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Preface

The two parts of this report present an introduction to the design and usage of
the NFEARS system developed jointly at the Universities of Maryland and
Pittsburgh. The acronym stands for'"Nonlinear Finite Element Adaptive
Research Solver" and refers to an experimental software system for the solution
of a class of nonlinear, stationary boundary value problems in two space
dimensions involving two real parameters. The overall concept of the system is
similar to that of the earlier system FEARS (see, e.g., [1 6]J[1 7],[26])' for linear
elliptic problems and retains many of the features of that system.

The eight sections of Part 1. describe the mathematical background of the
processes incorporated into NFEARS, and the six sections of Part 11. serve as
Users Manual for the program.

As the earlier program, NFEARS was developed strictly as a research tool and
is expected to be subject to continual modifications.

1All references are collected in Section 1.9 of Part 1.



Introduction

As noted in the Preface, NFEARS is an experimental software system for the
solution of a class of nonlinear, stationary boundary value problems in two
space dimensions involving several parameters. The specific form of the
problem class that can be handled by NFEARS will be given in the next

Section. Generically, these are equations of the form

~F(z,k.) = 0

involving a particular nonlinear mapping F: X -- Y. Here Y is a suitable function

space and X is the product X = Z x A of another function space Z (the state
space) and a finite-dimensional parameter space A. The basic formulation of

the NFEARS problems incoporates a seven-dimensional parameter space, but
for the calculation only a two-dimensional subspace A is used. Parameterized
nonlinear equations arise in numerous areas. The applications we had
especially in mind derive from nonlinear structural mechanics, but the system,of
course, is more generally applicable.

In general, the set of all solutions (z,?) of (1) forms a differentiable manifold M in
the space X with a dimension equal to that of the parameter space A (see e.g.
[19]). In most applications interest centers not so much on computing a few
solutions (z,k) for specific values of the parameters, but rather on analysing the
form and special features of the manifold. For example, in the mentioned
structural problems we may wish to determine those solutions where the
stability behavior changes.

For the computation, a finite element approximation is applied to the basic

equations. Since the parameter-vector does not need to be discretized, the
resulting equations then have the generic form

Fh(Zh,k) = 0

where now Fh maps a space Xh = Zh(DA into a space Yh where now both Zh and

Yh are finite dimensional. Since the parameter space is unchanged, we may
expect that the solutions (Zh,k) of the discretized equation form a differentiable



manifold Mh in Xh of the same dimension as the original manifold M in X. More-
over, we may imbed Xh into X which enables us to define the discretization error
as a suitably specified distance between M and Mh (see [12],[13]). This allows,
In turn, for the design of a posteriori estimates of this discretization error (see
e.g. [6],8],18],[20]). As in the linear case (see e.g. [2],[7],[8],[10]) such a
posteriori estimates are not only important in providing some assessment of the
reliability of the computed results, but also in controlling an adaptive mesh-
refinement procedure with the aim of obtaining a solution with appropriately
bounded error behavior using minimal cost (see [1], [3]).

The basic procedures for the computational analysis of the solution manifold Mh
are the continuation methods, or incremental methods, as they are also called
in the engineering literature. When the dimension of the parameter space, and
hence of Mh, exceeds one, these methods require an a priori restriction to
some path on Mh and then produce a sequence of points along that path. In
structural problems the parameters often define the load configuration and the
path is defined by fixing the load points and load directions and leaving only a
load intensity as scalar parameter.

Obviously, it is, in general, not easy to develop a good picture of a multi-dimen-
sional manifold solely from information along such paths. This led recently to
the development of methods for the computation of simplicial approximations of
open subsets of Mh (see [21],[22]).

The goal of NFEARS is to provide a tool for the above listed tasks. In fact our
generic discussion so far identifies all the principal capabilities of the system
which can be summarized as follows:

(i) Construct a finite element discretization of the given equations using
biquadratic elements on a hierarchical class of meshes defined recursively by
repeated refinement or de-refinement.

(ii) With a given solution Xh0 as starting point and a path through XhO specified

by a selected combination of the parameters, apply a continuation process to
compute a sequence of points approximating that path. The process follows the

2
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design of the PITCON system (see [23],[24]). It allows also for the computation
of specific target points and limit points on the path.

(iii) At selected computed points along the continuation path, compute a
posteriori estimators for the discretization error.

(iv) On the basis of a "density" and "intensity" concept for finite element meshes,

use the error estimators to control the modification of the current mesh.

(v) At any of the computed points, apply an algorithm for the computation of a

simplic'al approximation of an open region of the manifold Mh surrounding the
particular point.

3
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1.1. Problem Class

The nonlinear problems underlying NFEARS are formulated in a weak form
requiring the determination of a function U e X such that

B(U,V) = L(V), V V r Y,

where X,Y are appropriate function spaces which shall not be further identified.
Here B is a bivariate form

B(U,V) f L(D)(,gl,x,y,U,U×,U, ) V dxdy +JaU

f--(a ( 1x,y,U,Ux U.)Vxdxdy + a(,) (0.1 ,x,Yu,uxluy)Vydxdy
Q) o x  Y )y

and L a linear functional

L(V) = G2(G2' x, y) V dxdy + 1(c3, x, y) V dy

involving the given functions

012 0 1U2 2 0 1 2(a1x,y,U ,U , U ) *c(a 11Fx,y,U , U , U ),ValE R,x,y, U ,U ,U eR

2 1

(0.2,x,y) G-. G2((72,x'y), ' IV 2 e R2, x,y e R1

(a3,x,y) - Gl (a 3 ,x,y), V a73 e R ,x,y E

In this formulation we use the notation:

U the trial function in X,
V the test function in Y,
Q a given domain in R2 which will be described in more detail in

Section 1.2,
I- a given subset of M2 which will also be discussed in Section 1.2

4
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x,y the global coordinates in R2

7 the arclength of F,
a, i=1,2,3, three two-dimensional parameter vectors which will be

discussed below.

The trial and test spaces X and Y are assumed to allow us to handle prescribed

q Dirichlet boundary conditions of the form

U b(x,y) , on E) ® )E
4 b(x,y), on e 2 1 2 0

where E is a given one-dimensional subset of Q, 4 a scalar parameter, and b

a function which is locally, piecewise quadratic (see Section 1.3).

All given functions are supposed to be sufficiently smooth on their respective

domains. For the computation it is required that subroutines are available for the

computation of the following functions

a2() a 2 Dk,j = 0, 1, 2
k 1 k k

aGaa1au au aU

GI G2  , aG , G1 , aG
aCF2 a 3

and it is assumed that appropriate values are provided which define the

boundary function b(x,y).

Altogether the problem involves a seven-dimensional space of parameters

(O1,a2,a3,a4) e R2 x R2 x R2 x R1. Thus in general, the set of all solutions U is

expected to be a seven dimensional differentiable manifold in the space X (see

e,g, [19]). In applications, interest rarely centers on the determination of a few

specific solutions of this problem for fixed parameter-values, but rather on an

assessment of the behavior of these solutions when the parameters vary; that is,

on an analysis of the form and features of the solution manifold. NFEARS is

intended to provide a tool for such an analysis.

5
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Evidently, serious data handling problems are likely to arise in an analysis of a
seven dimensional manifold, even though, in principle, the computational
methods, used here for approximating segments of such manifolds, remain
applicable. Accordingly, for the computation, NFEARS is restricted to two-
dimensional sub-manifolds. These sub-manifolds are defined by linear
combinations of the three parameter vectors ci ,i=1,2,3, and of the scalar
parameter 04 in dependence of two effective parameters X,1 and X2. More
specifically, the following linear relations between the (ai and Xj are assumed to

be given:

• 'Y 0 .11

-,= [ = [2i] + [ i=1,2,3

4

"Y4 = (4 + P4 X1

. Accordingly, we aie now interested in the two dimensional manifold of solutions
(U,X 1 ,X.2 ) G X x R2 of our problem, and NFEARS computes finite element

approximations of points along paths as well of nodes of triangulations of open
subsets of this manifold.

6
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1.2. Domains and Mappings

KThe domain W of the problem is assumed to be sub-divided by the user into a

collection of sub-domains. The interior of these sub-domains are called 2-D

domains and will be denoted here by
2K2k ' k = 1 ... ,N N 2

The closure of each 2-D domain is a generalized quadrilateral with four corner

points and four sides each of which can be either a straight line or a circle. The

V (relativeiy) open line segments forming the sides are called 1-D domains (or
lines, for short) and are denoted by

- k = 1,...,N 1_.k 'I

Finally, we call the corner points 1-D domains (or points for short) and denote

them by
0K2. k ' k = 1,....No

Thus altogether the original domain is decomposed as follows

N2 0

The closure of each 2-D domain is the homeomorphic image of the unit square
S = {( ,q); 0 < ,q < 1 } in the plane where all computations are performed. The

specific form of the mapping is given below. Clearly, these transformations onto

S require that degeneracies in the definition of any 2-D domain 0k must be
'' -,

avoided. In particular, the angles formed at the corners of 14, should not be too

close to 0 or n , no overlapping sides should occur, and the overall shape

should not be approximately triangular. Figure 1.2.1 shows some illegal and
legal configurations.

-J
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Illegal:

Legal:

Figure 1.2.1

Cracks may be introduced by using two 1-D domains between two 2-D
domains. If the crack originates at the external boundary of Q,, then two O-D

domains with the same coordinates should be used:
-V

Internal crack External crack

Q O-D subdomains

Figure 1.2.2

As noted before ,the allowable 1-D domains are either straight line segments or

circular arc segments with a given radius. More, specifically, any such domain

Q2k is defined as a directed arc from a starting point with coordinates (xl,yl) to an

endpoint with coordinates (x2,y2 ). Of course, both of these points are O-D

domains. The order of these two bounding O-D domains defines a direction for

QJk which is used to set the direction of the unit tangent vector t at the points of

the arc. The corresponding unit normal vectors n are obtained by rotating t
counter- clockwise through an angle nt/2 (see Figure 1.2.3).

8
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,: ) C > 0C<0

Figure 1.2.3

The particular form of Qk is specified by its signed curvature Ck. More specif-

ically, if C' = 0, then I is a straight line segment, else it is a circular arc with

radius 1/IC' 1. In the latter case, if C1>O or C<O, then the center of the circle is

to the right or the left of the arc, respectively, when looking in its direction (see
Figure 1.2.3).

y'; ra d iu s =1 IC I

SON. x (x ,Yl)

Figure 1.2.4

9
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Hence the tangent and normal vector at any point of the arc are given by

t--- c, co 15+ s-i--

t 2 c sin t -s cos tl

where
X2 -X Y2 -Y1

Cos , L s LL L

L= ( P  L C

s p( 2  - 1) , = J-_p2 (2~ -1)

Accordingly, the global coordinates (x,y) and the local coordinates (,T1) are
jrelated as follows

x(O Y1 +21 i cos t 15x( ) I L 1 - (2r -1)2

L J = + y" L so _ 1-p 2 (2C- 1)2

Line integration of a function f along the 1-D domain then becomes
1

f fdy = LJ+_Lcl
K

Transformation of a 2-D domain is defined by a Coon's patch; that is, by blend-
ing the transformation functions (x(k),y(k)) , k=1,2,3,4 of the four bounding 1-D

domains. As Figure 1.2.5 shows, the O-D and 1-D domains are indexed in a
counter clockwise direction.

10



44

44 (4) (3)

2 33

3
-Ix

2) (2)

Figure 1.2.5

The transformation functions can be expressed in the following form:

-0 X(1)(T 0

X(,)=~~1~ (2)(42) 0 X()(4
-0 (3) -X

11 71 -4 1 -j

Y('1=1_ ()1 ) 0 Y4



.4,.

. tk - 1t k

Tk L k (Tk ) ' += 2k ( k +  2

where t k = +1, if the orientation of the k-th 1-D domain corresponds to the

orientation of the y-axis or x-axis, respectively, and t k = -1 if it is the opposite.

Since the determinant of the Jacobian of this transformation appears in each

volume integral, it is important to express it in an efficient form for later
evaluation. The partial derivatives can be written as

r2(4) sin 0 2  X3(T) - X1 (Tl) r4(4) sin 4 11-1
Sy(,,) r2() cos 2 y3()- y*(Tl) r4( ) COS 4  J

- x({,r)' r(T) sin *1 x( ) - x*(4) r3 ( )sin 3

,n [y ,nij, [ri(i) cos o Y ) Y;() r3(l) Cos 13J [ ]

where

" -P k ( 2 1 ) - ( 2 1 )2
' rk( ) =Lk PA = P)2 j _k = P 2 2 1)l~(2.. lP k + jp (2 .)

with
r 1l)cos t -sin 2 -1)

YA() YkL sin CO 1 pk(C)

x kx k + x - x Ix 1I + x4

0 k=2,3,4 and Li TLYk ] Yk + Yk-, I Y J YI + Y4J

12
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1.3. Finite Element Approximation

The mesh on our domain Q consists of curvilinear elements which are first
defined on the basic square S 0 {5 ( n 0 ,ri ! 11 and then mapped onto the

-: closures of the 2-D domains which make up Q2. A nine-node planar Lagrangian
quadratic element is used as the master element of N FEARS.

(-1,1) (0,1)1 (

7 8 9

(-1,i) (0,-i) 0 (01,-)

Figure 1.3.1

The shape functions associated with its nine nodes (see Figure 1.3.1) are as

follows:

(P p1 .t)v(v), (P ( 2  2 )v(v-1) ; P 4+1V-l

1 2 22 2 1 2"

(P4 5 6 2 (

1P l 1)v v '; ( (1 _L2) (+ ; P = 1

13
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As in [26] the admissible meshes on S are defined recursively by the two rules!I

(a) The mesh consisting of the four quarter-squares
Sk - {(,71) ; i 5 2 i+1, j<2_ :5 j+l }, k = 1 +j+2i, i,j=O,1

of S is admissible. These four squares S1 ,S 2 ,S 3 ,S 4 are called

superelements.
(b) If A is an admissible mesh on S, then the mesh is admissible that is

obtained from A by quartering any one square s of A into four congruent

squares of half the side-length of s.

Is

S1 S3

Figure 1.3.2

Figure 1.3.2 shows an example of an admissible mesh on S. Any element s of
an admissible mesh A on S is uniquely characterized by its center point (40, nIo)
and side-length h , and the transformation

, +(0.5h) g , v = r=lO + (0.5h) v

141
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maps the master element onto s. This specifies the shape functions on s.

Instead of detailing them, we give here the more general formulas for quadratic

interpolation on s. As above let

2 2,I (-o ' v = .(n -n)

and suppose that ui, i=1,2,....9 are given scalar values at the nine nodes of s
indexed in the same order as in Figure 1.3.1. Then the interpolated value u( ,q)

at the point (,,) e s is given by

u1 -u2 u 4 +u5  2(u 4 -U5 ) u 7 -u 8 -U4 +U5  v(v-1)1

.U( ,q) = [ (P-1), 1,"(;+1)] 2(u 2-u5) 4u5  2(u8 -u5 ) 1

u3 u 2 u 6 +u 5  2(u 6-u5 ) U9 -us-u 6 +u 5 [v(v+I )J

It will be useful to record also the corresponding quadratic interpolation which is

induced on any line segment [Co-h/2 , 0+h/2]. If ui, i=1,2,3 are the values at the

three nodes (indexed in order of increasing -values), then the value u( ) of the

-' one-dimensional quadratic interpolation is specified by

1 1

4. WW) 1= (G -] 10o2 .

with = or T.

Once the shape functions are defined on a given admissible mesh on S, we
have obtained, at the same time, the corresponding space of conforming finite

element functions on that mesh. Hence, by applying the transformations from S
2onto each one of the closed 2-D domains fk ' we construct a curvilinear mesh

on the full domain Q. This is schematically indicated in Figure L.3 for the basic

mesh of four superelements.

15
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I 
I

3 X
x 2

Master-element Super-elements Ok

Figure 1.3.3

Let vi = vi(x,y) denote the global shape function belonging to the node i of the
resulting mesh on Q. Then the finite element space, to be considered here,

consists of all the functions of the form

N

J.-- u(x,y) X ui vi(x,y) , x,y E

where the index N denotes the total number of "free" nodes; that is, of the nodes

not contained in the 0-D and 1-D domains carrying Dirichlet boundary

condition.

Dirichlet conditions can be prescribed on a set e consisting of 0-D and 1-D

domains, and they may either depend linearly on 0 4 or be independent of that

parameter; that is,

u(xy) b(x,y) if (x,y)c e) e
u a4b(xy) if (x,y) e 82 1 U 2 =

Here the following conditions are assumed to hold:

(a) The function b(x,y) is a quadratic polynomial in the local coordinate on

( each 1-D domain in A, (see Section 1.2 for the relevant mapping).

(b) The intersection 81 n 02 may contain only 0-D domains with zero

prescribed values, u(x,y) = 0

16



(c) If a 1-D domain is in some set Oi, (i=1,2), then the two adjacent O-D
domains also must be in the same Oi.

(d) If two or more 1-D domains with a common adjacent O-D domain are in
Oi, then the various b(x,y) functions defined on these 1-D domains must

have an identical value at this O-D domain.
The functions b(x,y), as quadratic polynomials in their local coordinates, are

specified by their values at the O-D domains, and at the mid-point of their 1-D
domain (see Section 11.2). The necessary quadratic interpolation for all other

points of the 1 -D domain is performed by the program.

With these specifications the finite element approximation of our given problem,
on any admissible mesh, is a system of N nonlinear equations:

avv
F-u) I a + o(D 'Vi - +- dxdy

f G 2 vJ i dxdy - J G 1 wdi y = 0 i=1,2,....N

Q nr

Uwhere

u = u(x,y) is the desired finite element approximation that satisfied the

boundary conditions;

vi is the global shape function corresponding to the i-th node of the
(curvilinear) mesh on Q;

F is a given subset of the union of 0-D domains and 1-D domains on which

the Neumann boundary conditions specified by the third integral are
defined;

wi is, for any node on F, the induced one-dimensional quadratic shape
:,, :-.function;

are the given functions of the problem as discussed in Section 1.1;

17
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Si , i=1,2,3 are the two-dimensional parameter vectors and 04 the scalar
parameter discussed in Section 1.1. Recall from Section 1.1, that for

.9/ the computations the parameters 01, 02, 03 are specified as linear
,, functions of two effective parameters X1, X2.

The Jacobian of the non-linear mapping F = (F1 , F2, .... FN) is easily obtained by
direct differentiation. For ease of notation, let

0 1 au 2 au 0 1 aVi 2 aV i, u = u , u - -- u =-- v v v =- , v. - -=12 .,
:ax ay , ax a y

Then the components of the Jacobian of F have the form

- 2 2:. °3Fi t' h (: k I.. . .
,- = f T v' v. dxdy ,i,j=1,2,...,Naui  k.1- au '  ' j

and, with the notation of Section I.1, the derivatives with respect to the effective
parameters are

ax. ~ ~ k- ukal 4a a OJJ dx dy
. aG • aG

-2 F 4v. dx dy - 3f '' ) w dy (i=1,2,...,N;j=1,2; P'=3 ,132=0)

2 'J ' I 4 4 4
Q OJ2 r a °J3

Here, it should be noted that, in the assembly of the function values and the
Jacobian components, the fixed boundary nodes are not represented. Thus the
derivatives with respect to 04 have to be transfered to the free nodes.

18
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1.4. Mesh Representation and Densities

In NFEARS the admissible meshes on the basic square S = {(yl), O<__ ,nl} are

represented by a combination of tree structures. This representation is an
extension of that given in [25] for linear elements. More specifically, the
quadratic elements of the mesh in the 2-D domains are stored as extended
quad-trees and their one-dimensional parts on the free 1-D domains as binary
trees. This tree structure facilitates the required mesh-refinements and de-
refinements. We refer to the cited article for a detailed description of the data
structure and summarize here only some of the changes that were needed to
accomodate quadratic elements.

As discussed in Section 1.3 above, all meshes on Q are first defined on the

basic square S. Moreover, by definition of the admissible meshes, the initial
mesh on each 2-D domain corresponds to a basic subdivision of S into four
congruent squares, the superelements. Figure 1.4.1 shows this initial
subdivision with the four parts numbered 2 to 5. The mid-point carries the
number 1 and the mid-points of the sides are assigned the indices 6 to 9.
Further side nodes are required on the boundary of S but they are not
numbered in the Figure. The superelements may be further refined but can
never be de-refined; that is, each 2-D domain contains at least nine internal
nodes.

The initial sub-division is represented by a labeled tree, where the root

corresponds to the mid-point of the unit-square and the 8 descendant nodes to
.4d the four superelements and the four side-nodes, respectively. Labels Ix and ly

with values -1, 0 and +1 are assigned to the arcs of the tree to characterize the

geometrical location of the corresponding node in relation to the mid-point. Note
that the terminal nodes 2 to 5 represent mid-points of open squares, nodes 6 to
9 are mid-points of open intervals, and the root corresponds to a single point.

19
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Subdivided 2-D subdomain:

90

6 1

Corresponding tree:
Ix-1 IY--1 2

": IN-+1 1Y-1

.. ,x-+* 1-+

Ix.-0 1Y--1 - _ --

Figure 1.4.1
i The thin lines in Figure 1.4.1 indicate the effect of a refinement of elements 2 and

4. Eight descendant nodes are appended to the particular tree nodes in
correspondance with the four new elements and four new side-nodes. As in the

lit case of the arcs from node 1, the eight arcs to the new nodes carry labels Ix, ly

20



L.

with values -1,0,+1. Two further side-nodes are introduced on both sides of

node 8. These are implemented by adding two son-nodes to node 8 and

labeling the arcs Ix=O,1y=-l (below 8) and lx=O,ly=+l (above 8), respectively. In

addition, so-called irregular nodes appear on both sides of nodes 6 and 7.

Generally, a node of any mesh is irregular if it lies on the side of some element

but is not the mid-point of that side. These irregular nodes are not represented

in the tree. Solution values at the irregular points are linearly dependent on the

solution values at the corner-points and at the mid-point of the side. Side points

are also introduced on the bordering 1-D domains. Whether these are regular

nodes or irregular nodes will depend on the mesh on the neighbouring 2-D

domain, if there is one. If there is none; that is, if the 1-D domain is an outside

Y. boundary, then those nodes are defined to be regular nodes.

*The resulting labeled tree has two important properties:

-. ' 1. All non-terminal nodes of the tree represent single points while the

terminal nodes correspond to the mid-points of open squares or open horizontal

*or vertical intervals in the local coordinate system. Open squares are mapped

onto the interior of elements of 12 and the ,,ly labels on their incoming arcs carry

non-zero values. Open intervals are those which have a label lx=O (vertical

sides) or ly=0 (horizontal sides).
2. There exists a unique path from the root to any given node on the tree

which consists of arcs with labels IxiIy , i=1,2,... ,m, that define the local

coordinates of the corresponding point as
I-- mm

,,.±(1 +~ lxi 2') and -q=-(1 +1 ly2)
i=1 +1

For terminal nodes the length m of the path specifies the length h of the side of

the corresponding open square or interval as h = 2'm .

S,,

The 1-D domains are mapped onto open unit intervals (see Section 1.3). Each

free 1-D domain is represented by a labeled binary tree, while fixed 1-D

domains; that is, those that carry Dirichlet conditions, are only documented in

summary records. Initially, a binary tree has one root-node and two son-nodes

with arcs carrying the labels -1 and +1, respectively. The root node corresponds
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to the mid-point of the 1-D domain and is also a cornerpoint of a superelement
in the adjacent 2-D domains; the son-nodes are then representing the sides of

this superelement. This is shown in Figure 1.4.2.

1-" subdomain separating two 2-D subdomains:

t OD 0 subdomai.

5

3

Irregular
nodes 2

a

"""" % 0-0 subdomain

Corresponding binary tree:

Figure 1.4.2
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For the control of the mesh modification process, as well as for the initial

definition of the meshes on 0, we follow [3], and introduce a density function

and mesh intensity.

2The 2-D domain k is mapped onto a unit square which contains four

superelements Sk, j=1,2,3,4. As in Section 1.3 let vi(,Tl), i=1 ....9, be the nine
global shape functions of the superelement S. For every superelement exactly

one corner point is the image of a O-D domain. Suppose that this point

corresponds to the corner with index I of the master element. Moreover, let
k

ro(',rI) denote the distance between it and any point (,,q) e Si. Then the un-

normalized density function d on Sk is defined by

log(dk (,,)) = X p v,(I,r) + 2 po v,( ,T') log(ro( ,ni)) , s E

where Po0...p 9 are given constants. This definition pre-supposes that the

solution can be split into a smooth part and the effect of a singularity near the 0-
k

D domain associated with S . More specifically, the sum over the shape-

functions reflects mesh for the smooth part and the logarithmic term mesh for
the singular part. Line singularities are not represented separately; that is, in

our setting, they must be incorporated into the smooth part.

When a noae belongs to two different superelements, then the coefficients pi

corresponding to it in these elements are assumed to be identical. With this a
continuous, positive density function dk( 'T) is defined on the entire unit square.

Moreover, dk( ,n) is iniquely characterized by 29 constants, namely, 25

coefficients Pl, ....p (nine on the open 2-D domain, three each on its four open

1-D domains, and one each at its four 0-D domains ), and 4 singularity

exponents Po (one each at the four 0-D domains).

The density functions dk can be extended to a continuous, positive density

function d on the entire domain K by requiring that the coefficients at any nodes

in the intersection of two closed 2-D domains are identical. This function d is
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completely characterized by nine coefficients for each open 2-D domain, three

for each open 1-D domain, and two for each 0-D domain. Then

Da = N2

I f dk(An) d4 dil
k=I k

shall be the normalized density function onthe domain .

Let A,, j = 1,2,..., be a sequence of meshes with E, elements such that Ej -->0 as
j - o. Moreover, assume that for any open subset 0' of Q which contains E1p.

(open) elements, we have the inequality

Ej

where

lim sup a2(j,") and lim inf a I(j, )

are finite and independent of Q'. Then, evidently, for large j the quantity

53(Y D Q 4j) d4 d~j

is nearly independent of Q'. This suggests that we may characterize a mesh by
its normalized density function and a number Z, called its intensity, such that

E, 0. f- D,,(4,TI) dt d71

is the number of elements in any open subset K' of Q. This relation allows us to
construct an admissible mesh A on Q once a normalized density function
D,(4,r ) and an intensity 3 are known. Clearly, it suffices to give this algorithm
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2 2
only for some closed 2-D domain Qk of Q . As before, let 2k be mapped onto

the unit square Sk and let Ak be the mesh consisting of the four superelements
S k .

For all elements o of Ak

*Compute Eg, for the set 0' = (co);

If Eg > 1 then
construct a new mesh Ak by subdividing co into four new

N: elements,

terminate the process with the current mesh Ak.

The process ends with a mesh Ak for which E,, < 1 for all singleton sets Q' = {co}

of Ak. Moreover, we also know that E., > 1 for the father co' of co; that is, for the

* ., element of an earlier mesh from which co was constructed by the quartering

rule.

Some examples of this process are given in Figure 11.3.4. It may be noted that

there the intensity was set equal to 1/20, and hence we should expect a mesh
with 20 elements. But the actual number of elements is closer to 50 due to our

use of the quartering rule; that is, the requirement that only admissible meshes

are allowed.

r.
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1.5. The Solution Manifold

In Sections 1.3 we specified our problem in the form of a system of nonlinear
equations

F(u,X 1,X2) =0 , F:RNx R2 -* RN,

involving the vector u of the unknown values at the N free nodes of the finite
element mesh on Q and the two effective parameters X1, X2. This system

approximates the nonlinear operator equation introduced in Section 1.1, and, as
indicated there, the set of all solutions (u,Xl,X2) e RN x R2 forms a dhfferentiable
manifold in RN x R2 . We summarize here briefly some of the necessary

differential geometric properties of this solution manifold and refer for further
details, for instance, to [19] and the literature cited there.

-C> For ease of notation, we shall use the abbreviation x = (u, X1, X2) e RN+2 and
write DF(x) for the N x (N+2) Jacobian of F. A point x is called regular if the
Jacobian has full rank N. Then the set of all regular solutions

M ={ e RN+2; F(x) =: 0, rgeDFx) = N }

is a two-dimensional differentiable manifold in RN+2 of the same differentiability
class as F. By restricting ourselves to this regular solution manifold we asume
that a suitable unfolding of the original problem has been chosen. In practical
applications, this is, in general, a natural assumption.

As indicated already in Section 1.1, we wish to analyse the shape and

characteristic features of this solution manifold. However, for this we have to
recall that the mapping F represents only a discrete approximation of the
original (infinite) dimensional problem of Section 1.1. As noted there, this
original problem -- after restriction to the two effective parameters X, X2 -- may
also be expected to possess a two-dimensional solution manifold in the product
of the trial space X and the parameter space R2 . It is actually this original
manifold which we wish to analyse; but, of course, that manifold is not directly
accessible for a computational study. This raises the question of the influence of
the finite element discretization upon the shape and features of the original
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manifold and of estimates of the size of the discretization error. This will be

discussed in Section 1.8 below. Here we concentrate on the above manifold M

defined by the specific finite element discretization F.

At any point A e M the tangent space TxM of M may be identified with the null-

space of the Jacobian; that is,

TAM = Ker DF(x) = {w e RN+2, DF(x)w= 0}.

Accordingly, the orthogonal complement

NX M = (Tx M) L = rge DF(x)T

is the normal space at that point.

-, For the analysis of any differentiable manifold we require suitable local

coordinate systems on M. For the computations we use local coordinate

systems induced by given 2-dimensional subspaces T of RN+2. More
specifically, any such space T induces a local coordinate system of M at x e M

provided that

Tcr TxM ={0}.

If this condition holds then there exist open neighborhoods V1 and V2 of the

origins of T and RN+2 , respectively, as well as a unique differentiable function w:
V1 -- T-L , w(0) =0, such that

MrnV 2 ={ Ye RN+2; y=x+t+w(t), te V1 }.

A point x is a non-singular point with respect to the given coordinate space T if
T induces a local coordinate system of M at x, otherwise it is called a singular

point or foldpoint.

Let A be the two-dimensional subspace of RN+2 spanned by the effective

parameter directions. Then interest centers especially on determining the
foldpoints with respect to the coordinate space T = A . If our original problem
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concerns a study of equilibrium configurations of a mechanical structure then
these foldpoints with respect to A represent approximations to the eqilibria

where a change of the stability behavior of the structure may be expected occur.

The basic procedures for the computational analysis of our solution manifold M

are the continuation methods. These methods require a restriction to some path

on M and then produce a sequence of points along that path. One such

continuation procedure is incorporated in NFEARS. The allowable paths for this
procedure are defined by specifying the effective parameters X1, X2 as linear

functions of a scalar parameter X:

= X ,i=1,2, 81 + 2 =1

Some of the details of the continuation process and of its capabilities are

0 discussed in Section 1.6.

Obviously, it is not easy to develop a good picture of a two-dimensional
manifold solely from information along such paths. This led recently to the

development of methods for the computation of simplicial approximations of

two-dimensional open subsets of M. NFEARS incorporates a form of the method

introduced in [21],[22] which will be discussed in Section 1.7 below.

a-8

S.o
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1.6. The Continuation Process

The continuation method incorporated into NFEARS follows the design of the
PITCON system (see [23],[24]) . We summarize here only the principal aspects

If, of that method and refer to the original articles for further detail.

As discussed in Section 1.3, our finite-element approximation has the form

Fi(u, X1, X2 ) = 0, i=1,2 .... N, u e RN,

Let M again be the corresponding regular solution manifold and, for ease of
notation, write x = (u, X1, X2). For the continuation process we have to restrict

ourselves to a path on M through a specified point x0 = (u0 ,Xt,X2 ) e M. This is

equivalent with an augmentation of the system by some scalar equation. As
mentioned in Section 1.5, NFEARS uses only paths on M which are specified by
a linear combination of the effective parameters X1 , X2. In other words, we

consider augmented systems of the form

F1 (u,X. ,X)

F*(u,X ,X2) = FN(U,X,?'I ) 0

L 1 (Xj_O) + 2 (X2-2)

where 81, 82 are the given constants introduced at the end of Section 1.5. Let

- = { x e RN+2, F*(x) = 0, rge DF*(x) = RN+1 }

d

ale' be the regular solution manifold of the augmented equations. The connected
component H0 of H- containing the given initial point xo is the path on M which is

to be computed.

The continuation process begins from the given starting point x0 and produces
a sequence of points Xk , k=0,1,... which approximate points of M. For any k > 0

29

"'p



the step from xk to xk+1 corresponds to an implementation of the local

coordinate representation discussed in Section 1.4. More specifically, if
T=span{t}, with t E RN+2 , t # 0, is a local coordinate space of M at xk, then, for
any fixed y E RN+2, the Jacobian of the augmented equations

I '. [ 1
i F*(x)

[tT a-Y J = 0

is non-singular for all X in some neighborhood of Xk. Thus if y approximates a
point of H- in that neighborhood, then it follows readily that the above system has
a unique solution xk+i • M which can be computed by means of a locally

convergent iterative process, started, say, at y.

o ,This gives an outline of the process and it remains only to specify the particular

choices used in PITCON and NFEARS. At xk the normalized tangent vector Wk

of H- is computed; that is,

OF*(/k = 0, ttAtl = 1,

where for k=0 the direction of Wk is user-given and for k>0 it is defined by

(Wk)T (xk - x k -1 ) > 0.

As a check against leaving the connected component Ho the condition

det(DF*(xk)T, W k) > 0

is also monitored. The predicted point y. is now computed by linear

extrapolation along the tangent direction; that is,

,y = - k + -C W k .

? The choice of the step length r is the same as in PITCON and we refer to [23] for

the detailed discussion.

30

It



For the definition of the local coordinate system T =spant at Xk one of the
natural basis vectors of RN+2 is used; that is we set t = V' where the index u s
chosen such that I(Ak)il is maximal. This defines the above given augmented
system which is then solved by means of a chord Newton process started from
the predicted point y~. For details of the acceptance and rejection tests of this

U iterative process and for the recovery procedures after failure we again refer to
the cited article [23].

'V

The process allows for the computation of target points; that is of points M
where the component xTes with a prescribed index j has a specified value
In order to detect such a point the condition

sign( (A k-i )Tei j sign( (A k)Tei r

is monitored. If it holds, the interpolated point

is evaluated and then the corrector process is applied with the augmenting
equation (e)Tx - an0 and with y as starting point. Once again we refer to [231
for further details.

Finally, the continuation process incorporates a procedure for computing limit
points of s with respect to a specified natural basis direction eo; that is of points x
on H where the j-th component of the tangent vector is zero. The computation of
these points is similar to that of the target points. For their detection the
condition

sign( (wk-1)Tei) # sign( (Wk)Tei)

is monitored. If it holds, then the limit point process of [23] in the form discussed
in [15] is applied. We refer to these papers for the details.
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1.7. Simplicial Approximations of the Solution Manifold

As observed already earlier, it is difficult to gain a picture of the two-dimensional

solution manifold M of our nonlinear equations
N,, *

F(x) -0 , x e RN+2

solely from the information along the paths used by the continuation process.
p..,.

.- For this purpose a form of the method described in [21], [22] for computing
simplicial approximations of open regions of M was incorporated in NFEARS.
Once again we refer to the original articles for details and concentrate mainiy on

the features that are different.

The approximation process begins with the choice of a reference mesh A of R2 .

* In the original method a equilateral triangular mesh was used while NFEARS

employs a planar Kuhn-triangulation A as shown in Figure 1.7.1.

'p1

Figure 1.7.1

.-,,,

The aim of the triangulation process is to transfer the nodes of a part of A,

together with their connnectivity information, from R2 onto M. This transfer
*. process works with groups of nodes. More specifically, in NFEARS, we use
-. "patches" of eight triangles which form rectangles of A and contain nine nodes,
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namely, one center node and eight boundary nodes. Figure 11.6.1 shows a

portion of such a triangulation with one patch of triangles indicated as a hatched
rectangle.

The continuation process is used to generate a first "center" point x E M for the
"region" on M that is to be triangulated. Now a patch of the reference mesh A is
mapped linearly onto the affine tangent space x+TxM in such a way that the

center point of the patch corresponds to x. For this mapping we use an
appropriate basis w1, W2 of TxM together with two user-defined scale factors 11,

t2 for each one of these directions. In other words, the images of the nine nodes

of the patch on x+TxM are
x + k1 tlWl + k2 T2w 2  kl= -1,0,1 1 k2=-1,0,1

These points are now projected onto M. In the original method in [21] , [22] a

chord Gauss-Newton method is used to produce a projection from x+TxM onto
M which is orthogonal to the tangent space. In order to retain the same data
structure as in the continuation process, we use in NFEARS the chord-Newton
process applied to the augmented equations

F(z)

(e)T(. -) = 0

(e) (- _)

Here i and j are the indices of the largest components in modulus of w1 and w 2 ,

respectively, and y e x+TxM is the point which is to be "projected" onto M.

In order to repeat these steps with a neighboring patch, a new center point on M
is constructed by projecting an appropriate point along one of the basis lines of
x+TxM o.ito M. More specifically, if, in A, the new patch is located in the
"upward", "left", "right",or "downward" direction from the original one, then the
new center point is the projection onto M of the points X+2t2w2, X-2Tlwl,
x+2tlWl, x-2'C2w2, respectively. Now a suitable basis of the tangent space of M

at the new center point has to be constructed which then allows us to map the
new patch onto M (using the same scale factors T1,T2 as before). But, of
course, nodes of A that have already been mapped onto M will not be used

again.
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Clearly, in order to ensure that the images of the rectangles of A on M form a

curvi-linear mesh on the manifold, we need to use bases on the tangent spaces
TxM which change smoothly from point to point. In the terminology of differential
geometry this means that we require an algorithm which generates a moving

frame on the portion of M under consideration. Standard methods for computing

tangent bases do not produce continuously varying tangent bases (see e.g.
[11]). A slightly modified form of the moving frame algorithm introduced in [21] is

used in NFEARS to construct the basis vectors of the tangent spaces at the

center points of the patches.

Suppose that x e M is a point where a basis of the tangent space TxM is to be

computed. If we choose two distinct natural basis vector ei and eJ of RN+2,
neither of which is orthogonal to TxM, then the solutions q,, q2 of the
augmented system

DF(A)

T 1 N+k(e) qk = e , k=1,2

(eJ)T

.-. , certainly form a basis of TIM. Accordingly, the vectors t1 ,t2

-- - q ,  t2 = - [q2 ((q2)Tq)q, ] '  X = q2"((q2)Tq)q1112111q1112  x'..-

represent an orthogonal basis of TxM. As in the continuation process, the
* indices of the largest components in modulus of t1 and t2 can be used to

determine the indices i and j of the basis vectors in the augmented system.

Once an orthogonal basis ti , t2 of TxM has been obtained the quantities

'kT 2 kT 2ek COS(k) = + ((e t k = 1,2,...,N+2

-a =34
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are the direction cosines of the principal angles between TxM and the natural
" basis vector of RN+2. Let il,i2 be the indices corresponding to the largest of

these ek, with ties broken by lexicographic ordering. Then we form the matrix

[a,1  a2 T

S[ a2 1  a2 2 J a, =(e)Ttk , j,k= 1,2

and with it the quantities
12 1 zd 1 22 ) 2

X = - (a 1 +a 22, X2 - -(a 12  a21), X= (a 1 + a2 +(a1 2  a21)

d d
X' X

It was shown in [22], that the vectors w1 ,w2

W = 1 ( -X 2 t 2 , w 2 = ( 2 t1 + X1 t2 )

with the signs chosen such that

T
(e ) tk > 0 , k=1,2

provide the desired "moving frame" basis of TxM. Evidently, only the original

basis vectors ql , q2 together with the various transformation coefficients have

to be retained and the two sets of w-vectors need never be computed explicitly.

The sequencing of the "transfer" of the patches of A onto M is controlled by the

user and will be described in Section 11.6.
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1.8. Error Estimation and Mesh Adaptation

Let A be a given mesh on Q and u the computed finite element solution on A.
The calculation of the a posteriori error estimate e(A) of u follows the approach

for linear problems discussed, for instance, in the surveys [2], [7], [8], [10] and in
(3], [9]. In particular, e(A) is obtained as a sum of squares of error indicators p(CO)
of the elements 0) of A; that is,

E()2 = Y'P(

WE

These error indicators are calculated in a two-step process. First, it is assumed

that the solution is sufficiently smooth and hence that the indicators of
neighboring elements do not differ too much. Then this assumption is checked

and, if the indicators of neighboring elements (of a common father node in the

* quad-tree of Section 1.4) are different, then their computed indicators are

adjusted accordingly. This adjustment turns out to be desirable since the
unmodified error indicators under-estimate the error near singularities.

In addition to the quadratic shape functions of Section 1.3 we introduce on the

master element of Figure 1.3.1 the error shape functions

1(pl.,V) =V(V -1)(p2 -1) , i2 (.,V) = p. (V2 -l)(p 2-1)

On any element co, this induces the global error shape functions, wi(x,y) =

Wi(lJ(x,y),v(x,y)), i=1,2, and with

. .,f a' 2(D)  dx dy
, . au k 2

ak = 2 X u' wj - G y dx , k=1,2Qk f ( I 2  kt u(2X)W

C) ij=0 au, aku

the first approximation of the error indicator on o is defined by
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Q 2 02

Q1 Q2

p'(co) = 720 , +R1  R 2

In addition, NFEARS calculates a linear energy term for co in the form

""J u 2  u , u u dx dyn (co) f
' "' i.j=O au , Du

Now, an adjusted error indicator p = p(o) is calculated from p' for those

elements co whose "brothers" are also elements of the current mesh A. In other
words, if co' is the father of co then all four "sons" of co' must also be elements of
A. For instance, in Figure 1.8.1, only the elements coi, i=1,2,3 and 4, are
candidates for adjustment, while the elements marked by coo retain their already
calculated error indicators p'; that is, we set p(coo) = p'(oo).

"N.

(t)2 034

0
(01 0

Figure 1.8.1

Any such set of four elements Qov ,...,o4 of A will be called an adjustable cluster.

The adjustment of the error indicators of such a cluster proceeds as follows: We
order the four elements in decreasing order of their calculated indicators pi' =

p'(q) , say,
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pi' P,' P3' P4

and then define the ratio between the two largest error indicators and those of
the corresponding, diagonally opposite elements wd and d

1 (02:

P, (O d) and 2 ,(Cdd 2

Now the adjusted error indicators p are calculated by the algorithm:

f pl'>8 P2'
then p1 = g,(r0), Pk Pk' ,k=2,3,4

gi~ if P2 > 1 00 P3'
lb-n P1 = g2(rl), P2 9 2(r2), P3 -2 P3, P4 =P 4

allc Pk~ = Pk' ,k=1 ,2,3,4

Here the two function g,(r) and 92(r) are defined byI

9 1r) 3.413e 0036rif r >234
0.0ko 31605 r +1 if r 5234

{1.7132 eo0 01 r if r >700
92(r 0.0034999 r + 1 if r:5 700

Let h=h(oi) be the side-length of the image of the element 0w in the unit-square
S. Then the computed error indicator p(co) of wo can be shown to have the
following relation to the H3(co)-norm of the exact solution:

p2(O) = C11U 1123  h(Wo)
H (w)

This suggests that we introduce the quantity

hTco) 3

for which
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p(o) 2 = h(CO) 4 f (CO) 2 d dT1

in the local coordinates ( ,rl) on the unit square S.

Let Sk be the unit square containing the element co and suppose that a
normalized density function D,( ,ii) and intensity 3 are given. Then the size h of

an element co containing the point ,, is asymptotically equal to
'. h~e) $1/2

1/2
D Q (i)

which leads to the asymptotic error-indicator formula

p.(CO , = d c i 1 (A)2  =P,,(T)2

For a minimal error, this formula suggests that we should choose the density

function D,(4,T) so as to minimize the expression

N 2

k-i 0

This minimization is performed on the superelement Sk to which co belongs. The
k k

definition of the unnormalized density function dj on a superelement Sj is

given in Section 1.4. The desired coefficients po and pi i=1,... ,9 are calculated
k

by a least square fit. More specifically, for any element co in S" with side-length

h(co) we introduce the least squares functional

I k( "rl)) _ log pd4 dT

sj) h (Co)

which is minimized to calculate po and Pl,.... P9.

The resulting (raw) density functions dj over the superlements of Q are then

adjusted to produce a continuous function over the full domain. If a node occurs
as point i, (1<i<9), in one superelement Sk and as point j, (15j<9), in another

superelement Sk', and if pi(co) and pj(o)') are the corresponding coefficients of
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the density in co and co', respectively, then the values of these two coefficients

are replaced by their maximum; that is, we set

Pi(Sk) := pj(Sk') := max { Pmin , pi(Sk), pj(Sk') I

with a suitable minimal value Pmin • Similarly we adjust the coefficients po =

po(Sk), but now we use minima. In other words, if a particular O-D domain is a

corner point of the superelements Sk and Sk' then we set

pO(Sk) := min I Pmax, po(Sk), pO(Sk')I

These adjusted po-coefficients are associated with the four O-D domains of S

and with this the calculation of the unnormalized density function d,( , )is
9' complete. The un-normalized density function is normalized again as described

.'.. in Section 1.4:

-;..=, da (4,l)
"f2 N2

With this adjustment, each closed 2-D domain has, as required, exactly 29

associated coefficients (see Section 1.4). Accordingly, as discussed above, we
can calculate on Q the error indicator

N2 2 d4 dr

k-i1 0)E k ( (0) D 2

where the average intensity 3 should be chosen such that E < Emax with an a

priori given tolerance Smax" This defines the properties of the ideal mesh that

should be used.

In practice we proceed analogously as in Section 1.4. For each super-element~k
S k, there is a sub-tree in the quadtree representation of the current mesh A. Let

Ud be a node of the sub-tree which again defines a sub-tree. Let now A(co) be
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the collection of all elements corresponding to the terminal nodes of this sub-

tree. Then we can define the intensity

91(CO') = ; JDo ( ,Ti) d dii

for co'. With this 91(w') and the required intensity 3, the modification of the current
2

mesh is then based on the following two rules for each 2-D domain -Qk

(a) If 91(c') > 3 and co' is a father node of an element co in the current

mesh, then the sub-division of wo' is eliminated; that is, co and its

brothers are removed and co' becomes an element in a de-refined

mesh.

(b) If 9I(w') < 3 and co' is an element of the current mesh refined by

subdividing co' into four elements.

When a father node co' is de-refined and, by rule (a), becomes an element,

then rule (a) has to be applied again to its father node. Similarly, when, by rule

(b), an element co' is sub-divided then the new elements must also be checked

by rule 1b). NFEARS performs first the de-refinement with rule (a) until no further

mesh modification occurs, then it proceeds with the refinement by rule (b), and

the process ends when no more refinement is needed.
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