravitational modes of different

wavenumbers. The complex NOGAPS model does not lend itself to such a simpie

decomposition. Thus the nonlinear adiabatic term is determined numer'cally using the

NOGAPS model and the procedure described above.
L sing a numerical procedure. Emco (1984) was able to decompose the adiabatic

nonlinear terms of the modal equations -f a gobal pnrmiuve equation spectral model

into three different groups: N (R). N (G) and N ( R *G). "The first depends oniv on

the rotational mode coefficients, the second only on the gravitational mode coeflicients,

and the last only on tle sums of products of each type of mode with thL other.

Because of the highly divergent nature of the gravational modes. Nn(R*Gi. may be

likened to interactions between the divergent component of the motion and the

rotational component. For a simple f-plane model, Nn ( *G) would represent terms

such as the advection of momentum by the divergent wind. b

3S
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The adiabatic nonlinear terms for the modal equations of' the NOGAPS model

are not decomposed into Nn(R), Nn(G), and Nn(R*G). However, Errico (19841) has

shown for the long time solutions to the NCAR Community Climate Model, Nn(R) is

an order of magnitude larger than Nn(R G) and Nn(G) for all but the smallest vertical

scale rotational modes (Z= 8,9). For the smallest vertical scale R modes Nn R-G)

Nn(R). For rotational modes, one would expect that if nonlinear interactions occur

through the adiabatic nonlinear term that they would to a first order approximation, be

due to interactions between rotational modes (except for the smallest scale vertical

modes i.e. Z= 8.9).

The diabatic term is determined by subtracting the discrete time tendency

determined from the adiabatic one-time step integration from the discrete time

tendency determined from a one-time step integration which included diabatic

parameterizations (e.g. cumulus, sensible heating parameterizations etc).

In addition to allowing the examination of possible nonlinear interactions
through the adiabatic nonlinear term. (3.62) can be used to gain insight into the

general dynamical ,-ature of a given mode. This insight may be gained by comparing

the relative magnitudes of the different terms. For example, it is possible to determine

if a mode is balanced, i.e., the time tendency of the mode is small compared to the

other terms. If a mode is not balanced, it may be possible to ascertain which terms are

most important in determining the time tendency of a given mode. '

,,9
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IV. A SCALE ANALYSIS AND A SIMPLE ANALYTIC MODEL

To interpret the results from the complex NOGAPS model, one must first have a

good understanding of the linear and nonlinear dynamics of planetary scale modes. To

highlight the difference between the results presented in the next chapter and those

predicted by linear theory, a linear and nonlinear scale analysis of the shallow water

equations is presented. A simpler analytic model will also be developed in this section.

This simple model will be used to show what terms are represented by the adiabatic .

nonlinear term and how synoptic waves may affect planetary waves.

A. SCALE ANALYSIS
Some important dynamical features of planetary scale Rossby modes can be

illustrated by a simple scale analysis of the shallow water equations with a variable

Coriolis parameter. The shallow water equations are adequate for this purpose

because the primitive equations can be represented through the normal mode as a set

of shallow water equations for each equivalent depth (assuming V is not a function of -

the vertical coordinate). The shallow water equations to be scale analyzed are

avt+V. VV" + V + fkxV=0 (4.1) 

and

~+V -VO+ V-V +(kv V. (

The nonlinear terms have been retained to show how nonlinear interactions may have

a significant affect on planetary scale motions. In a strictly shallow water context.

would be considered the mean height of' the fluid and would be ILxed. In a normal

mode context, T is the equivalent depth and is different for each vertical mode

considered. Note that 0 is the departure of the geopotential from 0.

Two length scales are chosen to demonstrate how synoptic scale motions (L, )

affect planetary scale Rossby motions (L1 ). In addition, two different time scales, an

advective scale (T= L. V) and one appropriate for a free planetary scale Rossby wave,

will be used. The latter time scale is determined by L1, C, where C J30. f' is the

phase speed of the fastest Rossby mode. Using two length scales and the time scale

associated with this fast Rossby mode makes the scale analysis presented in this section
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different from those of other authors (Burger, 1958; Haltiner and Williams, 1980) who

used an advective time scale and a single planetary length scale. The scales used in the

following analyses are:

f-- 10's', L, = 10 t m, ,L2 = l0 6 m, V = los -  (4.3)

I. Single length scale analysis

Using the planetary length scale given above and assuming an advective time

scale, the equation of motion (4.1), with the exception of the pressure gradient force, is

scaled as

av
F+V.VV+VO +fkxV=O 0Ot (4.4)

V 2  V2

L1  fVLI L7 LI7I

or after multiplication by L1

V 2  V 2  fV

so that the values are

10 3  102 0 10'

If the equation is to be balanced, the pressure gradient force must balance the coriolis

force i.e. the scaling is geostrophic, so that V scales to 104. .J.

Using geostrophic scaling for 0, an advective time scale and a single planetary

length scale, the geopotential equation (4.2) is

at
V46 Vk -OV __

LLL
and after multiplication by L1  ,

VO V¢ -V V 0-

For the above analysis. ( is the scale value of P and it represents the scale of the

equivalent depth. The appropriate value of (D for the last time scaling is l-4m's - , (tlis

is the approximate value for the equivalent depth of the barotropic mode. Using this

value of ( and fast time scale in (4.5) reveals that the time tendency and the

divergence terms are of the same order. For the slow time scaling, if one assumes

4--105 then the first-order equation for (4.5) is V"V=-0. Hoever, most of the
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planetary scale modes with a natural period (i.e, the period determined from the

natural frequency) that is approximately equal to the slow time scale do not have an

equivalent depth equal to 105. A more appropriate equivalent depth for these modes is

104 . Using the slow time scale and the more appropriate value of (D shows all the

terms in (4.5) to be the same magnitude. The results obtained using the advective time

scaling and the more appropriate value for the equivalent depth are similar to the v",

results obtained by other authors (Burger, 1958; Haltiner and Williams, 1980).

The first-order system obtained using the fast time scale is quite different from

that obtained using the slow time scale. The fast time scale system is linear, the winds 2,,

are geostrophic and the time variation is given solely by the divergence term in (4.5). "*

The slow time scale system is nonlinear, the winds are also geostrophic, but the time

variation is determined by advection of the mass field as well as by the divergence term.

2. Multi-length scale analysis

To accomplish a multi-length scale analysis, the synoptic length scale (L2 ) is

used whenever a derivative is taken in the nonlinear terms. Planetary scaling (L I) is

used in the other terms. A more formal procedure to determine nonlinear interactions

would be to transform the equations using the appropriate transform based on the

geometry: Fourier transforms for cartesian geometry or spherical harmonics for

spherical geometry. After transformation of the equations, the nonlinear terms would IL

appear as interaction coefficients that represent explicitly the scale interactions. For

scale analysis purposes, this interaction can be illustrated by using only two length

scales (L1 , L 2) in the nonlinear terms. Using multiple length scales in the scaling of

(4.1) yields results similar to those obtained using a single length scale except the -

advection term is an order of magnitude larger. However, this term is still an order of

ma2nitude smaller than the largest term in the equation.

Using multiple length scales in the scaling of (4.2) gives the same results as V

using a single length scale if one assumes geostrophic synoptic scaling for 0 i.e

0= fVL 2. The overall effect of including nonlinear interactions f-r the fast Rossby

waves is small. The momentum advection term in (4. 1) is an order of magnitude larger

but it is still an order of magnitude smaller than the largest term in (4.1). Because of

the assumption of geostrophic synoptic scaling for 0 in the nonlinear analysis of (4.5),

there is no difference between the linear and nonlinear scaling of this equation. For

the fast time scaling, the time tendencv in (4.5) is still driven by the divergence term

and for the slow scaling (with - 10") all the terms are still the same magnitude.
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It would appear from the analysis using the slow scaling and * = 104 that

nonlinear interactions from the advection of the synoptic scale momentum fields may

not be as important as the nonlinear advection of the mass field. This result is 2J
consistent with geostrophic adjustment theory, which indicates that the atmospheric V

response to a mass perturbation for scales larger than the Rossby radius V,7!f is greater

than for a given wind perturbation. The planetary length scale used in this analysis is

an order of magnitude larger than the Rossby radius. Since the Rossby radius

decreases as the equivalent depth (T) decreases, one would expect mass perturbations

to be even more important for the smaller equivalent depth planetary scale baroclinic

modes.

Additional information on the dynamics of planetary scale Rossby modes can

be obtained by scale analyzing the quasi-geostrophic potential vorticity equation. This

equation can be derived from (4.1) and (4.2). The potential vorticity equation for this

model is
aO f a, +V.V - LV.VO+vI3=0
at at 0
CV f 2 CV V 2  f 2 V 2  Vf (4.6)
L2 L-2 L,

C fCL1  LiV fVL 1_, - -

Lif fjL_

where the nonlinear scaling for this equation is based on fast time scaling using

0= 105 . For this scaling, these nondimensional quantities have the values:

C 1 fCLI L1 V f VL 1
L l f 10 I L 1 € " -6

7L2 10fL 10

Note that the nonlinear interaction through the advection of vorticity is now part of

the first-order system. This implies that nonlinear momentum interacuons could be

important. Again. this result is consistent with geostrophic adjustment theory because

for these modes "0= 105 the Rossbv radius is approximately the same order of

magnitude as the planetary length scale.

If the nonlinear terms are dropped and the geostropluic relation for V is

inserted, (4.6) can be written in cartesian coordinates as
f a13 )3 a 0 .-- il+ -0.'5

at fUX (4.7)
Insert the wave solution P = exp iu1x-ct) into (4.7 ) then
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f (4.8)

This agrees with the value of C that is used in this scale analysis. However, the effect

of the nonlinear terms may be such that this phase speed is not observed for this mode,

so that it is probably an overestimate of the speed of this mode. One final point to be SW
made from this analysis is that the importance of the mass field interactions will

increase as the equivalent depth (0) decreases.

B. A SIMPLER ANALYTIC MODEL

The normal modes of the NOGAPS model are quite complex and are not easily

interpreted. A simpler analytic model will be developed in this section to illustrate

what terms effects are represented by the nonlinear term of a mode. Using this model,

it will be shown how waves of a particular vertical and horizontal scale can affect

waves of different scales. The results from this quasi-geostrophic mocde --ill be used to

interpret the more complex NOGAPS model.

Following Haltiner and Williams (1980), the quasi-geostrophic equations are

a . a
+ V, " V( + foy) - f e z  (e -  = 0 (4.9)

a v, • v + r(z)2=o (.10)
at az az

V4' - f"=0o (41.11)-.

where

a aV = i- +j- (4.12)

V, =fok x V= k x Vb 4.13)

(= f='V 2  (4.14)

0 0 Hzg g 1aT
r~z)= + ,- - -(d, u oz "  t1.p
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The vertical coordinate (Z) of this system is defined and related to the more familiar

pressure coordinate system in Appendix B. The vertical velocity of this system is given
by Z. Now making the Boussinesq approximation ( e"Z - constant ) and assuming

static stability (r) is constant, then (4.9)-(4.11) may be written
-'

C1, LO oz
O- +k x VOb.VV2 O + go - fo 2 =0 (4.16)

a at+kxVO.Va"+-r2=O.

2it. a+z T a fo (4.17)

If the above is linearized about a basic state of rest and Z 0 at the surface (Z 0) 0)
and at the top of the atmosphere (Z - ZT). then the vertical modes for this system are

- (Z) = A, cos 
(4.18

ZT
The derivation of these modes is given in Appendix B. To transform (4.16) and (4.17)

let

1k, =Z k(,y,t)e t  (4.19)

-00

00Y , 2t(X,Y,t)e" Ar
_ , e(4.20)

where Tt -Iwe and Ze = -Z- Substituting the above expressions into (4.16) and

(4.17), multiplying by e'(tZ'ZT), and integrating from Z=O to Z=ZT gives the "5

followine transformed equations

1720, + -k x VO .VV 8Oe_. + ve0 + fo de 0 (4.21)

f Z(t - j) k x . Vt,. - =O, (4.22)
at fo -

where the boundary conditions require Z t = 0 if t = (t =0 in rhis system

corresponds to Z= I for the NOGAPS mode, i.e.. the barotropic mode). The second
terms in (4.21) and (4.22) represent the nonlinear interactions between vertical modes j
and £-1" that will affect a iven mode £. The interaction term in (4.21) represents

interaction between the momentum fields, while the interaction between the mass fields

(temperature advection) is represented by the interaction term in (4.22).
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It -will be useful to look at two cases. For the first case - 0 (barotropic case),

so that (4.21) and (4.22), reduce to one equation

V o -V+a(4.23)

As expected, this equation closely resembles the barotropic quasi-geostrophic vorticity

equation, except that the simple advection term is represented as the nonlinear

interaction term. The only interactions that are allowed come from the momentum

advection terms. The interaction through the mass advection term is eliminated

because of the boundary conditions -0 at the top and bottom of the model. The

boundary condition at the bottom is not the same as in the NOGAPS model where the

vertical motion is not necessarily zero at the bottom. One consequence of the

boundary condition Z = U at the top and bottom of the simple model is that the

vertical structure of the barotropic mode is strictly constant. Also, since the equivalent

depth is proportional to 1 t, the equivalent depth of the barotropic mode is infinite. If
the equivalent depth (0) is infinite then from (4.6) it can be seen that mass advection

term is zero. The equivalent depth associated with the barotropic mode of the

NOGAPS model is not infinite. Thus, one would not expect that interactions through p..

the mass advection term would be completely eliminated. However, the scale analysis

of (4.6) indicated that for an equivalent depth that is approximately equal to that of
the barotropic mode of the NOGAPS model, that interactions through this term would

be small. It remains to be seen if the results for the barotropic mode of this simple

model apply to results obtained with the more complex NOGAPS model.

The second case is just the general baroclinic case where Z : 0 . For example, if

= 3 then (4.21) and (4.22) become
_o.

a 2 0 3 + k x V i . V 20 + 09 0 3 3 0 ± fo 3Z2 t 0
at 4.24

__0 r.3  - (3 - j)k x V,,. VO-, + - 3 =0,

Thus. interaction may occur for baroclinic modes through the temperature advection

term and through the momentum advection term. For mode number 3 to be affected

by nonlinear interactions, mode % I will interact with y" %5 with ." etc,

Ilorizonal wave interaction will now be examined using Fourier transforms. The

following derivation closely follows the method used in Lorenz (1960) and Haltincr and

Williams 1980). If we assume periodic boundary conditions in both x and y
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27r 2v (4.26)
(X + Y , t) = Y, t)

k 9

27r 27r2,(x + -, Y + , t) = Z Y t)(4.27)

then the horizontal variations of Wt and Zt can be represented using orthogonal basis

functions of the form:

O,,,,, (Z, y) - eI(R a+ew) (4.28)

Using the above, yI and Z are represented as

tk~~yZ~t =~ C. m,F(t)e% Im i + ngI e' (4.29
Oeyzt f rnnS

zc-,, X:X: (fn"X+ngy,,!)
Z(z, Y, Z, 0) =t r . n (t) es~k~nY S'., . (4.31)) ,

where k and g are the periods in the x and y directions respectively. Therefore, (4.21)

and 14.22) can be transformed to I

a: =m-- (M - H).(M - H)k .H X MCM - .,CH.t.

at M•M

j H

foe
M.M

OCM. = : Z ~ -j) (M - 1-) " (M - HI)k " HI X M CM -H., CH.t-.,' 4. 32 '
at I,

where NI = m -i 4 ng. " = %" and H is a dummy index. The interaction terms in

the above equations represent interactions between vertical as well as horizontal

modes. The horizontal modes interact in the same manner as do the vertical modes.

That is, zonal wavenumber 7 mat interact with zonal wavenumber 8 to aflect zonal

wavenumber 1.

Ebetween (4.31 and 14.32) gives the spectral lorm of the

potential vorticitv equation

+CM, i+kAoCM C
at A2  +(+ A (4.33)

H

where

-
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A, =(M-H).(M-H)k.HxM

and

A2 = (M.M)+--f
The spectral form of the quasi-geostrophic vertical motion equation is obtained by

eliminating OC M,t/t between (4.31) and (4.32) to give

Dm.t imk+ "I, M) CM I A, -YM CH 4
- (M+ " - M + (4.34)

j H

where
_ fo2 1r

A 3  (
M.M f+ fo

Using (4.33) and (4.34) some analogies to the normal modes of the NOGAPS can now

be made.

The spectral form of the quasi-geostrophic potential vorticitv equation (.4.33) is

of the form as (3.62) i.e

A C,, -= -iwC. + N 4.35)

where

imk/ po

A 2  4.36)

and

N (1+ fo )ZZACM- .,CH.f-
H H A2 (

Thus (4.33) ma- be likened to the prognostic equation for the rotational modes of the

more complex NOGAPS model. For this simple model the adiabatic nonlinear term

' is written as the sum of quadratic products of the modal coefficients and it

represents interactions between the rotational modes of dilterent wavenumbers. Note

that there is no prognostic equation for DII. D .t may be Likened to the cocificient

of a gravitational mode for the more complex NOGAPS model. The equation for L

D .is purely diagnostic and the amplitude of' is determined solely by the

rotational components of the motion (this is consistent with the initial assumption of

quasi-geostrophic conditions). A final point to be made from (4.33) and (4.34) is that

iS
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N n for the quasi-geostrophic equations does not contain interactions between the

divergent and rotational components of the motion.

It is desirable to form the kinetic and potential energy equations for these modes.

The kinetic energy for this system is given by

K = V,- dZ dxdy M. MCM .- C_ - .(4.3 8),.

using the above and (416), the kinetic energy equation for this system may be written:.

as'

1K '.

at 1 C-M- E E (M - H-) -(M - ]E])k. -" HX MCM- H,;C,Cat-,

at M H

(4.39) ,

-, M eE 1; (-M - I) (-M - I)k •H x (-M )C _ M_ H CH.- 1-1

C M. ( 4_

A potential energ.1 equatin may be formed by assuming the potential energy is

proportional to

P E Cf .C. M-2

Using the above and 4.22), the potential energy equation for this system may be'W

at.

wrttnas g

f2 2 W H -- Z(M H .M H)k.H ×MC -H.)CH.(-,

t M .(4.31j aH

-- ,tfo.- CM, ..,.

fl, tC.- tme E
CM., Z '(-M-H .(-M-H)kH x (-MC-.-HCH.-t-,

SH

Based on 4.39) and (441o), the amount of kinetic or potential energy transferred to a

given mode Cn is proportional to the amplitude of that mode times the pair o

interacting modes Cn.HjCH.. j . Also note that the potential energy as defined I e
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The scale analysis and simple analytic model results presented in this chapter

indicate how the dynamics of planetary-scale waves could be affected by synoptic-scale

waves and how this effect might vary with vertical mode. However, the simple system

of equations used here do not address the other important aspects of the dynamics of

planetary-scale waves. For example, the importance of forcing by diabatic processes

and nonlinear interactions which involve the divergent component of the wind are not

addressed by the quasi-geostrophic equations. For any given time, these neglected

effects could be small, but in a climatic sense (time mean) they may be important. The

adiabatic nonlinear term (Nn) for the rotational modes of the NOGAPS model will

include interactions between different scales of the highly divergent gravitational modes

and the rotational modes. However, for the long-time solution to the NCAR

Community Climate Model, Errico (1984) has shown that the adiabatic nonlinear term

that represents interactions between the gravitational modes and rotational modes is

generally an order of magnitude smaller than the adiabatic term that contains only

interactions between rotational modes (except for the shallowest vertical modes

Z= 8,9).

While the results of the simple analytic model do not contain all the possible

interactions between modes, one would expect the results to be valid as a first order

approximation to the more complex NOGAPS model. In addition, the possible

importance of diabatic process and forcing by the divergent part of the motion do not

negate the possible importance of synoptic-scale interactions through the adiabatic

nonlinear term.
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V. RESULTS

The first experiment of this study is designed to determine the dynamical

importance of synoptic-scale nonlinear interactions on planetary scale Rossby modes. -

In the first part of this experiment, 19 days of 12UTC initialized NOGAPS analyses

taken every five days from 16 January 1986 to 16 April 1986 are projected onto the

normal modes of the model and the magnitudes of the terms given in (3.62) are

determined. In addition, the energy spectrum as a function of meridional mode Z

number for each vertical mode is determined. Mean magnitudes of the terms for zonal

wavenumbers 1, 2 and 3, are obtained by averaging the real and imaginary parts of the

respective terms over the period and then taking the magnitude of that average. An

alternative way to compute these would be to take the magnitude and then average.

The latter method has been used by most other authors (Errico, 1984; Kasahara and

Pur. 1981). Similarities between the time-averaged energy spectra computed in this

study and those computed by other authors indicate the difference in averaging

techniques produces no qualitative difference in the spectra. Only the time-averaged

spectra are computed by averaging the real and imaginary parts. All other averages are

computed by taking the magnitude first and then averaging.

Since the vertical modes are not orthogonal, the energy spectrums as a function

of vertical modes cannot be precisely compared. However, the meridional energy

spectrum for each vertical mode is exact since the meridional modes are orthogonal.

Due to the large number of modes associated with each zonal wavenumber (there are

nine vertical modes and 37 meridional modes associated with each), it is necessary to

limit the number of modes to be examined. The choice of modes to be examined

should be based on the energetics and dynamics of these modes. The energy spectrum
of these modes should give some indication as to which modes (meridional and

"'

vertical), if any, are the most important.

A. ENERGETICS AND DYNAMICS OF PLANETARY SCALE MODES

The choice of which vertical modes to examine cannot be based solely on the .,

energy spectrum determined in this study because the vertical modes are not completely

orthogonal, although the larger scale modes are nearly orthogonal. Instead. one must

also rely on previous studies. Little work has been done in the area of the atmospheric
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energetics of normal modes, although some related work has been done using empirical

orthogonal functions. -a
.%

The partial basis for the choice of which vertical modes to examine comes from r
Kasahara and Puri (1981) and Ko (1985). Kasahara and Puri (1981) analyzed
Northern Hemisphere National Meteorological Center (NMC) daily data for the

month of January 1977 using completely orthogonal normal modes. They found that

the kinetic energy was the largest for the external mode (Z= 1) and then it generaUy

decreased as a function of vertical mode number, although a substantial amount of

energy existed in the fourth and fifth vertical modes. They also noted that there was

more kinetic energy in the smaller scale vertical modes than in other studies that used

empirical orthogonal functions to represent the vertical structure of the atmosphere.

An important conclusion of their study is that higher resolution (more vertical modes)

is needed to clearly resolve the planetary scales. This conclusion was based on an

analysis of the kinetic energy spectra that showed significant kinetic energy in the

medium scale vertical modes of planetary-scale waves.

Ko (1985) analyzed 30 days of perpetual January simulations from the National

Center for Atmospheric Research (NCAR) Community Climate Model. His results, in

terms of the kinetic energy spectra, were similar to those of Kasahara and Puri (19S1.

Ko also examined the total and potential energy spectra. He found that a large

percentage of the total and available potential energy was contained in the medium

scale vertical modes (Z = 4-6). Vertical modes 4 and 5 were found to contain the largest

percentage of total and available potential energy. Those modes also contained about

the same percentage of kinetic energy as the barotropic and first baroclinic modes.

The results of Kasahara and Puri (1981) and Ko (1985) indicate that at a

minimum, the Z = 1-4 vertical modes need to be examined. Kasahara and Puri (1981)

presented some statistics in regards to the energy spectra as a function of meridional

mode number, but no conclusions were made as to the required meridional resolution

needed to clearly resolve the planetary scales.

Because the meridional modes used in this study are orthogonal for a given

vertical mode, it is possible to examine the energy spectra as a function of meridional

mode number and draw definite conclusions. The energy spectra for a time average of

the sum of symmetric (odd indexed) Rossby meridional modes of zonal wavenumber 1,

2 and 3 for the nine vertical modes of the model are given in Figs. 5.1 - 5.5. The

energy spectra for the large-scale vertical modes (Z= 1-3) have a peak in the energy

5
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around meridional mode number 1-6 with a rapid decrease there-after. The spectra for

the medium-scale vertical modes (e=4,6) are much flatter than the spectra for the

large-scale vertical modes. The e =,4 mode still shows a slight peak around meridional

mode number 9, but the rapid decrease in the spectrum does not occur until meridional

mode number 19. The spectrum of the t= 5 mode is generally flat until meridional

mode number 33, while the spectra of the Z=6 mode is generally flat through

meridional mode 57. The general pattern for the t= 7 mode is that the energy is

spread uniformly over most meridional scales. The smallest vertical scale modes

(Z= 8,9) have a minimum in energy near meridional mode 17 and then the energy

increases until mode number 41 where the spectra become relatively flat. The

corresponding energy spectra for the antisymmetric (even indexed) Rossby modes (not

shown) are very similar. These results are qualitatively consistent with those of Ko

(1985) and Kasahara and Purl (1982), although there are of course quantitative

dilerences. These differences can be attributed to the difference between the modesai

used. the averaging technique used and to the differences in the data analyzed. It

appears trom the energy spectra that no clear choice of which meridional modes to be

examined can be made. While it is true for certain vertical modes that energy is

concentrated in particular meridional modes, this pattern does not hold for all vertical

modes. Clearly some additional criteria are required to reduce the number of modes

examined.

It is possible to establish some additional criteria based on the dynamics of the

different modes. The focus of this study is on planetary scale waves and these waves

have certain dynamical properties that were illustrated by the scale analysis presented

in Chapter 4. The analysis using the single length scale and the fast time scale ithis

time scale is appropriate for the large-scale barotropic meridional modes. t= 1. n =

shows the time tendency to be driven solely bv linear effects. The multi-length scale

analysis using the fast time scale also indicated that the linear terms should be the

same order of magnitude as the largest term in (3.62). The scale analysis for the slower .

time scales also indicated that the linear term was the same order as the larest term.

This slow time scale is appropriate for the baroclinic modes.

The importance of the linear term (same order magnitude as the largest term) can

be used as a criteria [or the selection of the modes to be examined. Only those modes

that show the linear term to be important should be examined. The amplitudes of' the

terms in (3.62) are given as a function of meridional and vertical mode numbers in
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Figs. 5.6 - 5.10 for a time average of the symmetric zonal wavenumber I case (results

are similar for wavenumbers 2 and 3). The importance of the linear term is evident for A

the n < 3 meridional modes for the first four vertical modes. The linear term is

important up to meridional mode 8 for the barotropic mode, and up to meridional b

mode 4 for the third vertical mode. For the smaller scale vertical modes (Z= 7-9)
.1

modes, the linear term is no longer important for any meridional scale. In general, it

can be said that the importance of the linear term decreases with increasing vertical

mode number. Based on the meridional wavenumber arguments given above and the
',P

analysis of the importance of the linear term as a function of vertical as well as

meridional mode number it would seem reasonable to limit this study to the

examination of the first four meridional modes (n = 0-3).

From Figs. 5.1 - 5.5 it can be seen that the energy contained in the n < 3 modes

decreases as a function of vertical mode. In general the energy contained in the n < 3

modes is of the order 1 10- 1 while the energy contained in the n < 3 modes for t a

5 modes is of the order 10- 2 - 10- 3 The comparison of the amount of energy contained

in the n < 3 meridional modes is not exact (the vertical modes of the NOGAPS model

are not completely orthogonal). However, the variation of the energy in these modes

with vertical mode is very consistent with the results of Kasahara and Puri (1982) and -.

Ko (1985). Based on the above comparison of the energy contained in the different

vertical modes for the n 5 3 meridional modes and the consistency of these results
with those of other authors, it would seem reasonable to limit this study to the

examination of the first four vertical modes of the n = 0-3 meridional modes.

Another reason for not examining the smaller scale vertical modes (which cannot

be addressed by the analysis of Figs. 5.1-5.5 and 5.6-5.10 is the possible dependence of

the adiabatic nonlinear on the divergent part of the motion. Errico (1984) has shown

for the long-time solution to a primitive equation model that N(G*R) is the same
order of magnitude as the N(R*R). The N(G*R) term depends highly on the divergent

part of the motion. Since the divergent part of the NOGAPS analyses is just the

model first-guess divergence, any results obtained concerning nonlinear interactions

may be more indicative of the model rather than the actual atmosphere. The
dependency of the interactions on the model is an important subject in its own right,

but it is a subject beyond the scope of this work.

The choice of of the modes to be examined (the Z= 1-4 , n=0-3 modes) does

eliminate some modes with energies similar to the chosen modes and modes that show
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the linear term to be important, but the set chosen should be sufficient for the purpose

of this study which is to show that nonlinear interactions with cyclone waves can be an

important factor in the dynamics of planetary waves.

Before examining the results of the experiment that is designed to determine the

importance of synoptic-scale nonlinear interactions, it is necessary to establish the

importance of the adiabatic nonlinear term in the dynamics of planetary waves. While

it may be shown that synoptic-scale interactions are an important part of the adiabatic

nonlinear term, this effect would not be significant unless this term is important in

general (of the same magnitude as the other terms). As can be seen from Figs. 5.6 -

5.10 the adiabatic nonlinear term is at least the same order as the largest term for a

given meridional mode and it is often the largest term. For the largest scale vertical
S

modes, all of the terms (linear, nonlinear adiabatic, diabatic and time tendency) are --7

nearly the same magnitude for the largest scale meridional modes (n= 1-3). This result

is interesting considering the single length scale analysis carried out using the fast time

scale (which is appropriate for the Z= 1, n=0-3 modes) showed the time tendency to p
be driven by the linear term. The multi-scale analysis did show that the nonlinear term

could be important. For most of the remaining meridional modes, the time tendency

for the largest vertical scales is driven by the adiabatic nonlinear term, with the diabatic

term becoming important for the smallest scale meridional modes.

The importance of the diabatic term for the largest vertical scale meridional

modes has not been shown before. In the only other study of this kind, Errico (1984)

did not investigate the planetary scales in detail and his focus was mainly on the .5.

balance for the gravity modes. In addition, he averaged modes by frequency. which

could have obscured some of the detail of the planetar scales. The results that he V

presented did show the adiabatic nonlinear term to be important for the higher -

frequency Rossby modes, but he did not show the diabatic term to be important for

the Rossby modes except for the higher vertical modes. Although it beyond the scope

of this study to examine in detail the aftects of diabatic terms on planetary waves, the

importance of the diabatic term, as shown in Figs. 5.6 - 5.10, does deserve some

comment.

It is not surprising that this term might be important for planetary scales given

the general belief that the quasi-stationary component of planetary waves is forced in

part by differential heating due to land-sea contrasts. A note of caution must be added

here. As is the case with most models, the diabatic processes of the NOGAPS model
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are parameterizations of the actual atmospheric diabatic processes. Thus results

obtained here may be different from other models with different parameterizations. In

addition, the diabatic term is not decomposed into different components (sensible

heating, latent heating, frictional dissipation, radiational heating), so it is not possible

to determine which diabatic processes contribute the most to this term. For the larger

meridional scales, it is possible that the majority of this term is due to heating. For the

smaller scales, dissipation may be important.

B. THE EFFECT OF SYNOPTIC SCALES ON PLANETARY SCALES

Based on the dynamics and energetics of the different modes and on scale

considerations, the focus will be on zonal wavenumbers 1-3. vertical modes 1-4 and

rncridional modes 0-3. For this part of the experiment, the data (u. v, T, In p,) for

each of the 19 davs of' I2LTC NOGAPS analy-ses taken even- 5 d'-:, from 1( January

19S6 to 16 April 1986 are spectrally filtered. The data are taken only even- 5 days so
that each day is statistically independent. Also, graphs of' the data taken ever- 5 days

r:'p

are easier to interpret than those that have daily data plotted. When average p

mahnitudes and energies are computed later, 85 days of data taken over the same

period will be used.

To eliminate the synoptic waves .the data are filtered by transforming to spectral

space using a fast Fourier transform routine, setting the coefficients of zonal

wavenumbers 7-15 to zero and transforming back to physical space. The magnitudes

of the adiabatic nonlinear term (Nn) from both the unfiltered and filtered data are

computed and the difference between the nonlinear terms from the unfiltered and

filtered data is calculated. The magnitude of this diflerence represents the contribution

of the synoptic scales to the nonlinear term of the given planetary scale, hereafter

referred to as Nns.

Figures 5.11 - 5.1-4 are plots of Nn and Nns versus time for an averace of

meridional modes n---3 of the t= 1-4 modes of zonal wavenumbers m= 1-3. The

general pattern that emerges from an examination of Figs. 5.1 - 5.1-1 is that tor all

vertical modes Nn, is the same order of macnitude as Nn . but it is generally smallcr

than N (here after referred to as the total nonlinear term). On no day is N largern Ip11N

than N (which could occur if the interactions from waves other than m= 7-15 acted to

oppose the interactions from the m= 7-i5 waves). On a number of days, the synoptic-

scale contribution to the total nonlinear term is significant (Nns is a large percentage

of Nn).
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For a given day, the significance of the synoptic-scale contribution to the total

term can be illustrated bv the ratio of N to Nn. Figures 5.15 - 5.18 are plots of the

percent magnitude of the synoptic-scale contribution to the total nonlinear term as a

function of time. The synoptic-scale contribution to the magnitude of the total

nonlinear term will be considered significant for any given day if this contribution is at %

least 30 percent of the total. This is somewhat arbitrary, because a smaller value could %

be important if AC;At is smaller than the nonlinear term. However, the 30% value

does highlight days on which the synoptic-scale contribution to the nonlinear term is

large. The number of days where the magnitude of the synoptic-scale contributions is

greater than 30 percent varies with vertical mode. The number of significant days is

greatest for fourth vertical mode. In general. the larger scale vertical modes (Z= 1-3)

have the smallest number of signilicant days. The strength of the synoptic-scaie

contribution to the total nonlinear term varies with vertical mode number in the same

manner as the number of significant days. The synoptic-scale contribution to the total

is strongest for medium-scale fourth vertical mode. For this mode, the synoptic-scale

contribution to the total nonlinear term exceeds 50 percent for a number of days.

There is a slight variation of the synoptic-scale contribution to the total nonlinear term

with zonal wavenumber. Zonal wavenumber 3 is the most affected zonal wave

number. The fourth vertical mode for this zonal wavenumber exceeds the 30 percent

criteria for 12 of the 19 days and on three of these days the synoptic-scale

contributions exceeds 50 percent.

From the above analysis, it is clear that synoptic-scale interactions can be -

significant for a particular day, but the analysis does not show the time average ellth

of the synoptic scales on planetary scales. Table 6 gives the average magnitude of the

difference between the total nonlinear term and the nonlinear term computed from the

filtered data as a percentage of the average magnitude of the total nonlinear term. The

averages for these terms are computed as
K 3>.-m N. (t. N)iv(k)

4K5. 1

where K is the number of days in the data set and four is the number of meridional

modes. To insure greater statistical significance, a larger sample size is used to

compute the averages given in Table 6. For these averages, the total term (N n ) and

the synoptic part (Nns) are determined from 85 days of 12Z initialized NOGAPS
analyses taken ever' day irom 16 January 1980 to 16 April 19S6. The following days

were missing from the data set: 17, 21 and 23 January and 9 and 21 March.
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Table 6. Time averaged (over 85 days, taken between 16 January and 16 April
1986) synoptic-scale contribution to the total nonlinear term as a percentage of the
total for an average of meridional modes n = 0-3.

Vertical Zonal Wavenumber

mode index

1 2 3

1 20 18 17

2 17 14 16

3 24 25 24

4 35 28 42

For a given zonal wavenumber, the magnitude of the time averaged synoptic-

scale contributions is a largest percentage of the total nonlinear term for the fourth

vertical mode. The nonlinear term of the second vertical mode appears to have the

smallest contribution from synoptic scales. For the medium-scale vertical modes, zonal

wavenumber 3 has the largest synoptic-scale contribution to the planetary scales in

terms of the percent magnitudes.

It is clear from the above analysis that the synoptic-scale contributions to the

magnitude of the total nonlinear term can be significant for a given day (Nns can be as

large as 60%/o of Nn) and are significant in a time-averaged sense.

The result that the synoptic scales tend to have a significant impact on the

magnitude of the total nonlinear term is important, but it is not the whole story. For

the most affected mode (t = 4, m 3), the nonlinear interaction from synoptic scales is

42% of the total. However, this leaves nearly 600/% of the total unaccounted for. The

rest of the term is due to interactions with scales other than those represented by -

wavenumbers 7-15. This includes interaction of the planetary scales with the zonal

mean state (m-0). Although these other interactions are significant, it is beyond the

scope of this study to examine them. The purpose of this study is to establish that

interactions with cyclone waves can be an important factor in the dy-namcs of'

planetary waves.

Another point that has not been considered is the relationship of the days when .

Nns is a large percentage of Nn to the general importance of Nn on those days. It is

7.6
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important to establish that on the days when the synoptic-scale contribution to the
total nonlinear term is a large, the total nonlinear term is of importance, i.e.. it is of" the

same magnitude as the other terms in (3.62). To accomplish the above, one must
examine the non-time averaged variations of the terms given in (3.o2). In addition.
such an examination will also serve to illustrate the dynamical differences between the

different vertical modes at these planetary scales.
The terms in (3.62) are plotted in Figs. 5.19 - 5.22 for an average of meridional

modes n= 0-3 versus time for the data taken every five days. The time variations of
barotropic mode (Fig. 5.19) are quite interesting. For all three zonal wavenumbers, the

general dynamic pattern is a tendency for balance between the adiabatic nonlinear term %

and the linear term. The time tendency of these modes is generally less than the

nonlinear or linear term, and the diabatic term also has a small contribution to the
barotropic mode. On the days on which the nonlinear and linear terms are not in

partial balance, the time tendency is driven by the linear term. For these days, it
appears as if the heating is partially balancing the nonlinear term. For all the days

examined, the contribution of the nonlinear to the barotropic mode term is at least the

same order of magnitude as the other terms. It was previously shown (Fig. 5.15) that
the synoptic-scale contribution to the total nonlinear term for the barotropic mode is

small. However, the synoptic-scale contribution to the overall dynamics of the

planetary-scale barotropic modes could be more important than the small magnitude
might indicate. This contribution could be an important factor in maintaining the
partial balance found in this mode or it could be the dynamic ingredient that keeps
these modes from obtaining a complete balance. The above could also be true of the
diabatic term which also has a small magnitude for the barotropic modes.

The above description of the dynamical nature of the barotropic mode is also

generally true for the second vertical mode (Fig. 5.20). The dynamics of the third (Fig.

5.21) and fourth (5.22) vertical modes are quite complex. No one term or two terms
seem to dominate. The diabatic term is of increased importance for these modes, but it

is by no means dominant. The linear term is of lesser importance for these modes than
it is for the first two vertical modes, but it still makes a significant contribution to the
time tendency. There is no hint of' a simple balance between two leading terms for
these modes. For both of these modes, it generally true that the diabatic, adiabatic

nonlinear and linear terms are additive so that the time tendency is the largest term.

Two important points are illustrated by the above analysis
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* For the vertical mode that is most affected by synoptic-scale interactions
(Z=4), the dynamics are the most complex. The nonlinear term is on average
important for this mode, but this importance varies significantly over the period
being examined.

* The time tendencies of the barotropic and first baroclinic modes are generally
smaller than the nonlinear term. due to the partial balance between the linear
and nonlinear terms. Thus, synoptic-scale contributions can be more important
in determining the time tendency of these modes than their small percentage of
the total nonlinear term may indicate.

To establish the importance of synoptic-scale interactions for these modes, it is

necessary to compare the magnitude of the synoptic-scale contribution to the total

nonlinear term to the magnitude of the time tendency. The magnitude of the synoptic-

scale contribution to the total nonlinear term as a percentage of the magnitude of the

time tendency are given in Fi,. 5.23 - 5.26 for the Z= 1-4 vertical modes of zonal

wavenumbers 1-3. In addition, the synoptic-scale contribution to the total nonlinear

term is plotted to allow comparisons on the days when the synoptic scales make up a

large percentage of the total nonlinear term. For the barotropic mode (and especially

for the barotropic mode of zonal wavenumber 3), the synoptic-scale contribution is a

larger percentage of the time tendency than it is of the total nonlinear term. For

example, the synoptic-scale contribution to the total nonlinear term of the barotropic

mode of zonal wavenumber 2 on the 26th and 31st of January is only about 12-14% of

the total nonlinear term, but 38-40% of the time tendency. This result implies that for

the barotropic modes, the synoptic-scale contributions are mere important than the

small value of Nns,'N n would indicate. The result is also true, although to a lesser

extent, for the second vertical mode (Fig. 5.24) of zonal wavenumbers I and 2. For

vertical modes 3 and 4 (Figs. 5.25 - 5.26), the general pattern is that the synoptic-scale

contributions to the total nonlinear term are a larger percentage of that term than of v.
the time tendency. This is an indication that the nonlinear term is no longer the

dominant term for these modes. Rather, the nonlinear term it is only one of three

terms that contribute to the time tendency and that these terms are add.itive. The lack

of any balance for the Z= 3,4 modes is an indication that the linear term is no longer

large enough to balance the nonlinear term. However, the fourth vertical mode is still

the most affected by synoptic scales. The number of days for which the magnil ,de of

the synoptic-scale contributions to the total nonlinear term 'i greater than 30 percent

of the magnitude of the time tendency is generally less than the number of days for

which the synoptic-scales contributions are greater than 30 percent of the total
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nonlinear term. However, there are still more significant days for the fourth vertical

mode than any other vertical mode.

C. ENERGY RELATIONSHIPS b

It is clear from the above analysis that synoptic scales can play an important role

in the dynamics of planetary scale waves. It is also clear that these interactions are

important in a time mean sense (Table 6). The analysis in the previous section is very

good at highlighting this importance, but it does not show how the energy flows

between synoptic scales and planetary scales. Are the scale interactions acting to

decrease or increase the amplitudes (energy) of these modes? This question will be -,.

addressed in the this section. It will also be very important to determine the average d.

energv transfers that can be compared with other studies (e.g. Tanaka et al., 19SO}.

Most of these studies considered either kinetic or potential energy transfers, while total

energy energy transfers are treated in this study.

The sum of kinetic plus available potential energy in a particular mode is given

simply by

CnCn* (5.2)

where Cn is the amplitude of the mode designated by the index n and ( ) indicates the

complex conjugate. Thus, an equation for the time tendency of the total energy of a

given mode can be obtained by multiplying (3.62) by Cn* and adding this to the

product of the complex conjugate of (3.62) times Cn. The contribution of Nn to the

time tendency of the energy of a mode n for m e 0 is given by

2 Re (CN n ) (5.3)

where Re indicates the real part of the expression. The relation given in (5.3) indicates

that the energy tendency generated by Nn or Nns depends on the phasing between Cn

and Nn or Nns. If the synoptic-scale forcing is out of phase with the planetary scale

mode, then a large magnitude of Nns does not necessarily imply a large energy

transfer to the planetary mode. However, this might still indicate an important

contribution to the phase speed of the planetary wave.

The synoptic-scale contribution to the energy tendency produced by the

nonlinear term is computed by taking the difference of the tendencies as computed in
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(5.3) from the filtered and unfiltered data. The energy tendency that is associated with

the synoptic-scale contribution to the nonlinear term is shown in Figs. 5.27 - .5.30 for

the t= 1-4 vertical modes of zonal wavenuinoers 1-3. Also included on these plcts are

the contributions of the total nonlinear term. For the barotropic mode of zonal I

wavenumber 1 (Fig. 5.27), there is clearly a bias for the synoptic-scale contribution to

the energy tendency to be positive. That is, the synoptic scales are interacting such

that they are increasing the energy of the barotropic mode on 16 of the 19 days that

were analyzed. The above pattern is evident to a lesser extent for the barotropic

modes of zonal wavenumbers 2 and 3. For the Z=2,3 modes (Figs. 5.28-5.29), there is

a tendency for the synoptic scales to take energ-: away from the planetary scale. This

tendency appears to be strongest for the Z = 3 modes. For example, on only two of the I
19 days are the synoptic scales transfering energy to zonal wavenumbers 3 and 2 scales.

The fourth (Fig. 5.30) vertical mode has the largest contribution from synoptic scales

to planetary scales in terms of the percentage of the total energy tendency due to the

nonlinear term. For most of the days examined, the synoptic-scale contribution to the

energy tendency is positive for all three zonal wavenumbers.

Table 7 gives the time-averaged synoptic-scale contribution to the energy
tendencies of the nine vertical modes of zonal wavenumbers 1-3. Energy flow from

synoptic scales to planetary scales would be indicated by a positive value. Once again,

to insure greater statistical significance the averages in Table 7 are computed from 85

days of 12UTC initialized NOGAPS analyses

The general pattern that is evident from Table 7 is that barotropic (Z= 1), and

third baroclinic (Z= 4) modes have a positive contribution from synoptic scales to the

energy tendency for all three zonal wavenumbers. The synoptic scale contribution for

the Z= 2,3 modes are consistently negative for all three zonal wavenumbers. The

synoptic-scale contribution to the energy tendency is generally largest for the

barotropic mode and smallest for the t=4 mode. The relative importance of the

energy flow from synoptic to planetary 'ccles for a particular vertical mode is not

truely indicated by energy tendencies given in Table (7). For example, the barotropic

mode has a larger synoptic-scale contribution to energy tendency than does the t= 4

mode, but the barotropic mode contains a larger amount of energy than does the Z= 4

mode. However, the most important point to be made from Table (7) is not the

strength of the synoptic-scale contribution, but rather the pattern of this contribution.

Based on the the pattern of energy flow from synoptic to planetary scales, one can

hypothesize some possible mechanisms for these interactions.
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Table 7. Time averaged (over 85 days, taken between 16 January and 16 April
1986) synoptic-scale contribution to the energy tendency (J Kg 1I s") generated by
the total nonlinear term for an average of meridional modes n - 0-3.

Vertical Zonal Wavenumber

mode index

1 2 3

1 8.2 x 10-7  5.7 x10 -7  7.2 x 10-7

2 -2.4 x 10-8 -3.4 x 10-  -3. 5 x 10-

3 -1.9 X 10 -5.3 x 10 -8  -1. 7 x 10-'
4 9.7 x 10-8  5.2 x 10-8  4.9 x 10-9a

The analysis of the energy flows in this study between synoptic scales and

planetary scales is unique in two ways: The analysis is done considering the total

energy flow and it is specific to interactions between synoptic waves and planetary
waves. Tanaka et al. (1986) examined kinetic energy flow for groups of modes, but

they did not look at the total (kinetic and potential) energy flow and their emphasis

was on zonal mean-eddy interaction. A important result of their study was that the

zonal mean barotropic mode gained energy from the baroclinic modes of higher

wavenumbers. Tanaka et al. indicated that the kinetic energy source Fbr the higher

wavenumber baroclinic modes came from the conversion of potential energy via "".

baroclinic instability.

The results given in Table 7 show that the barotropic modes of all three zonal
wavenumbers gain total energy from synoptic scales while the planetary-scale

barocinic modes (Z= 2,3) were losing total energy to synoptic scales. These results are

similar to the results of Tanaka et al. (1986) if one thinks of a local basic state havine a
projection on planetary scales. Here I use the term basic state to refer to the state

obtained by zonally averaging over a restricted domain, such as the wavelength of one

cyclone. The above is in contrast to a zonal basic stare that implies averaging around

an entire latitude circle. Because of the large scales of planetary waves, a local basic

state may have a large projection on the planetary scales. Thus, the synoptic scale
t= 2 and 3 vertical modes may be gaining potential energy from this basic state,

converting this potential energy to kinetic energy via baroclinic instability and then
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ii
transfering this kinetic energy back to the barotropic (Z = 0) component of basic state.

In addition, the syncptic scale t = 2 and 3 vertical modes could at the same be

transfering energy to the Z = 4 planetary scale modes.

The hypothesized mechanism for the energy flow described above is aiso

consistent with the results obtained from the analytic model presented in Chapter 4.

For example, if the zonal wavenumber 6 mode for the first baroclinic mode (t= I in

the notation of the simple analytic model, Z=2 for the NOGAPS analysis) were to

interact with the zonal wavenumber 7 mode for the second baroclinic mode (Z= 2 for -

the analytic model, and Z = 3 for the NOGAPS model) then the zonal wavenumber 1

mode for the first baroclinic mode (Z= 1 for the analytic model, Z for the NOGAPS

model) and third baroclinic (t=3 for the analytic model, Z=4 for the NOGAPS

model) modes would be affected. Also, the first two baroclinic modes could interact

with themselves to affect the barotropic mode.

Since the results presented in Table 7 are for the total energy flow it is not

possible tell how much of the energy flow is kinetic energy and how much is potential

energy. The results from the simple analytic model presented in Chapter IV, indicate a"

that the majority (if not all) of the energy flow to the barotropic mode should be due -,

to kinetic energy transfer while both kinetic and potential energy transfer are possible

for the baroclinic modes. In the following section the relative importance of energy

transfer through the momentum advection terms (kinetic energy transfer) to the energy

transfer through the mass advection terms (potential energy transfer) will be examined. ,

D. SOME MECHANISMS OF SYNOPTIC-SCALE INTERACTIONS

It is clear from the analysis of the previous sections that synoptic scales can have

a significant impact on the dynamics and energetics of planetary scales. What is not

clear are the mechanisms by which the synoptic scales are interacting with the

planetary scales. Are mass field interactions (e.g. temperature advection) the primary

mechanism (Gall et al., 1979) or are momentum field interactions (e.g. momentum)

advection more important? One of the reasons why the mechanisms of' the interaction

are not clear is that the adiabatic nonlinear term is a combination of of terms from the

momentum equations and the thermodynamic energy' equation. That is. the nonlinear

term contains the effects of temperature advection as well as momentum advection.

What is needed is a way to separate these effects. The method used to separate these

effects is simple and direct. That part of the synoptic-scale contribution due to

momentum field interactions is isolated in the following way: b-%

S. The data are filtered as described in the beginning of this Chapter.
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" The nonlinear term for both the filtered and unfiltered data is computed by first
computing the discrete time tendency of the coefficients via an adiabatic one-
time step integration of the NOGAPS model, and then subtracting the linear
term (iwC) from it. However. in this step the term representing the horizontal
momentum advections is deleted.

* The energy tendency due to the nonlinear term with the momentum advections
deleted is computed using (5.3) from both the unfiltered and filtered data.

* The energy tendency due to synoptic ,cales with and without the momentum
advections is determined by subtracting the energy tendency computed from the
filtered data set from the energy tendency computed from the unfiltered data for
each case.

* The energy tendency due to synoptic scales that comes through the momentum
advections is computed by subtracting the energy tendency due to synoptic
scales computed without momentum advections Irom the synoptic-scale
contribution to the energy tendency computed from integrations mae witih all
of the advection terms included.

Care must be taken in using the above method. Since the synoptic scale

contribution to the nonlinear term can often be a small difference between two large

terms (the nonlinear terms computed from the filtered and unfiltered data) care must

be taken to insure that the deletion of the momentum advection terms does not

produce a large iIcrease in time tendencies. A large increase in the time tendencies

may mean that one would be trvine to determine a value as a verv small difference

between two very large numbers. If this difference is smaller than the accuracy of the

two values being subtracted, then the dillerence is not reliable. The error produced by

the filtering process is such that only 3 to -4 significant digits are maintained after

filtering. Thus if the original difference is small (an order of magnitude smaller than

the original terms), and if the deletion of the momentum terms increases the time

tendency bv two orders of magmitude or more then the results would be questionable.

The other potential source of error in this method anses because the model

equations are in a flux torm so that deleting the ter, triat represents the momentum

advections aiso means deletng other terms iwhicL: enter via the conltinuity equation)

wich do not involve m menzum aui~ecions. Ine continuous flux form ol the

momentum advection term in th sigma coordinate of the NOGAPS model is

(976NV7, • (,rV'V)-,

Where 71t s defined by (3.10- The discrete form of the first term in (5.-i is deleted from

the NOGAPS model one-time step integrations as part of the analysis procedure which
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is designed to isolate interactions through the momentum advection term. The first

term in (5.4) can be written

7r(V . VV) + 7rVV.V + V(V. V7r). (5.5) o

The variable ir may be written as

3F + ;rl (5.6)

where I is a constant over the globe and It is a small deviation from this constant. In

general. W> > it' except near high mountains. Thus the first term in (5.4) is

approximated by
,J.

f. (,VV).

(5.7)N

The third term in (5.5) will in general be much smaller than (5.7) except near

mountains. The second term in (5.4) and (5.5) will be small for the modes being

considered because they represent interactions between the divergent and rotational

parts of the motion (Errico, 1984).

Based on the above arguments concerning the smallness of the neglected terms, it ".

can be seen that most of the nonlinear interactions that may occur through the flux

form of the momentum advection term will be due to (5.7).

This method for determining the relative importantance of momentum and mass

field interaction is most accurate wnen the synoptic-scale contribution to the total

nonlinear term is large and when the deletions of the advection terms do not produce

extremely large changes (at least two orders of magnitude) in the time tendencies of the

modes. Deletion of the momentum advection terms does not produce extremely large

changes to the time tendency of the modes. The above is not true when the

temperature advection terms were deleted. Deletion of these terms produces large

changes in the time tendencies of most of the baroclinic modes. Another point to

consider when deleting nonlinear terms is that one must not delete terms that involve
the mean state that the pnmitive equations are lineanzed about. For example. deiction

of the vertical advection of temperature would delete the linear basic term

or (5.S) :_.

Such a deletion would mean that the frequencies that are determined as eigenvalues of
the linearized equations, would no longer be valid. As result, the linear term iwC
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would not be accurate. Since the linearization about a mean state of rest contains no

horizontal advections, the deletions of the horizontal momentum advections will not

alter the frequencies. Because deletion of the temperature advection produces large

changes in the time tendency of the modes, the interactions that are due to mass field

interactions are assumed to be the values computed with the momentum advection

turned off. These values do not represent just the horizontal temperature interactions

since in sigma coordinates there are a number of nonlinear mass interaction terms e.g.

the advection of surface pressure and the horizonal gradient of surface pressure.

However, the temperature advection would be expected to comprise a substantial part

of these nonlinear terms.

The synoptic-scale contribution to the energy tendency generated by the

nonlinear term computed with all advections, and the difference between the synoptic

scale contribution with all advection and that quantity computed without momentum

advections are plotted in Figs. 5.31 - 5.34. The difference represents the portion of the
"p,

synoptic scale contribution to the energy tendency that is due to the momentum

advections. For the barotropic mode (Fig. 5.31), the synoptic scale contribution to the

energy tendency generated by the nonlinear term is mainly due to momentum

interactions. This is especially true when the synoptic scale contribution to the energy

tendency is large.- For example, compare the values of the total synoptic scale

contribution to the energy tendency with that part due to the momentum advection

terms on: 26 January, 17 and 27 March for zonal wavenumber one; 17 March and 6

April for zonal wavenumber two; and 26 January, 27 March and 1 April for zonal

wavenumber three. Momentum advections are a slightly more important mechanism

than mass field interactions for the second (Fig. 5.32) and third (Fig 5.33) vertical

*modes. However, the mass field interactions can be the larger contribution for some

days ( 20 February for f= 3, m= 1; 26 January, 25 February, and 27 March for t = 2,

m=2; and 5 February for t=2, m= 3). Mass field interactions are generally the

dominant mechanism for the fourth (Fig. 5.34). This is especially true for days with a

large energy tendency due to synoptic-scale interactions. However, there are also a a

few days where momentum advections make a substantial contribution.

The results given in Table 7 show that the barotropic mode of all three zonal
wavenumbers gains total energy from the synoptic scales. The results presented in Fig.

(5.31) indicate that this total energy transfer is mainly due to momentum interactions.

Thus, the energy being transfered from synoptic to planetary scales is kinetic energy.
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This result is consistent with the hypothesis presented in the previous section which is

that the relation of the synoptic-scale waves to the planetary-scale waves can be

likened to the relationship of an eddy to local mean flow. Assuming this hypothesis is

correct, the transfer of kinetic energy from the synoptic-scale modes to the barotropic

planetary-scale modes may be associated with the process of barotropic stability.

The results presented above for the barotropic mode are also consistent with

those of the simple analytic model of Chapter IV. The results from this model indicate

that mass field interactions would not be possible for the barotropic mode. This is not

strictly the true for NOGAPS model, but it does appear from Fig. 5.31 that the

momentum advections are also dominant in the NOGAPS barotropic mode.

The results presented in Table 7 indicate that on the average the synoptic scales

are taking energy from the planetary-scale Z= 2 and 3 modes while giving energy up to

the planetary-scale P_=4 mode. From Figs 5.32-5.34 it is clear that the total energy

transfer between these scales is due to both kinetic and potential energy transfer. The

results from the simple analytic model indicated that both types of energy transfer are

possible for baroclinic modes. Also the results for the t=2-4 modes are not

inconsistent with the idea that the relationship of the synoptic-scale modes to .,
planetary-scale modes can be likened to the relationship of an eddy to a local mean

flow. There are three possibilities for kinetic and potential energy flow between

synoptic- and planetary-scale baroclinic modes:

* Synoptic-scale baroclinic modes can gain both kinetic and potential energy from
planetary-scale baroclinic modes.

* Synoptic-scale waves can gain potential energy from planetary-scale baroclinic
modes while losing kinetic energy to those same modes. -I.%

0 Synoptic-scale modes can lose potential energy to planetary-scale modes while
gaining kinetic energy from those same modes.

The final consequence of the above analogy, is that the type, sign and amount of
energy transfer from synoptic-scale baroclinic waves to planetary-scale baroclinic waves I

would depend in a crucial way on the tilt of the synopt.i, scale waves' phase with

respect to the vertical and horizontal wind shear of the planetary waves.

The potential energy flow from synoptic scales to the planetary scales of the t = ,

mode is similar to the flow proposed by Gall (1979). Gall proposed that the planetary .

scale waves were forced mainly by planetary scale variations in the meridional heat flux

convergence of higher wavenumber modes i.e., the interaction between cyclone scales $,A

waves and the local basic state increased the amplitude of the planetary scale
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temperature perturbation. This potential energy was then converted to kinetic energy

due to a positive correlation between planetary scale upward motion and temperature.

It is clear from the results presented in Fig. 5.34 that potential energy is being

transfered to the t=4 mode of the planetary scale waves. The above result is also

consistent with the results obtained from the analytic model presented in Chapter IV.

However, the results of this study also appear to conflict with the results of Gall et al.

(1979) in that not all of the planetary scale modes (the Z= 1 mode for example) are

being forced mass field interactions. The apparent conflict between this study and that

of Gall can be explained by the differences in the data rather than the mechanism. In

Gall's experiment, synoptic-scale perturbations were allowed to grow from a zonal

mean state. Gall argued that in developing wavesperturbations that

wave, perturbation velocity (V') and the wave, perturbation vorticity (;') were

uncorrelated while V' and the wave,'perturbation temperature were correlated. In this

study, the atmosphere data contained a variety of fully developed cyclones. For fully

developed cyclones it cannot be said that V';' are uncorrelated. In fact, general

circulation theory would suggest that V';' would be correlated. In a more recent study

that was very similar to that done by Gall, Young and Villere (1985) showed that direct

transfer of kinetic energy from intermediate scales to planetary scales was of equal

importance to the transfer of potential energy. A possible reason for this conflict

between these two similar studies is that the zonal mean state specified by Young and

Villere was such that they obtained higher growth rates than Gall and their

disturbances developed faster. I believe that the disturbances in the Young and Villere

study developed to the stage where the correlation V' ' became significant. While it

may be true for the simple state specified by Gall that the synopticscale forcing of

planetary scale waves is mainly through the temperature advection term, this does not

appear to be true for an atmosphere that contains fully developed cyclones. This is not

to say that the mechanism proposed by Gall is invalid, as this mechanism may be

active in the atmosphere given the proper distribution and variation of intensity of

cyclones. However, the direct transfer of kinetic energy could be taking place that may

or may not be in the same sense as the potential energy transfer. &

In summary, the analysis of the results presented in this chapter have established

the following:

Synoptic-scale interactions can have a significant impact on the dynamics of
planetary scale modes.
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* For the barotropic mode (Z= 1), the main balance is between the linear (Rossby
wave) terms and adiabatic advection terms, so that the time derivative is smaller
than either term. In this situation. the synoptic-scale interactions can have an
important influence on the planetary scale waves even when they are not a large
percentage of the total advection term.

Synoptic-scale interactions tend to decrease the energy of the planetary Z- 2.3
vertical modes while increasing the energy of the barotropic and Z = 4 modes.

• The synoptic-scale interactions are mainly through the momentum terms for the
barotropic mode and through both the momentum and mass advection terms
for the baroclinic modes (t= 2-4 modes). The mass field interactions are
generally dominate for the t = 4 modes.

There are some important implications of the above results to the forecastabilitvN

of planetary-scale waves. One can easily see that if the strengths and, or phases of

synoptic-scale waves are not not forecast correctly then the interactions between

synoptic and planetary scales will not be forecast correctly. This could immediately

lead to a forecast error in the planetary scales. Showalter (1984), using a spectral

forecast verification technique, noted a case where a poor synoptic-scale forecast by O

the NOGAPS model led to subsequent degradation in the planetary-scale forecasts of

the model. The nonlinear linkage of synoptic and planetary scale of motion suggests

that to forecast planetary scales more accurately, more accurate synoptic-scale forecast

are required.
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VI. SUMMIARY AND CONCLUSIONS

The procedures used in this study are based on the normal mode analysis

procedures developed by Errico (1984). NOGAPS analyses have been projected onto
the normal modes and the different terms (linearnonlinear adiabatic and diabatic) that
affect a particular mode have been determined. The total energy for each mode and

the energy tendencies due to the nonlinear term are determined. The effect of synoptic

scales on the magnitude of the adiabatic nonlinear term (Nn). and the energy tendency

due to Nn is also determined. Bv deleting the effect of the mornntum advection terms,

it is possible to determine the relative importance of interactions through the

momentum or mass terms.

The importance of the nonlinear interactions in the dynamics of planetary waves

has been demonstrated by computing the adiabatic nonlinear term for a two different

data sets. The first data set is 19 days of 12UTC NOGAPS analyses taken every 5

days from 16 January 86 to 16 April 86. The second data set is a filtered version of the

first data set. In this data set the data (u, v, T and Zn Ps ) are spectrally filtered by

transforming the data to spectral space and then setting the coefficients of wave

numbers 7-15 to zero. Reconstitution of the field then is a representation of the

atmosphere without the influence of synoptic waves. The magnitude of the difference
between the adiabatic nonlinear term computed from the original and the filtered data

sets is taken as a measure of the dynamical importance of synoptic-scale interactions

on planetary scale waves. The magnitude of this difference is on average about 20

-30% of the total nonlinear term, although it may be as much as 60-70% of the

magnitude of the total nonlinear term in certain vertical modes for a given day.

The ratio of the synoptic scale contribution (Nns) to the adibatic nonlinear term

of a planetary-scale mode (Nn) is only one measure of the dynamical importance of

synoptic scales. An additional measure ( the ratio of the magnitude of N to the

magnitude of the time tendency AC, At) is used to show that the ratio of the

magnitudes of N to AC,:At may be large even though the ratio of the magnitude of

N to the magnitude of Nn is small. This is generally true of the first three vertical
modes, although it was especially true for the barotropic mode. For this mode, the

linear and nonlinear terms tend to balance such that the time tendency of this mode is
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smaller than either of the two balancing terms. Even though small when compared to

Nn , the contribution of synoptic scales may be important in determin;ng the balance or

nonbalance of the total nonlinear term with the linear term. In this case, Nns nght be

very important in determining the time tendency of the barotropic mode.

Although the comparisons with the magnitude of Nns to the magnitude Nn or to

AC'A, show that Nns could play an important role in the dynamics of planetary scale 'p
,.%

modes, it does not show how planetary scale modes are affected by synoptic scale

modes. To examine the mechanism through which the synoptic scales affect planetary

scales, the energy equation for a given mode is derived and the energy tendencies

generated bv Nns and Nn are examined. On the average, synoptic scales tend to give

energy up to planetary scales for the barotropic e = 1 and baroclinic Z = 4 vertical

modes, while energy flows from planetary-scale waves to the £= 2.3 modes. The

positive contribution of synoptic scales to the energy of the planetary scale Z= I mode

can be a large percentage of the energy tendency generated by Nn , which indicates that

the synoptic scales play an important role in determining the time evolution of these

modes.

To determine how energy is being transferred, the energy tendencies generated

by N with the momentum advection term deleted from the equations are calculated.

The deletion of this term eliminates most of the transfer of energy through the N

momentum term. By examining the difference between the energy tendency generated

by Nns with all the terms included and Nns with no momentum advections, it is

possible to determine how much of the energy tendency due to interaction with

synoptic scales is due to the momentum advections. It is found that interactions

through this term are, not unsurprisingly, responsible for almost all of the energy

transfer from synoptic scales to the planetary scale barotropic modes. Interactions

through this term are also important for the Z= 2,3 modes, but do not seem to be quite

as important as the interaction through the mass fields (temperature advections). The

relative importance of interaction through the mass field increases as vertical mrnd,'

number increases.

The results of this study confirm in part those of' Gall et al. (1979). That is.

synoptic scales do in fact play an important role in the dynamics of planetary scale S

waves and they can act to increase the energy of these waves. However, the results of'

this study also appear to conflict with the results of Gall et al. (1979). Gall proposed

that the forcing of planetary scale waves by synoptic sca l waves was mainly through
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the planetary scale variations in the meridional heat flux convergence of synoptic

waves, which produces a positive correlation between planetary wave upward moticn"

and temperature. In this study, it is found that forcing through the momentum
b

advections are also important (especially for the barotropic mode). The apparent

conflict between this study can be explained by the differences in the data used rather

than the mechanism.

There is no question that the synoptic scales have an impact on the dynamics of _:

planetary scales. For example, if a major cyclonic development is missed in a forecast

it could lead to a sizable error in the planetary waves because the nonlinear effects of *5

cyclones would not be properly represented. This fact means that to more accurately

forecast planetary scale waves one must improve the forecast of synoptic scales which --:
0

will feed back and cause an increase in accuracy of the planetary scales. This has

already been demonstrated to some degree because higher resolution models tend to
give better planetary wave forecasts than lower resolution models even though the

truncation error for the planetary waves should be negligible for both resolutions.

It remains for future studies to determine how well numerical models represent

these interactions and how errors in forecasting these interactions affect the planetary

scale forecasts. Future studies might should try to examine how periods of large

synoptic-planetary interactions are affected by changes which occur on the time-scale

of synoptic wave. The interactions in this study were examined only every five days so
it was not possible to see how the interactions varied with the changing synoptic

patterns.

Another possiblity for future study would be forecast verification using normal

mode analysis. Using normal mode analysis, it may be possible to more fully examine

the relationship between errors in deternining the interactions between planetary and

synoptic scales and any subsequent planetary-scale forecast error. Finally, other

studies have indicated that nonlinear interactions may be important in maintaining

blocking patterns. These studies did not use normal mode analysis. Much riht be

learned about the dynamics of these blocking patterns by exanining the nonlinear

interactions using normal mode analysis.
1.

a.
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APPENDIX A

LINEARIZED HYDROSTATIC, THERMODYNAMIC AND
CONTINUITY EQUATIONS

The vertical structure of the NOGAPS model follows the development given by
Arakawa and Suarez (1983). The variables are staggered in a so that all the variables

(T, 0, and V) except pressure and a are carried at the mid-point of each layer. The
vertical structure is illustrated in Fig. A. 1

The finite difference form of the hydrostatic equation is:

O - k+2 = Cp(Pk+ 2 -Pk)bk+l for k =1, 3,...K- 2 (A.
and

OK -. + Cp(P. -Pk)Ok (A.2)
Where

+1 1 + - 1
Pk1 (A.3)P 1 + ,, c+ - Ph -I A ,.

I 1 ' I "-+'+ 1 P+1 Pk-I

P l- P. Pk- I (A4)-
and

&i+1 = Ak+ Ok + Bk+i Gk+2 (A.5)

are the interpolation formulas used to produce energetically consistent equations

where:

Pk = ak(p. - pt) + Pt

p.,

PC4Pk =( 1) ("A. "
Po

Ph+ I - P'kpk+i - (A (,\S)
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Figure A.I. Vertical grid structure for NOGAPS model.
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Pk+2 - Pk+I (A.9)Bk+1 -- _______(A9

Pk+2 - Pk

P PK-2 _ PK-2

AK-I= PK-(A10)
PK- PK-2

=K PKPK-2
BK-- PK- 2 (A.ll)

T is temperature, p is paessure and Cp is the specific heat at constant pressure. The
geopotential at each level is computed using

O K . + Cp(P - PK)OK (A.l 2)

okF
- I+=. -Kc'P(P+2 - Pn)(A,.+1 n)+ (A.13)'K, "

_-+2'c(P - P,-2)(B,_ On)

which are just integrated forms of (A.1 ) and (A.2). The primed sum indicates

increments of 2. The above form of the hydrostatic equation can be written as:

.k = T ..I (A. 14)

where 0 n<k

Cp(Pn 2 - P )A +.
pn (A. 15) "

C( Pn+2 - P,)An+l_"'.

or in matrix form as P k

CT (A.16)

The finite difference form of the thermodynamc equation (Eq. 299 in Arakawa
and Lamb:1972) in orthogonal curvilinear coordinates is

,[tir] T + [ ,(FTe) + ( )+ .oP), .5(s)"

,7 (A .1 7 )

+0,r -( ar ) 6.6ir + IIQ _
where at n .

I nn (A.18)
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Ik C

An (A.19)Af"A

TnG=r A C (A.20)

M

S-- i~o (A.21)

The overbar is a linear average in the direction of the variable indicated, and 8x is a

difference taken in the direction of the subscript.

To linearized, first subtract

Tlj J 1 , l 61G k 0"
T 46rI + 6F + 6,, + -i-k. o (A.22) '

which gives

n3 ,r.+ As T -t (),j-t- (QT)o (A.23)

or T
6 Tk+l I [k- 7 Pk-

btT' .+ j ,_p_+ f _g.+ 1k+,1~ T p----..k-, T~ -k-,'.,.

(A.24)
(aira)k, al r QT

where Tk is the rest-state temperature. -C=, at 'i

Substituting the linearized form of the continuity equation (Eqs. 166-167 in

Arakawa and Lamb;1972)

7k( K , (V. V_)Ao'. + Q, (A.25)

6'-kI'NV. V).Aa, + ak-_I_-= (V Vn)Aurn + Q_ (A.26)

6t-n, _=1 (-- an+" (A .27)

and

STk dPr

gives

ST + j+ ( - n'= - V)nAan + U k +2 (.Ja
Aak

(A.29)
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,',

( -t l)3~ i (V. V)",AC,, + , ak.V k-,+ [ -(O,, - n

Tk dPk -K, (,

k dir .1(.V)~ (T~

In matrix form

JtT 1.+ r(V. V), = (QT)i( 0
(A.30)

where

IiI

1k 11I i
(,1 +L) - ) (a'-t) "Tk dP% f

-) (k-i) T dPk (.f
T kn~ ~~~~~~ > -A ~ -- ~-}o ~

The formula

dP AA+Io'k+I(Pk 2 Pk)j +-Bk-t[a -I(Pi - PI- 2 ))

dir - Akk< K (A.32) 50.

P.- k,. k=K '

is that derived by Arakawa from the interpolation fomulas (A.3) - (A.9). Note that -

the continuity equation may also be written in matrix form by defining

ACT 2 I(A.33)

so that 

•

6t Inir - 11 T5 + Qp (A.34) -

1.'.
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APPENDIX B A

NORMAL MODES OF THE QUASI-GEOSTROPHIC 1ODEL

It is convenient to use the following vertical coordinate

Z = ln(p/po), (B. 1)
where pO is a fixed standard sea-level pressure. The vertical coordinate Z is related to

the actual height z, and the geopotential by the equation of state and the hydrostatic

equation:
az a¢ p

RT = pa = P9 ap ".

This vertical coordinate is closely related to the more famiiiar pressure coordinate

system and the vertical derivatives of the two system are related as fbllows:

a 1 a
ap p8Z' (B.3)

while the other partial derivatives are the same in both systems. The Z-velocity Z is

related to w through

S(B.4)
p ,

The basic equations of this model are:
1%

a = RT (B.5)
az

av av
S+V. VV + Z-+ V+fkxV=O (.)

at az B)
I

aT • T (B.7)
-- + V. VT + Z--+ZRTQ p.

at

Vz (B.8)

We assume boundary conditions of Z= 0 at 0 and Z=ZT. where ZT is Z at the top of

the atmosphere. An expression for Z may be obtained by rewriting B.8 as
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Vv + eZ  Z)=o. (B.9)

if we multiplly (B.9) by e"Z , integrate from Z to ZT and solve for Z we obtain

= e z LZ e-V .VdZ. (B. 10)

Assuming Boussinequess conditions i.e. e "- = constant then (B.10) can be written h

L? =• .(B.ll)
Next we linearize (B.5)-(B.8) about a hydrostatic and adiabatic mean state at rest by

letting

V = V'(X,y,Z,t); k=-(Z) + 0?(X, Y,Z,t). (B.l2'

By' combinine the linearized versions of (B.10), (13.5). and (B.7) we obtain a siiele

equation for mass which contains all of the vertical derivatives:

a2 6' Z r+ r(z) v. v dZ.
&3Z (B. 13)

The term r(z) is the mean state static stability and is given by

a (a - H2g( g +187 ar(Z) = =__(o (- +
az az +  H) --- )' (B.p14)

where

H =RTg. (B.15)

A vertical structure equation can now be determined from B.13 by first dividing

by r(Z) and then taking 0 OZ of(B.13) so that it can be written as

(B.16)

Next we can use the technique of separation of variables to determune the vertical

structure equation. This is done by letting

(11.17)

V = V.(X,Y,t).(Z) (0"l)

and substituting these expressions into (B.16). The vertical structure equation obtained

by the above procedure is.
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8(8~)= -A"O4t. (B. 19)

The associated boundary conditions for this equation are

9Z 0O (B. 'u)
The vertical modes of this model are just the eigenfunction of the boundary value
problem given by (B.19) and (B.20). Assuming [(Z) is constant then the vertical

modes for this system are

A. cos - n = 0 - oo
"Z (B.21)

These function can be used to transform the basic equation into equations for each
vertical mode.
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