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P Preface

o

. l.

s > The two parts of this report present an introduction to the design and usage of
3._{« the NFEARS system developed jointly at the Universities of Maryland and
5 N . .. .
;ﬁ* Pittsburgh. The acronym stands for "Nonlinear Finite Element Adaptive
ne Research Solver" and refers to an experimental software system for the solution
:.-2 of a class of nonlinear, stationary boundary value problems in two space
\' dimensions involving two real parameters. The overall concept of the szystem is
;l similar to that of the earlier system FEARS (see, e.g., [16],[17],[26])! for linear

-‘"ﬂt elliptic problems and retains many of the features of that system.

S The eight sections of Part I. describe the mathematical background of the
:\'; processes incorporated into NFEARS, and the six sections of Part Il. serve as
-“"’ User's Manual for the program.

)

R

‘ 23‘; As the earlier program, NFEARS was developed strictly as a research tool and
; x_, is expected to be subject to continual modifications.

W] .

ko '

oty

‘1}1

el

:::.

-2

2,

i

1 All references are collected in Section 1.9 of Part |.




Introduction

As noted in the Preface, NFEARS is an experimental software system for the
solution of a class of nonlinear, stationary boundary value probiems in two
space dimensions involving several parameters. The specific form of the
problem class that can be handled by NFEARS will be given in the next
Section. Generically, these are equations of the form

F(zA) =0

involving a particular nonlinear mapping F: X — Y. Here Y is a suitable function
space and X is the product X = Z x A of another function space Z (the state
space) and a finite-dimensional parameter space A. The basic formulation of
the NFEARS problems incoporates a seven-dimensional parameter space, but
for the calculation only a two-dimensional subspace A is used. Parameterized
nonlinear equations arise in numerous areas. The applications we had
especially in mind derive from nonlinear structural mechanics, but the system,of
course, is more generally applicable.

In general, the set of all solutions (z,1) of (1) forms a differentiable manifold M in
the space X with a dimension equal to that of the parameter space A (see e.g.
[19]). In most applications interest centers not so much on computing a few
solutions (z,A) for specific values of the parameters, but rather on analysing the
form and special features of the manifold. For example, in the mentioned
structural problems we may wish to determine those solutions where the
stability behavior changes.

For the computation, a finite element approximation is applied to the basic
equations. Since the parameter-vector does not need to be discretized, the
resulting equations then have the generic form

Fh(znA)=0

where now Fn maps a space Xp = Zh@A into a space Y, where now both Zn and

Yh are finite dimensional. Since the parameter space is unchanged, we may
expect that the solutions (zn,A) of the discretized equation form a differentiable

1
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Iy Ry manifold My, in X, of the same dimension as the original manifold M in X. More-
U

(’~°"!' over, we may imbed X into X which enables us to define the discretization error

R as a suitably specified distance between M and My, (see [12],[13]). This allows,
In turn, for the design of a posteriori estimates of this discretization error (see

J e.g. [6],[8],[18],[20]). As in the linear case (see e.g. [2],[7],[8],[10]) such a
l:?'!-. posteriori estimates are not only important in providing some assessment of the
:;.o; reliability of the computed results, but also in controlling an adaptive mesh-
‘3-_ refinement procedure with the aim of obtaining a solution with appropriately
r;: bounded error behavior using minimal cost (see [1], [3]).

- The basic procedures for the computational analysis of the solution manifold My
o are the continuation methods, or incremental methods, as they are also called
:E: in the engineering literature. When the dimension of the parameter space, and
hence of My, exceeds one, these methods require an a priori restriction to
8.4 some path on My and then produce a sequence of points along that path. In

;'3 structural problems the parameters often define the load configuration and the
j::'j path is defined by fixing the load points and load directions and leaving only a
”" load intensity as scalar parameter.

:‘. Obviously, it is, in general, not easy to develop a good picture of a multi-dimen-

-.:‘;3:-' sional manifold solely from information along such paths. This led recently to

4 o the development of methods for the computation of simplicial approximations of

’2 open subsets of M (see [21],[22)).

)

:‘t :l |

/ The goal of NFEARS is to provide a tool for the above listed tasks. In fact our J
o generic discussion so far identifies all the principal capabilities of the system
which can be summarized as follows:

(i) Construct a finite element discretization of the given equations using
biquadratic elements on a hierarchical class of meshes defined recursively by
repeated refinement or de-refinement.

(if) With a given solution xpg as starting point and a path through xng specified
by a selected combination of the parameters, apply a continuation process to
compute a sequence of points approximating that path. The process follows the

ORISR RO O P LU A LU UL OOOUOUOU UM IUUOOOOTUOAN U
A Y e e T e e s e et e
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design of the PITCON system (see [23],[24]). It allows also for the computation
of specific target points and limit points on the path.

b~

(i) At selected computed points along the continuation path, compute a

Y
:)‘ posteriori estimators for the discretization error.
g (iv) On the basis of a "density" and "intensity" concept for finite element meshes,
use the error estimators to control the modification of the current mesh.
N
o (v) At any of the computed points, apply an aigorithm for the computation of a
4 simplic.al approximation of an open region of the manifold Mp surrounding the
‘.t
Y particular point.
,".ﬁ
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W l.1. _Problem Class

;:.; The nonlinear problems underlying NFEARS are formulated in a weak form
" requiring the determination of a function U € X such that

-

o

P BUV)=L(V), V Ve,

‘ .

0

By where X,Y are appropriate function spaces which shall not be further identified.
::.'" Here B is a bivariate form

gd 2D

- B(U,V) = J.E(ovx,y,U,Ux,Uy) V dxdy +

:}4 Q

::;

Y od ; oD

b jau (01,x,y,U,Ux,Uy)dexdy +J.——aU (o, ,x,y,U,Ux,Uy)Vydxdy
AN .5 Q X Q y

_,: and L a linear functional

2

- L(V) = jGZ(O'Z, X, y) Vdxdy + jG1(03, X, y) Vdy

oy Q r

e

’D“" . . . .

;,:,' involving the given functions

i

e (0,xy.U° U U%) - oo, xy0"U' W% | Vo, e R xy, LU WV eR
)

)

) 2 1
8 (o,xy) = Gylo,xy), Vo,eR, xyeR
W

& 2 1
'@ (05,%y) — G1(03,x,y), Vo,eR , xye R

In this formulation we use the notation:

C

the trial function in X,

\Y the test functionin Y,

Q a given domain in R2 which will be described in more detail in
Section 1.2,

r a given subset of dQ2 which will also be discussed in Section 1.2
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x,y the global coordinates in R2
the arclength of T,
i=1,2,3, three two-dimensional parameter vectors which will be

discussed below.

9 =

The trial and test spaces X and Y are assumed to allow us to handle prescribed
Dirichlet boundary conditions of the form

®uB =06
1 2

b(x,y) , on O,
U=10,bxy., on o,

where © is a given one-dimensional subset of Q, 64 a scalar parameter, and b
a function which is locally, piecewise quadratic (see Section 1.3).

All given functions are supposed to be sufficiently smooth on their respective
domains. For the computation it is required that subroutines are available for the
computation of the following functions

od , az(D , aa(D - k,j=0,1,2
au"  acau  au" au’
oG 3G
2 1
% 5 % 5%
2 3

and it is assumed that appropriate values are provided which define the
boundary function b(x,y).

Altogether the problem involves a seven-dimensional space of parameters
(61,62,03,04) € R2 x R2 x R2 x R1. Thus in general, the set of all solutions U is
expected to be a seven dimensional differentiable manifold in the space X (see
e,g, [19]). In applications, interest rarely centers on the determination of a few
specific solutions of this problem for fixed parameter-values, but rather on an
assessment of the behavior of these solutions when the parameters vary; that is,
on an analysis of the form and features of the solution manifold. NFEARS is
intended to provide a tool for such an analysis.
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Evidently, serious data handling problems are likely to arise in an analysis of a
seven dimensional manifold, even though, in principle, the computational
methods, used here for approximating segments of such manifolds, remain
applicable. Accordingly, for the computation, NFEARS is restricted to two-
dimensional sub-manifolds. These sub-manifolds are defined by linear
combinations of the three parameter vectors o ,i=1,2,3, and of the scalar
parameter o4 in dependence of two effective parameters A1 and A>. More
specifically, the following linear relations between the o; and Aj are assumed to
be given:

o4=a4+B4l

Accordingly, we are now interested in the two dimensional manifold of solutions
(U.A1,A2) € X x R2 of our problem, and NFEARS computes finite element

approximations of points along paths as well of nodes of triangulations of open
subsets of this manifold.
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-7 I.2. Domains and Mappings

‘ The domain W of the problem is assumed to be sub-divided by the user into a
collection of sub-domains. The interior of these sub-domains are called 2-D

T domains and will be denoted here by

> )

ﬂ Q ., k=1..N,

o The closure of each 2-D domain is a generalized quadrilateral with four corner

- points and four sides each of which can be either a straight line or a circle. The

:E (relatively) open line segments forming the sides are called 1-D domains (or
lines, for short) and are denoted by

<

& QL. k=1..N,

., Finally, we call the corner points 1-D domains (or points for short) and denote
ri them by
0

Q

. k=1,.N,

Thus altogether the original domain is decomposed as follows

>
N 2 N 1 N 0
« @ = (UM e o (N g)u I o))
|.—.{.
e The closure of each 2-D domain is the homeomorphic image of the unit square
S={(Emn);0<&n <1}inthe plane where all computations are performed. The
! specific form of the mapping is given below. Clearly, these transformations onto

5
S require that degeneracies in the definition of any 2-D domain Q, must be

SN

2
avoided. In particular, the angles formed at the corners of Q' should not be too

close to 0 or n, no overlapping sides should occur, and the overall shape

Lo

should not be approximately triangular. Figure 1.2.1 shows some illegal and
legal configurations.

e 3
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\I lllegal:

s Legal:

Figure 1.2.1

Aol Cracks may be introduced by using two 1-D domains between two 2-D
domains. If the crack originates at the external boundary of Q, then two 0-D

N domains with the same coordinates should be used :

N ",
) S"- Internal crack External crack

QUL Q 0-D subdomains
N Figure 1.2.2

oy As noted before , the allowable 1-D domains are either straight line segments or
circular arc segments with a given radius. More, specifically, any such domain

oy Q, is defined as a directed arc from a starting point with coordinates (x,.y,) to an

o) endpoint with coordinates (x,,y,). Of course, both of these points are 0-D
domains. The order of these two bounding 0-D domains defines a direction for
";0::‘; Q,: which is used to set the direction of the unit tangent vector t at the points ot

'::é" the arc. The corresponding unit normal vectors n are obtained by rotating t
it counter- clockwise through an angle n/2 (see Figure 1.2.3).

R R R R Ty R R R RO
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g C>0 C<0 n

@‘ Figure 1.2.3

' )

hat The particular form of Q, is specified by its signed curvature C1k. More specif-
g ically, if C; =0, then Qé is a straight line segment, else it is a circular arc with
:,. radius 1/|Cy |. In the latter case, if C}>0 or C}<0, then the center of the circle is
.9

to the right or the left of the arc, respectively, when looking in its direction (see
Figure 1.2.3).

&
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(xz,yz )

radius = 1 /|C|

" Jn
~<
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Figure 1.2.4
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Hence the tangent and normal vector at any point of the arc are given by

Y CC cos ¥+ Sg sin & -t
t = = y n =
) ¢, sing - s cos ¥ 4
g g
where
X, - X Yy Y,

_ 2™ S
cos 3= T , sind T

L=J(x2'x1)2+(y2-y1)2 ’ p ='§'C

s, =P(2L-D, ¢ =J1 S pt L -1t

Accordingly, the global coordinates (x,y) and the local coordinates ({,n ) are
related as follows ‘
20-1
x(©) (1% +X L |cos® -sin ,
=3 iy 1-(28-1)
y(©) Wty sind cosd| | P = = =
I Jl—p +J1—p @G- 17|

Line integration of a function f along the 1-D domain then becomes
1
[tay = L[ a
c
fo}. o ¢

Transformation of a 2-D domain is defined by a Coon's patch; that is, by blend-
ing the transformation functions (x(k),y(k)) , k=1,2,3,4 of the four bounding 1-D
domains. As Figure 1.2.5 shows, the 0-D and 1-D domains are indexed in a
counter clockwise direction.
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E’g Figure 1.2.5

\;3 The transformation functions can be expressed in the following form:

L 0 (1) 0
% -xl X (nl) 'x4

()

g xem=[1¢ 1 ¢]|Pcy 0 Pyl

0 3 0
-X X( )(n3) 'x3 n

[ 5]

- " .
! R4 y (M) Ya

y@E&m) =[1—§ 1 g] ym(éz) 0 y“’(§4) 1

"
’»,
0 QA3 0
g -y2 y )(ﬂ3) 'Y'_; n

@ Here (x;%y;°), i=1,2,3,4, are the coordinates of the four 0-D domains and

(x(K(n, ).y M), k=1.3, (xK)(E,),y*)(E,)), k=2,4, the four 1-D transformation
functions. Their arguments n,, or {, reflect the appropriate orientation of the
v corresponding 1-D domains; that is,

;3' 11
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0,3':!'2 WY at‘?a:"\"’ -"'v‘."v:5'*f"c!l'-:"q:if:tleqﬁ'o‘ﬁ:‘."L“«'t’.‘f:‘,'fif "-f"x."lt'ft? ¥



bR P 5w n

where 1 = +1, if the orientation of the k-th 1-D domain corresponds to the
orientation of the y-axis or x-axis, respectively, and 1, = -1 if it is the opposite.

o - gn s ARy,

\ Since the determinant of the Jacobian of this transformation appears in each
volume integral, it is important to express it in an efficient form for later
3 evaluation. The partial derivatives can be written as

S [xem] [R@sind,  Cm-xm @ sind, L-m

i

i

—_ 1 |

R 98 | yEm) nEcosd, y.m)-y,m 1, cosd, . i
: !

§ @] [ d K@ -G@  nmsindy | {175

It
—

9
M | yEn) r, (M) cos B, y;(g)-y;(é) r,(n) cos ¥,

- where

3 p2C-1) 1-2¢-1)°

;: rk(C) = Lk = > > ’ pk(C) =Py > : > >
) \/1-pk(2C'1) \/1'pk+\/l-pk(2C'1)
J

: with

X x;(C) x: cosq -sin§ |1, (28-1)

,'u = + E‘k_

! n@| |ypl s cosq || p®

L)

0

k)

;:: xm X, + XO Xm + 0

o k 1T M 1 R

: =3 . k=234 and ==

1 m

o Yk Ye ¥ Yk Yy Y1+ Y,

"

LS

12

K 0y LR P o P A A N o L AT I R e e R R Y
) o , OO m& Ny
“‘-"'t‘!‘-l\'d‘ A RS U TIN SNC M B R WM T 0.:'*"!.0 P e N o'l.c.v'!.- o " WYY,



LLa boaalh aad Lok s 2 ek tad Sai aat Al o8 -as ok Salt Sl tal ool 3 “mmﬂm“T

R = -

1.3. Finite Element Approximation

Y IS

The mesh on our domain Q consists of curvilinear elements which are first
defined on the basic square S = { (1), 0 < &n < 1} and then mapped onto the
closures of the 2-D domains which make up Q. A nine-node planar Lagrangian
quadratic element is used as the master element of NFEARS.

AR ENE N T g

4

Vg

s >l

-
e ian
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e, - 0,0 1,0
(-1,0) (0,0) 5 (1,0) o

S
»
o
v

e

1 2 3
)ﬁ (0,-1) (1,-1)

b Figure 1.3.1

. The shape functions associated with its nine nodes (see Figure 1.3.1) are as
¥ follows:
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As in [26] the admissible meshes on S are defined recursively by the two rules :

(a) The mesh consisting of the four quarter-squares
Sk = {(Em); 1<2E<i+1, j2n<j+1), k= 1+j+2i, i,j=0,1
of S is admissible. These four squares S,,S5,,S;,8, are called
superelements.
(b) If Ais an admissible mesh on S, then the mesh is admissible that is
obtained from A by quartering any one square s of A into four congruent
squares of half the side-length of s.

$n

s: [s, S,

Figure 1.3.2
Figure 1.3.2 shows an example of an admissible mesh on S. Any element s of
an admissible mesh A on S is uniquely characterized by its center point (g, no)

and side-length h , and the transformation

L = E=E+(0.5h)u, V= N=ng+ (0.5h) v
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maps the master element onto s. This specifies the shape functions on s.
Instead of detailing them, we give here the more general formulas for quadratic
interpolation on s. As above let

2 2
h=r0(EL5) . v=rMm-ny

and suppose that uj, i=1,2,...,9 are given scalar values at the nine nodes of s
indexed in the same order as in Figure 1.3.1. Then the interpolated value u(g,n)
at the point (§,n) e sis given by

UpsUy U, +Ug 2(U,mUg)  Up-Ug-U,+Ug [ v(v-1)
uEm) = [ puen]| 2uzus) au, 2(ug-ug) 1
Uz-Uy-Ug+Ug 2(U6'U5) Ug-Ug-Ug+U, _V(V+1)

It will be useful to record also the corresponding quadratic interpolation which is
induced on any line segment [{g-h/2 , {o+h/2). If uj, i=1,2,3 are the values at the
three nodes (indexed in order of increasing {-values), then the value u(f) of the
one-dimensional quadratic interpolation is specified by

-

1 1 -
7 7 Ofu]
2
u@ =[reen ueen]o 10Uy uas -t
1 1hu
° 2 2}

with { =& or 1.

Once the shape functions are defined on a given admissible mesh on S, we
have obtained, at the same time, the corresponding space of conforming finite
element functions on that mesh. Hence, by applying the transformations from S
onto each one of the closed 2-D domains Qf , we construct a curvilinear mesh

on the full domain Q. This is schematically indicated in Figure 1..3 for the basic
mesh of four superelements.
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Let vi = vi(x,y) denote the global shape function belonging to the node i of the
resulting mesh on Q. Then the finite element space, to be considered here,

consists of all the functions of the form

N
u(xy) = Z u, vi(x,y) , Xye Q

im1

where the index N denotes the total number of "free" nodes; that is, of the nodes
not contained in the 0-D and 1-D domains carrying Dirichlet boundary
condition.

Dirichlet conditions can be prescribed on a set © consisting of 0-D and 1-D
domains, and they may either depend linearly on o, or be independent of that

parameter; that is,

b(x,y) if (x, C)
u(xy) = { obixy) if (x,§§Z o, ©v6,=90

Here the following conditions are assumed to hold:
(a) The function b(x,y) is a quadratic polynomial in the local coordinate { on
each 1-D domain in A, (see Section 1.2 for the relevant mapping) .
(b) The intersection ®, N ©, may contain only 0-D domains with zero

prescribed values, u(x,y) =0
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' ) (c) If a1-D domain is in some set ©,, (i=1,2), then the two adjacent 0-D
K & domains also must be in the same ©,.
% (d) If two or more 1-D domains with a common adjacent 0-D domain are in
{ ©,, then the various b(x,y) functions defined on these 1-D domains must
- 3 o have an identical value at this 0-D domain.
9 The functions b(x,y), as quadratic polynomials in their local coordinates, are
f;,: g, specified by their values at the 0-D domains, and at the mid-point of their 1-D
i"*'-i domain (see Section I1.2). The necessary quadratic interpolation for all other
::: :_5 points of the 1-D domain is performed by the program.
s
" - With these specifications the finite element approximation of our given problem,
N on any admissible mesh, is a system of N nonlinear equations:
o
wr 3
2. V. oV,
v }‘\ FU =I .agv....icb——l.,,—ag_' dxd
s ) U AU, ax au, ay |
Q y
S
o - sz v, dxdy - j G,wdy =0 , i=1,2...N
b o Q r
’,, ‘ where
o
O e
f': f;_-; u = u(x,y) is the desired finite element approximation that satisfied the
- boundary conditions;
;‘::: vi is the global shape function corresponding to the i-th node of the
:.: N (curvilinear) mesh on Q;
W
: o " is a given subset of the union of 0-D domains and 1-D domains on which
.:: i the Neumann boundary conditions specified by the third integral are
!5 defined;
s" g
.'.'
w; is, for any node on T, the induced one-dimensional quadratic shape
s O function;
“ LY
A
;:. @ = (o, ,x,y,U,Ux,Uy) , and Gi = Gi(oi,x,y) ,i=1,2
' are the given functions of the problem as discussed in Section |.1;
<
E o 17
‘o
L

OO \J RGO ] U | Pt ﬂ.".1.h'gﬁ!’._l.'..."!‘l.'.'..,ﬁ‘.‘i'. AR RICH O P A P SN
J‘,"ﬂt'."‘ ..‘7"." ,."‘.“b’ "O!"‘.":’"'?“:‘. AR b ‘!‘:“.‘n '!.“l:"!.""."h"' (NOM ‘.‘.".»“'O‘?l“,".‘"."‘-‘,' l‘..I.n‘I.?.’!‘?‘!.r.'0“'t...ﬁ.,%"."‘?‘.“..r..,.l‘,."5'0"’I.'.il..\.'n'l.?‘...)!'



2ol e A oA Al A A A A dL Al Il Aol Balk RAR Bal AR Alo-dle dle Ale Ale A ALALANARALELDEL ARat Saf Bt Sod a8 S 0 e lh"S At Al A5a" Al "AR"AR Y. Sul B9 Ll ek A A AL Al B h a-d ath oA alb- 00 0o |
S i

o; ,i=1,2,3 are the two-dimensional parameter vectors and o4 the scalar
parameter discussed in Section |.1. Recall from Section I.1, that for
the computations the parameters 61, 02, o3 are specified as linear
functions of two effective parameters A1, Ao.

The Jacobian of the non-linear mapping F = (F1, F2, ..., FN) is easily obtained by
direct differentiation. For ease of notation, let

ov. ov.
C=u, u = a_u u’ - ooy, v:=-—', v? = — i=12..N
ox oy ' ! ox oy

Then the components of the Jacobian of F have the form
oF, J-
du

J Q

and, with the notation of Section 1.1, the derivatives with respect to the effective
parameters are

2 2
2 =

Vv dedy Lij=1.2,.N
kI=0 du Ju

2 2
oF 2 A ) 0D
hall B -+ B —— |\ 4xd
ax J kzg Takad, ¢ aad [ XY
]
Bl %2 v g B"aG‘d (i=1,2,...,N; j=1,2; B'=B ,B2=0)
=By | v, dxdy - By |——w,dy i=12,...,N; =12, PP
o 90 2 9ay,

Here, it should be noted that, in the assembly of the function values and the

Jacobian components, the fixed boundary nodes are not represented. Thus the
derivatives with respect to 6, have to be transfered to the free nodes.
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.4. Mesh Representation and Densities

In NFEARS the admissible meshes on the basic square S = {(§,n), 0sgn<1} are
. represented by a combination of tree structures. This representation is an

': extension of that given in [25] for linear elements. More specifically, the
quadratic elements of the mesh in the 2-D domains are stored as extended
g quad-trees and their one-dimensional parts on the free 1-D domains as binary
trees. This tree structure facilitates the required mesh-refinements and de-
™ refinements. We refer to the cited article for a detailed description of the data
W structure and summarize here only some of the changes that were needed to
- accomodate quadratic elements.
)

As discussed in Section 1.3 above, all meshes on Q are first defined on the
ii basic square S. Moreover, by definition of the admissible meshes, the initial
mesh on each 2-D domain corresponds to a basic subdivision of S into four
congruent squares, the superelements. Figure 1.4.1 shows this initial
subdivision with the four parts numbered 2 to 5. The mid-point carries the
. number 1 and the mid-points of the sides are assigned the indices 6 to 9.
Further side nodes are required on the boundary of S but they are not
numbered in the Figure. The superelements may be further refined but can
o never be de-refined; that is, each 2-D domain contains at least nine internal
nodes.

The initial sub-division is represented by a labeled tree, where the root
corresponds to the mid-point of the unit-square and the 8 descendant nodes to

-7 the four superelements and the four side-nodes, respectively. Labels Ix and ly

, with values -1, 0 and +1 are assigned to the arcs of the tree to characterize the

E‘j geometrical location of the corresponding node in relation to the mid-point. Note
that the terminal nodes 2 to 5 represent mid-points of open squares, nodes 6 to

3:-‘: 9 are mid-points of open intervals, and the root corresponds to a single point.
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s Figure 1.4.1

o The thin lines in Figure 1.4.1 indicate the effect of a refinement of elements 2 and
A, 4. Eight descendant nodes are appended to the particular tree nodes in
correspondance with the four new elements and four new side-nodes. As in the
o case of the arcs from node 1, the eight arcs to the new nodes carry labels Iy, ly
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with values -1,0,+1. Two further side-nodes are introduced on both sides of
node 8. These are implemented by adding two son-nodes to node 8 and
labeling the arcs Ix=0,ly=-1 (below 8) and Ix=0,ly=+1 (above 8), respectively. In
addition, so-called irregular nodes appear on both sides of nodes 6 and 7.
Generally, a node of any mesh is irregular if it lies on the side of some element
but is not the mid-point of that side. These irregular nodes are not represented
in the tree. Solution values at the irregular points are linearly dependent on the
solution values at the corner-points and at the mid-point of the side. Side points
are also introduced on the bordering 1-D domains. Whether these are regular
nodes or irregular nodes will depend on the mesh on the neighbouring 2-D
domain, if there is one. If there is none; that is, if the 1-D domain is an outside
boundary, then those nodes are defined to be regular nodes.

The resulting labeled tree has two important properties:

1. All non-terminal nodes of the tree represent single points while the
terminal nodes correspond to the mid-points of open squares or open horizontal
or vertical intervals in the local coordinate system. Open squares are mapped
onto the interior of elements of Q and the Ix,ly [abels on their incoming arcs carry
non-zero values. Open intervals are those which have a label Ix=0 (vertical
sides) or ly=0 (horizontal sides).

2. There exists a unique path from the root to any given node on the tree
which consists of arcs with labels Ix;,ly; , i=1,2,...,m, that define the local

coordinates of the corresponding point as

m

m
=g (142, x2') and n=g (14 u2")

i=1 im 1
For terminal nodes the length m of the path specifies the length h of the side of

the corresponding open square or interval as h=2".

The 1-D domains are mapped onto open unit intervals (see Section 1.3). Each
free 1-D domain is represented by a labeled binary tree, while fixed 1-D
domains; that is, those that carry Dirichlet conditions, are only documented in
summary records. Initially, a binary tree has one root-node and two son-nodes
with arcs carrying the labels -1 and +1, respectively. The root node corresponds
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to the mid-point of the 1-D domain and is also a cornerpoint of a superelement
in the adjacent 2-D domains; the son-nodes are then representing the sides of
this superelement. This is shown in Figure 1.4.2.

1-D subdomain separating two 2-D subdomains:

4
&~ 0-D subdomain
[6]

¢
;

nodes

Irregular /
~a

L2l

-~

0-D subdomain

Corresponding binary tree:

Figure 1.4.2
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For the control of the mesh modification process, as well as for the initial
definition of the meshes on Q, we follow [3], and introduce a density function

and mesh intensity.

e

The 2-D domain Qﬁ is mapped onto a unit square which contains four

superelements ST, j=1,2,3,4. As in Section 1.3 let vi(§,n), i=1,....9, be the nine

3 )

global shape functions of the superelement S?. For every superelement exactly

E one corner point is the image of a 0-D domain. Suppose that this point
) corresponds to the corner with index | of the master element. Moreover, let
» ro(&,n) denote the distance between it and any point (§,n) € ST. Then the un-
A

normalized density function d‘; on S;‘ is defined by

K
log(d Z p,v + 2pv&n) log(re(En)) . Sne S

=1

where pg,....pg are given constants. This definition pre-supposes that the
solution can be split into a smooth part and the effect of a singularity near the 0-
D domain associated with ST . More specifically, the sum over the shape-

P
v"l

functions reflects mesh for the smooth part and the logarithmic term mesh for
the singular part. Line singularities are not represented separately; that is, in

our setting, they must be incorporated into the smooth part.

TH

When a noae belongs to two different superelements, then the coefficients p;

corresponding to it in these elements are assumed to be identical. With this a
ﬁ continuous, positive density function d,(§,n) is defined on the entire unit square.
td

Moreover, d,(§.n) is uniquely characterized by 29 constants, namely, 25

ﬁ coefficients p1.....pg (nine on the open 2-D domain, three each on its four open
1-D domains, and one each at its four 0-D domains ), and 4 singularity
g exponents pg (one each at the four 0-D domains).

] The density functions dx can be extended to a continuous, positive density
‘-2 function d on the entire domain Q by requiring that the coefficients at any nodes

in the intersection of two closed 2-D domains are identical. This function d is

Eg' 23




completely characterized by nine coefficients for each open 2-D domain, three
for each open 1-D domain, and two for each 0-D domain. Then

d (&)

2 | aen ggan
ket 20

Dg, (€M)

shall be the normalized density function on the domain Q.

Let A, j=1.2,..., be a sequence of meshes with Ej elements such that Ej — o0 as
j = . Moreover, assume that for any open subset Q' of Q which contains Eq

(open) elements, we have the inequality

E
Ja)jo () o e < < 5 0.2) [ D& o5 an
.
where

lim sup o,(j,€) and liminf o (j Q)

l—)” ]—)eo

are finite and independent of Q'. Then, evidently, for large j the quantity

S@)= g~ [D&m ot an

is nearly independent of Q'. This suggests that we may characterize a mesh by
its normalized density function and a number 3 , called its intensity, such that

1
Ey = 5 | Da&m dgan
:

is the number of elements in any open subset Q' of Q. This relation allows us to
construct an admissible mesh A on Q once a normalized density function

D,(&.,n) and an intensity 3 are known. Clearly, it suffices to give this algorithm

24
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~ only for some closed 2-D domain Qﬁ of Q . As before, let Qﬁ be mapped onto

t‘ the unit square S* and let Ak be the mesh consisting of the four superelements
Sk,

Nt

- Eor all elements w of Ax do

p Compute Egq for the set Q' = {w};

~ If Eq>1then

o construct a new mesh Ak by subdividing o into four new

.‘::T ' elements,

- else

;’:: terminate the process with the current mesh Ag.

" The process ends with a mesh Ay for which E(, < 1 for all singleton sets Q' = {w}

2 of Ax. Moreover, we also know that E(, > 1 for the father ' of w; that is, for the

= element of an earlier mesh from which ® was constructed by the quartering

4

- rule.

Some examples of this pracess are given in Figure 11.3.4 . It may be noted that
there the intensity was set equal to 1/20, and hence we should expect a mesh
with 20 elements. But the actual number of elements is closer to 50 due to our
use of the quartering rule; that is, the requirement that only admissible meshes
are allowed.
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.5. The Solution Manifold

In Sections 1.3 we specified our problem in the form of a system of nonlinear
equations

Fu.A,d) =0 , F:RNx RZ - RN,

involving the vector u of the unknown values at the N free nodes of the finite
element mesh on Q and the two effective parameters A,, A,. This system
approximates the nonlinear operator equation introduced in Section I.1, and, as
indicated there, the set of all solutions (u,A1,A2) € RN x R2 forms a differentiable
manifold in RN x R2. We summarize here briefly some of the necessary
differential geometric properties of this solution manifold and refer for further
details, for instance, to [19] and the literature cited there.

For ease of notation, we shall use the abbreviation x = (u, A,, &,) e RN*2and
write DF(x) for the N x (N+2) Jacobian of F. A point x is called regular if the

Jacobian has full rank N. Then the set of all regular solutions
M={xe RN F(x)=0, rgeDF(x) =N}

is a two-dimensional differentiable manifold in RN+2 of the same ditfferentiability
class as F. By restricting ourselves to this regular solution manifold we asume
that a suitable unfolding of the original problem has been chosen. In practical
applications, this is, in general, a natural assumption.

As indicated already in Section 1.1, we wish to analyse the shape and
characteristic features of this solution manifold. However, for this we have to
recall that the mapping F represents only a discrete approximation of the
original (infinite) dimensional problem of Section I.1. As noted there, this
original problem -- after restriction to the two effective parameters A1, A2 -- may
also be expected to possess a two-dimensional solution manifold in the product
of the trial space X and the parameter space R2. It is actually this original
manifold which we wish to analyse; but, of course, that manifold is not directly
accessible for a computational study. This raises the question of the influence of
the finite element discretization upon the shape and features of the original
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manifold and of estimates of the size of the discretization error. This will be
discussed in Section |.8 below. Here we concentrate on the above manifold M
defined by the specific finite element discretization F.

At any point x € M the tangent space TyM of M may be identified with the null-

space of the Jacobian; that is,
TxM = kerDF(x) = {w € RM2 DF(x)w=0}.
Accordingly, the orthogonal complement

Nx M = (T)(_M)J- =rge DF(K)T

is the normal space at that point.

For the analysis of any differentiable manifold we require suitable local
coordinate systems on M. For the computations we use local coordinate
systems induced by given 2-dimensional subspaces T of RN+2. More
specifically, any such space T induces a local coordinate system of Mat x e M

provided that
T TxM ={0}.

It this condition holds then there exist open neighborhoods V, and V, of the

origins of T and RN+2 | respectively, as well as a unique differentiable function w:
Vi - TL , w(0) =0, such that

MAV, ={ ye R¥2; y=x+t+w(t), te V,).

A point x is a non-singular point with respect to the given coordinate space T if
T induces a local coordinate system of M at x , otherwise it is called a singular
point or foldpoint.

Let A be the two-dimensional subspace of RN+*2 spanned by the effective
parameter directions. Then interest centers especially on determining the
foldpoints with respect to the coordinate space T = A . If our original problem

27
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':':f.: concerns a study of equilibrium configurations of a mechanical structure then
these foldpoints with respect to A represent approximations to the eqilibria
¥ where a change of the stability behavior of the structure may be expected occur.
N
;-_.f_\ The basic procedures for the computational analysis of our solution manifold M
yet
' are the continuation methods. These methods require a restriction to some path
\
&N on M and then produce a sequence of points along that path. One such
hov o continuation procedure is incorporated in NFEARS. The allowable paths for this
o procedure are defined by specifying the effective parameters A4 A2 as linear
e functions of a scalar parameter A:
-\.‘;~ .
.F::'. A =8 A, i=12, 8 45, =1,
A
-F\(
o Some of the details of the continuation process and of its capabilities are
discussed in Section 1.6.
Y
i J'\.

Obviously, it is not easy to develop a good picture of a two-dimensional
o manifold solely from information along such paths. This led recently to the
development of methods for the computation of simplicial approximations of

l' -
[ ;f:: two-dimensional open subsets of M. NFEARS incorporates a form of the method
.l:jl introduced in [21],[22] which will be discussed in Section I.7 below.
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.6. The Continuation Process

The continuation method incorporated into NFEARS follows the design of the
PITCON system (see [23],[24]) . We summarize here only the principal aspects
of that method and refer to the original anticles for further detail.

As discussed in Section 1.3, our finite-element approximation has the form
Fi(u, A1,%2) =0, i=12,.N, ue RN

Let M again be the corresponding regular solution manifold and, for ease of
notation, write x = (u, Ay, A2). For the continuation process we have to restrict

ourselves to a path on M through a specified point x0 = (uo,l?,lg) e M. This is

equivalent with an augmentation of the system by some scalar equation. As
mentioned in Section 1.5, NFEARS uses only paths on M which are specified by
a linear combination of the effective parameters A1, A2, In other words, we

consider augmented systems of the form
F 1(u,kl,kz)

..................

Frud b)) = =0

30 _130
8, (A =1%) +8,(1 1%

e -

where 84, &2 are the given constants introduced at the end of Section 1.5. Let
M={xe RN+2 F*(x) = 0, rge DF*(x) = RN+1}

be the regular solution manifold of the augmented equations. The connected

component ITg of IT containing the given initial point x0is the path on M which is

to be computed.

The continuation process begins from the given starting point x0 and produces
a sequence of points xk , k=0,1.... , which approximate points of M. For any k 2 0

29
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the step from xk to xk+1 corresponds to an implementation of the local
coordinate representation discussed in Section 1.4. More specifically, if
T=span{t}, withte RN+2 'tz 0, is a local coordinate space of M at xk, then, for
any fixed y e RN+2, the Jacobian of the augmented equations

F*(X)
=0
t(x-y)

is non-singular for ail x in some neighborhood of xX. Thus if y approximates a
point of IT in that neighborhood, then it follows readily that the above system has

a unique solution xk+1 e M which can be computed by means of a locally
convergent iterative process, started, say, aty .

This gives an outline of the process and it remains only to specify the particular

choices used in PITCON and NFEARS. At xK the normalized tangent vector wk
of IT is computed; that is,

DF*(x)wk = 0, [lwKlf=1,

where for k=0 the direction of w is user-given and for k>0 it is defined by
(W<)T (kK- &) >0.

As a check against leaving the connected component I1, the condition
det(DF*(xK)T, wk) >0

is also monitored. The predicted point y is now computed by linear
extrapolation along the tangent direction; that is,

Y =xK + Twk

The choice of the step length t is the same as in PITCON and we refer to [23] for
the detailed discussion.
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b

t For the definition of the local coordinate system T = span{t} at xk one of the
d natural basis vectors of RN+2 js used; that is we set t = ¢/ where the index i is
chosen such that |[(wKk)Tel] is maximal. This defines the above given augmented
system which is then sclved by means of a chord Newton process started from
the predicted point y. For details of the acceptance and rejection tests ot this
! iterative process and for the recovery procedures after failure we again refer to
the cited article [23].

Cee -
PR

s
Y
e The process allows for the computation of target points; that is of points x =« M
~ where the component xTei with a prescribed index | has a specified value =
jf} In order to detect such a point the condition
X sign( (x k")Tel - £) = sign( (x ¥)Tei - &*)
is monitored. If it holds, the interpolated point
y' = (1-u)xkt+uxk  (el)Ty =&
 (
- is evaluated and then the corrector process is applied with the augmenting
:ﬁ equation (ei)Tx - &* = 0 and with y* as starting point. Once again we refer to [23]

for further details.

Finally, the continuation process incorporates a procedure for computing limit
points of [T with respect to a specified natural basis direction ei; that is of points x
on IT where the j-th component of the tangent vector is zero. The computation of
these points is similar to that of the target points. Fcor their detection the
condition

Cx

sign( (wk-1)Tel) = sign( (wk)Tel)

| 3

i is monitored. If it holds, then the limit point process of [23] in the form discussed
in [15] is applied. We refer to these papers for the details.
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.7. Simplicial Approximations of the Solution Manifold

As observed already earlier, it is difficult to gain a picture of the two-dimensional
solution manifold M of our nonlinear equations

F(_)_(_) =0 , Xe RN+2

solely tfrom the information along the paths used by the continuation process.
For this purpose a form of the method described in [21], [22] for computing
simplicial approximations of open regions of M was incorporated in NFEARS.
Once again we refer to the original articles for details and concentrate mainiy on
the features that are different.

The approximation process begins with the choice of a reference mesh A of R2.

In the original method a equilateral triangular mesh was used while NFEARS
employs a planar Kuhn-triangulation A as shown in Figure 1.7.1.

Figure 1.7.1

The aim of the triangulation process is to transfer the nodes of a part of A,
together with their connnectivity information, from R2 onto M. This transfer
process works with groups of nodes. More specifically, in NFEARS, we use
"patches” of eight triangles which form rectangles of A and contain nine nodes,
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namely, one center node and eight boundary nodes. Figure 11.6.1 shows a
portion of such a triangulation with one patch of triangles indicated as a hatched
rectangle.

The continuation process is used to generate a first "center” point x € M for the
"region” on M that is to be triangulated. Now a patch of the reference mesh A is
mapped linearly onto the affine tangent space x+TxM in such a way that the
center point of the patch corresponds to x. For this mapping we use an
appropriate basis wy, wa of TxM together with two user-defined scale factors 14,
12 for each one of these directions. In other words, the images of the nine nodes
of the patch on x+TxM are
X+Kkitiwy +kotowe ,  ki=-1,0,1, ko=-1,0,1

These points are now projected onto M. In the original method in [21] , [22] a
chord Gauss-Newton method is used to produce a projection from x+TxM onto
M which is orthogonal to the tangent space. In order to retain the same data
structure as in the continuation process, we use in NFEARS the chord-Newton
process applied to the augmented equations

F(z)
@) z-y| =0

iWT
[(¢) (z-y)]
Here i and j are the indices of the largest components in modulus of w, and w,,
respectively, and y e x+TxM is the point which is to be "projected” onto M.

In order to repeat these steps with a neighboring patch, a new center point on M
is constructed by projecting an appropriate point along one of the basis lines of
x+TxM oato M. More specifically, if, in A, the new patch is located in the
"upward”, "left", "right",or "downward" direction from the original one, then the
new center point is the projection onto M of the points x+2tow2, X-2t1W4,
X+2t1W1, X-212wW2, respectively. Now a suitable basis of the tangent space of M
at the new center point has to be constructed which then allows us to map the
new patch onto M (using the same scale factors t1,t2 as before). But, of
course, nodes of A that have already been mapped onto M will not be used
again.
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Clearly, in order to ensure that the images of the rectangles of A on M form a

i - ‘ curvi-linear mesh on the manifold, we need to use bases on the tangent spaces
VR TxM which change smoothly from point to point. In the terminology of differential
jx'jl geometry this means that we require an algorithm which generates a moving

\n

‘::}_:. frame on the portion of M under consideration. Standard methods for computing
'.' tangent bases do nct produce continuously varying tangent bases (see e.g.
‘Z.,; [11]). A slightly modified form of the moving frame algorithm introduced in [21] is
1}3 used in NFEARS to construct the basis vectors of the tangent spaces at the
'.:,' n center points of the patches.

e

e Suppose that x e M is a point where a basis of the tangent space TxM is to be
i LS . —.

S computed. If we choose two distinct natural basis vector el and el of RN+2,
.:-:;E’:: neither of which is orthogonal to TxM, then the solutions q,, q, of the
ooy augmented system

. - -

E DF(x)

N NI Nk

.::::_~ (e) qk =€ ' k=172
o @)

Pt

\.'.’\
; N certainly form a basis of TxM. Accordingly, the vectors t,t

N

Rl

D) q, 1 T T

. t. = , t.= — q - , = -

e e ey L% (@ a) el 1= lie- (@) e ail,
oo
,- represent an orthogonal basis of TyM. As in the continuation process, the
o ; indices of the largest components in modulus of t, andt, can be used to
]
,: ' determine the indices i and j of the basis vectors in the augmented system.

" Once an orthogonal basis t, , t, of TyM has been obtained the quantities
Q.
o

e kT, .2 kT, 2

;{‘E:j_ 8, = cos(9,) = \/((e) t) +((e) t) . k=12..N+2

g
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‘ (i.n
are the direction cosines of the principal angles between TyM and the natural
S, basis vector of RN+2. Let iq, ip be the indices corresponding to the iargest of
. Q these By, with ties broken by lexicographic ordering. Then we form the matrix

[ a1 8y LT

a‘k (e‘ ) tk , j,k =12

N 4y @

A and with it the quantities

. 1 1 2 1 d 2 2

- L= 5@y tay) . x =@ 1 =yJ(a+ay,) +(@,-a,)

’ ‘: X X

T
- It was shown in [22], that the vectors w,,w,

B ;-:

[}

5 1 2 2 1
:. :_: W1=i(x t1'x tz)v W2=-+-(X. t1+Xt2)

Y o

S with the signs chosen such that
1*- (‘ kT

(€)'t >0, k=12

D ,:::
W provide the desired "moving frame" basis of TxM. Evidently, only the original
. basis vectors q1 , g2 together with the various transformation coefficients have
I to be retained and the two sets of w-vectors need never be computed explicitly.
Le
'_ N The sequencing of the "transfer” of the patches of A onto M is controlled by the
. user and will be described in Section I1.6.
Y
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o 1.8. Error Estimation and Mesh Adaptation
DNn
s-. Let A be a given mesh on Q and u the computed finite element solution on A.
: ﬂ:.: The calculation of the a posteriori error estimate £(A) of u follows the approach
ol for linear problems discussed, for instance, in the surveys [2], [7], [8], [10] and in
f:f!! (3], [9]. In particular, e(A) is obtained as a sum of squares of error indicators p()
’5 of the elements  of A; that is,
f 2 2
fri g4)” = Z p(o)
'o.. WEA
These error indicators are calculated in a two-step process. First, it is assumed
,~i that the solution is sufficiently smooth and hence that the indicators of
‘ol
ot neighboring elements do not differ too much. Then this assumption is checked
() »
— and, if the indicators of neighboring elements (of a common father node in the
" quad-tree of Section |.4) are different, then their computed indicators are
-7 adjusted accordingly. This adjustment turns out to be desirable since the
, unmodified error indicators under-estimate the error near singularities.
':-'__:
,'-' In addition to the quadratic shape functions of Section 1.3 we introduce on the
W master element of Figure 1.3.1 the error shape functions
e 2 ., 2 2 2
" ViV =v(v )R T-1), wy) =g (v - )
'
u On any element w, this induces the global error shape functions, wi(xy) =
i-) wi((x,y),v(x,y)), i=1,2, and with
A"
:,;"- 2
N ou
) .:Q‘_-':; R = &—0——, k=1,2
J.dx dy
‘::": w
SE::":- N o
: : - feak . -
,:::.‘: Q = J' ( Z — u w, - Gyo,xy)w)dxdy , k=12
i o <0 du au
{:'.
;..:,’:‘ the first approximation of the error indicator on w is defined by
o
‘ ,
i
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In addition, NFEARS calculates a linear energy term for w in the form

2 o
En (w) =J Z#—u' u' dx dy
» =0 9u au’

Now, an adjusted error indicator p = p(®w) is calculated from p' for those
elements o whose "brothers" are also elements of the current mesh A. In other
words, if @' is the father of w then all four "sons™ of @' must also be elements of
A. For instance, in Figure 1.8.1, only the elements w, i=1,2,3 and 4, are
candidates for adjustment, while the elements marked by w, retain their already
calculated error indicators p'; that is, we set p(wg) = p'(wg).

®o 0]
W w,
Dy
, w3
Figure 1.8.1

Any such set of four elements w1,...,04 0f A will be called an adjustable cluster.

The adjustment of the error indicators of such a cluster proceeds as follows: We
order the four elements in decreasing order of their calculated indicators pi' =

p'(wi) , say,
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p1l 2 p2' 2 p3l 2 p40
and then define the ratio between the two largest error indicators and those of
the corresponding, diagonally opposite elements m? and mg:

and r,=

Now the adjusted error indicators p are calculated by the algorithm:

It py>8p)
mn Py = g1<r1 ): Pk = pk' K=2,3,4

else it p,'> 100 py'
then py =gy(ry), P2=0x(r2), P3=P3" Ps=P4
Q'.S.Q pk = pk' lk=1 12|3v4

Here the two function g¢(r) and g2(r) are defined by

r={ 34813 00782 s 15 034
9:("=%0.031605r + 1 if r<234

o) = { 17132 e®®'" it r>700
2" =\ 0.0034999r+1 if r< 700

Let h=h(w) be the side-length of the image of the element w in the unit-square
S. Then the computed error indicator p(w) of @ can be shown to have the
following relation to the H3(w)-norm of the exact solution:

2 2 4
p(@=Cllull, h

This suggests that we introduce the quantity

108
H©) h(w)3

for which
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in the local coordinates (&,n) on the unit square S.

.-
w
|7 Let Sk be the unit square containing the element ® and suppose that a
normalized density function D(€,n) and intensity 3 are given. Then the size h of
Y an element o containing the point £,n is asymptotically equal to
1/2
i hw) = —
T D, Emn)
oy which leads to the asymptotic error-indicator formula
M 5
w12 2 [ o 2 w2
o= 52 [HL agan e = D o)
:j ® DQ WeE A

For a minimal error, this formula suggests that we should choose the density
function D,(E,n) so as to minimize the expression

N
> [ e o
“t g Dy

e

L

'—
=
A

" This minimization is performed on the superelement Sk to which w belongs. The

" )
. definition of the unnormalized density function d;( on a superelement S‘; is
' given in Section 1.4. The desired coefficients p, and p; , i=1,...,9 are calculated

by a least square fit. More specifically, for any element w in S:-‘ with side-length
~f
:",_: h(w) we introduce the least squares functional

273
k 0]

' >, [ togdien - 1og 252 | ag an
“ ety h“()
b which is minimized to calculate p, and p41,...,pg.
e
2 The resulting (raw) density functions d'j‘ over the superlements of Q are then
o adjusted to produce a continuous function over the full domain. If a node occurs
- as point i, (1<i<9), in one superelement Sk and as point j, (1<j<9), in another
i superelement SK, and if pij(w) and pj(w') are the corresponding coetficients of

g 39
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: the density in w and w', respectively, then the values of these two coefficients
A are replaced by their maximum; that is, we set
=
o Pi(Sy) = pj(SK) := max { pmin , Pi(SK), Pj(S¥) }
:?j.'
with a suitable minimal value pmin . Similarly we adjust the coefficients p, =
p‘ Po(Sk), but now we use minima. In other words, if a particular 0-D domain is a
j?.j corner point of the superelements Sk and SK' then we set
b0
R Po(S¥) := min { Pmax, Po(S¥), Po(S¥) }
.‘a
NN These adjusted p,—-coefficients are associated with the four 0-D domains of S
N and with this the calculation of the unnormalized density function d,(g,n) is
~ .
‘:“' complete. The un-normalized density function is normalized again as described
o in Section |.4:
1 dg (&)
.ﬁ\' Q ’
-).': DQ (&9“) = N2
: D [ dg &m dgam
q k-" K
g S
SO
‘\i With this adjustment, each closed 2-D domain has, as required, exactly 29
e associated coefficients (see Section 1.4). Accordingly, as discussed above, we
) can calculate on Q the error indicator
s N
o 2 p(@)”
& =33 % [29 g
\
g o k=lwes, o h(w) Dg
i
@
;:o ; where the average intensity 3 should be chosen such that e, < g, with an a
“r: priori given tolerance €., . This defines the properties of the ideal mesh that
L)
i should be used.
Q..
n ] In practice we proceed analogously as in Section |.4. For each super-element
R S'f. there is a sub-tree in the quadtree representation of the current mesh A. Let
’.'. W
N ' be a node of the sub-tree which again defines a sub-tree. Let now A(w) be
®.
:n':'
e
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- the collection of all elements corresponding to the terminal nodes of this sub-
ﬂ tree. Then we can define the intensity

_ W) = 2, [DyEm ¢ dn

'\. we Alw)

' for w'. With this R(w') and the required intensity 3, the modification of the current
] mesh is then based on the following two rules for each 2-D domain Qi :

(a) If R(w') >3 and @' is a father node of an element w in the current
o mesh, then the sub-division of ®' is eliminated; that is, o and its

. brothers are removed and o' becomes an element in a de-refined
:'; mesh.

" (b) If R(w') <3 and o' is an element of the current mesh refined by
n- subdividing w' into four elements.

2‘\:

_ When a father node o' is de-refined and, by rule (a), becomes an element,
’ then rule (a) has to be applied again to its father node. Similarly, when, by rule
; (b), an element ' is sub-divided then the new elements must also be checked
.,; by rule (b). NFEARS performs first the de-refinement with rule (a) until no further

mesh modification occurs, then it proceeds with the refinement by rule (b), and
the process ends when no more refinement is needed.
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