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ABSTRACT

The development of two- and three-dimensional Euler correction methods based

on the Clebsch transformation is described. In these methods, the velocity
field ts decomposed into irrotational and rotational parts. A mulitigrid full-
potential method based on both the fintte-difference and finite-vclume formu-
lations is modified to solve for the irrotational part, while the momentum
equation is applted to solve for the rotational part. Two approaches are
developed to solve for the rotational field. The approximate Euler-Clebsch
approach assumes the entropy is convected along mesh lines, while the exact
Euler-Clebsch approach solves for the convection of entropy along streamlines.
The two approaches agree well in the airfoil application. Only the approximate
Euler-Clebsch approach is employed in the three-dimensional calculations. A
study of finite-difference and finite-volume formulations of the full-potential
equation is also included. Euler-correction solutions are presented for vari-
ous airfolls, wings and an F-14 wing/body and are compared with results of the
full-potential and the time-marching Euler methods.

1.0 INTRCDUCTION

Inviscid flow generally can be described by the Euler equations. However, the
use of the Euler equations requires the flow density, velocity and energy to

be solved 25 unknown functicns. Transonic flows with relatively weak sh:cks
can be assumed to be isent -pic and approximated by potential flow methods
where the potenttal function is solved as the only unknown functionr, thus
requiring much less computation than the fuler methoas. In the past fifteen
years transonic computational methods for solving for the potential flow-
fields have been well developed, extensively validated, and widely accepted as
a routine tool for aerodynamic design. Hetﬁ%ds for solving the Euler equations
were introduced at a later stage, and significant progress has been achileved

in this area recently. However, because of the much greater memory and compu-
tattonal time rEqJﬁrements of the Euler methods, and also their less complete
validation [1-2], the full-potential methods are still preferred in the routine
transonic aerodynamic design.

Although the existing full-potential methods are 1imited to problems dealing

with relatively weak shocks, they are ideal for stmulating transonic flowfields
0043h 1
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at cruise conditions. The solution accuracy of the full-potential method
deteriorates as the flow condition approaches stall where the shocks become

much stronger. To further improve existing full-potential methods, and extend
their applications to stronger shock cases, the effects of the total pressure
loss across shocks and the vorticities generated downstream of the shocks on
the solutions have to be studied carefully. This can be accomplished by the
so-called Euler correction methods that are derived from the 6$s1c full-
potential methods by add- ing additional terms to model the nonisentropic
effects.

This report describes several improvements of the existing transonic full-
potential method, including the development of an Euler correction method

using the Clebsch transformatton. 8oth finite-difference and finite-volume
formulations are used to solve the full-potential equation for the irrotational
part of the flowfleld. The finite-difference formulation is based on a gen-
eralized coordinate transformation [3,4), while the finite-volume formulation
is based on mass flux balance [5]. General nonconservative, partially con-
servative and fully conse-vative artifictal viscosities and shock-point oper-
ators, as described in Ref, 3, are applied to reflect the directional blas of
local supersonic fiows. The rotational part of the flowfield %s determied from

the momentum equatian.

~ brief ove-view 07 Euler correction methocs s given in Section 2.0. The
finite-difference and finite-volume formulations of the full-potential equa-
tion are described in Section 3.0. The Clebsch formulation of the rc*ational
veiocity compénents {s described in Section 4.0. The nume ical procecure and
results for two- and three-dimensional flows are described in Sections 5.0 and
6.0, respectively. Concluaing remarks are given in Sectton 7.0.

0043h 2
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2.0 OVERVIEW

The Euler correction methods which produce Euler-like solutions can be classi-
fied into three categories according to their degree of approximation. The
first simply accounts for the total pressure and density losses across the
shocks. The total pressure is computed downstream of the shock and remains
constant along streamlines. Because of a total density jump ;éross the shock,
the governing equation at shock points s significantly modified, while the
governing equation downstream of the shock point s slightly modified due to
the variation of total density between streamlines. The total pressure down-
stream of the shock is computed according to the Rankine-Hugoniot shock rela-
tion, and no additional equation is needed for its solution. Because the vor-
ticity downstream of shocks has only third-order effects on the solutions in
the transonic region, this approach generally predicts shocks agree ng well
with Euler solutions than either full conservative or nonconservative schemes.

Several investigators have developed schemes in this category, including Hafez
and Lovell [6), and Kloofer and Nixon [7]). The partially conservative schemes
developed by Lock {8) and Chen {9] are also included in this category, tecause
the addition of a mass source at shock points in the partially conservative
schemes 1s similar to the correction of total density downstream 3f the shock.
In addition, the tota' pressure loss downsiream of the shock can significantly
affect the Kutta conditi-n. For example, Chen, Clark and vassberg {10] showed
that by imposing the nonisentropic Kutta concition, the comouted shocks agree
fatrly well with the Euler colutions, even for strong shock cases.

The second kind of Euler correction method decomposes the velocity vector into
potential and rotational components. The rotational component s explicitly
related to the vorticity field downstream of the shock. There are different
wdys to decompose the velocity vector. Brodﬁ. Brecht and Walsh [11] simply
atd a scalar function to the streamwise veloc'ty component. Sokhey (12)] and
nafez and Lovell [6] apply Helmholtz theory to decompose the velocity vectcr
into 1rrotat1ona1'énd the rotationa! components such that the stream function
can be used to compute tne vorticity. Ecer and Akay [13,14] apply the Clebsch
transformation to define the rotational velocity component in conjunction with
the use of a finite-element method. This kind of Euler correction method is
more general than the first method and additional governing equations are

0043n 3




applied to solve for the rotattonal velocity components. The additional equa-
tions for the rotational part which govern the convection of the vorticity are

hyperbolic, and require a relatively small amount of computational time to
solve.

The third kind of Euler correction method, proposed by T.C. Ta? [15]), ¥s a
hybrid method which combines a finite-difference relaxation method with the
method of integral relations. The Euler equations in integral form are solved
downstream of the shock. Both the shock location and circulation are continu-
ously updated during the iterations until the far downstream and the Kutta
condition are satisfied. Most of the works cited above are for two-dimensional
analysis, except the works of Ecer [14].

The present method applies the Clebsch transformation as the method of Ecer and
Akay, except that ir the present method the finite-difference/finite-volume
fuii-potential method is applied to solve for the irrotattonal part and also
that different Clebsch variables are chosen. Both the two- and thiee-
dimensional full-potential methods are well developed, and the extension of
+these methods to include the rotational velocity components is stratghtforward.
furthermore, the muitigrid scheme developed for the full-potential methods
works equaliy wel  in the present method despite the additional equations for
rotat‘onal velocity compononts.

A preliminary description of the present me nod and results is given in Ref.
i6. Both the iwo- and three-dimensional methods are described in more detat!
in the following sections. Solutlons are presented for vartous airfolls, wings
and wing/bodies, including an F-14 wing/body, and comparisons are made with

both the full potential and time marching Euler solutions when avatlabie.
’
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3.0 FINITE-VOLUME VERSUS FINITE-DIFFERENCE FORMULATION

Both the fintte-difference formulation of Chen [3,4] and the finite-volume
formulation of Jameson and Caughey [5] are used in the present method to solve
the full-potential equation for the irrotational part of the flowfield. In
the finite-difference formulation, the full-potenttal equation written in gen-
eral coordinates 1s employed; since a quadratic coordinate traﬁkformation is
applied, the odd- and even-point solutions are naturally coupled together. In
the finite volume formulation, the density term is explicitly computed from
the potential function distribution, and fluxes through cell surfaces are con-
served. However, coupling terms are needed to add to the finite volume formu-
lation to avoid the decoupling of odd- and even-point solutions. The finite-
gifference formulation is described in Section 3.1, the finite-volume formula-
tion in Section 3.2, and artificial visccsities and shock-point operators are
descriped in Section 3.3.

3.1 rinite-Difference Method
The full-potential equation can be expressed as

(@ - e v @t vhe v (ol - Wh)e

X vy 22 " 2uv¢xy - 2vmyz - 2uu¢xz = 0 (1)

where u, v, W aré the x, y, z components of the flow velocity, respectively,
and a s the loca’ speed of sound determined from the energy equation

al . aé - I—é—l (u2 RNCIN u2) (2)

where y is the ratio of specific heats for the assumed calorically perfect
gas an ao ts the stagnatton speed of sound.

After performing the matrix inversion, multiplication, and algebraic manipula-
tion, a transformed full-potential equation éh1t1p11ed by the determinant of
the Jacoblan transformation matrix, D, in general curviiinear coordinates can
be dertved as [3,4]

S®xx * So%yy t Ca®s t Sabxy f CoPyz t CePxz * Cq¥ * Gy * Cgby = O (3)
where
2 2 2 2 2
c, = [a (hy + h2 + h3) - U1/0 (4)
0043n 5
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2.2 2 2 2
¢, = [a°(hg < ng + ng) - VA1
2.2 2 .2 2
C3 2 [a (h7 + h8 + h9) - W )/0
¢ = [22°(h.h. o hoh. + hoR.) - 2UV]/D
4 Mgt PRNg * M3l
¢. = [23%(h.hy ¢ hoho ¢ hoh.) - 2VW]/D
5 a7 * NgNg * Nghg
2 2(h h, + h,h_ + h_h ) - 2UW]/D
Cg = [2a (hyhy v hohg + hihg) -
C; = - Py + hopy + hip ) /D
€g = - (h4px + hspY + hspzj/D
Cg = = (MyPy * NgPy * Ng?,)/0

U, vV, W are velocity components defined as

[ond
1)

h1u + hzv + h3w

-
1]

h4u + h5v + h6w

W = h7u + hav + hgu

Coeff‘cients hy ... hg are transformation derivatives cefined as
h, = -
IS B A
N, o= I X, - 2.X

2 \s Y

4] = . ]
3% Y2 My

hy = Y72, - Y2

hs = ZZXX - ZXXZ

h = -
6 - *2¥x ~ *x¥2

h, = ysz -y.z

0043h 6
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(10)

¢Cn

(14)
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(20)
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§ and coefficients px. pY, and pZ are second-order transformation
hyﬁ derivatives defined as

t.;\ Py * Sy %xx * Sa¥yy * €3%77 * Ca¥xy * Ss%vz * C6¥xz (25)

.
i Py =S¥ * Sa¥yy * C3¥2z T Ca¥xy * SsYyz * Se¥xz (26)

p, = €.2 +Cc.2 +C (27)

27 9%t Sa%yy St Salxy T S5ty T Seixg
V) The determinant of the Jacobian transformation matrix s defined as

A4
e O = Myxy v Xy * Myxg (28)

e The velocity components u, v, w are defined as

B u (h]ox + h44>‘ + h.,cbz)/D (29)

o
-

(h2¢x + hoody + hge,)/0 (30C)

oo L
A A
<
L]

W

(h3¢x + h6°Y + h ¢Z;/D (31)

9

A second-order local coordinate transformacion which transforms a 27-point cell
- from the physical space to the computational space (Fig. 1) can be applied te
formulate a second-order finite-difference approximation to Eq. (3) as des-

. cribed n Ref. 3.

Y (a) Physical space (b) Computational space

1
/ %‘ '

0 Figure 1. Transformatton of a second-order element.
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:&f Equation (3) can be reduced to a two-dimensional equation:
2 C1%x " Cfyy * Cafxy * 1% * Cgdy = O (32)
"
I .
o ’ with c1. c2. c‘, c7. and ca redefined as
0 202 o 43 - o210
1 ¢, = [a(xy *+vyy) - (33)
g ] .
b2 2 2 2 2. 2
:.‘ C, = (a (xx + yx) - v'1]/0 (34)
]

.
.’."
.". _ 2 _ 2
‘@E c, = -2{a (xxxY + yny) uvl/D (35)
:'l'q
R = -
w3 Cg = (¥yPy = XP /D (37)

e
ftg and U, V, u, v, D, px, and py redefined as
" U= uy, - ovxy (38)
A
a3 Vo= ouyy - ovxy (39)
'M_"
O
) U = e - $,)/D 40
° (Yyox = 138y (40)
= - \ ¢
:&3 v (xx¢Y XYQA /0 41)
2%“ C = x ¥y, - x y (-2)
:: Y Y°X
l.'
‘l.-. ] =
P o PP PLVVILICIE (43)
!."Q -
l..'l =
i Py = Sy¥xx * ¥y ' Ca¥xy (44)
i)
ﬂa fquatton (32) ts consistent with the two-dimensional equation derived in Ref.
K

17. The detail of the fintte-difference approximation to Egs. (3) and (32)

)
Qk' can be found in Refs. 3 and 4. .
)
'n”t
n 3.2 Finite-Volume Method
s The finite-volume method of Jameson and Caughey (5] applies the mass flux con-
o

, servation principle to formulate the finite-difference approximation to the
o full-potential equation. As shown in Fig. 2 for a two-dimensional case, four
primary cells, 1298, 2349, 9456 and 8967, surrounding the control point 9 are
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Ftgur2 2. Primary and secondary cells in the finite-volume scheme.

first used to evaluate the flow properties ‘ncluding the velocity components.
Then the conservation of mass flux Ys applied along the four cell boundaries
of the secondary cell ABCD wh'ch 1s formed by the centers of the prmary cells.
The evaluation of the mass flux on these four secondary cell surfaces intro-
duces a “lumping* error in the finite-difference approximation cf the “yl1-
potential equation at the control) point 9. In addition, the finite-difference
zpproximation thus constructec results in uncoupling of even- and ocz-:-2°'nt
sclutions. The remedy to this problem is :to add proper coupling :erm¢, which
essenttally shifts the evaluation ot mass fluxes from the centers of four pri-
mary cells to the control point 9. As derived in tqs. (-3) ard {34), “re
coefficlients éw and c2 are the leading terms of second derivatives of the
po-ential function in the X and Y direc- tilons, respectively. The follow'ng
coupling term w'th a cross derivative

1..2,.2 2 2
Ax 2 2 [a (XY + yY) F U ]QXY (45)
compensates for the lumping error in computing the flux balance in the X-direc-

tton. Similarly the following coupling term with a cross derivative

A - 1 2 2

2 2
Y E [a (xx + yx) -V ]OXY (‘6)

compensates for the lumping error in computing the flux balance in the
Y-direction. Similar coupling terms can be constructed for three-dimensional

cases,
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Eg With these coupling terms, the finite-difference approximation of the fintte-

EE volume method s very similar to that of the finite-difference method des-
cribed in Section 3.1 The approximation of the coupling terms in the finite-
volume method s identical to the exact coupling term in the finite-difference

N method only if the mesh lines are perpendicular to each other. However, since
: the leading terms of the second derivatives of the two methods are identical,
5 the relaxation scheme can be commoniy constructed and shared by both methods

. while allowing different ways of computing the residuals. In the method of

N Jameson and Caughey [5], the coupling terms are constructed in divergence form.

é; Therefore, their scheme is fully conservative. Although the finite-difference

g

method has an exact coupling of even- and odd-point solutions, the method i3

rot fully conservative.

Both the finite-difference and the finite-volume methods are implemented in
the cresent study. A comparison of the solutions obtaired by the two methods
is grven in Sectiocn 6.1.

3.3 Artifictal Viscosities and Shock-Point Operators

The second derivative of the potentia) function in the st eamwise airection,
S, 1s gtven as
2 2

a , 2 2
=5 (u St Vet b, ¢+ 2uv¢xy + 2vw¢yz + 2uw¢xz) (47)

$
4
q Yy

SS

Eguation (47) can be rawritten as

12 2 2 ; /
e = K (UTogy + Vibyy + Wb o + 2UVG,, + Vo, + 2UNe, ;) (48)

where U, V, W are given tn Eqs. (13) through (15).

The directiona?l bias of supersonic flows caf be properiy simulated by perform-
ing an upwind differencing or adding artificial viscosities in the approximate

streamwise direction. If Y constant lines are in the approximate s direc-

tion, the principal part of °SS can be approximated by

= 4 (49)

A first-order artifictal viscosity can be expressed by
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r w e w e w¢
I XX XX XX
j Ho= OO0 5y = (g g - (50 )y (50)
1
i where
i K
. ¥ o= max (1 - T 0) (51)
: q

H is then added to the finite-difference representation of £q. (3) at super—
sonic points. At shock points, 1.e., the first downstream subsonic points
after the shocks, the following first-order artificial viscosity Hs is adfed

; with pm controlling the nonconservative differencing:
v uu2¢xx

= - ———
i Hs = (Dm 1)( 3121 (52)
t If Pm = 0, the quantity "Uz°xx is conserved along Y = constant 1ines, implying
k that the added artificial viscosities are conserved along approximate straam-
i lines. If Py > 0, a numerical mass flux ts introduced at shocks, modifying

t~e locations and strengths of the shocks. The effect of pm on the captured

"
LI N

shocks will be discussed later. A second-order artificial viscosity and mock-

L

r'l

point operator can be expressed as

! 2 "U2°xx uUZQxx uU2¢xx uUzoxx

: Hoe 0T I e = (T Dyn 20T oy T )y (33)
S

: 2

i (AX)uU OXX uUztxx uUzéxx

f HS = (pm ‘ ]) [__S——]X = [( a }1_1 = ( D )1_2](9"‘ - 1) 154)

The solution 1s second-order accurate at both subsonic and supersonic poirts,
and first-order accurate at shock points. Although u s a rampfunction, doth

3

i H and HS reduce to zero as the mesh size goes to zero. In the so-called

5 quasi-conservative schemes, the finite-difference formulation, described “m
5 Section 3.1, s applied, and only the differencing of artificial viscosities
g is in divergence form; the differencing of the governing potential equatiem i
i not. A second-order fully conservative scheme also can be constructed by

: incorporating H and HS into the finite-volume formulatton described in Sex-
. tion 3.2.
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Similarly, a nonconservative scheme can be developed by adding the following
artificial viscosity at supersonic points
w’

to make the differencing upwind as in the original Murman and Cole scheme [18],
while no artifictal viscosity 1s added at the shock point.
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4.0 CLEBSCH TRANSFORMATION

The Clebsch transformation has been extensively employed in the calculation of
three-dimensional rotational flows in turbomachines up to the subcritical flow
range using mostly analytical approaches. The method has ‘een successfully
developed for computtng shear flows [19,20], wake flows {21,22,23]), and non-
axisymmetric inlet flows [24]. a

In the Clebsch formulation of steady rotational flows, the velocity vector Vs
decomposed into a potential part and rotational parts, written in terms of
scalar functions [19]:

Y=+ | oo Oh (56)

Hence, by definition, the vortictty -ector 2 s nonzero:

[}

Q= Wy = % Vun X Vln (57)

To determine the flowfield, the Clebsch variables ¢, cn and ln must be chosen
so that the equations of motion are satisfied. In general, each pair of °n and
\n can be conside-ed to represent the vorticity fleld generated by various
shocks or the tratling vorticity downstream of 1ifting bodies such as wings or

propeller blales.

For steady flow,
Voo(py) =0 (88)

while the momentum equation, written in Lamb's form for iscenergetic flow in
tre absence of body forces, is
a2
VxQa=-—7Ts (59)
o~ Y ¢
where p i1s the density, s the entropy, a the speed of sound, and y the
ratio of the specific heats of the flow.

In the present approach, the potential part in £q. (56) 1s determined by solv-
ing the full-potential equatton given in the previous section, while the rota-
tional parts in Eq. (56) are chosen to satisfy the momentum equation, Eq. (59).
The entire flowfield can then be computed by solving the governing coupled
equations of these Clebsch variables iteratively.
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when shocks appear in the f[ovf\e\d, entropy increases across the shocks. The
rotational parts of the velocity vector defined in Eq. (56) are determined
from the momentum equation. A general solution to £q. (59) 1s given by:

228 +2 (60)
Here Q 1s the homogeneous solution of Eq. (59), namely: |
Yxg -0 (67)

and gp is the particular solution of Eq. (59), namely:

2
!prs-:—Vs (62)

-~

The particular solution g represents the vorticity component which is not
parallel to the velocity vecto-.

Following arguments similar to those in Refs. 19 to 24, the vorticity compon-
ent associated with the entropy jump across shocks can be expressed as:

2 = Vrx Vs (63,

where s is the entropy field and t 1s a Clebsch variable. Substituting Eq.
(62) into Eq. (61), and considering that entropy is convected along stream-
1ines behind shoc-s,

!~Vs=0 (54
it can be shown that the governing ezuation for v is

a?
AR (£5)

The Cliebsch variable t is similar to the Darwin-Lighthill-Hawthorne drift
function (19]. The variation of t from streamliine to streamline is directly
connected to the stretching and tipping of the vortex filaments associated
with the entropy variation in the flowfield.

The homogeneous $solution represents the vortictty component which s parallel
to the velocity vector. Ffor the problem considered here, gH ¥s the tradling

vorticity shed behind a wing. In the airfoll case, gH is identically zero.
It can be shown that the homogeneous solution is

R, = $(E)TE x T (66)
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where £ = y - f(x,2) = 0 defines the wake surface or the location of the
trailing vortex sheet, &(%) 1s the Dirac delta function, and [ is the
circulation of the vortex filaments shed by the wing. Note that according to
£q. (66), the tratling vorticity ltes in the wake surface and is zero every-
where except on the wake surface. Substituting Eq. (66) into Eq. (61), along
with the use of the wake boundary condition, namely: T

!u ¢« JE a2 0 (67)
the condition for zero pressure jump across the wake, including the trailing
edge, s obtained

3

Here !w 1s the mean velocity between the wake upper and lnwer sides,

Given the velocity fleld frum the previous iteration step, the Clebsch vart-
ables s, t, §£ and T can be updated by solving Eqs. (64), (65), (67) and
(68), respectively.

As mentioned earlter, the full-potential equation is employed to determine the
potent a3l part of the velocity vector. Using the results derived i1 Section
2.1, the velocity vector can be written as:

Vo= U6 - sTr e H(E;TT (69)

where H(E) 1s the step function. Substituting £q. (69) in.o Eq. (58) jsields
Vo {p[U¢ - sVt +» H(E)IT]} = O (70)

Given the rotational parts from the previous iteration step, the potential
part can be updated by solving Eq. (70) in the following form:

Voo {pV¢} = - ¥ « {p(-sV1 + H(E)W)} (1)
The density p can be related to the local flow properties by means of the
‘sentropic relation and the energy equation:

-S(MZaZ)l/(Y~1)

p = & (72)

and
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a2 =5 1-3-1 (1 - qz) (13)
M
[ ]

where q s the magnitude of the velocity vector, and M, s the freestream
Mach number.
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5.0 NUMERICAL PROCEDURE AND RESULTS FOR TWO-DIMENSIONAL FLOWS
The governing equations and boundary condition, the numerica) procedures to
solve them and the results for two-dimensional flows are presented in this

section.

5.1 Governing Equations

The finite-difference and finite-volume methods can now be modified to include
the effects of the total pressure loss across shocks and the vorticity down-
stream of shocks. For flow around an airfoil, there is no tradling wake down-
stream of the trailing edge. From Eqs. (40), (41) and (69), and applying the
same coordinate transformation as in Section 2.0, the velocity components can
Je expressed as

(74)
vV s [(xx¢Y - xY¢x) - s(xx'rY - erx)]/D
and the governing equations can be expressed as
o o + C + C + C ] 2V~ ¥1)/ 1
1900 " 2%yt Cadxy * C¥y ¢ Cgby = D T(pVT)/p (13)
with the following two equations for solving the Clebsch variables s and «t:
Usx + Vsy = 0 (76)
2
a_
UTX + VTY =D Y (M

A-multigrid 1ine-relaxation scheme, originally developed for transonic fulil-
potential methods [24-28] ts applied to soive £q. (75) for the potential
function ¢, along with the new expression, gq. (74), to compute the velocity
components. The Clebsch variables can be solved analytically under certain
approximations, or numerically by using the Lax-Wendroff scheme {29].

5.2 Approximate Euler Clebsch Approach
The flowfield around an a‘rfodl can be divided into irrotational and rotationa’

regions as shown in Fig. 3. The flowfleld downstream of the shock s rota-
tional. Across a shock, there is an entropy jump which can be estimated from
the Rankine-Hugoniot shock relation if the Mach number upstream of the shock
is known. The entropy s is then convected downstream along the streamlines as

0043h o 17




[RROTATIONAL REGION s
v=u3 S S
Y

ROTATIONAL REGION
V=7 - 8Tt

Figure 3. lIrrotational and rotational flowfield about an airfoil.

described in £q. (76). In the present method, a C-nesh which conforms to :.e
atrfoll surface 1s applied. Therefore, it is a fairly good approximation that
the entropy is constant along the mesh lines Y = constant downstream of the
shock.

A second approximation can be made in order to solve for the Clebsch var'able
v analytically. As described in Section 4.0, t represents a material
coordinate s. -face which stretches according to the local flow veloctity, as
described in Eq. (77). If the velocity is assumed to be freestream ve scity,
and the speed of sound ts also assumed to be freestream value, £q. (77) car be
rewrittan 3s

(cesa) %{ + (sina) T = — (78)

where a i1s the angle of attack.

In order tc solve Eq. (78), boundary conditfons need to be prescribed for

at the shock front. Since the potential function ¢ s taken to be continu-
ous across the shock, the conservation of tangentta) momentum across the shock
front requires v to be a constant everywhere on the shock surface. However,
since the Clebsch vartable 1 1tself 4s not used in the present formulation

to compute the velocity, but rather i1ts gradient, the boundary condition is
enforced by requiring that the jump in the velocity vector across the shock 1is
normal to the shock surface. 3Since all the jump In the velocity across the
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'J:' shock is contained in the rotational part, this condition 1s satisfied by the
o
jt: . following:
L Yt xn a0 (79)
i R - -
; where n = (nx)ex + (ny)e defines the local shock surface unit normal. Solv-
.é ing €qs. (78) and (79) simultaneously for the gradient of v gives, in the
‘_) two-dimensional case,
\ -
45 n
- It 2 — (80)
j ;: Y",(nx cosa + ny sina)
“'.I“
% Hence, in the 2-D Euler correction method, the velocity vector reduces to
2 V-V - — : n (81)
-:;: YA (n, cosa + n, sina)
B .\‘:‘
L
° Since Vt is constant along Y = constant lines, the source term on the right-
e nar. side of £q. (75) 1s small everywhere except at shock points where dt;-
. continuities in s and p exist.
e
P To obtatn the flowfleld, the following Yterative procedure is employad:
;?r?
.7, 1. Set the inttial solution for ¢ to be the freestream condition, and set
-‘.n.
N s and v to be zero.
-
) _
. *j 2 Solve EQ. (75) for ¢ using the multigrid relaxation met-oq.
o
:2- 3. Obtain the shock surface normal vector and the entropy jump across the
N
:rf shocks from the Rankine-Hugoniot relation when supersonic pockets (or
2}?_ shocks) start to appear in the flowf1e19.
SN
o
K f} 4. Update the rotational part in Eq. (81).
s i
Y] 5. Repeat Steps 2 to 5 unti) solutions converge.
ey
‘ahv
M
4
b 5.3 Exact Euler-Clebsch Approach
v 4
ey The governing equations for s and t, Egs. (76) and (77), are of hyperbolic
fg \ type. They can be solved using the second-order Lax-Wendroff explicit scheme.
O
g
L 0043h e 19
0
A
XA,
|'O .
N Y T N e W Y e L e e W
TN O T A A Nt




= "1“!"""""1

1:: Consider the following genera) equation:

uJ\

.'4':: a_F_ QE

o Uax *Vay =6 (82)
¢ 2

o where F = (s,1) and G = (0, a /v).

oy '

~ -

~¢:~ The solution procedure to solve the above equation consists of prescribing the
:-3 initial condition for F at the shock front, and solving £q. (82) by marching
3“5- downstream in the X direction. During space marching, the solutton of F at

;b the 1 statton is given, and the solution at the (1 + 1) station 1s computed in
Y
‘) two steps [29].

A8,

J..v Steg ]

X v ¢

.

o 1e1/2 1 1 i 1 1 ] 1

:\. FM/Z . 3 (FJ” + rj) -3 7, (Fj” - rj) + 3 7, (83)
v )

(Vo 1+7/2 1 i 1 1 2 A ) 1 72

o, N - o - - - £
3 sz m2 Uyt Fy) m2 g By - Fy) + 24, (84)
\J{.
oy
Ny Step 2
R 14 o1 Y ar 141/2 6 &

'» . SR R _£ _ 1 _£ LA
X g sy G ) e - Py Gt ) 93)
o
N
v? The subscripts 1 and 2 denote the cell-centered va'ues of the cells ca2fined in
J Fig. 4. In this scheme, the Von Neumann stability requires
"t N
\l
e, v
S 2« (85)
4, u
e
55 [n the flowfield where the scheme applies, the surface narmal velocity compon-
v ent ts usually small compared with the streamwise component.

n"" ‘

"

i The coupling between the potential and rotational solution procedures 1s sim-
L)

oy 11ar to the one described in Section 5.1, except in Step 4 where the numerical
ol solutions are computed for s and v instead of using the analytical solutions.
o

A

‘:;, 5.4 Kutta Condition

I The Kutta condition requires that the static pressures at the upper and lower
3 3 trailing edges be matched. Furthermore, it also requires that there is no
L
ﬁ?{ pressure jump across the streamline emanating from the trailing edge. In the
O,
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\h

Y full-potential method, flow Is assumed to be isentropic everywhere. Therefore
%
;:} the Kutta condition can be satisfied by assuming the potential jump across the
f:: trajling edge is constant along the streamline, or the mesh line, emana*ing
’ from the trajling edge. This ensures that the magnitudes of the velocities on
jﬂj both sides of the streamline are equal, as are tne pressures on both sides of
ﬁkﬁ the streamline. In the present method if shocks appear on either upper or

Y
'}5 Tewer or both surfaces, the total pressures of the streamlines just above and
) below the trailing edge are different. Hence, in order to have equal pressure
p 2 across the dividing streamline, the velocity must be discontinuous across it.
v:; In this section the velocity discontinuity across this dividing streamline will

Ly
;d\ be shown to come from the rotational term sVr so that the condition for ¢

.’ across this dividing streamline 1s the same as in the full-potential method.
> ,’
zs; To simplify the derivation, consider the case where there is only one shock on
L)
:’; the airfoll ypper surface. The static pressure can be written in terms of

o'y
. local velocity and stagnation pressure:
Lf'- E P Y/Y-1

. t1 -1 .2 2
o p, = (=) [1 + I5— M (1 - q5)) (87)
" 1 Pt 2 ® 1
B /-1

i Y T-

o Yy - 1,2 2
\“.: pz = [V + 2 ". (- QZ)] (88) .
o0 :
:'u::
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Equating Eqs. (87) and (88)

D Y/v-1
- 2 -1
G U+ Ttwa-apl =00 - a - (@ - e
Y/y-1 ..
LT (89)

2

where Aq = q2 - a4 Neglecting the term qu in Eq. (89), an explicit expres-
sion for the velocity jump across the dividing streamline can be found.
Pe2

Aq=;——‘—2[1-< =210 0 X2l (1 - ody) (90)

In practice, the stagnation pressure loss across the shock 1s geieraliy smal}
even for a strong shock. For example, a shock Mach number of 1.7 results in
15% loss in stagnation pressure. Since Aq 1s proportional to the ctagnation
pressure loss, the assumption that the qu term can be neglected in deriv-
ing £q. (90) 1s wvalid.

From £q. (69), the velocity Jump across the dividing streamline s given by

(V)
~—

where 2 1s the distance measured along the dividing streamline.

For isoenergetic flow, the entrooy is related to the stagnation -ressure by

Pin

w
"

14
{92)

where, as before, second-order terms in the stagnation pressure 10ss are neg-
lected.
From the governing equation of the Clebsch variable v, Eq. (865),

T 1 1 Yy -1.2 2
i " S (0 s IS5 M, (- a))] (93)
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A ! Substituting Eqs. (92) and ¢93) into (9),

e

N 1] P2 Y -1 ,2 2

vl Aq’a—'—z'“ —(p—-)]U T M (- ay)) (94)

ToyM_ t

e
'ﬁfﬁ Clearly, Egs. (90) and (94) are identical. Hence, the Kutta condition can be
f nJ
;;Ej satisfled by simply keeping the potential jump constant across the mesh line
'_) leaving the airfoil tradling edge, as in the full-potentia) methods. A study
\
fin of the magnitude of Aq 1s presented in Fig. 5. Aq expressed in Eq. (94)

232 1s plotted versus shock Mach number at freestream Mach number H. = 0.7,

oy

:;: 0.75, 0.8 and 0.85. The value of Aq increases as the shock Mach number
L increases and the freestream Mach number decreases.

\0

T
" 0.24

o

®

2

Ng 0.2

et

"y 0.16

S

e g

g u

L = 2.2

-
2

]

hey

SN
fiﬁ 0.04
o~
o

Kr

.,'; 'Q 4 4 i L ' i

- 1.4 1.5 1.6 1.7 1.8 1.9

i?; Mshock

;" Figure 5. Vveloclity Jump across the wake as described in Eq. (90)
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5.5 Numerical Results
The numerical solutions obtatned by the present method for airfoils are pre-

sented in this section. Figure 6 shows the comparison between the solutions
obtained for the NACA-0012 airfoil at H. = 0.800 and a = 1.25° from the two
Euler-Clebsch approaches and the time-marching Euler method [)J. The fully
conservative full-potential solution predicts a shock almost at the trailing
edge. The source term in €q. (75) in the present method accounts for correc-
tions to the total density and the vorticity which are neglected in the full-
potential solutions. Solutions obtained by using the approximate and the
exact Euler-Clebsch approach predict weaker and more upstream shocks which
agree better with the time-marching Euler solution. A study of the order of

magnitude on £qs. (74), (75) and (76) reveals that the first-order correct on

comes from the source term of E£q. (75) at shock points where entropy Jump
occurs, and that the second-order correction comes from the vorticity effect
which modifies the velocity distribution, Eqs. (74) and (75), and source

-1.0

p

——— EULER (AGARD-AR-211)
—>— APPROXIMATE EULER CLEBSCH

—o— EXACT EULER CLEBSCH

Pressure coefficient C
(@]
o

e FULLY CONSERVATIVE FULL POTENTIAL
1.0 -
0.0 0-5 x/c .
Figqure 6. Compartson of solutions for NACA-0012 airfoll at My = 0.8 and
a = 1,25°.
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term of Eq. (76) at points dbwnstream of shock points. In the exact Euler-
Clebsch approach, the rotational part is evaluated more accurately, and the
solution seems to agree better with the time-marching Euler solution than the
approximate Euler-Clebsch solution. Note that the shocks captured by the
Euler-Clebsch solutions are not as sharp as those obtained by the time-marching
Euler solution, especially on the lower surface. This is probably because the
time-marching Euler computation employs more points on the airfoll surfaces
than the Euler-Clebsch solutions (192 points vs 162 points).

Figure 7 presents the soluttons obtained for the RAE-2822 airfoil at M_ -
0.75 and a = 3°. This test case was chosen in order to evaluate the accu-
racy of the Euler-Clebsch method in the presence of a strong shock. Figure 8
i{1lustrates the stagnation pressure contour obtained using an in-house version

1 ' ‘
\' !
-1.0 |
[
2
(S 4
Es
: -
=3
2
55
o 0'0
]
Q) -
1
2
A 1
8 B
a 1 e—— EULER (AGARD-AR-211)
4 ——o— APPROXIMATE EULER CLEBSCH
—a— EXACT EULER CLEBSCH
1.0 b
0.0 005 x/c ) .
Figure 7. Comparison of solutions for RAE-2822 airfoil at Mg, - 0.75 and et
0-3’.
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i Figure 8. Comparison of total pressure contours.

"

: of the Jameson DFLO-53 time-marching Euler method (30,31] and the exact Euler-
4 Clebsch solution. This figure clearly shows that the convective behavior of

g the stagnation pressur2 along streamlines is preserved in the present Euler-

" Clebsch method. The time-marching Euler method, however, has difficulty

§ modeling this inviscid characteristic because of the presence of numerical

" dissipation terms.

'-

>

The present exact Euler-Clebsch method, however, has difficulties tn giving a
converged solution when the shock becomes too strong or the angle of attack
hecomes toc large due to the stability criterion of Eq. (B6). More stable
schemes such as the Crank-Nicholsen implicit scheme are currently under

investigation.
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6.0 NUMERICAL PROCEbURE AND RESULTS FOR THREE-DIMENSIONAL FLOWS

The numerical procedure to solve the governing equation with boundary condl-
tions for the three-dimensional flows 1s discussed in Section 6.1. The numer-

fcal results obtatned for wings and wing/bodies are presented in the subsequent
sections. A compartison of finite-difference and finite-volume solutions is
presented in Section 6.2. Both fuil-potential and Euler-Clebsch solutions
obtained for wings are presented in Section 6.3, and the solutions obtained

for wing/bodies are presented in Section 6.4.

6.1 Governing Equations

In the three-dimerstonal case, the apprcach 1s similar to the two-dimensional
case, except for some additional assumptions and modifications. Only the
approximate Euler-Clebsch approach is applied here. First, the waxe or the
tratling vortex sheet defined by § in Eg. (67) 3s taken to be the grid surf-
ace emanating from the wing tratling edge. Ffurthermore, the trailing vorticity

WE S A ey T EEE— . e W v Em—~ v = v =

s 2

Ys assumed to be convected along the grid lines leaving t~e trailing edge.
This Ys done by setting the jump in ¢ across the wake at each spanwise sta-
tton to be constant along the mesh lines downstream of the trailing edge.
Hence, the traitling vorticity 1s the homogeneous solution defined in Eq. (66).
This treatment of the wake is the same as that applied in most potent‘al

T TE TR T Y EEEME. . ", "

apaoroaches.

Second, for swept wings, oblique shocks are usually found on most parts of the
wing surfaces. In some cases, it is possible to encounter oblique shocks where
the total Mach numbers both upstream and downstream of these shocks are super-
sonic. Although this type of obligue shock does appear in many transonic
applications, 1ts shock strength is generally weak; therefore, no entropy cor-
rection is given to this type of shock. In %he absence of yaw, Eqs. (79)-(81)
st1]1 hold jn 3-0 whgre the lgcal shock surface unit normal vector ts defined

PR TE S >R B_AEEENS e

as n = (n‘)e‘ ’_(ny)ey + (nz)ez.

Tew W s X s FER)

The modified full-potential equation can now be derived from Egqs. (3) and (58)

as

+

Cr®xx * So%yy * C3%77 % Ca®xy * Cs®yg * Cebxz * G * Cgfy

+ cgoz a oazv « (psV1)/p (95)

v w W W= BB aiw = w v .%oy
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with the velocity companents defined as

us [(hya, s hod +ho) e sht +ho o+ 1770 1/0

(96)

vV s [(hzo + hS‘Y + h8¢z) + s(hzrx + hST + h.t,)]/0

X Y 812

w s [(h3ox + h QY + h_ ¢ + s(h

9%y * RgTy * RgTy) /0

6 3'x Mgty

In the approximate tuler-Clebsch approach, s is assumed to be constant along
Y = constant lines. Following the same arqument as in the two-dimensional
case, the entropy s can be computed by the Rankine-Hugoniot relation, and the
gradient of 1 can be approximated by Eq. (80).

In the downstream farfield, the Neumann boundary condition is employed. The
implementation of this type of boundary condition requires the knowledge of

the far downstream velocity, which 1s not known a priori and 1s a function of
the shock strength. In the present study, the far downstream velocity, denoted
Dy ¥g. s taken to be

a -

= (cosa);x + (sina)e - : n (97)

2
YH. (nxcosa + ny sina)

Y
Canceptua’ly, tne last term in E£q. (97) s re‘ated to the wave drag, and rep-
resents the ve'ocity deficit due to the loss in the fluid stagnation pressure

aiross the shock.

6.2 Comparison of Finite-Difference and fFintte-Volume Solutions

As described in Section 3.2, two major differences in the finite-difference
and the finite-volume methods come from the formulation of the odd- and even-
point coupling terms, and the calculation of the density term. The coupling
term in the finite-difference method is derived directly from the coordinate
transformation, while the coupling term in the finite-volume method accounts
for the leadinrg terms only. The explicit calculation of the density term in
the finite-voiume method makes the scheme conservative, but requires more
computational work because of the need to compute exponential quantities.

Figures 9 ang 10 present the solutions obtained by the finite-difference and
finite-volume methods. The surface boundary zondition in the finite-difference
method s enforced exactly as it 1s in the finite-volume method, while differ-
ent formulations are used in evaluating the residuals. Both solutions are
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“obtatned using the multigrid scheme. Figure 9 presents two solutions obtained
for a NASA swept wing [1] at M_ 0.833 and a = 1.75°. The finite-difference
and finite-volume solutions agree well except for minor differences in the
after-shock flow reexpansion near the wing tip. Figure 10 presents a compari-
son of three computed solutions obtained by the present method and FLO-22 [32]
for an ONERA-M6 wing at Hu = 0.84 and a = 3.06°. The nonconsé}vat1ve scheme s
applied in the present method in order to make a fair comparison with the
FLO-22 solution which ts also nonconservative. Both the present finite-volume
and finite-difference soluttons are obtained using 160 x 24 x 32 mesh points,
while the FLO-22 solution 1s obtained using 192 x 24 x 32 points. The FLO-22
method applies an extrapolated relaxation scheme to accelerate the solution
convergence, while the present method applies a multigrid scheme. 1In general,
the present solutions converge better than t-e FLO-22 solutions. The agreement
between the three solutions is generally good, except for a small discrepancy
in the prediction of shock locattons.

Figure 11 shows a similar comparison of the solutions obtained for a Douglas
wind-tunnel model wing, LB-488. The LB-488 wing has a significant aft loading.
The present solutions predict an almost flat pressure plateau near the wing
root, while FLO-22 predicts a slight oscillation. Most interestingly, both the
present finite-volume and finite-difference sclutions predict a significant
oreshock reexpansion between the 65 to 90% semispan locations, while the FLD-22
solution does not. This preshock reexpansion was first observed in the firite-
volume solution, and it was uncertain then whether this reexpansion was due to
numerical osc{]1at1on or possibly due to the spectal coupling terms vescribed
in Section 3.2. The present finite-difference solution obtained with more
exact coupling terms st1ll shows the preshock reexpansion. Ffurther investiga-
tion with the use of finer meshes should be carried out in order to understand
the discrepancy between the present solution§ and the FLO-22 solution.

6.3 Euler-Clebsch Solutions
The Fyler-Clebsch solutions are aobtained using the analytical approach des-
cribed in Section 6.1. Figures 12 to 14 present the solutions obtatned for

the NASA swept wing. A comparison of the pressure distributions computed at
several spanwise stations using Jameson's time-marching Euler method, the pres-
ent Euler-Clebsch method, and the nonconservative full-potential method is
shown in Fig. 12. This figure clearly demonstrates that the Euler-Clebsch
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solution 1s in good agreemedt with the time-marching Euler solution, except

o near the wing-tip region. 0On the other hand, the nonconservative full-
potential method tends to predict earlier shock formation and weaker shock

. strength compared to the time-marching Euler method. Moreover, the after-shock

- reexpansion phenomenon appears in the nonconservative fuyll-potential solution

S when the shock becomes strong, for example, at the 40% and 60% span locations.

' Near the wing-tip region, both the full-potential and the Euler-Clebsch methods
'; predict a higher suction peak than the time-marching Euler method. Moreover,
P large after-shock reexpansions are found in the solutions of the two former

{~1 methods. Figure 13 gives comparisons of sectional Cl' Cd and Cm between the
results obtained using these three methods. Finally, Figure 14 shows the con-
vergence histories of average residuals and percent of supersonic points in the
computational domain as a function of work unit by the full-potential and
Euler-Clebsch methods. This figure clearly demonstrates that the Euler-Clebsch
method has the same convergence rate as the full-potential method with about
20% more computational time per work unit. Moreover, the computer storage
requirements in these two methods are approximately the same. On the other

S R @

o

hand, the time-marching Euler method is estimated to require nearly one order
of magnitude more computational time than the full-pctential method.

P :- o vy

“t zero angle of attack, the ONERA-M6 wing s nonlifting and hence does not
4& nave a tratling vertex sheet. Inaccuracies associated with the approximate
modeling of tne trailing vortex sheet can therefore be isolated in this test
case. F1gure.15 J1lustrates a comparison of the pressure distributions
obtainec at three spanwise locations using the Euler-Clebsch method, the non-
conservative full-potential method, and the Onera/Matra time-marching Euler
' method. The Onera/Matra solution presented in the AGARD report [1] was chosen
? for comparison since 1t lies between the othtr AGARD solutions and has tabu-
. latec pressure data. In general the Euler-Clebsch method predicts shock loca-

; tion and shock strength better than the full-potential method. The shock

] locations predicted by the Euler-Clebsch method are consistently slightly down-
' : stream of those predicted by the time-marching Euler solution, except near the

- wing-tip region. For example, at the 80% span station, the Euler-Clebsch solu-

tion predicts the shock location slightly upstream of that predicted by the
time-marching Euler solution. 1In addition, the study also indicates that the
tuler-Clebsch method predicts a suction level in front of the shock siightly Lo
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Figure 14, Comparison of convergence history for the solutions obtained for
NASA swept wing at Mg = 0.833 and a = 1.75°,

4

higher than that predicted by the time-marching Euler solution, hence the shock
s stronger.

Al of these discrepancies are very similar to those found in the NASA swept
wing case, even though the tralling vortex sheet s absent in this example.
Hence, 1t i1s believed that the disagreements around the wing-tip region in the
results of these methods may be associated with the different ways in which the
wing-tip boundary conditions are handled. However, due to the 1imited data
avatlable in the literature and the premature status of the time-marching Euler
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code at the present time, no definite conclusions can be drawn from these
results as to the accuracy of the present method near the wing tip region.

6.4 Wing/Body Solutions
An example of a wing/body flowfield calculation is demonstrated for an f-14

mode) [33]. The input geometry 1s shown in Fig. 16. Near the'wing root, there
¥s a leading-edge break, where the leading-edge sweep angle changed from 68° to
22°. The inlet entrance s modeled by a flat surface where the no-flux condi-
tion 1s appliied. The grid generation method of Chen, Vassberg and Peavey [28)
is applied to generate a C-H-H grid, as shown in Figs. 17 and 18. Ffigure 17
shows a grid distribution on the wing and fuselage surfaces, while Fig. 18
shows a typical fuselage cross-sectional grid distribution at nearly midwing.
The solutions obtained for wing-alone and wing/body cases are presented in
Figs. 19 andg 20 for Hw = 0.800 and a = 4°, and M_ = (6.900 and a = 2°, respec-
tively, using the nonconservative scheme. The results show that the fuselage
introduces a significant upwash effect on the pressure distribution on the wing
surface. This effect is more pronounced near the wing root than near the wing
tip. The slight oscillation in the wing/body solutions near the leading edge

Figure 16. An input geometry for F-14 wing/body.
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fFigure 17. CSurface grid distribution on the F-14 wing/body

is probably due to the mesh distortion caused by an unsmooth variation of the
fuselage cross-sectional area.

Comparisons of solutions obtained for the f-14 wing/body using the fully con-
servative full-potential method and the present Euler-Clebsch method are pre-
sented in Figs. 21 and 22 for M, > 0.85 and a = 4*, and M s 0.9 and a = 2°,
respectively. Figure 21 shows that the fully-conservative full-potential solu-
tion predicts stronger and more downstream shocks than the Euler-Clebsch solu-
tion. An exceptionally high suction peak appears near 35X semispan location
in the Euler-Clebsch solution; this may be due to the slope discontinuity at
the 1ead1ng-edgé break. Figure 22 presents the solutton at a higher Mach num-
ber, M. = 0.900 and a lower angle of attack, a s 2°. The Euler-Clebsch method
predicts a shock very close to the trailing edge, while the fully-conservative
full-potential method falls to give a converged solution. Figure 23 presents
three solutions obtained for the F-14 wing/body using the Euler-Clebsch method
at Mach numbers n_ = 0.85, 0.90 and 0.95, respectively, and at angle of attack
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Figure 18. A cross-sectional grid distribution fo- tNe F-14 wing body

a = 2°. Strong shocks are predicted on the upper surface at all freestream
Mach nuymbers, and a second shock ts developed on the lower surface for the Mn =
0.95 case. Because of the appearance of the lower-surface shock and a signif-
‘cantiy reduced pressure plateau on the upper surface, the total 1i1ft drops as
the freestream Mach number increases from 0.900 to 0.950. The Kutta condition
for the solution of M_ - 0.95 near the wing.tip 1s not satisfied exactly due to
the 1imitatton of the approximate Euler-Clebsch assumptions. As explained in
Section 5.4, the Kutta condition 15 satisfied under the assumption that the
velocity jump across the wake, Aq, is much smaller than the freestream vel-
ocity. As the shock becomes stronger, the above assumption 3s no longer valid;
therefore the pressures at the upper and lower trailing edges become further
apart, as shown in the solutinns of M_ = 0.95. Whether the Kutta conditicn
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can be better satisfied by using the exact fuler-Clebsch method in the three-
dimensional case should be further investigated.

The f-14 wing/body soluttons presented in Figs. 19 through 23 are obtained for
a wing with a leading-edge break, located at about 34% semispan location, where
the leading-edge sweep angle changes from 67° to 22°. The t6tal 1ift coef-
ficients computed for this configuration at H‘ = 0.8 and a = -4.3°, -2.65°,
-1°, 0°, 1°, 2°, 3.05° and 4.05° are presented in Table 1 and Fig. 24 and com-
pared with the test data of Bavitz [34]. In the calculations, the fuselage is
extended to downstream infinity with constant cross-section, as shown in Fig.
17, the tal) section )s not modeled, and the surface pressure integration for
the total 11ft is performed on the entire wing and part of the fuse age from
the nose to abcut one root chord length downstream of the wing tratling edge.
The reference wing area 1s chosen tc be the extended wing planform area which
Ys conputed by linearly extending the 22° leading-edge line and the trailing-
edge line from the leading-edge break to the vertical symmetry plane. The
computed total 1ift coeffictents agree fairly well with the test data, as
shown in Fig. 24, despite the tall section and the viscous effect not being
included *n the calculatton.

Tab'e 1. (Comparison of experimental and computed total 1ift
ccefficients for the F-14 wing/body configuration

at My - 0.800
Data Points a CL)exg CL)calc
] -4.3° -0.410 -0.3685
2 -2.65° -0.185 -0.1755
3 -1° 0.020 0.0206
4 0° 0.150 0.1412
5 1° . 0.280 0.2631
6 2° 0.410 0.3863
7 3.05° 0.515 0.5183
8 4,05° 0.625 0.6390
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7.0 CONCLUDING REMARKS

The full-potential and time-marching Euler methods are two of the most promts-
ing transontc computational methods at the present time. €ach method has !ts
own advantages over the other and, therefore, has 1ts own speclal applications.
The work reported has demonstrated that the full-potential method for transonic
flowfield calculations can be further improved by including the rotational
effect, introduced due to entropy jump across the shocks, as in the present
two- and three-dimensional Euler correction methods based on the Clebsch trans-
formation. The approximate Euler-Clebsch method has been developed for both
two- and three-dimensional flows, while the exact fuler-Clebsch method 15
implemented only for the twr-dimensional case. The results for transonic air-
foll flows show that the approximate and the exact fuler-Clebsch solutions
generally agree well. The total pressure loss across the shocks 1s included

in the present method in conjunction with the use of the Rankine-Hugoniot
relation, while this is neglected 1n the conventional full-potentia) methods.
The convectlon of the vorticity s computed along streamiines in the exact
Euler-Clebsch method and along the mesh 1ines in the approximate Eyler-Clebsch
method, while the vorticity is dissipated in the time-marching Euler method
because of the need to add artifictal dissipation terms. The *‘mplementation

of the present method is stralgh:tforward. The present scheme based on the
Clebsch transformation can be applied in most of the existing full-potential
methods, not only for calculat‘ng more accurate shocxs, but also for modeling
two- and three-dimensional rotational flows such as flow: downstream of actu-
ator disks [35,36].

A study of finite-volume and finite-difference formulations of the full-
potential equation 15 presented. The solutions obtained by using both formu-
lations agree well; the finite volume method calculates the density term
implicitly while the finite-difference method does not. The present method
computes transonic flows more accurately than the full-potential methods and
gives solutions agreeing better with the time-marching Euler solutions. How-
ever, for flows with very strong shocks, the present approximate Euler-Clebsch
method does not exactly satisfy the Kutta condition. Further work to improve
the two-dimensional exact Euler-Clebsch method and to extend 1t to three
dimensions 1s recommended.
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