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I. Introduction

Reliable automatic identification of aircrafts from radar returns is of great inter-

est in many areas of our modern society. During the last decade significant progress

has been made in developing radar systems that are capable of this task, both

U theoretically and experimentally. For example, it has been shown, that the exact

shape of an object can be reconstructed if radar return from it are available over

an unlimited range of frequencies and observation angles, conditions which cannot

be met in practice. It has also been shown [1], that the frequency range (Rayleigh

range) corresponding to wavelengths from half the size of the object to 10 times its

maximum dimension carries the essential information regarding its overall dimen-

sion and approximate shape. In practical situations it is desirable to measure the

3 target at a limited number of frequencies to reduce the cost and complexity of the

radar system. Studies have shown [2] that some frequencies are more effective for

I classification of aircrafts than other.

In this paper, a criterion of discriminant analysis is applied for frequency selec-

I tion, to a large scale data base of radar return measurements from models of five

commercial aircrafts. Our goal is to characterize the optimum sets of frequencies

which minimize the classification error.

Scaled data is available for each plane at 00 elevation angle, from 0* to 1800

azimuth angle in 100 steps, over a frequency range from 8 MHz to 58 MHz, in 1 MHz

3steps, using HHP ( horizontally transmitted, horizontally received polarization) and

coherent detection. Therefore, each of the 5 classes is represented by 19 prototypes,

each of which is a vector of 51 complex entries (amplitude and phase). The whole

measurement set has been arranged in a data base in which the measurements are

3 scaled to square meter. All system related parameters have been removed from

the data. The prototypes are considered to give exact knowledge of the classes at
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corresponding angles. Once the optimum set of M frequencies has been selected

using the discriminant criterion, the corresponding frequencies are extracted from

the data base to produce a new smaller data base which represents the prototypes

in the final feature space, the dimension of the feature space has been reduced from

N (51) to M < N.

To estimate the performance of the pattern recognition system, the measured

radar return of an unknown target is simulated. The simulation process needs to

be simple enough to be implementable on a computer, but still complex enough to

describe all the most important phenomena encountered in the environment of the

radar system. For radar target identification systems, noise can be classified into

three broad classes [3]. Noise generated by components within the radar system,

noise resulting from additive (linear) sources outside the system, such as clutter and

atmospheric and extraterrestial sources, and noise characterized by multiplicative

disturbances, which can occur within or outside the system. Assuming ideal system,

the noise is modelled as an additive white Gaussian noise on the sampled output of

the output device within the radar system. This model is considered to be complex

enough to represent the physical phenomena and yet parametrically simple enough

to be of use in simulation and analysis. It is assumed that the noise processes at

each frequency are independent identically distributed Gaussian random processes.

A noisy radar return of prototype j from class I would then result in the observation,

xm = xzj + n, where, xj7 = R{xt,} + j{x 1 } and n is a vector of M complex

independent identically distributed Gaussian random processes. Each component

of n, ni is generated by forming the complex sum ni = Ai + jBi, where Ai and B,

are zero mean, and a'/2 variancp Gaussian random processes. The noise model is %

thus completed by the specification of the variance a 2 of the individual complex

Gaussian deviates ti. The average noise power is specified in absolute terms in

units of dBm' [3].

2
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1 Classification of an unknown target is done by means of the nearest neighbor

(NN) decision rule. If the distance between the unknown target and one of the

prototypes is shorter than that to all the other prototypes, the unknown target is

given the same class identity as that closest prototype has. Thus, a classification

error is declared only if wrong class is chosen.

The system performance of the selected optimum sets of frequencies is estimated

at a given noise level by superimposing noise to each component of all selected

frequencies. This is done for all prototypes from all the classes. Then each of these

corrupted prototypes is assumed to be an unknown target and is classified according

* to the NN decision rule.

In the next section we will discuss the discriminant criterion used for the feature

selection, and then some of the resulting optimum sets of frequencies are presented

I along with their classification performance curves.

I II. Discriminant Analysis

In general, for multiple classes, each class of multiple prototypes, where multi-

3 dimensional measurements are available of each prototype, it is very hard to relate

a set of features to the probability of classification error. The underlying probability

distributions of the classes must be known to find such a relationship, something

which is unlikely to be available in the real world. As it is extremely difficult to find

3 the set of features which minimizes the classification error, so called discriminant

functions are widely used to obtain more reliable set of features than by picking

them at random. In current litterature many different criteria have been proposed

for discriminating between classes [4,5,6,7,8,9,10,11,12,13]. Criteria of this type

do not utilize any information about the measurement noise. Instead they use dis-

3 a
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tance measure to relate similarities within classes and resolve dissimilarities between

classes, thus selecting a set of features which maximizes in some sense the average .

distance between the classes. Justification for the use of such criteria is based on

the assumption that, the more distant the classes are at the average, the smaller is

the average classification error. This assumption does though not guarantee that

the selected set of features gives classification error close to the obtainable minimum

using same number of features. Also, the optimum set may be dependent on the

noise level. Papers have appeared, in which the optimum number of features are

discussed [14,15,16,17,18,191, but there does not exist any general theory of what

number of features are needed to establish some minimum average probability of

error at a given noise level. Hence the number of features selected is choosen ad-hoc,

mostly restricted by the computational effort needed.

In this section we describe few discriminant criteria. These criteria functions

select a subspace in which the classes separate optimally in the sense of the corre-

sponding criteria. Denote the distance, d(xi,k, xj,,) between the k-th prototype, xi,k

from class i and the l-th prototype, xj,l from class j as

d(xik, x jj) == (Xi,k - Xj, - x) , ) (1)

where the asterisk denotes conjugate transpose.

A simple criterion function based on this distance measure for the ni prototypes

in class i, with Pi denoting the a priori probability of class i for 1 < i < L is given

in [5] as

J_() - E E E d(xi,k,xj,l) (2)"= inin k=l -1 =1'

which is the average probable distance between all prototypes of all L classes in the

set, X, of prototypes.

4



The goal of the feature selection process is to identify a subset, X, of feature

vectors in the set, X, of possible measurement vectors so as to maximize the chosen

criterion function. That is, the optimum set, Z of features is that which maximizes

3 JI(Z), i.e.

Z =argmax J(X) (3)
XEX

In order to pursue the implications of the criterion function given above, notice

that (2) can be written as
L

J ,(X) =

L =i

SP - (xi,k - mi)*(x,,k - mi) , (4a)

where mi denotes the vector average of the ni prototypes in class i and IF denotes

the vector average of all prototypes in the set X.

The first term appearing in (4a) represents the distance of the individual class

means mi to the sample mean IYf and is referred to as the between class or inter-class

distance. The inter-class distance provides a measure of the separation between the

"centers" of the different prototype classes. Clearly, it is desirable to choose features

so that the inter-class distance is as large as possible.

The term appearing as the second summation in (4a) represents the average of

the distances of the prototypes in class i to the center or class mean mi of class

i. This distance, referred to as the average within-class or intra-class distance

characterizes the degree of clustering of each of the L classes. In contrast to the

inter-class distance, it is generally desirable to choose features so as to minimize

Ithe average intra-class distance.

In order to treat these terms separately, define the inter-class scatter (or co-

variance) matrix for the set X of prototypes, which is a measure of the separation

between classes, as

5
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S. = i .(mi -i)(mi (5)i=i

and the average intra-class scatter matrix, which is a measure of clustering within

classes, as .1'

L 1 i

S' = EZP,- j(xk - m)*(xik - Mi) (6)
i=1i k=1

Then it is easy to see that the criterion function J1 in (2) can be written as

Jj(X) = tr(S, + S,) (7) •

Unfortunately, this criterion function does not significantly enhance the clas-

sifiability of the prototypes in the resulting optimized feature set. In particular,

notice that if either the inter-class or the intra-class distance is large, then J1 (X)

is also large; the criterion function given by (2) does not produce the desired result

of minimizing the intra-class distance while maximizing the inter-class distance.

Hence, the criterion function J1 (X) gives little indication about the separability of

the target classes.

A feature selection criterion function of the discriminant type that does not

suffer from the shortcomings discussed above is given as in [5] by

tr(S.) (8)

which gives the ratio of the average inter-class distance to the average intra-class

distance. This criterion function is intuitively of more utility for the radar target

classification problem since this function increases as the inter-class distance in- %

creases relative to the intra-class distance, or as the intra-class distance decreases %

relative to the inter-class distance. Thus, maximizing this function produces a set of --

features such that the resulting measurement prototypes separate well into their re-

spective classes. The principle shortcoming of the criterion function J 2(X) is that it

6
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is possible for correlations among the components of the prototype measurements to

skew the results [5]. This situation can be rectified by preprocessing the prototype

measurements.

The criterion function used for feature selection discussed in this paper is the

one due to Wilks [20,21], which is based on the ratio of the "total volume" of the

feature space to the clustering distance, S,. It is given, as

J(X)-= tr(St 1 M

tr(S)- M j '

where St = S, + S. is the sum of the average intra-class scatter matrix and the

average inter-class scatter matrix. The covariance matrix, St is often referred to as

the "total scatter" matrix.

In order to eliminate the possibility of skewed results due to correlations among

components of the measurement vectors, Xi,k, the measurement prototypes are pre-

processed so that the resulting intra-class covariances are unity, and the total scat-

3tering covariance matrix, St is diagonal. That is, the measurement prototypes are

transformed by a mapping, C : X Y y so that the components of the resulting

feature vectors are uncorrelated. Thus, we form the mapping from prototypes, Xi,k

in the measurement space, X to prototypes Yi,k in the feature space Y as

Yi,k = C Xi, , (10)

Uwhere the matrix C is characterized by the constraints developed below.

If we denote by S,(y) the inter-class scatter matrix for the prototypes, y, in

the feature space, Y, then we see that

L

S=(y) =

L, , Pi (Cm, - C"M)(C , - cTF)"

7I1



=P(M- - )(mj 7F)" c

or

S.(y) = CS.(X)C* (11)

Similarly, the average intra-class scatter matrix, S,(y) for the feature vectors,

Yi,k is given by

S'(y) = CS,.(x)C" (12) .

Combining these two results yields

St(y) = S,(y) + Sc(Y) = C(S,(x) + S,(x))C" (13)

Thus, we see that the requisite transformation, C, from the measurement space, X

to the feature space, Y as dictated by the criterion function J4(X) in (9) may be

found by solving the resulting set of equations for the constraints [4]:

CS,(x)C* = I (14)

CS,(x)C" = A , (15)

where I is the M x M identity and A is an M x M diagonal matrix.

In order to characterize this transformation, following the procedure given in

[4], we define a matrix, S (x) such that

(= s(x) , (16)

and a:
SZ2(x) = (S (x))-' (17)

Then, we have that :,

X

8 .31
w
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-S (X))(s.: '(X)st(X)(SC2'(X))-)(CS,:2X)
cs,(X)C" = (Cs (x)))) (18)

I Next, we define a matrix F such that

F=CSI(x) , (19)

then we have that

CSo(x)C" CS2(X)(CS2(x)) = FF* (20)

or from (14)

3FF=I (21)

Combining this last expression with (18) gives

CSt(x)C* = FVF" , (22) 4.

where V is a matrix defined by the relation

V = SC 2(x)St(x)(SC 2(x))) (23)

Finally, notice that the matrix, Sc(x) can be written as

Sc(x) =EDE , (24)

with

EE*=I , (25)

where E is a column matrix of the orthonormal eigenvectors of S(x), and D is a

diagonal matrix of the eigenvalues of Sc(x). Thus, we have that

Sc(x) = EDE* = ED D2E"
~= ED2E*(ED2E')"

and

9



SjI(X) 2 WI x(SIT 2)) (26)

This gives

=c(x ED'2E* (27)

and

S.: (X) =ED-2E* .(28)

As a result, we see that the transformation matrix C is found as follows:

1. Find the decomposition

Sc(x) = EDE* where EE* 1 .(29)

2. Find S- 2(X;) using the relation

S~) ED-2E . (30)

3. Calculate the matrix V as

V = S.:I(x)St(a;)(Si ) .W (31)

4. Find the matrix F that satisfiesID

FVF = A or V =F*AF ,(32) -

where FF* 1.S

5. Calculate the transformation matrix C as

C=S '(x) F& (33)

10 I
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Thus, we see from (33) that the transformation C from the measurement space

X to the feature space Y consists of a weighting transformation, S, 2(x), and an

orthonormal transformation, F.

The weighting transformation, ST2 (X) is obtained as the "inverse square-root"

of the average intra-class scatter matrix. This portion of the transformation matrix

I C has the effect of minimizing the average intra-class distance.

The second component matrix of the transformation given by (33) is, by defini-

tion, a unitary transformation and, as such, merely performs a rotation operation.

In particular, the matrix, F is chosen so that average intra-class scatter matrix for

the feature vectors is the identity matrix and the sum of the average intra-class and

inter-class scatter matrices is a diagonal matrix after the transformation.

In summary, we have seen that the transformation matrix, C maps the measure-

ment space, X into a feature space, Y where the prototype vectors, Yi,k have intra-

class covariances that are evenly distributed and inter-class covariances that are zero

between classes. Since the transformed prototypes, Yi,k from different classes are

uncorrelated, the separability of the resulting set of prototypes can be considered

on a component-wise basis. From (15) we see that the contributions of the feature

vector components to the optimization are additive. Hence, if it is desired to find

the optimal set of M features for the set of targets of interest, it is necessary only

to find those M component features that individually provide maximum separation

between the target classes in the sense of the criterion, J4 given in (9).

Notice from (9) that each Ak, k = 1,..,M is an eigenvalue of the matrix

(x)St(x)(S- (x))*. Also notice that

= S2 (x)S(x)(S (x))* + 1 (34)

' 11
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Now by forming the transformation matrix, Q, such that QQ* = I and

Q[S,-(X)S.(X)[S.:,(X)]*+I]Q. = &+1 (35)

where A is an M x M diagonal matrix of the eigenvalues, )k, of

SC2 (x)S°(x)(S.2 (x)) * , then we have that 15]

Ak=Ak+1 . (36)

Since, by definition, )4 0, then the minimum value of Ak is 1.

Intuitively, we see that each eigenvalue, Ak gives the ratio of the sum of the

average inter-class and intra-class distances to the average intra-class distance, in

the direction of the corresponding eigenvector. Thus, the constraint CSC* = I

imposed on the mapping C has the effect of "normalizing" the distance measure

in the feature space, Y so that each of the eigenvalues give an absolute indication

of how well the classes separate in the corresponding direction. If, for example, it

happens that AA is large for a certain value of k then we would expect the classes to

separate well when the k-th component feature is employed for classification. On

the other hand, if a feature component has an eigenvalue of 1, then the average inter-

class distance is no larger than the average intra-class distance in that direction.

This, in turn, implies that the target classes are not separable in the direction of

the corresponding eigenvector.

The criterion function, J4 of (9) can be employed either as the basis for feature

selection, or as the discriminant function for the feature extraction process. If the

criterion function is used for feature selection, then F becomes an M x M matrix,

with row vectors that are the eigenvectors of the M-dimensional subspace producing

the largest sum of M eigenvalues. Thus, in this case, the transformation matrix, C

is Mx M. A

If, on the other hand, the function, J 4 is used as a criterion for feature extraction,

12



I then F becomes an M x N matrix, with row vectors that are the eigenvectors of the

corresponding M largest eigenvalues of the N x N matrix S,. 2(x)S.(x)(S (x))y.

In this case, C becomes a matrix with dimension M x N.

Finally, we point out that while several other discriminant-based algorithms

for feature selection and extraction have been proposed [6,22,23,121, these criteria

3 place little emphasis on distributing the total interclass distance equally among

the classes in the resulting coordinate system. In contrast, it is unlikely that a

feature selection or extraction process based on J4 would result in good separability

between two classes in the target set, at the expense of separation between other

I classes in the set [5]. In addition, the criterion J4 is moderately easy to implement

and possesses many of the properties desirable in a discriminant function. The

performance of J4 should give a good indication of how powerful tool discriminant

analysis is for feature selection for composite classes.

Most often, discriminant analysis is applied to simple classes, where noisy train-

ing samples are available for each class. In this case, the scatter of the prototypes

is due to the measurement noise instead of the spread of many exact prototypes of

3 composite classes. Generally speaking; for simple classes, where only noisy train-

ing samples are available, the discriminant algorithm selects a subspace where the

I noise level is low compared to the average inter-class distance; for composite classes,

where exact information of the subclasses is available, the discriminant algorithm

selects a subspace where the average inter-class distance is large compared to the

average intra-class distance. For a simple class, the mean of all the noisy proto-

types (training samples) gives moderately good representative mean vector for the

class. On the other hand, if the class is composite, the mean vector of the class

prototypes may not be a good representative for the class. This may be the most

severe shortcoming of applying discriminant analysis methods to composite classes.

13



III. Results

The discriminant criterion described above was applied to the data set assuming

either no prior information about the azimuth angle of the target, or assuming

±200 prior directional information. The optimum set of M frequencies is found

by selecting every possible subset of M frequencies out of N (51), calculate the

criterion value and select the subset which produces highest criterion value. As

the desired number of frequency measurements increases (up to 26), the number of

possible subsets increases drastically. Also, as the number of features is increased

the computation for each subset takes more time and becomes very exhaustive for

ordinary computer system in terms of cpu time.

A. No Prior Information of the Azimuth Angle

For coherent detection the 10 best sets of 1, 2, 3, 4 and 5 frequencies were

obtained. The result of this search for the optimum set of 4 frequencies is shown in

Table 1. There is less than 1% difference between the criteria value of the optimum

set and the value of the 10.th best set. This indicates low sensitivity of exactly

which set of frequencies is selected as the optimum one. If simulation is done using

the optimum set and the 10.th best set, the classification result, as expected, is

very similar. If the number of desired frequencies exceeds 5 the search becomes

extremely exhaustive and time consuming. By comparing the selection result for

the 10 best sets of frequencies for the desired number of frequencies being 3, 4 and 5,

there is high tendency to select some of the same frequencies all the time. Hence to

make the search less exhaustive and still be able to obtain higher number of desired

frequencies, 4 of the frequencies were choosen beforehand and the feature selection

algorithm then used to search those 4 more frequencies which would maximize the

criteria function, resulting in the "optimum" 8 frequencies. The optimum sets of

14



I 1, 2, 3, 4, 5 and "8" frequencies are shown in Table 2. There is, of course, no

guarantee that this set of 8 frequencies is the optimum set in the sense of the

criteria function, but very likely they are close to the optimum 8, especially as there

3 is low sensitivity of which set of frequencies it the optimum one. Figure 1 shows the

classification result using the optimum set of 4 frequencies and a set of 4 equally

3 spaced frequencies. Clearly, the optimum set yields better performance than the set

of equally spaced frequencies, though the improvement is not large. Similar results

U were also obtained for corresponding sets of 3, 5, and 8 frequencies.

In Figure 2 the classification curves for the optimum set of 3, 4, 5 and "8"

I frequencies are compared to the curve obtained when using all the 51 frequencies.

It is obvious that the classification result is much better if all the 51 frequencies

are used. This is not very surprising as all the eigenvalues found in the feature

5 selection algorithm were approximately of the order 1.0 - 1.8, which means that

the separation in any direction in the feature space is of the same magnitude and

the classes are close to each other and heavily overlapping. That might have been

expected as the azimuth angle varies from 00 to 1800, causing a huge change in the

3 effective area of the planes. For 20% probability of misclassification, the 5 optimum

frequencies can operate in around 22 dBrn 2 noise level, while all the 51 frequencies

- can operate in around 32 dBm 2 noise level. If the target were now measured at

the 5 best frequencies 10 times, altogether requiring 50 measurements, and the

average of these 10 sets of measurements used for the classification algorithm (

SNR in the measured signal has been increased by 10 dB ), the performance of this

classification scheme is just sligthly better than the performance of the classifier

gusing all the 51 frequencies measured once. This implies it is sufficient to measure

the target only at the optimum set of 5 frequencies 10 times and still have about the

same information about the target as if it were measured at all the 51 measurements

once. The classification result is shown in Figure 3. In Figure 4 it is shown how

15
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much the improvement is if the measurement of the set of 5 optimum frequencies is

increased by one at the time. The largest improvement, by adding a measurement

of the best set, is when the best set is measured twice instead of once. As the

number of measurements is increased the less impact has each additional set of

measurement on the improvement of the classifier, i.e. the improvement levels off.

The same tendency can also be observed on Figure 2 for the number of frequencies.

There is about the same improvement going from 4 frequencies to 5 frequencies as

going from 5 frequencies to 8. In other words the performance advantage becomes

less and less significant as the number of frequencies is increased or the number of

multiple measurements is increased.

B. Partial ±200 Information of the Azimuth Angle

Modern radar system can be used to give information about the direction of the

target. Hence it is realistic to consider pattern recognition system were some prior

directional information of the target is available.

Assuming prior information of the azimuth angle of the target to be within ±20'

uncertainity, the best sets of 4 frequencies were found for each azimuth angle. This

is done by finding which frequencies discriminate the classes best at each azimuth

angle, ±200. This will result in 19 sets of optimum frequencies, one set for each

azimuth angle. Now if an unknown target were being measured, its approximate

direction (azimuth angle) would need to be estimated and then the target would

be measured at the optimum set of frequencies selected for that azimuth angle and

classified by comparing it to the corresponding noise free prototypes. The optimum

sets of 4 frequencies found at every azimuth angle are shown in Table 4. It is

interesting to see that comparatively lower frequencies are selected to discriminate

the airplanes at the broadside than at azimuth angles closer to 0* or 1800. The

physical interpretation of this could be that at the broadside, lower frequencies
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carrying size information give best discrimination, while higher frequencies carrying

information about more details give best discrimination at 0° and 1800. It was

observed that if the test set were loaded with prototypes at azimuth angle iP + 20'

and the catalogue set with prototypes at azimuth angle P, P ± 10' and P ± 200

at the frequencies selected for azimuth angle i, that the classification performance

3 did not degrade much from what is was if the test set contained prototypes at i

azimuth angle. This means that if a target is estimated to be at iP but is in reality

I within i ± 20* the classification algorithm is not sensitive because of this inaccuracy

in the azimuth angle. However, this does not state anything about the performance

of the system if the target is not at an aspect angle which is not a multiple of 100.

3To examine what is gained by having ±20° prior information of the azimuth

angle, the test set was loaded with prototypes at angle i, at the opimum 4 frequencies

found when no prior information existed, and the test set classified to the whole

catalogue containing every azimuth angle. Then the test set were loaded with the

optimum 4 best frequencies at angle P given ±200 knowlegde of the angle and the

catalouge set loaded with the same frequencies at angles P0, P : ± 10' and i ± 20'.

On Figures 5 - 7 comparison of the classification curves for the classifier with no

azimuth information and the one with ±200 prior information is shown for 0', 90'

and 1800. Except for 90*, the performance of the classifier with the prior information

is superior to the performance of the one with no information. The reason for this

bad result at the broadside might be that there is largest difference between the

measurement value for the huge airplanes and the small ones, hence the selection

algorithm favours just the discrimination between the large and the small groups,

resulting in bad discrimination within each size group. At 900 the optimum set was

selected as the four lowest frequencies. But overall, there is significant impiovement

in the classification performance given the prior information of the azimuth angle.

This can be due to two factors:
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" the optimum frequencies for each azimuth angle do give better discrimination

between the classes at corresponding azimuth angle than the optimum set of

4 frequencies do, when no prior information existed.

" the improvement is due to the decreased number of prototypes in the catalogue

set for each class ( 5 prototypes instead of 19 ). 7

One would expect the improvement to be be due to both of these factors. To find

how much is gained by each factor, prototypes at azimuth angle i were loaded into

the test set, and prototypes at azimuth angle i, i ± 10 and i ± 20* were loaded into

the catalogue set at the optimum 4 frequencies found assuming no prior information

about the azimuth angle. On Figure 8 the classification curves for targets at 300 are

compared to each other, using the optimum 4 frequencies when no prior information A

exists, the optimum 4 frequencies with ±200 prior information and the optimum

4 frequencies when no prior information exists but only using prototypes within

±20* from the real azimuth angle in the catalogue set. Results were also obtained _

for every 300 azimuth angle. It was observed, that at the average the improved o ,

performance when prior azimuth angle information exist is equally due to the prior

information of the azimuth angle and the decrease of the number of prototypes in

each class from 19 to 5.

IV. Discussion

The classification improvement using the optimum set of frequencies compared

to the set of equally spaced ones is rather low. There are probably many reasons for

this. The criterion function used to select the frequencies does not bear any direct -

relation to the probability of misclassification criterion. It only finds the frequencies

18



B
at which the classes separate best in a noiseless environment, hopefully implying

that the farther away the classes are at the average, the less is the probability of

classification error. When no prior information of the azimuth angle existed the

I criteria value is rather low. This indicates that there is not large separation of the

classes and they probably overlap each other heavily. This should be expected,

as the azimuth angle is changed from 0' to 1800, the effective area of the targets

5 changes very much. Hence, a small airplane on the broadside may look similar to a

large airplane under some other angle. Also, there is small variation in the criteria

value for the 10 best sets of frequencies. This suggests that there does not exist a

set of frequencies which can discriminate the planes much better than any other set.

The 5 classes form 10 different pairs of classes, all of which needs to be separated

from each other. The feature selection algorithm were used for each pair of classes

I to obtain the optimum 4 frequencies which separate corresponding pair of classes

best. The result can be found in Table 3 which includes the optimum 4 frequencies

for all the classes. Table 3 shows that none of the optimum 4 frequencies for some

of the pairs is in common with any of the optimum 4 frequencies for all the classes.

Some other pairs have only one frequency in common with the overall optimum

54 frequencies. This would suggest that separation between corresponding pairs of

classes is poor and worse than between pairs of classes which have more number

of optimum frequencies in common. Probably the main weakness of this criteria

function is most obviously exposed when it selected the optimum 4 frequencies for

±20° prior information at 900 azimuth angle. At this angle the area difference

between the large and small airplanes is greatest, giving huge separation between

the group of large planes and the group of small planes, but not taking into account

the separation between airplanes within each group, i.e. the criteria function favours

large separation between some classes at the cost of small separation between other

classes. In Table 3 it can be seen that for 900 azimuth angle the 4 lowest frequencies
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were selected, all of which carry mostly size information.

In summary, the optimum sets of frequencies characterized by the discriminant

criterion yield in general to lower classification error than the corresponding sets of

equally spaced frequencies.
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Table 1: Discriminant analysis, optimum sets of 4 frequencies, coherent measure-

ments, HHP.

selected frequencies [MHz] criteria Pave

8 ........... 20 ........ 30 ........ 40 ........ 50..58 value [dBm 2 ]

1........1................ I.....................1 4.70 26.6
.1.......1I..................................... 1 4.69 25.9
... 1 I.......................................1 4.69 25.9

11......... .................................... 1 4.68 26.7
1.........1...................................... 1 4.68 26.6

. ....... 1..................1...................1 4.67 25.9

Table 2: Discriminant analysis, optimum sets of 1,2,3,4,5 and 8 frequencies, coherent

measurements, HHP.

selected frequencies [MHz] criteria Pave

8 ........... 20 ........ 30 ........ 40 ........ 50..58 value [dbM2 ]

........ .................................................. 1 1.18 22.3

...... 1..................................... 1 2.36 24.5

1.........1..................................... 1 3.55 25.8
........ 1...................................1 4.75 26.0

11.......1...................................... 1 5.92 26.5
11.......1............ 1.. 1..................... 11 9.30 26.3
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Table 3: Discriminant analysis, optimum set of 4 frequencies every pair of airplanes,
coherent measurements, HHP.

selected frequencies [MHz] criteria Pave pair of

8 ........... 20 ........ 30 ........ 40 ........ 60 ..... 58 value [dBm2 ]  planes

....... 1.11 ........................ I ............... 4.60 24.6 707-727
•.1........ .................... I ................. 1 5.38 26.4 707-747

.1................................... ii ........... 4.66 26.3 707-DC 10

..1...... 11 .......... I ............................. 4.59 24.8 707-CON
.11.................... 1 ......................... 1 5.31 26.2 727-747

• 1111 .............................................. 4.66 28.0 727-DC 10
.. . . . . .. . . . . .. . . . . .. . . ... 4.86 26.6 727-CON ,'

.. . . . . .......... I.............. 1 .............. 1 4.92 26.5 747-DC10

1........................... I ..... 1 ........... I .... 4.36 25.1 CON-DC10
.11....... 1 ................... . ................. 1 4.75 26.0 Optimum 4

.2
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Table 4: Discriminant analysis, azimuth dependent optimum sets of 4 frequencies,

±200 partial azimuth information, HHP.

selected frequencies [MHz] criteria Pave azimuth

8 ........... 20 ........ 30 ........ 40 ........ 50 ..... 58 value [dBM2 ] angle

-. 11... 1.1 .......................................... 30.99 24.4 0

I .............................................. 11.1 12.10 22.9 10g 11 . . .......................................... 8.05 26.4 20

... ..................... 1.................... 1 8.56 21.9 30
..................................... 11 .1 ..... 1 9.54 19.8 40

................................. I .... . . ..... 9.01 25.7 50

........... I ...................... 1... .... I... 8.09 25.8 60

............. 111 ................... 1 ............... 7.24 29.2 70

.11............................. 1 .... I ............. 8.11 29.8 80
1111................................................ 10.38 29.2 90

11........ 1 .... 1 .................................... 10.95 29.5 100

111 ........ 1....................................... 12.49 28.5 110

11.1 ...... 1...................................... 10.85 26.9 120

..... 1 ............................. 1.1...I ...... 9.15 22.5 130
1..1 .............1 ............. 1 ................. 9.07 25.3 140

1 ...... 1 ............................. ........... 10.26 26.1 150

1.1 .I ........ 1 ................................... 13.21 26.4 160

.1 . 1.... ........... I ........ ..................... 22.55 24.3 170

1....... 1.................... ................ 1 ... 109.3 25.0 180
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optimum 4 freq. Pave,,26.02
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Figure 1: Performance of the optimum set of 4 frequencies and the set of 4 equally ",

spaced frequencies, no prior information.
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Figure 2: Performance of the optimum sets of 3, 4, 5 and "8" frequencies and the

whole measurement set of 51 frequencies no prior information.
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Figure 3: Performance of the optimum set of 5 frequencies, the optimum set of 5

frequencies measured 10 times and the whole measurement set of 51 frequencies, no

prior information.
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optimum 5 treq. Pave-26.54
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Figure 4: Performance of the optimum set of 5 frequencies measured 1, 2, 3, 4, 5,

6, 7, 8,9 and 10 times, no prior information.
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partial Info. Pave-27.29
no info. Pavs-26.38
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Figure 5: Performance of the optimum set of 4 frequencies assuming ±20' prior

information and the optimum set of 4 frequencies assuming no prior information,

target at 00.
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Figure 6: Performance of the optimum set of 4 frequencies assuming +200 prior

information and the optimum set of 4 frequencies assuming no prior information.

target at 90'.
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Figure 7: Performance of the optimum set of 4 frequencies assuming ±200 p)rior

information and the optimum set of 4 frequencies assuming no prior information.,

target at 1800.
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Figure 8: Performance of the optimumn set of 4 frequencies assuming ±200 prior

information, the optimum set of 4 frequencies assuming no prior information but

classified assuming ±200 information, and the optimum set of 4 frequencies assuming

rio prior information, target at 300.
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