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CHAPTER 1

BACKGROUND

1.1 INTRODUCTION:

The objective of this research program was to characterize three-
dimensional aspects of fatigue crack closure relative to part-through and
through-thickness flaws. Personnel who contributed to the three year
research grant, along with publications and presentations resulting from this

effort are summarized in Appendix A.

The work is motivated by the well known fatigue crack closure
phenomenon whereby naturally occurring fatigue cracks do not open in a
linear elastic manner. Since proposed by Elber [1-3], considerable research
has focused on developing the closure mechanism for fatigue life prediction
schemes. As emphasized in reviews by Paris (4], Banarjee [5], and Suresh
and Ritchie '6', understanding crack closure is of fundamental importance

for describing many aspects of fatigue crack growth.

One explanation for fatigue crack closure involves the plastically
deformed region ahead of the crack tip. As the crack propagates through
the successive plastic zones ahead of its tip, a plastic wake is formed which

results in residual deformations. These deformations in turn hold the crack

faces closed during portions of positive applied load cycle, and reduce the

"1:2 o

.,
Sy

40

el
a0

A

h e ol

>
Pl

&

o

.1’.'

2

M Y
e
v

A

e
) e

St

b

-
P4

)

;’J L4

[l

L

DA l,". '.. RN I
N .'. -" ‘,‘ -" /8 N x: R l..l' :. A

.
P



Ta'e 2485 £ g LI SO Tl RN

ree

]

k)

CRRY

A,,'.'A',)’if-’ -' -"' ) -"q:'.'.ﬁ’\f\(‘i.'.. .'(“f‘g .\4 .-f-‘pr~r ‘.'!',‘1 5'."'.' \‘ \-s"‘r' r\\rv.-'~f\r\r‘f.'f~.r

effective load for the remainder of the cycle. Figure 1.1 schematically shows
the development of the crack tip plastic zones as the crack propagates
through the specimen and the resulting plastic wake containing the residual
deformations. Figure 1.2 shows how the effective stress range is reduced in a
typical load cyele by crack closure. Here Kgp,, is the stress intensity factor
necessary to open the crack tip and AK g.ciive 1S the actual stress intensity
factor range during which the crack tip is completely open. Since crack
extension can not occur unless the crack tip is open, only AR, gcuve
contributes to further crack propagation. Thus, fatigue crack closure is one

of the controlling factors in crack extension.

[t is well known that the crack tip plastic zone is larger at the free
surfaces, where plane stress conditions occur, than at the center of a thick
specimen where plane strain conditions prevail [7]. Figure 1.3 schematically
shows the through-the-thickness variation of the plastic zone in a thick
specimen. Chis through-thickness plastic zone size variation has been used
to explain phenomena such as thickness dependent fracture toughness,
fracture surface appearance, and thickness related fatigue crack behavior.
The larger plastic zone at the specimen surface would imply that the closure
cifect is more pronounced at the surface than at the interior, resulting in a
slower crack growth rate at the free surface. This through-thickness
variation in crack growth rates is commonly called the tunnelling effect.
The effect of the state of stress on plastic zone size, and the resulting fatigue
crack growth has been demonstrated with variable amplitude loading
experiments, where thin specimens have longer crack growth lives than thick

members [8-11].
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In addition to crack closure associated with the plastic wake behind the
crack tip, two other closure mechanisms have been proposed: asperity
induced and oxide induced closure. The asperity induced closure model [12-
11 states that crack surfiuce roughuess keeps the crack faces propped open
under zero load. The maximum plastic zone size in this model is smaller
than the grain size, while the size of the fracture surface roughness is on the
same order as the crack tip displacement. In order to meet the requirement
for a smali plastic zone size, asperity induced closure is generally observed at
low crack growth rates (on the order of 10 ® mm/cycle). When the fracture
surface size is the dominant factor, the crack tends to grow in a zig-zag, out
of plane path, leading to significant Mode 1I displacements promoting

asperity induced closure.

In the oxide induced closure mechanism [15-16], the formation of an
oxide layer just behind the crack tip prevents the crack surfaces from
closing. As in the asperity induced closure mechanism, the thickness of the
oxide layer is comparable to the crack tip displacements. Duriag the closing
phase of the load cycle, early contact occurs between the two crack faces
due to the presence of the oxide layer, resulting once more in the closure
phenomenon. Oxide induced closure, like the asperity model, has also been
observed at low crack growth rates. Since both asperity and oxide induced
closure mechanisms keep the erack faces open under zero load, these are

sometimes referred to as " Non-closure’ models.
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1.2 REVIEW OF PRIOR WORK:

This section reviews techniques that have been employed to
characterize fatigue crack closure.  Both numerical and experimental

methods are briefly discussed.

1.2.1 Numerical Studies:

Newman studied erack closure in a center-cracked panel under cyclic
loading with a two-dimensional, non-linear, finite element model {171‘. [n this
study the material was assumed to be elastic-perfectly plastic, and the
model was composed of two-dimensional constant-strain triangular elements.
[t was observed that the element-mesh size near the crack tip influcnced the
prediction of the magnitude of crack closure and opening loads. By choosing
an appropriate finite-clement-mesh, the actual experimental crack growth
rate could be simnulated. Although the finite-clement method may work well
for closure predictions, the analysis is often complicated and may require

long computation times.

Chermahini 18 performed a three-dimensional clastic-plastic finite
element analysis of a straight through crack under cyelie tensile loading.
His analysis did not allow for any curvature of the crack front. The crack
was sitnply extended at the maximum load of each cycle, and no attempt
was inade to calealate the amount of crack growth. The results of
Chermahini’s analysis appeared to agree well with experimental observation,
and also gave some new insizht into the stresses that develop behind the

crack tip. Unfortunately, this type of analysis requires an cnormous amount
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of computer time even though the program was vectorized to run on the

VPS-32 computer at NASA Langley Research Center.

Newman 19: developed a two-dimensional model that would calculate
crack growth for a center cracked panel. The model was based on the
Dugdale concept, but was modified to leave plastically deformed material in
the crack wake. The model was used to predict crack growth in center
cracked tension specimens of 2219-T851 aluminum alloy aluminum alloy
material. Thirteen tests were performed, including five different types of
spectrum loadings. The model’s predictions were in good agreement with
the experimental results. The ratio of predicted to experimental lives ranged
from 0.66 to 1.48. The running times for this model ranged from 2 to 15

minutes on a CDC-6600 computer, which makes this method 1much more

usable than finite element analysis.

Fleck [20] has employed the two-dimensional finite element analysis
developed in reference {17] to study crack closure under plane strain
conditions. From this study, it was noted that plasticity-induced closure
under plane stress conditions is quite dilferent from the plane strain closure
behavior. Under plane stress conditions, the crack faces were found to open
and close in a continuous manner (ie: crack closes continuously from its tip).
Under plane strain conditions, a discontinuous eclosure phenomenon was
observed, whereby the crack first closes at a loeation near the crack tip, and

next closes far behind the crack tip, leaving o gap where no closure occurs.
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1.2.2 Experimental Studies:

Many experimental measurements of fatigue crack opening have been
performed on various types of specimens, cruploving techniques such as crack
mouth opening displacement (CMOD) measurements, strain gages, push-rod,

etc. Some detailed aspects of these methods are discussed below.

The CMOD gage |[21-23] measures the «crack mouth opening
displacement from a clip gage mounted across the mouth of the precracking
notch. A plot of displacement versus applied load is obtained, and the load

at which linear elastic behavior begins represents the closure load.

The strain gage measurement technique 24-25) involves bonding one or
more strain gages at various locations across the crack surface. In some
cases strain gages are also mounted on the back face of the specimen. The
signal from the strain gages are then recorded as a function of applied load,
and the closure load is again determined as the point where the load versus

strain record becomes linear.

The ultrasonics method 26-27| measures the changing acoustic
resistance of a specimen as the crack opens or closes. The intensity of the
ultrasonic signal reflected from the fatigue crack varies depending on the
amount of crack closure present.  In  this technique, an  ultrasonice
transmitter is placed on the top of the cracked member, and a receiver is
placed opposite the transmitter on the bottom of the specimen. As before,
the received signal intensity is plotted versus load, and the closure load is
determined.

The potential difference approach [28-29] measures the electrieal

resistance of a specimen, which is also proportional to opening of the erack.
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In this instance the metal specimen acts as a part of an electrical circuit. A
constant current supply is provided across the specimen, and the signal
obtained from potential probes placed on both sides of the erack is recordod
as a function of applied load. It has been observed in some applications
that the received signal may be misled by the presence of o layer of
insulating oxide on the crack faces which prevent electrical contact. Other
complicating factors may include the change of electrical properties of the

material in the ecrack tip vield zone.

The push-rod displacement gage 30-31 has been used to determine the
closure load at a single point inside the specimen. For this method a pu-h-
rod assembly is fustened to the specimen by drilling two parallel holes just
behind the fatigue crack front. The relative displacement of the hole
bottoms is measured with a twin cantilever clip gages via the push-rods.
The closure load is then determined by locating the linear point on the
load-displacement curve.

The Elber gage 32-33 mweasures the erack opening at a certain distance
from the tip on the free surfaces of a specimen. Here the Elber gage
(modified clip gagze) is mounted across the erack plane and the closare load
is determined from a load-displacement plot as before.

The interferometrie displacement gage (IDG) !34-3%  uses a laser to
measure relative displacement between two shallow reflecting indentations or
grooves located aeross the erack. Interference fringe patterns are ereated by
the ditfracted laser beams, and the motion of these fringes represent the
crack surface displacement. This technique has proven to be an clfeetive

method for measuring crack surface displacements due to its high resoliution
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capability.

Other methods to obtain the closure loads include direct-observation
using electron microscopy 39!, and a vacuum infiltration technique 107 Ir
should be noted here that all of these techniques only determine the closure
load at the specimen’s surface, or at a single point inside the specimen, and
can not determine the complete through-the-thickness variation of closure.
Furthermore, since the closure levels observed for a single test specimen vary
with the measurement location [11-427, the results obtained from the above
technique c¢an ditfer significantly.

While the above techniques reflect an average (global) or single point

bhehavior of the entire specimen, optical interferometry has been employved to

deterinine the complete through-the-thickness variation of crack closure in

transparent polymer specimens [43-48]. These optical interference

experiments have shown that for a through-thickness or part-through flaw,

the crack opening loads vary along the crack front.

1.3 OBJECTIVE OF CURRENT RESEARCH:

The main objective of the current research is to determine how
through-the-thickness variation in crack tip plasticity affects fatigue crack

openiug, and alters fatigne erack growth in transparent model materials.

Both experimental and numerical approaches were employed.  As
deseribed  later, complete three-dimensional crack opening profiles were
measured by the use of optical intecferometry for through-thickness flaws,

corner cracked holes, and surface flaws. These point wise measurements are
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then compared to global (average) measurements obtained from CMOD and
back face strain techniques. Two types of polymer model materials, namely
Polymethylmethacrylate (PMMA) and Polycarbonate (PC), are included in
this research program. Although this project did no testing of metals, the
polymer data are compared to results of rene-95 (a nickel based alloy)
testing by Ashbaugh [49] in section 6.2. Differences in fatigue crack growth
mechanisms of metals and polymers are discussed in section 1.4 of reference

20.

An algorithm was also developed here to analyze crack growth and
crack closure of a surface flaw. This algorithm was based on Newman's
model for center cracked plates, but was modified for the three-dimensional
surface crack case. The model was used to analyze the surface crack

experiments and the results are compared to the experimental values.
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ENVELOPE OF
\ ALL PLASTIC ZONES

Schematic view of the crack tip plastic wake formation hehingd
the crack tip, resulting in compressive residual stress, which
hold the erack faces closed during portions of positive applicd

load.
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EXPERIMENTAL PROCEDURE
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2.1 OPTICAL INTERFERENCE TECHNIQUE: f

N This section describes the procedures used for the experimental portion

of the research. The main experimental method employed for the current

Y

research involved optical interference measurements of crack opening in

2y

transparent polymer specimens. Both polymethylmethacrylate (PMMA) and

> P

polycarbonate (PC) model materials were employed.

TR XL T TR

Optical interference occurs in a thin transparent wedge when the

R R AT W W Te Mm@ —mmmTe—m . W e e S e —— -

?
;:: reflection of light rays from the top and the bottom of the faces of the s
.F\ J
wedge have different path lengths [51-56]. When a crack is present in a -!
U
!'f transparent material, an air film wedge is formed between the two crack b
it
e surfaces and may cause optical interference to take place. As schematically ',':\
2 =
¢ presented in Figure 2.1, some light waves travel through the transparent 3
)
o specimen and are reflected back by the top surface of the crack, whereas 8’
S <
. other waves, following a different path, penetrate the top surface and are :;i
; - reflected by the bottom surface of the crack. This difference in path lengths
l
L " (phase difference) causes interference fringes to form. Each fringe represents o
T :.'
; -2 a locus of points which have the same displacement between the crack faces. }
] ~_'
i > The interference fringes form an alternating pattern between dark and light F\
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For constructive interference (light fringes):

V= —22811— A (2.2)

Here V is half the crack surface separation at a specific constructive or
destructive fringe location, n is the respective fringe order, and X\ is the
wavelength of the monochromatic light source. Here a sodium vapor lamp is
employed for the interference study with a wavelength of 8.89 x 107° cm.
The 0-order dark fringe is defined here as the first destructive fringe
indicating the closed portion of the crack, while the 0-order light fringe

corresponds to a total crack separation 2V = \/4.

2.2 THROUGH-THICKNESS FLAW:

The through-thickness flawed specimens studied here consisted of edge
cracked beams loaded in four-point bending as shown in Figure 2.2. The

test specimens were 38 mm high (W) and 178 mm long (L). The specimen
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shades and are referred to as destructive and constructive fringes <
respectively. If the wavelength of the monochromatic light source is known, b
-

the crack surface displacements may be computed using either of the N
~

following optics equations {56;. :'
5

-

For destructive interference (dark fringes): .
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thickness (B) varied from 25 mm thick to 5 mm for PMMA and from 25 mm
to 10 mm for PC. The specimen configuration for the 5 mm members was
moditied to avoid instability on the four-point bending fixtures. tHere the
test section of a 25 mm thick member was reduced to 5 mm with suthicient
care being taken to avoid significant stress concentration build up at the

test section.

A total of five different specimen thicknesses for PMMA and three for
PC were studied. The specimens were cut from a single sheet of the
respective material and each test member contained a 5 mm deep V-notch
located midway along one specimen edge. The PMMA specimens were
annealed at 100°C and the PC members at 138°C for 24 hours, and slowly
cooled to room temperature to reduce potential residual stresses due to the
machining process. One end of each specimen was then polished to
transparency to allow crack plane observation. Two metal tabs were glued
to each specimen at the starter V-notch to hold the clip gage (MTS Model
632.03B-30) at the crack mouth for the CMOD measurements. The back

face strain measurement technique involved bonding of one or two 1000 ohm

<y
strain gages (Type MA-06-250BK-10C) on the top side of the four-point bend
::': specimens (Figure 2.2).
o Cyclic loads (Haversine function) were applied in a pure-bend
configuration at 3Hz for PMMA and 4Hz for PC specimens. These relatively
- low test frequencies were chosen to avoid local erack tip melting due to the
N poor heat conductivity of the polymers. For these through-thickness flaw
“
experiments, cracks were grown under constant AK conditions, and constant
stress ratio (R) was maintained, via automated computer controlled test
A
a
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procedures which employed compliance measurements of crack length.
When the crack grew to a suitable size, interferometry, CMOD, and BFS
measurements were performed to determine the closure load. This procedure

was repeated at different crack sizes for each specimen.

2.3 CORNER CRACKED HOLES:

The corner cracked hole specimens consisted of PMMA rectangular
plates, with a hole located midway along the specimen’s length as shown in
Figure 2.3{(a}. The specimens were 190 mm long (2h), 89 mm wide (2b), and
19 mm thick (T) with a hole diameter (D) of 19 mm. For the present study,
the corner cracks were assumed to have a quarter-elliptic configuration as
shown in Figure 2.3(b). Here the angle ¢ is the elliptic angle commonly used
to define points along the flaw border for analysis purposes [57]. The crack
dimensions a and ¢ represent the crack length along the hole bore and the

free surface locations respectively.

Cyclic tensile loads were applied at 3Hz to the PMMA corner cracked
hole specimens through grips glued and bolted to the specimen ends. Two
strain gages were mounted on either side of the plate and monitored to
ensure uniform tensile loading. All corner cracks were grown under constant
amplitude load conditions with a fixed stress ratio of 0.1. The crack plane
was viewed via a mirror mounted at 45° on the transparent end, and was
photographed periodically. When the crack achieved a suitable length, the

cycling was stopped and a set of optical interference fringe patterns were

photographed for different applied tensile loads. This procedure was
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repeated several times until a sufficiently large corner flaw appeared. At
that time the loading condition was changed to pure-bending, keeping the
same R value as that for the remote tension portion of the experiment.
Interference fringe patterns were again  periodically  photographed  for

increasing crack lengths in the bending configuration.

2.4 SURFACE FLAWED PLATES:

The surface flawed members consisted of PMMA rectangular plates
with a surface flaw starter notch located midway along the specimen’s
length as shown in Figure 2.4 (a-b). The specimens were 200 mm long (2h),

102 mm wide (2b), and 25 mm thick (t). For the present study, the surface

L ] ‘l'- ‘{ "‘ ‘o

flaws were assumed to have a semi-elliptic configuration as shown in Figure

2.4 (c) with the elliptic angle © used to define the points along the flaw

DY

ST
’

border. The crack dimensions a and c represent the crack depth and half

the free surface length respectively. For the CMOD measurement purposes,
two metal tabs were glued to each specimen at the starter notch to hold the

clip gage at the crack mouth.

The surface flawed specimens were subjected to constant amplitude
remote bending cyclic loads with a R value of 0.1. The crack plane was

periodically photographed through the transparent end. When the surface

R P
P

flaw achieved a suitable dimension, the cycling was stopped and a set of

]
interference fringe patterns were photographed for increasing applied o
o~
bending stress. In addition to the optical interference measurements, IN
‘N
-,l
readings from the CMOD gage were recorded as a function of applied load -
)

o1

aey s,
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to determine the average crack closure behavior.

repeated several times during the test period.

This procedure was
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Figure 2.3:  Schematic view of the corner cracked hole specimen,.
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Ligure 2,41 Schematic view of the surface flawed rectangular plate.
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CHAPTER 3
SURFACE CRACK CLOSURE MODEL

This section desceribes the numerical approach employed to prediet
three-dimensional aspeets ol erack closure. The procedure used in this
analysis for the caleulation of fatigue growth ol a surface crack is basically
the same as Newman’s method for a center cracked panel [19]. His method
breaks the plastic zone and plastic wake into elements (see figure 3.1) which
are created by yielding in the crack tip plastic zone. Unfortunately the
tasks are greatly complicated by the three-dimensional nature of the surface
flaw problem, and by the absence of appropriate crack surface displacement
equations. Therefore many of Newman’s center cracked panel equations are
used. The major calculations in determining closure of a surface flaw are:

3.1 Plastic Zone Size

>
N

3.2 Deformation Within the Plastic Zone
3.3 Contact Stresses at Minimum Load
3.4 Crack Opening Stress Intensity Factor
3.5 Fatigue Crack Growth
Application of the method and equations used by Newman for the center

crack problem are deseribed in chapter 2 of reference 5%, Chapter 3 of that

thesis deseribes the surface crack closure model more explicitly and includes

more details than are given in this report.
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» 3.1 PLASTIC ZONE SIZE:
! The plastie zone size around the periphery of o surface erack varies.
"
This is due to two factors. The deoree of constraint changes from plane
S . . o : ,
N stress at the free curfiee to near plaone <rrain in the interior, and the strees
[
intensity factor varies. Ao cmpirical stress ntensity factor solution s
- available for a surface crack in bending and or tension. It was developed by
i Newman and Raju from three-dimensional finite element results, and is
- given below in its general form 59 (sce figure 3.2):
. . . o . o B .
~ Ky = (Sp Sy /I (/0L febde b (3.1)
=~
™
Here Q is the elliptical shape factor, I is the boundary correction factor for
-y . .
A tension loading, and the product of H and I' is the boundary correction
factor for bending.
=
‘.‘ . .
- For this research the plastic zone size is calculated at discrete points

around the crack edge by the following steps (see figure 3.3) :

B~ 4
»(

1. Calculate K at flaw locations of interest by equation 3.1

o 2. Calculate an equivalent erack length (€, ) by Pt
- O
| .. .. X -
' determining the length from the crack origin (point O) iy
v,
[ | to the point of interest ?
NS
-t o AN
3. Estimate the stress state coetlicient (1) RN
- ™
- L
N . . . . . [N
1. Solve for the crack tip plastic zone size (;) by using I
~ o
the surfaee flaw vadues of K, € and “cin ‘®
5 S |
‘,-:\ Newman's center cracked panel equations. TN
) -
These steps are repeated for each point of interest {1,2,3.4.5,6 in figure 3.1) A
o . _.:\.:
o along the crack periphery. N
o
>,
w
-
L]
-..'
.
-‘.‘
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3.2 DEFORMATION WITHIN THE PLASTIC ZONE:

The plastic deformations (L

) within the plastic zone are calculated in a

manner sinilar to the plastic zone size ealeulation. The surface flaw values

of K, € cand are used in Newiman’s center eracked panel equations.

The transition from plane stress to plane strain was based on closure
experiments perforimed on throush-cracked PMMA specimens of various
thicknesses (25, 19, 13, and 10 millimeters). As described in more detail in
section 4.1, optical interferometry was used to determine the opening load at
points along the crack front. The highest opening loads occurred at the free
surface, where plane stress occurs. The opening loads for all thicknesses
decreased linearly until reaching zero at a distance approximately 2.5

millimeters from the free surface.

In this model it is assumed that plane stress occurs at the free surface,
plane strain occurs when the distance from the free surface is greater than
0.1 inches, and the stress state coeflicient alpha is linearly interpolated for
distances up to 0.1 inches. Since PMMA has a large poisson’s ratio
(approximately 0.4), this allows greater stresses to develop ahead of the
crack tip. Therefore alpha was assigned a value of 5 where plane strain
occurred 58]. In {19] Newman recommended a value of 3 for plane strain,
but he was modeling the behavior of aluminum which has a poisson’s ratio

of 0.3.

3.3 CONTACT STRESSES AT MINIMUM LOAD:

The method of determining the contact stresses in the plastic wake
employed for this study utilizes Newman's center crack displacement
forrmula along six radial lines which connect point O in figure 3.3 with crack

perimeter points 1,2,3,4,5, and 6. This is done in the following manner:
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1. The stress intensity factor at point 1 is
calculated for the minimum load condition using
cquation 3.1,

2. Using the equivalent erack length (C ) calenlated
earlier, and the stress intensity factor determined by
step 1, the crack surface displacements due to the remote
load are calculated by using the center cracked panel
equations.

3. An iterative method is used to determine the element contact

stresses. These stresses cause the crack surfaces to open up
to the element lengths. \When necessary, the stresses are
modified to account for yielding and crack separation.

4. Proceed to the next radial line (2,3,4,5,6) and repeat until the

contact stresses along all lines have been calculated.

Using this method appears to give reasonable contact stresses near the
crack edge. The stresses near the surface crack origin (point O) are not
expected to be accurate, however, since shear stresses will cause the
displacement of a slice to be strongly affected by the displacements of its
neighboring slices. This affect is less significant at the crack edge because
the slices are farther apart. I[naccurate stresses near the crack origin are
not expected to affect overall accuracy in most cases. Newman reported
that only elements near the crack tip carried significant loads in his center
cracked pancls [19] for R ratios greater than zero. (Of course, his results
were restricted to through-the-thickness flaws.) Also stresses away from the
crack edge have a smaller effect on the erack opening stress intensity factor

than stresses near the crack edge.
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3.4 CRACK OPENING STRESS INTENSITY FACTOR:

When the element stresses have been determined, the crack opening
stress intensity factor can then be caleulated. By using the weight [unetion
method, Mattheek, et al (607 developed an algorithin to determine the stress
intensity factors at points a and ¢ (I, and K.) due to arbitrary stresses on

the crack surface. Their equations are given below and the coordinates are

shown in figure 3.4.

K, = “th/K,, ! fco fxg%ﬂmw(xoﬁ}W[%//hfdxdy (3.2
A

. , .S ) Nt 0

K. = th/K 7] fy=0 fx=0 Tpew( XY ) U, /e dxdy (3.3)

Here h is a material constant equal to E for plane stress, and B/(1-17) for
plane strain. The stress intensity factors at A and C due to the reference
case load are K, and K,.. The partial derivatives (/U,/ia and /U _/7¢ are
the changes in crack surface displacement (U;) due to the reference load
with respect to changes in the crack dimensions a and ¢. The stress
distribution o,,,(x.y) is the new loading for which K, and K. will be
determined.  The loading must be symmetric (0,.(%,¥)=T.w(X,-¥))
Equations 3.2 and 3.3 are evaluated by the following steps:

1. Caleulate JU, /) a and U,/ ¢ at element centers

2. Break crack surface into sections (figure 3.5)

3. Average #U /oa, JU /7e and contact stress for cach section.

4. Numerically evaluate integrals for each section.

5. Sum integrals and multiply by constants.

Calculating the partial derivatives is the most ditlicult step here. This
is accomplished by ecalculating the displacements for the actual crack
dimensions (a,c), a slightly deeper crack (a + ¢a, ¢) and a slightly wider

erack (a, ¢ + °c). The derivatives are set equal to the change in
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displacement divided by the change in crack size. The procedure for
approximating the displacements is rather complex, and the details are given
in reference (607, The surfice erack is assumed to displace like an edge
erack along vy 0, and like a center erack along 0 00 The ernck opening
approximation developed by Petroski and  Achenbach 61 for  two-
dimensional problems, was modified by Mattheck et al. [60] for the surface
Haw problem. In this study an outer fiber bending stress of 100 psi was used
as the reference load. This value is used internally by the algorithm to
caleulate displacements. [t has no elfect on the values of W, and K, in

equations 3.2 and 3.3. The displacement (U) and the reference stress

intensity factors (K., and K..) are directly proportional to the reference

ra
stress (Toew(X,y))y so the effects cancel. The type of reference ease stress
(bending or tension) does have some effect on the algorithm and this is
discussed in section 5.4.5. The crack is broken into sections by connecting
wake elements to their neighbors in adjacent slices. The stresses and partial
derivatives of the two elements are averaged, and these values are assumed
to be constant over the entire section. This allows casy evaluation of the
double integral for each section. The stress intensity factor to cause crack

opening is equal to the minimum K plus the K caused by the contact

stresses, and is given by equations 3.4 and 3.5 for crack locations A and C.

KOP

= Koot a) + VK(at a caused by contact stresses) (3.1)

KOP, = K ,(at ¢) + VK(at ¢ caused by contact stresses) (3.5)

c mia

This gives two opening stress intensity factors, KOP, and KOP.  These
values are used to caleulate the erack growth.

The algorithm for determining K due to contact stresses was evaluated

by applying bending and tensile stresses over the erack surfaces. The results
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from the algorithmmn were then compared to the Newman-Raju solutions.
Although the Newman and Raju results are for either remote tension or
bending, they may be used to evaluate the contaer <tress colntions when the
crack faces are loaded with o vniform ten-ion or linearly varsing heoh o
stress. This was done Tor various erack shupes and sizes {see table 300
Typical results are shown in Hgzures 3.6 and 3.7. There is good agrecnient
for small cracks, but the method is inadequate for large a/t ratios {above
0.3). This observation agrees with Mattheek's results 60 ‘There is slightly
better agreement at point A than at the free surfiece. The Targest o/t ratio
used in the caleulations shown in this report is 0.50, which is marked on the
figures by a dotted line. It should be pointed ont that while these tigures
provide a comparison of the algorithm to an aceepted empirical solution, the
loading is very diflerent from what the crack faces would experience from
surface contact due to closure. Therefore these figures may not necessarily

reflect the accuracy of the algorithin due to actual loads.

3.5 FATIGUE CRACK GROWTH:

Newman [19] employed in his model a rather complex equation for erack
growth. This equation utilized five constants that were needed to model
crack growth at near threshold and near fracture conditions. Since this
project did not analyze these situations, the simpler erack growth law

proposed by Elber {3] (equation 3.6) should be sutlicient.
da/dn = A(QK )" (3.6)
Elber's equation (3.6) is integrated to determine the number of eyeles

required for the crack to grow 5 percent of the plastic zone size at point 6

(figure 3.3).
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N = [ da/IAK ")) (3.7)

In equation 3.3, AR — K,(at point 8) - KOP._. While the crack s

Hax
srowing at point 6, it is also growing at all the other points along the eraex
edoes 1t s assumed that the erack will retain its semielliptieal shape at wll
times. Therefore as the crack grows, it is only necessary to caleulate new

values of a and e, While the crack grows 5 percent of its plastic zone size at

point 6, its growth at point 1 is ca'~'ated by:

Ae =N de _ NA(AK, p" (3.%)
dn

The N in equation 3.8 is the N (cycles) that was calculated in equation 3.7.

The AK .y - K,,at point 1) - KOP. After these caleulations are
complete, the crack is extended (a == a + .05 and ¢ = ¢ ¢ A¢) and steps

3.1 through 3.5 are repeated.
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Table 3.1: Test cases for closure K algorithm
aje t 2b
Ficure Ratio Loading [Location millimeters millimeters
T a5 I beoding A (9.1 I
1 max 76890 Kpa |
!
36 |1 bending C 1910 | 381
max 726890 Kpa
3.7 2/3 bending A 19.1 38.1
max 7=6890 Kpa
BETEE 2)7;__v bending C 19.1 3801
max 7— 6890 Kpa
3.9 /2 bending A 19.1 38.1
max 7:=6890 Kpa
3.10 1/2 bending C 19.1 38.1
max 7==6890 Kpa
3.11 1 tension A 19.1 38.1
7=6890 Kpa
3.12 1 tension C 19.1 38.1
7=6890 Kpa
3.13 2/3 tension A 19.1 38.1
76890 Kpa
3.14 2/3 tension C 19.1 38.1
7=:6890 Kpa
3.15 1/2 tension A 19.1 38.1
T=6890 Kpa
3.16 1/2 tension C 19.1 38.1
7=:6890 Kpa
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CHAPTER 4

EXPERIMENTAL RESULTS

18
2%
-
)
YA
A
N This chapter describes fatigue crack closure results obtained from
L] r‘ !
T . . . r
Aar various measurciment techniques for four different crack types. These crack
a
*,
N types are:
a o Yp
4.1 Through cracks in PMMA d
S ]
T 4.2 Through cracks in polycarbonate )
-0 . +
-2 4.3 Corner cracked holes :
L, %]
« . .
l 4.4 Surface flaws in bending h
"
-:_I N These experiments are described in greater detail in chapters 4,5,6, and 7 of X
N :n_\ Y
= reference (501
N
:
S 4.1 THROUGH CRACKS IN PMMA:
. The test matrix for through thickness flaws is presented in Table 4.1.
A K
': Seetions -4.1.1 and 4.1.2 will focus on one particular test (PX-6) while section ]
N
o fu
YRS +.1.3 examines the effect of varying thickness, R-ratio, and K, on closure.
o Fxperiment PX-6 was conducted at a cyclic baseline stress intensity
N
-:\: -~ (K nax) Of 825 KPa-m!/2, When the crack length reached 11.6 mm, the cyclic '
o
-t stress intensity was reduced to 550 KPa-m!/2. The stress ratio (R = Kpin /
v L
N ‘
~
) '\‘ ]
~ ¢
, ]
~

v, -
.
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Knax) was kept constant at 0.1 for the entire experiment.

I'igure 4.1 presents various measures of crack length versus clapsed
cycles.  Average through-thickness erack lengths obtained from both
compliance and photographic measurements are shown along with the mid-
plane and free surface crack dimensions obtained from the photographs.
Note here that the drop in K, from 825 to 550 KPa-m'/* when the crack
length was 11.6 mm, gave a small crack retardation region (marked by N)

followed by steady state crack growth at K of 550 KPa-m'/%. Although

max
the compliance (through-thickness) crack length is not significantly affected
by the reduction in the cyclic stress intensity value, it can be seen from
Figure 4.1 that the free surface crack dimension exhibits more retardation
than the mid-plane crack length. This crack tunnelling behavior, where the
crack grows faster in the mid-plane than the free surface location, was also
observed in PC specimens subjected to tensile overloads [44]. For the

present experiment, crack tunnelling continued well past the retardation

period.

4.1.1 Interferometric Measurements:

Figure 4.2 presents a set of interference fringe patterns photographed
during the steady state crack growth at an average (compliance) crack
length of 10.3 mm. Recall that each fringe represents a locus of points of
constant crack face displacement. Figure 4.2(a) shows the crack plane

under zero load and clearly indicates a residual crack opening displacement

field. Note here that the fringe pattern occupies the central portion of the
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crack plane and a part of the interior crack front. Thus, that particular
section of the interior erack plane is opened under zero load, while the
region near the free surfiuce remains elosed. As the applied load is increased.
the O-order (outer-most) light tringe reaches the free surface crack tip at a
K /K value of 0.3, where K is the peak value of K during the steady
state cycling. The load required for this outer-most light fringe to reach the
crack tip is one measure of the load required for the crack surfaces to
separate, and is defined here us Kg; (interferometric opening load). The K,
/ Kpay value measured at the free surface was 0.3, while this value is zcro
for the mid-plane location, where the crack surfaces are propped open at

zero load.

Figure 4.3 shows the open crack perimeter as a function of applied load.
Recall that in Figure 4.2 (a-d) each photograph showed the opened crack
area for a particular applied load. Figure 4.3 is obtained by overlapping the
opened areas of the crack for increasing applied load for a given crack size.
For example, the area enclosed between the crack front and the boundary
line of K / K ,« of 0.04 represents the opened section of the crack under an
applied K of 0.04K, .,. Similarly the area enclosed between the crack front
and any other boundary line represents the opened section of the crack
under the respective applied K value. Note here that under a small load,
portions of the crack faces are closed at the crack front and along the
starter notch. Further applied load eventually separates the crack front at

the free surfaces.

Crack opening displacements are examined in more detail by digitized

measurements of the interference fringe patterns from Figure 4.2. One
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means for presenting the crack opening profile is to plot the fringe order as a
function of distance from the crack tip for different applied loads, as seen in
Figure t.4 and 1.5, giving the crack surface separation as a function of
position.  The displacements are cxpressed here in fringe order units,
although other dimensions may be obtained from Lquation 2.2 for light
fringes. Two displacement profiles were obtained for each load scquence;
one measured at the specimen’s mid-plane, and another crack opening
profile obtained at the free surface. In these crack opening proliles, the
physical (original) crack tip serves as the plot origin.

Figure 4.4 presents the crack opening profiles measured at the
specimen’s mid-plane (interior) for an average crack size of 10.3 mm. Since
it was difficult to determine the fringe number near the mid-plane crack tip
due to close fringe spacing, as seen from Figure 4.2, the fringe order near
tkis mid-plane crack tip was established by counting the fringe number from
the specimen’s free surface location. Each curve in Figure 4.4 represents a
ditfferent applied load, and gives the total separation (2V) between the two
crack surfaces as a function of distance from the crack tip. The load which
causes the curve to pass through the origin, giving complete crack tip
separation, is referred to here as the interferometric opening load (K¢, for
the particular crack location. In Figure 4.4, the crack tip in the specimen’s
interior is separated under zero applied load. Figure 4.5 shows the
corresponding  crack opening  profiles measured at the specimen’s free
surface. Note here that crack surfaces are closed at the free surface until

the applied K equals 271 KPa-m'/? (ie: Koy / Kpax = 0.3). Crack mouth

opening displacement for an applied K value of 271 KPa-m'/%, obtained from
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4
a clip gage mounted at the crack mouth is shown in Figure 4.5. The
' presence of the starter noteh and rough precracking surlaces prevented the
measurement of erack mouth opening via optical interference. In addition,
’
P
. elastic erack month separation computed from o finite clement analy-is 50
with both plane stress and plane strain assumptions are presented Figure
) 1.5 along with the clip gage reading. Here the measurements obtained from
N the clip gage and finite element analysis are converted to {ringe order nuits.
_.: Note from Figure 4.4 that the crack surface separation is a moximum
D at a certain distance from the crack tip. This maximum crack surface
A separation location moves further away from the crack tip for increasing
.
load as seen from PFigure 4.4. Under a sufliciently high load, this ‘bump’,
" where the crack surface separation is a maximum, moves to the crack
. mouth. Thus under a large load, the crack surface separation only increases
. as one moves further away from the crack tip. Some possible factors
’, contributing to the fact that crack separation does not attain its maximum
o+
- ’ ) ]
value at the crack mouth under 'low’ loads, may be the high closure stresses
L_ present at the precracking region and the effect of free surface closure on
™
the mid-plane opening behavior. Iigure 4.5 shows that unlike the crack
-
. opening profile at the mid-plane, crack surface separation reaches a
- maximum at the crack mouth. Furthermore, the magnitude of crack
separation is much smaller for the free surface location than that measured
- at the mid-plane region. This difference in crack opening is presumably due
to the larger plastic zone at the specimen’s free surface.
',
;{
-, Figure 4.6 presents the interferometric crack tip opening load
i determined at different locations through the specimen thickness for an
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average (compliance) crack length of 10.3 mm. Here Kq; values are
normalized with the maximum cyclic stress intensity (K, ), and distances
from the specimen’s free surtace are normalized with the specimen thickness
(B).  The abscissa origin represents the specimen’s free surface location,
while x/B = 0.5 specifies the mid-plane (interior) location.  Note from
Figure 4.6 that the opening load decreases rapidly as one moves into the
specimen thickness. Moreover about 70% of the specimen’s thickness is open
under zero load. One interpretation of Figure 1.6 may suggest that 3070 of
the specimen’s thickness (15¢ from cach free surface) serves as a transition
region from plane stress to plane strain, while the remaining 7090 is under

nominally plane strain conditions.

Figure 4.7 presents the residual zero load mid-plane opening obtained
from optical interference for increasing crack length. Note here that for a
crack size of 10.3 mm the point of maximum opening (bump) is
approximately 2 mm away from the mid-plane crack tip, and when the
crack length reaches 19.1 mm, this bump lies 4.4 mm away from the local
crack tip. As a result, an increase of 8.8 mnm in crack size corresponds to an
increase of 2.4 mm in the distance between the crack tip and the point of
maximum opening. Thus this 'bump’ where the crack surface separation is

a maximum under zero load, moves in the direction of the advancing crack

tip.
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4.1.2 CMOD and BFS Measurements: E‘
2

Ar discussed earlier, CMOD and BEFS measurements were also employed '
Wil

to determine the average (global) closure loads. For the CMOD gage 2
. e
measurement, a clip gage was monnted at the starter noteh mouth and the ‘5
signal from the gage was recorded as a function of applied load. Figure 1.8 ,
. . . A3

shows the CNOD gage reading versus applied load for an average crack 9
N . :\

length of 16.8 mm. The left-most graph presents the load versus ~
{3

displacement curve obtained from the clip gage at the crack mouth during 0

one cycle of loading (The right-hand curve is discussed later). Note that the

displacement varies in a non-linear fashion up to a certain load, followed by

N

;

larger linear region, and a slight non-linear region at the upper end of the ’_.
load displacement record. As discussed earlier, the closure load may be E::
determined from this data as the point where the load-displacement relation \ ?
first becomes linear. The small non-linear region at the upper end of the ':
load cycle may be due to large plastic deformation at the crack tip present :E
at the high load levels of the cycle. Moreover, Figure 4.8 indicates that ’
PMMA exhibits fairly large hysteresis. For the present study, the loading ,’
curve is used to determine the closure loads. ‘
The closure load is determined here by an offset axis method, although ?‘:
there are various other techniques described in the literature to obtain this .5:
closure value. In this offset axis technique, one least squares line is :‘
calculated through the upper linear portion of the loading curve. The :
deviation of the actual displacement from the least squares line is plotted in L:‘.
an expanded scale (approximately 5X) in the right-half of Figure 4.8. The :.
closure load is then determined as the point where the actual data deviates ;.
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from the least squares line, and is referred to here Koc. Here K¢ is defined
as the crack opening load obtained from the CMOD measurements, and
from Fignure 1.8, for an average crack size of 16.8 mm, Ky / K

equaled

Max
0.314.

A similar procedure was used to obtain the crack closure load from the
back face strain measurements as seen in Figure 4.9. Here the readings from
a 1000 ohm strain gage mounted on the back face of the specimen were
analyzed to determine a closure load. This measurement gave a Kop / K.q

value of 0.34, where Kgg is defined as the crack opening load determined

from the BFS data.

Figure 4.10 compares the closure loads determined by interferometry,
CMOD, and BFS measurements for increasing crack length. Here the crack
opening loads increase slightly for increasing crack length up to a point
before returning to a lower value for further crack extension. Note from
Figure 4.10 that the interferometric free surface opening load is larger than
the compliance (CMOD and BFS) opening load. Since interferometric
measurements showed that the crack tip in the specimen interior was
separated under zero load, the global closure loads obtained from the CMOD
and BFS techniques should fall between zero and the interferometric free

surface opening load.

4.1.3 Sensitivity Analysis:

The objective of this section is to describe the effects of specimen

thickness, cyclic K ,, and stress ratio (R) on the fatigue crack closure

. o e e el e ol e e me e e e ma au el s - .
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behavior of through-thickness flaws in the PMMA specimens. Several

experiments conducted in this test program are summarized in Table 4.1,

4.1.3.1 Thickness Effect:

Five fatigue crack closure experiments were conducted to determine the

effect of specimen thickness on crack opening behavior. The cyclic K for

max
these tests was kept a constant at 600 KPa-m'?) and the stress ratio (R)
was kept at 0.1, while the specimen thickness ranged from 5 mm to 25 mm.
As indieated in Table 4.1, the specimen thicknesses for tests PX-16, PX-13,
PX-12, PX-11, and PX-10 were 5, 10, 13, 19, and 25 mm respectively. Recall
that the PMMA specimens were cut from a single 25 mm thick sheet. The
19 mm thick test specimens were prepared by removing a 6 mm layer of
material from one side of the 25 mm thick members. However, the thinner
test specimens were prepared by removing an equal amount of material from

both sides of the 25 mm thick sheet. As mentioned earlier, all specimens

were annealed after machining to the prescribed thickness.

Figure 4.11 shows the crack tunnelling behavior for various thicknesses.
Here the difference between the free surface and mid-plane crack lengths is
plotted against the average (compliance) crack size. Note from Figure 1.11
that the amount of erack tunnelling remains relatively constant with respect
to increasing crack size, but varies significantly with changing specimen
thickness. For example, the difference between the free surface and the
mid-plane crack dimensions for a 25 mm thick specimen under steady state

cycling is about 4.5 mm, while for a 5 mm thick member the magnitude of
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crack tunnelling is negligible.
Figure 1.12 compares the zero load optical interference fringe patterns
for the 25 nun and 5 mm thick members. Note here that, althoush a major

portion of both crack planes remain opened under zero load for both

U

members, the crack tip in the mid-plane remains partially closed in the
mm thick specimen. Furthermore, the zero load fringe patterns for the 5
mm thick member are quite ditferent from the 25 mm thick specimen. The
fringes in the 25 mun thick member form an elliptical pattern in the middle
portion of the crack plane indicating a large displacement gradient between
the mid-plane and the free surface opening behavior, while for the 5 mm
thick member, the fringe patterns are relatively straight across the crack
plane indicating a more uniform through-thickness opening behavior.
Furthermore, the 25 mm thick specimen clearly shows the closed portions of
the crack plane near the free edges under zero load, while a major portion of

the free surfaces for the 5 mm thick member remain open under zero load.

Figure 1.13 presents these zero load (residual) displacement fields
quantitatively for various specimen thickness. Here the mid-plane
displacement is plotted in terms of fringe order as a function of distance
from the crack tip. Note in Figure 4.13 that the magnitude of the mid-plane
opening decreases with a reduction in the specimen thickness. Furthermore,
the zero load opening profile for the 5 mm member reflects the closed portion

of the erack at the mid-plane location.

Figure 1.14 presents the interferometric opening load for different
locations through the specimen thickness. Note from tigure 4.i4 that when

the absolute distance (x) from the free surface is considered, the width of the
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transition region remains invariant with the specimen total thickness. For
example, in floure 1.14, the transition region is confined to a strip
approxtinately 2-3 mm rom each free sarfaece regardless of the speeimen
thickness. This width of the tran-ition region is consistent with the fact
that for a 5 wmun thick specimen, portions of the mid-plane crack tip

remained closed under zero load indicating that the entire specimen
thickness served as the transition region for this thin member.

Figure 1.15 presents the interferometric free surface opening load as a
function of the average (compiiance) crack length for the various
experiments discussed here. Note here that the opening loads do not differ
significantly for the 25 mm and 19 mun thick members, however, these free
surface opening values decrease with further reduction in the specimen
thickness. This decrease in crack opening load for a 'thin’ member is not
consistent with the plasticity induced closure arguments. Since a major
portion of a thin member is under plane stress conditions, the crack opening
loads for these thin members should be higher than the thick specimens due
to the presence of higher compressive residual stresses in the large plastic
zones of the thin members. Since the experimental results showed that the
crack opening load decreases with a suflicient decrease in specimen
thickness, perhaps some other factors such as the crack surface roughness,
which increases with a reduction in specimen thickness, plays an important
role in the crack opening behavior of the thin members. However, this
phenomenon where the crack opening load decreases with a reduction in

specimen thickness is not clearly understood at the present time.
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4.1.3.2 Cyclic K, ,, and Stress Ratio (R) Effect:

max

The objective of this section is to deseribe the effeets of evelic K. and
- it

X
the stress ratio on the erack opening bhehavior, As shown in Table 1.1, the
evelie K, for the 19 mun thick members PX-11, PX-02, PX-03. and PN-01
were 600, 660, 825, and 935 KPa-m'", and for the 25 mm thick members
PX-15, PX-10, PX-05, PX-07, and PX-11 were 440, 600, 715, 715, and 770

KPa-m!/? respectively. Although the cycelic K levels for tests PX-05 and

max

~ -
‘

PX-07 were kept a constant at 715 KPa-m'", the R values for these tests

were 0.1 and 0.3 respectively.

Figure 4.16 summarizes the interferometric free surface opening loads
for the various experiments with 19 mm thick members, and Figure .17
presents the results for the 25 mm thick specimens. Note from these figures
that the crack opening loads for the intermediate cyclic K, experiments
are somewhat higher than the experiments conducted under relatively 'low’
or 'high’ K., levels. For example in Figure 4.17, the crack opening loads

observed under steady state cycling K of 600 KPa-m!/? are higher than

max
the experiments conducted under cyclic K ., of 440 and 770 KPa-m!/2
Although, it is expected that the erack opening loads should decrease with a
reduction in the cyclic K, level from plasticity arguments, another
explanation is in order for the reduction in crack opening load at extremely
high cyclic K, ... Perhaps the difference in the crack closure mechanisms
with varying cyclic K ranges combined with the rough ecrack surfaces
observed under high K levels, contribute to this crack opening behavior. IFor

example, plasticity may dominate the crack opening behavior at 'low’ and

'intermediate’ cyclic K, ranges, while crack surface roughness combined
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with crack craze zone bundling have significant effect on the closure values
under "high’ cyclic stress levels. The fact that the ecrack opening loads
decreases with an inerease in eyelie K, .« level s consistent with the resulrs
in the previous scetion, where the crack opening loads decrease with a
sutlicient decrease in speeimen thickuness due to the crack surface ronshness
arguments. Since the free surface crack separation load attained a

maximum level for a specimen subjected to an intermediate cyclic K the

max:e
crack tunnelling magnitude under this K, level is significantly higher than

the specitnens subjected to either ’high’ or 'low’ cyelic stress values as seen
o v

from Figure 4.18.

Figure 1.19 presents the interference opening load for various distances
from the specimen’s free surface for the 25 mm thick members. Note here
that, although the free surface opening loads vary somewhat with the cyclic
K ax levels, the width of the transition region (near the free surface) does
not vary significantly with the K ,,. For example, the closure phenomenon

is confined to a region about 2-3 mm from the free edges.

Figures 4.20 and 4.21 compare the free surface opcning loads with the
opening values obtained from CMOD and BFS readings for tcts PX-05 and

PX-07 respectively. Recall that although, the cyclic K levels for these

max
two experiments were set at 715 KPa-m!/?, the stress ratio (R) for these
tests were kept a constant at 0.1 and 0.3 for the tests PX-05 and PX-07

respectively. Thus K, for Test PX-05 was set at 72 KPa-m'/* while it

equaled 215 KPa-m!/? for Test PX-07.

Note from figures 4.20 and 4.21 that, although the crack opening levels

for these two experiments do not vary significantly, the crack opening loads
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for Test PX-07 (R = 0.3) are less than or near the cyclic K, so that the
crack is almost always open during the baseline cveling.  This faet s
reflected in the observation that the R 0.1 craek orowth rate (157 v (0
mm/eyele) was Jess than the R 0.3 crack growth rate {1.91 x 10"
min/eyele), although the baseline evelie AK for the R 0.1 test was higher
(643 I{Pa—m"“‘)) than the K = 0.3 experiment (AK — 500 KPa-m'"®). Thus
the effective cyelic AK for these two experiments were nearly equal in
magnitude, (free surface AN = 115 [\’P:t-ml/‘“’) although the nominal applicd

cyclic AK for tests PX-5 and P’X-7 were kept at 643 and 500 KPa-m'*

respectively.

4.2 THROUGH-THICKNESS FLAWS IN PC:

The objective of this section is to describe the three-dimensional aspects
of fatigue crack closure observed in the polycarbonate members. As before,
the point-wise measure of crack opening load obtained via optical
interferometry is compared with the bulk measurements from CMOD and
BFS reading. A total of six through-thickness flaw experiments were
conducted with the polycarbonate material as summarized in Table 4.2.
Figure 4.22 compares the crack tunnelling behavior among the 23, 19, and 10
mm thick specimens. Note here that as with the through-thickness flaws in
the PMMA members, the magnitude of crack tunnelling decreases rapidly

with a reduction in specimen thickness.

Figure 4.23 shows the crack opening perimeter as a function of applied

load. Again the area enclosed between the crack front and the boundary
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line for K / K,,, = O represents the initial (residual) opened section of the
crack plane. Note in Figure 4.23 that unlike the PMMA experiments, both
the free surface and mid-plane locations of this 25 mm thick PC member
remain opened under zero load, however, an area of the erack perimeter in
the interior of the specimen remained closed under zero load. The residual
free surface opening may suggest that the closure phenomenon is confined to
a region near each free surface, but not at the free surface in these thick PC
test members. This crack opening behavior, where the crack opens last at a
point interior to the f{ree surfaces, was also observed in surface flaw
experiments subjected to cyclic bending in reference (18]. Figure 4.24 shows
the crack opening perimeter as a function of applied load for a 19 mm thick
member. The crack opening perimeter for this 19 mm thick specimen follows
the same pattern observed in the PMMA experiments, where the maximum

closure occurred at the free surface locations.

Recall from above that the test member PC-3 was prepared by
removing a 3 mm layer of material from both sides of a 25 mm thick sheet,
while test pieces PC-2 and PC-5 were constructed by removing a 6 mm layer
from one side of the 25 mm thick member. Although these specimens were
cut differently, the crack opening profiles observed in these three tests were

similar.

Figures 4.25 and 4.26 present the digitized crack opening profiles
obtained at the mid-plane and free surface locations respectively for a 19
mm thick member. Here the magnitude of crack opening in the specimen’s
interior is significantly larger than the free surface opening, consistent with

the PMMA experiments described earlier. This difference in crack opening
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between the free surface and the mid-plane is presumably due to the
variation of plasticity present along the crack perimeter. IMigures 1.27 and
1.28 show the crack opening behavior for a 25 mm thick member recorded at
the mid-plane and near-free surface locations respectively. Reeall that in
the 25 mm thick members, the free surface remained open under zero load.
Figure 4.28 shows the crack opening behavior at a depth x/B = 0.08, where

x is the distance from the free surface, and B is the specimen thickness.

Figures 4.29 and 4.30 present the interferometric crack tip opening load
as a function of distance from the free surface for the 25 mm and 19 mm
thick specimens. Here the distance from the free surface (x) is normalized
with the specimen thickness (B) and the opening load is normalized with the
cyclic maximum load. Note in these figures that as before, the crack tip

separation load decreases rapidly as one moves into the specimen thickness.

Figure 4.31 compares the interferometric free surface opening loads with
the bulk measurements obtained from the CMOD and BFS reading. Recall
that the bulk opening loads from the CMOD and BFS reading are
determined as the point where the load-displacement curve first become
linear during the initial opening phase of a load cycle. Note from figure 1.31
that these bulk measurements are again generally lower than the
interferometric free surface opening load, although the difference between
these loads are considerably less than the results obtained from the PMMA
experiments, where the bulk opening loads were found to be significantly less

than the free surface opening load.

Figure 4.32 compares the zero load mid-plane opening profile for three

different specimen thicknesses. Note here that the magnitude of the residual
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crack surface separation again decreases with a reduction in specimen
thickness, consistent with the behavior exhibited with the PMMA through-

flaw experiments.

Ficure 1.33 presents the interferometric free surface opening loads for
the various polycarbonate members reported here. Here the opening loads
from the 25 and 19 mm specimens form a scatter band between 50 and 115
KPa-m'/2. The baseline cycling was at K nax of 330 KPa-m'/? with R equal

to 0.1 for all cases.

4.3 CORNER CRACKED HOLES:

Table 4.3 presents the test matrix for the corner cracked hole
experimental program. The cyclic maximum remote tensile stress for tests
CTB-1 and CTB-4 was kept at 3150 KPa, and for tests CTB-3 and CTB-5
was at 4200 KPa. Following the tensile portion of the experiment, the
maximum cyclic bending stress for tests CTB-1 and CTB-2 was maintained
at 7360 KPa, and for tests CTB-3 and CTB-5 was kept at 5520 KPa. The

stress ratio (R) for all tests was maintained at 0.1.

4.3.1 Cyclic Tension Results:

Optical interference was employed to obtain three-dimensional crack
surface displacement profiles as a function of applied load. Figure 4.34
shows the fringe patterns obtained during steady state cycling for an

increasing remote tensile stress when the crack dimensions a = 7.7 mm and
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¢ = 4.6 mm. Figure 4.34(a) shows the interference pattern at zero load, and
indicates a residual opening displacement field. Recall that experiments
conducted with through-flaws in both PMMA and PC edge cracked members
showed a similar residual pattern under zero load. In Figore £314{a) the
fringes in the middle portion of the crack plane indicate that particular
section of the crack plane is open under zero load, while the crack surfuaces
at & = 0° and 90° (the locations where the flaw intersects the free surface
and the hole bore) remain closed. As the remote tensile load is increased,
the 0-order light fringe reaches the 0° and 90° locations at a stress level of
331 KPa. Although the a and ¢ crack locations open at the same remote
stress level, the stress intensity value (K) at these two points are different.
Here the stress intensity factor for a particular location is computed from
the Newman and Raju solution [57] employing the nominally applied remote

tensile stress.

Figure 4.35 shows the opened crack perimeter as a function of applied
remote tensile stress. Recall that Figure 4.35 is obtained by overlapping the
opened areas of the crack for increasing load for a particular crack
geometry. Thus the area enclosed between the original crack front and the
boundary line for for a particular stress @ represents the opened section of
the crack plane under the respective applied remote stress. Note here that
the crack front first starts to open along the middle portion of the corner

flaw, and then progresses outward to the hole and the free surface locations.

The fact that a larger load was required to open the crack faces at the
free surfaces than at interior locations, was also observed for the through-

crack experiments reported in earlier sections. Those experiments indicated
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that the erack opens first at the specimen’s mid-plane followed by opening
at the free surfaces at a significantly higher load. This difference in crack
opening is presumably due to the variation in plastic zone size along the

crack front, as conditions change from plane stress to plane strain.

Crack opening displacements were examined quantitatively by the
digitized measurements of the interference fringe patterns of Figure 4.34.
Here the displacements are presented in both fringe order (n) and
corresponding etric (yim) units. Figure 4.36 presents the crack surface
separation under a given remote stress (o) for varying parametric angle <.
In this figure, the local original crack tip serves as the plot origin. Ilere the
displacement proliles are obtained perpendicular to the local crack front at
various points along the crack perimeter defined by the elliptic angle ©. For
example, the displacement curve for ¢ = 30° represents the crack face
separation along a line perpendicular to the crack front at a point defined
by the elliptic angle > = 30°. Note from Figure 4.36 that the magnitude of
the displacement field tends to increase as one moves away from either the
specimen’s free surface or the hole location. The displacement curves for o
= 0° and 90° in Figure 4.36 indicate that those portions of the corner flaw

are closed under the applied remote tensile stress of 263 KPa.

Figure 4.37 presents the crack opening profile measured at the free

i

surface (> == 0°). Each curve here represents a different applied remote
stress, and gives the total crack separation (2V) betwecen the two crack
surfaces as a function of distance from the original crack tip. Recall that,

the stress which causes the displacement curve to pass through the origin,

giving complete crack separation, is referred here as the interferometric
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opening load for the particular crack location. In Figure 4.37 the crack tips C::
separate completely at the specimen’s {ree surface under an applied local K :.
o

v e . o .. . . . :
of 67 KPa-m'". Figure 1£.3% presents the corresponding crack opening o
A
. e . - . e
profile mensured along the hole bore. The opening K value determined from iy
W,
. . - . RN . . .

Figure +.3% equals 71 KPa-m'"". Thus portions of the interior crack plane )
n.':'

are opened under zero load, while the free surface and hole locations require e
D....
. Rl R
. - , 9 . .. A
opening loads of 67 and 71 KPa-m'/* respectively. It is important to note b
oy

that the local K values are computed from the Newman and Raju solution 5
. §
57, and these depend on o as well as load. Thus for a particular bending 9‘
ol

stress, K varies along the crack perimeter with the elliptic angle . g?_'
Figure 4.39 presents the interferometric crack tip separation load ~x o
D

determined at different parametric angles for test CTB-1. Here the opening N
Y

. . . . e
loads are normalized with the cyclic maximum remote load. Note that the ]
o

. . . (o
opening load decreases rapidly as one moves away from either the free SR
e

surface or the hole location. This decrease in opening load with increasing o

Pt iy
.—«.v-"

distance from the free surfaces was also observed with the through-thickness

flaw experiments reported earlier.
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4.3.2 Cyclic Bend Results:

sEaNe
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Figure 4.10 presents a typical set of fringe pattern photographed during

<3

<

P

the opening phase of a beunding load cycle. Figure 4.41 shows the

1].

corresponding crack opening perimeter as a function of applied remote

e

bending stress. Note in Figure 4.41 that, unlike the opening behavior under

Cara
et

remote tension, the free surface opens earlier than the hole bore location.
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For example, the crack surfaces at > = 0° separate under a remote bending
stress of 862 KPa, while the crack surfaces along the hole bore require an e
applied stress of 1731 KPa to separate. This difference in opening loads 1s LG
caused by the sharp stress gradient present along the hole direction. -~
Figure 4.42 presents the crack opening profiles for various parametric
angles © under a given remote bending stress of 862 KPa. Note here that TaT
the displacement magnitude again increases as one moves away from either N
the free surface or hole locations. Recall that similar opening behavior was o
observed earlier for the remote tension phase of the experiment. Here the ..'.:. g

Rt
free surface displacement field at v = 0° is significantly larger than the 90° E- ":.l':
XU

profile due to the fact that, under a remote bending stress of 862 KPa, the

o) .{“ H
TRy
S

O ES

K level experienced at the free surface location is significantly higher than

o
o
x*

the K value at the 90° crack tip location. For the crack dimensions under

o
&
-~

P>

consideration, a remote bending stress of 862 KPa corresponds to K levels of

o r
’y .'(5 ,‘Ql
]

7 ?‘E’,
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123 and 42 KPa-m'/? at the free surface and the hole bore locations
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Figure 4.43 presents the crack opening profile for increasing remote
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bending stress at the free surface location (& = 0°). Note here that an
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T
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applied bending stress of 862 KPa (K = 123 KPa-m'/?) is nceded for the

crack opening curve to pass through the origin (crack tip) in order to give o

vyt

complete crack tip separation. Similar crack opening profile plots obtained

e

y
»

along the hole bore (b = 90°) are shown in Figure 4.44. A remote bending o

A
vyt
A

stress of 1734 KPa (K = 84 KPa—ml/Z) is required here to open the crack tip
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completely along the hole bore.
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Figure 4.45 presents the remote bending opening stress (7,) as a
function of parametric angle . The opening stress i1s normalized here with
respect to the maximnm eyelic remote bending stress (7). Note in these
fizures that as the erack grows, the v /7 value is reduced, and a larger

&/

portion of the crack front remains propped open under zero load. For

example, the residual displacement field for a crack with a = 7.7 and ¢ =
4.6 mm is smaller than the residual field for a crack with a = 7.7 and ¢ =
8.8 1.

4.4 SURFACE FLAWS UNDER CYCLIC BENDING:

The objective of this section is to describe experiments directed at
determining three-dimensional aspects of fatigue crack closure for a surface
flaw in a rectangular plate subjected to pure bending. As before, optical
interference technique is employed here with the transparent PMMA
specimens to determine the point-wise measurement of fatigue crack closure.
These point-wise measurements are then compared with an average (bulk)
crack opening load obtained via CMOD gage measurements. The test

matrix is shown in Table 4.4.

4.4.1 Interferometric Measurements:

Figure 4.46 presents a set of interference fringe patterns photographed
for increasing load for tests SB-2 with crack dimensions a = 5.8 mm and 2¢

== 13.5 mm. [Here 7 is the maximum remote stress computed by the

o
£t

o

W o t‘s R

'}
s

Ly
T

*er
N

.

|

PN
A

0
1'\'

b

»
P

(‘.{\'- ey

v

rd
[

L 4

1.';’; P

R AN L Lo

AN

s

‘_-.-'-
PPN

IR
'..‘

s 5 1 o
PR
A N

I'l“

0y
r"&‘

Y

EEED
)

‘/.l’ L]
e

a s
'

g '.'.:'..' L Ca
/:f < e

~
¢
N



61 ™

"
standard flexural stress formula. The fringe pattern at zcro load again C:‘b"
.

indicates a residual crack opening displacement field.

‘e . .. . At

Note from Figure 4.46 that under zero load, fringes are present in the %

M

. . . . . . . . .y
middle portion of the surface flaw, indicating that section of the erack plane LA
is open, while the free surface crack tip locations require a stress level of T,
e
2482 KPa to open. Thus the effective cyclic stress varies along the crack ;:‘_J‘.:
ey

front. Figure 4.47 shows the opened crack perimeter as a function of applied ""*J
. . "o . . @
remote stress. As before, Figure 4.47 is obtained by overlapping the opened TR
Y

=

g . . . . " \

areas of the crack from Figure 4.46 for increasing applied load. ::::“,
. . ‘ . o
Figures 4.48 and 4.49 present the crack opening profiles at various o]

7/

points along the crack front. Here the crack surface displacement is

e

el
‘- -

presented in fringe order units as a function of distance from the original ::
crack tip. Figure 4.48 shows the displacement profiles along slices made at v _,
different parametric angles (©) under an applied load of 20% of the ,_;:
maximum remote cyclic stress. These slices were oriented in the radial :::.';E
direction. For example, the curve for ¢ = 17° in Figures 4.48 and 4.49 1::‘3:
represents the crack surface displacement profile along a radial line ::.'.-.‘_
connecting the crack origin (X = Y = 0.0 in Figure 2.5) and the point on "::3'
the crack front where ¢ equals 17°. Recall that for the corner cracked hole :::».\C:-‘
specimens, the crack surface displacements were measured perpendicular to E‘%‘j
the local crack front. Note in these figures that the crack surface S_';':.:
o
displacements tend to increase as one moves away from the specimen’s free :.:-"
edge (¢ = 0°). The displacement curve for ¢ = 0° indicates that the region :E::'
near the crack tip is closed under an applied load of 209% of the maximum :':f:..:
cyclic remote stress. Figure 4.49 shows the opening profiles for a load level -.\,'
é‘i_‘;'.-:;
NN
NN
33.31
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which is 28% of the maximum remote cyclic load, and indicates that the
entire crack is opened under this stress level.
.
Figure 4.50 shows the interferometric erack separation load determined E
at different parametric angles for test SB-2. Here the local opening stress :
(my) is normalized with respect to the maximum cyclic stress (7,,.). As =
observed earlier for through-thickness and corner flaw experiments, Figure
4.50 shows that the opening stress decreases rapidly as one moves away from
the free surface location. -
Figure 4.51 presents the free surface interferometric opening stresses (at .
& = 0°) obtained at various crack geometries for ali tests reported here. :
Recall that the interior 'a’ location was always opened under zero load, E
while the free surface required a significant portion of the load cycle to open s
at the tips. Thus an effective cyclic stress level can be computed at each
point where the 'a’ and ¢’ dimensions are defined. The effective stress level H
at a given point is defined here as the difference between the maximum _
applied cyclic stress and the stress required for crack tip separation at the ..
point under consideration. ,
Note in Figure 4.51 that the free surface opening loads for the E
intermediate cyclic 7,,, experiments are somewhat higher than the opening -
loads observed under relatively 'low’ or 'high’ cyclic o,,,. For example, in -
Figure 1.51 the crack opening loads observed under cyclic 7., of 8790 KPa -:
are higher than the opening loads obtained from experiments conducted at g
10,340 or 7240 KPa. Similar observations were made with the through-
thickness flaw experiments where the crack opening loads for an :
intermediate cyclic K., were higher than the opening loads recorded for |
7
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either 'low’ or 'high’ cyclic K ,, experiments.

[izure 1.52 shows the fatigue crack growth rates da/dN and de/dN
plotted versus the corresponding nominal applied AK for the five cyclic bend
experiments reported here. Here the cyclic stress intensity factors are
computed from the Newman and Raju solution [59] employing the nominally
applied cyclic load. A least square fit through the through-thickness crack
growth rate data (da/dN versus nominal applied AK) is also presented in
Figure 1.52 for comparison purposes. Note here that the through crack
growth behavior lies close to the surface flaw growth rates. Figure 1.53 plots
the surface crack growth rates as a function of the effective AK at the
respective points 'a’ and 'c¢’. Here the 'effective’ AK is computed with the
‘closure corrected’ cyclic load which results when the crack faces are always

separated at the points of interest.

Note from Figure 4.52 that da/dN and dc/dN show a systematic
variation when plotted against the nominal applied AK. For example in
Figure 4.52, a least square power law (Paris) fit through the da/dN versus
applied AK data shows significant deviation from a similar curve fit with
the dc/dN quantities. However, when the closure corrected effective AK
value is used in place of the nominal applied AK, as in Figure 4.53, the

crack growth rates da/dN and dc/dN indicate little difference.

4.4.2 CMOD Measurements:

As discussed earlier, CMOD readings were also obtained in addition to

the interferometric measurements during the crack propagation period. The
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bulk (average) crack opening loads were determined from the load-

displacement curves obtained from a clip gage monnted at the crack mouth.

Figure .51 compares the crack opening loads obtained from CMOD
readings with the interferometric free surface opening values. lHere the
opening loads are plotted versus the crack aspect ratios (a/c¢) to observe the
effect of surface flaw shape on the comparison between the local (free
surface) and global (CMOD) opening values. The dotted lines represent the
minimum and maximum cyclic stress lunits. Recall that at the specimen’s
depth location the crack tip was open under zero load. Note from figure
1.51 that the interferometric free surface opening load generally lies above
the bulk (average) measurements obtained at the crack mouth, although the
difference between these two types of opening loads is not significant.
Similar comparisons for through-thickness flaws in PMMA members using
CMOD, BFS, and optical interference measurements showed that the global
crack opening loads (from CMOD and BFS) were significantly lower than the
interferometric free surface opening load. Thus the bulk crack opening load
is lower than the free surface opening value for through-thickness flaws,

while for surface flaws, these two quantities do not vary significantly.

For a through-thickness flaw, the entire crack front is equidistant from
the CMOD measurement location; thus the global opening load obtained
from the CMOD reflects an average of the mid-plane and free surface
opening values. On the other hand for the surface flaw, the CMOD
measurement location is closer to the free surface crack tip than for the

maximum crack depth point. Thus the opening load determined from

CMOD readings should be significantly influenced by the free surface crack
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tip behavior, and may not reflect the true global (average) quantity for the

entire surface {law.
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g
i Table 4.1:  Test matrix for the through-thickness flaw experiments with
- PAMNAL
L)
-
v 1/2 .
o TEST (XPa=-m " 7) R Thickness (mm)
. J‘\‘(
b PX~16 600 0.1 5
oo
SN PX-13 600 0.1 10
~: PX-12 600 0.1 13
bt
PX-11 600 0.1 19
"\
ol PX-10 600 0.1 25
[ PX-15 440 0.1 25
N .
1 . ) .
o PX-14 770 0.1 25 =
r .\
ﬁ PX-6 825-550 0.1 25 ;,\
: PX-8 825~550 0.1 19 &
P by
N PX-5 715 0.1 25 ~
Ny ~
-
PX-4 935 0.1 19 >
%
! 3
PX-3 825 0.1 19 A
T Oy
. PX-2 660 0.1 19 2
= 3
A PX-7 715 0.3 25
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Fable 1.2: Test matrix for the Polycarbonate through-thickness flaw

g &; experiments.
ol
3
oAl
oA

"‘\. T 1/2

EST Km"m (KPa-m ) R Thickness (mm)

l.’ l.‘.('
5w PC-1 330 0.1 25
T
ot pC-7 330 0.1 25
o
s >

¥ PC-2 330 0.1 19
:;\'
2N PC-5 330 0.1 19
r": .‘:
:": + PC-3 330 0.1 19
-.l
i r" PC-6 330 0.1 10
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Test matrix for the surface flawed plates.

Table 4.4:
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Figure 4.1:  Crack length versus elapsed cycles response for test PX-6. :

Mid-plane and free surface crack lengths are also shown to

characterize tunnelling phenomenon.
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Figure 1.12: Comparison of zero-load (residual) interference fringe photo-
4
graphs obtained for the 25 mm and 5 mm thick specimens.
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CHAPTER 5

ANALYTICAL RESULTS

The computer algorithm deseribed in chapter 3 was used 1o model the
11 ditierent surface Haw experiments which are listed in Table 5.1, The
caleunlation was performed on a Cyber 205 and running times varied from
approximately 1000 to 4500 seconds. The running time is dependent upon
the applied loads and the amount of total crack growth. The experiments
include five bending tests by Ray [50[ at three different load levels, four
bending tests by Troha 162}, and two tension tests by Pope 58, All tests
were performed on polymethylmethacrylate (PMMA) specimens. Sections 5.1
through 5.3 of this chapter will compare some of the experiments with their
predicted results. Section 5.4 will examine the sensitivity of the closure
model to several dilferent parameters. Section 4.1 of reference 58 reviews
the material properties used by the model, which will not be given in this
report. Ounly four models of the surface flaw experiments are summarized in
this report.  Additional results for the other experiments are given in

reference 58,
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5.1 TESTING BY RAY:

As shown in table 5.1, Ray 50} conducted five bending tests at three
ditierent load levels Optical interferometry was used to determine when

closure ocenrred. Al experiments were conducted at an IR ratio of 0.1,

The current numerical model prediets significant closure at the interior
of the surface cracks, which was not observed in any of the experiments with
PMMAL Figure 5.1 shows the predicted interior closure for test SB-1. The
model showed vood rcorrelation with the experimental results for closure at
the free surface for tests SB-1, SB-2, and SB-7 (figure 5.2 shows the
predicted free surfuace closure for test SB-1). These tests were performed at
maximum ounter {iber bending stresses of 8790 and 7240 Kpa. Tests SB-3
and SB-6 were conducted at loads of 10,340 Kpa and exhibited less closure
than the other tests. The free surface closure predictions by the model were
considerably higher than the experimentally observed values for tests SB-3
and SB-6 (figure 5.3 shows the experimental and predicted closure for test
SB-3) Because of the interior closure calculated by the model, the growth in
the a dimension was reduced, and the aspect ratio (a/c) of the modeled
crack became less than that of the actual crack. This is shown in figure 5.4

which plots the experimental and calculated aspect ratios for test SB-7.

As the crack grows, the model predicts a slight decrease in closure at
the free surface, while closure at the interior decreases and then increases.
The reason for the decrease in closure at the free surface appears to be the

as the crack length increases. The value of K_  remains

increase in K op

max

nearly constant as the crack grows. The increase in interior closure at high

values of a/t is probably due to the inaccuracy of the weight function
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method that was used to caleulate K . Figures 3.5 and 3.6 show the

inadequacy of the method for large cracks (a/t > 0.3).

5.2 TESTING BY TROHA:

Troha 62} conducted four cyelic bending tests with surface tlaws in
PMMA specimens. These tests were performed on speeimens 76.2 mm wide
and 19.05 mm thick, which were machined from a ditferent sheet of PMMA
than that studied by Ray. Test 3-11 maintained a constant AK of 660 Kpu
m/?) at the interior {crack location A) while 3-14 maintained the same AK
at the free surface (crack location C). These constant AK tests were
achieved by appropriate shedding of the applied eyelic moment. A constant
cyclic moment of 72.8 N-m was applied to 3-15, while test 3-16 was
subjected to block loading (cyclic moments of 72.8, 87.3, 72.8, and 36.t N\-
m).

Troha observed phenomena that were not seen by Ray. Troha viewed
what he referred to as a "Type II" crack [63]. This type of crack, shown in
figure 5.5, exhibits closure at the crack interior, while no contact occurs in
the central area of the crack. Troha reported that this type of crack had an
aspect ratio (a/c) that ranged from 0.75 to 0.65 while a/t varied from 0.084
to 0.156. As this type of crack grew larger it exhibited the same type of
behavior that Ray observed (no interior closure). This type of crack was
referred to as a "Type 1" crack by Troha, which he defined as a crack that
was always open at the interior (point A). In the testing by Ray, the last
portion of the crack to open was at the free surface. For Troha’s Type [II

crack, the last point to open was about 12 degrees away from the free
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surface (figure 5.6).
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Figures 5.7 and 5.8 show experimental and predicted closure for Troha's ..
constant load test 3-15. Pligure 5.7 shows vood agreement for free surface nTuaty
closure. In figure 5.3 it can be scen that there was some experimentally o
observed interior closure at small crack sizes. The model predicted mich
more interior closure than was observed experimentally. Pigures 5.9 and
5.10 show experimental and predicted closure for test 3-16, which was
subjected to block loading. In figure 5.9 there is a large inerease in
experimiental closure at a ¢/t ratio value of approximately 0.4. This is

because the specimen experienced a fifty percent decrease in applied moment

at this point. The predicted curve does not show this drop becanse - .,
. . . e R
predicted the specimen would fail before the load was reduced. Thercfore AL
R
o . i Torele
another computer run was made to analyze test 3-16. In this run crack A
SRS

growth was not predicted by the model, but instead forced to follow the ;-~-%
ﬂ_'.‘-_:)'_‘ :

: . . AN
experimentally observed pattern. The results of this run are shown in figure Ry
P

- " . '.‘J' .I
5.11 as the curve marked "Simulated growth." Although this curve shows -‘rfr.'
the increase in closure at c¢/t=0.4, it also shows it decreasing much too g
. .‘-\f.‘l"‘
. . LRI
rapidly as the crack continues to grow. NG

T

s

S

5.3 TENSION TESTING:

Two cyclic tension tests were performed with surface flawed plates.

The specimens were cut from the same sheet of PMMA that was used by

Ray, and were oriented so that the cracks grew in the same plane. [t was I
.’- "D.‘

. . . Nty
necessary to pre-crack these specimens under bending loads to avoid de- RN
NS AFAP ),

e N 5
ROROADA,
. . . ~ . - . b :
bonding in the grips. Section 4.4 of reference 58 explains how these DUAN)
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specimens were prepared.

As in the bending tests conducted by Ray, no interior closure was
observed for the eyelic tension loading. Considerable closure existed at the
free surface.  This factor, along with the relative increase in K at the
interior caused the crack to grow much more rapidly in the interior than at
the free surface. The K at the interior during bending was not very high
since the bending stress drops off quickly as one moves away from the free
surface. Tuitially, the free surface crack dimension ¢ grew very slowly in
both specimens T-2 and T-3. As observed by Troha and Ray, the point of
maximum displacement at minimum load was internal rather than at the
free surface. The last point on the crack to open was at the free surface, as
Ray observed, rather than at 12 degrees inside the free surface which Troha
observed. Figure 5.12 shows that the model did not correctly predict the
high free surface closure levels that were observed experimentally when the
pre-cracking bending loads were concluded and the tension loads initiated.
In these figures a/t is plotted along the x-axis rather than ¢/t because so
little growth occurred along the free surface. As in the tests by Ray, the
model predicted significant interior closure when none was observed

experimentally (figure 5.12).

[t is not clear why so much more closure is observed at the free surface
than is calculated by the model. The stress distribution under bending load
is different from that caused by tension loading (stress nunder tension loading
is constant while stress under bending decreases as distance from the free
surface increases), but it is not apparent why this should cause so much

closure. The high closure does seemn to be a result of the transition from
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bending to tensile loading, since closure decreases as the crack grows under

tensile load.

5.1 SENSITIVITY ANALYSIS

After the numerical model had been completed and compared with test
results, a series of computations were made (see Table 5.2) to determine the
sensitivity of closure to several different parameters. These parameters
were:

* Flow stress
Maximum load
* R ratio

Constraint factor alpha

Weight function reference case

Although the modulus of elasticity appears in some of the equations
used, it has no effect on the computed closure. Lowering the modulus allows
greater displacements of the crack surfaces and the elements that are
created are longer, but the contact stresses remain the same, therefore
closure remains the same. In his literature survey, Banarjee [5]| reports that
it has been observed by Fuhring and Seeger [63] that Kyp should be
independent of the elastic modulus, but this has not been investigated

experimentally.

5.4.1 Flow Stress:

Yield stress is used only to determine the convergence limit for the

contact stresses. When an iteration causes a change in stress less than two
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percent of the yield stress for all elements, the stresses are assumed to have
converged. In all other calculations the flow stress, which is the average of
the yvield and ultimate stress, is used. Case number 1, shown in Table 5.2,
was based on Ray’s test sB-7. This test had a maximum moment of 79.1
N-m, which corresponds to & maximum outer tiber bending stress of 7210
Kpa (See Table 5.1 for more information.). This experiment was modeled
using flow stresses of 13,790, 27,580, 41,370, and 68,950 Kpa {run numbers 2,
3, 1 and 1), and the cffect of varying flow stress can be seen in figures 5,13
and 5.14. Note that the effect of flow stress on the closure calculations
appears to be negligible. The initially lower values of closure at the free
surface for a flow stress of 13,790 Kpa are due to an insutlticient amount of
pre-cracking. When the flow stress is lowered, several things happen:
* The plastic zone becomes larger, and therefore
the effective crack length becomes larger.

* The elements in the plastic zone and wake become longer.

* The maximum stress that develops in the wake is smaller,

but contact occurs over a much longer distance

[t is the last effect which causes the model to initially predict lower
closure values for a flow stress of 13,790 Kpa. Simulated pre-cracking from
a=2.82 mm, ¢-=3.51 mm to a=3.20 min, ¢==3.58 mm is suflicient for a flow
stress of 11,370 Kpa, but not enough for 13,790 Kpa. This is because
contact in the 13,790 Kpa flow stress case should extend behind the point
where the simulated pre-cracking began. Since the model did not generate
any plastic wake in this area (see figure 5.15), it assumes no contact between

the crack surfaces. This results in a closure calculation that is too low.

NN

",

S

o

=" @

R e e



132

Banarjee [5] reports that while there is some evidence that K,
increases as yield stress decreases, materials with different yield strengths
also have dilferent mierostructural features. This could result in o varintion

in surfuce ronghness which might explain the chianoes in closure associated

with vield stress.

5.4.2 Maximum Load:

According to Newman 19, closure should decrease as the maxinnim

applied load S, ,./7, inereases. This cffect is most noticeable at higher
stress levels and lower R ratios. Taking case number 1 as a baseline, the
maximmum moment was increased to 158.2 N-mn and 237.3 N-m. These runs
showed artificially high closure due to the high crack growth rate caused by
the high loads. This caused the newly formed elements to exceed the five
percent of the plastic zone criterion. Runs that were [ater made with
smaller load increases showed no significant change in closure. Banarjee |5
reports in his literature survey that some investigators have found closure

(Kop/Km“) to be independent of K while others have observed a

max?

decrease in closure as K increases.

max

5.4.3 R-Ratio:

Figures 5.16 and 5.17 show the eflect of R ratio on crack closure when

oy 15 Kept constant (run numbers 1, 5, 6, 7 and 8}, while figures 5.18 and
5.19 show the R ratio effect when a constant cyelic moment is maintained
(run numbers 1, 9, 10, 11 and 12). Increasing the R ratio increases the

amount of closure because it reduces the compressive yielding in the plastic
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wake at minimuii load. The compressive yielding shortens the elements in
the plastic wake which reduces the contact stresses and therefore closure as
well. It should be noted that the amount of pre-cracking required is
depeadent upon the R ratio. For high R ratios, contact only oceurs very
near the crack tip, and very little pre-cracking is required. A computer run
with an R ratio of -1. was made but the results were unusable because of an
insufficient amount of pre-cracking. For figures 5.16 and 5.17 the maximum
load for all runs was kept constant. In figures 5.18 and 5.19 the cyclic load
was kept constant instead of the maximum load. These figures show the
same trend that is evident in figures 5.16 and 5.17. For lower R values,

contact occurs over a larger area, and more pre-cracking is required.

According to an early paper (1971) by Elber [3], closure should be
related to R ratio in the following manner:

Kop/Kmay=0.5+0.1R+0.4R" (5.1)

This states that increasing the R ratio should cause an increase in the
opening load. This equation also indicates that Kop/Kmax should have a
minimumn value of 0.5 for positive R ratios. According to Banarjee [5],

values of Kop/Kmax ranging from 0.15 to nearly 1 have been reported.

5.4.4 Constraint Factor Alpha:

The effect of varying the constraint factor () was also examined.
Alpha is used to simulate the degree of constraint, which affects the amount
of closure since more closure occurs under plane stress conditions than under
plane strain conditions. [n his analysis on aluminum, Newman {19] used

=1 for plane stress and -=3 for plane strain conditions. Because of its
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higher poissons ratio, « was set equal to 5 for plane strain conditions in
PMMA. This is explained in more detail in section 4.1 of refercnce (58, The
degree of constraint around the peritieter was determined by the uniform
depth estimation method, which is also explained in section 3.2 of Pope’s

thesis. Test SB-7 was modeled using three different alpha distributions:

“ Uniform depth estimation, maximum =35 (run number 1)
® Uniform depth estimation, maximum =23  (run number 14)
3

o5 {plane strain) everywhere (run number 13)

The results of these cases are displayed in figures 5.20 and 5.21 along with
the experimentally observed closure loads from Ray’s test SB-7. An attempt
to model  complete  plane  stress around  the crack  perimeter (0 1
everywhere) caused KOP, to exceed KMAX, which resulted in a stoppage of
crack growth at A. This caused an arithmetic error to occur in the
algorithm. The program is nct able to handle cases where the ecrack

completely stops growing at the {ree surface or the interior.
p ps g g

Figures 5.20 and 5.21 show that closure increases as counstraint factor
alpha decreases. This is because lowering alpha simulates conditions closer
to plane stress and allows greater yielding. Allowing a maximum alpha of 5
seems to correlate better with the test data than a maximum alpha of 3.
Increasing alpha increases the maximum stresses (7)) that can oceur in the
plastic zone, but it decreases the size of the plastic zone (p). The net result

is that less yielding occurs, and this results in less closure.

e R '/:/_“.' ;.r_.-f._z_'.-v.".-"-r_'/;..v_ T AT T T T e

XNt
LAY

X

N MY
o LA

L T T T TR

v

&

P
AL e e T T
N e

LY

.

L

s ‘.‘,"{W 4

,.
2

8

b

AP

P
'v':‘-l

AN
A

A
NN

',;':’ [

Y
[

)
fy

» PP A
J”".*.\_'-
A

4 5 4

o

XAy

~»
{'n %)

“s "
AL
. _F_2

v
.

e

N
X «.J. o ?"f_".{"?{ 7

’\\
o
- i)



A W

_?-'

7

B

AR

kAt h g D% 2SR o ) e 2 A 208 Al ), LA LG A gt g WA e e e T

135

5.4.6 Weight Function Reference Case:

The computer algorithim utilizes the weight function method to
determine K, {see section 3.4 of this report for more detail). This requires
the use of a reference ease for which the stress intensity factors and crack
displacements are known. To test the eflect of the reference case on closure
calculated by the model, 2 computer run was made using a tension reference
case (case 15) instead of the bending refercnce case used in all other runs.
Cormparing calculations 1 and 15 in figures 5.22 and 5.23, it can be seen that
the reference case has little effect on closure. The discrepancies that exist
between the curves are due to the reference case approximations for the
surface crack displacements (U.). The surface crack displacements are
necessary to evaluate (U, /Ja and (U, /dc in equations 3.2 and 3.3. Initially,
the ditferences in closure loads between runs 1 and 15 are only two percent,
but this difference increcases as the crack becomes larger. This is consistent
with the results shown in figures 3.5 and 3.6. These figures, which compare
the results from the algorithm using the bending reference case to the
Newman-Raju stress intensity factor solutions, show that the method is less

accurate at larger crack sizes. Mattheck et al [60], using a tension reference

P"’
" case, also reported that the method is less accurate at higher a/t ratios.
- In summation, closure predicted by the computer model is affected by
‘~
certain parameters in the following ways:
“ * Modulus of elasticity has no effect on closure
) * Flow stress has no significant effect on closure
N
N * Increasing the R ratio increases closure
~, * Increasing the constraint factor alpha decreases closure
* Maximum load has no significant effect on closure
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Table 5.1: Load levels and specimen dimensions of experiments which were
modeled numerically

Cross Load Test R
Iixperimenter Section Loading Level 1D atio
T Ray 101.6x23.9 | bending 8790 Kpa SB-1 0.1
mitlimeters maximim
Ray 101.6x23.9 bending 8790 Kpa SB-2 0.1
millimeters maximum
Ray 101.6x23.9 bending 10,340 Kpa SB-3 0.1
millimeters maximurn
Ray 101.6x23 9 bending 10,340 Kpa SB-6 0.1
millimeters maximum
Ray 101.6x23.9 bending 7240 Kpa SB-7 0.1
millimeters maximauin
Troha 76.2x19.1 bending AK,= 660 3-11 0.035
millimeters Kpa—m(l/z)
Troha 76.2x19.1 bending AK. = 660 3-14 0.035
millimeters Kpa—m(l/“)
Troha 76.2x19.1 bending 16,340 Kpa 3-15 0.035
millimeters maximuim .
Troha 76.2x19.1 bending block 3-16 0.035
millimeters loading
Pope 88.9x23.9 tension 7000-7930 T-2 0.1
millimeters Kpa maximum
Pope 88.9x23.9 tension 7450-6515-5580 T-3 0.1
millimeters Kpa maximum
_‘r,_r,_r\.r\f_'r_.-:‘ -_’,.q"_.-‘\l-_ I\J'\-‘_--‘. »” o .-l.. . .‘.'_‘_T_hJ‘_\'.’.;.'_;.:\'Jn\'--\',‘:.'\J.;I‘.-J-;_n\'_-_:J‘.;."';J‘_;-’,;-‘;
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Table 5.2: Summary of sensitivity analysis runs o
\# [
S

‘il A

®
Run Flow Stress R Maxiimum Wt Funetion | ‘3‘};:
i (Kpa) Ratio Alpha Moment Reference Case | :-’:'-":J'
M W

(N-m) | P
_ :::::f-

1 11,370 0.1 Distributed 79.1 Bending s

Max — 5 )

-« N "
REAFIY.

2 13,790 0.1 Distributed 79.1 Bending s
Max == 5 .-'.: -'.j—'.:
NN
3 27,580 0.1 Distributed 79.1 Bending PROCE
Max == 5 ‘ &

_ (A

4 68,950 0.1 Distributed 79.1 Bending ;-,‘-:':-,
Max == 5 ‘-'_-:-\;.::
.I.-. .. )

A

5 11,370 0. Distributed 79.1 Bending AN
Max — 5 St

L et T L
'i“F'\- S

6 41,370 0.2 | Distributed 79.1 Bending sl
Max == 5 w.:w.jxi

v gt

nonn
7 41,370 0.3 Distributed 79.1 Bending ,-.E:i-
Max == 5 SN

®

8 41,370 0.5 Distributed 79.1 Bending e
Max = 5 '\.-‘
9 41,370 0.0 Distributed 71.2 Bending T
0 ’ - '

Max = 5 e ﬁ.'i

ce

10 41,370 0.2 Distributed 89.0 Bending | ITATNG
Max = 5 R

AT

11 41,370 0.3 Distributed 101.7 Bending A
Max = 5 '.'.r_‘.r:'.'

12 41,370 0.5 Distributed 142.4 Bending e

Max = 5

13 11,370 0.1 =5 79.1 Bending s
Everywhere s

o
14 41,370 0.1 Distributed 79.1 Beading NENTOEN
Max = 3 SRR

oS,

15 41,370 0.1 Distributed 79.1 Tension ::',:'_'_-'.'_'_-
A\Tﬂ.x o= 5 ::::_.' N
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CHAPTER 8
SUMMARY

The objective of this chapter is to summarize the experituental and
analytical results of this project. Section 6.1 summarizes the resuits
obtained from the various through-thickness flaw and part-through faw
experiments conducted with the transparent polymer members. In section
6.2 the polymer crack opening behavior is then examined in context with
metal behavior reported by various investigators. The analytical results are

summarized in se~tion 6.3.

6.1 SUMMARY OF POLYMER RESULTS:

Fatigue crack closure experiments were conducted with through-
thickness, corner, and surface flaws located in transparent polymer
specimens. Optical interference was employed to determine the three-
dimensional crack surface displacement field and to characterize local
(point-wise) erack closure levels along the erack perimeter. In addition, bulk
(average) crack opening loads obtained for certain erack geometries v .
CMOD and back face strain measurement techniques, were compared with

the point-wise measure of crack closure obtained from optical interference.
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p The optical interference fringe patterns showed that a major portion of

\

the crack surfaces were separated in the thick polymer specimen at zero

£
2

load. However, a relatively large amonnt of crack closure was obsorved at \
b .‘\.' P
! o, the free surface (plane-stress) locations. Although the erack surfaces 1 the )
- .
)
‘ . specimen interior are propped open under zero load, the large level of free
N surface closure aflects subsequent opening at the interior loecation. For N
example, in through-thickness cracked members, the mid-plane displacement -
v ':' !
prolile obtained from a numerical elastic analysis agreed well with the
0 - )
< . . . . .
‘U experimental results from optical interference, provided that the offeet of .
) \.J I X ’ p ¢
[}
L]
X free surface closure was accounted for. When computing the experimental A
N
o .. . . o . ul
elastic displacement profile at the specimen's mid-plane, it was necessary to
1 .
VIR select load levels which caused a major portion of the free surface crack g
“l '_I. -
¢ . A . . . .y
> surfaces to remain open (additional details are given in reference 150 ). .
< r
‘ Although crack tunnelling was observed for various flaw shapes, a
‘, . ~
N .- quantitative study of the through-thickness faws showed that the N
‘. N
. ‘e . . . . . . b
3 magnitude of crack tunnelling was relatively invariant with crack length. N
) <
) This behavior suggests that the crack growth rate along the specimen's free :
- o
j - N
¢ edge does not vary significantly from the mid-plane crack growth rate, s
3 :
v M . . :
' although the closure level at the free surface is significant!y higher than the K
b ol
. interior location. Thus, the effective cyclic stress experienced at the mid-
L] * tu
r
! b . . . ~
v plane location is not only affected by the closure level at that point, but also ~
. e by the closure behavior along the free surfaces. This issue is also .
l.'. .'J
- complicated by the fact that the stress intensity factor for a curved through
CoNT crack would be expected to vary along the crack perimeter. :
L "
1 »
~ .
1 ;
3 .
‘ R 0
5 ‘-'. .
2B '
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Experiments conducted with varying specimen thicknesses showed that
crack closure was primarily confined to a strip approximately 2-3 mm wide
near cach free edee for through Haws in PMMA test members.  This
trausition region (strip) was not significantly alfected by specimen thickness
or the cyclic K, level. Thus, a larger percentage of the specimen’s
thickness was under this transition region for the 'thinner’ members. Since
the difference in the crack opening behavior between the free surface and
the mid-plane was less evident for a thin member, the effective cyclic stress
experienced at these two locations did not vary significantly. As a result,
the magnitude of crack tunnelling was observed to decrease with a reduction
in specimen thickness. Crack tunnelling was also observed with corner tlaws
located at holes. Here a comparison between the experimental crack front
with an assumed quarter-elliptic shape showed that the actual

(experimental) crack front in the specimen interior lies ahead of the elliptic

shape.

Comparison between the global (average) crack opening loads obtained
from CMOD and BFS measurement techniques with the interferometric
opening load showed that for a thick member, these bulk opening loads are
lower than the free surface opening load. Since a thick member exhibits a
significant difference between the free surface and the interior crack opening
behavior, these bulk (global) crack opening loads are expected to represent

an average quantity for the entire specimen thickness.
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6.2 CRACK OPENING IN METALS:

The objective here is to compare aspects of the polymer results with the
limited amount of information available for experiments conducted by

various other investizators with metal members.

Figures 6.1-6.3 present the crack opening loads obtained from various
measurement techniques in Rene-95 (a nickel based alloy) specimens. These
experiments were conducted with compact tension specimens by Dr. N. E.
Ashbaugh, of the University of Dayton Research Institute 49]. Here the
metal specimens were subjected to constant cyclic K, levels. Three
different techniques, namely CMOD, BFS, and interferometric displacement
gauge (IDG) measurements were employed here to give global and local
crack opening load. The IDG method is described in references 35-38 and
section 2.2 of reference 50. Recall that the CMOD, and BFS readings reflect
a bulk (average) crack opening load, while the IDG measurements provide a
local crack opening level for a certain distance behind the free surface crack
tip.

Figures 6.1-6.3 compare these various measures of crack opening load.
The crack opening loads obtained from the IDG measurements were taken
at a point 7.62 x 1072 mm behind the crack tip on the specimen surface.
These figures compare the bulk crack opening (CMOD and BFS) with local

free surface (IDG) crack opening for 10, 5, and 2 mm thick specimens.

Note from Figures 6.1 and 6.2 that for relatively thick members, the
bulk opening loads fall significantly below the free surface opening loads.
This difference in crack opening was also observed with the polymer

specimens, and suggests that these thick metal members also exhibit
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significant three-dimensional variation in crack opening. On the other hand,
Figure 6.3 shows that for a thin member (2 mm thick), the difference
between the bulk and free surface opening is not significant, suggesting an

uniform crack opening behavior in the thin members.

This variation in crack opening between 'thick’ and 'thin’ members was
also observed with the PMMA through-flaw experiments, where the bulk
(average) measure of crack opening load for a thick member was found to be
significantly less than the interferometric free surface opening load.
Furthermore, interferometric results obtained from polymer experiments
conducted with varying specimen thickness showed that crack opening for a
thin (5 mm thick) PMMA specimen was uniform across the crack plane,
while a 25 mm thick member indicated a large displacement gradient
between the mid-piane (interior) and the free edges. Thus the three-
dimensional variation in crack opening decreases with a reduction in

specimen thickness.

Since the difference in crack opening between the free surface and the
mid-plane was less evident for a thin member, the thinner specimens
exhibited significantly less crack tunnelling than the thick members. This
decrease in crack tunnelling with specimen thickness was also observed in

HT80 steel specimens subjected to overloads [9].

Crack closure experiments conducted with otner metal members in
references [65-67) employing electron fractography showed a difference in the
crack opening behavior between the free surface and the mid-plane
(interior). flere the specimen’s fracture surfaces were marked with a special

type of load-sequence, and fractographic studies clearly indicated that the
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free surface crack opening load along the free surface of a thick member was
significantly larger than the imid-plane c¢rack opening value. Other
experiments  conducted  with  a push-rod displacement gage in metal
specimens  30-31; also showed similar crack opening behavior, where the
crack first opens in the interior followed by subsequent opening along the
free edges.

Recently a three-dimensional elastic plastic cyclic finite element analysis
of a straight-through crack front (18] predicted the variation in fatigue
crack opening load along the flaw perimeter. Here a straight-through crack
located in a finite thickness plate was simulated with a tensile cyclic load
range between 2.5 and 25% of the material’s yield stress. The elastic-plastic
finite element analysis was carried out for 10 cycles of load. The crack was
allowed to extend one element size (0.03 mm) each cycle, and the opening
loads were computed after each load cycle. In this model, as before, the
crack first opened in the plane strain interior followed by crack tip opening
at the free surface locations as schematically shown in Figure 6.4. Note here
that under an applied load of 0.1 S_,,, the interior portion of the crack
starts to open. As the applied load is increased to 0.36 S ,,, a major
portion of the original interior crack tip remains open, while the the free
surface crack faces are still closed. A load level greater than 0.56 S, is
required to separate the crack faces completely along the free edges. Recall
that the through-thickness flaw experiments also showed that the crack first
opened in the specimen interior followed by free surface opening at a

significantly larger load.

A 'l

«
v

7

I
:

s
3
)

} l";" /. o
IO

Wi

.
o

o {:.:_\._‘.:\::.

«“.)
.

N

LIS

Je'e

AN YTt

Yy Ty
Ky
i s

»
[}

.}
L)
1

“u
,r P
«s"\ss.,\

RTINS

[

)

e,

{ﬂ.

PEFLEL
SI&

O

o
»

-’.-".4 -“- "' \'_
LRI EAR

.1
o

Y .Fl'.f';"..d
LA

. - .
IS

AT

B

[4

PR AR
5 oW 4 4

&

LA

R

PR A A |

‘ ‘.
.: 5(:"

£,

-

h )
s

A

-t

Lyt

N
\'.'\.



167

»

Note in Figure 6.4 that unlike the polymer results, where a major

portion of the interior crack perimeter remains open under zero load, the

ol - |

numerical analysis in reference (187 shows the crack faces in the specimen

"
h.
Y interior to be in contact at zero load. However, the contact stresses at the
v specimen’s mid-plane were found o be significantly less than those
x. A
computed at the plane stress free edges. Furthermore, the numerical study .
)l\
~ does not include the roughness induced crack closure phenomenon, where the f
crack surface roughness keeps the crack propped open under zero load. b
o z
a' ’ . . PR . . . >
' [hus, it is believed here that the initial residual crack opening in the -
o~
.I
o~ polymer specimen interior may be due to a combination of crack surface ~
[ :.-1
roughness and low 'contact stress’ level observed at the plane strain interior.
~ .. .
o Although similar crack surface roughness exists along the free surfaces, the
I\.
‘large’ contact stresses force the free cdges to come in close contact, and
Pt
a prevent the crack from opening under a relatively low load at these plane
. stress locations. K
I:' :-:
Although a complete three-dimensional experimental investigation of o
}4
, crack opening in metal members may not be possible, the indirect evidence A
b -
presented above, such as crack tunnelling and fracture surface appearance, o
Eal Y
<" . . . . . . "
. clearly suggest a three-dimensional variation in crack opening along the flaw G
. . A [ ]
perimeter of a metal specimen. Although it is not known whether the o
.-" ".,-
\ -
' polymer results obtained here describe the crack opening in metal members W
J quantitatively, it is believed that the ecrack opening behavior in polymer .
A
specitriens may reflect the corresponding behavior in the metal members l,
- L
o qualitatively. 7
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6.3 SUMMARY OF ANALYTICAL RESULTS:

Comparison of the closure calculations performed here with the bending
tests by Ray and the tension tests performed by Pope reveals a serious
deficiency in the model. The model predicts contact between the crack
surfaces at the specimen interior where no ccntact is observed (see figure
6.5). In Troha's experiments, some interior contact was observed, but only
for small a/t ratios {less than 0.156). His experiments were performed with
a thinner sheet of PMMA (0.75 versus 0.94 inches) and at a slightiy lower R
ratio (0.035 versus 0.1)

Fleck's paper 20] on plasticity-induced plane strain closure may explain
this absence of interior contact observed in the experiments. In his study, a
center cracked panel and an edge cracked bend specimen were examined
with a two-dimensional elastic-perfectly plastic finite element code. Larsson
and Carlsson |68} showed the importance of the T-stress (the non-singular
stress parallel to the crack plane) for stationary cracks, and Fleck examined
its effect on a growing crack under plane strain conditions. Along slice O-6

in figure 3.3, the surface crack may be assumed to act like an edge crack.

"

. The T-stress for an edge crack in bending is tensile, which results in a
:f‘ plastic zone at maximum load like that in figure 6.6. Here a_ is the crack
R length at which the finite element analysis was initiated, and a; is the final
) crack size. The plastic zones shown in figure 6.6 occur when the crack
S length is a;. The portion of the plastic zone along the crack flank yields in
tension in the x direction. This counteracts the ecarlier yielding that
3 occurred in the plastic zone ahead of the crack tip and reduces the size of
e the plastic wake elements. The net result is less closure since there is less
h i

~

bl

e e L o N e N i i e et e e

” '.{\(";P.'

‘,‘-"\". ‘.

o

X Wy v

Ty o

it T

L

Eeis

L

|

oty

e "}

o2 LA

f£fC
S L

L

LS Y

Py

A LA

s

| AP
P



NI

material to wedge the crack open.

All experiments reviewed in this report showed that the maximum
displacement did not occur at the crack mouth, as might be expeected, but
occurred at the erack interior. Fleck’s paper also sheds some light on this
phenomenon. A crack under plane stress closes continuously, which means
that contact first occurs immediately behind the crack tip and then proceeds
back toward the crack mouth. In a plane strain situation, discontinuous
closure occurs after the crack has grown a short distance from its initial law
size. Discontinuous closure means that contact first occurs immediately
behind the crack tip and next occurs far behind the crack tip as shown in
figure 6.7. In this figure, the gap between the crack surfaces at minimum
load, op;,, divided by the quantity Kgmx/”yE is plotted along the ordinate.
The distance behind the crack tip, x, divided by Kiax/a}? is plotted along
the abscissa. Figure 6.7 shows the displacement profiles for both center
cracked panel and bend specimens. Notice that the point of maximum
displacement is much closer to the crack tip than the crack mouth. This is
the same type of behavior that has been observed in the specimen interior

for the surface crack experiments.

Ray conducted experiments at three different stress levels. As expected,
the medium stress level »xhibited higher free surface opening loads than the
lower stress level tests. The highest stressed tests had lower free surface
opening loads than the medium stressed tests. The computer model does not
predict this trend. As the applied load is increased, the model will always
predict higher opening loads. This discrepancy may be due to the effect of

the T-stress. Fleck reported that for plane strain conditions, no plasticity-
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induced closure would occur if the ratio T, /7, is greater than a critical

value between 0.035 and 0.070.

In Troha's tests, he noticed that as load was applied, the last point on
the erack perimeter to open was not at the free surface but about twelve
degrees inside the free surface. Elastic plastic finite clement analysis by
Trantina [69] or semicircular surface cracks showed that the highest stress
occurred at about fifteen degrees from the free surface. This was due to the
redistribution in load, and may be responsible for the opening behavior that
Troha observed. His specimens were thinner than those of the other
experimenters, which may be why this phenomena was pot observed by

others.

The computational model used in this project is based on the
plasticity-induced closure mechanism only. The roughness induced
mechanism, which is usually significant only for small crack or near
threshold cases, is not accounted for in this model. In most cases analyzed
in this paper, the predicted closure is greater than the actual closure, so the
inclusion of a roughness induced mechanism would not reduce these
discrepancies. Visual inspection of the fracture surfaces of specimen T-2
showed smooth transparent surfaces. Also the interference fringes appeared
to be reasonably distinct. In the case of polycarbonate {7], the interference
fringes cannot be seen when the crack is grown at high values of AK, which

causes the crack surfaces to be become rough.

From this project the following conclusions can be drawn:
1. The free surface closure values predicted by the model

correlate well with most of the experiments examined.
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2. The model predicts closure in the interior where none e,
-)' i

or very little is observed.

-
o :
3. At minimum load the maximum displacement is observed #’-

A

to occur at an internal location, while the model

2

assumes it occurs at the crack mouth.

4. Experiments show that K, may decrease when load ‘f'i
S
is increased. The model predicts K, always increases ::-:w
as the load increases. *
vl
The basic method of the model appears to be valid, but the equations :’ﬁ: ]
used to calculate yielding and displacement seem to be inadequate. Since }.f',:
the observed contact is very different from that predicted by the model ;-s'
(figure 6.5), either the calculated displacements of the crack surface or the fié
"
lengths of the plastic wake elements are incorrect. I[n the current model, the :&
effect of yielding along the crack faces in the plastic wake is ignored. This ;:;
could cause elements in the plastic wake to be too large, which would result E;
Dol
in erroneously high values of K,,. In determining the displacement of the ':;:

surface crack under remote loading, it is assumed that the crack displaces

¢
z

,'
2

along various slices (figure 3.1) like a center cracked panel. This results in

AN
Ly

the maximum displacement occurring at the crack origin. Under minimum

.
Y J

load it is observed that the maximum displacement occurs well inside the

,'1

u
AR i

»

}‘h{

crack. This indicates that the displacement of the surface crack is much

Y

4
v

more complex than the model assumes.
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Several recommendations can be made for future research work on

T ¢
o

LA

surface crack closure modeling:

1. A three-dimensional elastic-plastic finite element analysis of a
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growing surface crack should be performed. This type of analysis
has already been done for an edge crack by Chermahini (18], and if
performed for a surface crack, would give a better understanding

of the contact stresses oceurring in the plastic wake.

2. A better elastic displacement equation for the surface crack

needs to be developed. The method used in the present model

incorrectly predicts the location of the maximum displacement.

3. More testing should be performed to determine the effect of

specimen thickness on surface crack behavior. Some differences
in behavior have been noted between Ray’s 0.94 and Troha’s 0.75

inch thick spectinens.

4. More testing should be performed to determine the effect of load

level for constant amplitude loading. Testing by Ray has indicated

that K, can decrease or increase as applied load is increased.

Accomplishing these four items should lead to a better understanding of

closure in surface cracks and facilitate improved closure modeling.
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Figure 6.6: Plastic zone for an edge crack (reference [20])
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